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Abstract 

Detailed mapping of land cover is essential for supporting science-based sustainable landscape 

management. Despite the importance of land cover mapping in monitoring landscapes dynamics, 

land cover data are not always available. Even when the land cover data are available, they often 

lack detailed discrimination between forest types and plantations. This issue was found in a 

seasonally dry tropical forest landscape in Siem Reap and Preah Vihear, Cambodia. In this thesis, 

I explored the potential of (1) the fusion of optical and radar data in developing detailed land cover 

maps and revealing the driver of landscape change, and (2) vertical vegetation structure acquired 

by the Global Ecosystem Dynamics Investigation (GEDI) mission—a new mission that harnesses 

a space-borne waveform lidar sensor installed on the International Space Station—to improve the 

vegetation mapping in the studied landscape. The fusion between radar (Sentinel-1) and optical 

(Sentinel-2) satellite data slightly improved the land cover classification accuracy (1.6% overall 

accuracy increase) relative to Sentinel-2-only classification. Between 2015 and 2019, I detected a 

247,781.04 Ha dry deciduous forest loss; most were due to logging (147,314 Ha). Land 

designations, such as the protected areas and the economic land concessions (ELCs), significantly 

determine land cover change. The classification of vegetation types using GEDI data had 81.9% 

overall accuracy despite the limited spatial coverage of GEDI data. The GEDI-only classification 

results could identify the seasonally inundated forests with better accuracy than the land cover map 

derived from the fusion of optical-radar data. These results demonstrate the potential of structural 

information acquired by Sentinel-1 and GEDI to improve our ability to identify vegetation types 

in complex, heterogeneous landscapes. 
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Lay Summary 

Monitoring land cover is essential in the face of global environmental change. However, data gap 

is often an issue that hinders land cover monitoring from being put in place. In the first part, I used 

the combination of two different satellites: Sentinel-2 (optical) and Sentinel-1 (radar), to create 

land cover maps for 2015 and 2019. Map’s accuracy slightly increased following the addition of 

Sentinel-1 data into land cover mapping. The analysis of 2015 and 2019 land cover maps showed 

that logging in the dry deciduous forest was prevalent. In the second part, I explored the potential 

of vegetation structure data collected by the new Global Ecosystem Dynamics Investigation 

(GEDI) mission in improving the identification of different vegetation types in the studied 

landscape. These results demonstrate the potential of structural information acquired by Sentinel-

1 and GEDI to improve our ability to identify vegetation types in complex, heterogeneous 

landscapes.  
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Chapter 1. Introduction 

Tackling the global issues of food security, climate change, and biodiversity crisis requires more 

sustainable management of landscapes. The growing demand for agricultural products due to the 

global population growth has been causing an expansion of agricultural land since 1700 despite 

the increased productivity per unit land associated with more intensified management practices 

(Ramankutty et al., 2018). At the same time, as a consequence of the growing land demand among 

other drivers, the conversion of carbon-rich vegetation, such as natural forests, has been 

widespread across the globe (Hansen et al., 2013; Potapov et al., 2019), with identified hotspots in 

the tropical forest landscapes (Gibbs et al., 2010). Protecting forests in tropical landscapes can 

reduce greenhouse gases (GHG) emissions from avoided deforestation and ecosystem degradation 

and significantly contribute to achieving the 1.5oC above the pre-industrial global temperature goal 

(Roe et al., 2019). Furthermore, conserving carbon-rich terrestrial ecosystems provides co-benefits 

for biodiversity since habitats are protected from further loss and degradation. Despite the potential 

benefits of sustainable tropical forest landscape management, a recent global assessment identified 

tropical deciduous forest biomes as the largest hotspot of net tree canopy loss at approximately 

179,000 km2 between 1982 to 2016 (Song et al., 2018). 

Effective conservation and sustainable management of tropical forest landscapes require a 

monitoring system to provide timely and accurate evidence that allows managers to make informed 

decisions (Portillo-Quintero et al., 2021). Accurate, regularly updated land cover maps depict 

landscapes' current and historical state; this information is the primary inputs to time-series 

analysis to unveil the drivers of the landscape changes (Leinenkugel et al., 2015; Tellman et al., 

2020). A better understanding of the drivers of change can enable decision-makers to design 

holistic pathways to control the alarming rate of ecosystem degradation and deforestation in 

tropical forest landscapes. 

Despite the importance of land cover mapping in monitoring tropical landscapes, land cover data 

are not always available, especially in developing economies. A recent study identified land 

managers’ need for land cover data in the Lower Mekong region (Saah et al., 2019). A regional 

land cover monitoring system has been developed to address the identified gap by harnessing 

modern remote sensing technologies (Saah et al., 2020). Unfortunately, such a monitoring system 
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provides land cover data at a coarse scale (pixel size = 1 km2) and cannot identify different natural 

forest types. 

In this thesis, I explored the potential of new remote sensing technologies, specifically (1) the 

fusion of radar and optical satellite data and (2) the space-borne lidar data, to accurately map land 

cover in a seasonally dry (deciduous) tropical forest landscape in Siem Reap and Preah Vihear, 

Cambodia. The general properties of the remote sensing data used in this research will be briefly 

described in the following subsections. 

a. Optical Remote Sensing 

Optical remote sensing systems are the first established remote sensing techniques used in land 

cover mapping (Anderson et al. 1976; Allan 1980). Optical sensors work very similarly to cameras 

to capture the lights reflected by objects of interest. It belongs to a passive remote sensing category 

because it relies solely on the sun as the primary light source. The widely-used Landsat and 

MODIS missions with a medium or coarse spatial resolution, with pixel size 30 and 250 meters, 

respectively, belong to this group (Chhetri and Thai 2019). This group also includes high-

resolution satellites (spatial resolution ≤ 10 m), such as QuickBird, GeoEye, SPOT, and 

WorldView. With the long mission history, the earliest efforts of land cover monitoring from space 

were conducted with optical sensors (Allan 1980). 

Optical sensors provide a means to observe the earth’s surface from space systematically. With the 

oldest data archive dated back in 1982, Landsat TM allows for long multi-temporal analysis 

(Chhetri & Thai, 2019). Data collected by a newer satellite, Sentinel-2, can accurately map detailed 

land cover classes in a complex tropical landscape where diverse vegetation types are close to each 

other (Nomura & Mitchard, 2018). Multispectral bands used in Landsat TM and Sentinel-2 data 

can reveal patterns that would be invisible when only visible red, green, blue (RGB) bands are 

used. 

Previous studies have identified several limitations of optical remote sensing. In optical systems, 

like in many other passive remote sensing systems, the major light source for optical remote 

sensing systems is the sunlight. Accordingly, only limited features are visible in scenes acquired 

in the nighttime. In places with frequent and dense cloud cover, the optical sensors captured clouds 
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instead of the reflectance of the land surface beneath them (Chhetri and Thai 2019; Nomura and 

Mitchard 2018; Leinenkugel et al. 2013). This limitation is due to the inherent properties of shorter 

wavelengths that are harder to ‘penetrate’ through the clouds. With such a limitation, it has been 

challenging to make dense temporal series land cover change analyses because of the limited 

availability of cloud-free scenes. A past effort in the tropical region of Southeast Asia required 11 

years of mosaics to generate a single vegetation map on the regional level (Leinenkugel et al., 

2013). Even though the newer optical earth observation satellites are still unable to “see” through 

clouds, the higher observation frequency of the new satellites allows images with less cloud cover 

to be “stitched” together to form a cloud-free composite. 

b. Radar Remote Sensing 

As an active system, radar remote sensing involves transmissions of microwaves onto the earth’s 

surface and record the echoes that bounce back from the earth’s surface (Sabins, 1997). Unlike 

passive optical sensors that rely on the light source availability, radar data acquisitions are 

independent of the sunlight. The microwaves used in such a system have longer wavelengths (1 

mm-30 cm) than the spectrum captured by optical systems. Consequently, radar pulses can 

penetrate through smoke, cloud, dust, snow, and rain. Its sensitivity to surface roughness, dielectric 

properties of objects, i.e. the sensitivity of materials to be polarized in response to an electric field, 

allows for patterns invisible to the optical sensor to be revealed. 

Radar systems also have some drawbacks in monitoring land cover change. The sensitivity of 

microwaves to the objects’ water content sometimes causes the pulse to penetrate the object of 

interest instead of being bounced back. When this happens, it leads to the failure of the data 

acquisition in capturing the desired object. Therefore, radar sensors are prone to variations due to 

seasonal dryness/wetness of the area of interest and were found to perform better in wetter periods 

(Mendes et al., 2019). In terms of temporal coverage, radar systems are inferior to optical systems, 

which generally have older mission history. Nevertheless, the Sentinel-1 mission has been 

collecting global data since 2014 and thus, allows for monitoring of recent dynamics of landscapes. 

Despite the different limitations of radar and optical systems, an increasing number of studies show 

the potential of fusion between optical and radar data to improve land cover mapping (Joshi et al., 

2016; Mendes et al., 2019). 



4 
 

c. Lidar Remote Sensing 

One of the most cutting-edge advancements in remote sensing is lidar (light detection and ranging) 

imaging. Lidar can accurately map vegetation structures using light-transmitting devices paired 

with light detector sensors on airborne vehicles or satellites (Dubayah et al., 2020). Until recently, 

lidar missions are often airborne, and thus, have limited coverage area (Singh et al., 2019). 

Nevertheless, previous studies have shown that lidar data are helpful in identifying different forest 

types, either by itself (Marselis et al., 2018) or in combination with optical images (Fagan et al., 

2018). 

A new NASA remote sensing mission, GEDI (Global Ecosystem Dynamics Investigation), has 

recently been launched to provide lidar data to better understand vegetation dynamics worldwide 

(Potapov et al., 2019; Marselis et al. 2018). In the two-year mission that started in 2019, the GEDI 

instrument has been collecting complex full-waveform data from the international space station. 

The data contain information that captures the complexity of vegetation structures. Since January 

2020, the datasets have been made publicly accessible. 

 

The studies presented in this thesis were designed to provide a case study that assesses the potential 

of newer remote sensing data in addressing the data gap in the biodiverse landscape of Siem Reap 

and Preah Vihear province, Cambodia. Despite the technical application of the three remote 

sensing systems described above as the thesis’ focus, I included some discussions that draw some 

contextual information from literature about land governance in the study area to provide relevant 

background.  
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Chapter 2. Drivers of Land Cover Change in Seasonally Dry Tropical Forest 

Landscape-A Case Study from Siem Reap and Preah Vihear 

2.1. Introduction 

Rapid land cover change in tropical landscapes, especially in biodiversity hotspots, gives rise to 

environmental concerns (Chaplin-Kramer et al., 2015; Fitzherbert et al., 2008; Sánchez-Cuervo et 

al., 2020; Wohlfart et al., 2014). These biodiversity hotspots are home to diverse species of flora 

and fauna, many of which are threatened with local or total extinction due to habitat loss and 

fragmentation following rapid expansions of agricultural land. The expansion of agricultural land 

in the tropics has been occurring for decades (Gibbs et al., 2010; Ramankutty et al., 2018). At the 

same time, global tree cover loss was concentrated on tropical deciduous forest biomes (Song et 

al., 2018). Even under an optimistic IPCC’s future climate scenario B2 that assumes a controlled 

increase of greenhouse gas emissions in the future, land cover change can completely eradicate 

suitable habitats for endangered bird species from Southeast Asia’s protected areas (Singh, 2020). 

