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Abstract 
Interpersonal and societal adversity experienced throughout life, such as abuse or low 

socio-economic status (SES), have been associated with negative health outcomes. Many of 

these diseases share the common thread of inflammation, inspiring the hypothesis that 

chronic stress resulting from adverse experiences over activates the hypothalamic-pituitary-

adrenal (HPA) axis resulting in dysregulation of the immune system. DNA methylation 

(DNAm), a methyl group covalently bound to cytosine bases for the purposes of this thesis, 

is one of many epigenetic mechanisms involved in responding to environmental signals in 

the genomic context. As such, this modification may be particularly pertinent to 

understanding how adverse experiences can become embedded in a way that results in 

lifelong health disparities.  

The overarching aim of this dissertation is to understand how various measures of 

adversity throughout the life-course could associate with DNAm differences between 

individuals. Initially, I compared whole blood DNAm patterns amongst elderly individuals 

with different years of education, household assets and self-reported measures of economic 

standing in childhood and older adulthood, in addition to a composite socioeconomic (SES) 

measure. I found there were significantly more DNAm associations with older adulthood 

relative to retrospective childhood SES measures, and the subjective SES measures displayed 

a dampened signal relative to objective ones. Next, I investigated the relationship between 

the inflammatory biomarker serum IL-6, lifetime SES measures and purified monocyte 

DNAm patterns amongst adults. Here, I found the relationship between some CpGs and IL-6 

was partially explained by SES. Additionally, differences in SES-associated DNAm sites 

were seen predominantly amongst individuals who experienced low early life and high 

adulthood SES. Finally, I investigated how childhood abuse associated with DNAm in 

spermatozoa of adult men. Though this was a small pilot study, I found a subset of 

differentially methylated regions associated with childhood abuse. These associations were 

stable over a two-month period and survived adjusting for current life adversity measures. 

Overall, these findings provide evidence that the tissue, timing, and measure of adversity 

experienced are important considerations for social epigenetic studies and can yield unique 

DNAm patterns in a context-specific way. 
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Lay Summary 
 

 Health disparities are associated with an individual’s interpersonal and societal 

adverse experiences. How adversity impacts lifelong health at the molecular level is not fully 

understood. Epigenetics is the study of how the genome can interact with and respond to the 

environment. DNA methylation (DNAm) is an epigenetic mark that is important for cellular 

identity and gene regulation. Epigenetics may be the link between experiences of adversity 

and long-term cellular programming resulting in negative health outcomes. This thesis 

investigates how DNAm relates to various measures of adversity including abuse and low 

SES, measured as occupational prestige, education, household assets, or measures of self-

report throughout life in several tissues including blood, monocytes and sperm. Results 

support the conclusion that several measures of life-long adversity do associate with DNAm 

and may provide insight into relevant molecular mechanisms at play and how they integrate 

into the pathways linking adversity and health.  

 



v 

 

Preface 
Data Chapter 4 in this thesis is presented in manuscript format, as it is currently published. 

Data Chapters 2 & 3 are original and unpublished.  

 

Portions of Chapter 1 (introduction) have been adapted from previously published work: 

• Merrill SM, Gladish N, Kobor MS. (2019). Social Environment and Epigenetics. In: 

Binder E & Klengel T (Eds) Behavioral Neurogenomics. Current Topics in 

Behavioral Neurosciences, vol 42. Springer, Cham. Reprinted with permission of 

Springer, Cham (License Number: 4947321357680). 

Chapter 2 is original and unpublished.  

! Gladish N, Merrill SM, McEwen LM, MacIsaac JL, Lin DTS, Ramadori KE, Dow 

WH, Rosero-Bixby L, Kobor MS, Rehkopf DH. Multiple components of 

socioeconomic status measured in older adulthood and childhood differentially 

associated with DNA methylation. 

Processing of all human samples used in this study were approved by the joint University 

of British Columbia and Children and Women’s Hospital Ethics board (Certificate: H16-

02570). I developed the design and research questions for this study alongside D. Rehkopf 

and M. Kobor. Sample and data collection were performed in Costa Rica by W. Dow and L. 

Rosero-Bixby. DNA methylation and genotyping arrays were performed by L. McEwen, J. 

MacIsaac, D. Lin and K. Ramadori. I was responsible for all bioinformatics analyses and 

manuscript preparation, with critical feedback from S. Merrill, D. Rehkopf and M. Kobor.  

Chapter 3 is original and unpublished. 

• Gladish N, Merrill SM, MacIsaac JL, Chen E, Miller GE§, Kobor MS§. Lifetime 

trajectories of socioeconomic status partially mediated associations between DNA 

methylation and IL-6 levels. §Authors jointly supervised work.  

Collection of all human samples used in this study were approved by the joint University 

of British Columbia and Children and Women’s Hospital Ethics board (Certificate: H08-

02773). The experimental and analytical design for this study was developed by myself, G. 

Miller and M. Kobor. Sample and data collection were performed in Vancouver, BC by G. 

Miller and E. Chen. DNA methylation arrays were run by myself and J. MacIsaac. I 



vi 

 

performed all statistical and bioinformatics analyses of the DNA methylation array data. I 

wrote the manuscript and prepared all publication figures. S. Merrill, E. Chen, G. Miller and 

M. Kobor provided critical feedback for the analyses and manuscript preparation. G. Miller 

and M. Kobor supervised all steps of the process. 

A version of Chapter 4 has been published as: 

• Roberts AL, Gladish N, Gatev E, Jones MJ, MacIsaac JL, Tworoger SS, Austin SB, 

Tanrikut C, Chavarro JE, Baccarelli AA, Kobor MS. (2018). Exposure to childhood 

abuse is associated with human sperm DNA methylation. Translational Psychiatry. 

Reprinted with permission of Creative Commons Attribution 4.0 International 

License (http://creativecommons.org/licenses/by/4.0/). 

Collection of all human samples used in this study were approved by the Brigham and 

Women’s Hospital Institutional Review Board (Certificate: 2009-P-000116/11). This study 

was conceived and designed by A. Roberts and myself with input from M. Kobor. 

Recruitment of study participants and sample preparation was done by A. Roberts, J. 

Chavarro, S. Tworoger, S. Austin and C. Tanrikut. DNA methylation arrays were run by J. 

MacIsaac and M. Jones and pyrosequencing was performed by myself. I was responsible for 

statistical analysis of all data except the production of the predictor which was performed by 

E. Gatev. I generated most publication figures and helped write the manuscript with A. 

Roberts. A. Baccarelli and M. Kobor provided critical feedback at all stages of manuscript 

preparation.  

Chapter 5 (discussion) contains adapted excerpts from the following publication:  

• Merrill SM, Gladish N, Kobor MS. (2019). Social Environment and Epigenetics. In: 

Binder E & Klengel T (Eds) Behavioral Neurogenomics. Current Topics in 

Behavioral Neurosciences, vol 42. Springer, Cham. Reprinted with permission of 

Springer, Cham (License Number: 4947321357680). 

 

Given that Chapter 4 remains largely unchanged from the published version, I have retained 

the use of plural first-person pronouns in these sections. In the remainder of the dissertation, 

singular first-person pronouns are employed. 



vii 

 

Table of Contents 
 

Abstract .................................................................................................................................. iii 

Lay Summary ......................................................................................................................... iv 

Preface ..................................................................................................................................... v 

Table of Contents .................................................................................................................. vii 

List of Tables ......................................................................................................................... xii 

List of Figures ...................................................................................................................... xiii 

List of Abbreviations ........................................................................................................... xiv 

Acknowledgements .............................................................................................................. xvi 

Dedication ............................................................................................................................ xvii 

1 Introduction ................................................................................................................................... 1 
1.1 Dissertation context and aims ......................................................................................................... 1 
1.2 Epigenetics at the intersection between social environment and physiology ................................. 2 

1.2.1 Environmental influence on epigenetic mechanisms and impact on cellular function ......... 2 
1.2.2 Epigenome-wide association studies (EWASs) .................................................................... 3 

1.3 DNA methylation (DNAm) ............................................................................................................ 4 
1.3.1 Function and properties ......................................................................................................... 4 
1.3.2 Tissue specificity ................................................................................................................... 5 
1.3.3 Age ........................................................................................................................................ 6 
1.3.4 Genetic variation ................................................................................................................... 6 
1.3.5 DNAm measuring methods ................................................................................................... 7 

1.4 Transgenerational inheritance ......................................................................................................... 8 
1.5 Adversity ......................................................................................................................................... 9 

1.5.1 Interpersonal ........................................................................................................................ 10 
1.5.2 Societal ................................................................................................................................ 11 
1.5.3 Impact on the stress response and immune function ........................................................... 12 

1.6 Adversity associations with DNAm ............................................................................................. 14 
1.6.1 Interpersonal ........................................................................................................................ 14 
1.6.2 Societal ................................................................................................................................ 18 

1.7 Dissertation overview ................................................................................................................... 20 



viii 

 

2 Multiple components of socioeconomic status measured in older adult- and childhood 

differentially associated with DNA methylation in older adults ................................................ 21 
2.1 Background and rationale ............................................................................................................. 21 
2.2 Materials and Methods .................................................................................................................. 24 

2.2.1 Costa Rican Longevity and Healthy Aging Study (CRELES) cohort ................................ 24 
2.2.2 Socioeconomic status (SES) measures ................................................................................ 24 
2.2.3 Biomarker and lifestyle measures ....................................................................................... 25 
2.2.4 DNA methylation array ....................................................................................................... 25 
2.2.5 Genotyping array ................................................................................................................. 25 
2.2.6 Statistical analysis ............................................................................................................... 25 

2.2.6.1 Genotyping pre-processing and normalization ............................................................... 26 
2.2.6.2 DNAm pre-processing and normalization ...................................................................... 27 
2.2.6.3 Determination of predicted genetic ancestry principal components .............................. 27 
2.2.6.4 Estimation of whole blood cell-type proportions ........................................................... 28 
2.2.6.5 Principal components analysis of DNAm ...................................................................... 28 
2.2.6.6 SES associations with DNAm ........................................................................................ 28 
2.2.6.7 Permutation analysis ....................................................................................................... 29 
2.2.6.8 Global distributions and p-value comparisons resulting from SES EWASs .................. 29 
2.2.6.9 Comparison of SES associations with DNAm ............................................................... 29 
2.2.6.10 Genomic feature enrichment of SES associated DNAm sites ........................................ 29 
2.2.6.11 Association of SES measures with biomarkers and lifestyle measures ......................... 30 
2.2.6.12 Biomarker and lifestyle behaviour contribution to SES and DNAm associations ......... 30 

2.3 Results ........................................................................................................................................... 31 
2.3.1 All SES measures were associated with global DNAm. ..................................................... 31 
2.3.2 Current life SES measures showed stronger associations with DNAm than retrospective 

measures taken in childhood. ................................................................................................................. 32 
2.3.3 There was significant overlap between the most significant CpG sites associated with 

multiple SES measures. .......................................................................................................................... 33 
2.3.4 There was significant enrichment for the genomic location and chromatin enrichment of 

the top CpG sites associated with several SES measures. ...................................................................... 34 
2.3.5 Each SES measure was significantly associated with at least one biomarker or health 

lifestyle measure. .................................................................................................................................... 38 
2.3.6 Drinking and multiple stress biomarkers significantly contributed to the distribution of 

effect sizes amongst the most significant CpG sites associated with several SES measures. ................ 38 
2.3.7 Childhood SES associated CpGs are influenced by biomarkers and lifestyle factors while 

older adulthoods SES CpGs are not. ...................................................................................................... 40 
2.4 Discussion ..................................................................................................................................... 42 



ix 

 

2.4.1 Subjective and objective SES components behave distinctly relative to associations with 

DNAm. 42 
2.4.2 Differential impact between older adult and childhood SES associations with DNAm. .... 44 
2.4.3 Limitations and considerations ........................................................................................... 45 

3 Lifetime trajectories of socioeconomic status partially mediated associations between DNA 

methylation and IL-6 levels ........................................................................................................... 47 
3.1 Background and rationale ............................................................................................................. 47 
3.2 Materials and Methods .................................................................................................................. 50 

3.2.1 Early Life cohort ................................................................................................................. 50 
3.2.2 Childhood and adulthood socioeconomic status questionnaire .......................................... 51 
3.2.3 Biological measures ............................................................................................................ 51 

3.2.3.1 Serum IL-6 ..................................................................................................................... 51 
3.2.3.2 Blood collection, monocyte isolation, genomic DNA extraction and DNAm 

measurement ...................................................................................................................................... 51 
3.2.4 Statistical analysis ............................................................................................................... 52 

3.2.4.1 DNAm pre-processing and normalization ...................................................................... 52 
3.2.4.2 Serum IL-6 and DNAm .................................................................................................. 53 
3.2.4.3 Independent cohort validation ........................................................................................ 53 
3.2.4.4 Association between DNMT1 expression and serum IL-6 levels ................................... 54 
3.2.4.5 SES and serum IL-6 measures ........................................................................................ 54 
3.2.4.6 SES contribution to IL-6 and DNAm associations ........................................................ 54 
3.2.4.7 SES and DNAm .............................................................................................................. 55 
3.2.4.8 DNAm and gene expression ........................................................................................... 55 
3.2.4.9 Chromatin state and histone modification enrichment analysis ..................................... 55 
3.2.4.10 Correlation between whole blood and brain sample DNAm ......................................... 56 
3.2.4.11 Exploratory analysis of other contributing lifestyle factors ........................................... 56 

3.3 Results ........................................................................................................................................... 56 
3.3.1 Serum IL-6 levels were related to DNAm .......................................................................... 56 
3.3.2 A substantial fraction of IL-6 associated CpGs validated in an independent cohort .......... 57 
3.3.4 Serum IL-6 levels were linked with SES trajectories ......................................................... 58 
3.3.5 SES contributed to the correlation between IL-6 and DNAm ............................................ 59 
3.3.6 SES associated with CpGs independently of IL-6 levels .................................................... 61 
3.3.7 Gene expression was correlated with DNA methylation for a subset of CpGs .................. 61 
3.3.8 Enhancers and H3K4me1-marked regions were enriched in IL-6-related CpGs ................ 62 
3.3.9 CpGs within brain related genes had correlated methylation levels between whole blood 

and brain tissue in a reference dataset .................................................................................................... 62 



x 

 

3.3.10 Waist-to-hip ratio and smoking contributed to IL-6 associations with DNAm and variables 

of interest 63 
3.4 Discussion ..................................................................................................................................... 63 

3.4.1 SES Upward mobility drove DNAm associations independent of IL-6 and lifestyle 

behaviours 64 
3.4.2 IL-6 independent CpGs associated with SES within adaptive immune genes .................... 66 
3.4.3 CpGs associated with SES were located within genes of neurological function ................ 67 
3.4.4 Considerations and limitations ............................................................................................ 68 

4 Exposure to childhood abuse is associated with human sperm DNA methylation ............... 71 
4.1 Background and Rationale ............................................................................................................ 71 
4.2 Materials and Methods .................................................................................................................. 72 

4.2.1 Sample ................................................................................................................................. 72 
4.2.2 Measures ............................................................................................................................. 73 
4.2.3 Covariates ............................................................................................................................ 74 
4.2.4 Hypothesized mediators ...................................................................................................... 74 
4.2.5 DNAm assay ....................................................................................................................... 74 
4.2.6 Analyses .............................................................................................................................. 76 
4.2.7 Principal components analysis ............................................................................................ 76 
4.2.8 DMRs analysis .................................................................................................................... 76 
4.2.9 Machine learning analysis ................................................................................................... 77 
4.2.10 Pyrosequencing methylation confirmation ......................................................................... 77 
4.2.11 Exploratory mediation analysis ........................................................................................... 78 
4.2.12 Probes associated with childhood abuse in prior studies .................................................... 78 

4.3 Results ........................................................................................................................................... 78 
4.3.1 Principal components analysis ............................................................................................ 79 
4.3.2 DMRs analysis .................................................................................................................... 80 
4.3.3 Pyrosequencing ................................................................................................................... 82 
4.3.4 Machine learning analyses .................................................................................................. 83 
4.3.5 Mediation analyses .............................................................................................................. 84 

4.4 Discussion ..................................................................................................................................... 84 

5 Conclusion .................................................................................................................................... 88 
5.1 Dissertation summary and overarching conclusions .................................................................... 88 
5.2 Limitations and considerations for social epigenetics .................................................................. 91 

5.2.1 The reproducibility problem ............................................................................................... 92 
5.2.2 Statistical power .................................................................................................................. 92 

5.2.2.1 Sample sizes ................................................................................................................... 92 



xi 

 

5.2.2.2 Effect sizes ..................................................................................................................... 93 
5.2.3 Consistency in variable measurements ............................................................................... 94 

5.2.3.1 Type ................................................................................................................................ 94 
5.2.3.2 Timing ............................................................................................................................ 95 
5.2.3.3 Location .......................................................................................................................... 96 

5.2.4 Tissue .................................................................................................................................. 97 
5.2.4.1 Cellular heterogeneity .................................................................................................... 97 
5.2.4.2 Tissue Source ................................................................................................................. 98 

5.2.5 Genotype ............................................................................................................................. 99 
5.2.5.1 Population stratification ................................................................................................. 99 
5.2.5.2 Methylation quantitative trait loci (mQTLs) ................................................................ 100 

5.2.6 Accounting for confounders .............................................................................................. 100 
5.3 Future directions ......................................................................................................................... 101 

Bibliography ........................................................................................................................ 105 

Appendices .......................................................................................................................... 148 
Appendix A Supplementary Material for Chapter 2 ........................................................................... 148 

A.1 Supplementary Figures ........................................................................................... 148 
A.2 Supplementary Tables ............................................................................................ 151 

Appendix B Supplementary Material for Chapter 3 ........................................................................... 153 
B.1 Supplementary Figures ........................................................................................... 153 
B.2 Supplementary Tables ............................................................................................ 156 

Appendix C Supplementary Material for Chapter 4 ........................................................................... 159 
C.1 Supplementary Figures ........................................................................................... 159 
C.2 Supplementary Tables ............................................................................................ 163 

 



xii 

 

List of Tables 

 
Table 2.1   CRELES demographics, biomarker and behaviour summary statistics. .............. 31 
Table 2.2   Summary of the percentage of the top 1,000 DNAm sites associated for SES 
which had a covariate contribute to the relationship by at least 10%. .................................... 41 
Table 3.1   The change in methylation across serum IL-6 levels at 15 CpGs was contributed 
in part by lifetime SES trajectory status. ................................................................................ 60 
Table 4.1   Participant and semen sample characteristics by experience of childhood abuse (N 
= 34). ....................................................................................................................................... 79 
Table 4.2   Differentially methylated regions (DMRs) associated with childhood abuse 
exposure. ................................................................................................................................. 81 
 



xiii 

 

List of Figures 
 

Figure 2.1   All SES measures were associated with at least one of the first 15 PCs resulting 
from PCA of the DNAm data. ................................................................................................ 32 
Figure 2.2   Older adulthood SES measures had significantly stronger associations with 
DNAm than in childhood. ...................................................................................................... 33 
Figure 2.3 Upset plot of top 1,000 CpG sites displaying several significant overlaps across 
measures of SES throughout the life course. .......................................................................... 34 
Figure 2.4 Genomic feature enrichment for top CpGs associated with each SES variable. ... 37 
Figure 2.5 Global distributions of SES effect sizes from regression models adjusted for 
several biomarkers and health behaviours. ............................................................................. 39 
Figure 3.1 Serum IL-6 levels were associated with monocyte DNAm. ................................. 57 
Figure 3.2 Twenty-five percent of DNAm sites significantly associated with serum IL-6 
levels were validated in a secondary cohort. .......................................................................... 58 
Figure 3.3 Lifetime trajectory of SES was significantly associated with adulthood serum IL-6 
measures. ................................................................................................................................ 59 
Figure 3.4 SES trajectory was associated with DNA methylation independent of serum IL-6 
levels. ...................................................................................................................................... 61 
Figure 4.1   Principal component 4 (PC4) was associated with childhood abuse exposure (one 
sample per participant, N = 34). ............................................................................................. 80 
Figure 4.2   Four genomic regions differentially methylated by childhood abuse. ................ 82 
Figure 4.3   Additional sites measured during pyrosequencing of “ARL17A cluster” 
correlated significantly with 450 K sites in relation to childhood abuse. ............................... 83 
 



xiv 

 

List of Abbreviations 
 

27K Illumina HumanMethylation27K Beadchip Array 

450K Illumina Infinium HumanMethylation450K Beadchip Array 

ACTH Adrenocorticotropic hormone 

BECon Blood-Brain Epigenetic Concordance  

BMI Body mass index 

CpG Cytosine-guanine dinucleotide 

CRELES Costa Rican Longevity and Healthy Aging Study 

CRH Corticotropin-releasing hormone 

CRP C-reactive protein 

CTQ Childhood Trauma Questionnaire 

CTS Conflict Tactics Scales 

DHEAS Dehydroepiandrosterone sulfate  

DMR Differentially methylated regions 

DNA Deoxyribose nucleic acid 

DNAm DNA methylation 

DNMT DNA methyltransferase 

DOHaD Developmental Origins of Health and Disease 

EL Early Life Study 

EPIC Illumina Infinium HumanMethylationEPIC Beadchip Array 

EWAS Epigenome-wide association study 

FACS Fluorescence-activated cell sorting 

FDR False discovery rate 

GEO Gene Expression Omnibus 

GR Glucocorticoid receptor 

GSA Illumina Infinium Global Screening Array 

GUTS Growing Up Today Study 

GWAS Genome-wide association study 

GxE Gene-by-environment  



xv 

 

HPA Hypothalamic-pituitary-adrenocortical 

HWE Hardy-Weinberg Equilibrium  

IBD Identity-by-descent 

ICC Interclass correlation coefficient 

IL-1β Interleukin-1 beta 

IL-6 Interleukin-6 

LD Linkage disequilibrium 

MAF Minor allele frequency  

MeDIP Methylated DNA immunoprecipitation 

MHC Major histocompatibility complex 

miRNA Micro ribonucleic acid 

mQTL Methylation quantitative trait locus 

mRNA Messenger ribonucleic acid 

PBMC Peripheral blood mononuclear cells 

PC(A) Principal component (analysis) 

PCR Polymerase chain reaction 

PTSD Post-traumatic stress disorder 

SAM sympathetic-adrenomedullary 

scBS-seq Single-cell bisulfite sequencing  

scRRBS Single-cell reduced representation bisulfite sequencing  

SES Socioeconomic status 

sncRNA Small non-coding ribonucleic acid 

SNP Single nucleotide polymorphism 

SNS Sympathetic nervous system  

SVA Surrogate variable analysis 

SWAN Subset-quantile within array normalization 

TLR Toll-like receptor 

TNFα Tumor necrosis factor alpha 

WHR Waist-to-hip ratio 

Δβ Delta beta 

27K Illumina HumanMethylation27K Beadchip Array 



xvi 

 

Acknowledgements 
 

The completion of this PhD dissertation could not have been possible without the 

support of numerous people. Firstly, my sincere gratitude Dr. Michael S. Kobor, for his 

mentorship and for deciding to take a risk and supervise me during a tumultuous time, the 

integrity you displayed by supporting my efforts to do the ethical thing will always inspire 

me to persevere. My genuine appreciation to my fantastic committee members, Dr. Jan 

Friedman, Dr. Martin Hirst and Dr. Fabio Rossi for your continuous guidance and support.  

I would like to acknowledge all of my wonderful collaborators: Dr. Andrea Roberts, 

Dr. Greg Miller and Dr. David Rehkopf, you made this degree especially rewarding. I would 

also like to thank the members of the Medical Genetic graduate program, including my 

professors, fellow graduate students, and in particular, Cheryl Bishop, whose kindness and 

encouragement has meant a lot.   

Thank you to former and current members of the Kobor lab, it is through many of 

you that I was able to learn and grow as a researcher. A special thank you to Dr. Sarah 

Merrill, Rachel Edgar, Dr. Lisa McEwen, Dr. Sumaiya Islam, and Dr. Chaini Konwar who 

not only provided critical feedback and support throughout my PhD but also inspire me. Drs. 

Daniel Radiloff and Sumaiya Islam deserve additional acknowledgment, they supported me 

through the most difficult time during my degree, prior to entering the Kobor lab, and it 

because of your courage and integrity that I was able to do the right thing and push through.   

Finally, those I am most thankful for, and the main reason I could accomplish what I 

did, has been my family. To my two beautiful children, Luca and Elena, you were lights of 

sunshine throughout this process and wonderful reminders of why I do what I do. I hope 

these experiences will enrich your lives, even if only a modicum, of how you have enriched 

mine. Jay, my amazing husband and best friend, you have stuck with me and supported me 

financially and emotionally as I follow my passion. I am beyond grateful to have you in my 

life and I really, truly and honestly, could never have done this without you. I love you all 

with all my heart.   

 



xvii 

 

Dedication 
 

To Jay, my amazing husband and Luca and Elena, my wonderful children, for all of your 

love, support and sacrifice. You have always been my safe haven; I could have never done 

this without you. 

 



1 

 

1 Introduction 
 

1.1 Dissertation context and aims 

Adversity experienced in both the interpersonal and societal context has been consistently 

associated with many negative health outcomes, with effects especially damaging when 

experienced during the vulnerable period of early life (1–13). All children develop within a 

dynamic social context of both interpersonal relationships and wider social structures, which can 

shape their cognitive, emotional, and biological processes for the remainder of their lives (14). 

From the first moments with parents, to city planning, to feeling accepted by the community, the 

multifaceted nature of the social environment provides ample opportunity for both advantages 

and hindrances to be embedded “under the skin” (15). Though the debate between solitary 

contributions of nature and nurture is an academic artifact, there are a variety of overlapping 

conceptualizations of this embedding process. This cascade of interactions between innate 

differences and environmental exposures is addressed in the developmental origins of health and 

disease (DOHaD) hypothesis (16,17). This hypothesis refers to the potential biological 

programming from environmental exposures that may cause some of the intrinsic predispositions 

on which later environments may act (18). Layered onto the foundation of early life embedding, 

subsequent experiences throughout life continue to shape an individual’s health highlighting the 

need to investigate these relationships in a more holistic way.   

The most general and often-used scientific term for these relationships is gene-by-

environment (GxE) interactions. Ultimately, the distillation of these models equates to a basic 

understanding that the scaffolding of experience can be secured upon existing biological 

foundations. With poor foundations or inferior craftsmanship, the overall integrity of the 

structure may fail. One important aspect of how these pieces come together to build the human 

experience is through epigenetics (19).  

This dissertation aimed at understanding how the social environment, specifically in the 

context of interpersonal and societal adversity, associates with interindividual epigenetic 

differences in a healthy population. To achieve this, I performed a series of epigenome-wide 

association studies (EWASs) interrogating DNA methylation (DNAm) profiles in several 

populations. DNAm is a particularly promising candidate as this is an epigenetic marker that has 

been demonstrated to play a role in gene expression regulation, cellular differentiation and the 
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preservation of cellular identity (20–22). Additionally, DNAm is dynamic, as it has been shown 

to fluctuate in response to various environmental influences (23,24). To examine this, I 

performed three studies to assess adversity-associated DNAm by a) comparing multiple 

measures of socioeconomic status (SES), b) investigating how an inflammatory biomarker may 

play a role and c) examining these associations in gametes. Specifically, I investigated DNAm 

patterns related to education, household assets and self-reported measures of economic standing 

in both retrospective childhood and concurrent older adulthood in the whole blood of elderly 

individuals (Chapter 2). Next, I wanted to determine what role, if any, the inflammatory 

biomarker interleukin-6 (IL-6) plays amongst SES-associated DNAm sites within purified 

monocytes (Chapter 3). Finally, to examine if signals of adversity could be detected in gametes, 

I investigated how childhood abuse associated to the DNAm profiles of adult spermatozoa 

samples (Chapter 4). Overall, these findings provide evidence that adversity experienced in 

various contexts is associated with DNAm throughout life, evidenced in multiple tissues, and 

highlights avenues for potential future research.  

 

1.2 Epigenetics at the intersection between social environment and physiology 

1.2.1 Environmental influence on epigenetic mechanisms and impact on cellular function  

Epigenetics refers to genetic modifications which regulate the underlying, permanent 

deoxyribose nucleic acid (DNA) sequence, leading to altered gene expression and, ultimately, 

changes in phenotypes such as health and behaviors. The fundamental purpose of these 

epigenetic alterations is to achieve a diverse landscape of expression from a single DNA source 

(15). These changes are likely involved in the biological embedding of environmental influence 

because of both their dynamic nature and sensitivity to experiential feedback. The field of 

epigenetics is a natural accretion of biological reductionism as it provides evidence that while we 

may be a product of our biology, our biology is partially a product of our environment.  

The degree to which a gene is transcribed and translated into protein depends, in part, on 

the chromatin state. This packaging of DNA and its associated proteins is determined by both 

underlying DNA sequence and external factors, and thus can potentially link genetic and 

environmental mechanisms. Examples of mechanisms that can change the chromatin state and 

potentially influence transcription include covalent modifications of histone proteins and DNA 

bases, such as cytosine DNAm (21).  
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Modifications in chromatin structure during cellular differentiation are of paramount 

importance to healthy development (25–27), and the role that chromatin state plays in mediating 

adaptive responses to environmental influences remains significant throughout life (15). For 

example, Angelman syndrome results from in utero aberrant methylation of the paternally-

imprinted ubiquitin protein ligase E3A (UBE3A) gene, resulting in lifelong seizures and 

intellectual disability (28). Considering the importance of accurate epigenetic states for typical 

development, these mechanisms may explain how a short-duration environmental exposure 

could influence an individual’s physiology decades later (15,29). 

