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Abstract

In 1991, James Arthur published a local trace formula ([Art91, Theorem

12.2]), which is an equality of distributions on the Lie algebra of a con-

nected, reductive algebraic group G over a �eld F of characteristic zero. His

approach was later used by Jean-Loup Waldspurger to give a slight reformu-

lation, identifying the value of a particular distribution on a test function

with that of its Fourier transform ([Wal95, Théorème V.2]). We show that

this identity may be formulated as an identity of motivic distributions on

de�nable manifolds. By so doing, we would make available the use of the

transfer principle to establish the trace formula for groups de�ned over �elds

of positive characteristic.

iii



Lay Summary

In this thesis we demonstrate that, due to the restrictions of the underlying

symbolic calculus of the objects in question, a powerful theorem (Arthur's

local trace formula for the Lie algebra of a connected reductive group) is true

not only over extensions of p-adic number �elds, as was previously known,

but is in fact valid over all discretely valued local �elds of su�ciently large

residue characteristic.
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Preface

This dissertation is original, unpublished, independent work by the author,

Edward Alexander George Belk.
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Chapter 1

Overview

El mundo era tan reciente, que

muchas cosas carecían de

nombre, y para mencionarlas

había que señalarlas con el dedo.

�Gabriel García Márquez,

Cien años de soledad

The purpose of this dissertation is to establish that Waldspurger's local

trace formula on the Lie algebra of a connected, reductive algebraic group is

a motivic identity, and therefore that it is true for all nonarchimedean local

�elds of su�ciently large residue characteristic. In this section, we give a

brief outline of how this is to be accomplished.

It is known that, given an arbitrary �eld F and a connected, reductive

group G de�ned over that �eld, the F -isomorphism class of G is determined

by a combinatorial object known as the indexed root datum, which is to a

great extent independent of choice of �eld F . More precisely, it consists of

dual �nitely-generated free abelian groups X and X∨, �nite subsets D0 ⊂

D ⊂ X and D∨ dual to D, and a continuous action of the absolute Galois

group Γ = Gal(Fs/F ) on X, where Fs/F is a �xed separable closure. These

objects are subject to certain restrictions, which we largely ignore for now.
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The action of Γ factors through a �nite quotient ΓE = Gal(E/F ) (say).

Thus, the isomorphism class of G over F is determined by the �nitely-

presented information

(X,D,X∨, D∨, D0, τ),

where τ is the action of ΓE onX. It is in fact true that this 6-tuple determines

more than just the F -isomorphism class of G, but we will not need this for

the moment.

Arthur's local trace formula on the Lie algebra g of G is, in some sense, a

vast generalization of Parseval's identity, and consists in an identity of distri-

butions on C∞c (g)×C∞c (g). As stated, it is known to be true only in the case

that charF = 0. One may desire to extend this result to nonarchimedean

local �elds of arbitrary characteristic, such as Fp((t)); one method of doing

so is by using the transfer principle from model theory.

Model theory, broadly, studies the relationships between formal theo-

ries (i.e. collections of sentences in a �rst-order language) and their models

(i.e. sets with interpretations for all symbols in the language, for which the

theory serves as a collection of axioms). For instance, in the language of

rings, we can assert the �eld axioms (e.g. one of them, the assertion of com-

mutativity of multiplication, is the sentence ∀x∀y(x×y = y×x)), for which,

for example, Q serves as a model.

In our context (of algebraic groups over discretely-valued local �elds), one

introduces a notion of de�nable sets, and a class of complex-valued functions

on these sets that can be described in the �rst-order Denef-Pas language,

called the class of motivic functions. By specializing these objects to nonar-
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chimedean local �elds, we obtain information about the behaviour of our

functions on all �elds of su�ciently large residue characteristic.

The transfer principle of Cluckers and Loeser states that, under certain

conditions, the truth or falsity of a statement about motivic functions over a

given �eld (i.e. in a given model) depends not on the �eld itself, but only on

its residue �eld. Consequently, if p � 0, then a motivic function f will be

zero when specialized to Fp((t)) if and only if it is zero when specialized toQp.

In turn, this implies that equality of motivic functions in characteristic zero

implies their equality in all �elds of su�ciently large residue characteristic.

By �rst showing how the components of the local trace formula are de-

termined by various de�nable and/or motivic constructions in the Denef-Pas

language, we will show how the trace formula itself can be expressed as an

equality of motivic distributions. Our desired result will then follow imme-

diately.

We begin in Chapter 2 by recalling the classical theory of reductive groups

and the various objects one associates with a connected, reductive group

de�ned over a local �eld; we build the necessary machinery to state the local

trace formula for the Lie algebra, with which we close the chapter. Next,

in Chapter 3, we discuss the rôle Galois cohomology plays in classifying the

objects we introduced in Chapter 2.

In Chapter 4, we introduce the essential notions of model theory, the

Denef-Pas �rst-order language, and the basic objects of study (e.g. de�nable

sets, motivic functions). In Chapter 5, we relate various established results

showing that reductive groups can be speci�ed in the Denef-Pas language

using these objects. It is in this chapter that we begin the groundwork for
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the proof of our main theorem, namely, Theorem 6.7.1.

Finally, in Chapter 6, we demonstrate that the distribution used in the

trace formula is a motivic distribution, and that consequently its truth or

falsehood (over �elds of su�ciently large residue characteristic) is determined

by the residue �eld, and so in particular is independent of characteristic of

the base �eld. We close with Chapter 7, where we collect explicit examples

of the various constructions that appear in Chapter 2.

The main new results are Theorem 6.7.1 and Corollary 6.7.2; other orig-

inal results are Theorem 3.4.2, Proposition 6.3.1, and the statements in Sec-

tions 6.4 and 6.5. In Section 2.5, we reformulate some classical results in a

language more suitable for our purposes; as such, the results in that section

may look novel, although there is little new content in them.
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Chapter 2

Algebraic groups

Our chief goal is to prove that Waldspurger's local trace formula for the Lie

algebra is an equality of motivic distributions. In order to state our goal

precisely, we must review several aspects of the theory of algebraic groups.

We close with Theorem 2.9.1, which is the formulation of Arthur's local trace

formula that we will use.

In this chapter, we will review the classical theory of algebraic groups

over a �xed (nonarchimedean) local �eld F . Depending on the situation,

we may assume that, if the residue characteristic of F is positive, then it is

su�ciently large.

2.1 Notation

Because the statement of the local trace formula has many ingredients and

terms, we will want to begin by collecting the essential components of the the-

ory, before we record any results; notation is mostly retained from [Wal95].

Familiarity is assumed with the de�nitions of algebraic tori and reductive

linear algebraic groups.

Fix once and for all a nonarchimedean local �eld F , and a separable

closure Fs ⊃ F . Denote by |·|F the absolute value of F and vF its normalized
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valuation, so that

|x|F = q−vF (x), x ∈ F,

where q is the cardinality of the residue �eld of F .

If V is any variety de�ned over F , we denote the F -points of that variety

by V (F ). More generally, if F ⊂ E ⊂ Fs any intermediate �eld, then we will

denote by V (E) the E-points of V .

2.2 Parabolic subgroups

Let G be a connected, reductive algebraic group de�ned over F , and let g

denote its Lie algebra; as remarked in Section 2.1, we will denote the F -points

of G (respectively, g) by G(F ) (respectively, g(F )).

A parabolic subgroup of G is an algebraic subgroup P ⊆ G for which

the variety G/P is complete; such subgroups obviously always exist (G, for

instance), so we can meaningfully speak of aminimal parabolic subgroup,

i.e. a parabolic subgroup not properly containing another. For an arbitrary

parabolic subgroup P of G, we have the isomorphism of algebraic varieties

P ∼= MP ×NP ,

where NP is the unipotent radical of P , and MP is called its Levi compo-

nent. We remark that we have also the isomorphism of groups of F -points

P (F ) ∼= MP (F ) nNP (F ).

The algebraic group MP is itself a connected, reductive algebraic group,

and so all constructions involving G can be done for MP . This will be
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re�ected in the notation simply by replacing G with the group in question,

and so in the sequel we will not remark on each separate construction; as

such, the reader can expect to encounter objects such as aMP
, HMP

, and so

on. This will also apply to any torus T (see especially AT , below.)

Fix a minimal parabolic subgroup P0 ⊆ G; we will write M0 for the

Levi component of P0, so that, if some parabolic subgroup P ⊆ G contains

P0, then MP contains M0. By a Levi subgroup of G, we mean the Levi

component of one of its parabolic subgroups; we will concern ourselves chie�y

with Levi subgroups containing M0. Denote by P the parabolic subgroup

of G which is opposite to P , and which contains MP ; we recall that two

parabolic subgroups P1, P2 are said to be opposite to each other if P1 ∩ P2

is a Levi subgroup of both P1 and P2.

Suppose M is a Levi subgroup of G. We denote by F (M) = FG(M)

the set of all parabolic subgroups of G which contain M , and by L (M) =

L G(M) the set of Levi subgroups of G which contain M ; we will usually

abbreviate F = F (M0) and L = L (M0). In addition, we denote by

P(M) = PG(M) the set of parabolic subgroups P of G such thatMP = M ,

and let P = P(M0).

Throughout this article, we will retain the convention from the literature

of omitting the superscript G when this is one of the parabolic subgroups

under consideration, writing P(M) for PG(M), L for L G(M), and (later)

DP for DG
P , and so on. The sole exception to this rule will be the spaces aGP ,

de�ned below.

We will also (per [Wal95, p.43]) �x a special vertex in the apartment

associated to AM0 , and we will denote by K the stabilizer in G(F ) of this
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vertex; we refer the reader interested in this important construction to [BT72,

�7.4]. For our purposes, we need only know that K is a maximal compact

subgroup of G(F ) (not an algebraic group), with the property that [Art91,

p.12]

G(F ) = P (F )K for any parabolic subgroup P of G. (2.1)

We will ultimately need to show that the K that we choose is de�nable (see

Chapter 4), but we will not do so here.

Finally, if S is any subset of G, denote by NormG(S) the normalizer of

S in G, and put

WG := NormG(M0)(F )/M0(F );

we will call WG the rational Weyl group of M0 in G, or more brie�y, the

Weyl group of M0 in G.

We will similarly de�ne, for every maximal subtorus T of G, the group

W (G,T ) = NormG(T (F ))/T (F ),

which we call the Weyl group of T in G. From [Kot05, �7.1] we have the

inclusions

W (G,T ) ⊂W(G)(F ) ⊂W(G)(Fs),

where W(G) = NormG(T )/T is a �nite algebraic group de�ned over F .

To borrow terminology from [Kot05], we will call the group W(G)(Fs) the

absolute Weyl group of the pair (G,T ), justifying our notation by the

observation that the isomorphism class of W(G) is independent of choice of

maximal torus T in G.

8



2.3 Roots and weights

Roots and characters can be used to classify isomorphism classes of reductive

groups in a way which does not depend on the underlying �eld of de�nition.

For this reason, we will take the opportunity to collect terminology and basic

results for our later use. Familiarity is assumed with abstract (reduced and

non-reduced) root systems (as outlined in e.g. [Hum12, Chapter III]).

The following result is a consequence of [Spr10, Theorem 15.2.6]:

Theorem 2.3.1. Let G be a connected, reductive group de�ned

over a �eld F as above, with �xed minimal parabolic subgroup

P0. Then:

1. There exists a maximal F -split F -torus S ⊂ P0, whose

centralizer in G is a maximal F -torus T ⊂ P0;

2. There is a �nite Galois subextension F ⊂ E ⊂ Fs over

which T splits; and

3. The rank of T and the F -rank of S are independent of

choice of T and S.

In the situation of point 2., we will say that G is split over E, and we

may sometimes call it a splitting �eld of G (or T ).

In Section 2.2 we introduced the notion of rational characters; now, we

build on this idea.

De�nition 2.3.2. [Spr10, �3.2.1 and �15.3.1] Let X = X∗(T ) be the

group Hom(T,Gm) of absolute characters of the torus T . Similarly,
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denote by FX = X∗(S) the group of (absolute) characters of S. We

also have dually the groups of absolute cocharacters

X∨ = X∗(T ) = Hom(Gm, T ) and FX
∨ = X∗(S) = Hom(Gm, S).

We emphasize that all morphisms inX,X∨, FX, FX
∨ are de�ned a priori

over Fs, although it happens [Spr10, Proposition 13.2.2] that elements of FX

and FX
∨ are de�ned over F . After [Spr10, Theorem 3.2.11], we have

Theorem 2.3.3. There is a perfect pairing 〈, 〉 : X×X∨ → Z

de�ned by the equation

(χ ◦ λ)(t) = t〈χ,λ〉, t ∈ F×,

and similarly for FX and FX
∨, identifying X with X∨ and

FX with FX
∨.

We will see a similar pairing in Equation (2.3). We use 〈, 〉 to identify

R ⊗Z X with R ⊗Z X
∨ and R ⊗Z (FX) with R ⊗Z (FX

∨). We evidently

have the inclusion

R⊗Z (FX) ⊂ R⊗Z X,

and we equip R ⊗Z X (and hence R ⊗Z (FX)) with an inner product (, )

to turn them into Euclidean spaces. More precisely, we will pick these inner

products to be invariant under the natural actions of W (G,T ) on X and

FX (this can always be done, by �averaging� over the Weyl orbit; see [Spr10,

�7.1.7]).

10



Recall the adjoint action of G, denoted Ad(x) for x ∈ G(F ); we want to

consider the action of Ad(G) upon the Lie algebra g(F ). Obviously Ad(G)

restricts to the adjoint action of T on g; the weight spaces of this action

are the subspaces

gχ = {Y ∈ g(Fs) : Ad(t)Y = χ(t)Y for all t ∈ T (Fs)},

where χ ∈ X. The (�nitely many) χ for which gχ 6= 0 are called the weights

of T in G; the weight space decomposition g =
⊕

χ gχ is the eigenspace

decomposition of g(Fs) with respect to the commuting family of semisimple

operators Ad(T ).

The nontrivial weights of T in G are called the roots of T in G, and the

collection of roots is denoted R = R(G,T ). It follows from the conjugacy of

maximal tori over Fs that R(G,T ) does not depend on choice of maximal

torus T . We put FR = FR(G,S) for the roots of S in G (the so-called

relative roots), which is similarly independent of choice of S.

Having these subsets R and FR of X and FX, respectively, we might

naturally want to ask if X∨ and FX
∨ also contain root systems.

De�nition 2.3.4. The coroot α∨ associated to the root α ∈ R

(respectively, α ∈ FR) is the element of R ⊗Z X∨ (respectively,

R⊗Z (FX
∨)) associated to the vector

2

(α, α)
α,

the association being the one established in Theorem 2.3.3. The set
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of all coroots of T in G (respectively, S in G) is denoted by R∨

(respectively, FR
∨).

It is immediate from the de�nition that the set FR
∨ is a root system,

and the set R∨ is a reduced root system. Moreover, the bijections R → R∨

and FR→ FR
∨ given by α 7→ α∨ satisfy

〈α, α∨〉 = 2 for all α ∈ R.

In case G is not reductive, and the residue characteristic of F is 2, it is pos-

sible [Tit93, p. 128] that R and FsR do not coincide; however, the following

result tells us we need not worry about this situation.

Lemma 2.3.5. [Spr10, Theorem 15.3.4] If G is a connected,

reductive group, then R = FsR.

We also quote the following result, which follows from [Spr10, �7.4.3 and

Theorem 15.3.8].

Proposition 2.3.6. With G,T, S as above, the set FR is

(when nonempty) a root system, and the set R is a reduced

root system.

We may now de�ne the (absolute) root datum associated to a pair

(G,T ) consisting of a connected, reductive algebraic group G and a maximal

torus T : this is the 4-tuple Ψ = (X,R,X∨, R∨) consisting of the character

lattice X = X∗(T ) and its dual X∨, together with their respective root

systems R = R(G,T ) and R∨.
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More abstractly, we will use the term root datum to consist of any

4-tuple (X,R,X∨, R∨), where X and X∨ are dual, �nitely-generated free

abelian groups, and R ⊂ X,R∨ ⊂ X∨ are similarly dual (abstract) root

systems. We distinguish these from the indexed root data iΨ, which we will

introduce below in Section 2.6.

Finally, we de�ne the notion of theWeyl group of an abstract root system,

viz.

De�nition 2.3.7. Let Ψ = (X,R,X∨, R∨) be a root datum, let 〈, 〉

be the pairing X × X∨ → Z, and for all α ∈ R put sα for the

endomorphism of X de�ned

sα(χ) = χ− 〈χ, α∨〉α

for χ ∈ X. TheWeyl groupW (R) of the root system R is the group

of automorphisms of X generated by {sα : α ∈ R}.

By the observations in [Spr10, �7.4.1], we know that

W (R(G,T )) ∼= W(G)(Fs).

2.4 The Harish-Chandra homomorphism

The Harish-Chandra homomorphism attached to a parabolic subgroup P is

an essential component of the trace formula, a function whose domain isMP

and whose codomain is a real vector space, depending on P . We begin this

section by cataloguing these vector spaces for future reference.
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Let G be a connected, reductive algebraic group de�ned over F , and let

X∗(G)rat be the group of rational characters of G; that is, the group of

morphisms G→ Gm de�ned over F . We de�ne a real vector space

aG = Hom(X∗(G)rat,R),

and caution that aG is not the Lie algebra of the split central torus AG =

AG(F ); this unfortunate clash of notation is inherited from the literature.

Observe, however, the isomorphism

aG ∼= R⊗Z X∗(AG)rat, (2.2)

where X∗(AG)rat denotes the group of rational cocharacters of the maximal

split central torus AG. Of course, as AG is split, its characters are all de�ned

over F and so X∗(AG)rat = X∗(AG). We will also abuse notation by writing

aP for aMP
.

Per [Art05, p. 24], there exist, for every inclusion P ↪→Q of parabolic sub-

groups of G containing P0, an induced inclusion aQ↪→aP and dual surjection

aP → aQ, whose kernel we will denote a
Q
P . As such, if P ⊆ G is a parabolic

subgroup of G containing M0, we have

aP = aG ⊕ aGP ;

we emphasize again that the symbols aP and aGP do not represent the same

space, and that this is the only situation in this article where the omission

of the superscript G alters the meaning (compare with F (M) = FG(M),
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etc.).

Put a0 = aP0 , and observe that our discussion above implies that a0

includes as subspaces all aP for which P is a parabolic subgroup of G con-

taining P0. As in Section 2.3, we �x an inner product (, ) on a0 which is

invariant under the natural action of WG, to obtain a WG-invariant met-

ric on a0. This in turn gives us a WG-invariant notion of length, and thus

volume, on each of the subspaces aP , etc.

Although not needed for the de�nition of the Harish-Chandra homomor-

phism, we will take this opportunity to collect other facts about these real

vector spaces that we will use later. Let us write ia∗0 ⊂ a0 ⊗R C for the real

dual vector space of a0; we emphasize that ia∗0 is a real vector space which

is dual to a0, in the same sense that the real dual to the additive group R

is iR. As in Theorem 2.3.3, denote by 〈λ, χ〉 the natural pairing given by

(χ ◦ λ)(t) = t〈λ,χ〉 for all t ∈ F×, (2.3)

for χ ∈ X∗(M0)rat and λ ∈ X∗(AM0)rat.

The isomorphism (2.2) naturally extends this pairing to the domain a0×

X∗(M0)rat, and there is a canonical identi�cation of X∗(M0) with a full-rank

lattice in ia∗0 given by χ 7→ (f 7→ f(χ)). By tensoring with R, we can use

this isomorphism, and the pairing 〈, 〉, to transfer the inner product (, ) from

a0 to ia∗0.

Thus, we have obtained compatible WG-invariant measures on all vector

spaces aP and ia∗P for P ∈ F . We have one more concept before the main

de�nition of this section, namely
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De�nition 2.4.1. The facet of aM associated to the element λ ∈ aM

is the set

F (λ) = {µ ∈ aM : sgn(〈η, µ〉) = sgn(〈η, λ〉) for all η ∈ ia∗M}.

The facets of maximal dimension are called the chambers of aM , and

are denoted C(λ).

It is clear from the de�nition that aM is the disjoint union of its facets.

De�nition 2.4.2. De�ne the function HG : G(F )→ aG by the con-

dition

〈HG(x), χ〉 = log(|χ(x)|F ) = −vF (χ(x))

for all x ∈ G(F ), χ ∈ X∗(G)rat. The function HG is known as the

Harish-Chandra homomorphism attached to the algebraic group

G.

More generally, let P ∈ F , and recall the decomposition

G(F ) = MP (F )NP (F )K

from Equation (2.1). This means that we have, for every x ∈ G(F ),

elements m ∈ MP (F ), n ∈ NP (F ), k ∈ K such that x = mnk. De-

�ne a homomorphism HP : G(F ) → aP by HP (mnk) = HMP
(m);

although the decomposition x = mnk need not be unique, it is not

hard to see that this map is well de�ned. We call HP the Harish-

Chandra homomorphism attached to the parabolic subgroup P of
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G.

Explicit computations of the Harish-Chandra homomorphism are accom-

plished in Chapter 7. From now on, we will consider X = X∗(T ) and

R = R(G,T ) to be subsets of the codomain ia∗0, the canonical association

arising from that of X with its double-dual.

We close by remarking that, for any character α ∈ X∗(G)rat, we can

divide the vector space aG into open half-spaces

a+
G(α) = {λ ∈ aG : 〈α, λ〉 > 0} and a−G(α) = {λ ∈ aG : 〈α, λ〉 < 0},

with common boundary the hyperplane

a0
G(α) = {λ ∈ aG : 〈α, λ〉 = 0}.

We will use this fact to diverse ends in the sequel.

2.5 Parameterizing parabolics

The trace formula contains summations indexed by several objects attached

to the parabolic subgroups of the reductive group in question. In this section,

we will use the tools of the previous sections to catalogue these objects. As

usual, G is our connected reductive group with maximal torus T and maximal

split torus S ⊂ T .

We begin by recalling the vector spaces aG from Section 2.4 and the

root system FR from Section 2.3. Let us call an element λ of a0 regular if

〈α, λ〉 6= 0 for all α ∈ FR; as in our observation at the end of Section 2.4, we
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can use a regular element to split FR into positive and negative halves.

