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Abstract

The ALPHA-g experiment is the current focus of the ALPHA collaboration;

it aims to measure the trajectory of antihydrogen atoms in a gravitational

field in order to verify the weak equivalence principle for antimatter. It

includes a scintillator detector called the Barrel Veto which will measure

particle time of flight in an effort to distinguish antihydrogen annihilation

products from cosmic ray background. A new analysis framework for BV

data is presented. A small-scale replica of the BV was constructed at TRI-

UMF and used to develop procedures for calibrating corrections for differ-

ences in path length and pulse amplitude. These corrections improve the

time of flight resolution to approximately 170 ps, which should be sufficient

for cosmic ray background rejection.
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Lay Summary

Every normal type of particle has an opposite, called an antimatter particle,

which are very rare in nature. The ALPHA-g experiment will test the effect

of gravity on antimatter particles for the first time. To this end, it must

detect the fragments created when an antimatter particle collides with nor-

mal matter. These fragments are difficult to distinguish from background

particles called cosmic rays which are constantly descending from space. A

special detector called the Barrel Veto was built for this purpose. Particles

passing through this detector cause flashes of light, and by looking at the

patterns and timing of these flashes, it is possible to tell the difference be-

tween antimatter fragments and cosmic rays. In my work, I prepared the

detectors and analysis for the Barrel Veto, and demonstrate that it should

be able to remove the majority of cosmic ray background from our data.

iv



Preface

This thesis is composed of original, unpublished work by the author, based

on the ALPHA-g experimental apparatus and the work of the ALPHA col-

laboration. The Barrel Veto apparatus described in chapter 5 was con-

structed at TRIUMF primarily by Nicolas Massacret, Robert Henderson,

and Philip Lu. The data acquisition system was created by Konstantin

Olchanski and Pierre Amaudruz at TRIUMF, and the analysis framework

was implemented by Andrea Capra of TRIUMF and Joseph McKenna of

Aarhus University. The work described in chapters 6-9 was contributed

entirely by the author.
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Chapter 1

Introduction

Antimatter lies at the heart of one of the most prominent phenomena which

remains unexplained by the Standard Model: the baryon asymmetry prob-

lem, the difference in the quantity of matter and antimatter in the observ-

able universe. This makes it an attractive subject for particle physicists

hoping to discover signs of new physics; however, the study of atomic anti-

matter has only recently been made possible at the Antiproton Decelerator

(AD) facility of the European Organization for Nuclear Research (CERN).

ALPHA-g is the newest venture of the ALPHA collaboration, one of the

leaders in antihydrogen research at the AD. Building upon the successes of

previous experiments, ALPHA-g aims to measure the trajectory of antihy-

drogen atoms in a magnetic field. This will be the first attempt to directly

verify the weak equivalence principle for antimatter. The first operation of

ALPHA-g is planned for the autumn of 2021, and commissioning of the var-

ious components of the experiment is fully underway at the time of writing.

The present thesis describes the efforts to commission one of these com-

ponents, the barrel veto (BV), and to demonstrate its capabilities. The BV

is composed of a series of bars of plastic scintillator which surround the ex-

periment like a barrel. It is designed to precisely record the time of particles

passing though it. Not only does this provide extra information about the

antihydrogen atoms being studied, it is also crucial in distinguishing the true

signal from the background of cosmic rays which permeate the experiment.

The goal of this work is threefold: primarily, it is to demonstrate that the

BV is capable of performing this function, and that no further hardware or

electronics upgrades are required. In addition, this work will develop the

analysis algorithms used to calculate the time of flight and other event in-

formation using the raw data coming from the BV. Finally, any calibrations
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Chapter 1. Introduction

and corrections required for the proper operation of the BV will be identified

and carried out.

The structure of this report is as follows. Chapter 2 provides a brief

history of the study of antimatter, including an overview of the present

experiments at the AD. Chapter 3 goes into more detail on the ALPHA-g

experiment. Chapter 4 describes the particle detection techniques used by

ALPHA-g, and chapter 5 gives an overview of the BV system and electronics.

Chapter 6 explains the work done in developing an analysis algorithm for

the BV, with reference to a cosmic ray data set taken previously. Chapter

7 shows the development of a vertical slice of the system created locally at

TRIUMF, and the results it provided. Chapter 8 describes how this was

used to calibrate a series of time corrections, which ultimately led to the

final results presented in chapter 9.

2



Chapter 2

On antimatter

The fundamental goal of a physicist is to develop our understanding the

universe around us and its composition. Since the days of the ancient Greeks

[1], we have theorized that the universe is made of tiny indivisible particles

which interact with each other to create the world we experience. Almost

all of the particles which we encounter on a daily basis fall into the category

of matter ; however, there is a second much rarer class of particles called

antimatter about which we know comparatively little.

Every matter particle1 has a corresponding antimatter particle, which

has identical mass and lifetime and interacts via the same forces, but has

opposite charge and spin. When an antiparticle encounters its regular matter

counterpart, they undergo an interaction called annihilation, whereby both

particles are destroyed and their rest energy is released. Broadly, the goal

of the ALPHA collaboration is to study these antimatter particles to gain a

more complete understanding of our universe.

2.1 History

Antimatter has the distinction of being one of the first types of particles

to be hypothesized before its discovery. The anti-electron or positron was

first postulated by Dirac in 1927 [2]. While developing his theory describing

the relativistic motion of an electron, now known as the Dirac equation,

he noticed a mathematical oddity. As well as two positive-energy solutions

corresponding to the two spin states of the electron, his equation also had two

negative energy solutions. After some postulation, he eventually interpreted

1The only known exceptions to this rule are particles which are their own antiparticle,
such as the photon.

3



2.1. History

these solutions as a particle with equal mass but opposite charge to the

electron – the positron.

The existence of this antiparticle was soon confirmed by Carl Anderson

in 1932 [3], who used a bubble chamber to observe cosmic rays. Initially,

it was impossible to differentiate between a positron curving in a magnetic

field and an electron travelling in the opposite direction. By placing a lead

sheet in the bubble chamber to absorb some of the energy of the particles, he

was able to determine the direction of motion of these positrons and hence

prove the existence of antimatter.

Figure 2.1: First observation of a positron by Carl Anderson in 1932. Taken
from [3]. A lead sheet (placed horizontally, in the centre of the image) slows
down a positron passing from the bottom of the image to the top. This is
observed as a decrease in the radius of curvature due to the external magnetic
field. The direction of curvature indicates the charge of the positron.

Following this discovery, antiparticles of many other types have been

measured. Heavier antimatter particles are studied primarily in accelerator

experiments, as only the lightest antimatter particles are readily available

in nature.

4



2.2. Motivation for the study of antimatter

2.2 Motivation for the study of antimatter

The symmetries between matter and antimatter are fundamental to all phys-

ical theories describing the interactions of particles. These symmetries are

very well motivated, and have obtained a near-axiomatic status. Should

they be broken, a reworking of our accepted laws of physics would be re-

quired. Exactly what this would pertain is still the subject of some debate,

and is outside the scope of this thesis; however, this section will nonethe-

less outline the symmetries in question and how the work of the ALPHA

collaboration is testing these symmetries.

2.2.1 CPT symmetry

The main symmetry which motivates the study of antimatter is called CPT

symmetry. This refers to three fundamental transformations. Charge conju-

gation (C) refers to changing the sign of all quantum numbers of a particle;

simplistically, replacing a particle with its antiparticle. Parity inversion (P)

refers to changing the sign of all spatial coordinates, reflecting the particle

in a three dimensional mirror. Time reversal (T) refers to letting the time

coordinate of the system run backwards.

Initially, each of these transformations were thought to be fundamental

symmetries which preserve the laws of physics. This is true for classical

mechanics and electromagnetism. However, the weak interaction was found

to break both C and P symmetries [4]. For a time it was thought that

combining charge conjugation and parity inversion lead to an unbroken CP

symmetry; however, CP symmetry violation has been observed in both kaons

[5] and B mesons [6].

Combining charge, parity, and time reversal yields the CPT transforma-

tion. Thus far, there have been no observations of a process violating CPT

symmetry; indeed, there are strong theoretical reasons for CPT to be con-

served. It has been shown that any Lorentz invariant quantum field theory

must also be invariant under CPT [7]. Lorentz invariance is generally taken

axiomatically, and so should CPT violation be observed, the axioms of our

theoretical framework would have to be re-examined.

5



2.2. Motivation for the study of antimatter

2.2.2 Baryon asymmetry

Most models of the early universe result in matter and antimatter being

created in equal amounts. This creates tension with our observations of

the universe today, which indicate that it is entirely dominated by matter.

A number of mechanisms have been suggested which could result in the

observed imbalance between matter and antimatter; however, they require

CP violating processes on a magnitude far greater than those which have

been observed [8].

The theoretical search for such a mechanism leads naturally to an ex-

perimental study of the properties of antimatter. An observed discrepancy

between any property of matter and antimatter would be highly useful in

elucidating a mechanism for baryon asymmetry. Such a deviation from

prediction has never been seen, but our tests on antimatter have thus far

been limited, and the divergent property could take any number of forms.

Further study of antimatter, then, could illuminate a mechanism for the

overwhelming prevalence of matter and provide insight into the history of

our universe.

2.2.3 Antimatter and gravity

Our understanding of gravity is at the centre of a second unsolved problem

in modern physics. The electromagnetic, strong, and weak forces are all well

described by quantum mechanics and quantum field theories. In this frame-

work, they result from the exchange of certain force-mediating particles.

However, this framework is not compatible with general relativity, our cur-

rent theory of gravity. A quantum theory of gravity which is self-consistent

has not been constructed; this is an active area of research.

The postulated particle which would carry the gravitational force is

called the graviton; it is necessarily a spin-2 particle [9]. Furthermore, it

must be its own antiparticle, similar to the photon. Thus CPT symmetry

dictates that the gravitational interaction between two bodies composed of

antimatter, i.e. an anti-apple falling on an anti-Earth, must be identical to

the interaction between the corresponding matter bodies.

6



2.2. Motivation for the study of antimatter

For obvious reasons, this measurement is currently beyond human capa-

bilities. However, we can test the weak equivalence principle, the statement

that all bodies accelerate identically in a gravitational field, for antimatter.

This principle can be verified by observing an antimatter particle in the

Earth’s gravitation field, i.e. an anti-apple falling on normal Earth. An

observation of a difference in behaviour between a particle and antiparticle

would have a huge effect on the efforts to write a theory of quantum gravity;

it may require, for example, the introduction of a second spin-1 gravitational

force carrying particle. Regardless, comparing the gravitational acceleration

of antimatter particles to their matter counterpart is an obvious and neces-

sary test to perform as we attempt to verify the fundamentals upon which

a quantum theory of gravity can be built.

There are a number of arguments [10–12] which predict that the grav-

itational effect of antimatter particles is similar to that of matter. As an

example, the reasoning given by Caldwell and Dvali [11] is as follows.

The mass of the proton is much larger than the mass of its constituent

quarks; the extra mass comes from the binding energy of the quarks, which is

stored in the gluon field. In order to calculate the inertial mass of the proton,

the contributions from the binding energy must be summed up. In the

language of Feynman diagrams, this can be thought of as a summation over

an infinite number of QCD diagrams involving gluons and virtual quarks.

In reality, the calculation is considerably more technical, and is typically

carried out using lattice QCD, although this Feynman diagram description

is theoretically sound in principle. From this point, the force of gravity

acting on the proton can then be found by invoking the equivalence principle

to obtain the gravitational mass, and replacing the proton with a point-like

source of equal mass.

A second way to find the gravitational mass is to apply gravity to the

summation of QCD diagrams directly, diagram by diagram. Caldwell and

Dvali describe attaching a graviton leg directly at every point of each dia-

gram, where the other end of the graviton line is thought to be attached to

the Earth. The coupling of the graviton field to each diagram would deter-

mine the gravitational mass of of the proton directly, with no need to call

7



2.3. Annihilation process

upon the equivalence principle. Note that this calculation is obviously not

feasible to perform, especially with no current standard formulation of the

graviton — this exercise is meant as a thought experiment. The equivalence

of these two methods is a manifestation of the equivalence principle.

Now consider if the coupling of the graviton was different for matter

particles and antimatter particles. This would also be true for off-shell par-

ticles, such as the virtual quark pairs present in many of the QCD diagrams

of the proton. Calculating the gravitational mass using the second method,

then, would necessarily give a different result than using the first method,

since many of the gravitons legs would be attached to virtual antiparticles.

Thus a gravitational force which acts differently on matter and antimatter

would lead to a detectable difference between the gravitational and inertial

mass of the proton. The fact that this has not been observed indicates that

it is highly unlikely to find an anomalous gravitational force on antimatter,

at least at the scale which is presently accessible by direct measurement.

However, the validity of these arguments is not certain, and it is im-

portant and exciting to test them experimentally. In a certain fashion, the

presence of arguments predicting a null result from antimatter gravity exper-

iments makes the possibility of an unexpected result all the more exciting.

In the words of the late Swedish DJ Avicii, “there’s always haters”.

2.3 Annihilation process

The annihilation process is both a blessing and a curse when it comes to

making measurements on antimatter. Any detector will necessarily be con-

structed of matter particles, and so a positron or antiproton will almost cer-

tainly interact with a detector via annihilation once it reaches a sufficiently

low energy. Thus it becomes impossible to detect low energy antimatter

particles directly.

Instead, an antimatter detector must allow for annihilation, and then

detect the products of this interaction. To work backwards and understand

the properties of an antimatter particle from its annihilation products, we

must have a good understanding of the annihilation process itself.

8



2.3. Annihilation process

The simplest annihilation interaction is between a low-energy electron

and a positron. Each of these has a rest energy of 511 keV, and so the

annihilation releases around 1 MeV of energy. Momentum and angular mo-

mentum conservation require the creation of two or more particles, and the

only particles which can be produced with this energy budget are photons

and neutrinos. The most common electron-positron annihilation interaction

produces two or more photons.

The annihilation interaction between a proton and an antiproton is far

more complicated. The energy budget is now close to 2 GeV, which opens

the door for a wider range of particles to be produced. Furthermore, the

proton is not a point-like particle like the electron, but is composed of quarks.

At high energies, one or more quarks from the proton and anti-proton will

interact, while at low energies the protons will behave more as single entities.

The details of these interactions are largely beyond the scope of this thesis.

The simplest interaction between a proton and antiproton results in the

creation of three pions: a π+, a π0, and a π−. This is essentially a rear-

rangement of the quarks of the proton and antiproton, as shown in figure

2.2.