Animal studies have provided a growing body of evidence to support epigenetically 

mediated effects of prenatal environment on offspring phenotype (30,31). In particular, the 

Agouti mouse model provides a seminal example of prenatal environment influencing phenotype 

through an epigenetic mark, specifically cytosine DNAm. In such experiments, pregnant mice 

carrying offspring with an Agouti viable yellow (AVY) allele are fed a methyl-rich diet, which 

increases methylation of Agouti in the offspring and results in a brown coat color, decreased 

obesity, and improved health outcomes (32,33). While it is likely that numerous epigenetic 

marks interact with the environment and genetic landscape in association with various 

phenotypes, this thesis will center specifically on cytosine DNAm, specifically findings from 

human cohorts, as DNAm is by far the most extensively studied epigenetic mark investigated in 

human populations (34). 

 

1.2.2 Epigenome-wide association studies (EWASs) 

As there are a multitude of epigenetic marks that can be affected by many environmental 

exposures, attempts have been made to apply epidemiological approaches to investigate DNAm 

associations with a given phenotype, resulting in study designs referred to as epigenome-wide 

association studies (EWASs) (35). These are exploratory studies, similar to the more established 

genome-wide association studies (GWASs), where the relationship between a particular 

epigenetic mark and a variable of interest is performed on a site-by-site basis across the genome. 

Limitations that plague GWASs, such as harmonization of variables, functional relevance of 

findings, population stratification and sample size issues, also plague EWASs (35). However, 

EWASs have additional limitations, as epigenetic marks can be influenced by a wide variety of 

environmental factors in addition to underlying genetics, including age, sex, and tissue 
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heterogeneity, making study design extraordinarily important (35). The most common forms of 

epigenetic investigations in humans are correlational studies on DNAm (36,37). Due to its 

critical role in cell type differentiation, DNAm is highly affected by cell type differences, and 

thus tissue types, as well as age, ethnicity, genotype, sex, and disease state (38–46). Three of 

these factors are especially important to highlight: tissue, age, and genotype. 

 

1.3 DNA methylation (DNAm) 

1.3.1 Function and properties 

DNAm consists of a methyl group covalently bound to nucleotide bases in the DNA, for 

the purposes of this thesis I will focus specifically on cytosine DNAm. The resulting nucleic base 

is 5-methyl-cytosine and occurs primarily in the context of cytosine-guanine dinucleotides (CpG) 

(20). CpGs, though located throughout the genome, are most frequently found in CpG islands, 

defined as regions around 1,000 base pairs in length with a high concentration of CpG 

sequences. These CpG islands are overrepresented in gene promoters, being present in 70% of 

them, in part due to the fact that they are ancestral remnants of the genome and so evolutionarily 

conserved (47). Approximately 2-5% of all cytosines in the genome are methylated, with 90% of 

methylated cytosines existing within repetitive elements such as Alu and Long Interspersed 

Nuclear Element-1 (LINE-1) transposons (48). There are various functions associated with 

DNAm, including chromatin remodelling, X-chromosome inactivation (49,50), imprinting (51), 

and transcription (52,53) — transcription being of particular interest as a mechanism mediating 

the effects of environmental factors (54). Somatic cells have a unique pattern of DNAm that is 

maintained throughout their lifetime via the action of DNA methyltransferase enzymes 

(DNMTs). However, while some DNAm patterns essential for cellular differentiation are more 

permanent, some remain dynamic throughout life (37). As a primary function of DNAm is in 

defining and maintaining cellular identity, several unique and important experimental 

considerations need to be accounted for (53). Tissues are heterogenous and contain various cell 

types, all with unique DNAm profiles, and individuals vary in the proportions of these cell types 

requiring additional correction in downstream analyses (53) and careful consideration when 

interpreting results (36). 
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1.3.2 Tissue specificity  

While the genetic background of all cells in a given human body is identical, there are a 

vast number of cell types with their own acquired and unique functions. Epigenetics, and 

specifically DNAm, regulate gene expression within the context of genetic background, defining 

a given cell’s functionality and therefore its identity (53). Cellular identity, being a primary 

function of DNAm, brings with it several key issues when being investigated as a marker in 

epidemiological studies (55,56). First, the tissue being interrogated has specific implications for 

results interpretation, as DNAm patterns between tissues are predominantly the primary source 

of variation (46,57,58). Typically, peripheral tissues, easily accessible and non-invasive, are 

most commonly interrogated in EWASs. As such, it is difficult to make inferences about 

epigenetic modifications in brain tissue when measuring more peripheral tissues, such as blood 

or saliva; however, there are resources correlating DNAm measures in these tissues that can 

assist in forming educated inferences (38,59). This same logic applies to interpreting the effect of 

differential DNAm occurring in a gene which is not normally expressed in the interrogated tissue 

(55,56).  

The second issue is the cellular composition of the interrogated tissue, the second largest 

contributor to DNAm variation. Many tissues are heterogenous and the proportions of cell type 

which comprise them can vary across individuals (57). As this adds considerable variation to 

DNAm data and when varying cell type proportions are not the variable of interest, this must be 

accounted for in subsequent analyses (60,61). While the gold standard is to perform cell counts 

or fluorescence activated cell sorting (FACS) analysis to assay the proportion of cell types 

directly, it may not be feasible for larger cohorts. As such, several bioinformatics approaches 

have been produced to predict varying cell type proportions in many commonly assayed tissues 

(62–66). The most common approach includes using reference datasets, derived from assaying 

purified cell types from FACS-sorted tissues. The methylation profiles of these purified cells can 

be used to predict proportions of cell types in another sample. When no reference dataset exists, 

there are statistical methods, such as surrogate variable analysis (SVA), that can provide 

estimates based on a general knowledge of how many cell types exist and that this is the primary 

driver of variation in DNAm data (66,67). While differences in cell type proportions could be 

associated with the variable of interest and themself interesting, these measures are usually 

treated as covariates that must be accounted for in EWASs (55,56). 
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1.3.3 Age 

Patterns of epigenetic modifications, including DNAm, change with age (37,68–73). 

There is a global loss of DNAm with aging, with about one third of DNAm sites being impacted 

(70). This hypomethylation occurs within all genomic regions, but especially within CpG-poor 

promoters and tissue specific genes (74). However, increases in DNAm with age are found in 

CpG dense regions, such as CpG islands (75,76). In general, there are two categories with 

DNAm and aging: epigenetic drift and epigenetic clocks. 

Epigenetic drift refers to the increase in DNAm variability associated with aging. This 

variability occurs at specific genomic regions, but the directionality varies across individuals 

suggesting that the source of variation is the result of stochastic changes or differential 

environmental exposures (37,77,78). Monozygotic twin studies highlight this effect where 

methylome profiles are nearly identical at birth and become subsequently more divergent with 

age (79). Epigenetic drift has also been associated with various health outcomes, which could be 

a direct effect of variation or a proxy of progressive inefficiencies in genetic regulation seen with 

aging (80–82). 

In contrast, there are age-associated DNAm sites that change in a predictable way across 

individuals. A benefit of these predictable differences is the ability to estimate age using DNAm 

“clocks” that can be either pan-tissue or tissue specific (83–88). By estimating age using DNAm, 

it is also possible to determine the acceleration of an individual’s epigenetic, or biological, age 

from their chronological age. Generally, when an adult is predicted to be older than their 

chronological age (i.e., epigenetic age acceleration), this suggests increased cellular aging and is 

associated with increases in morbidity and mortality (70,89,90).  

Interestingly, the relationships between age and DNAm are not linear where the rate of 

change differs significantly amongst children, adults and the elderly in addition to across tissue 

(91). Therefore, it is crucial that age be accounted for, selected for, or counterbalanced across 

groups in the variable of interest. 

 

1.3.4 Genetic variation  

Another factor that contributes greatly to DNAm is the genomic background, both as a 

confounder to be accounted for and as a variable of interest. GxE interactions, defined as 
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differential phenotypes resulting from a combination of genetic background and environmental 

exposures (92,93), have been an area of intensive research in which DNAm is increasingly 

investigated as a potential mediator (94). One example of this was found when investigating the 

link between a risk allele in FKBP5 for post-traumatic stress disorder (PTSD) being mediated by 

childhood maltreatment through changes in methylation in the FKBP5 intron responsible for 

glucocorticoid receptor (GR) binding (95). A genetic variant linked to the alteration of a DNAm 

site is termed a methylation quantitative trait locus (mQTL), a significant source of DNAm 

variation. mQTLs have been reported to be tissue, age, and population dependent, contributing to 

20-80% of DNAm variation (74–77). The dynamic relationship between DNAm and genotype 

highlights not only the importance of accounting for population stratification, but also the 

pertinent role it may play in developmental trajectories and later life health (96).  

 

1.3.5 DNAm measuring methods 

At the advent of DNAm research, this epigenetic mark was first analyzed at the global 

methylation level using fluorescence microscopy and immunoblotting techniques (97,98). As 

technology became more advanced, interrogation at specific sites became possible using 

sequencing-based methods, with the eventual development of array-based methods allowing for 

high-throughput interrogation in population studies (99,100). The general technique used to 

interrogate DNAm using sequencing-based methods, is to perform bisulfite treatment of the 

samples converting non-methylated cytosine into uracil bases. Bisulfite converted DNA is then 

subjected to typical sequencing techniques referred to as whole-genome bisulfite sequencing.  

While sequencing is now possible genome-wide, other more targeted sequencing 

methods have been developed. One such method sequences genomic fragments selected using 

antibodies which bind specifically to methylated DNA (MeDIP); however, this method is biased 

for only enriching for regions of high CpG density (101–103). Pyrosequencing is another 

targeted method, where a polymerase chain reaction (PCR) is performed on bisulfite converted 

DNA releasing light during each base pair extension which is measured to indicate the addition 

of a known nucleotide (104).  

The existence of hydroxy-methylated cytosines (DNAhm) should also be noted, these 

modifications are the intermediary produced during ten-eleven translocation (TET) enzyme-

mediated demethylation. DNAhm varies widely across tissues and can act as a stable 
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modification in a few instances. DNAhm is protected during bisulfite treatment, similar to 

DNAm, and so are counted in the pool of DNA molecules as methylated. There are techniques 

available to distinguish between these modifications; however, other than a few exceptions (e.g., 

brain, pluripotent stem cells), DNAhm levels are low enough in most tissues to not make this 

necessary for most EWASs (105–108). 

The vast majority of EWASs performed on larger cohorts are conducted using the 

Illumina Infinium BeadChip arrays (109–112). There have been four iterations throughout the 

years with more sites being assayed with increasing technological advances. These include the 

GoldenGate, 27K, 450K and EPIC arrays which interrogate 1,536, 27,578, 485,557 and 866,895 

sites throughout the genome, respectively. Briefly, this technology utilizes probes bound to a 

glass slide which bind to bisulfite converted DNA fragments. A single labelled base pair is then 

added and excited by a laser which emits a signal detected by a reader, conveyed as intensity 

measures using software. A given DNAm site on a single DNA molecule can be either 

methylated (0) or unmethylated (1), in haploid cells only these two states can exist; in diploid 

cells there can be the situation where only one allele is methylated, thus producing a 0.5 

measure. However, when a pool of cells is interrogated, this measure takes on a continuous value 

(0-1), representing the proportion of methylated DNA molecules.  

 

1.4 Transgenerational inheritance 

Transgenerational epigenetic inheritance is the transmission of epigenetic markers from 

parent to offspring through the germline (113,114). This method of transmission implies an 

ability for lived experiences to become inherited in future generations, an idea which has been 

investigated since the early 1900s (114). While there is evidence that this mechanism exists in 

plants and nematodes, whether it does in humans remains uncertain (114). It has been established 

that DNAm is mitotically heritable; however, there are issues to consider around whether 

epigenetic modifications can be transmitted via gametes. DNAm is mostly erased during 

embryogenesis as there are regions of DNAm essential to reset, though there is evidence that 

some sites escape this process (e.g., parentally imprinted genes) (115).  

In humans this phenomenon has yet to be definitively proven, that may be the result of 

human longevity in combination with genetic, cultural, and ecological inheritance which can 

confound any associations (113,114). One of the studies closest to addressing this issue in 
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humans is the investigation of individuals who had prenatal exposure to the Dutch Hunger 

Winter. This study showed that in utero exposure to famine resulted in IGF2 DNAm differences 

which were associated with increased metabolic disease in adulthood relative to unexposed 

siblings (116). However, as these individuals were exposed in utero, it does not prove 

transgenerational inheritance but is instead an example of fetal programming. Beyond the 

inability to design human studies to ensure no cultural, genetic, or ecological inheritance is 

occurring, our generational time is long (113). The human lifespan ranges from 60-80 years and 

depending on whether the paternal or maternal line is being examined, differing sets of 

generations are required to establish transgenerational inheritance. For example, females 

pregnant with offspring have the gametes of the fetuses also exposed to the environment, a term 

referred to as “fetal programming”. Therefore, while only F2 associations are required for 

paternal exposure, investigations into the F3 generation are required for maternal exposure (113).  

Although we do not know whether this occurs in humans, transgenerational inheritance 

of DNAm states have been demonstrated in some rodent models. For example, sperm DNAm 

patterns resulting from streptozotocin-induced prediabetes were found in F1 and F2 offspring in 

mice (117). Also, DNAm differences in the olfactory gene, Olfr151, resulting from fear 

conditioning were found in the paternal F1 and F2 generations, in addition to behavioral 

sensitivity related to the condition without prior exposure in the offspring (118). This work 

highlights the potential functions that could be attributable to transgenerational epigenetic 

inheritance and that the effects of trauma or adversity could be passed to future generations, 

providing a quicker, more primed response and increased survival (119).  

 

1.5 Adversity 

Adversity, especially when experienced in early life, has been associated with many 

subsequent negative health outcomes (e.g., type 2 diabetes, cardiovascular disease, obesity, 

psychiatric disorders, and multiple sclerosis) (1–13). These associations are robust, reported 

across many diverse countries with varying levels of income, and have a dose-dependent 

relationship, as would be expected if the association were causal (120). There are many different 

kinds of adversity that might adversely affect health, but most can be assigned to one of two 

main overarching categories: interpersonal and societal. 
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1.5.1 Interpersonal  

The first social environment a human infant is born into is the uniquely vital and 

interpersonal relationship with a caregiver. Human altricial young need constant care and 

affection which they hopefully receive from their primary caregiver, often a parent. Having a 

positive, loving relationship in infancy with this person, who responds immediately and 

effectively to the child’s needs, has lifelong effects (121). Attachment theory, one of the most 

well-established social psychological theories, provides a foundation to understand both the 

impact and quality of early close relationships amid development.  

During development, establishing successful relationships with adults and peers provides 

a foundation for capacities that children will use for a lifetime (121,122). Thus, Bowlby, father 

of attachment theory, referred to these attachment patterns as being “from cradle to grave” (123), 

possibly similar to the epigenetic modifications established in infancy and lasting throughout 

life. This attachment theoretical foundation provides a comprehensive account of the ontogeny 

and developmental sequelae of infant caregiver bonds, as well as a framework for investigating 

how perturbations of this system may result in individual differences.  

In early care environments, the perception of safety is a critical component and breaching 

trust results in negative social experiences that can be both stressful and painful. There are many 

ways to experience pain, such as acutely, chronically, physically, and emotionally; in abusive 

early social environments, children are exposed to all four kinds of pain. Pain is such a powerful 

motivator for learning that is often used in animal models for fear conditioning, which is quick to 

establish and difficult to extinguish (124).  

The literature establishes that neural reactions to physical and socioemotional pain are 

exceptionally similar, specifically in regards to the affective processing of pain (125,126). 

However, though pain is processed in the same brain regions, socioemotional pain, such as social 

rejection or isolation, is more potent on a chronic timescale because it is much more easily 

relived and remembered than physical pain once the original source of pain has subsided (127). 

Animal studies have also repeatedly found that any unpredicted reward devaluation, such as 

through a sudden or bewildering social rejection, triggers the brain circuits involved in pain and 

stress (126). Individuals who experience abuse, especially from a caregiver, may experience the 

physical pain of abuse, but most certainly experience the social pain of rejection and betrayal in 

that moment and for years later.  
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1.5.2 Societal  

Chronic stress has clear physiological, psychological, neurological, and epigenetic 

effects. However, not all chronic stress stems from abuse or trauma. In fact, not all chronic stress 

stems from interpersonal relationships at all. As a social species, we have developed a society 

with biases, prejudices, and hierarchies. Our modern social environments remain embedded in 

historical power relationships. Though much work is being done to correct these injustices, 

racial, ethnic, gender, sexuality, or religious minorities, as well as those with a low SES and 

social position, face considerably more stress from societal pressures and inequities than others 

in their societies. This stress may then exacerbate these inequalities through cellular means, as 

well as societal.  

The construction of our societies leads to social environments that influence the types of 

nutrients we can access, the configuration of neighborhoods in which we live, the services to 

which we have access, and the physical environments to which we are exposed. The social 

administration of our physical environments is yet another form of social environmental 

influence on what we are able to learn and adapt to psychologically and biologically, whether it 

is conscious or unconscious.  

One major aspect in the construction of socially-administered environments is the spatial 

sorting of people based on their SES, race, or ethnicity. In addition to this divide, health 

differences amongst neighborhoods persist even after adjusting for SES and demographic 

factors, most likely due to the impact of broad environmental factors such as access to nutrition 

or exposure to pollution (128–131). Factors linked to differences in physical environment most 

likely contribute to and reinforce the detrimental effects of chronic societal stress on low SES 

and minority communities (132,133).  

One example of how physical environments may perpetuate the biological differences 

amongst classes are food deserts. These are areas, either urban or rural, where fresh produce and 

other healthy foods are either not available or are too expensive to be purchased as an everyday 

source of caloric intake. Low SES neighborhoods are especially likely to be located in a food 

desert (134). Food availability and food advertising, which is different for lower SES 

neighborhoods, influence energy intake and the nutritional value of foods consumed (135,136).  
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Additionally, neighborhood conditions can both create stress (e.g., through feeling 

unsafe) and be a buffer against stress by providing social cohesion or integration into the 

neighborhood or environments like work or school (128,137–140). One possible reason some 

immigrant groups have better morbidity and mortality than other groups in the same city is the 

social support and cohesion within the community (141). Even in the midst of possible 

adaptation to a harmful environment, a positive and enriched social environment shows 

ecological rescue effects for health. 

When these adverse events occur in relation to SES disparities in health, the effects are 

not equal. Early life is a particularly sensitive period during which an individual is more 

vulnerable to adversity. Doctors who experienced low SES in early life, were assessed for 

incidence of coronary heart disease and SES in childhood displayed the same disparities as seen 

amongst those who remain in poverty throughout their life (142). This observation suggests 

interventions should be implemented in childhood as attaining higher SES in later life will likely 

not alleviate the negative health outcomes attributed to early life poverty. 

 

1.5.3 Impact on the stress response and immune function  

The possibility of experiencing pain, because it is such a noxious experience, is highly 

motivating for mitigating or preventing injury whenever and wherever possible. This causes a 

combination of constant uncertainty and the need for hypervigilance – a recipe for chronic stress. 

The stress pathway is extraordinarily far-reaching and complex, rooted in the effects of 

uncertainty and requiring no unique or immediately relevant stimulus. The stress response is the 

collection of immune, neural, and homeostatic mechanisms that shift into a long-term state of 

hyperawareness with the anticipation of threats that could appear at any time. While this state 

can be lifesaving when triggered appropriately, being in a constant state of fearful uncertainty is 

not healthy and has lasting deleterious biological effects.  

When there is uncertainty about a potentially aversive or harmful outcome, the 

downstream stress response is activated by the hypothalamus. The hypothalamus secretes 

corticotropin-releasing hormone (CRH), which stimulates release of adrenocorticotropic 

hormone (ACTH) from the pituitary, which in turn signals two different stress pathways, one fast 

and one slow (143). The two major stress pathways are the sympathetic-adrenomedullary (SAM) 

response and the hypothalamic-pituitary-adrenocortical (HPA) response (143). In the fast, 
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immediate SAM response, ACTH triggers the adrenal medulla to release norepinephrine and 

epinephrine, neurotransmitters required to cause a rapid and intense nervous system response and 

hypervigilant attention (144). In the slower, long-lasting HPA response, ACTH triggers the 

adrenal cortex to signal the release of glucocorticoid stress hormones, the most important of 

which is cortisol. This dysregulates metabolism, suppressing the immune system and disrupting 

homeostasis through glucocorticoid receptor binding systemically (143). During the stress 

response, homeostatic mechanisms attempt to maintain equilibrium over a wide range of 

adaptive circumstances in order to respond to any possible challenge. Stress is, in essence, a 

“ready” state from which a large, quick biological response is primed at a moment’s notice and 

equipped with constant vigilance. Therefore, this cascade of biological effects both elicits a 

physiological and behavioral response and poises the requisite systems for future environmental 

reactivity.  

Many of the negative health outcomes associated with adversity have a pro-inflammatory 

phenotype (5,145). Additionally, adversity associated chronic stress has been linked with 

increases in white blood cell counts and low-grade inflammation, indicative of immune system 

dysregulation (5,12,146–155). This is unsurprising considering all lymphocytes have receptors 

that bind stress hormones released from both the SAM and HPA responses (i.e., epinephrine, 

norepinephrine, and cortisol), impacting a diverse array of cellular functions (156).  

Generally, the immune system has two arms, the innate (cellular Th1) and adaptive 

(humoral Th2) responses. The more evolutionarily-conserved innate response is the first line of 

defence, providing a broad response to pathogens, and is driven predominantly by natural killer 

(NK) cells, macrophages, dendritic cells and granulocytes. These innate immune cells have 

pattern recognition receptors (e.g., Toll-like receptors (TLRs)) that bind molecules common 

across many pathogens. The highly specialized adaptive response is activated by the innate arm 

and so is slower to initiate but is more specific, consisting of T and B lymphocytes. This system 

results in acquired immunity where antibodies are made specific to the target pathogen and 

memory cells are produced for faster subsequent responses. Based on a meta-analysis of over 

300 empirical articles investigating this relationship, different measures of stress had differential 

associations to the two main arms of the immune system. Acute stress resulted in upregulation of 

innate but downregulation of the adaptive response, whereas brief stress exposures had the 
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opposite effect, chronic stress resulted in the suppression of both responses, and subjective 

measures of stress had no impact at all (157).    

Innate immune function is especially important for chronic stress-induced immune 

dysregulation (12,120,151,158–161). Several proinflammatory biomarkers have been associated 

with stress, such as C-Reactive Protein (CRP) and the cytokines Tumor Necrosis Factor alpha 

(TNFα), IL-6 and IL-1β (162–166). There have also been several studies where exaggerated 

cytokine responses were seen from ex vivo stimulation of TLRs (151,167,168). Increases in 

inflammatory markers are one of several factors thought to contribute to allostatic load, a 

measure for general disease risk, which positively correlates with early life adversity (169–171). 

However, the molecular mechanisms underpinning the relationship between adversity and this 

proinflammatory phenotype are unknown. Due to the stability and environmental responsiveness 

of epigenetic mechanisms, investigating this as a potential mediator explaining how adversity 

could induce long-term changes to the genetic landscape, and subsequently the immune and 

stress response, is a promising research endeavor (12,120,172).   

 

1.6 Adversity associations with DNAm 

1.6.1 Interpersonal  

Our past relationships and interactions with the social environment are stored in memory 

(123,173–177). From an epigenetic perspective, these mental representations may reflect the 

adaptations to early caregiver relationships and social environments that ultimately result in 

differing phenotypes. There is a wealth of literature exhibiting reported epigenetic differences 

correlated with early life environments, termed social epigenetics. 

The clear, widespread effect of stress throughout all physiological systems makes it an 

accessible and unique candidate for understanding the epigenetics of social environment. Many 

adverse environments, both interpersonal, such as traumatic and abusive relationships with 

caregivers and peers, and societal, such as minority and socioeconomic status stress, can trigger 

these same underlying processes, as all are sources of aversive, potentially harmful uncertainty. 

It is then understandable why the most commonly researched gene in social epigenetics is 

NR3C1, the glucocorticoid receptor gene (178–180). Consistent DNAm changes have been 

found in exon 1F/17 of NR3C1 regarding parental stress, but were inconsistent in other types of 

stress (178).  
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Stress effects relate to a poor versus positive early caregiver relationship. An often-cited 

study focused on the relationship between maternal licking and grooming in rats with DNAm 

differences in the promoter region of NR3C1 (179). While the authors found that more licking 

and grooming by the mothers led to hypomethylation in the NR3C1 promoter and DNAm 

patterns in a broader surrounding area (180), this study has yet to be replicated and is met with 

some skepticism in the field (36). However, more recent work in mice has also found different 

biological reactions to maternal caregiving in the hippocampus, a region associated with both 

learning and reactions to stress, and the dorsal raphe nucleus (DRN), the brain center for 

serotonin production and distribution (181,182). In DRN specifically, Araki and colleagues found 

hypomethylation affecting GABBR which codes for the GABA(B) receptor, a common 

pharmacological target for depression and anxiety relief (181,183).  

Human studies have primarily focused on the DNAm of a few candidate genes of specific 

and special prominence in the research, namely BDNF (184–186), NR3C1 (36,178,187,188), 

SLC6A4 (189), and OXTR (186,190,191). All of the proteins these genes encode have many 

functions across neurodevelopment and stress. For example, BDNF codes for brain-derived 

neurotrophic factor, the canonical neuronal growth factor in the brain widely involved in the 

formation of any neuroarchitectural changes (185). Additionally, NR3C1 is the most widely 

researched gene in regard to fMRI and stress-causing environments, such as poor maternal care, 

in both the animal and human literature (36,178). One recent study found that increased maternal 

responsiveness and touch were correlated with hypomethylation in NR3C1 exon 1F in female 

children (187). This sex-dependent response has been replicated in other studies, finding the 

greatest DNAm differences amongst attachment styles in females (188). Additionally, across the 

sexes, attachment behavior patterns have been correlated to approximately 10% of global DNAm 

variability in a sample of at-risk children, suggesting biological responses to the sensitivity and 

consistency of the parental care environment (188).  

Another nuanced aspect of the caregiver relationship is soft touch, which is incredibly 

important in healthy, normative infant development (192). There were significant DNAm 

differences between children who received high amounts of soft touch and those who did not as 

infants. Additionally, infants who were more distressed, yet received lower amounts of touch, 

were epigenetically younger, possibly indicating a biological developmental delay (193). This is 

most likely due to the social buffering effects of both mental representations and human touch. 
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For example, holding the hand of a stranger can reduce both the subjective experience of pain 

and its neural signature, but holding the hand of a close relationship partner reduces pain in these 

areas to an even greater extent (194).  

Not all early relationships provide positive experiences. For example, both maternal and 

paternal stress during early life was correlated with adolescent differences in DNAm in humans 

(195). In rats, newborns exposed to a stress-abusive mother showed increased methylation in the 

promoter region and decreased expression of BDNF (196). This difference in BDNF levels for 

abused versus non-abused rats appears to persist through adulthood (197). In this same study, a 

different group of newborn rats was also exposed to positive caregiving mothers. Both the 

maltreatment and beneficial caregiving mothers initially caused an increase in BDNF mRNA 

levels in the hippocampus (197). Both experiences, regardless of valance, equitably guided the 

growth of new neuronal connections in the brain’s memory center. Adaptationally, negative 

relationships and social environments are just as powerful as positive social learning 

experiences.  

In addition to NR3C1, there is robust literature associating early-life adversity such as 

social, physical, or parental stressors, with epigenetic changes related to BDNF expression 

(198,199). These differences may correlate with a reduction in socioemotional learning and 

plasticity, and have shown an increased capacity for fear learning (200). Impacted learning has 

also been implicated in more specific associations than general stress, such as the several 

reported associations between trauma, abuse, and differences in epigenetic modifications 

(30,201–206), as well as associations specifically with posttraumatic stress disorder (207).  

Though there is a range of epigenetic findings in regards to early life adversity from both 

candidate gene approaches and EWAS approaches, overlapping genes associated with stress, 

pain, learning, and the immune system were common. For example, one study found immune 

cell differences and accelerated epigenetic age associated with lifetime PTSD severity (208). 

Another found the fear of parental deportation after the 2016 US presidential election associate 

with decreased epigenetic age amongst children of Latinx immigrants (209). Several EWAS and 

candidate gene analyses also found associations with various forms of childhood abuse and 

trauma, patterns which were detected in later life (205,210–212) and at times associated with 

psychiatric outcomes (213–216). These variables were also correlated with increased epigenetic 

age acceleration, itself associated with several negative health outcomes (217,218). While 



17 

 

increased epigenetic age acceleration is associated with negative outcomes in adults, what this 

means in children is still relatively unknown and so must be considered when interpreting these 

findings.  

It is possible that trauma and pain in early life lead to learning and adaptation to a harsher 

world that requires more vigilance instead of a conservative homeostasis, a molecular push 

toward fear conditioning instead of socioemotional development, and a greater sensitivity to pain 

in order to more quickly identify threats. Those who develop in positive, enriched environments, 

on the other hand, may thrive with reduced allosteric load and have resilience that seems 

especially prominent in stress coping and synaptic plasticity. Instead of being able to learn more 

and put their energy toward other endeavors, these adaptations in a world of agonizing 

uncertainty could be primed or activated by epigenetic modifications for the sole purpose of 

survival. A plausible model of chronic life stressors proposes a similar line of reasoning and 

theorizes with significant evidence that epigenetic modifications set into motion by the cascade 

of stress hormones both affect and prime a traumatized individual for accelerated aging and 

biological weathering (219). Supporting this hypothesis, a large number of sites used in DNAm 

epigenetic clocks are located within glucocorticoid response elements (220).  

