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Abstract

With single cell sequencing advances, research has increasingly focused on under-

standing cell-specific gene regulation mechanisms. However, single cell sequenc-

ing data are often noisy and the amount of sequence obtained from rare cell types

small. Simulation can be a powerful approach to aid understanding when data is

limited, both because the process used to generate such data can provide mech-

anistic insights into cell-specific regulation and the data produced can augment

analysis methods development. We constructed and optimized a stand-alone cell-

conditional GAN (CCGAN) to simulate cell-specific ATAC-seq data. We trained

our model on published single cell ATAC-seq (SCATAC-SEQ) data that had been

produced with different protocols on embryonic mice forebrain and adult mice

brain. The CCGAN generated sequence was correlated in both Transcription Fac-

tor (TF) binding motif composition and positional distribution with the experimen-

tal SCATAC-SEQ.The CCGAN simulator was able to learn important cell-specific

signals amidst noise. The CCGAN architecture holds broad potential for single cell

regulatory data simulation beyond ATAC-seq, such as for ChIP-seq or epigenetic

properties.
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Lay Summary

Single cell technologies allow data to be obtained from individual cells, which

reveal differences between cell types and new types of cells we did not know pre-

viously. However, the data obtained from single cell technologies is usually noisy

and rare cell signals remain elusive. Understanding patterns in this complex data

can help us understand disease mechanisms better and can lead to improved thera-

pies. In order to understand the data from a single cell technology, we developed a

machine learning model based on General Adversarial Networks (GANs) that use

computer artificial intelligence to learn the properties of the data. The DNA se-

quence patterns generated by the GAN were found to be similar to DNA sequences

identified in published experimental studies. In the future, the ability to identify

cell-specific sequences using artificial intelligence could allow new therapies that

would be designed to only treat the types of cells involved in a patient’s disease.

iv



Preface

The thesis includes two complementary introductory sections. The first is intended

to provide the reader with a more complete understanding of the background, while

the second is the expected introduction for a peer-reviewed manuscript for the the-

sis research. There is some redundancy between these sections, with the intention

that the first introductory section allows readers with less domain-specific experi-

ence to understand the thesis document.
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Chapter 1

Thesis Background

1.1 Generative Adversarial Network
Generative Adversarial Network (GAN) is a type of generative model that involves

two components, a generator and a discriminator. The generator generates data us-

ing a random vector z, and the discriminator is responsible for discerning the real

and fake data generated by the generator. The intuition behind GAN lies in game

theory in which two players help the model reach optimality through competition.

Generative models such as GAN flourish with little data in contrast to other discrim-

inative models, making it appropriate for modelling single cell data. Compared to

other generative models such as Variational Autoencoder (VAE), the samples gen-

erated by GAN appeared to be higher quality [8, 9]. As well, GAN architecture is

less constrained than VAE and can have objective functions in a variety of forms

for different training goals. Whereas VAE focuses solely on minimizing the vari-

ational lower bound, GAN can modify its objectives to better model distributions

that have irregularities and may be discontinuous on certain regions. Similar to

VAE, GAN contains a “latent space” which is the space where the random vector z

is generated.
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1.2 Wasserstein GAN Gradient Penalty
Wasserstein GAN (wGAN) is a special structure employed in the GAN to increase

its stability. The traditional GAN is prone to diminishing gradients from the gen-

erator since it is easier for the discriminator to differentiate the samples when the

generator has only been trained for a short amount of time. wGAN utilizes Earth

Mover’s Distance (EMD), expressed as:

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [||x− y||]

EMD measures the similarity between distributions by how one distribution

can become the other by moving “dirt”, which refers to the physical part of the

distribution. The distance is calculated via the amount of “dirt” moved multi-

plied by the distance it is moved. It differs from other distance metrics such

as Kullback-Leibner (KL) divergence, Jensen-Shannon (JS) divergence and Total

Variance (TV). There are two major benefits using EMD, which are its continu-

ous differentiable nature and resistance to mode collapse, a common form of GAN

failure. EMD has an important property that makes it an attractive objective func-

tion, which would decrease the difficulty in training GANs. Arjovsky et al., (2017)

proved that under low dimensional manifolds, EMD is continuous, and provides a

gradient that can be used whereas other distances such as JS divergence cannot [2].

Its continuous nature means finding the optimum would be possible and less tricky.

As such, wGAN is resistant to mode collapse, a common GAN training problem

due to discriminator saturation, in which discriminator has no more to learn. This

is caused by diminishing gradients in the GAN training loop, in which the discrim-

inator gives too little feedback to the generator so the generator cannot improve.

Mode-collapsed GAN generator produces the same or highly similar samples that

fail to reflect the data space. Regular GANs have diminishing gradients whereas

wGAN optimal discriminator or critic converge to linear gradient.

However, wGAN has some shortcomings that prevent it from generating the

best sample possible. Lipschitz constraint, expressed as

|| f (x1)− f (x2)|| ≤ k||x1− x2||
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was implemented to guarantee the norm of the gradient is bounded. It alleviates the

vanishing gradient problem and stabilizes GAN training. To satisfy the Lipschitz

constraint, wGAN originally had gradient clipping implemented. Gradient clipping

constrains the weight of the model to a fixed interval, and has negative impacts

for GAN training. With weight clipping, the discriminator may take longer to

reach optimality. Some measures have been implemented including increasing the

iteration the discriminator is trained compared to the generator. The state of the

art implementation for wGAN currently is wGAN- Gradient Penalty (GP) [11]. In

the GP version, weight clipping was replaced by gradient penalty to allow GAN

to learn more complicated distributions and generate high quality samples. GP

satisfies the 1-Lipschitz constraint by limiting the norm of the gradient to 1. The

magnitude of GP can be adjusted by a λ parameter.