Figure 2.2: The simplest diagram for a proton-anti-proton annihilation in-
teraction at low energy. Note that this interaction is essentially a rearrange-
ment of the constituent quarks into three mesons.
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A typical proton-antiproton annihilation will create a number of mesons;

the heavier varieties for the most part decay quickly to charged pions. There

are many different sets of final states, with well studied branching ratios

[13]. Excess energy from these interactions is carried away by the pions as

momentum.

Annihilation of atomic antimatter follows this general prescription: the

antiprotons and antineutrons of an antimatter atom annihilate with protons

and neutrons, while the positrons annihilate with electrons. The final state

includes both pions and photons.

2.4 The advantages of antihydrogen

With the advent of improved technologies for producing and controlling

antiprotons, the study of the properties of antiprotons and atomic antimatter

has begun to accelerate greatly in the last twenty years. While studying the

properties of elementary antiparticles is important, there are a number of

advantages to studying atomic antimatter. The hydrogen atom is one of the

most well-understood systems in physics, with spectroscopic measurements

reaching a truly monumental precision of one part in 1015 [14]. The CPT

theorem predicts that this frequency is the same for antihydrogen, and so

performing a similar measurement for atomic antihydrogen would be an

unparalleled test of CPT symmetry.

Another advantage of studying the antihydrogen atom is that it is the

simplest system of antimatter which is electrically neutral. While this makes

it more difficult to contain, it removes residual electromagnetic fields as a

background for an experiment studying the interaction of antimatter with

other forces. In particular, the study of the effect of gravity on antimatter

becomes easier to perform on an electrically neutral atom.

2.5 Antihydrogen in experiment

Antihydrogen was first created in the LEAR facility at CERN, which was

operational from 1982 to 1996 [15]. LEAR used CERN’s proton synchrotron

10



2.5. Antihydrogen in experiment

to produce a high intensity beam of antiprotons which was then accumu-

lated and stored. In 1995 [16], this beam was passed through a Xe target,

where antiprotons would occasionally lose energy due to electron-positron

pair production. In some very rare cases, the positron would be created

with a velocity matching that of the antiproton, and the two would become

bound as an antihydrogen atom in the beam. These atoms made a unique

signal as they annihilated in a detector.

These antihydrogen atoms were far too fast to perform measurements

on. At the same time, progress was being made in slowing the antiprotons

and confining them to Penning traps.

Antiproton and antihydrogen research really began to take off with the

decommissioning of LEAR and the construction of the Antiproton Decel-

erator (AD) at CERN in 1999. Since then, a number of experiments have

successful contained and measured antiprotons and antihydrogen. In 2002,

the ATHENA collaboration [17] and subsequently the ATRAP collaboration

[18] were able to produce larger quantities of antihydrogen using trapped an-

tiprotons and positrons. However, these atoms were still too short-lived to

be able to perform spectroscopic measurements, either annihilating or be-

coming ionized in the electromagnetic fields.

The ALPHA collaboration in 2010 [19] and the ATRAP collaboration

in 2011 [20] were able to confine antihydrogen produced in this way using

magnetic minimum traps. This has allowed for a number of the transition

frequencies of antihydrogen to be measured [21–24]. More recently, the AL-

PHA collaboration has been able to cool these antihydrogen atoms even

further using laser cooling techniques [25]. Furthermore, the completion of

the ELENA decelerator ring promises a supply of even lower energy antipro-

tons [26].

The list of properties of antiprotons and antihydrogen currently being

studied at the AD is expansive [15]. The BASE experiment measures the

magnetic moment of antiprotons trapped in a Penning trap [27]. ASACUSA

studies antihydrogen and antiprotonic helium in flight, mainly performing

spectroscopy [28]. GBAR creates and traps antihydrogen ions and releases

them to study their gravitation acceleration [29]. The AEgIS group also
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2.5. Antihydrogen in experiment

studies the effects of gravity on antihydrogen, by using interferometry on a

beam of antihydrogen [30]. And finally the ALPHA collaboration continues

to study the transition frequencies of antihydrogen, and is beginning to

measure gravitational acceleration in ALPHA-g [31].
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Chapter 3

The ALPHA-g experiment

3.1 History of ALPHA

The ALPHA collaboration was formed in 2005 by many members of the

former ATHENA collaboration [17], in an effort to build from the successes of

its predecessor. Whereas ATHENA was unable to capture the antihydrogen

atoms it created, the original ALPHA experiment used a magnetic minimum

trap to hold the antihydrogen atoms. In 2011, ALPHA succeeded in trapping

cold antihydrogen atoms for up to 16 minutes [32].

With the ability to contain antihydrogen long enough for the majority

of atoms to fall into the ground state, ALPHA began to use spectroscopy

to measure transition frequencies. The ground state of antihydrogen in a

magnetic field splits into four hyperfine states. Two of these states are trap-

pable in a magnetic minimum trap, while the other two move towards higher

magnetic fields and thus escape. In 2012, by injecting resonant microwave

radiation, ALPHA was able to induce a transition between these states and

observe the subsequently ejected antihydrogen [33].

At the same time, ALPHA used a silicon vertex detector to reconstruct

the annihilation positions of antihydrogen atoms after the magnetic min-

imum trap is turned off. By examining the vertical distribution of these

annihilations, a proof of concept measurement of the gravitational mass of

antihydrogen was performed; this was an early test of the weak equivalence

principle in antihydrogen, published in 2013 [31]. This laid the framework

for the present ALPHA-g experiment.

For its second run, the ALPHA apparatus was upgraded to ALPHA-

2. One primary upgrade was the introduction of a separate catching trap,

responsible for slowing and cooling antiprotons into a plasma before they
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are moved into the main apparatus. This allowed far greater access to

the antihydrogen atoms once formed. In 2016, by stepping the incident

radiation frequency across the hyperfine transition frequencies, ALPHA-

2 was able to measure the hyperfine splitting to a precision of 4× 10−4

[21]. Using a similar method, the Lyman-alpha 1s-2s [22] and 1s-2p [23]

transition frequencies were also measured. More recently, the fine structure

of antihydrogen has been observed [24], and laser cooling of antihydrogen

atoms has been demonstrated for the first time [25], which opens the door

for a new set of precision measurements.

The current focus of the ALPHA collaboration is split between an up-

grade of the ALPHA-2 system called ALPHA-3, and a new experiment called

ALPHA-g. The upgrades for ALPHA-3 include photon detection for fluo-

rescent light, as well as plans to observe further transitions such as the

2s-4s transition. Meanwhile, the new ALPHA-g will build upon the previ-

ous proof-of-concept gravitational mass measurements with an entirely new

trap and set of detectors [34]. Crucially, the new trap is oriented vertically

to provide a much larger statistical sensitivity. In addition, the magnetic

fields of the new apparatus are more homogeneous, and their behaviour is

known much more precisely as they are turned off. This reduces the system-

atic error introduced by the magnetic forces which would otherwise dwarf

the gravitational interaction.

3.2 Physics goals

The goal of the ALPHA-g experiment is to measure the gravitational ac-

celeration g of antihydrogen in the Earth’s gravitational field. The weak

equivalence principle states that the trajectory of any object in a grav-

itational field is independent of the composition or internal structure of

the object; on the Earth’s surface, all objects will accelerate downwards at

g0 = 9.806 65 m s−2.2 ALPHA-g aims to verify that this is also the case for

2This is the value for standard gravity, the nominal acceleration due to gravity near the
Earth’s surface which was fixed in 1901 [35]. In reality, it varies significantly by altitude
and latitude.
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antihydrogen, and in doing so, provide evidence that the weak equivalence

principle holds for antimatter. ALPHA-g aims to be the first precision test

of this principle on antihydrogen, and in doing so provide a more solid ex-

perimental basis for the theoretical efforts surrounding gravity discussed in

section 2.2.3.

3.3 Antihydrogen production

The ALPHA-g apparatus is built upon the success of multiple generations of

antihydrogen experiment. The antihydrogen production process begins with

the production of a cold plasma of antiprotons. The first steps are performed

by CERN’s Antiproton Decelerator (AD) group. A proton beam from the

proton synchrotron is collided with a target to produce a smorgasbord of

particles, some of which are antiprotons. A fraction of these antiprotons are

collected by electromagnetic fields and focused into a beam, which is sent

to the AD. Here they are contained in a cooling ring by bending magnets,

while electric fields are used to slow the antiprotons to 5.3 MeV. From there,

they are transported to the new ELENA (Extra Low ENergy Antiproton)

ring [26], which uses similar techniques to further slow the antiprotons to

an energy of 100 keV.

From this point, the antiprotons are sent to the ALPHA apparatus. They

are captured by a Penning-Malmberg trap called the catching trap. Here,

a solenoid is used to create a uniform axial magnetic field. This confines

the radial motion of the antiprotons, and causes them to orbit around the

trap axis. A static electric potential applied at both ends of the trap by

a set of cylindrical electrodes creates a potential barrier which confines the

antiprotons in the axial direction. Once captured in the catching trap, the

antiprotons are sympathetically cooled to further reduce their energy to

below 100 eV. This is done using a cold plasma of electrons. Once this

cooling is complete, the trap potentials are lowered to eject higher energy

antiprotons. Finally, the plasma is compressed radially using the rotating

wall technique. Electric fields are pulsed sinusoidally to cause the plasma to

rotate, and thus contract radially due to conservation of angular momentum.
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3.3. Antihydrogen production

Following this, the antiprotons are moved into the ALPHA-g apparatus by

lowering the potential wall on one end of the trap. Further axial magnetic

fields ensure radial confinement of the antiprotons.

Meanwhile, a cold plasma of positrons is prepared by an apparatus called

the positron accumulator. A sodium-22 radioactive source emits positrons

with a range of energies up to 545 keV. A solid neon moderator film is used to

slow these positrons. Only a fraction of positrons emerge from the moderator

without annihilating, but these have a low energy and can be focused into a

beam. This beam is then passed through a number of stages of nitrogen gas,

where positrons lose energy through collisions. The plasma is compressed

using the rotating wall technique. They are further cooled by evaporative

cooling, whereby the potential wall at one end of the trap is lowered, so that

particles with higher energy are able to escape while lower energy particles

remain contained. At this point they are sent to the ALPHA-g apparatus,

using an analogous method to the antiproton technique.

Once at the ALPHA-g apparatus, both plasmas (antiprotons and positrons)

are held by Penning-Malmberg traps. They are further cooled using the

methods previously described, and compressed to be of similar sizes. With

the plasmas held in two adjacent and opposite potential wells, the potential

barriers are then lowered so that both plasmas combine in mixing region,

as shown in figure 3.1. Some number of positrons will escape; however, this

is thought to be an advantage, as it leads to further cooling which offsets

the energy increase caused by the mixing. With the plasmas held in an

overlapping position, antihydrogen atoms are allowed to form.

A fraction of the atoms produced have magnetic dipole moments prop-

erly aligned for trapping; these are held in a magnetic minimum trap con-

stituting of two coils and an octopole magnet. The magnetic minimum trap

remains energized over a number of cycles of the antihydrogen formation

process, so that a large number of antihydrogen atoms can be collected. For

further information on the antihydrogen production process, see e.g. [36].

Once sufficient antihydrogen has been collected, the atoms are further

cooled by a laser cooling technique known as Doppler cooling. The 1S-

2P transition of antihydrogen is excited using a pulsed Lyman-Alpha laser,
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3.4. Antihydrogen release and detection

which is slightly below the transition frequency. Because of this detun-

ing, light will be preferentially absorbed by antihydrogen atoms travelling

towards the laser. Since this photon absorption process also transfers mo-

mentum, and photon reemission is an essentially isotropic process, the mo-

mentum of the antihydrogen atom will decrease on average. The implemen-

tation of laser cooling in ALPHA [25] was the first demonstration of the

technique for antihydrogen atoms, and will be instrumental in lowering the

antihydrogen kinetic energy sufficiently for the gravity measurement.

Figure 3.1: The on-axis potential during the antihydrogen production pro-
cess. Note how the two plasmas are brought into contact by careful manip-
ulation of the fields. The red dashed line shows the potential in the previous
step. Taken from [36].

3.4 Antihydrogen release and detection

Once a sufficient number of cold antihydrogen atoms have been collected,

they are released from the trap. This is done by a controlled power down

of the magnetic minimum trap. The magnetic fields of the trap during this
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3.4. Antihydrogen release and detection

process have been studied extensively, in order to minimize any “kick” which

might be given to the antihydrogen atoms.

The atoms are then allowed to free fall, with their natural trajectories

due to thermal kinetic energy being modified slightly by the presence of

the Earth’s gravitational field. After travelling a short distance, they will

annihilate on the walls of the trap. This process is described in section

2.3. The products of this annihilation will then pass through the ALPHA-g

detectors described in the chapters 4 and 5.

The technicalities of measuring the strength of the gravitational interac-

tion from the annihilation positions is considerably more nuanced than the

naive “drop the anti-atoms and see where they land”. Firstly, the thermal

energy of the anti-atoms is still much larger than the gravitational poten-

tial, and so under normal downwards gravity, many atoms would annihilate

above the trap. Furthermore, the speed at which the magnetic field can

be quenched is far from instantaneous; instead, one should consider a slow

lowering of the gravitational potential barriers above and below the trap.

The simplest measurement will be performed with the magnetic poten-

tial barriers below and above the trap at the same energy. Since the barrier

above the trap is (under normal gravity) at a higher gravitational potential,

this upper wall will have a higher total height than the lower one when con-

sidering both the magnetic and gravitational potentials. Thus as the walls

are lowered, anti-atoms will preferentially escape the trap in the downwards

direction. The rough rule-of-thumb based on simulations within the collab-

oration is that four out of every five anti-atoms should escape downwards.

The height of the upper and lower potential barriers can also be varied

individually. Another interesting measurement is when the lower potential

barrier is augmented so that the total height of the two barriers is equal,

including the gravitational potential. In this case, anti-atoms should es-

cape the trap upwards and downwards in the same ratio. By measuring

the distribution of annihilation positions with different configurations of the

magnetic potential barriers, and comparing these measurements to simula-

tions with different values for the gravitational interaction, the value of g

for antihydrogen can be determined.
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Chapter 4

Antimatter detection

Detecting antimatter particles is a surprisingly well studied problem in

physics, for an important reason – it forms the basis of positron emission

tomography (PET), a prolific medical imaging technique. The procedure

for a typical PET study is to inject a biological compound into the patient

which has been tagged with a radionuclide. This particle then undergoes

a decay and releases a positron, which travels a distance of around 1 mm

before annihilating with an electron in the body. This annihilation can pro-

duce two photons with opposite momentum. By detecting the two photons,

the location of each annihilation can be reconstructed3, and active areas of

the body can be identified [37].