More precisely: let λ ∈ a0 be regular, and put

FR
+(λ) = {α ∈ FR : 〈λ, α〉 > 0} and FR

−(λ) = {α ∈ FR : 〈λ, α〉 < 0}.

If α ∈ FR
+(λ), we will say that α is λ-indecomposable if it cannot be

written as the sum of two or more elements of FR
+(λ); it follows from the

proof of [Hum12, Theorem 10.1] that the set of λ-indecomposable roots of

FR
+(λ) is a base of FR.

De�nition 2.5.1. For regular λ ∈ a0, the base of FR correspond-

ing to λ is the set FD(λ) of λ-indecomposable roots of FR
+(λ)

For arbitrary λ ∈ a0, we can de�ne an action of F× on G via

t ∗λ x := λ(t)−1xλ(t) (2.4)

for t ∈ F×, x ∈ G, and put

P (λ) = {x ∈ G : lim
t→0

t ∗λ x exists}.

Then we have

Lemma 2.5.2. [Spr10, Lemma 15.1.2] With notation as

above:

1. Every P (λ) is a parabolic subgroup of G;

2. P (λ) = P (λ′) if and only if λ and λ′ lie in the same facet
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of a0 (recall De�nition 2.4.1); and

3. If P is a parabolic subgroup of G which containsM0, then

P = P (λ) for some λ ∈ a0.

The purpose of introducing the groups P (λ) is to establish the following

Proposition 2.5.3. The following sets are in bijection:

1. The set P of minimal parabolic subgroups of G.

2. The set of possible bases FD of FR.

3. The set of chambers in a0.

Proof. Let us �x some regular λ0 ∈ a0; we have the associations

C(λ0)↔ P (λ0)↔ FD(λ0).

If some other regular λ lies in a chamber di�erent from that of λ0, then

by Lemma 2.5.2 we know P (λ) 6= P (λ0), and from the de�nitions we know

FR
+(λ) 6= FR

+(λ0) and so FD(λ) 6= FD(λ0). On the other hand, a di�erent

regular λ′0 in the same chamber as λ0 will yield the same parabolic.

Conversely, given a base FD of FR, we put C+(FD) for the positive

chamber in a0 associated to FD de�ned

C+(FD) = {λ ∈ a0 : 〈α, λ〉 > 0 for all α ∈ FD};

it is clear that, if nonempty, C+(FD) is a chamber in a0; and indeed, we
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have by [Hum12, Exercise 10.7] that C+(FD) 6= ∅. It is easy to check that

C+(FD(λ0)) = C(λ0),

so the association of chambers to choices of base has an inverse and is bi-

jective. The remaining correspondence is furnished by Lemma 2.5.2, and we

are done.

In Chapter 5, below, we will take advantage of the correspondence in

Proposition 2.5.3. The same proof mutatis mutandis gives us

Corollary 2.5.4. There is a one-to-one correspondence be-

tween elements of P(M) and the chambers in aM , for any

M ∈ L .

Recall that, given a Levi subgroup M of G, we denote by P(M) the set

of parabolic subgroups P of G with MP = M . Explicit examples of these

correspondences are worked out in Chapter 7.

Our next goal is to parameterize the Levi subgroups of G by using sub-

root systems of FR; we begin by seeing how such a sub-root system relates

to the absolute root system R �upstairs.� Let us �x a base FD of FR, and

recall that we have FD ⊂ ia∗0. Inside a0, we have

FD
∨ := {α∨ : α ∈ FD},

and we see that aG0 is the subspace spanned by FD
∨.
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It can be shown [Spr10, 15.5.1�2] that the projection

π : R⊗Z X → R⊗Z (FX), (2.5)

induced by the restriction of characters from T to S, maps R to FR ∪ {0}.

Moreover, there exists a set R+ of positive roots in R such that

α ∈ R+ if and only if π(α) ∈ FR
+,

which in turn determines a base D of R. If D is a base of R, denote by D0

the subset of D mapped to 0 under π. We quote

Lemma 2.5.5. [Spr10, Proposition 15.5.3(iii)] Suppose α, β ∈

D − D0; then π(α) = π(β) if and only if α and β lie in the

same Γ-orbit in D.

We observe that for any M ∈ L , it follows from the de�nitions that

R(M,T ) is a subset of R(G,T ), that is itself a root system. Let us call such

a set a sub-root system of R(G,T ).

Theorem 2.5.6. Let G be a connected reductive group de�ned

over F (with R,D, etc. as above), and let P0 ⊂ G be a minimal

parabolic subgroup.

1. There is a one-to-one correspondence between the set of

parabolic subgroups of G containing P0, and the set of

subsets of FD, under which the subset FDP ⊂ FD corre-

sponds to the parabolic subgroup P (λP ), for any λP such
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that 〈α, λP 〉 > 0 if and only if α ∈ FDP .

2. There is a one-to-one, inclusion-preserving correspon-

dence between the set of sub-root systems of FR, and the

set L , under which the Levi subgroup M ∈ L corre-

sponds to the sub-root system RM ⊂ FR, where

RM = π(R(M,T )) ⊂ FR. (2.6)

Proof. By Proposition 2.5.3, to each minimal parabolic subgroup P0 we can

associate a base FD of the root system FR such that

P0 = {x ∈ G : lim
t→0

α∨(t)xα∨(t)−1 exists for all α ∈ FD}.

To each subset FDP of FD we associate the parabolic subgroup

P = {x ∈ G : lim
t→0

α∨(t)xα∨(t)−1 exists for all α ∈ FDP };

the notation is deliberate, for we will see shortly that subsets of FD will

correspond to parabolic subgroups of G containing P0. Furthermore, it is

immediate from the de�nitions that

FDP ⊂ FDP ′ if and only if P ′ ⊂ P,

and so in particular that the parabolic subgroups we construct will contain

P0. The elements λP exist by Lemma 2.5.2; this proves point 1.

For the second point: all Levi subgroups of G are Levi factors of parabolic
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subgroups of G, all of which contain a minimal parabolic subgroup. Again by

Proposition 2.5.3, it follows that we can obtain all elements of L by obtaining

all Levi factors of all parabolic subgroups P containing the minimal parabolic

P0, as P0 varies over all possible minimal parabolics.

Observe that the opposite of the parabolic P constructed above is

P̄ = {x ∈ G : lim
t→0

α∨(t)−1xα∨(t) exists for all α ∈ FDP },

and that by de�nition, both P and P̄ have Levi factor MP = P ∩ P̄ . By

construction, the root system R(M,T ) of the pair (M,T ) is a subsystem

of R(G,T ) that projects under π to the sub-root system of FR spanned

by FDP ; denote this sub-root system of FR by RM . As P varies over all

parabolics containing P0, we obtain all Levi factors of such parabolics in this

way. Varying over all possible bases FD of FR, we obtain all Levi subgroups

of G containing M0.

Furthermore, this construction exhausts all sub-root systems of FR: if

F R̃ ⊂ FR is such a sub-root system, then there is some λ̃ ∈ a0 such that, for

all α ∈ FR, one has

〈α, λ〉 > 0 if and only if F R̃ ∩ FR
+.

By construction, we now have that M(λ̃) := P (λ̃)∩ P̄ (λ̃) is a Levi subgroup

of G with root system F R̃, and we are done.

We will call FDP the set of roots associated to P . Finally, we close

with the following
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De�nition 2.5.7. Let P be a parabolic subgroup of G. The half-

sum of roots associated to P is the vector

ρP =
1

2

∑
α∈FDP

α.

Observe that ρP̄ = −ρP .

2.6 Galois actions

Let V be a variety de�ned over F and put Γ := Gal(Fs/F ). The action of

Γ on Fs induces an action on V (Fs) through its natural (co-ordinate) action

on the ring of functions Fs[V ]; we will denote this action by (σ, x) 7→ σV .x

for σ ∈ Γ, x ∈ V (Fs). That is: we write σV for the image of σ under the

map Γ→ Aut(V (Fs)).

In particular, let us consider the case that V = T is an algebraic torus.

The action of Γ on the group X = X∗(T ) associated to the above action on

T (Fs) is then given by

(σX .χ)(t) := σGm .(χ(σ−1
T .t))

for χ ∈ X, t ∈ T (Fs), making the diagram

T (Fs) T (Fs)

Gm Gm

σT .

χ σX .χ

σGm .
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commute. It is not hard to check that if we equip Γ with the pro�nite

topology, and both X and T (Fs) with the discrete topology, then these

actions are continuous.

Furthermore, we see that Γ acts trivially on χ ∈ X (that is, σX .χ = χ

for all σ ∈ Γ) if and only if χ is de�ned over F , and so a fortiori Γ acts

trivially on X if and only if T is F -split.

Thus, to each F -torus T we can associate a �nitely-generated free abelian

group X equipped with a continuous action of Γ; it turns out that this

association is bijective. We have

Theorem 2.6.1. Let T be the category of algebraic tori de-

�ned over F , and let X be the category of �nitely-generated free

abelian groups equipped with a continuous action of Γ. There

is an anti-equivalence of categories T → X given by the map

T 7→ X∗(T ).

The proof is fairly straightforward: the inverse functor to T 7→ X∗(T ) is

given by X 7→ X∗⊗ZGm, with the trivial Γ-action on the right-hand factor,

where X∗ is de�ned to be the Γ-module Hom(X,Z).

We remark that it is possible to translate facts about T to facts about

X∗(T ). Building on our observations from above, we quote [Spr10, Proposi-

tion 13.2.2]:

Theorem 2.6.2. Let T be an F -torus and let X be its char-

acter lattice with the associated Γ-action. Then:

� T is F -split if and only if Γ acts trivially on X, and
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� T is F -anisotropic if and only if Γ has no nontrivial �xed

point in X.

Suppose T ⊂ G is a maximal F -torus in a reductive group G de�ned

over F ; because T is de�ned over F , we know that T (Fs) is Γ-stable and so

restricts to an action of Γ on T (Fs). Let us write X = X∗(T ), R = R(G,T ),

and �x some set R+ of positive roots in R; the action of σ ∈ Γ on X maps

the set R+ to some other set of positive roots in R.

By [Spr10, �15.5.2], there is a unique element wσ of the Weyl group

W (G,T ) such that wσ(σ.R+) = R+, and therefore wσ(D) = D. Let us

de�ne a homomorphism τ : Γ→ Perm(D) into the group of permutations of

D via

τ(σ)(α) := wσ(σ.α) (2.7)

for σ ∈ Γ, α ∈ D; then by [Spr10, Proposition 15.5.3] τ = τ(Γ) stabilizes D0.

If we furthermore consider our choice of minimal parabolic P0, one may

actually associate to the triple (G,P0, T ) its indexed root datum, which

is the 6-tuple

iΨ = (X,D,X∨, D∨, D0, τ),

where we have retained our notations from Sections 2.3 and 2.5. The triple

(D,D0, τ) is known as the index of the triple (G,P0, T ).

We remark here that, in the case that G is F -split, then its indexed root

datum is determined up to isomorphism by its absolute root datum; in the

general case, the F -points of our group are constructed as the group of �xed

points of G(Fs) under a particular action of the Galois group Gal(Fs/F ),
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where Fs is some �xed separable closure of F . We discuss these matters in

Chapter 3, below.

Again, each Levi subgroup of G is itself a connected, reductive algebraic

group [Art91, p. 10], and so these same constructions apply not only to G,

but to every Levi subgroup M of G.

2.7 Measures and integration

In this section, we explain how to choose measures which will allow us to

integrate sensibly on non-compact linear algebraic groups. We follow the

constructions of [Wal95, I.2�I.4].

The adjoint action of G(F ) on both itself and g(F ) induces actions of

G(F ) on the spaces C∞c (G(F )) and C∞c (g(F )) of locally constant, compactly

supported, complex-valued functions on G(F ), respectively g(F ) (the adjoint

action of g on itself is denoted ad(X), X ∈ g). To lighten notation, we will

write C∞c (G) for C∞c (G(F )), and similarly for C∞c (g).

For P ∈ F , �x (left) Haar measure dn on NP (F ) such that

∫
NP (F )

e2〈ρP ,HP (n)〉 dn = 1,

where ρP is the half-sum of roots associated to P , and HP̄ is the Harish-

Chandra homomorphism associated to P̄ (see De�nitions 2.4.2 and 2.5.7).

We then �x an arbitrary (left) Haar measure dy on M0, and it can be

shown that there exists a Haar measure dx on G such that, for any P0 ∈
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P(M0), one has

∫
G(F )

f(x) dx =

∫
NP0

(F )×M0(F )×NP0
(F )

f(nyn)δP0(y)−1 dn dy dn

for all f ∈ C∞c (G), where δP0 is the modulus character of P0; we equip G

with this measure.

We recall that the modulus character δP0 is, roughly, used to turn a left

Haar measure into a right Haar measure. More precisely [Sil79, �1.2]: for

any topological group G, one writes dLx,dRx for respective left and right

Haar measure on G, and then de�nes δG to be the unique function G→ R>0

satisfying

dL(x−1) = dRx = δG(x)dLx

for all x ∈ G. As it happens [Kot05, �2.3], if G is a reductive group, then

G is unimodular, meaning δG is identically 1 and so we need not specify

left or right Haar measure on reductive groups in the future (as they are the

same). We caution, however, that δP 6= 1 for proper parabolic subgroups

P ⊂ G (although our remarks do imply that δM = 1 for all M ∈ L ).

More generally: having now �xed dx on G(F ) and dn on NP (F ) (for any

P ∈ F ), we now de�ne on MP (F ) the Haar measure dy satisfying

∫
G(F )

f(x) dx =

∫
NP (F )×MP (F )×NP (F )

f(nyn)δP (y)−1 dn dy dn

for all f ∈ C∞c (G). We record here also the fact that, if Haar measure on K
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(i.e. our compact subgroup in G(F ) from Equation (2.1)) is chosen so that

∫
K

dk = 1,

then one also has (per [Wal95, I.4])

∫
G(F )

f(x) dx =

∫
MP (F )×NP (F )×K

f(ynk) dk dn dy

for all P ∈ F and all f ∈ C∞c (G). We remark that dk and dx are a priori

unrelated, but this is unimportant in the sequel.

If T is a split torus, then it is equipped with Haar measure for which

the maximal compact subgroup of T (F ) has measure 1. If T is an arbitrary

torus, it is equipped with Haar measure for which the induced measure on

the (compact) quotient group T/AT has total volume 1. As such, if M0 = T

is itself a torus, we have actually de�ned on it two measures; one which

allows us to de�ne the compatible measure on G = NP0M0NP̄0
, and another

which allows us to integrate over T/AM . It will be clear from context which

one is intended.

For X ∈ g(F ), we denote by GX the centralizer of X in G, so that

GX(F ) = {x ∈ G(F ) : Ad(x)(X) = X};

similarly, we write gX for the centralizer of X in g (i.e., the kernel of ad(X)).

Denote by greg the set of regular semisimple elements of g; if T is a maximal

subtorus of G, then T is said to be elliptic if AT = AG. Similarly X ∈ g(F )

is said to be elliptic if GX is an elliptic maximal torus in G; denote by gell
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the set of elliptic elements of g. It is a subset of greg.

Let X = Xn + Xs be the Jordan decomposition of X ∈ g(F ), so Xn is

nilpotent, Xs is semisimple, and XnXs = XsXn; then ad(X) descends to a

linear operator on the quotient space g/gXs , whose determinant we denote

Dg(X).

Now: �x a neighbourhood VG of 1 in G, as well as a neighbourhood Vg

of 0 in g, both of which are open and invariant under Ad(G). We use the

de�nition of g as the tangent space to G at the identity in order to �x a

local algebraic isomorphism Vg → VG, then equip g with the unique Haar

measure such that this isomorphism locally preserves measures. We do the

same for each subgroup H of G, replacing VG with VG∩H, etc. For the sake

of completeness, let us specify that, given an embedding G↪→GL(n), we will

use the map X 7→ 1 +X, where X is an element of the Lie algebra and 1 is

the identity of the group.

For P ∈ F , this process obtains for all f ∈ C∞c (g) the equality

∫
g(F )

f(X) dX =

∫
nP (F )×mP (F )×nP (F )

f(N + Y +N) dN dY dN.

We �x a set T (G) of conjugacy class representatives of elliptic maximal

tori of G, and we will assume without loss of generality that, for all T ∈

T (G), one has AT ⊆ AM0 (see [Kot05, ��7.8�9] for a discussion of why this

assumption can be made).

Next, we consider measures on the stabilizer subgroups: let dx and dγ

be respective left Haar measures on G(F ) and GX(F ), for X ∈ g(F ). The

orbit GX(F )\G(F ) is then equipped with a unique G(F )-invariant measure
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dx̄ satisfying, for all f ∈ C∞c (G), the equation

∫
G(F )

f(x) dx =

∫
GX(F )\G(F )

∫
GX(F )

f(γx) dγ dx̄. (2.8)

This technique of integrating over G(F ) is referred to in the literature as

integration in stages [Kot05, eqn. 2.4.1], and allows us to construct another

measure we will use in the trace formula.

Namely: if T is a maximal elliptic torus in M and AM = AT ⊂M is the

maximal split central torus, then [Kot05, ��7.2-3 and 7.11] by �xing a G(F )-

invariant volume form on T (F )\G(F ), we obtain a G(F )-invariant measure

dx̄ on T (F )\G(F ); indeed, this follows from Equation (2.8), because T is the

centralizer of a regular semisimple element of g. We then de�ne the unique

G(F )-invariant measure dẋ on AM (F )\G(F ) such that

∫
AM (F )\G(F )

f(x) dẋ =

∫
T (F )\G(F )

f(x) dx̄ (2.9)

for all f ∈ C∞c (T\G); notice that this is possible because AM\T = AT \T

has volume 1.

Fix once and for all a non-degenerate, symmetric, bilinear form B =

B(X,Y ), which is invariant with respect to the adjoint G-action, i.e.

B(ad(x)X, ad(x)Y ) = B(X,Y ) for all X,Y ∈ g(F ), x ∈ G(F ),

as well as a nontrivial additive character ψ on F ; the existence of such

forms B(X,Y ) is established in [AR00, Proposition 4.1] for any �eld F of

characteristic zero, or su�ciently large positive characteristic. Still following
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the construction of [Wal95], we use these to de�ne two variations of the

Fourier transform on functions f ∈ C∞c (g), namely,

f̂(Y ) = cψ(g)

∫
g(F )

f(X)ψ(B(Y,X)) dX

and

f̌(Y ) = cψ−1(g)

∫
g(F )

f(X)ψ−1(B(Y,X)) dX,

where cψ(g) is the unique constant such that, for all X ∈ g(F ), one has

ˆ̂
f(X) = f(−X).

We use B(X,Y ) to identify g with its linear dual; as such, f 7→ f̂ gives an

isomorphism C∞c (g) → C∞c (g), the inverse of which is given by f 7→ f̌ . We

remark that exactly the same construction holds for any (algebraic) subgroup

H of G such that the restriction of B(X,Y ) to h is nondegenerate.

We will return to a discussion of measures in Section 4.4, in which we

pick such measures uniformly for families of �elds.

2.8 The weight factor

We recall that our choice of minimal parabolic subgroup P0 containing a

maximal torus T determines bases D and FD of the root systems R and

FR, respectively, and that to each parabolic subgroup P ∈ F containing P0,

there corresponds a subset of FD denoted FDP . For parabolic subgroups

P ⊆ Q of G, we will denote by FD
Q
P the set of roots (with respect to T )
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corresponding to the parabolic subgroup P ∩MQ of MQ.

Inside aGP we have the lattice LGP , which is the Z-span of D∨P . We will

write vol(aGP /L
G
P ) for the volume of the (compact) quotient of the vector

space by the lattice.

De�nition 2.8.1. The weight factor vM (x, y) attached to a Levi

subgroup M ∈ L is the function [Art81, �6]

vM (x, y) = vol
(
Hull{−HP (y) +HP (x) : P ∈P(M)}

)
on G(F )×G(F ), where Hull(U) denotes the convex hull of U ⊆ aP .

This de�nition turns out to be inconvenient for our purposes. Instead,

we will use an equivalent de�nition, inspired by the approach of [CHL11].

Let M ∈ L , P ∈ P(M), and let ia∗M be the vector space from Sec-

tion 2.4. De�ne the function

θP (λ) =
1

vol(aGP /L
G
P )

∏
α∈FDP

λ(α∨), (2.10)

where λ ∈ ia∗M . According to [Art81, Lemma 6.2] and [Art91, p. 88], we

have

vM (x, y) = lim
λ→0

∑
P∈P(M)

exp
(
−λ(HP (y)−HP (x))

)
θP (λ)

,

where λ ∈ ia∗M is any regular element.

We can calculate the limit by replacing λ with tλ, t ∈ R>0, and then

taking the limit as t→ 0+, to obtain
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Lemma 2.8.2. For any regular λ ∈ ia∗M , one has

vM (x, y) =
∑

P∈P(M)

(−1)p
(
λ
(
HP (y)−HP (x)

))p
p!θP (λ)

, (2.11)

where p = deg θP = dim aGP .

Importantly: as long as λ is regular, the value of the right-hand side of

Equation (2.11) is well-de�ned and independent of λ itself (a di�erent regular

λ′ will give the same value), as in [CHL11, pp. 17-18]. We remark that the

integer p need not be prime; examples of the weight factor are computed in

Examples 7.2.3 and 7.3.3.

Therefore, let us �x once and for all a regular λ ∈ ia∗M for every M ∈ L ;

we will take Equation (2.11) as our de�nition of the weight factor vM . The

reason for this choice of de�nition is to make it easier to encode vM (x, y) as

a motivic function (see Section 4.3, below).

2.9 The statement of the local trace formula

We may now de�ne a distribution JG = JG(f1, f2) on C∞c (g) × C∞c (g) as

follows:

JG(f1, f2) :=
∑
M∈L

|WM |
|WG|

∑
T∈TM

1

|W (M,T )|

∫
treg(F )

|Dg(X)|·∫
AM (F )\G(F )

∫
AM (F )\G(F )

f1(Ad(x)X)f2(Ad(y)X)vM (x, y) dẋ dẏ dX.

