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Abstract

A useful step in data analysis is clustering, in which observations are grouped

together in a hopefully meaningful way. The mainstay model for Bayesian non-

parametric clustering is the Dirichlet process mixture model, which has one key

advantage of inferring the number of clusters automatically. However, the Dirich-

let process mixture model has particular characteristics, such as linear growth in

the size of clusters and exchangeability, that may not be suitable modelling choices

for some data sets, so there is further research to be done into other Bayesian non-

parametric models with characteristics that differ from that of the Dirichlet process

mixture model while maintaining automatic inference of the number of clusters.

In this thesis, we introduce the Neutral-to-the-Left mixture model, a family of

Bayesian nonparametric infinite mixture models which serves as a strict general-

ization of the Dirichlet process mixture model. This family of mixture models has

two key parameters: the distribution of arrival times of new clusters, and the pa-

rameters of the stick breaking distribution, whose customization allows the user

to inject prior beliefs regarding the structure of the clusters into the model. We

describe collapsed Gibbs and Metropolis–Hastings samplers to infer the posterior

distribution of clusterings given data. We consider one particular parameterization

of the Neutral-to-the-Left mixture model with characteristics that are distinct from

that of the Dirichlet process mixture model, evaluate its performance on simulated

data, and compare these to results from a Dirichlet process mixture model. Fi-

nally, we explore the utility of the Neutral-to-the-Left mixture model on real data

by applying the model to cluster tweets.
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Lay Summary

This thesis describes the development of a statistical model to cluster data, the NTL

mixture model, where the user has the ability to customize the characteristics of the

clusters given by the model to match their understanding of the data. We consider

one way to customize the statistical method so that it is meant for data points with

time stamps, and so that under the model, clusters appear and then disappear in

time. We develops algorithms to fit the model to data, and study the statistical

method when used on simulated data. Finally, we apply the statistical method to

cluster President Joe Biden’s tweets.
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Chapter 1

Introduction

In the day-to-day work of the humble data analyst, they are often bombarded with

dredges of data and are asked by the powers that be to create insight from an oth-

erwise chaotic heap of numbers. One common way to reduce the complexity of

the data to be analyzed is to create natural groups of the observations (also called

clusterings) that hopefully will aid the analyst in their interpretation. When a clus-

tering algorithm is used to group the data, the algorithm is often said to be “learn-

ing” a clustering in an “unsupervised” way, since ideally, the algorithm receives

little input from the user on how to create the clusters, as automating the process

of discovering clusters is what the analyst is interested in in the first place!

These unsupervised learning algorithms are a mainstay in the data analytics

toolbox, and for decades there has been active research in the development of un-

supervised learning algorithms. This thesis describes a general class of clustering

algorithms, and in particular, an algorithm for discovering clusters with bounded

expected size in nonexchangeable data, which are formulated in the language of

Bayesian inference and Bayesian nonparametrics. The Bayesian nonparametric

model that this family of clustering algorithms is based on is called the Neutral-to-

the-Left (NTL) mixture model.

Formally in the language of statistics, clustering is the task of inferring the

values of a set of latent discrete-valued random variables Zn = (Zi)
n
i=1 given a set

of real and possibly vector-valued observations Xn = (Xi)
n
i=1. The unique values

taken on by Zn are said to be the “clusters” of the observations, in which Zi = Z j
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implies that observations i and j are in the same cluster. Signal indicating which set

of observations are contained in the same cluster is modelled as being manifested

in the observations Xn, with Zi = Z j implying that Xi is “similar” to X j, and Zi 6=
Z j implying that Xi is “dissimilar” to X j. The exact mathematical definition of

what constitutes “similarity” depends on the specific statistical model considered

at hand, with one common choice being that Xi and X j are distributed according to

the same probability distribution if i and j are in the same cluster.

Our goal with the NTL mixture model is to describe a class of statistical mod-

els of clusterings where the number of clusters is unknown, and which allow the

user to inject prior knowledge of the characteristics of the clusters into the model.

Specifically, in this thesis, we explore one parameterization of the NTL mixture

model meant for nonexchangeable data which induces groupings containing clus-

ters whose expected sizes are bounded, and which only commonly occur within

short subsequences throughout the whole sequence of observations. If considering

temporally-ordered data, this phenomena can be interpreted as there being small

clusters that appear for only a short duration in time. We develop two algorithms

for inferring the posterior distribution of cluster assignments Zn given observations

Xn. We then demonstrate that sampling algorithms for the NTL mixture model can

more adequately recover the data-generating clustering in comparison to the well-

known Dirichlet process mixture model (DPMM) when the data is generated from

the prior of the specified parameterization of the NTL mixture model. Finally,

we showcase the utility of the NTL mixture model by using it to cluster a Twitter

dataset with timestamps.

In Section 1.1, we describe work related to the NTL mixture model. In chapter

2, we give background regarding Bayesian nonparametrics, the Dirichlet process

(DP) and its applications in clustering, and describe the Beta Neutral-to-the-Left

model of random graphs, the statistical model that the NTL mixture model is based

on. Chapter 3 contains descriptions and derivations of algorithms to infer the var-

ious parameters of the NTL mixture model. Chapter 4 showcases the utility of the

NTL mixture model on both simulated and real data. Lastly, Chapter 5 concludes

the thesis and describes various directions for future research.
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1.1 Related Work
The precursor to the NTL mixture model, the Beta Neutral-to-the-Left (BNTL) for

random graphs (then named (α-T )-graphs), was originally proposed by Bloem-

Reddy and Orbanz [1]. Under certain parameterizations, they show that the BNTL

model can induce graphs which are sparse, which is related to the notion of mi-

croclustering mentioned in the next paragraph. Bloem-Reddy et al. [2] described

both Bayesian and frequentist inference algorithms for BNTL graphs, which some

of our inference algorithms are based on.

The specific parameterization of the NTL mixture model considered in this

thesis leads to clusters whose expected sizes are a priori finite, which is related

to the notion of microclustering, a concept first introduced by Betancourt et al.

[3]. A clustering is said to be a microclustering if the size of the largest cluster

grows sublinearly in the total number of observations in the model. The models

described by Betancourt et al. are suspected to exhibit microclustering in general,

but the property is only demonstrated to hold in special cases, and is shown to hold

experimentally otherwise. Betancourt et al. [4] then describe a clustering model

which they show theoretically exhibits microclustering.

Griffin and Steel [5] describe a model for changepoints in time series data

based on the Dirichlet process. In their stick-breaking autoregressive process, at

each point t in continuous time [0,T ], observations are distributed according to a

mixture

Gt = G̃N(t)

where N(t) is a Poisson process over the interval [0, t], and the G̃s is defined recur-

sively as

G̃s = (1−Vs)G̃s−1 +Vsδθs .

Therefore, the appearance of changepoints in the time series data is modelled as

the arrival of new atoms θs, where the arrival times are dictated by some Poisson

process. This recursive stick breaking procedure bears a striking resemblance to the

NTL mixture model to be introduced in later sections, with the key difference being

that the autoregressive stick breaking process models observations in continuous

time, whereas the parameterization of the NTL mixture model we consider in this

3



thesis is meant for discrete time.
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Chapter 2

Background

Bayesian nonparametrics is a subfield of Bayesian statistics that deals with the

development, inference, and application of Bayesian nonparametric models – sta-

tistical models that have an unbounded number of parameters which are inferred

using Bayesian techniques [6]. Bayesian nonparametric models are seen to be more

flexible than conventional finite-parameter parametric statistical models, since the

potential infinitude of parameters allows nonparametric models to grow in com-

plexity as the number of observations increases.

From a probabilistic point of view, nonparametric priors are stochastic pro-

cesses – collections of random variables (Xt)t∈I which are indexed by a parameter

t (often interpreted as “time”) that takes on values from a possibly infinite index

set I . The distributions of the observed random variables Xt are assumed to be

endowed with some correlation structure that allows for tractable inference, such

as, for example, the existence of latent random variables so that subsets of the

observations Xt are iid conditionally on the latent variables.

Some examples of Bayesian nonparametric models include Gaussian processes

for regression tasks [7] and the Indian buffet process [8] for latent feature allo-

cation. Perhaps the most famous Bayesian nonparametric model is the Dirichlet

process, which is often used in mixture models and variations thereof.
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2.1 The Dirichlet Process
The Dirichlet process (DP) is a stochastic process whose sample paths are discrete

probability distributions themselves. There are three main ways to characterize the

DP, which we detail below.

First, an implicit definition [9]. Formally, consider a measurable set S , a

probability measure H on S , and a real number α > 0. The Dirichlet process

Dir(α,H) is a stochastic process so that X ∼ Dir(α,H) satisfies

(X(B1),X(B2), . . . ,X(Bn))∼ Dirichlet(αH(B1), . . . ,αH(Bn))

for any finite disjoint partition (Bi)
n
i=1 of S . Although this definition does not

give a construction of a realization of Dir(α,H), we can rest assured that such a

stochastic process exists by invoking Komologorov’s extension theorem [10], which

states that it is enough to define a stochastic process by a suitably consistent set of

marginal distributions on finite subsets of indices.

Although it suffices to define the DP by its finite dimensional marginal distri-

bution, this is not so helpful from a practical point of view, as the implicit definition

gives us no information regarding how to compute quantities related to the DP, such

as e.g. drawing realizations from it. We can explicitly characterize a realization of

a probability distribution from the DP using the stick breaking representation [11].

It can be shown that a realization of the DP is a discrete distribution of the form

P(X ∈ ·|(β )∞
i=1,(xi)

∞
i=1) =

∞

∑
i=1

βiδxi(·),

where xi
iid∼H. The mixture weights (βi)

∞
i=1 can be expressed in the following form:

β1 = ψ1, βi = ψi

i−1

∏
j=1

(1−ψ j), i > 1

where ψ j
iid∼ Beta(1,α) for some α > 0. The distribution over (βi)

∞
i=1 is called the

Griffiths–Engen–McCloskey (GEM) distribution, which we denote by GEM(α)

for α > 0 [9]. This representation is reminiscent of breaking a stick of unit length

into smaller pieces, where we start off by breaking off a piece with length ψ1,

6



and then proceed to break off more sticks from the remaining piece with fractional

lengths ψ j.

The final representation of the DP concerns the characterization of the condi-

tional distribution of draws from the DP [9]. Consider a probability space (Ω,F ,P),
a base probability measure H on this space whose support may possibly be un-

countable, and a real value α > 0. Consider a stochastic process characterized by

the following procedure.

Define nx = #{i ∈ {1, . . . ,n} : Xi = x}. For n≥ 0:

1. Draw a new value Xn+1
iid∼ H with probability α

n+α
.

2. Set Xn+1 = x with probability nx
n+α

for some previously assigned value x.

The sequence (Xn)n≥1 is then a sequence of draws from a realization of the

DP. This can be proved by observing the fact that the distribution of (Xn)n≥1 is

exchangeable (although it is easy to see from the generative procedure that it is

not independent) [9]. Therefore, by de Finetti’s theorem, we have that there ex-

ists a random probability measure P so that the observations Xi are conditionally

independent given P [9]. More concisely, we have

P∼ Dir(α,H)

Xi
iid∼ P for i≥ 1.

Although de Finetti’s theorem states the existence of P, it does not give an explicit

construction of P.

This characterization of conditional draws from the DP is often described by

two metaphors: the Chinese Restaurant Process, and the Polya Urn model [12].

In the Chinese Restaurant Process [13], consider an infinite sequence of tables

within a Chinese restaurant, which are labelled with values n ∈ Z. Consider also

an infinite sequence of customers who wish to sit at these tables, with Zi denoting

the table that customer i chooses to sit at. For a particular customer i, they will sit

at table n with probability proportional to the number of customers already sitting

at that table, and will sit at a new table n′ with probability proportional to α .

On the other hand, in the Polya Urn model (also known as the Blackwell-

MacQueen urn scheme) [14], consider an urn that initially has α balls coloured

7



white (assuming that α is an integer, of course). At each step in the process, draw

a ball from the urn. If the ball is white, add a ball of a new colour into the urn.

Otherwise, add a new ball with the same colour of the drawn ball into the urn.

