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Abstract

The Kakeya maximal function conjecture is a quantitative, single scale

formulation of the Kakeya conjecture. Recently, algebraic methods have

been leading to progress in the Kakeya family of problems. In 2018, Katz

and Rogers proved a conjecture concerning the number of δ-tubes with δ-

separated directions which intersect a semialgebraic set with proportion at

least λ. We will discuss the proof of this result which involves real algebraic

geometry. We will then use this result to prove the Kakeya maximal function

conjecture for the special case when the mappings are semialgebraic.
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Lay Summary

This thesis is in the subject of harmonic analysis. Harmonic analysis is

the quantitative study of operators. An operator takes a complex valued

function as its input and returns a transformed complex valued function as

its output.

Interestingly harmonic analysis is connected to study of fractal like ob-

jects called Kakeya sets. A Kakeya set is a region of space which contains a

unit line segment in every direction. We wish to understand how small we

can make a Kakeya set and this question leads to the Kakeya conjecture.

Algebraic methods have been leading to progress on the Kakeya conjec-

ture. This thesis discusses some of the tools and progress in this direction.

iv



Preface

In chapter 1, we will discuss the Kakeya conjecture and the current status

of progress towards proving it. Chapter 2 discusses the Kakeya maximal

function conjecture and its connection to the Kakeya conjecture. We then

will cover some real algebraic geometry in chapter 3 because it will be re-

quired in chapter 4 where we will discuss the proof of the result of Katz

and Rogers [17]. Chapter 5 is dedicated to the proof of the main result of

the thesis which is that the Kakeya maximal function conjecture holds for

semialgebraic mappings. This is an original, unpublished result which is the

joint work of the author and his supervisors, Drs. Izabella  Laba and Joshua

Zahl.
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Chapter 1

Introduction

This chapter will introduce the basic objects of study in this thesis: Kakeya

sets and the Kakeya conjecture. In 1917, Soichi Kakeya asked whether there

is a minimum area of a region D in the plane, in which a needle of unit

length can be rotated a full circle. This question came to be known as the

Kakeya needle problem. In 1928, Besicovitch showed that we can find a set

of arbitrarily small area in which this can be done and he also constructed

a set of Lebesgue measure zero which has a unit segment pointing in every

direction [1]. These sets are considered important because of their surprising

connections to problems in oscillatory integrals (harmonic analysis), the

analysis of dispersive and wave equations (PDE), combinatorics and number

theory [3, 23, 26]. We will begin by constructing these sets by using a variant

of Besicovitch’s construction.

1.1 Kakeya sets of measure zero

Definition 1.1.1. A Kakeya set (sometimes called Besicovitch set) in Rn

is a compact set E ⊂ Rn containing a unit line segment in every direction

i.e for every e ∈ Sn−1, there exists x ∈ Rn such that x + te ∈ E for all

t ∈ [−1/2, 1/2].

We now wish to prove the following theorem.
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Theorem 1.1.1. There exist Kakeya sets of measure zero in Rn for every

n ≥ 2.

Suppose we have a Kakeya set K in R2, then K × [−1, 1]n−2 is clearly a

Kakeya set in Rn. Hence, it suffices to show existence of measure zero Kakeya

sets in dimension two. Define a G-set to be a compact set E ⊂ R2 such that

for any m ∈ [0, 1], there is a line segment contained in E connecting x = 0

and x = 1 with slope m i.e. for all m ∈ [0, 1], there exists b ∈ R such that

mx+ b ∈ E ∀x ∈ [0, 1]. Clearly it suffices to prove existence of measure zero

G-sets. We will explicitly construct such a set using a variant of Besicovitch’s

construction first done by Sawyer [22]. If l = {(x, y) : 0 ≤ x ≤ 1, y = mx+b},
then we define

Sδl = {(x, y) : 0 ≤ x ≤ 1, |y − (mx+ b)| ≤ δ}

which is essentially the δ neighborhood of l.

Before doing a rigorous proof, we now give an informal sketch to moti-

vate the formal construction. The sketch involves the involves the sliding of

triangles: we start from a right triangle with vertices (0,0), (0,1) and (1,0)

which is clearly a G-set. Let N be a large integer. Subdivide the triangle

into N first stage triangles by subdividing the vertical side in N equal inter-

vals. Leave the top triangle alone and slide the others upward so that their

intersections with the line x = 0 all coincide. Next, subdivide each of the

first stage triangles into N second stage triangles as in the previous step.

Now leave the top triangle in each group alone and slide the N − 1 others

upward until the intersections of the N triangles in the group with the line

x = 1/N all coincide. Now subdivide again and repeat at x = 2/N . Keep

repeating this process at x = 3/N , x = 4/N ,..., x = (N − 1)/N . We end

up with a shape which has a really small area. This completes our informal

sketch.

With this sketch in mind we work towards a formal construction to prove
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the theorem. Define

AN =

{ N∑
j=1

aj
N j

: aj ∈ {0, 1, ..., N − 1}
}
.

Further for a ∈ AN define

φa(t) =

N∑
j=1

(Nt− j + 1)aj
N j+1

.

The line la = {(t, φa(t)} is the final position of the line with slope a in the

subdividing and shifting of triangles described.

Lemma 1.1.2. For each t ∈ [0, 1], there is an integer k ∈ {1, 2, ..., N} and

a set of Nk−1 intervals each of length 2N−k whose union contains the set

{φa(t) : a ∈ AN}.

Proof. Choose an integer k from the set {1, 2, . . . , N} such that k−1
N ≤ t ≤

k
N . Define a, b ∈ AN to be equivalent if aj = bj when j ≤ k− 1. Then there

will be Nk−1 equivalence classes. Suppose a is equivalent to b, then

|φa(t)− φb(t)| ≤
N∑
j≥k

|Nt− j + 1|(N − 1)

N j+1
.

Since k − 1 ≤ Nt ≤ k, we have |Nt− j + 1| ≤ max(j − k, 1). Therefore

|φa(t)− φb(t)| ≤
N − 1

Nk+1

N∑
j≥k

max(j − k, 1)

N j−k ≤ 2

Nk
.

Corollary 1.1.3. Let N be sufficiently large. Then there is a G-set EN ⊂
[0, 1]× [−1, 1] which intersects every vertical line in measure ≤ 4/N and in

particular |EN | ≤ 4
N .

Proof. Let EN =
⋃
a∈AN S

N−N
la

. Using the previous lemma, it is easy to see

that this is a G-set with the required properties.
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The above lemma would allow us to construct Kakeya sets of arbitrary

small measure. We need a little more work to get one of measure zero.

Lemma 1.1.4. For every G-set E and every ε > 0, η > 0, there is another

G-set F , which is contained in the ε neighborhood of E and has measure

< η.

Proof. Let {mj} = {jε}b1/εcj=0 and for each j, choose bj such that we have

lj = {(x, y) : 0 ≤ x ≤ 1, y = mjx+ bj} ⊂ E. Now define the function

Aj : [0, 1]× [−1, 1]→ Sεlj Aj(x, y) = (x,mjx+ bj + εy).

Now define

F =

b1/εc⋃
j=0

Aj(EN ).

Aj maps slopes as µ 7→ mj + εµ. This implies that F is a G-set which is

contained in the ε neighborhood of E. Aj contracts areas by a factor of ε,

therefore

|F | ≤
b1/εc∑
j=0

|Aj(EN )| ≤ b1/εcε 4

N
≤ 4

N
.

Proof of Theorem 1.1.1. Suppose we had a sequence {Fn}∞n=0 of G-sets

and a sequence of numbers {εn}∞n=0 converging to 0 such that the following

properties hold when n ≥ 1

(a) Fn(εn) ⊂ Fn−1(εn−1)

(b) |Fn(εn)| < 2−n.

where F (ε) is the open ε neighborhood of F . Let Kn = Fn(εn), then the set

E = ∩nKn is compact with measure zero. Fix m ∈ [0, 1]. Let mx+ bj be a

line of slope m in Kj . We can find a convergent subsequence of bj which we

also denote by bj . The limit b ∈ E as each Kj is closed. Fix t ∈ [0, 1], then

(0,mt+ bj)→ (0,mt+ b) which lies in E by the same argument. Hence E is

a G-set and so it is left to show such {Fn}∞n=0 and {εn}∞n=0 with prescribed
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properties exist. We can construct such a sequence by induction quite easily.