(2.12)
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We remark that the measures dẋ and dẏ are constructed as in Equation (2.9),

above. The convergence of JG on arbitrary f1, f2 ∈ C∞c (g) is not immediate,

but follows from [Kot05, Proposition 20.1] (at least when the characteristic

of F is zero). We are �nally able to state the local trace formula.

Theorem 2.9.1. [Wal95, théorème V.2] Let J̃G be the distri-

bution on C∞c (g)×C∞c (g) de�ned on test functions f = (f1, f2)

by

J̃G(f1, f2) = JG(f̂1, f̌2);

if F has characteristic zero, then J̃G and JG coincide.

We take a moment to explain the name trace formula: the group G(F )×

G(F ) acts on the space L2(G(F )) by the action

G(F )×G(F )× L2(G(F ))→ L2(G(F )), (x, y, f) 7→
[
g 7→ f(x−1gy)

]
,

and extending this action to the tensor product of group algebras C(G)⊗C

C(G) (where C(G) is the C-algebra of continuous C-valued functions on

G(F ), equipped with convolution) gives us an action

C(G)⊗C C(G)× L2(G(F ))→ L2(G(F ))

de�ned on the generators by

((f1 ⊗ f2)φ)(g) =

∫
G(F )

∫
G(F )

f1(x)f2(y)φ(x−1gy) dx dy.
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This means that f1 ⊗ f2 acts by an integral operator with kernel function

K = K(x, y) (say). When G is compact, the function K is trace class,

meaning the integral ∫
G(F )

K(x, x) dx

converges; its value is the trace of the operator de�ned by f1 ⊗ f2.

For general reductive groups, K(x, y) is not of trace class, and so the

trace cannot be computed in this way. Instead, Arthur [Art91] uses the

Weyl integration formula (among other tools) to expand the integral in two

ways, namely, the geometric expansion and the spectral expansion, and then

to obtain from these expansions which are convergent. The trace formula,

as stated there, consists in a formal identity

Jgeom(f1, f2) = Jspec(f1, f2),

where Jgeom is precisely our distribution JG. Walspurger [Wal95] gave a form

of the theorem for the Lie algebra, which instead took the form

Jgeom(f1, f2) = Jgeom(f̂1, f̌2).

The Fourier transform of an orbital integral may be thought of as the Lie

algebra analogue of characters of reductive groups; as such, the right-hand

side plays the rôle of the spectral expansion Jspec.

Our task is to show that the distribution JG is motivic. At its most basic

level, this involves demonstrating that the �ingredients� of this distribution

(i.e. the various measures, domains of integration, indices of summation,
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summands, integrands, etc.) can be speci�ed in a particular �rst-order lan-

guage. We will begin this work in Chapter 4; but in order to accomplish our

work there, we will �rst need to understand some of these ingredients from

a di�erent perspective.

To that end, we devote the next chapter to providing a clean catalogue

of our ingredients, and what parameterises them.

37



Chapter 3

Cohomology

Cohomology is often used to classify isomorphism classes in the theory of

algebraic groups. In this chapter we will recall the necessary notions of

cohomology, and collect the results relevant for our later work.

Let Γ be a group acting on another group A; depending on the context,

we will impose certain further conditions on these objects, for instance that

A is abelian, or that the action is a continuous action of topological groups.

Essentially, group cohomology is a systematic way to collect information

on certain maps Γ → A,Γ × Γ → A, etc. (called respectively 1-cocycles,

2-cocycles, and so on), which naturally encode important information about

the objects under consideration.

For now, we will restrict our attention to 1-cocycles (or crossed homo-

morphisms) alone. We retain the notation of chapter 2.

3.1 Abelian cohomology

We will �rst treat the abelian case. Let Γ be a pro�nite group acting on

an (additive) abelian group A; we will sometimes call A a Γ-module, and

denote by AΓ the subgroup of A �xed by the action of Γ. Recall that a group

is said to be pro�nite if it is the inverse limit of an inverse system of �nite
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topological groups.

Let Z1(Γ, A) be the set of all functions c : Γ→ A satisfying

c(στ) = c(σ) + σ.c(τ)

where the action of σ ∈ Γ on a ∈ A is denoted σ.a. Note that if the action of

Γ is trivial, then Z1(Γ, A) is just the set Hom(Γ, A) of group homomorphisms

Γ→ A.

Equipping Z1(Γ, A) with the operation

(c+ c′)(σ) = c(σ) + c′(σ)

(for c, c′ ∈ Z1(Γ, A), σ ∈ Γ) yields an abelian group, the group of 1-cocycles

of Γ in A. We de�ne the subgroup of 1-coboundaries

B1(Γ, A) = {c ∈ Z1(Γ, A) : c(σ) = σ.a− a for all σ ∈ Γ},

and put

H1(Γ, A) := Z1(Γ, A)/B1(Γ, A).

The quotient group H1(Γ, A) is called the 1-cohomology group of Γ in A.

Clearly, if the action of Γ is trivial, we have H1(Γ, A) = Hom(Γ, A).

We will typically write elements of H1(Γ, A) as [c] for some c ∈ Z1(Γ, A).

Observe from the de�nitions that [c] = [d] if and only if there exists some

a ∈ A such that

d(σ) = −a+ c(σ) + σ.a (3.1)
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for all σ ∈ Γ. We record the following standard result [Mil13, II.1.9]:

Theorem 3.1.1. Let Γ be a pro�nite group and let

1→ A→ B → C → 1

be a short exact sequence of Γ-modules. Then there exists a

long exact sequence of groups

1→ AΓ → BΓ → CΓ → H1(Γ, A)

→ H1(Γ, B)→ H1(Γ, C)→ H2(Γ, A)→ · · ·

that continues in�nitely far to the right, where Hn(Γ,−) for

n > 1 are the higher cohomology groups (whose de�nition we

omit).

3.2 Nonabelian cohomology

In this section we will continue to assume that Γ is pro�nite, but we will

allow A to be an arbitrary group equipped with a (left) action of Γ, which

we will still denote by σ.a.

In this case, we de�ne Z1(Γ, A), the set of 1-cocycles, to be the set of

all maps c : Γ→ A satisfying

c(στ) = c(σ)(σ.c(τ)) (3.2)

for all σ, τ ∈ Γ; the analogy with the abelian case is clear.
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We stress that, because pointwise multiplication of cocycles does not in

general yield a cocycle in the nonabelian case, Z1(Γ, A) has only the structure

of a set, and not a group.

On the set Z1(Γ, A) we place the equivalence relation ∼, where c ∼ d if

and only if there exists a ∈ A such that

d(σ) = a−1c(σ)(σ.a) (3.3)

for all σ ∈ Γ. We denote by H1(Γ, A) the pointed set of equivalence classes

in Z1(Γ, A), called the 1-cohomology set of Γ in A. As a pointed set, its

distinguished element [1] is the class consisting of all cocycles c ∈ Z1(Γ, A)

satisfying

c(σ) = a−1(σ.a)

for some a ∈ A.

Observe that, if A is abelian, then the 1-cohomology set we have just

de�ned coincides with the 1-cohomology group de�ned in Section 3.1, with

the distinguished class corresponding to the identity element of H1(Γ, A).

De�nition 3.2.1. A sequence A
f→ B

g→ C of pointed sets is called

exact at B if

g−1(1C) = f(A),

where 1C is the distinguished element of C.

The corresponding result to Theorem 3.1.1 for the nonabelian case is

familiar, but decidedly weaker. Per [Spr10, Proposition 12.3.4], we have:
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Theorem 3.2.2. Let Γ be a pro�nite group and let

1→ A→ B → C → 1

be a short exact sequence of groups equipped with a (left) Γ-

action. Then the sequence of pointed sets

1→ AΓ → BΓ → CΓ → H1(Γ, A)→ H1(Γ, B)

is exact. Moreover, if A is normal in B, then the sequence

1→ AΓ → BΓ → CΓ → H1(Γ, A)→ H1(Γ, B)→ H1(Γ, C)

is exact.

To close this section, we observe that, in both the abelian and nonabelian

cases, an inclusion of groups A↪→B implies the existence of a map

H1(Γ, A)→ H1(Γ, B),

which is generally not injective.

3.3 Galois cohomology

In the theory of algebraic groups, isomorphism classes (of groups, tori, etc.)

over a non-algebraically closed �eld are generally classi�ed using Galois de-

scent. Broadly speaking, this involves considering all Fs-isomorphism classes
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of the given object, and seeing how these isomorphism classes divide into

F -isomorphism classes. We recall the Galois actions already described in

Section 2.6.

This is easiest to see in the case in the situation of maximal tori. Obvi-

ously, there is a single Fs-isomorphism class of maximal F -tori in any alge-

braic group G, as they must all have the same rank; however, there will be

more than one F -isomorphism class when we restrict to a non-algebraically

closed �eld, as we will see shortly.

With G as before, let S, S′ ⊂ G be two maximal F -tori. Following the

terminology of [Kot82], we will say that S and S′ are stably conjugate if

there exists x ∈ G(Fs) such that

xS(F )x−1 = S′(F ),

and we will say that they are rationally conjugate if there exists y ∈ G(F )

such that

yS(F )y−1 = S′(F ).

These are clearly equivalence relations. Furthermore, because rational con-

jugacy implies stable conjugacy, we see that the set T (G) of all maximal

F -tori of G is partitioned into stable conjugacy classes, which are in turn

partitioned into rational conjugacy classes.

Theorem 3.3.1. [Kot82, �3] Let G be an F -group, T ⊂ G

a maximal F -torus, and N = NormG(T ) the normalizer of

T in G; we recall the natural action of Γ = Gal(Fs/F ) on
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G(Fs). There is a one-to-one correspondence between the set

of rational conjugacy classes of maximal tori of G, and the

kernel of the map

H1(Γ, N(Fs))→ H1(Γ, G(Fs)),

which we denote ker(G,T ).

We include a proof of Theorem 3.3.1, as the construction contained

therein is essential to our goal of establishing the trace formula as a mo-

tivic identity. Before we begin, we record the fact that, if H is any closed

F -subgroup of G, then the restriction of the action of Γ to H induces a

Γ-action on H, and so in particular σ.(H(Fs)) = H(Fs) for all σ ∈ Γ.

Proof. We begin by remarking that the trivial class of the 1-cohomology set

H1(Γ, G(Fs)) is the set of all maps Γ → G(Fs) of the form σ 7→ x−1xσ for

some x ∈ G(Fs).

Let us lighten notation by temporarily writing xσ for σ.x (note that

because this is a left-action, we have the awkward formula xστ = (xτ )σ).

We emphasize that, with this notation, G(Fs)
σ indicates the image of G(Fs)

under the action of σ ∈ Γ, and not the elements of G(Fs) that are �xed by

the element σ (a set which we do not encounter in this document).

Let S be a maximal F -torus of G and let x ∈ G(Fs) satisfy

S(Fs) = xT (Fs)x
−1;

such x must exist, as all maximal tori in G are conjugate over Fs; we may
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write S = xTx−1 in this case.

Because S is de�ned over F we know that S(Fs)
σ = S(Fs) for any σ ∈ Γ,

and hence

T (Fs) = x−1S(Fs)x = x−1S(Fs)
σx = x−1(xT (Fs)x

−1)σx

= x−1xσT (Fs)
σx−σx = (x−1xσ)T (Fs)(x

−1xσ)−1.

It follows that x−1xσ ∈ N(Fs). We can therefore de�ne a map cx : Γ →

N(Fs) by the rule σ 7→ x−1xσ, which satis�es the 1-cocycle condition:

cx(στ) = x−1xστ = x−1(xτ )σ = x−1xσx−σ(xτ )σ = x−1xσ(x−1xτ )σ,

and so cx ∈ Z1(Γ, N(Fs)). Composing with the natural map Z1(Γ, N(Fs))→

H1(Γ, N(Fs)), we obtain the map

T (G)→ H1(Γ, N(Fs)), xTx−1 7→ [cx].

We claim that this map is well-de�ned: indeed, suppose xT (Fs)x
−1 =

x̃T (Fs)x̃
−1. Then we have immediately that x−1x̃ ∈ N(Fs), and so in

H1(Γ, N(Fs)) we have

[σ 7→ x−1xσ] = [σ 7→ (x−1x̃)−1x−1xσ(x−1x̃)σ] = [σ 7→ x̃−1x̃σ]

and so [cx] = [cx̃], as claimed.

Observe further that this map is invariant on rational conjugacy classes:

if S, S′ lie in the same rational conjugacy class, we can write S(F ) =
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γS′(F )γ−1 for some γ ∈ G(F ), and so if we write

S(Fs) = yT (Fs)y
−1, S′ = zT (Fs)z

−1

for some y, z ∈ G(Fs), then we have

T (Fs) = y−1S(Fs)y = y−1γS′(Fs)γ
−1y = y−1γzT (Fs)z

−1γ−1y,

and so n := y−1γz ∈ N(Fs). Using the fact that γσ = γ for all σ ∈ Γ, we

have

z−1zσ = (γ−1yn)−1(γ−1yn)σ = n−1y−1yσnσ,

and so [cy] = [cz] in H
1(Γ, N(Fs)).

By the de�nitions we know that ker(G,T ) is the subset of H1(ΓE , N(Fs))

conisting of those classes whose representatives have the form σ 7→ y−1yσ for

some y ∈ G(Fs). It follows at once that the image of the map xT (Fs)x
−1 7→

[cx] lies in ker(G,T ), and we claim moreover that it is a surjection. But this

is clear: every element of ker(G,T ) has the form [cy] for some y ∈ G(Fs),

and the torus T ′ = yT (Fs)y
−1 maps to this element.

It remains only to show injectivity, and therefore suppose [cy] = [cz] in

ker(G,T ); we aim to show that the rational class of yTy−1 is the same as

that of zTz−1. By assumption, there exists n ∈ N(Fs) such that

y−1yσ = n−1z−1zσnσ
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for all σ ∈ Γ; equivalently,

1 = zny−1yσn−σz−σ = (yn−1z−1)−1(yn−1z−1)σ,

which implies that yn−1z−1 is �xed by every σ ∈ Γ and therefore lies in

G(F ). It follows that the rational class of zTz−1 is the same as that of

(yn−1z−1)zTz−1(yn−1z−1)−1 = yTy−1,

and we are done.

There is also [Ser97, II.5.2, theorem 2] the following local duality theorem

of Tate:

Theorem 3.3.2. Let µ be the subgroup of F×s consisting of

the roots of unity. If A is a Γ-module and

A∨ = Hom(A,µ)

is the dual module, then there exists a perfect pairing

H i(Γ, A)×H2−i(Γ, A∨)→ H2(Γ, µ(Fs)) ∼= Q/Z

for i ∈ {0, 1, 2}. In particular, if A = T (Fs) is an F -torus of

rank r, then there exists an isomorphism

H1(Γ, T (Fs)) ∼= H1(Γ, X∗(T )).
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Let us turn now to general reductive groups. We will say that one F -

group G is an E-form of another G′ if there exists an E-isomorphism of G

onto G′, and we will denote by AutE(G) the group of E-automorphisms of

G. We may also speak of the split form of G, by which we will mean the

F -isomorphism class of the split reductive group whose absolute root datum

is that of G (or, occasionally, a representative of that class).

We recall that any action (σ, x) 7→ σ.x of Γ on G(Fs) induces an action

of Γ on AutFs(G), namely

Γ×AutFs(G)→ AutFs(G), (σ, f) 7→ fσ,

such that the diagram

G(Fs) G(Fs)

G(Fs) G(Fs)

σ.

f fσ

σ.

commutes.

We quote [Spr10, Theorem 11.3.3]:

Theorem 3.3.3. Let E/F be a Galois extension with ΓE =

Gal(E/F ). There is a one-to-one correspondence between the

set of F -isomorphism classes of E-forms of G, and the 1-

cohomology set H1(ΓE ,AutE(G)), under which the class of G

corresponds to the distinguished class.

We include a proof of Theorem 3.3.3, as it includes an important con-
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struction that we will use later.

Proof. As discussed in Section 2.6, any F -group G has a canonical action

σ 7→ σG of ΓE on E[G], for any Galois subextension F ⊂ E ⊂ Fs. As in the

diagram, this induces an action of ΓE on AutE(G) is given by

σ.a = σG ◦ a ◦ σ−1
G ,

where σ ∈ ΓE and a ∈ AutE(G). Moreover, this action is continuous when

ΓE has the Krull topology and E[G] the discrete topology.

Let Π(E/F,G) denote the set of F -isomorphism classes of E-forms of G.

If G′ is an E-form of G, then we can �x an E-isomorphism φG′ (say) of E[G′]

onto E[G]; we may then de�ne a map cG′ : ΓE → AutE(G) via

cG′(σ) = φG′ ◦ σG′ ◦ φ−1
G′ ◦ σ

−1
G .

We remark that the right hand side of this equation is an automorphism of

G (or, equivalently, an automorphism of E[G]).

A quick calculation shows that cG′ satis�es the 1-cocycle condition, so

cG′ ∈ Z1(ΓE ,AutE(G)); furthermore the equivalence class of this cocycle

is independent of choice of isomorphism φG′ , and so we have a well-de�ned

map

µ : Π(E/F,G)→ H1(ΓE ,AutE(G)),

and it remains only to show that this map is bijective.

Injectivity is fairly straightforward: if G′, G′′ are E-forms such that

[cG′ ] = [cG′′ ], then the isomorphism E[G′] onto E[G′′] must come from an
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isomorphism F [G′] onto F [G′′] (similar to the proof of Theorem 3.3.1, above).

In order to show surjectivity, we introduce a new symbol: for c ∈

Z1(ΓE ,AutE(G)), de�ne the operation ?c via

σ ?c f = c(σ)(σ.f),

for σ ∈ ΓE , f ∈ E[G]. We can now de�ne an action of ΓE on E[G] via

(σ, f) 7→ σ ?c f,

which is a group action as a consequence of the 1-cocycle condition. The set

of elements �xed pointwise by this action is

F [G]c = {f ∈ E[G] : σ ?c f = f for all σ ∈ ΓE},

which is an F -algebra, and hence de�nes an E-form Gc of G. It is not hard

to check that the cocycle arising from Gc is c itself, and we are done.

We close with one last consequence of these results.

Corollary 3.3.4. Let F be a �eld and let Spl(Ψ) be a split

reductive group over F with root datum Ψ (such groups exist

by [Spr10, Theorem 10.1.1]). There is a one-to-one correspon-

dence between the set of F -isomorphism classes of E-forms of

Spl(Ψ), and the 1-cohomology set

H1(ΓE ,AutE(Spl(Ψ))),
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under which the class of Spl(Ψ) corresponds to the distin-

guished class in H1(ΓE ,AutE(Spl(Ψ))).

More precisely: there is a one-to-one correspondence between the set of

F -isomorphism classes of connected reductive F -groups G which split over

E, and the set H1(Gal(E/F ),AutE(Spl(Ψ))).

3.4 Tori in algebraic groups

In this section we establish a �eld-independent bound on the number of ra-

tional conjugacy classes of maximal tori in a given algebraic group, which we

will need in Section 6.4. We retain our notation from the previous sections.

Suppose T is a maximal F -torus of G contained in the Levi subgroupM ,

and E/F is some Galois extension with ΓE = Gal(E/F ). The restriction

of the action of ΓE on G(E) to NormM (T ) (respectively, T ) gives an action

NormM (T )(E) → NormM (T )(E) (respectively, T (E) → T (E)), allowing us

to de�ne an action on the quotient

Γ×NormM (T )(E)/T (E)→ NormM (T )(E)/T (E),

(σ, nT (E)) 7→ (σ.n)T (E).

This action is well-de�ned: if nT (E) = n′T (E), then n−1n′ ∈ T (E) and so

(σ.n)T (E) = σ.(n(n−1n′))T (E) = (σ.n′)T (E).

To lighten notation, let us temporarily write N(M,T,E) for the group
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NormM (T )(E)/T (E) equipped with this action of ΓE ; we then have the

following short exact sequence of groups, all of which are equipped with a

compatible Γ-action:

1−→T (E)
i−→ NormM (T )(E)

π−→ N(M,T,E)−→1 (3.4)

By Theorem 3.2.2, the short exact sequence (3.4) gives rise to the exact

sequence of pointed sets

1→ T (F )
i0→ NormM (T )(F )

π0

→ N(M,T,E)Γ δ0

→ H1(Γ, T (E))

i1→ H1(Γ,NormM (T )(E))
π1

→ H1(Γ, N(M,T,E)) (3.5)

where N(M,T,E)Γ denotes the set of elements of N(M,T,E) that are �xed

pointwise by Γ (note that, a priori, we do not know this set to beN(M,T, F );

nor, in fact, do we care).

The set H1(Γ,NormM (T )(E)) contains the set ker(M,T ) (from Theo-

rem 3.3.1) which parameterises our rational conjugacy classes of tori. This

set depends a priori on the �eld in question; however, as we will show in

Section 6.4, it is possible to de�ne a set of representatives for ker(G,T ) in a

way which is independent of the �eld of de�nition of G, as long as its residue

characteristic is su�ciently large.

The following result is the application of [Ser97, �5.5, Corollary 2] to our

situation:

Proposition 3.4.1. Let [c] ∈ H1(ΓE ,NormM (T )(E)). The

elements of H1(ΓE ,NormM (T )(E)) that are mapped un-
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der π1 to π1([c]) in H1(Γ, N(M,T,E)) are in one-to-

one correspondence with the elements of the orbit space

N(M,T,E)Γ\H1(ΓE , Tc(E)), i.e. the quotient of H1(Γ, Tc(E))

by the action of N(M,T,E)Γ.

We remark that we are able to twist the torus T by the cocycle c ∈

Z1(ΓE ,NormM (T )(E)) precisely because T is normal in NormM (T ).

We can use this proposition do determine a bound on the size of

H1(ΓE ,NormM (T )(E)); we will make this job easy by making several vast

simpli�cations, to obtain an e�ective (if needlessly large) bound, which is not

dependent on the cohomology sets H1(ΓE , Tc(E)) and H1(Γ, N(M,T,E)).

Theorem 3.4.2. Let G be a connected, reductive F -group, let

E/F be a �nite Galois extension with ΓE = Gal(E/F ), and

put Ψ = (X,R,X∨, R∨) for the absolute root datum of the pair

(G,T ). For any Levi subgroup M of G, one has

|H1(ΓE ,NormM (T )(E))| ≤
(
|W (R)| · |Perm(R)|

)|ΓE |
.