However, though it may not undo the harmful developmental environment, social 

support, especially touch, has been associated with stress buffering in many studies 

(141,194,221,222). This is most likely through the dual mechanisms of affect regulation through 

a social buffer so as to not trigger the stress hormone cascade, and through the mu-opiates that 

are released in social reward reducing affective motivational pain in the nociceptive pathways 

and the intensity of perceived threats (223). This may contribute to the difficulty in reproducing 

many social epigenetic findings, as adverse effects are often accounted for, but buffering and 

resiliency effects are not.  

Ultimately, the research indicates that having a healthy, supportive early social 

environment leads to positive epigenetic, neurological, and psychological outcomes. This is most 

clear when examining the literature on the benefits of enriched environments both in buffering 

stress and in rescuing memory formation. In women, for example, methylation within the NR3C1 

promoter had a dose-dependent relationship with childhood abuse where the effect was 

attenuated with early life emotional support (224). Additionally, having a supportive family 

environment during development protected against harmful cellular and epigenetic aging due to 
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experiences of racial prejudice. However, individuals without a supportive family environment 

did experience biological weathering (225).  

 

1.6.2 Societal  

Both physical and social environments can affect our epigenetic modifications (226). 

There is evidence that chronic stress which accompanies being in a reduced societal position, 

whether through racism or classism, as well as the stress of deprivation, associates with 

epigenetic change. Most likely due to many social, physical, and biological factors encompassed 

in SES, there are a plethora of associations between SES and epigenetic changes. As SES is 

societally constructed, it is difficult to create a valid animal model with which to investigate 

epigenetic modifications; therefore, the majority of epigenetic research related to SES is focused 

on DNAm associations in humans. 

Low SES, especially during youth, has a significant and robust association with age 

acceleration and DNAm sites connected to immune function, development, and age-related 

diseases (159,227–234). Even amongst low-SES youth, greater self-control associates with 

improved socioemotional functioning and general success, supporting the idea that increased 

allosteric load may contribute to worse health outcomes amongst the disadvantaged (235).  

The literature does appear to indicate that SES associated chronic stress in early life has a 

greater impact on DNAm patterns than those that occur in later life, but more research in this 

area is needed to make a definitive statement (227,231,236). Work on cumulative stress, as 

opposed to early life or later life considered separately, also indicates an association with 

accelerated epigenetic aging (220). If this stronger association with stress and DNAm at younger 

ages is robust, it may be due to differences in the immune system’s environmental sensitivity 

during early development (237). While it is true that a recent, large study in humans did not 

replicate findings from smaller studies that reported correlations between DNAm patterns and 

chronic social stress (238), this may be due to differences in sample size, population, and 

consistency amongst ecologically valid measures of the type, context, and experience of stress. 

More replications with standardized measures and large sample sizes are needed to make any 

definitive statements about detectable DNAm differences amongst those who have experienced 

chronic stress.  
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Another aspect of the relationship between SES and epigenetic modifications is that 

lower SES correlates with both smoking and drinking behavior (239,240). Not surprisingly, 

social stress also triggers the urge to smoke and drink (241,242). This relationship of SES with 

smoking and drinking, possibly as a way to deal with stress, may exacerbate epigenetic 

disparities due to the strong, reproducible effects of smoking and drinking on DNAm, especially 

on sites related to age, immune, and cardiovascular function (243–249).   

In addition to smoking and drinking, it is important in every DNAm investigation to 

account for cell type proportions, as these are the primary drivers of variation, but this is 

especially true in explorations of SES due to the significant immune system effects of the 

chronic stress system. For example, one study found that leukocyte composition of peripheral 

blood covaried with patterns of DNAm at many sites and DNAm was strongly associated with 

the monocyte inflammatory response (231). Monocytes also epigenetically aged faster in those 

exposed to low SES in early life (227). These likely stress-related immune responses may 

contribute, at least in part, to the association of SES, especially in early life, with epigenetic age 

acceleration and aging-related disease risk, even controlling for related factors such as smoking 

and drinking (227,233).  

SES can also greatly impact the nutrition available to an individual. The wealth of 

literature on the epigenetics of nutrition, especially prenatal nutrition, pales only in comparison 

to epigenetic work in cancer (250). The importance of a balanced and healthy diet, from 

conception and throughout life, on epigenetic modifications is an incredibly robust finding, as 

are similar results for morbidity and mortality (250–256). Along similar lines, the structure of a 

socially administrated physical environment can also be linked to differences in children’s 

physical activity (257–260). Physical activity is often linked to morbidity and mortality, as well 

as epigenetic modifications, learning, and aging (261–265). Another example is physical 

proximity to hazardous sites and pollution, which tend to be more prevalent in low-income or 

minority neighborhoods (266–268). The effects of exposure to air pollution are well evidenced in 

both morbidity and epigenetics research (29,269–279). This is most likely due to immune 

responses to breathing in toxic exogenous factors (279).  

When Simons et al. (2016) investigated the main environmental driver of epigenetic age 

acceleration in a low SES sample, they found that it was the stress of financial insecurity that 

drove the SES and accelerated aging association, providing further evidence for the link between 
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early life stress, immune response, epigenetic change, and health outcomes (12). However, 

similar to other early exposures to stress, low SES effects on immune response can be buffered 

though social support in the form of warm, positive caregiving (229). Our epigenetic 

mechanisms are modified by, and our psychological mechanisms learn from, our social 

environments. 

 

1.7 Dissertation overview 

This dissertation aims to obtain an overall understanding of how the social environment, 

in the context of interpersonal and societal adversity, associates with interindividual epigenetic 

differences in a healthy population. As outlined in Section 1.1, the empirical data for the studies 

comprising this thesis will be presented as three separate chapters. I performed three studies to 

assess adversity-associated DNAm by a) investigating multiple measures of SES, b) determining 

how inflammatory markers play a role and c) examining these associations in gametes. In 

Chapter 2, I investigated how DNAm patterns varied with educational, household asset and self-

reported measures of economic standing in both childhood and adulthood in the whole blood of 

elderly individuals. Next, in Chapter 3, I determined if an inflammatory marker, serum IL-6, 

was related to SES-associated DNAm sites in purified monocytes. Finally, in Chapter 4, I 

investigated how childhood abuse associated with the DNAm profiles of adult spermatozoa 

samples. Overall, these findings provide evidence that adversity experienced in various contexts 

is associated with DNAm throughout life in various tissues, in addition to highlighting avenues 

of future research.  
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2  Multiple components of socioeconomic status measured in older 

adulthood and childhood differentially associated with DNA methylation in 
older adults 
 

2.1 Background and rationale 

Low socioeconomic status (SES) has been consistently associated with increased risk of 

mortality (280) and multiple diseases such as diabetes (281), cardiovascular disease (282), and 

depression (6). Commonalities amongst the health risks associated with SES, such as stress and 

immune dysregulation, are being leveraged to focus research. Pro-inflammatory cytokines, 

predominantly C-reactive protein (CRP) (168,283–287) and interleukin-6 (IL-6), 

(167,285,288,289) predict several of these negative health outcomes (290–292). These 

inflammatory responses are also upregulated in individuals with adverse health behaviours such 

as smoking (293) and obesity, (294) which are commonly seen within low SES populations. In a 

meta-analysis of studies observing the association between either CRP or IL-6 and SES found an 

overall effect of cytokine increases with lower educational and income levels (295). 

 Dysregulation of stress pathways involving the sympathetic nervous system (SNS) and 

hypothalamic-pituitary-adrenal (HPA) axis have also been implicated in relation to SES and 

health disparities (296,297). The negative effects of lower SES can result in increasing an 

individual’s allostatic load, the wear and tear of body systems exposed to chronic stress, 

culminating in multi-system dysregulation (298–300). Increased levels of SNS hormones 

epinephrine and norepinephrine (301–307) and the HPA-axis hormone cortisol (297,308–311) 

are also negatively correlated with SES (312).  

Though SES negatively correlates to several inflammatory and stress biomarkers, the 

underlying mechanisms are not fully understood. The role of epigenetics, the mitotic inheritance 

of molecular markers that can influence genetic expression without altering the genetic sequence, 

have been investigated as a potential moderator of these relationships (313). The epigenetic mark 

DNA methylation (DNAm), a methyl group covalently bound to a cytosine base pair typically as 

a cytosine-guanidine dinucleotide (CpG), has been interrogated as a potential link due to 

evidence of this mark being both environmentally responsive and stable, making it a suitable 

biomarker to help unravel the impact of SES throughout life (15,94,313,314).  
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DNAm associations to several SES measures across the lifespan have been reported, with 

differences commonly found in inflammatory and stress-related genes. Prenatal SES was 

associated with DNAm differences measured at birth and persisting throughout childhood (315). 

Childhood DNAm in genes related to immune and developmental pathways has been associated 

with several measures of SES (228). Amongst adolescents, low early life SES was associated 

with poorer health and DNAm differences in signaling regulation genes, with these effects being 

mediated by protective parenting (316). A candidate approach investigating CpGs in 

inflammatory genes found associations with SES amongst a cohort of young adults, where a 

subset of sites could also predict plasma cytokine IL-6 levels (226). An epigenome-wide 

association study (EWAS) conducted in this same cohort revealed additional SES-associated 

CpGs enriched in genes involved in immune function and nervous system development (159). 

Amongst adults, DNAm was associated to childhood SES independent of adulthood SES, 

highlighting the importance of taking into account the timing of the exposure (231). Finally, 

amongst an elderly cohort, a candidate study showed DNAm in stress and inflammatory genes to 

be associated with SES (317). Though DNAm associations with SES at various life stages have 

been found, there have been replication issues in the field which are likely a result, in large part, 

due to how SES is defined, when it is measured, and how the variables are constructed (296,318–

322). 

Importantly, when in life these socioeconomic disparities are experienced can result in 

varying trajectories of health outcomes. For example, minorities who grew up in poverty but 

attended prestigious universities in adulthood had better mental health outcomes but worse 

metabolic health than their childhood peers who remained in poverty. These seemingly 

contradictory findings imply a superficial, skin-deep, resiliency exemplifying the complexity 

amongst the pathways linking low SES and health (323). This may be partially explained by the 

Developmental Origins of Health and Disease (DOHaD) paradigm which posits the existence of 

sensitive windows during early life development where adverse exposures result in a greater 

impact to health outcomes than if exposures occurred at other life stages (18,324). This has been 

reflected in several social epigenetics studies investigating SES occurring at different life stages 

reporting differential DNAm associations (231,317,325). However, timing is not the only factor 

to consider when attempting to understand SES and health associations: how SES is measured, 

and the societal context in which it is investigated, are also integral. 
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SES can be generally defined as a measure of an individual’s economic standing in 

society, which makes it multifactorial, allowing it to be measured through multiple aspects (326). 

Each SES subcategory encompasses features that can have differing impacts on individuals 

(326). SES research investigates several categories of SES components, including subjective 

(e.g., self-report), objective (e.g., education) and composite measures (326,327). Objective 

measures of SES allow for more comparable findings across studies but fail to capture other 

aspects of an individuals’ subjective lived experience like self-report measures do (326,328). 

Both subjective and objective measures of SES, while assessing differing characteristics, have 

been shown to impact health (326,328). While composite SES measures can help make different 

populations more comparable and represent several SES components in a single variable, this 

approach obscures nuances captured with more specific measures (326). Variability in 

measurements may be one reason for the SES EWAS replication problem, as there is no singular, 

unifying measure used in this epigenetic field (318). However, even with a unifying measure, not 

all of these components are comparable to one another in different populations, as all are 

dependent on societal context (326). 

Most studies investigating SES and health have been limited to predominantly Caucasian 

populations in developed countries. It is known that SES gradients of health, while in general 

negatively associated with morbidity and mortality, are not in every society. For example, Latin 

American populations seem to display reversed SES gradients for a subset of morbidity and 

mortality measures, such as life expectancy and self-rated health (329,330). This phenomenon is 

known as the Hispanic paradox, where Hispanic individuals appear to have smaller social 

disparities in health in comparison to non-Hispanic Whites. There is also evidence this buffering 

against the potential health effects of social adversity is even further reduced amongst the elderly 

(331,332), highlighting the complexity of SES and health associations.  

Given these considerations, intertwined with the multifactorial variable of SES and 

limitations discussed above, I aimed to investigate how DNAm associated with several 

components of SES (i.e., self-report, education, wealth, composite) in retrospective child and 

contemporary older adulthood measures within an underrepresented population amongst SES 

research to date: Costa Rican individuals aged 60-106 years (n = 482). Additionally, I 

interrogated these associations by introducing several inflammatory (C-reactive protein (CRP)) 

and stress (epinephrine, norepinephrine, cortisol, dehydroepiandrosterone sulfate (DHEAS)) 
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biomarkers and lifestyle factors (body mass index (BMI), drinking, smoking) known to relate to 

SES in order to provide insight on the larger mechanisms at play. By comparing DNAm 

associations and contributions across temporal and measurement aspects of SES, I aimed to 

better understand the similarities and differences of these factors as social determinants of health. 

 

2.2  Materials and Methods 

2.2.1 Costa Rican Longevity and Healthy Aging Study (CRELES) cohort  

Participants in this study were sub-sampled from the CRELES cohort which consists of 

2,827 participants aged 60 or older from across Costa Rica in an effort to investigate factors 

driving aging and longevity (333). This study sample consists of 482 individuals with on over-

representation of those ≥ 95 years of age. Longitudinal data used for this study was taken at 

either wave 1 or 2 to correspond with when DNAm was measured. Demographics of sex and age 

were obtained as control variables. Summary statistics of all variables investigated are in Table 

2.1. 

 

2.2.2 Socioeconomic status (SES) measures 

Seven SES measures were selected to incorporate several sub-categories and represented 

two life stages of exposure. Summary statistics of all variables investigated are in Table 2.1.  

1. SES PC: The first principal component (PC) of a composite household SES variable 

produced by incorporating a participant’s years of education, household assets, joint 

income and housing value, as previously reported (334). This variable is significantly 

associated with all other SES measures (Supplementary Figure 2.1). 

2. Older adulthood assets: A scale ranging from 0 – 100 based on a measure of 12 

household assets as previously reported (330). 

3. Education years: Educational attainment based on the number of years approved 

ranging from 0 – 17. 

4. Older adulthood SES self-report: A 5-point scale of self-rated economic wellbeing, 

described in detail elsewhere (335). 

5. Childhood assets: A yes/no response to the questions “During the first 15 years of 

your life, did you wear shoes regularly?”, as previously investigated (336,337). 
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6. Maternal education: A measure of if the participants’ mother had any education or 

not. 

7. Childhood SES self-report: A yes/no response to the question “During the first 15 

years of your life, did your family have problems or economic hardships that did not 

allow you to eat regularly, dress adequately or get necessary medical care?”. 

 

2.2.3 Biomarker and lifestyle measures 

Biomarkers were either obtained from overnight urine (cortisol, epinephrine, 

norepinephrine, DHEAS) or from early morning (7-9 am) fasting blood collected by 

venipuncture (CRP, genomics). Lifestyle measures (BMI, drinking and smoking status) and 

biomarker collection has been reported in detail elsewhere (333,336–338). Genomic DNA, used 

for DNAm and genotyping arrays was extracted at the University of Costa Rica using previously 

reported methods (337,339). Summary statistics of all variables investigated are in Table 2.1. 

 

2.2.4 DNA methylation array 

Genomic DNA was isolated from the whole blood cell fraction by performing cell lysis 

with Proteinase K and using phenol-chloroform for extraction. DNA quality was assessed using 

the absorption ratio A260/A280. Isolated genomic DNA was bisulfite converted using the EZ-96 

DNA Methylation kits (Zymo Research, Irvine, CA) and then run on the Infinium 

MethylationEPIC (EPIC) BeadChips (Illumina) to interrogate methylation at 865,918 CpG sites 

using the standard protocol.  

 

2.2.5 Genotyping array 

Genotyping data were determined at 618,540 single nucleotide polymorphisms (SNP) 

using the Infinium Global Screening Array (GSA) BeadChips according to the Illumina’s 

standard protocol (Illumina).  

 

2.2.6 Statistical analysis 

All statistical analyses were performed in RStudio (version 1.1.456) using the R 

computing language (version 3.6.1) unless otherwise stated.  
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2.2.6.1 Genotyping pre-processing and normalization 

GenomeStudio 2.0 Genotyping software was used to transform the raw intensity files into 

clusters, and subsequently genotype calls, by producing cohort-specific clustering files and 

annotating the SNPs using the Illumina produced manifest GSA-24v1-0_C1 (Version 1 A2, 

Illumina). Summary of all genotyping quality control steps are summarized in Supplementary 

Table 2.1. As suggested by Illumina, prior to clustering non-autosomal probes and outlier 

samples were removed so as to not influence genotype calls. Outlier samples were removed if the 

call rate ≤ 0.97 or if the 10th percentile of the GenomeStudio generated clustering score (p10 

GenCall Score) across all genotypes was ≤ 0.5. Samples which did not match across EPIC and 

GSA array platforms using six overlapping SNP probes and performing Pearson’s correlation on 

comparable DNAm beta and genotyping B Allele frequency values for each sample (r2 ≤ 0.8) 

were removed. 

 Several criteria suggested by Illumina were used to remove poorly performing probes. 

Probes that did not cluster distinctly (Cluster Sep ≤ 0.45), had low heterozygote cluster 

intensities (AB R Mean ≤ 0.4), were too close to a homozygote cluster (AB T Mean ≥ 0.8 or ≤ 

0.2), had homozygote calls clustered either too far from the axis (AA Freq = 1 & AA T Mean ≥ 

0.2) or were too spread out (AA Freq = 1 & AA T Dev ≥ 0.04) and incorrectly classified as 

heterozygotes (AB Freq = 0 & minor allele frequency (MAF) > 0) were removed from the data 

set. 

Further SNPs were removed based on standard methods commonly used in the field 

(340). SNPs in heterozygote excess relative to Hardy-Weinberg Equilibrium (HWE) 

expectations (Het Excess ≤ -0.3 or ≥ 0.2) or had a minor allele frequency (MAF) ≤ 1% were 

removed. PLINK (version 1.07) was used to remove redundant SNPs that are highly correlated 

using linkage disequilibrium (LD) calculations with the -indep function (size = 50kB, window = 

5 SNPs, variance inflation factor (VIF) = 2) (341). SNPs pre-determined to be in high-range LD, 

within an 8Mb region spanning the extended MHC region on chromosome (Chr.) 6 or within a 

4Mb inversion on Chr. 8 were removed (340,342), resulting in 420,483 SNPs remaining for 

downstream analysis.  
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2.2.6.2 DNAm pre-processing and normalization 

Raw IDAT files were imported to RStudio where beta values (ranging 0 – 1, representing 

the proportion of methylated DNA molecules in the sample) were produced from the intensity 

measures using the minfi package (343). Background subtraction, color correction and between-

array normalization were performed using preprocessFunnorm (minfi) (343,344).  

Outlier samples were removed if detected by any of the following three methods: (1) 

detectOutlier (minfi) - calculates if a sample mean is too far from the cohort mean (345). (2) 

outlyx (wateRmelon) - utilizes principal component analysis (PCA) to observe the distance and 

scatter of a sample from the cohort average (100). (3) locfdr (locfdr) - applies PCA to assign a z-

score for each sample relative to the cohort (false discovery rate (FDR) ≤ 0.2) (80,346,347). Sex 

chromosome probes were used to determine sample sex mismatches by comparing the reported 

sex with DNAm predicted sex, performed using k-means clustering. Technical replicate samples 

and samples of related individuals determined by genetic pre-processing previously described 

were removed prior to analysis.  

 Poor performing probes defined as having a low detection p-value (≤ 1x10-16) or fewer 

than three reads or an NA in more than 1% of samples were removed. Probes measuring SNPs or 

sex chromosomes (348) were removed. Poorly designed probes, defined as measuring a site pre-

determined to contain a SNP (349) with a MAF ≥ 1% or predicted to non-specifically bind 

(99,348) to other genomic regions were removed. 

 Technical variation resulting from batch effects during the array run (plate, chip, chip 

position) were removed exploiting empirical Bayes methods using the ComBat function (SVA) 

(350,351). Invariable probes defined as having ≤ 5% beta value range between the 5th and 95th 

percentile across individuals were removed, resulting in 396,798 CpGs evaluated amongst all 

individuals (Supplementary Figure 2.2). 

 

2.2.6.3 Determination of predicted genetic ancestry principal components 

Relatedness was investigated using identity-by-descent (IBD) to ensure the independence 

assumptions for population stratification analysis was met. IBD was calculated within the cohort 

using the -genome function (Plink version 1.07) and one of the related pair of samples with 

PI_HAT ≥ 0.1875 were removed (352). To reduce noise, SNPs with a MAF ≤ 5% were removed 

prior to performing PCA using pca (PCAtools). Horn’s analysis was used to determine how 
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many PCs to retain (n = 2) using the paran function (MASS) (353). Participants were ascribed 

the rotated PC1 and PC2 loadings to represent and control for genetic ancestry differences in 

subsequent analyses. 

 

2.2.6.4 Estimation of whole blood cell-type proportions 

Inter-individual differences in cell-type proportions found in the whole blood of 

participants were predicted using the DNAm data. Using reference methylation profiles from 

FACS sorted whole blood data (354), the Houseman method was applied (64) while 

incorporating the IDOL probes and adjustments developed by Koestler et al. (2016). These 

predicted proportions consisting of CD8 T cells, CD4 T cells, natural killer cells, B cells, 

monocytes and neutrophils, were adjusted for in downstream analyses. 

 

2.2.6.5 Principal components analysis of DNAm 

To assess any relationship between the DNAm variation and variables of interest, PCA 

was conducted on all measured DNAm sites (n = 396,798) using the prcomp function (stats). 

PCA loadings attributable to samples were associated with variables of interest using either 

Pearson’s correlation or an ANOVA test where appropriate. Resultant p-values were multiple-

test corrected using the Benjamini-Hochberg procedure. 

 

2.2.6.6 SES associations with DNAm 

EWASs were performed by using robust linear regression on each CpG site for the seven 

SES measures using the rlm function (MASS) (353). M-estimation was performed with Huber 

weighting. The model was adjusted for age, sex, genetic ancestry PCs, and predicted cell type 

proportions. Biological effect sizes (Δβ) were calculated by taking the difference between the 

means of the highest and lowest category for a categorical variable or by taking the beta 

coefficient of a linear model (DNAm ~ SES) and multiplying that by the range of the variable 

between the 5th and 95th percentile. Top sites were defined as the 1,000 CpGs with the lowest p-

values for a given model. 
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2.2.6.7 Permutation analysis 

To ensure results of top site analyses were not due to chance, for each SES variable, 500 

randomized permutations were run, where SES values were randomly shuffled across samples, 

the model re-run and the top sites pulled. Permutation p-values were calculated by dividing the 

number of instances a result of equal or greater measures was found amongst the permutations 

by the total number of permutations.  

 

2.2.6.8 Global distributions and p-value comparisons resulting from SES EWASs 

The distribution of the resultant p-values obtained from the various SES EWASs were 

plotted against the random permutation p-value distributions. The true distributions were deemed 

significant if the number of CpGs in a given EWAS with a p-value ≤ 1x10-6 was greater than one 

would expect by chance using permutation results (p-value ≤ 0.05). 

 

2.2.6.9 Comparison of SES associations with DNAm 

The 1,000 DNAm sites with the lowest p-values for a given SES variable association 

were compared and overlapped with the others. Where overlapping did occur, permutation 

analysis was used to ensure the number of overlapping sites detected was not by chance (p-value 

≤ 0.05). 

 

2.2.6.10 Genomic feature enrichment of SES associated DNAm sites 

Three sets of genomic features (genomic, CpG Island region, chromatin state) were selected 

to investigate whether there was enrichment of top CpGs in a given feature. The background was 

produced by subsetting the Illumina annotation file down to the 396,798 CpGs analysed, fold 

enrichment was calculated for each feature which was then compared to the fold enrichment 

found by chance using permutation analysis (p-value ≤ 0.05). Multiple testing was performed on 

the p-values for the number of features tested in a given set using the Benjamini-Hochberg 

procedure and reporting enrichments with FDR ≤ 0.2.   

1 Genomic region: To determine enrichment for particular genomic regions annotation 

obtained from the Illumina manifest was used. The defined genomic regions were 

obtained from the UCSC database (355,356) using human genome build GRCh37/hg19, 

variable UCSC_RefGene_Group.  
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2 CpG Island region: This same procedure was performed for CpG site locations within 

pre-defined CpG Island regions (357) using the UCSC (355,356) variable 

Relation_to_UCSC_CpG_Island.  

3 Chromatin state: Chromatin state was assessed by using the NIH RoadMap Epigenomics 

Consortium primary mononuclear data (358) and the 18-state ChromeHMM algorithm 

(359) for determining various active and repressive chromatin states based on the 

combinations of six histone modifications (H3K27ac, H3K4me3, H3K4me1, H3K36me3, 

H3K27me3 and H3K9me3).  

 

2.2.6.11 Association of SES measures with biomarkers and lifestyle measures 

To determine if various inflammatory (CRP) and stress (cortisol, epinephrine, 

norepinephrine, DHEAS) biomarkers or lifestyle behaviours (smoking, drinking, BMI) were 

associated with any of the SES measures, Pearson’s correlations were performed where 

significance was determined if the p-value ≤ 0.05 and |r2 ≥ 0.1|. 

 

2.2.6.12 Biomarker and lifestyle behaviour contribution to SES and DNAm associations 

To determine if the SES-associated DNAm signal was impacted by the various 

biomarkers and lifestyle behaviours, a contribution sensitivity analysis was performed. First the 

beta coefficient of SES from the base model was calculated: 

CpG ~ βbase SES + Genetic Ancestry + Predicted Cell Proportions + Age + Sex 

The beta coefficient of SES from the same model was then adjusted for a given biomarker or 

lifestyle measure: 

CpG ~ βadj SES + Biomarker + Genetic Ancestry + Predicted Cell Proportions + Age + Sex 

The following contribution calculation was conducted to find the percentage of change to the 

effect made when incorporating a given biomarker or lifestyle measure into the base model: 

% Contribution = 100 [(#_%&'(		 − 	#_&+,)/#_%&'(	] 
 The CpG and SES associations where ≥ 10% effect size was contributed by a given 

biomarker or lifestyle variable were counted and a permutation analysis performed to determine 

if the number of sites with a contribution of this size was more than expected by chance (p-value 

≤ 0.05). 
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2.3 Results 

2.3.1 All SES measures were associated with global DNAm. 

PCA was performed on the variable beta values of the DNAm data where the resultant 

PCs were then associated with variables of interest. All SES variables are associated with the 

first 15 PCs (Table 2.1, Figure 2.1), suggesting a global DNAm signal attributable in part to SES. 

There is a distinct trend of the self-report SES measure in both older adult- and childhood not 

being as strongly associated with as many PCs as other SES measures. 

 
Table 2.1   CRELES demographics, biomarker and behaviour summary statistics.  
DHEAS – Dehydroepiandrosterone sulfate. 

 N Percent Mean (SD) Median [Min, Max] 
Age (years) 482  79.3 (10.8) 79 [61, 107] 

% Female 482 56.8   

% Nicoyan 482 17.8   
% Genotyped 465 96.4   

SES PC 481  -0.81 (1.20) -0.95 [-3.57, 6.27] 

Older Adulthood Assets 482  66.76 (18.32) 67 [0, 100] 

Education Years 482  3.79 (3.74) 3 [0, 17] 

Older Adulthood SES Self-Report 482  2.41 (0.90) 2 [1, 5] 

Childhood Assets: % Low SES 461 26.0   

Maternal Education: % Low SES 461 39.0   

Childhood SES Self-Report: % Low SES 461 58.1   

Cortisol (ug/g) 217  27.26 (25.52) 22.32 [3.20, 171.73] 

C-reactive Protein (mg/l) 470  6.76 (8.55) 3.48 [0.13, 49.38] 

Epinephrine (ug/g) 461  8.16 (8.79) 4.99 [0.73, 118.80] 

Norepinephrine (ug/g) 461  65.08 (34.59) 69.67 [4.94, 438.68] 

DHEAS (ug/dl) 474  44.38 (40.53) 33.45 [10.00, 293.00] 

Smoking: % Smoke Ever 480 43.1   

Drinking 461  3.89 (1.30) 4.00 [1.00, 5.00] 

Body Mass Index 474  25.36 (5.91) 24.83 [11.10, 69.45] 
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Figure 2.1   All SES measures were associated with at least one of the first 15 PCs resulting from PCA of the 
DNAm data. 
PCA was performed on the variable DNAm beta values (n = 396,798). Loadings assigned to individuals for each PC 
was then associated with variables of interest, where Pearson’s correlation was used for continuous variables and 
ANOVAs for categorical. All p-values were corrected for multiple testing using the Benjamini-Hochberg procedure. 
The yellow box highlights the SES measures. Variance of the DNAm data accounted for in each PC depicted in the 
bar graph above the heat map.  
 

2.3.2 Current life SES measures showed stronger associations with DNAm than 

retrospective measures taken in childhood. 