Without a significant change in the current trend, we can expect more greenhouse gas emitted into 

the atmosphere and more species to extinct in the near future. 

Land cover monitoring is an essential tool to support the evidence-based sustainable management 

of dynamic tropical landscapes. Land cover monitoring systems have been developed to detect 

land cover changes at the global and regional scales (Hansen et al., 2013; Potapov et al., 2019). 

With such systems, policymakers can access empirical information that is regularly updated and, 

therefore, can make better decisions on landscape management issues. Land cover change 

monitoring can provide details about the underlying drivers of the observed change based on the 

typology and pattern of the change (Bey et al., 2020; Meyfroidt et al., 2014). Knowledge of land 

cover change drivers helps policymakers in devising change towards sustainable landscape 

management. 

Modern land cover monitoring systems have been built on the advancement of remote sensing 

technologies. Remote sensing has been used in earth observation for decades; in the early days of 

remote sensing, scientists analyzed photos taken by optical cameras mounted on planes and 

satellites (Allan, 1980; Sabins, 1997). As the sensor technologies advance, various sensors, such 
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as radar and sophisticated optical sensors with multi-spectral, and hyperspectral bands, are onboard 

many earth observation satellites (Sabins, 1997). The vast array of sensors allows us to harness 

different perspectives that unveil the patterns of landscape dynamics worldwide in ever-improving 

detail.  

Monitoring the landscape dynamics in the region using solely optical sensors faces many 

challenges. One of the most common issues is the persistent cloud cover that shrouds the area of 

interest (Leinenkugel et al., 2013). Even though cloud cover is less frequent in the drier parts of 

the tropics, smoke from fires often covers parts of the image. A new land cover monitoring system 

developed mainly using optical images failed to identify different natural forest types in the lower 

Mekong region (Saah et al., 2020). Since optical sensors are more sensitive to spectral than 

structural differences of different land cover classes, combining an optical sensor with other 

sensors that better delimit structural differences and are less sensitive to cloud cover will improve 

our land cover monitoring accuracy. 

A fusion of optical and radar sensors can improve our ability to monitor tropical landscape 

dynamics over time (De Alban et al., 2018; Poortinga et al., 2019; Shimada et al., 2014). Radar 

remote sensing uses the microwave that allows observations through cloud and smoke cover 

(Sabins, 1997). In addition, radar sensor increases our ability to tell apart land cover classes with 

similar spectral properties but distinct structural properties (Joshi et al., 2016). Land cover 

mapping that harnesses a fusion of radar and optical sensors can improve our ability to tell apart 

different vegetation types that appear similar but bear distinct ecological and economic 

significance. In turn, these more accurate and detailed land cover maps can reveal change patterns 

that landscape managers otherwise overlook. 

This study took place in a seasonally dry tropical forest landscape in northern Cambodia. Home to 

critically endangered species like the giant ibis (Thaumatibis gigantea), which is threatened by 

habitat conversion associated with agricultural land expansions (Loveridge & Srun, 2015), the 

landscape is dominated by mosaics of natural habitats and cultivated lands. The presence of 

smallholder farms and the large company-managed estates, which coexist with the protected areas, 

would provide an interesting case study to see the effect of land designations and other potential 

drivers, such as previous deforestation and accessibility, on the land cover dynamics. 
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2.2. Objectives 

1. Evaluate the accuracy of land cover mapping with a fusion of Sentinel-2 (optical) and 

Sentinel-1 (radar) data 

2. Identify the drivers of recent land cover change in the seasonally dry tropical forest 

landscape in Siem Reap and Preah Vihear province 

2.3. Study Area 

The studied landscape is a 24,087 km2 seasonally dry tropical landscape located in Siem Reap and 

Preah Vihear province in the northern part of Cambodia. In a preliminary survey, I found that 

diverse land cover classes−such as evergreen forest, dry deciduous forest, as well as commodity 

plantations like mango, cassava, cashew, rice field−are present as mosaics close to each other and, 

thus, increase the challenge to accurately mapping them. Few studies had documented LULC in 

the area, all of them had a regional focus, i.e., the Lower Mekong Basin (Leinenkugel et al., 2015; 

Potapov et al., 2019; Saah et al., 2019). Home to several protected areas, the study area also hosts 

economic land concessions (ELC) that cover a total area of 2,384.399 km2 (Open Development 

Cambodia, 2020). It was worth noting that some ELC areas overlapped with the protected area. 

The temporal scope of the study was the year 2015 and 2019; the former was the earliest year when 

Sentinel-2 data were available, while the latter was chosen due to the availability of reference data 

collected in a field ground-truthing. 

2.4. Data and Methods 

2.4.1. Data 

2.4.1.1. Satellite data 

I analyzed optical and radar data acquired by Sentinel-2 and Sentinel-1 satellites, respectively. 

These data were made publicly accessible by the European Space Agency. Details on the Sentinel-

2 and Sentinel-1 data and the processing steps that were applied before the land cover classification 

are described in the following section. Except for the ones mentioned otherwise, all steps were run 

in Google Earth Engine (Gorelick et al., 2017). Originally varies in their spatial resolutions, all 

input layers were resampled into rasters with a cell size of 10-meters, the highest original spatial 
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resolution of some of the data. 

 

a. Sentinel-2 

I used Sentinel-2 data acquired between June 2015-March 2016 and June 2019-March 2020 as 

inputs for the land cover classification. For 2019, the data provider had implemented preprocessing 

steps comprising radiometric and terrain correction to the images published as Level-2A Sentinel-

2 data. To obtain the same processing level for 2015 data, I ran the correction steps on Level 1C 

Sentinel-2 data using Sen2Cor software (Main-Knorn et al., 2017) version 2.8. I accepted all 

processing parameters as defaults to match the processing parameters used by the data providers. 

Sentinel-2 Level-2A contains surface reflectance measurements recorded at 11 bands, sensitive to 

different wavelengths of electromagnetic radiation. 

I included 10 of the original Sentinel-2 bands and additional 13 layers that contain several spectral 

indices calculated using different sets of the Sentinel-2 band (Table 2.1). The original resolution 

of these layers was either 10 or 20 meters before I resampled them into 10 meters to maintain 

consistency across all inputs. While most layers were derived from the median composite of 

Sentinel-2 scenes acquired in December 2015 and 2019 (see Appendix A.1), two of them, the 10th 

and 90th percentile recorded NDVI, were extracted from an extensive set of Sentinel-2 scenes 

acquired between June 2015-March 2016 and June 2019-March 2020 for 2015 and 2019 land cover 

Figure 2.1 “True-color” Sentinel-2 satellite image of the study area from 2019. Siem Reap is the province on the 
left, while Preah Vihear is on the right. 
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maps, respectively. Median composite is a simple statistical approach to obtain the best available 

pixel value based on the median of the recorded values at each pixel within the period of interest. 

The application of median compositing removes pixels with extreme values associated with 

observation error or interference by unwanted objects, such as smoke or cloud. To reduce the 

likelihood of getting abnormal values in the median composite, clouds were masked out using 

s2cloudless (Sentinel Hub, 2021), with the maximum cloud probability parameter set to 12%. 

Shadows were also removed based on the near-infrared and shortwave infrared measurements at a 

given pixel (Poortinga et al., 2019). Two layers were not derived from the median composite of 

scenes acquired in December: _p10 and NDVI_p90. Instead, I calculated them from a collection 

of cloud-masked Sentinel-2 Level-2A scenes acquired in June - March; _p10 denotes the 10th 

percentile, while _p90 denotes the 90th percentile. The resulting 23 layers are included in the 

optical-only and optical-radar variable sets, which were used as the land cover classification input 

(Table 2.1). 

b. Sentinel-1 

I included three radar layers and the 23 optical layers in the optical-radar set of inputs for the land 

cover classification (Table 2.1). All of the radar layers were created using Sentinel-1 Ground 

Range Detected (GRD) data. Sentinel-1 GRD data was collected using a synthetic-aperture radar 

(SAR) instrument that utilized C-band microwaves (λ= 5.548 cm). The radar images contain 

backscatter values, a coefficient that indicates the strength of the radar signal reflected back by the 

surface on the earth’s surface. The backscatter coefficient is sensitive to the reflecting object’s 

moisture, surface texture, and orientation (Sabins, 1997). The unique properties of radar data are 

expected to complement the optical information provided by Sentinel-2 derived layers in the land 

cover classification. 

I implemented two approaches in preparing the radar inputs: with terrain flattening and without 

terrain flattening. Terrain-flattened backscatter data (gamma-naught, γo) have lower variations 

across two or more adjacent paths, and hence, have better consistency than the terrain-corrected 

sigma-naught (σo) data over a wide area (Small et al., 2021). Accordingly, the variable VV was 

created using the mosaic of γo Sentinel-1 scenes acquired in December 2019 for the 2019 land 

cover input and in December 2015 for the 2015 land cover (see Appendix A.1). I run preprocessing 
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steps to create the terrain-flattened data using the Sentinel-1 toolbox in SNAP software version 8 

(ESA, 2020). Two other radar input layers (VV_p10 and VV_p90) were created using a collection 

of Sentinel-1 GRD σo scenes acquired in June - March 2015 - 2016 and 2019 - 2020 that the data 

provider preprocessed. 

2.4.1.2. Reference data 

Reference data provided the basic information that defines the land cover class in the mapping 

processes. The reference data indicate the land cover classes found in the studied landscape and 

some of their known locations in the particular year mapped. Two reference data sources were 

field visits to the study area in 2019 and a desktop survey conducted in 2020. A detailed list that 

summarizes the source of the reference data, i.e. image sources and the associated acquisition 

dates, is available upon a reasonable request addressed to the Author. 

The reference data contained 4,815 points collected from the ground survey in 2019 and 7,947 

from the desktop survey. Ground survey points were collected opportunistically along roads to 

respect private properties access restrictions. The presence of landmines in the landscape caused 

safety concerns that added to the challenge of the probabilistic sampling implementation during 

the field survey. The desktop survey points were distributed randomly in the study area to enhance 

the spatial balance of the reference data. Two surveyors assessed the randomly distributed points 

using Collect Earth software (Bey et al., 2016) and assigned appropriate labels that indicate the 

identified land cover classes (Table 2.2). I identified and omitted outliers in the desktop survey 

results based on high-resolution global tree height data in 2019 (Potapov et al., 2021). 

I separated the reference data into two groups, each serving a different purpose in the land cover 

classification. The first group that contained 9,352 (73.28%) reference points was the training data 

input to the classification. The other group (n = 3,410; 26.72%) was used in the accuracy 

assessment I conducted following the map production. 
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Table 2.1 List of variables included in two different variable input sets for land cover classification. The formulas 
for the spectral indices are provided in Appendix A.2.  