We use the notation Perm(R) rather than Aut(R) to emphasize the fact

that we are considering bijective set maps R→ R.

Proof. First, because each orbit space we consider is bounded by the size of

the underlying set H1(ΓE , Tc(E)), we know by Proposition 3.4.1 that

|H1(ΓE ,NormM (T )(E))| ≤ |H1(ΓE , N(M,T,E))| · |H1(ΓE , Tc(E))|.
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Because both sets ΓE and N(M,T,E) are �nite, we know a priori that

|H1(ΓE , N(M,T,E))| ≤ |Map(ΓE , N(M,T,E))| = |N(M,T,E)||ΓE |

where Map(X,Y ) denotes the set of all set maps between the (�nite) sets X

and Y .

From our remarks at the end of Section 2.2, we know that |N(M,T,E)|

is bounded by the size of the algebraic Weyl group WG(Fs), which is exactly

the Weyl group W (R) of the (absolute) root system R(G,T ), because our

group is reductive (recall Lemma 2.3.5).

Thus |H1(ΓE , N(M,T,E))| ≤ |W (R)||ΓE | and it remains to place a

bound on |H1(ΓE , X
∗(Tc))|.

Because all the tori Tc have the same rank, all of our cohomology sets

H1(ΓE , X
∗(Tc)) can be written equivalently as H1(Γ?E , X

∗(T )), as Γ?E varies

over the actions of ΓE on the �nitely-generated, free abelian group X∗(T ).

Of course, not every action of ΓE on X∗(T ) is compatible with the action

of ΓE on G; after all, the action of ΓE on T (and hence onX∗(T )) is inherited

from this action on G. In particular: if Z = Z(G) is the centre of G, then

we must have Z ⊂ T , as T is maximal.

The universal property of quotients identi�esX∗(T/Z) with the subgroup

of X∗(T ) consisting of characters that are trivial on Z, and we have the short

exact sequence of ΓE-modules

1→ X∗(T/Z)→ X∗(T )→ X∗(Z)→ 1
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the second map being induced by restriction of characters from T to Z.

Recall the root system R(G,T ) from Section 2.3. By de�nition we have

for any α ∈ R(G,T ) that there exists some nonzero Y ∈ g(Fs) such that

α(t)Y = Ad(t)Y for all t ∈ T (Fs),

and so in particular α(Z(Fs)) = Ad(Z(Fs)) = 0 and thus R(G,T ) ⊂

X∗(T/Z).

The action of ΓE on X∗(T/Z) must map R(G,T ) to itself, and because

R(G,T ) has full rank in X∗(T/Z) we must have that ΓE acts as a group of

automorphisms in Aut(R(G,T )). The action of ΓE on X∗(Z) is that which

is inherited from the natural map X∗(G)→ X∗(Z) induced by restriction of

characters, and so is determined.

Thus, there cannot be more cocycles of Γ in T (E) than there are permu-

tations of the root system R, and we reduce the problem to conisdering all

actions of ΓE on R, i.e. group homomorphisms ΓE → Perm(R). It is clear

that there are �nitely many of these, and that their number depends only

on ΓE and R, and to be safe we take the crude bound

|H1(ΓE , X
∗(Tc))| ≤ |Map(ΓE ,Perm(R))| = |Perm(R)||ΓE |,

and we are done.

This bound from Theorem 3.4.2 will arise again, so we will close with

De�nition 3.4.3. The H1-bound associated to the pair (Ψ,ΓE)
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consisting of a root datum Ψ and �nite group ΓE is the quantity

b(Ψ,ΓE) :=
(
|W (R)| · |Perm(R)|

)|ΓE |
,

where Perm(R) denotes the group of permutations of the set R.

3.5 A pause for bookkeeping

We will close this chapter by collecting some of the consequences of our

choices of objects attached to our reductive group G. More precisely, let us

�x:

1. a connected, reductive algebraic group G de�ned over F .

2. a maximally F -split F -torus S in G.

3. a maximal F -torus T of G which contains S.

4. a minimal parabolic subgroup P0 of G, de�ned over F and containing

T .

Put Γ = Gal(Fs/F ) and ΓE = Gal(E/F ) as usual (for any Galois subexten-

sion F ⊂ E ⊂ Fs). By [Spr10, Theorem 16.4.2], the F -isomorphism class of

the triple (G,P0, T ) is determined by the indexed root datum iΨ.

Our foregoing discussion shows that these quantities determine:

i. the �nitely-generated free abelian group X of characters of T de�ned

over Fs.

ii. the �nitely-generated free abelian group X∨ of cocharacters of T de�ned

over Fs.
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iii. an action of Γ (factoring through its quotient ΓE) on G(Fs), inducing

actions on X and X∨.

iv. the �nitely-generated free abelian group FX of characters of S de�ned

over Fs.

v. the �nitely-generated free abelian group FX
∨ of cocharacters of S de-

�ned over Fs.

vi. the root system R ⊂ X of T in G, and the roots FR ⊂ FX of S in G.

vii. dually, the coroot systems R∨ and FR
∨.

viii. the set R+ of positive roots in R for which P0 is the parabolic subgroup

determined by R+.

ix. the base D of R determined by R+.

x. the projection

π : R⊗Z X → R⊗Z (FX)

induced by restriction of characters from T to S.

xi. the subset D0 of D mapped to 0 under π.

xii. the Weyl group W = W (G,T ), together with its action on X.

xiii. the index of (G,T ), i.e. the action of Γ on D which stabilizes D0 given

by

τ(γ)(α) = wγ(γ.α),
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where γ.α denotes the usual action of Γ on X and wγ is the unique

element of W (G,T ) that maps γ.R+ to R+.

xiv. the sets L ,F , and P(M) for every M ∈ L (recall their de�nitions

from Section 2.2).

xv. the groups X∗rat(M) of rational characters of M (i.e. those de�ned over

F ), for M ∈ L .

xvi. the real vector spaces aM = Hom(X∗rat(M),R) and their dual spaces

ia∗M ⊂ a∗M ⊗R C, for M ∈ L .

xvii. The lattices LGP for parabolic subgroups P0 ⊂ P ⊂ G.
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Chapter 4

Model theoretic constructions

It is our goal to establish that all of the objects in Theorem 2.9.1 may

be stated using the language of model theory � speci�cally, the Denef-Pas

language � which will show that it is an identity of motivic distributions. We

now review the basic results about the Denef-Pas language.

Henceforth, when discussing an arbitrary nonarchimedean local �eld, we

will use the letter k instead of F , which remains the �eld we �xed in Chap-

ter 2; the residue �eld of k is denoted κk, and it is assumed that the valuation

on k is Z-valued. We mostly follow the approach of [CGH14b].

4.1 The Denef-Pas language

First of all, we introduce two �rst-order languages, namely the Presburger

language and the language of rings. Both languages contain, as their

symbols, a countably in�nite set of variables, as well as logical symbols ∧,¬,

and ∀, and parentheses. In practice, when dealing with models with standard

interpretations, we will also include symbols ∨,∃, =⇒ , ⇐⇒ .

In addition, the Presburger language contains symbols for the constants

0 and 1, the binary function +, binary relations =,≤, and, for every integer

d ≥ 2, the binary relation ≡d. In the model Z of the Presburger language,

59



the formula a ≡d b is valid if and only if a ≡ b mod d (the remaining symbols

have their usual meanings). The language of rings contains, in addition to

the symbols listed in the previous paragraph, symbols for 0 and 1, binary

relation =, and binary functions + and ×. It does not include the symbols

≤ or ≡d.

In the Denef-Pas language, there are three sorts of variables, namely,

those of the valued �eld (VF) sort, those of the residue �eld (RF) sort, and

those of the value group sort; statements involving the �rst two sorts of vari-

ables are formulated using the language of rings, and statements involving

variables of the value group sort are formulated using the Presburger lan-

guage. In the intended interpretation (i.e. when using a discretely-valued

local �eld k as a model), VF variables range over k, RF variables over κk,

and value group variables over Z.

The Denef-Pas language also contains the unary functions ord : k× → Z

and ac : k → κk; �nally, for convenience, we include as constants of the

valued �eld sort all elements of ZJtK (that is, the �eld of formal power series

with coe�cients in Z). The resulting language is the Denef-Pas language,

and we denote it by LZ.

4.2 Basic constructions

Given a formula φ ∈ LZ � i.e., a syntactically correct concatenation of the

symbols in LZ � we may interpret the formula by allowing the variables to run

over the triple k = (k, κk,Z); this naturally de�nes a subset of km×κnk ×Zr

(where φ contains m variables of the valued �eld sort, n of the residue �eld
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sort, and r of the value group sort) consisting of those elements for which

the formula φ(k) = φ(k, κk,Z) is true. For instance, the formula

φ = (∃y(xy = 1)),

where x, y are variables of the valued �eld sort, gives rise to the subset

φ(k) = {x ∈ k : ∃y ∈ k such that xy = 1} = k×,

that is, the set of units in k. The formula h[m,n, r] consisting only of m free

variables of the valued �eld sort, n free variables of the residue �eld sort,

and r free variables of the value group sort, naturally gives rise to the set

km × κnk × Zr.

Remark. We recall that variables in �rst-order formulas can be free

or bound ; a variable x occurring in a formula is bound if it is quan-

ti�ed over, and is free otherwise. That is: if P is any property and

the formula takes the form ∀x(P ) or ∃x(P ), then x is bound in the

formula, and is otherwise free.

Note that the variable x is free in the formula x > 0, but is bound in the

formulas ∃x(x > 0) and ∀x(x > 0); furthermore, the same variable can be

both free and bound in the same formula, as in the (syntactically correct,

but false in every interpretation) formula

(x < 0) ∧ ∀x(x > 1).
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Let C be the collection of all pairs (k,$), where k is a nonarchimedean local

�eld (with the canonical ring homomorphism Z→ k), and $ is a uniformizer

of k; for brevity, we will usually write simply k ∈ C. Given an integerM ′ > 0,

we denote by CM ′ the collection of k ∈ C such that charκk > M ′.

The basic objects we will work with are the so-called de�nable sets. By a

de�nable set, we mean a collection X = (Xk)k of subsets of some h[m,n, r]

(we will write X ⊂ h[m,n, r]), indexed by k ∈ C, such that there exists a

Denef-Pas formula φ such that Xk = φ(k) for every k ∈ C.

We will use typical set-theoretic notations for de�nable sets, for instance

X ⊂ Y if and only if Xk ⊂ Yk for every k, and we will call a collection of

functions fk : Xk → Yk between de�nable sets X = (Xk)k and Y = (Yk)k a

de�nable function if the collection of graphs

{(
x, fk(x)

)
: x ∈ Xk

}
⊂ Xk × Yk, k ∈ C,

is itself a de�nable set. While de�nable functions seem to be very general,

they turn out to be analytic almost everywhere, a fact we will use below in

Section 4.4. We cite

Lemma 4.2.1. [CL08, Theorem 3.2.1] Let N > 0 be an inte-

ger and let Σ be a k-analytic de�nable submanifold of dimen-

sion d, 0 ≤ d ≤ N . Then every de�nable function on Σ is

k-analytic, outside a de�nable subset Σ̃ of smaller dimension.

By an isomorphism of de�nable sets, we mean ([CL15, ��4.1, 11.1]) a

de�nable function f : X → Y which has a de�nable inverse.
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Suppose S is a de�nable set; by a family of de�nable sets with pa-

rameter in S, we mean a de�nable set X ⊂ S × Y for some de�nable set Y ;

we will write X = (Xs)s∈S and de�ne

Xk,s = {y ∈ Yk : (s, y) ∈ Xk} (s ∈ Sk)

to be the family members of the family (Xs)s∈S . Note that for every k ∈ C

one has

Xk =
∐
s∈Sk

{s} ×Xk,s.

We remark that, by symmetry, a family of de�nable sets X ⊂ S × Y may

be equally well considered as a family of de�nable sets with parameter in Y :

indeed, if X ⊂ S × Y is any de�nable set, then

Xk =
∐
s∈Sk

{s} ×Xk,s =
∐
y∈Yk

Xk,y × {y}

for any k ∈ C, where Xk,y = {s ∈ Sk : (s, y) ∈ Xk}.

4.3 Motivic functions

The motivic functions are a class of complex-valued functions, built from

de�nable functions, which we de�ne in this section. We have

De�nition 4.3.1. [CGH14c, De�nition 5] Let X = (Xk)k be a de-

�nable set. A collection f = (fk)k of functions fk : Xk → C is called

a motivic function on X if there exist integers N,N ′, and N ′′, such
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that, for all k ∈ C, one has

fk(x) =
N∑
i=1

q
αik(x)
k

(
#(Yik)x

)( N ′∏
j=1

βijk(x)

)( N ′′∏
`=1

1

1− qai`k

)

for every x ∈ Xk, for some nonzero integers ai`, de�nable functions

αi : X → Z and βij : X → Z, and de�nable sets Yi ⊂ X × h[0, ri, 0],

where for x ∈ Xk we denote by (Yik)x the (�nite) set {y ∈ κrik :

(x, y) ∈ Yik}.

Parallel to our above de�nition, we will de�ne (for a de�nable set S) the

notion of a family of motivic functions with parameter in S: this will be

a motivic function on the family of de�nable sets X ⊂ S × Y . The family

members are functions

fk,s : Xk,s → C.

In fact, because our tools will only allow us to prove results in su�ciently

large residue characteristic, we will want to study functions which coincide

with motivic functions in large residue characteristic.

For this reason, we will abuse terminology by calling a collection of func-

tions fk : Xk → C motivic if there exists an integer M ′ > 0 and a motivic

function g = (gk)k such that fk = gk for all k ∈ CM ′ (and similarly for the

terms de�nable, isometry, etc.)

4.4 Motivic integration

One thing we can do with motivic functions is integrate them; for instance,

if f is a compactly-supported motivic function on a de�nable set X, then
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by picking a measure dµk on each Xk we should obtain, for every �eld k

of su�ciently large residue characteristic, a complex number zk =
∫
fk dµk.

In order to do this in a uniform manner (rather than simply for each �xed

k), we will need a uniformly given family of measures on each de�nable set

X = (Xk)k.

If X is an a�ne space, this is easily done: for X = h[m, 0, 0], we use Haar

measure on Xk = km normalized so that the measure of OmF is 1 (where OF

denotes the ring of integers of F ); for X = h[0, 0, r] (and indeed on all

de�nable subsets of h[0, 0, r]), we use the counting measure, as well as for

subsets of h[0, n, 0].

For arbitraryX, we follow the approach of [CL15, �9] and de�ne amotivic

measure |ω| on X to be a family of measures (ωk)k on each Xk that arises

from a de�nable volume form on X. The construction is fairly technical, and

we go over it in detail in Section 4.6; here, we will limit ourselves to a brief

overview.

Cluckers and Loeser (see, for instance, [CL10]) have developed a theory

of symbolic integration that specializes, in large positive characteristic, to

the usual integral on each �eld. Integration with respect to a given de�nable

volume form ω can also be constructed (as in [CL08]) in the same symbolic

framework, and specializes to the corresponding integral with respect to |ω|k,

for each valued �eld k.

Namely: if Σ↪→kN is an embedding of a k-analytic, de�nable, orientable

manifold of dimension d, and f : kN → k any de�nable function, one obtains
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a de�nable di�erential d-form

ω = f dxi1 ∧ dxi2 ∧ · · · ∧ dxid , 1 ≤ i1 < i2 < · · · < id ≤ N.

Such a di�erential form ω induces a measure |ω| on Σ. By a motivic mea-

sure on Σ we will mean any measure which arises in this way. That is:

De�nition 4.4.1. Let X = (Xk)k be a de�nable set. A motivic

measure µ = (µk)k on X is a family of measures µk on Xk such

that there exists some integer M ′ > 0 for which k ∈ CM ′ implies that

µk = |ωk|, for some de�nable di�erential form ω.

4.5 Motivic distributions

Now that the notion of a motivic measure is established, we may state the

following assertion about integration with respect to such measures:

Theorem 4.5.1. [ST16, Theorem B.4] Let f be a motivic

function on X × Y , where X,Y are de�nable sets and Y is

equipped with a motivic measure µ. Then there exists a mo-

tivic function g on X and an integer M ′ > 0 such that, for

each k ∈ CM ′ and each x ∈ Xk, one has

gk(x) =

∫
y∈Yk

fk(x, y) dµk(y),

whenever the function y 7→ fk(x, y) on Yk lies in L1(Yk, µk).

We remark that, given a motivic function f on a de�nable set X×Y , the
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set of x for which x 7→ fk(x, y) lies in L1(Yk, µk) need not be a de�nable set,

but is necessarily the zero locus of a motivic function on X (by [CGH14a,

�4]).

Very roughly, Theorem 4.5.1 states that the class of motivic functions is

closed under integration. This will turn out to be very useful.

De�nition 4.5.2. [CGH14b, Section 4.2] Let X ⊂ h[m, 0, 0] be a

de�nable set. A Schwartz-Bruhat function on X is a �nite linear

combination of characteristic functions of compact open balls in X,

with C coe�cients (such functions clearly specialize to locally con-

stant, compactly-supported functions on each Xk). A (complex)

motivic distribution on X is a collection of linear functionals

Φk : C∞c (Xk)→ C

such that there exists an integer M ′ > 0 for which k ∈ CM ′ implies

that, for every de�nable set S and every family (fs)s∈S of Schwartz-

Bruhat motivic functions on X with parameter in S, there exists a

motivic function g : S → C such that

Φk(fk,s) = gk(s) for all s ∈ Sk.

When we speak of motivic functions in the context of motivic distribu-

tions, we will always assume they are Schwartz-Bruhat class. We close by

extending this de�nition to families.

De�nition 4.5.3. Let X and S be de�nable sets. A family of mo-
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tivic distributions on X with parameter in S is a collection of linear

functionals

Φk,s : C∞c (Xk)→ C

such that there exists an integer M ′ > 0 for which k ∈ CM ′ implies

that, for every de�nable set S′ and every family (fs′)s′∈S′ of Schwartz-

Bruhat motivic functions on X with parameter in S′, there exists a

motivic function g : S × S′ → C such that

Φk,s(fk,s′) = gk(s, s
′) for all (s, s′) ∈ Sk × S′k.

4.6 Integrating on de�nable sets

In this ancillary section, we explain in some detail the way in which one

integrates motivically over de�nable sets, as de�ned above; we will mostly

follow the approach of [CHL11] and [CGH14b, �3.5.1].

By an isometry of de�nable sets f : X → X ′, we mean a de�nable

function such that

ord(x− x′) = ord
(
fk(x)− fk(x′)

)
for every x, x′ ∈ Xk and k ∈ C, where ord is a suitable extension of the ord

function de�ned as follows:

Extend the natural order on Z to the set Z ∪ {±∞}, and de�ne ord on

h[1, 0, 0] to be the extension of ord by ord(0) = +∞; for any n, r > 0, de�ne
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ord on h[0, n, r] via

ord(ξ, α) =


+∞ if ξ = α = 0,

−∞ otherwise,

where ξ ∈ h[0, n, 0], α ∈ h[0, 0, r].

Finally, de�ne ord on h[m,n, r] to be the in�mum of the natural restric-

tion of ord to the component factors h[m, 0, 0] = h[1, 0, 0]m and h[0, n, r].

Clearly ord(x) = +∞ if and only if x = 0, and ord(x) = −∞ unless

x ∈ h[m, 0, 0].

Let us now introduce two special kinds of de�nable sets, which we col-

lectively call cells.

De�nition 4.6.1. By a 0-cell in h[m+ 1, n, r] we mean a de�nable

subset Z0
S in which the last variable of the valued �eld sort is the

value of a de�nable function of the remaining variables, themselves

elements of the de�nable set S. That is, if (x, z) are co-ordinates on

h[m+ 1, n, r], with x ∈ h[m,n, r] and z ∈ h[1, 0, 0], then

Z0
S = {(x, z) ∈ h[m+ 1, n, r] : x ∈ S and z = c(x)}

for some de�nable function c : S → h[1, 0, 0]. Retaining these co-
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ordinates, we will de�ne a 1-cell to be a de�nable set Z1
S of the form

Z1
S =

{
(x, z) ∈ h[m+ 1, n, r] : x ∈ S

and ac(z − c(x)) = ξ(x)

and ord(z − c(x)) = α(x)
}
,

where

c : S → h[1, 0, 0], ξ : S → h[0, 1, 0] \ {0}, α : S → h[0, 0, 1]

are all de�nable functions.

Note that our restriction that ξ take nonzero values means that 1-cells are

not 0-cells. Roughly speaking, 0-cells have one variable equal to the value

of a de�nable function of the remaining variables, while 1-cells have (the

residue class and valuation of) one variable controlled by values of de�nable

functions of the remaining variables. We will see the importance of cells in

Theorem 4.6.2.

Before that, we provide the promised description of de�nable di�erential

forms; we review the construction from [CGH14b, �3.5.1].

Consider �rst the a�ne space kN with co-ordinates x1, . . . , xN . By a

de�nable di�erential d-form ω on kN we mean a �nite linear combination

of summands of the form

f dxi1 ∧ dxi2 ∧ · · · ∧ dxid , 1 ≤ i1 < i2 < · · · < id ≤ N,
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where each f is a de�nable function f : kN → k. By Lemma 4.2.1, we have

that if Σ ⊆ kN is a k-analytic, de�nable, orientable submanifold of dimension

d, such a d-form ω induces a measure on Σ, which we denote by |ω|. We

have the following

Theorem 4.6.2. [CHL11, Theorem 2.2.1] Let S ⊂ h[m,n, r]

be a de�nable set with m > 0. Then there exist nonnegative

integers n′, r′ and an embedding (i.e. an isometric isomorphism

onto the image)

λ : h[m,n, r]→ h[m,n+ n′, r + r′]

such that, if

π : h[m,n+ n′, r + r′]→ h[m,n, r]

is projection onto the �rst m, n, and r factors, respectively,

then π ◦ λ is the identity on S, and λ(S) is a �nite disjoint

union of cells.

