
On Path-Greedy Geometric Spanners

by

Lucca Morais de Arruda Siaudzionis

B. Com., University of British Columbia, 2020

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

September 2021

© Lucca Morais de Arruda Siaudzionis, 2021

The following individuals certify that they have read, and recommend to the Fac-
ulty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

On Path-Greedy Geometric Spanners

submitted by Lucca Morais de Arruda Siaudzionis in partial fulfillment of the
requirements for the degree of Master of Science in Computer Science.

Examining Committee:

William Evans, Professor, Computer Science, UBC
Supervisor

Bruce Shepherd, Professor, Computer Science, UBC
Supervisory Committee Member

ii

Abstract

A t-spanner is a graph in which the shortest path between two vertices never ex-

ceeds t times the distance between the two nodes – a t-approximation of the com-

plete graph. A geometric graph is one in which its vertices are points with defined

coordinates and the edges correspond to line segments between them with a dis-

tance function, such as Euclidean distance. Geometric spanners are used to design

networks of reduced complexity, optimizing metrics such as the planarity or degree

of the graph.

One famous algorithm used to generate spanners is path-greedy, which scans

pairs of points in non-decreasing order of distance and adds the edge between them

unless the current set of added edges already connects them with a path that t-

approximates the edge length. Graphs from this algorithm are called path-greedy

spanners. This work analyzes properties of path-greedy geometric spanners under

different conditions.

Specifically, we answer an open problem regarding the planarity and degree

of path-greedy 5.19-spanners in convex point sets, and explore how the algorithm

behaves under random tiebreaks for grid point sets. Lastly, we show a simple and

efficient way to reduce the degree of a plane spanner by adding extra points.

iii

Lay Summary

Consider a group of points. We want to connect some points to each other such

that it is possible to reach any point from any other point within a factor of their

distance. This is called a spanner. There are many algorithms that design net-

works such as these. We take one famous algorithm, path-greedy, and analyze its

behaviour under some circumstances. In particular, we study the algorithm when

the points are laid out in a convex shape or in a grid. Lastly, we study a way to

improve the spanner with the addition of new points.

iv

Preface

The thesis contains original and independent work by the author, Lucca Morais de

Arruda Siaudzionis. Parts of Chapter 3 were published [W. Evans and L. Siaudzio-

nis. Tight degree bounds for path-greedy 5.19-spanner on convex point sets. In

37th European Workshop on Computational Geometry, pages 258–262, 2021]. My

co-author in the paper is my thesis supervisor, William Evans, who helped with ver-

ifying some of the proofs published and with the overall writing. The rest of the

work shown here is unpublished.

v

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Tables . ix

List of Figures . x

Acknowledgments . xii

1 Introduction . 1
1.1 Quality Measures . 3

1.1.1 Edge Crossings and Planarity 3

1.1.2 Dilation . 3

1.1.3 Degree . 3

1.1.4 Size (Number of Edges) 4

1.1.5 Weight . 4

1.2 Motivation . 4

1.3 Overview and Contribution . 5

2 Background . 6
2.1 Famous Spanners . 6

vi

2.1.1 Θ-Graphs and Yao Graphs 6

2.1.2 Well-Separated Pair Decomposition 7

2.1.3 Delaunay Triangulation 8

2.1.4 Path-Greedy Spanners 9

2.2 The Path-Greedy Algorithm . 9

2.3 Plane Spanners of Low Degree 11

2.3.1 Convex Position . 11

2.4 Grid Spanners . 12

2.5 Steiner Points . 13

3 Convex Path-Greedy Spanners . 14
3.1 (No Longer) Open Problem . 14

3.2 Tight Bound for the Maximum Degree of PATHGREEDY(S, 3+4π

3) 15

3.2.1 The Upper Bound . 15

3.2.2 The Lower Bound . 18

3.3 A Non-Plane Convex Path-Greedy Spanner 20

4 Path-Greedy Grid Spanners . 25
4.1 Basic Observations . 26

4.1.1 t < 3 . 26

4.1.2 Clearly Impossible Edges 27

4.2 Diagonal Edges and Planarity . 28

4.2.1 1×1-edges . 28

4.2.2 1×2-edges . 30

4.3 Smallest Grid for Each t . 35

4.3.1 General Shape . 35

4.3.2 Specific Constructions 36

4.4 A Few Open Problems (with Conjectures) 41

5 Using Steiner Points . 44
5.1 Construction from Biniaz et al. (2017) 44

5.2 A New Construction . 45

5.2.1 Optimality via Collinearity 45

5.2.2 Finding ε ′ . 47

vii

5.2.3 Avoiding collinearity . 49

6 Conclusion . 51
6.1 Future Work . 52

Bibliography . 53

A How to Find Counterexamples . 55

B Proofs and Tables for Chapter 4 . 57
B.1 Proofs for ko and ke . 57

B.2 Key Values for each Integer t . 57

viii

List of Tables

Table 3.1 Coordinates and labels of point set S∗. 18

Table 3.2 Coordinates and labels of point set S′. 21

Table B.1 ko, ke, and N for each t when both constraints are valid. (Part 1.) 58

Table B.2 ko, ke, and N for each t when both constraints are valid. (Part 2.) 59

ix

List of Figures

Figure 1.1 Different geometric spanners. 2

Figure 2.1 Example of a Yao Graph. 7

Figure 2.2 Example of a well-separated pair of point sets. 8

Figure 2.3 Example of a Delaunay triangulation. 8

Figure 2.4 Two path-greedy spanners on convex point sets, with t = 2. . . 9

Figure 2.5 Path-greedy spanners with t = 1.5 (left) and t = 5 (right). . . . 10

Figure 2.6 A uniform (left) and a non-uniform (right) grid spanner. . . . 12

Figure 2.7 A simple triangulation that uses three Steiner points (in red). . 13

Figure 3.1 Illustration of Theorem 1’s proof. 16

Figure 3.2 Spanner generated by PATHGREEDY(S∗, 3+4π

3). 18

Figure 3.3 Partial process of building point set S∗. 19

Figure 3.4 Partial point set S∗ with path connecting vertices a and b. . . . 20

Figure 3.5 Spanner generated by PATHGREEDY(S′, 3+4π

3). 20

Figure 3.6 Partial process of designing S′. 22

Figure 3.7 Hypothetical scenario when designing S′. 22

Figure 3.8 Connecting paths of S′. 23

Figure 4.1 Greedy spanners in uniform 7×7 grids (t = 3). 26

Figure 4.2 7×7 grids with t = 1.05 (left) and t = 1.5 (right). 27

Figure 4.3 A long, hypothetical 6×9-edge. 28

Figure 4.4 A crossing between two 1×1-edges. 28

Figure 4.5 A “plus sign” of length 3 inside an 8×8 grid with k = 3. . . . 29

Figure 4.6 8×8 non-plane grids with t = 5. 30

x

Figure 4.7 Examples of 1×2 edges with crossings. 30

Figure 4.8 5×5 grids with 1×2-edges (t = 3). 31

Figure 4.9 Points involved in a 1×2-edge. 31

Figure 4.10 Points involved in a 1×2-edge and their surroundings. 32

Figure 4.11 Necessary shape for inclusion of edge a f . Dashed lines are

edges that must not be added. 33

Figure 4.12 Necessary shape for inclusion of edge a f , with more condi-

tions. Dashed lines are edges that must not be added. 33

Figure 4.13 All shapes satisfying the conditions inferred (excluding rota-

tions and reflections). The irrelevant points were removed. . . 34

Figure 4.14 1×2-edge and its surroundings. 34

Figure 4.15 Shape of a general construction of a crossing between two 1×
1-edges, using four independent regions. 37

Figure 4.16 The (k+ 1)× k rectangle contained in the green region (with

k = 7). The values in the figure refer to distances (or number

of 0×1-edges). 38

Figure 4.17 18×18 grid from construction for odd integers k. 39

Figure 4.18 The (k+1)×k rectangle contained in the green region for even

integers k (with k = 8). The values in the figure refer to dis-

tances (or number of 0×1-edges). 40

Figure 4.19 20×20 grid from construction for even integers k. 42

Figure 5.1 Example of Steiner points construction to reduce degrees. Fig-

ure source: Biniaz et al. [6]. 45

Figure 5.2 Separation of upper and lower edges for any point p. 46

Figure 5.3 Addition of Steiner points related to point p. 46

Figure 5.4 Redrawing of edges incident on point p. 47

Figure 5.5 Final configuration for each point. 47

Figure 5.6 The original ab edge gets replaced with the longer red path,

consisting of multiple edges. 48

xi

Acknowledgments

I would like to thank my supervisor, Will Evans, for helping me in an uncertain

time and guiding me through my research. I’m also thankful to the second reader

of my thesis, Bruce Shepherd.

I must thank my parents, Felipe and Patrı́cia, my grandparents, Aldemir, Aı́da,

Alberto, and Luiziane, my brothers, Felipe Filho and Pedro, and Elizângela for

their presence over my entire life.

I would also like to thank friends with whom discussions made me dive deeper

into compelling problems: Victor Sales, David Zheng, Daniel Du, Paul Liu, Daniel

Lu, Nasa Rouf, Jack Spalding-Jamieson, Richard Cai, Rubens Bezerra, and many

others.

Finally, I thank Bea Subion for being my daily source of inspiration, motiva-

tion, and for building the desk on which most of this thesis was written.

xii

Chapter 1

Introduction

To the worm who first gnawed on the cold flesh of my corpse, I
dedicate with fond remembrance these Posthumous Memoirs.

— Machado de Assis (1881)

The study of spanners stems from the desire to optimize some metric of a graph

at the expense of others, while maintaining the graph’s connectivity. That simple

idea has been familiar for a long time in graph theory as spanning subgraphs. Span-

ning trees, for example, are a subgraph that connects all the nodes of a graph using

the minimal amount of edges – what it optimizes for – while possibly worsening

the shortest path between nodes.

Usually, the graph we are concerned about while studying spanners is the com-

plete graph, meaning each node is directly connected to every other node. This

thesis will be concerned with complete geometric graphs, in which the nodes are

defined by their position and the edges are weighted by the spatial distance between

their endpoints. Hence, finding a spanner in this complete geometric graph means

improving metrics we are interested in – such as planarity, degree, weight, or size

– at the cost of dilating the straight line distance between two points. This spanner

is called a geometric spanner. We say a graph is a t-spanner if the shortest path

between every pair of points is at most t times their spatial distance. The metric for

measuring the distances varies but, throughout this writing, the only one used will

be the Euclidean.

More formally, we define:

1

Definition 1 (Geometric Graph). A graph G with vertex set S is geometric if the

points are defined by their location in Rd , and each edge has its weight equal to

the Euclidean distance between its endpoints.

Definition 2 (t-spanner). For t > 1, a geometric graph is a t-spanner if the shortest

path between every pair of points is at most t times their Euclidean distance.

Definition 3 (Dilation). The dilation (also known as stretch or spanning ratio) of

a graph G is the smallest value t such that G is a t-spanner.

Figure 1.1: Different geometric spanners.

