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Abstract 

Automotive systems are constantly increasing in complexity, requiring advanced modeling 

methods with large data sets to analyze these systems. This work proposes a machine learning 

approach to rapidly developing, steady state, control oriented, engine models that use optimization 

methods and engineering knowledge to reduce the burden of data collection and improve model 

performance and reliability. Data is collected from a pilot ignited direct injection natural gas engine 

using a full factorial approach for a high density data set and a design of experiments approach for 

a low density training data set with randomized validation data. An optimization approach for 

selecting hyperparameters for neural network and Gaussian process regression models is proposed. 

Models for emissions and performance metrics are created and compared to response surface 

models. The hyperparameter optimized models show an improvement in robustness and model 

performance, reducing the normalized root mean square error by 26% compared to other 

hyperparameter configurations. Gaussian process regression hyperparameter optimization shows 

the lowest error, 46% lower than response surface models. The Gaussian process regression 

hyperparameter optimized models are further improved using multi-region modeling, sensitivity 

analysis based input reduction, layered modeling, and hybrid layered modeling. The sensitivity 

based input reduction reduces the normalized root mean square error for all models by an average 

of 8% and up to 19%. The layered models reduce the normalized root mean square error for the 

CO by 52%, NOX by 30%, and particulate matter by 33%. The multi-region models reduce the 

normalized root mean square error for the O2 by 40% and thermal efficiency by 16%. Using the 

best techniques for each output, the error is reduced by 19%, compared to hyperparameter 

optimization alone and 45% compared to typical Gaussian process regression models. These 

results show that hyperparameter optimization combined with the other techniques presented here 
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significantly reduce model error. Using these techniques, it is possible to reduce the reliance on 

data for engine modeling. Future research in energy conversion technologies can use these 

techniques to rapidly develop new technologies without the cost in time and funding typically 

reserved for extensive data collection. 
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Lay Summary 

Modern automotive research has resulted in the development of complex systems. Significant data 

collection is needed to learn how to make predictions on engine performance. This dissertation 

proposes a machine learning approach to modeling that uses optimization, data sciences, and 

engineering intuition to predict engine performance with less than a month of data. The Gaussian 

process regression machine learning technique with optimization to configure model settings 

significantly improves the reliability and performance compared to other methods. The 

performance can further be improved by using data science methods to remove unneeded data and 

engineering knowledge to either separate data into different groups or organize models into layers 

based on other important parameters than can be predicted and used as inputs. Using these 

techniques, the performance of the emissions and outputs, such as power and efficiency, can be 

predicted with more accuracy and less data than was previously needed. 
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Chapter 1: Introduction 

The automotive industry is one of the larger industries in the world [1]. With few exceptions, 

people’s daily lives are influenced by the automotive sector. From streetlights and crosswalks, to 

traffic laws and the importance of having a driver’s license, the automobile permeates many 

aspects of life. Therefore, it no surprise that the automotive industry is one of the faster moving, 

research driven industries [1], [2]. 

 

Not every aspect of the automotive industry has improved people’s lives. While the automotive 

industry has contributed to the creation of an interconnected world, it has also contributed to 

climate change [2]. Science has shown that the mass burning of fossil fuels releases CO2 and CH4 

which are the leading contributors to climate change [1]. While the amount of CH4 being emitted 

is much lower than CO2 on average, CH4 has a global warming potential that is up to 36 times that 

of CO2 [3]. This indicates that both these emissions are very dangerous for the environment and 

need to be reduced. New technologies are constantly being developed to limit the automotive 

industry’s impact on the environment. This is the focus of the majority of automotive research [2]. 

Many different technologies have been proposed to address the climate change problem. Some 

alternative fuel technologies have examined combusting natural gas in either spark or compression 

ignition systems and have shown to significantly reduce emissions of harmful greenhouse gasses 

[4]–[7]. Technologies such as hydrogen fuel cells provide a potential zero emission energy 

conversion technology for the automotive industry [8], [9]. Each of these technologies requires an 

initial investment of time and funding to facilitate their development and implementation. This is 

a limiting factor to the mass adoption for many of these technologies [10].  The initial investment 

allows for the initial research phase, the early design prototyping and testing phases leading all the 
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way to the final modeling and calibration phase. This final phase is important as any new 

technology needs to be utilized properly to gain the desired benefits for which it was developed. 

This necessitates modeling the new technology to enable the understanding of how the new system 

integrates with the existing usage cases for the vehicle. Once these models are understood, an 

engineer can develop system calibrations to facilitate the actual use of the system in such a way so 

that its benefits can be realized. The key element in this process is the model. 

 

1.1 Limitations of Conventional Engine Modeling 

Model development can be a costly and time consuming process. The number of control inputs, 

such as variable injection timings, pressure regulation on the exhaust and intake air, and exhaust 

gas recirculation, each contribute to modeling complexity [11]. The implementation of newer 

technologies, such as cylinder disconnect and either alternative or multiple fuels, further 

complicates the problem [12]–[15]. Many new technologies create controllable inputs that add 

additional degrees of freedom to the system control problem. This expands the size of the operating 

space [15]. To fully map out a large operating space using a brute force method requires a large 

amount of data which can be difficult to collect for a calibration engineer. One modeling technique 

used in automotive research programs to combat this issue is to divide the complete operating 

space into many smaller operating spaces and apply a response surface model to each region 

independently [14], [16], [17]. Many of these regions are defined to limit the number of inputs to 

reduce the size of the data set that is needed. This results in each small region having its own data 

set [16]. Even with this technique, this is still a daunting task requiring months or years of testing 

to complete before a system is properly modeled and calibrated. This lengthy process can be costly. 

This can also extend the timeline to developing the new automotive technologies needed to meet 
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emissions requirements. It is for this reason that different approaches to automotive system 

modeling are being studied. 

 

1.2 Machine Learning for Engine Modeling 

One method of model development currently being studied is machine learning. Many 

conventional modeling methods have their basis in fundamental mathematics and physics [11]. 

These methods use a human understanding of the scientific principles that define the systems being 

modeled to create complex algorithms using techniques such as computational fluid dynamics and 

physics based equations to solve the modeling problem [12], [18]–[20]. Machine learning takes a 

very different approach. At its core, machine learning is about programmatically identifying 

patterns in data sets [21]. A properly configured machine learning algorithm can be given a large 

number of high quality data points and can use them to learn to identify the trends in the data. A 

user could then ask the algorithm to predict the output for a new set of inputs and the algorithm 

would to be able to accomplish this task by having been exposed to similar data points [22]. Noisy 

data or data sets that lack the quantity or variety of data required for the algorithm to capture a 

compete picture of the desired patterns can limit the capabilities of machine learning [22]. This is 

one of the limitations of machine learning algorithms [23]. Despite this drawback, machine 

learning has found its way into a number of varying fields including battery cell health, acoustic 

modeling, rainfall analysis, sediment load studies, and stock market index prediction, as well as 

engine research [24]–[29]. Many of these fields can rely of having an abundance of data. This is 

one of the limitations of machine learning in the automotive field. While researchers have applied 

machine learning techniques to automotive engine research, much of this work has been focused 

on limited operating spaces where the size of the data set can be kept to a minimum [30]–[32]. As 
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each engine system is unique and many of the technologies being developed change the inner 

workings of the engine system, old data from past engine technologies is often no longer relevant 

[7]. New data is therefore often needed for each new engine being modeled.  

 

There are many different machine learning based models that have been developed over the years 

and applied to engine research. Artificial neural networks have traditionally been the better known 

and more commonly used machine learning method [33]. However, other methods such as 

Gaussian process regression have recently been shown to be useful for engine modeling [24], [34], 

[35]. 

 

1.2.1 Artificial Neural Networks 

The artificial neural network is one of the better known machine learning modeling methods. 

Originally developed as a model for the interconnection between neurons in the brain, this method 

for modeling biological systems has evolved into an algorithm for creating data driven models of 

many different systems [36]. The artificial neural network is envisioned as a series of 

interconnected nodes organized into distinct layers [22]. The first layer of the network represents 

the inputs of a system while the final layer represents the outputs being modeled. The layers 

situated between the inputs and outputs are referred to as hidden layers. Each node in a layer is 

directly connected to each of the nodes in the previous and next layers through a weighted 

connection. Figure 1.1 shows an example of how a neural network can be visualized. 
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Figure 1.1: Neural Network Structure Example 

 

As the nodes, N, in the input are assigned values, these values propagate through the weighted 

connections, w, to the subsequent layers as a weighted summation according to Equation 1.1 and 

the node’s activation function. nnodes is the number of nodes in the i-1 layer and i is the index of 

the current layer. j is the index of the current node being evaluated while k iterates through the 

nodes in the i-1 layer [37]. 

 

 

(1.1) 

 

This determines the value of a given node. As the inputs propagate through the nodes, they 

eventually reach the output layer. The value of the nodes at the output layer is taken as the 

prediction of the output for that given input set. These weighted summations that occur throughout 

the layers approximate the complex interactions between the inputs [22].  

 

Ni,j = ∑ [Ni−1,k ×wi−1,k,j]

nnodes

k=1
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Setting these weightings properly for each connection is an important part of developing a good 

neural network model. This is accomplished through a technique called training. Training a neural 

network is accomplished using vast quantities of data where the inputs and expected outputs to the 

model are already known. For each data point, the neural network makes a prediction and then 

compares the prediction to the expected output. This creates an error term that is then sent 

backwards through the neural network and is used to adjust the initially randomized weights so 

that they better fit the data point [22]. This is done for each training data point, creating minor 

adjustments each time. As this process is repeated for several iterations, the error terms begin to 

decrease as the weightings work to reflect the system being modeled more closely. Once a desired 

error threshold is met, the model is said to be trained [22]. Here is where the neural network is 

shown to be heavily data dependent. In order for this model to be accurate at predicting new data 

points, the training data points need to provide sufficient information with a low enough overall 

level of noise and erroneous data to enable the neural network to capture the trends in the data to 

a degree that reflects the actual system’s operation. 

 

Many different variations of neural network algorithms exist that have been used for engine 

research. Some of these techniques assign specific functions to specific layers such as in the case 

of object identification or classification which might use multiple layers to determine categories 

and subcategories for a given structure. Shahid et al, for example, used a neural network for 

classification of varying engine loads as part of a real-time control system to recalibrate an engine 

control scheme for different operating loads [38]. 
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Neural networks are often used for predicting emissions measurements from various different 

types of engines [39], [40]. They are also commonly used to evaluate new alternative fuels. 

Jaliliantabar et al, used neural networks combined with a sensitivity analysis to predict engine 

parameters for a set of key operating conditions using varying compositions of biodiesel [41]. 

Similarly, Mao et al, used four different types of artificial neural networks to model brake specific 

fuel consumption, thermal efficiency, exhaust temperature, CO, hydrocarbons, NOX, and 

particulate matter emissions from an ethanol-diesel engine [42]. In the same way, Cho et al, used 

neural networks to model the effects of hydrogen addition to a turbo-charged direct injection 

gasoline engine based on data initially collected by a GT power model and later verified with 

experimental results [43]. Each of these research projects demonstrates the capability of neural 

networks for modeling the outputs of alternative fuels in modern engines. 

 

1.2.2 Gaussian Process Regression 

Gaussian process regression is a relatively new technique in the engine modeling space compared 

to artificial neural networks [44]. Gaussian process regression has been applied in a variety of 

fields such as battery capacity, aircraft engine fuel flow, and recently, automotive engine modeling 

[29], [45], [46].  

 

At its core, Gaussian process regression is a probabilistic modeling method. In the simplest terms, 

a Gaussian process regression model finds the most probable function that fits a given training 

data set and uses this function to determine the most likely output for a given input vector. This 

function weaves through known data points in a continuous fashion, which is why Gaussian 
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process regression modeling is often well suited to continuous processes as opposed to discrete 

functions [44].  

 

The Gaussian process regression assumes that the parameters that define the function which 

represents the system being modeled can be represented as random variables and can themselves 

be modeled as a Gaussian distribution. This Gaussian distribution is defined by a covariance matrix 

and a mean function which can be subdivided into components based on the known training data 

and the test data point that is being evaluated. The key derivations of the model are shown in 

Equations 1.2 and 1.3 which are taken from the work in Chapter 2 of Rasmussen [44]. 

 

cov(f ∗) = K(X∗, X∗) − K(X∗, X)[K(X, X) + (σn)2]−1K(X, X∗) (1.2) 

μ(f ∗) = K(X∗, X)[K(X, X) + (σn)2I]−1y (1.3) 

 

In Equations 1.2 and 1.3, μ is the mean and cov represents the covariance, corresponding to the 

test output, f*. K is an element of the covariance matrix corresponding to X, the training data, and 

X*, the test point being evaluated. σn is the Gaussian noise variance that is assumed to be a part of 

the training data and y represents the training data outputs. To complete the model, aside from 

populating it with training data, a value for σn must be selected and a function for K needs to be 

determined. This function, K, is called the kernel or covariance function. Many kernels have been 

proposed in the literature but are otherwise selected depending on the modeling problem [29], [35], 

[44]–[49].  
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Gaussian process regression has only just recently started to be used for engine control based 

modeling research. Aran et al, used a Gaussian process regression model to model the diesel engine 

air path as part of a calibratable controller architecture [50]. Similarly, Bergmann et al used 

Gaussian process regression to model the fuel pathway on a heavy duty diesel engine [49]. Berger 

et al, took the Gaussian process regression model and developed a robust engine model for diesel 

engine emissions, using the ability of the Gaussian process regression to reduce the influence of 

outliers to improve model performance [45]. 

 

Comparisons have been done that show that Gaussian process regression outperforms traditional 

polynomial engine modeling techniques and performs similarly or better than other machine 

learning techniques [51]. For this reason, Gaussian process regression is an important machine 

learning method to consider when developing engine models for control and calibration. 

 

1.2.3 Comparing Machine Learning Modeling Methods 

The artificial neural network and Gaussian process regression modeling methods have both been 

used in different types of research and both methods are capable of producing machine learning 

models for various different purposes. Kamath et al. compared both these methods in a study on 

modeling potential energy surfaces and found that Gaussian process models produced lower error 

models with less than one third of the root mean square error of the neural network models [52]. 

Similarly, Taki et al. compared the performance of both neural network and Gaussian process 

regression models for modeling the energy output of wheat production and showed that the neural 

network models produced overall lower root mean square error in the range of 0.05-0.14% 

compared to 10.85-16.94% for Gaussian process regression models [53]. These two papers 
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demonstrate that the performance of a particular modeling method is dependent on the application 

and that both methods should be considered in the early stages of an engine based research project. 

 

1.2.4 The Data Problem 

Machine learning can be a useful tool for engine modeling, with one of the larger limitations being 

its dependency on data. Vabalas et al studied the correlation between data size and machine 

learning modeling performance [54]. This work demonstrated that insufficiently sized data sets 

lead to issues such as overfitting. These models accurately reflect the provided data set but are 

unable to characterize operating points outside of these specific conditions as insufficient 

information has been provided for the model to correctly determine the characteristics of the 

system [54]. While many systems being modeled by machine learning processes have the benefit 

of having large stores of available historical data, engine research often requires a new data set for 

each new technology being studied. Techniques such as transfer learning have only recently been 

studied to overcome this issue and are only applicable to processes that are sufficiently similar so 

that the model trends would be compatible with the new system [55]. The limitation of data 

availability is one of the bigger barriers to developing engine models using machine learning 

techniques. With a means to overcome this issue, rapid and accurate modeling of new advanced 

engine technologies becomes easier to achieve. 

 

1.3 Research Objective 

The objective of this work is to develop a method of creating accurate models for engine control 

and calibration without the need for extensive data collection. The modeling techniques developed 

here are intended to be practically usable for engine research and for the analysis of new engine 
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technologies and should only require as much data as can reasonably collected within a few weeks 

to a month by a single researcher. These techniques will need to be modified to adapt their structure 

to the new engine architecture, however, the methodology should be transferable. The goal of this 

work is to make engine modeling more accessible and more practical for the development of new 

technologies with techniques that can be adapted to different engine architectures. Adapting these 

methods would require developing new models and model structures with new data and a 

potentially different set of inputs. The underlying methodology should still remain consistent. With 

this method, the benefits of new technologies and alternative fueling strategies should be easier to 

evaluate, allowing for new engine research to be more practically achievable without the burden 

of extensive data collection.  

 

1.4 Project Overview 

The objective of this work is to develop and present a method of steady state engine modeling that 

reduces the burden of data collection for new engine technologies. To accomplish this task, this 

dissertation uses machine learning models combined with intelligent data collection methods and 

combines them with optimization techniques and various methods of enhancing the machine 

learning model structure. All machine learning models used in this work are developed in 

MATLAB using the MATLAB Statistics and Machine Learning Toolbox. These methods are 

evaluated on a pilot ignited direct injection dual fuel natural gas compression ignition research 

engine located at the University of British Columbia Vancouver Campus. These methods are tested 

and evaluated against each other as well as conventional machine learning and statistical modeling 

methods to demonstrate their performance and the capabilities of the different techniques. 
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Chapter 2 begins with a layout of the test bench and its new data acquisition and control system. 

This section describes the detailed system and conditions under which the research took place. 

Chapter 3 provides a description of the data that is collected from the engine and the different 

strategies used for selecting operating points. The model performance metrics and system inputs 

and outputs are defined here. In this section the system repeatability is also assessed. This explores 

the limitations on what can be expected for the performance of the different metrics.  

 

The different data sets are used in Chapter 4 to perform a survey of machine learning models with 

different hyperparameters for artificial neural networks and Gaussian process regression. These 

models are compared to a response surface modeling approach to demonstrate the capabilities of 

machine learning model. All three algorithms are evaluated for a full factorial research data set 

and a more sparsely populated data set for a much larger operating space. 

 

In Chapter 5, a technique referred to as hyperparameter optimization is presented and applied to 

both the artificial neural network and Gaussian process regression modeling methods. Models are 

created for the full factorial, high density data set and the sparsely populated data set. The machine 

learning modeling survey results are compared against these new models. From this point forward, 

Gaussian process regression with the hyperparameter optimization is selected as the basis for the 

remaining techniques. 

 

Chapter 6 implements four methods of enhancing the hyperparameter optimized models. Each of 

these techniques is evaluated against the hyperparameter optimized model from Chapter 5 to 

demonstrate the potential of each method.  
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The first technique, described in Section 6.1, is the multi-region method. The multi-region 

approach evaluates a means of dividing the modeling problem into different operating regions and 

modeling these regions independently. This work is evaluated using the two sparsely populated 

data sets presented in Chapter 3 and is compared against a combined hyperparameter optimized 

model. 

 

Section 6.2 presents a method that uses a sensitivity analysis of the hyperparameter optimized 

models to determine which inputs have the least impact on the model outputs. This technique then 

uses this knowledge to intelligently remove inputs that contribute more noise than valuable data 

to the model.  

 

The third method, presented in Section 6.3, is referred to as the layered model. This method 

separates the modeling problem into several networked submodels based on engineering 

knowledge and an understanding of the processes that impact the parameters being studied. This 

method introduces knowledge of the process into the overall model in by modeling intermediary 

parameters that can provide more relevant inputs to the subsequent models.  

 

Section 6.4 presents an extension of the layered model. This method explores different approaches 

to introducing process equations and definitions into the layered modeling method. By replacing 

submodels with known, calculatable parameters, this method removes some of the modeling 

burden from the overall model structure. 
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These four methods are compared against each other and the hyperparameter optimization method 

to determine how each method impacted the model performance. An assessment of the benefits of 

each technique is then made based on the overall results. 

 

The overall work is summarized in Chapter 7, and the final conclusions are drawn regarding which 

methods could improve the model performance in which ways. This section concludes with an 

analysis of the overall benefits of the work and the future implications of what has been 

accomplished. 
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Chapter 2: Dual Fuel Experimental Engine Facility 

The objective of this project is to produce a modeling method for small data sets that will work 

with almost any energy conversion technology, whether that is a conventional gasoline engine or 

a more radical hydrogen fuel cell. Such a technique will provide a means of rapidly modeling, 

analyzing and then generating operating rules for such these energy conversion technologies. This 

early prototype focuses on an implementation for one such technology. That technology is the pilot 

ignited direct injection natural gas (PIDING) engine which serves as a test bench for this work.  

 

2.1 Facility Overview 

To facilitate any research with such a scope, a physical test bench is required to test and evaluate 

the techniques being presented. In this case, this test bench is a research engine referred to as the 

SCRE (single cylinder reciprocating engine). The SCRE is a research engine located in the Clean 

Energy Research Center at the University of British Columbia Vancouver Campus [56]. A picture 

of the main components of this engine is shown in Figure 2.1. 

 

 

Figure 2.1: Single Cylinder Reciprocating Engine Test Bench 
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The SCRE test bench is comprised of several major systems spanning multiple rooms. An 

overview of these connected systems is shown in a diagram in Figure 2.2. 

 

 

Figure 2.2: Engine Hardware System Diagram 

 

These systems can be categorized into three major groups. These are, the SCRE and connected 

engine systems, the emissions measurement systems, and the control and data acquisition systems. 

These groups are examined in more detail in the following sections. 

 

2.2 The SCRE and Connected Engine Systems 

The SCRE is based on a Cummins ISX 400 Engine that has been heavily modified [56]. The 

original ISX 400 engine is a heavy duty diesel engine typically used in large trucks. The 
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modifications include a conversion to single cylinder operation with a dual fuel direct injection 

system using both diesel and natural gas. An external exhaust gas recirculation (EGR) system has 

been added and instead of a turbo charger the engine has a direct connection to a compressed air 

intake line. The control system has also been completely replaced with a new custom system that 

allows for fine tuned control of the engine and all connected systems. These systems are pictured 

in Figure 2.2 above. 

 

The test bench’s primary means of reducing emissions, compared to conventional engines, is 

through the combustion of directly injected natural gas with a diesel pilot fuel combined with 

controlling the fuel ratios and injection timings [30], [56]. The addition of a second fuel adds three 

new degrees of freedom. These are the new injection timing, duration, and pressure for the natural 

gas. More degrees of freedom increase the dimensions of the operating space. To account for the 

additional degrees of freedom, more data is often required to model the system. This demonstrates 

that this test bench is well suited to evaluating reduced data modeling techniques as determining 

ways to overcome this complexity can make modeling such systems easier. The overall goal of 

this work is to develop a means of reducing the experimental effort required to characterize the 

operation of a complex alternative energy conversion system, such as the one presented in the test 

bench. If this can be accomplished, then new alternative fuel and energy technologies could 

become easier and less costly to develop. Utilizing this test bench allows for a direct field test of 

the ideas and methodologies presented in this work.  

 

While these methods are intended to be universally applicable to any alternative energy conversion 

technology, the experiments and results are directly applied to this test system and its unique 
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configuration. To properly understand the implementation and results, a discussion of the major 

components of the test bench is provided in the following sections with additional components 

discussed in Appendix A. 

 

2.2.1 Fuel Systems 

The SCRE is fueled with directly injected natural gas that is ignited with a diesel pilot fuel 

injection. 7 of the 8 cylinders on the engine have been disabled with the injectors being removed 

and replaced with dummy plugs [56]. The injector for the remaining active cylinder has been 

replaced with an HPDI (High Pressure Direct Injection) dual fuel injector provided by Westport 

[57]. This injector allows for the simultaneous concentric direct injection of the two different fuels, 

natural gas, and diesel. Both fuels can be injected at different timings which allows for significant 

variation in the in-cylinder fuel mixing. Under this configuration, the engine uses natural gas as 

the primary fuel and diesel as a pilot fuel in compression ignition. The diesel fuel’s primary 

purpose is to ignite the natural gas. To facilitate this operation, a fuel regulation system has been 

developed that pressurizes both fuels with a near constant bias pressure of 1 MPa between the two 

fuels with the diesel being at the higher of the two pressures [30]. The diesel fuel pressure is 

controlled using a dome loaded pressure regulator. Additional valves have been included to 

regulate the fuel pressure fluctuations, shutoff the fuel systems, and depressurize the natural gas 

line. The natural gas is initially pressurized by a natural gas compressor system which maintains 

the initial pressure of the natural gas between 3200 and 3900 psi before it is regulated down to the 

runtime pressure set by the operator [30]. 
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The fuel dilution system was originally developed for another research project and was designed 

to allow for the controlled premixing of air and natural gas prior to the natural gas injection [30]. 

An air compressor compresses ambient air and injects it directly into the fuel line in a safe and 

controlled manner. The injected air mixes with the natural gas and dilutes it prior to the injection. 

This changes the mixing of oxygen with the fuel and results in a reduction in particulate matter 

formation as well as both hydrocarbon and CO emissions. A more detailed discussion of this work 

can be found in the work of Singh et al. [30]. For most of the work presented here, the fuel dilution 

system was not used and was instead fully disassembled and disconnected from the engine. 

However, a study was needed of the differences between high density data, representing the more 

traditional data sets, and low density data. A full factorial data set was repurposed from the fuel 

dilution work to fill the role of the high density data set. 

 

2.2.2 Air Pathway 

Typically for an engine of this type, a turbocharger would be used to pressurize the air before it is 

entered into the cylinder. This is to increase the power output of the engine. While the SCRE does 

have such a system, it is currently disabled in favour of using a more easily controllable intake air 

pressurization system using a pressure regulator and an air compressor.  

 

The exhaust system has a valve to control the back pressure as well as a pathway that is made 

available for exhaust gas recirculation (EGR). As the name states, this allows for the recirculation 

of exhaust gas into the cylinder to limit in cylinder temperature and the resulting pollutant 

formation. The EGR system is controlled by three valves. The first valve is the back pressure valve 

that forces air down the EGR pathway due to the increased pressure, when the second valve, the 
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EGR valve is open. The degree to which this EGR valve is open can be used to regulate the pressure 

on the EGR pathway. A third valve referred to as the waste gate valve is controlled electronically 

and allows for some of the back pressure to be relieved before it reaches the main back pressure 

valve. This allows for additional regulation of the EGR and back pressure. A diagram of the air 

pathway is shown in Figure 2.3. 

 

 

Figure 2.3: Air Flow Pathway Diagram 

 

While the main EGR and back pressure valves are manually controlled using dials. These controls 

are very coarse. The main fine tuning control comes from the waste gate valve. This valve is 

controlled using a dual layered proportional–integral–derivative controller that controls the valve 

actuator to adjust the valve position based on a back pressure setpoint. For the work presented 

here, the EGR valve is set to a constant setting of approximately 20% open. EGR is then primarily 

regulated using the exhaust back pressure which is manually controlled using the back pressure 

valve in conjunction with the waste gate valve.  
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2.2.3 Vector Drive and Dynamometer 

In the single cylinder configuration, the engine requires additional power to overcome friction. 

This is facilitated by the Vector Drive, which is an induction motor, attached to the end of the drive 

shaft on the engine. Once started, the vector drive provides continuous power in lieu of the 

deactivated cylinders and keeps the engine operating at a consistent speed. Once powered, the 

vector drive uses a voltage regulation dial to determine the amount of torque to apply to the engine. 

Typically, this value is held constant and is kept as low as reasonably possible during operation as 

the Vector Drive is prone to overheating. For this work, this value is set to 3800 mV which 

corresponds to 123.43 Nm of torque. This system is cooled independently of the engine using its 

own built in air cooler. 

 

Working in conjunction with the Vector Drive is an engine dynamometer. The dynamometer is 

used to apply a regulated braking torque to the engine to maintain it at a constant speed and 

simulate a road load. This is managed by a specialized control panel which monitors the engine 

speed and applies a braking torque to maintain the speed setpoint. The setpoint is manually 

controlled using a dial. This is the primary means by which the engine speed is set for testing. 

 

2.3 The Emissions Measurement Systems 

The emissions measurement systems are comprised of two major components. These components 

are the primary emissions bench and the particulate matter measurement bench. After combustion 

and prior to reaching the emissions measurement systems, the exhaust is vented through a surge 

tank that smooths out the pressure pulses and vents the exhaust to an external fan. A T junction is 

located shortly before the vent fan which pulls a sampling of the exhaust to the emissions 
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measurement systems. The two systems are described in the following sections with a diagram of 

shown in Figure 2.4. 

 

 

Figure 2.4: Emissions Measurement System 

 

2.3.1 The Primary Emissions Measurement Bench 

The primary emissions bench sits outside the engine test cell and is shared between the two engine 

test benches in the Clean Energy Research Center. The emissions bench is an AVL CEB-II 

emissions measurement system which samples the emissions from the engine in real time and 

reports the composition of the emissions at a frequency of 1 Hz. The emissions bench is calibrated 

on a daily basis, whenever it is used. Calibration uses a collection of calibration gas cylinders for 

each of the measured gasses. Calibration consists of measuring high, low and, zero (nitrogen) 

calibration gasses and running a self-calibration routine by comparing the results against the 

known values from the cylinders. The AVL CEB-II measures CO, CO2, NOX, O2, and CH4, which 

are all used as key parameters in this project. In addition, the emissions measurement bench also 

measures the intake CO2 which is used to evaluate the EGR. 
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2.3.2 The Particulate Matter Measurement Bench 

The particulate matter (PM) measurement bench runs separately from the primary emissions bench 

and is comprised of four major components. These components are the exhaust dilution system, 

the CO2 analyzer, the thermodenuder, and the DustTrak DRX. The PM bench works by extracting 

a sample of the exhaust gas from the exhaust line and diluting it using the same compressed air 

used at the engine intake. The dilution ratio is controlled in two stages using two rotameters which 

allow for both coarse and fine adjustment. The CO2 analyzer measures the concentration of the 

CO2 in the diluted sample. This value is compared in post processing with the CO2 measurement 

from the primary emissions bench to determine the dilution ratio. The dilution ratio is used to scale 

particulate matter measurements to their correct value. The diluted exhaust is sent through the 

thermodenuder which heats the sample to 200ºC to remove the volatile compounds. The now dry 

and treated exhaust gas is passed through the DustTrak where it is sampled and a measurement of 

the mass flow rate of the particulate matter is recorded.  