 

2.4.2. Land Cover Mapping 

Land cover mapping was the first main component of the analysis. I developed land cover maps 

for 2015 and 2019 as inputs to the land cover change modelling in the second part. I ran a 

supervised classification with Random Forest (Breiman, 2001) to map the land cover classes of 

interest (Table 2.2). These classes were the dominant land cover classes in the landscape that bear 

economic and ecological significance, i.e., important commodity plantation and natural ecosystem 

cover. I conducted all land cover classification processes in Google Earth Engine because of its 

massive computing capacity (Gorelick et al., 2017). The flowchart in Figure 2.2 summarizes the 

Layers Source Description optical-only optical-radar

blue_median S-2 band 2 of Sentinel-2 Level-2A median composite o o
green_median S-2 band 3 of Sentinel-2 Level-2A median composite o o
red_median S-2 band 4 of Sentinel-2 Level-2A median composite o o
red1_median S-2 band 5 of Sentinel-2 Level-2A median composite o o
red2_median S-2 band 6 of Sentinel-2 Level-2A median composite o o
red3_median S-2 band 7 of Sentinel-2 Level-2A median composite o o
nir_median S-2 band 8 of Sentinel-2 Level-2A median composite o o
swir1_median S-2 band 11 of Sentinel-2 Level-2A median composite o o
swir2_median S-2 band 12 of Sentinel-2 Level-2A median composite o o
NDVI S-2 calc. Normalized Difference Vegetation Index o o
SAVI S-2 calc. Soil Adjusted Vegetation Index o o
NDWI S-2 calc. Normalized Difference Water Index 1 o o
NDWIt S-2 calc. Normalized Difference Water Index 2 o o
NBR S-2 calc. Normalized Burn Ratio o o
EVI S-2 calc. Enhanced Vegetation Index o o
GNDVI S-2 calc. Green Normalized Difference Vegetation Index o o
EVI2 S-2 calc. Enhanced Vegetation Index 2 o o
MSI S-2 calc. Moisture Stress Index o o
MCARI S-2 calc. Modified Chlorophyll Absorption in Reflectance Index o o
PSSR S-2 calc. Pigment Specific Simple Ratio o o
NDVItx S-2 calc. focal statistics of 5x5 cells kernel applied on NDVI layer o o
NDVI_p10 S-2 calc. The 10th percentile of recorded NDVI values in June-March o o
NDVI_p90 S-2 calc. The 90th percentile of recorded NDVI values in June-March o o
VV S-1 terrain flattened radar backscatter in December - o
VV_p10 S-1 calc. The 10th percentile of recorded radar backscatter values in June-March - o
VV_p90 S-1 calc. The 90th percentile of recorded radar backscatter values in June-March - o

o : included
 - : omitted

S-2 calc. : calculated based on Sentinel-2 bands
S-1 calc. : calculated based on Sentinel-1 bands
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overall land cover mapping framework. 

Table 2.2 Descriptions of land cover classes of interest and the associated number of reference points 

 

I produced two 2019 land cover maps with a pixel size of 20 m, using two approaches, each of 

which uses a different set of input variables. The first approach used 23 optical-only variables, 

while the second used 26 variables that included three additional variables derived from Sentinel-

1 radar data. The two approaches used the same training data and yielded two Random Forest 

classification results. While the input satellite data comprised raster layers with a pixel size of 10 

m, the land cover maps have a spatial resolution of 20 m for computation efficiency. I applied 

morphological filters that consisted of a majority filter followed by a dilation-erosion-dilation filter 

to remove “salt and pepper” noise that is common in pixel-based classifications (Kavitha, 

Srikrishna, and Satyanarayana, 2021), as well as in radar data. The accuracy of the results, both 

unfiltered and filtered, was evaluated using the independent validation data. I conducted accuracy 

assessments according to the good practice described by Olofsson et al., 2014 that considers the 

land cover area proportion in the study area and the associated uncertainties in area estimates. The 
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assessment was implemented in R version 4.0.5 (R Core Team, 2021). I took into account the area-

adjusted accuracy assessment results and the out-of-bag error estimate produced earlier in the 

Random Forest classifier training when comparing the two different approaches. 

 

 

 

Following the accuracy assessment, I replicated the approach with the highest accuracy to produce 

Figure 2.2 Steps implemented in land cover mapping for 2019 and 2015 with nodes and edges that 
illustrate the processing flow 
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the 2015 land cover map. I input the same variables as the set that resulted in the most accurate 

2019 land cover map—according to the accuracy assessment step—into the previously trained 

Random Forest classifier; for the 2015 land cover map, predictor variables were derived from 

satellite data acquired in 2015 - 2016 instead. If the morphological filtering increases the 2019 

land cover map accuracy, the same filters were to be applied to the 2015 land cover map after the 

Random Forest classification. 

2.4.3. Land Cover Change Analysis 

I identified land cover changes that occurred in 2015 - 2019 based on the land cover maps produced 

in the previous steps. The first step in land cover change analysis was to remove detected changes 

that seemed improbable. I overlaid the land cover rasters from 2015 and 2019 and reclassified the 

pixels in 2015 land cover that were involved in changes that were very unlikely to occur in 4 years, 

such as transformations into evergreen, seasonally inundated, or deciduous dipterocarp forest from 

intensively managed croplands. The corrections assumed that these improbable changes were due 

to misclassifications in 2015 land cover, while no actual change occurred in 2015 – 2019 in those 

locations. In total, 2,080,575 out of 61,441,010 pixels (3.38%) in 2015 land cover map were 

reclassified in this manner. 

Table 2.3 Explanatory variables included in the land cover change analysis 

Variable Source Category Description 
    
Accessibility 
to cities in 
2015 

Weiss et al., 2018 Anthropogenic Estimated travel time from each pixel to 
reach the nearest population center (in 
minutes) resampled from 1 km pixels 

Proximity to 
the previous 
deforestation 

Potapov et al., 2019 Anthropogenic Euclidean distance of each pixel to the 
nearest area that had undergone significant 
tree canopy loss (> 70%) resampled from 
30 pixels 

Distance to the 
protected area 
border 

Open Development 
Cambodia, 2020 

Anthropogenic Euclidean distance of each pixel to the 
protected area border; multiplied by -1 for 
pixels inside the border 

Distance to the 
economic land 
concession 
border 

Open Development 
Cambodia, 2020 

Anthropogenic Euclidean distance of each pixel to the 
economic land concession border; 
multiplied by -1 for pixels inside the 
border 

Soil type Open Development 
Cambodia, 2020 

Biophysical Identified dominant soil class in each pixel 
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I included five variables to explain the observed change in the landscape: proximity to 

deforestation in the previous period 2010 - 2015, accessibility, soil types, distance to the protected 

area border, and distance to the economic land concession border. Distances to borders range from 

negative values for the area inside the border to positive values outside. These variables were 

extracted from many sources, as listed in Table 2.3. I used ArcMap 10.7 in the euclidean distance 

measurements. 

I modelled the effects of the explanatory variables on the likelihood of identified changes in 2015 

- 2019 using the weights of evidence approach in DINAMICA EGO software version 5 (Soares-

Filho et al., 2004). The model would calculate the weight of evidence coefficients associated with 

a transition from class i into j for each range, or  each class for categorical variables, in the 

explanatory variables using the following Bayesian formula (Bonham-Carter, 1994; Soares-Filho 

et al., 2004): 

𝑂𝑂{𝐷𝐷 𝐵𝐵}⁄ = 𝑂𝑂{𝐷𝐷}
𝑃𝑃{𝐵𝐵 𝐷𝐷⁄ }
𝑃𝑃{𝐵𝐵 𝐷𝐷�⁄ }

 

𝑙𝑙𝑙𝑙𝑙𝑙{𝐷𝐷 𝐵𝐵}⁄ = 𝑙𝑙𝑙𝑙𝑙𝑙{𝐷𝐷} + 𝑊𝑊+, 

where: 

𝑂𝑂{𝐷𝐷}   : the prior odds of event D 

𝑂𝑂{𝐷𝐷 𝐵𝐵⁄ }  : the posterior (conditional) odds of event D given a spatial pattern B 

𝑃𝑃{𝐵𝐵 𝐷𝐷⁄ } : the posterior probability of the presence of spatial pattern B where event D 

occurred. 

𝑃𝑃{𝐵𝐵 𝐷𝐷�⁄ } : the posterior probability of the presence of spatial pattern B where event D did not 

occur. 

𝑊𝑊+   : the weight of evidence of event D’s occurrence given a spatial pattern B 

Higher, positive 𝑊𝑊+ indicates the higher likelihood of land cover change from i into j to occur at 

a spatial pattern B, while negative values indicate the repelling effect of B. 𝑊𝑊+ = 0 indicates neither 
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positive nor negative effect of the spatial pattern B on the change occurrence likelihood of concern. 

2.5. Results 

2.5.1. Land Cover Mapping 

2.5.1.1. Accuracy 

Land cover mapping with Sentinel-2 and Sentinel-1 sensors was slightly more accurate than the 

map produced using only Sentinel-2 data. The out-of-bag error calculated during the random forest 

classification also supported this finding (Sentinel-2 only = 17.39% > fusion = 15.06%). The 

application of post-classification morphological filters improved the accuracy of both approaches. 

Therefore, I decided to use land cover maps produced using the fusion approach with 

morphological filters hereon. The land cover map for 2015 was created using the fusion of 

Sentinel-2 and Sentinel-1 data with morphological filters. 

Table 2.4 Land cover classification accuracy obtained from different input variable sets 

 

In terms of class-specific accuracy measures, the classifier had higher specificity relative to 

sensitivity. User’s accuracy (UA) of mapped classes ranged between 77.5 - 100 %, while 

producer’s accuracy (PA) lower range reached 41.27% for the barren land and built structure class 

(Table 2.4). This class and the grassland class (PA = 65.44%) had the lowest PA. Barren land was 

rare and difficult to identify because many were unvegetated only for a short time before being 

replanted. Grassland and paddy classes were often confused because both of them are dominated 

by grasses (family Poaceae) that appear very similar to each other and might share similar spectral 

and radar properties, primarily because not all paddy fields are continuously irrigated throughout 

the year. 

Pre-filter Post-filter 

Sentinel-2 only
(optical-only)

80.73 84.13

Sentinel-1 and 2
(optical-radar)

83.45 85.76

Variable set
Overall Accuracy
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2.5.1.2. Variable Importance 

Variables derived from Sentinel-2 and Sentinel-1 contributed well to the land cover classification 

(Figure 2.3). The most important predictors reflected the seasonal variations; the 10th and 90th 

percentile of NDVI and radar backscatter were the variables with the highest purity gain. A proxy 

of texture derived from NDVI raster (NDVI_tx) was the third most important variable, followed 

by the 90th percentile of the radar backscatter (VV_p90). In general, the variable importance, along 

with the improvement of the classifier’s performance following the introduction of radar variables, 

showed the positive effect of fusing radar with optical data in land cover mapping. 