The ALPHA-g detectors work by a similar principle: they allow the

antimatter particles to annihilate, then track the annihilation products in

order to reconstruct the annihilation vertex. The key difference, of course,

is that the antimatter particles in question are antihydrogen atoms instead

of positrons, and so the annihilation products are pions instead of photons.

With more than two annihilation products, a more sophisticated tracking

algorithm is required for the reconstruction of the annihilation sites.

This chapter will discuss the particle detection technology used in ALPHA-

g to track the pions resulting from antihydrogen annihilations. For complete-

ness, the principles of the time projection chamber will be outlined, although

this detector is not the focus of the present work. More detail will be given

on the plastic scintillators of the BV, and the silicon photomultipliers used

to capture the resulting photons.

3More precisely, each annihilation can only be constrained to the line between the
two photons. Identifying the active areas requires a large volume of data and sophisti-
cated analysis. This is not the case for ALPHA-g; the vertex of each annihilation can be
reconstructed exactly even in the two pion case, since the two pions are rarely collinear.
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4.1. Ionization in a time projection chamber

Figure 4.1: The principle of operation for Positron Emission Tomography.
Positrons produced in active areas of the body annihilate and produce two
gammas with opposite momentum, which are detected to reconstruct the
annihilation site. Taken from [38].

4.1 Ionization in a time projection chamber

The time projection chamber (TPC) is a tried and tested detector which is

used to record the path of a charged particle. It is typically filled with a gas

mixture; a wide variety of mixtures can be used, but the ALPHA-g TPC is

filled with a mixture of argon and CO2. When a charged particle traverses

this gas, it primarily loses energy through Coulomb interactions with the

large number of electrons of the argon atoms. This causes ionization of the

argon atoms, creating electron-ion pairs. The gas density is low enough that

typically only a fraction of the charged particle energy is deposited as the

particle traverses the length of the TPC.

There are also a number of excitation interactions in the argon gas as

well as ionizations, where an electron is raised to an excited state instead of
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4.1. Ionization in a time projection chamber

being completely freed from the argon atom. As these excited atoms decay,

photons are produced. In a pure argon gas, these photons might be able to

trigger additional ionizations via the photoelectric effect. For this reason,

CO2 is added as a quenching gas, in order to absorb these excess photons

and avoid unwanted behaviour.

An electric field is applied to the gas using an array of anode and cath-

ode wires. This prevents the electron-ion pairs from recombining; instead

the electrons drift toward the anode wires and the ions toward the cath-

ode wires. The electric field of an individual wire is proportional to 1/r,

as frequently verified by first year physics students. Consequently, as the

electrons reach the anode wire, they experience a much larger electric field.

The drift velocity increases greatly, and a threshold is crossed where each

electron has enough energy to cause a subsequent ionization and produce a

new electron ion pair. The number of free charge carriers increases exponen-

tially in what is known as an avalanche. The electrons are collected on the

anode wire, while the new ions are drifted back to the cathode, inducing an

even greater charge on the anode wires. This charge is read out by a data

acquisition system.

The key feature of a TPC is that given a constant electric field, the

electron drift velocity is constant. Thus the time taken for charge to reach

an anode wire is proportional to the distance of the ionizing particle from

the wire. The location along the wire can also be determined by segmenting

the wire length using conducting pads, such that electrons arriving at the

anode wire will also induce a charge on these pads which can be read out.

In this way, a three dimensional reconstruction of the path taken by the

ionizing particle can be achieved.

The design of a typical TPC is shown in figure 4.2. ALPHA-g uses an

unconventional TPC design, where the time projection axis is the radial one,

and the anode wires run parallel to the cylinder axis. This is illustrated in

figure 4.3. This design naturally brings its own advantages and challenges,

which lie outside the scope of this discussion.

Much of this brief overview of the the TPC was based on a lecture series

given by Doug Bryman at TRIUMF [39], although there are many resources
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available on the topic. For a comprehensive treatment, see [40].

Figure 4.2: An illustration of the TRIUMF TPC. (1) Magnet iron; (2) coil;
(3) outer trigger scintillators; (4) outer trigger proportional counters; (5)
end-cap support frame; (6, 8) field cage wires; (7) central high-voltage plane;
(9) inner trigger scintillators; (10) inner trigger proportional wire chamber;
(11) TPC end-cap proportional wire modules. Taken from [40].

Figure 4.3: Electron track simulation in the ALPHA-g TPC. Note how the
anode wires are aligned with the central axis and ring the circumference of
the TPC. Taken from [41].
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4.2. Light production in plastic scintillators

4.2 Light production in plastic scintillators

Another commonly used technique for detecting charged particles is to use

scintillators to produce photons. A scintillator is a material which takes

advantage of the excitation interactions caused by an incident charged par-

ticle, where electrons in the scintillator atoms are raised to an excited state.

When the atoms fall back down to the ground state, photons are produced

with energy equal to the difference. These photons can then be detected

and the location of the excitation determined.

There are a number of materials which can be used as a scintillator,

each with their own advantages and disadvantages [42]. For example, liquid

argon is often used for its scintillating properties in dark matter search ex-

periments, due in part to its large cross section for nuclear recoils. Inorganic

crystal scintillators are frequently used in collider experiments due to their

large light yield and radiation hardness. For ALPHA-g, the main consider-

ation is a short scintillation time; the lifetime of the excited state needed to

be short to reduce uncertainty on the interaction time and find an accurate

time of flight. To this end, plastic scintillator is the material of choice.

The particular plastic [43] used by ALPHA-g is called polyvinyltoluene,

although a variety of long chain organic molecules can be used as plastic

scintillator. The key structure is the benzene ring, a hexagonal arrangement

of six carbon atoms, which has a unique set of molecular bonds. Three

of each carbon atom’s four valence electrons form sigma bonds with their

neighbours. The final valence electron of each atom becomes involved in a

pi bond, and due to the nature of the ring structure, these orbitals become

delocalized over the entirety of the benzene ring. This delocalized orbital has

a set of excited states which are especially suited for producing scintillation

light.
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Figure 4.4: The molecular structure of polyvinyltoluene, the plastic used as a
scintillator. The benzene ring, the structure responsible for the scintillation
properties, is denoted by the hexagonal ring.

The main issue with this and many other scintillators is that the wave-

length of light produced by the decay of the excited pi bonds will be absorbed

by these same pi bonds. As a result, the attenuation length of light within

the scintillator is naturally short. To circumvent this, the plastic scintillator

is doped with a fluorescent emitter called a “fluor”. These particles will ab-

sorb the light emitted from the scintillator, and fluoresce light at a different

wavelength which will be able to travel more easily through the plastic.

The development of scintillators for physics experiments is an area of

study with far more nuance than can be presented here. The interested

reader should refer to e.g. [44].

4.3 Light collection in silicon photomultipliers

There are a number of methods which can be used to detect light coming

from a scintillator. Historically, the most common method is to use a pho-

tomultiplier tube (PMT). A photon will strike a thin photocathode and will

produce a single photoelectron depending on the quantum efficiency, typi-

cally around 25%. The photoelectron will then be accelerated by a series of

dynodes, each held at a progressively higher voltage. Upon hitting a dyn-

ode, each electron will free additional electrons, which will be accelerated

themselves. This leads to an electron cascade which eventually creates a

measurable voltage. However, PMTs have some disadvantages compared

to modern detectors, such as the requirement for high voltage and their
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large physical footprint. One especially relevant shortcoming of PMTs is

that they do not perform well in magnetic fields, as the trajectory of the

electrons between the dynodes will be impacted.

A newer technology for photon collection is the silicon photomultiplier

(SiPM). These rely on the semiconducting nature of the silicon lattice. En-

ergy levels of atoms within the lattice form continuous bands rather than

discrete levels. Between the highest band which is fully occupied (the va-

lence band) and the lowest unoccupied band (the conduction band) is a small

energy gap. Due to thermal energy, a small number of electrons will be ex-

cited into the conduction band, producing electron-hole pairs. A charged

particle passing through the silicon can further excite electrons and create

more electron hole pairs; this is the mechanism by which a silicon detector

works.

Figure 4.5: Band gap structure for insulators and semiconductors. Electrons
can be excited into the conduction band of a semiconductor thermally or by
an incident particle. Taken from [44].

Silicon can be doped with ions or other impurities, which adds extra

energy levels either directly above the valence band or directly below the

conduction band. This leads to either n-type silicon, which has extra weakly-

bound electrons and a proclivity towards producing electrons, or p-type

silicon, which has extra ions which accept electrons, and a proclivity towards
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producing holes. The junction between a region of p-type silicon and a

region of n-type silicon is of special interest. Electrons move from the n-

type silicon to fill the holes in the p-type silicon, until the redistribution of

charge creates a static potential which opposes this movement. As a result,

a depletion region forms around the junction which is mostly free of thermal

electron-hole pairs.

In a typical silicon detector, a reverse bias voltage is applied to counteract

the natural potential built up, and thus increase the size of the depletion

region. Above a certain voltage known as the breakdown voltage, the drift

velocity of electrons is high enough that they have sufficient energy to cause

additional excitations and create further electron hole-pairs. This causes an

avalanche of electrons which are then detected at an anode, similar to in

a gaseous detector. SiPM are typically held above the breakdown voltage,

so that a single photon creating a single electron-hole pair will produce a

measurable signal. However, this does lead to a rise in thermal noise, as a

single thermal excitation will also trigger a breakdown. As a result, most

SiPM consist of a number of individual cells which are isolated from each

other, so that the majority of the detector remains active at all times despite

thermal noise.

Further development of silicon technologies is an area of active research,

both in physics and for commercial applications.
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Chapter 5

The ALPHA-g Barrel

Scintillator

The ALPHA-g experiment relies on two main detector systems. The first is

the radial time projection chamber (TPC) which is responsible for the track-

ing of annihilation products. The second is called the barrel scintillator or

barrel veto (BV), which provides precise timing information of the detected

particles. It also provides a fast and precise trigger for the TPC. The BV

is composed of 64 trapezoidal bars of plastic scintillator which are read out

at both ends by arrays of SiPM. These detector systems are concentrically

arranged around ALPHA-g trap; this layout is shown in figure 5.1. The

barrel veto will be the focus of this chapter, and indeed of the rest of this

report.
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Figure 5.1: Arrangement of ALPHA-g detector systems. The TPC lies
immediately outside the inner trap, and the BV surrounds the TPC. Sur-
rounding the BV is the solenoid magnet (not pictured).

5.1 Motivation for the BV: Time-of-flight

background discrimination

The ALPHA-g experiment is located at surface level at CERN and has

minimal shielding from any external particle flux. As a result, there is a large

background from cosmic rays incident on the detectors. Protons and alpha

particles interact in the upper atmosphere, creating pions, which quickly

decay to muons travelling near the speed of light. These muons have no

hadronic interaction and so are able to penetrate the atmosphere and reach

the surface, their lifetimes in the laboratory frame increased by relativistic

time dilation. The cosmic ray flux at the surface is well understood: the

angle of incident cosmic ray muons approximates a cos2 θ distribution, and

the rate of incidence on a horizontal area is approximately 1 cm−2 min−1 [45].

This rate is sufficient to produce a significant background over the timescale
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of a typical ALPHA-g data run. In particular, a cosmic ray passing through

the TPC will leave a track by ionizing the gas, which can be indistinguishable

from a pion resulting from an antihydrogen annihilation. Should a cosmic

ray pass close to (or interact with) the wall of the trap, then the TPC

alone does not have the capability to recognize this as an externally incident

particle instead of an annihilation on the trap wall.

The main purpose of the BV is to measure the time of flight (TOF) of

particles crossing the TPC, which is one of the main methods of identifying

events caused by cosmic rays. The BV is not a true veto in the traditional

sense – it is not used to limit the data rate by excluding background events

in real time. Instead, it is used to distinguish between cosmic rays and true

annihilation products on an event-by-event basis during offline data analysis.

This background rejection algorithm remains to be written, but it will be

based in machine learning and will rely on a number of input parameters.

The TOF will be one (very important) such parameter, but the algorithm

will also use the number of tracks, angles between tracks, and proximity to

the trap wall, to name a few others.

To understand why TOF is a powerful tool for background rejection,

consider how the TPC signatures of an antihydrogen annihilation can be

mimicked by cosmic rays. Figure 5.2 illustrates the four most common

cases:

(a) A cosmic ray passing through the detector.

(b) A cosmic ray interacting within the detector and producing one or

more secondary particles.

(c) An antihydrogen annihilation producing two pions on the trap wall.

(d) An antihydrogen annihilation producing three or more pions on the

trap wall.

A cosmic ray muon will enter the detector on one side, ionize gas in the

TPC which will be recognized as a track, produce a second track on the

opposite side of the TPC (or more in the case of showering), and then exit.
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The time delay between the entry and exit is equal to the path length of the

muon divided by its speed (for our purposes, the speed of light). The time

difference between the entry and exit is called the time of flight (TOF).

On the other hand, consider the products of an antihydrogen annihila-

tion. In the case of two pions, two tracks will be produced originating on the

trap wall with opposite momenta. This could be indistinguishable from the

tracks of a cosmic ray passing through the trap wall. Similarly, the multiple

pion case could resemble a cosmic ray shower on the trap wall.

Where these two classes of events differ is in their TOF. In an annihi-

lation event, the pions are produced at the annihilation vertex and travel

through the TPC at roughly the same speed. As a result, they will exit

the TPC at roughly the same time. The effective TOF, the largest time

difference between two exit times, will be small. Meanwhile for a cosmic ray

event, the exit hit(s) will occur a measurable time delay after the entry hit,

proportional to the path length taken. By precisely measuring the entry

and exit times of particles in the detector, the BV will be able to distinguish

annihilation products from the cosmic ray muon background based on their

effective TOF.
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Figure 5.2: An illustration of the TOF-based cosmic ray background re-
jection principle. Cosmic rays hit the BV with a measurable time delay
between hits, while antihydrogen annihilation produce multiple BV hits at
the same time.

In addition to this important use as a background rejection tool, the BV

will also perform the role of providing a fast trigger for ALPHA-g. Relying

on the TPC to self-trigger is not ideal; there is significant variation in trigger

time caused by variations in drift time within the gas, depending on the

geometry of each event. The response of the BV to a particle is much faster

than that of the TPC, since the propagation of light down the bars is much

faster than electron and ion drift within the gas.
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5.2 TOF time resolution requirement

Clearly, the BV must have some minimum time resolution to be able to

effectively reject cosmic rays. An order of magnitude of the required time

resolution is easy to calculate as follows. The ALPHA-g barrel veto has

a diameter of approximately 45 cm. Consequently, a perpendicular cosmic

ray muon travelling at the speed of light has a TOF of 45 cm/c = 1.5 ns.