In Figure 1.1, the top two graphs are
√

2-spanners. The points are the vertices

of a square of side 1, with the top-right image also containing the centre of the

square. The bottom two point sets are the vertices of a regular pentagon of side 1.

The bottom-left spanner has a dilation 2
φ

– where φ is the Golden ratio of 1+
√

5
2 –

and the bottom-right graph has a dilation 3φ .

2

1.1 Quality Measures
There is no consensus regarding what a good spanner is or what makes one better

than the other. Instead, the relevant metrics vary according to the situation. When

modeling real life networks, for example, we tend to be interested in graphs of low

degree, as those facilitate distributed computations. However, rather than focusing

on a single measure, it is usually preferable to optimize one of them while satisfy-

ing constraints on the others. For instance, we might be interested in finding the

spanner with minimal dilation that is guaranteed to be plane.

There are four quality measures worth mentioning.

1.1.1 Edge Crossings and Planarity

For some cases in Euclidean graphs in R2, edge crossings are undesired. Hence,

some spanner algorithms aim to minimize their occurrence. It is also frequently

desired to reduce the number of edge crossings all the way down to zero, making

the spanner be a plane graph. Chapter 3 will explore the planarity of the famous

path-greedy algorithm in convex point sets, and Chapter 4 will analyze the same

algorithm in grid point sets.

1.1.2 Dilation

It is trivial to generate a spanner graph with dilation 1, as the complete graph sat-

isfies that. In practice, the requirements tend to lie in satisfying some useful and

meaningful constraints while reducing the dilation as much as possible. One noto-

rious example is minimizing the dilation of N points while using at most M edges,

which happens to be NP-hard [15].

1.1.3 Degree

The degree of a spanner is defined as the maximum vertex degree amongst all of

its vertices. When modeling networks, graphs of lower degree of preferred. There

has been growing interest in spanners of specifically degree 3. Chapters 3 and 5

will be concerned with these.

3

1.1.4 Size (Number of Edges)

Note that bounding the graph’s degree also limits the number of edges, but the

inverse is not true. We can limit the number of edges in a spanner graph of N

vertices by N−1 by simply choosing any spanning tree. Thus, we tend to optimize

the number of edges while also satisfying other constraints, such as guaranteeing a

maximum dilation.

1.1.5 Weight

The weight of a graph is the sum of all its edge weights. The minimal value is

achieved by the minimum spanning tree (MST). Thus, the weight of a spanner is

often compared to that of the graph’s MST, and a spanner of low weight is called

light. Many algorithms are considered light in this regard if the weight of their

spanners is in O(MST). There are many compelling problems related to a spanner’s

weight, none of which will be present in this thesis.

1.2 Motivation
As explained above, there are many separate dimensions that make a spanner good,

and hence designing spanners is task dependent. One main motivation for the use

of spanners is based on the fact that telecommunication networks can be mod-

eled as geometric graphs, and thus designing efficient spanners help achieve more

efficient networks. A graph with smaller degree can minimize the cost of the net-

work since low degree nodes represent routers with few communication queues. A

smaller degree also minimizes the speed of transmission since each router will have

fewer choices for the next possible hop, making that step faster. For physically re-

alized edges, it might be also be important to prevent crossings, reaching a plane

graph. Since the metrics above that are relevant for this problem are the degree and

planarity of the graph, this work will focus especially on those two aspects.

Another general application of spanners is for proximity problems, as the short-

est paths between points are embedded in the very definition of a t-spanner.

4

1.3 Overview and Contribution
We will see the relevant background and related work for this thesis in Chapter 2.

In Chapter 3, we will explore the topic that inspired this work, path-greedy span-

ners on convex point sets. This chapter also solves an open problem suggested by

Bakhshesh and Farshi [3]. In Chapter 4, we explore how random tie breaking in-

fluences spanners in the specific case of path-greedy with points laid out in a grid.

As far as I know, this is the first such investigation. Our work for reducing the

degree of plane spanners using the addition of extra points is briefly explained in

Chapter 5. Lastly, Chapter 6 contains our conclusion and suggestions for future

work.

It is worth mentioning that much of the work of this thesis, including the search

for counterexamples for some conjectures, relied on systematically building a li-

brary and tools that were crucial to achieve the outcomes presented. Appendix A

explains that system in detail.

5

Chapter 2

Background

The best ideas are common property.
— Seneca (63 AD)

We will briefly cover the background that is relevant to the work presented,

but this is only a drop in the ocean of interesting results related to spanners. For

further documentation on algorithms, results, and open problems, one may refer to

the textbook written by Narasimhan and Smid [16] or to the survey by Bose and

Smid [7].

2.1 Famous Spanners
There are a few particularly prominent spanners in literature. These are not known

for the specific point sets, but for the algorithms that generate them. Each of these

algorithms enforces different properties which are desired in the final output. Thus,

research on those algorithms tends to be around proving other properties that fol-

low from each scenario.

We will briefly mention some famous algorithms and graphs.

2.1.1 Θ-Graphs and Yao Graphs

Both the Θ-Graph and the Yao Graph arise from the same idea: splitting the plane

around each vertex into cones and connecting the vertex to the closest vertex within

6

each cone. The two graphs differ in the way the closest vertex is defined, but they

lead to similar outcomes. Figure 2.1 shows an example of a Yao Graph.

Figure 2.1: Example of a Yao Graph.

The low degree of the spanner comes from the construction, as each vertex

will only be connected to at most as many cones as surround the vertex, which

is a hyperparameter. An advantage of these two graphs is that each node can be

processed independently, which facilitates a distributed implementation.

2.1.2 Well-Separated Pair Decomposition

The well-separated pair decomposition (WSPD) allows for construction of a t-

spanner of N points with O(N) edges and constant degree in O(N logN) time.

Two point sets A and B form a well-separated pair with regards to s > 0 if their

bounding boxes are contained within two circles CA and CB of radius ρ that are

at least sρ apart. (See Figure 2.2.) A WSPD of a point set with regards to s is a

sequence of well-separated pairs {A1,B1}, {A2,B2}, . . . , {Am,Bm} such that, for

any two distinct points p and q, there exists exactly one index i such that p ∈ Ai

and q ∈ Bi (or p ∈ Bi and q ∈ Ai).

Though it is not trivial to see, a WSPD exists for every point set [16]. And,

for s > 4, a t-spanner with t = (s+4)/(s−4) can be built by taking one arbitrary

edge for each pair of the decomposition. With a more sophisticated approach, it is

possible to also bound the degree of each vertex [16].

7

≥ sρ
ρ

ρ

Figure 2.2: Example of a well-separated pair of point sets.

2.1.3 Delaunay Triangulation

A Delaunay triangulation of a set S is a triangulation such that no point p in S

is inside the circumcircle of a triangle that does not include p. The immediate

advantage of using Delaunay triangulations as spanners is that the spanners are

guaranteed to be plane [11]. Other benefits are that they contain only a linear num-

ber of edges (since they are plane) and can be computed in O(N logN) expected

time, though the interest in Delaunay triangulation goes way beyond spanners [11].

Figure 2.3: Example of a Delaunay triangulation.

The bounds on the dilation of the Euclidean Delaunay triangulation are not

tight. It had long been conjectured that the dilation of the triangulation would never

exceed π/2, but Bose et al. found a point set with a dilation greater than 1.5846,

which is slightly above π/2 [8]. As an upper bound, Keil and Gutwin proved that

the Delaunay triangulation is always a 2.42-spanner [14].

8

2.1.4 Path-Greedy Spanners

The path-greedy algorithm uses the dilation, t, as an input. Briefly speaking, the

algorithm consists of processing every pair of points in the point set in increasing

order of their distances, and, at each step, enforcing that those two points are con-

nected by a path of length at most t times their distance. Spanners resulting from

this algorithm are called path-greedy spanners.

The path-greedy algorithm will be extensively studied in this thesis, which

brings us to the next section.

Figure 2.4: Two path-greedy spanners on convex point sets, with t = 2.

2.2 The Path-Greedy Algorithm
The path-greedy algorithm is a classic, simple way of constructing a geometric

spanner for a point set. Originally introduced in 1993 by Althöfer et al. [1], the

algorithm was designed to produce sparse spanners, both in weight and size of

the graph. It is appreciated by many due to its incredible simplicity. Unlike most

algorithms, path-greedy uses the desired dilation t as an input, and its output is

guaranteed to be a t-spanner. Hence, analyses on the output spanner created by

path-greedy differ according to the chosen t.

The path-greedy algorithm is a generalization of Kruskal’s algorithm for min-

imum spanning trees. Algorithm 1 contains the original implementation of path-

greedy. The output of the path-greedy algorithm is commonly called the path-

greedy spanner. Figure 2.5 shows two path-greedy spanners on the same point set,

with different dilations.

9

Figure 2.5: Path-greedy spanners with t = 1.5 (left) and t = 5 (right).

Algorithm 1: PATHGREEDY(S, t)

input : A set of S of N points in Rd and a real number t > 1.

output: G(S,E), a t-spanner for S.

1 Sort all
(n

2

)
pairs of points from S in non-decreasing order of their

distances, breaking ties arbitrarily, and store them in list L;

2 E← /0;

3 G← (S,E);

4 for each {p,q} ∈ L do
5 δ ← length of shortest path between p and q in G;

6 if δ > t|pq| then
7 E← E ∪{(p,q)};

8 return G(S,E)

The degree of each point in a path-greedy spanner is bounded by a constant,

which means the entire graph will have a linear number of edges [16]. Thus, as-

suming a point set with n vertices, it would take O(n logn) time to compute the

shortest path between two vertices using Dijkstra’s algorithm. Hence, examining

all
(n

2

)
pairs of points sequentially would lead to a O(n3 logn) time algorithm.

There are more efficient algorithms to calculate the path-greedy spanner than

simply naively following the original path-greedy algorithm. For example, Bose

10

et al. [9] designed a O(n2 logn) time algorithm and, more recently, Carmi and

Tomer [10] introduced a different O(n2 logn) implementation that is simpler. How-

ever, since our analyses will be concerned only with the algorithm’s output – the

actual path-greedy spanner – it does not matter which version we study. We will

refer to the original algorithm when we consider the impact of equal length edges

on the set of possible path-greedy spanners of a single point set. However, the other

implementations would exhibit the same behavior.

2.3 Plane Spanners of Low Degree
Wireless networks can be modelled as geometric graphs in which the nodes in

the point set reflect the geographical location of the antennas, devices, and other

sources. A critical part of networking is routing, which determines how packets

should be sent from a node to another, and a good routing would reduce delays or

lags in the exchange of messages. The graphs that optimizes routing are plane and

have low degree, which naturally lead to an interest in finding spanners satisfying

those conditions [13, 17].

2.3.1 Convex Position

As a subproblem, we will consider only point sets that are in convex position. This

allows us to obtain tight bounds on certain desired properties. There are three

results around that problem that are worth mentioning.

First, Kanj et al. proved that the tight bound for the degree of a spanner with

constant dilation is 3 in convex point sets, by designing an algorithm that guaran-

tees a plane 20-spanner of degree 3 for the upper bound, and separately proving the

lower bound with a construction [13]. Their algorithm also guarantees a maximum

degree of 4 for points in general position.