Robust linear regression was performed for each of the variable CpG sites with each of 

the SES measures where age, sex, genetic ancestry and predicted cell type proportions were all 

adjusted for. The p-value distributions for each of the seven EWASs showed the general trend 

where childhood SES measures have a flatter distribution in comparison to the older adulthood 

measures and SES PC, which have a right skew suggestive of potential signal (Figure 2.2). To 

determine if any of these p-value distributions were skewed more than one would expect by 

chance, randomized permutation analysis was performed where the given SES variable was 

shuffled and the robust linear regression re-run 500 times. The number of sites which resulted in 

a p-value ≤ 1x10-6 was counted and compared to the number of sites at the same threshold 
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expected by chance. The p-value distributions from the EWASs of two measures, education 

years and older adulthood assets, were skewed more than one would expect by chance 

(Supplementary Figure 2.3). Delta beta values were calculated by finding the change in beta 

measures between individuals with highest and lowest SES measures for each CpG site. The 

distributions of these delta beta values also displayed a similar trend where large differences in 

the beta values were observed predominantly in the older adulthood SES measures (Figure 2.2).  

Figure 2.2   Older adulthood SES measures had significantly stronger associations with DNAm than in 
childhood. 
The top panel is a stacked histogram of the p-value distributions for each SES variable resulting from a robust linear 
regression (n = 396,798) where sex, age, genetic ancestry and predicted cell type proportions were adjusted for. 
Below is a stacked histogram of the delta beta values which represent the change in methylation at a given site 
across the range of the SES variable measured. 
 

2.3.3 There was significant overlap between the most significant CpG sites associated 

with multiple SES measures. 

In order to compare the DNAm signal associated with each SES measure, top sites (1,000 

CpGs with the lowest p-values) were interrogated. Initially, these sites were compared between 

all the SES variables and the number of overlapping sites was tested for the probability of 

obtaining this value by chance using permutation analysis. The number of sites obtained from all 



34 

 

overlaps of three SES measures was statistically significant based on 500 permutations (p-value 

≤ 0.05) along with several of the overlaps observed between two categories (Figure 2.3). Most 

(13/15) of the significant overlaps contained at least one older adulthood SES variable, with the 

overlap between childhood assets and maternal education being the only significant set 

containing childhood measures alone. 

 
Figure 2.3 Upset plot of top 1,000 CpG sites displaying several significant overlaps across measures of SES 
throughout the life course. 
This upset plot, depicting a simplified version of multiple Venn diagrams, shows the amount of overlap of the top 
thousand sites across all of the SES measures. Row color signifies SES PC composite (dark purple), older adulthood 
measures (green) and childhood measures (pink). The overlaps that are coloured represent those which are higher 
than would be expected by chance based on 500 random permutations (p-value ≤ 0.05). Significant overlaps are 
coloured based on similarity in SES category (green = mixed, purple = home assets, red = education, blue = self-
report measures, grey = non-significant overlaps). 
 
 
2.3.4 There was significant enrichment for the genomic location and chromatin 

enrichment of the top CpG sites associated with several SES measures. 

The CpG sites most associated with SES were interrogated on their location based on 

genomic region, CpG island and predicted chromatin states. Fold enrichment was calculated by 

taking the number of SES associated sites located in a given genomic feature and dividing it by 

the number of background sites located in the same feature. The background used was the set of 

CpG sites investigated for the analysis. Whether the enrichment itself was significant was 

determined by permutation analysis. There were some genomic regions that were significantly 

enriched amongst sites associated with older adult and childhood assets measures (Figure 



35 

 

2.4(A)). Moderately significant enrichment was also detected in CpG sites associated with 

educational years and maternal education. Interestingly, no significant enrichment was found in 

CpGs associated with either self-report measure or the SES PC composite. 

Enrichment within the north shelf regions of CpG islands was found amongst CpGs 

associated with older adult and childhood assets and the SES PC measure (Figure 2.4(B)). CpG 

sites located in CpG island shelf regions were generally reported to be tissue specific, perhaps 

reflecting differential proportions of cell sub-types not accounted for in the analysis (357,360). 

No CpG island enrichment was found in any education or self-report measures. Modest 

enrichment of CpGs associated with older adulthood assets was found in CpG islands 

themselves. 

Amongst predicted chromatin states measured in mononuclear cells from the NIH 

RoadMap Epigenomics Consortium, significant depletion of CpGs associated with older 

adulthood assets was found in the zinc finger (ZNF) genes and repeats state in addition to modest 

depletion in heterochromatin and enrichment in bivalent transcription start sites (TSS) and 

enhancers (Figure 2.4(C)).  This represents an enrichment of CpGs associated with older 

adulthood assets being located in regions predicted to be poised for expression and depleted in 

genomic regions typically silenced. There was also moderate enrichment in predicted TSSs and 

enhancers amongst all other SES measures except childhood assets.  
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Figure 2.4 Genomic feature enrichment for top CpGs associated with each SES variable. 
The number of top sites which were in a given region was compared with annotation background of the array to obtain a fold change and then compared with 500 
permutations to determine if the enrichment or depletion was greater or less than by chance (*p-value ≤ 0.05, **FDR ≤ 0.2). (A) Enrichment for a genomic 
region a given CpG site was located in, if it was assigned to a gene. TSS1500 – 200-1,500 bases upstream of the transcription start site (TSS), TSS200 – 0-200 
bases upstream of the TSS, 5’UTR – within the 5’ untranslated region (UTR) between the TSS and ATG start site, 1stExon – within the first exon, ExonBnd – 
exon boundaries, Body – between the ATG and stop codon irrespective of other genomic elements, 3’UTR – between the stop codon and poly A signal. (B) 
Enrichment for CpG island regions a given CpG site was located in, if it was assigned to a CpG island. (C) Enrichment for SES associated CpG sites to be 
located in various chromatin states measured from NIH RoadMap Epigenomics Consortium mononuclear cells using ChromHMM methods. 
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2.3.5 Each SES measure was significantly associated with at least one biomarker or 
health lifestyle measure. 

Associations were calculated between each SES variable and the biomarkers and lifestyle 

measures of interest using Pearson’s correlation where significance is assessed if the p-value ≤ 

0.05 and the |r2| ≥ 0.1. CRP, cortisol, epinephrine and norepinephrine were not significantly 

associated with any SES measure (Supplementary Table 2.2). DHEAS was negatively associated 

with both childhood assets and SES self-report. Smoking was significantly associated with older 

adulthood SES self-report and childhood assets, drinking was associated with both education 

measures and BMI was associated with both asset measures and the SES PC.  

 

2.3.6 Drinking and multiple stress biomarkers significantly contributed to the 
distribution of effect sizes amongst the most significant CpG sites associated with several 
SES measures. 

Contribution analysis was performed to determine how much of the effect seen in the 

relationship between SES and DNAm was attributable to inflammatory and stress biomarkers 

and lifestyle measures hypothesized to also relate to both variables. This was done by finding the 

change in the beta coefficient from the base model with that of the base model adjusted for a 

given covariate of interest. Comparing the overall distributions of all beta coefficients, 

significant shifts in the distribution were reported in the models of both education measures and 

older adulthood SES self-report when adjusted for cortisol (Figure 2.5). Additionally, the 

distributions of beta coefficients for the education years model were also significantly different 

when adjusting for epinephrine, norepinephrine and drinking status. Interestingly, when 

adjusting for cortisol the coefficient distribution was widened in the education years model but 

narrowed in the older adulthood SES self-report model, suggesting that cortisol levels were 

confounding for the former and correlated with the latter’s associations with DNAm.  

 

 

 

 

 



39 

 

 

 
 
 
 
 

Beta coefficients from the base linear regression model used to find SES associated CpG sites were compared to the 
SES coefficients when the model was adjusted for several inflammatory and stress biomarkers in addition to several 
lifestyle factors known to be associated with SES. Significance was determined by performing 500 random 
permutations. *p-value ≤ 0.05 for particular covariate. DHEAS – dehydroepiandrosterone sulphate, BMI – body 
mass index. 
 
 
 
 
 
 
 
 
 
 

Figure 2.5 Global distributions of SES effect sizes from regression models adjusted for several biomarkers 
and health behaviours. 
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2.3.7 Childhood SES associated CpGs are influenced by biomarkers and lifestyle factors 
while older adulthood SES CpGs are not. 

The number of top CpGs most associated to a given SES variable was analyzed in terms 

of the proportion of relationships for which the effects were explained by 10% or more with a 

given biomarker or lifestyle measure. Significance was attributed to this proportion by using 

permutation analysis (p-value ≤ 0.05). There was significant enrichment in the number of 

associations whose effects were attributable to all biomarkers in every childhood SES measure, 

except for cortisol and maternal education (Table 2.2). Conversely, there was either no 

enrichment or a significant depletion in the number of associations impacted by the inclusion of 

any biomarker in every older adulthood SES measure and SES PC, with the exception of cortisol 

and SES self-report. Overall, biomarkers and lifestyle behaviours appeared to contribute more to 

the associations between DNAm and measures of childhood SES and generally confound the 

associations between DNAm and measures of older adulthood SES. 
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Table 2.2   Summary of the percentage of the top 1,000 DNAm sites associated for SES which had a covariate contribute to the relationship by at least 
10%.  
Comparing the number of sites amongst the top thousand where the relationship between methylation and SES is explained by at least 10% by a given covariate 
of interest. Randomization permutation analysis (n = 500) was used to determine the probability that there was an enrichment (*) or a depletion (+) in the number 
of sites impacted by these covaries than one would expect by chance (p-value ≤ 0.05). DHEAS – Dehydroepiandrosterone sulfate. 

   Childhood SES  Older Adulthood SES 

 SES PC  Self-Report Assets 
Maternal 
Education 

 Self-Report Assets 
Education 

Years 

Biomarkers          

C-reactive Protein 0  17.2* 20.3* 22.2*  0.2 0+ 0 

Cortisol 21.1  52.5* 52.2* 44.7  62.7* 17.9+ 7.9+ 

DHEAS 0  19.6* 19.8* 20.6*  0 0.3 0.1 

Epinephrine 12.9  41.9* 34.4* 42.3*  12.4 8.5 0.1+ 

Norepinephrine 14.6  41.1* 34.2* 42.6*  6.3 10.5 0.3+ 

Lifestyle Behaviours          

Smoker 0  10.6* 13.1* 11.8*  0.2 0 0+ 

Drinker 14.4  40.8* 36.9* 41.8*  6.9 9.8 0.6+ 

Body Mass Index 0.3  21.5* 23.4* 26.2*  0.2 2.2 1.9 
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2.4 Discussion 

The link between DNAm and SES was explored by comparing the associations between 

multiple measures of SES occurring in either older adulthood or childhood. Measures of 

education, household assets and self-report of poverty were compared, in addition to a composite 

SES PC variable, which associated with all other SES measures. More significant associations 

were found between DNAm and older adulthood than childhood SES, while self-report measures 

either had reduced signal or a dissimilar trend compared to other SES categories. EWASs 

conducted on older adulthood measures of education and assets resulted in a top set of CpG sites 

where significant genomic enrichment analyses suggested an increased presence in genomic 

regions where active transcription may be taking place. When assessing the effect of including 

inflammatory and stress biomarkers in the DNAm and SES models, cortisol had the largest 

impact — contributing to the signal of both self-report SES measures and childhood assets while 

confounding the signal of the remaining older adulthood SES measures. The remaining 

biomarkers and lifestyle behaviours contributed significantly to the effect detected in the top 

CpGs associated with childhood SES measures where there was either no significant effect or 

they acted as confounders for DNAm and older adulthood SES associations. Subjective SES 

measures of self-report behaved differently from objective measures in relation to DNAm in 

most analyses. This finding may support the DOHaD hypothesis stating that the early life 

environment may impact lifelong trajectories of physiological responses, specifically 

inflammatory and stress pathways, as in the case of this study (18). 

 

2.4.1 Subjective and objective SES components behave distinctly relative to associations 

with DNAm.  

While several studies have reported associations between SES and DNAm, an issue 

remains in the field: replication of these findings is inconsistent (296). There could be many 

reasons for this, but one major issue is the complex nature of SES and the variability of how this 

is measured across studies (326). While not all-encompassing, three components of SES were 

investigated in the current study -- household assets, education, and self-reported economic 

standing -- in addition to a composite SES measure that associated with all others. When 

investigating overall DNAm variation using PCA, I observed correlations between all SES 

measures and the top PCs, though both self-report measures displayed fewer overall associations 
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relative to the other measures, suggesting that this metric may be distinctly impacting DNAm 

(361–364). The current study shows that, while there are some overlaps amongst CpGs most 

associated with a given SES variable, significant overlaps between any given set of variables 

were never greater than 20%. This suggests there are unique impacts of SES components to 

DNAm. Though it is important to note that though there was no overlap does not mean that the 

non-overlapping sites are not related to the same biological pathway. Furthermore, one objective 

measure, household assets, was found to have significant enrichment or depletion amongst three 

genomic features, suggesting localization of associated CpGs in areas of the genome where 

active transcription is potentially occurring, while self-report measures did not. Most revealingly, 

self-report measures of SES in both older adulthood and childhood behaved distinctly from other 

measures with an overall weaker DNAm signal. These findings are not surprising as it has been 

previously found that self-report measures can be distinct from more objective measures because 

self-report incorporates an individual’s relativistic interpretation of their situation (335). As such, 

self-report measures are generally more closely linked to mental health, whereas objective 

measures are more closely linked to physical health (335,365,366).  

Moreover, the contribution of both assessed biomarkers and lifestyle measures further 

solidified the interpretation that the DNAm signal of objective, subjective, and composite SES 

measures were distinct. It has been frequently reported that poverty is associated with levels of 

inflammatory and stress biomarkers. Additionally, lifestyle measures such as smoking, drinking 

and BMI are frequently higher amongst those with lower SES. What impact these measures may 

have on the relationship between DNAm and SES was investigated, and there were significant 

differences between the coefficients resulting from the base DNAm and SES models and those 

that were adjusted for several covariates. Cortisol is a particularly interesting biomarker, as the 

distributions amongst both education and the older adulthood self-report variables were 

significantly shifted, but in opposing directions, showing a distinct difference between objective 

and subjective SES measures. Though, it should be highlighted that cortisol was measured at a 

single time point in urine and not multiple times in the saliva, which better represents the diurnal 

patterns of individuals. The association between DNAm and older adulthood self-report became 

weaker when accounting for cortisol, suggesting cortisol as a potential driver for DNAm at these 

CpGs. Conversely, adjusting for cortisol in the models for both education measures appeared to 

enhance the relationship between these measures and DNAm, suggesting that cortisol levels are 
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adding noise to the association. This is supported by the fact that subjective measures of stress 

have been correlated more strongly to cortisol output compared with objective measures (367–

369). The educational years EWAS was also significantly impacted by two other stress 

biomarkers (epinephrine and norepinephrine) in addition to drinking status.  Interestingly, the 

composite SES measure, SES PC, had neither an enrichment nor depletion in the numbers of 

CpGs affected by these measures, the result of an apparent averaged effect between the older 

adult- and childhood measures. This is somewhat expected as the SES PC is significantly 

correlated with each SES variable to varying degrees, and so, the oppositional signal observed 

between childhood and older adulthood may average out, resulting in no significant enrichment 

in either direction when analyzing the composite variable alone. The subjective SES measure 

generally produced weaker associations with DNAm relative to objective measures, where the 

composite SES measure lost the nuance of how health biomarkers related to the SES 

components. Together, these findings highlight the need for social epigenetic studies to be 

carefully designed with consideration for the type and consistency of measurements (370). 

 

2.4.2 Differential impact between older adult and childhood SES associations with 

DNAm. 

 An individual’s environmental and subjective experiences can have differential impact on 

health, depending upon their developmental stage. Expanding on this concept, exposures 

occurring during developmentally sensitive periods in early life can set an individual on a 

potentially irreversible health trajectory leading to a variety of negative health outcomes, a 

concept known as the DOHaD hypothesis (18,324,371).  Poverty in childhood may have 

differential impacts than in adulthood, so the timing of a given exposure should be considered 

when studying SES. In the current study, large differences in overall DNAm signal were seen 

between older adulthood and childhood measures of SES. Childhood measures resulted in flat p-

value distributions, indicating little to no significant DNAm association, while an obvious skew 

was observed amongst older adulthood measures, in addition to the effect sizes being generally 

larger, indicating a stronger overall significant association. 

Another clear distinction between older adult and childhood SES measures in relation to 

DNAm is the impact various biomarkers and lifestyle factors had. Generally, childhood SES 

measures were associated to significantly more CpGs related to these covariates than one would 



45 

 

expect by chance. Conversely, the older adulthood measures had either no effect or a significant 

depletion in the number of CpGs affected by these covariates.  

Older adulthood SES measures displayed a stronger association with DNAm overall, 

where childhood SES measures were heavily confounded by various biomarkers of health, stress, 

and inflammation. This could be due to DNAm being measured in older adulthood, thus 

associating more strongly to measures more proximally timed. Another intriguing interpretation 

could be that childhood SES associated DNAm is heavily intertwined with the physiological 

state of an individual’s stress and immune state. These findings support the DOHaD hypothesis 

that proposes early life events set the stage and trajectory for key biological systems that are 

maintained throughout life because it is markers of these systems which would more strongly 

explain the relationship between childhood SES and DNAm. 

 

2.4.3 Limitations and considerations 

There are several important considerations when interpreting the results of these analyses. 

The DNAm data were taken cross-sectionally, and so results of associations with childhood SES 

are not comparable to studies in which childhood DNAm and SES associations were taken 

concurrently. Additionally, when comparing variables it is best to compare measures on a similar 

scale, here the childhood measures were dichotomous relative to the more continuous measures 

of adulthood SES, and so may be part of the reason for the subdued DNAm signal in childhood 

relative to adulthood SES. DNAm is integral to defining cell type and varies greatly within an 

individual, but also varies substantially across different tissues. DNAm was measured in whole 

blood in this study, and while some other studies investigating SES and DNAm were reported in 

the same tissue, many were not. As such, trends discovered here cannot be applied to represent 

general relationships.   

DNAm has also been shown to vary with age, both stochastically and specifically, and so 

age needs to be taken into account in result interpretations. This cohort is enriched for 

individuals older than 90 years, which may result in a selection bias for those whose underlying 

genetics, environment, and behaviour allowed for their longevity, selecting against those with 

factors which could predispose them to adverse health outcomes and earlier mortality. 

Additionally, research into SES gradients and varying impacts on health are predominantly 
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studied in younger populations, resulting in very few studies being conducted in cohorts with this 

age range.  

Beyond how and when in an individual’s lifetime SES is measured, where they live can 

also have a large impact on analysis interpretation. This study was conducted in Costa Rica 

amongst a population where the typical associations of SES gradients with various measures of 

mortality and morbidity do not fully apply (329,330,334,338). For example, those who are 

wealthier were found to have increased incidences of cardiovascular disease, a relationship 

which opposes commonly reported trends seen in both developed and developing countries. In 

this study, several measures of SES were positively correlated with BMI, contrary to what is 

commonly observed, as such the findings from this study need to be interpreted accordingly 

(372). 

SES is a complex and multifaceted measure associated to many health disparities. DNAm 

is an epigenetic marker that may be able to elucidate the link between the two, with a wealth of 

EWAS studies finding associations between DNAm and SES. However, social epigenetic studies 

suffer from a lack of reproducibility, likely due to the same issues that plague social 

epidemiology: inconsistency in the SES measures themselves and the timing with which these 

various exposures occur in an individual’s life (370). Specifically, self-report SES measures 

throughout life had a weaker and distinct signal in DNAm relative to the more objective 

measures, while the SES PC composite CpGs were not significantly impacted by biomarkers or 

health measures, possibly due to the opposing trends seen between older adult and childhood 

measures. Finally, I found a stronger association between concurrent older adulthood measures 

and DNAm, though, unlike older adulthood, DNAm associated with retrospective childhood 

measures were significantly confounded by stress and inflammatory biomarkers. These results 

highlight the importance of considering the type and the life stage of SES measures when 

designing a social epigenetic study.    
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3   Lifetime trajectories of socioeconomic status partially mediated 

associations between DNA methylation and IL-6 levels 
 

3.1 Background and rationale 

A significant contributor to health inequalities throughout the lifespan is the myriad of 

social and environmental risk factors associated with socioeconomic status (SES), which 

generally refers to a composite measure of the occupational, economic and social standing of an 

individual or group, relative to others in society (373). Several risk factors that low-SES 

individuals are exposed to impact many aspects of life and can include poor nutrition, air 

pollution exposure, food insecurity, and neighborhood and family violence (374). In turn, 

individuals living in low-SES conditions tend to have increased incidence of a number of chronic 

health conditions (1,3,4,142,375–377) with exacerbating effects stemming from low-SES 

experienced in early childhood (2,5,378–381). Interestingly, health associations with early 

childhood low-SES have been found to persist later in life, even amongst those whose SES has 

improved after childhood, indicating that these experiences may be getting “under the skin” to 

have long-lasting impacts on health (142,382–385). 

At a biological level, the mechanisms by which a low early-life SES predisposes an 

individual to a variety of health conditions remains poorly understood but likely involves several 

biological processes and systems that might, in part, intersect. One phenotype commonly, but not 

exclusively, associated with both a low early-life SES and chronic health conditions is 

inflammation (5,15,145,167,376,386–388). Stress, in general, results in the release of the 

hormone cortisol, which can suppress immune function in part by reducing production of the 

pro-inflammatory cytokine interleukin-6 (IL-6), linking the stress and innate immune pathways 

(163,389). However, long-term release of cortisol, as seen during chronic stress that might 

originate from multiple sources including, but not limited to, low-SES, has been linked to 

increased levels of pro-inflammatory cytokines (390–392). For example, individuals who 

experienced low-SES throughout life revealed increases in basal IL-6 and C-reactive protein 

(CRP) levels, another marker of inflammation (12,295). In addition, many of the demographic 

and environmental variables often associated with low SES, such as air pollution (393) and poor 

nutrition (394), have also been associated with persistent low-grade inflammation, suggesting 

that SES might impact the immune system through multiple avenues. 
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The molecular mechanisms by which low-SES predisposes to a pro-inflammatory 

phenotype are still unclear. Epigenetic mechanisms, which are mitotically inheritable and tightly 

linked to gene transcription, may have potential importance in this association reported 

throughout life (314,395). In human populations, the most studied epigenetic mark is DNA 

methylation (DNAm), which refers to a methyl group bound to a cytosine base, typically existing 

in the context of cytosine-phosphate-guanosine (CpG) di-nucleotides (395). At the most 

fundamental level, DNAm has important roles in the establishment and maintenance of cellular 

identity during the development of an organism, and is important for the life-long maintenance 

of body systems, including immune function. On the more macroscopic level, DNAm associates 

with many variables that constitute the social environment in both human populations and animal 

models, including parental care, abuse exposure and educational attainment (313,314). As such, 

DNAm might be a potential mechanistic bridge linking environmental and social exposures with 

immune gene expression, and a possible mechanism by which early-life experiences become 

biologically embedded to influence health across the lifespan (15,151,313,314). 

At least two different, yet complimentary lines of empirical evidence substantiate a link 

between DNAm and components involved in pro-inflammatory processes– first, the 

identification of cellular DNAm marks associated with key pro-inflammatory proteins and 

second, the identification of DNAm changes in pro-inflammatory genes associated with 

conditions that have an underlying pro-inflammatory phenotype. IL-6 and CRP measures have 

been central to the first approach, with several studies testing associations using either an 

epigenome-wide approach (EWAS) or at the candidate gene level (396,397). IL-6 is particularly 

of interest as it exhibits pleiotropic activity in the immune system and is expressed from many 

tissues (163). In a small pilot EWAS, serum IL-6 was associated with DNAm levels at two CpGs 

in peripheral blood mononuclear cells (PBMCs) (398). CRP, another pro-inflammatory marker 

downstream of IL-6 signaling (12,399), has also been linked with blood DNAm (400–403). In 

one study, associations between CRP levels and DNAm were found at 218 CpGs amongst 

individuals of European ancestry, 58 of which were validated amongst African Americans, 

hinting at possible trans-ethnic signatures in DNAm associated with pro-inflammatory markers 

(404). There have been substantially more candidate gene studies performed on cytokine related 

DNAm analyses, typically including genes involved in innate immune responses (396). DNAm 

changes within the IL6 gene itself are associated with several diseases, including coronary heart 
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disease (405), schizophrenia (406), depression (407), and rheumatoid arthritis (408).  

Additionally, through activation of the JAK2/STAT3 pathway, IL-6 impacts DNAm genome-

wide by decreasing expression of DNA (cytosine-5)-methyltransferase 1 (DNMT1), a gene 

whose protein product is integral to the deposition of methyl groups across the genome (409–

411). Changes in global DNAm resulting from IL-6 impact specifically on DNMT1 levels has 

been investigated as a potential mechanism in several diseases including type 2 diabetes (409), 

lupus (412), neurogenesis (410) and Autism Spectrum Disorder (411).  Moving from group 

differences to possible predictors at the level of an individual, blood DNAm patterns can also be 

used to bioinformatically determine levels of serum IL-6, with this prediction relating to 

cognitive functioning in older adults (413). The relation between pro-inflammatory cytokines 

and DNAm emphasizes the interconnectedness of these molecular pathways highlighting the 

need to integrate measures of each in subsequent analyses. 

While less proximal than associations between components of the inflammatory response 

and immune cell DNAm, a growing body of literature reports on a link between SES throughout 

the life course and DNAm. Prenatal SES has been associated with DNAm changes in cord blood 

at birth, with some changes persisting into mid-childhood (315). In buccal epithelial cell (BEC) 

DNAm from children aged 5-6 years, CpGs in genes regulating immune function and 

developmental pathways were associated with early-life SES (228). Amongst young adults, an 

EWAS conducted on whole blood DNAm was found to be a significant mediator between early-

life SES, parenting and later life health (316). Consistent with these findings, white blood cell 

DNAm in various immune genes was associated with early-life SES in adults (226), in addition 

to DNAm at genes involved with nervous system development (159). In PBMCs, DNAm was 

broadly associated with early-life SES irrespective of current-life SES, suggesting that at least in 

part, DNAm patterns in adults might be a vestige of their early life experiences (231). However, 

work focusing on a small subset of DNAm candidates in immune function and stress reactivity 

pathway related genes found both overlapping and unique associations of monocyte DNAm with 

early-life and current-life SES trajectories, suggesting possible differential impacts of SES status 

throughout life in this more focused analysis (317).  In addition to identifying associated genes 

and pathways as in the studies described above, the information content of the DNA methylome 

can also be exploited to predict cellular or biological age (84). Specifically, when compared to 

chronological age, the predicted epigenetic age can inform on several adverse health outcomes 
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(37,88,414). The epigenetic age measure has been applied to life course studies of SES, in 

general finding that low SES associated with accelerated epigenetic age, which is associated with 

reduced longevity and increases in morbidity (227,415). Interestingly, one study found DNAm 

age accelerated in individuals with low-SES in early life but with a reduction in effect amongst 

those whose SES improved in later-life suggesting a potential reversibility of these biomarkers 

(230). 

 Building on the existing body of research that points to a relationship between DNAm 

and SES throughout the life course I have hypothesized that DNAm is associated with both IL-6 

and SES within some of the same CpG sites. Specifically, I explored the relationship between the 

lifetime trajectory of SES, serum IL-6 levels, and DNAm using a stepwise approach. First, 

significant EWAS associations between monocyte DNAm and IL-6 were assessed with SES 

incorporated in the model to determine what, if any, impact this social variable may have on the 

relationship between DNAm and IL-6. Subsequently, associations between SES and serum levels 

of IL-6, a pro-inflammatory cytokine produced primarily by monocytes were tested (162,163). 

Finally, DNAm sites not associated with IL-6 were related with SES trajectory to determine any 

IL-6-independent associations between SES and DNAm. Collectively, this approach allowed for 

examination into the complex interaction between SES and inflammation through the lens of 

epigenetics by concurrently exploring the relationship of DNAm to proximal biological (serum 

IL-6 levels) and distal sociological (lifetime SES trajectory) measures.  

 

3.2 Materials and Methods 

3.2.1 Early Life cohort 

The Early Life cohort consisted of 333 individuals aged 15-70 years recruited from the 

greater Vancouver area. SES, recruitment, and exclusion criteria have been previously described 

(227). Sample demographics are summarized in Supplementary Table 3.1. 

 

3.2.2 CareGiver cohort  

The independent validation cohort was selected from the CareGiver study, previously 

described (416). A propensity age-matched subset of 43 participants aged 22-54 years (recruited 

from the Vancouver area) was used. Sample demographics are summarized in Supplementary 

Table 3.1. 
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3.2.3 Childhood and adulthood socioeconomic status questionnaire  

SES was defined as occupational prestige using the thoroughly validated United 

Kingdom’s National Statistics Socioeconomic Classification, which is defined as the 

participants’ parents’ occupational prestige in early-life (0-5 years) and the maximum household 

occupational status within five years of the participants themselves, as previously described 

(227).  Individuals were categorized as those who remained in high SES throughout their life 

(High/High, Early/Current, HH), individuals with downward mobility (High/Low, HL), 

individuals with upward mobility (Low/High, LH), and those who remained in low SES 

throughout their life (Low/Low, LL). Additionally, participants were selected such that there 

were roughly equal groups of individuals in every given category (LL 28%, HH 26%, LH 26%, 

HL 20%). 

3.2.4 Biological measures  

3.2.4.1 Serum IL-6 

Interleukin-6 (IL-6) was measured from participants’ serum using identical procedures in 

both cohorts. Serum was isolated from the centrifugation (2200-2500 rpm) of clotted whole 

blood samples and applied to a commercial ELISA kit with IL-6 specific antibodies where titers 

were read out in pg/ml. IL-6 levels were natural-log transformed to minimize the impact of 

extreme values.  

3.2.4.2 Blood collection, monocyte isolation, genomic DNA extraction and DNAm 

measurement  

Whole blood was collected for participants from both cohorts, and PBMCs were isolated. 