 

2.4 The Control and Data Acquisition System 

The combined control and data acquisition system is the single largest aspect of the engine that 

has received significant updating as part of this work. At its core, the control and data acquisition 

system has three main tasks. These tasks are, controlling the test bench, providing real-time 

feedback to the operator, and recording data. 

 

The first task is to control the operation of the engine. Commands are sent from the control system 

to the various actuators to manage the operation of the engine according to both the user input and 

the custom built safety control system. The safety controller operates by constantly monitoring the 
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safety critical systems and sensors, as well as responding to the user’s requests to adjust the 

operating state of the engine in a safe and reliable manner. In the event of a system approaching a 

critical threshold, it notifies the user prior to the safety threshold being reached and reacts to the 

threshold by either preventing the threshold from being reached or by safely and swiftly shutting 

down the entire test bench. This includes depressurizing the fuel and air lines, and deenergizing 

all mechanical and electrical systems.  

 

The second main task is to present an intuitive user interface that provides sufficient real-time 

information to the user to allow the user to monitor the engine’s operation. The main part of this 

user interface is shown in Appendix B.1. Using this information, the operator can evaluate the 

current operating point and adjust the engine operating state for whatever research is being done 

on the engine.  

 

The final task is to facilitate the simultaneous recording of all data for the engine from all sensors. 

This needs to be done at a sufficiently high frequency so that the data can be easily post processed 

and used by researchers in whatever way is needed. Furthermore, the control and data acquisition 

system is designed to be expandable so that researchers can easily implement customizable sensors 

and monitor said sensors on the engine in real time. 

 

Prior to this work, the engine control and data acquisition systems were comprised of a unified 

National Instruments system that operated using highly specialized hardware integrated into a 

Pentium 4 computer system [56]. This system included an FPGA controller and several 

interconnected sensor systems. Unfortunately, this system had many limitations based on 
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processing power and aging hardware that prevented the system from being able to provide real-

time display and simultaneous data collection of all critical sensors. Additional reliability issues 

relating to injection timings had resulted in a need to replace this system with something more 

modern to facilitate this work and future work on the test bench. Developing this new system was 

a very extensive undertaking.  

 

The new control system for the engine is based on a joint National Instruments CompactDAQ and 

CompactRIO system [58]. The CompactDAQ is used primarily for data collection and real-time 

display of various parameters that the operator needs to assess the current operating state. The 

CompactRIO is used for control and management of the main safety system. A diagram of how 

these systems integrate with the safety circuit is shown in Appendix B.2. Both these systems are 

managed by two separate computers. During operation, continuous communication takes place 

between both the CompactRIO and CompactDAQ, as well as the control and data acquisition 

computers. A high level diagram of this configuration is shown in Figure 2.5. A description of the 

connected sensors and actuators controlled by this system is summarized in Figure 2.6. 
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Figure 2.5: Engine Control and Data Acquisition System Overview 
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Figure 2.6: System Control/Sensor Diagram 

 

2.4.1 The CompactDAQ 

The CompactDAQ (cDAQ-9188) is National Instruments’ modular data acquisition solution [58]. 

The CompactDAQ is a standalone network controlled device that can facilitate up to 8 plug and 

play modular sensor IO packages capable of reading a variety of external sensors depending on 

the module configuration. Because of this, the CompactDAQ allows for a customizable setup 
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capable of being extended for future research.  For this project, the CompactDAQ is configured in 

its default configuration which includes the following hardware modules as wired according to the 

wiring diagram in Appendix B.3: 

• 1 X NI 9401: 8 Channel Digital I/O Module 

• 1 X NI 9205: 32 Channel Analog Input Module 

• 1 X NI 9213: 16 Channel Temperature Input Module 

• 2 X NI 9415: 4 Channel Fast Analog Input Module 

 

The chassis has two additional inputs used for signal timing and measuring the pulses coming from 

an encoder attached to the flywheel. This encoder is used to detect the start of each combustion 

cycle and to synchronize the timing of the high speed sensor signal recordings. These sensors are 

recorded on a NI 9415 module. The NI 9205 module and the remaining NI 9415 module are used 

for analog input sensors which are recorded at a slower interval of 10 Hz based on a hardware 

timer. The NI 9213 module is used for all temperature sensors and is recorded at the same interval 

on the same internal hardware timer. The final NI 9401 module is used for safety communication 

between the CompactDAQ and the CompactRIO. A single 9V line is driven high by the 

CompactDAQ when it is running to indicate to the CompactRIO that it is active, and no errors or 

safety issues have been detected. This line is otherwise driven low which triggers an emergency 

shut down through the CompactRIO. 

 

2.4.1.1 Data Acquisition Software 

The CompactDAQ is programmed in LabView with the previously mentioned hardware timers to 

manage data collection and sensor operation. The hardware can operate independently from a host 

computer system, however, in this configuration, the CompactDAQ is intended to always run with 
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a computer connected. This allows for the continuous real-time monitoring of the engine’s 

operation using the user interface shown in Appendix B.1.  

 

The data acquisition system is the more complex of the two software systems used to operate the 

test bench. The data acquisition system must simultaneously read data from four different sources, 

calculate a variety of operation critical parameters (such as EGR Percentage) in real-time, 

continuously display this data and the post processed real-time parameters in a user readable 

format, monitor safety critical systems that are not part of the main control system, and record all 

the data from all connected systems to a single data file for future use when requested. These tasks 

are all completed in the LabView front end code. An overview of the software logic is shown in 

Figure 2.7. 

 

 

Figure 2.7: Data Acquisition Logic Diagram 
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Data collection tasks are broken up into two main groups. These groups are the high speed crank 

angle based data and the low speed time based data. The high speed data is collected at a variable 

speed as the engine rotates with one data point being measured every 0.5 degrees of crank angle 

rotation. The first recorded measurement is triggered when the engine passes the 0 degree point on 

the engine encoder. The system measures and records one full combustion cycle at a time. This 

data primarily consists of 2 sensor measurements intended to determine the cycle to cycle 

properties of the combustion within the cylinder. These sensors are the instantaneous cylinder 

pressure and the intake manifold pressure.  While this data is recorded in its raw format, this data 

is also post processed in real time to determine parameters such as the heat release rate, which is 

presented on a graph in the user interface, and the 50% integrated heat release rate crank angle. 

Both these parameters are critical to monitoring the engine operating state and ensuring its safe 

operation. 

 

The low speed time based data is recorded at an interval of 1 Hz and is comprised of four key 

components: 

• Low Speed Sensor Data 

• Diesel Mass Scale Data 

• Primary Emissions Bench Data 

• Control System Data 

 

The low speed sensor data is comprised of the remaining temperature, pressure, and flow rate 

sensors on the engine. This data is measured at an interval of 10 Hz and averaged to 1 Hz. The 

diesel fuel flow rate is measured through an RS232 connection to a mass scale that reports the 

mass of the diesel fuel reservoir at an interval of 10 Hz. This value is then processed to produce 
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an average flow rate. As with the low speed data, this is averaged to 1 Hz when recorded. The 

primary emissions bench and control systems communicate with the data acquisition system at an 

interval of 1 Hz over a network connection. This data is recorded at the 1 Hz rate. The emissions 

bench reports the raw flow rates of the emissions in the exhaust gas. These values are post 

processed to determine the input/output element balance ratios. By measuring the carbon 

input/output ratio as well as the ratios for hydrogen, nitrogen and oxygen, the reliability of the data 

and system calibration can be validated in real-time while measurements are being taken. In 

general, these values should not vary by more than 10% from a value of 1. Some variation is 

expected as there is a variable time delay and mixing of gasses in the exhaust surge tank that cannot 

be accounted for in the calculations even though the engine should be running at a steady state. 

The control data consists of the entire control setpoint as displayed on the user interface of the 

control system. This is directly sent from the control computer to the data acquisition computer 

when data logging is enabled and is included in the log file. This log file is later post processed 

using custom made MATLAB scripts to enable it to be used for this research. 

 

2.4.2 The CompactRIO 

 The CompactRIO (cRIO NI-9144) is a standalone controller with a built in FPGA and Real-Time 

Operating System [58]. The CompactRIO is controlled by a single computer and manages many 

of the actuators on the engine including the injector driver and the various valves for air and 

cooling flow. This system is also responsible for monitoring the safe operation of the engine and 

responding to safety issues by mitigating them according to the following strategy: 

• Erroneous/Excessive User Input 

o Ignore new input and proceed with previous safe operation 
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o Activate a warning light 

• Approaching Safe Operating Limits: 

o Continue operation as requested but notify the operator of the approaching limit 

o Activate a warning light for the appropriate issue 

• Exceeding Safe Operating Limits: 

o Stop injection and trigger emergency shut shown. 

▪ Purge/depressurize fuel lines 

▪ Depressurize compressed air line 

▪ Deenergize engine and vector drive 

 

As with the CompactDAQ, the CompactRIO also supports 8 modular I/O packages. For this 

research, the CompactRIO is configured using the default configuration for the engine and utilizes 

the following modules with a detailed wiring diagram provided in Appendix B.3: 

• NI 9411: 6 Channel Digital I/O Module 

• NI 9205: 32 Channel Analog Input Module 

• NI 9264: 16 Channel Analog Output Module 

• NI 9375: 32 Channel Digital I/O Module 

 

The NI 9411 module is the primary timing module. This module is directly connected to an encoder 

on the flywheel which provides high speed timing information. This encoder reports back the 

position of the crank shaft in increments of 0.5 degrees. In addition, the encoder reports it’s zero 

position which is used to detect the start of a new injection cycle. This module also receives the 

ESD (emergency shut down) information from the CompactDAQ in the form of an “always on” 

signal that is pulled low by the CompactDAQ when an error is detected. 
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The NI 9375 module is wired to the injector driver and controls both the timing and duration of 

the injections for the diesel and natural gas as a square wave digital signal. The injector driver 

processes this signal into an appropriate injection signal for the solenoids that operate the injector. 

The 9375 module also controls the ESD line and compressed air enable switch. These signals are 

gatewayed through a MOSFET package that is used to isolate the circuits and scale the voltages 

between the different systems. 

 

The NI 9205 module is used to measure other critical sensors including system temperatures and 

pressures. The temperatures are reported as a voltage by an external thermocouple signal processor 

while the pressures and waste gate valve position are directly measured. 

 

The remaining actuators are controlled using a NI 9264 module which sends analog voltages to 

control the waste gate valve, engine cooling valve, EGR cooling valve and intake air pressure.  

 

2.4.2.1 Control Software 

The CompactRIO can run independently of a computer, however, in this configuration, the 

CompactRIO is intended to be used continuously with a control computer that manages each of 

the setpoints that operate the engine through a user interface. The control software is both the 

simplest and most complex of the two systems. From a user perspective the user interface is a 

simple series of switches and displays indicating the various actuators and safety critical systems. 

A diagram of the high level control system logic is shown in Figure 2.8. 
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Figure 2.8: Control Logic Diagram 

 

The actuator of the engine cooling valve is controlled using a direct passthrough switch that opens 

or closes the valve based on the engine temperature setpoint and the current measured temperature. 

Similarly, the intake air line is switched between the compressed air line or ambient air based on 

a direct passthrough switch that controls the appropriate valve. 

 

The waste gate valve is controlled using a back pressure setpoint and two nested proportional–

integral–derivative controllers that regulate the back pressure by regulating the waste gate valve 

position. This waste gate valve position is the actual output that is controlled using a variable 

voltage from 0 to 5.  
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The intake air pressure is controlled using a setpoint that directly converts to a voltage. Depending 

on the back pressure, EGR, and waste gate valve position, this setpoint can vary significantly from 

the actual pressure reported by the sensors. 

 

An ESD (emergency shut down) system monitors various safety critical sensors such as the oil 

pressure, cylinder pressure, engine temperature, engine speed, and data acquisition system status. 

Exceeding a set warning value lights up an indicator that informs the user that a threshold is 

approaching. Once a pre-set threshold is reached, the ESD system is driven low, opening the ESD 

relay, triggering a safe emergency shutdown which purges the fuel lines and deenergizes the entire 

test bench. A diagram of this circuit is given in Appendix B.2. 

 

The most complex aspect of the control code is the injection system. The injection system has two 

sets of injection parameters to allow for two completely independent sets of fuel injections per 

cycle. Each injection command has the following parameters: 

• Injection Enable Switch 

• Pilot Injection Angle 

• Pilot Injection Duration (ms) 

• Natural Gas Injection Angle 

• Natural Gas Injection Duration (ms) 

• Constant Pulse Separation Enable Switch 

• Pulse Separation Time (ms) 

 

The injection enable switch enables or disables the injection command. The injection angles and 

duration indicate the exact timing of the fuel injection for the diesel and the natural gas. These are 
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sent to the injection driver as a square wave digital signal for each fuel. When fuel injection is 

enabled, and the engine is running at or above its minimum start-up speed of 333 RPM, the engine 

tracks the current angle of the encoder using a counter in a high speed loop on the built-in FPGA 

controller. At the appropriate angle in each cycle, the signals are enabled and remain enabled for 

the indicated durations measured using the internal clock of the FPGA.  In this way, the injection 

timing is precisely controlled to within 0.5 degrees of the crank angle position, which is the highest 

resolution possible on the engine encoder. The pulse separation enable switch allows for the 

overriding of the natural gas injection angle based on a desired time based separation between the 

diesel pilot and natural gas injections. When this is enabled, the user can specify a pulse separation 

timing in milliseconds that automatically calculates the gas injection angle based on the engine’s 

current speed and the desired setpoint. This calculation is based on the relative injection timing 

(RIT). RIT is calculated according to Equation 2.1 where SOI is the start of injection and ng stands 

for natural gas. ωeng is the engine speed in rpm and is multiplied by 0.006 to convert it to degrees 

per millisecond. 

 

RIT =
(SOIng − SOIdiesel)

ωeng × 0.006
 (2.1) 

 

RIT is defined as the time between the start of the initial pilot injection and the start of the primary 

natural gas fuel injection [7].  The fuel pulse separation (PSEP) is used to control the crossover 

between the two fuel injections and is calculated as the RIT with the diesel pulse width subtracted. 

A diagram of this is shown in Figure 2.9.  
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Figure 2.9: Diagram of Fuel Injection Timings Relative to Heat Release Rate 

 

A slew rate safety control algorithm enforces a gradual change in the setpoints for the injection 

timing and duration. As these values can be controlled by entering numbers directly into the control 

panel, the slew rate control is needed to prevent a user accidentally setting an unreasonable value 

or accidentally shifting the engine to a drastically different operating point. The slew rate control 

detects rapid changes in the setpoint and holds the engine at its last known setpoint, informing the 

user of their error. Once the user restores the setpoint to its previous state, the error automatically 

clears, and the engine can continue to be adjusted as normal. 

 

2.5 Facility Summary 

The single cylinder research engine test bench provides an ideal test bench for engine modeling 

research. Through the pilot ignited direct injection natural gas fueling and combustion strategy, 

this test bench demonstrates a non-conventional, complex engine technology with several more 
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degrees of freedom than conventional diesel or gasoline engines. This provides an ideal modeling 

challenge for reduced data machine learning modeling techniques. The system is fully 

instrumented and is fully controllable through the new control and data acquisition system that 

was developed for this work. This system integrates with advanced emissions analysis tools that 

allow for the full assessment of the engine’s operating state. Models can be generated from this 

information to predict various important engine performance and emissions metrics. The biggest 

limitation is the need for large amounts of data due to the system complexity. It is this limitation 

that this research seeks to overcome. 
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Chapter 3: High and Low Density Data Sets for Engine Model Development 

The core of this research is based on developing machine learning engine models. This requires 

the collection of data from the research engine test bench and the selection of a set of model 

parameters to be studied. To facilitate this work, several different data sets are needed. These data 

sets span different operating spaces and utilize different strategies for selecting operating points. 

The following sections describe how the model parameters are selected, how they are assessed, 

and the different data sets that are evaluated as part of this research. 

 

3.1 Modeling Inputs/Outputs 

The model inputs and outputs are selected based on Figure 2.2 and Figure 2.6 which provide an 

overview of the test bench. Table 3.1 presents the inputs and outputs used throughout this work. 

The listed parameters represent typical engine control and performance metrics as they relate to 

the unique engine being studied in this research [7], [11], [30], [59]. All the work presented here 

uses this input and output set as the baseline for all data collection and model development. It is 

assumed that each of these inputs represents independent and identically distributed random 

variables. It is known that some of these parameters interact with each other, but these inputs are 

selected as they represent the inputs that are typically readily available for an engine control 

system. While some of the data points are not as densely selected as is typically done for machine 

learning, the methods used to select the model inputs are designed to ensure that they are 

distributed across the operating space. Only validation data, which is not used for model creation, 

does not follow this identical distribution assumption. 
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Table 3.1: Engine model inputs and outputs 

Inputs Outputs 

Name Symbol Name Symbol 

Intake Air Pressure (kPa) pair Thermal Efficiency (%) η 

Diesel Gas Pressure (MPa) pdiesel Peak Cylinder Pressure (bar) pcyl 

Natural Gas Pressure (MPa) png Cylinder Pressure Gradient (bar/ºCA) dp/dCA 

Diesel Start of Injection (ºCA) SOIdiesel Particulate Matter (g/hr) PM 

Diesel Pulse Width (ms) PWdiesel Oxygen Based Equivalence Ratio EQRO 

Gas Start of Injection (ºCA) SOIng CO (g/hr) CO 

Gas Pulse Width (ms) PWng CO2 (kg/hr) CO2 

Engine Speed (rpm) ωeng NOX (g/hr) NOX 

Exhaust Back Pressure (kPa) pexh O2 (kg/hr) O2 

Intake Air Temperature (ºC) Tair CH4 (g/hr) CH4 

Coolant Temperature (ºC) Tcool Gross Indicated Power (kW) Pgross 

Fuel Dilution flow rate (kg/hr) ṁdil  

 

 

3.2 Measurement Campaigns 

Several measurement campaigns were completed. These measurement campaigns use different 

operating regions as the basis for the data collection. The different operating regions are listed in 

Table 3.2. 
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Table 3.2: Measurement campaign operating regions 

  Fuel Dilution 

Space 

Box Behnken 

Space 

Negative PSEP 

Space 

Exhaust Gas Recirculation (%) 0 – 26 0 – 30 0 – 30 

CNG Fuel Pressure (MPa) 20 – 22 18 – 23 20 

Fuel Pulse Separation (ms) 1.6 – 7.2 0 – 1.5 -1 – 0 

Engine Speed (rpm) 1200 – 1350 1200 – 1500 1200 – 1500 

Air Intake Pressure (kPa) 60 – 220 100 – 240 100 – 240 

Diesel Start of Injection (ºCA aTDC) -33.5 – -21 -27 – -10 -27 – -10 

Diesel Pulse Width (ms) 0.55 – 0.73 0.5 – 1 0.6 

CNG Pulse Width (ms) 1.19 – 4.71 0.6 – 2.5 0.6 – 2.5 

Fuel Dilution Flow Rate (kg/hr) 0 – 7.64 0 0 

 

Each measurement campaign was undertaken with a different goal/objective in mind and 

characterizes a different style of data collection. The different measurement campaigns that were 

undertaken during this research are discussed in the following sections.  

 

3.2.1 Full Factorial Data Set 

The full factorial data set represents a high density data set that was originally collected as part of 

an extensive research project into the benefits of air dilution of the natural gas stream. This data 

set is used here to demonstrate the difference between high density and low density data sets as 

well as to illustrate the limitations of different modeling techniques. The test bench was heavily 
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modified to facilitate this work and an extensive, meticulous measurement campaign was 

completed. This work is detailed in Singh et al [30].  

 

The full factorial method is the most rigorous method of data collection used in this work [30]. In 

this method, a step size is selected for each input based on the resolution of data desired. Each 

input is then systematically varied by its corresponding step size until every permutation of the 

given inputs within the operating space have been measured. Assuming a sufficiently high 

resolution is selected, this method provides the most detailed data set possible [30]. The largest 

limitation of this method is that if it is applied to anything more than a small, specific operating 

region, then it produces a large quantity of data points that may not be feasible to measure due to 

experimental limitations. In this research, for example, examining a small set of 5 steps for each 

parameter listed in Table 3.2 would yield a data set of 1,953,125 data points. Even a smaller set of 

3 steps would yield 19,683 data points. At a rate of 1 data point per half hour and not including the 

start-up and calibration times, collecting this data set would not fall within the realistic time 

constraints of this research. This brute force method, however, represents one of the most 

fundamental and detailed measurement methods available.  

 

To ensure that this level of fidelity would remain manageable, only a small operating region was 

used and the size and quantity of step sizes were varied to reduce the data set to something more 

manageable while still focusing on the key parameters being studied [30]. Using this approach 

only 131 data points were needed. Of this 131 data points, 121 are used for model training and 10 

are randomly selected to assess model performance  The operating region for this data set is given 

in Table 3.2 as the “Fuel Dilution Space”. 
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3.2.2 Box Behnken Design Data Set 

The Box Behnken design data set is based on the Box Behnken Design of Experiments method. 

The design of experiments methods are designed to select operating points that strategically 

perturb a system in such a way so that the influence of each individual input can be independently 

characterized [60]. This also ensures that the data set follows the independent and identically 

distributed input assumption. This is a common method used to select operating point for real-

world engine calibration tests [50], [61], [62]. The Box-Behnken Design of Experiments defines 

an multi dimensional space based on the number of control parameters and attempts to characterize 

the space by selecting experimental points that provide the most information on the impact of each 

parameter on the output of the space.  

 

This method works by finding a center point of the space and then determining the midpoint of 

each edge of the intersecting subspaces that defines the boundaries of the space being studied [63]. 

The number of data points that need to be measured grows accordingly with the number of 

dimensions or parameters being considered. The final data set is typically designed to be used with 

a response surface modeling method but can be used for other modeling approaches [60]. Despite 

the small data size, this data set is expected to characterize the relationships between each of the 

input parameters for each measured output. 

 

The Box Behnken data set is the primary data set used in this research and represents a data set 

that is intended to characterize a complete operating space. The operating region characterized is 

given in Table 3.2 as the “Box Behnken Data Space”. This data set was developed using the Box-



44 

 

Behnken method as implemented by the MATLAB Statistics and Machine Learning Toolbox. 

Using 8 degrees of freedom, this method contains a total of 120 data points.  

 

3.2.3 Negative PSEP Data Set 

The negative PSEP data set is similar to the Box-Behnken data set in Section 3.2.2, except that it 

measures data on the other side of the PSEP boundary where an overlap of the two fuel injections 

takes place. This data is used when data from distinctly different operating regions is needed. One 

of the methods, discussed later, uses this data to simplify the complexity of individual models by 

dividing the modeling problem into different regions. This data characterizes the operating space 

in the negative PSEP region which is excluded from the main Box Behnken data set. This operating 

space is shown in Table 3.2  and is listed as “Negative PSEP Space”. This data was collected using 

the Box-Behnken design of experiments method as implemented by the MATLAB Statistics and 

Machine Learning Toolbox with 6 degrees of freedom and contains 54 data points. Note that the 

data size is kept smaller as it was known that varying the gas rail pressure and diesel pulse width 

did not have a significant impact on the combustion in this region.  

 

3.2.4 Randomized Data Set 

One randomized data set is collected for each of the Box Behnken and negative PSEP regions 

according to Table 3.2. This method generates randomized data points within an operating space. 

This method of selecting operating points is not meant to give a complete representation of the 

operating space and is instead designed to represent real world operating conditions. The selected 

points are rounded to their nearest controllable value and duplicate points within a distance of 2 
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control steps in any direction are automatically rejected. The Box Behnken randomized data set 

consists of 39 data points and the negative PSEP randomized data set consists of 9 data points.  

 

This data is not used for model creation and is instead referred to as “validation data”. This is the 

main data set used for model performance measurements. As this data is not used in training, this 

data represents a “post-model measurement”. A model prediction for these data sets mimics a real-

world comparison between a running engine and an already existing model [64]. This represents 

the same performance that would be seen under real use where a given operating condition may 

not have been considered during model development or controller calibration  [65]. As such, this 

data is exclusively used for model performance validation. 

 

3.3 Experimental Repeatability  

Prior to evaluating the model performance there is a need to assess the confidence in the 

measurements, and the degree of accuracy to which the test bench can be controlled [66]–[69]. 

This is done through a repeatability study. Evaluating the repeatability of the experimental process 

provides an understanding of the margin of error in the measurements based on the measurement 

variability [66]. The experimental repeatability is evaluated based on a single repeat point, 

established in Singh et al [30]. This repeat point is based on the midpoint of the full factorial data 

without the use of air injection. This data point is measured repeatedly throughout the data 

collection process. Each repeat point measurement is completed over a period of 30 minutes to 1 

hour. This is done three times throughout the day for each day measurements were performed: 

1. At the start of measurements after the completed 1.5 hour warmup and calibration 
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2. At the midpoint of the day, after the system has been restarted if a break was taken and a 

faster 30 minute warm up has been completed or otherwise after several minutes of idling 

at a medium load point 

3. At the end of the day, prior to shut down and the completion of the day’s testing 

It is important that each repeat point is set very precisely as any variation in the inputs or outputs 

should be the result of system variation and not user introduced error. It is, however, expected that 

small variations in the user set control parameters will be part of this assessment. The repeat point 

used for these measurements is detailed in Table 3.3. 

 

Table 3.3: Repeat point  

Inputs Value 

Exhaust Gas Recirculation (%) 12.5 

CNG Fuel Pressure (MPa) 20.5 

Fuel Pulse Separation (ms) 0.75 

Engine Speed (rpm) 1350 

Air Intake Pressure (kPa) 170 

Diesel Start of Injection (ºCA aTDC) -18.5 

Diesel Pulse Width (ms) 0.75 

CNG Pulse Width (ms) 1.55 

Fuel Dilution Flow Rate (kg/hr) 0 

Exhaust Back Pressure (kPa) 180 
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This repeat point was selected as it has a history of prior use throughout multiple measurements 

and has been shown to be successful in characterizing the reliability of the engine [30]. The 

repeatability is assessed based on the standard deviation normalized by the mean for all repetitions 

of the operations condition. Equation 3.1 shows the calculation of the normalized standard 

deviation. 

 

snorm =
s

∑[Yi] Ndata⁄
 (3.1) 

 

Here, s represents the standard deviation, Y is the value being assessed, snorm is the standard 

deviation after being normalized and Ndata is the number of total measurements. Figure 3.1 shows 

the normalized standard deviation for the control inputs and Figure 3.2 shows the normalized 

standard deviation for the outputs.  
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Figure 3.1: Repeat Point Input Normalized Standard Deviation 

 

 
Figure 3.2: Repeat Point Output Normalized Standard Deviation 
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The range of the measured values for the repeat points is shown in Table 3.4. Both the input 

range and the output range is presented. 

 

Table 3.4: Repeat point measurement range 

Inputs Outputs 

Name Measured Range Name Measured Range 

Air Pressure (kPa) 187 – 187  CO (g/hr) 5.31 – 7.02 

Diesel Pressure (MPa) 23.1 – 23.5 CO2 (kg/hr) 0.45 – 0.45 

CNG Pressure (MPa) 21.8 – 22.2 NOX (g/hr) 2.17 – 2.37 

Diesel Start of Injection 

(ºCA aTDC) 

-25 – -25 O2 (kg/hr) 0.37 – 0.40 

Diesel Pulse Width (ms) 0.45 – 0.45 CH4 (g/hr) 0.40 – 0.45 

CNG Start of Injection 

(ºCA aTDC) 

-18.8 – -18.7 Thermal Efficiency (%) 0.43 – 0.46 

CNG Pulse Width (ms) 

2.18 – 2.18 

Cylinder Pressure 

Gradient (bar/ºCA) 

6.52 – 7.25 

Exhaust Gas 

Recirculation (%) 

18.1 – 18.7 

Oxygen Based 

Equivalence Ratio 

0.57 – 0.62 

Exhaust Back Pressure 

(kPa) 

182.7 – 182.9 

Gross Indicated Power 

(kW) 

44.8 – 46.0 

Air Temperature (ºC) 25.9 – 26.4   
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The normalized standard deviation of the inputs is consistently below 0.08. The highest standard 

deviation comes from the intake air temperature and is approximately 0.075. This is expected as 

the air temperature is not controlled in the current facility. The other parameters that vary are 

controlled using feedforward control systems with varying tolerances on the output. Figure 3.2 

shows that these variations do not have a significant impact on the outputs as the normalized 

standard deviation is similarly low, with the highest value being 0.054. 