Thus let us �x a de�nable di�erential d-form ω on kN . Theorem 4.6.2

implies that for any de�nable set Σ ⊆ kN of dimension d, there exist integers

s, t and a de�nable set Σ′ ⊂ Σ × κsk × Zt such that there exists a de�nable

bijection j : Σ′ → Σ; moreover, the restriction of j to the �rst factor coincides

with the projection map onto Σ, and, for every (ξ, α) ∈ κsk × Zt, the �bre

Σ′ξ,α = {x ∈ Σ : (x, ξ, α) ∈ Σ′} ⊆ Σ
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is (when nonempty) a k-analytic, de�nable, orientable manifold of dimension

at most d. In turn, Σ′ξ,α admits a de�nable, isometric isomorphism ι : Σ′ξ,α →

Ωξ,α ⊆ kd which is induced by one of the co-ordinate projections kN → kd.

The restriction of ω to Σ′ξ,α pulls back under ι−1 to a di�erential d-form ωξ,α

on Ωξ,α; because ωξ,α is a top-degree form on Ωξ,α, we may write

ωξ,α = f dx1 ∧ dx2 ∧ · · · ∧ dxd

for some de�nable function f : Ωξ,α → k, and we de�ne the measure |ω| on

Ωξ on every open subset U via

∫
U

d|ω| =
∫

Ωξ,α

|f | dx1 · · · dxd,

allowing us to integrate motivically.
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Chapter 5

Early motivic constructions

In this chapter we explain how various objects (�eld extensions, reductive

groups, etc.) are constructed in the Denef-Pas language. We mostly follow

[ST16, �B.4.2-3] and [CHL11, �4.1-2]. Most of our work in this chapter will

culminate in showing that connected reductive groups arise as a family of

de�nable sets with parameter in a known de�nable set.

5.1 Notation

In this chapter (and subsequently) we will combine the notations of our

previous chapters. It is therefore appropriate that we take a moment to

elucidate precisely how we are going to do this.

Ultimately we are going to show that connected, reductive groups are

de�nable by proving something like the following statement:

Claim. Let Ψ be a root datum, and let G be a connected, reductive

group with root datum Ψ and de�ned over a �eld of large residue

characteristic. Then there exists a Denef-Pas formula specializing at

F to G.

As F varies over all possible �elds and Ψ over all root data, we will obtain
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our desired claim.

Therefore, we will continue to use the symbol F to denote the local

�eld we �xed in Chapter 2.3, and E to denote certain separable extensions

F ⊂ E ⊂ Fs of that �eld. As in Chapter 4 we will use k for the arbitrary

local �eld at which we may specialize a Denef-Pas formula, and we will �x

once and for all a separable closure ks of each �eld.

5.2 Fixed choices

After [GH16, �2], we mean by a �xed choice a �xed set which does not de-

pend on the choice of local �eld in any way. These will be (�eld-independent)

objects such as real vector spaces, �nite groups, and root systems, and will

be used to construct certain objects using the Denef-Pas language.

A word on terminology: we may use the term determined by �xed choices

in two related, but subtly distinct ways, which we illustrate by an example:

let X be a �nite set and let n be a �xed positive integer, both of which we

will consider to be �xed choices. Then the set of all set maps X → Xn is

determined by these �xed choices, and can itself be taken as a �xed choice

(as it has no dependence on any underlying �eld). By contrast, the set

Yk = {x ∈ k : xn − 1 = 0}

clearly is not a �xed choice � the nth roots of unity in a �eld obviously depend

on the �eld in question; however, it is a de�nable set which is determined by

the �xed choices. We will try to be as explicit as possible in distinguishing
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between these two usages.

The results in our previous chapter demonstrate that many of the objects

with which we concern ourselves are determined by combinatorial data that

can be expressed abstractly. For instance, a split reductive group over a given

�eld is determined up to isomorphism by its absolute root datum, consisting

of a �nitely-generated free abelian group, a root system within it, and their

duals. The actual �eld of de�nition has no bearing on this fact.

In the next few sections, the objects we will take as �xed choices will be

the �nite group Γspl (this will play the rôle of the Galois group of a splitting

�eld of a maximal torus), and an absolute root datum Ψ = (X,R,X∨, R∨).

5.3 Field extensions

Let E/F be a Galois extension of our favourite �eld F with Galois group

Gal(E/F ) ∼= Γspl; ideally, we would like to show that there exists a Denef-

Pas statement which specializes at F to give the points of the �eld extension

E/F . To that end, we will describe what will go into a Denef-Pas formula

φ which, when true, de�nes at k a �eld extension k[E:F ]/k of degree [E : F ]

and Galois group isomorphic to Γspl.

Say [E : F ] = r and let k be an arbitrary �eld. Every Galois extension

of k of degree r can be realized as the splitting �eld of a monic, degree-r

polynomial with coe�cients in k, although we will realize many other rings

in this way. More precisely: for a = (ar−1, ar−2, . . . , a0) ∈ kr, de�ne

Pa(X) = Xr + ar−1X
r−1 + · · ·+ a1X + a0 ∈ k[X].
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We may then de�ne the quotient ring

ka = k[x]/(Pa(X)), (5.1)

which may or may not be a �eld. In order to restrict ourselves to the Galois

extensions with Galois group isomorphic to Γspl, we add certain (de�nable)

conditions on the r-tuples a.

Speci�cally: the extension ka/k will have the desired properties exactly

when the following conditions are satis�ed:

(1) The polynomial Pa(X) is irreducible over k.

(2) The polynomial Pa(X) is separable over k

(3) The extension ka/k is normal.

(4) There is an isomorphism Γspl
∼= Gal(ka/k).

We see explicitly how these conditions can be de�ned in the Denef-Pas lan-

guage:

(1) is de�ned by the concatenation of at most r statements of the form

¬
(
∃b0, . . . , bd−1, c0, . . . , cm−d−1

(Xd+bd−1X
d−1+· · ·+b0)(Xm−d+cm−d−1X

m−d−1+· · ·+c0) = Pa(X)
)
,

each of which is de�nable, as equality of polynomials is equivalent to

equality of respective coe�cients.
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(2) is equivalent to the statement that gcd(Pa(X), P ′a(X)) = 1; so, we can

encode it in the Denef-Pas language similar to (1) simply by saying that

Pa(X) and P ′a(X) have no common monic divisors in k[X] of degree

1, . . . , r − 1.

(3) is encoded in steps.

First, we observe that if the extension `/k is known to be �nite and

separable, then the statement that `/k is normal is equivalent to the

statement that ` is the splitting �eld of a polynomial in k[X]. Thus, it

is enough for us to include in φ the statement that Pa(X) splits over

ka; having assumed Pa(X) to be irreducible, its splitting �eld must have

degree at least r, and the statement that Pa splits over ka reduces the

problem to showing that ka is de�nable.

Observe that the relation Xr = −ar−1X
r−1 − · · · − a1X − a0 on k[X]

allows us to construct a k-algebra structure on the vector space kr; specif-

ically, it is isomorphic to the k-subalgebra of Matr×r(k) spanned by the

r matrices 1, A,A2, . . . , Ar−1, where

A :=



0 0 0 · · · 0 0 −a0

1 0 0 · · · 0 0 −a1

0 1 0 · · · 0 0 −a2

...
...

...
. . .

...
...

...

0 0 0 · · · 0 0 −ar−3

0 0 0 · · · 1 0 −ar−2

0 0 0 · · · 0 1 −ar−1



.
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Thus, the ring ka can be encoded as a de�nable subset of kr
2
in the

Denef-Pas language, with k included as the subalgebra spanned by 1.

In particular, it is now possible by this identi�cation to evaluate the

polynomial Pa(X) at ka points; the condition that ka/k is a normal

extension is now encoded in the Denef-Pas language as the statement

(additional to (1) and (2)) that there exist r roots of Pa(X) in ka.

(4) must be encoded using the language of rings, which does not allow us

a priori to posit the existence of a group isomorphism. However, by

explicitly appealing to its multiplication table we can write down in

Denef-Pas the condition that there exist matrices σ1, . . . , σr ∈ Matr×r(k)

and a bijective correspondence

ψ : Γspl
∼−→ {σ1, . . . , σr}

that respects the multiplication table.

More precisely, because Γspl = {γ1, . . . , γr} is �nite, we will require only

�nitely many statements of the form ψ(γi)ψ(γj) = ψ(γ`), as γiγj = γ`

varies over all possible products γiγj = γ` in Γspl. In particular, this

condition is de�nable.

Summarizing: per [ST16, �B.4.2], there exists a Denef-Pas formula SΓspl
⊆

kr+r
3
de�ning the set of all tuples (a, σ1, . . . , σr) such that ka/k is a Ga-

lois extension with Galois group isomorphic to Γspl and there is a group

isomorphism Γspl
∼−→ {σ1, . . . , σr}.

We may now quantify over all Galois extensions having a given Galois
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group in a uniform way. Notice, however, that we will have much redundancy

in this construction, as for instance the choice of σi is not unique.

Finally, suppose V is some variety de�ned over Q; then in particular,

there exists some integer nV > 0 such that V (Q) is the zero locus of �nitely

many polynomials f1, . . . , f` in d variables with coe�cients in Z[1/nV ].

For any local �eld k with characteristic > nV (or zero), the images of

the integers 1, . . . , nV under the canonical ring homomorphism Z → k are

invertible, and therefore have the well-de�ned map of polynomial rings

(Z[1/nV ])[X1, . . . , Xd]→ Ok[X1, . . . , Xd]

(where Ok ⊂ k is the ring of integers), which maps the set {f1, . . . , f`} to

the set {f̄1, . . . , f̄`}. In such a way, we have de�ned a variety over any k with

residue characteristic > nV .

De�nition 5.3.1. Let V be a variety de�ned over Q, and let nV > 0

be such that the de�ning equations f1, . . . , f` ∈ Q[X1, . . . , Xd] of V

are de�ned over Z[1/nV ]. For any k ∈ CnV , de�ne the k-points of V

to be the set V (k) of k-points of the variety de�ned by the equations

f̄1, . . . , f̄`, where f̄ ∈ k[X1, . . . , Xd] is the image of f ∈ Q[X1, . . . , Xd]

under the canonical homomorphism

(Z[1/nV ])[X1, . . . , Xd]→ k[X1, . . . , Xd].

The same construction allows us to de�ne, for any Galois extension k′/k

with k ∈ CnV , the k′-points of V .

79



5.4 Split reductive groups

Let k be a �eld. Recall that split connected reductive groups over k are

determined by their root datum; that is, there is a one-to-one correspondence

between the set of k-isomorphism classes of split connected reductive groups

G over k, and the set D of 4-tuples Ψ = (X,R,X∨, R∨) consisting of �nitely

generated free abelian groups X,X∨ in perfect pairing 〈, 〉 : X × X∨ → Z,

and root systems R ⊂ X,R∨ ⊂ X∨ in bijection by 〈, 〉 [Spr10, Theorem

9.6.2].

Observe that the objects in D can be described solely in terms of Z.

However, we caution that we will interpret Ψ ∈ D using the language of

rings, and not the Presburger language (used for variables of the value group

sort).

More precisely: for every Ψ ∈ D , let us �x a split connected reductive

group Spl(Ψ) over Q whose root datum is Ψ (again, we know such groups

exist by [Spr10, Theorem 10.1.1]). There exists an algebraic embedding

ϕΨ : Spl(Ψ)(Q)↪→GL(nΨ,Q) for some nΨ, and therefore there exists some

NΨ ∈ Z such that ϕΨ is de�ned by an equation with coe�cients in Z[1/NΨ].

This implies that ϕΨ de�nes an algebraic embedding Spl(Ψ)↪→GL(nΨ)

for every �eld with su�ciently large residue characteristic (which depends

only on Ψ). That is:

Lemma 5.4.1. Let Ψ be a root datum. If G is any split re-

ductive group with root datum Ψ, then there exist a de�nable

set G and an integer M ′ > 0 such that k ∈ CM ′ implies that

Gk = G(k). Moreover, the constant M ′ depends only on the
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root datum Ψ.

While we are at it, we will �x an algebraic embedding Gm(Q)r into

Spl(Ψ)(Q), where r is the rank of X. This will give us a distinguished

maximal split torus T in Spl(Ψ)(Q), which is the Levi component of a

minimal parabolic subgroup P0 of Spl(Ψ) (in this case, a Borel subgroup).

Thus, we can write T = M0, and consider the set L = L (M0) (from

Section 2.2). The images of the Levi subgroupsM ∈ L under our embedding

ϕΨ give us a �standard� set of embeddings into Spl(Ψ) (recall the de�nition

of L from Section 2.2).

5.5 Connected reductive groups

We will obtain general connected reductive groups by exploiting the corre-

spondence (established in Theorem 3.3.3) between the set of k-isomorphism

classes of ks-forms of connected reductive k-groups, and the elements of the

1-cohomology set H1(Γk,Autks(G)), where Γk = Gal(ks/k) and Autks(G)

is the group of ks-automorphisms of the algebra ks[G] (identi�ed with the

ks-automorphsims of the ks-variety G). That is, we will �twist� the group

G(k) to obtain all of its ks-forms.

We recall the construction from the proof of Theorem 3.3.3: having de-

�ned G, there is a natural action of Γk on ks[G] (hence on G(ks)) through

its action on the coordinates; if AΓk denotes the points of the Γk-module A

that are �xed by every element, then we have G(k) = G(ks)Γk . We twist

this action by the cohomology class [c] for c ∈ Z1(Γk, G(ks)) by de�ning a
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new action of Γk on k
s[G], viz.

γ ?c f := c(γ)(γ.f), γ ∈ Γk, f ∈ ks[G],

where γ.f is the canonical coordinate action; we put

k[G]c = {f ∈ ks[G] : γ ?c f = f for all γ ∈ Γk},

which is the function �eld of the ks-form Gc of G. As remarked above (e.g. in

the proof of Theorem 3.3.3), a di�erent choice of representative c′ of the class

[c] will give a k-isomorphic group.

In particular, our above remarks imply that if G is any connected reduc-

tive group with root datum Ψ, then there exists c ∈ Z1(Γk,Autks(Spl(Ψ)))

such that G = Spl(Ψ)c. However, because we cannot encode the in�-

nite extension ks/k in the Denef-Pas language, we will instead make use

of Lemma 3.3.4.

De�nition 5.5.1. Let Ψ be a root datum and let Γspl be a �nite

group. The de�nable set of 1-cocycles of Γspl in Aut(Spl(Ψ))

over ka is the set ZΨ,Γspl,a de�ned

ZΨ,Γspl,a,k = Z1(Γspl,Autka(Spl(Ψ)(ka))) (5.2)

for k ∈ C, where ka/k is an extension as in Equation (5.1) satisfying

Gal(ka/k) ∼= Γspl.

We remark that ZΨ,Γspl,a is indeed de�nable: we know ka/k is de�n-
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able from Section 5.3, and that Spl(Ψ)(ka) is de�nable for su�ciently large

residue characteristic (by Lemma 5.4.1, and recalling De�nition 5.3.1). The

automorphisms of this group de�ned over ka are exactly those de�ned by

ka-polynomial equations, and so are de�nable; and �nally, the 1-cocycle

condition is clearly de�nable (given our �xed choice Γspl).

Thus, rather than construct all connected, reductive algebraic groups

as de�nable sets, we will instead �x the Galois group Γspl (say) of a �nite

Galois extension of nonarchimedean local �elds, and show to be de�nable

all connected reductive algebraic k-groups which split over an extension ka/k

with Gal(ka/k) ∼= Γspl. As E and F vary over all �nite Galois extensions of all

such local �elds of su�ciently large residue characteristic, this construction

will give all connected reductive algebraic groups over such �elds.

To avoid vacuous constructions, let us assume that Γspl is the Galois

group of some �nite, tamely rami�ed extension of local �elds (in particular,

Γspl must be solvable, though we will not use this fact).

Lemma 5.5.2. Let G be a connected, reductive group over

k, let Γspl be the Galois group of the splitting �eld ka/k

of a maximally split maximal k-torus of G, and for c ∈

Z1(Γspl,Autka(G)), let Gc be the group obtained by twisting

G by c. The set

{Gc : c ∈ Z1(Γspl,Autka(G))},

as a varies over all suitable coe�cients in k|Γspl| (as in Sec-

tion 5.3), exhausts the set of k-groups with the same absolute

83



root datum as G.

Proof. The lemma is an easy application of Corollary 3.3.4: the ka-forms

of G are parameterised by the elements of H1(Γspl,Autka(Spl(Ψ))), with

classes [c] and [c′] giving rise to a k-isomorphic twisted group Gc ∼= Gc′ if

and only if [c] = [c′].

It is clear also that all Levi subgroups of a given connected, reductive

group G are also twisted forms of Levi subgroups of the split form of G.

As such: to show that connected, reductive groups are de�nable in the

Denef-Pas language, it su�ces to show that Autka(G) is a de�nable set;

but this is clear, as an algebraic automorphism of G is de�ned by invertible

polynomial equations. Our result now follows immediately, and we have that

the set ZΨ,Γspl,a gives a parameterising set for the set of connected reductive

groups over k which split over the extension ka/k with Gal(ka/k) ∼= Γspl

and with absolute root datum Ψ. Moreover, this set is de�nable whenever

the residue characteristic of k is large enough (recall Lemma 5.4.1). As with

�eld extensions, the parameterisation is not unique, and there will be many

k-isomorphic groups arising from our construction.

We emphasize the independence of these results from the �elds k to

which we specialize; as in Lemma 5.4.1 the dependence is not on the �eld

k, but the root datum Ψ. Finally, we close by quoting an earlier result,

which also includes a statement about the Lie algebras of the groups we

have constructed:

Lemma 5.5.3. [CGH18, Proposition 4.1.1] For every root da-
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tum Ψ there exists a de�nable set ZΨ and families of de�nable

sets (Gz)z∈ZΨ
and (gz)z∈ZΨ

with parameter in ZΨ such that,

for all k with su�ciently large residue characteristic, the set

Gz,k is the set of k-points of a connected reductive group Gz

with absolute root datum Ψ, and the set gz,k is the set of k-

points of the Lie algebra of the group Gz. Moreover, all k-

isomorphism classes of connected reductive groups with root

datum Ψ arise in this way.

The set ZΨ in question is essentially constructed in the same way as our

set ZΨ,Γspl,a from Equation (5.2). Thus: the same set ZΨ that parameterizes

connected reductive groups also parameterizes their Lie algebras.
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Chapter 6

Later motivic constructions

In this chapter we collect several new results on the de�nability or motivicity

of various objects attached to the trace formula, culminating in a proof of

our main Theorem 6.7.1.

6.1 Trivializing extensions

We begin with a short section describing a very large �eld extension kΨ/k, de-

�ned for any local �eld k, attached to a given root datum Ψ. It is constructed

in such a way that all maximal k-tori in any connected reductive k-group G

with absolute root datum Ψ split over kΨ, and such that [kΨ : k] <∞ when

the residue characteristic of k is su�ciently large.

We start by quoting the following classical result, as formulated

by [KST20, Lemma 3.4]:

Theorem 6.1.1. Let Ψ be a root datum. There exist integers

M ′ and dΨ > 0 such that, for every �eld k ∈ CM ′ and every

connected reductive group G de�ned over k with absolute root

datum Ψ, the group G splits over an extension of k of degree

at most dΨ. In fact, every maximal k-torus of G splits over an

86



extension of degree at most dΨ.

Motivated by this theorem, we make the following

De�nition 6.1.2. Let Ψ be a root datum, let dΨ be the constant

from Theorem 6.1.1, and for any �eld k put

kΨ =
∏

[k′:k]≤dΨ

k′ (6.1)

for the compositum of all Galois subextensions k ⊂ k′ ⊂ ks of degree

≤ dΨ.

We remark that, if k1 and k2 are two �nite Galois subextensions of k ⊂ ks,

then their compositum k1k2 is de�nable: it is the degree-
[k1:k][k2:k]
[(k1∩k2):k] extension

of k that contains both k1 and k2 (of course, it is also possible to de�ne it

explicitly by means of polynomials, as in Section 5.3).

The motivation for De�nition 6.1.2 is the following observation: because

every k-torus of any reductive k-group G with root datum Ψ must split over

kΨ, the action of Gal(ks/k) on G(ks) must factor through Gal(kΨ/k), and

therefore Gal(ks/kΨ) acts trivially on the character lattice of any maximal

torus of G. In this situation (i.e. when ktriv/k is a Galois extension for which

Gal(ks/ktriv) acts trivially on all character lattices of all maximal tori in G),

we will say that the action of Gal(ks/k) on G trivializes over ktriv, and we

will call ktriv/k a trivializing extension.

Observe now that, if the residue characteristic of k is su�ciently large (in

particular if it is greater than dΨ), then all of these subextensions k ⊂ k′ ⊂ ks

are tamely rami�ed, and so there are only �nitely many of them; moreover,
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the number of such extensions is bounded independently of k. We give

the following result, which combines [BHH+15, Theorem 5.16] and [JR06,

Proposition 2.2.1]:

Proposition 6.1.3. Let r > 0 be an integer. There exists

M ′ > 0 such that k ∈ CM ′ implies that the number of tamely

rami�ed extensions of k of degree r is �nite. Moreover, this

bound depends only on r.

Proof. We will split into to cases, according as to whether the characteristic

of k is 0, or positive.

Suppose �rst that char k = 0, so that k is a �nite extension of some

Qp; by taking M ′ su�ciently large, we may assume further that k is tamely

rami�ed over Qp, and that any degree-r extension of k is also tamely ram-

i�ed. In particular: if k′/k is any extension of degree r, then there exists a

subextension k ⊂ ku ⊂ k′ such that ku/k is unrami�ed and k′/ku is totally

(tamely) rami�ed. For brevity, let us write f = [ku : k] and e = [k′ : ku].

By [Has80, Chapter 16], there are exactly e totally tamely rami�ed ex-

tensions of ku of degree e, and it is a classical result that there is a single

unrami�ed subextension of k ⊂ ks of degree f . As such, there are no more

than ∑
e|r

e

tamely rami�ed extensions of k of degree r. We remark that this number is

precisely the sum-of-divisors function σ1(r), but we will not use this notation

to avoid confusion with our Galois actions.
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Now, suppose char k = p, so that k is a �nite extension of some Fp((t)),

and suppose k′/k is a tamely rami�ed extension of degree r; we proceed as in

the proof of [BHH+15, Theorem 5.6]. We recall the relative discriminant

of the extension k′/k, de�ned analogously to the number �eld case.