2.2 Applications of the Dirichlet Process

2.2.1 Dirichlet Process Mixture Model

Owing to the fact that realizations of the DP are discrete probability measures

with probability 1, the classic application of the DP in data analysis is cluster-

ing. Clustering is the task of creating partitions of a data set so that data points

within groups are more similar than data points across groups. There are a multi-

tude of algorithms for cluster analysis whose theoretical foundations are based on

ideas from a wide variety of fields such as graph theory and statistics. One cru-

cial task in cluster analysis is determining the number of distinct groups. Some

algorithms, such as correlation clustering, determine this quantity as part of the

procedure [15]. However, other popular algorithms, such as k-means clustering

and hierarchical clustering, require that the user provides the number of clusters

as a parameter [16]. For low dimensional data, the number of distinct clusters is

sometimes obvious after visualizing the data. But in more complicated scenarios,

such as high dimensional data, the number of clusters is often times something that

the analyst wants to infer.

In a Dirichlet process mixture model (DPMM), each cluster corresponds to an

atom in the distribution P(X ∈ ·) = ∑
∞
i=1 βiδxi , where in particular, xi is interpreted

as the “parameter” of the cluster [6]. For example, if we model the observations as

being Gaussian conditioned on their cluster assignment, we might set xi := (µi,Σi),

where µi is the mean of the (possibly multivariate) Gaussian distribution, and Σi

is the covariance. The base measure H could then be a Normal-Inverse-Wishart

distribution, which would serve as a conjugate prior for the Gaussian likelihood

of the data [17]. In practice, H often serves as the possibly conjugate prior of the

likelihood, so that the posterior distribution over the parameters of the components

can be conveniently Gibbs sampled. Moreover, the posterior distribution of the set

of realized components of the DP can be easily sampled from, owing to the fact
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that the DP is self-conjugate [18]; that is, given P∼Dir(α,H), X1, . . . ,Xn ∼ P, we

have that

P|X1, . . . ,Xn ∼ Dir

(
α +n,

α

n+α
H +

1
α +n

n

∑
i=1

δXi

)
.

The Hierarchical Dirichlet Process

Data analysts may face situations where they would like to create multiple cluster-

ings using the DP in such a way so that the clusterings share the same set of atoms

S⊆ H, albeit with different weights across clusterings.

The hierarchical Dirichlet process (HDP), first described by Teh et al. [19]

fulfills this need by modelling the multiple clusterings G j as being realizations

of Dirichlet processes Dir(α j,G) that share a base measure G, which itself is the

realization of a Dirichlet process Dir(α,H).

More precisely, the generative model described by a HDP is given by the fol-

lowing:
G∼ Dir(α,H)

G j ∼ Dir(α j,G) for j = 1, . . . ,k

Xk j ∼ G j for k = 1, . . . ,n j.

(2.1)

Because G = ∑
∞
i=1 βiδxi is a discrete distribution, the G j distributions will also be

discrete, and each G j will share the same set of atoms from G, and place non-zero

probabilities on the atoms xi. Therefore, we have a multiple clustering model where

the clusterings share the same parameters, but with different mixture weights.

Dirichlet Process Hidden Markov Multiple Changepoint Model

One common task when dealing with streaming time series data is detecting in-

stances when the underlying distribution of the data changes, i.e. changepoint de-

tection. For a particular data set, the analyst may be interested in detecting multiple

changepoints within their data. This multiple changepoint detection problem can

be formulated as a clustering problem, subject to the constraint that only a single

cluster is present at any time in the time series data. If one wishes to construct a

Bayesian nonparametric method for changepoint detection in time series data, the

Dirichlet process is the natural prior to use for such a task.
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Ko et al. [20] introduce the Dirichlet Process Hidden Markov Multiple Change-

point Model, which allows for the detection of an arbitrary number of changepoints

in the data. Suppose that s1,s2, . . . ,st+1 correspond to the latent states of a sequence

of observations X1, . . . ,Xt+1. The most natural representation of the model is the

Chinese Restaurant Process-style assignment conditional probability

P(st+1 = j|st = i,st−1, . . . ,s1) =


ni−1+β

ni−1+β+α
if j = i,

α

ni−1+β+α
if j = i+1

(2.2)

where α,β > 0, and ni is the number of observations assigned to state i. The

above conditional probability can be seen as almost a special case of the DP condi-

tional predictive rule when there is only a single existing cluster. This conditional

predictive rule differs slightly, however, from the conditional probability for the

conventional DP in that the numerator of the conditional probability of assigning

to an existing state is associated with an arbitrary initial mass of β − 1 instead of

the usual mass of 1 in the DP, though of course we can set β := 2 to match it with

the DP.

2.3 The Beta Neutral-to-the-Left Model of Sparse
Graphs

Graphs are useful tools for representing multiple relationships between objects,

such as social networks or interactions between proteins within a biological net-

work. If one is interested in creating a statistical model of graphs, a naive first pass

approach is to assume exchangeability over vertices. However, this seemingly rea-

sonable assumption leads to an insidious side effect – the Aldous–Hoover theorem

implies that such graphs represented by vertex exchangeable models are necessar-

ily dense (the number of edges grows on the order of at least quadratically in the

number of vertices) [21]. However, many real-world networks exhibit sparsity, in

which the number of edges grows at most linearly in the number of vertices. One

useful property that can be represented by sparse graphs is power law on the distri-

bution of the degrees of vertices, which is also empirically present in many graphs

seen in the wild. A graph exhibiting power law in vertex degrees has the prop-
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erty that the number of vertices whose degree is d is proportional to some negative

power of d (i.e., given a graph G, we have that #{v ∈ V (G) : deg(v) = d} ∝ d−η ,

where η is some positive real number).

Some common statistical models of random graphs assume that the vertices

of the graph are exchangeable, which restricts the class of random graphs repre-

sentable by these models to be dense (or empty) [22]. Orbanz and Roy [21] posed

the (then) open problem of constructing a statistical model of sparse random graphs

that maintains some notion of probabilistic symmetry in the model.

Bloem-Reddy and Orbanz [1] introduce a class of random graphs which exhibit

sparsity and power law behaviours, while maintaining a useful form of probabilistic

symmetry in the form of left-neutrality, which is then called Beta Neutral-to-the-

Left (BNTL) models in [2]. In this model, graphs are represented as a sequence of

edge ends (Z1,Z2, . . .), where Zi ∈ N. BNTL models have a representation remi-

niscent of the stick-breaking presentation of the DP. Suppose that Λ is some base

distribution which describes the arrival times of vertices in the graph. We have

that a BNTL model has the following generative model for the edge assignments

(Z1,Z2, . . .):

Tj ∼ Λ,

ψ j|Tj
iid∼ Beta(1−α,Tj−1− ( j−1)α) for j ≥ 1

Pj,Kn = ψ j

Kn

∏
`= j+1

(1−ψ`)

Zn ∼

δKn(·) for n = TKn

Categorical(Pj,Kn) otherwise

(2.3)

where Kn is the number of vertices in the graph when the nth edge end has been

assigned a vertex Zn.

This model exhibits neutrality-to-the-left in the recursive stick breaking incre-

ments (Pj,Kn)
Kn
j=1; that is, we have that the random variables R j,Kn defined by

R j,Kn :=
Pj,Kn

∑
j
i=1 Pi,Kn

=
ψ j ∏

Kn
`= j+1(1−ψ`)

∑
j
i=1 ψi ∏

Kn
`=i+1(1−ψ`)

= ψ j
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are mutually independent for all j = 1, . . . ,Kn.

The probability of a vertex in a BNTL model has a recursive stick breaking

representation similar to the probability of a cluster location in the stick-breaking

representation for the DP. The two representations differ in the direction of the re-

cursive stick breaking, however; in the DP stick breaking representation, the prob-

ability of all clusters younger than a cluster j are constrained to be no greater than

the complement probability (1−ψ j). On the other hand, in the BNTL model, the

probability of all vertices older than a vertex j can be no greater than the comple-

ment probability (1−ψ j); therefore the probability of a particular vertex degrades

over time as new vertices arrive in the graph.

Another interesting characteristic of the BNTL stick breaking model that dif-

ferentiates it from the DP stick-breaking representation is that the distribution of

the arrival times of vertices is an explicit parameter of the model; the arrival of

vertices can be made faster or slower than the DP by the choice of arrival time

distribution. Indeed, this explicit parameterization of the arrival time distribution

in the BNTL model allows for modelling of sparse graphs – setting the interarrival

times of vertices (defined to be ∆ j := Tj−Tj−1) to be distributed via Geom(p), for

example, yields graphs generated by the BNTL model that are sparse.

Although the BNTL process differs from the DP in the direction of its stick

breaking representation, another surprising fact is that the DP is actually a special

case of the BNTL process. Conditioned on a sequence of strictly increasing ver-

tex arrival times T = (T1,T2, . . .) ∼ Λ, [2] shows that the predictive rule for the

assignment of an incoming edge end is

P(Zn+1 ∈ ·|Zn,T) = 1(n+1 = TKn+1)δKn+1(·)+1(n+1 < TKn+1)
Kn

∑
j=1

d j,n− τ

n−Knτ
δ j(·).

Recall that the predictive rule for the cluster assignment of a new observation for

the Dirichlet Process is expressed as

P(Zn+1 ∈ ·|Zn) =
α

n+α
δKn+1(·)+

n
n+α

Kn

∑
j=1

n j

n
δ j(·)

We see that the predictive rule for the DP is a special case of the BNTL predictive
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rule with τ := 0 and Λ set to be arrival time distribution of the DP.

Although originally formulated to address sparsity of graphs, the BNTL model

has a natural connection with random partitions of the natural numbers. Indeed,

every random graph induced by the generating procedure of the BNTL corresponds

one-to-one to a partition of the natural numbers. Graphs with η > 2 correspond to

partitions where the size of blocks grow sublinearly in the number of observations,

and graphs with η ∈ (1,2) correspond to partitions where the size of blocks grow

linearly in the number of observations.
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Chapter 3

The Neutral-to-the-Left Mixture
Model

In this section, we introduce a novel infinite mixture model motivated by the Beta

Neutral-to-the-Left (BNTL) model for graphs introduced by Bloem-Reddy and Or-

banz [1]. Recall that the BNTL model for graphs can be described by a neutral-to-

the-left stick breaking procedure where the arrival time distribution of new com-

ponents (vertices in the context of graphs) is an explicit parameter of the model.

The Dirichlet process can be seen as a special case of the BNTL process with a

specific parameterization of the arrival time distribution. Given that the Dirichlet

process is extensively used as a prior in infinite mixture models, a natural question

to ask is how can the BNTL process be used as a prior in Bayesian nonparametric

clustering?

We answer this question by introducing an extension of the BNTL model called

the Neutral-to-the-Left (NTL) mixture model, a family of infinite mixture models

that are parameterized by the distribution of stick breaking weights and arrival

time distribution of clusters, and serves as a generalization of the Dirichlet process

mixture model (DPMM). We consider one such parameterization which exhibits

clustering behaviour distinct from that of the popular DPMM.
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3.1 Generative model
We define a Neutral-to-the-Left (NTL) mixture model to be given by the following

generative process:

Tj ∼ Λ,

ψ j|Tj
iid∼ Beta(a( j,Tj),b( j,Tj)) for j ≥ 2

Pj,Kn = ψ j

Kn

∏
`= j+1

(1−ψ`) (where ψ1 = 1)

Zn ∼

δKn(·) for n = TKn

Categorical(Pj,Kn) otherwise

θ j ∼ F(·)

Xn|Zn ∼ f (·|θZn).

(3.1)

The generative process described in 3.1 differs slightly from the model de-

scribed in model 2.3 in that we assume each observation i is associated with datum

Xi, and that the parameters of the Beta distribution of the ψ j weights are also ex-

plicit parameters of the model, along with the arrival time distribution Λ. The

parameters of the Beta distribution in 3.1 are functions of both the index j of

the current cluster and the arrival time of the cluster Tj. For example, setting

a( j,Tj) := 1−α , b( j,Tj) = Tj− 1− ( j− 1)α recovers the stick breaking distri-

bution of model 2.3.

3.2 Parameterizations of the Neutral-to-the-Left Mixture
Model

As mentioned previously, the NTL mixture model has the following set of param-

eters which can be modified by the user as they see fit: a( j,Tj) and b( j,Tj), the

parameters of the distribution of the stick breaking weights, and Λ, the distribution

of arrival times of the clusters in the model.