L = Ex̃∼Pg [D(x̃)]−Ex∼Pr [D(x)]+λEx̂∼Px̂ [(||∇x̂D(x̂)||2−1)2]

1.3 Gumbel-softmax
Gumbel-softmax distribution was used in the generator for one-hot encoding of

the output. The variable generated from the distribution is differentiable and is an

essential component to generate one-hot encoded sequences directly from the gen-

erator. To generate discrete output that is one-hot encoded, a discrete or stochas-

tic node is needed as opposed to deterministic or continuous nodes. Contrasted

with deterministic and continuous nodes, stochastic or discrete nodes cannot be

back-propagated through. Back-propagation is needed to update the neural net-

work and make it “learn”, however. Therefore, a reparameterization trick was used

in gumbel-softmax to turn the otherwise discrete node deterministic, and make

back-propagation possible. This reparameterization trick is a technique used to

express an otherwise non-differentiable variable in a form where it can be dif-

ferentiated. The gumbel-softmax distribution itself is not categorical, but can be

smoothly formed to a categorical distribution. The second attribute to the gumbel-

softmax involves a temperature (T) parameter that controls the underlying distri-

bution, which is a mix between categorical argmax and uniform. When T=0, it is a

discrete distribution, as T increases to infinity, the distribution becomes an uniform

3



distribution. During the training process, T approaches 0 but never reaches it to

prevent exploding gradients, in a process called annealing. During testing, how-

ever, the gumbel-softmax only produces discrete signals. Thus it may introduce a

small amount of error from the difference between discrete and continuous output,

making error during evaluation larger than expected.

1.4 Data background
The type of data utilized is single-cell ATAC-seq. ATAC-seq categorizes the open

region of the chromatin, which may be available to be bound by transcription fac-

tors for initiating the transcription process. It utilizes the hyperactive Tn5 trans-

posase to preferentially cut open regions, forming fragments with a maximum

length of 1000bp and mode length of 100bp to 200bp long. From a functional

aspect, ATAC-seq categorizes promoter regions, enhancer regions and many in-

tronic and intergenic regions. “Footprint” patterns can be found from alignments

which signifies the region where the transcription factor is bound. As well, the

enrichment for motifs are often found in the centers of detected peaks. Most data

use 500bp as the arrangement for peak range for capturing the maximum amount

of information. ATAC-seq has been used to detect Transcription Factor (TF) motifs

and interactions [35].

Single cell sequencing aims to reconstruct a higher resolution sequence space

for learning cell-type specific signals. In contrast, bulk sequencing may miss sig-

nals from rare cell types as noise and only extract the most prominent pattern from

the cell with the largest population. Single cell sequencing can be combined with

RNA-seq, ATAC-seq and other types of sequencing. There are several approaches

in single cell sequencing, including single nucleus sequencing and droplet-based.

The downside of single cell sequencing is a high amount of noise in the data, and

rare cell type signals may be affected by the noise [15].
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Chapter 2

Introduction

Understanding of cell-specific properties is expanding rapidly as a result of se-

quencing technologies that allow characteristics of individual cells to be profiled.

Diverse genomics methods have been applied to single cells, ranging from RNA ex-

pression to chromatin accessibility to TF binding. Concurrent with the sequencing-

based methods arrival, a dramatic expansion of machine learning capacity, deep

learning, has allowed the identification of subtle patterns in vast data. The inter-

section of data generation and data analysis advances has created opportunities for

insights into the formation and properties of human tissues composed of heteroge-

neous mixtures of cells.

Much single cell research focuses on understanding the regulatory mechanisms

governing gene transcription, in part under the expectation that understanding the

processes by which cells transition between states will allow improved engineer-

ing for the production of cells and tissues for biomedical applications. A critical

bioinformatics step in such analysis is the detection of motifs in the active regula-

tory regions in a cell. Such motifs represent the target cis-regulatory sequences of

sequence-specific DNA binding transcription factors. The signals can be difficult

to detect and this type of analysis is sensitive to noise.

Despite great promise, there are shortcomings of single cell sequencing to over-

come. These challenges include low depth of sequences generated per cell and a

high level of noise that makes signal detection and analysis challenging. Deep

learning methods have proven to be powerful tools for overcoming noise to focus
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on informative signals. Within the field, generative models can capture these infor-

mative signals to produce output that resembles the data under study - to simulate

the data. There are two major types of generative deep learning models: Gen-

erative Adversarial Network (GAN) and Variational Autoencoder (VAE) [9, 20].

Based on game theory principles, GAN has two components - a generator and a

discriminator - that compete with each other in learning the properties of the data.

VAE functions similar to a data compressor, projecting data onto a low dimensional

latent space and subsequently extracting it. Results from computer vision research

suggested that generated samples from VAE were less detailed than GAN [9, 24].

On the other hand, GAN was much more difficult to train due to it being prone to

diverge or reach mode collapse.

It is expected that by establishing the capacity to generate artificial sequences

that are indistinguishable from input sequences, a generator will have identified

aspects of the input sequence relevant to their function and will have removed as-

pects relevant to the noise. GAN allows class-specific data generation. In contrast,

VAE does not readily allow generation of conditional data from its latent space due

to shared latent space between different classes [29]. The generation of synthetic

biological sequences is becoming increasingly useful. Most described synthetic

sequence generators produce short sequences (less than or equal to 200 units in

length). A leading model for synthetic sequence generation is FBGAN, which

contains a feedback loop structure combining GAN training with a convolutional

neural network for generating antimicrobial peptides [12].