That is: if Ok and Ok′ are, respectively, the ring of integers of k and the

ring of integers of k′, �x a basis (δ1, . . . , δr) of Ok′ over Ok, and let τ1, . . . , τr

denote the r distinct k-embeddings k′↪→ks. The relative discriminant of

k′/k is the ideal of Ok de�ned

disc(k′/k) := (det(τi(δj)))
2,

where (τi(δj)) is the r × r matrix whose (i, j)-th entry is τi(δj).

The extension k′/k again admits a subextension k ⊂ ku ⊂ k′ such that

ku/k is unrami�ed and k′/ku is totally (tamely) rami�ed; as before put

e = [k′ : ku] and f = [ku : k]; the extension ku/k is unique and so there are

as many such tamely rami�ed extensions k′/k as there are totally tamely

rami�ed subextensions k′/ku of degree e, as e varies over all divisors of r.

Therefore consider the totally tamely rami�ed extension k′/ku, and let

f(X) ∈ ku[X] be a minimal polynomial for this extension so that k′ =

ku[X]/(f(X)). We know that any totally rami�ed extension of ku can be

obtained by adjoining the root of an Eisenstein polynomial; therefore, we

may assume without loss of generality that we can write

f(X) = Xe + ae−1X
e−1 + · · ·+ a1X + a0 ∈ ku[X],
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with vku(ai) ≥ 1 for all i = 0, . . . , e − 1 and vku(a0) = 1 (where vku is, as

usual, the normalized valuation (ku)× → Z). By [BHH+15, Lemma 5.5], the

discriminant of the extension k′/ku is the same as the polynomial discrimi-

nant disc(f); moreover, we have disc(f) = e ·vku(f ′($)) for any root $ of f ,

and (because such $ must be a uniformizer of k′) we have also vku($) = 1
e .

The formal derivative of f(X) is

f ′(X) = eXe−1 + (e− 1)ae−1X
e−2 + · · ·+ a1,

and we observe that vku(n) = 0 whenever n ∈ Z (as ku is an extension of

Fp((t))); furthermore, for 1 ≤ i ≤ r − 1 we observe that

vku(iai$
i−1) = vku(i) + vku(ai) + vku($i−1) = vku(ai) +

i− 1

e

and

vku(e$e−1) =
e− 1

e
,

so all the summands in the expression

f ′($) = e$e−1 + (e− 1)ae−1$
e−2 + · · ·+ a1

have distinct valuations. It follows that

vku(f ′($)) = min
1≤i≤e−1

{
vku(ai) +

i− 1

e
,
e− 1

e

}
,
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which is clearly e−1
e because each vku(ai) ≥ 1. That is,

disc(k′/ku) = disc(f) = e · vku(f ′($)) = pe−1
ku ,

where pku is the prime ideal of Oku . Thus we see that all degree e totally

tamely rami�ed extensions of ku have discriminant pe−1
ku . By [BHH+15, The-

orem 5.16], there are exactly e such extensions, and so the total number of

tamely rami�ed extensions k′/k is again

∑
e|r

e

and we are done.

We immediately have

Lemma 6.1.4. Let Ψ be a root datum. There exists an inte-

ger M ′ > 0 such that k ∈ CM ′ implies that kΨ/k is a �nite

extension, where kΨ is the extension de�ned in Equation (6.1).

In particular, kΨ is de�nable when k ∈ CM ′.

Finally, we close with

Corollary 6.1.5. Let Ψ be a root datum. There exists M ′ > 0

such that, for all k ∈ CM ′, one has |Gal(kΨ/k)| ≤ b(Ψ), where

bΨ :=

dΨ∏
i=1

∑
e|r

e

(
∑
e|r e)

,
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and dΨ is the constant from Theorem 6.1.1.

Proof. For large enough residue characteristic, subextension of k ⊂ ks of

degree ≤ dΨ is tamely rami�ed. Clearly Gal(kΨ/k) can be no larger than

the product of all values [k1 : k], as k1/k varies over all (tamely rami�ed)

subextensions of ks of degree at most dΨ.

As in the proof of Proposition 6.1.3, there are exactly
∑

e|r e tamely

rami�ed extensions of k of degree e, and so we have

|Gal(kΨ/k)| ≤
∏

[k′:k]≤dΨ

|Gal(k′/k)|

=

dΨ∏
i=1

 ∏
[k′:k]=i

|Gal(k′/k)|

 =

dΨ∏
i=1

∑
e|r

e

(
∑
e|r e)

,

as claimed.

6.2 Fixed choices

In this section we will collect the �xed choices which we will rely on to

construct the trace formula in the Denef-Pas language. Our notation will be

deliberately reminiscent of the constructions in Chapter 2.

We begin with a root datum: more precisely, we �x:

I. A �nitely-generated free abelian group X and its dual X∨ =

Hom(X,Z).

II. A �nite (abstract) root system R ⊂ X and its dual R∨ ⊂ X∨.

Fixed choices I and II determine a root datum Ψ = (X,R,X∨, R∨); our
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remaining �xed choices will be made, so to speak, compatibly with this root

datum.

Therefore let M ′ > 0 be such that the assumption of Lemma 6.1.4 is

satis�ed. We continue to �x:

III. A �nite group Γspl together with an action on X (and hence on X∨).

IV. A subset D ⊂ R.

V. A subset D0 ⊂ D.

VI. An action τ of Γspl onD preservingD0 (this will give a void construction

unless τ is compatible with the action de�ned in equation 2.7).

VII. The real vector space V := R ⊗Z X and its Γspl-�xed subspace FV

spanned by FX := XΓspl .

VIII. For each sub-root system R′ of R, the Weyl group W = W (R′) and its

induced action on V , from De�nition 2.3.7.

IX. A positive de�nite symmetric bilinear form (, ) on V which is W -

invariant.

X. The real dual vector space V ∗, identi�ed with V by (, ).

XI. The orthogonal projection π : V → FV and the set FD := π(D −D0)

(from Equation (2.5)).

XII. The set of all sub-root systems of FR.
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XIII. For every inclusion of subsets FDP ↪→FDQ of FD, an inclusion of real

vector spaces aQ↪→aP of respective dimensions

dimV − rkR+ |FDQ| and dimV − rkR+ |FDP |,

writing a0 for the real vector space corresponding to the entire set FD.

XIV. The real dual vector spaces ia∗P of the spaces in item XIII.

XV. For each subset FDP of FD, an element λP ∈ a0 satisfying 〈α, λP 〉 > 0

if and only if α ∈ FDP (for α ∈ FD).

XVI. For every sub-root system RM of FR, a regular element λM of ia∗M .

XVII. For every sub-root system RM of FR, a system of roots MR in R

mapped to FR under π (such a system exists by [Spr10, Lemma

15.5.1(ii)]).

XVIII. For every sub-root system RM of FR, its Weyl group W (RM ), as de-

�ned in �xed choice VIII.

XIX. For every sub-root system RM of FR, the set of chambers in the vector

space aM , where aM = aMP
for any parabolic P with Levi factor M .

XX. The integer b(Ψ) from Corollary 6.1.5.

XXI. A set FG(Γspl,Ψ) of representatives Γ̃ of every isomorphism class [H]

of �nite groups H with |Γspl| ≤ |H| ≤ b(Ψ) (this is evidently a �nite

set).
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We remark that, in �xed choice XXI, we have many extraneous groups: the

elements Γ̃ will play the rôle (in our constructions) of the Galois group of a

�nite extension of local �elds, and as such Γ̃ will only generate non-vacuous

sets if Γ̃ is isomorphic to such a Galois group. In particular, every non-

solvable group Γ̃ will be irrelevant to our purposes (as will many solvable

groups), but this will cause no harm.

In the remaining sections, we will explain how these �xed choices help us

build the trace formula.

6.3 Parameterizing sets

In this section we construct de�nable sets which parameterize various terms

in the trace formula; the notable exception is TM itself, to which we devote

Section 6.4. Lemma 5.5.3 is a good start, but does not give us everything we

need: for instance, while this tells us how to construct the k-points of gz, it

does not tell us how to obtain the points of treg ⊂ gz for the Lie algebra t of

every maximal elliptic torus T in Gz.

Here, we add some detail to the construction, in preparation for the next

section. At the same time, we make a de�nable parameterization of Levi

subgroups and parabolic subgroups.

In order to do this, we must appeal to the indexed root datum iΨ coming

from our �xed choices I�VI.

Proposition 6.3.1. Let iΨ = (X,D,X∨, D∨, D0, τ) be an in-

dexed root datum and let ΛiΨ be the collection of elements λM

from �xed choice XVI. There exist:
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� an integer M ′ > 0,

� a de�nable set ZiΨ, and

� families of de�nable sets (Gz)z∈Z
iΨ
, (gz)z∈Z

iΨ
,

(Tz)z∈Z
iΨ
, and (P0,z)z∈Z

iΨ
with parameter in ZiΨ,

and

� a family of de�nable sets (M)(z,λ)∈Z
iΨ
×Λ

iΨ
with parame-

ter in ZiΨ × ΛiΨ

such that, for all k ∈ CM ′ and all z ∈ Z
iΨ,k:

� Gz,k is the set of k-points of a connected reductive group

Gz with indexed root datum iΨ;

� the set gz,k is the set of k-points of the Lie algebra of the

group Gz;

� the set Tz,k is the set of k-points of a maximally split

maximal k-torus of Gz;

� the set P0,z,k is the set of k-points of a minimal parabolic

k-subgroup of Gz containing Tz;

� the set Mz,λ,k is the set of k-points of a Levi subgroup of

Gz,k which contains Tz, for every λM ∈ ΛiΨ. Moreover,

all Levi subgroups of Gz arise as such Mz,λ.

We will refer to the sets ZiΨ and ΛiΨ in the remaining sections, below,

to help us prove our main theorem.
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Proof. First of all: we already know that we can construct Gz and gz to

have a given root datum (by Lemma 5.5.3). We obtain a maximal torus Tz

in Gz easily: we have seen that Gz is a twisted form of Spl(Ψ), and Tz is

precisely the image of T ⊂ Spl(Ψ) under this twisting.

Fixed choice XVI allows us to use the element λ0 ∈ ia∗0 to construct the

de�nable subset P0,z of Gz via

P0,z,k = {x ∈ Gz,k : lim
t→0

λ0(t)−1xλ0(t) exists.},

which by our remarks in Section 2.2 we know will be the k-points of a minimal

parabolic subgroup of Gz de�ned over k. We remark that the predicate

involving the limit is indeed de�nable: it may be stated in the form

∃y ∈ Gz,k(∀n ∈ Z∃n′ ∈ Z(ord(t) > n′

=⇒ min
i,j
{ord((λ0(t)−1xλ0(t)− y)i,j)} > n))),

where the minimum is taken over the (�nitely) many entries of the matrix

λ0(t)−1xλ0(t)−y. It is now possible for us to compute the index of the triple

(Gz,k,P0,z,k,Tz,k) (recall Section 2.6), which is evidently determined by the

element z of ZΨ,Γspl
.

Recall the index of the triple (G,P0, T ) from Section 2.6; much like the

root datum, it is determined by de�nable conditions onX∗(T ), and so having

constructed the triple (Gz,k,P0,z,k,Tz,k) we can now compute its index in

the Denef-Pas language. We can therefore make a de�nable condition on

z ∈ ZΨ,Γspl,a to assert that the index of (Gz,k,P0,z,k,Tz,k) coincides with
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the index of iΨ whenever the residue characteristic of k is su�ciently large.

It follows that, if we de�ne ZiΨ,Γspl,a to be the set of all z ∈ ZΨ,Γspl,a for

which this condition is true, then

ZiΨ =
⋃
a

ZiΨ,Γspl,a,

the union taken over all suitable tuples a, is precisely the de�nable set as-

serted by the proposition.

Finally, we can perform this construction for all the elements λM from

�xed choice XVI, and replacing λM by λ−1
M in the above construction will

result in constructing the opposite parabolic; we can then take their intersec-

tion to obtain a Levi subgroup of Gz, as in Section 2.5. By Theorem 2.5.6,

we know that in this way we will construct all Levi subgroups of Gz, if the

rational root system of Gz is the same as that from our �xed choices, and

we are done.

6.4 Elliptic maximal tori

One of the indices of summation in the trace formula is TM , a set of rep-

resentatives of rational conjugacy classes of elliptic maximal tori in M , for

all M ∈ L ; this will prove to be one of the more challenging obstacles to

overcome in establishing the trace formula to be motivic. As such, we devote

the current section to establishing that the set TM can be encoded in the

Denef-Pas language.

To construct TM , we �rst construct a complete set of representatives for
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the rational conjugacy classes of maximal tori in M , and then show that

ellipticity is a de�nable condition. Per Theorem 3.3.1, TM is in bijection

with ker(M,T ) (for any maximal torus T in G), i.e. the set of equivalence

classes in H1(Gal(kΨ/k),NormM (T )(kΨ)) of cocycles of the form

σ 7→ x−1xσ for some x ∈ G(kΨ).

We cannot encode this set of equivalence classes directly in the Denef-Pas

language. However, with our �xed choice of root datum Ψ, we can make a

Denef-Pas statement which will help us construct a de�nable set of repre-

sentatives of these equivalence classes.

Recall from Theorem 3.4.2 that the constant b(Ψ,Gal(kΨ/k)) (from Def-

inition 3.4.3) satis�es

|H1(Gal(kΨ),NormG(T )(kΨ))| ≤ b(Ψ,Gal(kΨ))

=
(
|W (R)| · |Perm(R)|

)[kΨ:k]
.

From this, we obtain the valid (if crude) bound

|H1(Gal(kΨ),NormG(T )(kΨ))| ≤
(
|W (R)| · |Perm(R)|

)b(Ψ)

(where b(Ψ) is the constant from Corollary 6.1.5), which is completely de-

termined by our �xed choices I�III.

Now, recall from Section 5.4 that, if Ψ in any root datum, we can con-

struct a split group Spl(Ψ) with root datum Ψ over Z[1/NΨ] with an em-

bedding into GL(nΨ,Q). We may further assume, without loss of generality,
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the existence of a maximal torus T in Spl(Ψ) whose image in GL(nΨ,Q) is

diagonal.

In this way, we may choose a �distinguished� torus T in Spl(Ψ); in the

same way that every group G with root datum Ψ is obtained by twisting the

group Spl(Ψ), their maximal tori can be obtained by twisting T.

Having �xed T ⊂ Spl(Ψ), we see that the twisted torus Tz (for z ∈ ZΨ)

lies in Gz. By Theorem 3.3.1, there is a one-to-one correspondence between

the set of k-rational conjugacy classes of maximal tori in Gz, and the kernel

of the homomorphism

H1(Gal(ks/k),NormGz(Tz)(k
s))→ H1(Gal(ks/k),Gz(k

s)),

under which the rational class of Tz corresponds to the distinguished class.

Because we cannot work over the in�nite extension ks/k, we will instead work

over the trivializing extension kΨ/k. Having �xed Ψ, let us assume that the

residue characteristic of k is large enough that the result of Proposition 6.1.3

holds, and therefore that [kΨ : k] ≤ b(Ψ).

Although we now know that kΨ/k is de�nable, we do not know that

the Galois group of this extension is independent of k. As such, we must

appeal to �xed choice XXI: suppose Γ̃ is one of our groups chosen there. The

statement that Gal(kΨ/k) ∼= Γ̃ is de�nable, by the same argument given in

Section 5.3.

Therefore, for each such Γ̃, we append this statement to all further con-

structions: then, given k, this statement is true for precisely one Γ̃, which

we will then take in place of Gal(kΨ/k).
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Thus, from now on, we will let Γ̃ ∈ FG(Γspl,Ψ) and assume that k

satis�es Gal(kΨ/k) ∼= Γspl. Our remarks imply the existence of an integer

M ′ > 0 such that, if k ∈ CM ′ , we have isomorphisms

H1(Gal(ks/k),NormGz(Tz)(k
s)) ∼= H1(Γ̃,NormGz(Tz)(kΨ))

and

H1(Gal(ks/k),Gz(k
s)) ∼= H1(Γ̃,Gz(kΨ)),

and we see that all maximal tori in Gz can be obtained by twisting Tz by

elements of the cocycle space Z1(Γ̃,NormGz(Tz)(kΨ)) (by Theorem 3.3.1).

Thus:

Lemma 6.4.1. There is a de�nable set YiΨ = (Yz)z∈Z
iΨ

with

parameter in ZiΨ and an integer M ′ > 0 such that, if k ∈ CM ′,

then there exists a unique Γ̃ ∈ FG(Γspl,Ψ) (from �xed choice

XXI) such that

Yz,k = Z1(Γ̃,NormGz(Tz)(kΨ)).

Moreover, if we denote by Tz,y,k the k-points of the maximal

torus of Gz obtained by twisting Tz by the cocycle y ∈ (YiΨ)k,z,

then all maximal k-tori in Gz arise as some such Tz,y,k.

We remark that the group Γ̃ in question is exactly Gal(kΨ/k), which may

depend on the �eld of specialization k. The second assertion of the lemma

is an easy consequence of Theorem 3.3.1. We point out again that this is
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possible precisely because every torus in Gz splits over kΨ, which in our case

is �nite and de�nable.

Using the bound b(Ψ), we can now make the following simpli�ed state-

ment in the Denef-Pas language:

Statement M-i. Let G be a connected, reductive group over k with

maximal torus T and root datum Ψ, and let M ⊃ T be a Levi sub-

group. Let i be an element of the set

{
1, 2, . . . ,

(
|W (R)| · |Perm(R)|

)b(Ψ)
}
,

let Γ̃ be an element of FG(Γspl,Ψ), and let M-i(Γ̃) be the state-

ment �There exists a set of i inequivalent classes of cocycles of Γ̃ in

NormM (T )(kΨ), and no set of i + 1 inequivalent classes of cocycles

of Γ̃ in NormM (T )(kΨ), which have the form σ 7→ x−1xσ for some

x ∈ G(kΨ)�.

Given Γspl, statement M-i(Γ̃) is true for exactly one integer i in

the set {1, 2, . . . , (|W (R)| · |Perm(R)|)b(Ψ)}.

Let us call such a set of cocycles a maximal set of cocycles of Γ̃ in

NormM (T )(kΨ). Roughly speaking: we are able to posit, in the Denef-Pas

language, the existence of a complete set of representatives of the set

ker
[
H1(Gal(kΨ/k),NormG(T )(kΨ))→ H1(Gal(kΨ/k), G(kΨ))

]
,

whenever the residue characteristic of k is su�ciently large.

Now, we can put this simpli�ed statement to use in our construc-
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tion of reductive groups and their attached objects. Recall the de�nable

sets ZΨ,Tz,Mz,λ, etc. from Proposition 6.3.1. When true, Statement M-

i lets us de�ne a set of exactly i inequivalent cocycles of Gal(kΨ/k) in

NormMz,λ
(Tz)(kΨ), to each element c of which we associate the twisted

group Tz,c obtained by twisting Tz by c (recall Lemma 6.4.1). The resulting

maximal set of cocycles Θ(Mz,λ) parameterises the elements of TMz,λ
. We

have

Proposition 6.4.2. Let iΨ be an indexed root datum and re-

call the notation of Proposition 6.3.1 and Lemma 6.4.1. There

exists an integer M ′ > 0 such that, whenever k ∈ CM ′ , the

following statement is true: �For all z ∈ Z
iΨ,k and λ ∈ ΛiΨ,

there exists a maximal set Θ(λ) = Θ(λ, iΨ) of pairwise inequiv-

alent cocycles of Gal(kΨ/k) in NormMz,λ
(Tz)(kΨ) of the form

σ 7→ x−1xσ for some x ∈Mz,λ(kΨ), for all z ∈ ZiΨ.�

This proposition in turn yields our desired result, viz.

Corollary 6.4.3. Let iΨ be an indexed root datum and let

(Gz)z∈Z
iΨ

be as in Proposition 6.3.1. There exist an integer

M ′ and a family of de�nable sets (ϑz,λ)(z,λ)∈Z
iΨ
×Λ

iΨ
with pa-

rameter in ZiΨ × ΛiΨ such that, if k ∈ CM ′ , then ϑz,λ,k is a

complete set of representatives of rational conjugacy classes of

maximal elliptic tori in Mz,λ,k.
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Proof. Retaining the notation of Proposition 6.4.2: let y ∈ Θ(λ) and let

Tz,λ,y ⊂Mz,λ ⊂ Gz

be a maximal torus in Mz,λ de�ned by the cocycle y. We aim to show that

the statement �Tz,λ,y is elliptic in Mz,λ� is Denef-Pas.

Observe by the de�nitions that Tz,λ,y is elliptic in Mz,λ if and only if

the only characters of Tz,λ,y that are �xed by the action of Γ̃ are characters

of the centre of Mz,λ. The cocycle y de�nes an action (σ, χ) 7→ σ.χ of Γ̃ on

X∗(Tz), which is de�nable; thus, the statement of ellipticity is

∀χ ∈ X∗(Tz)(¬(σ.χ = χ) ∨ (∃χ′ ∈ X∗(Z(Mz,λ))(χ = χ′))),

which is clearly de�nable.

So we have shown that the set TM for M ⊂ Gz is parameterized by the

de�nable set ϑz,λM .

6.5 Measures

In this section we demonstrate that the measures dẋ, dẏ, and dX, as well as

the integration over AM (F )\G(F ), t(F ), and summations over L and TM

that appear in the trace formula may indeed be speci�ed in the Denef-Pas

language to give motivic integrals.

First, we deal with counting measures. By Theorem 2.5.6, the set L is

in one-to-one correspondence with the set of sub-root systems of FR, i.e. our
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�xed choice XII. On the �nite set L we can place the measure

µ(RM ) =
|W (RM )|
|W (FR)|

where RM is the sub-root system of FR de�ned in Equation (2.6), which is

a rational (i.e. Q-valued) constant determined by the �xed choices XVIII. It

is an integer scaling of the usual counting measure on L , and so it follows

from Theorem 4.5.1 that this measure is motivic.