We wish to emphasize that the choice of values of these parameters can lead

to clusterings with vastly different characteristics. For example, it is shown by

Bloem-Reddy et al. [2] that choosing a( j,Tj) = 1, b( j,Tj) = Tj−1, and Λ equal to
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the arrival time distribution of the Dirichlet process leads to clusterings which are

exchangeable and whose largest cluster size grow linearly in the number of obser-

vations. On the other hand, in the next subsection, we consider a parameterization

with characteristics that differ from that of the DPMM.

3.2.1 Conjectured microclustering property of a parameterization of
the NTL mixture model

In this subsection, we introduce a parameterization of the NTL mixture model

which is not exchangeable and yields clusters whose expected sizes are bounded,

and thus do not grow linearly. Because of this, we hypothesize that the following

parameterization exhibits the microclustering property, where Mn/n
p→ 0 in which

Mn is the size of the largest cluster in the model [4]. We leave the proof of this

conjecture for future work. The following proposition suggests that the conjecture

may be true.

Proposition 1. Define the random variable S j,Kn to be the number of observations

assigned to cluster j when there are Kn total clusters in a realization of the NTL

mixture model. Consider constant a( j,Tj) ≡ a, b( j,Tj) ≡ b where a,b > 0, and

∆ j
iid∼Λ for j≥ 2 where Λ is some probability distribution over the positive integers

with finite first moment. Then

lim
Kn→∞

E[S j,Kn ] = E[∆2].

Proof. We have that

E[S j,Kn ] = 1+
Kn

∑
i= j

E

[
(∆i+1−1)ψ j

i

∏
`= j+1

(1−ψ`)

]

= 1+
Kn

∑
i= j

(E[∆2]−1)
(

a
a+b

)(
b

a+b

)i− j

(by independence of ψk,∆ j)

= 1+(E[∆2]−1)
(

a
a+b

) Kn

∑
i= j

(
b

a+b

)i− j

.

Notice that the expected number of observations assigned to cluster j has a term
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which is a finite geometric series of b
a+b . Taking the limit as Kn→ ∞ gives

lim
Kn→∞

E[S j,Kn ] = 1+(E[∆2]−1)
(

a
a+b

)
lim

Kn→∞

Kn

∑
i= j

(
b

a+b

)i− j

= 1+(E[∆2]−1)
(

a
a+b

)(
1

1− b
a+b

)

= 1+(E[∆2]−1)
(

a
a+b

)(
a+b

a

)
= E[∆2].

Therefore, we see that the expected number of observations assigned to any cluster

is finite as the number of clusters, and in turn, the number of observations, goes to

infinity.

We can represent a clustering model as (a collection of) distributions over ran-

dom partitions Πn over [n] := {1,2, . . . ,n}. In particular, it has been shown that

microclustering models cannot exhibit infinite exchangeability in the observations

[4]. Therefore, microclustering models must sacrifice at least one of two proper-

ties:

1. finite exchangeability – permutation invariance over [n], or

2. projectivity – equality of Πn in distribution to Πm restricted to the first n

elements for 1≤ n < m.

Therefore, if this parameterization of the NTL mixture model does satisfy the mi-

croclustering property, the NTL mixture model must sacrifice finite exchangeabil-

ity, since it is easy to see that P(Z) is not permutation invariant in the order of

Z.

3.3 Inference
In this section, we consider the problem of sampling the posterior distribution of

the cluster assignments Z given observations X for a particular parameterization of

the NTL mixture model.
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We first describe the structure of the joint distribution of the NTL mixture

model in the general setting, which follows from a similar derivation for the BNTL

model in Bloem-Reddy et al. [2].

Let TKn = (T1,T2, . . . ,TKn), ΨKn = (ψ1,ψ2, . . . ,ψKn) (with the constraint that

ψ1 = 1), Zn =(Z1,Z2, . . . ,Zn), and Xn =(X1,X2, . . . ,Xn), and ΘKn =(θ1,θ2, . . . ,θKn).

We will assume that f (x|θ) is some likelihood, with conjugate prior F(θ). Let Λφ

be the arrival time distribution with parameter φ , with prior distribution G(φ) on

φ . We also assume that the Λφ is a Markov chain over the interarrivals, with each

interarrival possibly depending only on the arrival time immediately preceding it,

so that

Λφ (TKn) = δ1(T1)
Kn

∏
s=2

pφ
s (∆s|Ts−1). (3.2)

Here, pφ
s (∆s|Ts−1) is the interarrival time distribution for the sth cluster, with

φ the parameter of the distributions, and G(φ) is possibly conjugate to pφ
s . This

structure of the arrival time distribution has the capacity to describe a variety of

arrival time behaviours. For example, the arrival time distribution of the DP can

expressed in the form of equation 3.2 [23]. We may also wish to consider the

more simpler situation of iid interarrivals, so that pφ
s (∆s|Ts−1) = pφ (∆s), which we

consider later on in this section.

Notice that knowledge of Zn gives complete information for TKn , since we have

that

Ts = min{i : Zi = s} (3.3)

under generative model 3.1. Therefore, given Zn, Xn, ΘKn , ΨKn , and φ , the general

form of the joint likelihood of an NTL mixture model is given by

P(Xn,Zn,ΘKn ,ΨKn ,φ) =

(
Kn

∏
s=1

[
∏

i:zi=s
f (Xi|θs)

]
F(θs)

)

×

[
Kn

∏
s=2

(
ψ

n(s)−1+a(s,Ts)−1
s (1−ψ)n(<s)+b(s,Ts)−1

B(a(s,Ts),b(s,Ts))

)
pφ

s (∆s|Ts−1)

]
G(φ)

where

• Kn is the number of clusters,
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• n(s) = #{i : zi = s}, and

• n(< Ts)≡ n(< s) =
(

∑s′:Ts′<Ts n(s′)
)
− (Ts−1).

We consider the particular parameterization of iid interarrival times distributed to

a geometric distribution, so that pφ

j (·|Tj−1) = pφ (·) = Geom(·|φ), and with conju-

gate prior G(·) =Beta(·|aφ ,bφ ) on φ . Here, we use the convention of the geometric

distribution having support only on the positive integers. We also set constant pa-

rameters a(s,Ts)≡ a > 0, b(s,Ts)≡ b > 0. This leads to the following expression

for the joint likelihood

P(Xn,Zn,ΘKn ,ΨKn ,φ) =

(
Kn

∏
s=1

[
∏

i:zi=s
f (Xi|θs)

]
F(θs)

)[
Kn

∏
s=2

(
ψ

n(s)−1+a−1
s (1−ψ)n(<s)+b−1

B(a,b)

)]

×
[

φ Kn−1+aφ−1(1−φ)n−Kn+bφ−1

B(aφ ,bφ )

]
.

Integrating out ΨKn and φ in the joint likelihood leads to

P(Xn,Zn,ΘKn) =

(
Kn

∏
s=1

[
∏

i:zi=s
f (Xi|θs)

]
F(θs)

)[
Kn

∏
s=2

(
B(n(s)−1+as,n(< s)+bs)

B(as,bs)

)]

×
[

B(Kn−1+aφ ,n−Kn +bφ )

B(aφ ,bφ )

]
.

3.3.1 A Collapsed Gibbs Sampling Algorithm

We now derive a collapsed Gibbs sampler to estimate the posterior distribution

P(Zn|Xn) for this parameterization of the NTL mixture model. Using the abuse of

notation Z := Zn and X := Xn, we would like to sample

P(Zi = s|Z−i,X) ∝ P(Xi|Zi = s,Z−i,X−i)P(Zi = s|Z−i),

where Z−i and X−i are the tuples of cluster assignments and observations from Z
and X except for the ith components. The term P(Xi|Zi = s,Z−i,X−i) is a posterior

predictive distribution, which has a known form when F(θ) is a conjugate prior to

f (X |θ). We describe various choices of f and F in a later subsection.
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The more complicated term we deal with now is

P(Zi = s|Z−i) =
∫ ∫

P(Zi = s|Z−i,ΨKn ,φ)P(ΨKn |Z−i)P(φ |Z−i)dΨKndφ .

In what follows, let n−i(s) be the number of observations assigned to cluster s when

observation i is removed from the model, n−i(< s) be the number of observations

assigned to the complement of cluster s when i is removed from the model, and

K−i
n is the number of clusters in the model when i is removed. Moreover, define

n(< i) for i = 1, . . . ,n by

n(< i) =

(
∑

s:Ts<i
n(s)

)
− (i−1).

As before, let n− j(< i) be the above quantity but under the situation where obser-

vation j is removed. Define

C(Z−i)=

[
∏

s′:s′>1

B(n(s′)−1+a,n(< s′)+b)
B(a,b)

][
B(K−i

n −1+aφ ,n−K−i
n −1+bφ )

B(aφ ,bφ )

]

which is a factor which all cases of the conditional probability P(Zi = s|Z−i) share.

We enumerate three cases for the update term P(Zi = s|Z−i) ∝ P(Zi = s,Z−i).

1. Case 1: Zi is assigned to a new cluster.

If i > 1, we have

P(Zi = s,Z−i,ΨKn ,φ)

=

(
ψa−1

s (1−ψs)
n−i(<s)+b−1

B(a,b)

)(
∏

s′:s′>1

ψ
n−i(s′)−1+a−1
s′ (1−ψs′)

n−i(<s′)+b−1

B(a,b)

)

×

(
φ (K−i

n +1)−1+aφ−1(1−φ)n−K−i
n −1+bφ−1

B(aφ ,bφ )

)
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Integrating out φ and ΨKn gives

P(Zi = s,Z−i)

=

(
B(a,n−i(< s)+b)

B(a,b)

)(
∏

s′:s′>1

B(n−i(s′)−1+a,n−i(< s′)+b)
B(a,b)

)

×
(

B((K−i
n +1)−1+aφ ,n−K−i

n −1+bφ )

B(aφ ,bφ )

)
=

(
B(a,n−i(< s)+b)

B(a,b)

)(
∏

s′:s′>1

B(n−i(s′)−1+a,n−i(< s′)+b)
B(a,b)

)

×
(

B(K−i
n −1+aφ ,n−K−i

n −1+bφ )

B(aφ ,bφ )

)(
K−i

n −1+aφ

n−2+aφ +bφ

)
=

(
B(a,n−i(< s)+b)

B(a,b)

)(
K−i

n −1+aφ

n−2+aφ +bφ

)
×

(
∏

s′:s′>1

B(n−i(s′)−1+a,n−i(< s′)+b)
B(a,b)

)(
B(K−i

n −1+aφ ,n−K−i
n −1+bφ )

B(aφ ,bφ )

)
=C(Z−i)

(
B(a,n−i(< s)+b)

B(a,b)

)(
K−i

n −1+aφ

n−2+aφ +bφ

)
.

Otherwise, if i = 1, we have

P(Zi = s,Z−i,ΨKn ,φ)

=

(
∏

s′:s′ 6=s

ψ
n−i(s′)+a−1
s′ (1−ψs′)

n−i(<s′)+b−1

B(a,b)

)(
φ (K−i

n +1)−1+aφ−1(1−φ)n−K−i
n −1+bφ−1

B(aφ ,bφ )

)
.

With similar reasoning as in the subcase i > 1, integrating out Ψ and φ gives

P(Zi = s,Z−i) =C(Z−i)

(
K−i

n −1+aφ

n−2+aφ +bφ

)
.

2. Case 2: Zi is assigned to an existing cluster s with Ts < i.
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We have that

P(Zi = s,Z−i,ΨKn ,φ)

=

(
ψ

n−i(s)+a−1
s (1−ψs)

n−i(<s)+b−1

B(a,b)

) ∏
s′:

Ts<Ts′<i

ψ
n(s′)−1+a−1
s′ (1−ψs′)

n(<s′)+1+b−1

B(a,b)


×

 ∏
s′:

Ts′<Ts or Ts′>i

ψ
n(s′)−1+a−1
s′ (1−ψs′)

n(<s′)+b−1

B(a,b)

(φ K−1
n −1+aφ−1(1−φ)n−K−i

n +bφ−1

B(aφ ,bφ )

)
.