Table 2.5 Confusion matrix that contains class-specific accuracy and mapped area confidence interval 

 

Variable  Description 

NDVI_p10 10th percentile of NDVI recorded between June 
2019 - March 2020 

VV_p10 10th percentile of radar backscatter recorded 
between June 2019 - March 2020 

NDVI_tx texture index derived from NDVI standard 
deviation within 5x5 pixels kernel (Nomura & 
Mitchard, 2018) 

VV_p90 90th percentile of radar backscatter recorded 
between June 2019 - March 2020 

NDVI_p90 90th percentile of NDVI recorded between June 
2019 - March 2020 

swir1 Sentinel-2 band 11 (shortwave infrared 1) 
VV the terrain flattened radar backscatter (gamma 0) 

in December 2019 
swir2 Sentinel-2 band 12 (shortwave infrared 2) 
MCARI the modified Chlorophyll Absorption in 

Reflectance Index (Daughtry et al., 2000) 
red1 Sentinel-2 band 5 (red edge 1) 

Figure 2.3 Relative importance of variables in the optical-radar fusion approach 
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2.5.2. Land Cover Change Analysis 

Cultivated land area increased in 2015-2019, while natural or semi-natural land coverage 

decreased. Dry deciduous forest (DDF), the dominant class in the landscape, had undergone the 

largest contraction from 8,473.04 in 2015 to 6,838.05 square kilometres in 2019. I calculated this 

estimate based on a simple overlay of the land cover rasters under analysis, i.e., one for 2015 and 

the other for 2019. Due to the absence of validation data from 2015, such a simple approach does 

not incorporate the uncertainty of the area estimate, unlike the results presented in Table 2.5. Even 

though the magnitude may contain some error, the trend of change was apparent. The coverage of 

the other two natural or semi-natural cover classes, i.e., evergreen forest and seasonally inundated 

forest, also declined, but not as much as DDF. 

On the other hand, expansions of cultivated land cover classes that comprise Anacardiaceae 

plantation, annual or herbaceous crops, paddy, and rubber plantation were apparent. In Figure 2.6, 

interlinkages between the contraction of natural or semi-natural covers and the increased area of 

cultivated land became clear. For example, DDF conversion into paddy and annual crops were 

among the top 10 observed changes with the largest area. However, the limited ability of the land 

cover classifier to tell apart paddy, grassland, and annual crops made the area estimates of these 

specific changes less accurate. 

The change with the largest area was the conversion of DDF into grassland (Figure 2.6). Since 

grasses naturally dominate DDF floors (Figure 2.7), such a change can be considered a tree  

Figure 2.4 Relative area plot showed land cover classes that underwent area increase and decrease in 2015-2019. 
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Figure 2.5 Land cover map of Siem Reap and Preah Vihear in 2019 and some of the detected changes in 2015-2019 
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removal rather than a conversion phenomenon. The recovery of grassland into DDF was also 

prevalent—indicated by the fact that such a change has the third-largest area. The prevalence of 

land cover changes that involved DDF, which is the class with dominant coverage, made this class 

worth further investigation to reveal the associated changes’ pattern. 

2.5.2.1. Change in focus: DDF dynamics 

Three changes from/into DDF that had a magnitude above 45 thousand hectares (Figure 2.6) were 

among the top 6 changes with the most extensive occurrence. The first two of them were transitions 

between DDF and grassland, each with a different direction. The change with the lowest area 

among the three (45,346.24 hectares) was a conversion of DDF into paddy. 

Conversion of DDF into grassland (DDF defor. in Figure 2.8) was associated with anthropogenic 

factors. The results indicated that tree removal from DDF was likely to occur at locations 1 to 2 

hours away from population centers, like cities and towns, or forest patches within 500 meters 

radius from previously deforested areas in 2010-2015. I observed a stronger relationship between 

the likelihood of tree removal from DDF at the interior of economic land concessions. Protected 

areas seemed to prevent DDF deforestation, as indicated by the negative W+ coefficient value at 

negative distances (Figure 2.8). However, areas located inside the national park with a distance to 

the border of around 20 km appeared to have positive W+ coefficients, indicating a likelihood of 

tree removal from DDF. Most soil types had positive W+ coefficients, indicating that tree removal 

from DDF might occur across different soil types. The exceptions to this were acid lithosol, which 

has a  shallow soil layer, and the unknown soil type located at cliffs near the Cambodian border in 

the north. Instead of the repelling effect of the unknown soil type, this may reflect the 

inaccessibility of areas close to the border, and hence, the low DDF tree removal risk. 

The transition from grassland into DDF (DDF recov.) displayed different patterns from the ones 

observed in DDF defor (Figure 2.8). The negative W+ values associated with the negative distance 

to the ELC border indicate that it was unlikely for grasslands inside ELCs to be (re)colonized by 

trees and become DDF. DDF tree colonization occurred in grasslands located at least 6 hours away 

from population centers or inside protected areas. The positive W+ coefficient associated with the 

unknown soil type emphasized the higher likelihood of DDF recovery in remote areas. 
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Displacement of DDF associated with paddy expansion occurred at places suitable for paddy 

cultivation. I observed strong positive associations in the soil types’ response curve, specifically 

at cultural hydromorphics and lacustrine alluvial soils; both are suitable for paddy. Protected areas 

prevent encroachment of paddy fields. DDF at locations near population centers (< 2 hours away) 

was prone to conversion into paddy fields. DDF inside economic land concessions was also prone 

to replacement by paddy field, which is not compliant with the ELCs’ intended use. 

Figure 2.6 The largest changes in 2015-2019 showed the key role of cropland (paddy, annual crops) expansions in 
the landscape. 

 

Figure 2.7 The grass-dominated dry deciduous forest is prone to tree removal that induces conversion of DDF 
into grassland. 
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2.6. Discussion 

2.6.1. Comparison with other land cover mapping efforts 

The land cover map’s overall accuracy met the recommended minimum level of land-use/cover 

map accuracy (85%, Sabins, 1997) and is comparable with other efforts in similar contexts (Jia et 

al., 2019; Nomura & Mitchard, 2018; Poortinga et al., 2019). With more reference data, both the 

overall accuracy and class-specific accuracy should increase (Jia et al., 2019; Nomura & Mitchard, 

2018). Aggregating land cover classes into more generic classes, such as “plantation”, “forest”, 

and “other” (as in Jia et al. 2019), improves accuracy at the expense of reduced details of the 

change typology. Based on the confusion matrix in Table 2.5, accuracy would increase following 

Figure 2.8 Response curves of explanatory variables included in the land cover change analysis. DDF defor. 
represents the “conversion” from DDF into grassland, DDF recov. representes the reverse of DDF defor. 
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a regrouping of the classes: grassland, paddy, and annual crops, which were often confused with 

each other. However, given the three classes' distinct ecological and socio-economic implications 

(Kong et al., 2021; Mahanty & Milne, 2016) and the moderately high accuracy associated with the 

detailed mapping, I retained the detailed depiction of land cover classes in the landscape. The 

omission of details in land cover mapping has been found to increase the risk of overlooking the 

most important driver(s) (Elz et al., 2015). 

Adding Sentinel-1 (radar) data improved the classification accuracy by a small amount compared 

to the Sentinel-2 (optical) only classification. More sophisticated radar preprocessing steps can 

reduce the inconsistencies between scenes and thus, further improve the results (Small et al., 2021). 

A more pronounced increase in mapping accuracy was reported in a study that used Landsat 

(optical) and Advanced Land Observing Satellite-2 Phased Array L-band Synthetic Aperture 

Radar-2 (ALOS-2/PALSAR-2) (De Alban et al., 2018). Another study that used a combination of 

Landsat, Sentinel-2, and Sentinel-1 resulted in a similar overall accuracy level with my results 

(Poortinga et al., 2019). According to these findings, combining radar data with longer 

wavelengths better complements optical data than adding more optical data from different sensors. 

Unfortunately, there was no accessible ALOS-2 data coverage for the study area in 2019 during 

the analysis. 

While the mapping accuracy was moderately high for the detailed land cover in 2019, it was not 

the case with the 2015 land cover map. The sparse temporal coverage of Sentinel 2 data in 2015, 

which relied on the observations made solely by the Sentinel 2A satellite, might have increased 

the inconsistency between the two mapped periods. This limitation was not a major issue for 

mapping the 2019 land cover map after the Sentinel 2B satellite launch on March 7th, 2017, which 

provides a more detailed temporal coverage. Given the limited data availability, the mapping errors 

for 2015 land cover maps introduced some errors in the land cover change analysis. However, I 

retained the detailed classification because the 2019 land cover map can depict the detailed classes 

relevant to the landscape’s context at an acceptable accuracy level. A more accurate 2015 land 

cover map would bring significant improvement to the analysis. Unfortunately, such an 

improvement was not affordable in this study because of the limited capacity of the accessible, 

very high-resolution satellite images to facilitate accurate identification of detailed land cover in 

2015. 
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2.6.2. Predictor variables’ contribution 

The land cover classification benefitted from predictor layers that depict contrasts between dry and 

wet seasons. All but one variable with the highest contribution were the 10th and 90th percentile of 

either the NDVI or VV backscatter recorded in June 2019-March 2020. In this case, the VV 

backscatter values are most sensitive to the seasonal change of the surface’s moisture content while 

also possibly depicting some structural change associated with vegetation phenological dynamics. 

The importance of variables sensitive to phenological changes has been found in wider-scale 

studies in the area (Leinenkugel et al., 2013; Venkatappa et al., 2019). However, the variables used 

here were much simpler than those used in previous works; both cited works above derived 

phenological indices from much more sophisticated harmonic analyses. The temporal range used 

in deriving the simple variables also played an important role. Different ranges may not capture 

the critical differentiation period where vegetation types appear most distinct (Heupel, Spengler, 

and Itzerott, 2018).  

Other variables with high importance values contain various structural and spectral information. 

A texture variable (NDVI_tx) derived from Sentinel-2 data was the third variable with the highest 

contribution to the classification process. This finding resonates with previous studies that found 

the significance of texture information (Glinskis & Gutiérrez-Vélez, 2019; Nomura & Mitchard, 

2018). Two shortwave infrared bands from Sentinel-2 data were among the satellite bands with 

the highest contributions. These bands’ significance in an optical-radar fusion was also found in a 

previous study (De Alban et al., 2018). A terrain flattened radar backscatter layer with VV 

polarization was the 7th variable with the highest purity gain. Previous studies showed that the 

cross-polarized VH backscatter band is more useful in identifying vegetations (Sabins, 1997). 

However, including a VH band in my classifier increased the out-of-bag error rate by 0.2%; 

therefore, I only included the VV backscatter layer. 

2.6.3. Land cover change analysis 

Expansion of commodity croplands was prevalent in the study area. The primary “source” of land 

for the predominant land expansion was grasslands. While some of the conversion from grassland 

to paddy can be attributed to classification errors, the widespread conversion from grassland to 

paddy or annual crop may indicate the recultivation of fallow lands being left for a period of time, 
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a common cycle in swidden agriculture that was common in the area (Wales, 2020). A fallow land 

tax applied by the Ministry of Agriculture in 2017 seemed to be one of the drivers of fallow land 

recultivation (Roeun, 2017). However, as indicated by the high level of confusion in identifying 

the non-tree dominated vegetation classes, i.e. grassland, paddy, and other annual crops, a more 

accurate mapping of the 2015 land cover is evidently required to confirm the hypothesis. 