Afterwards, Biniaz et al. improved that dilation by designing a matching-based

algorithm for convex point sets [6]. On a high level, their algorithm considers the

two convex chains connecting the diameter for the point set, chooses the closest

edge to connect both chains, and recurses on each half. With that, they guaranteed

a plane
(3+4π

3

)
-spanner of degree 3 for points in convex position.

Lastly, Bakhshesh and Farshi also guaranteed a plane
(3+4π

3

)
-spanner of degree

11

3 for convex point sets by using an adaptation of the path-greedy algorithm [3].

Their algorithm first adds all the edges around the convex hull of the point set,

and then runs the path-greedy algorithm considering that those edges were already

added. As a bonus, the upper bound for the weight of the spanner resulting from

their algorithm is asymptotically equal to the total weight of the minimum span-

ning tree of the point set. Their work raised the question of whether the original

path-greedy algorithm would maintain similar properties, which will be explored

in Chapter 3.

2.4 Grid Spanners
Some research is focused specifically on points arranged in a grid. The grid can

be uniform or non-uniform, depending on whether the the rows and columns are

equally spaced apart. Figure 2.6 contains two examples of grid spanners.

Figure 2.6: A uniform (left) and a non-uniform (right) grid spanner.

Though there is significant work related to grid spanners, not much of it is

relevant to the rest of this thesis. An exception is the work by Biniaz et al., who

designed a plane 3
√

2-spanner of degree 3 for non-uniform grids [6]. (Note that it

is trivial to find a plane
√

2-spanner of degree 4 by simply connecting the rows and

columns in the grid.) We study the behaviour of uniform grid spanners created by

the path-greedy algorithm in Chapter 4.

12

2.5 Steiner Points
The properties we are aiming for in a spanner may be impossible to achieve in

certain point sets. In some situations, it may be advantageous to add extra points

to the original set, such that all the points, combined, lead us to the results we are

aiming for. These extra vertices are called Steiner points. More formally, we start

with an original point set P, and transform it into a point set P′, such that P ⊂ P′.

The points in P′ \P are called Steiner points.

Figure 2.7: A simple triangulation that uses three Steiner points (in red).

One of the ways Steiner points can be used is to achieve planarity while reduc-

ing the dilation of the spanner. In fact, it is possible to add O(N) Steiner points to a

set P with N points such that a plane (1+ε)-spanner is reached, for any ε > 0 [2, 7].

Another valuable way to use Steiner points is to reduce the degree of a plane

spanner. Biniaz et al. developed a way to transform a plane t-spanner of N points

and arbitrary degree into a plane (t + ε)-spanner of degree 3, for any ε > 0, using

only O(N) Steiner points [6]. However, their construction only works perfectly for

values t > π +1. We will describe their construction in more detail and present an

alternative construction that works for all t > 1 in Chapter 5.

13

Chapter 3

Convex Path-Greedy Spanners

No matter how many instances of white swans we may have observed,
this does not justify the conclusion that all swans are white.

— Karl Popper (1934)

In Section 2.3, we explained the growing interest in plane spanners of low

degree. In this chapter, we are concerned with point sets that are in convex position.

We explore the planarity and degree of spanners produced by of the path-greedy

algorithm for convex point sets.

3.1 (No Longer) Open Problem
Bakhshesh and Farshi’s algorithm creates, for points in convex position, a plane
3+4π

3 -spanner with maximum degree 3. Though their solution is not to simply use

the path-greedy algorithm, it is quite close. In essence, their algorithm first adds

to the spanner graph all the edges around the convex hull of the point set, and then

runs path-greedy from there. (Technically, there are also optimizations that make it

run faster, but the output does not change.) This could be interpreted as “seeding”

path-greedy with an initial set of edges that are desired in the final output graph.

Their work leads to a natural question that they posed as an open problem:

Does PATHGREEDY(S, 3+4π

3) construct a plane spanner of maximum degree 3 for

points S in convex position?

The answer, it turns out, is no. Recently, we showed that the maximum de-

14

gree of PATHGREEDY(S, 3+4π

3) for a convex point set S is 4, and the bound is

tight [12]. That result will also be explained in this chapter. Further, we prove that

PATHGREEDY(S, 3+4π

3) is also not plane, showing a small example of a convex

point set in which two edges of its path-greedy spanner intersect.

3.2 Tight Bound for the Maximum Degree of
PATHGREEDY(S, 3+4π

3)
We first prove that the maximum degree of a path-greedy t-spanner on a convex

point set is at most 4 for t ≥ 4.27. Afterwards we describe a convex point set S∗

such that PATHGREEDY(S∗, 3+4π

3) builds a degree 4 spanner. The construction can

be generalized for all dilations greater than or equal to 4.27.

3.2.1 The Upper Bound

We start with two Lemmas, the first of which is trivial. The proof of the upper

bound is shown immediately after.

Lemma 1. Given two angles α and β such that β ≥α > 0 and π > α +β ≥ 3π/4,

we have cosα + cosβ ≤
√

2−
√

2

Lemma 2. Let t ≥
√

2cos(π/8)√
2cos(π/8)−1

= 1
1−
√

2−
√

2
≈ 4.262. Given two angles α and β

such that β ≥ α > 0 and π > α +β ≥ 3π/4:

t sin(α +β)+ sinα− t sinβ ≤ 0

Proof. By the angle-sum identity for sin,

t sin(α +β)+ sinα− t sinβ = t sinα cosβ + t sinβ cosα + sinα− t sinβ

= (t cosβ +1)sinα− (t− t cosα)sinβ

=

(
t cosβ +1− sinβ

sinα
t(1− cosα)

)
sinα

≤ (t cosβ +1− t(1− cosα))sinα

15

(sinβ

sinα
≥ 1 since π−α > β ≥ α)

= (cosβ + cosα +1/t−1)t sinα

≤
(√

2−
√

2+1/t−1
)

t

(by Lemma 1 and 0 < sinα < 1 since 0 < α < π/2)

≤
(√

2−
√

2+1−
√

2−
√

2−1
)

t = 0

since t ≥ 1
1−
√

2−
√

2
.

Theorem 1. Given a convex point set S and a dilation t ≥ 4.27, the spanner graph

generated by PATHGREEDY(S, t) has degree at most 4.

Proof. Assume for a contradiction that vertex v has degree at least 5 in the spanner

generated by PATHGREEDY(S, t). Let a, b, c, d, and e be five of the vertices that v

is connected to. Assume without loss of generality that they are in clockwise order.

Since the point set is convex, one of the angles ∠avb, ∠bvc, ∠cvd, and ∠dve must

be at most π/4. Assume without loss of generality that ∠avb≤ π/4.

Let α =∠vab and β =∠vba. Assume without loss of generality that |va| ≥ |vb|
and thus that β ≥ α . If |va| = |vb|, assume the edge vb gets processed by path-

greedy before edge va. Since ∠avb ≤ π/4, we have β ≥ α > 0 and π > α +β ≥
3π/4 and |va|> |ab|.

v
a

b

P
α

β

Figure 3.1: Illustration of Theorem 1’s proof.

Note that, since |va| > |ab|, path-greedy will scan the edges ab and vb before

the edge va. However, it is not possible for path-greedy to add all three edges ab,

vb, and va, since |ab|+ |vb|< 2|va|. (In other words, if the algorithm were to add

the first two smaller edges scanned, ab and vb, it would not add the third, as the

vertices v and a would be connected by a sufficiently short path.) Thus, since va

16

and vb are both added, path-greedy must skip the edge ab, which means that the

vertices a and b must be connected by some path P such that:

|P| ≤ t|ab| (3.1)

By the time path-greedy scans edge va, the vertices v and a will be connected

by the path P + vb. Since path-greedy still adds the edge, this means that:

t|va|< |P|+ |vb| (3.2)

Combining inequalities (3.1) and (3.2):

t|ab|+ |vb|− t|va|> 0. (3.3)

The sine law for ∆abv, |va|
sinβ

= |vb|
sinα

= |ab|
sin(α+β) , implies

|va|= sinβ

sin(α +β)
|ab| and (3.4)

|vb|= sinα

sin(α +β)
|ab| (3.5)

Substituting (3.4) and (3.5) into (3.3):

t|ab|+ sinα

sin(α +β)
|ab|− t

sinβ

sin(α +β)
|ab|> 0 =⇒

t +
sinα

sin(α +β)
− t

sinβ

sin(α +β)
> 0 =⇒

t sin(α +β)+ sinα− t sinβ > 0 (3.6)

which contradicts Lemma 2. Thus, it is not possible for a vertex v to be connected

to five or more vertices, making the degree of the spanner graph at most 4.

Since 3+4π

3 , which is approximately 5.19, is most definitely greater than 4.27,

we conclude that the maximum degree of a path-greedy 3+4π

3 -spanner for convex

point sets is at most 4.

17

3.2.2 The Lower Bound

Theorem 2. There exists a convex point set S∗ such that the spanner generated by

PATHGREEDY(S∗, 3+4π

3) has degree 4.

Proof. We prove by example. There were two conditions we imposed for a point

set to be a good example: (i) It should have no three collinear points; and (ii) its

path-greedy 3+4π

3 -spanner should be the same regardless of how ties are broken

amongst edge distances while the algorithm runs. Our example satisfies both of

these conditions.

The points in S∗ are shown in Table 3.1.

Table 3.1: Coordinates and labels of point set S∗.

Vertex x-coordinate y-coordinate
v 0 0
a 9.992 −0.399
a1 16.983 −0.749
a2 23.970 −1.169
a3 27.861 −2.099
b 5.258 −8.506
b1 12.253 −8.261
b2 19.246 −7.946
b3 26.235 −7.561
c −4.825 −8.758
d −10 0

c

d
a3

b3

a2

b2

a1

b1

a

b

v

Figure 3.2: Spanner generated by PATHGREEDY(S∗, 3+4π

3).

We can confirm that PATHGREEDY(S∗, 3+4π

3) has degree 4 by running the

algorithm. Figure 3.2 shows the spanner generated in this process.

18

Construction of S∗

The points shown were not chosen at random, of course. First, point v was fixed at

the origin. Then, points a, b, c, d were chosen such that |va| ≈ |vb| ≈ |vc| ≈ |vd|
(and all those lengths are approximately 10 in S∗, but that’s not relevant). Angles

∠cvd and ∠bvc are both slightly above π

3 , so that the edges dc and cb are the largest

edges in the triangles ∆vdc and ∆vcb, and consequently scanned last amongst those

by path-greedy. This will ensure the edges vb and vc are added by the algorithm.

In order to ensure ∠dva < π , we make enforce that ∠avb is slightly below π

3 . This

partial process is illustrated in Figure 3.3.

c

d a

b

v

Figure 3.3: Partial process of building point set S∗.