This completes the proof.

1.2 Hausdorff dimension and Minkowski dimen-

sion

While we have shown the existence of Kakeya sets of measure zero, Kakeya

sets may be big in some other sense. To investigate this, we introduce the

Hausdorff and Minkowski dimensions. These dimensions give us a way to

measure the size of fractal like objects such as Kakeya sets of measure zero.

First we define the Hausdorff dimension. Let E ⊂ Rn and fix α > 0. For

ε > 0, we define Hε
α(E) = inf

(∑
j r

α
j

)
where the infimum is taken over all

countable coverings of E by balls of radius less than ε. Now we define the

α Hausdorff measure to be

Hα(E) = lim
ε→0+

Hε
α(E) = lim

ε→0+
inf

(∑
j

rαj

)
. (1.1)

The above limit makes sense because Hε
α increases as ε decreases, although

the limit may be +∞. Also Hα(E) is clearly a non increasing function of α.

The following fact is useful: Hα(E) = 0 iff
∑

j r
α
j can be made arbitrarily

small.

Lemma 1.2.1. If E ⊂ Rn, then we have Hα(E) = 0 for all α > n.

Proof. Let ε > 0, then ri = εi−1/n < ε for all i ≥ 1. Let Ci be a closed

cube of diameter 2Ni where Ni is chosen such that 2Ni ≤ ri < 2Ni+1 (we

will fix the center later). Since
∑

i r
n
i = ∞, we have

∑
i |Ci| = ∞ where

|Ci| indicates the Lebesgue measure in Rn. If we have a collection of dyadic

cubes such that the sum of the n-dimensional volumes of all the cubes in

the collection is infinite, then we can pack Rn with this collection by choos-

ing appropriate centers for the cubes. Further for any α > n, the series∑
j r

α
j converges and goes to 0 as ε → 0. As any cube (respectively ball)

can be sandwiched between balls (respectively cubes) of comparable radii

(respectively sidelength), we are done.
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Lemma 1.2.2. There is a unique number α0, called the Hausdorff dimension

of E, such that Hα(E) =∞ if α < α0 and Hα(E) = 0 if α > α0.

Proof. Define α0 to be supremum of α such that Hα(E) = ∞. Suppose

α > α0. Pick β ∈ (α0, α). Then Hβ(E) <∞. Let M = Hβ(E) + 1. Now by

definition of Hausdorff measure, for every ε > 0 there exists covering of E

such that
∑

j r
β
j < M where rj < ε. For this covering

∑
j r

α
j ≤ εα−β

∑
j r

β
j <

εα−βM . So Hα(E) = 0.

Note that from Lemma 1.2.1, we have that the maximum Hausdorff

dimension of a subset of Rn is n. We will denote Hausdorff dimension of

E by dimH(E). We will next define the Minkowski dimension. Before the

rigorous definition, we informally discuss the idea behind the definition. Let

E be a measure zero compact set. Denote Eδ = {x ∈ Rn : d(x,E) < δ}.
Now |Eδ| → 0 as δ → 0. The Minkowski dimension quantifies how fast |Eδ|
approaches 0.

Definition 1.2.1. For any bounded subset E ⊂ Rn, the upper Minkowski

dimension of E is

dimM (E) = inf{s > 0 : lim sup
δ→0+

δs−n|Eδ| = 0},

and the lower Minkowski dimension of E is

dimM (E) = inf{s > 0 : lim inf
δ→0+

δs−n|Eδ| = 0}.

We will usually be concerned with lower Minkowski dimension and hence by

default, Minkowski dimension will be lower Minkowski dimension. In accor-

dance with this convention, dimM (E) denotes lower Minkowski dimension

of E.

Remark 1.2.1. Clearly we have dimM (E) ≥ dimM (E). Using arguments
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similar to the ones in the proof of lemma 1.2.2, we can show

dimM (E) = inf{s > 0 : lim sup
δ→0+

δs−n|Eδ| <∞}

= sup{s > 0 : lim sup
δ→0+

δs−n|Eδ| =∞}

= sup{s > 0 : lim sup
δ→0+

δs−n|Eδ| > 0}.

Similar statements exist for dimM (E).

Remark 1.2.2. An alternative definition of Minkowski dimension is as fol-

lows. Let E ⊂ Rn be bounded. The lower Minkowski dimension is the

supremum over α such that |Eδ| ≥ Cαδ
n−α for all δ ∈ (0, 1). The upper

Minkowski dimension is the supremum over α such that |Eδ| ≥ Cαδ
n−α for

a sequence of δ’s that converges to 0. The proof of equivalence follows from

the previous remark.

The Minkowski dimension is in some sense less sensitive than the Haus-

dorff dimension because in the Minkowski dimension we use balls of equal

radius whereas in Hausdorff dimension the balls may have different radius.

The following lemma is a formalization of this intuition.

Lemma 1.2.3. Let E ⊂ Rn be a bounded set. Then dimH(E) ≤ dimM (E).

Proof. Let Nδ be the maximum number of balls of radius δ centered at points

in E that are disjoint. Now clearly |Eδ| ≥ NδCnδ
n where Cn is the Lebesgue

measure of the unit ball. Pick xi ∈ E such that B(x1, δ), . . . , B(xNδ , δ) are

disjoint. Then B(x1, 2δ), . . . , B(xNδ , 2δ) covers E since if there exists x ∈
E \ ∪Nδi=1B(xi, 2δ), then the balls B(x1, δ), . . . , B(xNδ , δ), B(x, δ) would be

disjoint contradicting maximality of Nδ. If α < dimH(E), then by definition

of Hausdorff dimension, Nδ(2δ)
α → ∞ as δ → 0. So |Eδ| ≥ Cαδ

n−α for δ

small.

1.3 Kakeya conjecture

Having defined the Hausdorff and Minkowski dimension, we are ready to

state the Kakeya conjecture.
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Conjecture 1.3.1. Kakeya Conjecture. If E ⊂ Rn is a Kakeya set (n ≥
2), E has Hausdorff dimension n and consequently Minkowski dimension n.

This is an open problem but there are partial results. We will outline

some of the junctions towards proving the full conjecture. For n = 2, the

conjecture was proved by Davies in 1971 [8] and the maximal function for-

mulation (discussed in next chapter) was proved by Cordoba in 1977 [6]

using L2 arguments and bounds on volume of the intersection of tubes. For

higher dimensions only partial results exist. Using the geometric ”bush ar-

gument”, Drury in 1983 [9] and Christ, Duoandikoetxea, Rubio de Francia

in 1986 [5] were able to prove that Kakeya sets for n ≥ 3 had dimension at

least (n+1)/2. In 1995, Wolff [25] improved this bound using the geometric

”hairbrush argument” to (n+ 2)/2.

Bourgain made the important contribution of using combinatorics to

make progress on the conjecture which also inspired later progress [3]. For

n = 3, Katz,  Laba, Tao in 2000 [16] proved that the Minkowski dimension

of Kakeya sets is strictly greater than 5/2 and in 2017, Katz and Zahl [20]

proved the same for the Hausdorff dimension.

There is also a finite field analogue of the Kakeya problem which was

first proposed by Wolff [26]. In a major breakthrough Dvir [10] proved the

finite field analogue of the Kakeya conjecture in 2008 using an algebraic ar-

gument involving polynomials. This breakthrough has inspired application

of algebraic/polynomial methods to make progress on the Kakeya conjec-

ture and related problems in Euclidean setting. We shall discuss more about

this in chapter 3. Some developments have been skipped here for the sake

of brevity and one can find a more comprehensive discussion in the survey

articles by Wolff [26] and Katz, Tao [19].

The Kakeya problem may also be thought of as a packing problem of

tubes which we now describe. First we define a tube.

