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Abstract

Edge computing (EC) has emerged as a promising architecture for hosting critical services with

stringent latency and performance requirements, challenging to address in traditional cloud

computing (CC) systems. EC makes distributed computation and storage resources close to

end-users, providing low-latency and high-capacity services. Notable use cases of EC include

real-time data analytic services, manufacturing automation, and computational offloading for

the Internet of Things. Despite the tremendous potential, EC is still in its infancy stage, and

many open problems remain to be solved. This thesis lies in the intersection of operations

research and network economics, with a specific focus on developing mathematical models for

decision-making and economic analysis of edge-cloud network systems.

To support rapid response to incidents in EC, we propose a novel resilience-aware edge ser-

vice placement and workload allocation model that jointly captures the uncertainty of resource

demand and node failures. The salient feature of the proposed model identifies the optimal

placement and procurement solutions that can hedge against all uncertain realizations of the

traffic demand within an uncertainty set. Hence, it enables service providers to balance the

trade-off between the operating cost and service quality while considering demand uncertainty

and node failures. Furthermore, by leveraging the column-and-constraint generation (CCG)

method, we introduce two iterative algorithms that can converge to an exact optimal solution

within a finite number of iterations. We further suggest an affine decision rule (ADR) approx-

imation approach for solving large-scale problem instances in a reasonable time. Extensive

numerical results then demonstrate the advantages of the proposed model and solutions.
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Lay Summary

Edge computing is an emerging network architecture that distributes storage, computation,

control, and networking functions closer to end-user along with cloud computing. Due to di-

verse service preferences and uncertainties, it is challenging to design an efficient algorithm for

edge service placement and resource allocation. In this thesis, we first introduce several modern

decision-making frameworks that are well-suited to the problem with imperfect information.

Next, we propose a novel two-stage adaptive robust service placement and resource manage-

ment framework designed to configure a resilient system to mitigate failures by re-assigning

resources between edge nodes (ENs) in the presence of demand and failure uncertainty. The

overarching goal of the thesis is to assist service providers in minimizing the operating cost

while maximizing the service quality by considering demand and node failures.
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Chapter 1

Introduction

1.1 Background and Motivation

The COVID-19 pandemic have fundamentally changed the ways we live and work, with more

remote work, more virtual collaboration, as well as increased video streaming, online learning,

and online gaming. These changes are expected to last for the foreseeable future, even after the

pandemic. Thus, many organizations, companies, and universities across countries are acceler-

ating their digital transformations and looking for technology to help them adapt to the new

pattern. Cloud computing (CC) has played an essential role in dealing with the ever-growing

data tra�c over the past decade. However, along with the proliferation of mobile devices and

services, new applications such as augmented/virtual reality (AR/VR), autonomous driving,

manufacturing automation, real-time analytics, and tactile Internet have imposed more strin-

gent requirements (e.g., latency, reliability, e�ciency) on the communication network. Besides,

the era of 5G is foreseeing a massive increase in the number of mobile network subscriptions

and data tra�c. The number of global mobile subscriptions would climb from 7.9 billion to

8.8 billion from 2021 to 2026, and the global mobile data tra�c is expected to more than

double [2]. Almost all electronic devices have become part of the Internet of things, playing

the roles of data producers and consumers. The data is increasingly produced at the edge of

the network. It is not always e�cient for centralized data processing in the cloud when the

data is produced at the edge of the network. Since cloud data centers (DCs) are often located

far away from end-users and data sources, it requires a wholesale rethinking of the network

architecture to meet these requirements. To this end, edge computing (EC) has emerged as a

vital technology that augments the cloud to mitigate network tra�c, improve user experience,

and enable novel applications [3]. EC o�ers a virtualized platform that distributes computing,

storage, control, and network services closer to end-users to smarten the edge network.
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The new architecture of the network provides a shorter communication distance. It allows

operators to e�ciently process downstream and upstream data between the cloud and the

customer edge, resulting in signi�cant network tra�c reduction and user experience improve-

ments. For example, service providers (SPs) can leverage edge caching, location-awareness,

and real-time data analysis to not only ful�ll user content requests locally but also to provide

high-e�ciency video coding and optimize video transmission [4]. Also, most of the data gen-

erated by end devices can be analyzed at the network edge. Only important content or highly

compute-intensive tasks are forwarded to the cloud for further analysis.

Hence, EC has attracted signi�cant attention from both academia and industry. Indeed,

large Telcos (e.g., AT&T, Verizon) and cloud providers (e.g., Amazon, Google, Microsoft), as

well as many startups and third-parties, have been investing heavily in the EC technology [5{8].

Furthermore, many organizations and groups have been formed to focus on the system design of

EC. For instance, KubeEdge is an open-source platform developed to enable edge computing

by extending native containerized application orchestration capabilities to host at Edge [9].

Some research groups gradually focus on the conuence of EC and arti�cial intelligence (AI),

namely edge intelligence. It has recently emerged as a fascinating research topic and has many

interesting and practical applications, such as autonomous driving, e-health [12{14]. From the

market perspective, the global EC market size was valued at USD 1.47 billion in 2018 and is

projected to expand at a compound annual growth rate (CAGR) of 54.0% from 2019 to 2025

and reach USD 28.84 billion by 2025 [10].

1.1.1 Architecture of EC Paradigm

Fig. 1.1 illustrates the new network architecture where an EC layer lies between the cloud and

the end devices.

1. End-user layer: Bottom most layer, closest to end-users. It comprises various IoT devices

(e.g., mobile phones, robotics, autonomous vehicle, manufacturing automation, drones).