 

The particulate matter measurement is not shown in Figure 3.2 as the variability changes 

substantially with the engine operating point. This makes it difficult to characterize the 

performance without performing a full sweep of the operating space to assess its variability. This 

work has previously been done, showing a 14% variability for the particulate matter measurements 

[30]. This assessment was performed around the same time that the bulk of the data for this 

research was collected. As there has not been much variation in the repeat point measurements, 

this assessment of the reliability is maintained to be true. A 13.51% variability is higher than those 

presented in Figure 3.2. This is still considered reasonable as particulate matter measurements are 

known to be difficult to measure and analyze [33], [70], [71]. 

 

3.4 Measurement Protocol 

Each data set is measured according to protocols that were developed to ensure the consistency 

and validity of the data. The protocol for collecting the fuel dilution data set is laid out in the work 

by Singh et al [30]. Collecting the data from the remaining data sets is completed over a period of 

several months starting with the Box Behnken positive PSEP data set, followed by the negative 

PSEP data set and then the randomized validation data sets.  
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Calibration and system warm up takes approximately 1.5 hours. This begins with calibrating the 

air intake venturi zero offset, followed by the start up of the engine. The engine is then set to a 

1200 RPM idling mode where it runs until the engine oil temperature reaches a nominal 80°C. The 

operating mode is adjusted as the engine runs to speed up the warmup process once the other 

system calibrations are completed. Once the engine is running, the primary emissions 

measurement bench is started and all the calibration gas bottles are opened. The bench is then set 

to run an automated calibration process. This is repeated a minimum of 4 times, to ensure that the 

calibration gases are correct and the connecting lines between the calibration gas and the 

measurement system are properly primed. A minimum of 2 successful consecutive calibrations is 

required to ensure that the system is properly calibrated. Once this is completed, the particulate 

matter measurement bench is calibrated. This primarily involves calibrating the CO2 analyzer 

which is done using a zero and span gas. These two gases are sampled and the zero and span values 

are adjusted. The adjustments are completed when the measurements agree with the sample bottles 

and do not drift for a minimum of 30 minutes. Once this is done, the sample line is opened. The 

heating element for the sample line is then turned on and allowed to reach the 200°C setpoint. 

 

Once calibration is complete and the engine has finished warming up, the first repeat point 

measurement takes place. The engine setpoint is gradually adjusted to the repeat point and allowed 

to idle at that point for a minimum of 15 to 30 minutes while the EGR value settles. During this 

time, the DustTrak is turned on and the analog output is adjusted to measure in the range of the 

current PM output. This is necessary as the accuracy of the DustTrak analog output is limited at 

the lower voltage range due to signal noise. To address this, the range of measurements is adjusted 
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for every sample point. Similarly, the dilution ratio is also adjusted to keep the measurements 

within the valid range of the DustTrak. After the repeat point has settled, a 2 minute recording of 

all the sensor data takes place. This is compared to past measurements to ensure the engine is 

operating as expected. 

 

The main measurements then begin by gradually adjusting the engine settings from one operating 

point to the next. The DustTrak settings and dilution ratio are adjusted and the EGR is allowed to 

settle at each data point before measurements are taken. These are primarily related to the intake 

and back pressure as these fluctuate as the engine settles. Once the system is stable and the 

operating point has been reached, a 2 minute measurement is taken. This is then repeated for each 

operating point. Operating points continue to be collected for 7 to 10 hours. During this time, 

additional repeat points are collected at the midpoint and end of the day. The engine is then shut 

down and the process is repeated for several days until the measurement campaign is completed. 

 

3.5 Model Performance Metrics 

There are several ways to assess the performance of a machine learning model. In this work, the 

goal is to primarily focus on validation data results as these results represent the true performance 

of a model in a real-world operational setting. Additional results are presented for the training data, 

however, as the models in this work are produced using the training data, these results present a 

false impression on the overall model performance. It is easy for a model to predict something it 

has been trained with. The true test of a model is in predicting something not used during training. 

This is where the validation data results come in. 
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Model performance itself is measured using the normalized root mean square error, nRMSE, which 

is calculated using Equation 3.2 and the coefficient of determination, COD, which is calculated 

using Equation 3.3. Ndata is the number of data points, Y represents the outputs for the measured 

and model predicted values. cov is the covariance of the measured and predicted outputs and s 

represents the corresponding standard deviations. 

 

nRMSE =

√
∑[(Yi,meas − Yi,pred)

2
]

Ndata

∑[Yi,meas] Ndata⁄
 

(3.2) 

COD = (
cov(Ymeas, Ypred)

smeas × spred
)

2

 (3.3) 

 

 

The coefficient of determination provides a measurement of how well the model can predict the 

trends in the data. A value near 1 represents a model that accurately depicts the way in which the 

results vary from data point to data point. Error may still exist, but given the data set measured, 

the model is able to accurately replicate some representation of the system. While this is a useful 

metric, the main value being studied is the nRMSE. nRMSE is a representation of the true error 

between the expected value and the predicted value for a given set of data points. This data is 

normalized against the mean value of the training data for representation purposes but otherwise 

indicates how much the results deviate and how accurate the models are to the measured data. 

While both metrics are valuable, the COD is only used to indicate if a true model is created. The 

nRMSE is used to measure how well the model works. Model nRMSE is considered low if the 

validation data results are below 0.1 as this would result in values that approach the repeatability 
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of the system as shown in section 3.3. Some researchers have developed models that show nRMSE 

values below this value. Lotfan et al. demonstrated a CO neural network model that showed an 

equivalent nRMSE of 0.03 while Kokkulunk et al. presented a CO2 neural network model with an 

nRMSE of 0.065 [39], [40]. These works used more data over a smaller domain than what is 

considered in this work. Vabalas et al. demonstrated that machine learning model accuracy is 

expected to decrease dramatically as the ratio of features, or degrees of freedom, to samples 

increases indicating that the nRMSE is expected to be higher for this work due to the larger ratio 

of the operating space to the size of the data sets [54]. A value of 0.1 approaches the typical range 

of nRMSE seen in these other works. This value also approaches a point where system repeatability 

can become a significant component of the error as it can account for up to 6% of the error based 

on Figure 3.2. As such, 0.1 is taken as the primary benchmark for determining whether or not a 

model is successful with the understanding that better results may still be possible. 
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Chapter 4: Survey of Machine Learning Model Performance for Varying 

Density Data Sets 

This chapter presents a collection of machine learning models that represent the range of the 

performance expected for modeling the data sets presented in the previous section. Both neural 

network and Gaussian process regression models are created to model each of the outputs in Table 

3.1. Each of the models discussed in the following sections is developed using the MATLAB 

Statistics and Machine Learning Toolbox. The models are developed and trained using randomly 

selected hyperparameters. These models are presented to demonstrate the current limitations of the 

machine learning techniques, the importance of identifying proper hyperparameters, and to provide 

a basis from which these models can be improved.  

 

Both the artificial neural network (ANN) and Gaussian process regression (GPR) techniques are 

utilized in this section to generate a set of 500 models for each model output. Each of the models 

is produced with a different set of randomly selected hyperparameters. The hyperparameters are 

settings which define how the models are configured. The randomly selected hyperparameters 

include the neural network node count, layer count, and training algorithm as well as the Gaussian 

process regression kernel function, and noise standard deviation [44], [72]. These hyperparameters 

are discussed in further detail in appendix C.1 and C.2. Each output in Table 3.1 is modeled 

separately from the other outputs as a multiple input, single output model using all the inputs listed 

in the table. These models are then also compared to a typical response surface (RS) model based 

on linear regression.  
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The three modeling methods are evaluated on the full factorial data set from Section 3.2.1 and the 

Box Behnken data set from Section 3.2.2. These two data sets make it possible to evaluate the two 

different cases where data is very tightly packed, as in the full factorial data, and when data is only 

sparsely available, as in the Box Behnken data set. It is the latter case that this overall research 

project focuses on, as this is the case where it becomes necessary to use the more advanced 

techniques presented later in this work [34].  

 

4.1 Survey of Hyperparameter Model Performance Results 

500 models are generated for each output using both Gaussian process regression and artificial 

neural networks with each model having a different hyperparameter configuration. In typical 

machine learning modeling, no prior knowledge is available for selecting these hyperparameters 

and as such, either a rule of thumb or trial and error approach is often used [41], [73]. In this work, 

hyperparameters are selected randomly, and the aggregated results of all 500 models are presented. 

The primary metrics for performance are the coefficient of determination, normalized root mean 

square error, and finally, the robustness, which can be assessed based on the size of the range of 

the other two metrics across multiple model iterations.  

 

4.1.1 Full Factorial Data Training Results 

Evaluating the performance of the machine learning models begins with the idealized full factorial 

data. The following figures present the results for the training data. 
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Figure 4.1: Coefficient of Determination for the Modeling Survey with Full Factorial Data (Training Results) 

 

Figure 4.1 shows the coefficient of determination results for the full factorial training data. It is 

immediately apparent that there is a wide range of performance across all modeling methods. For 

most models, this range spans approximately half of the possible range of values from 0 to 1. This 

indicates the importance of properly selecting hyperparameters as the different hyperparameters 

can lead to vastly different modeling results when it comes to the coefficient of determination.  

 

On average, the coefficient of determination for Gaussian process regression is in the higher range 

above 0.8 which indicates that most of the randomized hyperparameters produce models that 
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accurately fit the trends of the data set. The neural network coefficients of determination are lower, 

around 0.6 on average, and the response surface coefficients of determination are the lowest with 

most models producing results close to 0.  

 

The response surface performance is largely a result of the data complexity. In this case, the 

response surface model is poorly suited to modeling this data set, where the machine learning 

models do not have this problem. This underscores the major limitation of response surface 

modeling. This limitation is the dependence on a data set that has been carefully curated for the 

response surface.  

 

The full factorial data collection technique is very powerful for capturing the characteristics of 

complex systems and for providing large amounts of data. This is very beneficial for machine 

learning. Response surface modeling, however, is also dependent on the spacing between the data 

points and the complexity of the system being modeled. In this case it is unable to utilize the full 

factorial data. 
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Figure 4.2: Normalized RMSE for the ANN and GPR Modeling Survey with Full Factorial Data (Training 

Results) 

 

Figure 4.2 shows the normalized root mean square error for the full factorial training data set. The 

response surface results have been omitted from the figure as the models proved to be unusable, 

with nRMSE results exceeding 1014. A summary of the nRMSE results for all three sets of models 

is shown in Table 4.1. 
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Table 4.1: Normalized RMSE for the modeling survey using the full factorial data (training results) 

Output 

Mean Normalized Root Mean Square Error * 

Response Surface 

Artificial Neural 

Network 

Gaussian Process 

Regression 

CO 1.37E+14 0.219 0.041 

CO2 1.31E+13 0.054 0.018 

NOX 1.15E+14 0.196 0.045 

O2 1.06E+14 0.136 0.049 

CH4 1.33E+14 0.183 0.042 

Efficiency 1.22E+13 0.032 0.014 

pcyl 7.71E+12 0.095 0.016 

dp/dCA 2.02E+13 0.040 0.023 

PM 1.40E+14 0.276 0.130 

EQRO 4.12E+13 0.067 0.034 

Power 5.48E+12 0.065 0.019 

Average 6.64E+13 0.124 0.039 

* Lowest nRMSE in bold. 

 

The machine learning methods all perform much better than the response surface with significantly 

lower normalized root mean square error values consistently averaging under 0.3. Based on the 

system repeatability study, ideal values would be below 0.1. For training data this value should be 

much lower and closer to 0.01. This indicates that there is still room for improvement. Excluding 

the particulate matter results, the Gaussian process regression models come close to this goal with 
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an average nRMSE of 0.039. With a few exceptions, the neural network models consistently fail 

to meet this metric with an average nRMSE of 0.124. 

 

The ANN range for the nRMSE, as indicated by the error bars, shows a significant performance 

variation that exceeds 1 for several outputs. Even the value of 1 would not be considered robust as 

the error on the prediction for a given data point spans the range of the experimentally measured 

values. This further illustrates the importance of selecting proper hyperparameters. The overall 

range of possible values makes it impossible to rely on this model performance when the 

hyperparameters are selected arbitrarily. GPR shows a greater degree of robustness with all the 

models having a nRMSE variation of approximately 0.2. While not as severe as the neural network 

results, this is still well above what would be expected for training data performance.  

 

4.1.2 Full Factorial Data Validation Results 

For each model, 10 data points were selected to be removed and reserved to be used as validation 

data. The validation data is used to assess the performance of the models with data that was not 

used for the model training. These results provide for a more realistic view of the overall model 

performance compared to the results from the training data set. The following figures show the 

performance for the validation data. 
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Figure 4.3: Coefficient of Determination for the Modeling Survey with Full Factorial Data (Validation 

Results) 

 

Figure 4.3 shows a comparison of the validation data results for the coefficient of determination 

of the three modeling techniques using the full factorial data set. The average coefficient of 

determination for the GPR models is approximately 0.7, which is lower than the ideal 0.8 or 0.9 

target values. The ANN coefficient of determination results are consistently lower with most 

models showing an average just above 0.5 across the 500 models generated for each output. The 

range of coefficient of determination results across the 500 models for each output, as indicated 

by the error bars, spans the entire 0 to 1 range of possible values. This further illustrates that 

without a means of determining the best model hyperparameters to use, model robustness cannot 
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be assured, and many models will be unable to properly model the trends in the data. As with the 

training data, the response surface underperforms compared to the machine learning models with 

the average coefficient of determination consistently under 0.2. 

 

 

Figure 4.4: Normalized RMSE for the ANN and GPR Modeling Survey with Full Factorial Data (Validation 

Results) 

 

Figure 4.4 shows the normalized RMSE results for the machine learning models alone. The 

response surface results have been omitted as the errors again approach values in the range of 1014. 

The range of the normalized root mean square error varies significantly as it did with the training 

data. In general, the ANN models have more variation than the GPR models with nRMSE values 
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that reach beyond 1 for 7 of the 11 modeled outputs. For GPR, only the CH4 exceeds a normalized 

root mean square error of 1. These results are summarized in Table 4.2. 

 

Table 4.2: Normalized RMSE results for the modeling survey using the full factorial data (validation results) 

Outputs 

Mean Normalized Root Mean Square Error * 

Response Surface 

Artificial Neural 

Network 

Gaussian Process 

Regression 

CO 3.68E+14 0.459 0.165 

CO2 1.44E+13 0.062 0.026 

NOX 2.08E+14 0.289 0.124 

O2 1.22E+14 0.163 0.100 

CH4 4.39E+14 0.409 0.180 

Efficiency 9.52E+12 0.035 0.022 

pcyl 7.32E+12 0.104 0.022 

dp/dCA 1.35E+13 0.051 0.049 

PM 2.93E+14 0.505 0.245 

EQRO 4.59E+13 0.075 0.054 

Power 5.75E+12 0.068 0.017 

Average 1.39E+14 0.202 0.091 

* Lowest nRMSE in bold. 

 

The normalized root mean square error results demonstrate that the response surface is unable to 

model this data. The response surface nRMSE is consistently high, exceeding 1014 on average. The 
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neural network nRMSE is much lower at 0.202 on average. The Gaussian process regression 

nRMSE is lower still, at 0.091 on average. 8 of the 11 GPR models show a normalized RMSE at 

or below 0.1. This indicates that this data set properly characterizes this operating space and that 

it contains sufficient information for machine learning models to be able to properly model it.  

 

The variation in the nRMSE results, combined with the coefficient of determination results 

indicate that the modeling method is not robust. This shows that properly selected hyperparameters 

are needed to narrow the range of the normalized root mean square error and coefficient of 

determination to guarantee a particular model performance. Chapter 5 discusses a method for 

selecting hyperparameters using optimization techniques. Prior to evaluating this method, an 

understanding of the effects of data set size is still needed.  

 

4.1.3 Box Behnken Data Training Results 

The Box Behnken data presents an opportunity to see how the machine learning modeling methods 

perform with a sparse data set that reduces the experimental burden. While the Box Behnken data 

contains a similar number of data points to the full factorial data, the Box Behnken data is spread 

out over a much larger operating space. As with the full factorial data set, 500 models were created 

for each output being modeled. Each model uses a randomized model hyperparameter 

configuration that varies the layer count, node count and training method for neural network 

models and the kernel function and noise variance for Gaussian process regression models. The 

first set of results that are examined are the training data results. These results represent the best 

possible performance for the models. The coefficient of determination for the Box Behnken 

training data is presented in Figure 4.5. 
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Figure 4.5: Coefficient of Determination for the Modeling Survey with Box Behnken Data (Training Results) 

 

From Figure 4.5, the response surface results show a high correlation with the coefficient of 

determination being consistently above 0.9. This is in sharp contrast to the coefficient of 

determination results in Sections 4.1.1 and 4.1.2. The Box-Behnken DOE method was originally 

designed for response surface modeling [60]. This data set is therefore properly structured to 

support the response surface modeling technique. Except for the CO2, EQR and gross indicated 

power, the neural network models are noticeably lower at approximately 0.8 with the CO, NOX, 

CH4, and particulate matter below 0.6 on average. The neural network results have a large span 

across all the possible values for the coefficient of determination with the shortest range being 
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those of the thermal efficiency, EQRO and CO2, all of which have a range of about 0.5. The range 

of the Gaussian process regression coefficient of determination results spans the entire space from 

0 to 1. Despite this, almost all of the averaged coefficient of determination results are above 0.8. 

The Gaussian process regression still shows lower average coefficients of determination values 

than the response surface. Figure 4.6 shows the normalized RMSE results. 

 

 

Figure 4.6: Normalized RMSE for the ANN and GPR Modeling Survey with Box Behnken Data (Training 

Results) 

 

Figure 4.6 shows normalized root mean square error results. The summarized mean training data 

nRMSE results are shown in Table 4.3.  
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Table 4.3: Normalized RMSE results for the modeling survey using the Box Behnken data (training results) 

Outputs 

Mean Normalized Root Mean Square Error * 

Response Surface 

Artificial Neural 

Network 

Gaussian Process 

Regression 

CO 0.025 0.095 0.023 

CO2 0.008 0.033 0.045 

NOX 0.045 0.114 0.017 

O2 0.022 0.076 0.030 

CH4 0.034 0.120 0.058 

Efficiency 0.017 0.030 0.016 

pcyl 0.008 0.042 0.011 

dp/dCA 0.027 0.049 0.019 

PM 0.042 0.096 0.028 

EQRO 0.015 0.041 0.061 

Power 0.009 0.043 0.040 

Average 0.023 0.067 0.032 

* Lowest nRMSE in bold. 

 

The response surface model shows the overall lowest normalized root mean square error with the 

Gaussian process regression showing lower results for the CO, NOX, thermal efficiency, dp/dCA, 

and particulate matter. The neural network normalized root mean square error results show the 

highest average error and the widest range of performance for each of the modeled outputs with 
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the error varying by about 0.2 on average and up to 0.9 in the case of NOX. From these initial 

results, the response surface shows the overall best performance for the training data. 

 

4.1.4 Box Behnken Data Validation Results 

In addition to the Box Behnken training data, a randomized validation data set has been collected. 

This randomly selected data set includes operating points that do not exist in the training data set 

and provide a more accurate representation of the model performance [64]. Figure 4.7 shows a 

comparison of the results for the coefficient of determination for the three modeling techniques 

using the Box Behnken validation data set. 

 

 

Figure 4.7: Coefficient of Determination for the Modeling Survey with Box Behnken Data (Validation 

Results) 
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Figure 4.7 shows that the 500 model averaged coefficient of determination across all outputs has 

decreased dramatically with many values below 0.5. As expected, the validation results show 

lower performance than the training data results. With a coefficient of determination around 0.3 

on average, the Gaussian process regression models underperform compared to the response 

surface models. Only the CH4 coefficient of determination has an average value for the response 

surface that is lower than the Gaussian process regression value. The neural network models show 

better coefficient of determination results than the Gaussian process regression models with an 

average of approximately 0.4 overall. This is still lower than the response surface results.  

 

For both machine learning modeling methods, the wide range of performance indicates a lack of 

reliability in the models. In some cases, the Gaussian process regression is more constrained with 

the CO, NOX, CH4 and particulate matter all showing coefficients of determination that have a 

range of 0.2 to 0.3. These same models also show some of the lowest average coefficient of 

determination results across all methods. Figure 4.8 shows a comparison of the three modeling 

techniques using the normalized RMSE. 
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Figure 4.8: Normalized RMSE for the ANN and GPR Modeling Survey with Box Behnken Data (Validation 

Results) 

 

The range of the nRMSE for the neural network across each of the outputs is very large, exceeding 

1 in 6 of the 11 models. This indicates that these models are unreliable. The Gaussian process 

regression mean nRMSE results are more constrained compared to the neural network values. The 

average variation in the Gaussian process regression nRMSE is only 0.07. The highest range of 

the nRMSE approaches 0.14 which is still significant but much less than the neural network results. 

This indicates that the Gaussian process regression generally has a more consistent nRMSE even 

though the coefficient of determination results were worse. Table 4.4 shows a summary of the 

mean values. 
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Table 4.4: Normalized RMSE results for the modeling survey using the Box Behnken data (validation results) 

Outputs 

Mean Normalized Root Mean Square Error * 

Response Surface 

Artificial Neural 

Network 

Gaussian Process 

Regression 

CO 0.545 0.541 0.212 

CO2 0.064 0.171 0.111 

NOX 0.185 0.233 0.183 

O2 0.212 0.324 0.165 

CH4 0.185 0.209 0.156 

Efficiency 0.058 0.066 0.053 

pcyl 0.055 0.117 0.060 

dp/dCA 0.152 0.152 0.147 

PM 0.417 0.179 0.177 

EQRO 0.128 0.163 0.168 

Power 0.073 0.189 0.111 

Average 0.189 0.213 0.140 

* Lowest nRMSE in bold. 

 

In the training data, the response surface showed the best results. This is no longer the case when 

the non-training data is considered. Some cases still exist where the response surface shows lower 

nRMSE results than the neural network and Gaussian process regression models. This includes the 

CO2, peak cylinder pressure, EQRO, and gross indicated power. The overall average nRMSE 
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results now indicate that Gaussian process regression has the lowest overall nRMSE of 0.14. The 

neural network models on average show the highest nRMSE of 0.213.  The lower normalized 

RMSE combined with the significantly lower variations in both the normalized error and 

coefficient of determination indicates that the Gaussian process regression models are more robust 

and have the best performance. Despite this, there is still a wide range of variations in the results. 

Many of the models could also be improved to reduce their normalized root mean square errors, 

bringing them below 0.1. Techniques for improving the robustness and performance of these 

models are presented in the following chapters.  
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Chapter 5: Hyperparameter Optimization for Improved Machine Learning 

Performance and Robustness 

This chapter proposes a method for improving machine learning model robustness and reducing 

modeling error by automatically selecting model hyperparameters using Bayesian optimization. 

Chapter 4 shows that despite being able to model more complex data sets, the machine learning 

model performance decreases as the density of data reduces to the point where response surface 

models outperform the machine learning models. The results also show a large variation in the 

coefficient of determination and normalized root mean square error due to the variation in the 

hyperparameters. This demonstrates that hyperparameter selection can have a significant impact 

on model performance and that a means of selecting appropriate hyperparameters is needed. This 

section addresses this by proposing an automated means of hyperparameter selection for the 

Gaussian process regression and artificial neural network models.  

 

5.1 Bayesian Optimization 

Chapter 4 uses a randomized method of selecting model hyperparameters. An optimization based 

approach for identification of viable and high performing hyperparameter configurations is 

presented here that uses Bayesian optimization to rapidly iterate through different hyperparameters 

and select the best possible configuration. For the neural network this means selecting a training 

function, the number of hidden layers and the number of nodes in each of the hidden layers. For 

the Gaussian process regression, the hyperparameters being selected are the kernel function and 

the initial input noise variance. Appendix C.1 and C.2 show the ranges of these different 

hyperparameters. 
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The Bayesian optimization utilizes the properties of the gaussian distribution and gaussian 

processes to search out and evaluate different hyperparameters as it attempts to find the lowest 

RMSE producing hyperparameter configuration for the training data [44]. The Bayesian 

optimization creates a prior based on the gaussian distribution and uses the probability distribution 

to identify the next sample point for the optimization method. The function that selects the next 

point is called the acquisition function. In this work, the “expected improvement” acquisition 

function is used to find the best hyperparameter configuration for the training data. This acquisition 

function seeks out and evaluates the expected location of the lowest model RMSE, according to 

the gaussian process that is defined by the already evaluated optimization points. The optimization 

iterates on this process, updating the gaussian process optimization model, as it re-evaluates the 

location of the lowest RMSE point to try to reduce the error [74]. The MATLAB Statistics and 

Machine Learning Toolbox is used to implement the Bayesian optimization for hyperparameter 

selection. 

 

5.2 Hyperparameter Optimization Methodology 

Generating machine learning models with hyperparameter optimization adds an extra layer of 

complexity to the modeling process. The methodology for developing the hyperparameter 

optimized models is described in Figure 5.1. 
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Figure 5.1: Hyperparameter Optimization Methodology 

 

The model creation process in Figure 5.1 begins with collecting the data set, continues with the 

Bayesian optimization for each model, and ends with measuring the validation performance of the 

complete set of models for both ANN and GPR. In this process, each output is modeled 

independently based on the complete input vector from Table 3.1. Each output is modeled using 

both ANN and GPR. As each model is being created, a Bayesian optimization is used to select the 

hyperparameters for the model. Up to 1000 different sets of hyperparameters are evaluated for 
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each output for both ANN and GPR. The optimization creates a model for each evaluated set of 

hyperparameters. The hyperparameter optimization then calculates the training data based RMSE 

and then iterates to find the hyperparameter configuration that will yield the lowest RMSE. Once 

complete the model that produces the lowest RMSE is selected and retained [34]. This process 

then repeats for the other outputs. 

 

To assess the modeling method robustness, this entire process is repeated ten times for output, 

generating a different set of final hyperparameters for each optimization instance. These variations 

are expected as the hyperparameters do not provide for a completely continuous optimization 

problem and local minimums within the optimization process are expected to exist. Studying 

repeated iterations provides an understanding for how much these values can vary even within the 

better performing models [34].  

 

5.3 Hyperparameter Optimization Model Results 

The hyperparameter optimization approach is applied to both the neural network and Gaussian 

process regression modeling methods and compared to response surface models. Both the full 

factorial data set and Box Behnken data set are modeled using the hyperparameter optimization 

techniques. For the ANN, the Box Behnken data, Bayesian Regularization was most commonly 

determined to be the best training method. The full factorial data set used Bayesian Regularization, 

Levenberg-Marquardt and BFGS quasi-Newton approximately equally. Of these three, only BFGS 

quasi-Newton is unexpected as the other two are commonly used in engine modeling [41]. For 

Gaussian process regression, the different permutations of the Matérn based kernels were the most 

selected. These kernels use spatial statistics to calculate the distance between measured operating 
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points to determine the covariance which appeared to be the best approach to modeling engine 

systems [44]. 

 

Most of the final optimized neural network models tended towards 3 or 4 layers. Higher layer 

counts tend to produce higher performing results for the training data as they can represent more 

complex processes. The following sections show the model performance results for the two 

different operating spaces. 

 

5.3.1 Full Factorial Data Hyperparameter Optimization Validation Results 

This section presents the hyperparameter optimized model results for the full factorial data set. 

Only the validation data results are presented. The training data results for the full factorial 

hyperparameter optimized models are shown in Appendix E.1. They are included for completeness 

sake as Chapter 4 already demonstrated the there is a noticeable reduction in the model 

performance when transitioning from training to validation data results. The validation results are 

used as they show a more typical model performance measurement corresponding to data sets that 

were not made available during training. Figure 5.2 shows the coefficient of determination results 

for the validation data. 
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Figure 5.2: Coefficient of Determination for Hyperparameter Optimized Modeling with Full Factorial Data 

(Validation Results) 

 

From Figure 5.2 it is apparent that the coefficient of determination varies by a wide range, 

particularly for neural network models. For neural networks, this variation averages about 0.5. For 

the Gaussian process regression, the range tends to be much more constrained at around 0.3. The 

only exceptions to this are the gross indicated power and the particulate matter. On average the 

mean coefficient of determination values are above 0.7 with the Gaussian process regression 

generally being above 0.8. This is a large improvement over the results presented in section 4.1.2. 

Figure 5.3 shows the normalized RMSE results. 
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Figure 5.3: Normalized RMSE for Hyperparameter Optimized Modeling with Full Factorial Data (Validation 

Results) 

 

Figure 5.3 shows that the nRMSE results are consistently below 1. This is a significant 

improvement over the nRMSE results from Section 4.1.2 which had ranges that exceeded 1 for 

most outputs, particularly for neural networks. In Figure 5.3, the highest nRMSE measured is for 

the particulate matter using neural networks and just approaches 1. The average nRMSE for all 

models is below 0.3, indicating an improvement in model performance, particularly for neural 

networks. The Gaussian process regression results show much less variation than the neural 

network results as well as an overall lower error. The average nRMSE compared to the survey 

nRMSE in Chapter 4 can be seen in Table 5.1. 
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Table 5.1: Comparison of nRMSE for hyperparameter optimized modeling and the modeling survey using 

the full factorial data (validation results) 

Outputs 

Machine Learning Survey Hyperparameter Optimization 

Artificial 

Neural 

Network 

Gaussian Process 

Regression 

Artificial Neural 

Network 

Gaussian Process 

Regression 

CO 0.459 0.165 0.116 0.100 

CO2 0.062 0.026 0.011 0.010 

NOX 0.289 0.124 0.098 0.059 

O2 0.163 0.100 0.084 0.056 

CH4 0.409 0.180 0.208 0.114 

Efficiency 0.035 0.022 0.015 0.013 

pcyl 0.104 0.022 0.009 0.006 

dp/dCA 0.051 0.049 0.041 0.023 

PM 0.505 0.245 0.259 0.200 

EQRO 0.075 0.054 0.029 0.025 

Power 0.068 0.017 0.004 0.004 

Average 0.202 0.091 0.079 0.055 

* Lowest nRMSE in bold. 