Definition 1.3.1. We define the δ-tube centered at a ∈ Rn pointing in the

direction e ∈ Sn−1 as the set T δe (a) = {x ∈ Rn : |(x−a)·e| ≤ 1/2, |(x−a)⊥| ≤
δ}.

Here x⊥ = x − (x · e)e. So T δe (a) is essentially the δ−neighborhood of

8



the unit line segment in the e direction centered at a. We will often denote

tubes just by T . Any tube T has two elements e,−e of Sn−1 parallel to it.

We call the set {e,−e} the orientation of the tube T . The spherical distance

dists(e, e
′) between the vectors e, e′ ∈ Sn−1 is given by cos−1(e · e′). We now

define the separation between two tubes.

Definition 1.3.2. Let T , T ′ be two tubes with orientations {e1,−e1} and

{e2,−e2} respectively. We define angular separation between two tubes

∠(T, T ′) to be the minimum of dists(±e1,±e2).

Note that ∠(T, T ′) ≤ π/2 for any two tubes T, T ′. The spherical distance

and Euclidean distance are comparable on Sn−1 i.e for x, y ∈ Sn−1, we have

|x− y| ≤ dists(x, y) ≤ π
2 |x− y|. So we could choose to work with Euclidean

distance but the spherical distance is more convenient.

Definition 1.3.3. A collection T of δ-tubes is said to be pointing in δ-

separated directions if ∠(T, T ′) > δ for every distinct pair T, T ′ ∈ T. It is

further said to be maximal if we cannot add another tube to it and preserve

this property.

For the purpose of stating the Kakeya conjecture for tubes, we define

the following quantity:

F (δ) = inf
T

∣∣ ⋃
T∈T

T
∣∣

where we are taking infimum over all maximal collections of δ-tubes T point-

ing in δ-separated directions. If T consists of disjoint tubes, then clearly the

size of the union is ∼n 1. By arranging the tubes in a fractal like pattern as

in the Besicovitch construction, we get the following lemma.

Lemma 1.3.2. F (δ) .n
1

log( 1
δ

)
. In particular F (δ)→ 0 as δ → 0.

The Kakeya conjecture in terms of tubes is a statement regarding the

rate at which F (δ) approaches 0 as δ → 0.

Conjecture 1.3.3. Kakeya Conjecture for tubes. F (δ) &ε δ
ε for every

ε > 0.

9



The above conjecture clearly would imply that Kakeya sets in Rn have

Minkowski dimension n. One can interpret the above conjecture as saying

that a maximal collection of δ-tubes pointing in δ-separated directions is

essentially disjoint. We can drop the maximal condition to get a more

general conjecture i.e if T is a collection of δ-tubes pointing in δ-separated

directions, then ∣∣ ⋃
T∈T

T
∣∣ &ε δ

ε(δn−1|T|).

Rearranging the above inequality, we get the following equivalent version

which we will call the generalized Kakeya conjecture for tubes.

Conjecture 1.3.4. Generalized Kakeya conjecture for tubes. Let

E ⊂ Rn be a Lebesgue measurable set. The number of δ-tubes pointing in

δ-separated directions that can be contained in E is less than or equal to

Cεδ
1−n−ε|E|.

10



Chapter 2

Kakeya Maximal Function

Conjecture

2.1 Operator version of KMFC

The Kakeya conjecture is closely connected to a maximal operator which

is consequently called the Kakeya maximal function. It looks similar to

the Hardy-Littlewood maximal function but the geometry is fundamentally

different and hence the methods do not translate. Now we define the Kakeya

maximal function (operator).

Definition 2.1.1. Suppose f ∈ L1
loc(Rn) and δ > 0, then we define the

Kakeya maximal function f∗δ : Sn−1 → [0,∞] by

f∗δ (e) = sup
a∈Rn

1

|T δe (a)|

∫
T δe (a)

|f |. (2.1)

Remark 2.1.1. We have the following trivial bounds: ‖f∗δ ‖L∞(Sn−1) ≤
‖f‖L∞(Rn) and ‖f∗δ ‖L∞(Sn−1) ≤ Cnδ

−(n−1) ‖f‖L1(Rn). Now if f ∈ Lp(Rn)

for 1 < p <∞, then by Hölder’s inequality, we get

1

|T δe (a)|

∫
T δe (a)

|f | ≤ 1

|T δe (a)|

(∫
Rn
|f |p

)1/p

|T δe (a)|1/p′ =
1

|T δe (a)|
1
p

(∫
Rn
|f |p

)1/p

.

11



Hence ‖f∗δ ‖L∞(Sn−1) ≤ Cn,p δ
1−n
p ‖f‖Lp(Rn). As Sn−1 has finite measure, we

can replace the L∞ norm on the left hand side with a Lq norm, for any

q ≥ 1. In particular for a fixed δ, the operator f 7→ f∗δ is bounded from

Lp(Rn) to Lq(Sn−1) for any 1 ≤ p, q ≤ ∞.

Remark 2.1.2. The following example shows that no bound of the form

‖f∗δ ‖Lp(Sn−1) ≤ C ‖f‖Lq(Rn) where C was independent of δ and 1 ≤ q < ∞
can hold. Take E to be a Kakeya set of measure zero and set f = χEδ , then

clearly f∗δ ≡ 1. But the Lq norm of f goes to 0 as δ → 0. This shows that

the operator norm blows up as we make δ small and hence we cannot have

such a C independent of δ. The real questions are in understanding how the

operator norms blow up as δ → 0.

By remark 2.1.1, we have ‖f∗δ ‖n ≤ Cnδ
−(1−n−1) ‖f‖n. We can ask

whether we can shrink the power of δ further.

Conjecture 2.1.1. Kakeya Maximal Function Conjecture (Opera-

tor version). For each ε > 0, there exists Cε such that

‖f∗δ ‖n ≤ Cεδ
−ε ‖f‖n .

Remark 2.1.3. The following example shows that no bound of the above

form with p < n instead of n can hold. Assume to the contrary that such a

bound does hold. Let f = χB(0,δ), then f∗δ (e) ∼n δ. Therefore ‖f∗δ ‖p ∼n,p δ
and ‖f‖p ∼n,p δn/p, which implies δ ≤ Cn,p,εδ−εδn/p. This is a contradiction,

hence p ≥ n.

Theorem 2.1.2. The operator version of the Kakeya maximal function con-

jecture (conjecture 2.1.1) implies the Kakeya conjecture (conjecture 1.3.1).

Proof. Let us first do the easy case of the Minkowski dimension. Let E ⊂ Rn

be a Kakeya set and f = χEδ . Then f∗δ ≡ 1 and ‖f‖n = |Eδ|1/n. Applying

the hypothesis to f , we get

1 .ε δ
−ε|Eδ|1/n i.e. |Eδ| &ε δ

ε.

12



This proves the Minkowski dimension of E is n. Now let us show the Haus-

dorff dimension of E is n. It is sufficient to prove Hα(E) 6= 0 for all α < n.

Let {B(xj , rj)} be a cover of E which we may assume to be finite and

rj < 1/100 without loss of generality. We need to show that there is a con-

stant cα > 0 (independent of the cover {B(xj , rj)} so that
∑
rαj > cα. We

now dyadically pigeonhole the radii. So let Jk = {j : 2−k < rj ≤ 2−k+1}.
For e ∈ Sn−1, let Ie denote a line segment in E parallel to e. Let

Ωk =

{
e ∈ Sn−1 : |Ie ∩

⋃
j∈Jk

B(xj , rj)| ≥
1

100k2

}
.

Now as
∑

k
1

100k2
< 1, we have ∪∞k=1Ωk = Sn−1. Let Ek = ∪j∈JkB(xj , 10rj)

and let f = χEk . Note that f does depend on k. Let ae be the midpoint of

Ie, then for e ∈ Ωk, we have

|T 2−k
e (ae) ∩ Ek| ≥

1

100k2
|T 2−k
e (ae)|.