Integrating out ΨKn and φ gives

P(Zi = s,Z−i)

=

[
B(n−i(s)+a,n−i(< s)+b)

B(a,b)

] ∏
s′:

Ts<Ts′<i

B(n(s′)−1+a,n(< s′)+1+b)
B(a,b)


×

 ∏
s′:

Ts′<Ts or Ts′>i

B(n(s′)−1+a,n(< s′)+b)
B(a,b)

[B(K−1
n −1+aφ ,n−K−i

n +bφ )

B(aφ ,bφ )

]

=

(
∏

s′:s′>1

B(n−i(s′)−1+a,n−i(< s′)+b)
B(a,b)

)(
B(K−i

n −1+aφ ,n−K−i
n −1+bφ )

B(aφ ,bφ )

)

×
(

n−i(s)−1+as

n−i(s)+n−i(< s)−1+as +bs

)[
∏

s′:Ts<Ts′<i

n−i(< s′)+bs′

n−i(s′)+n−i(< s′)−1+as′+bs′

]

×
(

n−K−i
n −1+bφ

n−2+aφ +bφ

)
=C(Z−i)

(
n−i(s)−1+as

n−i(s)+n−i(< s)−1+as +bs

)[
∏

s′:Ts<Ts′<i

n−i(< s′)+bs′

n−i(s′)+n−i(< s′)−1+as′+bs′

]

×
(

n−K−i
n −1+bφ

n−2+aφ +bφ

)

3. Case 3: Zi is assigned to an existing cluster s with i < Ts.
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If i > 1, then we have

P(Zi = s,Z−i,ΨKn ,φ)

=

(
ψ

n(s)+a−1
s ,(1−ψs)

n−i(<i)+b−1

B(a,b)

)[
∏

s′:i<Ts′<Ts

ψ
n−i(s′)−1+a−1
s′ (1−ψs′)

n−i(<s′)+n−i(s)+b−1

B(a,b)

]

×

[
∏

s′:Ts′<i orTs′>Ts

ψ
n−i(s′)−1+a−1
s′ (1−ψs′)

n−i(<s′)+b−1

B(a,b)

](
φ K−i

n −1+aφ−1(1−φ)n−K−i
n +bφ−1

B(aφ ,bφ )

)
.

Integrating out ΨKn and φ gives

P(Zi = s,Z−i)

=

(
B(n(s)+a,n−i(< i)+b)

B(a,b)

)[
∏

s′:Ts′<i or Ts′>Ts

B(n−i(s′)−1+a,n−i(< s′)+b)
B(a,b)

]

×

[
∏

s′:i<Ts′<Ts

B(n−i(s′)−1+a,n−i(< s′)+n−i(s)+b)
B(a,b)

](
B(K−i

n −1+aφ ,n−K−i
n +bφ )

B(aφ ,bφ )

)
=

[
n−1−Kn +bφ

n−2+aφ +bφ

][
B(ni(s)+a,n−i(< i)+b)

B(n−i(s)−1+as,n−i(< s)+bs)

]
×

(
∏

s′:i<Ts′<Ts

B(n−i(s′)−1+a,n−i(< s′)+n−i(s)+b)
B(n−i(s′)−1+a,n−i(< s′)+b)

)

×

(
∏

s′:s′>1

B(n−i(s′)−1+a,n−i(< s′)+b)
B(a,b)

)(
B(K−i

n −1+aφ ,n−K−i
n −1+bφ )

B(aφ ,bφ )

)
=C(Z−i)

[
n−1−Kn +bφ

n−2+aφ +bφ

][
B(n−i(s)+a,n−i(< i)+b)

B(n−i(s)−1+as,n−i(< s)+bs)

]
× ∏

s′:i<Ts′<Ts

B(n−i(s′)−1+a,n−i(< s′)+n−i(s)+b)
B(n−i(s′)−1+a,n−i(< s′)+b)

.

Otherwise, suppose i = 1.
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We have that

P(Zi = s,Z−i,ΨKn ,φ)

=

[
∏

s′:i<Ts′<Ts

ψ
n−i(s′)−1+a−1
s′ (1−ψs′)

n−i(<s′)+n−i(s)+b−1

B(a,b)

]

×

[
∏

s′:Ts′<i orTs′>Ts

ψ
n−i(s′)−1+a−1
s′ (1−ψs′)

n−i(<s′)+b−1

B(a,b)

]

×

(
φ K−i

n −1+aφ−1(1−φ)n−K−i
n +bφ−1

B(aφ ,bφ )

)
.

By similar reasoning as in subcase i > 1, integrating out ΨKn and φ gives

P(Zi = s,Z−i)

=C(Z−i)

[
n−1−Kn +bφ

n−2+aφ +bφ

][
1

B(n−i(s)−1+as,n−i(< s)+bs)

]
×

[
∏

s′:i<Ts′<Ts

B(n−i(s′)−1+a,n−i(< s′)+n−i(s)+b)
B(n−i(s′)−1+a,n−i(< s′)+b)

]

This provides a complete collapsed Gibbs sampling algorithm for inferring the

posterior P(Z|X).

All three cases (and subcases therein) of the term P(Zi = s,Z−i) share a con-

stant term C(Z−i). Therefore, when computing the Gibbs proposal P(Zi = s|Z−i)∝

P(Zi = s,Z−i), we need only to compute all terms other than the C(Z−i) which re-

duces the time complexity of the collapsed Gibbs sampler. Notice that in case 2

of the posterior sampling of Zi in the collapsed Gibbs sampler, calculating P(Zi =

s|Z−i) requires no more than Kn multiplications (since we have a factor for each

state s′ so that Ts < Ts′ < i). Therefore, a single sweep of the Gibbs sampling

algorithm has time complexity on the order of O(nK2
n ).

3.3.2 A Metropolis–Hastings Algorithm

Although the collapsed Gibbs sampling algorithm described in the previous section

has the advantage of having each move of the algorithm being always accepted

[24], the algorithm suffers from large time complexity.
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The collapsed Gibbs sampler’s time complexity of O(nK2
n ) per sweep pales in

comparison to the time complexity of a single sweep of a collapsed Gibbs sampling

algorithm for the DPMM, which has time complexity O(nKn) owing to the fact that

we may write

P(Zi = s|Z−i) ∝

n−i(s) if s is an existing cluster

α if s if a new cluster

under the DP model.

We design a Metropolis–Hastings algorithm with an efficient proposal that ad-

dresses the poor time complexity of the collapsed Gibbs sampler that is motivated

by the following observation. Figure 3.1 depicts an example of 100 observations

generated from the NTL mixture model prior.

Figure 3.1: Cluster assignments of 100 observations generated from the NTL
mixture model prior.

Notice that clusters tend to contain observations from around the same time

period, with observations farther away in time very rarely being clustered together.

Then if we were to design a proposal distribution for an accept-reject Metropolis–

Hastings algorithm, one reasonable proposal distribution would be a discrete uni-

form distribution over clusters centered around the previously assigned cluster.

Formally, we use the following proposal distribution q in the Metropolis–Hastings

algorithm to be described shortly. Let S−i be an ordered sequence of clusters such

that the following hold.
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1. If TZi < i or i is the only observation assigned to cluster Zi, we have that S−i

contains

(a) clusters s with birth time Ts < i (older than observation i) from the

model when observation i is removed are included, and

(b) a new cluster s′ corresponding to Ts′ = i.

2. If TZi = i and there is more than one observation at cluster Zi, then S−i = {Zi}.

Assume that the clusters s in S−i are ordered according to their birth times Ts (where

in the situation that Zi is assigned a new cluster, then the new cluster s′ correspond-

ing to Zi = s′ has birth time Ts′ = i). Using indices that start at 1, let S−i[d,e] to be

the subsequence of S−i that starts from the dth element and ends at the eth element,

both inclusive. Let index(Zi) be the index of the cluster Zi in S−i. Then define the

proposal q to be

q(Z′i = s|Zi) ∝

1 if s ∈ S−i[max{1, index(Zi)−w},min{#S−i, index(Zi)+w}]

0 otherwise

with w being some user-specified positive integer. Intuitively, q is a proposal dis-

tribution which is uniform around a window of width w centered at the previous

cluster Zi, where observations which are younger than their assigned clusters, or

are the only observation assigned to their clusters, are allowed to be moved, and

they can only move to other younger clusters, or a new cluster at i.

The acceptance ratio α can then be expressed as

α = min
(

1,
P(Xi|Z′i ,Z−i,X−i)P(Z′i |Z−i)q(Zi|Z′i)
P(Xi|Zi,Z−i,X−i)P(Zi|Z−i)q(Z′i |Zi)

)
. (3.4)

Each of P(Z′i |Z−i) and P(Zi|Z−i) require only O(Kn) computations to calculate and

q(Z′i |Zi) can be calculated in constant time, so a single sweep of the Metropolis–

Hastings algorithm has quadratic time complexity O(nKn), an improvement over

the O(nK2
n ) time complexity of the collapsed Gibbs sampling algorithm described

in the previous section.

26



Irreducibility of the Metropolis–Hastings sampler

We demonstrate that any two clusterings Z and Z′ are accessible using the Metropolis–

Hastings sampler described earlier – that is, for any two clusterings Z and Z′, if the

chain is at a state Z, then it has positive probability of eventually arriving to a state

Z′. This will imply irreducibility of the Markov chain induced by the Metropolis–

Hastings sampler [25].

For the purpose of the proof, we will show the following two results.

1. Given arbitrary clusters s,s′, q(s|s′)> 0 if and only if q(s′|s)> 0.

2. Let Z0 be the trivial clustering where each observation is assigned to its own

cluster, and Z an arbitrary clustering. There exists a procedure to transform

configuration Z0 into configuration Z.

The above two results will then imply that there exists a procedure to transform Z
into Z0, by applying result 1 as many times as needed to the procedure described

in result 2. Then, we may transform configuration Z into Z′ by first transforming

Z into Z0, and then transforming Z0 into Z′, which will imply that Z′ is accessible

from Z.

Proof of result 1. If q(s′|s) > 0, then s and s′ are either both older than obser-

vation i, or one of them is a cluster with the single element i, since both s,s′ ∈ S−i.

As well, since s,s′ ∈ S−i[max{1, index(s)−w},min{#S−i, index(s)+w}], then s′ is

no more than w indices away from s in S−i. Therefore, s ∈ S−i[max{1, index(s′)−
w},min{#S−i, index(s′)+w}]. This implies that q(s|s′) > 0. The converse holds

similarly.

Proof of result 2. We describe the following procedure to transform clustering

Z0 = (Z0
1 ,Z

0
2 , . . . ,Z

0
n) = (1,2, . . . ,n) into the clustering Z = (Z1,Z2, . . . ,Zn).

First, some preliminaries. We say that a cluster Zi exists in Z0 if there exists j

so that TZi = TZ0
j

(i.e., there exists a cluster Z0
j in Z0 that has the same birth time

as cluster Zi), where TZi is defined as in equation 3.3. Further, it is clear that if

(TZ1 ,TZ2 , . . . ,TZn) = (TZ0
1
,TZ0

2
, . . . ,TZ0

n
), then Z and Z0 describe the same clustering.

Lastly, notice that before the start of the procedure to be described, i = TZ0
i

for

every i.

For i = 1, . . . ,n, perform the following.
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1. If i = TZi (i.e., observation i is the first observation assigned to cluster Zi in

Z), then leave Z0
i unchanged. This implies that TZi = i = TZ0

i
, so cluster Zi

exists in Z0.

2. Otherwise, we have i > TZi (observation i is younger than cluster Zi). The

cluster Zi is guaranteed to exist in Z0 by step 1 of this procedure. Then,

repeatedly assign Z0
i to the youngest cluster s that is older than observation i

(this is allowed since s is exactly one index away from Z0
i in S−i at any point

in this procedure), possibly keeping all other Z0
j fixed for multiple sweeps of

the Metropolis-Hastings sampler, until TZ0
i
= TZi .

At the end of this procedure, we have (TZ0
1
,TZ0

2
, . . . ,TZ0

n
) = (TZ1 ,TZ2 , . . . ,TZn), which

is what we wanted to show.