 

The results in Table 5.1 show that the Gaussian process regression models performs extremely 

well with an overall average nRMSE of only 0.06. This is well within the margin of error for the 
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measurements from the repeatability study. The artificial neural network results show a higher 

average nRMSE of 0.08. With very few exceptions, the hyperparameter optimized models all have 

nRMSE results below 0.1. Only the CO, CH4 and particulate matter nRMSE for both models are 

at or above 0.1 on average.  

 

Comparing these results to the average nRMSE from the models from Section 4.1.2 shows that the 

hyperparameter optimization has significantly decreased the nRMSE for every model. This shows 

that for a high density data set, hyperparameter optimization improves the model performance to 

the point where the models can properly characterize the operating space. This shows that 

sufficient data is available to support the modeling when the right hyperparameters are selected 

and that hyperparameter selection is crucial to obtaining sufficient model performance. 

 

5.3.2 Box Behnken Data Hyperparameter Optimization Validation Results 

The Box Behnken data set is the main data set used throughout this research. It represents a large 

operating space that has been sampled using the Box Behnken design of experiments method to 

measure as little data as possible while still capturing the core relationships between the inputs and 

outputs [75].  This section presents the hyperparameter optimized model validation data 

performance results for the Box Behnken based models. The training data results are provided in 

Appendix E.2. Figure 5.4 shows the Box Behnken coefficient of determination results for the 

validation data. 
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Figure 5.4: Coefficient of Determination for Hyperparameter Optimized Modeling with Box Behnken Data 

(Validation Results) 

 

In Figure 5.4, the ANN results show the most variation with most values showing a range of 0.5 

to 0.7 in the coefficient of determination. The particulate matter shows the largest variation of 0.9, 

while the gross indicated power shows the smallest variation of 0.3. The GPR models are more 

constrained with variations close to 0 for the gross indicated power and CO2, ranging from 0.1 to 

0.3 for most other models. NOX shows the largest range of 0.5.  

 

In most cases the GPR models show the highest average coefficient of determination. The only 

exceptions are the CO, NOX, and particulate matter. Comparing these results to the training data 

in Appendix E.2 shows that the Gaussian process regression models were able to maintain a greater 

percentage of their overall performance compared to the other two modeling techniques. Despite 
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this, the CO, CH4, and particulate matter models show unusually low average coefficient of 

determination results, indicating that the GPR models were unable to fully characterize these data 

sets. Figure 5.5 shows the nRMSE results for the Box Behnken validation data. 

 

 

Figure 5.5: Normalized RMSE for Hyperparameter Optimized Modeling with Box Behnken Data (Validation 

Results) 

 

In Figure 5.5 it is apparent that the ANN results, besides having a higher variation in COD, also 

show a much higher range for the normalized root mean square error. The GPR nRMSE values 

have a lower variation and consistently lower average value. This is true even for the CO which 

shows a lower coefficient of determination for GPR. This is a case where the measurement of 

correlation does not reflect the magnitude of the error in the results. This is the main reason that 

the focus of the model performance relies primarily on nRMSE as a measurement of the prediction 
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error itself. While the coefficient of determination is valuable in demonstrating the model’s ability 

to reflect the original system across the operating space, a high coefficient of determination alone 

does not guarantee accurate predictions. Table 5.2 shows the summarized average nRMSE results. 

 

Table 5.2: Comparison of nRMSE results for hyperparameter optimized modeling and the modeling survey 

using the Box Behnken data (validation results) 

Outputs 

Modeling Survey Hyperparameter Optimization 

Response 

Surface 

Artificial 

Neural 

Network 

Gaussian 

Process 

Regression 

Artificial Neural 

Network 

Gaussian 

Process 

Regression 

CO 0.545 0.541 0.212 0.599 0.243 

CO2 0.064 0.171 0.111 0.069 0.038 

NOX 0.185 0.233 0.183 0.107 0.129 

O2 0.212 0.324 0.165 0.131 0.077 

CH4 0.185 0.209 0.156 0.261 0.155 

Efficiency 0.058 0.066 0.053 0.066 0.046 

pcyl 0.055 0.117 0.060 0.050 0.032 

dp/dCA 0.152 0.152 0.147 0.139 0.116 

PM 0.417 0.179 0.177 0.147 0.184 

EQRO 0.128 0.163 0.168 0.108 0.070 

Power 0.073 0.189 0.111 0.065 0.043 

Average 0.189 0.213 0.140 0.158 0.103 

* Lowest nRMSE in bold. 
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Table 5.2 shows that overall, the hyperparameter optimized Gaussian process regression models 

have the lowest nRMSE at 0.103 on average. Besides being more robust, the average normalized 

RMSE is consistently lower for everything except the particulate matter and the NOX results, 

where the neural network model performs better on average. The average survey GPR model 

showed a slightly lower nRMSE for CO. This is the only case where the survey average 

outperforms the hyperparameter optimized models. 

 

Comparing these nRMSE results to the full factorial data from Table 5.1 shows that the reduced 

data resolution of the Box Behnken data set increased the nRMSE values for all the machine 

learning modeling methods. Despite this, the hyperparameter optimized GPR model performed 

well for most models with nRMSE values below 0.1 for the CO2, O2, thermal efficiency, peak 

cylinder pressure, EQRO, and gross indicated power. Only the CO shows an nRMSE above 0.2 

and the average nRMSE across all GPR models is just above 0.1 at 0.103. Compared to the survey 

GPR models, the average reduction of 0.04 in the nRMSE caused by the hyperparameter 

optimization has allowed the GPR model to nearly meet the 0.1 overall threshold set for model 

nRMSE performance. 

 

The objective of this section was to analyze the performance of a machine learning engine 

modeling method using Bayesian optimization to enhance the selection of the model 

hyperparameters. Both the full factorial data set and the Box Behnken data set were evaluated. The 

results confirmed that a smaller operating space with more densely packed data provides better 

performance for the machine learning models. As the models were tested on the lower density data 
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set, it was demonstrated that although there was a model performance drop, the hyperparameter 

optimization improved the overall model performance. The continued use of hyperparameter 

optimization can provide significant benefits for future research. The remaining modeling work in 

this thesis builds upon this technique and continues to use it for all machine learning models. 

 

Focusing on the hyperparameter optimization results alone, GPR models yielded overall higher 

performing and more robust models for both data sets. The robustness of Gaussian process 

regression was demonstrated by the range of the coefficient of determination and normalized root 

mean square error results, which were much more constrained, showing less than 10% of the 

performance variation that neural network models showed. With the exception of NOX, and 

particulate matter, GPR consistently performed better compared to the other methods. These 

results demonstrate the capabilities of the Gaussian process regression model for engine modeling 

and research. Future engine modeling research can benefit from using this technique, particularly 

with the hyperparameter optimization. It is for these reasons that the hyperparameter optimized 

GPR model is the focus of the model enhancement work discussed in the remaining chapters. 
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Chapter 6: Techniques for Improving Hyperparameter Optimization Model 

Performance  

Chapter 5 demonstrates that hyperparameter optimization provides an improvement to model 

performance, especially in model robustness. It also demonstrates that Gaussian process regression 

outperforms both neural networks and the response surface modeling method. Despite this, there 

is still room for improvement to reduce modeling error for smaller data sets. 

 

The following sections present four techniques have been developed using custom made 

MATLAB scripts to further reduce modeling error using data sciences and engineering knowledge 

to alter the structure of the models. These methods are multi-region modeling, sensitivity based 

input reduction, layered modeling, and hybrid modeling. These methods are applied to the 

Gaussian process regression based hyperparameter optimized modeling approach using the low 

density Box Behnken data set with 10 sets of models being generated for each output to assess the 

modeling performance and robustness. Each technique is presented separately, with each section 

focusing on a single technique and a separate section presented at the end of this chapter which 

compares the results. 

 

6.1 Multi-Region Modeling 

The goal of multi-region modeling is to reduce the modeling error by dividing the operating region 

into different operation modes and simplifying the modeling problem. This approach can be 

applied to any identifiable distinct set of regions within an operating space. The example used in 

this work is based on the pulse separation, PSEP. This work uses the main Box Behnken data 
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operating space discussed in Section 3.2.2. This space covers the positive PSEP operating space 

of the engine which represents a non-premixed combustion mode where the injections of the 

natural gas and the diesel pilot fuel do not overlap. A separate mode, represented by the negative 

PSEP data set in Section 3.2.3, exists based on the opposite partially premixed case where the 

natural gas injection partially overlaps with the diesel injection. This change in injection timing 

creates a drastically different fuel mixing within the cylinder which leads to very different 

performance and emissions [7], [56]. The multi-region model uses engineering knowledge of these 

different operating modes to create independent models of each mode and switch accordingly 

between them based on the input vector. The detailed methodology of this technique is outlined in 

the following section. 

 

6.1.1 Methodology 

Taking inspiration from engine calibration techniques, the operating space is divided into smaller 

regions of similar data points that are expected to have similar combustion and emissions 

behaviours  [11], [76]. These regions are then modelled independently. This approach identifies 

aspects of the engine modeling that contribute to the model complexity and separates the model 

based on those aspects. In this case, the attribute that was considered is the relative injection timing 

(RIT) which represents the timing between the natural gas and diesel pilot fuel injections. This is 

distilled into the pulse separation (PSEP), which is the calculated time in milliseconds between the 

end of the diesel injection and the start of the natural gas injection. When the injections overlap or 

the natural gas injection occurs before the diesel injection, this creates a different combustion mode 

compared to when the injections are spaced apart with the diesel injection taking place first. The 
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difference in combustion timings, mixing and overall heat release rate makes for a markedly 

different form of combustion [56].  

 

The engine models presented in the multi-region method are developed using both the Box 

Behnken data set and the Negative PSEP data set. First, a combined model that uses both training 

data sets is created to act as a baseline. This model is developed using the hyperparameter 

optimized Gaussian process regression modeling technique presented in Chapter 5. The multi-

region model is developed using the same two data sets, with each data set being used to create a 

separate set of models for that data set’s respective region. One set of models is created for the 

positive PSEP region represented by the Box Behnken data set and another set of models is created 

for the Negative PSEP data region. For each region, each of the outputs is modeled independently 

using the hyperparameter optimized Gaussian process regression modeling method. Figure 6.1 

shows the structure of the multi-region model. 

 

 

Figure 6.1: Multi-Region Model Structure 
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The classification algorithm is used to categorize the input data so that it is sent to the correct 

modeled region when a prediction is being made. For this example, where PSEP, based on RIT, is 

being used, the inputs themselves can be directly used to mathematically determine which region 

to use according to Equation 2.1 and Figure 2.9. 

 

6.1.2 Multi-Region Validation Data Results 

As with the other machine learning model improvement techniques evaluated in this work, the 

multi-region technique uses the Gaussian process regression method with hyperparameter 

optimization as the basis for the individual models. The multi-region model results are presented 

as both the individual region “+ve PSEP” and “-ve PSEP” results as well as the averaged results 

of both regions. These two sets of metrics are compared against a combined model that was trained 

with the data from both regions.  The training data performance is presented in Appendix E.3. The 

results presented here use the randomized validation data from the Box Behnken operating space 

and the Negative PSEP operating space. 10 sets of models are created for each model type and the 

aggregated results are presented.  Figure 6.2 shows the coefficient of determination results for the 

validation data. 
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Figure 6.2: Coefficient of Determination for Multi-Region Models Compared with a Combined Single Region 

Model (Validation Results) 

 

Figure 6.2 demonstrate mixed results for the multi-region model. The +ve PSEP data set overall 

performs poorly for a number of models, specifically the CO and NOX where both the -ve PSEP 

region and combined models perform much better. The particulate matter results are especially 

interesting as the they indicate that the models perform extremely poorly for this data set. This 

should be reflected in the normalized RMSE which is shown in Figure 6.3.  
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Figure 6.3: Normalized RMSE for Multi-Region Models Compared with a Combined Single Region Model 

(Validation Results) 

 

As expected, Figure 6.3 demonstrates that the -ve PSEP model for particulate matter is unable to 

predict the outputs for the validation data points. This is partially a result of the particulate matter 

emissions being low in this region and not having sufficient variability in the data to overcome the 

effects of signal noise from the particulate matter measurement bench [30]. This directly impacts 

the averaged nRMSE for the multi-region model. Despite the low coefficient of determination, the 

nRMSE remains low, at approximately 0.2 for the combined model and +ve PSEP regions. 

Examining the range of the nRMSE shows that the overall models are robust with most models 

varying by less that 0.05. While many of the ranges between the combined model and the multi-
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region models do cross over, the shift in the average and the error bars indicates that the 

performance differences should be consistent across most models. Table 6.1 summarizes the 

nRMSE results. 

 

Table 6.1: Normalized RMSE for the multi-region model compared to a combined single region model 

(validation data) 

Outputs 

Multi-Region nRMSE * 

Combined 

Data 

nRMSE 

% Reduction in nRMSE * 

+ve 

PSEP 

-ve 

PSEP 

Multi-

Region 

Average 

+ve 

PSEP 

-ve 

PSEP 

Multi-

Region 

Average 

CO 0.243 0.216 0.230 0.311 21.86 30.41 26.21 

CO2 0.038 0.109 0.074 0.043 9.827 -155.8 -70.93 

NOX 0.129 0.099 0.114 0.060 -117.1 -66.89 -90.00 

O2 0.077 0.07 0.074 0.123 37.15 43.43 40.24 

CH4 0.155 0.235 0.195 0.138 -12.61 -70.25 -41.30 

Efficiency 0.046 0.035 0.041 0.048 2.995 26.69 15.63 

pcyl 0.032 0.102 0.067 0.048 33.03 -113.6 -39.58 

dp/dCA 0.116 0.138 0.127 0.100 -15.46 -37.59 -27.00 

PM 0.184 2.060 1.122 0.180 -2.118 -1044 -523.3 

EQRO 0.070 0.113 0.092 0.065 -7.638 -73.65 -40.77 

Power 0.043 0.127 0.085 0.051 15.63 -148.3 -66.67 

Average 0.109 0.318 0.202 0.106 -3.129 -146.3 -74.32 

* Lowest nRMSE in bold. 
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As Table 6.1 shows, the multi-region model produces better results for 3 out of 11 outputs. For 

CO, the multi-region models reduces the nRMSE compared to the combined model by more than 

the margin of error presented by the error bars. The same is true of the O2 model and to a lesser 

extent, thermal efficiency. This result is notable as it demonstrates that in some cases there is a 

benefit to splitting a data set between two different regions and modeling the regions separately. 

These models showed a nRMSE decrease ranging from 16% to 40%.  

 

The overall best performing models are the combined data models. The average increase in 

nRMSE using the multi-region method, applied to all models, is 74%. While the injection 

crossover creates a fundamentally different form of combustion, this does not have a large enough 

impact on the physics such that the complexity cannot be overcome by machine learning. In most 

cases, the benefit of combining the data outweighs the benefit of removing the complexity. The 

combined model performs much better for cases where one region has an especially difficult time 

modeling a certain parameter. This is shown for the particulate matter and CH4 nRMSE results 

which are improved by combining both data sets. This shows that the machine learning modeling 

methods are capable of correcting for erroneous or incomplete data if enough useful data is made 

available to the modeling method. 

 

While response surface modeling, as it is used in industry, often uses multiple regions to simplify 

the modeling method, these preliminary results indicate that machine learning methods do not 

benefit from this approach in most cases [11]. These results show that quantity of data is very 

valuable for machine learning and any attempt to improve machine learning model performance 
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should not reduce the size of the data set used to train the models. This observation motivates the 

other methods demonstrated in this work. While these results do not indicate that the multi-region 

modeling method should always replace the normal machine learning, it does present an alternative 

modeling approach that could be used when even hyperparameter optimized modeling is unable 

to produce usable models. 

 

6.2 Sensitivity Analysis Based Input Reduction 

The sensitivity analysis based input reduction method analyzes the inputs used for each of the 

output models and programmatically determines what inputs to use for each model. The 

hyperparameter optimized models from Chapter 5 use all of the inputs listed in Table 3.1 for each 

output. This is done to ensure that each output model has access to the same data set and that all 

the useful control and system information that defines the operating point is available for the 

machine learning models. While this input set can be considered to be complete, not every input 

is useful for every output model [11]. It is expected that the machine learning models would 

intuitively determine which inputs are important and ignore the irrelevant inputs by reducing their 

weighting in the model. Previous research on a biodiesel fuel engine and a common-rail diesel 

engine shows that machine learning models only need access to the most important inputs when 

producing models, as some inputs have little to no benefit [41], [77]. Additional research outside 

the engine space that focused on water resource sediment load analysis demonstrated that 

removing inputs that have a low impact on the system performance from a sensitivity standpoint 

reduces signal noise and improves the overall modeling performance [26]. By using every 

available input, it is possible that some of the inputs have a negative impact on model performance 

for certain outputs.  
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To address this, a sensitivity analysis is used to identify the most relevant inputs for each desired 

output. This sensitivity analysis starts by using the models produced in Chapter 5 for the Box 

Behnken data set with hyperparameter optimization and systematically varying the inputs from the 

training data set. For each data point, each input is systematically varied by +/-50 %, +/-25 % and 

+/-10 % of the range of values for that input. The resulting 362,797,056 new sets of input for each 

original data point are evaluated for each output. This is done for each of the 10 sets of models 

created in Chapter 5.  The sensitivity of an output for a particular input is calculated as the change 

in the output relative to the percentage that the input has been varied as shown in Equation 6.1. 

The sensitivity is averaged across all data points and permutations of the input for each of those 

data points. 

 

S𝑘 =

∑ {∑ |
Ynew,i,j − Ypred,i

Ptj
|

nperturb
j=1

}
ndata
i=1

ndata × nperturb
 

(6.1) 

 

Sk is the sensitivity for the kth input and i represents the index of the original data point. Ptj is the 

percentage variation of the input, and j represents the index of the different perturbation 

percentages being evaluated. ndata is the number of data points in the data set, nperturb is the number 

of perturbations for a given input, Ynew is the newly calculated model output for the jth perturbation 

of the ith data point, and Ypred is the ith data point model predicted value without any perturbations.  

For each output, the inputs are ranked from highest to lowest sensitivity, as shown in Table 6.2 

using the Gaussian process regression models as a baseline. 
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Table 6.2: Input sensitivity for each output based on averaged per percentage variation of the inputs ranked 

from highest to lowest  

Output 

Sensitivity Ranking for Each Input 

1 2 3 4 5 6 7 8 9 10 11 

CO pdiesel PWng Tair pexh ωeng SOIdiesel pair SOIng png Tcool PWdiesel 

CO2 PWng pdiesel SOIdiesel Tair SOIng PWdiesel pair png ωeng pexh Tcool 

NOX pdiesel PWdiesel PWng Tcool Tair png SOIng SOIdiesel pair ωeng pexh 

O2 pair SOIng SOIdiesel ωeng Tcool Tair png pexh pdiesel PWng PWdiesel 

CH4 pdiesel pexh Tair ωeng PWdiesel png SOIng PWng pair Tcool SOIdiesel 

η png ωeng PWdiesel Tair Tcool pair pdiesel SOIdiesel PWng pexh SOIng 

pcyl SOIdiesel pair pdiesel ωeng PWng png Tcool PWdiesel pexh SOIng Tair 

dp/dCA pdiesel ωeng PWdiesel SOIdiesel Tair pair pexh png SOIng PWng Tcool 

PM pdiesel SOIng Tair pExh PWng SOIdiesel pair ωeng png Tcool PWdiesel 

EQRO pair PWdiesel SOIdiesel Tcool PWng pexh png SOIng pdiesel ωeng Tair 

Pgross SOIdiesel pdiesel Tcool pexh PWng png pair PWdiesel SOIng ωeng Tair 

 

Table 6.2 shows the averaged per percentage variation input sensitivity ranking for each of the 

outputs. Based on this table, the fuel and air pressures consistently have some of the highest 

sensitivities for the models. This reflects the engineering intuition and the literature as the pressures 

impact the quantity and mixing of fuel and air injected, which impacts most of the outputs. [69]. 

This is often closely followed by an injection duration or starting angle. According to Table 6.2, 

the temperatures, engine speed, and some of the diesel injection parameters have the lowest effect 

on the outputs. As the temperatures do not vary substantially during the data collection it is not 
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expected to have a significant impact on the models. The engine speed is also less likely to directly 

influence the emissions when the injection durations are time based and not calculated based on 

crank angle. This means that the engine speed is not a significant factor for the quantity of fuel 

injected. In the positive PSEP region, the diesel injection parameters have less of an impact on the 

model compared to the natural gas since it contributes only a small amount to the fuel input from 

an energy perspective. 

 

6.2.1 Sensitivity Analysis Based Input Reduction Validation Data Results 

Based on the results from Table 6.2, new models are generated by removing the least sensitive 

inputs. The first models start with 11 inputs. The next models have 10, 9, 8 and continuing until 

only the highest sensitivity input remains. Each of these new models is produced 10 times to allow 

for an assessment of the robustness and variability in the results. As Gaussian process regression 

is shown to be the best modeling method, all the results presented in this section apply the input 

reduction exclusively to Gaussian process regression with hyperparameter optimization technique. 

Appendix E.4 shows the training data results. Figure 6.4 shows the coefficient of determination 

results for the validation data. 
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Figure 6.4: Coefficient of Determination for Sensitivity Analysis Based Input Reduction (Validation Data) 

 

Figure 6.4 shows that overall, as the inputs are removed, the ability of the model to follow the 

trends of the data decreases. This is consistent for all outputs except for CO and O2. Despite this, 

many models show an initial increase in the coefficient of determination. This is especially visible 

for the particulate matter and dp/dCA. What these results indicate is that some of the lower 

sensitivity inputs are adding additional noise to the modeling process and removing them is 

improving the models. However, there is some minimum set of inputs that each model requires to 

properly characterize the data set.  
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Figure 6.5: Normalized RMSE for Sensitivity Analysis Based Input Reduction (Validation Data) 

 

Based on the results from Figure 6.5, the relative change in nRMSE as inputs are reduced is small. 

This indicates that much of the performance of the engine is describable by 1 or 2 parameters. 

There are several cases (CO, NOX, O2, CH4, thermal efficiency, peak cylinder pressure, dp/dCA, 

and PM) where model performance improves with the decreasing size of the input vector. In some 

cases, the normalized RMSE results have large variances. For example, the nRMSE for particulate 

matter and CO vary by up to 0.1 for almost all input iterations. This is significant enough to make 

it difficult to determine the impact of the input selection. Table 6.3 summarizes these results with 

respect to the hyperparameter optimization models. 
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Table 6.3: Normalized RMSE results for sensitivity analysis based input selection (validation results) 

Outputs 

Sensitivity 

Based 

Results 

Hyperparameter 

Based Results 

% Reduction in 

nRMSE 

Inputs Used 

CO 0.197 0.243 18.85 1 

CO2 0.037 0.038 4.444 9 

NOX 0.117 0.129 9.461 7 

O2 0.077 0.077 0.645 7 

CH4 0.154 0.155 1.071 9 

Efficiency 0.041 0.046 10.78 2 

pcyl 0.031 0.032 3.731 4 

dp/dCA 0.098 0.116 15.01 5 

PM 0.166 0.184 9.729 2 

EQRO 0.065 0.070 7.416 8 

Power 0.040 0.043 6.908 9 

Average 0.093 0.103 8.004  

* Lowest nRMSE in bold. 

 

As can be seen in Table 6.3, removing inputs reduced the average model error across all outputs 

by 8%. CO improved by 19% while dp/dCA improved by 15%. Thermal efficiency, particulate 

matter, and NOX showed improvements of 10%. On average each output used only 6 inputs. 
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6.2.2 Sensitivity Analysis Conclusions 

The sensitivity analysis based input reduction method presented a system agnostic approach to 

identifying the core inputs required for a model and removing inputs that are contributing more 

system noise than beneficial data. The importance of properly selecting inputs should not be 

ignored as some inputs have a negative impact on the model which could potentially be made 

worse by the limited data size. While other approaches to improving model performance without 

requiring additional data are discussed in the following sections, this method presents a simple, 

low complexity approach to improving Gaussian process regression models. 

 

6.3 Layered Model 

In the layered model, knowledge of the mechanical, thermodynamic, and chemical processes that 

connect the model inputs to the outputs is used to separate the overall machine learning modeling 

problem into several smaller interconnected modeling problems. When collecting data from a fully 

instrumented research engine, additional sensor data is often collected. Many of these measured 

values represent intermediate steps in the various processes that produce the outputs being 

modeled. These intermediate parameters can be used to replace some of the inputs from Table 3.1 

and can themselves be modeled as hyperparameter optimized Gaussian process regression models. 

These newly modeled intermediate parameters are then connected together as a network of 

submodels connecting the original inputs to the final output from Table 3.1.  

 

The objective of this approach is to shift the complexity of the processes being modeled out of the 

machine learning model and into the model structure. This way, each submodel focuses on a 

simpler pattern with fewer inputs and less interactions. This has the potential to result in 
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relationships that are easier to identify with machine learning techniques which reduces the overall 

error. By extracting the process knowledge from the problem and injecting it into the model 

structure, this creates a grey box modeling problem which allows an engineer to introduce this 

knowledge to the model structure as another type of data, in addition to typical numerical sensor 

data. This also provides the engineer with a better understanding of the inner workings of the 

engine model and more control over the modeling process, addressing one of the criticisms of 

machine learning modeling. A sample of the difference between a normal model structure and a 

layered model is shown in Figure 6.6. 

 

Traditional Model: 

 

Layered Model: 

 

Figure 6.6: Sample Layered Model Comparison 

 

The majority of the submodels represent parameters that are not directly measurable on a 

production engine. However, a fully instrumented research engine, would typically have access to 

substantially more sensor data which includes these additional parameters. As such, these 

parameters can be modeled with information gathered from a research engine and used to generate 

the layered model that is ultimately implemented on a production engine.  
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The layered model structure is laid out in Figure 6.7 and is comprised of a total of 6 submodel 

layers and one input layer. The input layer contains the same inputs from Table 3.1. In this 

structure, each submodel is dependent on at least one output from the previous layer. For example, 

the combustion phasing which represented by the parameters, θ50 and θ10, are dependent on the 

value of EQR predicted in layer 2. Similarly, the gross indicated power in layer 4 is dependent on 

θ50. The detailed interconnections between the submodels are shown in Appendix D.1. 

 

 

Figure 6.7: Layered Model Structure 
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The layered model structure is determined based on a understanding of the processes taking place 

throughout the engine combined with engineering intuition coming from experience working with 

this system [11]. The equivalence ratio is determined based on the fuel and air mass. The injection 

parameters for the natural gas and diesel fuels are converted into an overall fuel mass term to 

predict EQR. The oxygen model is then dependent on the equivalence ratio and the fuel mass. The 

thermal efficiency and power output are based on EQR and the combustion phasing which are 

dependent on the injection timings and natural gas fuel mass. The power is also dependent on the 

fuel mass. The emissions are heavily related to the heat release rate curve. The combustion phasing 

parameters represent the heat release rate curve and are used as inputs for the models of the 

emissions along with the thermal efficiency and gross indicated power. Finally, the NOX and CH4 

are also dependent on the peak cylinder pressure which is determined based on the combustion 

phasing, fuel mass, equivalence ratio and power. Through this interconnected network of 

intermediate parameters, each model has its own dependencies based on the previous models in 

the network. 

 

6.3.1 Training the Layered Model 

As the layered model has several interconnected machine learning models, training the layered 

model has an added element of complexity over the hyperparameter optimization model presented 

in Chapter 5. Each intermediate parameter is measured and then modeled using a machine learning 

model. Two different approaches were developed for training each of the submodels used to create 

the overall layered model. In the first approach, each intermediate submodel is trained using only 

the measured experimental sensor values from the engine. This is referred to as “Measured” 

training as it only uses measured data. The second training approach uses predicted inputs to train 
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the model based on the outputs of the submodels in the previous layers of the layered model. This 

is referred to as “Predicted” training. Measured training results in individual submodels that most 

accurately represent the measured experimental data. With this approach, all submodels can be 

trained simultaneously. Predicted training submodels must be trained one layer at a time as each 

layer requires training inputs that are generated from the submodels in the previous layers. 

Predicted training introduces modeling error in the intermediate inputs used for training. This more 

accurately represents the input data made available to the submodels when the model performance 

is assessed. 