Therefore ∥∥f∗2−k∥∥nn ≥ ∫
Ωk

|f∗2−k |
n & |Ωk|

1

k2n
. (2.2)

But by our hypothesis, we have

∥∥f∗2−k∥∥nn .ε 2kεn|Ek| . 2kεn|Jk| 2−kn (2.3)

for 0 < ε < 1− n−1. So combining 2.2 and 2.3, we get

|Ωk| .ε k
2n2−kn(1−ε)|Jk|.

Now clearly k2n .ε, 2
kεn. Thus we get

|Ωk| .ε 2−kn(1−2ε)|Jk|

for 0 < ε < 1− n−1. Using this, we obtain∑
j

r
n(1−2ε)
j ≥

∑
k

2−kn(1−2ε)|Jk| &ε

∑
k

|Ωk| & 1,

13



since ∪∞k=1Ωk = Sn−1. As the above inequality holds for arbitrarily small ε,

we are done.

2.2 Lp versions of KMFC

We will now discuss some conjectures which do not involve any operator

but involve getting upper bounds for Lp norms of functions which are given

in terms of characteristic functions of δ-tubes pointing in δ-separated direc-

tions. We will call these conjectures Lp versions of Kakeya maximal function

conjecture. We will explore the connection to the operator version of the

Kakeya maximal function conjecture.

Conjecture 2.2.1. Lp KMFC I. Suppose T is a collection of δ-tubes

pointing in δ-separated directions and suppose we have numbers yT ≥ 0

(where T ∈ T) satisfying

δn−1
∑
T∈T

y
n
n−1

T ≤ 1.

Then we have

∥∥∥∥ ∑
T∈T

yTχT

∥∥∥∥
n
n−1

.ε δ
−ε.

We will show that the above conjecture implies the operator KMFC

(conjecture 2.1.1) using the following technical lemma.

Lemma 2.2.2. Let 1 < p <∞ and let p′ be the dual exponent of p. Suppose

the following holds: if T is a maximal collection of δ-tubes pointing in δ-

separated directions and we have numbers yT ≥ 0 (where T ∈ T) satisfying

δn−1
∑

T∈T y
p′

T ≤ 1, then ∥∥∥∥∥∑
T∈T

yTχT

∥∥∥∥∥
p′

≤ Aδ.

Then we have a bound

‖f∗δ ‖p . Aδ ‖f‖p .

14



Proof. Let {ek} be a maximal δ-separated subset of Sn−1. Suppose dists(e, e
′) ≤

δ, then any tube of thickness δ pointing along e can be covered by C tubes

again of thickness δ pointing in the direction e′ where C depends only on n.

Now suppose dists(e, e
′) ≤ δ and fix a tube T δe (a) parallel to e. Let

T δe′(a
′
1), . . . T δe′(a

′
C) be a collection of C tubes parallel to e′ that cover T δe (a).

Then we have

1

|T δe (a)|

∫
T δe (a)

|f | ≤ 1

|T δe (a)|

[∫
T δ
e′ (a
′
1)
|f |+. . .+

∫
T δ
e′ (a
′
C)
|f |

]
≤ Cf∗δ (e′). (2.4)

So we have f∗δ (e) ≤ Cf∗δ (e′) and so

‖f∗δ ‖
p
p .

∑
k

∫
dists(ek,e)≤δ

|f∗δ (e)|p de

.
∑
k

|f∗δ (ek)|pδn−1

= δn−1
(∑

k

|f∗δ (ek)|zk
)p
,

where
∑

k z
p′

k = 1. Let

yk =
zk

δ
n−1
p′
, then, we have δn−1

∑
k

yp
′

k = 1.

Substituting ykδ
n−1
p′ for zk, we get

‖f∗δ ‖p . δ
n−1
p

∑
k

|f∗δ (ek)|ykδ
n−1
p′ = δn−1

∑
k

yk|f∗δ (ek)|.

Using the definition of the Kakeya maximal function, we can find ak ∈ Rn

15



such that

‖f∗δ ‖p . δn−1
∑
k

yk
1

|T δek(ak)|

∫
T δek

(ak)
|f |

.
∫
Rn

(∑
k

ykχT δek (ak)

)
|f |

≤

∥∥∥∥∥∑
k

ykχT δek (ak)

∥∥∥∥∥
p′

‖f‖p ≤ Aδ ‖f‖p .

Corollary 2.2.3. Lp KMFC I (conjecture 2.2.1) implies operator version

of KMFC (conjecture 2.1.1).

Suppose T is a maximal collection of δ-tubes pointing in δ-separated

directions and suppose we have numbers yT ≥ 0 (where T ∈ T) satisfying

δn−1
∑

T∈T y
n
n−1

T = 1. If we further impose that all yT must be equal, then

yT ∼ 1 for all T ∈ T. This observation leads to the following apparently

weaker conjecture.

Conjecture 2.2.4. Lp KMFC II. Suppose T is a maximal collection of

δ-tubes pointing in δ-separated directions, then∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
n
n−1

.ε δ
−ε.

This conjecture is more geometric in nature. The function
∑

T∈T χT

counts the number of tubes passing through a point. We will establish

that Lp KMFC II (conjecture 2.2.4) is equivalent to Lp KMFC I (conjec-

ture 2.2.1), and hence it implies the operator KMFC (conjecture 2.1.1) and

hence also the Kakeya conjecture (conjecture 1.3.1). But there is a easy and

insightful way to see how Lp KMFC II (conjecture 2.2.4) implies the Kakeya

conjecture for tubes (conjecture 1.3.3) and consequently the Minkowski di-

mension part of the Kakeya conjecture (conjecture 1.3.1). Suppose T is

a maximal collection of δ-tubes pointing in δ-separated directions. Using

16



Hölder’s inequality, we get∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
n
n−1

∣∣∣∣ ⋃
T∈T

T

∣∣∣∣1/n ≥
∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
1

=
∑
T∈T
|T | ∼ 1. (2.5)

Assuming Lp KMFC II (conjecture 2.2.4), we get∣∣∣∣ ⋃
T∈T

T

∣∣∣∣ &ε δ
ε.

This proves the Kakeya conjecture for tubes (conjecture 1.3.3) and implies

Minkowski dimension of Kakeya sets is n. We have another equivalent Lp

version of KMFC which we now state and then our next goal will be to

establish all the three versions of Lp KMFC are equivalent.

Conjecture 2.2.5. Lp KMFC III. Suppose T is a (not necessarily maxi-

mal) collection of δ-tubes pointing in δ-separated directions, then∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
n
n−1

.ε δ
−ε(δn−1|T|)

n−1
n .

Lp KMFC III (conjecture 2.2.5) is clealry stronger than Lp KMFC II

(conjecture 2.2.4). But in fact both are equivalent, a theorem which we will

only state but not prove. The proof can be found in the lecture notes of a

course by Tao [24].

Theorem 2.2.6. Lp KMFC II (conjecture 2.2.4) implies Lp KMFC III

(conjecture 2.2.5).

Lp KMFC I (conjecture 2.2.1) clearly implies Lp KMFC II (conjecture

2.2.4). But we also have that Lp KMFC III (conjecture 2.2.1) implies Lp

KMFC I (conjecture 2.2.1), making all three equivalent. We will again state

the theorem without proof.

Theorem 2.2.7. Lp KMFC III (conjecture 2.2.5) implies Lp KMFC I (con-

jecture 2.2.1).

17



A sketch of the proof is as follows: firstly note Lp KMFC III (conjecture

2.2.5) is special case of Lp KMFC I (conjecture 2.2.1) when some elements

are equal to each other and the rest are zero. We can prove in general by

dyadic pigeonholing.

We summarize the hierarchy and interrelations between the conjectures

in the following diagram:

Lp KMFC II(conjecture 2.2.4) =⇒ KCT(conjecture 1.3.3) ⇐⇒ GKCT(conjecture 1.3.4)

m
Lp KMFC I(conjecture 2.2.1) =⇒ KMFC(conjecture 2.1.1) =⇒ KC(conjecture 1.3.1)

m
Lp KMFC III(conjecture 2.2.5)

2.3 Interpolation and partial conjectures

We can interpolate between the Kakeya maximal function conjecture esti-

mates and some trivial estimates to get some new conjectures. Proving these

conjectures give partial progress on the Kakeya conjecture.