Thus to distinguish external cosmic rays from annihilation events with an

effective TOF close to 0 ns, the detector must be sensitive to a level of a few

hundred picoseconds.

To get a more accurate account of the required time resolution, a Monte

Carlo simulation was previously performed [46]. A sample of cosmic rays

and a sample of antihydrogen annihilation products were simulated using

Geant4 [47] in an approximation of the detector geometry. The effective

TOF for each event in this simulation was convoluted with a Gaussian of

predefined width to mimic the finite detector response time and electronics

time resolution.

Partial results of this study are shown below in figure 5.3, which shows

the annihilation event acceptance rate for a cut on the effective TOF which

rejects 99% of the cosmic ray background. The study included the opening

angle between tracks, i.e. the angle from one track to the other with respect

to the centre of the detector. Large opening angles correspond to tracks

close to the centre of the detector and the trap wall; these are the cosmic

rays which more closely resemble annihilation events. We see that for most

opening angles, an acceptance rate of around 97% is attainable. This is

achieved with a TOF time resolution of 200 picoseconds in the BV detector.

Any further improvement on this time resolution has marginal impact on

the discriminating power of the the TOF.

Informed by this study, the BV must be able to provide the effective TOF

of events within 200 ps. This report will cover the steps taken to attain this

time resolution.
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Figure 5.3: Simulated annihilation signal acceptance for 99% cosmic back-
ground rejection. Simulated TOF values were convoluted with a Gaussian
corresponding to the specified time resolution. Cuts were made on total
energy deposited in the TPC and the opening angle between tracks. A cut
was then made on the TOF which rejected 99% of the simulated cosmic ray
background, and the fraction of simulated annihilation events which pass
this cut is plotted. Taken from [46].

5.3 Barrel veto design

The barrel veto was designed to measure the TOF of incident particles with

this specified precision of 200 ps. It finished construction and was first tested

in conjunction with the TPC at CERN in 2018.

The barrel veto is composed of a series of 64 bars of plastic scintillator.

These are arranged in a cylinder, similarly to the slats of a barrel. Each bar

has a slightly trapezoidal cross sectional shape so that they fit seamlessly

together. This is to aid structural integrity and stability of the barrel and to

ensure uniformity of the active volume. The length of each bar is 260.4 cm.

When assembled, the inner diameter of the barrel is 44.6 cm and the outer

diameter is 48.6 cm.

The bars are made of EJ-200, a polyvinyltoluene scintillator produced by

Eljen Technologies [43]. This scintillator was designed with two properties
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in mind: a long attenuation length, which makes it suitable for the 2.6 m

bars, and fast timing. The rise time of the light pulse produced by incident

ionizing radiation is quoted at 0.9 ns, and the decay time is 2.1 ns. The

scintillation light produced has a wavelength which peaks at 425 nm, and

the refractive index at this wavelength is 1.58.

Any ionizing radiation crossing a scintillator bar will produce scintilla-

tion light isotropically. This light will travel down the length of the bars,

reflecting off the surface of the scintillator which has been treated to max-

imize reflectivity and facilitate transmission. Naturally, a photon reflecting

multiple times before reaching the end of the scintillator bar will take a

longer path. Thus although all the scintillation light is produced in a few

ns, photons will reflect around inside the bar for far longer. As a result,

the actual length of the light pulse at the end of the bars was measured to

be around 40 ns. A simple diagram demonstrating this effect is provided

in figure 5.4. The full effect of photon reflections will be investigated with

future Monte Carlo simulations.

Figure 5.4: Reflections within the scintillator bars. Photons are produced
isotropically and reflect off the bar walls. Photons taking longer path lengths
are responsible for the long 40 ns pulse observed at the bar ends.

At both ends of the scintillator bar, the light signal is detected by

MicroFJ-60035 silicon photomultipliers (SiPMs), which are produced by

SensL [48]. These sensors are 6 mm by 6 mm in size. Each bar end is in-

strumented with 6 SiPMs assembled into an SiPM module, which provides

approximately 50% coverage of the surface area at the end of the bar. This

is a compromise between light collection efficiency and space conservation –
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enough space must be left for structural support of the bars.

The chosen SiPMs have a peak light collection efficiency at a wavelength

of 420 nm, which sufficiently matches the wavelength of the scintillation

light. To increase light collection efficiency, 1 mm to 2 mm of RTV 615

silicone rubber was used to couple the scintillator bar to the SiPM module.

This transparent rubber is used to prevent the presence of an air gap, which

would otherwise cause some reflection at the interface. The inclusion of an

RTV layer was shown in previous tests to increase the light transmission by

a factor of 30%.

A diagram showing the arrangement of SiPM and their coupling to the

bars is given in figure 5.5.

Figure 5.5: Layout of SiPM and electronics at the end of the scintillator
bars. Note the arrangement of six SiPM per bar end. Not shown is the
RTV layer or the signal cables.

The breakdown voltage of these silicon photomultipliers is approximately

24 V. They are operated at a reverse bias voltage of 30 V, corresponding to

an overvoltage of 6 V. They provide a fast output and a standard output;

the ALPHA-g BV uses the fast output. In response to a single photon, the

fast output produces a pulse with a full width half maximum (FWHM) of

3.0 ns.
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5.4 Readout electronics design considerations:

Time walk correction

The combination of scintillator bars and SiPMs does an excellent job of pro-

ducing an electronic signal when an ionizing particle crosses the detector,

but designing readout electronics to record these signals has its own chal-

lenges. Clearly the readout electronics must be capable of recording signal

time at the 100 ps level to provide an accurate time of flight. However, a

common factor in these types of measurements which must be accounted

for is called the time walk or time skew correction, and the readout must

provide enough information to perform this correction.

Consider that the length of the light pulse observed by an SiPM after

an incident particle is around 40 ns due to reflections within the bar. As

discussed previously, the time of flight needs to be known to within around

200 ps. Thus it becomes necessary to construct a very precise and well-

defined start time for the relatively long SiPM pulses.

The simplest method is to define a fixed threshold voltage, and record the

time that the electronic pulse coming from the SiPM crosses this threshold.

However, this method has a fundamental problem: not all pulses are of

equal magnitude. A particle which loses more energy in the scintillator

will produce more scintillation light, and a particle crossing closer to the

SiPM will have less light attenuated in the scintillator. Given two pulses of

different magnitude, even if they have the same shape and begin at the same

time, the larger pulse will reach the threshold first. This effect is illustrated

in figure 5.6.

36



5.4. Readout electronics design considerations: Time walk correction

Figure 5.6: “Time walk”: The effect of pulse amplitude on threshold crossing
time

There are two common methods to work around this issue.4 The first is

to simply set the threshold voltage low enough such that it will be crossed

by the first photon reaching the sensor. This will effectively time the start

of the signals. However, SiPMs are known to have a dark background rate,

where an electron-hole pair is created by thermal excitations in the silicon.

Setting the threshold voltage too low will lead to the thermal noise being

recorded. As a result, the data acquisition system must be capable of han-

dling high rates from the SiPMs, and another system must be implemented

to distinguish the true signal events from this thermal background.

The second method, and the one implemented for the ALPHA-g BV, is to

fix the threshold higher, and then subtract a correction time value in analysis

in order to take the time walk effect into account. This correction value is

amplitude dependent, and so it is necessary to measure the amplitude of

each pulse.5

4A third method to minimize the time walk effect is the use of a technique called
constant fraction discrimination (CFD). Here, the pulse from the SiPM is split into two.
One pulse is inverted, delayed, and then added again to the first pulse. The new pulse
will cross 0 V at a time which does not depend on the pulse amplitude. This method
was considered for ALPHA-g, but ultimately not used. Compared to digitizing the full
waveforms with an ADC, using CFD adds no redundancy while adding an extra element
to the system.

5There are other quantities which are roughly proportional to pulse amplitude and can

37



5.5. Readout electronics design

Thus the requirements for the readout electronics are twofold. Firstly,

it must be able to precisely record the time that the pulses from the SiPMs

crosses a set threshold, such that the TOF can be reconstructed with a

resolution of 200 ps. Secondly, it must independently record the amplitude

of each pulse, which will be used to correct for the time walk effect.

5.5 Readout electronics design

The readout electronics of the BV contain a number of custom-built printed

circuit boards and other components. This section will describe the general

function and implementation of these components. For reference, a diagram

detailing the readout electronics system is included in figure 5.7.

Figure 5.7: A schematic overview of the readout electronics for the BV. The
ASD cards are located on the BV itself, while all other components are in a
designated electronics rack.

be used instead. For example, the ALICE experiment uses time over threshold [49], and
the integrated charge of the pulse is also commonly used.
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The first stage of the readout electronics is a custom SiPM board, de-

signed to hold the 6 SiPMs in place on the end of each bar. These boards

collect the fast output of each SiPM and carry it away from the bar via a

short (a few cm) ribbon cable.

The ribbon cable leads to a set of purpose built printed circuit boards

called analogue sum discriminator cards, or ASD cards. These are mounted

directly next to the ends of the SiPMs. Each ASD card reads out the signal

from four bar ends, for a total of 32 ASD cards, 16 at each end of the BV.

They contain much of the readout electronics for the BV.

After a set of preamplifiers, the first stage of electronics on each board is

an analogue sum. This sums together the signals produced by the 6 SiPM

at the end of a bar. Following this is an amplification stage, where this

analogue signal is increased in amplitude to around 1 V to 2 V but keeps the

same timing. The pulse is then inverted to give a positive waveform.

At this point, the signal is split into two pathways. The first pathway

crosses a comparator, which compares the signal to a threshold voltage. The

comparator produces a LVPECL digital signal which is on only when the

SiPM signal exceeds the threshold voltage. This voltage is programmable

and is generated by a digital-to-analogue converter (DAC) on the ASD card.

It is controlled by a signal from an external low voltage distribution board,

which is also responsible for providing the voltage needed for pulse amplifi-

cation, as well as the bias voltage of the SiPM.

The second pathway leads to an RC filter. This acts as a low-pass filter,

which removes the high frequency components of the signal pulse. This

results in a stretching of the pulse. An analysis was performed to determine

the transfer function of this pulse stretcher in the frequency domain. The

results confirmed that the pulse is stretched by a factor of approximately 5,

which was the design intention.

Both the stretched analogue pulse and the digital signal from the com-

parator are carried out of the ASD card via a flex cable. The signals are

taken to a third custom board called the rear transition module (RTM). One

RTM board is sufficient for two pairs of ASD cards, and so a total of 8 RTM

boards are required. They are located in a VME crate in the electronics
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rack. The purpose of the RTM is to further distribute the signals.

The digital signal is converted from LVPECL to LVDS in the RTM. From

there, it is carried to a time-to-digital converter (TDC). ALPHA-g uses a

TRB3 TDC produced by GSI [50]; a single TDC with 256 channels is used.

The TDC is responsible for recording the precise time of the signal. It uses

four FPGAs to create a delay line, where the signal is passed in sequence

through a number of delay elements, each of which takes a certain amount

of time. After the signal arrives, it propagates through the delay chain until

the rising edge of the next clock cycle. By counting the number of delay

elements the signal has propagated through, a precise time measurement

can be made. The RMS time resolution of the TDC is quoted at 14 ps.

The stretched analogue signal is passed through the back of the VME

crate to an analogue-to-digital converter (ADC). There is one ADC directly

behind each RTM, for a total of 8. The ADCs used are ALPHA-16 boards,

a repurpose of the GRIF-16 ADCs previously used by the GRIFFIN experi-

ment at TRIUMF [51]. They run at 100 MHz, taking a sample of the signal

every 10 ns. Sampling the full waveform in this way allows for the measure-

ment of the pulse amplitude required for the time walk correction. Since the

original pulses have a length of around 40 ns, and the sample length of the

ADC is 10 ns, the need to stretch the pulses by a factor of 5 is apparent.

One final system implemented in the readout electronics is a calibration

pulser. An external pulse can be generated by a DAC in each ADC. This

is passed to the RTM by a lemo cable, and then distributed to each ASD

card through the flex cables which also carry the signals. The pulse is

injected into the signal pathway on the ASD cards directly following the

first preamplification stage. The calibration pulser allows for testing and

calibration of the full system.

The electronics for the BV were fully implemented by 2018, when test-

ing and calibration runs were taken. However, it was not clear that the

system was sufficient to distinguish cosmic background events using TOF.

This report will show that the BV should be capable of performing the pre-

cision TOF measurements needed for cosmic background rejection, and the

methods used to attain this precision in analysis will be discussed.
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Chapter 6

Barrel Scintillator Analysis

Algorithm Design

This chapter will discuss the design and implementation of the analysis

algorithm for the data produced by the barrel veto. The goal of this analysis

is to use the raw data provided by the ADC and TDC, directly following

the event building by the ALPHA-g data acquisition system, to determine

an effective TOF for each event which will be used to discard cosmic ray

background events. This code was written and tested using results from the

first barrel scintillator commissioning data run, taken at CERN during the

summer of 2018. The plots in this chapter pertain to data from this run.

This run used the full ALPHA-g detector system, with the barrel scintillator

placed around the TPC and inside the solenoid magnets. In this section,

results for a run with the magnetic field disabled are shown, although the

algorithm for when the magnetic field is enabled is also described.

The general steps taken by the analysis algorithm are as follows:

1. The approximate start time and the pulse amplitude are extracted

from the waveforms saved by the ADC.

2. A precise time value is determined using the information saved by the

TDC.

3. ADC waveforms and corresponding TDC time values are associated

together as end hits.

4. End hits on opposite ends of the same bar are associated together as

bar hits.
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6.1. ADC waveforms

5. The axial position of the bar hit is calculated using the TDC time

values.

6. Bar hits are associated with corresponding tracks in the TPC.

7. The time of flight between each pair of bar hits is computed.

These steps will be further explained in the following sections.

6.1 ADC waveforms

Upon receiving a trigger signal, the ADC saves a waveform for all channels.

A time range of 700 bins is sampled, corresponding to 7 µs. The data ac-

quisition system includes a buffer, so that some of these samples are from

before the arrival of the trigger signal, in order to record the full waveform.

There are numerous possible trigger conditions which are used by ALPHA-g

for different runs. For the cosmic ray tests used to develop this analysis, two

conditions were used for different runs: either a coincidence of multiple TPC

channels, or a coincidence of two or more bars in the BV.

The dynamic range of the ADC is ±1 V. It records values as 16 bit

integers, and so the values range between ±215, or ±32768. The first step in

analysis was to convert these raw ADC values to a voltage, by multiplying

by 1 V/32768.