Previous applications of sequence generating GANs were mainly for gener-

ating novel functional sequences for experimental characterization.For example,

Killoran et al., (2017) and Linder et al., (2020) used GAN to generate synthesized

splice sites [19, 26]. Linder et al., (2020) used the structure to generate alternative

forms of Green Fluorescent Proteins (GFPs). When combined with high through-

put assays, GANs present an attractive way to design and find proteins or DNA

sequences with desired function and properties. GANs can also expand augment

limited datasets. Sanfort et al., (2019) used data generated using their GANs for

training Convolutional Neural Networks (CNNs) and found CNNs trained with

GAN-augmented data were better generalized [32].

In this report the focus is placed upon single cell ATAC-seq (scATAC-seq) data,
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which reveals locations within the genome that are accessible within the nucleus

of a cell and therefore more likely to function as regulatory sequences. Like other

methods, recovered DNA is sequenced, mapped onto reference genomic coordi-

nates and a count matrix is generated containing the number of reads recovered

for each position. As noted, single cell techniques are noisy and scATAC-seq po-

tentially more so. Therefore substantial effort has been made to develop bioinfor-

matics methods to denoise such data, such as SCALE and AtacWorks [22, 34].

SCALE operates on a count matrix and does not take into account the primary

sequence of the DNA for interpretation. Similarly, AtacWorks operates on the

count level. Both methods are applied to experimentally generated data. GAN-

based scATAC-seq data processing models exist, such as scDEC, which are also

count-based and therefore appropriate for specified regions along a chromosome

[27]. Thus, an approach to scATAC-seq data synthesis that incorporates primary

sequence properties into the model may complement existing approaches.

In this report we set out to develop a cell class-specific generative model for

scATAC-seq data. We combined conditional GAN (cGAN) architecture optimized

for generating one-hot encoded sequences and stability, creating the cell-conditional

GAN (CCGAN). As a proof of concept, we trained two ccGANs on the data from

Preissl et al., (2017) and Lareau et al., (2018), respectively, to demonstrate its abil-

ity in producing biological signals and adaptability in sequencing methods [23, 31].

Here we present a cell-specific sequence generative model CCGAN that is able

to denoise single cell ATAC-seq while preserving biological characteristics of se-

quences such as motif presence and locations.
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Chapter 3

Method

3.1 Data curation
The processed embryonic mice forebrain snATAC-seq data from Preissl et al.,

(2018) was used with cell type information as indicated [31]. Summarizing the

original report, tissue was acquired from frozen mouse forebrain samples. There

were 12,733 cells in total, with eEX2 having the most number of cells and EMP

having the least number of cells in the category. To reduce spurious peaks, only

regions that are open in more than 1% of the cells are counted as positive peaks. A

binary matrix is formed after filtering. The cell type is fed into both generator and

discriminator, separately from the DNA input. For the droplet based scATAC-seq

data from Lareau et al., (2019), derived from adult mouse brain, positive peaks are

filtered to include only those that are overlapped by a peak in at least 50% of the

cells of the indicated subclass [23]. This threshold is implemented to accentuate

unique DNA sequences of each particular cell type. It is confirmed by having the

same cell types clustering together via hierarchical clustering. The data are then

one-hot encoded and five percent of data are used for validation and testing, for

both sets of single cell ATAC-seq. The two sets of data were used to train separate

GANs since they profiled different stages of mouse development and may therefore

contain different motifs.
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Figure 3.1: Cell-conditional GAN architecture involves a wGAN-GP related
base model with cell type conditional to generate sequences specific to
a particular cell type.

3.2 GAN structure
The GAN is a neural network consisting of a generator and a discriminator [9]. The

cost function within the implemented GAN is as follows:

L = Ex̃∼Pg [D(x̃)]−Ex∼Pr [D(x)]

Specifically, we used wasserstein GAN gradient penalty (wGAN-GP) [2, 11].

The loss specific to wGAN-GP is:

L = Ex̃∼Pg [D(x̃)]−Ex∼Pr [D(x)]+λEx̂∼Px̂ [(||∇x̂D(x̂)||2−1)2]

The gradient penalty λ is set to 10. The generator accepts an input of z, a random

vector of size 128, and c, the class or cell type of the sequence. The output of

the generator is a one-hot encoded DNA sequence. The structure of the genera-

tor consists of two fully connected linear layers for processing the random vector

z and the class information, respectively. Residual block structures are then used

for intermediate layers to transfer information between layers with minimal loss

9



of information. The final activation function used is gumbel-softmax for generat-

ing one-hot encoded sequences [14]. The model was constructed and optimized

based on FBGAN, using the same residual block and Gumbel-softmax structure

and hyperparameter [12]. The discriminator accepts one-hot encoded sequences

and its class or cell type. From there, it employs a similar structure as the gen-

erator. However, the activation function is a linear function, as a wGAN [2].

This is intended to prevent gradient diminishing in GAN, causing the generator

to stop learning because the discriminator is able to distinguish real and generated

samples early on in the training. wGAN also has several characteristics such as

training discriminator more than generator for one iteration. As the GAN training

may be unstable, the one-sided label smoothing techniques are implemented for

increasing stability. Label smoothing reverses a small percentage of data labels

from real to fake, which would bring the real and the generated distribution closer

together. This may also make it more difficult for the discriminator to learn the

distribution to prevent diminishing gradients. Multiple values of learning rate were

tested ranging from 1e-3 to 1e-6. An overview for the model can be seen in figure

A.1. The model was implemented using Pytorch v 1.7.1 [30]. A more detailed

structure figure is included in the Appendix (figure A.1). The code is available at

https://github.com/wassermanlab/ccGAN.