We have the trivial inequality

‖f∗δ ‖L∞(Sn−1) . δ−(n−1) ‖f‖L1(Rn) .

Assume the operator version of KMFC (conjecture 2.1.1) is true, then we

have

‖f∗δ ‖Ln(Sn−1) .ε δ
−ε ‖f‖Ln(Rn) .

As the Kakeya maximal function is a sublinear operator, we can apply

Marcinkiewicz interpolation and get the following conjecture.

Conjecture 2.3.1. Partial KMFC (operator version). For 1 ≤ p < n,

we have

‖f∗δ ‖Lp(Sn−1) .ε δ
−n
p

+1−ε ‖f‖Lp(Rn) .

The interpolation actually yields a higher exponent on the LHS which

we can reduce as Sn−1 has finite measure. A way to see how this is the best

possible bound for the Kakeya maximal function is by taking f = χB(0,δ) and

18



suppose ‖f∗δ ‖p .a δ
−a ‖f‖p. Then we have δ .a δ

−aδn/p i.e δ
n
p
−a−1 &a 1

which implies a ≥ n
p − 1.

Lemma 2.3.2. The partial operator version of KMFC (conjecture 2.3.1)

implies that Kakeya sets in Rn must have both Hausdorff and Minkowski

dimension equal to at least p.

Proof. We first prove it for the Minkowski dimension. Let E ⊂ Rn be a

Kakeya set and let f = χEδ . Then applying this conjecture to f , we have

1 .ε δ
−n
p

+1−ε|Eδ|1/p.

This implies |Eδ| & δn−(p−ε). This completes the proof of the Minkowski

dimension. Now we do the Hausdorff dimension. Let {B(xj , rj)} be a finite

cover of E and let Jk = {j : 2−k < rj ≤ 2−k+1}. For e ∈ Sn−1, let Ie denote

a line segment in E parallel to e. Let

Ωk =

{
e ∈ Sn−1 : |Ie ∩

⋃
j∈Jk

B(xj , rj)| ≥
1

100k2

}
.

Now as
∑

k
1

100k2
< 1, we have ∪∞k=1Ωk = Sn−1. Let Ek = ∪j∈JkB(xj , 10rj)

and let f = χEk . Note that f does depend on k. Let ae be the midpoint of

Ie, then for e ∈ Ωk, we have

|T 2−k
e (ae) ∩ Ek| ≥

1

100k2
|T 2−k
e (ae)|.

Therefore ∥∥f∗2−k∥∥pp ≥ ∫
Ωk

|f∗2−k |
p & |Ωk|

1

k2p
. (2.6)

But by our hypothesis, we have

∥∥f∗2−k∥∥pp .ε 2kn−kp+kεp|Ek| . 2kn−kp+kεp|Jk| 2−kn. (2.7)

So combining inequalities 2.6 and 2.7, we get

|Ωk| .ε k
2p2−kp(1−ε)|Jk| .ε 2−kp(1−2ε)|Jk|.
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Using this, we obtain∑
j

r
p(1−2ε)
j ≥

∑
k

2−kp(1−2ε)|Jk| &ε

∑
k

|Ωk| & 1,

since ∪∞k=1Ωk = Sn−1. As the above inequality holds for arbitrarily small ε,

we are done.

Now let us look at some partial conjectures of the Lp version of KMFC.

Suppose T is a maximal collection of δ-tubes pointing in δ-separated direc-

tions. Then, we clearly have∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
∞

. δ1−n.

Interpolating the above with Conjecture 2.2.4 i.e Lp KMFC II, we get the

following conjecture.

Conjecture 2.3.3. Partial Lp KMFC. Let p > n/(n−1). Suppose T is a

maximal collection of δ-tubes pointing in δ-separated directions. Then, we

have ∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
p

.ε δ
− n
p′+1−ε

.

To see that this inequality is sharp (at least up to the δ−ε factor), look

at the collection of tubes all passing through a sphere of radius δ. Then

LHS ≥ (|T|pδn)1/p ∼ δ−
n
p′+1

.

Lemma 2.3.4. The partial Lp KMFC (conjecture 2.3.3) implies conjecture

2.3.1 with exponent p′ and consequently that Kakeya sets in Rn must have

both Hausdorff and Minkowski dimension equal to at least p′.

Proof. We first give a direct and elementary proof that Kakeya sets in Rn

must have Minkowski dimension equal to at least p′. Applying Hölder’s

inequality, we get∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
p

∣∣∣∣ ⋃
T∈T

T

∣∣∣∣1/p′ ≥
∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
1

=
∑
T∈T
|T | ∼ 1.
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Now by applying the conjecture, we get∣∣∣∣ ⋃
T∈T

T

∣∣∣∣ &ε δ
n−p′+εp′ .

Hence Kakeya sets in Rn must have Minkowski dimension equal to at least

p′. Now that is completed, we establish the full lemma. If T is a maximal

collection of δ-tubes pointing in δ-separated directions and we have numbers

yT ≥ 0 (where T ∈ T) satisfying δn−1
∑

T∈T y
p
T ≤ 1, then∥∥∥∥∥∑

T∈T
yTχT

∥∥∥∥∥
p

.ε δ
− n
p′+1−ε

.

This follows from the proofs of theorems 2.2.6 and 2.2.7. The lemma now

follows by applying lemma 2.2.2.

As p decreases to n/(n−1), p′ increases to n. So by proving the conjecture

for values closer and closer to n/(n− 1), we get closer and closer to the full

Kakeya conjecture.
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Chapter 3

Real Algebraic Geometry

In 2008, Dvir [10] proved the finite field analogue of the Kakeya conjecture

using an algebraic argument involving polynomials. This breakthrough has

inspired application of algebraic/polynomial methods to make progress on

the Kakeya conjecture and related problems in the Euclidean setting. In

2010, Guth proved the endpoint bound for the multilinear Kakeya conjec-

ture using algebraic topology [13]. The restriction conjecture is a problem in

harmonic analysis concerning oscillatory integrals which implies the Kakeya

conjecture. In 2016, Guth ([11, 12]) made progress on the restriction con-

jecture using polynomial partitioning, a method originally used to solve the

Erdős distinct distances problem by Guth and Katz in 2015 [14]. There

have been some more algebraic developments which we will outline in the

following chapter while discussing the polynomial Wolff axioms. Now we

will discuss some basic theory of real algebraic geometry to develop the

background required for the next chapter.

3.1 Semialgebraic sets and mappings

In this section we will discuss the definition of semi algbraic sets and map-

pings. First we define algebraic sets and ideal vanishing on a set.

Definition 3.1.1. Let B be a subset of R[x1, . . . , xn]. Denote V (B) = {x ∈
Rn : f(x) = 0 for all f ∈ B} i.e V (B) is the set of simultaneous zeros of B
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(sometimes called the set carved out by B). Such sets are called algebraic

sets.

Definition 3.1.2. Given A ⊂ Rn, we define I(A) = {f ∈ R[x1, . . . , xn] :

f(x) = 0 for all x ∈ A} to be the ideal of R[x1, . . . , xn] of polynomials

vanishing on A.

We next define semialgebraic sets. A semialgebraic subset is a set of

points satisfying a boolean combination of polynomial equations and in-

equalities. Using set algebra/boolean algebra we can write any semialge-

braic set in a standard and simple form. This is why we make the following

equivalent definition.

Definition 3.1.3. A semialgebraic subset of Rn is a subset of the form

s⋃
i=1

ri⋂
j=1

{x ∈ Rn : fi,j ∗i,j 0},

where fi,j ∈ R[x1, . . . , xn] and ∗i,j is either = or <.

Any real algebraic variety can be written as the zero set of a single

polynomial and the degree of this polynomial tells us something about the

complexity of the variety. Motivated by this, we make the following defini-

tion.