An example of a waveform recorded by the ADC after a cosmic ray event

is shown below in figure 6.1. The detectors and electronics which lead to

this distinct shape are discussed in the previous chapter. Although each

SiPM and electronics channel will behave slightly differently, the differences

between channels are not sufficient to create noticeable differences in the

pulse shape.
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6.1. ADC waveforms

Figure 6.1: A sample ADC waveform from a cosmic ray event.

There are two quantities which the analysis is required to extract from

each waveform: the approximate start time of the pulse, an a pulse am-

plitude to be used to correct for time walk. The pulse analysis algorithm

implemented follows these steps:

1. Calculate the baseline voltage. This is done by averaging the value

of the first 100 samples. The data collection window was configured

to start sufficiently early before the trigger signal, such that there is

guaranteed to be no pulse within the first 100 samples.

2. Determine the window where the waveform is above the baseline by a

predefined threshold, currently set to 1400, or 40 mV. This was chosen

to be just above the noise level for all channels.

3. Within this window, fit the waveform with a skewed gaussian function

of the following form:

f(x) =

Ae
− 1

2(x−µσ )
2

x > µ

Ae
− 1

2

(
x−µ

σ−k(µ−x)

)2

x < µ
(6.1)

This function was determined empirically to be an excellent fit for the

43



6.1. ADC waveforms

waveform produced by an incident cosmic ray. It has only four free

parameters: A,µ, σ, k.

4. Subtract the baseline from the maximum of the fit function (the pa-

rameter A) to find the amplitude of the fitted pulse.

5. Interpolate the time where the fit function crosses the predefined thresh-

old to get approximate start and end times for the pulse.

One issue which was faced while developing this algorithm is the satu-

ration of the ADC, where pulses were larger than the ±1 V dynamic range.

When this occurred, the ADC records its maximum value of 32768. This is a

fundamental issue which cannot be avoided by increasing the dynamic range

or modifying the electronics. Particles hitting the bar closer to the SiPM

module will necessarily lead to more photons being collected in a shorter

period of time, producing a larger amplitude pulse. Increasing the dynamic

range of the ADC would allow a larger fraction of the pulses to be properly

recorded, in exchange for a loss of sensitivity, or an increased data rate if a

more powerful ADC was used. It is not feasible to design readout electron-

ics which can record the largest waveforms without saturating. Instead, a

different solution was implemented.

This problem was circumnavigated by making a change to the waveform

fitting procedure: any bins with a value of 32768 were ignored by the fitter.

Thus only the unsaturated part of the waveform was fit, and the fit was

able to estimate the true height of the waveform as if there was no ADC

saturation. Figure 6.2 shows an example of an unsaturated fitted waveform,

and figure 6.3 shows an example of a saturated fitted waveform.
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Figure 6.2: An unsaturated ADC waveform from a cosmic ray event, fit with
equation 6.1.

Figure 6.3: A saturated ADC waveform from a cosmic ray event, fit with
equation 6.1. The fit was modified to exclude points with the maximum
ADC value, in order to ignore the flat top and circumvent the limited range
of the electronics.

To demonstrate the validity of the waveform fitting procedure as a method

for addressing ADC saturation, figure 6.4 shows a histogram of the measured

amplitude for a sample of the cosmic ray dataset, and figure 6.5 shows the

fitted amplitude for this sample. In the first figure, the peak around 32768

corresponding to ADC saturation is clearly visible.6 After the fitting proce-

6The amplitude is calculated as the difference between the maximum and the baseline,
and so variation in the baseline is responsible for the width of the peak.
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dure, the distribution closely matches an exponential decay, with no visible

artefacts at the transition between the saturated and unsaturated regions.

Theoretically, light is attenuated7 in the bar according to some attenua-

tion length λ, so that the amplitude of a pulse originating a distance x from

a photosensor is given by

A = A0e
−x/λ (6.2)

Assuming a uniform flux of cosmic rays along the length of the bars thus

leads to an exponential amplitude distribution. An exponential was fit to

figure 6.5, and matches the data well.

Figure 6.4: The measured amplitude of ADC waveforms for a sample of
cosmic rays. The amplitude is measured from the baseline to the maximum.
Note the large peak around 32768 due to ADC saturation.

7The value of λ is cited by [43] as 380 cm, although the effective value is expected to
be lower due to photons reflecting inside the bar and not taking the shortest path.
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Figure 6.5: The fitted amplitude of ADC waveforms for a sample of cosmic
rays. Note how the distribution extends far further on the X axis than figure
6.4, with no artefact around 32768. An exponential fit is shown.

Figure 6.6 plots the measured and fitted amplitude against each other.

The two values are perfectly correlated in the unsaturated region, as ex-

pected. In the saturated region, the ADC maximum remains fixed while the

fitted amplitude continues to increase. These three plots give a degree of

confidence that the fitting procedure is working as expected, and that this

is an adequate solution to the waveform saturation problem.
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Figure 6.6: The real/measured ADC amplitude vs. the amplitude of the fit,
for cosmic ray events. Notice the exact correspondence in the unsaturated
region. In the saturated region, the measured amplitude stays constant due
to saturation, while the fit amplitude continues to increase. The width of
the measured amplitude in the saturated region is due to different baselines.

6.2 Calculation of TDC time

The TRB3 TDC records its time values as a group of three numbers, which

are described in the TRB3 manual provided by GSI [52, 53]. The coarse

time counter corresponds to cycles of a 200 MHz clock, and so an increase of

1 in the coarse time counter is equal to a delay of 5 ns. The main 200 MHz

clock is built into the TDC, although the on-board clock is synced to an

external clock input to ensure stability. The coarse time counter is stored

in 11 bits, and so has a range of 211 × 5 ns = 10.24 µs.

To further increase this range to around 45 minutes, an epoch counter

is included, which increments each time the coarse time counter rolls over.

The epoch time counter is the most coarse timing element, and is used to

generate an absolute time value. Almost all events generated by an incident

particle have the same epoch time, and so this value is largely irrelevant for

the purpose of finding the time difference between any two hits.

The fine time counter is the most precise timing element. It is generated
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by a delay line, which is a series of electronic components which each take

a fixed amount of time to propagate a signal. Determining precisely how

far along the delay chain the signal has propagated at the start of the next

clock cycle allows the TDC to perform very precise timing measurements

on the order of a few tens of picoseconds. The fine time counter records

the number of elements the signal has propagated through by the next clock

cycle. The simplest way to interpret this is to assume that each element in

the delay line takes the same amount of time (the linear approximation).

A more precise time value can be obtained by measuring the time taken

for a signal to propagate through each delay element8, although the linear

approximation works well enough for our purposes.

Using the linear approximation, the final time value recorded by the

TDC for each event is calculated as:

tfinal =
cepoch

fepoch
+
ccoarse

fcoarse
+

cfine−clow
chigh−clow

fcoarse
(6.3)

Here, the coarse frequency is 200 MHz, the epoch frequency is 1/10.24 µs =

97 656.25 Hz, and the fine time was determined to range between clow = 17

and chigh = 450. This was done simply by plotting a histogram of the fine

time counter, and observing the edges of the distribution.9

6.3 Event construction

After extracting the necessary information from the ADC and TDC data

flow, the analysis algorithm groups together the information into suitable

data structures.

An end hit holds five quantities which are measured when light creates

a signal in one SiPM module at the end of a bar: the time measured by

8The full calibration is performed by collecting a large sample of random data, and
creating a histogram of the fine time counter. Some fine time values will have more counts
since the corresponding delay elements take more time; the time for each delay element is
inversely proportional to the number of counts.

9The limits of the fine time counter were observed to vary by a few units between
channels. Currently the same linear approximation is used for all channels, but using a
channel-by-channel approximation would yield slight improvements.
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the TDC, the pulse amplitude and the approximate time measured by the

ADC, and the bar number and end. One end hit is constructed for each

ADC waveform. An established channel mapping is used to find the TDC

channel corresponding to channel of the ADC waveform. In the case that

there are multiple TDC hits in the corresponding channel within the event

window, the first TDC time value is used as the time for the end hit. Care

was taken to ensure that the thresholds were set high enough to minimize

extra hits caused by background noise – this will be discussed later.

A bar hit is a grouping of two end hits, one for each end of a given

bar. When a particle crosses the BV and produces a scintillation signal, all

the information of this interaction coming from both ends of the bar will

be recorded as a bar hit. Any end hits without a corresponding hit on the

opposite bar end are discarded.

6.4 Calculation of Z position

Using the time values recorded by the TDC, it is possible to calculate the

Z position (i.e. position axially along the bar) at which the interaction

occurred for each bar hit. It must be assumed that light travels down the

bar at a fixed effective speed, such that the time taken for light to reach

the SiPMs increases linearly with the distance of the interaction from the

sensor. This is certainly true to the first order, although the degree to

which reflections and attenuation within the bar cause deviations from a

fixed effective speed is not yet known. This will be studied in the future

using ray tracing simulations.

The time measured by the TDC can be split into the sum of three major

components: the time tint of the interaction, the time tprop taken by the

photons to propagate down the bar, and the time telec taken for the signal

to propagate through the electronics to the TDC. We can write the photon

propagation time in terms of the distance d from the photosensor using the

fixed effective speed approximation tprop = d/ceff, so that:
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tTDC = tint +
d

ceff
+ telec (6.4)

If we define the Z axis to be centred around the centre of a bar of length

L, then the distance dtop that light must travel to reach the top photosensor

from an interaction at zint is given by:

dtop =
L

2
− zint (6.5)

The distance travelled by light to reach the bottom photosensor is:

dbot =
L

2
+ zint (6.6)

Assuming that the electronics delay is the same between channels, we

can subtract the TDC times for the bottom and top photosensors to obtain:

tbot − ttop =

(
tint +

dbot

ceff
+ telec

)
−
(
tint +

dtop

ceff
+ telec

)
(6.7)

=
dbot − dtop

ceff
(6.8)

=

(
L
2 + zint

)
−
(
L
2 − zint

)
ceff

(6.9)

= 2 · zint

ceff
(6.10)

Thus we can calculate the Z position of an interaction with the bar using

the two TDC time values in the following way:

zint =
ceff

2
(tbot − ttop) (6.11)

This calculation is carried out for each bar hit. Initially, the effective

speed of light was assumed to be given by the refractive index; the scintillator

bars have a refractive index of 1.58 [43], which would imply a speed of light

of 0.63c. The Z position distribution was found using this refractive index

and is shown in figure 6.7.
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Figure 6.7: The distribution of the Z position of hits within all bars. The
width of this distribution corresponds to the length of the bars. This study
used an effective speed of light of veff = 0.63c, which leads to a slightly
inflated apparent bar length.

This distribution was fit with a flat top function with Gaussian edges.10

The width of the Gaussians at the edges is 300 mm, which is consistent with

a time resolution of 1.6 ns at the ends of the bars. The width of the flat top

function is 3014 mm, which is considerably longer than the true length of the

2604 mm bars. The conclusion drawn from this is that the effective speed

of light is significantly smaller in the bars than that naively expected given

the refractive index, due to the effect of reflections with the bar discussed in

section 5.3. The effective speed of light which is consistent with the observed

width of the tbot− ttop distribution is 0.55c. This effective speed of light was

used in all subsequent analysis. In the future, it will be verified and further

understood using ray tracing simulations.

10There is a clear non-uniformity of the flat top distribution, with more events occurring
near the centre of the bar. The cause of this is not understood. The non-uniformity was
not reproducible in the tests carried out at TRIUMF described in the following chapters.
It will be interesting to see if this pattern is seen in cosmic ray data taken with the BV
in the fall of 2021.
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6.5 TPC track matching

In most cases, a charged particle with enough energy to produce scintillation

light in the barrel will also produce a track in the TPC. Matching each bar

hit with the corresponding track in the TPC is essential for understanding

and properly treating more complicated events with multiple tracks and bar

hits. This is accomplished using the following procedure:

1. Generate a 3-vector describing the position of each bar hit.

2. For each TPC track, extrapolate it until it intersects with the BV.

Create a 3-vector describing the intersection position.

3. Match each bar hit 3-vector with the nearest track intersection 3-

vector, if applicable.

The first stage is to find a 3-vector for each bar hit. The procedure for

finding the Z coordinate is described in section 6.4, where the centre of the

TPC is the origin of the coordinate system. The phi coordinate is determined

using the bar number: each of the 64 bars covers an angle of 5.625◦, and

the hit position is set to the centre of the bar. The radial coordinate is set

to the inner edge of the bar, at 223 mm.

As part of the TPC analysis, tracks through the gas chamber are recon-

structed and saved for each event. They are either straight lines or helical,

depending on the state of the magnetic field. In this analysis, each track is

extrapolated out of the gas volume until it reaches the radius of the barrel

veto. The point where it intersects this radius is saved as a 3-vector.

Finally, the two sets of 3-vectors are matched together. For each 3-vector

corresponding to a bar hit, the geometric distance is calculated to each TPC

track intersection point, and the closest track is selected. The same TPC

track can be matched to multiple bar hits; indeed, this is expected for high

angle particles which pass through the edges of multiple bars.

If the difference in phi or difference in Z between the two 3-vectors ex-

ceeds a fixed maximum value, then the barrel scintillator hit is said to have
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6.6. Calculation of time-of-flight

no matching TPC track and is discarded. Otherwise, the TPC track in-

tersection point is saved into the bar hit data structure. For each hit, the

difference in Z and phi between the two 3-vectors was plotted (not shown).

The maximum differences were chosen in order to fully encompass the main

peak in each of these distributions. Currently, the maximum permitted phi

difference is 17◦ (three bars) and the maximum Z distance is 300 mm.

6.6 Calculation of time-of-flight

The final step in the analysis algorithm is to calculate the time of flight

between any two bar hits. The calculation is similar to that of the Z position.

For a given bar hit, the mean of the TDC time measured at the two ends is:

tAbot + tAtop

2
=

(
tAint +

dAbot
ceff

+ telec

)
+

(
tAint +

dAtop

ceff
+ telec

)
2

(6.12)

= tAint + telec +
L

2ceff
(6.13)

where L is the total length of the bar. Now suppose that an event has

two bar hits, on different bars. Subtracting the average time of the two bar

hits yields the time of flight:

tAbot + tAtop

2
−
tBbot + tBtop

2
=

(
tAint + telec +

L

2ceff

)
−
(
tBint + telec +

L

2ceff

)
(6.14)

= tAint − tBint (6.15)

This calculation makes the assumption that the effective speed of light is

constant within the bar. It makes the additional assumption that this speed

is the same for all bars, and that all bars are the same length and have the

same electronics delay.

The time of flight is calculated in this way between every pair of bar hits.
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6.6. Calculation of time-of-flight

This will be used in the future as a main input into a cosmic ray background

discriminator.