3.3.3 Choice of likelihood f (·|θ) and prior F(θ)

Depending on the nature of the observations at hand, there are a number of differ-

ent parameterizations of the likelihood f and prior F . As mentioned previously,

it is convenient to choose F to be conjugate to all parameters of f , so that in the

collapsed Gibbs sampling algorithm described in the earlier section, the parame-

ters Θ may be integrated out leaving only the posterior distribution of the cluster

assignments Z to be sampled. However, this may not be possible for more compli-

cated likelihoods f , so posterior sampling of at least some components of θ may

be necessary.

We detail two examples of parameterizations of f (·|θ) and F(θ) that we ex-

plore in detail later in the experiments section of this thesis.

For the first parameterization (whose details are based on [17]), suppose that

the observations (Xi)
n
i=1 take on k-dimensional, continuous, and unbounded values.

Then, a natural choice is to set f to be a multivariate Gaussian distribution with

parameters θZi = (µZi ,ΣZi) so that

f (Xi|µZi ,ΣZi) = N (Xi|µZi ,ΣZi) :=
exp
(
−1

2(Xi−µZi)
T Σ
−1
Zi
(Xi−µZi)

)√
(2π)k|ΣZi |

where |ΣZi | is the determinant of the square matrix ΣZi . If ΣZi = Σ is known and
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constant across all clusters, we may set the prior F of µ to be another multivariate

Gaussian with mean µ0 and covariance Σ0. Under this parameterization, the poste-

rior predictive P(Xi|X−i,Z) has the following convenient closed-form expression

P(Xi|X−i,Z) =
∫

P(Xi|µZi ,Σ)P(µZi |µ0,Σ0,X−i,Z)dµZi

= N (Xi|µ ′Zi
(X−i,Z),Σ′Zi

(X−i,Z)+Σ)

where µ ′Zi
(X−i,Z) and Σ′Zi

(X−i,Z) are the parameters of the posterior distribution

P(µZi |µ0,Σ0,X−i,Z), which is another multivariate Gaussian distribution.

The second parameterization we consider is based on details from [26]. We

may model (Xi)
N
i=1 as k-dimensional count data, so that Xi =(X1

i , . . .X
k
i ) for X `

i ∈N,

with mi = ∑
k
`=1 X `

i total counts for observation i. In this case, we set f (Xi|θZi) to

be the probability mass function of the multinomial distribution

f (Xi|θZi) = Multinomial(Xi|mi, pZi) =
mi!

X1
i ! . . .Xk

i !

(
p1

Zi

)X1
i . . .

(
pk

Zi

)Xk
i

with parameters θs = ps = (p1
s , p2

s , . . . , pk
s) so that p1

s , . . . , pk
s ≥ 0 and ∑

k
`=1 p`s = 1,

and mi = ∑
k
`=1 X `

i is the number of trials. The natural choice for the prior F(ps) is

the probability density function of the Dirichlet distribution, which is given by

F(ps) =
1

B(α)

k

∏
`=1

(p`s)
α i−1

where α = (α1, . . . ,αk) for α1, . . . ,αk > 0, and B(α) is the multivariate Beta func-

tion. This also induces the posterior predictive P(Xi|X−i,Z) to be the probability

mass function of the Dirichlet-multinomial distribution, which has analytic expres-

sion

P(Xi|X−i,Z) = DirMult(Xi|αZi(X−i,Z))

=
Γ(α0

Zi
(X−i,Z))Γ(mi +1)

Γ(α0
Zi
(X−i,Z)+mi)

k

∏
`=1

Γ(X `
i +α`

Zi
(Z−i,X))

Γ(α`
Zi
(Z−i,X))Γ(X `

i +1)

where αZi(Z−i,X) = (α1
Zi
(Z−i,X), . . . ,αk

Zi
(Z−i,X)) are the parameters of the pos-

terior distribution P(pZi |X−i,Z), which is a Dirichlet distribution, and α0
Zi
(Z−i,X)=
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∑
k
`=1 α`

Zi
(Z−i,X).
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Chapter 4

Experiments

In this section, we study the NTL mixture model and its Metropolis-within-Gibbs

samplers on both synthetic and real data. Experiments are done mainly using the

programming language Julia [27], with the exception of the computation of two

Bayes estimators, which are done using the programming language R [28]. Ex-

periments were performed using a MacBook Pro (13-inch, 2020, Two Thunderbolt

3 ports) with a 1.4 GHz Quad-Core Intel Core i5 processor, and 8 GB of 2133

MHz LPDDR3 RAM. Code for the experiments can be found at the following

link: https://github.com/realseanla/ntl-mixture-model.

4.1 Validation of Samplers
Like many hierarchical Bayesian models used in practice, the posterior distribu-

tion P(Z|X) of cluster assignments Z given data X is intractable for even moder-

ately sized n due to the combinatorial explosion in the number of possible parti-

tions of n elements, i.e. the Bell numbers. The Metropolis-within-Gibbs sampling

algorithms described in the previous section allow us to approximate this poste-

rior distribution. One challenge of developing MCMC algorithms is that it is not

straightforward to determine whether the output of the algorithm is correct, since

MCMC algorithms provide approximations of a posterior distribution which often

cannot be expressed analytically or computed in reasonable time. Incorrectly pro-

grammed MCMC algorithms can still output results which may seem reasonable,

31

https://github.com/realseanla/ntl-mixture-model


but are otherwise invalid. Therefore, before studying the efficacy of our method,

it is important to first validate that the samplers are indeed targeting the correct

posterior.

We apply one method of validating our MCMC algorithms described in the

thesis of Briercliffe [29]. The idea is that for reasonably small n, we can determine

the true posterior probabilities of all clusterings on n elements by enumerating all

such clusterings and computing their joint likelihood, since we have

P(Z|X) =
P(X,Z)

∑Z′ P(X,Z′)
.

After computing these true posterior probabilities, we can then consider the prob-

lem of sampler validation from a frequentist point of view, where we construct a

95% confidence interval using the output of the MCMC algorithm. Standard er-

rors of the estimates from the MCMC output are computed using the batch means

method described in [30]. If the vast majority of the true posterior probabilities are

captured by the confidence intervals, this is evidence that the samplers are correctly

implemented.

For n≥ 3, all cases of the collapsed Gibbs proposal described in section 3.3.1

will be computed at least once for sufficiently large number of iterations. In par-

ticular, consider an initial clustering (Z1 = 1, Z2 = 2, Z3 = 3) for n = 3. Sampling

from the conditional probability P(Z1|X, Z2 = 2, Z3 = 3) covers the second sub-

case of case 1 and the second subcase of case 3. Sampling P(Z2|X, Z1 = 1, Z3 = 3)

covers the first subcase of case 1, case 2, as well as the first subcase of case 3.

The implementation of the Metropolis–Hastings sampler used in this thesis

uses the collapsed Gibbs proposal as a subroutine when calculating the acceptance

ratio 3.4, so n≥ 3 is also sufficient to confirm validity of the Metropolis–Hastings

sampler.

Figures 4.1 and 4.2 depict confidence intervals of the posterior probabilities on

two clusterings on n = 4 and n = 5 elements, given by both the collapsed Gibbs

and Metropolis–Hastings samplers. For both datasets, data were generated assum-

ing a multinomial distribution at each cluster, with dimension d = 10 and m = 5

counts per observations. The parameters of the multinomial distributions were

given Dirichlet distribution priors with scale parameter that is identically one for
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(a) n = 4 observations; 15 clusterings

(b) n = 5 observations; 52 clusterings

Figure 4.1: Estimates of the true posterior probability of clusterings on (a)
n = 4 and (b) n = 5 observations, given by the collapsed Gibbs sampler.
Estimates are based on 1×106 iterations, with 1×105 burn in iterations.
Blue dots indicate that the 95% confidence interval outputted by the
sampler captures the true posterior probability, and red indicates that it
does not. Note that the figures depict vertical 95% confidence intervals
about each point, though almost all are too small to be visible at this
scale.
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(a) n = 4 observations; 15 clusterings

(b) n = 5 observations; 52 clusterings

Figure 4.2: Estimates of the true posterior probability of clusterings on (a)
n = 4 and (b) n = 5 observations, given by the Metropolis–Hastings
sampler. Estimates are based on 1×106 iterations, with 1×105 burn in
iterations. Blue dots indicate that the 95% confidence interval outputted
by the sampler captures the true posterior probability, and red indicates
that it does not. Note that the figures depict vertical 95% confidence
intervals about each point, though almost all are too small to be visible
at this scale.
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all components.

Over all experiments, 7 true posterior probabilities were not captured by their

respective confidence intervals, with 3 probabilities not captured by the collapsed

Gibbs sampler, and 4 probabilities not captured by the Metropolis–Hastings sam-

pler. There are 67 clusterings in total over n = 4 and n = 5 observations, so we

expect 67/20 ≈ 3 probabilities to not be captured by their 95% confidence inter-

vals for each sampler. Therefore, this is evidence that both the collapsed Gibbs and

Metropolis–Hastings samplers were correctly implemented.

4.2 Evaluation procedure
Apart from determining the time efficiency for each sampler (which will be mea-

sured in units of number of iterations per second), the efficacy of the NTL mixture

model and its respective Metropolis-within-Gibbs samplers on simulated and real

data are studied using the procedure outlined in the subsections that follow.

4.2.1 Convergence diagnostics

Asymptotically, the stationary distributions of the Markov chains outputted by the

collapsed Gibbs and Metropolis–Hastings algorithms are guaranteed to be equal to

the posterior distribution P(Z|X). Of course, we can never run either algorithm for

infinite time in practice, so when using the NTL mixture model to analyze real data,

we must assess whether the output of the algorithm we have used has reasonably

converged.

Commonly, when a DPMM is used to cluster data using MCMC, three quanti-

ties are analyzed to assess convergence [31, 32]:

1. the number of clusters per iteration,

2. the joint log likelihood logP(Z,X) for each iteration, and

3. the posterior value of the concentration parameter α .

Naturally, since the DPMM is a specific parameterization of the NTL mixture

model, we can also analyze the above three quantities to assess convergence of
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an NTL mixture model, with the caveat being that we analyze the posterior dis-

tribution of the φ ∼ Beta(1,1) parameter of the iid interarrival time distribution

∆ j ∼ Geom(φ) instead of the α parameter, which does not appear in this parame-

terization of the NTL mixture model.

When analyzing the number of clusters, joint log likelihoods, and samples from

the posterior distribution of φ , we look for stationarity in the trace plots. Nonsta-

tionarity (such as existence of trends) will suggest that more MCMC iterations

are needed. We also ran several chains stemming from different initial cluster as-

signments, and analyzed the time series plots of the quantities described above. If,

after a set number of iterations that is shared across chains, the chains are markedly

different, this is an indication that the number of iterations is not sufficient.

Notice that the posterior distribution of parameter values θs for each cluster

s is not included in the above list, which is a quantity that would most likely be

analyzed for other hierarchical Bayesian models with finite number of parameters.

The reason this is the case is because of the assumed infinitude of the number

of clusters in the model – since the number of clusters is likely to change across

iterations, it is not always straightforward to determine which parameter values

are associated to which cluster, especially since it is possible for some clusters to

disappear in a given iteration.

Figure 4.3 depicts an example of convergence diagnostic plots for a clustering

model fitted using an MCMC algorithm that was ran for 10000 iterations. The

chains for the first and last initializations (random assignment, and assigning each

observation to its own cluster) appear to converge rather quickly. However, the

chain for the second initialization (assigning all observations to a single cluster

only) converges after around 1250 iterations. Therefore, the first 1250 iterations

should be discarded as burn-in, and only the last 8750 or so iterations can be rea-

sonably used for downstream analysis.

4.2.2 Assessing similarity of posterior clusterings to data-generating
clustering

After assessing convergence of the Metropolis-within-Gibbs algorithms, it is also

useful to understand the extent to which the algorithms output clusterings which

resemble the data-generating clustering. One visual way to assess the performance
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(a) Log likelihood

(b) Number of clusters

(c) Arrivals parameter posterior

Figure 4.3: Examples of convergence diagnostic plots for chains from three
different initializations, with trace plots for (a) log likelihood, (b) num-
ber of clusters, and (c) arrival parameter posterior.
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of clusterings is to compute the co-occurrence matrix, which is an n× n matrix

M where entry Mi, j is the proportion of posterior clusterings where observations i

and j are within the same cluster. Using simulated data where the data-generating

clusterings are known a priori, we can compare the co-occurrence matrix of the

data-generating clustering with the co-occurrence matrix of the posterior cluster-

ings, which will give us a visual depiction of the quality of our methods.