Definition 3.1.4. The complexity of a semi algebraic set is the smallest

sum of the degrees of the polynomials appearing in a complete description

of the set.

We now define semialgebraic mappings.

Definition 3.1.5. Let S1 ⊂ Rm and S2 ⊂ Rn be two semialgebraic sets. A

mapping f : S1 → S2 is semialgebraic if its graph is semialgebraic in Rn+m.

It is not hard to see that maps which are given by rational functions

(quotient of polynomial functions) are semialgebraic. The complexity of a

semialgebraic mapping is simply defined as the complexity of the graph. We

will now discuss some properties of semialgebraic sets.
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3.2 The Tarski-Seidenberg Principle and projec-

tion of semialgebraic sets

In this section, we will prove a fundamental property of semialgebraic sets

which is that they are stable under projection i.e. the projection of semialge-

braic sets is semialgebraic. But first we need to prove the Tarski-Seidenberg

principle. To start with, for a ∈ R we affix the notation

sign(a) = 0 if a = 0,

sign(a) = 1 if a > 0,

sign(a) = −1 if a < 0.

Theorem 3.2.1. (The Tarski-Seidenberg principle) Let fi(x, Y ) =

hi,mi(Y )xmi + . . . + hi,0(Y ), where Y = (y1, y2, . . . , yn), for i = 1, . . . , s be

a sequence of non constant polynomials in n + 1 variables with coefficients

in Z. Let ε be a function from {1, 2, . . . , s} to {−1, 0, 1}. Then there ex-

ists a boolean combination B(Y ) (i.e a finite composition of disjunctions,

conjuctions and negations) of polynomial equations and inequalities in the

variables Y with coefficients in Z such that for every Ỹ ∈ Rn, the system
sign(f1(x, Ỹ )) = ε(1)

...

sign(fs(x, Ỹ )) = ε(s)

(3.1)

has a solution x in R iff B(Ỹ ) holds true.

The Tarski-Seidenberg principle proves semialgebraic sets are stable un-

der projection for a special class of semialgebraic sets. To see this, observe

that the set of points (x, Ỹ ) ∈ Rn+1 satisfying the system of equations (3.1)

defines a semialgebraic set S and the set of all Ỹ ∈ Rn such that the system

(3.1) has a solution x in R is the projection of S to its last n coordinates.

The main difficulty lies in proving the Tarski-Seidenberg principle, the sta-

bility of general semialgebraic sets under projection follows easily from it as
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we will see later on.

We will need the following notation to prove the Tarski-Seidenberg prin-

ciple. Let f1, . . . , fs be polynomials in R[x] and let x1 < . . . < xN be the

roots in R of all fi that are not identically zero. By convention we define

x0 = −∞, xN+1 = ∞. If Ik = (xk, xk+1), then sign(fi(x)) is constant for

x ∈ Ik, and is denoted as sign(fi(Ik)). The matrix with s rows and 2N + 1

colums whose ith row is

sign(fi(I0), sign(fi(x1)), sign(fi(I1)), . . . , sign(fi(xN )), sign(fi(IN ))

is denoted SIGN(f1, . . . , fs). If m = max({deg(fi) : i = 1, . . . , s}) then

N ≤ sm. The set of matrices with entries in {−1, 0, 1} having s rows and

2l + 1 columns, for l = 0, . . . , sm is denoted by Ws,m.

Next let ε be a function from {1, 2, . . . , s} to {−1, 0, 1}, then we define

W (ε) to be the subset of Ws,m whose elements are matrices having one of

their columns coinciding with the sequence ε(1), . . . , ε(s). Then clearly for

every sequence of polynomials f1, . . . , fs in R[x] of degree ≤ m, the system
sign(f1(x)) = ε(1)

...

sign(fs(x)) = ε(s)

has a solution x in R iff SIGN(f1, . . . , fs) ∈W (ε).

Lemma 3.2.2. There exists a mapping φ from W2s,m to Ws,m such that

for every sequence of polynomials f1, . . . , fs in R[x] of degrees ≤ m, with fs

nonconstant and none of the f1, . . . , fs−1 identically zero, we have

SIGN(f1, . . . , fs) = φ(SIGN(f1, . . . , fs−1, f
′
s, g1, . . . , gs)),

where f ′s is the derivative of fs, and g1, . . . , gs are remainders of the euclidean

division of fs by f1, . . . , fs−1, f
′
s

Proof. Let x1 < . . . < xN be the roots of those polynomials among f1, . . . , fs−1, f
′
s, g1, . . . , gs

that are not identically zero. Extract from these roots the subsequence
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xi1 < . . . < xiM of the roots of the polynomial f1, . . . , fs−1, f
′
s. The sequence

i1, . . . , iM depends only on w = SIGN(f1, . . . , fs−1, f
′
s, g1, . . . , gs). By con-

vention let i0 = 0 with x0 = −∞ and let iM+1 = N + 1 with xN+1 = +∞.

For k = 1, . . . ,M at least one of the polynomials f1, . . . , fs−1, f
′
s vanishes

at xik and this gives rise to a mapping θ : {1, . . . ,M} → {1, . . . , s}. This

mapping can be deduced from w alone and we also have fs(xik) = gθ(k)(xik).

In each of the intervals (xik , xik+1
), the polynomial fs may have a single root

or no root at all since the fs is either monotonically decreasing or increasing

on each of the intervals. Suppose M 6= 0, we can say that fs has a root

(a) in (xik , xik+1
) for k = 1, . . . ,M−1 iff sign(gθ(k)(xik)) sign(gθ(k+1)(xik+1

)) =

−1,

(b) in (−∞, xi1) iff sign(f ′s(−∞, x1)) sign(gθ(1)(xi1)) = 1,

(c) in (xiM ,+∞) iff sign(f ′s(xN ,+∞)) sign(gθ(M)(xiM )) = −1.

If M = 0, then we will have a single root in (−∞,∞). Now let y1 < . . . < yL

(with L ≤ sm) be the roots of the polynomials f1, . . . , fs. As before, let

y0 = −∞ and yL+1 = +∞. Define the function

ρ : {0, . . . , L+ 1} → {0, . . . ,M + 1} ∪ {(k, k + 1) : k = 0, . . . ,M}

l 7→

k if yl = xik ,

(k, k + 1) if yl ∈ (xik , xik+1
).

We have already seen that L and the function ρ depends only on w. We can

now verify that SIGN(f1, . . . , fs) depends only on w. For j = 1, . . . , s − 1,

we have

• if ρ(l) = k, then sign(fj(yl)) = sign(fj(xik)),

• if ρ(l) = (k, k + 1), then sign(fj(yl)) = sign(fj(xik , xik+1
)),

• also if ρ(l) = k or ρ(l) = (k, k+1), then sign(fj(yl, yl+1)) = sign(fj(xik , xik+1
).

Now we deal with the case j = s, we have

26



• if ρ(l) = k, then sign(fs(yl)) = sign(gθ(k)(xik),

• if ρ(l) = (k, k + 1), then sign(fs(yl)) = 0,

• if l = 0, then sign(fs(−∞, y1)) = − sign(f ′s(−∞, x1)),

• if l 6= 0 and ρ(l) = k, then sign(fs(yl, yl+1) = sign(gθ(k)(xik) if this is

nonzero, otherwise sign(fs(yl, yl+1) = sign(f ′s(xik , xik+1
)),

• if l 6= 0 and ρ(l) = (k, k+1), then sign(fs(yl, yl+1) = sign(f ′s(xik , xik+1
)).

The Tarski-Siedenberg principle follows from the following proposition

which we will prove using the above lemma.

Proposition 3.2.3. Let fi(x, Y ) = hi,mi(Y )xmi + . . .+ hi,0(Y ), where Y =

(y1, y2, . . . , yn), for i = 1, . . . , s be a sequence of non constant polynomials

in n+ 1 variables with coefficients in Z. Further let m = max({mi : i ≤ s}).
Let W ′ be a subset of Ws,m, then there exists a boolean combination B(Y )

of polynomial equations and inequalities in the variables Y with coefficients

in Z such that for every Ỹ ∈ Rn, we have

SIGN(f1(x, Ỹ ), . . . , fs(x, Ỹ )) ∈W ′ ⇐⇒ B(Ỹ ) holds true.