The next term in the trace formula (reading from left-to-right) is the

sum over T ∈ TM of an integral scaled by 1
|W (M,T )| . We know that 1 ≤

|W (M,T )| ≤ |W (R)|, which is a �xed choice; therefore, as before, we will

stratify the sum over those T with a Weyl group of a given cardinality.

More precisely: for each nW ∈ {1, 2, . . . , |W (R)|}, let ϑz,λM ,nW ⊂ ϑz,λM

be the subset consisting of those y satisfying

|W (M,Ty)| = nW .

This condition can be written explicitly in the Denef-Pas language by assert-

ing that there is a set of nW pairwise inequivalent elements of NormM (Ty)

modulo conjugation by Ty(k), and no such set of nW +1 pairwise inequivalent

elements. It follows that ϑz,λM ,nW is de�nable, and we write

∑
T∈TM

aT =

|W (R)|∑
nW=1

1

nW

∑
|W (M,T )|=nW

aT ,

where aT is any summand indexed by T ∈ TM . The inner sum is a (motivic)
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integral over a �nite set, with respect to the counting measure, while the

outside sum is a sum of a bounded number of motivic functions. As TM

itself is de�nable, it follows that the measure

µ(T ) =
1

|W (M,T )|

on TM is motivic.

By Lemma 6.4.1 there is a de�nable set YiΨ with parameter in ZiΨ pa-

rameterizing the set of maximal k tori in any group with indexed root datum

iΨ (for k with su�ciently large residue characteristic). The same construc-

tion as in Lemma 5.5.3 allows us to take the Lie algebras of these tori, and

we have (using the notation established there)

Corollary 6.5.1. Let iΨ be an indexed root datum. There

exist a de�nable set ZiΨ, a family of de�nable sets (YiΨ,z)z∈ZiΨ

with parameter in ZiΨ, and families of de�nable sets (Ty)y∈iΨ

and (ty)y∈Y
iΨ

with parameter in YiΨ such that there existsM ′ >

0 for which k ∈ CM ′ implies that, for every z ∈ Z
iΨ,k and every

y ∈ Y
iΨ,z,k, the set Ty,k is the set of k-points of a maximal torus

in Gz and ty,k ⊂ gz,k is the set of k-points of the Lie algebra

of Ty,k. Moreover, all maximal tori of Gz arise in this way.

Over Q, we can �x an (algebraic) isomorphism on neighbourhoods of the

identity Ug → UG, X 7→ 1 + X, as in Section 2.7; this isomorphism will be

de�ned for all �elds of su�ciently large residue characteristic. The measure

dX chosen on treg is the unique Haar measure for which this map locally
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preserves measures.

In Section 2.7 we chose Haar measure on M0 arbitrarily; now, we will

specify that the measure onM0(F ) is motivic. It will then follow immediately

that the measure dx on G(F ) is motivic, and hence also the measure dX on

each treg(F ).

Should there be any concern about the motivicity of the measure dn on

NP chosen in that section, we may freely replace it with any de�nable Haar

measure dn′ to obtain a new Haar measure dx′ on G; the resulting functional

JG(f1, f2) will then be scaled by the same constant as JG(f̂1, f̌2), and the

validity of the trace formula remains unchanged.

It remains only to discuss the integration spaces AM (F )\G(F ) and

the measures dẋ. We recall from Equation (2.9) that the measure dẋ on

AM (F )\G(F ) is de�ned by the measure dx̄ on T (F )\G(F ), and so we need

only specify how to integrate over the orbit T (F )\G(F ), which is identi�ed

with the orbit of a regular element of T (F ) under the adjoint action of G,

and is hence de�nable. Thus, it su�ces to show that the measure dx̄ on

T (F )\G(F ) is motivic.

This is not hard: maximal tori T in G arise as centralizers of regular

elements of the Lie algebra t. That is: there exists a �nite family of elements

{XT : T ∈ T } in treg such that

T = ZG(XT ) = {x ∈ G : Ad(x)XT = XT }

for all T ∈ TM .

It now follows immediately from [CGH18, Lemma 4.3.2] that there exists
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a motivic measure dx̄ on T\G � and hence a motivic measure dẋ on AM\G

� for all T ∈ TM , when the residue characteristic of k is su�ciently large.

Following the construction provided in that lemma, we have the following

Lemma 6.5.2. Let Ψ be a root datum and let ZiΨ, YiΨ,G and

g be as above. There exist an integer M ′ > 0 and a motivic

function cG on ZiΨ such that, for any de�nable family {fs}s∈S

of motivic functions on g with parameter in S, there exists a

motivic function H on g × S × YiΨ such that

∫
Tz,y,k\Gz,k

f(Ad(x−1)X) dx̄ =
1

cGk (z)
Hk(X, s, y).

It follows immediately that the integrals over AM\G appearing in the

trace formula are motivic.

6.6 Two more factors

In this short section, we discuss the factors Dg(X) and vM (x, y) that occur

in the trace formula.

By [Kot05, �7.4], we have

Dg(X) =
∏
α∈R

α(X),

so we will take this as the de�nition (evidently, determined by the �xed

choice II). It remains to consider only the weight factor vM (x, y).

Recall that we de�ned the weight factor in Equation (2.11) as the sum
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over elements P of the set P(M) (or equivalently, by integrating against the

discrete measure over the set of chambers in aM , cf. �xed choice XIX) the

quantity

vM (x, y) =
(−1)dim aGP (λM (HP (y)−HP (x)))dim aGP vol(aGP /L

G
P )

(dim aGP )!
∏
α∈FDP λM (α∨)

,

where λM are as in the �xed choice XVI.

The denominator is evidently determined by �xed choices XI, XIII, and

XVI; the numerator depends on the same �xed choices, as well as the func-

tion HP (y) − HP (x), which is easily seen from De�nition 2.4.2 to be a de-

�nable function of x and y, as long as we can choose the subgroup K (from

Equation 2.1) in a de�nable way.

This fact is guaranteed to us by [GR17, Propostion 5], which tells us that

such maximal compact subgroups K can be de�nably chosen. Thus vM is

the sum of products of de�nable, rational-valued functions, and we deduce

that vM (x, y) is itself a motivic function on AM\G×AM\G.

6.7 Putting it together

We have now established the results which will allow us to prove our main

theorem. We will want something like the following:

Approximate theorem 1. Let G be a connected, reductive

group de�ned over a nonarchimedean local �eld F , let JG be

the distribution de�ned in Equation (2.12), and let (fs)s∈S be

a family of motivic functions with parameter in S. There exists
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a motivic function h on S such that JG,k(fs,k) = hk(s) for all

s ∈ Sk, for all local �elds k.

Proving this claim would prove that the local trace formula is true for

arbitrary local �elds. Unfortunately, we have no hope of proving this state-

ment with our tools in such generality: having constructed our groups, Lie

algebras, and other objects from our �xed choices and motivic functions, we

have necessarily discarded �nitely many residue characteristics from consid-

eration.

Recalling De�nition 4.5.3, we now rely only on our �xed choices and

related constructions to prove

Theorem 6.7.1. There exist an integer M ′, a de�nable set

ZiΨ, and a family of motivic distributions (Ξz)z∈Z
iΨ

with pa-

rameter in ZiΨ on the family of de�nable sets C∞c (gz)×C∞c (gz)

with parameter in ZiΨ such that, if k ∈ CM ′ , then

Ξz(f1,z,k, f2,z,k) = JGz(f1,z,k, f2,z,k)

for all (f1,z, f2,z) ∈ C∞c (gz) × C∞c (gz), where JGz is the dis-

tribution on C∞c (gz)×C∞c (gz) de�ned in Equation (2.12), for

all z ∈ Z
iΨ,k.

While the theorem seems extremely technical, it has an immediate corol-

lary which is much more accessible, namely

Corollary 6.7.2. There exists a prime number p such that
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Theorem 2.9.1 is true whenever the characteristic of F is at

least p.

Proof (of Corollary 6.7.2). The corollary is essentially an application to

Theorem 6.7.1 of the transfer principle of Cluckers and Loeser, with some

extra work to overcome the fact that we are dealing with distributions rather

than functions.

The transfer principle was �rst stated for exponential integrals in [CL10,

Theorem 9.2.4] for a class of functions known as IC-functions (whose de�ni-

tion we will not give here). There, it took the following form:

Statement. Given IC-functions f, f ′ respectively on de�nable sets

S, S′, there exists an integer M ′ > 0 such that, if k1, k2 ∈ CM ′ have

isomorphic residue �elds, then fk1 = f ′k1
if and only if fk2 = f ′k2

.

As such, this result allows us to transfer results from characteristic zero

to positive characteristic (and vice versa). Rather than address the question

of what exactly are IC-functions, we instead appeal to [CGH18, Theorem

1.3.3], which tells us that the analogous statement is true mutatis mutandis

for all motivic exponential functions, as long as their specializations to local

�elds of characteristic 0 are integrable (which is indeed the case here). In

particular, this implies that the distribution JG constructed over �elds of

su�ciently large residue characteristic converges if it is motivic (because it

converges in characteristic zero; cf. Theorem 4.5.1).

More precisely: the Cluckers-Loeser transfer principle asserts that, if f is

a motivic function on a de�nable set X, then there exists an integer M ′ > 0

such that, if fk(x) = 0 for all x ∈ Xk, then fk′(x) = 0 for all x ∈ Xk′ for any
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k′ ∈ CM ′ whose residue �eld is isomorphic to that of k.

In order to extend this to motivic distributions, we follow the approach

of [CCGS11]: suppose T, T ′ are motivic distributions on a de�nable set X,

so that there exists some M ′ > 0 such that k ∈ CM ′ implies that, for ev-

ery de�nable set S and every family of Schwartz-Bruhat motivic functions

(fs)s∈S in C∞c (X) with parameter in S, there exist motivic functions g, g′

on S such that

Tk(fs,k) = gk(s) and T
′
k(fs,k) = g′k(s) for all s ∈ Sk. (6.2)

We know nothing else a priori about the values of T and T ′ on other functions

in C∞c (X); however, after the approach of [CCGS11, �3.2.1], we will see that

their values on motivic functions is all that needs to be known. We brie�y

review the argument given there.

One constructs a family of motivic test functions of Schwartz-Bruhat

class that is shown to be dense in the space of locally constant, compactly

supported, complex-valued functions on each Xk. One begins by �xing a

positive integer d, and constructing a family of motivic functions on QJtKd×

Zd consisting of characteristic functions of compact open balls of all radii,

centered on all points ofQJtKd. These are shown to specialize (for su�ciently

large residue characteristic) to functions on OkJtKd (where Ok ⊂ k is the ring

of integers).

One then expresses X as a union of a family of compact de�nable subsets

Ωk ⊂ Xk, such that every element of Xk is conjugate to some element of

Ωk. Finally, a �ltration indexed by Z is placed on Ω = {Ωn}n∈Z, and

112



from this de�nable family of de�nable compact subsets one creates a family

{ξa,n}, a ∈ QJtKd × Zd, n ∈ Z of de�nable functions which specialize (for

k ∈ CM ′) to a subset of C∞c (X) which is dense in the L∞ topology ([CCGS11,

Corollary 3.2]).

It follows that it is enough to check that the motivic functions g and

g′ arising in Equation (6.2) are the same for T and T ′; by the argument

just given, if these functions coincide, then the distributions T and T ′ will

coincide as well.

By the transfer principle we quote above, the nullity of the motivic func-

tion (g − g′)k on Sk (for k ∈ CM ′) depends only on the isomorphism class of

κk, and so in particular is independent of the characteristic of k.

We dedicate the remainder of this section to the proof of Theorem 6.7.1.

We will refer to our �xed choices by the numbering in Section 6.2.

Proof (of Theorem 6.7.1). We will construct a motivic distribution Ξz and

show that it coincides with the distribution JG from the trace formula, in

large residue characteristic. We refer to the �xed choices from Section 6.2

by the numbering established there.

The de�nable set ZiΨ whose existence we assert is the de�nable set we

constructed in Proposition 6.3.1; we also have the set ΛiΨ of elements λM

we named there. We used these sets to construct the groups Gz, Mz,λ and

Tz; in Corollary 6.5.1, we constructed a family of de�nable sets (YiΨ,z)z∈ZiΨ

which parameterized the sets of k-points of the regular elements of the Lie

algebras of each Tz, and in Corollary 6.4.3 constructed a de�nable set of

representatives for each TMz .
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In Section 6.5 we saw that the sums over L and TM can be considered as

motivic integrals over �nite sets; as mentioned there, the set L is determined

by our �xed choice XII, and we have just indicated the dependence of the

set TM = TMz on the element z of Z
iΨ,k.

In Section 6.6 we demonstrated that the factors Dg(X) and vM (x, y) are

de�nable and motivic, respectively. The measures dẋ and dẏ were shown to

be motivic in Lemma 6.5.2, and the measure dX is motivic by the discussion

following Corollary 6.5.1.

Thus, given a family (f1,s, f2,s)s∈S of Schwartz-Bruhat motivic test func-

tions on C∞c (gz)×C∞c (gz) with parameter in S, it now follows immediately

from Theorem 4.5.1 that JGz(f1,s, f2,s) is a motivic function of s ∈ S, which

completes the proof.
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Chapter 7

Examples

In this chapter, we collect examples of many of the objects we constructed

in Chapter 2; we do not construct any examples of de�nable or motivic

functions, apart from the weight factor vM . We begin with a motivating

example.

7.1 Three classical groups

We begin by calculating the root data of the three classical groups

GL(2), SL(2), and PGL(2); this is chie�y due to their comparitive simplicity,

and the relationships between the root data that arise from the short exact

sequences

1→ SL(2)→ GL(2)→ Gm → 1

and

1→ Gm → GL(2)→ PGL(2)→ 1.

Let us assume that the �eld of de�nition is F and that the residue charac-

teristic of F is not 2.

Example 7.1.1. For G = GL(2) let us take P0 to be the subgroup of

upper-triangular matrices, containing the maximal (split) torus T of diagonal
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elements. The character lattice of T has the form Zχ1 ⊕ Zχ2, where

χi : T (F )→ Gm, χi

x1

x2

 = xi, .

Dually, the cocharacter lattice is X∨ = Zλ1 ⊕ Zλ2, where

λ1(t) =

t
1

 , λ2(t) =

1

t

 .

The usual dot product identi�es X with X∨, making λi the dual element to

χi.

The Lie algebra g(F ) is simply Mat2×2(F ), and the calculation

x1

x2


a b

c d


x−1

1

x−1
2

 =

 a x1x
−1
2 b

x−1
1 x2c d

 (7.1)

tells us that the weight space gχ is nonzero exactly when χ ∈ {1,±(χ1−χ2)},

and so R(G,T ) = {±α}, where α = χ1 − χ2.

The coroot in X∨ which is dual to α is by de�nition the element of X∨

associated to the element

α∨ =
2

(α, α)
α =

2

‖(1,−1)‖2
α = α,
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and so α∨ = λ1 − λ2. We con�rm that

(α ◦ α∨)(t) = α((λ1 − λ2)(t)) = α

t
t−1

 = 2.

Thus, with α = χ1−χ2, α
∨ = λ1−λ2, we have that the root datum of GL(2)

is

Ψ = (Zχ1 ⊕ Zχ2, {±α},Zλ1 ⊕ Zλ2, {±α∨}).

Example 7.1.2. Now we will take G = SL(2) with P0 again the subgroup

of upper-triangular matrices; this is a subgroup of GL(2), and as such we

must have that its cocharacter lattice lies in that of GL(2). The maximal

torus T is still the set of diagonal matrices, although in this case it has rank

1.

It is not hard to check that aλ1 + bλ2 is a cocharacter of SL(2) if and

only if a = −b, and so clearly a generator of the set of cocharacters is λ′ :=

λ1− λ2 = α∨ (retaining the notation from Example 7.1.1); thus X∨ = Zα∨,

and we know that X must also have rank 1. Indeed, one can check that the

group of characters of the maximal torus is generated by the character

χ′

t
t−1

 = t;

a quick calculation then shows us that (λ′)∨ = 2χ′, which Equation (7.1)

shows us to be one of two roots of T in G, the other being −2χ′. Thus, using
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the notation of Example 7.1.1, we see that the root datum of SL(2) is

Ψ = (Z(1
2(χ1 − χ2)), {±α},Z(λ1 − λ2), {±α∨}).

Note that X/(ZR) ∼= Z/2Z and X∨/(ZR∨) ∼= 0 (i.e. the trivial group).

Example 7.1.3. The third of our related examples is not a subgroup, but

a quotient, of one of the groups we have already treated. Let Z denote the

centre of GL(2) (i.e. the algebraic subgroup of scalar matrices), and let us

consider G = PGL(2) = GL(2)/Z.

By the universal property of quotients, a character on G is a character

on GL(2) that is trivial on Z. Retaining our notation from Example 7.1.1,

we see that the subgroup of characters that are trivial on Z is generated by

the element χ1 − χ2; it follows at once that the character lattice of PGL(2)

is naturally isomorphic to Z(χ1 − χ2) = Zα (retaining our notation from

Example 7.1.1).

Finally, we consider the natural surjection from cocharacters of the max-

imal torus of GL(2) to cocharacters of the maximal torus of G, induced by

the surjection GL(2)→ G. It is not hard to check that cocharacters λ, λ′ in

GL(2) will map to the same cocharacter in G if and only if there exists some

n ∈ Z with

λ(t) = λ′(t) ·

tn
tn

 ,

and so we have

X∨ = (Zλ1 ⊕ Zλ2) /Z(λ1 + λ2) ∼= Z
(

1
2(λ1 − λ2)

)
.
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It is now clear that every element of X∨ has the form

t 7→

tn
1

 · Z for some n ∈ Z,

and we have that the root datum of G is

Ψ = (Z(χ1 − χ2), {±α},Z(1
2(λ1 − λ2)), {±α∨}).

We note in this case that X/(ZR) ∼= 0 and X∨/(ZR∨) ∼= Z/2Z.

We say that the root datum of SL(2) is dual to the root datum of

PGL(2), in the sense that if (X,R,X∨, R∨) is the root datum of SL(2),

then (X∨, R∨, X,R) is the root datum of PGL(2).

We summarize the relationship between the character lattices of these

three groups in the �gure below:
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χ1

χ2 χ1 + χ2

χ1 − χ2

Figure 7.1: Characters of three classical groups

The (red and black) lattice points on the plane are all the characters

of GL(2); those lying on the red line through the origin are trivial on both

SL(2) and PGL(2). The black points on the blue line through the origin are

the characters of PGL(2), while all drawn points (black and blue) on the

blue line are characters of SL(2).
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7.2 SL(2)

Throughout this section, the symbol G denotes the algebraic group SL(2),

and the �eld F of de�nition of G is assumed to have characteristic not equal

to 2.

Example 7.2.1. In this example we will compute the sets F , L , and P,

compute the parabolic subgroups as limits, and demonstrate the correspon-

dence between choice of base D of the root system R(G,T ) and choice of

minimal parabolic subgroup of G.

We already computed the root datum of G in Example 7.1.2. As before,

choose P0 to be the subgroup of upper-triangular matrices, so that T = M0

is the split maximal torus


t

t−1

 : t ∈ F×

 .

The opposite parabolic to P0 is P̄0 = P t0, the set of lower-triangular matrices,

as we verify by the observation that M0 = P ∩ P t0 (we emphasise that, in

general, the opposite parabolic is not the transpose).

Thus, we can identifyX andX∨ with Z, which identi�es α with 2 (or −2)

and α∨ with 1 or −1, respectively; under this identi�cation, the pairing 〈, 〉

is ordinary integer multiplication. We obviously have AG = 1, AM0
∼= Gm,

and we record the sets of subgroups of G we de�ned:

� F consists of P0, P̄0, and G.

� L consists of M0 and G itself.
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� P consists of P0 and P̄0.

From these observations, it follows easily that a0 is a one-dimensional real

vector space, in which any nonzero element is regular. Let λ ∈ a0 be positive;

by our observation that P (λ) depends only on the Weyl facet of λ, we can and

will assume that λ = α∨. Then (recalling the action ∗λ from Equation (2.4))

t ∗λ

a b

c d

 =

 a t2b

t−2c d

 ,

and so clearly

lim
t→0

t ∗λ

a b

c d

 exists ⇐⇒ c = 0;

that is, P (α∨) = P0 is the subgroup of upper-triangular matrices. A simi-

lar calculation shows that P (−α∨) = P̄0, the subgroup of lower-triangular

matrices. Finally, as 0(t) = 1 (for 0 ∈ a0), it is easily seen that P (0) = G.

Because X is one-dimensional, the only possible choices of base for R

are {α} and {−α}; the �rst of these bases corresponds to our choice of

minimal parabolic subgroup (containing T ), as our above calculations show;

in particular, for us, D0 = {α}.

Because every parabolic subgroup in question is P0, P̄0, or G, this de-

scription includes all bases of the form DQ
P where P ⊆ Q ⊆ G are parabolic

subgroups. The only proper subset of the base D0 is the empty set, which

corresponds to the parabolic subgroup G. Evidently, the positive chamber

of aM0 is the positive ray R>0.

Example 7.2.2. In this example we compute the Weyl group of the root sys-

122



tem of G, the Harish-Chandra homomorphism associated to each parabolic

subgroup, and the modulus character associated to the minimal parabolic,

and use these to compute the measures on the groups G, M0, and NP0 . No-

tation is retained from Example 7.2.1, with the exception that the �eld of

de�nition is now Qp (with p 6= 2).

By de�nition we know g = sl2 is the Lie algebra of traceless 2×2 matrices,

and if χ is any rational character on G, then

G/ kerχ ∼= Imχ ≤ Gm,

from which it follows that [G,G] ≤ kerχ; but [G,G] = G and so χ must be

trivial. Dually, it follows that aG = 0.

The Levi component of our minimal parabolic subgroup P0 is the maxi-

mal torus

M0 =


t

t−1

 : t ∈ F×

 ,

whose character group is isomorphic to Z and is generated by the homomor-

phism t
t−1

 7→ t.

Then aM0 = aGM0
∼= R, and the homomorphism HM0 is de�ned

HM0

t
t−1

 = (log |t|F ) ∈ aM0 .
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The domain of HM0 is extended to G by our decomposition G = M0N0K,

where N0 is the subgroup of upper-triangular unipotent matrices, and K can

be taken to be G(O), which contains the matrix

 −1

1

.