It is the layer where service/data is typically generated.

2. Point of Aggregation (PoA) Layer : The user requests and sensor data are typically

aggregated at POAs (e.g., switches/routers, base stations) before being transmitted to

2



Figure 1.1: Edge network architecture

ENs or the cloud for further processing, analysis, and storage. The data/services can be

appropriately allocated to the selected servers (immediate upper layer), which SP decides

based on the service requirements (e.g., latency, size).

3. Edge layer: It consists of a set of one or more computing units (e.g. edge cloud, micro

DCs, Telecom company, idle server in enterprises, etc) that enable to process and store

the users' requests [3, 11]. Also, an EN can be co-located with POAs.

4. Cloud layer: Upper most layer in this architecture. For cloud layer, it is composed of

several servers and large DCs that enable to process complicated services or tasks.

1.1.2 Characteristics and Advantages

By distributing cloud resources closer to the users, things, and sensors, EC o�ers signi�cant

advantages and capabilities, such as local data processing and analytics, distributed caching,

and enhanced security. Also, EC enables the implementation of various low-latency and high-

reliability applications. Next, several main advantages and characteristics of EC are mentioned

below:

1. Latency: Some delay-sensitive services (e.g., AR/VR, video streaming, autonomous driv-

ing, remote surgery) have stringent latency requirements (i.e., sub-second processing

time). In order to ensure the service level agreements (SLAs) between SPs and their

3



subscribers, the delay required for each requested service needs to be satis�ed. With EC,

the geo-distribution of the various ENs in di�erent areas and their proximity to end-users

provide lower latency and higher capacity.

2. Bandwidth: To process the requested services or computational tasks, SPs may proac-

tively download and install service onto chosen ENs based on the spatio-temporal features

of demand. SPs may only forward some useful data or those tasks with signi�cant analysis

to the cloud, which unclogs the network and releases both link capacity and computa-

tional capacity. Hence, it speeds up the processing of certain tasks by distributing and

performing some normal computation tasks locally.

3. E�ciency and Reliability : With the advent of EC, some small tasks can be o�oaded

locally. In addition, EC can provide local back-up for service or customer data (i.e., task

replica). If any of the tasks fails or stops for any reason, the service scheduler can launch

another instance of your task to replace it in order to ensure the task �nished before

the deadline. If one or some physical machines (PMs) fail(s) at ENs, SPs can re-assign

service to some PMs or adjacent ENs in the normal state.

4. Scalability: To process the users' demand, SPs must purchase the virtual computing

resources (e.g., vCPU, RAM) from the EC market to process the users' demand. Some

companies or research labs can outsource their idle PCs or servers on the EC market,

where the SP can buy from. Without EC, all generated service requests need to be exe-

cuted in the cloud, which is ine�cient especially when IoT devices grow signi�cantly. EC

intervenes as a supplementary paradigm that assists SP in processing all these requests

and improving the network system's scalability.

1.1.3 Service Placement Problem

Numerous problems in EC have been studied over the last few years. There is a rich literature

on edge resource allocation and service placement [15{27]. The problem of joint allocation of

communication and computational resources for task o�oading in mobile EC has attracted

signi�cant attention from the wireless community [28]. In [15, 16], the authors propose a

market equilibrium approach for fairly and e�ciently allocating heterogeneous edge resources
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to multiple budget-constrained services. Cloudlet placement and workload allocation are jointly

optimized in [17] to reduce the system response time, considering a �xed number of cloudlets.

Farhadi et al. [18] propose a two-time-scale optimization model for the joint service placement

and request scheduling problem under multi-dimensional resource and budget constraints.

In [19], the authors introduce a constant-factor approximation algorithm to determine

an optimal service placement solution that maximizes the total user utility, considering the

heterogeneity of user locations and edge resources. An IoT application provisioning problem

is formulated in [20] to jointly optimize application placement and data routing to support all

data streams while satisfying both bandwidth and delay requirements. Zhaoet al. [21] present

a ranking-based near optimal algorithm to e�ciently deploy cloudlets among numerous APs in

an IoT network. Lexicographic goal programming is used in [22] to address the user assignment

problem for an SP whose goal is to minimize the number of required edge servers to run the

service while maximizing the number of served users.

In essence, the service placement problem is the placement of the service function chains

(SFCs), which consists of a list of virtual network functions (VNFs) (e.g., �rewalls, video

optimizer, network address translations) that are \stitched" together with prede�ned order

in the network. Each VNF requires di�erent types of virtual computing resources, which are

consolidated into di�erent types of virtual machines (VMs). Furthermore, VNFs and their

logical links can easily be embedded and shared with physical resources, which signi�cantly

bene�ts resource management on large-scale network systems.

In the service placement problem studied in the thesis, we assume that service providers

(e.g., Over-the-top (OTT) media service providers) do not own any computing resources. They

must procure a speci�c amount of virtual computing resources (vCPU, RAM, storage) for ENs

from the EC market. For example, Netix pays around $9.6 dollars per month for computing

resource on the Amazon Web Services (AWS) that enables Netix to quickly deploy their

services (e.g, video streaming, 4K/8K movie) [29]. In general, service placement includes

downloading and installing service as well as �nding available resources at ENs that satisfy

the service(s) requirements. For instance, the amount of procured resources cannot exceed the

resource capacities, and the delay-sensitive service cannot exceed the maximum delay threshold.

From the SP's perspective, they want to make service placement and resource procurement

5
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