Monocytes, defined as CD14+, were separated using immune-magnetic capturing methods 

(Miltenyi AutoMACS) as previously reported (227,416). For both cohorts, DNA was isolated 

from the purified monocytes using a column-based method and assessed for quality using 

NanoDrop, bisulfite converted using EZ-96 DNA Methylation kits (Zymo Research, Irvine, CA) 

and run on the Infinium HumanMethylation450 (450K) BeadChips (Illumina) (227). Samples 

were randomly assorted to ensure there was no confounding between variables of interest and 

processing batches. 
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3.2.5 Statistical analysis 

3.2.5.1 DNAm pre-processing and normalization 

For both cohorts, raw intensity IDAT files were imported and processed in RStudio, 

where intensity measures were converted to beta values (Methylated + 

Unmethylated/Methylated) ranging on a continuous scale from 0 (Unmethylated) to 1 

(Methylated) for each of the 450,557 CpGs.  

Background subtraction and color correction were performed using the preprocessNoob 

function (417) from the minfi package (343). Prior to normalizing the data, samples were 

removed if the median for both Methylated and Unmethylated signals were below 10.5 in order 

to ensure extreme outliers did not impact the normalization process (343). Control and out-of-

band probes were used to perform normalization on the samples using the preprocessFunnorm 

function (344) from the minfi package (343) to remove technical variation.  

After normalization, three additional methods were used to determine if a sample was 

considered an outlier. Samples were removed if detected by at least two methods. The first 

method, detectOutlier from the lumi package, (345) labeled a sample as an outlier if it was 

significantly distant from the center of the mean of other samples. The second outlier method, 

pcout from the wateRmelon package (100), used principal component analysis to calculate 

distance and scatter for each observation relative to the cohort average for outlier identification. 

The third method employed the locFDR package (80,346,347). Briefly, principal component 

analysis was used to determine if the z-score statistic of a given sample was significantly 

separated from the rest of the cohort (FDR ≤ 0.2) (80). Early Life had one sample and CareGiver 

had nine samples removed based on the criteria of being selected in any outlier method. In 

addition to detecting outliers, K-means clustering was performed on the methylation values of 

the sex chromosome probes to produce a predicted sex measure, where samples whose reported 

and predicted sex did not match were removed (Early Life n = 11, CareGiver n = 5). To test the 

purity of the monocyte samples the Houseman method was used to bioinformatically predict 

whole blood cell types using the Idol reference dataset (64,354). Removing outlier, sex-

mismatched and technical replicate samples (Early Life n = 4, CareGiver n = 3) resulted in n = 

333 samples in Early Life and n = 43 in CareGiver.  

Poor performing probes, defined as those which give NA readings in more than 1% of 

samples, those with low detection p-values ≤ 1x10-16, those predicted to non-specifically bind in-



53 

 

silico, and because of the imbalance of sex and the trimodal distribution of X chromosome 

probes in females, those which bind the X or Y chromosome (348) were removed, leaving n = 

436,788 probes in Early Life and n = 434,560 probes in CareGiver.  

Known technical variation resulting from run, chip, and chip position were removed with 

empirical Bayes methods using the ComBat function (350) from the SVA package (351). As I 

am not interested in CpG sites which do not vary across participants, invariable probes were 

filtered out (defined by having less than 5% beta value range across samples in the 5th and 95th 

percentile), leaving n = 136,435 probes remaining in Early Life for analysis. 

 

3.2.5.2 Serum IL-6 and DNAm  

The main effect of associations between DNAm and IL-6 (pg/ml) levels was examined 

with linear regression via the function lm (418,419) in the base R stats package (DNAm ~ log 

(IL-6 pg/ml) + age + ethnicity + sex). Multiple testing was corrected by adjusting the nominal p-

values using the Benjamini-Hochberg (BH) procedure to calculate the false discovery rate (FDR) 

(420). CpGs were considered significant at a fairly lenient FDR ≤ 0.20 and a change in 

methylation state of at least 0.03 in either direction, calculated at each site by taking the beta 

coefficient from the model DNAm ~ log (serum IL-6 pg/ml) and multiplying it by the cohort 

range of log (IL-6 pg/ml) levels. The threshold of |Δβ ≥ 0.03| was selected because this value is 

higher than the root mean squared error of 0.025 calculated from the technical replicates after 

pre-processing and normalization. This approach provides some confidence that DNAm 

differences found are unlikely due to residual uncorrected technical variation (421). 

 

3.2.5.3 Independent cohort validation 

Sample collection, preparations, DNAm preprocessing, normalization, and serum IL-6 

effect size calculations were performed identically in Early Life and the validation cohort, 

CareGiver. Propensity matching for age was done to ensure comparable cohorts, resulting in 43 

samples from CareGiver being used for validation, as is summarized in Supplemental Table 3.1. 

The Early Life CpGs that passed both the statistical and effect size thresholds were evaluated in 

CareGiver. A CpG site was considered replicated if it had at least an |Δβ ≥ 0.03| in the same 

direction of effect as was measured in the Early Life cohort based on previously reported 
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methods (422). Pearson’s correlation was performed on both all and only validated IL-6 

associated CpGs to determine how similar these CpGs behaved in an independent cohort. 

 

 

3.2.5.4 Association between DNMT1 expression and serum IL-6 levels 

Assessment of previously reported findings of a skew towards decreased methylation and 

DNMT1 expression related to increasing IL-6 levels was performed. Skewness in the distribution 

of the IL-6 Δβ values in the variable sites within Early Life (n = 136,435) and CareGiver (n = 

131,321) were performed using the Shapiro-Wilk’s test of normality with 1,000 Monte Carlo 

simulations (423). In addition to DNAm, transcriptome profiling was performed for the 

CareGiver cohort using Illumina Human HT-12 v4.0 beadchips as previously described  (416). 

Expression levels of DNMT1 from CareGiver were tested for association with serum levels of 

IL-6 across samples with all data available (n = 76) using a Pearson’s correlation (p-value ≤ 

0.05). In order to ensure extreme values of DNMT1 transcript levels were not driving any 

associations, values were winsorized (424).  

 

3.2.5.5 SES and serum IL-6 measures 

An ANCOVA was performed using the aov function from the stats package (418), to 

determine any association between lifetime SES trajectory measures and IL-6 levels while 

adjusting for age, ethnicity and sex. To determine which comparisons, if any, contributed to a 

significant finding a Tukey test was performed using the TukeyHSD function from the stats 

package (418). 

 

3.2.5.6 SES contribution to IL-6 and DNAm associations 

The DNAm changes associated with serum IL-6 levels at validated CpGs were investigated 

for potential contribution from lifetime SES status. Lifetime SES trajectory measures from Early 

Life were added to the base model, and the beta coefficients of the main effect of serum IL-6 

were compared between the base and SES-adjusted models: 

I. Base model: DNAm ~ log (IL-6) + Age + Sex + Ethnicity 

II. Adjusted model: DNAm ~ log (IL-6) + SES Trajectory + Age + Sex + Ethnicity 
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CpGs where the effect of SES trajectory was statistically significant (FDR ≤ 0.2) in the adjusted 

model were further investigated. Percentage contribution was calculated as  

[!IL-6, base model - !IL-6, adjusted model/!IL-6, base model] *100 

for every validated site as previously reported (210).  

  

3.2.5.7 SES and DNAm 

Of the remaining CpGs not associated with serum IL-6 levels, ANCOVAs were 

performed to investigate more broadly associations between SES and DNAm. Sex, age, and 

ethnicity were adjusted for in the model. Multiple test correction was applied to the nominal p-

values using the BH procedure to calculate the FDR. As before, CpGs were only considered 

significant at a fairly liberal FDR ≤ 0.20 and change in methylation state by at least |Δβ ≥ 0.03| 

as calculated at each site by taking the difference between the median of the groups. The four 

categories for SES resulted in six Δβ measures representing each comparison. To determine if 

there was an uneven distribution amongst the number of CpGs which were associated to a 

particular SES trajectory, 1,000 permutations were performed where SES was randomized and 

the analysis re-run. The p-value was determined by counting the number of times a random result 

was equal to or more extreme than the true result.  

 

3.2.5.8 DNAm and gene expression 

Only CareGiver samples from the full cohort that had matching DNAm and gene 

expression data were used for analysis (n = 77). Expression levels of genes containing model-

significant CpGs were compared with methylation levels using Pearson’s correlations.   

  

3.2.5.9 Chromatin state and histone modification enrichment analysis 

Using the online resource EWAS Atlas (425) and primary monocyte data from the 

Roadmap Epigenomics Consortium (358), enrichment analyses for chromatin states and post-

translational histone modifications were performed on all significantly associated CpGs using 

hypergeometric tests to compute p-values and odds ratios. 
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3.2.5.10 Correlation between whole blood and brain sample DNAm 

The application BECon (https://redgar598.shinyapps.io/BECon/) was used to interrogate 

CpGs located in genes which function in brain to determine if whole blood methylation 

correlated with brain post-mortem tissue methylation (38). The list of CpG IDs is submitted and 

the output is returned in the format of a table describing the correlation between blood and each 

of the measured three brain regions (Brodmann areas 7, 10, and 20) in addition to the variability 

seen across samples and within each tissue (38).  

 

3.2.5.11 Exploratory analysis of other contributing lifestyle factors 

As waist-to-hip ratio (WHR) and smoking have been previously associated with DNAm 

(426,427), IL-6 levels (428,429) and SES (430,431), I determined if these covariates were 

associated with these measures in the Early Life cohort. For associations that were significant 

(FDR ≤ 0.20), contribution analyses described in section 2.4.5 above were performed to 

determine if these factors contributed to the relationships between DNAm and IL-6 (dependent 

on or independent of SES). 

 

3.3 Results 

3.3.1 Serum IL-6 levels were related to DNAm 

To determine if IL-6 levels were associated with monocyte DNAm, linear regression was 

performed to investigate the relationship between IL-6 and DNAm values adjusting for sex, age 

and reported ethnicity. 338 CpGs were associated with IL-6 levels at a fairly lenient stringency 

threshold (FDR ≤ 0.2) and showed an effect size of | Δβ ≥ 0.03| (Figure 3.1, Supplementary 

Table 3.2). 
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Figure 3.1 Serum IL-6 levels were associated with monocyte DNAm. 
Volcano plot of the IL-6 EWAS on variable probes (136,435). The effect size is on the x-axis and the log of nominal 
p-values is on the y-axis, where the thresholds are drawn at the nominal threshold associated with an FDR = 0.2 and 
the effect size, delta beta (Δβ), thresholds of ±0.03. 338 sites (244 decrease and 94 increase in methylation) met 
these thresholds. 
 

3.3.2 A substantial fraction of IL-6 associated CpGs validated in an independent cohort  

Next, the 338 CpGs modestly associated with serum IL-6 levels were tested to determine 

validation in an independent cohort. CareGiver is a healthy population cohort described above 

where purified monocytes were analyzed from 43 samples which were propensity matched to 

ensure balanced demographics (Supplementary Table 3.1). The validation cohort contained 96% 

(324) of the significantly associated CpGs from Early Life; the remaining 4% (14) were removed 

during stringent data pre-processing. CpGs were considered to be validated if the |Δβ ≥ 0.03| and 

was in the same direction as seen in Early Life as per previously published methods (422). Using 

Pearson’s correlation, there was a significant relation between the cohort’s Δβ values for all 324 

CpGs (r(322) = 0.53, p ≤ 2.2x10-16, Figure 3.2A) and amongst the 80 CpGs (25%, 80/324) that 

met the validation criteria of |Δβ ≥ 0.03| in the same direction (r(78) = 0.95, p ≤ 2.2x10-16, Figure 

3.2B). 
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Figure 3.2 Twenty-five percent of DNAm sites significantly associated with serum IL-6 levels were validated 
in a secondary cohort. 
(A) Correlation between Early Life and CareGiver cohorts of the effect size, delta beta (Δβ), values from the 324 
sties were significantly associated between serum IL-6 and DNA methylation in Early Life. CareGiver was missing 
14 sites of the original 338 sites. (B) Correlation of the delta beta values of the 80 validated sites, defined as 
significant Early Life IL-6 sites which also had an absolute Δβ ≥ 0.03 in the same direction in CareGiver. 
 

3.3.3 DNMT1 expression was inversely correlated to serum IL-6 levels 

There was a significant trend observed amongst the IL-6 associations where there were 

more CpGs with decreased methylation than with increased methylation in both and CareGiver 

(T = -0.35, p-value ≤ 2.2 x 10-16) and Early Life (T = -0.34, p-value ≤ 2.2 x 10-16, Figure 3.1). 

This observation seemed consistent with reports of IL-6 decreasing DNMT1 transcript levels 

resulting in global demethylation (409–411), and thus, I tested directly the relationship between 

serum IL-6 and DNMT1 transcript levels in one of our cohorts.  To investigate if this association 

persisted in the study, DNMT1 expression and serum IL-6 levels from all available CareGiver 

samples (n = 76) were assessed. Pearson’s correlation was performed and determined a 

significant negative correlation between serum IL-6 and DNMT1 expression which was robust to 

winsorization (95%, t(74) = -3.36, r = -0.36, p = 1.25x10-3,  Supplementary Figure 3.1).  

 

3.3.4 Serum IL-6 levels were linked with SES trajectories 

Increased levels of serum cytokines have been previously reported to associate with SES, 

as such, I also assessed the association of serum IL-6 and SES in this cohort. IL-6 levels were 

significantly associated with lifetime SES trajectory in the Early Life cohort (F(3,320) = 3.439, p 

= 0.0172, Figure 3.3) by performing an ANCOVA between the natural log of serum IL-6 and 
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lifetime SES trajectory adjusting for sex, age, and reported ethnicity. A post-hoc Tukey test 

determined the ANCOVA was driven by differences between the High/High and Low/Low SES 

trajectory groups (p-value = 0.021). 

 
Figure 3.3 Lifetime trajectory of SES was significantly associated with adulthood serum IL-6 measures. 
ANCOVA was used to obtain the reported p-value and was adjusted for age, sex and reported ethnicity. Lifetime 
SES trajectory was measured based on whether someone was high or low in early life (0-5yrs) in combination with 
their current SES status measured as occupational prestige. A Tukey test determined that the IL-6 levels of the 
High/High relative to the Low/Low group was driving the association (*p-value = 0.021). 
 

3.3.5 SES contributed to the correlation between IL-6 and DNAm  

Given the predictions of my theoretical framework stipulating a tight connection between 

IL6, DNAm and SES, I next tested whether methylation levels of IL-6 associated CpGs were 

influenced by SES trajectories. I employed a contribution analysis with two linear regression 

models - the base model used to discover the 80 IL-6 associations above, and this base model 

adjusted for SES. The beta coefficients for IL-6 were compared between the two models, where 

the percentage of change was interpreted as the amount SES contributed to the original 

relationship. Using this approach, I found that of the 80 CpGs, 15 were statistically associated 

with SES trajectory with varying percentages of contribution occurring ranging from -2.0% to 

15.9% (Table 3.1).  
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Table 3.1   The change in methylation across serum IL-6 levels at 15 CpGs was contributed in part by lifetime SES trajectory status.  
Medium-confidence IL-6 associated CpGs were characterized by their significance level, effect size, genomic association, and SES contribution. UCSC was used 
to determine the gene name the CpG site was located in using human genome build GRCh37/hg19. The max SES trajectory delta beta value reports the highest 
effect size of the six SES comparisons. 
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3.3.6 SES associated with CpGs independently of IL-6 levels  

IL-6, while influential, is only one factor potentially involved with SES effects on health. 

Therefore, to investigate other biological pathways potentially involved in the relationship 

between SES and DNAm, an EWAS of SES associations with DNAm independent of IL-6 was 

performed. This exploratory analysis was conducted on all but the 338 IL-6 associated CpGs 

reported above (n = 136,097 probes determined to be above my variability threshold). Using an 

ANCOVA approach comparing all four SES groups (Low/Low, Low/High, High/Low, 

High/High), 51 unique CpGs that passed the statistical and effect size thresholds (1,000 

permutations, p-value = 0.013), with the majority of these changes being found in comparisons 

containing the LH, or upward SES mobility, group (1,000 permutations, p-value = 0.040, Figure 

3.4, Supplementary Table 3.3).  

 
Figure 3.4 SES trajectory was associated with DNA methylation independent of serum IL-6 levels. 
Volcano plot of SES trajectory comparisons on variable probes (n = 136,435). The y-axis is log of the nominal p-
values obtained from the ANCOVA model of DNAm ~ SES Trajectory + Age + Ethnicity + Sex and the x-axis is 
the delta betas calculated for the specific SES trajectory comparison by calculating the difference between the 
groups specified on the respective panel title. 
 

3.3.7 Gene expression was correlated with DNA methylation for a subset of CpGs  

One important role ascribed to DNAm is potential associations with gene expression, 

specifically mRNA levels. Thus, the CareGiver cohort, for which both DNAm and gene 
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expression were measured from the same monocyte preparations, was used to assess the relations 

between these two modalities of genomic expression of all model-significant CpGs. Pearson’s 

correlations were conducted between the mRNA levels of the genes containing significant CpGs 

and the methylation levels of the CpGs (FDR ≤ 0.2, Supplementary Table 3.4). There were 

comparable numbers of CpG sites where the methylation levels of annotated genes were 

correlated to gene expression; 20% (12/60), 23% (3/13) and 12% (4/34) of IL-6, IL-6 and SES 

and IL-6 independent SES associated CpGs, respectively (Supplementary Figure 3.2). 

 

3.3.8 Enhancers and H3K4me1-marked regions were enriched in IL-6-related CpGs  

Regulation of gene expression by DNAm may involve regulatory regions not located in 

the immediate vicinity of the target gene, for example in enhancers. To assess if any IL-6- and 

SES-associated CpGs may function in such regulatory regions, publicly available data from the 

Roadmap Epigenomics Consortium, accessible through the EWAS Atlas Toolkit platform, was 

utilized (425). Specifically, the multiple chromatin marks measured in single peripheral blood 

primary monocyte samples were used. Enrichment analysis for chromatin state and histone 

modifications was performed separately on each set of significant CpGs; 80 CpGs from the IL-6 

EWAS, which included the 15 CpGs from the joint SES and IL-6 analysis, and 51 CpGs from 

the IL-6 independent SES EWAS. The SES-associated IL-6 and SES EWAS CpGs were not 

enriched for any chromatin markers. The 80 IL-6 associated CpGs exhibited significant 

enrichment for active and primed enhancers (OR = 6.79, p = 1.16x10-12) as well as H3K4me1, 

another epigentic marker of these (OR = 3.47, p = 5.08x10-8) (432). Enrichment of both these 

epigenetic marks were suggestive of an active transcription state, meaning CpGs associated with 

IL-6 levels may be in actively transcribed genomic regions (432). 

 

3.3.9 CpGs within brain related genes had correlated methylation levels between whole 

blood and brain tissue in a reference dataset   

 A subset of 17 IL-6 and/or SES associated CpGs located in 12 genes with neurological 

function, were interrogated using the online tool BECon 

(https://redgar598.shinyapps.io/BECon/) to determine whether the methylation levels at these 

CpGs in blood might report on the methylation state in the brain where the likely mode of gene 

action occurs (38). Overall, 4/8 IL-6 associated, 1/4 IL-6 and SES associated, and 3/5 IL-6 
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independent SES associated CpGs were correlated between whole blood and at least one of three 

brain regions (r ≥ 0.3, Table 3.1, Supplementary Figure 3.3). 

 

3.3.10 Waist-to-hip ratio and smoking contributed to IL-6 associations with DNAm and 

variables of interest 

Previous associations have been found between smoking status and waist-to-hip ratio 

(WHR) with all three of my main effects: SES (430,431), serum IL-6 levels (428,429), and 

DNAm (426,427). As such, these associations were first tested for replication in this cohort, and 

secondly, as to whether they mediated the relationships discovered between IL-6 and DNAm 

and/or SES and DNAm. I found that serum IL-6 levels were significantly associated with WHR 

(F(4,321) = 40.1, p = 1.31x10-5, Supplementary Figure 3.4A) and smoking status (F(1,309) = 

6.2, p = 0.013, Supplementary Figure 3.4B). Of the 80 validated CpGs associated with IL-6, 17 

were found to be mediated by WHR and 15 by smoking with percentage contribution ranging 

between -19% to 20% and -16% to 37%, respectively (Supplementary Table 3.5A). Of the 15 

CpGs associated with both IL-6 and SES with DNAm, nine were impacted by smoking by more 

than 10% and two were by WHR (Supplementary Table 3.6). The trajectory of SES was found to 

be significantly associated with both WHR (F(3,325) = 4.452, p = 0.0044, Supplementary Figure 

3.4C) and smoking status (X2(3, N = 319) = 17.06, p = 0.0007, Supplemental Figure 3.4D).  Of 

the unique 51 CpGs found to be associated with SES trajectory, essentially none were mediated 

by WHR or smoking (Supplemental Table 3.5B).  

 

3.4 Discussion 

We investigated the physiological impacts of lifetime SES trajectory and IL-6 levels 

through the lens of DNAm, a relatively stable molecular mark that in part resides at the interface 

of the environment and genetics. Integrating multiple mechanistic avenues, such as inflammation 

and epigenetic markers, may help to elucidate the relationship between low SES and possible 

negative health outcomes observed throughout the literature (12,15,151,313,314). In the current 

study, this was addressed by measuring genome-wide monocyte DNAm and serum IL-6 from a 

community cohort of healthy individuals with varying lifetime trajectories of SES. SES was 

measured retrospectively in childhood and concurrently in adulthood with participants selected 

to ensure a balanced design between the four trajectories of high and low SES in early and 
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current life to aid in avoiding confounding. DNAm associated with serum IL-6 displayed a trend 

of negative correlation, reflective of previously reported impacts of IL-6 on global DNAm (409–

411). Amongst IL-6 associated CpGs, 19% were also associated with SES trajectory, with many 

influenced by smoking status but not waist-to-hip ratio. CpGs associated with IL-6 were 

frequently located within genes involved in the innate immune response, while CpGs associated 

with SES independently of IL-6 were located in adaptive immune genes. Changes in methylation 

within SES associated CpGs were not evenly distributed across the four trajectories – the 

majority of identified CpGs were differentially methylated in comparisons with Low/High SES 

individuals. This study highlights that while there was overlap in DNAm signal related to both 

SES and IL-6, unique associations were more abundant. Additionally, at least in this cohort, 

varying life course trajectories of SES had a disproportionate association with DNAm, 

highlighting the need for more nuanced investigations into SES and adverse health outcomes in 

the context of DNAm.   

 

3.4.1 SES upward mobility drove DNAm associations independent of IL-6 and lifestyle 

behaviours 

SES is associated with numerous adverse health outcomes, many of which have a distinct 

pro-inflammatory phenotype at the molecular level (5,15,145,167,376,386–388). Specifically, 

those who experienced low SES tend to have elevated serum levels of inflammatory cytokines 

such as IL-6 and CRP, both also associated to adverse health outcomes (163,433–437).  In 

addition to this overlap of health outcomes, negative correlations between serum IL-6 and SES 

have been established for childhood (166,438,439) and adulthood SES (285,289,438,440,441), in 

addition to SES trajectories (376), findings replicated in the current study.  Specific trends of 

SES and IL-6 were observed in this study based on the balanced study design across the four 

trajectories, showing stronger associations in order of increasing mean levels of serum IL-6: 

High/High, Low/High, High/Low, Low/Low (Early SES/Current SES) with the significance 

primarily related to differences between the High/High and Low/Low groups. Those with low 

current SES displayed the highest levels of IL-6 regardless of early-life status. These findings 

differ from previous research associating early-life SES with IL-6 levels in adulthood controlling 

for current SES (166,442). However, this result is also supported by previous work finding that 

childhood SES influences IL-6 levels within the context of recent life events (443). This 
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incongruency may be the result of cohort differences, such as SES measurement and population 

demographics. Concordant amongst this research is the reproducible association between low 

SES with increases in serum IL-6, regardless of which time point low SES is experienced.  

DNAm has been previously reported to associated with inflammatory cytokines, such as 

IL-6, supporting the hypothesis of it possibly being at the nexus of SES and inflammation. Many 

types of associations between DNAm and IL-6 have been reported, two of which, IL-6 

suppressing DNMT1 expression (409–411) and DNAm changes in relation to serum levels of IL-

6 (398), were also observed in this study. There was an overall trend of decreasing methylation 

with increasing IL-6 levels amongst IL-6 associated CpGs, making it tempting to speculate that 

this skewed distribution may result from the suppression of DNMT1 expression by IL-6 as 

previously reported (409–411). Consistent with these data, I observed an inverse relationship 

between IL-6 and DNMT1 mRNA transcript levels in monocytes from the CareGiver cohort, 

supporting IL-6 mediated down-regulation of DNMT1 gene transcription. However, while there 

is evidence in this sample for potential global effects of DNMT1, only half of the 15 IL-6 and 

SES associated CpGs displayed a negative correlation between IL-6 and DNAm levels and only 

three CpGs were driven by the Low/Low group, which has the highest levels of IL-6, suggesting 

the relationship between these three variables is not driven by global methylation effects of IL-6 

and instead is more specific. 

While IL-6 is one of the most influential cytokines, it is only one of numerous immune 

system players, therefore it is likely that there are other biological effects to investigate in the 

remaining CpGs that did not associate with IL-6 levels.  Amongst these associations, all 

comparisons containing the Low/High SES trajectory had 2-fold more associations than the other 

groups. At a more nuanced, and perhaps speculative level, these findings mirror recent research 

suggesting that individuals belonging to this Low/High group had better mental health outcomes, 

but worse metabolic health relative to their peers who remained in poverty (323). It is also worth 

noting that previous research investigating epigenetic age in this cohort found the greatest 

epigenetic age acceleration amongst the Low/High SES trajectory (227). Additionally, increases 

in epigenetic age acceleration was found amongst low-SES youth who had higher self-control, a 

measure associated with higher education and SES later in life (235).  

Both SES and IL-6 measures are associated with demographic factors such as WHR 

(429,430) and smoking (428,431), contributing to the multifaceted impact low SES can have on 
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health making interpretations of findings difficult. Smoking increases expression of the 

detoxification protein Aryl hydrocarbon receptor (AhR) which results in reducing inflammation 

in part by directly suppressing IL6 transcription (163,444,445). Considering this interconnected 

relationship, it is understandable that CpGs significantly associated with IL-6 were mediated by 

smoking status and WHR. WHR associations are likely due to the positive correlations reported 

between adiposity and IL-6, as adipocytes are also a significant source of serum IL-6 (429,446–

448). When assessing the contribution of these variables to IL-6- and SES-associated CpGs, 

most were impacted by smoking status but few by WHR. In contrast to IL-6 related CpGs, 

changes in DNAm associated with SES trajectory were not mediated by WHR or smoking status. 

As this EWAS was performed on the vast majority of genomic CpGs not associated with IL-6, 

these findings suggested associations between SES and WHR or smoking may potentially relate 

to DNAm primarily through pro-inflammation. Though modest associations, these findings were 

based on the integration of several measures along the hypothesized SES-pro-inflammatory 

pathway suggesting that SES associations with IL-6 levels may be affecting innate immune 

function in part through changes in DNAm. 

  

3.4.2 IL-6 independent CpGs associated with SES within adaptive immune genes 

Site-specific associations between DNAm, IL-6 and SES were investigated to allow for a 

more complex and nuanced look at underlying genetic pathways potentially involved. Two 

categories amongst the genes containing many of the differentially methylated CpGs were found, 

those with immune or neurological function. As DNAm was measured in purified monocytes in 

this study, it was reassuring that differential DNAm occurred within genes related to immune 

pathways. 

SES trajectory contributed to the relationship between serum IL-6 and DNAm levels 

amongst 15 CpGs which were located in 12 genes, with roughly half being involved in immune 

function such as B-cell activation (PRKCB), HIV infection (TNPO3) and MHC function (GLO1). 

Methylation of three of these CpGs were negatively associated with expression of the related 

gene (PRKCB, TNPO3 and MPRIP), driven specifically by the High/Low SES group who tended 

to have higher DNAm levels. These relationships were independent of life style behaviours, with 

only MPRIP being impacted by smoking status.  
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When characterizing SES-associated CpGs, several were in genes with various immune 

functions such as immune cell maturation (EBF4, TMEM176B), homing (HAS1) and MHC 

function (HLA-B, ZNRF2). Though monocytes primarily function in the innate arm of the 

immune response, they also have roles in the adaptive pathways where several SES associated 

CpGs were located in. Adaptive immunity has also been implicated in the relationship between 

health disparities and SES. Previous studies found that low SES individuals had higher 

seropositivity for cytomegalovirus (CMV), a proxy for immune health (150). Additionally, a 

large meta-analysis of over 300 empirical articles found the source and duration of the stressor 

impacted several arms of the immune system, where acute stressors suppressed cell-mediated 

immunity, part of the adaptive system, and chronic stressors suppressed both innate and cell-

mediated immune functions (157). Interestingly, two SES associated CpGs were located in 

Notch signaling (NCOR2, HEYL) genes, important for adaptive immune function (449,450). 

Additionally, several were in genes that function in the major histocompatibility complex (MHC) 

class I mediated antigen presentation (ZNRF2, FBXO27, HLA-B, LTBP4), necessary for 

triggering the cell-mediated immune response to infection (451,452). Summarily, while IL-6 

related and independent CpGs, associated with SES, were located in genes with innate immune 

function, adaptive immune genes were found mostly in IL-6 independent sites. These differences 

highlight the more nuanced impact SES could have on immune function, beyond IL-6 signaling, 

an important consideration for future research into this paradigm.         