3.3 Adjunct Convolution Neural Network (CNN)
training, structure and feedback

The adjunct CNN is included as an external neural net for evaluating the perfor-

mance of the network. The input to the CNN is the DNA sequence and the output

is the predicted class or cell type that sequence belongs to. The CNN consists of

convolutional units that can detect patterns in a space-invariant manner [21]. The

architecture of the adjunct CNN is similar to other CNNs that detect regulatory re-

gions such as Basset [16]. It has three convolutional layers each followed by a max

pooling layer and two linear layers at the end. The network is given both posi-

tive datasets and negative datasets for training. The negative dataset used in this

case is generated by BiasAway, a tool that generates k-mer matched background

sequences as a negative control [18] using the setting of k-mer shuffle with sliding
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window. The CNN is trained with early-stopping to prevent overfitting. A feedback

loop is incorporated between the CNN and the GAN after training both separately.

For each epoch, top quality sequences generated by the generator and evaluated by

the CNN are added to the training data for the GAN.

3.4 GAN result verification
The sequences generated by the generative adversarial network are verified in three

aspects. The first aspect is duplication of generated sequences. As GAN train-

ing can be unstable and result in mode collapse, in which the generated data are

very similar to each other, the diversity of sequences must be ensured. BLASTN

2.5.0+ was used to compare generated sequences to another group of generated

sequences [1, 5]. The parameters of BLASTN include an e-value threshold of 1e-

1, and dust=no, task=blastn-short to account for short alignments. As a negative

control, validation sequences were compared.

The second aspect is memorization. Overfit neural networks can memorize

the data instead of learning underlying distributions and properties. BLASTN is

used to test for network memorization via blasting generated sequences to training

sequences. The same parameter and e-value threshold was used for this instance as

above.

The third aspect is the verification that the sequences contain biologically sig-

nificant properties. For mimicking ATAC-seq results, TF binding motif presence

and composition could be similar to the experimental data, as could the position-

ing along each sequence. Such properties for the top-ranked TF binding motif for

the experimental data was examined. For motif enrichment analysis, Analysis of

Motif Enrichment (AME) 5.3.3 from the MEME SUITE was employed to compare

the frequency of motifs between the foreground sequences and a control set of se-

quences provided by AME itself [28]. The JASPAR 2018 Vertebrates database of

TF binding profiles was used as the motif collection within the AME web service.

AME parameters include average odds score for scoring method and Fisher’s exact

test for testing significance. The negative control was generated by AME using ran-

dom shuffle preserving 2-mer frequency. The p-value limit was set to be 0.01. The

motif composition was compared between the generated sequence control and the
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top-ranked sequences for each particular cell type. Motif enrichment pattern was

evaluated using CentriMo 5.3.3 from the MEME SUITE [4]. CentriMo detects

motif enrichment locally for specified motifs (again the JASPAR 2018 Vertebrates

database). The parameters for CentriMo were set to default parameters and scores.

CentriMO is set to test for enrichment of motifs in the center of the sequence and

assess its significance via a binomial test. For motif presence, a targeted search for

specific motifs of interest is used via MEME SUITE FIMO [10]. This is conducted

when a certain motif was mentioned to be enriched in particular cell subtypes in the

original paper that published the dataset. FIMO calculates the number of times a

motif appears in a set of sequences, with a p-value threshold of 1e-3. We extracted

the motif of SOX10, Nr4a2, and JunB from the JASPAR 2020 database and Bcl11b

from CIS-BP for FIMO to compare composition between generated data and real

data [7].

The ability for GAN to reconstruct motifs is also tested using MEME SUITE

STREME, which detects ungapped motifs that are enriched or relatively enriched

compared to control sequences [3]. The control sequences in this case are gener-

ated by shuffling the original sequence preserving k-mer with default parameters.

The motif discovered is then compared to all JASPAR 2020 motifs using MEME

SUITE TOMTOM [13].

3.5 Latent Space Exploration
The latent space of the CCGAN can be explored by manipulating the latent vector z.

All z vectors are generated from a standard Gaussian distribution unless specified.

By varying z it is possible to map out the approximate sequence space learned by

the GAN. By using latent space exploration it is possible to ascertain the approxi-

mate locations of TF binding motifs and to highlight cell-specific motif presence.

We first tried to show the learned cell-specific signal by comparing the generated

sequence to other generated sequences using the same z vector but different cell

type specification. In this case, if CCGAN has learned cell-specific motif charac-

teristics, then cell-specific generated sequences would contain unique patterns of

motifs enrichment even if z is shared. However, if no unique motifs were found by

varying cell conditional, it would indicate no cell-specific motif has been learned.
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To ensure we capture differences in cell conditional specification, z vectors that are

close together are used to decrease stochasticity in generating sequence. Thirty-

two pairs of randomly generated z vectors were drawn from a normal distribution.

Between each pair, 100 z vectors were generated equally spaced based on spher-

ical linear (slerp) distance (6400 sequences in total). The motif composition was

tested using MEME SUITE AME with JASPAR 2018 Vertebrate database for motif

enrichment patterns [17]. A heatmap was generated using the motif composition

value, as well as a Principal Component Analysis (PCA) analysis against the top-

ranked sequences. The effect of variance in generating random sequences has also

been tested in the latent space. A range of values for standard deviation was used

to generate sequences and motif enrichment was tested via MEME SUITE AME

[28].

13



Chapter 4

Result

4.1 Data processing reveals high noise level in single cell
ATAC-seq

Published scATAC-seq data from Preissl et al. (2017) and Lareau et al. (2018) was

prepared for the study. Both brain-related data sets contain a diverse range of cell

types, which we took as assigned in the source papers, including the subclasses

[23, 31]. All of the DNA signals were used for training regardless of quality. The

top-ranked sequences (i.e. peak with highest presence in respective cell types)

for each cell type were extracted as positive controls. Spurious signals were re-

moved, excluding those that appear in less than 1% of counts in a type of cell.