 

The following sections present the results of the layered modeling approach to improving model 

performance. Both the measured and predicted training methods are presented. As in the previous 

sections, each model is trained using the Gaussian process regression method with hyperparameter 

optimization. Each model is trained a total of 10 times with the mean results and the range shown 

in the figures. These models are compared to the hyperparameter optimization method first 

demonstrated in Chapter 5. 

 

6.3.2 Submodel Performance Results 

Before examining the layered model results, it is important to look at the submodel performance. 

Using the measured approach, each submodel is generated and the performance of the submodels 

is assessed. 
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Figure 6.8: Training Data Coefficient of Determination for the Layered Model Submodels 

 

Figure 6.8 shows that the coefficient of determination has some variation but is consistently above 

0.7. The largest variation is in the particulate matter and the CH4. Each of these is an output model 

in the final layers of Figure 6.7. As such, these lower coefficients of determination would not affect 

any the other submodels. The CH4 shows the lowest coefficient of determination of 0.85. As these 

results are based on the training data, a value of 0.85 can be considered to be low. Generally, these 

values would be expected to be above or approaching 0.9. The remaining submodels are all at or 

above this value. 

 



109 

 

 

Figure 6.9: Training Data Normalized RMSE for the Layered Model Submodels 

 

In Figure 6.9 the nRMSE is consistently below 0.08 with the average value being below 0.06. This 

indicates that the submodels are likely to perform well in the layered model as the model error is 

low. The CH4, and particulate matter measurements both present a larger range of performance 

spanning a range of 0.05 to 0.07. This is consistent with the coefficient of determination. This is a 

wide range of performance relative to the mean value and indicates that these models have more 

variability which may affect the layered model nRMSE range. 
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6.3.3 Layered Model Validation Data Results 

This section presents the layered model validation data results. The training data performance is 

discussed in Appendix E.5. Results are presented for the full layered model as laid out in Figure 

6.7, developed using both the measured and predicted training methods. These results are 

compared against the hyperparameter optimization results in Chapter 5.  

 

 

Figure 6.10: Coefficient of Determination for Layered Modeling Method (Validation Data) 

 

Figure 6.10 shows that the CH4 has a very low coefficient of determination, under 0.2, which is 

made worse in the layered model structure. While many of the results are very similar, there are 

three outputs where the layered model shows significant improvement. These are the particulate 

matter, CO, and NOX results. In each of these cases the measured approach shows significant 
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improvement of approximately 0.3 while the predicted method still shows improvement but to a 

lesser degree.  

 

 

Figure 6.11: Normalized RMSE for Layered Modeling Method (Validation Data) 

 

The results from Figure 6.11 show a similar results to the coefficient of determination. The CO 

nRMSE has been reduced as has the nRMSE for the particulate matter and NOX. The model 

variability indicated by Figure 6.11 is lower compared to the hyperparameter optimized models 

for many of the outputs with error bars indicating a range of less than 0.03 in most cases. This 

indicates that these models are more robust and reliable in addition to having a lower nRMSE for 
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5 of the 11 models. Only the CO and particulate matter show higher variability which is consistent 

with the coefficient of determination results.  

 

Table 6.4:Normalized RMSE results for the layered model (validation results) 

Outputs 

Layered Model nRMSE * Hyperparameter 

Optimized nRMSE 

% Reduction in nRMSE * 

Measured Predicted Measured Predicted 

CO 0.117 0.166 0.243 52.00 31.46 

CO2 0.053 0.053 0.038 -37.60 -38.76 

NOX 0.091 0.112 0.129 29.77 13.25 

O2 0.082 0.082 0.077 -5.935 -5.782 

CH4 0.162 0.163 0.155 -4.218 -4.905 

Efficiency 0.047 0.053 0.046 -1.041 -15.76 

pcyl 0.035 0.038 0.032 -10.03 -20.41 

dp/dCA 0.100 0.101 0.116 13.81 12.78 

PM 0.124 0.129 0.184 32.53 29.71 

EQRO 0.065 0.062 0.070 7.298 11.16 

Power 0.055 0.061 0.043 -26.78 -41.41 

Average 0.085 0.093 0.103 4.527 -2.606 

* Lowest nRMSE in bold. 

 

Table 6.4 shows the numerical average values from Figure 6.11. The layered models for CO, NOX, 

dp/dCA, particulate matter and EQRO outperform the hyperparameter optimized models and show 

a lower nRMSE. As both the particulate matter and CO have previously shown some of the highest 
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nRMSE results, the improvement of 33% to 52% with the measured training approach is 

substantial and makes a strong case for using the layered modeling method. The remaining models 

showed an increase in nRMSE. Of those models, only the CO2 and power show a larger increase 

in nRMSE of about of approximately 0.015. The measured approach showed the greatest overall 

average nRMSE improvement of about 4.5 % on average. This is consistent with the coefficient 

of determination results which showed that the measured approach often yielded the best model 

performance on average. 

 

6.3.4 Layered Model Conclusions 

The layered model proved beneficial for several outputs even if many of the models has a slight 

increase in RMSE. Particulate matter is a difficult metric to model. This is demonstrated many 

times in literature through the work being done to better understand soot formation and formulate 

both empirical and machine learning particulate matter models [70], [71], [78]. The layered model 

decreased the particulate matter nRMSE by approximately 32% using the measured layered model 

approach without requiring the addition of new data points. The hyperparameter optimized CO 

models also had a larger nRMSE of 0.24. The measured layered model decreased this by 52%. 

These two models were the biggest remaining problematic models from the original 

hyperparameter optimized modeling results. The model improvements provided by the layered 

modeling approach shows that layered modeling can be strategically implemented to improve 

model performance for problematic outputs if there is sufficient knowledge of the process available 

to identify the intermediate steps and model them accordingly.  
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6.4 Hybrid Model 

The hybrid model is an extension of the layered model. Where the layered model approximates 

the interconnected processes of the engine by creating a network of machine learning models, the 

hybrid model takes this one step further by injecting equation based models into the layered model 

structure to approximate some of the intermediate parameters. For this implementation, the 

following parameters are replaced with mathematics based models: 

1. EQR 

2. EQRO 

3. Thermal efficiency 

4. O2 

 

The mathematics based models each follow relatively simple equations shown in Equations 6.2 

through 6.5 [11]. 

 

EQR =  

(
mair

mf
)
st

(
mair

mf
)

 (6.2) 

EQRO =  

(
mO2

mf
)
st

Ofrac (
(1 + EGR)mair

mf
)

 (6.3) 

η =  
Pgross × 3600

mng × LHVng +mdiesel × LHVdiesel
 (6.4) 

O2 = mf (
mO2

mf
)
st

 [
1

EQR
− 1] [1 − H2O%] (6.5) 
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The oxygen mass fraction (Ofrac), lower heating values (LHV), percentage of water in the exhaust 

(H2O%), and the stoichiometric ratios (st) are all constants. The oxygen mass (mO2
) is calculated 

based on the percentage of oxygen in the compressed intake air, which is also constant. The exhaust 

gas recirculation percentage (EGR), diesel fuel mass (mdiesel), and intake air mass (mair) are taken 

from new hyperparameter optimized Gaussian process regression submodels according to the new 

hybrid layered model structure in Figure 6.12. 

 

 

Figure 6.12: Hybrid Model Structure 

 

The model structure has changed in Figure 6.12 compared to the layered model. In addition to 

replacing some models with equations, new submodels have been added to facilitate the new inputs 

required for the EGR, diesel fuel mass, and intake air mass. The thermal efficiency has also been 
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moved to its own layer as it is now dependent on the gross indicated power. The new input matrix 

is given in Appendix D.2. 

  

6.4.1 Error Correcting Hybrid Model 

While Equations 6.2 through 6.5 are well known in literature and are based on the system diagram 

in Figure 2.2, they are also based on idealized system processes [11]. These equations do directly 

account for measurement error and system nonlinearities. For this reason, an error correcting 

method is developed that takes the output of each equation and applies a correcting GPR model to 

account for system variations. Figure 6.13 shows how this error correcting model is integrated.  

 

 

Figure 6.13: Error Correcting Hybrid Model Example 

 

The following sections detail the results of the hybrid modelling approach to reducing model error 

for the Box Behnken data set. Performance metrics are first shown for the new Gaussian process 

regression based submodels, followed by the full hybrid models. Results for both the hybrid and 

error correcting hybrid models are presented. These are compared to the measured training 

approach from the layered models in Section 6.3 and the Gaussian process regression models with 

hyperparameter optimization from Chapter 5. All models are generated 10 times with the 

aggregated results presented, showing the mean and range of the results.  
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6.4.2 New Hybrid Model Submodel Results 

Figure 6.14 shows both the coefficient of determination and normalized root mean square error for 

the new submodels introduced in the hybrid modeling method. These submodels are used in 

conjunction with the submodels from the layered model structure in Section 6.3.2. 

 

  

Figure 6.14: New Hybrid Submodel Coefficient of Determination and Normalized RMSE (Training Data) 

 

Figure 6.14 shows that the diesel fuel mass results have a low coefficient of determination, below 

0.4, and a high normalized RMSE of 0.16. This is expected as the diesel fuel flow rate is difficult 

to measure accurately. The diesel flow rate is measured by monitoring a mass scale that weighs 

the diesel fuel container. The per injection fuel mass is calculated by measuring the change in the 
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mass over the 2 minute duration of sampling a given operating point, and then dividing it by the 

number of combustion cycles. This is problematic as the mass scale is highly inaccurate due to 

pressure and flow rate fluctuations. The mass of diesel used in each injection is significantly 

smaller than the natural gas, and the noise created by these minor fluctuations make up a large 

portion of the signal.  This is the main reason that this input is not used in the layered model 

structure from Figure 6.7. Fortunately, the volume of diesel fuel used is low enough that noise in 

these measurements should not impact the calculations used in the hybrid model. In every case 

where this value is used, the natural gas measurement is the dominant term. The diesel fuel still 

needs to be considered but the errors introduced by the diesel fuel mass should not heavily impact 

any of the equation based models.  

 

The intake air mass performs well with a coefficient of determination close to 1 and a normalized 

RMSE that is consistently less than 0.03. The EGR measures the percentage of the intake air that 

is made up of recirculated exhaust gas. EGR is known to be difficult to measure directly and is 

highly dependent on the complex interactions of the intake air pressure, the exhaust back pressure 

and the engine speed [30], [34], [56]. It is for this reason that this submodel is not used in the 

layered model in Figure 6.7. For the hybrid model, this parameter is required for some of the 

equation based models. While the coefficient of determination shows results above 0.8, this is 

lower than expected for the training data, which would ideally be consistently above 0.9. The range 

of the nRMSE for the training data is also larger than desired, spanning a value of 0.08. While 

neither of these results are especially poor, they do introduce some concern and it is likely that this 

model may introduce some error that could negatively impact the final output models.  
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6.4.3 Hybrid Model Validation Data Results 

This section presents the validation data results for the hybrid models. The model performance 

presented here is based on the Box Behnken randomized validation data set and is compared to the 

hyperparameter optimized results from Chapter 5 as well as the layered model trained using the 

measured approach from Section 6.3.  

 

 

Figure 6.15: Coefficient of Determination for Hybrid Modeling Method (Validation Data) 

 

Figure 6.15 shows that the coefficient of determination results for the hybrid models are lower on 

average compared to the other models. While the coefficients of determination for the hybrid 

models is higher than the hyperparameter optimized models for CO, NOX, the cylinder pressure 

gradient, and particulate matter, they are still consistently lower than the layered model.  
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Figure 6.16: Normalized RMSE for Hybrid Modeling Method (Validation Data) 

 

Figure 6.16 shows the mean normalized root mean square error. The hyperparameter optimized 

models show the lowest nRMSE on average, although, the hybrid and layered models show lower 

nRMSE results for the CO, cylinder pressure gradient, particulate matter, and NOX. The range of 

the nRMSE values also indicates that these differences should be consistent across most versions 

of the models as there is very little crossover in the error bars between the hyperparameter 

optimized models and the other methods. 
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Table 6.5: Normalized RMSE results for the hybrid model (validation data) 

Outputs Hybrid Model 

Comparison % Reduction in nRMSE * 

Hyperparameter Layered Hyperparameter Layered 

CO 0.118 0.243 0.117 51.32 -1.435 

CO2 0.046 0.038 0.053 -20.85 12.17 

NOX 0.104 0.129 0.091 19.85 -14.12 

O2 0.146 0.077 0.082 -89.59 -78.97 

CH4 0.161 0.155 0.162 -3.898 0.307 

Efficiency 0.079 0.046 0.047 -70.47 -68.72 

pcyl 0.037 0.032 0.035 -14.89 -4.415 

dp/dCA 0.100 0.116 0.100 13.52 -0.327 

PM 0.137 0.184 0.124 25.72 -10.10 

EQRO 0.112 0.070 0.065 -59.88 -72.47 

Power 0.056 0.043 0.055 -28.77 -1.569 

Average 0.100 0.103 0.085 -16.18 -21.79 

* Lowest nRMSE in bold. 

 

Table 6.5 shows the non-error correcting hybrid model nRMSE compared to the layered models 

and the hyperparameter optimized models. Table 6.5 demonstrates that on average, the non-error 

correcting hybrid model introduces more error into the modeling method with an average increase 

of 16% compared to the original hyperparameter models and 22% compared to the layered models. 

None of the models show consistent improvement across both the layered and hyperparameter 

optimized models. In every case where the hybrid model performs better than the hyperparameter 
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optimized model, the layered model outperforms the hybrid model. The performance differences 

between the hybrid and layered models for the CO and dp/dCA, are within 1.5%, however, this is 

not enough to justify using one model over the other.  

 

Table 6.6: Normalized RMSE results for the error correcting hybrid model (validation data) 

Outputs 

Error 

Corrected 

Hybrid 

Model 

nRMSE % Reduction in nRMSE * 

Hyper-

parameter 

Layered Hybrid 

Hyper-

parameter 

Layered Hybrid 

CO 0.179 0.243 0.117 0.118 26.080 -54.011 -51.832 

CO2 0.048 0.038 0.053 0.046 -24.748 9.341 -3.222 

NOX 0.106 0.129 0.091 0.104 18.011 -16.739 -2.297 

O2 0.167 0.077 0.082 0.146 -116.166 -104.056 -14.016 

CH4 0.160 0.155 0.162 0.161 -3.257 0.922 0.617 

Efficiency 0.058 0.046 0.047 0.079 -26.039 -24.740 26.065 

pcyl 0.033 0.032 0.035 0.037 -3.177 6.230 10.195 

dp/dCA 0.105 0.116 0.100 0.100 8.916 -5.672 -5.328 

PM 0.131 0.184 0.124 0.137 28.767 -5.584 4.106 

EQRO 0.076 0.070 0.065 0.112 -8.804 -17.370 31.947 

Power 0.057 0.043 0.055 0.056 -31.956 -4.084 -2.475 

Average 0.102 0.103 0.085 0.100 -12.03 -19.62 -0.567 

* Lowest nRMSE in bold. 
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Table 6.6 shows the nRMSE of the error correcting hybrid modeling method compared to the 

layered modeling method, hyperparameter optimized modeling method and the non-error 

correcting hybrid modeling method. The error correcting hybrid models have lower nRMSE than 

the hybrid models for CH4, peak cylinder pressure, thermal efficiency, and EQRO. However, the 

error correcting hybrid model is still outperformed overall by most other models. Compared to the 

hyperparameter optimized models alone, the error correcting hybrid models show a decrease in 

the nRMSE of 26% for CO, 18% for NOX, 9% for the cylinder pressure gradient and 29% for the 

particulate matter. These are all notable improvements over the original models. The layered 

models, however, consistently show lower nRMSE values for each of these models. For these 

outputs, the error correcting hybrid model shows between 5.6% to 54% higher nRMSE compared 

to the layered models. This indicates that the layered modeling method is the better method for 

these outputs.  

 

6.4.4 Hybrid Model Conclusions 

Both the hybrid and error correcting hybrid models have been compared to the layered models and 

the original hyperparameter optimization based models. Based on the results, the hybrid models 

overall underperform compared to both the layered models and the hyperparameter optimization 

models. There are several cases where the nRMSE is close to the layered models and lower than 

the hyperparameter optimization based models. This is mostly the case for the non-error correcting 

hybrid model. In each of these cases the layered model shows better performance with an overall 

lower complexity. This slightly higher error most likely comes as a result of the introduction of 

the new submodels combined with the inability of the equations to correct for variations in the 

engine. The error correcting hybrid model attempts to address this issue, however, this approach 
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still needs additional refinement. It is possible that a different implementation of the error 

correcting hybrid model would be able to address this issue. While the hybrid method does not 

outperform the other methods shown in this work, a different implementation, using different 

submodels, better sensors or a different approach to error correction could allow this method to 

further reduce the modeling error.  

 

6.5 Summary of Model Improvement Techniques  

The work shown in Sections 6.1 through 6.4 demonstrates several methods for improving model 

performance for hyperparameter optimized machine learning models with small data sets. The 

foundation of this work is the hyperparameter optimization technique presented in Chapter 5 which 

also demonstrates that Gaussian process regression presents the best modeling method for 

modeling complex engine systems with reduced data sets [1]. These new techniques are therefore 

built on top of the Gaussian process regression modeling method with hyperparameter 

optimization. The techniques that were evaluated are, multi-region modeling, a sensitivity analysis 

input reduction and selection method, a layered modeling method, a hybrid mathematics and 

machine learning method, and an error correcting version of the hybrid method. Table 6.7 

summarizes the overall results of all the modeling methods with the multi-region modeling results 

summarized in Table 6.8. 
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Table 6.7: Model improvement technique summary (validation data) 

Outputs 

Modeling Method nRMSE * 

Best  

% 

nRMSE 

decrease  

Best Method Hyper-

parameter  

Sensitivity  Layered Hybrid 

Hybrid 

EC 

CO 0.243 0.197 0.117 0.118 0.179 0.117 52.00 Layered 

CO2 0.038 0.037 0.053 0.046 0.048 0.037 4.444 Sensitivity 

NOX 0.129 0.117 0.091 0.104 0.106 0.091 29.77 Layered 

O2 0.077 0.077 0.082 0.146 0.167 N/A 40.24 Multi-Region 

CH4 0.155 0.154 0.162 0.161 0.160 0.154 1.071 Sensitivity 

Efficiency 0.046 0.041 0.047 0.079 0.058 N/A 15.63 Multi-Region 

pcyl 0.032 0.031 0.035 0.037 0.033 0.031 3.731 Sensitivity 

dp/dCA 0.116 0.098 0.100 0.100 0.105 0.098 15.01 Sensitivity 

PM 0.184 0.166 0.124 0.137 0.131 0.124 32.53 Layered 

EQRO 0.070 0.065 0.065 0.112 0.076 0.065 7.416 Sensitivity 

Power 0.043 0.040 0.055 0.056 0.057 0.040 6.908 Sensitivity 

Average 0.103 0.093 0.085 0.100 0.102  18.98 Sensitivity 

* Lowest nRMSE in bold. 
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Table 6.8: Model improvements multi-region summary (validation data) 

Outputs 

Multi-Region nRMSE * Combined  

nRMSE 

% Reduction in nRMSE * 

+ve PSEP -ve PSEP Average +ve PSEP -ve PSEP Average 

CO 0.243 0.216 0.230 0.311 21.86 30.41 26.21 

O2 0.077 0.07 0.074 0.123 37.15 43.43 40.24 

Efficiency 0.046 0.035 0.041 0.048 2.995 26.69 15.63 

* Lowest nRMSE in bold. 

 

From Table 6.7 and Table 6.8, the nRMSE for every model output is reduced using some 

combination of these techniques. This demonstrates that using engineering intuition and advanced 

modeling techniques, machine learning modeling methods can be improved upon. In particular, 

the hyperparameter optimization method has already demonstrated an overall model improvement. 

Adding these new techniques has further improved the model performance beyond what was 

possible using only hyperparameter optimization. The sensitivity analysis results show that 

reducing the input vector size and removing the less relevant inputs improves the model 

performance by 8% on average. This is the overall most consistently successful method. By 

removing inputs that are not being used, the model input noise is reduced during the training 

process which in turn improves the model performance. 

 

Multi-region modeling improves the oxygen and thermal efficiency models by 15% and 40% 

respectively. While the input sensitivity improves these models, the multi-region approach shows 

the highest decrease in nRMSE. Unfortunately, this method is highly dependent on the regions that 

the operating space can be divided into. While this is a limitation, anytime a large operating space 
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is being studied, appropriate boundaries should be possible to identify in order to characterize 

distinctly different operating regions. 

 

The layered model showed the second lowest nRMSE after the sensitivity based input reduction. 

Here, the particulate matter nRMSE improved by 33% and the CO improved 52%. As particulate 

matter is one of the most difficult to measure engine emissions, this is a very significant 

improvement [70], [71], [78]. A 33% decrease in model error demonstrates that this technique can 

overcome both the limitations of a small data set and the complexity of particulate matter 

modeling.  

 

The hybrid model improved the nRMSE for the CO by 51% and the particulate matter by 26%. 

These are also significant improvements but are still outperformed by the layered model. The 

introduction of additional, difficult to model submodels that were required to facilitate the hybrid 

model structure likely introduced too much error for the benefits of the hybrid model to improve 

on the layered technique. Additional refinements to this method or a slightly different 

implementation may improve these results. 

 

The summarized nRMSE results in Table 6.7 and Table 6.8 show the benefit of introducing 

engineering knowledge and process related information into machine learning models. This 

additional information acts as new data that can overcome the limitations of small or otherwise 

insufficient data sets and reduce the difficulty of the modeling process. Reducing the input vector 

size provided the most consistent benefit while using the layered models improved the 

performance in those cases where the relationships between the inputs and outputs were difficult 
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for the machine learning model to determine. The multi-region method also provided a noticeable 

benefit for some outputs but can only be used where an identifiable boundary between two 

different operating spaces can be defined. 

 

Overall, these methods provided a significant benefit over the hyperparameter optimization 

method which already presented a significant benefit over typical modeling methods. With these 

techniques, future work can expand upon these methods and utilize them for complex calibration 

work such as engine model transfer learning and optimal operation point identification. 
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Chapter 7: Conclusion 

The objective of this work was to develop a steady state engine modeling method that reduces the 

burden of data collection required for control and calibration of new engine technologies.  A heavy 

duty pilot ignited direct injection natural gas compression ignition engine was rebuilt and 

retrofitted with a new control and data acquisition system to act as a case study and test bench for 

this work. Typical performance and emissions metrics were selected as model outputs. The main 

control parameters of the engine were selected as model inputs. These inputs represent the typical 

control parameters used by a production engine controller. A full factorial data set was selected to 

represent typical engine modeling data. Two low density data sets were collected based on the 

Box-Behnken design of experiments method with two validation data sets also being collected in 

the same operating space.  

 

Modeling hyperparameters were identified for the neural network and Gaussian process regression 

modeling methods and a survey of 500 different hyperparameter configurations was performed for 

the full factorial and Box Behnken data sets using both methods. This was compared to 10 sets of 

similar models with hyperparameters that were selected using Bayesian optimization. Multiple 

iterations of the hyperparameter optimization models were used to ensure the robustness of the 

method. Hyperparameter optimization proved to be effective in guaranteeing model robustness 

and reducing the normalized root mean square error. Between the two machine learning methods, 

Gaussian process regression showed the lowest error and variability.  

 

Hyperparameter optimized Gaussian process regression models were used as the basis for four 

different proposed model improvement methodologies. The methodologies included multi-region 
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modeling, sensitivity based input reduction, layered modeling, and hybrid modeling. Each method 

reduced the model error beyond what was achievable with hyperparameter optimization alone, 

further improving the modeling results beyond the original hyperparameter modeling survey from 

Chapter 4. These results are summarized in Table 7.1. 

 

Table 7.1: Summary of model improvement compared to hyperparameter optimization from Chapter 5 and 

the hyperparameter modeling survey from Chapter 4 

Outputs 

Best Model 

Improvement 

Method 

% Reduction in nRMSE for the Best Methods 

Hyperparameter Optimization Hyperparameter Survey 

CO Layered 52.0 45.0 

CO2 Sensitivity 4.44 67.3 

NOX Layered 29.8 50.5 

O2 Multi-Region 40.2 72.1 

CH4 Sensitivity 1.07 1.71 

Efficiency Multi-Region 15.6 26.1 

pcyl Sensitivity 3.73 48.7 

dp/dCA Sensitivity 15.0 32.9 

PM Layered 32.5 29.9 

EQR Sensitivity 7.42 61.4 

Power Sensitivity 6.91 63.9 

Average  19.0 45.4 

 



131 

 

Sensitivity based input reduction showed improvements in the normalized root mean square error 

across all models, with an average decrease in error of 8%. Layered modeling improved the CO 

by 52%, NOX by 30% and particulate matter by 33%, which surpassed the sensitivity based method 

for these outputs. Multi-region modeling improved the O2 by 40% and thermal efficiency by 16%, 

which also surpassed the sensitivity based approach. Hybrid models also showed improvements 

but were surpassed by the layered models. By strategically using the different techniques, an 

overall reduction in error of 19% was achieved over the hyperparameter optimized models with a 

45% error reduction over the initial model survey.  

 

Testing of each component was done during the set up of the test bench and a repeatability study 

was done to assess the variability of the engine. While training data performance is presented in 

the appendix, the results focused on validation data. This data represents a more realistic evaluation 

of the models as this data showed the expected performance for any arbitrary data point that has 

not had the benefit of being part of the training data set. All data was collected in the same time 

frame to reduce the effects of system variation. This was verified with the repeatability study. The 

model results demonstrated an error that approached the system variability, of approximately 0.1, 

showing that the models are as accurate as can be expected. This work uses a full factorial data set 

which is similar in structure to the data sets used in other publications [51], [61]. This full-factorial 

data demonstrated a decrease in the normalized RMSE with hyperparameter optimization which 

carried over to the Box Behnken data set. This shows that the performance gained through the 

techniques presented here were consistent and not dependent on the data set. Each result presented 

in this research is calculated multiple times to ensure robustness. The results demonstrated that the 
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models are robust, with little variation in most cases and that the normalized root mean square 

error reduces overall as the techniques are applied. 

 

The various methods presented in this work were successful in reducing the modeling error for the 

small data set. While larger data sets are still beneficial, the sensitivity based input reduction, 

layered modeling, multi-region modeling, and potentially hybrid modeling methods demonstrate 

a potential approach to overcoming the data burden limitation and rapidly producing engine 

models with smaller data sets. In either case, hyperparameter optimization consistently reduced 

the modeling error regardless of the size of the data set.  

 

7.1 Main Contributions 

Prior to the initiation of this work, Gaussian process regression only had preliminary 

implementation for engine related studies [45], [49], [50]. Even now, few papers exist, relative to 

other more common techniques such as neural networks. The results shown in Chapter 4 

demonstrated that Gaussian process regression is well suited for engine research as it has produced 

engine models showing 45% to 66% of the error shown by the artificial neural network models.  

 

A method for selecting ideal hyperparameters for complex systems through hyperparameter 

optimization was presented and it was further demonstrated that this approach produced a low 

variability, low error model performance. Most engine modeling work using neural networks or 

Gaussian process regression, selects model hyperparameters according the most commonly used 

methods [41], [50]. While these hyperparameters create usable models, the hyperparameter 

optimization demonstrated that other better hyperparameter configurations may be found through 
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optimization. Techniques such as the Matérn based kernels were shown to be better than the more 

commonly used squared exponential and BFGS Quasi-Newton was shown to produce effective 

neural network engine models despite not being commonly used in engine research. Similarly, 

neural network node counts are often selected based on the number of inputs and outputs. Through 

hyperparameter optimization, it found that identifying optimal node configurations may present 

lower error results. 

 

Engine research is often done on conventional gasoline or diesel engines, focusing on production 

systems or a modifications to the fuel [38], [40]–[43]. The methods presented here demonstrated 

a means of modeling not just a complex and unusual system, but one with many degrees of 

freedom. This is something that the production systems do not typically have, as they are heavily 

constrained by an existing engine control unit and the built in calibration for the engine. Using the 

unusual PIDING engine proved that models can be made for complex engine systems with smaller 

data sets by using these techniques. 

 

Many engine modeling papers discuss the performance of models for engines using conventional 

machine learning methods [42], [43]. This work expanded upon existing machine learning 

methods by factoring engineering knowledge into the model development. One criticism of 

machine learning is that the inner workings of the model are hidden behind the algorithm, 

obscuring it from the researcher’s view. The layered and hybrid modeling methods changed this 

by introducing the physical process into the model structure, creating a machine learning model 

that contains engineering knowledge for the system in addition to the purely data driven machine 

learning elements. The major limitation of this approach is that an understanding of the physics 
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and system properties is required to create these types of models. While this adds an additional 

knowledge burden to the model developer, it provides a means of introducing additional 

information in the model without collecting additional experimental data points. 

 

This work presents a means of modeling new engine technologies without the normal cost of 

extensive data collection. While new data is still required for each new engine technology, these 

methods can be used in either industry or academia to determine an initial performance expectation 

for a given engine technology and then provide a starting point for calibration that takes a fraction 

of the time that typical methods would require. This may reduce the cost of new engine technology 

development and potentially allows future researchers to explore new engine technologies in a 

more efficient manner. 