Since we enforced ∠avb< π

3 , the edge ab cannot be the longest edge in triangle

∆vab, which means it must be scanned by path-greedy before va and vb are both

added. Remember that the path-greedy algorithm will never add all three edges

of a triangle for t > 2 and, since we want the edges va and vb to be added, we

must enforce ab is not added to the output. Thus, path-greedy must decide not to

add edge ab when scanning it, meaning the points a and b must be connected by a

sufficiently small path P. Figure 3.4 shows this idea.

Now, we have a scenario similar to the one explored in the proof of Theorem 1.

In order for the path P to lead to the graph we want, it must satisfy a few conditions

itself: (i) all the edges within it must be small (smaller than |ab|), so that they are

the first ones to be processed by path-greedy; (ii) the length of P is at most t · |ab|,
in order for the edge ab not to be added; and (iii) |P|+ |vb|> t|va| and |P|+ |va|>
t|vb|, so the edges va and vb are both added by the algorithm. Intuitively, assuming

|va| ≈ |vb| ≈ |ab| ≈ k for some k, we would have the length of P between (t−1)k

and tk. This allows us to generalize this construction for any value of t ≥ 4.27. In

19

a

b

v

P

Figure 3.4: Partial point set S∗ with path connecting vertices a and b.

our case, we followed this for t = 3+4π

3 .

After reaching that design, all that is left is to carefully choose points that

satisfy it. In S∗, the path P consists of edges aa1, a1a2, a2a3, a3b3, b3b2, b2b1, and

b1b. We make sure every angle in path P is smaller than π to maintain convexity

of S∗. In the end, we have the points and spanner graph shown in Figure 3.2.

3.3 A Non-Plane Convex Path-Greedy Spanner
Theorem 3. There exists a convex point set S′ such that the spanner generated by

PATHGREEDY(S′, 3+4π

3) is not plane.

Proof. The proof is by example. The conditions established for a strong example

are the same ones mentioned in the proof of Theorem 2, that is: (i) It should have

no three collinear points; and (ii) its path-greedy 3+4π

3 -spanner should be indepen-

dent of the tie breaking between edge distances. The example for S′ satisfies this

condition, and its coordinates are shown in Table 3.2.

One can easily verify that the spanner generated by PATHGREEDY(S′, 3+4π

3) is

not plane by running the algorithm. Its output is shown in Figure 3.5.

a b

cd r5 r4

r1
r2

r3
`1`2

`5`4

`3

Figure 3.5: Spanner generated by PATHGREEDY(S′, 3+4π

3).

20

Table 3.2: Coordinates and labels of point set S′.

Vertex x-coordinate y-coordinate
a 0 0
b 10 0
c 5 −8.66
d −5 −8.66
r1 19 −0.001
r2 25.018 −1.863
r3 24.515 −7.255
r4 21.2 −8.658
r5 14 −8.659
`1 −13 −8.659
`2 −18.6 −8.658
`3 −20.741 −6.854
`4 −16.164 −0.72
`5 −9 −0.001

Construction and Generalization of S′

Though it may not be obvious at first glance, the points a, b, c, and d form an

[approximate] rhombus. More interestingly, they form a rhombus in which the

length of the sides [approximately] equals the the length of the smallest diagonal.

Hence, we have |ab| ≈ |bc| ≈ |cd| ≈ |da| ≈ |ac| ≈ k, for some value k. (In the

example shown in Table 3.2, k = 10, but the actual value does not matter.) The

first key idea is to make sure |ac| is smaller than the lengths of the four sides by a

negligible amount, in order to force path-greedy to scan the edge first amongst all

the ones in the quadrilateral.

Our goal is to make path-greedy add both edges ac and bd. Adding the former

is easy, as we just forced it to be smaller than all the other edges in the quadrilat-

eral. However, as a consequence of that, bd is now the largest edge between them,

meaning that the points b and d will be connected by at least one path by the time

the edge gets scanned, and now we have to make sure that this path is longer than

t · |bd|. Similarly, by the time bd gets scanned, we know all the edges of the side of

21

a b

cd

Figure 3.6: Partial process of designing S′.

the quadrilateral will have been processed by the algorithm, implying those pairs

will also be connected by some path.

a b

cdP̀

Figure 3.7: Hypothetical scenario when designing S′.

Notice that, by applying sine law on triangle ∆abd, we know |bd| ≈
√

3k. Now,

assume the algorithm were to add one of the edges that is a side of the quadrilateral,

say, edge bc. Thus, by the time the algorithm scans edge bd, we know the edges ac

and bc were added, and that ad is connected by some path P̀ such that |P̀ | ≤ t|ad|.
(The path P̀ may consist of just a direct edge between a and d.) This scenario is

illustrated in Figure 3.7.

Under this hypothetical case, the vertices b and d will be connected by the path

P̀ +ac+ cb before the edge bd is scanned. Since we want path-greedy to add the

edge bd, that path must be longer than t · |bd|, and hence:

22

t|bd|< P̀ + |ac|+ |bc| =⇒

t
√

3k < tk+ k+ k =⇒

tk(
√

3−1)< 2k =⇒

t(
√

3−1)< 2 =⇒

t <
2√

3−1
≈ 2.732

Which unfortunately contradicts our chosen t. Therefore, if the edge bc were

to be added, then the edge bd wouldn’t. By symmetry, we see that the other edges

forming sides of the quadrilateral, ab, cd, and ad must also not be added by path-

greedy. Thus, we must connect all those pairs with sufficiently small paths before

they are scanned to guarantee those edges are not added.

If we were to connect all four pairs of points formin the sides of the quadri-

lateral with disjoint paths, similar to how pair ad is connected in Figure 3.7, the

resulting point set would not be convex. Instead, what we do is create those paths

only on two opposing sides. Let us then create a path P̀ connecting the pair ad and

a path Pr connecting the pair bc. This is shown in Figure 3.8.

a b

cdP̀ Pr

Figure 3.8: Connecting paths of S′.

Now, the shortest path between vertices c and d consists of P̀ + ac. If we

limit the length of P̀ to (t−1)k, then that path will have length slightly below tk,

meaning it will be short enough for the edge cd not to be added. Likewise, we limit

the length of Pr to (t−1)k, making sure the edge ab is not added.

At this stage, there is a single path connecting vertices b and d before the edge

bd gets scanned: P̀ +ac+Pr. In order for that path to be sufficiently long, we must

23

have:

|P̀ |+ |ac|+ |Pr|> t|bd| ⇐⇒

(t−1)k+ k+(t−1)k >
√

3tk ⇐⇒

(t−1)+1+(t−1)>
√

3t ⇐⇒

2t−1 >
√

3t ⇐⇒

t >
1

2−
√

3
≈ 3.733

We see this construction works for the value of t that we are concerned with,
3+4π

3 . Further, it could also be generalized for any value t > 3.733. In order to

get from this design to the actual coordinates shown in Table 3.2, all one must do

is carefully pick points that will satisfy all the conditions shown – a task that can

be slightly tedious. But, after doing so, we can reach the final graph shown in

Figure 3.5.

24

Chapter 4

Path-Greedy Grid Spanners

If you don’t know where you are going, you’ll end up someplace else.
– Yogi Berra

Uniform grid spanners are spanners in which its points are laid out in a uniform

grid, such as in Figure 4.1. In this chapter, we will analyze the behaviour of the

path-greedy algorithm on such point sets, considering different sizes and dilation

factors.

A critical but often disregarded aspect of path-greedy is how it treats ties be-

tween edges of the same length. By definition (Algorithm 1), the algorithm breaks

ties arbitrarily. While we analyzed convex point sets in Chapter 3, we deliberately

designed examples in which the arbitrary tie-breaking would play no role in the

final output. However, uniform grid graphs contain an enormous number of edges

of the same length. Rather than perturb the points to eliminate ties, we study how

different tie-breaks can lead to wildly distinct outputs.

Specifically, we will study in this chapter how non-planar t-spanners may be

output by the path-greedy algorithm for different values of t, and what types of

cross-edges are possible in an output.

This type of work is new and, as far as we know, no one else has studied this

setup before. We also found that many new problems arise whenever we delved

into the ones we found interesting. Hence, what is shown and proved here is far

from all that is noteworthy about this set of problems.

25

Figure 4.1: Greedy spanners in uniform 7×7 grids (t = 3).

4.1 Basic Observations
Every edge in the complete grid graph has length

√
h2 + v2, where h and v are the

horizontal and vertical distance between the two points. We will define them as

h× v-edges (or v× h-edges if v < h). Naturally, the shortest possible edges will

have length 1, when the points are neighbours horizontally or vertically – 0× 1

edges. Thus, all the neighbouring pairs of points will be processed first by path-

greedy.

4.1.1 t < 3

When path-greedy scans a 0×1-edge, all the ones that were previously processed

and added must also have been 0× 1-edges. That means that, if there exists a

path connecting the two vertices, that path must have an integer length greater than

1. Further, note that it is not possible to connect two neighbour nodes using ex-

actly two 0×1-edges, and therefore, at this stage, every non-direct path connecting

neighbouring nodes will have length at least 3. Hence, choosing t < 3 implies every

0×1-edge will be added to the output.

If
√

2≤ t < 3, there will be no need to add any other edge in the graph. Suppose

the algorithm is scanning an a× b-edge. The two points involved in it must be

connected by a set of a+b 0×1-edges, which is a small enough path for all t ≥
√

2

since a+b√
a2+b2 ≤

√
2. Naturally, as t becomes lower than

√
2 and approaches 1, the

26

number of edges increases until we reach a graph that is almost complete. (The

graph will never be complete if the grid is larger than 2× 2, as we will see in the

next subsection.)

Figure 4.2: 7×7 grids with t = 1.05 (left) and t = 1.5 (right).

4.1.2 Clearly Impossible Edges

Path-Greedy will never add an a×b-edge if gcd(a,b) > 1 (recall that gcd(0,b) =

b).

Suppose the algorithm is scanning an a×b-edge where gcd(a,b) = d for some

d > 1. Let us call the two points in that edge p1 and p2. That edge must intersect at

least one other point in the grid, turning it into d smaller a
d ×

b
d -edges, as illustrated

in Figure 4.3. Note that all those smaller edges will be scanned before the larger

a× b-edge and, whether or not they are added to the output by path-greedy, the

points in them will be guaranteed to be connected by a path at most t times their

length. Thus, p1 and p2 will be connected by the concatenation of those smaller

paths. There are d of those smaller paths, and each of them has length at most

t
√

a2+b2

d , and hence their concatenation has length at most t
√

a2 +b2. Therefore,

there will be no need to add the a×b-edge, as that path is already small enough.

Ergo, a trivial condition for an a×b-edge to be added by path-greedy is for a

and b to be coprime.

27

Figure 4.3: A long, hypothetical 6×9-edge.

4.2 Diagonal Edges and Planarity
Let us call all the a×b-edges in which both a and b are greater than zero diagonal

edges. An output that has no diagonal edges will be guaranteed to be plane. Thus,

we will study some examples of how these edges arise in order for the spanner not

to be plane. (Though, of course, the existence of a diagonal edge does not trivially

guarantee that the graph will be non-plane.)

4.2.1 1×1-edges

Figure 4.4: A crossing between two 1×1-edges.