 

3.4.3 CpGs associated with SES were located within genes of neurological function  

SES, across the life course, has been associated to mental health and behavioural 

outcomes such as depression, anxiety, cognitive function and working memory (453). It is also 

known that IL-6 can cross the blood-brain barrier (163) and has been associated to neurological 

disorders (411,454) suggesting a possible link between SES, inflammation and brain DNAm. 

Genes related to neurological function annotated to the 15 IL-6 and SES associated CpGs were 

related to learning (CALN1), pre-synaptic signaling (NRXN2) and the stress response (LINGO3) 

(319,455). The CpG located in NRXN2 was documented as being correlated between peripheral 

blood and Brodmann 10 area (BA10) within the prefrontal cortex of the brain (r ≥ 0.3) in an 

independent dataset (38). Interestingly, methylation of three IL-6 associated CpGs located in 

NRXN1 were also positively correlated between blood and BA10. Previous research has 
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associated dysregulation of NRXN1 with ASD (456–458) and elevated IL-6 levels (454). 

Additional caution needs to be taken with these findings, however, as smoking status contributed 

to more than 10% in all of these relationships, making the driver of these associations difficult to 

untangle.  

When observing IL-6 independent, SES associated CpGs, six were related to neurological 

function with four previously reported to show correlation of DNAm levels between brain and 

blood (r ≥ 0.3) highlighting the possibility to discover potentially biologically meaningful 

findings (38). One was located in the promoter of DDO, where blood DNAm was previously 

reported to be positively correlated with BA10 and BA7 (38) and negatively correlated to gene 

expression with decreased methylation amongst those with the Low/High SES trajectory. 

Interestingly, D-aspartate oxidase acts as an agonist to the NMDA receptor in the brain where 

decreased promoter methylation resulted in increased expression which were previously 

associated with improved age-related neurodegeneration in mice (459). Methylation of another 

CpG located in SLC6A5 had a positive correlation to gene expression and negative correlation 

between methylation of blood and BA10, this relationship also driven by decreased methylation 

amongst the Low/High SES group. This gene encodes for the glycine transporter 2 protein 

integral to the transport and storage of glycine, and thus has been found to shape inhibitory 

neurotransmission in the central nervous system (460). Differences in levels of glycine 

transporter 2 protein have been found to be crucial considerations in the treatment of pain due to 

its relationship with NMDA receptor activity (461–465). While it is interesting to find SES, IL-6 

and DNAm associations within neurological-related genes, it must be emphasized that these 

findings were documented in purified monocytes. However, external resources can be leveraged 

to help support these relationships, such as comparing the correlation between DNAm measured 

in matched blood and brain samples (38). Overall, these findings highlight a possible link 

between SES and inflammation with potential influence in neurological pathways. 

  

3.4.4 Considerations and limitations 

It is important to highlight that all relations found between DNAm, IL-6 and SES in this 

study were associations, without any evidence for causation. Determining causality requires in 

vitro experiments where IL-6 or site-specific DNAm changes could be introduced and responses 

measured. One of the main functions of DNAm is in regulating gene expression, making it 
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tempting to assume differences in DNAm signals between groups result in changes in 

expression. However, studies have found relatively low correlation between expression and 

DNAm (40,466–469), reflected in this current study. There may be many reasons for this, one of 

which is the regulation of gene expression involves poising for a specific environmental 

response, without this there is no transcript present to correlate. Additionally, the stability of 

mRNA is highly variable and dependent on transcript function. 

While investigating DNAm in purified tissues is helpful to understand where a given 

association is coming from, the molecular markers used to purify and define immune cells, 

including monocyte subtypes, are constantly evolving. CD14 and CD16 markers can be used in 

combination to further divide monocytes into classical (CD14+CD16-), non-classical (CD14-

CD16+), and intermediary (CD14+CD16+) subtypes (470,471). Emerging research has shown that 

non-classical and intermediary monocytes are associated with inflammatory diseases such as 

rheumatoid arthritis (470,472,473). As such, while measuring DNAm in relevant purified cell 

lineages is an important step in understanding underlying mechanisms, more granular cellular 

subtypes should be taken into consideration for future studies, possibly in conjunction with 

single cell analyses. 

Another limitation related to differences in epigenetic profiles across cell types is how to 

interpret DNAm changes in a given tissue when the mechanism under investigation primarily 

occurs in a completely different body system. For example, while there are some CpGs with 

concordant DNAm levels between blood and brain tissue, many do not display this pattern 

(38,59,474). While in the current study I focused on the immune related implications of SES 

throughout life however, there is a plethora of research highlighting the significant impacts of 

SES on psychological health as well (313). While brain tissue for this cohort is not available, 

there are online resources, such as the BECon application (38), which provide insight into the 

likelihood of peripheral blood reporting on DNAm in the brain. In this study, I found that three 

out of four IL-6-associated CpGs located in NRXN1 were correlated by more than 0.3 between 

whole blood and Brodmann Area 10 (BA10), a region including the ventromedial prefrontal 

cortex, in the brain. This area, in particular, has been associated with processing contextual 

judgments about the self and others (475). These findings are alluring, but because no 

psychological measures were assessed, correlations are between brain and whole blood (not 

purified monocytes), and most processes of interest occur in a tissue which was not measured, 



70 

 

caution must be taken in interpretation. These results are presented with the aim of informing 

future research to confidently and appropriately design a study able to answer these queries.  

Additional limitations to consider are that no genetics were measured in this cohort even 

though we know genetic background can also influence DNAm levels (40) and while this study 

controls for reported ethnicity, genetic measures would better account for population 

stratification. DNAm can also change throughout development (68), and while SES throughout 

the life course was investigated, this study was conducted cross-sectionally with early life SES 

measures taken retrospectively and DNAm and expression measured only in adulthood. 

Investigating several aspects of the hypothesized SES-immune function pathway 

simultaneously allows for an understanding of how lifetime SES experiences could get “under 

the skin” (15) and elucidates pathways for further investigation. This study suggested 

associations amongst SES, serum IL-6 levels, DNAm, and SES throughout the life course. CpGs 

associated with IL-6 and whose effect was modulated by SES trajectory were located in immune 

and neurological gene pathways. We also found DNAm differences independent from serum IL-

6 levels that associated with the lifetime trajectory of SES an individual experienced, with an 

abundant signature present amongst individuals with an upward mobility of SES throughout their 

life. This highlights the benefit of measuring SES throughout life to help reveal relationships of 

vulnerable trajectories often lost in the health research milieu. Together these findings provide 

evidence of relations between SES at both the molecular and physiological level with 

implications for pro-inflammatory phenotypes and later life health. Overall, they highlight the 

importance of integrating multiple biological measures when evaluating social variables such as 

SES, and address the first steps to understanding its potentially multifaceted role in precipitating 

diseased states. Multidimensional approaches to understand unique SES trajectories will provide 

more targeted solutions to alleviate health disparities. 
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4 Exposure to childhood abuse is associated with human sperm DNA 

methylation  
 

4.1 Background and Rationale 

Childhood abuse is associated with adverse mental and physical health outcomes across 

the life course (7,476,477). Childhood abuse has also been associated with altered function of 

multiple biological systems (8–11), with differences persisting into adulthood (12,13). Changes 

in epigenetic marks have been proposed as a mechanism by which childhood abuse increases risk 

of neuropsychiatric and cardiometabolic disease (478,479). Differences in epigenetic marks have 

been found in DNA methylation (DNAm) of blood (203,205), saliva (206), and brain tissue 

(480) by experience of childhood abuse (30). The association of childhood abuse with DNAm in 

gametes is of particular interest, both because the patterns of DNAm in gametes have been 

associated with fertility (481,482) and the possibility that gamete DNAm may affect the healthy 

development of the offspring (483,484). 

In animal models, a variety of exposures has been shown to affect sperm DNAm, 

including nutritional status (485), endocrine-disrupting hormones (486), and other pollutants 

(487). Animal experiments have also indicated that paternal stressors can affect DNAm (118), 

gene expression (488,489), and behavior (117,118) in the offspring. In mice, exposure to social 

instability early in life leads to anxiety and defective social interactions, behaviors that are 

transmitted to three generations of offspring through the paternal line, though this work remains 

controversial (490). Transmission of paternal experiences of psychological trauma through 

gametes has also been documented (489) and corresponds with alterations in paternal sperm 

DNAm (118). 

To our knowledge, no studies in humans have examined the effects of psychosocial 

stressors on sperm DNAm; however, psychological stress in humans has been associated with 

poorer semen quality, including lower motile sperm concentration, lower percentage of 

progressively motile sperm, and reduced lateral head displacement (491,492). Evidence suggests 

that environmental exposures such as cigarette smoke (493) and health status indicators, such as 

age (494) and obesity (495,496), are associated with sperm epigenetics in humans. Additionally, 

relevant to abuse in childhood, the pre-pubertal period has been identified as a potential window 

of sensitivity of the sperm epigenome to environmental influences (497). Thus, it is possible that 
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psychosocial stressors, including childhood abuse, affect the human sperm epigenome, including 

DNAm. 

In the present study, we assessed the differences in genome-wide sperm DNAm in 

association with childhood abuse in a healthy longitudinal cohort of men. We calculated the 

principal components (PCs) of methylation values for all probes and examined the association of 

childhood abuse with PCs. DNAm sites typically function in concert with neighboring sites to 

affect gene expression (498); thus, it may be more meaningful to investigate DNAm within 

genomic regions as opposed to at individual sites. We therefore examined differentially 

methylated regions (DMRs) for association with childhood abuse. Finally, we used machine 

learning methods in order to identify sites indicative of childhood abuse from all sites and 

construct a parsimonious indicator of child abuse status. As childhood abuse has been associated 

with higher prevalence of adulthood health risk behaviors (499,500), mental disorders (501,502), 

and trauma exposure (503,504), we conducted exploratory analyses to examine whether body 

mass index (BMI), smoking, depressive symptoms, posttraumatic stress symptoms, and trauma 

exposure accounted for a possible association of childhood abuse with sperm DNAm. 

 

4.2 Materials and Methods 

4.2.1 Sample 

The Growing Up Today Study (GUTS) is a US longitudinal cohort of 16,882 offspring of 

women participating in the Nurses’ Health Study II, enrolled in 1996 at ages 9–14 years and 

followed annually or biennially (505). In 2010, male participants were asked whether they would 

be willing to donate a semen sample. Nearly two-thirds (64%) were willing. Age, BMI, and race 

did not differ between men willing and unwilling to donate. In 2012, we contacted 66 men to 

request a sample; 54 men (82%) returned the sample by mail. We further invited the first 28 men 

who returned the sample to send a second one; 24 men (86%) returned the second sample. Men 

were asked to abstain from ejaculation for at least 48 h prior to producing the sample by 

masturbation into a collection container (Thermo Scientific Nalgene Jars). Samples were shipped 

overnight, with four gel refrigerant packs surrounding the sample, to the Massachusetts General 

Hospital Fertility Center where sperm concentration and morphology were measured. Remaining 

semen was aliquoted and flash frozen in liquid nitrogen. Informed consent was obtained from all 

participants. The Institutional Review Board of Partners Healthcare approved this study. 
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We conducted DNAm assays on 48 samples from 34 men. Of these, 20 men contributed 

single samples, 12 men contributed two samples each, produced ~three months apart, and two 

men’s samples were assayed twice as technical replicates, for a total of 48 samples assayed. We 

oversampled men who had suffered high levels of abuse, such that the samples that were assayed 

included 17 men who suffered high, five men medium, and 12 men no childhood abuse. 

 

4.2.2 Measures 

Experiences of physical, emotional, and sexual abuse before age 18 were reported in 

2007 when participants were aged 18–23 years. Physical and emotional abuse were measured 

with four items from the Childhood Trauma Questionnaire (CTQ), querying frequency that an 

adult in the family yelled, insulted, punished cruelly, and hit so hard that it left bruises (506). 

Responses to the CTQ were summed (506) and then divided into quartiles based on their 

distribution in the entire cohort (lowest quartile = 0 points, highest quartile = 3 points). Physical 

and emotional abuse were also measured with three items from the Conflict Tactics Scales 

(CTS), querying frequency that an adult in the family shoved; threatened to punch, kick, or hit 

with something; actually punched, kicked, or hit with something; or physically attacked (507). 

Response options for the CTQ and the CTS ranged from “never” to “very often”. Responses to 

the CTS were skewed, with most respondents reporting none of these experiences. We therefore 

divided this scale into 0: lowest 50%, 1: next 25%, and 2: highest 25%. 

Sexual abuse was queried in each time period with two questions regarding unwanted 

sexual experiences with an adult or older child (e.g., “Did an adult or an older child force you 

into any sexual activity by threatening you or hurting you in some way?”) (507). Response 

options included: no; once; or > once. 

To oversample men exposed to high levels of abuse, we created an overall measure of 

childhood abuse in three levels: none, moderate, and high. Men with “no abuse” (N = 12) were in 

the lowest category of both measures of physical and emotional abuse and had not experienced 

sexual abuse. Respondents with “high abuse” (N = 17) were either in the highest level of the CTS 

or the highest level of the CTQ, or had a mixture of elevated responses across both 

questionnaires. All or nearly all men in this group had experienced punishments that seemed 

cruel, were yelled and screamed at, and had hurtful and insulting things said to them. All had 

been shoved, grabbed, hit, or physically attacked in some other way, and most had also been 
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threatened with violence. Two men in this group had been sexually abused. Five participants fell 

between the “no abuse” and “high abuse” groups and were considered to have experienced 

“medium” abuse. We also summed the CTQ, CTS, and sexual abuse measures to create a 

continuous measure of abuse severity (range, 0–7) and dichotomized participants as none-to-

medium (0–2) vs. high abuse (7–11). 

  

4.2.3 Covariates 

We examined the characteristics of the semen sample, including ejaculate volume, sperm 

concentration, percent normal morphology, collection date, collection time, and abstinence 

interval, as well as characteristics of the participant, including age at collection, month of birth, 

and race/ethnicity as possible covariates. Additionally, we included information reported by the 

participants’ mothers, Nurses’ Health Study II cohort members, regarding her ancestry as well as 

participants’ childhood socioeconomic status, an index of family income, maternal social 

standing, and paternal education, reported in 1999–2001. 

 

4.2.4 Hypothesized mediators 

Childhood abuse increases risk for adulthood health risk behaviors, mental disorders 

(508,509), and trauma exposure (504), factors that may explain an association of childhood 

abuse with adulthood sperm DNAm. We examined smoking, BMI (by self-report in 2010 and 

2007), depressive symptoms (measured with the Center for Epidemiologic Studies Depression 

Scale-10 (510) in 2010), posttraumatic stress symptoms (measured with the 7-item Short 

Screening Scale for DSM-PTSD (511) in 2007), and trauma exposure (measured in 2007 with 13 

items adapted from the Brief Trauma Questionnaire (512) e.g., physical assault, intimate partner 

violence, and serious illness) as potential mediators. 

 

4.2.5 DNAm assay 

A differential lysis method involving a series of six washes was performed to separate 

sperm cells from epithelial and round cells. We then conducted DNAm assays with Infinium 

HumanMethylation450 (450 K) BeadChips (Illumina) using bisulfite-treated DNA (EZ-96 DNA 

Methylation kit, Zymo Research, Irvine, CA). These assays produce 485,577 data points 

encompassing 482,421 CpG and 3091 non-CpG (CpN) sites. Raw intensity scores were color 
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corrected and background was subtracted using GenomeStudio Software (Illumina). 

Methylation β value for each probe represents a continuous ratio between 0 (0% methylated 

DNA molecules) and 1 (100% methylated DNA molecules). Probes were excluded from further 

analysis if they had a detection p-value < 0.01 (n = 2144 probes) or if > 5% of samples were 

missing a β value (n = 12,353 probes). Probes which bound in silico to the X and Y chromosome 

in addition to the specified targets were excluded (348), leaving N = 439,746 probes available for 

subsequent analysis. Inter-sample normalization was performed using quantile normalization 

(345). To account for the two probe types on the Illumina BeadChip, normalization was 

performed using subset-quantile within array normalization (SWAN) (513). To determine if 

there were batch effects, PCA was performed on the normalized data followed by Spearman’s 

correlations of the PCs with all technical variables. A slight batch effect associated with chip 

number and position was removed using empirical Bayes methods (R package SVA, ComBat 

function, Supplementary Figure 4.1) (350). 

To evaluate the purity of our washed sperm samples, we compared DNAm in our sample 

with DNAm from an independent study of contaminated and purified sperm samples (Gene 

Expression Omnibus (GEO) (514) GSE108058, Supplementary Figure 4.2). We merged the 

GEO dataset with our own data and performed PCA. The vast majority of variation in 

methylation is associated with tissue heterogeneity, therefore the first few PCs should be 

correlated with the purity of the semen samples. Plotting PC1 against PC2 (for visualization 

purposes), our samples clustered with the pure semen, providing evidence that we had 

successfully purified our samples. We additionally examined the methylation status of two 

imprinting control regions (HYMAI and GNAS-AS). These regions are paternally expressed, and 

therefore we would anticipate that these regions would be fully unmethylated if our samples 

contained purified haploid gametes (as opposed to hemi-methylated in somatic tissue). We 

calculated the median DNAm β value for each probe underlying these regions (130 probes) for 

each sample in our study. The vast majority of samples had median β < 0.05, suggesting good 

purity (Supplementary Table 4.1, Supplementary Figure 4.3). 
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4.2.6 Analyses 

To characterize the study sample, we compared age, race, and abuse exposure of study 

participants with all GUTS men. Next, for study participants, we calculated prevalence for 

categorical variables and mean for continuous variables for covariates by childhood abuse status. 

 

4.2.7 Principal components analysis 

To investigate whether childhood abuse and our covariates were associated with variation 

in DNAm, we conducted PCA with all probes (N = 439,746) using one randomly selected sample 

per subject. PCA reduces the dimensionality of the data by identifying orthogonal components 

from methylation values of all individual probes, with PC1 explaining the most variance. We 

examined the association of both the continuous and categorical childhood abuse variables and 

the covariates with centered PCs, using one-way ANOVAs for ordinal and categorical variables 

and Spearman’s correlations for continuous variables. For PCs that were statistically 

significantly associated with childhood abuse, we investigated which specific probes contributed 

most to the PC by first identifying individual probes with the largest PC scores (the 1% of probes 

with the largest positive scores and 1% with the most negative scores) and then, to increase the 

likelihood of biological relevance, selected only probes with methylation Δβ ≥ 5%, where  

Δ!	= !̅ high abuse - !̅ no abuse. P-values were not adjusted for multiple testing, as this was an 

exploratory analysis to determine associations with DNAm. 

 

4.2.8 DMRs analysis 

We next investigated whether childhood abuse was associated with patterns of DNAm in 

spatially clustered probes. We investigated DMRs by childhood abuse exposure using the R 

package DMRcate (515) (Bioconductor, http://www.bioconductor.org), using the same randomly 

selected sample per subject used in the PCA. DMRcate first assesses the association of the 

exposure (childhood abuse) with methylation at each individual CpG site, then groups the probes 

into DMRs based on the similarity of effect size and directionality with distances of ≤ 1000 bp 

between them. DMRs are then corrected for multiple testing by calculating the false discovery 

rate (FDR) for each DMR. DMRs that do not meet an FDR ≤ 0.05 and a fold change ≥ 0.05 are 

dropped. We considered regions to be DMRs if they were statistically significant at an 

FDR ≤ 0.05, contained ≥ 3 probes, and had a difference in DNAm β (Δβ) ≥ 5%. We conducted 
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these analyses with the ordinal childhood abuse variable to reduce the effects of outliers, then 

checked that results were similar in analyses using the continuous childhood abuse variable. We 

verified our findings by replacing the sample used in the primary analyses with the replicate 

sample from each man who contributed two samples (N = 12) and re-running the DMR analyses 

using original samples from 22 men and replicate samples from 12 men. Finally, in sites located 

in identified DMRs, we calculated the interclass correlation coefficient (ICC) between the first 

and second sample in DNAm β values. 

To examine the concordance of our two methods of identifying probes differentially 

methylated by childhood abuse, we compared the overlap in probes identified using PCA and 

probes identified in DMR analysis.  

 

4.2.9 Machine learning analysis 

Finally, we used machine learning to identify sites predictive of childhood abuse and: (1) 

compare them with the sites identified in the DMR analysis and (2) construct a parsimonious 

predictor of child abuse status. We fit a penalized linear regression (“elastic net”) to select 

informative probes from the set of all probes using the dichotomized childhood abuse variable 

(none/medium vs. high abuse, mixing parameter α set to 0.5, the default). The penalized 

regression begins by fitting a single linear model including all probes, then selects a subset of 

relevant probes by shrinking the linear coefficients and setting to zero coefficients below a given 

threshold (516). The selected probes are those with non-zero coefficients. We estimated the 

penalty parameter λ with tenfold cross-validation and set it to 0.095. We applied the resulting 

predictor to three independent datasets (Gene Expression Omnibus (514) GSE108058, 

GSE102970 (517), and GSE64096 (518)) to ascertain whether the prevalence of abuse estimated 

with this predictor was approximately the same as the prevalence in the whole GUTS cohort 

(high abuse prevalence = 30%). As no datasets of sperm DNAm were available with childhood 

abuse measured, we could not test its ability to predict abuse status. 

 

4.2.10 Pyrosequencing methylation confirmation 

To confirm findings from the 450 K array, we performed pyrosequencing with bisulfite-

converted DNA. We selected five sites for confirmation, prioritizing sites within DMRs and sites 

with a low FDR. We calculated Spearman correlations between β values obtained from 
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pyrosequencing and the 450 K array and performed linear regression to ascertain the association 

of pyrosequencing β values with childhood abuse. 

 

4.2.11 Exploratory mediation analysis 

To examine whether adulthood health risk factors might explain a possible association 

between childhood abuse and DNAm, we conducted two analyses. First, we examined whether 

these risk factors loaded on DNAm PCs, using one-way ANOVAs for ordinal variables and 

Spearman’s correlations for continuous variables. Next, we examined probes identified in DMR 

analyses. For each probe in a childhood abuse DMR, we compared the association of childhood 

abuse with DNAm in linear models adjusted only for age and semen volume (base model) and in 

models further adjusted for: (1) health risk behaviors (smoking and BMI); (2) mental health 

(depressive and posttraumatic stress symptoms); and (3) trauma exposure. We calculated % 

mediation as:  

[(βchild abuse, base model–βchild abuse, adjusted model)/βchild abuse, base model]*100 

for each probe and calculated the mean mediation across all probes within each DMR for each 

set of hypothesized mediators. We did not include all hypothesized mediators in a single model 

to avoid overfitting. 

 

4.2.12 Probes associated with childhood abuse in prior studies 

We examined the association of 1,667 probes previously identified as associated with 

childhood abuse (206,479–481). We considered probes with FDR < 0.05 as statistically 

significant, accounting for multiple testing within this set of 1,667 probes. 

 

4.3 Results 

4.3.1 Sample 

Study participants were similar to all GUTS participants in age (participants, mean = 25.7 

years, range = 23–29 years; GUTS, mean = 25.8 years, range = 23–31 years) and race/ethnicity 

(participants, 91.2% white; GUTS, 93.2% white), and had a higher prevalence of high levels of 

childhood abuse (participants, no abuse = 35.3%, high = 50%; GUTS, no abuse = 26.3%, 

high = 28.8%). Characteristics of study participants and semen samples were similar across 

levels of childhood abuse (all p > 0.05, Table 4.1). 
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  Experience of childhood abuse 

  None (N = 12) Medium (N = 5) High (N = 17) 

Covariates     

Age, years Mean (range) 26 (24-28) 25 (23-27) 25 (23-29) 

Race/ethnicity     

White % (N) 92 (11) 100 (5) 88 (15) 

Nonwhite % (N) 8.3 (1) 0.0 (0) 12 (2) 

Maternal ancestry     

Scandinavian % (N) 0 (0) 20 (1) 12 (2) 

Southern European % (N) 42 (5) 20 (1) 18 (3) 

Other Caucasian % (N) 83 (10) 60 (3) 71 (12) 

Hispanic % (N) 0 (0) 0 (0) 5.9 (1) 

Childhood socioeconomic status Mean (SD) 7.3 (1.5) 7.6 (1.5) 7.0 (1.9) 

Semen volume, ml Mean (SD) 2.5 (1.3) 3.9 (1.7) 2.7 (1.8) 

Sperm concentration, M/ml Mean (SD) 56 (27) 56 (19) 53 (29) 

Normal sperm morphology % (SD) 7.8 (3.5) 7.8 (5.5) 6.5 (2.9) 

Collection time, morning % (N) 92 (11) 60 (3) 65 (11) 

Abstinence time, hours Mean (SD) 93 (18) 97 (22) 83 (12) 

Hypothesized mediators     

Smoking     

Current % (N) 8.3 (1) 0 (0) 24 (4) 

Past % (N) 17 (2) 20 (1) 5.9 (1) 

BMI Mean (SD) 24 (3.2) 24 (2.9) 24 (4.7) 

Depressive symptoms Mean (SD) 5.7 (4.7) 5.5 (5.6) 7.7 (5.0) 

Posttraumatic stress symptoms Mean (SD) 1.2 (0.3) 1.3 (0.5) 2.0 (1.2) 

Traumatic events Mean (SD) 0.2 (0.4) 1.6 (1.5) 1.4 (1.7) 

Table 4.1   Participant and semen sample characteristics by experience of childhood abuse (N = 34). 
SD, standard deviation. Maternal ancestry by maternal self-report in 1989. Ancestry percentages do not sum to 100, 
as women could endorse more than one ancestry. No mothers reported African, American, Asian, or “other” 
ancestry. Childhood socioeconomic status is an index of family income in 2001, paternal educational attainment in 
1999, and maternal perceived social standing in the US in 2001. Normal sperm morphology ascertained according to 
the World Health Organization (519). 
 

4.3.2 Principal components analysis 

PC4 was correlated with childhood abuse (Spearman’s correlation p ≤ 0.05) and 

explained 6.2% of the variation in DNAm (Figure 4.1). Participant’s age was also correlated with 

PC4 and adjusted in DMR analyses. To identify probes that were both strongly associated with 

PC4 and were related to childhood abuse exposure, we selected probes with the largest PC4 

scores (N = 8,795) and then from these selected probes with DNAm Δβ ≥ 5% between high and 
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no abuse, resulting in over 1000 probes (N = 1,137, Supplementary Table 4.2). The two men who 

had experienced sexual abuse were not outliers amongst men who experienced abuse 

(Supplementary Figure 4.4). 

 

 
Figure 4.1   Principal component 4 (PC4) was associated with childhood abuse exposure (one sample per 
participant, N = 34). 
PC4, representing 6.24% of the variance present in the methylation data, was significantly correlated (p < 0.05) with 
childhood abuse exposure. Darker regions signify stronger correlations between variables and principal components 
(N probes = 439,746). Normal sperm morphology is characterized, beginning at the head and moving toward the 
tail. Thus, “head morphology” is the % of sperm in a sample with normal heads, “neck morphology” is the % with 
normal heads and necks, and “tail morphology” is % with normal head, neck, and tail. Abstinence time is the time 
between the sperm donation and the most recent preceding ejaculation. PC principal component, CTQ Childhood 
Trauma Questionnaire, CTS Conflict Tactic Scale.  
 
4.3.3 DMRs analysis 

We identified 13 DMRs meeting our criteria: (1) FDR ≤ 0.05; (2) mean Δβ ≥ 5%; and (3) 

contained ≥ 3 probes. Of these 13 DMRs, 12 met these three criteria in analyses using original 

samples from 22 men and replicate samples from 12 men (N = 34). These 12 DMRs contained 64 

probes (Table 4.2, Figure 4.2, and Supplementary Figure 4.5), three of which were located in 

enhancers, two in transcription start sites, six in CpG islands, and three in gene bodies 

(Supplementary Table 4.3). The ICC between replicate samples (N = 12) for the 63 CpG sites 

comprising these 12 DMRs was greater than 0.7 for 90% of sites (Supplementary Figure 4.6). 

Results were similar with childhood abuse coded as a continuous variable.   
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Sites identified in the DMR analysis overlapped considerably with sites identified in the 

PC analysis. Thirty-five of the 63 CpG sites in the DMRs were amongst the sites loading most 

strongly on PC4. 

 

 
Table 4.2   Differentially methylated regions (DMRs) associated with childhood abuse exposure. 
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Figure 4.2   Four genomic regions differentially methylated by childhood abuse. 
Differentially methylated regions (DMRs) were defined as regions that differed statistically by abuse exposure at an 
FDR ≤ 0.05, had a mean Δβ ≥ 5% across probes, and were confirmed using replicates. The “CLU cluster” includes 
the 5’ UTR transcription start site and part of the gene body spanning 2.8 kb. The “MAPT cluster” is located in the 
gene body and spans 1.2 kb. The “SDK1 cluster” is located in the gene body and spans 1.5 kb. The “SYCE1 cluster” 
is located in the 5’ UTR and spans 200 bp.  
 

4.3.4 Pyrosequencing 

For pyrosequencing confirmation of 450K array results, we selected four CpG sites 

contained in childhood abuse DMRs: the ARL17A (cg04703951), the MAPT (cg00438222) and 

the LRRK1 (cg09926099 and cg00293616) clusters, and one additional site (cg08780220) based 

on its low FDR. All sites had significantly high correlations between measurements obtained by 

450K and pyrosequencing (Spearman’s rank ρ ≥ 0.74, p-value ≤ 4.0 × 10–7, Supplementary 

Figure 4.7), and were significantly associated with childhood abuse in linear regressions after 

correction for multiple testing (Supplementary Figure 4.8, Supplementary Table 4.4). The 

pyrosequencing assay for cg04703951 additionally measured DNAm at four CpG sites not 

represented on the 450K array. These four additional sites were highly correlated with 

neighboring sites measured on the 450K array (ρ ≥ 0.88) and differed significantly by childhood 

abuse (p-value ≤ 3.9 × 10–8, Figure 4.3, Supplementary Table 4.4). 
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Figure 4.3   Additional sites measured during pyrosequencing of “ARL17A cluster” correlated significantly 
with 450K sites in relation to childhood abuse. 
The “ARL17A cluster” found using DMRcate is located 30 kb away from ARL17A and spans 344 bp. The 450K 
methylation measurements of site cg04703951 (top panel) was confirmed using pyrosequencing techniques (bottom 
panel). The pyrosequencing assay measured DNAm at four additional sites not represented on the 450K array 
(bottom panel). SD - standard deviation, DMR - differentially methylated region, FDR - false discovery rate.  
 