 

7.2 Future Work 

The different model improvement techniques can be applied in numerous ways to benefit engine 

research. Each new engine technology would require a new data set and may require a new model 

structure with new inputs and outputs that reflect the new system. Despite this, the core 

methodology presented in this work may still be applied to new technologies once the model 

development procedure is properly adapted. This can be done using engineering intuition and the 

sensitivity analysis method discussed in section 6.2. In those cases where data size is a concern, 

these methods may provide a means of reducing the model error, which can benefit various 

avenues of research. 
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Using these models, future implementations of this work may be able to rapidly generate 

calibrations for new engine technologies. This could be done using an optimization algorithm, 

such as particle swarm optimization, to rapidly select operating points. These rapidly developing 

calibrations can be modified in such a way that could allow for self improving real-time modeling 

and engine calibration.  

 

Other implementations of the model improvement techniques such as the layered model could 

focus on integrating transfer learning to utilize even smaller data sets from varying sources. 

Transfer learning enables the use of model data from one research engine on a different engine 

[55]. Gaussian process regression has only recently been adapted for transfer learning with several 

implementations having been developed [29], [79]–[81]. The implementation of transfer learning 

in addition to the above techniques could allow for rapid development of new engine technologies 

with vastly smaller data sets than was previously required.  

 

The techniques presented here could also be further developed to include a more advanced 

integration of engineering knowledge in the model structure. More complex equations and process 

models could be used to replace submodels in the hybrid model structure and different methods of 

error correction could be applied to the hybrid model to enhance the hybrid model performance. 

More advanced implementations of the layered model structure could also be developed with more 

complex inputs being predicted. Exhaust gas recirculation, for example, has been experimentally 

observed to have a close relation to emissions formation for this type of engine [30], [82]. Creating 

more complex models that factor in these parameters combined with different techniques such as 

a feedback approach to iterative model prediction could enhance the layered model performance. 



136 

 

 

Data is an important element of machine learning engine research. With the complexity of engines 

increasing, researchers are increasing their reliance on machine learning modeling methods, 

always aware of the data collection burden that using such methods entails. When developing new 

engine technologies, it is recommended that researchers both in academia and industry consider 

employing the hyperparameter optimized Gaussian process regression modeling method with 

multi-region modeling, layered modeling, and sensitivity based input reduction to potentially 

expediate the modeling process and possibly reduce the time and cost of development for these 

new technologies. With the techniques presented here, based on hyperparameter optimization, and 

extended with data sciences and engineering process knowledge, researchers may be able to shift 

their focus away from data collection and more towards the research itself. 
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Appendices 

 

Appendix A  Additional Engine Components 

This section contains information on additional components that are part of the test bench and 

were used as part of the research conducted in this work but otherwise are not critical to the 

understanding of how data was collected. These components are critical to the operation of the 

test bench and knowledge of their operation is important for the replication of data collection 

should someone want to reproduce this work. For this reason, they are included here. 

 

A.1 Starter Motor 

In addition to the Vector Drive and Engine Dynamometer, the engine system has a connected 

starter motor. The starter motor is powered by a completely independent deep cycle battery system 

that is charged using an inverter. This is necessary as the instantaneous power draw at start up can 

approach 600 amps from the 48V circuit. This is a significant amount of power but is absolutely 

necessary to overcome the static friction of the engine and get the engine up to its start-up speed 

of 333 RPM. Depending on the starting temperature of the engine, this power draw can be very 

significant and may need to be continued for some time before the engine can reach that speed. A 

diagram of the start motor circuit is shown in Figure A.1. 
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Figure A.1: Starter Motor Diagram 

 

A.2 Cooling System 

The cooling system serves two purposes. The first is to keep the temperature of the engine and 

dynamometer within their safe operating conditions. The second purpose is to heat the engine 

when it is not in use. This is required as the engine has very little power available at start up and a 

completely cold start is taxing on the engine system, especially in terms of wear and tear. At a 

completely cold start, which can approach 0 degrees depending on the outside air temperature, the 

SCRE is barely able to turn over and is unable to reach the minimum start-up speed. This is even 

with the full power of the Vector Drive and the starter motor. To facilitate an easy start up, the 

engine is kept at a constant 32 degrees Celsius or higher prior to starting. The cooling system is 

one of the many aspects of the engine that have received a significant amount of attention over the 

past several years as the system runs through all the major mechanical components of the engine 

and maintains them at a constant temperature. When the engine is not running, the coolant is cycled 

through the engine using an external pump. The coolant runs through a heat exchanger that runs 

to a separate cold water line. In order for cooling to take place, the cold water line valve must be 

opened to allow for the flow of cold non-potable water to run through the heat exchanger and cool 
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the coolant. Otherwise, the coolant is heated using an external heater. There is an additional valve 

on the cold water line which regulates the percentage of new cold water is brought into the heat 

exchanger. This is controlled electronically. A diagram of the system is given in Figure A.2. 

 

 

 

Figure A.2: System Cooling Loop 

 

A.3 Control Panel 

The final aspect of the engine control and data acquisition system is the control panel. The control 

panel is unique from the rest of the system as it is not directly interfaced with a computer. Instead, 

the user controls a variety of knobs, dials and switches that adjust various key parameters that 

maintain the engine in a stable operating state. This also means that some of these setpoints are 

not directly recorded by the data acquisition system. The main aspects of the engine that are 

controlled though these means are the fuel pressures, the engine dynamometer setpoint, the vector 

drive setpoint, and both the EGR and back pressure valve positions. A picture of the control panel 

is shown in Figure A.3. 
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Figure A.3: Control Panel 

 

The fuel pressures are controlled using a single pressure regulator which adjusts the diesel pressure 

and the corresponding natural gas pressure which is kept at a constant bias pressure of 

approximately 1 MPa. The engine dynamometer is controlled using a proprietary controller that 

monitor’s the engine speed and torque. A speed setpoint is set and the dynamometer applies a 
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braking torque to maintain the speed. The back pressure and EGR valves are controlled using 

potentiometers that set the valve position. A coarse feedback is returned to a display on the panel 

indicating the valve position for the back pressure while the EGR does not have a valve setpoint 

display. Of the above parameters only the valve positions are not recorded in the data acquisition 

system. Future work is expected to improve on this limitation. The control panel also contains a 

manual ESD button, a system wide ESD reset, a start button to engage the starter motor, and a 

variety of switches that are used during start up to enable and power the various engine subsystems. 

 

Appendix B  Additional Control and Data Acquisition System Diagrams 

This section contains additional diagrams detailing the control and data acquisition system. 

These diagrams are not necessary for understanding how these systems operate at a higher level 

but instead provide information on the detailed systems and how they are configured. 

 

B.1 CompactDAQ UI Overview 

This section provides a snapshot of the high level user interface for the data acquisition system 

which is used for the real-time monitoring of the engine test bench as well as for data collection. 

The diagram is given in Figure B.1. 
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Figure B.1: Data Acquisition User Interface 

 

B.2 ESD Circuit Wiring 

This section provides a diagram of the emergency shutdown circuit and all the relays that are 

connected to it. The diagram is given in Figure B.2. 

 

 

Figure B.2: Emergency Shutdown Circuit 
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B.3 CompactDAQ and CompactRIO Signal Wiring 

This section gives the wiring diagrams for the control and data acquisition system which details 

all the connected components and the detailed hardware used in the CompactDAQ and 

CompactRIO systems. Figure B.3 shows the data acquisition system wiring and Figure B.4 

shows the control system wiring. 

 

 

Figure B.3: CompactDAQ Signal Wiring 
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Figure B.4: CompactRIO Control and Sensor Wiring 

 

Appendix C  Machine Learning Hyperparameters 

Machine learning models have a variety of hyperparameters. The artificial neural network and 

Gaussian process regression model hyperparameters that were considered in this work are 

discussed in the following sections. 

 

C.1 Artificial Neural Network Hyperparameters 

The artificial neural network has several different hyperparameters. This includes the training 

function, the number of hidden layers, and the number of nodes in each of the hidden layers. 

Variations in each of these parameters can have a drastic impact on the model performance [72]. 

The most common training functions used in neural network engine research are Levenberg-

Marquart and Bayesian Regularization with one or two hidden layers and the number of nodes 
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being dependent on the number of inputs and outputs in the model [41]. Table 7.1 shows the 

hyperparameter options for the neural network models. 

 

Table 7.1: Neural network hyperparameters 

Hyperparameters Training Function 

Number 

of 

Layers 

Number of Nodes 

(Unique for each 

layer) 

Range 

• Levenberg-Marquardt 

• Bayesian Regularization 

• BFGS quasi-Newton 

• Resilient 

• Scaled conjugate gradient 

• Conjugate gradient with Powell-Beale 

restarts 

• One-step secant 

• Gradient descent with momentum and 

adaptive learning rate 

• Gradient descent with momentum 

• Gradient descent 

1 to 6 2 to 12 

 

C.2 Gaussian Process Regression Hyperparameters 

The Gaussian process regression has two main hyperparameters. The first hyperparameter is the 

kernel function which defines the shape of the covariance between training data points and also 

defines the final curvature of the mean function [44]. The squared exponential is the most 

commonly used kernel function [50]. The second hyperparameter is σn or the initialized value for 
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the signal variance. This impacts how closely the kernel function tries to fit the training data set 

[44]. The range of the hyperparameters is shown in Table 7.2. 

 

Table 7.2: Gaussian process regression hyperparameters 

Hyperparameter Kernel Function 

Initial Value for 

Noise Variance 

(σn) 

Range 

• Exponential kernel 

• Squared exponential kernel 

• Matérn kernel with covariance parameter 3/2 

• Matérn kernel with covariance parameter 5/2 

• Rational quadratic kernel 

• Exponential kernel with a separate length scale 

per predictor 

• Squared exponential kernel with a separate 

length scale per predictor 

• Matérn kernel with covariance parameter 3/2 

and a separate length scale per predictor 

• Matérn kernel with covariance parameter 5/2 

and a separate length scale per predictor 

• Rational quadratic kernel with a separate length 

scale per predictor 

0.0001 to 30 
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Appendix D  Layered Model Structure Matrices 

 

The following sections present the layered model input/output matrices which show the detailed 

interconnection between the various submodels in the model structure.  

 

D.1 Layered Model Input/Output Matrix 

Table 7.3 shows a description of the inputs and outputs for each submodel in the layered model. 

 

Table 7.3: Input layout for each layered model submodel 

Model Layer Output 

Model Inputs 

Measured Inputs 

Calculated Inputs 

Model Layer 

1 2 3 4 5 
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θ
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θ
1

0
 

η
 

P
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p
c
y
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1 
mf X X X X X X X             

mng X  X   X X             

2 
EQRO X       X X X  X        

EQR X       X X X  X        

 3 

θ50 X   X  X X X X    X X      

θ10 X X  X X X  X X    X X      

O2 X       X X X  X  X      

4 
η X       X X     X X     

Pgross X  X X  X X X X   X  X X     

5 

CO2        X    X  X   X   

CO X X  X X   X X X X   X X   X  

pcyl X        X X X X  X X X  X  

PM X  X X  X  X X X X   X    X  

dp/dCA X   X  X  X X X X X  X X   X  

6 
NOX X       X X X X X  X X   X X 

CH4 X       X X X X   X X   X X 

* Bolded values are outputs.
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D.2 Hybrid Model Input/Output Matrix 

Table 7.4 shows the input and output matrix for the submodels in the hybrid modeling method. 

The bolded values represent outputs and underlined values represent equations. 

 

Table 7.4: Input loyout for each hybrid model submodel 

Model Layer Output 

Model Inputs 

Measured Inputs 

Calculated Inputs 

Model Layer 
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1 

mf X X X X X X X                

mdiesel X X  X X                  

mng X  X   X X                

mair X       X X X             

EGR X       X X              

2 
EQRO            X   X        

EQR            X   X X       

3 

θ50 X   X  X X X X     X   X      

θ10 X X  X X X  X X     X   X      

O2            X   X  X      

4 Pgross X  X X  X X X X   X     X X     

5 η             X X      X   

6 

CO2        X    X     X    X  

CO X X  X X   X X X X      X X  X   

pcyl X        X X X X     X X X X   

PM X  X X  X  X X X X      X   X   

dp/dCA X   X  X  X X X X X     X X  X   

7 
NOX X       X X X X X     X X  X  X 

CH4 X       X X X X      X X  X  X 

* Underlined values represent equations. Bolded values are outputs. 
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Appendix E  Training Data Results 

The following sections contain the training data results for the different modeling methods 

presented in this work. These results are included for completeness and to visualize the variation 

in nRMSE and COD when transitioning from the idealized training data to the final validation 

data. 

 

E.1 Full Factorial Data Hyperparameter Optimization Training Results 

The full factorial training data represents a data set for a small operating space that has been 

measured at a high resolution. Using the hyperparameter optimization method, improvements in 

the machine learning models is expected. As the response surface models presented very poor 

results in section 4.1.1 these results are not repeated here. Instead, only the machine learning results 

are presented. Figure E.1 shows the coefficient of determination for the full factorial 

hyperparameter optimized models using the training data.  
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Figure E.1: Coefficient of Determination for Hyperparameter Optimized Modeling with Full Factorial Data 

(Training Results) 

 

Figure E.1 shows that the training results with hyperparameter optimization are immediately much 

better than the results presented in 4.1.1. Even the lowest measured coefficient of determination is 

above 0.88 with average values consistently about 0.93. This shows that the hyperparameter 

optimization allowed the models to find a configuration that properly characterized the training 

data set for both neural networks and Gaussian process regression. Figure E.2 shows the 

normalized root mean square error for these models.  
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Figure E.2: Normalized RMSE for Hyperparameter Optimized Modeling with Full Factorial Data (Training 

Results) 

 

Figure E.2 confirms the previous results. Except for the particulate matter, the normalized root 

mean square error for all models is consistently below 0.04. The particulate matter shows nRMSE 

values that approach 0.08 for the Gaussian process regression and even this value, which is twice 

as high as the other results, is still considered reasonable. Table 5.1 shows a summary of these 

results. 

 



164 

 

Table 7.5: Comparison of nRMSE results for hyperparameter optimized modeling with the modeling survey 

using the full factorial data (training results) 

Outputs 

Machine Learning Survey Hyperparameter Optimization * 

Artificial 

Neural 

Network 

Gaussian Process 

Regression 

Artificial Neural 

Network 

Gaussian Process 

Regression 

CO 0.219 0.041 0.024 0.004 

CO2 0.054 0.018 0.005 0.005 

NOX 0.196 0.045 0.021 0.004 

O2 0.136 0.049 0.025 0.007 

CH4 0.183 0.042 0.017 0.009 

Efficiency 0.032 0.014 0.006 0.004 

pcyl 0.095 0.016 0.003 0.003 

dp/dCA 0.040 0.023 0.013 0.015 

PM 0.276 0.130 0.037 0.061 

EQRO 0.067 0.034 0.011 0.002 

Power 0.065 0.019 0.003 0.003 

Average 0.124 0.039 0.017 0.011 

* Lowest nRMSE in bold. 

 

Overall, the Gaussian process regression models showed the lower error when compared to the 

neural network models. While these results only represent the training data it is apparent that 
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proper selection of hyperparameters has had a positive effect on the results when compared to the 

modeling survey results. 

 

E.2 Box Behnken Data Hyperparameter Optimization Training Results 

This section presents the training data model performance for the hyperparameter optimized Box 

Behnken modeling method. Figure E.3 shows the coefficient of determination results for the Box 

Behnken training data set neural network, Gaussian process regression, and Response Surface 

models. 

 

 

Figure E.3: Coefficient of Determination for Hyperparameter Optimized Modeling with Box Behnken Data 

(Training Results) 
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As with the full factorial data set, the Box Behnken data set shows high coefficient of 

determination results for the training data. The average values for all the models in Figure E.3 are 

above 0.8 indicating that the models were able to accurately follow the patterns in the Box Behnken 

data set. The only points of concern are the Gaussian process regression model results for the CH4 

which show a range that extends down to 0.2. This indicates that some optimizations were unable 

to find capable models that tracked the trends for this data set. Figure E.4 shows the normalized 

RMSE results for the training data. 

 

 

Figure E.4: Normalized RMSE for Hyperparameter Optimized Modeling with Box Behnken Data (Training 

Results) 

 

In Figure E.4, the results show that Gaussian process regression has the highest variation of all the 

data sets. This is especially true for the hydrocarbons. Otherwise, the average nRMSE is roughly 
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on par with the neural network results and the response surface results. Table 7.6 shows a summary 

of these results. 

 

Table 7.6: Comparison of nRMSE results for hyperparameter optimized modeling and the modeling survey 

using the Box Behnken data (training results) 

Outputs 

Modeling Survey * Hyperparameter Optimization * 

Response 

Surface 

Artificial 

Neural 

Network 

Gaussian 

Process 

Regression 

Artificial Neural 

Network 

Gaussian 

Process 

Regression 

CO 0.025 0.095 0.023 0.023 0.004 

CO2 0.008 0.033 0.045 0.011 0.011 

NOX 0.045 0.114 0.017 0.044 0.047 

O2 0.022 0.076 0.030 0.027 0.043 

CH4 0.034 0.120 0.058 0.045 0.049 

Efficiency 0.017 0.030 0.016 0.020 0.019 

pcyl 0.008 0.042 0.011 0.010 0.013 

dp/dCA 0.027 0.049 0.019 0.010 0.009 

PM 0.042 0.096 0.028 0.023 0.006 

EQRO 0.015 0.041 0.061 0.020 0.032 

Power 0.009 0.043 0.040 0.012 0.016 

Average 0.024 0.067 0.032 0.024 0.024 

* Lowest nRMSE in bold. 
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As expected from Figure E.4, Table 7.6 shows that the overall results for the training data are 

essentially equivalent with average nRMSE values of 0.024 for both hyperparameter optimized 

methods and the response surface. In most cases, the hyperparameter optimized models show 

lower average nRMSE compared to the modeling survey results. The response surface still shows 

the lowest nRMSE compared to the other modeling methods for 7 of the outputs. This indicates 

that the response surface shows the best training data performance overall. 

 

E.3 Multi-Region Training Results 

This section presents the multi-region model training data results. These results present the 

idealized, peak model performance and show how well the models were able to determine the 

patterns and trends in the original training data. Figure E.5 shows the training data coefficient of 

determination for the multi-region model for the two Box Behnken regions compared to a single 

combined data set model for both regions. Both the individual component results and the averaged 

results for the multi-region model are presented. 
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Figure E.5: Coefficient of Determination for Multi-Region Models Compared with a Combined Single Region 

Model (Training Results) 

 

The results from Figure E.5 show that most models have coefficients of determination above 0.8. 

CH4 and particulate matter show variations in the coefficient of determination ranging as much as 

0.8 for the positive PSEP Box Behnken data set CH4 models and 0.6 for the combined data set 

particulate matter models. The combined model typically presents the highest average coefficient 

of determination by a margin of less than 0.05 for most models. Figure E.6 presents the normalized 

RMSE results for these models using the training data.  
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Figure E.6: Normalized RMSE for Multi-Region Models Compared with a Combined Single Region Model 

(Training Results) 

 

Figure E.6 shows that based solely only the training data, the combined model outperforms the 

multi-region model with the lowest nRMSE on average and the least variation as compared to the 

average model results. From these results, the extra data provided to the Gaussian process 

regression model by combing both data sets proves to be more beneficial than simplifying the 

model by separating the data sets into different combustion regions. These results are reinforced 

by Table 7.7 where the results are summarized and the percentage reduction in nRMSE is shown. 
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Table 7.7: Normalized RMSE for the multi-region model compared to a combined single region model 

(training data) 

Outputs 

Multi-Region nRMSE * 

Combined 

nRMSE 

% Reduction in nRMSE * 

+ve 

PSEP 

-ve 

PSEP 

Average 

+ve 

PSEP 

-ve 

PSEP 

Average 

CO 0.004 0.016 0.01 0.006 31.96 -174.54 -66.67 

CO2 0.011 0.026 0.019 0.016 33.40 -63.07 -15.63 

NOX 0.047 0.020 0.034 0.014 -232.4 -43.04 -139.3 

O2 0.043 0.018 0.031 0.012 -249.7 -50.56 -154.2 

CH4 0.049 0.028 0.039 0.032 -51.08 14.05 -20.31 

Efficiency 0.019 0.015 0.017 0.016 -18.52 10.28 -6.250 

pcyl 0.013 0.019 0.016 0.008 -61.49 -137.5 -99.99 

dp/dCA 0.009 0.049 0.029 0.029 69.95 -69.04 0.001 

PM 0.006 0.003 0.005 0.011 48.37 70.85 59.09 

EQRO 0.032 0.018 0.025 0.019 -69.56 3.584 -31.58 

Power 0.016 0.016 0.016 0.008 -104.7 -103.7 -100.1 

Average 0.023 0.021 0.022 0.016 -54.89 -49.33 -52.25 

 

From the nRMSE results in Table 7.7 there is a clear decrease in performance for the training data 

of approximately 52% on average when splitting the model into two regions. This reinforces the 

general statement that machine learning models benefit from having as much data available as 

possible [43]. These results, however, only show the training performance which is not indicative 

of how these models perform for data that they were not trained with. It is those results that 
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represent the real-world usage of the model and as such, are the main results that determine the 

method’s validity. 

 

E.4 Sensitivity Analysis Based Input Reduction Training Data Results 

Figure E.7 shows the coefficient of determination results for each of the different input sets using 

the training data with the sensitivity analysis based input reduction method. 

 

 

Figure E.7: Coefficient of Determination for Sensitivity Analysis Based Input Reduction (Training Data) 

 

The results from Figure E.7 demonstrate that in most cases, the number of inputs do not impact 

the ability of the Gaussian process regression models to determine a model that reflects the trends 

in the training data. In many cases, the coefficient of determination drops as the input vector 
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reduces to one or two parameters. This is especially visible in the EQRO, particulate matter and 

NOX. The EQRO is directly related to the quantity of air and fuel in the cylinder. While the quantity 

of air is captured in the most sensitive input, the diesel and natural gas quantity is difficult to 

determine after the fuel pulse widths are removed. Similarly, the NOX is heavily dependent on the 

natural gas and diesel quantity, which are characterized by the top three most sensitive inputs. The 

loss of one of these inputs, such as the natural gas pulse width, removes information that is needed 

to create the NOX model. The particulate matter is dependent on the localized distribution of heat, 

air, and fuel in the cylinder, which is partially determined by the natural gas start of injection and 

the diesel pressure. As the exhaust back pressure, which is closely related to the intake pressure, 

and the air temperature are removed, the coefficient of determination starts to decrease. Reducing 

the input vector down to one parameter eliminates important information that is needed to 

distinguish the training data points from one another.  
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Figure E.8: Normalized RMSE for Sensitivity Analysis Based Input Reduction (Training Data) 

 

Most of the nRMSE results shown in Figure E.8 are well below 0.15 indicating that the models 

are able to predict the training data output accurately on average despite the reduction of inputs. 

As inputs are removed, the nRMSE increases, with the removal of the last few inputs having the 

greatest impact on the error. This is similar to the coefficient of determination results. Some models 

have unusually high error at certain input levels. NOX, Gross Indicated Power and EQRO all show 

examples of this. This is likely an indication that there is some sensitivity to the noise that specific 

inputs introduce as they provide less reliable or unnecessary information to the model. This noise 

might be harder to reject as the input vector shrinks in size and the unnecessary or noisy parameters 

take up a larger percentage of the available inputs. The summarized normalized RMSE results for 

the sensitivity based analysis technique as compared to the hyperparameter based GPR results are 

show in Table 7.8. 
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Table 7.8: Normalized RMSE results for sensitivity analysis based input selection (training results) 

* Lowest nRMSE in bold. 

 

Table 7.8 shows that compared to the original hyperparameter based models, reducing the input 

vector results in a consistent decrease in model error. For CO, the model error decreases by 85% 

by using only the 6 most relevant inputs. Similarly, the particulate matter improves by 42% by 

using only 8 inputs.  Overall, there is an average performance gain of 33% by removing unneeded 

inputs.  

Outputs 

Sensitivity Based 

Results 

Hyperparameter Based 

Results 

% Reduction 

in nRMSE 

Inputs Used 

CO 0.001 0.004 84.65 6 

CO2 0.006 0.011 43.89 9 

NOX 0.039 0.047 17.08 8 

O2 0.039 0.043 8.951 3 

CH4 0.024 0.049 51.50 1 

Efficiency 0.011 0.019 44.45 7 

pcyl 0.009 0.013 31.12 9 

dp/dCA 0.007 0.009 17.49 8 

PM 0.003 0.006 42.45 8 

EQRO 0.030 0.032 7.593 7 

Power 0.013 0.016 17.85 9 

Average 0.017 0.023 33.37  
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E.5 Layered Model Training Data Results 

In this section, the submodels from 6.3.2 are arranged into the layered structure from Figure 6.7 

and evaluated using the training data from the Box Behnken data set in section 3.2.2. Figure E.9 

shows the coefficient of determination results for the layered modeling method using the training 

data. 

 

 

Figure E.9: Coefficient of Determination for Layered Modeling Method (Training Data) 

 

The predicted approach, where the models are trained using the predicted inputs from the layered 

submodels, performs much better than the measured approach, where the models are trained using 

the experimental data. This is a result of the fact that the layered structure is used to originally 

produce the submodels in the predicted approach. As such, the “predicted” submodels are trained 
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to correct for the predicted submodel error in the training data. This is not the case with the 

measured approach. In most cases, the hyperparameter optimized model shows the highest average 

coefficient of determination. This is expected as the training data presents the ideal case for the 

Gaussian process regression models. The submodels are also trained using this data but have an 

additional level of complexity added through the layered model structure that could result in more 

error for the training data results. 

 

 It is important to note that certain models, such as the CO, CH4, and the particulate matter, show 

substantially lower coefficients of determination for the measured approach, where the coefficient 

of determination is reduced to as little as 0.5. This is important as these outputs have consistently 

been difficult to model and may present problematic cases in the validation results. The measured 

approach is more sensitive to these issues for the training data as the measured submodels are not 

trained using the predicted values from layered model structure. 
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Figure E.10: Normalized RMSE for Layered Modeling Method (Training Data) 

 

Figure E.10 shows the normalized RMSE results. These results present similar behaviour to the 

coefficient of determination. Again, the measured approach shows the worst training results with 

the highest nRMSE overall. This is expected as the training data results use the layered model 

structure and the “measured” submodels are not trained in this structure. As with the coefficient of 

determination results, the CO, CH4, and particulate matter show the lowest performing results with 

the highest nRMSE. Although the training results show a worse overall average performance for 

the measured approach, the range of nRMSE is also smaller than either of the other two methods.  
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Table 7.9: Normalized RMSE results for the layered model (training results) 

Outputs 

Layered Model nRMSE * Hyperparameter 

Optimized nRMSE 

% Reduction in nRMSE * 

Measured Predicted Measured Predicted 

CO 0.073 0.017 0.004 -1721 -311.5 

CO2 0.016 0.013 0.011 -47.92 -20.79 

NOX 0.047 0.022 0.047 -0.894 51.96 

O2 0.037 0.039 0.043 13.02 8.927 

CH4 0.082 0.062 0.049 -66.77 -26.20 

Efficiency 0.024 0.020 0.019 -26.69 -1.850 

pcyl 0.024 0.020 0.013 -91.41 -60.79 

dp/dCA 0.018 0.008 0.009 -106.4 3.069 

PM 0.064 0.023 0.006 -1014 -306.6 

EQRO 0.023 0.024 0.032 27.32 25.46 

Power 0.016 0.012 0.016 2.343 27.54 

Average 0.039 0.024 0.022 -275.7 -55.53 

* Lowest nRMSE in bold. 

 

Table 7.9 shows the magnitude of the change in performance. Both methods show significantly 

worse results with some errors exceeding a 10 fold increase in nRMSE over the original 

hyperparameter optimization method. Some parameters such as the NOX, O2, EQRO, and power 

output did improve. This is a promising result as, again, the hyperparameter optimization method 

is favoured with this data set. 
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E.6 Hybrid Model Training Data Results 

This section presents the hybrid model training data modeling performance results. These results 

demonstrate how well the model can capture the relationships between the inputs and outputs from 

the training data and create output models that reflects those relationships. The hybrid model is 

trained using the Box Behnken data set and is compared against the measured version of the 

layered model from Section 6.3 and the hyperparameter optimized model from Chapter 5. Each 

model is generated 10 times and the average result as well as the range of results is presented.  

 

 

Figure E.11: Coefficient of Determination for Hybrid Modeling Method (Training Data) 
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Figure E.11 shows the coefficient of determination training data results for the hybrid model. The 

most obvious initial result is that the coefficient of determination for the hybrid model is the lowest 

for the training data across all the models. The hybrid model with error correction, however, shows 

a significant improvement over the basic hybrid model and the layered model. For CO, the 

coefficient of determination is close to 1 which puts it in the same performance bracket as the 

hyperparameter optimized model and a full 0.5 above the basic hybrid model. This trend remains 

consistent across all the other models with the error correcting hybrid model showing the highest 

coefficient of determination of all the layered model types. In most cases the hyperparameter 

optimized model shows the highest coefficient of determination.  

 

Figure E.12: Normalized RMSE for Hybrid Modeling Method (Training Data) 
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The results in Figure E.12 show that the hyperparameter optimized model has the overall lowest 

nRMSE for the training data. These results are similar to the coefficient of determination results. 