The time of flight distribution at this stage is shown below in figure 6.8.

This plot includes all events with two or more bar hits matched to separate

TPC tracks, and includes the TOF between all combinations of hits within

these events.

Figure 6.8: Time of flight distribution for cosmic rays at CERN

At first glance, this seems reasonable; the largest possible TOF for a

particle travelling diagonally across the length of the BV is around 10 ns.

However, it is devoid of any complex features which might be expected due

to the geometry of the BV. Understanding and verifying this observed TOF

distribution is the main motivation for setting up a test system at TRIUMF,

which will be discussed in the following section.
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Chapter 7

The Vertical Slice

A vertical slice of a system is a small scale replica often used for testing

or benchmarking. It has one copy of each component of the system so

that functionality may be tested without requiring the entire system, which

might have hundreds of copies of each component. This section describes

the implementation of a vertical slice of the BV at TRIUMF.

7.1 Motivation: Mysteries in the CERN TOF

data

The necessity of further testing and troubleshooting of the BV system be-

came apparent after further analysis of the commissioning data taken at

CERN – there were a number of indicators that the response to cosmic rays

was not fully understood.

One particular issue arose when comparing the geometry of each cosmic

ray event to its TOF. Only events with the simplest topology were consid-

ered: those with two hits on the BV and two tracks in the TPC, with the

hits and tracks successfully matched together. These correspond to a single

cosmic ray crossing the BV, the TPC, the central trap volume, and then

exiting through the TPC and BV. With this cut in place, it is simple to

calculate the geometric distance between the two hits on the barrel scintil-

lator, using the positions determined either through extrapolating the TPC

tracks or using the barrel scintillator itself. Using this geometric distance

and the assumption that the cosmic ray is travelling at the speed of light, an

expected time of flight was calculated. However, when comparing this ex-

pected time of flight to the time of flight measured by the barrel scintillator,
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7.1. Motivation: Mysteries in the CERN TOF data

the two did not correlate at all, as shown in figure 7.1.

Figure 7.1: Measured TOF plotted against TOF expected from the geometry
of hits. Data was taken at CERN using cosmic rays. Expected TOF was
calculated as (distance between hits)/(speed of light). Notice how there is
no apparent correlation.

The most obvious feature of this plot is that the two variables are not

correlated at all, as mentioned above, where we would expect a full corre-

lation. Another feature of note is that the expected TOF has a minimum

value below which there are no events. This is due to the requirement that

there are two distinct tracks in the TPC, which necessarily have some dis-

tance between them (otherwise they would be merged into one track), and

that the BV hits are matched to these two separate tracks. This cut-off

should be present in the measured TOF as well; however, the distribution

extends all the way down to zero on the Y axis. These major discrepancies

made it clear that the time of flight values being measured had some issues.

In order to investigate, a vertical slice of the system was set up at TRIUMF

to perform further tests.
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7.2 Implementation

The TOF system at TRIUMF is a replica of the full BV and its associated

electronics, but with only the minimum number of each component necessary

to function. Two shorter 70 cm scintillator bars were used in place of the full

64 2.6 m bars. The electronics associated with the bars are an exact copy

of the electronics for the full BV, as summarized in figure 5.7. Each of the

four bar ends was instrumented with an ASD card, which was powered by

a single low voltage distribution board. Only one RTM board was needed

for the two pairs of ASD cards, and subsequently only one ADC. Finally,

an identical TRB3 TDC was used, and the test pulser line was set up to

provide calibration pulses in the same fashion. For the majority of the

following tests, the two bars were placed parallel to each other and stacked

directly on top of each other.

Included in this section are some annotated photographs of the vertical

slice.

Figure 7.2: Layout of the scintillator bars in the vertical slice.
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Figure 7.3: Low voltage distribution and control board

Figure 7.4: Analogue sum discriminator (ASD) card front side
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Figure 7.5: Analogue sum discriminator (ASD) card reverse side
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Figure 7.6: Rear transition module (RTM)

Figure 7.7: Alpha-16 analogue to digital converter (ADC)
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Figure 7.8: TRB3 time to digital converter (TDC)

7.3 Initial results

Following the implementation of the vertical slice at TRIUMF, a similar

analysis procedure was developed to the one described in the previous chap-

ter. There are two key differences between the analysis for the full BV and

the analysis for the vertical slice. Firstly, there was no matching to TPC

tracks implemented, since the bars were set up in absence of a TPC. Fur-

thermore, with only two bars, there was no need to cut on event topology

to focus only on the “simple” events. Any event with coincidence between

the four bar ends was included in the analysis.

It is also worth noting that the two physical quantities we can measure

with the BV, the Z position of cosmic rays and their TOF, become useful

diagnostic tools with only two bars. With the two bars directly stacked,

the Z position measured for vertical cosmic rays should be the same in both

bars. In practise, only a small difference between the two Z measurements

which is expected from cosmic rays travelling with a diagonal trajectory.
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Consequently, the difference between the two Z measurements can serve as

a test of the Z position resolution of the bars.

In addition, with the two bars directly adjacent to each other, the time

of flight between the two hits should be very small. A cosmic ray travel-

ling the distance of around 2 cm at the speed of light takes 66 ps. Again,

only very small variations are expected due to diagonal trajectories. As a

result, the TOF measurement with the two bars together provides a means

of determining the TOF resolution of the BV.

The initial time of flight distribution taken using cosmic rays is shown

in figure 7.9.

Figure 7.9: Unsigned TOF distribution for cosmic rays in the vertical slice.
Note the 1 ns offset of the peak from zero, the large width of the distribution,
and the number of grass events outside the main peak.

There are three features of note in this plot. Firstly, the mean TOF

is around 1 ns, which is far larger than expected – this indicates an offset

between channels which will be addressed in the following section. Secondly,

the standard deviation of the distribution is also around 1 ns, which is far

larger than the required 200 ps resolution. Steps taken to improve this reso-

lution will also be discussed in the following section. Finally, there are many

grass events which have TOF extending far beyond the main distribution.
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As described in section 6.4, the time difference between the two ends

of a bar is proportional to the Z position of the event along the bar. For

coincidence events between the two bars, the time difference between the

bar ends for each bar are plotted against each other in figure 7.10.

Figure 7.10: End-to-end time difference comparison between bar A and bar
B of vertical slice. This time difference is proportional to the Z position of
the hit, and so we expect the two quantities to be very well correlated.

The two time differences (and therefore the two Z positions) are very

well correlated, as expected. The width of this distribution along both

axes is around 10 ns. For a bar length of 70 cm, this corresponds to an

effective speed of light of veff = 0.47 × c. This conflicts slightly with the

speed of veff = 0.55× c measured in the full BV, although both are smaller

than the speed of light given by the refractive index of the scintillator. It

is not surprising that the effective speed of light is different for the two

detector systems, given the significant length difference between the two

sets of scintillator bars.

It is also worth noting that there is an offset from zero of about 1 ns for

both bars. This is further evidence for a time offset between channels.

Another useful test which can be performed is to cross the scintillator
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bars, as shown in figure 7.11.

Figure 7.11: Crossed bar layout for the vertical slice. In this layout, coinci-
dence events are localized to the overlap of the two bars.

Setting up the scintillators in this way and using a coincidence trigger

between the two bars effectively limits the active area to the intersection

of the two bars, an area roughly 2 cm by 2 cm in size. With this layout,

the Z position of all events is known to be approximately the same, and

so the width of the Z position distribution gives an approximation of the Z

position resolution of the bars. The time difference distribution (which is

proportional to the Z position) is shown in figure 7.12.

The standard deviation is 1.3 ns, which is similar to the time resolution

found using the TOF. Using veff = 0.47 × c, this corresponds to a distance

of 18 cm. The other features of the TOF plot also reappear here: namely,

the offset from zero and the grass events.
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Figure 7.12: End-to-end time difference using crossed bars. Shown is bar B,
although bar A is similar. The width of this distribution is due to the time
resolution, as well as the width of the overlap area between the bars.

Since the vertical slice is a replica of the true BV, all the features dis-

cussed in this section should also affect the cosmic ray data taken with the

full BV. However, the full data were further obfuscated by the large number

of channels in the BV. Constructing the vertical slice was very useful in

identifying these issues in a smaller-scale environment. For example, there

is no guarantee that the offset observed in figures 7.9 and 7.10 is the same

for all pairs of bars in the BV. This would result in a smearing out of the

TOF depending on which of the bars were involved in an event. This would

explain the effects discussed in section 7.1. The next section will focus on

how the vertical slice was used to address these problems and fully prepare

the BV.
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Chapter 8

Time corrections and

calibrations

8.1 Optimal TDC threshold

After the initial setup, the first step in calibrating the vertical slice was

to set the threshold voltage described in section 5.5. With the threshold

voltage set to a reasonable value, each ADC waveform should correspond

to exactly one time value produced by the TDC. However, with the default

threshold voltage set too low, electronic noise caused the threshold to be

crossed multiple times in the event window, leading to a number of TDC

hits per ADC waveform. This was observed in the CERN data; difficulty

in selecting the correct time value is suspected to be a cause of the strange

behaviour discussed in section 7.1.

This behaviour was quickly reproduced with cosmic rays in the vertical

slice. The default threshold voltage set by the run control software was 0 V,

which is obviously low enough to trigger on the slightest electronic noise.

There is no record of the threshold voltage used in the CERN run, so it

seems likely that it was also set to 0 V.

The trigger used was a logical OR across all ADC channels, such that

the DAQ would create an event whenever the waveform recorded by any

ADC channel reached a certain amplitude, recording all ADC and TDC

data within a set window. Figure 8.1 shows the number of TDC time values

recorded per ADC waveform in the vertical slice with the default threshold

voltage.
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Figure 8.1: The number of TDC time values corresponding to each ADC
waveform. Note how for one ADC waveform, the corresponding TDC chan-
nel can record up to 25 time values. This is due to the default threshold
being below the electronic noise level.

To further investigate these extraneous time values, the time of each

TDC hit was plotted for each ADC waveform. The approximate ADC time

as determined in section 6.1 was used as the X axis. The results of this are

shown in figure 8.2 and have some interesting ramifications.

The first feature to note is that there is a good correlation between the

two times, at least within the main group of data. This indicates that the

TDC time values and the approximate times generated by fitting the ADC

waveforms are in agreement. The width of the line is due to the low time

resolution of the ADC.

Another obvious feature is that there are two clear lines of data. This

indicates that for each ADC waveform, two time values are being recorded

by the TDC: the true time value, and a second time value approximately
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8.1. Optimal TDC threshold

Figure 8.2: Plot of TDC time value vs. approximate start time of ADC
waveform. Each ADC waveform corresponds to multiple TDC time values,
i.e. there are multiple values of Y for each value of X. Data is from cosmic
rays in the vertical slice.

200 ns later. The cause of this is not fully understood, although it is very

likely to be due to an electronic reflection within the signal cables. This

behaviour was also seen in the data from the full BV. A sufficient solution

is to simply use the first of these two time values in analysis and discard

the second, although this is obviously not ideal and this behaviour should

be investigated in the future.

The third interesting feature is that there is a group of events which

happen around 200 ns earlier in both the ADC waveform and the TDC time

value (these are the events on the far left of figure 8.2). This is related to

the time chosen by the DAQ to be the start time of the event; for these

events, the event trigger and TDC start happen 200 ns later in relation to

the time of the SiPM pulse. Since we are interested only in the difference

between times, the DAQ event start time is not relevant to this work, and

so this 200 ns shift in start time was deemed interesting but unimportant.
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8.1. Optimal TDC threshold

The final and most obvious feature of this plot is the wash of background

points away from the two main lines. These are the extraneous TDC time

values cause by the threshold voltage being set below the electronics noise

level.

Removing these extra data points was done by reconfiguring the thresh-

old voltage to be just higher than the noise coming from the SiPMs. This

voltage was determined via a scan: the threshold voltage was increased from

0 to 30 mV in steps of 1 mV. At each step, five minutes of cosmic ray data

was taken. The number of counts on each channel was recorded.

Each ASD card is designed to take data from four bar ends, but only one

bar was connected to each ASD card. Consequently, during this scan data

was recorded from four channels connected to the SiPMs and scintillator

bars, as well as from twelve channels which were not connected to SiPMs.

The TDC still recorded time values in these channels, due to electronic noise

or interference surpassing the threshold voltage.

The results of the scan for the four SiPM-connected channels and the

twelve disconnected channels are shown in figure 8.3.

For the connected channels, as the threshold is increased, the number of

TDC events decreases until all the channels converge to the same value. This

value is presumably the true rate of cosmic rays passing through the 70 cm

bars multiplied by the detection efficiency: 28000 events per 5 minutes, or

93 events per second.11

In the disconnected channels, there is an initial increase in the count rate

as the threshold is increased. This is possibly due to the higher threshold

voltage creating more electronic interference, although this effect is not well

understood and not hugely relevant.

In both cases, all background events stopped across all channels at a

threshold voltage of 25 mV. The threshold voltage was set to this value

for all channels in the vertical slice. It is also worth noting that as the

threshold is increased further past this value, the number of TDC events

11Actually, this number is twice the cosmic rate due to the double counting seen in
figure 8.2. This is still much higher than the true cosmic rate cited in section 5.1, and it
is unclear why the flux measured was so high.
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remains constant and does not decrease, implying that no cosmic ray events

are being excluded by the threshold.

Figure 8.3: Cosmic ray count rates during scan of threshold voltage. Thresh-
old voltage is in Volts. Four channels were connected to SiPMs (left), while
twelve were left unconnected (right). Counts are due to electronic noise
exceeding the threshold voltage. Note how all count rates converge to the
same value after 25 mV, implying that the threshold has passed the noise
level but does not exclude any cosmic ray signal.

After setting the threshold voltage, another set of cosmic ray data was

taken and figure 8.2 was reproduced, shown in figure 8.4. The random wash

of TDC time values was successfully removed. Now, each ADC waveform is

accompanied by exactly two TDC time values: the true one and an addi-

tional later time value due to reflections. This second time value is ignored

in analysis.

71



8.2. Channel-by-channel offset calibration

Figure 8.4: Time of TDC time values vs approximate ADC waveform start
time, after setting TDC thresholds. Note that the background wash of
events has disappeared, and now exactly two time values are recorded for
each event. The second is due to reflections in the electronics and is ignored.

8.2 Channel-by-channel offset calibration

Another problem which needed to be addressed is the offset in the TOF plot

(figure 7.9). As described in section 7.3, the time of flight between the two

bars should be very close to zero when the bars are placed directly next to

each other. Instead, the mean TOF is close to 1 ns.