Another common method for assessing clustering performance that is used in

practice is by computing the adjusted rand index (ARI) between the proposed clus-

tering and the data-generating clustering [33]. The ARI of two clusterings takes

on values bounded above by 1, with an ARI of 1 indicating perfect agreement be-

tween the two clusterings. However, since the MCMC algorithms described in the

previous section output many different clusterings, the question arises of which

clusterings do we compare to the data-generating clustering? One approach is to

compute the ARI between the data-generating clustering and each clustering in the

output Markov chain of the MCMC algorithms. This provides us a posterior distri-

bution over the ARI with the data-generating clustering, which we can then further

analyze by, for example, plotting the empirical distribution of the ARI values, or

computing functions over the empirical ARI distribution such as the mean ARI.

4.2.3 Bayes estimates of clusterings and evaluation

Although the above procedure is useful for understanding the quality of draws from

the posterior distribution of clusterings, in practice a single representative cluster-

ing is often needed for downstream analysis. Given that our MCMC algorithms

output approximate samples from the posterior distribution of clusterings, we may

wish for a method that takes advantage of the information contained in the posterior

samples when constructing a representative clustering.

In Bayesian statistics, a principled approach for estimating an unknown param-

eter based on observed data is to choose a parameter which minimizes the posterior

expectation of some appropriately chosen loss function [34]. More formally, sup-

pose that θ is an unknown parameter we wish to estimate, and we are given a loss

function `(θ , θ̃). Then a Bayes estimator θ̃ of θ based on the loss function `(θ , θ̃)
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minimizes the value

Eθ∼π [`(θ , θ̃)|X] =
∫

`(θ , θ̃)π(θ |X)dθ

where π(θ |X) is the posterior distribution of θ based on observations X.

The choice of taking a maximum a posteriori (MAP) estimate of θ can be

seen as taking a Bayes estimator of θ , as it can be shown that the MAP estimate

minimizes the posterior expectation of the 0-1 loss `(θ , θ̃) = 1
θ̃ 6=θ

(θ , θ̃) when θ

takes on discrete values, and is the limit of the sequence of Bayes estimators of the

losses `ε(θ , θ̃) = 1|θ̃−θ |>ε
(θ , θ̃) as ε → 0 in the continuous case [34].

In general, we constructed Bayes estimates of the data-generating clustering

using the following three loss functions:

1. the 0-1 loss function 1Z̃n 6=Z(Z, Z̃n) (which corresponds to MAP estimates),

2. Binder’s loss function `B(Z, Z̃n) for clusterings (whose Bayes estimates will

be denoted as Binder estimates), and

3. the variation of information loss function `V I(Z, Z̃n) for clusterings (whose

Bayes estimates will be denoted as VI estimates).

We briefly describe Binder’s and variation of information loss functions, though

we refer readers to Wade and Ghahramani [35] for complete descriptions and com-

parisons of both losses.

Binder’s loss function `B(Z, Z̃) for clusterings, first introduced in [36], adds a

penalty whenever two observations are contained in the same cluster in one of Z̃
or Z, but in different clusters in the other. When all errors have the same penalty,

`B(Z, Z̃) can be represented as a quadratic function of the counts. This loss function

accounts for basic symmetries when representing clusterings as a vector of cluster

assignments Z. In particular, `B(Z, Z̃) satisfies the following invariance properties:

1. permutation invariance of the order of the observations, and

2. permutation invariance of the cluster labels.

The variation of information loss function `V I(Z, Z̃), first introduced in [37],

takes an information theoretic point of view when comparing clusterings, where
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the loss can be written as

`V I(Z, Z̃) = H(Z)+H(Z̃)−2I(Z, Z̃)

where H(Z) is the entropy of the clustering Z, and I(Z, Z̃) is the mutual infor-

mation of clusterings Z and Z̃. Intuitively, the variation of information penalizes

uncertainty H captured in either of the clusterings Z and Z̃, but this penalty is

reduced by the information I that is shared between clusterings Z and Z̃.

For the MAP estimate, we simply took the clustering from the MCMC out-

put that maximizes the joint log likelihood. We used the R package mcclust.ext

[38] (which extends from the package mcclust [39]) to compute the Binder and VI

estimates, where the functions used were minbinder.ext and minVI, respec-

tively. For both estimates, we used the argument method = ‘draws’ so that

the Binder and VI estimates were taken from the MCMC samples of the posterior,

to match our method of computing the MAP estimate.

For each of the above three loss functions, the collapsed Gibbs and Metropolis–

Hastings algorithms were run until the last 50% iterations depict convergence,

those 50% of samples were taken from the posterior, and the Bayes estimate of

the data-generating clustering was computed using the respective loss function. Fi-

nally, the ARI was used to determine the similarity between the Bayes estimate and

the data-generating clustering.

4.2.4 Alternative clustering methods

Where applicable, results from the NTL mixture model will also be compared to

results from the following popular clustering methods:

1. The Dirichlet process mixture model, where convergence is assessed by ob-

serving the trace plots of the joint log likelihood, number of clusters, and

posterior value of the α parameter. Three chains with different initializa-

tions were run, convergence of the last 50% of iterations was checked using

the convergence diagnostics 1, and the last 50% of samples were chosen for

final computations.

1See figures A.1 and A.2 for convergence diagnostics.
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2. k-means clustering, where k is chosen via the elbow method [16] using the

plot of the distortion scores (sum of squared distances of each observation to

the center of its assigned cluster) for each k. 2

Dirichlet process mixture models were fit using a collapsed Gibbs sampler of the

form

P(Zi = s|Z−i,X) ∝

P(Xi|Zi = s,Z−i,X−i)n−i(s) if s is an existing cluster

P(Xi|Zi = s,Z−i,X−i)α if s is a new cluster.

We sampled the posterior value of α using a Metropolis–Hastings step, where the

prior on α was uniform over the interval (0,n) and the proposal distribution was a

Gaussian distribution centered around the previous value of α with variance 1, and

truncated from 0 to n. A uniform distribution was chosen for the prior to reflect

agnostic belief regarding the value of α (no value of α is preferable over another).

The upper limit of the uniform distribution was chosen to be n to allow the value

of α to grow with the size n of the dataset (since larger datasets may have more

clusters, which the α parameter controls), while maintaining integrability. 3

4.3 Synthetic data
We considered the following parameterization of the NTL mixture model prior:

a( j,Tj) = 1,b( j,Tj) = 1 for all j ≥ 2,

∆ j := Tj−Tj−1
iid∼ Geom(φ),φ ∼ Beta(1,1).

Under this parameterization, the distributions of stick breaking weights (ψs)
Kn
s=2 as

well as relative frequency of the arrival of new clusters are iid uniform over the

unit interval [0,1], which induces clusters whose expected sizes are asymptotically

bounded conditionally on φ , as per proposition 1.

2See Figure A.3 for the distortion plots.
3We chose not to use the improper prior of a uniform distribution over the positive real line on

the philosophical belief that a prior distribution should be a probability distribution over its support,
and thus must have finite integral over its domain.
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We also considered the following likelihoods:

Xi|Zi = s∼N (µs,σ
2I), µs ∼N (0, I) for all s

with dimension equal to 2, σ2 = 0.1, and

Xi|Zi = s∼Multinomial(m, ps), ps ∼ Dirichlet(1) for all s

with dimension equal to 10 and m = 10 counts per observation.

For all parameterizations, we generated n = 100 observations from the prior.

All parameterizations were given the same data-generating clustering, which will

allow analyses on how changes in the likelihood may change the performance of

the method.

4.3.1 Characteristics of the data-generating clustering

In this subsection, we examine the characteristics of the data-generating clustering

of the simulated data.

Figure 4.4 depicts the co-occurrence matrix of the data-generating clustering,

which was used to generate both the multinomial and multivariate Gaussian data.

We see that the matrix depicts a block diagonal structure, where clusters contain

observations which are close to each other in time. Given the iid interarrival times,

cluster sizes are quite small in comparison to the total number of observations.

Figure 4.5 depicts the assignment of observations to clusters over time. We see

that there are 39 clusters out of 100 observations.

Figure 4.6 depicts a histogram of the sizes of the clusters in the data-generating

clustering. The histogram resembles a geometric distribution with mean approxi-

mately equal to 2.56. Proposition 1 implies that when the interarrival time distri-

bution is parameterized to be a geometric distribution with some fixed probability

φ , the expected number of observations assigned to a given cluster is 1
φ

. Figure

4.5 shows that there are 39 clusters out of 100 observations, therefore φ is approx-

imately 0.4. Proposition 1 then predicts that the expected number of observations

assigned to a cluster is asymptotically 1
φ
≈ 1

0.4 = 2.5, which approximately matches

what we see as the mean cluster size in Figure 4.6.
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Figure 4.4: The co-occurrence matrix of the data-generating clustering of
both the simulated multinomial and multivariate Gaussian data.

Figure 4.5: Assignments of the observations to clusters over time of the data-
generating clustering.

4.3.2 The Metropolis–Hastings sampler is more time efficient than
the collapsed Gibbs sampler and the DPMM sampler

Table 4.1 depicts the number of iterations per second performed by the Metropolis–

Hastings and collapsed Gibbs samplers for the NTL mixture model, as well as

the collapsed Gibbs sampler for the DPMM, on multivariate Gaussian and multi-

nomial data. As predicted by the time complexity analysis of the samplers, the

Metropolis–Hastings sampler is one order of magnitude faster than the collapsed

Gibbs sampler, owing to its O(nKn) time complexity per sweep as opposed to the

collapsed Gibbs sampler O(nK2
n ) complexity.
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Figure 4.6: Histogram of the sizes of the clusters, with the mean size of the
clusters indicated on the figure.

Number of iterations per second
Data Metropolis–Hastings Collapsed Gibbs DPMM

Multivariate Gaussian 303.03 8.87 87.41
Multinomial 833.33 13.04 200.80

Table 4.1: Number of iterations per second for the Metropolis–Hastings and
collapsed Gibbs sampler, as well as the collapsed Gibbs sampler for the
DPMM, on multivariate Gaussian and multinomial data.

The Metropolis–Hastings sampler is also faster than the collapsed Gibbs sam-

pler for the DPMM. Although both have time complexity O(nKn) per sweep, the

reason for the Metropolis–Hastings sampler’s better time efficiency in practice may

be due to the fact that the Kn term in the time complexity stems from the need to

compute the product in the expression for case 2 of P(Zi = s,Z−i), when comput-

ing the acceptance ratio 3.4. However, in practice, it is likely that the number of

terms in this product is significantly less than Kn, since more terms in the product

reduces the probability that the proposal will be accepted. On the other hand, for

the collapsed Gibbs sampler for the DPMM, the proposal density for each cluster

must be computed, so exactly K−i
n + 1 computations are required when sampling

from P(Zi = s|Z−i,X) for the DPMM.
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(a) Log likelihood over iterations

(b) Number of clusters over iterations

(c) Arrivals parameter posterior over iterations

Figure 4.7: Convergence diagnostic plots for collapsed Gibbs sampler on
multivariate Gaussian data.
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(a) Log likelihood over iterations

(b) Number of clusters over iterations

(c) Arrivals parameter posterior over iterations

Figure 4.8: Convergence diagnostic plots for collapsed Gibbs sampler on
multinomial data.
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4.3.3 NTL mixture model samplers converge quickly

Figures 4.7 and 4.8 depict the convergence diagnostic plots for the collapsed Gibbs

sampler on multivariate Gaussian and multinomial data, respectively. Both figures

show quick convergence of the collapsed Gibbs sampler — the chains correspond-

ing to the three different initial cluster assignments appear to converge to the same

mode after approximately 100 iterations for both data types.

Figures 4.9 and 4.10 depict the convergence diagnostic plots for the Metropolis–

Hastings samplers for the NTL mixture model. Similarly to the collapsed Gibbs

sampler, these figures demonstrate that chains from the Metropolis–Hastings sam-

pler converge quickly, with the chains from the three distinct initial cluster assign-

ments showing convergence after approximately 500 iterations. This observation,

along with the sampler’s relatively efficient time complexity of O(nKn) for a single

sweep, lends credence to using the Metropolis–Hastings sampler over the collapsed

Gibbs sampler.