Proof. We will prove this by using the principle of transfinite induction. We

associate to the sequence of polynomials (f1, . . . , fs) the multi-set {m1, . . . ,ms}
of their degrees in x. We define a strict total order on the collection of non

empty finite sets of non negative integers now. Let α = {m′1, . . . ,m′t} and

let β = {m1, . . . ,ms}, we say α ≺ β if there exists a non negative integer p

such that for every q > p the number of times q appears in α is equal to the

number of times q appears in β, and the number of times p appears in α is

smaller than the number of times p appears in β.

Here are a few examples to illustrate the order. We have {3, 3, 2, 1, 1, 1} ≺
{3, 3, 2, 2, 1} (here p = 2) and {2, 2, 2, 1, 1, 0} ≺ {3} (here p = 3). This kind

of ordering is used to rank the countries in Olympics based on their medal

tallies (gold, silver, bronze).
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The collection of nonempty finite sets of non negative integers, with

that ordering, is a well ordered set as there is no infinite sequence σ1 � σ2 �
σ3 � . . ., and therefore every subcollection has a least element. Now by the

principle of transfinite induction it is sufficient to show that if the proposition

holds all for all sequence of polynomials such that the corresponding multi-

set lies in {α : α ≺ β}, then it must hold for any sequence of polynomials

with associated multi-set β.

Suppose we have polynomials f1, . . . , fs with associated multi set β such

that m = 0, then for any Ỹ , the matrix SIGN(f1(x, Ỹ ), . . . , fs(x, Ỹ )) has

one column given by the signs of h1,0(Ỹ ), . . . , hs,0(Ỹ ). From this, we can see

that the proposition holds for any sequence of polynomials with associated

multi-set β, since each of the finite elements of W ′ gives rise to a Boolean

condition and these finitely many conditions can be concatenated by ∨. For

example, if s = 2 and W ′ = {(0, 1), (−1, 0)}, then the Boolean conditions

would be [(h1,0(Ỹ ) = 0) ∧ (h2,0(Ỹ ) > 0)] ∨ [(h1,0(Ỹ ) < 0) ∧ (h2,0(Ỹ ) = 0)].

We did not even use the predecessors in this case.

Next suppose we have polynomials f1, ..., fs with associated multi set β

and suppose m ≥ 1, without loss of generality we may assume that ms = m.

Let f ′s(x, Y ) be the partial derivative of fs(x, Y ) with respect to x. Let F

be the fraction field of Z[Y ], then fs may be divided by f1, f2, . . . , fs−1, f
′
s

in F [x] to obtain remainders r1, . . . , rs. In fact for each i = 1, 2, . . . , s,

one can find even integers ki such that hi,mi(Y )ki(ri(x, Y )) = gi(x, Y ) is a

polynomial with integral coefficients. This is because hi,mi(Y ) is the leading

coefficient of the divisor polynomial in F [x].

Suppose that we are given a Ỹ ∈ Rn such that hi,mi(Ỹ ) 6= 0 for all i and

let W ′′ = φ−1(W ′) ⊂W2s,m, then

SIGN(f1(x, Ỹ ), . . . , fs(x, Ỹ )) ∈W ′

is equivalent to

SIGN(f1(x, Ỹ ), . . . , fs−1(x, Ỹ ), f ′s(x, Ỹ ), r1(x, Ỹ ), . . . , rs(x, Ỹ )) ∈W ′′
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by our previous lemma. Also since hi,mi(Ỹ ) 6= 0, we have sign(ri(x, Ỹ )) =

sign(gi(x, Ỹ )). Thus the above is equivalent to

SIGN(f1(x, Ỹ ), . . . , fs−1(x, Ỹ ), f ′s(x, Ỹ ), g1(x, Ỹ ), . . . , gs(x, Ỹ )) ∈W ′′.

The degree set of f1, . . . , fs−1, f
′
s, g1, . . . , gs precedes β, so we can find a

boolean combination for above criterion by inductive hypothesis.

If hi,mi(Ỹ ) = 0 for some i, then we can truncate the corresponding

polynomial fi and obtain a sequence of polynomials, whose degree set in x

precedes β. So we get another boolean combination for this case. Concate-

nating all of these boolean combinations we can find the required boolean

condition. By the principle of transfinite induction, we are done.

The following corollary is the form in which the principle is most used.

We are just replacing Z with R.

Corollary 3.2.4. Let fi(x, Y ) = hi,mi(Y )xmi + . . . + hi,0(Y ) where Y =

(y1, y2, . . . , yn), for i = 1, . . . , s be a sequence of non constant polynomials in

n+ 1 variables with coefficients in R. Let ε be a function from {1, 2, . . . , s}
to {−1, 0, 1}. Then there exists a boolean combination B(Y ) (i.e a finite

composition of disjunctions, conjuctions and negations) of polynomial equa-

tions and inequalities in the variables Y with coefficients in R such that for

every Ỹ ∈ Rn, the system
sign(f1(x, Ỹ )) = ε(1)

...

sign(fs(x, Ỹ )) = ε(s)

has a solution x in R iff B(Ỹ ) holds true.

Proof. There exists a positive integer M and polynomials gi ∈ Z[x, Y, T ] of

n + 1 + M variables such that fi(x, Y ) = gi(x, Y, a) where a contains all

the coefficients of all of the fi. Then we can apply the Tarski-Seidenberg

principle to the polynomials gi(x, Y, T ) to get a boolean combination B(Y, T )
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of polynomials in n+M variables with coefficients in Z. Fix T = a on both

sides of the equivalence to get the required relation.

Clearly every semialgebraic set is a finite union of sets of the form

{(Y, x) ∈ Rn+1 : fi(Y, x) = 0, i = 1, . . . , l, gj(Y, x) > 0, j = 1, . . . ,m}. The

projection of such a set to the first n coordinates is semialgebraic by the

above corollary of the Tarski-Seidenberg principle. This proves that semial-

gebraic sets are stable under projection. We can even bound the complexity

of the projection, a fact we state without proof.

Theorem 3.2.5. Let Π : Rn+1 → Rn be the projection map to the first n

coordinates. Then for any E ≥ 1, there is a constant C(n,E) so that, for

every semialgebraic subset S of Rn+1 of complexity at most E, the projection

Π(S) is a semialgebraic subset of Rn and has complexity at most C(n,E).

3.3 Gromov’s algebraic lemma

In this section, we discuss concepts like dimension of semialgebraic sets

and also decomposition of semialgebraic sets. We will also state Gromov’s

algebraic lemma which will be used in the the following chapter. To begin

with, it is easy to see that the semialgebraic subsets of R are exactly the

finite unions of points and open intervals. We next state a theorem without

proof regarding the decomposition of semialgebraic sets.

Theorem 3.3.1. Every semialgebraic subset of Rn is the disjoint union of

a finite number of semialgebraic sets, each of them semialgebraically home-

omorphic to an open hypercube (−1, 1)d, where d is a non negative integer

(with (−1, 1)0 being a point).

The proof can be found in [2]. As one might guess, the dimension of an

algebraic set is the largest d coming from the decomposition. We now give

an algebraic definition which coincides with the just stated definition.

Definition 3.3.1. Let S ⊂ Rn be a semialgebraic set. Denote by P (S) =

R[x1, . . . , xn]/I(S) the ring of polynomial functions on S. The dimension
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of S is the dimension of the ring P (S), i.e the maximal length of chains of

prime ideals of P (S).

In a similar vein to theorem 3.3.1, we have Gromov’s algebraic lemma

which we now state. A proof can be found in [4] and one of the key compo-

nents of the proof is Tarski-Seidenberg principle.