For the hybrid and layered models, the error correcting hybrid model shows the lowest error on 

average. In the case of thermal efficiency, O2 and EQRO, the layered model performs better.  

 

Table 7.10: Normalized RMSE results for the hybrid model (training data) 

Model Hybrid Model 

Comparison % Reduction in nRMSE * 

Hyperparameter Layered Hyperparameter Layered 

CO 0.079 0.004 0.073 -1872 -8.285 

CO2 0.015 0.011 0.016 -45.31 1.765 

NOX 0.073 0.047 0.047 -56.21 -54.83 

O2 0.068 0.043 0.037 -58.79 -82.55 

CH4 0.095 0.049 0.082 -93.14 -15.81 

Efficiency 0.040 0.019 0.024 -107.9 -64.11 

pcyl 0.026 0.013 0.024 -101.2 -5.136 

dp/dCA 0.019 0.009 0.018 -118.0 -5.597 

PM 0.072 0.006 0.064 -1157 -12.84 

EQRO 0.073 0.032 0.023 -125.1 -209.7 

Power 0.017 0.016 0.016 -3.281 -5.759 

Average 0.052 0.023 0.039 -339.8 -42.08 

* Lowest nRMSE in bold. 
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Table 7.10 shows a summary of the hybrid model results compared to the hyperparameter and 

layered model results. The hybrid model without error correction shows consistently higher 

nRMSE than the layered model and the hyperparameter optimized model. Only the CO2 result 

shows a slight improvement of 1.8% over the layered model. 

 

Table 7.11: Normalized RMSE results for the error correcting hybrid model (training data)  

Outputs 

Error 

Corrected 

Hybrid 

Model * 

Normalized RMSE % Reduction in nRMSE * 

Hyper-

parameter 

Layered Hybrid 

Hyper-

parameter 

Layered Hybrid 

CO 0.009 0.004 0.073 0.079 -136.1 87.03 88.03 

CO2 0.014 0.011 0.016 0.015 -32.32 10.55 8.940 

NOX 0.031 0.047 0.047 0.073 32.74 33.34 56.95 

O2 0.061 0.043 0.037 0.068 -41.51 -62.69 10.88 

CH4 0.081 0.049 0.082 0.095 -65.87 0.540 14.12 

Efficiency 0.036 0.019 0.024 0.040 -87.31 -47.85 9.913 

pcyl 0.020 0.013 0.024 0.026 -56.89 18.03 22.04 

dp/dCA 0.014 0.009 0.018 0.019 -66.62 19.28 23.56 

PM 0.034 0.006 0.064 0.072 -500.1 46.14 52.27 

EQRO 0.027 0.032 0.023 0.073 16.38 -15.04 62.85 

Power 0.015 0.016 0.016 0.017 7.769 5.556 10.70 

Average 0.031 0.023 0.039 0.052 -84.53 8.627 32.75 

* Lowest nRMSE in bold. 
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The results presented in Table 7.11 show that the error correcting hybrid model has a lower 

nRMSE  than the layered and basic hybrid models. With an overall nRMSE decrease of 33% over 

the hybrid model and 8.7% over the layered model, the hybrid model shows better results for 

everything except the O2, thermal efficiency, and EQRO. The error correcting hybrid model is 

even able to outperform the hyperparameter optimized model for the EQRO, gross indicated power 

and NOX. The hyperparameter optimized model still shows the lowest nRMSE overall. 

 

The hyperparameter optimized model is trained using this training data and the results presented 

are a direct reflection of the training process. The layered and hybrid model submodels are also 

trained with this data, however, the final models include many predicted inputs that come as a 

result of the more complex model structure. These inputs introduce error into the model that is not 

present if the submodels are being tested independently using the actual submodel training data 

inputs. Similarly, the equations introduced in the hybrid models do not perfectly represent the 

system. While they may help with predictions for data that wasn’t used in training, the training 

data represents a special case where the equations introduce more error than a machine learning 

model with perfect knowledge of the data point. The error correcting hybrid model corrects for 

this by adjusting the equation output. This is the reason the error correcting hybrid model performs 

so well. What remains to be seen is if this carries over to the validation data results. 
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Appendix F  Data Sets 

This section lists the input and output data for the data sets collected during this research. 

 

F.1 Box Behnken Training Data 

This section lists the input and output training data for the main positive PSEP data set used in 

this work. Table F.1 shows the training input data and Table F.2 shows the training output data. 

 

Table F.1: Box Behnken training input data 

Index pair pdiesel png SOIdiesel PWdiesel SOIng PWng ωeng pexh Tair Tcool 

1 105.3 20.26 -18.50 0.75 -12.55 1.55 16.72 1358 102.9 24.04 80.40 

2 105.4 20.60 -18.50 1.00 -4.90 1.55 16.28 1349 102.9 23.04 56.13 

3 108.0 20.66 -18.50 0.75 -8.21 1.55 21.14 1198 105.8 22.26 46.76 

4 103.8 18.02 -18.50 0.75 -6.90 1.55 13.59 1350 100.9 21.74 87.52 

5 180.3 20.85 -27.00 0.75 -15.39 0.70 11.41 1352 176.8 22.18 71.53 

6 181.3 20.68 -27.00 0.75 -15.40 2.50 11.30 1352 178.2 23.71 35.73 

7 185.0 20.66 -10.00 0.75 1.62 2.50 16.79 1358 182.9 24.64 31.89 

8 219.1 20.12 -18.50 0.75 -6.60 2.50 17.89 1334 216.3 25.55 90.10 

9 218.9 20.39 -18.50 0.75 -6.57 0.60 14.64 1337 215.0 25.89 50.30 

10 232.9 20.10 -18.50 0.75 -6.61 1.55 26.31 1333 233.0 26.32 85.20 

11 208.4 20.12 -18.50 0.75 -6.58 1.55 7.49 1336 203.8 26.55 75.20 

12 100.2 20.06 -18.50 0.75 -6.45 1.55 25.78 1351 99.7 25.22 80.12 

13 172.9 20.41 -18.50 0.75 -7.06 0.60 1.20 1350 163.9 26.07 15.32 

14 190.5 20.34 -18.50 0.75 -7.10 0.60 28.44 1345 189.6 24.82 10.16 

15 195.6 20.23 -18.50 0.75 -7.11 2.50 35.93 1354 193.2 24.32 21.35 

16 177.4 20.21 -18.50 0.75 -7.08 2.50 2.27 1352 170.1 25.40 24.87 

17 177.2 20.25 -18.50 0.75 -7.08 1.55 16.84 1350 173.1 25.79 19.55 

18 177.1 20.17 -18.50 0.75 -7.10 1.55 16.99 1346 173.1 25.86 19.08 
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Index pair pdiesel png SOIdiesel PWdiesel SOIng PWng ωeng pexh Tair Tcool 

19 177.3 20.24 -18.50 0.75 -7.09 1.55 16.90 1345 172.9 25.91 21.84 

20 177.1 20.25 -18.50 0.75 -7.09 1.55 16.95 1346 172.9 25.90 22.11 

21 177.0 20.25 -18.50 0.75 -7.09 1.55 16.90 1346 172.9 25.96 19.83 

22 176.9 20.18 -18.50 0.75 -7.10 1.55 17.00 1345 173.0 25.94 22.00 

23 177.2 20.17 -18.50 0.75 -7.10 1.55 16.80 1345 173.0 25.93 26.61 

24 177.1 20.23 -18.50 0.75 -7.10 1.55 16.78 1344 173.0 25.87 25.27 

25 177.1 20.23 -18.50 0.75 -7.10 1.55 16.66 1345 173.0 25.72 24.28 

26 112.6 19.71 -18.50 0.75 -5.73 2.50 16.88 1385 108.9 24.80 66.61 

27 113.2 19.73 -18.50 0.75 -4.12 2.50 18.17 1365 108.7 24.76 68.77 

28 181.3 20.66 -18.50 0.75 -6.63 2.30 25.50 1363 176.0 24.68 67.52 

29 176.2 20.58 -10.00 0.75 1.94 0.75 15.57 1359 172.0 24.98 73.25 

30 182.5 20.37 -27.00 0.75 -15.13 1.55 29.75 1350 181.9 24.41 50.32 

31 175.8 20.41 -18.50 0.75 -12.32 1.05 15.39 1350 171.8 25.42 74.92 

32 175.9 20.48 -18.50 0.75 -0.06 0.80 15.89 1358 171.9 25.69 84.69 

33 176.0 20.40 -18.50 0.65 -0.98 1.05 16.07 1350 172.0 25.40 90.15 

34 173.0 20.31 -18.50 0.75 -0.15 1.55 0.39 1352 161.1 25.26 81.62 

35 181.4 20.31 -18.50 0.75 -12.31 1.55 25.70 1350 179.7 24.77 85.23 

36 225.8 20.32 -18.50 0.75 -12.33 1.55 23.03 1345 223.2 25.35 55.89 

37 176.5 20.29 -27.00 0.75 -8.65 1.55 15.30 1352 171.9 25.50 78.55 

38 176.2 20.26 -10.00 0.75 5.92 1.55 15.90 1351 172.0 25.29 84.60 

39 177.1 20.26 -10.00 0.75 -3.81 1.55 17.71 1351 172.9 25.77 75.98 

40 176.9 20.29 -10.00 1.00 3.89 1.55 17.49 1351 172.8 26.12 87.36 

41 177.1 20.24 -27.00 1.00 -13.10 1.55 17.39 1353 172.9 26.47 78.69 

42 181.2 20.23 -18.50 0.75 -5.31 1.55 30.00 1503 181.0 25.48 49.36 

43 169.9 20.26 -18.50 0.75 -5.29 1.55 0.42 1504 159.4 24.85 66.11 

44 187.7 17.99 -18.50 0.75 -6.63 1.55 0.42 1351 179.8 24.97 87.39 

45 182.1 17.97 -18.50 0.75 -7.32 1.55 17.40 1204 177.9 27.36 27.24 

46 175.8 17.87 -18.50 0.75 -5.64 1.55 17.12 1479 172.0 27.50 27.85 
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Index pair pdiesel png SOIdiesel PWdiesel SOIng PWng ωeng pexh Tair Tcool 

47 175.0 23.09 -18.50 0.75 -5.61 1.55 16.85 1482 171.9 27.62 32.99 

48 175.5 23.15 -18.50 0.75 -8.08 1.55 16.22 1194 168.9 27.30 42.84 

49 174.7 23.08 -18.50 0.50 -8.72 1.55 12.53 1360 169.9 27.19 29.21 

50 174.7 23.02 -18.50 1.00 -4.63 1.55 12.48 1360 170.0 27.61 30.25 

51 174.7 23.11 -18.50 0.75 -12.38 1.55 12.74 1360 170.1 28.35 31.46 

52 174.8 23.12 -18.50 0.75 -0.15 1.55 12.85 1361 169.9 28.58 33.74 

53 174.8 23.16 -27.00 0.75 -15.15 1.55 12.78 1361 169.9 28.63 34.38 

54 174.6 23.14 -10.00 0.75 1.85 1.55 12.98 1361 170.0 28.74 44.93 

55 107.5 23.11 -18.50 0.75 -6.59 1.55 16.86 1370 103.9 28.57 46.68 

56 224.9 23.15 -18.50 0.75 -6.69 1.55 20.78 1358 222.2 28.54 34.45 

57 173.5 23.02 -18.50 0.75 -6.70 2.20 20.30 1357 170.8 27.85 68.03 

58 169.8 23.06 -18.50 0.75 -6.70 1.55 0.34 1357 159.9 28.39 36.10 

59 180.6 23.05 -18.50 0.75 -6.69 1.55 30.31 1358 180.3 27.98 40.81 

60 175.1 17.79 -18.50 0.50 -9.03 1.55 16.73 1350 171.8 27.87 78.05 

61 175.0 17.81 -18.50 1.00 -4.96 1.55 16.88 1352 171.9 28.02 53.76 

62 175.0 17.82 -18.50 0.75 -12.67 1.55 16.54 1352 171.9 27.78 45.06 

63 175.0 17.73 -18.50 0.75 -0.50 1.55 16.79 1353 171.9 27.44 59.90 

64 175.0 17.74 -27.00 0.75 -15.50 1.55 16.19 1352 171.6 27.42 52.88 

65 175.5 17.76 -10.00 0.75 1.54 1.55 17.24 1355 172.4 27.35 65.55 

66 105.4 17.80 -18.50 0.75 -6.89 1.55 12.11 1364 102.8 26.88 71.73 

67 218.2 17.75 -18.50 0.75 -7.15 1.55 14.21 1334 214.5 27.75 45.65 

68 177.5 17.91 -18.50 0.75 -7.23 0.60 14.65 1324 173.9 28.18 31.84 

69 178.9 17.66 -18.50 0.75 -6.91 2.50 10.62 1362 175.0 28.15 25.26 

70 172.6 17.79 -18.50 0.75 -6.97 1.55 30.48 1355 173.9 27.07 34.66 

71 174.2 20.51 -18.50 0.51 -9.66 1.55 15.42 1204 170.8 27.10 55.50 

72 176.8 20.43 -18.50 1.00 -6.09 1.55 15.11 1207 174.6 26.56 99.85 

73 175.5 20.95 -18.50 0.75 -13.24 1.55 13.37 1207 171.8 26.64 85.69 

74 175.5 20.94 -18.50 0.75 -2.39 1.55 13.23 1206 171.9 26.36 55.44 
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Index pair pdiesel png SOIdiesel PWdiesel SOIng PWng ωeng pexh Tair Tcool 

75 174.3 20.87 -18.50 0.75 1.52 1.55 19.44 1502 171.9 26.55 23.35 

76 174.3 20.84 -18.50 0.75 -11.98 1.55 19.38 1496 172.0 26.80 30.29 

77 172.4 20.91 -18.50 0.50 -7.93 1.55 16.72 1501 169.2 26.99 46.02 

78 172.2 20.86 -18.50 1.00 -3.44 1.55 17.20 1504 169.6 26.92 45.51 

79 171.9 20.81 -27.00 0.75 -14.19 1.55 17.71 1496 169.1 26.87 43.93 

80 174.1 20.99 -27.00 0.75 -16.71 1.55 12.81 1200 173.7 26.96 49.44 

81 172.9 20.92 -10.00 0.75 0.24 1.55 13.40 1199 171.4 27.05 37.99 

82 171.5 20.81 -10.00 0.75 2.83 1.55 19.10 1499 169.4 26.98 41.94 

83 106.3 20.71 -18.50 0.75 -8.10 1.55 21.54 1207 103.0 23.66 23.93 

84 104.5 20.66 -18.50 0.75 -5.54 1.55 25.74 1497 101.2 22.76 19.42 

85 226.1 20.60 -18.50 0.75 -5.69 1.55 26.42 1485 225.2 22.57 21.36 

86 175.1 20.79 -18.50 0.75 -8.03 0.60 11.79 1213 169.6 24.11 19.71 

87 174.0 20.77 -18.50 0.75 -5.48 0.60 15.80 1508 169.6 24.47 9.92 

88 176.2 20.52 -18.50 0.75 -5.45 2.50 19.23 1512 174.3 24.69 25.42 

89 175.1 20.67 -18.50 0.75 -8.18 2.50 10.88 1188 169.2 25.20 26.73 

90 175.9 20.32 -18.50 0.50 -14.21 1.55 14.54 1359 170.6 25.66 32.49 

91 176.2 20.32 -18.50 0.50 -1.99 1.55 14.83 1358 171.2 25.84 26.48 

92 177.1 20.22 -18.50 1.00 2.09 1.55 15.50 1359 172.4 25.90 38.54 

93 176.2 20.25 -18.50 1.00 -10.13 1.55 15.22 1359 171.3 25.96 23.74 

94 174.6 20.44 -27.00 0.50 -17.08 1.55 13.23 1348 169.3 25.39 38.51 

95 176.2 20.44 -10.00 0.50 -0.08 1.55 14.77 1348 171.1 25.90 85.96 

96 106.9 20.55 -18.50 0.50 -8.45 1.55 16.18 1360 102.9 26.19 64.74 

97 107.0 20.42 -18.50 1.00 -4.35 1.55 16.25 1362 102.9 25.68 92.63 

98 222.1 20.42 -18.50 1.00 -4.51 1.55 18.36 1347 217.7 24.92 91.89 

99 219.6 20.47 -18.50 0.50 -8.55 1.55 15.99 1347 214.7 25.36 84.56 

100 177.0 20.55 -18.50 0.50 -8.49 0.60 17.47 1354 172.9 26.14 29.07 

101 176.9 20.57 -18.50 1.00 -4.41 0.60 17.08 1356 172.8 26.25 28.81 

102 180.2 20.22 -18.50 1.00 -4.50 2.49 21.81 1348 177.6 26.66 33.47 
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Index pair pdiesel png SOIdiesel PWdiesel SOIng PWng ωeng pexh Tair Tcool 

103 177.9 20.34 -18.50 0.50 -8.53 2.49 14.13 1350 172.9 25.70 45.13 

104 170.6 20.40 -18.50 1.00 -4.49 1.55 0.34 1350 159.0 25.83 76.54 

105 179.2 20.38 -18.50 1.00 -4.49 1.55 29.28 1349 178.0 25.03 85.78 

106 179.0 20.32 -18.50 0.50 -8.54 1.55 29.24 1348 178.0 24.85 76.28 

107 177.2 20.31 -27.00 0.75 -20.66 1.55 13.49 1351 171.9 24.44 75.46 

108 177.0 20.13 -18.50 0.75 0.02 2.50 11.48 1353 172.0 26.54 24.06 

109 178.2 20.22 -18.50 0.75 -12.18 2.50 13.22 1347 173.7 26.77 34.65 

110 107.3 20.25 -18.50 0.75 -12.20 1.55 16.87 1364 102.9 25.62 64.11 

111 107.5 20.32 -18.50 0.75 0.08 1.55 16.87 1365 102.9 25.52 86.26 

112 225.6 20.24 -18.50 0.75 -0.14 1.55 21.46 1349 221.9 25.81 88.11 

113 147.5 20.27 -18.50 0.75 -12.22 1.55 0.49 1361 124.4 25.83 83.76 

114 176.6 20.21 -18.50 0.75 -0.03 1.55 26.78 1357 174.8 25.14 75.90 

115 106.6 20.76 -27.00 0.75 -15.05 1.55 14.70 1351 102.2 26.37 77.25 

116 106.1 20.75 -10.00 0.75 1.97 1.55 14.17 1353 101.6 25.26 96.20 

117 221.2 20.76 -10.00 0.75 1.92 1.55 15.33 1347 216.2 24.49 92.52 

118 221.0 20.71 -27.00 0.75 -15.08 1.55 14.74 1346 216.0 25.23 87.26 

119 176.5 20.69 -10.00 0.75 1.98 1.55 26.78 1353 174.5 25.85 90.54 

120 181.2 20.71 -10.00 0.75 1.98 1.55 0.38 1353 172.0 25.80 78.52 
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Table F.2: Box Behnken training output data 

Index CO CO2 NOX O2 CH4 Efficiency pcyl dp/dCA PM EQRO Power 

1 106.9 14.6 51.9 14.0 11.2 0.4 96.4 4.1 0.8 0.5 31.1 

2 23.3 15.0 35.5 13.8 8.6 0.4 73.2 2.1 0.2 0.5 30.4 

3 41.3 13.1 36.7 13.6 9.6 0.4 95.2 2.7 0.3 0.5 28.0 

4 18.7 12.4 44.1 18.4 8.3 0.4 72.8 2.1 0.1 0.5 26.2 

5 10.4 5.1 89.1 43.0 6.1 0.5 115.8 4.3 0.1 0.1 11.4 

6 403.0 21.8 95.9 18.9 13.2 0.5 123.2 4.3 6.1 0.6 45.5 

7 64.0 23.6 28.0 14.4 4.9 0.4 95.8 3.0 0.5 0.6 40.3 

8 76.5 22.7 33.5 20.4 9.8 0.4 113.1 3.4 0.9 0.6 44.2 

9 11.6 4.3 34.4 48.8 8.1 0.5 112.0 3.4 0.1 0.1 8.9 

10 30.3 14.9 29.7 28.8 17.4 0.5 117.4 3.6 0.3 0.3 32.0 

11 14.3 14.9 78.7 36.9 8.5 0.5 109.2 3.3 0.1 0.3 32.4 

12 67.0 14.7 15.6 10.1 14.9 0.4 70.8 2.1 0.3 0.6 28.8 

13 12.4 4.8 44.9 54.0 9.6 0.5 94.8 2.8 0.1 0.1 10.2 

14 14.0 4.2 27.2 36.8 11.0 0.4 100.8 3.0 0.1 0.1 8.6 

15 919.2 21.5 3.6 8.0 108.6 0.4 77.2 3.1 4.6 0.7 39.8 

16 68.2 23.2 99.1 22.0 5.4 0.4 80.3 2.9 0.4 0.6 43.9 

17 28.4 14.9 45.9 26.1 12.9 0.5 97.3 2.9 0.3 0.4 31.8 

18 26.4 14.6 46.4 26.5 12.9 0.5 97.4 2.9 0.3 0.4 31.5 

19 26.3 14.7 46.3 26.3 13.0 0.5 97.4 2.9 0.3 0.4 31.5 

20 26.5 14.8 46.7 26.4 13.0 0.5 97.4 2.9 0.3 0.4 31.5 

21 27.2 14.7 46.4 26.3 12.8 0.5 97.3 2.9 0.3 0.4 31.6 

22 26.6 14.6 46.4 26.4 12.8 0.5 97.3 2.9 0.3 0.4 31.5 

23 26.0 14.6 46.9 26.7 12.8 0.5 97.3 2.9 0.3 0.4 31.1 

24 25.6 14.6 47.2 26.6 12.8 0.5 97.4 2.9 0.2 0.4 31.3 

25 26.5 14.6 47.5 26.6 12.6 0.5 97.4 2.9 0.3 0.4 31.3 

26 260.0 21.8 21.1 5.3 3.1 0.4 69.8 2.2 2.2 0.8 38.3 

27 275.9 21.6 17.9 4.8 1.8 0.4 72.2 2.2 0.8 0.8 37.2 
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Index CO CO2 NOX O2 CH4 Efficiency pcyl dp/dCA PM EQRO Power 

28 244.4 21.5 14.7 11.9 20.9 0.4 73.9 2.9 1.9 0.6 40.9 

29 31.6 4.7 18.3 41.1 30.6 0.4 92.0 2.9 0.2 0.1 9.4 

30 68.8 14.4 40.8 20.6 19.7 0.5 126.1 4.7 0.8 0.4 32.5 

31 22.0 10.9 81.7 32.2 12.6 0.5 114.9 3.5 0.1 0.3 24.8 

32 28.5 5.7 27.4 39.5 24.2 0.4 95.5 2.9 0.0 0.1 12.5 

33 38.2 9.6 35.5 33.5 25.1 0.4 95.9 2.9 0.0 0.3 21.5 

34 17.0 14.6 85.4 49.2 8.9 0.4 95.8 2.9 0.1 0.3 29.6 

35 56.9 14.9 41.4 22.1 20.5 0.5 115.3 2.9 0.9 0.4 32.5 

36 29.5 14.5 55.1 30.8 17.0 0.5 128.6 3.9 0.5 0.3 32.8 

37 21.7 14.7 58.8 26.9 10.6 0.5 102.6 4.1 0.1 0.4 31.9 

38 94.1 13.4 26.9 28.4 45.8 0.4 92.8 2.9 0.2 0.4 25.5 

39 58.8 14.3 39.0 26.8 28.2 0.4 93.3 2.9 0.2 0.4 30.1 

40 65.3 13.9 27.7 27.2 29.5 0.4 93.2 2.9 0.4 0.4 27.0 

41 28.0 13.9 72.7 24.7 11.4 0.5 119.0 4.0 0.4 0.4 32.6 

42 75.9 15.3 13.7 20.9 42.8 0.4 92.6 2.8 0.5 0.4 31.7 

43 14.5 15.3 82.9 44.1 8.8 0.4 90.0 2.7 0.1 0.3 33.1 

44 12.6 12.6 81.0 43.8 7.9 0.5 99.9 3.0 0.0 0.3 26.8 

45 15.8 11.7 50.3 29.5 10.3 0.5 106.5 3.2 0.1 0.3 25.5 

46 32.0 13.7 32.8 29.1 17.5 0.4 90.9 2.7 0.1 0.4 29.3 

47 28.4 18.8 41.7 22.2 15.0 0.4 92.3 2.7 0.1 0.5 38.4 

48 19.6 15.6 75.6 23.8 11.1 0.5 123.1 4.7 0.1 0.4 33.4 

49 22.7 16.7 77.0 24.8 11.8 0.5 108.0 3.1 0.0 0.4 36.1 

50 15.3 18.0 64.5 23.7 9.9 0.4 96.7 2.9 0.1 0.5 36.6 

51 51.0 17.8 102.5 23.6 12.6 0.4 125.5 5.2 0.6 0.5 38.5 

52 25.9 17.3 52.2 24.3 11.1 0.4 96.4 2.8 0.0 0.5 34.2 

53 55.1 17.6 138.3 23.7 12.6 0.5 137.0 6.3 0.3 0.5 38.3 

54 40.4 17.2 48.2 24.4 13.6 0.4 92.4 2.8 0.1 0.5 32.9 

55 69.9 17.4 33.9 10.9 8.8 0.4 81.6 2.1 0.5 0.6 33.8 
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Index CO CO2 NOX O2 CH4 Efficiency pcyl dp/dCA PM EQRO Power 

56 30.6 17.7 44.3 27.6 15.9 0.5 114.5 3.4 0.4 0.4 37.9 

57 442.9 24.0 22.0 9.3 12.1 0.4 97.0 2.9 4.1 0.8 44.6 

58 14.1 18.4 141.4 38.1 7.1 0.4 102.4 2.9 0.1 0.4 38.0 

59 122.4 17.6 14.8 15.1 26.3 0.5 98.2 2.9 1.2 0.5 36.3 

60 43.5 11.8 44.3 29.8 23.1 0.5 94.4 2.9 0.0 0.3 26.4 

61 20.6 12.9 36.6 28.4 11.2 0.5 95.6 2.9 0.1 0.3 27.4 

62 25.5 12.5 62.4 29.0 12.0 0.5 109.2 2.9 0.2 0.3 28.2 

63 44.2 12.4 30.8 29.3 22.8 0.4 95.2 2.9 0.0 0.3 25.3 

64 15.1 12.1 85.6 29.4 10.1 0.5 118.7 4.1 0.1 0.3 28.0 

65 68.8 12.1 26.7 29.7 37.0 0.4 92.4 2.9 0.2 0.3 24.2 

66 19.4 12.7 43.3 18.9 8.2 0.4 72.2 2.1 0.1 0.4 26.5 

67 18.4 12.2 45.2 38.0 10.5 0.5 111.7 3.5 0.1 0.3 26.6 

68 10.1 3.0 24.7 43.0 7.7 0.5 97.4 2.9 0.1 0.1 5.9 

69 33.7 19.9 50.0 22.6 8.0 0.4 97.4 2.9 0.3 0.5 39.7 

70 45.8 12.4 16.4 21.5 23.6 0.5 94.3 2.8 0.3 0.4 26.7 

71 23.3 13.2 75.5 26.7 10.5 0.5 119.2 3.7 0.1 0.3 29.1 

72 16.9 14.0 61.9 25.9 9.2 0.5 106.7 3.4 0.2 0.4 29.9 

73 28.5 14.0 127.3 27.1 9.8 0.5 137.9 6.1 0.2 0.4 31.6 

74 13.9 14.1 57.7 27.0 8.6 0.4 104.1 3.1 0.0 0.4 29.9 

75 108.7 16.1 23.8 25.2 45.6 0.4 91.0 2.8 0.1 0.4 31.0 

76 72.2 17.2 46.4 23.5 18.9 0.4 103.5 2.8 1.1 0.5 37.2 

77 50.9 15.9 41.2 25.8 22.4 0.4 89.9 2.7 0.1 0.4 34.4 

78 31.4 17.2 33.9 24.5 14.2 0.4 90.5 2.7 0.3 0.4 34.9 

79 67.9 16.9 63.5 24.1 14.4 0.5 111.9 4.0 0.8 0.4 37.0 

80 16.3 13.7 199.9 26.4 9.3 0.5 152.1 7.7 0.1 0.4 31.3 

81 23.3 13.8 51.8 26.7 10.8 0.4 99.3 3.1 0.1 0.4 28.5 

82 159.8 15.6 20.7 25.2 64.8 0.4 87.4 2.7 0.5 0.4 29.1 

83 42.9 13.4 34.3 12.9 9.8 0.4 94.3 2.8 0.3 0.5 28.4 



193 

 

Index CO CO2 NOX O2 CH4 Efficiency pcyl dp/dCA PM EQRO Power 

84 78.9 15.9 12.3 11.1 21.3 0.4 68.3 2.0 0.2 0.6 31.0 

85 41.9 16.6 23.1 27.9 22.4 0.4 108.6 3.3 0.3 0.4 35.3 

86 10.0 4.0 45.8 41.8 6.7 0.5 106.7 3.1 0.0 0.1 8.4 

87 16.1 4.4 26.9 42.0 10.5 0.4 91.1 2.7 0.2 0.1 9.1 

88 145.0 26.0 19.6 11.5 10.2 0.4 92.5 2.8 0.7 0.8 46.2 

89 138.6 20.4 67.8 18.2 8.0 0.4 115.8 3.1 1.0 0.6 40.6 

90 36.1 14.4 93.8 27.1 13.9 0.5 121.2 4.2 0.1 0.4 32.3 

91 98.1 13.8 41.0 28.2 66.4 0.4 94.7 2.9 0.0 0.4 28.1 

92 44.0 15.1 36.2 26.5 18.0 0.4 96.6 2.9 0.0 0.4 29.4 

93 37.9 15.6 63.5 25.6 11.5 0.5 107.3 3.0 0.8 0.4 33.5 

94 25.0 14.4 150.3 27.5 11.3 0.5 134.9 5.9 0.1 0.4 32.8 

95 77.4 14.2 40.3 27.3 35.2 0.4 93.3 2.9 0.0 0.4 28.6 

96 41.5 13.8 42.2 15.5 13.4 0.4 80.5 2.9 0.0 0.5 29.3 

97 21.9 15.1 33.3 14.3 8.9 0.4 72.6 2.1 0.1 0.6 30.1 

98 23.0 15.6 41.4 31.5 12.5 0.4 113.2 3.5 0.2 0.4 32.5 

99 29.4 14.6 56.2 33.6 14.6 0.5 112.2 3.4 0.0 0.3 32.0 

100 22.1 4.0 31.9 40.2 16.6 0.5 95.5 2.9 0.0 0.1 9.1 

101 12.9 4.4 30.4 40.0 7.9 0.5 96.4 2.8 0.0 0.1 9.0 

102 206.1 23.2 17.5 11.2 11.2 0.4 98.2 2.9 1.5 0.7 43.2 

103 179.1 22.0 39.7 16.4 8.7 0.4 99.6 2.9 0.7 0.6 43.1 

104 12.1 15.7 105.8 44.2 6.5 0.5 95.8 2.9 0.1 0.3 32.1 

105 43.6 15.0 18.4 19.8 20.4 0.4 97.6 2.9 0.3 0.4 31.2 

106 75.6 13.9 21.2 20.8 32.0 0.4 96.6 2.9 0.0 0.4 30.5 

107 18.5 14.7 224.4 27.6 11.6 0.5 149.8 7.1 0.1 0.4 33.7 

108 34.2 23.3 43.8 16.8 5.3 0.4 97.9 2.9 0.1 0.6 42.4 

109 364.5 22.3 51.6 16.7 11.8 0.4 116.9 3.0 3.1 0.6 45.3 

110 72.5 14.9 49.0 14.0 11.7 0.4 95.0 3.6 0.4 0.6 31.5 

111 43.3 14.3 28.3 14.9 12.1 0.4 72.3 2.1 0.0 0.5 27.9 
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Index CO CO2 NOX O2 CH4 Efficiency pcyl dp/dCA PM EQRO Power 

112 47.9 15.0 29.2 30.9 24.7 0.4 113.6 3.5 0.1 0.4 30.5 

113 24.0 15.5 161.4 54.3 7.4 0.5 109.3 4.6 0.3 0.3 33.4 

114 80.3 14.6 17.6 21.0 36.4 0.4 96.0 2.9 0.0 0.4 29.1 

115 83.9 15.3 77.8 14.0 10.2 0.4 107.0 4.6 0.3 0.6 32.2 

116 49.0 14.8 34.7 15.2 10.8 0.4 69.1 2.1 0.1 0.6 27.3 

117 58.8 15.0 37.4 34.2 27.8 0.4 109.1 3.4 0.1 0.3 30.2 

118 15.4 15.0 118.2 34.2 11.3 0.5 141.6 5.6 0.1 0.3 34.5 

119 158.6 14.4 13.7 20.7 75.7 0.4 93.0 2.9 0.4 0.4 26.9 

120 27.2 15.3 80.5 44.0 10.4 0.4 95.5 3.0 0.0 0.3 30.0 

 

F.2 Box Behnken Validation Data 

This section shows the validation data set used to validate the positive PSEP Box Behnken based 

models. Table F.3 shows the validation input data and Table F.4 shows the validation output 

data. 