As shown in this section, the reason for this offset was discovered to be

a systematic delay which is different for each channel. This delay could in

theory be introduced at any point along the electronics path between the

SiPM and the TDC.

In order to determine the characteristic delay for each channel, data was

taken using the calibration pulser described in section 5.5. A square pulse

was generated by a DAC on the ADC card and distributed via the RTM

to each channel simultaneously. The pulse is injected on the ASD card,
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directly after the preamplification stage following the SiPM. Although only

four SiPMs were connected, the pulse was injected into all four channels

on each of the four ASD cards. The injected pulse then followed the same

electronics pathway as a real signal from an SiPM would.

The TDC time value for all hits was computed. For each hit on channel

N, the time difference between the time value on channel N and the time

value on channel 8 was found. This should be zero if all channels are properly

calibrated. The reason for using a time difference here is that there is no

stable reference or trigger time which is as precise as the TDC. All the

analysis is carried out using time differences within the TDC as described in

chapter 6, and so using an absolute event time would introduce an external

factor into this calibration.

These time differences are shown in figure 8.5.

Figure 8.5: Time offsets between TDC channels in the vertical slice, using
the calibration pulser to send a pulse to all channels simultaneously. All
time differences are relative to channel 8, hence why the values for channel
8 are zero. The two peaks in channel 6 are not understood; this channel was
never connected to an SiPM.
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The width of the peaks within each channel is around 80 ps. However,

the time value recorded for simultaneous pulses differs by up to 2 ns between

channels.

The median time difference12 for each channel was recorded to a file and

used for calibration of the vertical slice. For any given TDC time value in

all following analysis, a channel-by-channel time correction is applied. The

new time value is calculated as

t′ = tTDC −∆tchan (8.1)

where ∆tchan is the mean value in the corresponding bin of figure 8.5.

With this correction in place, the time difference between channels using

simultaneous pulses is shown in figure 8.6.

At least for simultaneous test pulses, the correction has removed any time

delays between channels. It is worth pointing out that channel 6 exhibits

a behaviour not present in any other channel, where some time values are

recorded 3 ns to 4 ns before the main peak. This channel also showed a

large amount of noise, for example firing on occasion even when the pulser

was disconnected. The second peak in channel 6 is not fully understood,

but since it was never connected to an SiPM it never interfered with these

results.

Considerable effort was put into understanding the nature of the channel-

specific delays. Numerous pulser runs were taken, replacing or swapping

in turn each of the electronics components – the ASD cards, the signal

cables, the RTM, and the TDC channels used. The results were conclusive.

The ASD cards, RTM, and signal cables all had no perceptible effect on

the channel-specific delays, and so it can be concluded that path length

differences in any of these components are negligible.

Recall from section 5.5 that the TRB3 TDC has a total of 256 channels.

In the vertical slice with only 4 ASD cards, only 16 of these channels were

in use. This is seen in figure 7.8, where only one signal cable is connected

12The median was used because it produced more acceptable behaviour for the defective
channel 6. The mean could be used instead.
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to one of 12 possible This caused the offsets to change entirely. To see this,

compare figure 8.5 to figure 8.7, which was taken using a different set of

inputs on the TDC.

Figure 8.6: Time offsets between TDC channels in the vertical slice, using
the calibration pulser to send a pulse to all channels simultaneously, after
the channel-by-channel offset correction was applied. Note how the channels
are brought into line with each other compared to figure 8.5. The variation
across all channels is now around 80 ps.
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Figure 8.7: Time offsets between TDC channels in the vertical slice, using
the calibration pulser to send a pulse to all channels simultaneously, using a
different set of TDC inputs to figure 8.5. Note how the delay for all channels
take on entirely new values.

The conclusion reached is that these offsets are due entirely to internal

path length differences in the TDC. It is possible that there is a more elegant

way to calibrate these, but none is suggested in the manual provided by GSI

[52, 53]. For the purposes of the BV, it is sufficient to correct for this effect

in analysis, using the method described above.

8.3 Time-walk correction

With the systematic delays between TDC channels dealt with, the most im-

portant remaining correction necessary for improving the TOF sensitivity is

the time walk correction described in section 5.4. Since the pulses have a long

rise time and the readout uses a fixed threshold voltage, pulses with smaller

amplitude will cross the threshold later. Thus an amplitude-dependent cor-

rection term must be added to disentangle the amplitude dependance of the

hit time. The size of this correction for any given pulse amplitude must be

determined using data; this section describes the process used to calibrate

this correction.
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8.3.1 Form of the time walk correction

Applying an amplitude-dependent correction term is a common practise in

analysis for fast TOF detectors. Examples of this correction being applied

are given in e.g. [54–60].

The vast majority of sources use a correction term given by

δt =
W√
A

(8.2)

where A is the pulse amplitude, and W is a parameter which must be

fit using data. This form arises by assuming that the SiPM signal shape is

given by

V = A

(
t

tR

)2

e
−2

(
t
tR
−1

)
(8.3)

i.e., a quadratic rise and an exponential decay, both determined by a rise

time tR. Assuming the behaviour at the start of the pulse is quadratic leads

to

V = A

(
t

tR

)2

(8.4)

=⇒
√
V

A
· tR = t (8.5)

Thus for a time measurement taking place at t = tthr when the voltage

reaches the threshold V = Vthr, the true start time t = 0 can be recovered

by subtracting

tthr =

√
Vthr
A
· tR (8.6)

from the measured time. Here,
√
Vthr and tR combine into the parameter

W in equation 8.2.

This shape of equation 8.3 was fit to a cosmic ray waveform in figure

8.8. It is a good match at least for the rising edge of the pulse; the trailing
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edge of the pulse deviated from the exponential decay due to the negative

tail introduced by the amplification and stretching electronics. With this

functional form being a reasonable match for the leading edge of the ob-

served cosmic ray waveforms, the form for the time walk correction given by

equation 8.2 was comfortably applied.13

Figure 8.8: The pulse shape given by equation 8.3, fit to a cosmic ray
waveform similar to the one shown in figure 6.1. Observe that the match
is a reasonable fit at least on the leading edge, and so the form of the time
walk correction in equation 8.2 is justified.

8.3.2 Calibration schemes for time walk correction

Finding the value of W for the time walk correction requires precise knowl-

edge of three quantities for a large number of events: a precisely defined

start time t0 which is amplitude independent, the exact time t when the

waveform crosses the threshold voltage, and the amplitude A of the wave-

form. These quantities are illustrated in figure 8.9. Once they are known,

13As discussed in the following section, the waveform recorded by the ADC is not the
waveform seen by the comparator. The pathway to the ADC includes an additional RC
pulse stretcher, which removes the high frequency components of the pulse, stretching it
temporally. However, this transformation preserves the functional form of the pulse, and
so showing that the waveform recorded by the ADC has the proper functional form implies
that the pulse seen by the comparator does as well.
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δt = t − t0 can be plotted against 1/
√
A, and the slope will be W . In any

further analysis, δt = W√
A

can be used to determine the time correction

applied for each waveform based on its amplitude.

Figure 8.9: Quantities needed to calibrate the time walk correction. There
are three quantities which must be known for a large number of events: the
amplitude of the pulse A (here a), the true amplitude-independent start
time t0, and the measured time where the pulse crosses the threshold t.

In fact, t0 does not necessarily have to be the true start time of the

pulse. It can be any stable reference time, as a constant added to t0 would

be cancelled out when taking the time difference in the TOF calculation.

Many experiments use a third scintillator or other similar detector to provide

a common start time for the TDC [55, 56, 59]. In the case of the BV, there

is no easy method to devise a stable reference time or common start time.

The time recorded by the TDC necessarily has an event-by-event jitter due

to a trigger time which is not stable.14 This is removed when finding the

difference between two times in the event, and so is not an issue for the

14The trigger in this case is based on the ADC. When the signal entering an ADC
channel exceed a certain threshold, the DAQ will save all data from a set time window.
The jitter is caused by the low time resolution of the ADC, among other DAQ-related
reasons.
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TOF measurement. However, it does make it impossible to devise a stable

t0 using the TDC in order to calibrate the time walk correction.

At this point, it was considered if the ADC can be used to calibrate the

time walk correction, as the ADC does record the full waveform. However,

there are two reasons why it is not suitable for finding the time correction.

Firstly, the time resolution of the ADC is too imprecise. Each time bin

has a width of 10 ns, and so even with interpolation, it cannot be used to

find the time correction with any degree of precision. The second reason is

that there is an RC pulse stretcher before the signal is sent to the ADC, as

described in section 5.5. This is not present in the pathway leading to the

threshold comparator and the TDC. This means that the time correction

found using the ADC would not be for the same pulse as the time correction

which needs to be applied to the TDC.

Some time was spent trying to precisely find the transfer function of

the RC stretcher. The intention was to find the time correction term using

the ADC, and then use the inverse transfer function to determine the true

time correction which should be applied to the TDC time. However, this

approach was met with a fundamental issue. The RC stretcher acts as

a low pass filter, removing all high frequency components. This is not a

reversible transformation – the high frequency components were set to zero,

and so a multiplication in frequency space cannot effectively recover them.

Consequently, it is difficult to take the full waveform recorded by the ADC

and revert it to the unstretched pulse which passes through the comparator.

8.3.3 Demonstration of time walk using oscilloscope

Instead of using the ADC, an oscilloscope was used to measure the signal

directly on the ASD cards in a cosmic ray run. This was not intended to

be used for calibration – it is too imprecise, and is not replicable for the

full BV. However, the oscilloscope was able to show that equation 8.2 is a

suitable form for the time walk correction.

The signal was measured simultaneously at two test points. The first

test point is directly before the comparator which compares the signal to
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the generated threshold voltage and sends the resulting discriminated digital

signal to the TDC. The second test point is after the RC pulse stretcher,

before the signal is sent to the ADC. These test points are shown in figure

8.10. The reader should also refer to figure 5.7 to see where these points fit

into the electronics pathways.

Figure 8.10: Test points on the ASD card used for measuring the time walk
effect. These were measured using an oscilloscope during a cosmic ray run.
Test point 1 was used to record the threshold crossing time and true start
time for each pulse, directly before the comparator. Test point 2 was used
to record the amplitude of the pulse after the RC stretcher.

An analysis was done using around 1000 waveforms measured in this
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way. The waveforms at the two test points were digitized simultaneously

using two channels of the oscilloscope. There were significant oscillations in

both waveforms due to the coupling of the oscilloscope to the electronics.

To smooth the pulses, a standard Savitzky-Golay filter was applied. For

each data point, the filter fits a small subset of adjacent points with a low

degree polynomial, and uses the value of this polynomial to correct the data

point in question. It repeats this for each data point, resulting in a smoother

waveform free from local oscillations.

The sample rate of the oscilloscope was 2 GHz, leading to time bins

of length 0.5 ns. In order to obtain a finer time resolution, a curve was

interpolated from the smoothed data points. The resulting curve is shown

for a waveform from the first test point in figure 8.11 and for a waveform

from the second test point in figure 8.12.

The time when the first signal crosses the threshold voltage of 25 mV

was subtracted from the time when it crosses a value of 1% of the threshold

voltage, to give an approximation of the time correction which should be ap-

plied. This is shown as the difference between the two purple dashed lines

in figure 8.11. The pulse amplitude was found using the second, stretched

signal. This is the dotted purple line in figure 8.12. Then these two quan-

tities were plotted against each other. Figure 8.13 shows this plot for 29 V

and 30 V SiPM bias voltages. A fit of the form given in equation 8.2 was

applied to each of these plots. These fits were a reasonable approximation

of the data, providing further evidence that this is a suitable form for the

time walk correction.
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Figure 8.11: Waveform measured using an oscilloscope at the first test point
shown in figure 8.10. The yellow line is the measured waveform, while the red
line is the curve resulting from the application of a Savitzky-Golay filter and
interpolation. The intersection of this curve with the value of the threshold
voltage (25 mV) and 1% of this value (0.25 mV) are marked with purple
dashed lines.

Figure 8.12: Waveform measured using an oscilloscope at the second test
point shown in figure 8.10. The yellow line is the measured waveform, while
the blue line is the curve resulting from the application of a Savitzky-Golay
filter and interpolation.
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Figure 8.13: Time walk correction for cosmic rays at 29 V (left) and 30 V
bias voltage, determined using an oscilloscope. The X axis is the amplitude
of the pulse at test point 2, i.e. the dotted purple line in figure 8.12. The
Y axis is the delay between when the pulse at test point crosses 1% of the
threshold voltage and 100% of the threshold voltage, i.e. the time difference
between the two purple dashed lines in figure 8.12. A fit of the form given
in equation 8.2 was applied to each.

8.3.4 Calibration of time walk correction using data

The value of the parameter W in equation 8.2 was determined roughly using

the fit to the oscilloscope data. However, given the imprecise nature of

the oscilloscope analysis, this parameter value was not used in the final

correction. Instead, the parameter was derived from data as follows.

A scan was performed where the analysis was repeated with a range of

different values for the parameter W . The width of the TOF distribution
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was used as a measure of the time resolution, as described in section 7.3.

The value of W which minimized the width of the TOF distribution for

cosmic rays was used in the final correction. The results of this scan are

shown in figure 8.14. The final value of the parameter W which was used to

correct the vertical slice data is 1.75× 10−9. This will possibly have to be

recalculated for the full BV, which will be discussed in section 9.4.

Figure 8.14: Scan of time walk correction parameter W. The TOF distribu-
tion with the two bars parallel was found for each value of W. The value of
W which minimized the width of this distribution was used.

Including the channel-by-channel correction and the time walk correc-

tion, the final time of an end hit is computed as

t′ = tTDC − δtchan −
W√

A
(8.7)
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8.3.5 Alternative time walk correction schemes

In some experiments, the time walk correction is not applied to each end hit,

but is instead applied to the average time of both ends of the bar [58, 59].

This is typically done using the geometric mean of the pulse amplitudes Atop

and Abot at both ends:

δt =
W

4
√
Atop ·Abot

(8.8)

This scheme was considered but ultimately discarded. While the TOF

measurement uses the average time, the position measurement along the

bar uses the difference between both end times, and so this scheme does not

allow for an accurate position measurement.

Another method involves using the calibration pulser to calibrate the

time walk correction. The advantage of this is clear – since the pulses are

injected with known timing, the trigger time (TDC start time) t0 will be

stable. The pulse amplitude can be gradually increased and a simple plot of

time vs. amplitude can be used to find W and calibrate the correction. How-

ever, this method requires that the waveform injected into the electronics

exactly matches the shape of the pulse produced by the SiPM. This should

be possible using the current test pulser setup. However, only square wave

test pulses were implemented into the run control code at the time of this

study, and so this method was not used. However, it remains an interesting

option to explore in the future, especially with regards to calibrating the

full BV.
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Chapter 9

Final results and outlook

This chapter presents the performance improvements of the BV resulting

from the calibrations described in chapter 8. It also discusses the final steps

which need to be taken prior to the operation of the BV in the fall of 2021.