For the embryonic mice forebrain data from Preissl et al., (2017), filtering of the

spurious peaks yielded on average 4573 unique peaks per cell category with wide

variance (figure A.3a) [31]. The top-ranked regions based on counts extracted were

observed to be present in a minimum of 20 cells for the respective cell types. Hi-

erarchical clustering was performed for a random sample of peaks (figure A.2a),

resulting in grouping of similar cell types. Embryonic inhibitory neuron subclasses

1, 2 and 4 clustered together, while subclass 3 was placed closer to retinal glial class

3. Excitatory cells are clustered together and Erythroid Myeloid Progenitors (EMP)

are the furthest from other cell types.For the adult mice brain scATAC-seq data

from Lareau et al., (2018), most cells were classified as excitatory neurons and

were grouped together (figure A.2b), with the exception of EN17 which clustered
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with inhibitory neurons. Endothelial (E1) was the furthest from the rest of the cell

types. EN13 was clustered with other non-neuronal cells such as astrocyte (A1)

and microglial cells (M1).

4.2 GAN training stabilized by wGAN-GP and
label-smoothing

Identification of suitable stabilization techniques and parameters is an important

step in model development. The training of GAN was convergent when label-

smoothing was applied and the learning rate was slower (learning rate of ideal

range between 1e−5 or 1e−6 compared to 1e−3). The magnitude of the loss of

the GAN is the difference between the loss of generator and the discriminator, of-

ten viewed separately, which informs about the stability between the two player

generator-discriminator balances. A stable relation allows the generator to learn

to generate better data based on the feedback from the discriminator. Eventually

the discriminator should be unable to distinguish between generated and real data

Mode collapse, which is a GAN failure model in which replicates of data were gen-

erated, was observed early in the model. For successful models, the loss stabilizes

after the first epoch and does not reach zero. Training of the CNN approach took

less epochs, completing in around 3 epochs compared to at least 15 for the GAN

approach. The AUC value for embryonic mice forebrain data is 0.64 (vs random

value of 0.5) with EMP cell type, the class with the least data, the most difficult to

learn (figure A.4). The average AUC score of all cell type classification was 0.73.

For the adult mice brain data from Lareau et al., (2018), the average AUC scores

were 0.70 (figure A.5).

4.3 Generated sequence tested negative for
memorization of training data and diversity

Since GAN training is prone to failure such as mode collapse, in which highly

similar samples are generated, sample diversity must be confirmed for the syn-

thetic sequences produced. As well, such testing can reveal if the neural net has

memorized the training sample, causing overfitting and inflated performance. The

similarity between generated sequences and the similarity between generated se-

15



Figure 4.1: a) BLASTN test for GAN mode collapse: BLASTN hit result
against partitioned test set and generated sequence to itself. Quality
check for potential mode collapse which result in GAN producing the
same sequences. E-value cutoff was set to be 1e-1 to include short
hits of sequences; b) BLASTN test for training set memorization:
BLASTN hit query length of test and generated sequences against train-
ing sequences. E-value cutoff was set to 1e-1 for including short hits.

quences and training sequences were assessed using BLASTN comparisons. The

average query lengths (and the variance of the lengths observed) in BLASTN de-

tected segments of similarity between generated sequences was smaller than the

range of BLASTN query lengths between validation sequences (figure 4.1a). Since

the alignment e-value threshold was set to be permissive, low quality long align-

ments were also included in the validation sequence BLASTN results. The average

alignment length for generated sequences against themselves is 18 bp, whereas val-

idation sequences against themselves were on average 32 bp. The maximum length

of alignment is 49 bp for generated sequence comparisons compared to 500 bp for

validation sequences against itself. When sequences were tested for memoriza-

tion, the BLASTN alignment length on average was 24 bp for generated sequences

against training sequences and 90 bp for validation sequences against training se-

quences (figure 4.1b).
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Figure 4.2: a) Embryonic mouse forebrain excitatory type 1 motif compo-
sition using MEME SUITE AME: Motif composition tested against
the JASPAR 2018 vertebrate database of top-ranked sequences in ex-
citatory type 1 and generated excitatory type 1 sequences via MEME
SUITE AME. ; b) EMP motif composition analysis: Motif composi-
tion of EMP compared between top-ranked EMP sequences and gener-
ated sequences tested using MEME SUITE AME using JASPAR 2018
Vertebrate database.

4.4 Generated sequence motif composition and
enrichment pattern match real top-ranked sequences

Amongst the most important aspects of generated sequences is the retention of bi-

ologically relevant characteristics. Cell-specific regulatory sequences are expected

to contain functional features such as TF binding motifs. Enriched TF binding mo-

tifs were highly correlated between generated and validation sequences across cell

types (ure 4.2). It is noted that due to the highly noisy property of single cell data,

randomly selected sequences did not yield any positive result in motif enrichment

when tested using MEME SUITE AME. Due to this reason, the positive control

was instead composed of top-ranked sequences that appeared among the highest

frequency in respective cell type. As the GAN generated sequences depend on a

random vector z, the sequence motif composition in generated sequences may not

represent the entire potential space of simulations. For instance, the TF binding mo-

tif for NEUROD1 was detected in 35.78 % of the generated sequences compared

to 24.75% of the validation sequences for embryonic mice forebrain ATAC-seq

eEX1 cell type. The performance of CCGAN on motif composition for generated

sequences compared with the top ranked sequences had a high correlation r2 of
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Figure 4.3: a) CentriMO analysis of top-ranked (validation) eAC se-
quences: MEME SUITE CentriMO enrichment pattern found for
top ranked sequences in embryonic astrocyte for Tcl5, ASCL1 and
MYC. Both forward and reverse complement sequences were included.;
b) CentriMO analysis of generated eAC sequences:MEME SUITE
CentriMO analysis for TF enrichment pattern of generated embryonic
astrocyte sequences.