Furthermore, the distinction between non-native grassland and paddy fields using appropriate 

sensors that can detect the slight difference in spectral signatures can further refine the change 

analysis. 

While only a small portion of the commodity cropland expansion, i.e. the conversion into paddy 

fields and annual croplands, involved direct conversion from natural or semi-natural forests 

(Figure 2.6), an increase in land demand for crop production may be indirectly linked with the 

observed decline in natural forest cover (Ingalls et al., 2018). The dominant change from the dry 

deciduous forest into grassland could be followed by the conversion of grassland into paddy fields 

or other croplands. The high occurrence of DDF change into grassland in areas suitable for crop 

production, as well as the relatively high occurrences of grassland conversion into paddy or other 

annual crops (Figure 2.6), may support this hypothesis. However, a more detailed and extended 

monitoring period may provide stronger empirical proof of these indirect change trajectories that 

involve grassland as an intermediary state. 

Amid the tree-crop “boom” phenomenon (Hurni et al., 2017), the associated land cover classes, 

such as rubber, cashews (as represented by the Anacardiaceae plantation class), as well as the pulp 

and paper plantations (other tree cover class), increased slightly (Figure 2.4). In contrast, annual 

crop and paddy underwent a substantial increase in area (Figure 2.4). The slow expansion of rubber 

plantations, which are mostly found inside ELCs, seemed to be related to a moratorium on new 

economic land concessions (ELCs) in 2012 by the national government (Neef et al., 2013). 

Another factor that explained the slow rubber expansion seemed to be the global rubber price that 

had peaked in 2011-2012 (Grogan et al., 2019). Compared to tree crops, annual crops, such as 

cassava and maize, provide more contribution to food security and quicker economic returns while 

demanding less investment capital; therefore, they are preferred by smallholder farmers (Kong et 

al., 2021; Mahanty & Milne, 2016). 
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The observed DDF change pattern displayed how accessibility and land allocation influenced some 

of the observed changes. The accessibility of a location affected the risk of tree removal or 

conversion into paddy from DDF. This finding makes sense since accessible lands are easier and 

economically convenient to exploit. In addition, the presence of hidden landmines in the landscape 

made travelling to and cultivating remote lands unsafe (Lin et al., 2021). Economic land 

concessions facilitated DDF deforestation and conversion. However, a surprising finding was the 

strong tendency of DDF inside ELCs to be converted into paddy fields instead of industrial crops, 

such as rubber or pulp plantation, which are more aligned with the ELC purpose. Despite being 

officially designated for industrial commodities plantation, 60.8 % of the ELCs in Siem Reap and 

Preah Vihear failed to operate (Magliocca et al., 2020). The local people’s resistance was among 

the identified primary causes of these failures (Magliocca et al., 2020). 

Protected areas played essential roles in controlling DDF deforestation and conversion as well as 

promoting DDF restoration. The risk of DDF conversion into paddy fields was low inside protected 

areas. I found a similar negative effect of protected areas on the risk of DDF deforestation, i.e. the 

conversion from DDF into grassland not yet followed with an evident land-use change. However, 

DDF in the deep interior—around 20 km from the border—of protected areas was still prone to 

illegal logging. Controlling illegal logging in the area was complex due to the limited coverage of 

regularly patrolled areas and other factors, such as the weak political will to protect nature, as seen 

in the release of a large portion of protected areas to the economic concessions (Ingalls et al., 2018; 

De Lopa, 2001; Milne, 2015). 

2.6.4. Uncertainties and limitations 

Given the limited availability of very high-resolution satellite images from 2015, I could not assess 

the accuracy of the 2015 land cover map. Sentinel-2 Level 2A data, which had been 

atmospherically and terrain corrected, minimized the 2019 and 2015 data variation. Temporal 

normalization, such as pseudo-invariant-feature normalization (Schott et al., 1988; Traganos et al., 

2018), can further reduce variations associated with different sensing environments. Ideally, to test 

for the accuracy of the 2015 land cover map, one could use reference data collected back in 2015, 

for example, as in Saah et al., 2020. 

There were some issues related to satellite image interpretation during the desktop survey and land 
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cover map classification. Some land cover classes, such as grassland and different crop types, were 

not adequately recognizable from the very high-resolution satellite images. The confusion could 

introduce over/underestimation to the land cover change interpretation. This limitation could be 

addressed by collaboration with local partners, for example, through crowd-sourcing campaigns, 

which can improve the accuracy of reference data and the land cover maps. In the remote sensing 

context, the development of hyperspectral satellites, such as the Italian Space Agency’s PRISMA, 

can increase the classifier’s ability to identify different vegetation types. This research 

demonstrates that land cover change analysis will benefit from detailed land cover mapping with 

reliable accuracy. 

The land cover change modelling results seemed to be affected by the errors in land cover 

classification. For instance, the similarity in patterns of the response curves of DDF changes into 

grassland (DDF defor.) with the DDF changes into paddy (DDF to paddy) might reflect some 

confusion in identifying the similar non-tree dominated vegetation classes, i.e., grassland and 

paddy, apart. While the misclassification-induced uncertainty was clearly present in the modelling 

results, the direction of the effect was unknown. One of the most common measures to address the 

change modelling uncertainty involves removing impossible land cover trajectories and fine-

tuning the rates of changes and weights of evidence (W+) values through series of trials-and-errors 

until acceptable accuracy is acquired (Elz et al., 2015). Another approach to minimize the 

uncertainty in land cover change modelling due to classification error using a novel algorithm 

named Compound Maximum a Posteriori (CMAP) had been developed recently (Reis et al., 2020). 

However, inadequate references and supporting data prevented this study from incorporating the 

identified approaches to improve the modelling outcomes. In a more specific study focusing on 

certain types of more general land cover change typology, e.g. DDF deforestation, we can group 

different changes into a more generic class to reduce the uncertainties in the model associated with 

the land cover classification error. With more generic classes, systematic assessment of change 

mapping accuracy can be more easily conducted. In this research, I retained the highest attainable 

details in the classification to avoid overlooking the major change driver(s) among the many 

possible drivers in the study area (Elz et al., 2015). 

2.6.5. Management relevance 

This work contributes to land cover change monitoring by providing spatial data that depicts the 
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recent state of the seasonally dry tropical forest landscape. The prevalence of dry deciduous forest 

deforestation signals the critical need for more sustainable management of the seasonally dry 

tropical landscape. Without a stronger commitment from the landscape managers, the natural 

habitat cover in the landscape, especially the dry deciduous forest, will continue to plummet under 

the pressure of the agricultural land expansion. The failure to control deforestation will exacerbate 

the extinction threats to species with concerning conservation status that rely on forest cover in the 

landscape.  

The land cover maps for 2015 and 2019 provide valuable input for scenario development in 

sustainable landscape planning. The four-year period used in this analysis matches the duration of 

validity of development plans in the area. After some improvements to address the 2015 mapping 

inconsistencies, a business-as-usual baseline can be developed using the assumption that the land 

cover change pattern and rate observed in 2015-2019 will carry on in the future. Such a spatially 

explicit prediction can be developed using Markov chain-Cellular automata analysis in modelling 

software, e.g. DINAMICA EGO (Soares-Filho et al., 2004). Multiple scenarios can be developed 

by tweaking the rate or the weight coefficients of relevant changes. Based on multiple scenario 

analyses, comparisons can be made to estimate possible outcomes of different scenarios and the 

associated trade-offs, which allow land managers to make informed decisions that define the future 

of the landscape. Such a complex process will require close collaboration between different 

stakeholders but is plausible and essential to achieving sustainable landscape management and 

greener economic growth (Mulia et al., 2019). 

2.7. Conclusion 

1. The fusion of Sentinel-1 and Sentinel-2 data produced the highest accuracy in land cover 

mapping. 

2. Timber extraction from the natural or semi-natural forest and expansion of cultivated lands, 

especially annual crops, were the major drivers of land cover change in the landscape. 
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Chapter 3. GEDI Waveform Metrics in Vegetation Mapping – A Case Study 

from A Complex Tropical Forest Landscape 

3.1. Introduction 

The spatial distribution of vegetation types is essential information in understanding the land 

sector's role in global climate, terrestrial carbon cycle, and biodiversity  (Bajželj and Richards 

2014, Malhi et al. 2008, Powers and Jetz 2019). The most common approach to derive this 

information is by classifying satellite images acquired using optical sensors. However, vegetation 

types that are spectrally similar but structurally different in complex landscapes are often confused 

(Saah et al., 2020). These vegetation types often comprise different species of tree-dominated 

vegetation with unique ecological and/or economic significance. Distinguishing different natural 

forest types and tree plantations may be challenging with spectral information alone (Fagan et al. 

2018, De Alban et al. 2018, Singh et al. 2019). 

Limited accessibility, among other factors, has been a challenge in collecting references to map 

vegetation types in data-limited areas, especially in the developing world. Therefore, reference 

data often rely on high-resolution satellite images. In addition to being limited in availability, these 

optical images, with a spatial resolution of < 5 meters, often failed to capture the presence of tree 

canopies because they are often acquired in the dry season with less cloud cover when deciduous 

trees shed their leaves. These limitations complicate the mapping of vegetation types in these areas. 

Vegetation structure information has been used to improve the identification of vegetation types 

in complex and dynamic landscapes (De Alban et al. 2018, Reiche et al. 2018, Fagan et al. 2018). 

In a study in southern Myanmar, adding L-band radar data with optical data increased the 

classification accuracy of land cover mapping up to 2% relative to the optical-only classification 

result (De Alban et al. 2018). More recently, the combination of radar data with optical data 

yielded satisfactory classification accuracies (Poortinga et al., 2019). It should be noted, however, 

that radar data are sensitive to an array of factors other than vegetation structure per se, including 

moisture content, biomass and orientation.  

With a higher information specificity, lidar (light detection and ranging) sensors directly interact 

with vegetation structure making it very useful in vegetation mapping, either alone (Marselis et al. 
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2018) or in combination with other remotely sensed data (Singh et al. 2019).  However, most of 

the lidar data had been collected by airborne laser scanning (ALS) (Dubayah et al. 2020); hence it 

is difficult to obtain structural information at a large scale in a standardized manner. In late 2018, 

NASA launched the Global Ecosystem Dynamics Investigation (GEDI) mission to collect 

vegetation structure data at a global scale using full-waveform lidar. 

GEDI is a novel experimental space-borne waveform lidar mission onboard the International 

Space Station (ISS) launched on 5 December 2018 by NASA. GEDI instrument comprises three 

lasers: one coverage laser that shoots four weaker beams and two full power lasers, each of which 

shoots a pair of stronger intensity beams. The full power lasers are expected to have a better 

penetration ability to sense through vegetation canopies than the coverage laser (GEDI Science 

Team 2020a). One of the mission’s objectives is to detect the vegetation structural change across 

the temperate and tropical regions of the globe (Dubayah et al. 2020). 