4.3.5 Machine learning analyses 

The machine learning approach identified three probes (cg02622647, cg04703951, and 

cg17369694) as most useful for classifying participants as none or medium vs. high abuse 

exposure. These probes correctly classified 71% of participants (12 true positives, five false 

positives, 15 true negatives, and two false negatives). Two of these three probes were also 

identified in the DMR and PC analyses (cg02622647 and cg04703951, ARL17A cluster), 

showing the concordance of these methods. In three independent datasets (NCBI GEO accession 

numbers GSE108058 (514), GSE102970 (517), and GSE64096 (518)) this three-probe predictor 

predicted abuse prevalence of 30%, 35%, and 25%, respectively, similar to the 29% found in the 

GUTS cohort. 
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4.3.6 Mediation analyses 

None of our hypothesized mediators was associated with PC4, the PC that was 

significantly associated with childhood abuse. For probes in child abuse DMRs, the association 

of childhood abuse with DNAm was somewhat attenuated in models also including depressive 

and posttraumatic stress symptoms (two of 12 DMRs, mean mediation = 11.2 and 13.6%) and in 

models including lifetime trauma exposure (four of 12 DMRs, mean mediation range = 14.0–

23.7%), but not in models including smoking and BMI (mean mediation < 5.7% for all DMRs). 

The association of childhood abuse with DNAm was somewhat stronger after adjustment for 

mental health in two DMRs (DLL1 and SYCE1) and after adjustment for lifetime trauma in three 

DMRs (MAPT, DLL1, and NDFUA10, Supplementary Tables 4.5-4.7). 

We did not find a statistically significant association of childhood abuse with any of the 

candidate probes identified in prior studies of childhood abuse, likely due to these EWASs being 

conducted in other tissues (30,206,479,480). 

 

4.4 Discussion  

Childhood abuse has been associated with alterations to multiple biological systems in 

adulthood (13), and several studies have found differences in DNAm in somatic tissue by 

childhood abuse (30). We examined whether childhood abuse was associated with sperm DNAm 

in adulthood and found evidence that sperm DNAm varies by experiences of childhood abuse. 

The three approaches we used to identify differences in DNAm associated with childhood abuse, 

PCA, DMR analysis, and machine learning, found significantly overlapping sites. Moreover, 

pyrosequencing assays identified additional sites proximate to and correlated with sites measured 

by the 450K array that were also differentially methylated by childhood abuse. Together these 

findings suggest that our results reflect differences in DNAm associated with abuse. 

Several DMRs we identified were located within genes, although it is unknown whether 

these specific sites are associated with future gene expression or, if so, whether the Δβ we found 

by abuse level has biological significance. Clusterin (CLU) is an extracellular molecular 

chaperone expressed in the brain and embryonic tissues that responds to stress conditions and has 

been implicated in neurodegenerative disorders, including Alzheimer’s and Parkinson’s disease 

(520). Additionally, Clusterin RNA transcripts pass from human sperm to the oocyte at 

fertilization (521). MAPT is hypothesized to be involved in neuronal migration and in 
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establishing neuronal polarity (522) and has been implicated in neuroticism (523) and 

neurodegenerative disorders. PRDM16 is a transcriptional regulator involved in the regulation of 

fat cells (524,525). SDK1 encodes a protein in the immunoglobulin superfamily (522). Thus, 

DMRs were found on genes coding for proteins with a variety of functions, consistent with the 

documented effects of childhood abuse on the brain, body weight, and immune system. The 

DMRs we found did not overlap with prior DMRs identified in a study of paternal sperm and 

offspring symptoms of autism spectrum disorder (526) nor with probes in brain tissue, saliva, 

and peripheral blood identified in prior studies of childhood maltreatment (30,206,479,480). 

We found that higher trauma exposure and higher prevalence of depressive and 

posttraumatic stress symptoms in men who experienced childhood abuse compared with men 

who did not accounted for some of the association between childhood abuse and sperm DNAm 

in five DMRs. Childhood abuse and other types of traumatic events have common biological 

effects, e.g., on the HPA-axis (527,528) and systemic inflammation (529), thus it is plausible that 

abuse and other trauma types share effects on DNAm as well (530,531). However, the 

association of childhood abuse with DNAm was also stronger in five DMRs after further 

adjustment for mental health and lifetime trauma. 

Our findings should be considered in light of important limitations. First, our sample size 

was small. Therefore, our identification of DMRs associated with childhood abuse should be 

interpreted cautiously and be used primarily as a starting point for further research. Due to our 

small sample size, our examination of adulthood sequelae of childhood abuse that might mediate 

a relation between abuse and DNAm must be considered exploratory. Second, our sample was 

predominantly white, thus, our findings may not apply to men of other races. 

Animal studies have indicated that psychosocial stressors can affect both epigenetic 

patterns in sperm and offspring phenotype. Male mice conditioned to odor-related fear exhibited 

differences in sperm DNAm at a locus related to the odor receptor. These fear-conditioned mice 

produced two generations of offspring with the same odor-related fear response as well as 

corresponding alterations to neuronal structures, results that were robust to cross-fostering and in 

vitro fertilization (118). Mice exposed to chronic stressors showed a greater concentration of 

nine sperm micro RNAs (miRNAs) and HPA-axis alterations in offspring (489). Injection of 

these nine miRNAs in zygotes produced similarly altered HPA-axis function, suggesting a causal 

role for the miRNAs in offspring biology (532). In another experiment, mice exposed early in 
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life to unpredictable maternal separation had altered patterns of small noncoding RNAs 

(sncRNAs) in sperm and had offspring with behavioral differences compared with control 

offspring. Injection of RNA from sperm into fertilized oocytes reproduced these behavioral 

differences (117). Thus, robust experiments have indicated that stressors may affect murine 

sperm epigenetics, including DNAm, and offspring biology. 

Evidence that psychosocial stressors affect human sperm epigenetics remains limited. To 

our knowledge, our study is the first to document an association of psychosocial stressors and 

sperm epigenetics in humans. Indirect evidence that stressors could affect sperm epigenetics in 

humans is suggested by studies finding reduced sperm quality in men exposed to psychosocial 

stressors (491,533,534), as well as the association of other kinds of environmental exposures 

with human sperm epigenetic patterns (493,496,535–537). 

While most mammalian paternal epigenetic marks are erased at fertilization and again 

during preimplantation development (538), some loci are resistant to demethylation (115), and 

these preserved epigenetic marks may be biologically important. Several pieces of evidence 

suggest that human sperm epigenetics influences both fertility and embryogenesis: (1) sperm 

cells are transcriptionally silent yet have epigenetic marks characteristic of transcription 

(539,540); (2) sperm chromatin has patterns of histone modifications at loci related to embryo 

development (539,540); (3) sperm mRNA, produced prior to transcriptional arrest, are 

transferred to the oocyte (521); and (4) sperm epigenetic marks are associated with fertility 

(540). 

Childhood abuse greatly precedes the time period in which the ejaculated sperm were 

dividing and maturing, thus could not directly affect sperm DNAm at this stage. Instead, 

childhood exposures may affect the epigenome of spermatogonia, which then gets propagated 

during spermatogenesis in adulthood (497,541). Additionally, our results suggest that childhood 

abuse may lead to adulthood exposures that affect the sperm epigenome during spermatogenesis 

(487). Regardless of their origin, it is tempting to speculate that these DNAm marks are 

somehow propagated to the offspring. However, research in human developmental biology has 

not yet provided strong evidence for this possibility (540). Moreover, we note that offspring 

inherit the material from a single sperm, for which each CpG site is either methylated or 

unmethylated. If differences in DNAm associated with child abuse render affected sperm less 

likely to fertilize an egg, then the potential impact of these changes on offspring would likewise 
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be reduced. Studies in humans have documented adverse neurodevelopmental outcomes in 

offspring of persons exposed to severe psychosocial stressors, in particular, to childhood abuse 

(500,542–549). The hypothesis that the experience of stress may affect offspring through the 

parental epigenome has been raised as a potential mechanism for these associations (550,551). 

While this possibility is intriguing, molecular evidence from human germ cells remains sparse. 

Our results recommend further consideration of this promising hypothesis. 
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5 Conclusion 
 

5.1 Dissertation summary and overarching conclusions 

This dissertation represents a body of work aimed at analyzing the complex aspects of 

how adversity may associate with genome-wide DNAm throughout life in the context of markers 

of stress and inflammation, encompassing a comprehensive set of analyses interrogating 

unknown or problematic aspects of social epigenetic studies. One key issue in the field of social 

epidemiology and epigenetics is that of variable inconsistency (370,552). Adversity can be 

experienced in many ways, with SES being a common measure investigated. However, the 

definition of SES varies across disciplines and societies and typically encompasses a myriad of 

sub-categories, which could each have unique and differential impacts on human health and 

social determinants (326,552). 

In Chapter 2, I analyzed a richly phenotyped Costa Rican cohort (n = 482) to attempt to 

disentangle four sub-categories of SES by determining if these measures exhibited differential 

associations with whole blood DNAm. EWASs were performed on retrospective childhood and 

concurrent older adulthood measures of wealth (household assets), education (self and maternal) 

and self-reported economic standing, in addition to a composite SES variable. Post hoc 

sensitivity analyses were done to determine how much of the relationship could be explained by 

inflammatory (CRP) and stress (epinephrine, norepinephrine, DHEAS, cortisol) biomarkers, and 

lifestyle factors (BMI, drinking, smoking). Dissecting SES sub-categories, the self-report 

measure behaved distinctly and could be interpreted as dampened relative to more objective SES 

measures. Temporally, most of the effect was seen with older adulthood SES measures, while a 

large proportion of the childhood-associated sites was confounded by stress and inflammatory 

biomarkers.  

In the sensitivity analysis, where childhood measures were highly impacted and older 

adulthood measures were not, the composite variable combining these opposing trends displayed 

neither enrichment nor depletion in CpGs impacted. This finding, that childhood SES measures 

were especially influenced by stress and inflammation biomarkers, supports the developmental 

origins of health and disease (DOHaD) hypothesis that early life environments set the stage for 

the metabolic and physiological phenotype in later life (18,324). Notably, my work highlights the 

difference in how subjective versus objective measures associate with DNAm. Additionally, 
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while composite measures aim to encompass many complex attributes of SES, there may be 

cases where null results occur because of opposing trends of sub-categories cancelling out signal.   

When investigating how a molecular mark, such as DNAm, associates with a relatively 

distal variable, such as a social environment, it may be important to incorporate other measures 

that may be involved in the pathway of effect to fully unravel what is happening (313). One 

hypothesis on how SES is associated with negative health disparities later in life is that 

experiences of poverty can equate to experiences of chronic stress, which itself can result in 

dysregulation of important body systems (12). Specifically, immune system dysregulation has 

been a focus, as many of the diseases linked to poverty have a proinflammatory phenotype, with 

affected individuals commonly having increased basal cytokine levels, such as IL-6 (295).  

To investigate the link between these three variables, I investigated purified monocyte 

DNAm amongst a cohort (n = 333) balanced for having varying trajectories of SES throughout 

life (Early/Current Life: Low/Low, Low/High, High/Low, High/High). Initially, I found there 

was a subset of CpGs associated with serum IL-6 levels, which were validated in an independent 

cohort. Amongst these sites, a sensitivity analysis was done incorporating SES trajectories to 

determine if there was any relationship between SES, DNAm, and IL-6. An EWAS was also 

performed on all CpGs not associated with IL-6 to determine any independent associations 

between DNAm and SES trajectory alone. CpGs associated with serum IL-6 levels, where the 

effect was partially explained by SES trajectory, were located in extracellular and intracellular 

signaling integration genes. Differences amongst the CpG sites associated with SES trajectory, 

but not IL-6, were driven predominantly by the individuals who experienced low early life SES 

but high adulthood SES. This finding is in line with previous work where increased metabolic 

syndrome was experienced amongst minorities who grew up in poverty even though they ended 

up with high adulthood SES, relative to their peers who remained in poverty throughout life 

(323).   

Finally, there has been substantive interest into the idea that adverse experiences could be 

transgenerationally inherited through epigenetic mechanisms (113,114,117,118). As described in 

the introduction, proving this has been extraordinarily difficult, and studies in humans are still in 

their infancy. However, if this truly is a potential mechanism of inheritance, then it stands to 

reason one should be able to detect signatures of adversity in the gametes, the cells responsible 

for producing future offspring. As such, I interrogated DNAm in the sperm of adult men who had 
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experienced a range of physical and sexual abuse in childhood (204). This was a small, pilot, 

proof-of-concept study using a sub-sample from the GUTS cohort (n = 34). I compared DNAm 

amongst those who experienced high, medium, and low childhood abuse and found 12 regions 

with differential methylation between the groups. These regions were located in genes with 

neuronal function (CLU, MAPT), immune function (SDK1) and fat regulation (PRDM16). The 

delta betas (∆βs) amongst these regions were large and verified using repeat samples taken from 

a subset of the individuals months apart, supporting that the signal detected was not highly 

variable across this period of time. Pyrosequencing was performed on a subset of regions to 

verify that differences were not platform specific, where I was able to interrogate additional 

CpGs not measured on the array and concluded that these sites also trended significantly in the 

same direction, adding confidence that some of these DMRs may be true findings. Finally, to 

ensure there was no confounding between adversity experienced in early life and in adulthood, a 

sensitivity analysis was performed to account for lifetime trauma experienced, depression, and 

PTSD amongst other related variables. While there were regions where the signal was 

confounded by these additional variables, most were not impacted, with some resulting in an 

even stronger associations once current adversity measures were accounted for.  

While this was a pilot study and no concrete conclusions should be made regarding our 

specific findings, it is encouraging that a signal was picked up within such a small cohort, that 

these signals were stable over several months, and that additional non-array CpGs measured on 

another platform were comparably different between the groups. All of this suggests the potential 

for a DNAm signal of childhood adversity to be detected decades later in the gametes of adults, 

which I believe warrants further investigation in larger cohorts with deep phenotyping and 

appropriate study designs to address legitimate concerns pertaining to this research.  

The common thread woven throughout the studies contained in this dissertation is in 

understanding how adversity, in all of its complexity and context-dependent effects, can 

potentially associate with DNAm to help answer how these experiences can get “under the skin”, 

resulting in health disparities in later life (15,195). This was accomplished by taking a deeper 

look into some of the key issues that may prevent much of this research from being replicated, 

how specific aspects of SES relate to DNAm, how these associations could be influenced by 

proinflammatory cytokines, and finally, how far this adversity signal can be biologically carried.   
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Firstly, breaking down the components of SES and dissecting how each associate with 

DNAm, as I did in Chapter 2, reflects concerns already reported in the social epidemiology 

field: how replication is low in large part because of the inconsistency in how SES is defined 

across studies (326,370). I was able to show that DNAm associations with SES differed based on 

life stage and whether the measure was subjective or objective which may help guide future 

research and study design. Chapter 3 took a closer look at incorporating additional measures 

hypothesized to be involved in the pathway between SES and altered DNAm to help better 

understand what these associations are biologically representing (12). I was able to show that, 

while there was a subset of CpGs associated to both SES and IL-6, more CpGs had independent 

associations with SES, highlighting that IL-6 levels contribute to only a part of this relationship. 

Finally, Chapter 4 delves into the exciting, yet controversial space of transgenerational 

inheritance. While not addressing if this mode of inheritance is an actual phenomenon in 

humans, the presence of a DNAm signal of childhood adversity in the gametes of adults is an 

intriguing find. This signal was present in most of the regions tested even when accounting for 

several adulthood measures that could reasonably confound childhood abuse exposures, though 

this was done in a very small pilot study and needs to be replicated in a much larger cohort to 

make any definitive statements (113,114,117,118). 

 

5.2 Limitations and considerations for social epigenetics 

While the field is acutely aware of the importance of accounting for potential 

confounders, many early foundational studies in social epigenetics did not account for these 

differences and are primarily correlational, observational designs. Additionally, due to the 

difficulty, cost, and technological limitations in conducting epigenome-wide association studies 

(EWAS), much of the initial work focused on candidate gene approaches. The previous literature 

on DNAm in candidate genes should not be disregarded; however, new appreciation of the 

interconnectedness between sites of DNAm indicates the benefit of EWASs due to accounting 

for differences amongst many correlated sites or regions simultaneously (193). While there is 

crucial work to be done in understanding how social environments affect the underlying biology 

of developmental sequelae, a healthy dose of skepticism and a critical eye must be maintained 

both when evaluating past and current literature, as well as developing new experimental designs 
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(36). Below, I will highlight some of the major limitations with social epigenetic studies in 

addition to some suggestions on how to potentially circumvent these issues.  

 

5.2.1 The reproducibility problem 

Reproducibility of findings in an independent cohort is the gold standard in EWASs. 

Many findings have been reproduced in the EWAS space, such as the CpGs associated with 

aging in ELOVL2 (553,554) and smoking in AHRR (555). Social epigenetics, studying 

associations of DNAm and various social environments such as SES, acculturation, abuse, and 

parenting styles, have particularly suffered from the problem of failure of replication (296,318). 

There is no canonical gene or region one can cite as being a consistently reproduced, 

differentially methylated CpG associated with a given social variable. Most replicated studies 

were candidate analyses using an a priori hypothesis assumption resulting in a significantly 

smaller testing space and lowering the burden of multiple testing. These hypotheses commonly 

involve investigating stress and neurological related genes, such as those in the HPA-axis (e.g., 

NR3C1 and FKBP5), neuroendocrine (OXTR), neurotransmitter (SLC6A4), and neurotrophin 

(BDNF) pathways (178,190,556–558). However, little to no such replication has been found 

amongst CpGs discovered from unsupervised EWASs conducted on similar variables, including 

CpGs within commonly investigated candidate genes (296,318). Aside from individual CpG 

sites, this includes general trends of those studies which support the DOHaD hypothesis showing 

early life SES is more associated to DNAm despite current SES status and those with findings 

similar to Chapter 2 where current life SES is more highly related to DNAm in adulthood. 

There are many factors that can produce a lack of reproducibility, including differing 

demographics of cohorts, variable measurements, tissue sources and statistical analyses, which I 

will discuss in more detail below. 

 

5.2.2 Statistical power 

5.2.2.1 Sample sizes 

Sample sizes for EWASs have always been an issue (421,559). Similar to issues plaguing 

genome-wide association studies (GWASs), EWAS power is influenced by population 

stratification, testing space, effect, sample size and study design. However, as this epigenetics 

field evolves, it is evident that there are several additional factors, such as tissue heterogeneity 
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and environmental influence on DNAm that further complicate power in EWASs. Statistical 

power impacts the ability of an analysis to detect an effect, which means the smaller the sample 

size, the more likely one is to miss true positives, increasing type II error. This is likely one of 

the major reasons why there is a lack of reproducibility for many EWASs. Where the effect is 

small, larger sample sizes are required to detect differences, resulting in only the strongest 

DNAm associations being reproducible. The only other way to increase statistical power without 

increasing sample size is to relax statistical thresholds for significance, though this increases the 

risk of discovering false positives, inflating type I error (560).  

Regardless of the issues, it is clear EWASs would greatly benefit from larger sample 

sizes, though obtaining more participants has significant practical limitations. The larger the 

sample size, the more funding and manpower is required, and often to obtain this level of 

funding, smaller cohort pilot studies are first required as proof of concept. While findings from 

smaller studies may eventually become obsolete, they are necessary to advance the field and 

ensure resources are not squandered for larger EWASs that are unlikely to be informative.  

 

5.2.2.2 Effect sizes 

A common issue encountered when trying to calculate sample sizes necessary to achieve 

appropriate statistical power is understanding what effect size to expect. A single CpG site can 

either be methylated or unmethylated, yet for sequencing and array measurements of DNAm, it 

is typical to obtain a continuous measure for a given site. This is because a sample contains a 

pool of DNA molecules, which can each carry a methylated or unmethylated state at a particular 

site. As such, beta values analyzed for DNAm array data is in a range of 0-1, which represents 

the proportion of methylated DNAm molecules in a given sample. The preferred effect sizes of 

these measures are the change in the pooled DNAm for a site between groups, frequently termed 

delta betas (Δβs). These are calculated by subtracting the mean of beta values between groups, if 

categorical, or by multiplying the regression coefficient by the variables range, if continuous. 

Incorporating Δβs in a given analysis provides more robust findings as it is not merely the 

statistical threshold but also an effect size threshold that is required to report a given association 

(421).  

Unfortunately, for DNAm there are no clear-cut answers as to what effect sizes are 

biologically meaningful (421). One of the most reproducible EWAS findings, promoter 
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methylation in ELOVL2 and age, has been commonly reported to have an effect size of only 

around 2% across a 10-year age range, a relatively small effect with no known function related to 

aging (68,553,554). As such, what effect size threshold to use has mostly been arbitrary and 

commonly reported as 5%. To avoid picking a biologically unjustified threshold, in this 

dissertation I utilized other criteria I think could be valuable to the community moving forward.  

For cohorts with samples processed in our lab, we typically split samples with enough 

DNA and randomly distribute them across multiple batches. This practice allows us to obtain a 

collection of technical replicate samples from the same DNA source to compare during our pre-

processing of the DNAm data. In Chapter 3, the root-mean-square error (RSME), the standard 

deviation of the residuals, between technical replicates was calculated across all beta values and 

rounded to the nearest percent, to be used as the effect size threshold. My scientific reasoning for 

using this measure for my effect size threshold is that significantly associated CpGs that differed 

in methylation by at least this value were likely not due to some random, unmeasured noise as 

the RMSE between technical replicates represents unaccounted for technical variation. While 

this solves the issue of picking an arbitrary threshold, it does not address what differences are 

biologically meaningful. As we further understand the complexity of how context-specific 

DNAm changes are as they relate to gene expression and function, we will be able to utilize this 

information to inform future sample size calculations and interpretations of findings.  

 

5.2.3 Consistency in variable measurements 

5.2.3.1 Type  

As we are beginning to understand how interconnected the world is, research is becoming 

progressively more interdisciplinary. While important to uncover the intricate way everything is 

connected, interdisciplinary studies also compound the limitations and caveats unique to each 

field. Where EWASs have learned from the limitations of GWASs, so should social epigenetics 

take advantage of lessons from social epidemiology. One significant problem plaguing this field 

of research is the inconsistency with how complex variables are measured, an issue that is likely 

a significant contributor to the replication problems seen in social epigenetics (296,326,370,552). 

For example, SES in both Chapters 2 & 3 were measured differently, in part due to the 

difference in cultural relevance of the characteristics, reflecting the diversity of how SES can be 

measured. For a variable to be consistent means that various definitions and measurements of it 
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will not result in a different effect on the outcome of interest (370). While there are many 

variables that have a clear definition such that the variation is minimal, for example 

chronological age or smoking status, many do not, especially in the field of social epigenetics.  

SES is a prime example; it is a complex measure historically assessed in multiple ways 

and includes objective and subjective components. It has been commonly reported that there are 

different health associations related to objective outcomes (e.g., household wealth) compared 

with self-report measures (e.g., self-rated socioeconomic standing). Objective SES measures 

generally associate with more physical ailments, such as cardiovascular disease, while subjective 

measures correlate with mental health outcomes, like depression (361–364). Additionally, 

composite measures are commonly used to simultaneously capture many components related to 

the breadth of a variable (326). However, ensuring composite variables are consistent is even 

more challenging because the underlying assumptions are that every component encompassed 

must individually meet these criteria (370). In Chapter 2, I was able to show how different 

measures of SES varied in their associations with DNAm. In general, the subjective measures 

behaved either distinctly or with a diminished association to DNAm relative to objective 

measures. Though the SES composite measure was correlated with all other SES measures, it 

predominantly related to DNAm most similarly to the older adulthood objective measures. 

Seeing the variability of effect between different SES measures within the same sample 

highlights the issues likely plaguing replication across social epigenetic EWASs using different 

SES measures in different populations (296).  

 

5.2.3.2 Timing  

When in a participant’s life variables are measured can impact both the outcome and the 

interpretation of a study. DNAm varies predictably throughout life (561), where DNAm 

decreases globally with increasing age, likely due to insufficient maintenance of DNAm 

deposition during subsequent cell divisions (562). Most DNAm changes occur during 

embryogenesis, where there is a global erasure of DNAm before it is re-established (563), an 

important consideration for interpreting gamete DNAm patterns, as was cautioned in Chapter 4.  

Though DNAm changes predictably throughout life, it does not occur at the same rate, with the 

first years of life appearing to have the largest changes and variation (564–566). This may be due 

to the existence of sensitive periods in early life – limited windows of receptivity during 
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development when an individual is particularly responsive to certain exposures, potentially 

resulting in adaptations that may be experienced through other life stages (15). While the role of 

epigenetics in sensitive period timing and responsivity has been theorized and is logical based on 

existing evidence, further work is needed to establish what the association is between known 

windows of developmental timing and long-term DNAm differences (567).  

Additionally, EWASs investigating older adults need to consider the possibility of 

survivor bias, enrichment for healthy individuals who survived to old age, as findings may not be 

as generalizable to those most greatly affected by the variable of interest who are less likely to 

live as long (568). There was a range of developmental stages assessed in this dissertation: pre-

conception (Chapter 4), mid-life (Chapter 3), and older adulthood (Chapter 2). Because of 

how dynamic DNAm is throughout the life course, even within this dissertation it is difficult to 

make cross-study comparisons, let alone in the field at large. The best way to control for these 

changes would be to obtain longitudinal samples across the life course and consider what age or 

ages are most appropriate to answer the research question (569–571).   

 

5.2.3.3 Location  

Investigating societal factors requires addressing the context of the society being 

assessed. Some socioeconomic differentials observed in high-income countries are not seen in 

several mid- to lower-income countries (330,572–577). Obesity and low physical activity, for 

example, is prevalent in low SES groups from high-income countries, but in many low-income 

countries, it is the high SES groups displaying this trend (572). This issue predominantly impacts 

objective measures, whereas subjective measures, by definition, are how an individual interprets 

their own experiences, making intersocietal comparisons more robust (330). Additionally, most 

research investigating social health disparities was done in predominantly western populations 

that will inevitably embed assumptions of Western values, diets and social structures, which may 

not be appropriate for non-Western populations (552). As such, care is needed to interpret 

findings related to social variables, with the goal that conclusions should reflect the societal 

context the population was sampled from.  

Such considerations are mentioned in Chapter 2, as there are known differences amongst 

social health disparity relationships seen within Costa Ricans (330). One solution utilized to help 

compare across different societies is in the construction of composite variables where a given 
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metric is weighted allowing it to be compared across populations. This was done for the larger 

CRELES cohort, from which the Chapter 2 participants were sub-sampled, where the SES 

composite was produced to allow for comparisons with a US cohort (333). However, using these 

more generalizable composite measures can result in a loss of nuance, as was seen in Chapter 2 

where opposing trends of childhood and older adulthood measures were essentially cancelled out 

when observing the composite measure results in isolation. To help generalize findings, 

obtaining as diverse a dataset as possible is ideal, though more practically, producing weighted 

composite measures can address this concern.  

 

5.2.4 Tissue  

5.2.4.1 Cellular heterogeneity 

In EWASs, many assayed tissues are heterogenous, comprised of multiple cell types that 

vary in proportion across individuals. While reporting differences in predicted proportions of cell 

types between groups could be an interesting finding in and of itself, many EWASs are interested 

in changes not associated with tissue composition. Chapter 2 consisted of whole blood samples 

in older adults, thus the adult blood reference from the identifying optimal DNAm libraries 

(IDOL) package was used, and the Housman algorithm applied, to bioinformatically predict 

varying cell type proportions, to be incorporated in the linear models (64,354). Chapter 3 

investigated a relatively purified cell type, monocytes, which was confirmed after running the 

Houseman algorithm predicting monocytes to consist of ≥60% of the cellular population in every 

sample, and as such, no adjustments were needed. Chapter 4 also assayed a purified cell type, 

spermatozoa, which is often contaminated with epithelial cells (578). To assess sample purity 

two analyses were performed: first, a publicly-available sperm methylation dataset (578) 

consisting of both contaminated and purified samples was combined with my samples and run 

through principal component analysis (PCA) to determine which group they clustered with. 

Second, utilizing knowledge of paternally imprinted genes and the haploid nature of sperm, 

HYMAI and GNAS-AS methylation levels were assessed to ensure that they were fully 

unmethylated (28).  

When a reference dataset does not exist and a purified tissue cannot be obtained, there are 

several reference-free surrogate variable analysis-based (SVA) methods that can be used to help 

alleviate confounding due to heterogeneity (66,67). It is also important to note that reference 
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datasets are only as specific as the methods used to define the cell types, and even within the 

classes identified there are likely multiple subtypes of cells not accounted for. Not accounting for 

interindividual differences in cellular composition have resulted in confounding and spurious 

correlations, highlighting the necessity of adjusting for this variation in EWASs (55,56,61,579).  