0.34 (figure 4.2b). As well, EMP-specific motifs such as MEF2C were found to be

enriched in a similar proportion (29.28% and 20.30% in generated and top ranked

sequences, respectively). CentriMo analysis, which assesses the positional distri-

bution of TF motifs, displayed a symmetric wave pattern with its peak in the center

of the 500 bp validation sequences (figure 4.3a) and generated sequences (figure

4.3b). The symmetric pattern for the real sequence (figure 4.3a) results from the

inclusion of both forward and reverse sequences in the dataset. This pattern is

observed in the generated sequence (figure 4.3b), with lower symmetricity. The

enrichment of TF binding motifs emerged relatively early in the model develop-

ment process (figure 4.4a). The motif enrichment often emerged before the 24th

epoch in the model training process, but there was less noise in the exact composi-

tion as the model continued to train. After 53 epochs, the GAN model was observed

to have less noise in its motif composition, and a lower e-value score for its motif

enrichment, as shown in (figure 4.4a).

As the dscATAC-seq adult mice brain publication highlighted certain TFs en-

riched in particular groups, FIMO was used to compare the specific TF motif com-

positions in a sample of sequences between groups. For highlighted TF enrichment

from Lareau et al., (2018), the enrichment level was compared between top-ranked

18



Figure 4.4: a) Negative Log p-value for motif enrichment of early vs late
CCGAN model conditioned on eEX1: MEME SUITE AME was used
to test for motif enrichment, the negative log p-value for late model
was significantly higher (p < 0.0001) tested by unpaired Wilcox rank
sum test.; b) r2 value of generated sequence motif composition cor-
relation to top-ranked sequence motif composition of early and late
model model conditioned on eEX1:MEME SUITE AME analysis for
TF enrichment percentage in sequence was calculating correlation.

sequence and generated sequence in table 4.1. FIMO tests for presence of a speci-

fied motif in a sequence, with a significance threshold of p≤1e-4. The percentage

of sequences that contained the specified motif is compared between generated

and top-ranked sequences, which serve as a positive control. If the denoising pro-

cess was successful, those highlighted motifs previously reported to be enriched

in the cell type should have a similar or higher presence percentage in generated

sequences. The presence percentage MG1 or microglial cells were observed to be

highly enriched for the Bcl11b motif, with generated and top sequences showing

6.45% and 6.72% of presence percentage respectively. SOX10 was highly enriched

in the OG1, oligodendrocytes had 6.72% and 6.45% of presence percentage in gen-

erated and real sequences, respectively. For the Nr4a2 motif which was observed

to be highly enriched in EN13 and EN15, the presence percentage for the motif

in generated sequences and real sequences are 11.7% and 9.50% for EN13, 11.8%

and 8.78% for EN15, respectively. JunB motif was significantly present in 14.1%

generated sequence and 8.89% in IN01. For all TF enriched in certain cell types

reported by Lareau et al., (2018) generated sequences have similar or higher motif
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Figure 4.5: a) CentriMO analysis of generated oligodendrocytes se-
quences:MEME SUITE CentriMO analysis for TF enrichment pattern
of generated adult oligodendrocytes sequences. ; b) CentriMO anal-
ysis of top-ranked (validation) oligodendrocytes sequences: MEME
SUITE CentriMO enrichment pattern found for top ranked sequences
in adult oligodendrocytes for Zfx, TFEC and NFIX. Only forward se-
quences included in positive control.

presence than top-ranked sequences [23].

Both results obtained using embryonic mice forebrain snATAC-seq and adult

mice brain dscATAC-seq data showed a high correlation between generated se-

quences and top ranked sequences among the motif composition tested by AME,

shown in figure 4.2 and figure A.6a. This means generated sequences contain the

motifs enrichment as well as similar motif presence in top-ranked sequences. Sim-

ilar peak patterns for the same TFs tested via MEME SUITE CentriMO were also

observed, shown in figure 4.5. CentriMO is used to test local enrichment patterns

along the sequence. It examines how closely generated sequences’ local motif en-

richment pattern matches real top-ranked sequences. In this case, the CCGAN has

only been trained for 33 epochs.

Another important aspect of good generated sequences is its ability to recon-

struct important motifs de novo. After extracting motifs using MEME STREME,

certain motifs emerged that were highly relevant in neurons. As seen in figure

4.6, oligodendrocyte relevant motifs KLF9, ETV4, TCF7, MAFK have been dis-

covered in oligodendrocyte specific sequences. TCF7 was described by Weng et

al., (2017) to promote oligodendrocyte differentiation and remyelination in mice

[33]. ETV4 was also known to regulate TFs important for gliogenesis, which is the
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Figure 4.6: Discovered OG1 specific motifs from generated data (p<0.05,
q<0.05) using MEME SUITE STREME and TOMTOM compared
to consensus motifs: Specifically MAFK, TCF7, ETV4 and KLF9, all
of which were described to be involved in oligodendrocytes.The gener-
ated motif is displayed at the bottom and the consensus motif is at the
top.

developmental process for generating astrocytes and oligodendrocytes [25]. There-

fore, generated sequences could be used to reconstruct motifs that has cell-specific

significance.

4.5 Feedback network training was unnecessary for
improving generated sequence quality

In previously described GAN models [12, 19, 26], an adjunct network has been

employed for improving GAN performance. The adjunct network served as an

external corrector to perfect sequences generated by the GAN. For ccGAN the ad-

junct network was not necessary. After two epochs of training, no noise reduction
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Table 4.1: MEME SUITE FIMO analysis of highlighted motifs composition
in generated vs top-ranked sequences: The percentage presence of the
motif in 6400 sampled sequences is compared to top-ranked sequence
motif presence.