This study will explore the utilization of GEDI waveform data in identifying different vegetation 

types in a complex tropical landscape in Cambodia. We aimed to (1) evaluate the potential of 

variables derived from Level 1B and Level 2A GEDI data in vegetation type classification based 

on the classification accuracy and variable importance, and (2) compare the GEDI-only 

classification results with an existing land cover map of the region. The findings will provide an 

empirical assessment of GEDI data robustness for vegetation mapping in Cambodia and other 

complex landscapes where similar challenges in the vegetation mapping linger. 

3.2. Data and Method 

3.2.1. Study Area 

This study covered two provinces in Cambodia: Siem Reap and Preah Vihear. The two provinces 

cover 10,299 and 13,788 square kilometres, respectively. Cambodia had undergone the largest 

amount of deforestation between 2011 and 2017 among other countries in the Lower Mekong 

(Potapov et al. 2019). Despite being categorized as humid (Title and Bemmels 2018, Bastin et al. 

2017), the area is strongly affected by seasonal monsoon dynamics (Thoeun 2015). The monsoonal 

climate and a long history of anthropogenic land modification had formed a complex landscape 

covered by a mosaic of natural forest, both deciduous and evergreen, savannah, cropland, and tree 
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plantations (Figure 3.1) (Kiyono et al. 2018, Singh et al. 2019, Grogan et al. 2019). 

3.2.2. GEDI Dataset 

We downloaded 19 collections of GEDI data Level 1B and Level 2A version 001 acquired in April 

– early August 2019 using the GEDI Finder service (https://lpdaacsvc.cr.usgs.gov/services/gedifinder). 

Level 1B data contains the “raw” geolocated full-waveform data. In contrast, level 2A contains 

the elevation and height metrics extracted from the full-waveform data, such as the relative heights 

of the wave components, the elevation of the presumed ground and canopy, and energy intensity 

metrics. Potapov et al. (2021) used GEDI Level 2A data combined with time-series Landsat data 

to produce a wall-to-wall global forest canopy height map. Another study in Gabon found that 

Plant Area Index (PAI) extracted from GEDI Level 2B data was pivotal in identifying different 

successional vegetation types (Marselis et al. 2018). 

After applying a quality filter based on a quality flag index in Level 2A data, we obtained 79,498 

granules; each contains measurements of all eight dithered 25 m footprints, separated 

approximately 600 meters across-track and 60 m along-track, generated from four beams used in 

a “push-broom” scanning (Hofton et al., 2019). 

3.2.3. Waveform Metrics 

We extracted 120 metrics based on the Level 1B and Level 2A granules (Table 3.1), 101 of which 

were relative height (rh) metrics directly extracted from Level 2A data products. Metrics were 

grouped into categories, namely topographic (1 metric), intensity (6 metrics), height (104 metrics; 

the rh metrics belong to this category), shape (8 metrics), and beam type (1 metric). We 

summarized the 101 rh metrics using a simple linear regression between the rh values and the 

square root of the associated percentile ids (0-100). The linear model produced three metrics: 

coef.slope, coef.int, and rsdVar represent the slope, intercept, and the model’s residual variance, 

respectively. We replaced all rh metrics, except for rh 0, 10, 99, and 100, with the three modelled 

variables resulting in 23 variables for analysis. 
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Figure 3.1. Example of GEDI waveform data and the associated vegetation classes. Dashed lines in the waveform samples indicate the top and bottom 
edge of the waveform, i.e. the relative height 100 and 0. 
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3.2.4. Vegetation Classification 

Reference data were collected through the interpretation of very high-resolution (VHR) satellite 

images in the Collect Earth platform (Bey et al. 2016) that provided access to different VHR 

satellite image providers, such as Google Earth, Google Earth Engine, and Planet data. In total, we 

Table 3.1 Description of the GEDI-derived metrics extracted from GEDI Level 1B and Level 2A collections. 
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successfully identified the vegetation types across 1,062 granules. A Random Forest classifier was 

then developed to link these five classes to the GEDI metrics. The model was developed using the 

R package randomForest and was implemented in R. The number of trees to grow was set to 500, 

with the minimum size of terminal nodes set to 4. The classification accuracy was assessed based 

on the out-of-bag error estimate and the confusion matrix, both of which are the standard 

procedures in assessing Random Forest classifier performance. Once developed, we applied the 

classifier to identify the vegetation types across 78,436 GEDI granules. 

Variable importance was measured as the mean decrease in classification accuracy and the mean 

decrease in Gini. The former indicates the change in the classifier’s error when the variable under 

evaluation is omitted. Random Forest classifier utilizes decision trees, which consist of nodes 

where observations are split according to the associated variable’s values. Each split is expected 

to reduce the heterogeneity or impurity within groups, which is directly proportional to the Gini 

coefficient. Variables associated with a higher decrease in Gini have more significant contributions 

to the homogeneity of the nodes and leaves in the classification and hence, have relatively higher 

importance given other variables in the classifier. 

3.2.5. Comparison with Land Cover Data 

We compared the vegetation classification developed solely using GEDI metrics with a land cover 

map that depicted the most recent state of the study area. The land cover was developed using a 

fusion of Sentinel-2 and Sentinel-1 images acquired between June 2019 – March 2020 in a Random 

Forest classification on Google Earth Engine (Gorelick et al. 2018). The land cover mapped 11 

classes, including different types of anthropogenic land cover classes along with natural and semi-

natural vegetation types, with an overall accuracy of 83.45% (Table 2.4). We reclassified some of 

the mapped land cover classes to match the vegetation types of interest: the “other tree-dominated” 

class, which covered only a tiny part of the study area, was reclassified as rubber plantation; 

“paddy”, “mango” or “cashew plantation” classes were reclassified as cropland. The land cover at 

each of the GEDI footprints was extracted from the map using the footprint centroid’s coordinates. 
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3.3. Results 

3.3.1. Vegetation classification using GEDI metrics 

The Random Forest classifier developed only using GEDI metrics distinguished five different 

vegetation types with moderate accuracy (Table 3.2). The out-of-bag estimate of error rate was 

18.08%, with the deciduous forest as the class with the lowest accuracy (user’s accuracy = 73%, 

producer’s accuracy = 69%). The vegetation type with the highest accuracy was the “AnnCrop” 

class that comprises annual crops, grassland, and shrubland.  

Figure 3.2. Classification result showing the distribution of the vegetation classes in the study area. 

Table 3.2. Accuracy matrix of the GEDI-only classification 

  Out-Of-Bag (OOB) estimate of  error rate: 18.1% 
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The map of the classified granules depicts the vegetation types’ spatial distribution (Figure 3.2). 

Cropland/grassland was prevalent across the landscape, while the other vegetation types were 

clustered at certain parts of the study area. The seasonally inundated forest granules were 

concentrated in the area surrounding the Tonle Sap Lake in the Southwest. According to the land 

cover data, the drier area in the Northeast hosted most of the deciduous forest, which is the 

dominant land cover type in the study area. Evergreen forest and rubber plantation distribution 

were confined to the protected and concession area, respectively. 

Topographic information provided by GEDI measurement, the relative elevation of the lowest 

mode (elev_lowestmode), was the metric with the highest mean decrease accuracy when omitted 

(Figure 3.3). The variables we derived from linear models of the rh metrics all had high importance 

values. The slope of the linear model (coef.slope) has the highest Mean Decrease Gini value. The 

metrics derived from Level-1B data with the highest importance values were the grInt and grAmpl, 

representing the ground portion of the waveform. 

3.3.2. Comparison between GEDI-only classification and optical-radar classification 

The comparison of the classified GEDI granules with the land cover data revealed that the two are 

in agreement in most cases (Figure 3.4). In many cases where the GEDI-only classification 

disagreed with the land cover map, the GEDI-only classification tends to be closer to the reference 

than the land cover map. 

We found some exceptions to this when GEDI-only prediction misidentified evergreen forest as 

deciduous and deciduous as evergreen. The misclassification may be related to the moderate error 

rate in distinguishing the two natural forest classes, as shown in Table 2. The land cover map 

Figure 3.3. Variable importance as indicated by the Mean Decrease Accuracy and Mean Decrease Gini. 
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distinguished evergreen from the deciduous forest more accurately because the major difference 

between the two vegetation types is more phenological rather than structural; the former is 

detectable by optical data. The reference data collection, which relied on the interpretation of high-

resolution optical images, was also a potential factor that explains the higher agreement between 

the reference data and land cover data than with GEDI-only prediction for the deciduous and 

evergreen forest. 

3.4. Discussion 

We demonstrated the potential of GEDI metrics derived from Level-1B and Level-2A in 

identifying vegetation types in Cambodia, where intensively managed types coexist with natural 

or semi-natural vegetation types. The application expanded the previously studied application of 

waveform lidar data in a landscape dominated by natural vegetation types (Marselis et al., 2018). 

Without any implementation of post-classification correction, as seen in many other studies (e.g. 

(Marselis et al. 2018, Poortinga et al. 2019), our classification that was based solely on GEDI 

Level-1B and 2A metrics was sufficient in mapping the distribution of the major vegetation classes 

in the study area.  

Errors in the classification were related to several possible factors. The high classification error 

between the deciduous forest and the evergreen forest in our results may indicate the presence of 

Figure 3.4. Comparison of the classification result and 2019 land cover map 
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a mixed forest class, where the tree species of the two forest types coexist (Rollet 1972, Food and 

Agriculture Organization of the United Nations 2020). However, the definition of a mixed forest 

class, which requires information on the tree species composition, was not feasible in this study 

due to the absence of overlaps between our ground reference points with the GEDI footprints. Both 

GEDI-only classification and land cover were prone to commission error in mapping the rubber 

plantations, which had limited distribution and was concentrated in concession areas. The locations 

where GEDI-only results and land cover data agree can improve the specificity of the rubber 

plantation distribution mapping. 

Our classifier mapped the seasonally flooded forest with better accuracy than the land cover map. 

In this case, the elevation information measured by GEDI (elev_lowestmode) provides valuable 

information that was missing in the land cover map that was developed using a fusion of Sentinel-

1 and Sentinel-2 data. The elevation data that was measured relative to a reference ellipsoid 

(Dubayah et al. 2020) contributed to the identification of the areas that were prone to flooding. 

Hence, incorporating the variable as a predictor improved the classifier’s ability to identify the 

seasonally flooded forest. 

The most important variables in the GEDI-only Random Forest classifier consisted of topographic, 

intensity, and height metrics derived from Level 1-B and Level 2-A GEDI data. The strong 

association of topographic information with vegetation classification was consistent with previous 

studies, e.g. Marselis et al. 2018. Two variables that were expected to have higher importance, 

according to Zhou and Popescu (2019), i.e., the front slope angle and the slope distance from the 

waveform beginning to the highest peak, had low importance in the classification. 

A similar approach can be applied to version 2 GEDI data that were recently released. The 

increased geolocation accuracy of GEDI version 2 may increase the vegetation classification 

accuracy. However, our preliminary observation showed that version 2 waveforms were 

preprocessed using a different approach from version 1 and thus have “smoother” waveforms. 