 

5.2.4.2 Tissue Source 

Often social epigenetic studies focus on complex traits, such as mental health and 

disease, which can impact the function of many body systems and complicate EWAS 

interpretations. Most samples assayed for DNAm are collected from peripheral tissues such as 

blood, buccal epithelial cells, and saliva; yet, as DNAm variability is predominantly driven by 

cellular identity, DNAm profiles vary widely across tissue (41,46,57,358,580). Due to this, 

caution is needed in interpreting DNAm associations measured in a tissue that differs from the 

target tissue involved in the physiological processes being investigated. Therefore, it is 

imperative to address the issue of DNAm concordance between tissues to support any findings. 

There are some tools available to help with this, such as the Blood-Brain Epigenetic 

Concordance (BECon) tool (38), which was used in Chapter 3 to show correlations of the 

methylation pattern between blood and Brodmann area 10 in a subset of IL-6 associated CpGs 

located in neurologically related genes. While these findings are supportive of the potential for 

the DNAm pattern to be present in brain tissue, the correlations were still assessed in a different 

cohort, in whole blood instead of purified monocytes, and contained large differences in overall 

cohort demographics (38).  

The tissues selected for the studies reported in this dissertation were hypothesis driven. In 

Chapter 4, male gametes were assayed to specifically address the initial step along the route to 

investigating transgenerational epigenetic inheritance in association with early life adversity.  In 

both Chapters 2 and 3, the driving hypothesis centered around how adversity results in negative 

health outcomes concerns dysregulation of the stress and immune systems. Stress hormones are 

systemically released into the blood stream, affecting immune responses (12), and since the 

immune system is largely comprised of cells residing in the blood, this tissue, measured in 

Chapter 2, was an appropriate target to assay. Another approach is to investigate more purified 

cell types, which avoids the confounding inherent in estimating and correcting for multiple cell 

types in one sample. This was the approach taken for Chapter 3 where purified monocytes from 
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blood were assayed. Monocytes were chosen as the tissue of interest due to their integral role in 

the innate immune response, a key player in my hypothesis on DNAm as a link between 

adversity and negative health outcomes (12). Incorporating the biology inherent within the 

study’s driving hypothesis is invaluable for determining which tissue would be most appropriate 

to assay. 

 

5.2.5 Genotype  

5.2.5.1 Population stratification 

Variation in DNAm has been frequently associated with differences in ethnicity, which 

itself can represent a combination of differences in genetic ancestry, diet, and both social and 

physical environment (36,40,581–585). As such, the same considerations of population 

stratification accounted for in GWASs also needs to be accounted for in EWASs. Genetic 

differences in an individual can impact DNAm in several ways: there could be a difference in the 

genetic sequence at the CpG site, potentially making methylation at that site impossible in a 

population if cytosine was changed to a thymine. For example, there could be a polymorphic 

variant in one of the methyltransferase enzymes, resulting in global differences in DNAm, or a 

variant could alter a protein or a DNA binding site that impacts downstream molecular pathways, 

resulting in DNAm changes (96,586,587). It is, therefore, important to address the genetic 

background of individuals in EWASs. 

Commonly, reported ethnicity is used as a covariate in EWAS, due to its non-

invasiveness and relative ease to obtain. However, using this can lead to self-report error and a 

conflation of ethnic and racial identity with genetic ancestry, leading to false classification in 

epigenetic studies. In Chapters 3 and 4, reported ethnicity measures were used as genetic data 

were unavailable, likely resulting in adjustments removing variation associated with a 

combination of genetic and environmental differences. The best method to account for genetic 

variation in EWASs is to genotype participants and calculate genetic ancestry, using the same 

techniques employed by GWASs, and adjusting for it in subsequent analyses as was done in 

Chapter 2. When designing future studies, care needs to be taken both when selecting the 

population of interest and choosing the measures used to account for genetic differences. 

Furthermore, if reported ethnicity is used to adjust for differences, it should be acknowledged 

that this social construct represents more than just genetic admixture.  
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5.2.5.2 Methylation quantitative trait loci (mQTLs) 

Even when accounting for population stratification, there can still be single nucleotide 

polymorphisms (SNPs) that associate with DNAm independent of genetic ancestry. mQTLs, 

SNPs associated with DNAm, can differ in association across tissues and age, making these 

regions of particular interest to investigate (41,588–590). When there is no genotype information 

for a given sample, there are publicly accessible mQTL databases in which CpGs of interest can 

be investigated to determine if they are associated with a SNP. Such was done in Chapter 3 

where I investigated the significant CpGs using the mQTLdb database, consisting of 1,000 

longitudinally measured mother-child pairs from the ARIES cohort (590). Though none of the 

CpGs I found were reported to be mQTLs, this may be due to the ARIES cohort being assayed in 

blood, where Chapter 3 measured DNAm in purified monocytes. Unfortunately, this is only an 

option for tissues that have such a database; in Chapter 4 this analysis could not be done as there 

is no such sperm dataset. In Chapter 2, I performed a post hoc analysis amongst the top CpGs of 

interest using genomic data measured in the same sample to determine if there was any 

enrichment of mQTLs present amongst the comparisons. Even when genetic ancestry is 

accounted for, it is still advisable to address the interindividual differences in genotype amongst 

CpG sites of interest, considering the amount of variability contributed to DNAm by genetic 

background and gene-by-environment interactions.  

 

5.2.6 Accounting for confounders 

There is an important balance to strike between selecting a more homogenous population 

to reduce noise and confounding and obtaining as diverse a population as possible to increase the 

generalizability of findings (579). For example, it is known that age, sex, ethnicity and tissue 

heterogeneity all add a significant amount of variability to DNAm -- this is why they are 

typically accounted for in EWAS analyses (34,36,579). If a sample is fairly homogenous for 

these confounders, the chance of finding replicable associations increases as a result of reduced 

noise in the data, but this occurs at the cost of the generalizability of the findings. Any results 

discovered in a homogenous population might only be applicable to this very specific 

demographic. This was the case for Chapter 4, where I had over 90% Caucasian males aged 20-

25 years. Having such a homogenous sample was likely the reason I was able to find regions of 
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differential methylation with the large effect sizes reported; however, these results cannot be 

applied to men of other ethnicities or ages, and so further studies need be conducted to determine 

how generalizable these findings are. In general, it is ideal to recruit as large and diverse samples 

as possible to reduce the chances of unintentional confounding. However, if there are limitations 

to sample size, the more homogenous the population, the better chance of finding true 

associations, even if they limit interpretability.   

 

5.3 Future directions 

Social epigenetic EWASs are expanding, in part because of the alluring mechanisms and 

hypotheses surrounding how adverse environments cause many health disparities. Sample sizes 

in studies are becoming increasingly larger, and study designs have been vastly improved since 

the field’s inception. There has been an expansion of technologies available to improve upon 

both the number of DNAm sites interrogated and some limitations described above. For 

example, single-cell reduced representation bi-sulfite sequencing (scRRBS) and single-cell bi-

sulfite sequencing (scBS-seq) studies are increasing with regularity, solving the issue of tissue 

heterogeneity, as only the absolute methylation status in a single cell is reported (591). While 

these technologies have not yet been widely applied in large cohorts, this will likely be the way 

of the future.  

Part of the reason so little is known about the functional changes of DNAm at the 

majority of genomic sites is because of technical challenges involved in experimentally altering 

methylation at a single, specific site. While there are compounds available that can cause 

pleiotropic changes to global methylation states, such as cytidine analogues like 5-azacytidine 

that inhibit DNA methyltransferases (592,593), alterations are not targeted and so not useful to 

interrogate the impact of specific genomic regions. However, the advent of clustered regularly 

interspaced short palindromic repeats (CRISPR)/Cas9-based technology provide a means to 

specifically edit the epigenome (594). CRISPR/Cas9 technology can be appropriated to bind 

either DNMT3A to induce methylation or ten-eleven translocation (TET) to remove it at specific 

genomic regions, resulting in more unambiguous methylation changes and allowing for 

interrogation of CpGs of interest in the future (595). This will allow us to test our hypotheses and 

determine the impact of differential methylation at a particular site.  
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There is increasing interest in transgenerational inheritance, though it is exceedingly 

difficult to determine what DNAm associations are the result of inheritance or simply an artifact 

of accidental exposure or generationally shared early life environments, like behavioural 

differences in parenting (113,114). In order to best ensure these are not the true contributors to 

the associations, several generations of participants in multiple contexts would need to be 

sampled. The closest data to supporting this phenomenon in humans are found in studies 

investigating individuals prenatally exposed to famine during the Dutch Hunger Winter in 1944-

45. Here studies compared exposed and unexposed sibling pairs and found differential 

methylation in the IGF2, INSR and CPT1A genes amongst the exposed individuals 60 years after 

the exposure (116,596). While exposure occurred prenatally, it still occurred directly to the 

individuals being tested while in utero. As EWASs are relatively new, occurring during a single 

generation thus far, it has not been possible to address this issue. However, as time passes and 

more data are collected from longitudinal cohorts, it will be possible to obtain at least three 

generations using cross-generational superstudies (552). The Growing Up Today Study (GUTS) 

is one such cohort, a subsample of which comprised the cohort in Chapter 4. GUTS participants 

are the offspring of the Nurses’ Health Study II participants recruited by Brigham and Women’s 

Hospital and Harvard School of Public Health with the intention of continuing the study for 

successive generations (505,597,598). Even if the methylomes of various generations are able to 

be compared, there are still challenges to overcome, but these studies will be able to answer 

some integral questions about how adaptive to the environment these mechanisms are. 

Finally, as molecular mechanisms are being individually investigated over time, it is 

becoming increasingly apparent that none operates in a vacuum. DNAm is one of many 

epigenetic mechanisms, which are, in turn, only one of several cellular mechanisms by which the 

genome and environment interact. All of these mechanisms are pieces of a larger puzzle that 

eventually encompass the whole individual and their external environment. Analogous to the 

metaphor of the blind men touching an elephant, in order to properly assess the whole picture 

experts across disparate fields of molecular biology, amongst many others, need to join forces 

merging various layers of data together.  

These efforts are being vigorously applied, with many ‘omics being combined in analyses 

using machine learning and clustering techniques. In Chapter 2 genotyping and DNAm were 

both assayed and analyzed together, strengthening the analysis by allowing me to potentially 
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identify CpGs of interest that were under genetic control. In Chapter 3, mRNA expression was 

measured in the validation cohort, which allowed me to assess the number of IL-6-associated 

CpGs correlated to gene expression. Additionally, these data allowed me to support the 

hypothesis that the observed global decrease in DNAm with increasing IL-6 levels may be due in 

part to decreased DNMT1 expression, as has been previously reported (409–411). Though 

merging ‘omics will likely be a fruitful and worthwhile endeavor, many of the caveats and 

limitations described above, such as power and effect size issues, are likely to be amplified with 

this approach and require appropriate consideration.  

Until these exciting technologies become more commonplace, we can apply the 

considerations mentioned in the previous section to data and technology currently available to us, 

vastly improving social epigenetic research. One of the best ways to improve any EWAS is to 

procure as many samples as possible. With large enough samples, more diverse demographics 

can be incorporated without risk of losing signal. Where it is not possible to obtain large 

samples, increasing the homogeneity in the sample, though limiting the generalizability of the 

findings, will allow for increased detection of true findings. When possible, obtaining 

longitudinal measures of individuals adds strength to the study by making each participant their 

own control. Additionally, increasing collaborative relationships between researchers and 

establishing consortiums may be a way to obtain larger cohorts and ensure more consistency in 

variable measurements. Most importantly, thorough research into all aspects of the proposed 

hypothesis and measuring additional variables integral to the proposed pathway of effect, will 

bolster interpretations and add confidence to findings.  

Overall, the field of social epigenetics is still in its infancy, and there is plenty of room to 

improve and grow. I believe the analyses currently being conducted, including the work 

presented here, build upon extant literature to create a foundation from which to support this 

evolution. There is a clear desire by both the academy and the public to understand the questions 

the field of social epigenetics aims to answer, further emphasizing the need for responsible 

development. With careful thought, consideration, and consultation with field experts, proper 

variable production and selection can result in more revealing and meaningful EWAS results, 

which is especially important for interdisciplinary work. While there is a substantial replication 

problem, there are also several ways to potentially alleviate these issues. I believe that with 
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appropriate considerations, we can get closer to unraveling how adversity can get “under the 

skin” and alter the trajectory of our health for decades to come. 
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Appendices 
Appendix A  Supplementary Material for Chapter 2 

A.1 Supplementary Figures 

 
Supplementary Figure 2.1 SES variables are not all correlated with one another but are all significantly 
correlated to the composite SES PC variable. (A) Associations between the SES PC composite variable and its 
association to each of the other six SES measures. Pearson’s correlation was used for current life measures and 
ANOVA was used for the early life measures. (B) Pearson’s correlation tests were performed on all variables where 
a heat map was produced with the color indicating the r-squared value and only associations with a p-value ≥ 0.05 
are displayed. 
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Supplementary Figure 2.2 Probe summary of the pre-processing and normalization steps of the Illumina 
EPIC array.  
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Supplementary Figure 2.3 Randomized permutation analysis found more significant sites than expected by 
chance from the older adulthood assets and education years EWASs. These are p-value distributions for each 
SES variable summarizing 500 randomized permutations performed where the asterisk indicates EWASs with 
significantly more sites which had a p-value ≤ 1x10-6 than expected by chance. The grey lines represent each 
permutation, black lines represent the average of the permutations and the red lines represent the true distribution. 
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A.2 Supplementary Tables 
 
 

Quality Control Step 
Samples 
Removed 

Probes 
Removed 

Samples 
Remaining 

Probes 
Remaining 

Initial Numbers - - 511 618,540 

Sample Outliers: Call Rate ≤ 0.97, p10 GC ≤ 0.5 9 - 502 618,540 

EPIC and GSA Mismatched Samples (r2 ≤ 0.8) 6 - 496 618,540 

Sex Mismatched Samples 4 - 492 618,540 

Cluster Sep ≤ 0.45 - 6,636 492 611,904 

AB R Mean ≤ 0.4 - 5,311 492 606,593 

AB T Mean ≤ 0.2 or ≥ 0.8 - 398 492 606,195 

Het Excess ≥ 0.2 or ≤ -0.3 - 12,070 492 594,125 

HWE Chi-Square p-value ≤ 10-6 - 81 492 594,044 

AA Freq = 1 & AA T Mean ≥ 0.2 - 225 492 593,819 

AA Freq = 1 & AA T Dev ≥ 0.04 - 18 492 593,801 

BB Freq = 1 & BB T Mean ≤ 0.8 - 760 492 593,041 

BB Freq = 1 & BB T Dev ≥ 0.04 - 68 492 592,973 

AA or BB Freq = 0 & AB T Dev ≥ 0.5 - 0 492 592,973 

AB Freq = 0 & MAF > 0 - 625 492 592,348 

SNP Call Rate ≤ 0.97 or 10% GC - 122 492 592,226 

MAF ≤ 0.01 - 153,587 492 438,639 

SNP LD Pruning (50kB, 5 SNPs, 2 VIF) - 3,173 492 435,466 

LD Pruning (Chr. 8, long LD, MHC) - 13,183 492 422,283 

Non-Autosomal Probes - 1,800 492 420,483 

Related Samples IBD PI_HAT ≥ 0.1875 10 - 482 420,483 

MAF ≤ 0.05 - 280,554 482 139,929 

 
Supplementary Table 2.1 Genotyping quality control and pre-processing summary of the Illumina GSA 
array.  
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Supplementary Table 2.2 Associations of all SES measures with biomarkers and lifestyle behaviours. Pearson’s correlations were performed on every of 
the SES variables to each of the biomarkers and lifestyle behaviours tested in the contribution analysis. CRP – C-reactive protein, DHEAS – 
dehydroepiandrosterone sulphate, Epi – epinephrine, Norepi – norepinephrine, BMI – body mass index. 
 

 SES PC  Older adulthood 
assets  Older adulthood 

SES self-report  Education years  Childhood SES 
self-report  Childhood assets  Maternal education 

 p-value r2  p-value r2  p-value r2  p-value r2  p-value r2  p-value r2  p-value r2 

CRP 3.5x10-1 -0.04  1.8x10-1 -0.06  5.6x10-1 0.03  2.5x10-1 -0.07  2.3x10-1 0.06  6.5x10-1 -0.02  7.7x10-1 -0.01 

Cortisol 2.1x10-1 -0.08  1.4x10-1 -0.09  6.9x10-1 -0.02  4.7x10-1 -0.04  1.1x10-1 0.10  4.2x10-1 -0.05  7.4x10-1 0.02 

DHEAS 9.3x10-1 0.00  5.4x10-1 -0.03  2.5x10-1 -0.05  3.4x10-1 0.04  4.0x10-2* -0.10*  2.0x10-2* -0.11*  1.8x10-1 0.06 

Epi 1.2x10-1 -0.07  4.4x10-2* -0.09  1.4x10-1 -0.07  8.9x10-1 -0.01  9.0x10-2 0.08  5.4x10-1 -0.03  9.0x10-1 0.01 

Norepi 4.6x10-1 -0.03  4.0x10-1 -0.04  3.1x10-1 0.05  1.8x10-1 -0.04  9.8x10-1 0.00  4.6x10-2* -0.09  1.5x10-1 -0.07 

Smoker 9.7x10-2 -0.08  3.0x10-1 -0.05  4.0x10-2* -0.10*  1.8x10-1 -0.06  1.8x10-1 -0.06  2.0x10-3* -0.14*  1 0 

Drinker 1.0x10-1 -0.07  5.6x10-1 -0.03  8.3x10-1 -0.01  8.0x10-3* -0.12*  7.1x10-1 -0.02  8.7x10-1 0.01  2.0x10-3* -0.15* 

BMI 6.0x10-4* 0.16*  9.5x10-8* 0.24*  3.8x10-1 0.04  7.1x10-1 0.02  8.1x10-1 -0.01  3.0x10-3* 0.14*  6.7x10-2 0.09 

* p-value ≤ 0.05 or | r2 ≥ 0.1 | 
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Appendix B  Supplementary Material for Chapter 3 
B.1 Supplementary Figures 

 
Supplementary Figure 3.1 DNMT1 expression is negatively correlated with serum IL-6 levels in the 
CareGiver cohort. Scatter plot showing how increasing serum IL-6 levels were significantly associated with 
decreasing DNMT1 expression in the CareGiver cohort (n = 78) unadjusted (left panel) and winsorized (right panel). 
 

 
Supplementary Figure 3.2 Correlations between methylation of significant CpG sites and expression of genes 
CpG sites were located in using the CareGiver cohort data. UCSC was used to determine the gene name the 
CpG site was located in using human genome build GRCh37/hg19 which resulted in the investigation of 60/80 sites 
for the IL-6 analysis, 13/15 sites for the SES associated IL-6 hits, and 34/51 sites for the IL-6 independent SES 
analysis. Each panel represents the particular association the CpG site was found to be significant in with red color 
representing significant correlations (FDR ≤ 0.2). 
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Supplementary Figure 3.3 Methylation status of SES and/or IL-6 associated CpGs located in genes related to 
neurological function between blood and brain in BECon. Results from the BECon application where SES 
and/or IL-6 associated CpGs located in genes related to neurological functions were submitted and methylation 
levels from whole blood and three brain regions was correlated. These are tables breaking down the CpG annotation, 
variability measures in each tissue and correlation values between blood and each brain region (BA = Broadman 
Area). (A)Validated IL-6 associated CpGs. (B) IL-6 and SES associated CpGs. (C) IL-6 independent SES associated 
CpGs. 
 
 

 



155 

 

 
Supplementary Figure 3.4 Main effects were significantly associated with waist-to-hip ratio and smoking 
status. These figures display the associations with covariates which were significantly associated with my main 
effects of interest. Primarily waist-to-hip ratio and smoking status. (A) Scatter plot showing how serum IL-6 levels 
were significantly associated with WHR, the reported p-value resulted from a linear regression where age, sex and 
ethnicity were adjusted for. (B) Boxplot showing how serum IL-6 levels were significantly associated with smoking 
status, reported p-value is based on an ANCOVA adjusting for age, sex and ethnicity. (C) Boxplot showing how 
lifetime SES trajectory was significantly associated to WHR, reported p-value resulted from an ANCOVA where 
age, sex and ethnicity were adjusted for. (D) Scatter plot showing the distribution of individuals spanning the 
categories of lifetime SES trajectory and smoking status. Reported p-value resulted from a chi-squared test. 
 
 

 

 

 

 

 

 

 

 

 

 



156 

 

B.2 Supplementary Tables 
Supplementary Table 3.1 Validation cohort demographic comparisons. Demographics of the Early Life and the 
validation cohort, CareGiver, after it was subset to match the Early Life demographics. 
 

 
 

 
Supplementary Table 3.2 Amount of DNAm sites which were significantly associated with serum IL-6 levels 
at various statistical thresholds. Statistical thresholds include FDR levels of 0.05, 0.10 and 0.20 with the 
respective nominal p-values. In addition, are thresholds of various effect size, delta beta (Δβ), cutoffs including |Δβ| 
at none, 0.03, 0.04 and 0.05. 
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Supplementary Table 3.3 SES trajectory was associated with DNA methylation independent of serum IL-6 
levels. Table summarizing the number of sites which passed various statistical thresholds with an effect size, delta 
beta (Δβ), | Δβ | ≥ 0.03. There are 51 unique sites which have an FDR ≤ 0.2 and an absolute Δβ ≥ 0.03 in any of the 
early/current life SES comparisons. 
 

 
 

 
Supplementary Table 3.4 The results for DNAm sites found to be associated with serum IL-6 and SES 
trajectories and were also significantly correlated to the expression levels of the genes the sites were located 
in. UCSC was used to determine the gene name the CpG site was located in using human genome build 
GRCh37/hg19 which resulted in the investigation of 60/80 sites for the IL-6 analysis, 13/15 sites for the SES 
associated IL-6 hits, and 34/51 sites for the IL-6 independent SES analysis. This is a list of the DNAm sites which 
were significantly correlated to expression of the associated gene (FDR ≤ 0.2). 
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Supplementary Table 3.5 Contribution of smoking status and waist-to-hip ratio (WHR) to the DNAm 
associations observed with main effects. (A) The number of sites where at least 10% of the change in DNAm was 
associated with serum IL-6 levels were found to be contributed by WHR or smoking status. (B) The number of sites 
where at least 10% of the change in DNAm was associated with lifetime SES status is contributed by WHR or 
smoking status. 

 
Supplementary Table 3.6 The change in methylation across serum IL-6 levels at 15 CpGs was contributed in 
part by lifetime SES trajectory status, smoking and/or WHR. Medium-confidence IL-6 associated CpGs were 
characterized by their significance level, effect size, genomic association, SES and lifestyle behaviour contributions. 
UCSC was used to determine the gene name the CpG site was located in using human genome build GRCh37/hg19. 
The max SES trajectory delta beta value reports the highest effect size of the six SES comparisons. 
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Appendix C  Supplementary Material for Chapter 4 
C.1 Supplementary Figures 

 
 
Supplementary Figure 4.1 Batch effects removed and correlations between replicate samples increased after 
normalization and pre-processing of 450K array DNA methylation data. (A) After probe filtering, quantile 
inter-sample normalization, SWAN intra-sample normalization and ComBat correction for batch effects there were 
no significant correlations between batch variables (Barcode and Barcode Position) and variation present in DNAm 
data as found using PCA. (B) Correlation measurements between replicate samples throughout normalization. All 
replicates display the highest correlations by the end of the pipeline. Abbreviations: CTQ: Childhood Trauma 
Questionnaire; CTS: Conflict Tactic Scales.  
 

 
 
Supplementary Figure 4.2 The DNA methylation data of GUTS samples clustered with publicly available, 
known purified sperm Illumina 450K DNA methylation data (GEO accession GSE108058(514)). The 
GSE108058 dataset contained five contaminated semen samples, five purified semen samples and 20 semen samples 
of unknown purity. We merged this dataset with our own data and performed principal component analysis. The vast 
majority of variation in methylation is associated with tissue heterogeneity, therefore the first few PCs should be 
correlated with the purity of the semen samples. Plotting PC1 against PC2 (for visualization purposes), our samples 
cluster with the pure semen samples, providing evidence that we successfully purified the semen samples. 
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Supplementary Figure 4.3 Beta value distribution of probes within two paternally expressed imprinting 
control regions (ICR) (HYMAI - ICR: chr6: 144326000 – 144330000; GNAS-AS - ICR: chr20: 57425000 – 
57429000) shows dominant peak at 0. Within the listed genomic regions, we plotted the beta values of all probes 
underlying the HYMAI ICR (61 probes) and the GNAS-AS ICR (69 probes) for each individual in our study. Both of 
these regions are paternally expressed, and therefore if our samples contain purified haploid male gametes, we 
would anticipate these regions would be fully unmethylated (as opposed to hemi-methylated in somatic tissue).  
 
 
 

 
Supplementary Figure 4.4 Scatterplot of the loading on PC4 (y-axis) versus PC3 (x-axis, for visualization) for 
each individual show associations with PC4 are not driven by a small subset of samples. The two men who 
were exposed to sexual abuse are indicated in purple. The scatterplot suggests that these men are not outliers 
amongst men who experienced abuse (shown in red). 
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Supplementary Figure 4.5 Remaining seven of 12 statistically significant childhood abuse DMRs. 
Differentially methylated regions (DMRs) were defined as regions that differed statistically by abuse exposure at an 
FDR ≤ 0.05, had a mean Δβ ≥ 5% across probes, and were confirmed using replicates. Other than the PRDM16 
DMR, which is located in the body of that gene, the remaining DMRs are intergenic in location and are labelled with 
the name of the gene whose transcription start site is closest.  
 

 
Supplementary Figure 4.6 Probes located in DMRs have high intraclass correlation (ICC) when comparing 
biological replicate sample DNA methylation values. 90% of probes in significant DMRs have ICC ≥ 0.7 (dashed 
line). A single ICC score was obtained for each probe using 24 samples (2 biological replicates per participant). A 
value of 1 would indicate the biological replicates are in perfect concordance with one another. Whiskers represent 
95% confidence intervals. 
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Supplementary Figure 4.7 Measurements of DNAm using the 450K array and the pyrosequencing platform 
were highly correlated. For a certain subset of sites, pyrosequencing assays were designed to confirm DNA 
methylation measurements to ensure findings were not specific to the 450K array platform. (A) Measurement 
correlations and p-values obtained using Spearman’s rank method. (B) Bland-Altman plots of DNA methylation 
sites validated in pyrosequencing made by comparing the difference in measurements by the average value between 
platforms. 
 
 
 
 

 
Supplementary Figure 4.8 DNA methylation measurements were confirmed at additional CpG sites measured 
with pyrosequencing within DMRs identified with the Illumina Infinium HumanMethylation450 BeadChip. 
Of the sites selected for confirmation with pyrosequencing, these are the subset of sites which were found in a subset 
of significant DMRs. 
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C.2 Supplementary Tables 
 

 
Supplementary Table 4.1 Methylation status of two paternally expressed imprinting control regions (ICR) 
(HYMAI - ICR: chr6: 144326000 – 144330000, 61 probes; GNAS-AS - ICR: chr20: 57425000 – 57429000, 69 
probes) displayed values close to 0 suggesting a highly purified sperm sample. Within the listed genomic 
regions, we examined all probes underlying the HYMAI ICR (61 probes) and the GNAS-AS ICR (69 probes) which 
were measured on the Illumina 450K array and calculated the median beta value for each region for each individual 
in our study. Both of these regions are paternally expressed, and therefore if our samples contain purified haploid 
male gametes, we would anticipate these regions would be fully unmethylated (as opposed to hemi-methylated in 
somatic tissue). 
 
 

 
 
Supplementary Table 4.2 Probes with the highest loading on PC4 and meeting minimum values for 
differences in DNAm β values (Δβ) by childhood abuse exposure. Probes with top PC4 scores as defined by 
percentiles and Δβ levels. Δβ values were calculated by taking the absolute difference between the mean β for high 
versus no childhood abuse. Probes in the 1st percentile of positive or negative loading on PC4 and with Δβ ≥ 5% are 
highlighted in blue. 
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Supplementary Table 4.3 Genomic annotation of regions significantly differentially methylated by childhood 
abuse (DMRs). DMR information was obtained using annotation provided from Illumina for the Infinium 450K 
array. 
 

 
 

Supplementary Table 4.4 Four additional sites detected by pyrosequencing but not measured by the 450K 
array within the ARL17A DMR were significantly associated with childhood abuse exposure in the same 
direction as original DMR sites. Linear regression for novel sites identified by pyrosequencing within the ARL17A 
DMR was performed and found to be significantly associated.   
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Supplementary Table 4.5 Mean percent mediation across probes within childhood abuse differentially 
methylated regions (DMR) by adulthood BMI and smoking, mental health symptoms, and lifetime trauma 
exposure. Percent mediation = ([beta estimate base model-beta estimate adjusted model]/beta estimate base model)*100. 
Negative percentages indicate a stronger association of childhood abuse with DNAm in adjusted models compared 
to the base model. 
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Supplementary Table 4.6 Percent change in association of childhood abuse with DNAm at probes within childhood abuse differentially methylated 
regions (DMR) further adjusted for: adulthood BMI and smoking; mental health symptoms; and lifetime trauma exposure.  Percent mediation = [beta 
estimate base model-beta estimate adjusted model]/beta estimate base model. Negative percentages indicate a stronger association of childhood abuse with DNAm compared 
to the base model. 
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Supplementary Table 4.7 Beta estimates from associations of childhood abuse with DNAm at probes in differentially methylated regions (DMR), base 
model and further adjusted for: 1) adulthood BMI and smoking; 2) adulthood mental health symptoms; and 3) lifetime trauma exposure.  
 