This element together with the identity give a full set of coset repre-

sentatives of the quotient group NormG(M0)/M0
∼= Z/2Z; that is, WG

(clearly WM0 is trivial). Indeed: we know that T equals its own central-

izer in G, and so if t =

x
y

 ∈ T (Fs) is conjugated by some element n

of NormG(T )(Fs), we must have

ntn−1 = t or ntn−1 =

y
x

 ,

which is exactly the image of

x
y

 under conjugation by

 −1

1

.

We remark here that, whileMP0 = MP̄0
, it is not the case thatHP = HP̄ :

this is due to the fact that

HP (mnk) := HMP
(m),

given a decomposition x = mnk (recall Equation 2.1). Clearly, the decom-

position of x ∈ G(F ) with respect to P is di�erent from the decomposition

with respect to P̄ .
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Per Example 7.2.1, we know

D0 = {2} and D∨0 = {1}.

We see how the Harish-Chandra homomorphism allows us to calculate the

measures on our groups (see Chapter 2.7, above): observe that, if t = p−kx ∈

Qp with x ∈ Z×p and k ≥ 0, then

1 t

1

 =

p−k
pk


 1

p−kx−1 1


 pk x

−x−1 1

 .

On the other hand, if k < 0 then

1 t

1

 lies in K and so

HP̄0

1 t

1

 = HP̄0
(1) = 0.

From these observations it follows that

HP̄0

1 t

1

 =


0 if t ∈ Zp,

log |t|F if t /∈ Zp.

(We remark that these values are in fact vectors in aM0 , and not, strictly

speaking, real numbers). The half-sum of roots (recall De�nition 2.5.7) as-

sociated to P0 is 1, whereas that associated to P̄0 is −1; thus, our measure
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on NP0 is de�ned by the condition

1 =

∫
NP0

exp
(
2〈−1, HP̄0

(n)〉
)

dn =

∫
NP0

exp(−2HP̄0
(n)) dn;

the isomorphism NP0
∼= Ga(Qp) allows us to write n ∈ NP0 as n =

1 t

1

.

These co-ordinates allow us to use the usual additive Haar measure dt on

Qp; recall that this measure satis�es

∫
Zp

dt = 1,

from which it follows immediately that

∫
Z×p

dt = 1− 1

p
.

Therefore, to compute the integral over NP0 � that is, over Qp � we need

only add the integrals over Zp and Qp − Zp. Having already computed the
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former, we now compute the latter: we have

∫
Qp−Zp

exp

2

〈
−1, HP̄0

1 t

1

〉
 dt

=

∞∑
k=1

∫
p−kZ×p

exp

2

〈
−1, HP̄0

1 t

1

〉
 dt

=

∞∑
k=1

∫
p−kZ×p

|p−2k|dt =

∞∑
k=1

p−2k

∫
p−kZ×p

dt =

∞∑
k=1

p−k
(

1− 1

p

)

=

(
1− 1

p

) ∞∑
k=1

p−k =

(
1− 1

p

)(
p−1

1− p−1

)
=

1

p
.

It follows that using the usual Haar measure yields the equation

∫
NP0

exp
(
2〈−1, HP̄0

(n)〉
)

dn = 1 +
1

p
,

and we deduce that the measure we want is that which has been scaled by

this constant; namely, if n ∈ NP0 is written n =

1 t

1

, then dn = dt
1+p−1 .

The calculationa b

a−1


x y

x−1

 =

ax ay + bx−1

(ax)−1


shows that dxdy

x2 is a left Haar measure on P0; similarly, the equation

x y

x−1


a b

a−1

 =

ax bx+ a−1y

(ax)−1


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shows dx dy to be a right Haar measure on P0. It follows at once that the

modulus character is

δP0

x y

x−1

 = x2.

We can take K to be SL2(Zp) and dk to be Haar measure on K so that∫
K dk = 1. On

M0 =


y

y−1

 : y ∈ Q×p


we place the Haar measure dm = dy

y ; Haar measure dx on G then satis�es

∫
G
f(x) dx =

∫
M0×NP0

×K
f


y

y−1


1 t

1

 k

 dk
dt

1 + p−1

dy

y
,

and we have our measures in co-ordinates.

Example 7.2.3. In this example we compute the weight factor associated to

the minimal Levi subgroup of G. We retain the notation from Examples 7.2.1

and 7.2.2, allowing again the �eld of de�nition to be arbitrary (with residue

characteristic not equal to 2).

In Example 7.2.1 we computed

D0 = DG
0 = {α} where α↔ 2; all other DQ

P = ∅.

There are precisely two subsets of D0, namely ∅ and D0 itself; these corre-

spond respectively to the parabolic subgroupsG and P0. The only interesting

spaces of the form aQP are aP0 = aGP0
and its linear dual, both of which are
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one-dimensional.

Because α∨ = 1 we have that vol(aGP0
/LGP0

) = 1 and thus θP0(λ) = λ

(as de�ned in equation (2.10)). Finally, for the weight factor, we �x any

nonzero λ and consider separately the cases M = G and M = M0. The �rst

case is simple: vG(x, y) = 0, because HG is identically zero (this is clear by

considering its codomain).

In the second case, we have

vM (x, y) =
(−1)

(
λ
(
HP0(y)−HP̄0

(x)
))

λ
+

(−1)
(
λ
(
HP̄0

(y)−HP0(x)
))

λ

= −
(
HP0(y) +HP̄0

(y)− (HP0(x) +HP̄0
(x))

)
,

which is evidently independent of λ. We remark that, while λ is technically

a linear functional, we can identify it with a real number (having identi�ed

a0 with R).
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7.3 GL(3)

In this section we repeat many of the examples from Section 7.2 for the

group G = GL(3). Due to the computational complexity of this case over

the case G = SL(2), as well as its close similarity with the computation in

Example 7.1.1, we will assert the root datum of G without performing the

full calculations we saw there.

Throughout this section, the �eld of de�nition F of G is assumed to have

residue characteristic not equal to 2 or 3. We caution that the large diagrams

that arise in our examples necessarily give rise to unwieldy typesetting.

Example 7.3.1. In this example we will compute the sets F , L , and P,

compute the parabolic subgroups as limits, and demonstrate the correspon-

dence between choice of base D of the root system R(G,T ) and choice of

minimal parabolic subgroup of G.

Let P0 be the subgroup of upper-triangular matrices. We will take T =

M0 to be the split maximal torus




x

y

z

 : x, y, z ∈ Q×p

 ;

then the pair (G,T ) has root datum (X∗, R,X∗, R
∨), where:

� X∗ is the free abelian group generated by the morphisms χi : T →
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Gm, i ∈ {1, 2, 3}, given by

χi


x

y

z

 =


x if i = 1;

y if i = 2;

z if i = 3.

� R is the subset {±α,±β,±(α + β)} of X∗, where α = χ1 − χ2 and

β = χ2 − χ3; that is,

α


x

y

z

 = xy−1 and β


x

y

z

 = yz−1;

� X∗ is the free abelian group generated by the morphisms λi : Gm →

T, i ∈ {1, 2, 3}, given by

λ1(t) =


t

1

1

 , λ2(t) =


1

t

1

 , λ3(t) =


1

1

t

 ;

� R∨ is the subset of X∗ consisting of {±α∨,±β∨,±(α∨ + β∨)}, where

α∨ = λ1 − λ2 and β∨ = λ2 − λ3; that is,

α∨(t) =


t

t−1

1

 and β∨(t) =


1

t

t−1

 .
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This time, the pairing between X∗ and X∗ is given by the dot product (in

our co-ordinates), and so we identify X∗ with Z3 in the obvious way, so that

α↔ (1,−1, 0) and β ↔ (0, 1,−1);

thus the pairing 〈, 〉 identi�es α with α∨ and β with β∨ in this case. The

calculation


t`

tm

tn



γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33



t−`

t−m

t−n



=


γ11 t`−mγ12 t`−nγ13

tm−`γ21 γ22 tm−nγ23

tn−`γ31 tn−mγ32 γ33


shows us that the subgroup Pα,β of upper-triangular matrices equals P (λ) if

and only if

λ(t) =


t`

tm

tn

 , where ` > m > n;

taking (1, 0,−1) as our representative in this Weyl facet, we have Pα,β =

P (1, 0,−1), and similarly P−α,−β = P (−1, 0, 1). The positive chamber of

aMα,β
(corresponding to our choice Pα,β of minimal parabolic subgroup)

therefore corresponds to the subset

{(x, y, z) ∈ aMα,β
: x > y > z} ⊂ aMα,β

.
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The base corresponding to this chamber is evidently DPα,β = {α, β}; in fact,

we have labelled our subgroups so that the base corresponding to minimal

parabolic Pα1,α2 is precisely {α1, α2}.

A quick calculation shows that there are thirteen parabolic subgroups of

G containingM0, each of which is characterized by the condition that certain

entries be zero, or arbitrary. As such, we can represent them symbolically:

for instance, the subgroup of upper-triangular matrices is the subgroup of

matrices of the form 
∗ ∗ ∗

∗ ∗

∗

 ,

where ∗ denotes an arbitrary entry (as usual, blank entries are zero). In the

below image, we name six parabolic subgroups besides G, whose opposites

coincide (in this case) with the subgroups consisting of their transposes (of
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course, this is also trivially true of G):

Pα,β =


∗ ∗ ∗

∗ ∗

∗

 , P̄α,β = P−α,−β =


∗

∗ ∗

∗ ∗ ∗

 ,

Pα+β,−α =


∗ ∗

∗ ∗ ∗

∗

 , P̄α+β,−α = P−α−β,α =


∗ ∗

∗

∗ ∗ ∗

 ,

Pβ,−α−β =


∗

∗ ∗ ∗

∗ ∗

 , P̄β,−α−β = P−β,α+β =


∗ ∗ ∗

∗

∗ ∗

 ,

Pα,α+β =


∗ ∗ ∗

∗ ∗

∗ ∗

 , P̄α,α+β = P−α,−α−β =


∗

∗ ∗ ∗

∗ ∗ ∗

 ,

Pα+β,β =


∗ ∗ ∗

∗ ∗ ∗

∗

 , P̄α+β,β = P−α−β,−β =


∗ ∗

∗ ∗

∗ ∗ ∗

 ,

Pβ,−α =


∗ ∗

∗ ∗ ∗

∗ ∗

 , P̄β,−α = P−β,α =


∗ ∗ ∗

∗

∗ ∗ ∗

 .

We illustrate the inclusions of parabolic subgroups by arrows in the diagram
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below:

Pα+β,β Pα,α+β Pβ,−α P−β,α P−α,−α−β P−α−β,−β

Pα,β Pα+β,−α Pβ,−α−β P−β,α+β P−α−β,α P−α,−β

G

This diagram makes clear the following statements:

� F consists of Pα,β, Pα+β,−α, Pβ,−α−β, Pα,α+β, Pα+β,β , Pβ,−α, their op-

posites, and G itself.

� L consists of Mα,β,Mα,α+β,Mα+β,β ,Mα,−β and G itself.

� P consists of Pα,β, Pα+β,−α, Pβ,−α−β , and their opposites.

Retaining the notation P (λ) from above, we have:

� Pα,β = P (1, 0,−1) and P−α,−β = P (−1, 0, 1);

� Pα+β,−α = P (0, 1,−1) and P−α−β,α = P (0,−1, 1);

� Pβ,−α−β = P (−1, 1, 0) and P−β,α+β = P (1,−1, 0);

� Pα,α+β = P (1, 0, 0) and P−α,−α−β = P (−1, 0, 0);

� Pβ,−α = P (0, 1, 0) and P−β,α = P (0,−1, 0);

� Pα+β,β = P (0, 0,−1) and P−α−β,−β = P (0, 0, 1); and
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� G = P (0, 0, 0) = Ḡ.

The Levi factors are easily categorized:

� The Levi factor of each of the minimal parabolic subgroups, i.e. of

Pα,β, Pα+β,−α, Pβ,−α−β, P−α,−β, P−α−β,+α, and P−β,α+β,

is Mα,β = M0, i.e. the subgroup of diagonal matrices.

� The Levi factor of Pα,α+β and P−α,−α−β is Mα,α+β =


∗

∗ ∗

∗ ∗

.

� The Levi factor of Pα+β,β and P−α−β,−β is Mα+β,β =


∗ ∗

∗ ∗

∗

.

� The Levi factor of Pβ,−α and P−β,α is Mα,−β =


∗ ∗

∗

∗ ∗

.

Again we can takeK = G(O); in this case,M0 is normalized by the subgroup

generated by the elementary matrices


−1

1

1

 ,


1

−1

1

 , and


1

−1

1

 .

It is not hard to show in this case that WG is isomorphic to the permutation

group on three letters.
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Finally, the space aM0 is the real vector space generated by all maps of

the form t 7→

te1

te2

te3


 7→


e1

e2

e3

 ·

`

m

n

 ,

as (`,m, n) varies over all elements of Z3; identifying this map with the

vector (`,m, n) ∈ aM0
∼= R3, we see that aG is the subspace of R3 generated

by the element (1, 1, 1). Thus we have an identi�cation

aGM0
= {(x, y, z) ∈ R3}/ ∼,

where

(x1, y1, z1) ∼ (x2, y2, z2) ⇐⇒ x1 − x2 = y1 − y2 = z1 − z2;

equivalently, aGM0
is the quotient of R3 by R(1, 1, 1).

Example 7.3.2. In this example we compute the Harish-Chandra homo-

morphism associated to our minimal Levi subgroup M0 of G. Notation is

retained from Example 7.3.1.

Denote by P0 again the subgroup of upper-triangular matrices (so again

P̄0 is the subgroup of lower-triangular matrices and M0 is the subgroup of

diagonal matrices). The only rational characters on G are integer exponents

of the determinant: this is a consequence of the fact that any rational char-

acter on G corresponds to a character on the abelianization, which in this

case is isomorphic to Gm (recall the similar observation in Example 7.2.2).
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Because M0 is F -split of rank 3, it admits an F -isomorphism M0
∼= G3

m,

and so its rational characters have the form
x

y

z

 7→ x`ymzn, `,m, n ∈ Z. (7.2)

It follows that aG ∼= R, and thus that the function HG is de�ned

HG(γ) = (log |det γ|F ) ∈ aG, γ ∈ G.

Similarly, an easy calculation gives aM0
∼= R3 and

HM0


x

y

z

 =


log |x|F

log |y|F

log |z|F

 .

We have AG = Z(G) ∼= Gm (i.e. the scalar matrices), and AM0 = M0

because M0 is split, as noted above.

Example 7.3.3. In this example we calculate the weight factor v0 = vM0

associated to the Levi subgroup M0 = T . We will use notation established

in Examples 7.3.1 and 7.3.2.

As before, identify a0 with R3 under the identi�cation

λ1 ↔ (1, 0, 0), λ2 ↔ (0, 1, 0), λ3 ↔ (0, 0, 1),

as before, so that aG = R(1, 1, 1) and aG0 = aGP0
is the plane Π de�ned by
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the equation x+ y + z = 0. The roots α and β which span the root system

of the pair (G,T ) are identi�ed, respectively, with the vectors (1,−1, 0) and

(0, 1,−1), which evidently lie in Π; the dual statement mutatis mutandis is

true for α∨ and β∨, and the pairing 〈, 〉 coincides with the dot product in

these coordinates.

Usual Lebesgue measure on R3 satis�es our hypothesis of Weyl group

invariance, and the condition of regularity for λ ∈ ia∗0 is equivalent to the

condition that λ1, λ2, and λ3 are all distinct, and distinct modulo R(1, 1, 1).

In the de�nition of vM , the index of summation is the set P(M0) of

minimal parabolic subgroups of G which contain M0; these are

Pα,β, P−β,α+β, P−α−β,α, P−α,−β, Pβ,−α−β, Pα+β,−α.

Let us consider �rst Pα,β , i.e. the subgroup of upper-triangular matrices. The

space aGP is exactly Π, for every P ∈P(M0); the lattice LGPα,β is the Z-span

of the set FD
∨
Pα,β

. A fundamental domain for LPα,β in Π is the parallelogram

with vertices at

(0, 0, 0), (0,−1, 1), (1, 0,−1), and (1,−1, 0),

whose volume (area) is
√

3. Evidently, this volume is independent of choice

of P ∈P(M0), as all of the lattices LGP coincide.

From the de�nitions we have

θP (λ) =
1

vol(aGP /L
G
P )

∏
α∈FDP

λ(α∨),
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from which � writing λ = (λ1, λ2, λ3) � we deduce immediately

θPα,β (λ) =
1√
3

(λ · α∨)(λ · β∨) =
(λ1 − λ2)(λ2 − λ3)√

3
,

θP−β,α+β
(λ) =

1√
3

(λ · (−β∨))(λ · (α∨ + β∨)) =
(λ3 − λ2)(λ1 − λ3)√

3
,

θP−α−β,α(λ) =
1√
3

(λ · (−α∨ − β∨))(λ · α∨) =
(λ3 − λ1)(λ1 − λ2)√

3
,

θP−α,−β (λ) =
1√
3

(λ · (−α∨))(λ · (−β∨)) =
(λ3 − λ2)(λ2 − λ1)√

3
,

θPβ,−α−β (λ) =
1√
3

(λ · β∨)(λ · (−α∨ − β∨)) =
(λ3 − λ1)(λ2 − λ3)√

3
,

θPα+β,−α(λ) =
1√
3

(λ · (α∨ + β∨))(λ · (−α∨)) =
(λ2 − λ1)(λ1 − λ3)√

3
,

and deg θP = 2 for all P . Observe that

θP−α,−β (λ) = θPα,β (λ) =
(λ1 − λ2)(λ2 − λ3)√

3
,

θP−β,α+β
(λ) = θPβ,−α−β (λ) =

(λ2 − λ3)(λ3 − λ1)√
3

,

θP−α−β,α(λ) = θPα+β,−α(λ) =
(λ3 − λ1)(λ1 − λ2)√

3
,

and so we can simplify the resulting expression for v0. So doing, we calculate

(for regular λ = (λ1, λ2, λ3) in ia∗0) that v0(x, y) equals

√
3

2

((
λ(HPα,β (y)−HP−α,−β (x))

)2
+
(
λ(HP−α,−β (y)−HPα,β (x))

)2
(λ1 − λ2)(λ2 − λ3)

+

(
λ(HP−β,α+β

(y)−HPβ,−α−β (x))
)2

+
(
λ(HPβ,−α−β (y)−HP−β,α+β

(x))
)2

(λ2 − λ3)(λ3 − λ1)

+

(
λ(HP−α−β,α(y)−HPα+β,−α(x))

)2
+
(
λ(HPα+β,−α(y)−HP−α−β,α(x))

)2
(λ1 − λ2)(λ3 − λ1)

)
.
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In case x and y both lie in M0(F ), all maps HPi coincide with the map HM0

and the weight factor vanishes; in general, this is not the case.

To illustrate, let us choose some t = p−`u ∈ F× with vF (u) = 0 and put

x =


1 t

1

1

 and y =


1

1 t

1

 .

We have the equations

x =


p−`

1

p`




1

1

p−`u−1 1




p` u

1

−u−1


and

y =


1

p−`

p`




1

1

p−`x−1 1




1

p` x

−x−1

 ,

and we compute:

HPα,β (x) = HP−β,α+β
(x) = HPα+β,−α(x) =


0

0

0

 ,

HP−α,−β (x) = HPβ,−α−β (x) = HP−α−β,α(x) =


`

0

−`

 ,
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and similarly

HPα,β (y) = HPα+β,−α(y) = HPβ,−α−β (y) =


0

0

0

 ,

HP−α,−β (y) = HP−α−β,α(y) = HP−β,α+β
(y) =


0

`

−`

 .
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The terms we exponentiate in the weight factor are

λ
(
HPα,β (y)−HP−α,−β (x)

)
=


λ1

λ2

λ3

 ·

−`

0

`

 = `(λ3 − λ1),

λ
(
HP−α,−β (y)−HPα,β (x)

)
=


λ1

λ2

λ3

 ·


0

`

−`

 = `(λ2 − λ3),

λ
(
HP−β,α+β

(y)−HPβ,−α−β (x)
)

=


λ1

λ2

λ3

 ·

−`

`

0

 = `(λ2 − λ1),

λ
(
HPβ,−α−β (y)−HP−β,α+β

(x)
)

=


λ1

λ2

λ3

 ·


0

0

0

 = 0,

λ
(
HP−α−β,α(y)−HPα+β,−α(x)

)
=


λ1

λ2

λ3

 ·


0

`

−`

 = `(λ2 − λ3),

λ
(
HPα+β,−α(y)−HP−α−β,α(x)

)
=


λ1

λ2

λ3

 ·

−`

0

`

 = `(λ3 − λ1).
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Thus

v0(x, y) =

√
3`2

2

(
(λ3 − λ1)2 + (λ2 − λ3)2

(λ1 − λ2)(λ2 − λ3)

+
(λ2 − λ1)2

(λ2 − λ3)(λ3 − λ1)
+

(λ2 − λ3)2 + (λ3 − λ1)2

(λ3 − λ1)(λ1 − λ2)

)
=

√
3`2

2(λ1 − λ2)(λ2 − λ3)(λ3 − λ1)

(
(λ3 − λ1)3 + (λ3 − λ1)(λ2 − λ3)2

+ (λ1 − λ2)3 + (λ3 − λ1)2(λ2 − λ3) + (λ2 − λ3)3
)

=
2
√

3`2(λ1 − λ2)(λ2 − λ3)(λ3 − λ1)

2(λ1 − λ2)(λ2 − λ3)(λ3 − λ1)

=
√

3`2.

Thus v0(x, y) is indeed well-de�ned for any regular λ ∈ ia∗0, and is indepen-

dent of choice of such λ, as claimed. Finally, we con�rm that this is, in fact,

the volume of the convex hull of the set

{−HP (y) +HP (x) : P ∈P(M)};

our above work shows these points to be


0

0

0

 ,


−`

0

`

 ,


0

`

−`

 , and


−`

`

0

 ,
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which describe a parallelogram in the plane Π, whose area is therefore

∣∣∣∣∣∣∣∣∣∣


−`

0

`

×


0

`

−`


∣∣∣∣∣∣∣∣∣∣

= |(−`2,−`2,−`2)t| =
√

3`2,

as claimed.
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