Top-ranked sequence Generated sequence
Bcl11b (microglia) 6.72% 6.45%
SOX10 (oligodendrocyte) 6.45% 6.72%
Nr4a2 (excitatory neuron type 15) 9.50% 11.7%
Nr4a2 (excitatory neuron type 17) 8.78% 11.8%
JunB (inhibitory neuron type 1) 8.89% 14.1%

or more motifs emerged, which can be observed by comparing motif enrichment in

figure A.6. The loss of CNN was expected to be positive for sequences deemed fake

and negative for sequences deemed real. The inclusion of the feedback loop did

decrease late stage CCGAN loss for CNN evaluation. After the feedback loop train-

ing, the CNN loss for generated sequences changed from unimodal to bimodal,

shifting towards the real sequence distribution which is a normal distribution with

mode around -1 (as shown in figure 4.7a). However, for the earlier version of the

model which has been trained less, the loss was more optimal, as seen in figure

4.7c. For the early model, the CNN evaluation loss was more negative than real

validation sequences, meaning the CNN think those sequences were better classi-

fied. Previous results suggested that more training of CCGAN resulted in a higher

concentration of motifs and better motif composition correlation to top-ranked se-

quences. Therefore, loss evaluation given by the trained CNN may not be the most

important aspect evaluating sequence quality.

4.6 Latent space exploration revealed simulated
sequence properties similar to real top-ranked
sequences

By comparing simulated sequences generated with the same z vector for different

cell types, one can determine cell-specific properties that have been learned. Se-

quences generated using fixed z as illustrated by the heatmap in figure 4.8b, had

more signals unique to cell types than sequences generated from different z in fig-
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Figure 4.7: a) Generated sequence loss before and after feedback loop eval-
uated using the pre-trained adjunct CNN; b) Real snATAC-seq test set
sequence CNN loss: Density plot of test snATAC-seq sequence loss
evaluated using pre-trained adjunct CNN; c) Mid-stage training gener-
ated sequence CNN loss: Density plot of GAN generated sequence loss
evaluated using pre-trained adjunct CNN.

ure 4.8a. TF binding motifs for developmental-relevant TFs such as FOXD3 in

RG2 and PBX1 in EMP were found to be cell type specific. (Some inconsistencies

were observed, such as the EMP-related CDX2 which was enriched in excitatory

type 1 cell sequences.) Motif enrichment percentage tested using MEME SUITE

AME and analyzed by PCA reveal similarity among cell types. Since the PCA axis

tries to maximize the variance, the magnitude of distance between cell types could

imply their similarity. Therefore, PCA is used to evaluate how well a randomly

selected area in the latent space can differentiate between the cell types. For se-
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Figure 4.8: a)Latent space cell-specific motif discovery using distinct z:
Heatmap of TF presence percentage compared across cell types for gen-
erated cell-specific mice embryonic forebrain AME motif enrichment
analysis. The vector z is generated randomly from a gaussian distri-
bution for each sequence and not shared between different cell condi-
tionals; b)Latent space cell-specific motif discovery using the same
z with conditioned on different cell type.: Heatmap of TF presence
percentage compared across cell types for generated cell-specific mice
embryonic forebrain AME motif enrichment analysis. The random vec-
tor z fixed and sequences are generated with different cell conditionals.

quences generated using fixed latent space vector z, retinal glial cells and inhibitory

neurons were close to its generated counterpart on the PCA axis, as seen in figure

4.9. On the other hand, EMP and astrocytes were far apart from each other. This

highlights the shortcomings of using fixed latent z which may amplify signals from

space with lower quality sequences.
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Figure 4.9: Fixed latent vector z with varying cell conditional motif en-
richment PCA: Top-ranked cell-specific sequence motif composition
is plotted with generated sequences conditioned on cell types. For those
generated sequences, the z is fixed in between cell types. Analyzed us-
ing MEME SUITE AME.

25



Chapter 5

Discussion

Here we present a deep learning based model, CCGAN, that generates cell type-

specific sequences with biologically relevant characteristics and minimal noise

demonstrated across two single cell ATAC-seq (SCATAC-SEQ) data sets. Since

SCATAC-SEQ reveals chromatin accessible regions, TF binding motif analysis of

these regions can give insights into cell type-specific regulatory programs. Based

on TF binding motif composition, enrichment percentage and pattern, the generated

sequences appear similar to validation sequences from the experimental data sets.

As opposed to previously published GAN-based simulators, the CCGAN model

achieved its performance without inclusion of an independent CNN, demonstrating

its capacity to learn the sequence distribution of different cell types independent of

additional neural network components.

GAN-based simulators are drawing increasing focus due to their capacity to

generate high quality, realistic data. However, the approach has drawbacks, in-

cluding difficulty in selecting parameters and the duration of training. We at-

tempted to use a structure that would be more forgiving of parameter choices by

using wGAN-GP to decrease the possibility of mode collapse or diminishing gra-

dient. The approach has proven robust, learning the properties of sequences (such

as motif distribution) without memorization of training sequences nor generation

of highly similar sequences. Using a slower learning rate helped to balance the

competition between the generator and the discriminator and resulted in mode col-

lapse. Analysis of the properties of models over the course of training revealed
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that within relatively cycles of training (around 24 epochs), sequence characteris-

tics have been learned. Longer training decreases the noise further, as seen for the

GAN trained with embryonic mice forebrain data. In this case, the TF binding mo-

tif enrichment in the generated sequence became more pronounced with additional

training, and the difference in motif composition decreased. Users can adjust the

amount of training time, as some tasks can be accomplished more quickly (e.g.

de-noising the simulated sequences).