Therefore, some modifications may be necessary to replicate our framework using the version 2 

GEDI data. 
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3.5. Conclusion 

GEDI Level 1-B and Level 2-A provide topographic and vegetation structure information that is 

useful in vegetation types identification in the study area. The GEDI-only classification was able 

to identify vegetation types with good agreement with the land cover map derived from the fusion 

of Sentinel-2 and Sentinel-1 images. The GEDI measured elevation data was particularly useful in 

mapping the seasonally inundated forest. The mapping of rubber plantations, which was 

uncommon in the study area, could be refined by combining the GEDI-only result with the land 

cover map to see where the two agree. 

These findings emphasize the potential of GEDI waveform lidar data in developing the policy-

relevant map, especially in data-scarce environments. Given the limited extent of the GEDI data 

coverage, GEDI waveform information can be combined with the high-resolution optical images 

that are commonly used in reference data collection platforms to reduce uncertainty in vegetation 

types identification. This approach can improve the reference data quality, as demonstrated in this 

research by the accurate identification of vegetation types by the GEDI-only classification. 

As more data are acquired through the lifetime of the GEDI mission, more classes can be 

incorporated into the classification. This may also reduce the classification error associated with 

the high intra-class variation. Further research is needed to systematically assess the classification 

accuracy provided by a classifier developed based on the waveform metrics provided by GEDI 

Level 1-B and Level 2-A dataset, combined with Level 2-B dataset, for example, the canopy cover 

and Plant Area Index (PAI). 
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Chapter 4. Conclusion 

In this thesis, I demonstrated the application of novel remote sensing technologies in improving 

land cover mapping in the landscape of Siem Reap and Preah Vihear. The fusion between Sentinel-

1 and Sentinel-2 satellite data slightly improved the land cover classification accuracy (1.6% 

overall accuracy increase) relative to Sentinel-2-only classification. Even after some correction 

efforts, the noises recorded in Sentinel-1 radar data seemed to be one of the factors that caused the 

lower-than-expected increase in the overall accuracy of the radar-optical fusion approach. The 

availability of analysis-ready Sentinel-1 data, as proposed by Small et al. (2021), will reduce the 

noise and inconsistencies in the mosaic of Sentinel-1 scenes, and therefore, increase the 

performance of the optical-radar fusion approach for accurate land cover mapping in larger 

landscapes that require several observation swaths and rows to obtain full coverage. 

Despite the moderate level of overall accuracy, the produced map successfully distinguished 

different natural or semi-natural forest types in the study area at a finer resolution than an existing 

land cover map in the area. The most significant variables were the ones containing 

seasonal/phenological information. A similar finding on the significance of phenological 

information in mapping vegetation types in the area was reported in a recent study that used the 

phenological indices derived from Landsat’s Enhanced Vegetation Index (EVI) time-series data. 

Based on my results, remotely sensed seasonal/phenological indicators (VV_p10, VV_p90, 

NDVI_p10, NDVI_p90) are useful in mapping vegetations in tropical landscapes with pronounced 

seasonal temperature and precipitation variation. In areas with frequent cloud cover, radar 

predictors are particularly useful as the microwave signals used in radar instruments can penetrate 

through clouds. 

The land cover change analysis identified a substantial decline of deciduous dipterocarp forest 

cover within the study period while commodity cropland expanded. A significant relationship 

between the explanatory variables and deciduous dipterocarp forest dynamics indicates the 

significance of anthropogenic factors in driving land cover change in the area. For instance, the 

land cover change model showed how land designations defined the most likely change in the 

affected area. The land cover change model I developed can provide a baseline for scenario 

development that supports sustainable landscape planning and monitoring in the area. 
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The second part of my thesis demonstrated how topographic and vegetation structure information 

from the new GEDI data could further improve vegetation classification accuracy in complex 

tropical landscapes. GEDI-only classification could identify the seasonally inundated forest better 

than the land cover map derived from the fusion of optical-radar data. These findings indicate the 

potential of structural information in mapping complex landscapes’ land cover with an enhanced 

level of detail and accuracy. Airborne laser scanning can be deployed in the study area to obtain 

complete “wall-to-wall” lidar coverage.  
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Appendix 

A.1. A list of Sentinel scenes for compositing in land cover classification 

a. Sentinel 2 

No. PRODUCT_ID landCover_year 
1 S2A_MSIL2A_20151201T033112_N9999_R018_T48PUA_20210417T004805 2015 
2 S2A_MSIL2A_20151201T033112_N9999_R018_T48PUV_20210417T010921 2015 
3 S2A_MSIL2A_20151201T033112_N9999_R018_T48PVA_20210417T013414 2015 
4 S2A_MSIL2A_20151201T033112_N9999_R018_T48PVV_20210417T013504 2015 
5 S2A_MSIL2A_20151201T033112_N9999_R018_T48PWA_20210417T013544 2015 
6 S2A_MSIL2A_20151208T033242_N9999_R118_T48PVA_20210417T014909 2015 
7 S2A_MSIL2A_20151208T033242_N9999_R118_T48PVV_20210417T014945 2015 
8 S2A_MSIL2A_20151208T033242_N9999_R118_T48PWA_20210417T015022 2015 
9 S2A_MSIL2A_20151208T033242_N9999_R118_T48PWV_20210417T021031 2015 
10 S2A_MSIL2A_20151211T034152_N9999_R018_T48PUA_20210417T023144 2015 
11 S2A_MSIL2A_20151211T034152_N9999_R018_T48PUV_20210417T025329 2015 
12 S2A_MSIL2A_20151211T034152_N9999_R018_T48PVA_20210417T031718 2015 
13 S2A_MSIL2A_20151211T034152_N9999_R018_T48PWA_20210417T031802 2015 
14 S2A_MSIL2A_20151218T032142_N9999_R118_T48PVV_20210417T033327 2015 
15 S2A_MSIL2A_20151218T032142_N9999_R118_T48PWV_20210417T033358 2015 
16 S2A_MSIL2A_20151221T034152_N9999_R018_T48PUA_20210417T034839 2015 
17 S2A_MSIL2A_20151221T034152_N9999_R018_T48PUV_20210417T040908 2015 
18 S2A_MSIL2A_20151221T034152_N9999_R018_T48PWA_20210417T043054 2015 
19 S2A_MSIL2A_20151228T033242_N9999_R118_T48PVA_20210417T044322 2015 
20 S2A_MSIL2A_20151228T033242_N9999_R118_T48PVV_20210417T044359 2015 
21 S2A_MSIL2A_20151228T033242_N9999_R118_T48PWA_20210417T044435 2015 
22 S2A_MSIL2A_20151228T033242_N9999_R118_T48PWV_20210417T050423 2015 
23 S2A_MSIL2A_20151231T033142_N9999_R018_T48PUA_20210417T052408 2015 
24 S2A_MSIL2A_20151231T033142_N9999_R018_T48PUV_20210417T054353 2015 
25 S2A_MSIL2A_20151231T033142_N9999_R018_T48PVA_20210417T060351 2015 
26 S2A_MSIL2A_20151231T033142_N9999_R018_T48PVV_20210417T060435 2015 
27 S2A_MSIL2A_20151231T033142_N9999_R018_T48PWA_20210417T060516 2015 
28 S2A_MSIL2A_20160107T033242_N9999_R118_T48PVA_20210417T061736 2015 
29 S2A_MSIL2A_20160107T033242_N9999_R118_T48PWA_20210417T061809 2015 
30 S2A_MSIL2A_20160107T033242_N9999_R118_T48PWV_20210417T063855 2015 
31 S2A_MSIL2A_20160110T034152_N9999_R018_T48PWA_20210417T065928 2015 
32 S2A_MSIL2A_20160120T034152_N9999_R018_T48PVA_20210417T071129 2015 
33 S2A_MSIL2A_20160120T034152_N9999_R018_T48PWA_20210417T071215 2015 
34 S2A_MSIL2A_20160130T033002_N9999_R018_T48PUA_20210417T072457 2015 
35 S2A_MSIL2A_20160130T033002_N9999_R018_T48PUV_20210417T072459 2015 
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36 S2A_MSIL2A_20160130T033002_N9999_R018_T48PVA_20210417T074608 2015 
37 S2A_MSIL2A_20160130T033002_N9999_R018_T48PVV_20210417T074648 2015 
38 S2B_MSIL2A_20191202T032109_N0213_R118_T48PVA_20191202T072407 2019 
39 S2B_MSIL2A_20191202T032109_N0213_R118_T48PVB_20191202T072407 2019 
40 S2B_MSIL2A_20191202T032109_N0213_R118_T48PVV_20191202T072407 2019 
41 S2B_MSIL2A_20191202T032109_N0213_R118_T48PWA_20191202T072407 2019 
42 S2B_MSIL2A_20191202T032109_N0213_R118_T48PWB_20191202T072407 2019 
43 S2B_MSIL2A_20191202T032109_N0213_R118_T48PWV_20191202T072407 2019 
44 S2B_MSIL2A_20191205T033119_N0213_R018_T48PUA_20191205T070306 2019 
45 S2B_MSIL2A_20191205T033119_N0213_R018_T48PUB_20191205T070306 2019 
46 S2B_MSIL2A_20191205T033119_N0213_R018_T48PUV_20191205T070306 2019 
47 S2B_MSIL2A_20191205T033119_N0213_R018_T48PVA_20191205T070306 2019 
48 S2B_MSIL2A_20191205T033119_N0213_R018_T48PVB_20191205T070306 2019 
49 S2B_MSIL2A_20191205T033119_N0213_R018_T48PVV_20191205T070306 2019 
50 S2B_MSIL2A_20191205T033119_N0213_R018_T48PWA_20191205T070306 2019 
51 S2B_MSIL2A_20191205T033119_N0213_R018_T48PWB_20191205T070306 2019 
52 S2A_MSIL2A_20191207T032121_N0213_R118_T48PVA_20191207T071912 2019 
53 S2A_MSIL2A_20191207T032121_N0213_R118_T48PVB_20191207T071912 2019 
54 S2A_MSIL2A_20191207T032121_N0213_R118_T48PVV_20191207T071912 2019 
55 S2A_MSIL2A_20191207T032121_N0213_R118_T48PWA_20191207T071912 2019 
56 S2A_MSIL2A_20191207T032121_N0213_R118_T48PWB_20191207T071912 2019 
57 S2A_MSIL2A_20191207T032121_N0213_R118_T48PWV_20191207T071912 2019 
58 S2A_MSIL2A_20191210T033131_N0213_R018_T48PUA_20191210T070124 2019 
59 S2A_MSIL2A_20191210T033131_N0213_R018_T48PUB_20191210T070124 2019 
60 S2A_MSIL2A_20191210T033131_N0213_R018_T48PUV_20191210T070124 2019 
61 S2A_MSIL2A_20191210T033131_N0213_R018_T48PVA_20191210T070124 2019 
62 S2A_MSIL2A_20191210T033131_N0213_R018_T48PVB_20191210T070124 2019 
63 S2A_MSIL2A_20191210T033131_N0213_R018_T48PVV_20191210T070124 2019 
64 S2A_MSIL2A_20191210T033131_N0213_R018_T48PWA_20191210T070124 2019 
65 S2A_MSIL2A_20191210T033131_N0213_R018_T48PWB_20191210T070124 2019 
66 S2B_MSIL2A_20191212T032129_N0213_R118_T48PVA_20191212T065639 2019 
67 S2B_MSIL2A_20191212T032129_N0213_R118_T48PVB_20191212T065639 2019 
68 S2B_MSIL2A_20191212T032129_N0213_R118_T48PVV_20191212T065639 2019 
69 S2B_MSIL2A_20191212T032129_N0213_R118_T48PWA_20191212T065639 2019 
70 S2B_MSIL2A_20191212T032129_N0213_R118_T48PWB_20191212T065639 2019 
71 S2B_MSIL2A_20191212T032129_N0213_R118_T48PWV_20191212T065639 2019 
72 S2B_MSIL2A_20191215T033139_N0213_R018_T48PUA_20191215T073452 2019 
73 S2B_MSIL2A_20191215T033139_N0213_R018_T48PUB_20191215T073452 2019 
74 S2B_MSIL2A_20191215T033139_N0213_R018_T48PUV_20191215T073452 2019 
75 S2B_MSIL2A_20191215T033139_N0213_R018_T48PVA_20191215T073452 2019 
76 S2B_MSIL2A_20191215T033139_N0213_R018_T48PVB_20191215T073452 2019 
77 S2B_MSIL2A_20191215T033139_N0213_R018_T48PVV_20191215T073452 2019 
78 S2B_MSIL2A_20191215T033139_N0213_R018_T48PWA_20191215T073452 2019 
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79 S2B_MSIL2A_20191215T033139_N0213_R018_T48PWB_20191215T073452 2019 
80 S2A_MSIL2A_20191217T032131_N0213_R118_T48PVA_20191217T064024 2019 
81 S2A_MSIL2A_20191217T032131_N0213_R118_T48PVB_20191217T064024 2019 
82 S2A_MSIL2A_20191217T032131_N0213_R118_T48PVV_20191217T064024 2019 
83 S2A_MSIL2A_20191217T032131_N0213_R118_T48PWA_20191217T064024 2019 
84 S2A_MSIL2A_20191217T032131_N0213_R118_T48PWB_20191217T064024 2019 
85 S2A_MSIL2A_20191217T032131_N0213_R118_T48PWV_20191217T064024 2019 
86 S2A_MSIL2A_20191220T033141_N0213_R018_T48PUA_20191220T070111 2019 
87 S2A_MSIL2A_20191220T033141_N0213_R018_T48PUB_20191220T070111 2019 
88 S2A_MSIL2A_20191220T033141_N0213_R018_T48PUV_20191220T070111 2019 
89 S2A_MSIL2A_20191220T033141_N0213_R018_T48PVA_20191220T070111 2019 
90 S2A_MSIL2A_20191220T033141_N0213_R018_T48PVB_20191220T070111 2019 
91 S2A_MSIL2A_20191220T033141_N0213_R018_T48PVV_20191220T070111 2019 
92 S2A_MSIL2A_20191220T033141_N0213_R018_T48PWA_20191220T070111 2019 
93 S2A_MSIL2A_20191220T033141_N0213_R018_T48PWB_20191220T070111 2019 
94 S2B_MSIL2A_20191222T032139_N0213_R118_T48PVA_20191222T072524 2019 
95 S2B_MSIL2A_20191222T032139_N0213_R118_T48PVB_20191222T072524 2019 
96 S2B_MSIL2A_20191222T032139_N0213_R118_T48PVV_20191222T072524 2019 
97 S2B_MSIL2A_20191222T032139_N0213_R118_T48PWA_20191222T072524 2019 
98 S2B_MSIL2A_20191222T032139_N0213_R118_T48PWB_20191222T072524 2019 
99 S2B_MSIL2A_20191222T032139_N0213_R118_T48PWV_20191222T072524 2019 
100 S2B_MSIL2A_20191225T033139_N0213_R018_T48PUA_20191225T064801 2019 
101 S2B_MSIL2A_20191225T033139_N0213_R018_T48PUB_20191225T064801 2019 
102 S2B_MSIL2A_20191225T033139_N0213_R018_T48PUV_20191225T064801 2019 
103 S2B_MSIL2A_20191225T033139_N0213_R018_T48PVA_20191225T064801 2019 
104 S2B_MSIL2A_20191225T033139_N0213_R018_T48PVB_20191225T064801 2019 
105 S2B_MSIL2A_20191225T033139_N0213_R018_T48PVV_20191225T064801 2019 
106 S2B_MSIL2A_20191225T033139_N0213_R018_T48PWA_20191225T064801 2019 
107 S2B_MSIL2A_20191225T033139_N0213_R018_T48PWB_20191225T064801 2019 
108 S2A_MSIL2A_20191227T032131_N0213_R118_T48PVA_20191227T065256 2019 
109 S2A_MSIL2A_20191227T032131_N0213_R118_T48PVB_20191227T065256 2019 
110 S2A_MSIL2A_20191227T032131_N0213_R118_T48PVV_20191227T065256 2019 
111 S2A_MSIL2A_20191227T032131_N0213_R118_T48PWA_20191227T065256 2019 
112 S2A_MSIL2A_20191227T032131_N0213_R118_T48PWB_20191227T065256 2019 
113 S2A_MSIL2A_20191227T032131_N0213_R118_T48PWV_20191227T065256 2019 
114 S2A_MSIL2A_20191230T033141_N0213_R018_T48PUA_20191230T071815 2019 
115 S2A_MSIL2A_20191230T033141_N0213_R018_T48PUB_20191230T071815 2019 
116 S2A_MSIL2A_20191230T033141_N0213_R018_T48PUV_20191230T071815 2019 
117 S2A_MSIL2A_20191230T033141_N0213_R018_T48PVA_20191230T071815 2019 
118 S2A_MSIL2A_20191230T033141_N0213_R018_T48PVB_20191230T071815 2019 
119 S2A_MSIL2A_20191230T033141_N0213_R018_T48PVV_20191230T071815 2019 
120 S2A_MSIL2A_20191230T033141_N0213_R018_T48PWA_20191230T071815 2019 
121 S2A_MSIL2A_20191230T033141_N0213_R018_T48PWB_20191230T071815 2019 
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b. Sentinel 1 