After all the initial 0× 1 pairs are scanned by path-greedy, the algorithm will

process 1× 1-edges. Thus, it is not particularly surprising that the algorithm can

easily run into a scenario1 in which two 1× 1-edges within the same square are

added, generating a crossing, as in Figure 4.4.

For any desired integer dilation t, there is a simple way to generate a crossing

1Assuming a completely random tie-break, the odds of this crossing are low. But, if an adversary
chooses the tie-breaks, it is easy to generate this crossing.

28

between two 1× 1-edges. First, we pick a 1× 1 square and connect each pair of

vertices u and v, where uv is a side of the square, by a path of unit length edges of

length t, if t is odd, or t−1, otherwise. One such path forms three sides of a 1× k

rectangle where k = d t−1
2 e. The resulting shape, shown in Figure 4.5, looks similar

to a plus sign. This process will make sure there is no need to add the 0×1 edges

of the square, as they are connected by a path of length at most t, but the vertices

of its diagonal will be connected by a path of length 4k+2 (which equals 2t if t is

odd, and 2(t−1) if t is even).

Figure 4.5: A “plus sign” of length 3 inside an 8×8 grid with k = 3.

Almost always possible

For every D×D grid with D ≥ 4, it will be possible to see a crossing of 1× 1

edges for some value of t. Note that the above plus sign construction fits inside

a 4× 4 grid, if t = 2,3 so k = 1. In general, a plus sign of length k fits inside

a (2k + 2)× (2k + 2) grid. Since there is a satisfying k for every integer t ≥ 3,

we are also guaranteed to find some grid that generates a crossing for each t we

choose. This is not, however, the smallest grid for a given t for which path greedy

can produce such a crossing – that problem will be covered in Section 4.3.

It is also important to note that the plus sign is far from being the only way to

generate a crossing between two 1×1-edges. As D and t grow, there will be diverse

29

ways to generate crossings between two of these edges, as there will be increasingly

more ways to create structures that arise from the same idea: connecting the pairs

of vertices in a square with paths of length approaching t. Two of these cases are

shown in Figure 4.6.

Figure 4.6: 8×8 non-plane grids with t = 5.

4.2.2 1×2-edges

Figure 4.7: Examples of 1×2 edges with crossings.

In some cases, with t = 3, the tie-break in path-greedy may lead to the occur-

rence of 1×2-edges that yield a crossing. The crossing does not necessarily need

to be only between two 1× 2-edges – it may also happen with a 0× 1-edge, as

illustrated in Figure 4.7. Considering only integer values of t, we will prove that

1×2-edges can be included by path-greedy if t = 3, and cannot be included if t is

an integer between 4 and 8.

30

Possible for t = 3 (with a mandatory crossing)

It is easy to prove by example that the crossings shown in Figure 4.7 can be added

by path-greedy when t = 3. Figure 4.8 contains two examples on 5×5 grids. Nat-

urally, it would be possible to see those in any D×D grid with D > 5 as well.

Figure 4.8: 5×5 grids with 1×2-edges (t = 3).

Mandatory crossing. If a 1×2-edge is added by path greedy, it must necessarily

cross a 0×1-edge. Specifically, looking at the structure in Figure 4.9, in order for

edge a f to be added by path-greedy, the edge be must also be included.

d e f

a b c

Figure 4.9: Points involved in a 1×2-edge.

To prove that statement, assume that the edge be is not added. Thus, there

must be a path of length at most 3 connecting b and e, and all edges in the path

must be 0× 1-edges, since those are the only ones seen by path-greedy thus far.

There are only two ways those vertices can be connected. The first is by the path

b→ a→ d→ e, or, symmetrically, the path b→ c→ f → e. Assume without loss

of generality that it is the latter. Then, the shortest path between b and f has length

at most 2, while the shortest path between a and b has length at most 3 (since t = 3),

meaning there is a path between a and f of distance at most 5, which is less than

t
√
|ab|= 3

√
5≈ 6.71, which implies path-greedy would not add edge a f .

31

Thus, the addition of edge a f necessarily implies that edge be will also be

included, leading to a crossing. The same argument applies to all rotations and

reflections of the structure.

Conditions for a 1× 2-edge. See Figure 4.10, which is an extension of the con-

struction shown above. We will deduce the conditions needed for path-greedy to

add edge a f by making sure we never add a path of length at most t
√

5 while using

only edges smaller than 1×2.

d e f

a b cn0

n1 n2 n3 n4 n5

n6

s0

s1 s2 s3 s4 s5

s6

Figure 4.10: Points involved in a 1×2-edge and their surroundings.

If path-greedy added edge ab, then there would be a path of length 2 between

a and e, followed by a path of length at most 3 between e and f , implying edge a f

would not be added. Thus, in order for edge a f to be added, the algorithm cannot

add edge ab and, similarly, it cannot add edge e f either. However, a and b must be

connected by a path of length at most 3, leaving the paths a→ n2→ n3→ b and

a→ d→ e→ b as the only options. If the latter were included, there would be a

path of length 2 between a and e, repeating the issue just described. Thus, a and b

must be connected by path a→ n2→ n3→ b and, by the same argument, e and f

must be connected by path e→ s3→ s4→ f . See Figure 4.11.

Now, suppose the algorithm were to add edge c f . Then, b and c must either be

connected directly by path b→ c or by path b→ n3→ n4→ c. In either case, there

would be a path of length 5 connecting a and f , which breaks our premise. Hence,

path-greedy cannot add edge c f or edge ad (by symmetry). But, since we must

connect c and f by a short path, the edges cn6, n6s6, and s6 f must be added, and so

must edges an0, n0s0, and s0d. The resulting conditions are shown in Figure 4.12.

32

d e f

a b cn0

n1 n2 n3 n4 n5

n6

s0

s1 s2 s3 s4 s5

s6

Figure 4.11: Necessary shape for inclusion of edge a f . Dashed lines are
edges that must not be added.

d e f

a b cn0

n1 n2 n3 n4 n5

n6

s0

s1 s2 s3 s4 s5

s6

Figure 4.12: Necessary shape for inclusion of edge a f , with more conditions.
Dashed lines are edges that must not be added.

Those are the necessary conditions for a spanner to contain a 1×2-edge. From

there, it is not hard to see that there are only three different satisfying constructions,

displayed in Figure 4.13, alongside their reflections and rotations.

Impossible to add for integer t if 4≤ t ≤ 8

We will start by showing a simple proof that a 1× 2 edge cannot be added by

path-greedy if t = 4. Then, we adapt the proof slightly for t such that 5≤ t ≤ 8.

(i): t = 4. Let us inspect the by now familiar shape in Figure 4.14. Note that each

of the neighbouring pair of points must be connected by a direct edge (meaning a

path of length 1) or by a path of length 3 since, by a simple parity argument, we

cannot connect two neighbours using exactly 2 or 4 edges.

Suppose path-greedy were to add any of the dashed edges: ab, bc, c f , e f , de,

33

d e f

a b cn0

n2 n3

n6

s0

s3 s4

s6 d e f

a b cn0

n2 n3

n6

s0

s2 s3 s4 s5

s6

d e f

a b cn0

n2 n3 n4

n6

s0

s2 s3 s4 s5

s6

Figure 4.13: All shapes satisfying the conditions inferred (excluding rota-
tions and reflections). The irrelevant points were removed.

d e f

a b c

Figure 4.14: 1×2-edge and its surroundings.

or be. Then, we know all the other pairs of points must be connected by a path

of length at most 3, while that specific pair is connected by a single edge. In that

case, there would be a path from a to f of length at most 7. For example, if the

algorithm added edge ab, we could traverse the edge ab itself, then at most three

edges to reach c, and another three edges to reach f , totalling 7. However, a path of

length 7 is shorter than 4
√

5, rendering the addition of edge a f unnecessary, which

is not what we want. Hence, the algorithm must not add any of the dashed lines.

However, if none of those lines are added, it would be impossible to connect

points b and e using at most 3 edges. With this contradiction, we see that it is

impossible to add a 1×2 edge for t = 4.

34

(ii): 5 ≤ t ≤ 8. The proof is extremely similar to the one just above. If the al-

gorithm were to add any of the dashed edges, it would be possible to connect a to

f by a path of length at most 1+ t + t = 2t + 1. And, for all t ≥ 4.24, we have

2t + 1 ≥
√

5t, meaning the addition of any of the dashed edges makes it so path-

greedy does not add edge a f . Thus, just like in the previous case, none of the

dashed edges can be added. With none of those edges being added, it is impossible

to connect vertices b and e using at most 8 edges. Thus, it is impossible to add

edge a f , or any 1×2-edge, for integers t such that 5≤ t ≤ 8.

Larger values of t

I strongly believe it is impossible to add a 1× 2-edge for any integer t 6= 3. The

cases shown above are steps taken in that direction. However, finalizing this proof

for larger t remains an open problem.

4.3 Smallest Grid for Each t
When studying properties that lead to a crossing, it is worth wondering what grids

would even allow that. Specifically, what is the smallest value for D such that it

is possible for an D×D grid to have a crossing when path-greedy is run with a

certain value t. We will consider the problem with a focus on integer values of t,

though the constructions shown are also valid for many non-integer values.

Before we explain the idea behind the constructions we believe to be optimal,

it is important to mention that we have not proved a definitive lower bound. Thus,

that part of the problem remains open.

4.3.1 General Shape

For two reasons, the crossing we will aim to achieve is one between two 1× 1-

edge. First, as shown in Section 4.2.1, such crossings are possible for essentially

all values of t. The second reason is the diversity of possible ways to force the

addition of a 1×1-edge works in our favour in this particular problem.

There is a general shape we follow to lead to such crossings, shown in Fig-

ure 4.15. Let us fix a square abcd and force the addition of edges ac and bd by

path-greedy. We must connect the pairs of vertices in the edges of the square – ab,

35

bc, cd, and da – by paths of length at most t using only 0× 1-edges, while con-

necting the diagonals ac and bd by paths greater than
√

2t using the same edges.

To describe our construction, we split the grid into four regions, shown in

green, yellow, orange, and blue in Figure 4.15. Each of these regions contains

a long path connecting the pair of square points contained in it – for example, the

green region will contain the path connecting vertices a and b. Containing the

paths in disjoint regions ensures they do not intersect, which makes our analyses

considerably easier. While it is not a strict requirement, we choose to make these

paths equivalent (subject to rotation and translation). Thus, each region contains a

path P such that:

1. |P| ≤ t, so we do not add the edges of the periphery of the square;

2. 2|P|>
√

2t, ensuring the diagonals are added by path-greedy (note that ver-

tices a and c are connected by the path P going from a to b, and another copy

of path P going from b to c); and

3. all the points within the region defined by path P are connected to each other

by paths of length at most t.

Lastly, we make each of the regions be a distinct (k+1)×k or k× (k+1) rect-

angle. This makes the construction fit neatly into a compact grid. Looking again

at Figure 4.15, we define the green (top left) and orange (bottom right) rectangles

to be (k+1)× k rectangles, and the other two regions to be k× (k+1). Thus, the

entire figure fits in a 2k×2k grid.2

4.3.2 Specific Constructions

We show two similar constructions following the aforementioned general structure

that produce a D×D grid where D = 2k for some k. The first construction only

works for odd values of k, while the second one works for even integers k.