9.1 Final time resolution

Following the calibration of the threshold voltage, the implementation of

TDC channel delays, and the time walk correction, the TOF resolution im-

proved dramatically. Further cosmic ray data was taken with the two bars

at TRIUMF positioned next to each other. With a distance of no more than

5 cm between the bars, the TOF of these events should be less than 150 ps,

and the width of the distribution will give an indication of the TOF resolu-

tion of a pair of bars. The TOF of these events was calculated twice, once

without the channel-by-channel and time walk corrections implemented, and

once with these corrections. These distributions are shown in figure 9.1 and

9.2.
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Figure 9.1: The TOF distribution for the vertical slice with the bars par-
allel and touching, after the thresholds were set and before the channel-by-
channel and time walk corrections were applied.

Figure 9.2: The TOF distribution for the vertical slice with the bars parallel
and touching, after the thresholds were set and with the channel-by-channel
and time walk corrections applied. Note that the channel-by-channel cor-
rections have shifted the mean closer to zero, and the time walk correction
has significantly lowered the width of the distribution.
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These figures should also be compared to figure 7.9. The main difference

between figures 7.9 and 9.1 is the calibration of the threshold voltage to

be above the background noise level. The result of this is clear and con-

clusive: the removal of the “grass” events outside of the main TOF peak.

These events were caused by noise in the SiPMs or electronics triggering the

TDC at random intervals, leading to uniformly random TOF measurements.

Their disappearance confirms the necessity and effectiveness of calibrating

the threshold voltages.

The difference between figures 9.1 and 9.2 is the implementation of the

channel-by-channel and time walk corrections. Since only two bars were

used, and these same two bars are obviously present in all events, applying

the channel-by-channel by channel correction applies the same offset to every

event. Thus this correction serves only to shift the distribution, and does

not change its shape or width. The time walk correction is responsible for

the narrowing of the distribution.

Indeed, the standard deviation σ of the TOF distribution in figure 9.1

is 400 ps. Applying the time walk correction improves this time resolution

to 169 ps in figure 9.2. This is within the 200 ps time resolution requirement

quoted in section 5.2. To this end, the work performed in this thesis has

demonstrated that the BV will most likely have the TOF resolution required

to be an effective veto of cosmic ray background events.15

9.2 Time of flight demonstration

Aside from measuring the time resolution and comparing to the requirement

set by simulation, this section presents another way to verify the efficacy of

the BV to perform cosmic ray discrimination.

15The final caveat is that this demonstration was performed with shorter 70 cm bars.
The longer bars may have an inferior TOF resolution due to increased variance in the
photon propagation time. However, it is not clear whether this variance constitutes one
of the main uncertainties in the TOF resolution; this is another reason to carry out
simulations of the light propagation within the bars. To verify the bar length does not
heavily impact the TOF resolution, these tests should be repeated with full-length bars
in the vertical slice when possible.
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The TOF spectrum presented in the previous section was recorded with

the two bars touching each other; i.e., at an effective distance of around 2 cm

between the centre points. By moving the bars further apart, the TOF for

cosmic rays passing through the bars is seen to increase. This is shown in

figure 9.3, where the distance between the two bars was increased to 50 cm,

around the diameter of the BV.16

Figure 9.3: The TOF distribution for the vertical slice with the bars parallel
and separated by approximately 50 cm, with corrections applied. Notice the
increase in TOF corresponding to the separation between bars.

The main feature to note when comparing this to figure 9.2 is the increase

in the mean TOF of 1.5 ns. Multiplying this by the speed of light accurately

returns a distance of 50 cm as expected. Notably, the two TOF distributions

have no overlap. This is very encouraging as it indicates that given an event

from one of the two distributions, it is possible to accurately determine

which distribution it was taken from.

The TOF distributions for cosmic ray background and antihydrogen an-

nihilation are not expected to be quite so simple. For example, while the

effective TOF for an annihilation event will be small, it will not be exactly

16The distance between bars was not measured to be exactly the BV diameter. Instead,
the two bars were placed above and below the ALPHA-g prototype TPC which is kept at
TRIUMF.
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zero, and so some additional width will be added to this distribution due

to the physics and the geometry of the events, in addition to the intrinsic

time resolution seen here. Similarly, cosmic rays are not guaranteed to pass

across the diameter of the BV; cosmic rays grazing the edge of the detector

will naturally have a shorter TOF. Nonetheless, the independence of the

two distributions seen here is a good indicator that the TOF measurements

taken by the BV will be very useful in rejecting cosmic ray background

events.

An interesting feature of the distribution in figure 9.3 is the long tail ex-

tending down towards lower TOF values. The slightly increased tail toward

higher TOF is understood to be due to cosmic rays striking both bars at a

diagonal, and thus having a longer path length than those striking perpen-

dicularly. The tail towards smaller TOF values, however, is not currently

understood.

As a further check, the order of the bars was swapped, taking the top

bar and putting it on the bottom and vice versa. Since the cosmic ray flux is

entirely coming from above, this changed the sign on the TOF distribution.

This was repeated for both measurements at 2 cm distance and at 50 cm

distance, and is shown in figures 9.4 and 9.5.

Comparing figures 9.2 and 9.4 we can see the mean TOF changes by

about 0.15 ns. This is consistent with the distance between the two bars

being 2.4 cm, which is accurate when considering the centre points. Com-

paring figures 9.3 and 9.5, we see a change in mean TOF of 3.1 ns. This

is consistent with a distance between the bars of just less than 50 cm. To

summarize, swapping the order of the bars changes the sign of the TOF

distribution as expected.

The only holdover here is a common offset of around 550 ps which is visi-

ble on all four of these plots; that is, the zero of each plot is shifted to 550 ps.

This will be addressed briefly in section 9.4, although the origin of this offset

is still not understood and will be the subject of further investigation.
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Figure 9.4: The TOF distribution for the vertical slice with the bars parallel
and touching, corrections applied, with the top and bottom bars swapped
from figure 9.2. Note the slight shift of the distribution, since the cosmic
ray flux originates from above.

Figure 9.5: The TOF distribution for the vertical slice with the bars parallel
and separated by approximately 50 cm, corrections applied, with the top
and bottom bars swapped from figure 9.3. Note the sign change on the
distribution, since the cosmic ray flux originates from above.
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9.3 Final position resolution

Along with TOF measurements, recall that an additional functionality of

the BV is to provide supplementary position data for hits. As described in

section 6.4, the Z position of a hit along the bar can be found using the

times recorded by the SiPM at both ends. The Z position is proportional

to the time difference between both ends of the bar, and so the end-to-end

time difference is presented in this section for clarity.

Using the setup of two parallel touching bars, the Z position recorded by

a cosmic ray passing through both bars should be approximately the same.

Plotting the end-to-end time difference of the two bars against each other

should give a straight line with a slope of 1; this was shown initially in figure

7.10. After applying the channel-by-channel and time walk corrections, this

plot is presented again in figure 9.6.

Figure 9.6: End-to-end time difference comparison between bar A and bar
B of vertical slice, after applying corrections. The distribution is much more
well-centred compared to figure 7.10.

The most notable change is that the time difference for both bars is now

more accurately centred around zero, whereas before there was an offset

due to the time delays between channels. This shift is entirely due to the
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channel-by-channel correction. Once again, these corrections do not change

the shape or size of the distribution but only add an offset, following the

same logic as the previous section.

The diagonal width of this line distribution is around 360 ps, which cor-

responds (via equation 6.11) to a Z position resolution of around 2.5 cm.

This is around double the time resolution for the TOF. This is expected:

the diagonal width of the line distribution is the addition and subtraction

of four TDC time values, while the TOF is calculated in equation 6.14 by

adding and subtracting four TDC time values, and then dividing by two.

Interestingly, the time walk correction does not appear to decrease this

width. A natural explanation for this is that for two parallel touching bars,

the events on each of the two bars happen at the same Z position, and so

at the same distance from the respective sets of SiPMs. As a result, the

amplitudes of the pulses at each end are approximately the same for both

bars. Thus for each event, the same corrections are being applied to both

bars, and so the time walk correction serves to move points along the line,

but does not stretch or narrow the width of the line distribution.

This manifests itself as a shortening of the line distribution due to the

time walk correction. In figure 7.10, the end-to-end time difference of each

bar spans a range of 11 ns, while in figure 9.6 this range is decreased to 9 ns.

This is because the pulses with the smallest amplitude occur for interactions

close to the end of the bar opposite the sensor. These have the highest time

delay between the interaction and the light collection; applying the time walk

correction decreases the recorded time delay compared to larger amplitude

events. This causes the ends of the distribution to contract inwards. It also

helpfully decreases the size of the tails of the distribution, making it easier

to determine the endpoints.

9.4 Final preparations and next steps

The results obtained from the vertical slice at TRIUMF have indicated that

the BV should have the capability to use TOF to identify cosmic ray back-

ground events. However, there remain a number of steps which must be
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taken before this capability is realized.

Currently, the BV is fully functional at CERN. Cosmic ray waveforms

and test pulse waveforms have been observed on all channels.17 However,

the BV is not currently capable of performing TOF measurements since the

issues outlined in section 7.1 have not been addressed. To prepare the BV

for full operation, the calibration steps taken for the vertical slice must be

replicated for the full BV.

The first step which must be taken is a calibration of the threshold volt-

ages as described in section 8.1. The procedure for carrying this out will be

mostly identical to the one used on the vertical slice. The threshold volt-

age for all channels will be simultaneously stepped across the interval used

previously, and cosmic ray data will be taken with each value of threshold

voltage. Whereas one value of threshold voltage was used for all channels

in the vertical slice, it is expected that the threshold voltage should be set

independently on a channel by channel basis for the BV. With so many more

channels, it is unlikely that the one value will be suitable for all channels.

The second calibration which will be performed is the measurement of

the time offset for each TDC channel. This procedure will be the same as

the one used for the vertical slice. The test pulser will be used to send a

pulse to all ASD cards simultaneously, and the delay between channels will

be measured. These delays will be recorded, saved, and subtracted from the

times reported by the TDC in future data runs.

Finally, the time walk correction must be calibrated. This is more dif-

ficult, as the same procedure cannot be used: with more than two bars,

the TOF distribution will not be a gaussian centred around zero, and so

minimizing the width of this distribution cannot be used to calibrate the

correction. Initially, the parameter used for the vertical slice will be used

for the BV.

Should a more accurate calibration of the time walk correction be re-

quired, one option is to use the test pulser. By varying the amplitude of

the test pulse sent through the electronics, it is possible to observe the time

delay for smaller and smaller pulses due to time walk. This can then be

17Almost all TDC channels are working
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used to calibrate the correction curve. Ideally, the test pulse would also be

sent directly to the TDC by a separate pathway to be used as a reference

time, in order to keep the analysis timed entirely by the TDC. Care must be

taken to use a pulse shape which is close to the one produced by the SiPM.

Aside from preparing the BV for operation at CERN, there is one final

issue which must be resolved using the vertical slice. The astute reader may

have noticed that the TOF distribution in figure 9.2 is offset from zero by

about 550 ps. This offset should have been removed by the TDC channel-by-

channel calibration using the test pulse, but clearly some offset remains. The

cause of this is still unknown, and will be the subject of further investigation.

The importance of understanding this offset in the TOF distribution

cannot be overstated. It is a small issue for the vertical slice, since there

are only two bars. It becomes a much larger issue for the BV with the

full 64 bars. If this offset is not understood, any pair of two bars could

have a unique offset. The difference in offset between pairs of bars could be

large enough to smear out any information that could be gained from the

TOF measurement; it makes comparing TOF measurements between two

different pairs of bars meaningless.

The fact that this offset does not appear in test pulse data limits its

possible sources. It cannot be due to the data acquisition or system of elec-

tronics, since the test pulse is injected directly after the first amplification

stage on the ASD cards. The only electronics possibility is if the test pulse

is in fact not completely simultaneous between channels, leading to an in-

correct calibration of the TDC channel delays. Another possibility is that

it is caused by differences in the SiPMs themselves. The gain of the SiPMs

differs substantially, with some SiPMs producing larger amplitude pulses

than others. Unless properly taken into account when performing the time

walk correction, this could lead to artificial delays between channels. Re-

gardless, understanding this offset in the TOF distribution is one of the last

remaining issues to be solved using the vertical slice.

In the longer term, further study should be performed to characterize

the travel of photons down the bars, from the site of particle incidence to

the photosensors at each end. In this thesis, it was demonstrated that the
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effective speed of light in the bar is meaningfully slower than the speed of

light given by the refractive index quoted by the manufacturer. The current

hypothesis is that this is due to reflections with the bar. Ideally this effect

should be modelled using Monte Carlo simulations, and confirmed using the

actual bars.
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Conclusions

The three main goals of this work were to develop the analysis algorithms

for the BV, to identify and implement any corrections and calibrations nec-

essary, and to demonstrate that the BV is capable of generating accurate

TOF information for use in cosmic ray background rejection. All three of

these goals were met to some degree.

The analysis was implemented in chapter 6. It is able to find an effective

TOF for potential cosmic ray events, and match these events to tracks in

the TPC. It also calculates the Z position for each bar hit. A background

rejection algorithm remains to be written based on machine learning using

a number of inputs including the TOF recorded by the BV.

The steps taken to calibrate the BV and corrections were described in

chapter 8. These include a calibration of the threshold voltage for the SiPMs,

a calibration of the channel path length time delays within the TDC, and

a calibration of the amplitude-dependent time walk correction. These steps

were performed on a vertical slice of the system which was set up at TRI-

UMF, and will be replicated for the full system.

After the implementation of these calibrations and corrections, the final

results shown in chapter 9 using the vertical slice demonstrate that the BV

should be able to record particle TOF to a resolution of less than 200 ps.

It was shown that this was sufficient to fully differentiate between an event

with zero TOF and a particle crossing the width of the BV. Previous sim-

ulations had shown that this time resolution would be sufficient for cosmic

ray background rejection; this study supports that claim.

The cosmic ray background is one of the main limiting factors on the

detection of antihydrogen annihilations at ALPHA-g. The work done here

will be instrumental in the first ALPHA-g run this year, where these methods
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will be used to mitigate this background. In turn, this will improve the

accuracy with which the measurement of gravity acting on antihydrogen

can be performed, which will lead to an improvement of our fundamental

understanding of antimatter.
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