The quality of prediction from generated sequences rests on the strength of the

signals (both information content,frequency and uniqueness). The training result

in terms of data required for prediction contrasted between a GAN implemented

with an adjunct CNN and CCGAN without. In the embryonic mice brain dataset,

EMP was (one of) the rarest cell types. With the adjunct CNN, the EMP AUC score

was the lowest among the embryonic forebrain cell types (figure A.4). Despite

having few signals, the regions identified as accessible chromatin in EMP cells dif-

fered from other cell types, and consequently the EMP sequences contained more

unique peaks, as shown in unique peak counts in figure A.3. This uniqueness could

also be inferred by the hierarchical clustering result of the binarized accessibility

matrix (figure A.2). For discriminative models such as CNN, only a few amounts

of data can be detrimental to the model’s performance. Nevertheless, CCGAN, a

generative model, was not affected by the lack of samples and EMP had one of the

best motif composition correlations between top-ranked and generated sequences

of 0.34. In addition to identifying unique TF motifs involved in mesoderm de-

velopment. The CCGAN incorporated relevant signals despite only being given a

non-stringent binary designation of peak importance. A possible contributor to the

success may be the ability of ccGAN to learn the underlying distribution of motifs

and how they differ between cell types. More data for a cell type is correlated with

improved performance. For instance, eEX1 has the largest amount of peaks in total

and one of the highest r2 values (0.42) despite not having a high amount of unique

peaks.

In previous sequence-generating GAN or other models, de-noising property has

rarely been mentioned. Here we demonstrate the robustness of CCGAN, which can

learn important data properties despite the presence of large amounts of noise. As

well, previous sequence generating GANs specialize on one type of sequence such
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as antimicrobial peptide, splice site without further class specification [12, 19].

With cell-specificity becoming increasingly important to decipher disease mecha-

nisms, the ability to generate highly specified signals from rare cells can help us

understand them better. For most previously described sequence-generating GANs,

an adjunct model was required to evaluate the sequence [12, 19, 26]. Here we show

CCGAN could generate sequence stand alone and adjunct models could have great

limitations when data is sparse.

The ability of CCGAN to generate diverse cell type-specific sequences is un-

usual in the field. Cell-specific targeting of therapies is gaining increasing atten-

tion. New sequencing techniques, such as MIRACL-seq, focus on the regulatory

signals of rare cell types [6]. Such sequences may be used in gene therapy to de-

liver expression in a selective manner. We foresee the utility of CCGAN to simulate

such sequences as offering a new direction for such work. With an endless pro-

duction of sequences, we can now explore the whole sequence space and test the

candidate sequences to select optimal sequences for gene therapy delivery.
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Appendix A

Supporting Materials

A.1 Supplemental Figures

A.1.1 Detailed Architecture for GAN

The hyper-parameters for ccGAN are as follows:

Sequence length: 500

Matrix dimension (nucleotides): 4

Number of cell types: 12 for embryonic mice brain snATAC-seq, 27 for adult

mice brain dscATAC-seq

Batch size: 16

Hidden units: 512

Learning rate: 1e-4

Discriminator steps per generator step: 5

Lambda: 10

Probability of label flip: 0.05

z dimension: 128
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Figure A.1: ccGAN detailed architecture: Both the discriminator and the
generator is consisted of residual blocks, which allows gradient to flow
through without information loss. The cell conditional is incorporated
into the input after the first layer. The architecture of residual block
consisted of ReLU, convolution, ReLU and convolution, respectively.

A.1.2 snATAC-seq data processing
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Figure A.2: a) Embryonic mice forebrain data post-process clustering:
Presence-absence matrix of embryonic mouse forebrain snATAC-seq
from Preissl et al., (2018). Peaks present in less than 1% of a cell
type were marked as 0. 5000 peaks were sampled for assessing peak
correlation between cell types using hierarchical clustering. Multi-
ple subclasses of excitatory, inhibitory neurons and retinal glial cell
classes are more closely grouped, while inhibitory type 3 (eIN3), and
erythroid myeloid progenitors (EMP) or were more isolated; b) Adult
Mice brain dscATAC-seq data post-process clustering presence ab-
sence matrix: Five thousand peaks were sampled randomly after bi-
narization. Hierarchical clustering is used to show association between
cell types. Excitatory and inhibitory neurons mainly clustered together,
and glia cells clustered together.

A.1.3 Adjunct CNN Training
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Figure A.3: a) Mice Forebrain snATAC-seq unique peaks post-
processing: Unique peaks present for each cell type after initial
filtering of peaks less than 1% of cells. EMP, eEX2 and eIN3 have high
amounts of unique signals. RG3, eIN1 and eIN2 have comparatively
few unique signals. b) Mice brain dscATAC-seq unique peaks
post-processing: Unique peaks present for each cell type after filtering
bottom 50% peaks ranked by frequency of cell with the region open.
MG1, OG1 have high amounts of unique peaks while other cells have
less.

Figure A.4: Embryonic mice brain adjunct CNN ROC curve: Test set
ROC curve with AUC value for each cell type from embryonic mice
forebrain snATAC-seq. The accuracy of the CNN was the highest for
inhibitory 1 and lowest for erythroid myeloid progenitor class.
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Figure A.5: Adult mice brain dscATAC-seq CNN ROC curve: Test set
ROC curve for each cell type in the adult mice brain dscATAC-seq
trained CNN.

Figure A.6: a) Adult mice brain dscATAC-seq astrocyte motif composi-
tion prior to the feedback loop: Motif composition analysis of adult
mice brain dscATAC-seq astrocyte compared between top-ranked as-
trocyte sequences and generated sequence prior to feedback loop. The
analysis was done using MEME SUITE AME, using the JASPAR 2018
vertebrate database.; b)Adult mice brain dscATAC-seq astrocyte mo-
tif composition after training GAN with the feedback loop: Motif
composition analysis of dscATAC-seq of astrocyte top ranked sequence
compared to generated data set after training GAN using feedback loop.
The analysis was conducted via MEME SUITE AME using the JAS-
PAR 2018 vertebrate database.
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