2Each side of the grid will have length (k+1)+ k−1 = 2k. The minus 1 factor comes from the
common points the two neighbouring regions share.

36

a b

cd

Figure 4.15: Shape of a general construction of a crossing between two 1×1-
edges, using four independent regions.

First construction: Odd integers k

Let us start by showing how each region is constructed. Figure 4.16 contains an

illustration for the green region when k = 7. We draw a single Hamiltonian path

for the entire rectangle. This is the above-named path P.

We first start from vertex b and draw k− 1 edges going up, passing through k

points, and reaching vertex x. Then, add k edges going to the left until we reach

vertex y. Then, alternate between going down one step followed by k−1 edges to

the right, and going down one step followed by k−1 edges to the left, going down

the rectangle in a snake pattern. For odd integers k, this process leads to a vertex z

that is just above a, and we end the process by connecting these two. Now, vertices

a and b are connected.

Note that, as long as the path P itself has length at most t (more on that soon),

all the neighbouring vertices in the green region will also be spaced apart by a path

at most t, since they are all part of P.

At this point, we must calculate the length of path P itself as a function of k.

37

a b

1k − 1

k − 1

k − 1

1

k − 2

y x

z

Figure 4.16: The (k + 1)× k rectangle contained in the green region (with
k = 7). The values in the figure refer to distances (or number of 0×1-
edges).

The easiest way to do so is to separately count the vertical and horizontal edges.

There are k− 1 vertical edges from b to x and another k− 1 vertical edges from

a to y, totalling 2k− 2 edges. For the horizontal edges, we see that the rectangle

defined by vertices y and z is a k× (k−1) rectangle, and as such contains (k−1)

sets of (k−1) horizontal edges, totalling (k−1)2. There is one last horizontal edge

connected to point x. Hence, the total number of edges is 2k−2+(k−1)2+1= k2.

In order to satisfy both constraints regarding the length of path P, we need (i)

k2 ≤ t, and (ii) 2k2 >
√

2t. The smallest such value k that satisfies both constraints

(if it exists) is the smallest value that satisfies just the second requirement, which

is easy to calculate. However, the smallest odd integer ko such that 2k2
o >
√

2t,

which is either
⌈√

t√
2

⌉
or
⌈√

t√
2

⌉
+1, whichever is odd, may not satisfy the first

constraint. That is, we may have k2
o > t. In that case, it will be impossible to use

this construction for that value t. However, we prove in Appendix B that ko satisfies

both constraints for every integer t ≥ 121 and for most positive integers before.

To conclude this, the other three regions are drawn as rotations of the first. Note

that neighbouring points that are in different coloured regions are connected by at

38

most 2k−1, which is short enough to avoid a direct edge. Finally, our construction

fits in a D×D grid, with D = 2ko. Figure 4.17 contains an example for ko = 9.

Figure 4.17: 18×18 grid from construction for odd integers k.

Second construction: Even integers k

This construction is extremely similar to the first. See Figure 4.18 for the shape of

the region.

39

a b

1k − 1

k − 1

1

k − 3

x w

y

z1

Figure 4.18: The (k+1)× k rectangle contained in the green region for even
integers k (with k = 8). The values in the figure refer to distances (or
number of 0×1-edges).

The beginning of the path is the same as the case of odd k. From b, we draw

k− 1 vertical edges until we reach a point w. Then, add k edges going leftwards,

reaching vertex x. Now, the alternating path of the previous case starts again. How-

ever, this time, we cut it short, ending at vertex y that is k−3 edges directly below

x. This alternating path adds k− 3 vertical edges and (k− 1)(k− 4) horizontal

edges. Then, we start a new path from y that alternates between going right, then

down, and right, then up. We do this for (k−1) steps, adding 2(k−1) edges until

we reach a vertex z directly above a. Finally, we connect z to a with a single edge.

The total number of edges added – the length of path P – is the sum of the

parts just mentioned: (k−1)+k+(k−3)+(k−1)(k−4)+2(k−1)+1 = k2−1.

Thus, to satisfy the path length constraints, we need (i) k2−1≤ t and 2(k2−1)>√
2. Similarly to the case above, we choose the smallest even integer ke such that

2(k2
e −1)>

√
2, which is

⌈√
t√
2
+1
⌉

or
⌈√

t√
2
+1
⌉
+1, whichever is even.

Unfortunately, not every value of t will have a corresponding valid ke that sat-

isfies both conditions. We show in Appendix B that the formula for ke satisfies all

integer values for t > 142, and most positive integer values before that as well.

40

As expected, the other three regions are drawn as a rotation of the first. An

example is shown in Figure 4.19. Hence, we pack the entire construction into a

D×D grid with D = 2ke.

There are three last points to note. First, strictly following the pattern shown

in Figure 4.18 will lead to one point in each region that is not connected to any

other point. This is easily fixed by connecting that point to either of its neighbours

in the same region. Second, the neighbouring pairs of points in different coloured

regions are connected by at most 3k−1 edges, which is short enough, if k ≥ 4, to

not need a direct edge between them. Lastly, due to the shape of the construction,

we require k ≥ 4 for this pattern to be possible.

Combining both constructions

Having presented both constructions, all that is left to do is to choose the best one

for each t. Of course, for many “small values” (t ≤ 142), one of them might not

be valid, leaving us with one or zero valid choice.

For all integers t ≥ 25, at least one of the constructions is valid. In fact, the

only positive integers t ≥ 9 for which both are invalid are 13, 14, 23, and 24. (The

proof of this is not particularly interesting and thus appears in Appendix B.) For

these impossible values, we can use alternative constructions to find a crossing,

such as the “plus sign” construction. When both constructions are valid, we can

simply choose that one that yields the smallest grid.

Since both ko and ke are in O(
√

t), D is as well. Thus, the structures shown

here yield a crossing for path-greedy with dilation t for a grid with O(t) points.

4.4 A Few Open Problems (with Conjectures)
There are two open problems mentioned in the sections above worth reiterating.

Further, there is one other problem that has caught my attention that I must men-

tion.

Possibility of 1×2-edges

We saw in Section 4.2.2 that, while it is possible for 1×2-edges to show up when

t = 3, it is not possible for them to show up when 4 ≤ t ≤ 8. Answering that

41

Figure 4.19: 20×20 grid from construction for even integers k.

question for the remaining values of t remains to be done. I strongly believe it is

not possible, and t = 3 is indeed the largest integer value for which 1×2-edges can

be added by path-greedy.

42

Most compact crossing for each t

We saw in Section 4.3 two constructions that may appear in a t-spanner created by

path-greedy that result in a crossing in a grid of side O(
√

t). I believe those con-

structions are asymptotically optimal, and hence it is not possible to create such a

construction for grids smaller than O(
√

t) in side (or O(t) in total number of points)

for large t values. However, whether that is indeed optimal is yet to be proved. Fur-

ther, even if it does turn out to be the best achievable solution asymptotically, one

may still find a way to improve it by constant factors. The general shape presented

– of splitting the grid into 4 symmetric regions – would limit that, so one would

need to think outside that box.

Possiblity of general diagonal edges

We proved that 1× 1-edges are almost always possible – even in quite compact

grids – and 1× 2-edges are possible when t = 3. We also explained early on that

many trivial edges are clearly impossible to be added, which are a×b-edges when

gcd(a,b) > 1. The problem that remains open is whether it is possible to add any

of the other edges, for any value of t. Again, I believe the answer is no, and that

the only edges possible are 0×1, 1×1, and 1×2 (the latter one only when t = 3).

Despite long attempts, I have not been able to prove this general statement.

43

Chapter 5

Using Steiner Points

It is difficult to make predictions, especially about the future.
— Danish Proverb

Steiner points are points in the plane that do not belong to the original input

set of a problem. They can be added to improve a spanner in miscellaneous ways,

such as reducing the degree, guaranteeing its planarity, or lowering the dilation of

the graph.

In this chapter, we consider adding Steiner points to plane spanners of arbitrary

degree in order to reduce its degree to at most 3, while not worsening the dilation

by much. Specifically, we transform a plane t-spanner of N points into a plane

(t + ε)-spanner of degree 3, for any ε > 0, that adds at most O(N) Steiner points.

5.1 Construction from Biniaz et al. (2017)
Biniaz et al. introduced a construction to solve this problem [6]. However, their

construction is only guaranteed to work for plane t-spanners with t ≥ π + 1. The

idea behind their construction is to draw a circle Cp with infinitesimal radius around

each point p in the original point set. The edges that were incident on p are replaced

with new edges ending at the intersection with Cp, adding a new Steiner point

at each intersection. These Steiner points and a distinct Steiner point p′ on Cp,

connected to p, are then connected by a cycle in order around Cp. See Figure 5.1

for an illustration of this idea.

44

Figure 5.1: Example of Steiner points construction to reduce degrees. Figure
source: Biniaz et al. [6].

The issue is that the dilation between point p and the Steiner points around

Cp is greater than 1, making the construction valid only for certain values t. We

can bound this worst-case dilation. If there are infinitely many Steiner points in

Cp, including a point p∗ diametrically opposed to p′, then the maximum dilation

would be π +1, between points p∗ and p′.

This can be improved if we connect p to 3 different points in the circle evenly

spaced apart, although it is not mentioned in the original construction. Then, the

maximum dilation would be between point p and some point in Cp that is halfway

between two of the points p is connected to, leading to a dilation of 1+ π

3 .

5.2 A New Construction

5.2.1 Optimality via Collinearity

Given a plane t-spanner of arbitrary degree, we now present a construction that

transforms it into a plane (t + ε)-spanner of degree 3 for any ε > 0 and t ≥ 1.

This first step is shown in Figure 5.2. For each point p in the input spanner,

draw a horizontal line that passes through it (shown dashed). The line splits p’s

edges into two sets, the ones above the line (upper) and the ones below it (lower).

Let Up be the number of edges above the upper set and Lp on the lower set. Let rp

be the semi-line drawn to the right of p (in red) and bp be the semi-line drawn to

45

p

Figure 5.2: Separation of upper and lower edges for any point p.

the left of p (in blue).

Next, as shown in Figure 5.3, add Up evenly spaced by distance ε ′ Steiner

points in rp, with the first one being in distance ε ′ away from p. We will show

how to find the value for ε ′ later – for now, assume it is arbitrarily small. Do the

same on the other side, adding Lp evenly spaced Steiner points in bp by the same

distance.

p

Figure 5.3: Addition of Steiner points related to point p.

Now, we proceed to update the edges. This step is shown in Figure 5.4. The

leftmost upper edge incident in p gets replaced so that, instead of having p as an

extremity, it has the leftmost Steiner point in rp. Likewise, the second leftmost

upper edge incident in p gets replaced by an edge incident in the second leftmost

Steiner point in rp. This procedure goes on until all upper edges are replaced,

having none of them touch p any longer. Note that these edges will not intersect

each other. We do the same operation symmetrically for the lower edges, replacing

the rightmost edge by an edge incident in the rightmost Steiner point in bp, and so

on. Since the original edges did not intersect, the new ones will also not intersect

for sufficiently small ε ′.