4.3.4 Co-occurrence matrices outputted by NTL mixture model
capture block diagonal characteristics of data-generating
clustering

Figure 4.11 depicts the co-occurrence matrices outputted by the collapsed Gibbs

and Metropolis–Hastings sampler for the NTL mixture model, as well as the co-

occurrence matrix given by the DPMM, all on multivariate Gaussian data. Figures

4.11a and 4.11b demonstrate that the collapsed Gibbs and Metropolis–Hastings

samplers are able to recover some of the rich block diagonal structure of the co-

occurrence matrix of the data-generating clustering shown in Figure 4.4. The col-

lapsed Gibbs sampler seems to be more efficient in exploring clusterings of lesser

likelihood than the Metropolis–Hastings sampler, with Figure 4.11a showing dis-

tant observations being paired together at a slightly larger frequency than what is

shown in Figure 4.11b.

On the other hand, the DPMM fails to recover the block diagonal structure

in its co-occurrence matrix, as shown in Figure 4.11c. This is to be expected,

since the DPMM assumes exchangeability of the observations, and it seems that

the relatively large within-cluster variance of each cluster’s data distribution is not
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(a) Log likelihood over iterations

(b) Number of clusters over iterations

(c) Arrivals parameter posterior over iterations

Figure 4.9: Convergence diagnostic plots for Metropolis–Hastings sampler
on multivariate Gaussian data.
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(a) Log likelihood over iterations

(b) Number of clusters over iterations

(c) Arrivals parameter posterior over iterations

Figure 4.10: Convergence diagnostic plots for the Metropolis–Hastings sam-
pler on multinomial data.
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(a) Collapsed Gibbs sampler (b) Metropolis–Hastings sampler

(c) Dirichlet process mixture model (d) Data-generating clustering

Figure 4.11: Co-occurrence matrices of clusterings of multivariate Gaussian
data given by (a) collapsed Gibbs Sampler, (b) Metropolis–Hastings
sampler, and (c) DPMM. The co-occurrence matrix of the (d) data-
generating clustering is shown for comparison.

sufficiently strong to overcome the exchangeability property.

Figure 4.12 depicts the co-occurrence matrices of the collapsed Gibbs and

Metropolis–Hastings samplers on multinomial data, as well as that of the DPMM.

Similarly to the multivariate Gaussian case, Figures 4.12a and 4.12b show that the

NTL mixture model samplers can recover some of the block diagonal structure,

whereas the DPMM fails to do so as shown in Figure 4.12c.
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(a) Collapsed Gibbs sampler (b) Metropolis–Hastings sampler

(c) Dirichlet process mixture model (d) Data-generating clustering

Figure 4.12: Co-occurrence matrices of clusterings of multinomial data given
by (a) collapsed Gibbs sampler, (b) Metropolis–Hastings sampler, and
(c) DPMM. The co-occurrence matrix of the (d) data-generating clus-
tering is shown for comparison.

4.3.5 Posterior distribution of ARI of NTL mixture model
clusterings indicate greater fit to data than DPMM

Figures 4.13 and 4.14 depict the posterior distribution of the ARI between the data-

generating clustering and the posterior clusterings as given by the collapsed Gibbs

sampler, Metropolis–Hastings sampler, and the DPMM, on multivariate Gaussian

data and multinomial data respectively. The posterior distributions show that clus-

terings drawn from the NTL mixture model posterior have greater similarity to the

underlying data-generating clustering than that of the DPMM.
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(a) Collapsed Gibbs sampler

(b) Metropolis–Hastings sampler

(c) Dirichlet process mixture model

Figure 4.13: Posterior distribution of ARI between data-generating cluster-
ing and posterior clusterings from (a) collapsed Gibbs sampler, (b)
Metropolis–Hastings sampler, and (c) DPMM, on multivariate Gaus-
sian data.
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(a) Collapsed Gibbs sampler

(b) Metropolis–Hastings sampler

(c) Dirichlet process mixture model

Figure 4.14: Posterior distribution of ARI between data-generating cluster-
ing and posterior clusterings from (a) collapsed Gibbs sampler, (b)
Metropolis–Hastings sampler, and (c) DPMM, on multinomial data.
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(a) MAP estimate (b) Binder estimate

(c) VI estimate (d) Data-generating clustering

Figure 4.15: Co-occurrence matrices of Bayes estimates of data-generating
clustering using (a) 0-1 loss (MAP estimate), (b) Binder’s loss (Binder
estimate), and (c) variation of information loss (VI estimate), on mul-
tivariate Gaussian data using the collapsed Gibbs sampler. The co-
occurrence matrix of the (d) data-generating clustering is shown for
comparison.

4.3.6 Bayes estimates based on VI and Binder’s loss more reliably
estimate data-generating clustering than MAP estimates

Figures 4.15 and 4.16 depict the co-occurrence matrices of Bayes estimates of the

data-generating clustering based on samples from the NTL mixture model pos-

terior, with the former figure showing results from the collapsed Gibbs sampler,

and the latter from the Metropolis–Hastings sampler. Figures 4.17 and 4.18 depict
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(a) MAP estimate (b) Binder estimate

(c) VI estimate (d) Data-generating clustering

Figure 4.16: Co-occurrence matrices of Bayes estimators of data-generating
clustering using (a) 0-1 loss (MAP estimate), (b) Binder’s loss (Binder
estimate), and (c) variation of information loss (VI estimate), on mul-
tivariate Gaussian data using the Metropolis–Hastings sampler. The
co-occurrence matrix of the (d) data-generating clustering is shown
for comparison.
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(a) MAP estimate (b) Binder estimate

(c) VI estimate (d) Data-generating clustering

Figure 4.17: Co-occurrence matrices of Bayes estimators of data-generating
clustering using (a) 0-1 loss (MAP estimate), (b) Binder’s loss (Binder
estimate), and (c) variation of information loss (VI estimate), on multi-
nomial data using the collapsed Gibbs sampler. The co-occurrence
matrix of the (d) data-generating clustering is shown for comparison.

co-occurrence matrices of the Bayes estimates from the NTL mixture model from

both samplers on multinomial data.

Qualitatively, the co-occurrence matrices from Bayes estimates based on the

variation of information loss and Binder’s loss reliably capture some of the block

diagonal structure present in the data-generating clustering for both the multivariate

Gaussian and multinomial data. On the other hand, the MAP estimate less reliably

recovers a block diagonal structure. For example, it fails to do so in the multivariate
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(a) MAP estimate (b) Binder estimate

(c) VI estimate (d) Data-generating clustering

Figure 4.18: Co-occurrence matrices of Bayes estimators of data-generating
clustering using (a) 0-1 loss (MAP estimate), (b) Binder’s loss (Binder
estimate), and (c) variation of information loss (VI estimate), on
multinomial data using the Metropolis–Hastings sampler. The co-
occurrence matrix of the (d) data-generating clustering is shown for
comparison.
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ARI
Data Sampler MAP estimate Binder estimate VI estimate

Multivariate Gaussian
Collapsed Gibbs 0.211 0.356 0.557
Metropolis–Hastings 0.324 0.509 0.502

Multinomial
Collapsed Gibbs 0.535 0.496 0.527
Metropolis–Hastings 0.530 0.492 0.513

Table 4.2: ARI between Bayes estimates and data-generating clusterings for
multivariate Gaussian and multinomial data, using output from collapsed
Gibbs and Metropolis–Hastings sampler.

Gaussian case.

These qualitative results are supported by the quantitative measures depicted in

Table 4.2 – the ARI of the MAP estimates fluctuate from 0.211 to 0.535 between

the multivariate Gaussian and multinomial data, whereas the Binder and VI esti-

mates only range from 0.356 to 0.509 in ARI for the former, and 0.502 to 0.557 for

the latter.

Overall, the results suggest that the Variation of Information loss provides the

greatest quality Bayes estimates of the data-generating clustering from both qual-

itative and quantitative points of view. The middling results from MAP estimates

may be due to the fact that intuitively, the corresponding 0-1 loss is not appropri-

ate for combinatorial problems such as clustering, since the loss assigns the same

penalty when the two input clusterings differ with no regard to the extent to which

they differ.

Figures 4.19 and 4.20 depict the MAP, Binder, and VI estimates using output

from the DPMM on multivariate Gaussian and multinomial data, respectively. As

can be seen in these two figures, point estimates from the DPMM fail to capture

the block diagonal structure of the underlying data-generating clustering. The clus-

terings are also quite sparse in nature, with many singleton clusters present in the

point estimates, save for the MAP estimate for multinomial data in Figure 4.20a.

Figure 4.21 depicts clustering of the multivariate Gaussian and multinomial

data using k-means clustering. Similarly to the case of the DPMM point estimates,

the estimates from k-means clustering do not capture the block diagonal structure

of the data-generating clustering due to the assumption of exchangeability.
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(a) MAP estimate (b) Binder estimate

(c) VI estimate (d) Data-generating clustering

Figure 4.19: Co-occurrence matrices of Bayes estimates of data-generating
clustering with multivariate Gaussian data from DPMM, using (a) 0-
1 loss (MAP estimate), (b) Binder’s loss (Binder estimate), and (c)
variation of information loss (VI estimate). The co-occurrence matrix
of the (d) data-generating clustering is shown for comparison.

Dirichlet Process Mixture Model
Data k-means ARI MAP estimate ARI Binder estimate ARI VI estimate ARI
Multivariate Gaussian 0.107 0.014 0.072 0.092
Multinomial 0.109 0.159 0.094 0.154

Table 4.3: ARI between point estimates from DPMM and k-means clustering
and data-generating clusterings for multivariate Gaussian and multino-
mial data.
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(a) MAP estimate (b) Binder estimate

(c) VI estimate (d) Data-generating clustering

Figure 4.20: Co-occurrence matrices of Bayes estimates of data-generating
clustering with multinomial data from the DPMM, using (a) 0-1 loss
(MAP estimate), (b) Binder’s loss (Binder estimate), and (c) variation
of information loss (VI estimate). The co-occurrence matrix of the (d)
data-generating clustering is shown for comparison.

The qualitative lack of fit of the DPMM and k-means point estimates are sup-

ported by low ARI between the data-generating clustering and the respective esti-

mates, which are shown in Table 4.3.

60



(a) Multivariate Gaussian data

(b) Multinomial data

(c) Data-generating clustering

Figure 4.21: Co-occurrence matrix of point estimates of data-generating
clustering using k-means clustering, on (a) multivariate Gaussian data,
and (b) multinomial data. The co-occurrence matrix of the (d) data-
generating clustering is shown for comparison.
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4.4 Real data
The parameterization of the NTL mixture model considered in this thesis has a

natural interpretation as representing data that evolves over time (as can be seen

visually in Figure 4.5), due to its non-exchangeable nature and the fact that under

the NTL mixture model, the probability of assigning observations to a particular

cluster degrades over time.

One type of data that may be well modelled by this parameterization of the

NTL mixture model are tweets, and more specifically, the topic structure of tweets.

We would expect that the set of topics that a Twitter user tweets about should

evolve over time, where new topics emerge at some rate and older topics eventually

disappear. A natural way to model textual data like tweets is by using a multinomial

distribution, where each dimension of the multinomial distribution corresponds to

a particular word, with the prior on the parameters of the multinomial distribution

to be the conjugate Dirichlet distribution. Each cluster, then, is associated with

a multinomial distribution with a particular set of parameters. In the language of

topic modelling, this corresponds to modelling each cluster as being associated

with one topic, a topic being a distribution over words [40]. Tweets assigned to

the same cluster then have the same topic, and so we can expect tweets within the

same cluster to have similar compositions of words.

We note that in topic modelling, it is more common to assume that each docu-

ment is a distribution over multiple topics, as opposed to assuming that each doc-

ument is associated with one topic as we do here. This is a valid assumption for

large documents such as journal articles, but it may not be a good modelling choice

for small documents such as tweets.