 

Table F.3: Box Behnken validation input data 

Index pair pdiesel png SOIdiesel PWdiesel SOIng PWng ωeng pexh Tair Tcool 

1 191.7 17.98 -26 0.5 -14.17 1.25 14.13 1300 186.2 21.24 34.84 

2 151.3 17.85 -10.5 0.8 -2.97 1.2 18.30 1366 147.1 21.86 34.44 

3 190.6 17.86 -17.5 0.5 -3.98 1.45 19.20 1392 186.6 21.31 37.16 

4 114.0 17.85 -18.5 0.6 -10.41 2 12.81 1470 109.5 21.52 49.84 

5 181.9 18.11 -26.5 0.6 -9.69 2 0.34 1459 171.0 20.90 49.20 

6 178.1 17.82 -22 0.6 -12.47 1.4 4.03 1200 170.8 21.49 34.68 

7 108.2 17.67 -23 0.7 -6.46 2.35 18.44 1300 104.8 22.02 46.68 

8 112.1 17.62 -26 0.8 -11.01 2.2 17.03 1300 107.6 22.30 45.46 

9 128.7 17.65 -18 0.5 -6.09 1.3 0.42 1397 121.4 20.61 41.43 
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Index pair pdiesel png SOIdiesel PWdiesel SOIng PWng ωeng pexh Tair Tcool 

10 169.5 17.95 -24.5 0.7 -18.52 1.05 10.24 1446 163.6 21.17 36.32 

11 169.3 18.60 -11.5 0.6 0.59 1.2 1.78 1193 162.3 21.14 37.95 

12 134.2 18.37 -17 0.9 -4.43 1.9 21.48 1406 131.1 21.37 49.78 

13 166.9 18.43 -27 0.8 -15.90 1.8 19.16 1436 163.0 20.65 49.46 

14 166.0 18.37 -20 0.9 -4.46 1.7 19.00 1447 162.3 20.64 45.57 

15 108.2 18.51 -25 0.5 -20.35 1.3 14.08 1318 101.3 20.96 37.42 

16 171.5 18.36 -11.5 0.6 1.72 1.9 0.46 1307 156.1 21.15 43.44 

17 109.5 18.55 -23 0.7 -14.40 1.25 24.89 1315 107.5 21.37 36.03 

18 215.8 18.83 -16 0.5 -11.90 2.1 14.28 1395 211.3 20.12 57.57 

19 158.1 19.70 -14 0.6 -9.54 1.75 0.33 1262 151.0 21.19 45.32 

20 157.0 19.78 -18 0.9 -8.29 1.25 11.98 1255 152.0 21.80 37.68 

21 185.6 19.63 -16 0.6 -7.56 2.2 0.32 1291 175.1 21.21 51.95 

22 185.1 19.91 -23.5 0.9 -8.44 1.6 18.10 1297 181.7 21.30 42.60 

23 219.6 19.88 -20 0.8 -3.67 1.4 19.19 1335 216.1 21.56 40.72 

24 224.1 19.91 -23.5 0.6 -16.56 1.6 20.06 1429 221.1 22.15 48.04 

25 207.3 19.90 -19.5 0.7 -9.98 1.2 7.18 1433 201.5 21.86 47.55 

26 230.2 19.85 -21 0.8 -4.63 1.6 28.96 1236 231.0 21.33 39.72 

27 152.5 19.84 -16 0.8 -9.14 1.85 25.27 1417 152.3 22.33 58.94 

28 209.5 20.46 -27 0.6 -19.49 2.1 8.25 1246 204.1 21.40 47.80 

29 121.6 20.56 -16.5 0.6 -9.39 0.75 16.86 1304 117.8 22.30 11.94 

30 212.7 20.33 -21 0.5 -11.71 1.7 12.26 1397 208.2 21.81 64.01 

31 209.8 20.28 -14 0.9 -0.95 1.7 12.23 1441 205.3 22.58 43.76 

32 210.7 20.34 -14 0.9 -0.96 1.7 12.70 1440 206.5 22.65 51.12 

33 209.7 21.03 -19.5 0.7 -7.99 2.05 6.08 1193 201.5 26.60 44.82 

34 134.3 21.25 -12.5 0.8 -3.36 0.6 21.99 1262 131.8 26.88 9.50 

35 120.2 21.03 -21 0.9 -13.40 1.25 2.93 1259 114.5 26.58 32.17 

36 205.1 21.02 -24 0.6 -9.35 1 15.32 1431 201.4 27.08 50.06 

37 161.6 21.51 -14 0.8 -5.39 1.05 11.77 1303 157.1 25.07 36.47 
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Index pair pdiesel png SOIdiesel PWdiesel SOIng PWng ωeng pexh Tair Tcool 

38 191.1 21.41 -23 0.8 -9.72 1.4 13.22 1301 186.6 25.52 40.14 

39 168.3 21.41 -24 0.9 -10.37 2.45 17.61 1418 165.4 26.10 78.75 

 

 
Table F.4: Box Behnken validation output data 

Index CO CO2 NOX O2 CH4 Efficiency pcyl dp/dCA PM EQRO Power 

1 57.77 9.20 74.81 38.24 79.46 0.45 116.94 3.85 0.03 0.24 21.19 

2 48.17 10.20 28.60 29.93 46.86 0.42 82.20 2.58 0.17 0.29 20.89 

3 95.55 10.46 26.15 35.62 193.46 0.42 96.15 3.00 0.02 0.26 22.25 

4 55.84 15.91 44.74 18.33 18.44 0.41 76.11 2.52 0.18 0.54 32.61 

5 20.41 16.75 95.69 44.94 17.81 0.43 95.81 3.92 0.25 0.34 34.93 

6 10.55 9.32 114.16 40.96 13.58 0.49 121.51 4.46 0.03 0.23 21.70 

7 105.00 17.27 25.11 11.39 16.41 0.39 75.31 2.91 0.08 0.63 31.84 

8 209.37 15.88 38.50 13.96 17.62 0.40 89.06 3.68 0.93 0.59 31.74 

9 43.85 9.81 62.65 35.35 50.02 0.45 76.49 2.35 0.02 0.28 21.15 

10 15.76 8.67 117.44 39.91 15.64 0.49 116.40 4.59 0.05 0.21 19.98 

11 23.58 8.64 51.08 40.58 24.99 0.42 98.09 3.46 0.03 0.24 18.31 

12 32.65 15.46 23.17 18.17 21.27 0.38 78.62 2.38 0.29 0.52 30.43 

13 43.31 14.67 64.21 25.80 19.04 0.43 94.51 5.19 0.89 0.42 32.47 

14 25.35 14.46 29.28 26.61 20.29 0.41 86.85 2.69 0.17 0.40 29.47 

15 31.09 9.37 164.76 23.52 17.27 0.49 101.69 6.16 0.03 0.31 21.24 

16 30.47 13.95 72.22 52.32 24.19 0.41 94.08 2.95 0.10 0.27 27.24 

17 23.38 10.19 48.93 19.30 17.44 0.44 97.45 3.37 0.03 0.37 21.93 

18 38.55 16.37 58.89 33.85 23.17 0.45 112.91 3.66 0.26 0.37 35.55 

19 18.72 13.90 134.77 33.55 11.63 0.45 107.52 5.44 0.11 0.37 30.16 

20 13.54 11.22 71.17 30.61 12.10 0.45 101.68 2.96 0.14 0.31 24.46 

21 17.19 17.88 118.09 42.43 11.21 0.44 103.60 3.77 0.12 0.36 36.43 



197 

 

Index CO CO2 NOX O2 CH4 Efficiency pcyl dp/dCA PM EQRO Power 

22 19.77 13.87 54.68 29.15 14.39 0.44 107.32 3.77 0.25 0.36 29.87 

23 22.79 12.68 35.84 36.13 20.62 0.42 112.42 3.54 0.12 0.30 26.83 

24 21.28 13.69 81.31 35.58 20.58 0.48 133.87 7.68 0.21 0.31 31.94 

25 15.47 11.89 73.06 44.18 14.88 0.46 107.38 3.70 0.15 0.27 26.70 

26 24.45 12.95 25.63 30.04 22.46 0.42 122.75 3.94 0.19 0.32 27.62 

27 95.92 16.40 23.00 17.60 27.88 0.41 85.53 2.65 0.95 0.51 33.43 

28 18.10 15.56 287.80 35.44 13.58 0.47 167.15 8.81 0.18 0.37 35.61 

29 17.61 4.24 39.24 33.35 15.46 0.46 84.06 2.87 0.01 0.12 9.05 

30 22.07 14.96 76.81 36.50 15.88 0.46 116.54 5.09 0.14 0.34 33.41 

31 28.61 15.93 41.96 36.07 19.80 0.41 102.37 3.50 0.23 0.36 32.03 

32 29.00 16.01 41.21 35.60 19.93 0.41 102.86 3.38 0.24 0.36 32.13 

33 18.29 16.33 101.64 34.42 11.31 0.42 122.37 4.62 0.17 0.41 34.88 

34 17.27 4.00 21.36 33.03 18.22 0.46 82.51 2.65 0.05 0.10 7.88 

35 11.89 12.04 175.44 26.59 9.36 0.45 113.39 4.46 0.04 0.38 26.16 

36 21.98 10.46 51.16 40.32 20.52 0.44 105.35 3.35 0.02 0.25 23.56 

37 18.14 11.24 57.34 31.94 13.41 0.45 91.78 3.30 0.07 0.30 24.22 

38 14.39 13.64 81.62 32.83 11.56 0.44 116.24 6.08 0.10 0.35 29.91 

39 402.55 23.28 34.58 13.72 13.10 0.37 101.80 3.81 5.85 0.71 44.28 

 

F.3 Negative PSEP Training Data 

This section presents the negative PSEP training data for the multi-region model. Table F.5 

shows the input data and Table F.6 shows the output data. 
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Table F.5: Negative PSEP training input data 

Index pair pdiesel png SOIdiesel PWdiesel SOIng PWng ωeng pexh Tair Tcool 

1 153.6 20.47 -16.50 0.50 -20.38 1.89 11.09 1293 165.9 25.39 30.80 

2 210.3 20.44 -16.50 0.50 -20.38 1.89 19.34 1290 204.6 25.62 58.20 

3 194.5 20.42 -18.50 0.50 -19.28 1.89 6.23 1291 187.9 24.99 44.60 

4 141.1 20.45 -18.50 0.50 -19.27 1.89 14.57 1295 135.7 24.77 84.52 

5 158.3 20.09 -18.50 0.50 -18.50 1.21 20.94 1302 161.8 24.98 74.56 

6 203.7 20.10 -18.50 0.50 -18.50 1.21 11.72 1297 201.4 24.55 86.24 

7 154.2 20.06 -16.50 0.64 -19.30 1.21 12.59 1303 152.2 25.16 89.12 

8 208.4 20.04 -16.50 0.64 -19.30 1.21 17.99 1296 211.3 25.61 90.15 

9 152.3 20.14 -21.50 0.50 -25.71 1.21 12.35 1403 171.3 24.84 12.46 

10 213.1 20.09 -19.50 0.50 -21.18 1.21 20.30 1396 221.2 25.96 15.31 

11 201.4 20.12 -16.50 0.50 -19.01 1.21 11.38 1396 215.5 25.42 16.47 

12 157.7 20.56 -19.50 0.50 -21.83 1.21 10.69 1296 171.9 27.16 26.87 

13 204.4 20.83 -18.50 0.50 -20.06 1.21 14.55 1292 240.9 27.69 41.57 

14 153.0 20.65 -19.50 0.64 -22.30 1.89 10.16 1297 166.8 26.84 48.27 

15 158.6 20.61 -16.50 0.64 -16.97 1.80 16.77 1296 195.6 26.79 79.26 

16 204.5 20.65 -16.50 0.64 -16.97 1.80 8.25 1293 211.2 26.53 75.45 

17 218.9 20.95 -17.00 0.60 -14.57 1.55 12.60 1333 240.9 23.81 15.71 

18 182.6 21.11 -17.00 0.60 -14.57 0.60 15.86 1349 211.4 24.92 15.82 

19 183.9 20.88 -17.00 0.60 -14.57 2.50 16.90 1350 226.9 25.41 25.31 

20 164.2 21.10 -17.00 0.60 -14.57 1.55 0.35 1352 122.6 25.63 16.81 

21 181.1 20.93 -17.00 0.60 -14.57 1.55 21.49 1344 243.9 24.99 15.56 

22 176.2 21.01 -17.00 0.60 -14.57 1.55 16.50 1345 213.3 25.01 21.03 

23 180.5 20.88 -17.00 0.60 -14.57 1.55 13.94 1345 207.4 24.99 28.44 

24 180.8 21.21 -18.00 0.60 -15.57 1.55 14.98 1345 212.2 24.97 16.39 

25 180.7 21.16 -17.00 0.60 -13.76 1.55 15.35 1345 212.4 24.93 25.62 

26 181.3 21.05 -17.00 0.60 -16.19 1.55 14.85 1345 212.3 24.67 17.52 

27 182.6 20.80 -17.00 0.60 -14.57 1.55 13.06 1351 204.4 22.68 16.80 
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Index pair pdiesel png SOIdiesel PWdiesel SOIng PWng ωeng pexh Tair Tcool 

28 182.5 20.81 -17.00 0.60 -14.57 1.55 13.05 1351 204.4 22.77 16.01 

29 182.4 20.82 -17.00 0.60 -14.57 1.55 13.06 1351 204.5 22.98 15.26 

30 182.9 20.80 -17.00 0.60 -14.57 1.55 15.22 1350 214.3 23.29 17.05 

31 183.7 20.74 -17.00 0.60 -14.57 1.55 14.91 1350 214.2 23.46 17.86 

32 181.4 20.88 -17.00 0.60 -14.57 1.55 11.67 1352 197.8 24.95 32.97 

33 183.7 20.90 -17.00 0.60 -14.57 1.55 14.59 1351 210.4 25.13 33.01 

34 183.3 20.85 -17.00 0.60 -14.57 1.55 14.58 1351 210.0 25.20 27.07 

35 182.0 20.82 -17.00 0.60 -14.57 1.55 14.24 1351 208.9 25.22 37.23 

36 184.5 20.84 -17.00 0.60 -14.57 1.55 14.05 1352 211.0 25.24 31.12 

37 160.6 21.18 -21.00 0.50 -21.00 1.89 19.29 1404 226.1 24.94 22.56 

38 206.5 21.11 -21.00 0.50 -21.00 1.89 10.22 1400 226.3 24.79 18.00 

39 151.2 21.12 -16.50 0.50 -16.50 1.89 10.11 1408 166.9 25.37 20.28 

40 188.2 21.06 -16.50 0.50 -16.50 1.89 16.50 1402 243.9 26.36 21.81 

41 155.2 21.09 -20.50 0.64 -18.48 1.21 16.68 1405 210.1 26.20 17.56 

42 195.2 21.13 -20.50 0.64 -18.48 1.21 9.55 1400 211.4 26.52 15.43 

43 152.2 21.12 -16.50 0.64 -14.48 1.21 10.96 1404 171.8 26.52 21.23 

44 188.2 21.08 -16.50 0.64 -14.48 1.21 15.23 1398 236.0 26.61 16.10 

45 183.0 19.89 -19.00 0.60 -16.58 1.55 12.79 1348 213.3 23.89 41.75 

46 182.7 21.93 -19.00 0.60 -16.58 1.55 12.25 1348 213.4 24.21 47.61 

47 184.8 20.92 -19.00 0.60 -16.84 1.55 12.33 1198 213.3 25.22 70.90 

48 178.0 20.79 -19.00 0.60 -16.29 1.55 12.13 1498 213.1 25.90 31.18 

49 182.7 20.77 -19.00 0.80 -14.94 1.55 11.98 1353 213.4 26.02 20.52 

50 183.2 20.84 -18.00 0.60 -23.68 1.55 11.85 1351 213.3 25.57 21.74 

51 181.7 20.77 -19.00 0.60 -6.02 1.55 12.02 1353 213.3 25.21 26.59 

52 182.9 20.75 -23.00 0.60 -20.57 1.55 11.83 1353 213.3 25.42 31.17 

53 184.1 20.60 -10.00 0.60 -7.57 1.55 16.60 1342 214.2 22.10 18.37 

54 106.7 20.62 -19.00 0.60 -16.57 1.55 15.60 1350 125.5 22.82 12.64 
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Table F.6: Negative PSEP training output data 

Index CO CO2 NOX O2 CH4 Efficiency pcyl dp/dCA PM EQRO Power 

1 49.23 16.56 273.6 21.00 22.79 0.44 151.3 11.38 9.02 0.52 36.99 

2 92.83 16.83 180.7 26.06 40.09 0.48 162.6 8.44 10.01 0.43 38.91 

3 40.33 16.57 319.3 31.41 21.39 0.48 164.7 9.69 0.35 0.42 38.94 

4 61.54 16.70 229.8 17.22 23.12 0.44 140.6 8.28 0.27 0.55 36.39 

5 112.14 10.43 119.9 26.08 74.23 0.48 124.0 5.13 0.03 0.32 25.31 

6 71.84 10.87 198.6 37.77 32.17 0.51 150.0 7.73 0.07 0.26 26.98 

7 95.76 10.85 196.3 28.82 47.71 0.48 128.5 6.32 0.05 0.33 26.32 

8 125.68 10.90 153.2 34.66 69.68 0.48 143.7 5.39 0.08 0.29 27.09 

9 190.76 10.43 138.7 30.06 133.40 0.49 119.2 4.34 0.06 0.32 26.39 

10 131.86 11.44 140.6 34.52 81.33 0.49 142.8 6.22 0.15 0.29 29.00 

11 144.58 11.36 161.1 37.89 97.80 0.47 129.8 4.48 0.15 0.29 28.14 

12 103.48 10.84 234.5 30.25 42.87 0.50 137.4 7.06 0.08 0.31 26.46 

13 81.73 11.45 218.6 34.84 31.64 0.49 157.3 8.43 0.09 0.30 28.41 

14 34.54 17.11 332.7 20.38 21.01 0.45 164.8 13.82 0.36 0.53 38.50 

15 86.85 16.88 127.5 18.54 25.77 0.46 139.4 9.06 0.49 0.53 38.18 

16 41.24 15.96 228.8 32.91 20.84 0.47 155.9 8.34 0.37 0.40 38.02 

17 41.73 14.51 131.6 35.95 27.39 0.50 142.4 5.39 0.03 0.34 35.88 

18 64.84 4.40 60.6 41.19 51.35 0.48 111.4 3.44 0.02 0.12 10.71 

19 355.33 20.89 61.1 16.99 26.37 0.41 128.5 5.87 2.76 0.63 45.14 

20 29.33 15.12 222.8 39.91 14.42 0.47 128.5 6.61 0.14 0.36 35.67 

21 61.68 14.49 73.2 23.47 31.16 0.47 127.9 5.19 0.04 0.43 34.69 

22 48.47 14.69 99.4 25.12 24.67 0.48 128.6 5.71 0.03 0.42 35.06 

23 42.85 14.60 116.5 27.47 22.73 0.48 130.1 5.67 0.03 0.40 34.82 

24 42.56 14.91 125.0 26.46 23.19 0.47 135.6 6.38 0.03 0.42 35.45 

25 43.47 14.81 100.2 26.46 22.76 0.46 127.7 4.85 0.04 0.43 34.92 

26 54.29 14.58 138.5 27.00 26.95 0.48 136.5 6.85 0.03 0.41 34.83 

27 43.65 14.59 130.1 28.64 23.05 0.47 132.1 5.89 0.03 0.40 35.01 
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Index CO CO2 NOX O2 CH4 Efficiency pcyl dp/dCA PM EQRO Power 

28 44.39 14.61 130.3 28.68 23.31 0.48 132.2 5.82 0.03 0.40 35.28 

29 44.51 14.66 129.9 28.63 23.86 0.48 132.2 5.79 0.03 0.40 35.41 

30 47.78 14.52 114.4 27.49 26.16 0.49 131.4 5.61 0.03 0.40 35.11 

31 47.09 14.36 115.3 27.75 26.14 0.48 131.4 5.56 0.03 0.40 35.05 

32 40.35 14.88 131.4 28.83 22.70 0.47 130.0 5.05 0.03 0.40 34.73 

33 43.05 14.48 111.7 28.02 25.00 0.47 130.1 5.31 0.04 0.41 34.69 

34 42.68 14.42 111.2 28.02 24.23 0.47 129.8 5.24 0.03 0.40 34.42 

35 45.10 14.79 112.9 27.34 25.52 0.47 129.1 5.15 0.03 0.41 34.54 

36 43.25 14.84 115.2 27.74 24.88 0.46 129.9 5.11 0.03 0.41 34.52 

37 97.38 17.49 132.4 18.22 32.27 0.45 143.4 8.99 0.09 0.54 39.82 

38 39.08 16.87 256.6 31.77 23.60 0.49 160.1 9.50 0.21 0.41 41.07 

39 95.35 17.47 141.7 21.00 22.45 0.46 122.8 7.11 0.11 0.53 39.82 

40 86.50 17.04 103.5 24.34 34.61 0.46 130.6 5.86 0.12 0.47 40.07 

41 40.03 12.45 138.5 24.82 25.67 0.48 128.3 7.82 0.02 0.37 28.84 

42 32.02 12.48 210.6 36.41 20.85 0.49 143.0 8.10 0.03 0.31 30.37 

43 44.65 12.15 124.8 28.38 24.72 0.48 113.8 5.67 0.02 0.36 28.61 

44 54.49 12.25 105.5 31.83 32.92 0.47 123.1 5.17 0.04 0.33 29.29 

45 32.24 12.94 157.0 30.86 20.56 0.48 134.5 6.38 0.06 0.36 32.24 

46 32.62 14.91 173.4 28.38 20.34 0.47 141.7 7.19 0.05 0.41 35.28 

47 18.64 12.36 216.0 30.60 16.23 0.48 156.8 8.68 0.04 0.35 29.95 

48 43.86 15.57 120.7 29.30 24.77 0.48 121.2 4.53 0.09 0.40 36.19 

49 29.67 14.59 135.5 29.39 18.15 0.47 131.0 5.83 0.28 0.39 34.05 

50 54.80 14.15 303.2 29.75 24.36 0.47 156.9 9.55 0.03 0.38 33.08 

51 21.04 14.21 62.6 29.59 17.97 0.44 98.3 2.97 0.02 0.39 31.62 

52 21.97 14.23 229.4 29.52 20.60 0.48 150.0 8.18 0.04 0.38 33.76 

53 73.99 13.54 58.0 28.61 49.83 0.45 96.6 2.99 0.14 0.37 30.96 

54 51.15 13.94 101.6 15.40 20.07 0.44 111.3 6.90 0.07 0.53 30.23 
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F.4 Negative PSEP Validation Data 

This section presents the validation data used for the negative PSEP multi-region and combined 

region models. Table F.7 shows the input data and Table F.8 shows the output data. 

Table F.7: Negative PSEP validation input data 

Index pair pdiesel png SOIdiesel PWdiesel SOIng PWng ωeng pexh Tair Tcool 

1 121.6 19.36 -12.50 0.60 -13.93 1.10 20.19 1196 119.8 23.38 41.43 

2 162.4 19.56 -16.50 0.60 -14.33 0.75 13.10 1200 158.9 23.47 36.32 

3 211.5 19.38 -22.50 0.60 -19.65 1.70 4.61 1185 206.1 25.23 37.95 

4 209.4 19.42 -13.50 0.60 -15.73 2.05 0.38 1252 202.8 26.06 49.78 

5 211.4 19.62 -14.00 0.60 -13.99 1.45 7.22 1249 206.4 25.88 49.46 

6 197.5 19.58 -16.00 0.60 -15.24 2.05 23.57 1248 196.6 26.45 45.57 

7 201.8 19.63 -11.00 0.60 -10.24 2.20 9.13 1250 196.7 26.93 37.42 

8 123.4 19.57 -14.50 0.60 -12.98 2.20 26.44 1256 122.6 25.86 43.44 

9 190.4 19.59 -15.50 0.60 -14.52 1.42 14.63 1232 187.3 25.27 36.03 

 

Table F.8: Negative PSEP validation output data 

Index CO CO2 NOX O2 CH4 Efficiency pcyl dp/dCA PM EQRO Power 

1 113.81 8.45 79.39 24.56 72.04 0.44 98.2 3.33 0.01 0.29 18.39 

2 47.49 3.98 62.47 40.65 33.20 0.46 112.4 4.36 0.02 0.10 8.41 

3 11.84 11.47 313.33 42.66 7.08 0.48 168.2 11.66 0.07 0.27 26.97 

4 49.99 15.11 230.60 40.82 13.16 0.45 110.6 6.22 0.31 0.36 34.98 

5 48.63 11.40 137.62 42.47 14.62 0.46 137.1 6.89 0.05 0.27 26.95 

6 69.05 15.13 69.07 25.08 28.73 0.47 135.5 6.75 0.32 0.39 33.91 

7 50.97 16.63 89.02 31.82 21.68 0.44 117.6 7.72 0.23 0.40 35.36 

8 439.70 16.41 25.33 10.91 32.73 0.41 96.8 3.78 0.32 0.61 32.69 

9 55.06 10.17 89.72 36.07 25.52 0.46 128.34 6.00 0.13 0.26 23.09 

 