46

p

Figure 5.4: Redrawing of edges incident on point p.

The final step is to connect the Steiner points to each other by connecting each

point (including p) to its one or two neighbours. (See Figure 5.5.) The degree of

each Steiner point will be 2 or 3, while the degree of each vertex p in the input set

will be 2.

p

Figure 5.5: Final configuration for each point.

There are two Steiner points added per edge, making the total number of

Steiner points used exactly 2M, where M is the number of edges. Since the original

graph is plane, M is in O(N), meaning we only add O(N) Steiner points.

5.2.2 Finding ε ′

It is not hard to see that, for a sufficiently small ε ′, the construction will yield a

plane (t +ε)-spanner of degree 3. Thus, one could think of an algorithm that starts

with ε ′← ε and, as long as the construction is not valid, replace it with ε ′← ε ′/k

for any k > 1 and repeat.

But that does not stop us from calculating an exact value for ε ′ that is suffi-

ciently small. We will start by calculating the maximum detour in a single edge

from the original graph, and then use that to calculating how much any path in the

47

graph can increase. After we have those values as a function of ε ′, we can limit the

number so that the output is still a (t + ε)-spanner.

Maximum detour per edge

Each edge in the original graph is replaced by path consisting of a series of small

edges of length ε ′, plus one larger edge connecting two Steiner points.

Let us study that situation using two arbitrary points a and b (in Figure 5.6).

a

b

dε′

dε′

c

a′

b′

θ

θ

Figure 5.6: The original ab edge gets replaced with the longer red path, con-
sisting of multiple edges.

Let a′b′ be the edge between two Steiner points, the first associated with a and

the second with b, that form part of the shortest path in the new graph representing

the edge ab. If d is the degree of the original graph then the path from a′ to a

(and from b′ to b) is at most dε ′. In addition, the length of the edge a′b′ is at most

|ab|+ 2dε ′ (which may occur if ab is horizontal) by the triangle inequality. Thus

the total length of the path from a′ to b′ is at most |ab|+4dε ′.

Thus, each edge in the original graph gets replaced by a path that is at most

4dε ′ units longer.

48

Limiting the detour per path

Let u and v be two arbitrary points in the graph, and δuv be the length of the shortest

path between them in the original graph. We know that δuv
|uv| ≤ t because the orig-

inal graph was a t-spanner. The total path detour between them in the new graph

depends on the number of edges involved, which is at most N. Thus, in order for

the new path to be a (t + ε)-spanner, it suffices that:

δuv +ND
|uv|

≤ tε

δuv

|uv|
+

ND
|uv|
≤ tε

ND
|uv|
≤ ε

D≤ ε|uv|
N

4dε
′ ≤ ε|uv|

N

ε
′ ≤ ε|uv|

4dN

In order for that condition to be satisfied for every pair of distinct points u and

v, we define ` as the distance between the closest pair of points in the point set.

Hence, it is sufficient, but not necessary, that

ε
′ ≤ ε`

4dN

for the final graph to be a (t + ε)-spanner.

5.2.3 Avoiding collinearity

As a last note regarding the construction, it is worth noting that, for some people

and cases, collinearity is undesired.

Fortunately, the collinearity in the construction is not strictly needed – it is

there for convenience. We can avoid it simply by replacing each line segment with

49

part of a parabola. The focal radius of the parabola can be arbitrarily large, which

would bring all the properties shown of collinear points, without them actually

being collinear. For sufficiently flat parabolas, all the calculations would stay ap-

proximately the same, and the output would not have sets of collinear points. One

last thing to note is that if ab is horizontal, these could be problematic as the flat

parabolas could still have collinear points between them. An easy way to solve that

is by rotating the horizontal lines by an infinitesimal angle.

50

Chapter 6

Conclusion

I’ll miss the sea, but a person needs new experiences.
— Frank Herbert (1965)

No matter how deeply one explores each of these topics, there will always

remain a lot of work to be done.

In this thesis, we were able to explore some properties of the path-greedy al-

gorithm. We studied its degree and planarity on convex point sets, proving that the

maximum degree of PATHGREEDY(S, 5.19) is 4, with that being a tight bound, and

that the result might not be plane, solving an open problem proposed by Bakhshesh

and Farshi [3]. Further, we also explored how its tie-breaking can yield vastly dif-

ferent results under some circumstances – specifically, that of grid point sets. We

presented what we believe to be the most compact grid that leads to a crossing for

each t value in path-greedy, and what types of edges can show up.

But those are only a fraction of all the properties of path-greedy worth ex-

ploring – Narasimhan and Smid [16] have a long chapter dedicated to it. Also,

path-greedy is only one of many interesting algorithms to consider.

Lastly, we also showed how the addition of O(N) Steiner points can transform a

plane t-spanner of arbitrary degree into a plane (t+ε)-spanner of maximum degree

3. Though there existed previous work on that same problem, our solution is the

first one we know that actually works for all values t < 1 and ε > 0.

51

6.1 Future Work
All the results presented in Chapter 3 and Chapter 4 can be pushed further. It is

worth exploring the degree of path-greedy over several different values t for convex

point sets, and I would also like to see that question being approached for general

point sets. Chapter 4 lists specific questions that seem interesting and would be a

natural follow-up from the problem there.

There is some work actively being done trying to optimize the path-greedy

algorithm itself, since its original O(n3 logn) form is quite inefficient. As men-

tioned previously, there is new work published as recently as this year by Carmi

and Tomer [10] creating a O(n2 logn) version. I believe it is worth studying path-

greedy for specific point sets and specifically for Euclidean distances, as further

optimizations are likely possible.

Though it is hard to anticipate how difficult each of these problems will be until

one actually approaches them, I can say it will certainly be a riveting challenge.

52

Bibliography

[1] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners
of weighted graphs. Discrete & Computational Geometry, 9(1):81–100,
1993. → page 9

[2] S. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. Smid, and C. D. Zaroliagis.
Planar spanners and approximate shortest path queries among obstacles in
the plane. In European Symposium on Algorithms, pages 514–528. Springer,
1996. → page 13

[3] D. Bakhshesh and M. Farshi. A degree 3 plane 5.19-spanner for points in
convex position. In Proceedings of the 32nd Canadian Conference on
Computational Geometry (CCCG2020), pages 226–232, 2020. URL
https://vga.usask.ca/cccg2020/papers/Proceedings.pdf. → pages
5, 11, 12, 14, 51

[4] A. Biniaz, M. Amani, A. Maheshwari, M. H. M. Smid, P. Bose, and J. D.
Carufel. A plane 1.88-spanner for points in convex position. Journal of
Computational Geometry, 7(1):520–539, 2016.

[5] A. Biniaz, P. Bose, J. D. Carufel, C. Gavoille, A. Maheshwari, and M. H. M.
Smid. Towards plane spanners of degree 3. Journal of Computational
Geometry, 8(1):11–31, 2017.

[6] A. Biniaz, P. Bose, J.-L. D. Carufel, C. Gavoille, A. Maheshwari, and
M. Smid. Towards plane spanners of degree 3, 2017. → pages
xi, 11, 12, 13, 44, 45

[7] P. Bose and M. Smid. On plane geometric spanners: A survey and open
problems. Computational Geometry, 46(7):818 – 830, 2013. ISSN
0925-7721. doi:https://doi.org/10.1016/j.comgeo.2013.04.002. URL
http://www.sciencedirect.com/science/article/pii/S0925772113000357.
EuroCG 2009. → pages 6, 13

53

https://vga.usask.ca/cccg2020/papers/Proceedings.pdf
http://dx.doi.org/https://doi.org/10.1016/j.comgeo.2013.04.002
http://www.sciencedirect.com/science/article/pii/S0925772113000357

[8] P. Bose, L. Devroye, M. Löffler, J. Snoeyink, and V. Verma. The spanning
ratio of the delaunay triangulation is greater than pi/2. In CCCG, pages
165–167. Citeseer, 2009. → page 8

[9] P. Bose, P. Carmi, M. Farshi, A. Maheshwari, and M. Smid. Computing the
greedy spanner in near-quadratic time. Algorithmica, 58(3):711–729, 2010.
→ page 11

[10] P. Carmi and I. Tomer. Path-greedy spanner in near-quadratic time: Simpler
and better. In 37th European Workshop on Computational Geometry, pages
50–55, 2021. URL
http://eurocg21.spbu.ru/wp-content/uploads/2021/04/proceedings.pdf. →
pages 11, 52

[11] M. De Berg, M. Van Kreveld, M. Overmars, and O. Schwarzkopf.
Computational Geometry: Algorithms and Applications. Springer, third
edition, 2008. → page 8

[12] W. Evans and L. Siaudzionis. Tight degree bounds for path-greedy
5.19-spanner on convex point sets. In 37th European Workshop on
Computational Geometry, pages 258–262, 2021. URL
http://eurocg21.spbu.ru/wp-content/uploads/2021/04/proceedings.pdf. →
page 15

[13] I. Kanj, L. Perkovic, and D. Turkoglu. Degree four plane spanners: Simpler
and better. Journal of Computational Geometry, 8(2):3–31, 2017. → page
11

[14] J. M. Keil and C. A. Gutwin. Classes of graphs which approximate the
complete euclidean graph. Discrete & Computational Geometry, 7(1):
13–28, 1992. → page 8

[15] R. Klein and M. Kutz. Computing geometric minimum-dilation graphs is
np-hard. In International Symposium on Graph Drawing, pages 196–207.
Springer, 2006. → page 3

[16] G. Narasimhan and M. Smid. Geometric spanner networks. Cambridge
University Press, Cambridge; New York, 2007. ISBN
9780521815130;0521815134;. → pages 6, 7, 10, 51

[17] Y. Wang and X.-Y. Li. Localized construction of bounded degree and planar
spanner for wireless ad hoc networks. Mobile Networks and Applications,
11(2):161–175, 2006. → page 11

54

http://eurocg21.spbu.ru/wp-content/uploads/2021/04/proceedings.pdf
http://eurocg21.spbu.ru/wp-content/uploads/2021/04/proceedings.pdf

Appendix A

How to Find Counterexamples

A considerable amount of work shown here involved finding examples to prove or

explore relevant properties of algorithms. I personally found it difficult to do such

work relying solely on pen and paper, and thus developed a library and a system to

guide me. Since this method turned out to be, for me, very successful, I think it is

appropriate that I present an overview in it.

Step 1: Implement Models and Algorithms

The foundation of all the simulations done was to be able to run path-greedy itself

and, more importantly, model and represent spanners. I implemented this part

entirely in C++. The SPANNERGRAPH class contained a point set and had intuitive

methods, such as ADD EDGE. Computations for shortest-path were re-run on each

addition of a new edge, recalculating the dilation of the graph and of each pair of

points. This also made it possible to easily run path-greedy and get its output.