4.4.1 Experimental setup

We applied a parameterization of the NTL mixture model to model the cluster

structure of President Joe Biden’s tweets from 24 October 2007 to 31 October

2020 [41]. The last 100 tweets from this dataset were taken as the final dataset,

and after removing stop words, definite and indefinite articles, prepositions, pro-

nouns, numbers, non-letters, HTML tags, and frequent and infrequent terms, and

stemming each word, we found that the dataset contained 588 unique word stems.
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Each tweet was then represented as an integer vector with 588 components, with

the integer at a component indicating the number of times the corresponding word

stem appeared in the tweet. We then fitted the following NTL mixture model using

the Metropolis–Hastings algorithm:

φ ∼ Beta(1,1),

∆ j
iid∼ Geom(φ) for j ≥ 2,

ψ j
iid∼ Beta(1,1) for j ≥ 2,

Pj,Kn = ψ j

Kn

∏
`= j+1

(1−ψ`) (where ψ1 = 1)

Zn ∼

δKn(·) for n = TKn

Categorical(Pj,Kn) otherwise

p j
iid∼ Dirichlet((1/10) ·1),

Xn|Zn ∼Multinomial

(
∑
`

X `
n , pZn

)
.

(4.1)

The Markov chain was burned in for 40000 iterations 4, with the last 40000

iterations taken for the final calculations. A representative clustering was created

by taking a VI estimate based on the last 40000 iterations from the Metropolis–

Hastings algorithm. The qualitative performance of the final VI estimate was then

assessed.

We also used the following alternative clustering methods to cluster the same

Twitter dataset.

1. A DPMM fitted using a collapsed Gibbs sampler, where the chain was burned-

in for 5000 iterations, and the last 5000 iterations were used to calculate a

VI estimate of the underlying clustering. 5

2. k-means clustering, where k was chosen via the elbow method. 6 For this

method, word vectors were normalized so that the components of each vector

4See Figure A.4 for the Metropolis–Hastings convergence diagnostics.
5See Figure A.5 for the DPMM convergence diagnostics.
6See Figure A.6 for the k-means distortion plot.
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Figure 4.22: Co-occurrence matrix of clusterings sampled from the NTL
mixture model for President Joe Biden’s Twitter dataset.

sum to 1, to account for the fact that the tweets differ in length.

Point estimates from each of the above two alternative methods were then qualita-

tively compared to the VI estimate from the NTL mixture model. 7

4.4.2 Results

Figure 4.22 depicts the co-occurrence matrix of the clusterings sampled from the

NTL mixture model posterior for Joe Biden’s Twitter dataset. The matrix indicates

that the model is quite confident of a block diagonal structure, with two large blocks

in the middle of the dataset corresponding to clusters of tweets of moderately large

size. Towards the ends of the dataset, the model is less confident in the presence of

clusters, with many tweets towards the end being in singleton clusters.

Figure 4.23 depicts a VI estimate of the underlying clustering based on the

last 5000 iterations of the Markov chain outputted by the Metropolis–Hastings al-

gorithm. The comments made regarding the empirical co-occurrence matrix in

Figure 4.22 also apply for the VI estimate of the underlying clustering — there

are two large clusters within the middle of the dataset, with many smaller clusters

towards the end.

7Complete clusterings given by the NTL mixture model, DPMM, and k-means clusterings can be
found at the following link: https://github.com/realseanla/ntl-mixture-model.
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Figure 4.23: Co-occurrence matrix of the VI estimate of the clustering for
President Joe Biden’s Twitter dataset from the NTL mixture model.
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Cluster Tweet
1 Two years ago, a white supremacist entered Pittsburgh’s Tree of Life Synagogue and perpetrated the deadliest

anti-Semitic attack in American history. May the memories of those we lost be a blessing
— and may we never stop fighting the scourges of anti-Semitism and gun violence.

1 6 days. Return your ballot now: https://t.co/eoxT07d7QB
34 Christen — tell your grandmother I’m incredibly grateful to have her support, and thank you for helping her cast her ballot.
34 The future of our country is on the ballot — and you get to decide what it looks like. Vote: https://t.co/eoxT07d7QB
34 Enough of the lies. Vote him out: https://t.co/eoxT07uII9 https://t.co/iTdiPVy8FA
63 This is your chance to be a part of history. Vote: https://t.co/eoxT07uII9 https://t.co/4bH8iawiSE
63 The future of this country is in your hands. Make a plan to vote now. https://t.co/uoiVh9ZqzI
63 The urgency of this election couldn’t be greater — and the stakes couldn’t be higher. Don’t wait: go to

https://t.co/eoxT07d7QB and vote early today.
80 I want to extend my prayers and condolences to the Chaldean Assyrian Community

this 10th anniversary of Our Lady of Deliverance church massacre in Baghdad.
The right to worship is fundamental, and as Americans we should be proud that people from around the world find a home here.

80 You’re absolutely right, Brayden — no one should ever underestimate the American people. https://t.co/aCsdIWmF62

Table 4.4: Tweets from various clusters in the VI estimate of the clustering from the NTL mixture model of President
Joe Biden’s tweets.
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Table 4.4 depicts tweets from various clusters in the VI estimate. Qualitatively,

many of the clusters within the VI estimate of the underlying clustering of President

Joe Biden’s tweets seem to capture the same topic.

The first three tweets from the two largest clusters, clusters 34 and 63, pertain

to the president urging American citizens to vote in the 2020 US election. Although

it is promising that the tweets within these two clusters seem to pertain to the same

topics, these two clusters could also be meaningfully merged into the same cluster,

so the fact that these two clusters are considered to be different is an indication of

the limitation of this model to recognize the same cluster across large stretches of

time.

For smaller clusters, the model seems to have difficulty grouping tweets to-

gether with the same topic structure. For example, cluster 1 contains two tweets

which discuss different topics – the first tweet discusses an incident of racial vi-

olence, and the second tweet discusses voting. Cluster 80 also seems to contain

unrelated tweets, with the two tweets in this cluster discussing racial violence for

the former, and a response to a supporter of Joe Biden for the latter.

Overall, the lack of clarity in the topic structure for smaller tweets may be an

indication that the structure of this Twitter dataset differs in an important way from

what is assumed in the parameterization of the NTL mixture model that is applied.

One possible improvement to the model is to modify the scale parameter of the

Dirichlet prior to be a quantity smaller than the given scale of (1/10) ·1. The scale

factor controls the cost of grouping together tweets with different sets of words

together, with smaller values of the scale increasing the penalty for grouping dis-

similar tweets. A more extensive modification could be to assume that each cluster

is assigned a distribution over multiple topics, instead of the current assumption of

a single topic being assigned to each cluster. This may give the model more leeway

in grouping together tweets of similar topics, though choosing hyperparameters for

probabilistic topic models often requires extensive tuning [42].

Figure 4.24 depict the co-occurrence matrices of clusterings given by a VI

estimate of the DPMM and k-means clustering. The co-occurrence matrices do

not appear to capture any temporal structure of the tweets, as the methods assume

exchangeability of the data.
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(a) DPMM VI estimate

(b) k-means estimate; k = 5

Figure 4.24: Co-occurrence matrices of clusterings given by (a) VI estimate
from DPMM, and (b) k-means clustering with k = 5.
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Cluster Tweet
1 Two years ago, a white supremacist entered Pittsburgh’s Tree of Life Synagogue and perpetrated the deadliest

anti-Semitic attack in American history. May the memories of those we lost be a
blessing — and may we never stop fighting the scourges of anti-Semitism and gun violence.

4 We are the United States of America. We can beat this virus.
There is no challenge we cannot meet, no enemy we cannot face, no threat we cannot conquer when we stand together.

4 There’s no challenge we can’t overcome when we stand united.
With just four days to go, tune in as we get out the vote in Iowa. https://t.co/0O9S2J9Tw6

Table 4.5: Tweets from various clusters in the VI estimate of the underlying clustering from the DPMM of President
Joe Biden’s tweets.
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Table 4.5 depicts clusters from various clusters from the VI estimate for the

DPMM. Despite not capturing any temporal patterns, some tweets are grouped into

more meaningful clusters in the VI estimate of the DPMM in comparison to the

NTL mixture model. Cluster 1 contains the first Tweet in the dataset, and it is the

only Tweet in that cluster from the DPMM estimate. In contrast, the NTL mixture

model has this tweet grouped together with a tweet that discusses a different topic.

However, not every cluster in the VI estimate from the DPMM seems to describe a

coherent topic structure. Cluster 4 contains two tweets which describe two different

topics, one discussing COVID-19, and the other discussing voting.
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Cluster Tweet
4 Let’s put dogs back in the White House. https://t.co/7pBihksfXT
4 The issues we’re facing are far bigger than any political party.

It’s why I’ll be a president for all Americans — Democrats, Republicans, and Independents alike —
because I believe we must work together if we’re going to get anything done.

4 .@BarackObama and I have seen the office of the presidency up close, we know what the job entails,
and there’s too much at stake to give Donald Trump another four years. Vote: https://t.co/eoxT07uII9 https://t.co/7imuWqlZSN

Table 4.6: Tweets from various clusters in the VI estimate of the underlying clustering from the k-means clustering of
President Joe Biden’s tweets.
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k-means clustering also appears to have trouble grouping together tweets with

meaningful topic structure. Three tweets in cluster 4 of the clustering given by

k-means clustering, described in Table 4.6, appear to discuss two different topics –

the first tweet discusses dogs, whereas the latter two tweets discuss the American

politics and the US election.
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Chapter 5

Conclusion

We have introduced the Neutral-to-the-Left mixture model, a family of infinite

mixture models that generalize the Dirichlet process mixture model. The NTL

mixture model is parameterized by the arrival time distribution of new clusters,

and the distribution of stick breaking weights. We consider one parameterization

of the NTL mixture model with characteristics that differ from that of the Dirich-

let process mixture model. We describe two Metropolis-within-Gibbs algorithms

for sampling the posterior distribution of clusterings given data, and validate the

correctness of the samplers by constructing accurate estimates of the true poste-

rior probabilities of all clusterings for small data sets. We evaluate the efficacy of

the Metropolis-within-Gibbs algorithms on data simulated from the NTL mixture

model prior, and find that it more adequately recovers the data-generating cluster-

ing in comparison to clusterings given by Dirichlet process mixture models and k-

means clustering. Finally, we apply a parameterization of the NTL mixture model

to cluster tweets.

5.1 Future work
There are various directions for future research in the parameterizations and deriva-

tions of the NTL mixture model.

In similar vein to the multitude of applications of the Dirichlet process, one

possible direction for future is to adapt the NTL mixture model to more compli-
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cated clustering-style models. During the work that led to the creation of this

thesis, preliminary research was performed regarding the following adaptations of

the NTL mixture model:

1. The Neutral-to-the-Left Infinite Hidden Markov Model, where the NTL stick

breaking structure models the arrivals and evolution of hidden states within

a hidden Markov model with infinitely many states. This early research was

inspired by the application of the hierarchical Dirichlet process to modelling

hidden Markov models [19].

2. The Neutral-to-the-Left Multiple Changepoint Model, where the arrival dis-

tribution of new changepoints in a time series is an explicit parameter of the

model.

In future work, we would like to further explore the utility of these models, and

other possible derivations of the NTL mixture model.
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Supporting Materials
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(a) Log likelihood over iterations

(b) Number of clusters over iterations

(c) α parameter posterior over iterations

Figure A.1: Convergence diagnostic plots for the DPMM on multivariate
Gaussian data.
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(a) Log likelihood over iterations

(b) Number of clusters over iterations

(c) α parameter posterior over iterations

Figure A.2: Convergence diagnostic plots for the DPMM on multinomial
data.
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(a) Multivariate Gaussian data

(b) Multinomial data

Figure A.3: Distortion plots for k-means clustering on (a) multivariate Gaus-
sian data, and (b) multinomial data.
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(a) Log likelihood over iterations

(b) Number of clusters over iterations

(c) Interarrivals parameter posterior over iterations

Figure A.4: Convergence diagnostic plots for the Metropolis-Hastings sam-
pler on President Joe Biden’s Twitter dataset.
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(a) Log likelihood over iterations

(b) Number of clusters over iterations

(c) α parameter posterior over iterations

Figure A.5: Convergence diagnostics for DPMM on President Joe Biden’s
Twitter dataset.
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Figure A.6: Distortion plot for k-means clustering on President Joe Biden’s
Twitter dataset.
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