No PRODUCT_ID landCover_year 
1 S1A_IW_GRDH_1SDV_20151224T224411_20151224T224440_009190_00D3

D4_9187 
2015 

2 S1A_IW_GRDH_1SDV_20151224T224440_20151224T224505_009190_00D3
D4_4610 

2015 

3 S1A_IW_GRDH_1SDV_20151229T225219_20151229T225244_009263_00D5
E6_123B 

2015 

4 S1A_IW_GRDH_1SDV_20151229T225244_20151229T225309_009263_00D5
E6_6000 

2015 

5 S1A_IW_GRDH_1SDV_20191220T225234_20191220T225259_030438_037B
D7_9BDB 

2019 

6 S1A_IW_GRDH_1SDV_20191220T225259_20191220T225324_030438_037B
D7_1933 

2019 

7 S1A_IW_GRDH_1SDV_20191220T225324_20191220T225349_030438_037B
D7_50CC 

2019 

8 S1A_IW_GRDH_1SDV_20191227T224427_20191227T224452_030540_037F5
E_4F99 

2019 

9 S1A_IW_GRDH_1SDV_20191227T224452_20191227T224517_030540_037F5
E_A755 

2019 

 

A.2. Formulas of the spectral indices used in land cover classification 

Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1974) 

𝑁𝑁𝐷𝐷𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑟𝑟𝑟𝑟𝑟𝑟
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑟𝑟𝑟𝑟𝑟𝑟

 

Soil Adjusted Vegetation Index (SAVI) (A.R. Huete, 1988; Somvanshi & Kumari, 2020) 

𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑟𝑟𝑟𝑟𝑟𝑟

𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑟𝑟𝑟𝑟𝑟𝑟 + 0.5
× 1.5 

Normalized Difference Water Index 1 (NDWI) (Gao, 1996) 

𝑁𝑁𝐷𝐷𝑊𝑊𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑆𝑆𝑊𝑊𝑁𝑁𝑁𝑁1
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑊𝑊𝑁𝑁𝑁𝑁1

 

Normalized Difference Water Index 2 (NDWIt) (McFeeters, 1996) 
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𝑁𝑁𝐷𝐷𝑊𝑊𝑁𝑁𝑁𝑁 =
𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔 − 𝑁𝑁𝑁𝑁𝑁𝑁
𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔 + 𝑁𝑁𝑁𝑁𝑁𝑁

 

Normalized Burn Ratio (NBR) (Key et al., 2002) 

𝑁𝑁𝐵𝐵𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑆𝑆𝑊𝑊𝑁𝑁𝑁𝑁2
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑊𝑊𝑁𝑁𝑁𝑁2

 

Enhanced Vegetation Index (EVI) (Alfredo R. Huete et al., 1999) 

𝐸𝐸𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑟𝑟𝑟𝑟𝑟𝑟 

𝑁𝑁𝑁𝑁𝑁𝑁 + 6 × red − 7.5 × 𝑏𝑏𝑙𝑙𝑏𝑏𝑟𝑟 + 1
× 2.5 

Green Normalized Difference Vegetation Index (GNDVI) (Buschmann & Nagel, 1993) 

𝐺𝐺𝑁𝑁𝐷𝐷𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔

 

Enhanced Vegetation Index 2 (EVI2) (Jiang et al., 2008) 

𝐸𝐸𝑁𝑁𝑁𝑁2 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑟𝑟𝑟𝑟𝑟𝑟

𝑁𝑁𝑁𝑁𝑁𝑁 + 2.4 × 𝑟𝑟𝑟𝑟𝑟𝑟 + 1
× 2.5 

Moisture Stress Index (MSI) (Rock et al., 1986) 

𝑀𝑀𝑆𝑆𝑁𝑁 =
𝑆𝑆𝑊𝑊𝑁𝑁𝑁𝑁1
𝑁𝑁𝑁𝑁𝑁𝑁

 

Modified Chlorophyll Absorption in Reflectance Index (MCARI) (Daughtry et al., 2000) 

𝑀𝑀𝑀𝑀𝑆𝑆𝑁𝑁𝑁𝑁 =
�𝑟𝑟𝑟𝑟𝑟𝑟1 − 𝑟𝑟𝑟𝑟𝑟𝑟 − 0.2 × (𝑟𝑟𝑟𝑟𝑟𝑟1 − 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔)� × 𝑟𝑟𝑟𝑟𝑟𝑟1

𝑟𝑟𝑟𝑟𝑟𝑟
 

Pigment Specific Simple Ratio (PSSR) (Blackburn, 1998) 

𝑃𝑃𝑆𝑆𝑆𝑆𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁
𝑟𝑟𝑟𝑟𝑟𝑟
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Associated Sentinel-2 bands 

blue = band 2 of Sentinel-2 Level-2A median composite 

green = band 3 of Sentinel-2 Level-2A median composite 

red = band 4 of Sentinel-2 Level-2A median composite 

red1 = band 5 of Sentinel-2 Level-2A median composite 

NIR = band 8 of Sentinel-2 Level-2A median composite 

SWIR1 = band 11 of Sentinel-2 Level-2A median composite 

SWIR2 = band 12 of Sentinel-2 Level-2A median composite  
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