Step 2: Geometric Manipulations

Once we have a point set, we can run it using the models and algorithms above

and acquire the relevant output. However, how do we define the point set? We can

painstakingly do this manually (which I did for a regretful day), but that does not

scale once we start making small changes over and over again.

A much better approach is to take advantage of the available numerical compu-

55

tation in Numpy. I wrote my own code in Python to represent points and point sets,

as well as all the geometric computations I knew I would frequently need. This is

not necessarily optimal, as there likely are libraries widely available for the task.

Nevertheless, this short effort saved me a tremendous amount of frustrating time.

Step 3: Drawing Tools

Once the output is generated, we must help ourselves interpret it. A list of several

coordinates for points and lines is not intuitive. A figure is. Fortunately, drawing

such figures is quite straightforward using Python. There are plenty of resources

online, and libraries such as Matplotlib and Python Imaging Library (PIL) were

enough for all the tasks I needed.

I did have to write customized functions that interpreted the output from Step 1

and get the images in the way I wanted. Luckily, that proved to be uncomplicated.

Step 4: Simulate

Once all the tools are ready, it is time to connect them all together and be able to

simulate the algorithms conveniently. I chose to do so in a Jupyter Notebook due

to its many strengths. Its cell-by-cell nature made experimentation considerably

easier, as I could frequently do a minor change and re-run a specific cell.

For Chapter 3, it was also important to do Monte Carlo simulations to under-

stand the behaviour of the grip spanners. These specific ones were not done in a

Jupyter Notebook, as running on a terminal was enough.

Step 5: Learn and Repeat

Each iteration over the previous steps [hopefully] teaches something new. Or gives

some insight over what the algorithm is doing. In many cases, it was used to

disprove small conjectures by quickly testing them out many times.

Overall, I can certainly say that I only found the shown counterexamples due

to this process.

56

Appendix B

Proofs and Tables for Chapter 4

B.1 Proofs for ko and ke

Lemma 3. For all integer t ≥ 121, the formula for ko returns a value satisfying

both path constraints: k2
o <= t and 2 · k2

o >
√

2 · t.

Proof. Note that ko is bounded by
√

t√
2
+ 2. Let’s see when that value squared

is less than t. The function f (t) = t −
(√

t√
2
+2
)2

is convex for t ≥ 0. Since

f (0) < 0 and f (159) > 0, all integers t ≥ 159 will have a valid ko. We prove

that integers t in the range [121,158] have valid values ko by brute force, referring

to Table B.1 and Table B.2.

Lemma 4. For all integer t ≥ 143, the formula for ke returns a value satisfying

both path constraints: k2
e <= t and 2 · k2

e >
√

2 · t.

Proof. The proof is similar to the one above. The value ke is bounded by
√

t√
2
+1+

2, and the function f (t) = t−
(√

t√
2
+1+2

)2
is convex for t ≥ 0. Since f (0)< 0

and f (166)> 0, all integers t ≥ 166 have a valid ke for both constraints. The same

is proved for integer values t in the range [143,165] by brute force in Table B.1

and Table B.2.

B.2 Key Values for each Integer t

57

Table B.1: ko, ke, and N for each t when both constraints are valid. (Part 1.)

t ko ke N t ko ke N t ko ke N t ko ke N
3 − − − 4 − − − 5 − − − 6 − − −
7 − − − 8 − − − 9 3 − 6 10 3 − 6
11 3 − 6 12 3 − 6 13 − − − 14 − − −
15 − 4 8 16 − 4 8 17 − 4 8 18 − 4 8
19 − 4 8 20 − 4 8 21 − 4 8 22 − − −
23 − − − 24 − − − 25 5 − 10 26 5 − 10
27 5 − 10 28 5 − 10 29 5 − 10 30 5 − 10
31 5 − 10 32 5 − 10 33 5 − 10 34 5 − 10
35 5 6 10 36 − 6 12 37 − 6 12 38 − 6 12
39 − 6 12 40 − 6 12 41 − 6 12 42 − 6 12
43 − 6 12 44 − 6 12 45 − 6 12 46 − 6 12
47 − 6 12 48 − 6 12 49 7 6 12 50 7 − 14
51 7 − 14 52 7 − 14 53 7 − 14 54 7 − 14
55 7 − 14 56 7 − 14 57 7 − 14 58 7 − 14
59 7 − 14 60 7 − 14 61 7 − 14 62 7 − 14
63 7 8 14 64 7 8 14 65 7 8 14 66 7 8 14
67 7 8 14 68 7 8 14 69 7 8 14 70 − 8 16
71 − 8 16 72 − 8 16 73 − 8 16 74 − 8 16
75 − 8 16 76 − 8 16 77 − 8 16 78 − 8 16
79 − 8 16 80 − 8 16 81 9 8 16 82 9 8 16
83 9 8 16 84 9 8 16 85 9 8 16 86 9 8 16
87 9 8 16 88 9 8 16 89 9 8 16 90 9 − 18
91 9 − 18 92 9 − 18 93 9 − 18 94 9 − 18
95 9 − 18 96 9 − 18 97 9 − 18 98 9 − 18
99 9 10 18 100 9 10 18 101 9 10 18 102 9 10 18

103 9 10 18 104 9 10 18 105 9 10 18 106 9 10 18
107 9 10 18 108 9 10 18 109 9 10 18 110 9 10 18
111 9 10 18 112 9 10 18 113 9 10 18 114 9 10 18
115 − 10 20 116 − 10 20 117 − 10 20 118 − 10 20
119 − 10 20 120 − 10 20 121 11 10 20 122 11 10 20
123 11 10 20 124 11 10 20 125 11 10 20 126 11 10 20
127 11 10 20 128 11 10 20 129 11 10 20 130 11 10 20
131 11 10 20 132 11 10 20 133 11 10 20 134 11 10 20
135 11 10 20 136 11 10 20 137 11 10 20 138 11 10 20
139 11 10 20 140 11 10 20 141 11 − 22 142 11 − 22
143 11 12 22 144 11 12 22 145 11 12 22 146 11 12 22
147 11 12 22 148 11 12 22 149 11 12 22 150 11 12 22

58

Table B.2: ko, ke, and N for each t when both constraints are valid. (Part 2.)

t ko ke N t ko ke N t ko ke N t ko ke N
151 11 12 22 152 11 12 22 153 11 12 22 154 11 12 22
155 11 12 22 156 11 12 22 157 11 12 22 158 11 12 22
159 11 12 22 160 11 12 22 161 11 12 22 162 11 12 22
163 11 12 22 164 11 12 22 165 11 12 22 166 11 12 22
167 11 12 22 168 11 12 22 169 11 12 22 170 11 12 22
171 11 12 22 172 13 12 24 173 13 12 24 174 13 12 24
175 13 12 24 176 13 12 24 177 13 12 24 178 13 12 24
179 13 12 24 180 13 12 24 181 13 12 24 182 13 12 24
183 13 12 24 184 13 12 24 185 13 12 24 186 13 12 24
187 13 12 24 188 13 12 24 189 13 12 24 190 13 12 24
191 13 12 24 192 13 12 24 193 13 12 24 194 13 12 24
195 13 12 24 196 13 12 24 197 13 12 24 198 13 12 24
199 13 12 24 200 13 12 24 201 13 12 24 202 13 12 24
203 13 14 26 204 13 14 26 205 13 14 26 206 13 14 26
207 13 14 26 208 13 14 26 209 13 14 26 210 13 14 26
211 13 14 26 212 13 14 26 213 13 14 26 214 13 14 26
215 13 14 26 216 13 14 26 217 13 14 26 218 13 14 26
219 13 14 26 220 13 14 26 221 13 14 26 222 13 14 26
223 13 14 26 224 13 14 26 225 13 14 26 226 13 14 26
227 13 14 26 228 13 14 26 229 13 14 26 230 13 14 26
231 13 14 26 232 13 14 26 233 13 14 26 234 13 14 26
235 13 14 26 236 13 14 26 237 13 14 26 238 13 14 26
239 13 14 26 240 15 14 28 241 15 14 28 242 15 14 28
243 15 14 28 244 15 14 28 245 15 14 28 246 15 14 28
247 15 14 28 248 15 14 28 249 15 14 28 250 15 14 28
251 15 14 28 252 15 14 28 253 15 14 28 254 15 14 28
255 15 14 28 256 15 14 28 257 15 14 28 258 15 14 28
259 15 14 28 260 15 14 28 261 15 14 28 262 15 14 28
263 15 14 28 264 15 14 28 265 15 14 28 266 15 14 28
267 15 14 28 268 15 14 28 269 15 14 28 270 15 14 28
271 15 14 28 272 15 14 28 273 15 14 28 274 15 14 28
275 15 14 28 276 15 16 30 277 15 16 30 278 15 16 30
279 15 16 30 280 15 16 30 281 15 16 30 282 15 16 30
283 15 16 30 284 15 16 30 285 15 16 30 286 15 16 30
287 15 16 30 288 15 16 30 289 15 16 30 290 15 16 30
291 15 16 30 292 15 16 30 293 15 16 30 294 15 16 30
295 15 16 30 296 15 16 30 297 15 16 30 298 15 16 30
299 15 16 30 300 15 16 30 301 15 16 30 302 15 16 30

59

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	1 Introduction
	1.1 Quality Measures
	1.1.1 Edge Crossings and Planarity
	1.1.2 Dilation
	1.1.3 Degree
	1.1.4 Size (Number of Edges)
	1.1.5 Weight

	1.2 Motivation
	1.3 Overview and Contribution

	2 Background
	2.1 Famous Spanners
	2.1.1 -Graphs and Yao Graphs
	2.1.2 Well-Separated Pair Decomposition
	2.1.3 Delaunay Triangulation
	2.1.4 Path-Greedy Spanners

	2.2 The Path-Greedy Algorithm
	2.3 Plane Spanners of Low Degree
	2.3.1 Convex Position

	2.4 Grid Spanners
	2.5 Steiner Points

	3 Convex Path-Greedy Spanners
	3.1 (No Longer) Open Problem
	3.2 Tight Bound for the Maximum Degree of PathGreedy(S, 3+43)
	3.2.1 The Upper Bound
	3.2.2 The Lower Bound

	3.3 A Non-Plane Convex Path-Greedy Spanner

	4 Path-Greedy Grid Spanners
	4.1 Basic Observations
	4.1.1 t < 3
	4.1.2 Clearly Impossible Edges

	4.2 Diagonal Edges and Planarity
	4.2.1 1 1-edges
	4.2.2 1 2-edges

	4.3 Smallest Grid for Each t
	4.3.1 General Shape
	4.3.2 Specific Constructions

	4.4 A Few Open Problems (with Conjectures)

	5 Using Steiner Points
	5.1 Construction from Biniaz et al. (2017)
	5.2 A New Construction
	5.2.1 Optimality via Collinearity
	5.2.2 Finding
	5.2.3 Avoiding collinearity

	6 Conclusion
	6.1 Future Work

	Bibliography
	A How to Find Counterexamples
	B Proofs and Tables for ch:gridpg
	B.1 Proofs for ko and ke
	B.2 Key Values for each Integer t