Theorem 3.3.2. Gromov’s algebraic lemma For all integers n,E, r ≥ 1,

there exists M(n,E, r) <∞ with the following properties. For any compact

semialgebraic set S ⊂ [−1, 1]n of dimension d and complexity at most E,

there exists an integer N ≤M(n,E, r) and Cr maps φ1, . . . , φN : [−1, 1]d →
[−1, 1]n so that

N⋃
j=1

φj([−1, 1]d) = S

and

‖φj‖Cr = max
|α|≤r

‖∂αφj‖∞ ≤ 1.
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Chapter 4

On the Polynomial Wolff

axioms

The polynomial method was first used in the Kakeya family of problems

by Dvir [10] in 2008 to fully prove the finite field version of Kakeya conjec-

ture. This breakthrough inspired many more applications of the polynomial

method to the Kakeya family of problems as we touched upon in the intro-

duction of the previous chapter.

The restriction conjecture is a problem in Euclidean harmonic analysis

concerning oscillatory integrals which implies the Kakeya conjecture. One

of the most important applications of the polynomial method to the Kakeya

family of problems was Guth’s result on the restriction conjecture in 2016

[11, 12]. Guth was able to make progress on the restriction conjecture using

the technique of polynomial partitioning, an algebraic technique that was

introduced by Guth and Katz [14] in 2015 to solve the Erdős distinct dis-

tances problem. Since the restriction conjecture is stronger than the Kakeya

conjecture, Guth’s work led to progress on the Kakeya conjecture as well.

In chapter 1, we gave a formulation of the Kakeya conjecture (conjecture

1.3.3) that can be interpreted as saying δ-tubes pointing in δ-separated di-

rections are essentially disjoint. We rearranged the inequality to obtain an

equivalent formulation that seeks to estimate the number of δ-tubes point-

ing in δ-separated directions that can be contained in a set in terms of the
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Lebesgue measure of that set (conjecture 1.3.4). In 2018, Guth and Zahl

[15] showed how progress can be made on this formulation of the Kakeya

conjecture using the technique of polynomial partitioning.

When applying polynomial partitioning to the restriction/Kakeya prob-

lem, the following important sub-problem naturally arises: does conjecture

1.3.4 for the special case of δ-neighborhoods of algebraic varieties hold?

Guth conjectured that the answer was affirmative in [12]. Before we state

Guth’s conjecture precisely, we state Wongkew’s lemma [21] as it will be

needed to understand Guth’s conjecture.

Lemma 4.0.1. (Wongkew) Let Z ⊂ Rn be a m-dimensional algebraic

variety of degree at most D and let Zδ denote the δ neighborhood of Z.

Then we have

|Zδ ∩ [−1, 1]n| ≤ c(n,D)δn−m.

Before we continue, we make a simplifying assumption. We are primar-

ily interested in the Kakeya conjecture which can be formulated as saying

that δ-tubes pointing in δ-separated directions are essentially disjoint. Since

essentially disjoint is a local property, without loss of generality we may as-

sume all our sets and tubes to be compact subsets of [−1, 1]n. We are now

ready to state Guth’s conjecture from [12].

Conjecture 4.0.2. (Guth) For all integers n,D ≥ 2 and all ε > 0,

there is a constant C(n,D, ε) > 0 so that the number of δ-tubes, point-

ing in δ-separated directions, contained in the δ-neighborhood of an m-

dimensional algebraic variety Z ⊂ Rn, of degree at most D is bounded by

C(n,D, ε)δ1−m−ε.

From conjecture 1.3.4, we would expect the upper bound to be Cεδ
1−n−ε|Zδ∩

[−1, 1]n|. But Wongkew’s lemma tells us that |Zδ ∩ [−1, 1]n| ≤ c(n,D)δn−m,

this explains the upper bound in conjecture 4.0.2.

Roughly speaking, conjecture 4.0.2 says that δ neighborhood of varieties

cannot contradict the Kakeya conjecture. This conjecture was proven for

n = 3 by Guth, which led to progress on the three-dimensional restriction

conjecture [11, 18], and by Zahl for n = 4, which led to progress on the
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four-dimensional Kakeya conjecture [27], as well as the four-dimensional

restriction conjecture [7].

Conjecture 4.0.2 was open in higher dimensions until 2018, when Katz

and Rogers [17] proved conjecture 1.3.4 for semialgebraic sets i.e semialge-

braic sets do not contradict the Kakeya conjecture. We will give the rigorous

statement of their result shortly. In particular, their result implied conjec-

ture 4.0.2 was true for all dimensions. This follows from Wongkew’s lemma

and because the δ-neighborhood of an algebraic variety of degree at most D

is a semialgebraic set whose complexity is at most c(n,D). Proving conjec-

ture 4.0.2 fully leads to further improvements for the restriction conjecture

in higher dimensions, as was noted in [12].

Actually Katz and Rogers proved something even stronger than conjec-

ture 1.3.4 for semialgebraic sets. To explain and motivate their full result,

we need to discuss the polynomial Wolff axioms. The Wolff axioms were

introduced by Wolff [25] as the minimal set of conditions that one needed

to impose on a collection of δ-tubes to make the hairbrush argument work.

Critically δ-tubes pointing in δ-seperated directions satisfied the Wolff ax-

ioms. We now define the polynomial axioms first introduced by Guth and

Zahl [15] which are a generalization of Wolff axioms.

Definition 4.0.1. Polynomial Wolff axioms We say that collections T
of δ-tubes in Rn satisfy the polynomial Wolff axioms if, for every integer

E ≥ 2, there is a constant C(n,E) > 0 so that

#({T ∈ T : |T ∩ S| ≥ λ|T |}) ≤ C(n,E)|S|δ1−nλ−n

whenever S is a semialgebraic set, of complexity at most E, and λ ≥ δ > 0.

Just as in the case of Wolff axioms we wish to show that δ-tubes pointing

in δ-separated directions satisfy the polynomial Wolff axioms. Katz and

Rogers [17] showed this was true up to a factor of Cεδ
−ε. We finally state

the theorem proved by Katz and Rogers.

Theorem 4.0.3. (Katz-Rogers) Let n,E ≥ 2 be integers and let ε > 0.

Then there is a constant C(n,E, ε) > 0 so that, for every set T of δ-tubes
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in Rn pointing in δ-separated directions,

#({T ∈ T : |T ∩ S| ≥ λ|T |}) ≤ C(n,E, ε)|S|δ1−n−ελ−n

whenever S is a semialgebraic set, of complexity at most E, and λ ≥ δ > 0.

Firstly observe that when we put λ = 1, we essentially get conjecture

1.3.4 for semialgebraic sets as we discussed previously. The λ−n factor may

be rationalized as follows. Suppose we have a collection T of λ × δ tubes

pointing in δ-separated directions. Then we pick a maximal subcollection T′

which is (δ/λ)-direction separated. We have #T′ & λn−1#T. The Kakeya

conjecture leads us to expect that the collection T′ is essentially disjoint

(scale Rn up by a factor λ−1). So we expect∣∣∣∣ ⋃
T∈T

T

∣∣∣∣ ≥ ∣∣∣∣ ⋃
T∈T′

T

∣∣∣∣ & #T′(λδn−1) & #T(λnδn−1).

Suppose S contains ∪T∈TT , then clearly we have |S| & #T(λnδn−1). Rear-

ranging, we get

#T . |S|δ1−nλ−n.

This resembles the statement of theorem 4.0.3. So we have a heuristic ex-

planation for the λ−n factor.

In this chapter we will only prove the λ = 1 case of theorem 4.0.3 which

is essentially conjecture 1.3.4 for semialgebraic sets. So we will have proved

conjecture 4.0.2. But the λ < 1 case is non-trivial and we will need the full

strength of theorem 4.0.3 in the next chapter when we will prove KMFC

holds for semialgebraic mapping. As mentioned previously, we will be using

tools from real algebraic geometry including Gromov’s algebraic lemma to

prove theorem 4.0.3 for λ = 1.

4.1 Katz-Rogers’ theorem for λ=1

Before we begin the proof, we need to switch to a more convenient setup.

For notational convenience we work in Rn+1 instead of Rn. We also work
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with modified δ-tubes which are defined as follows

Ta,d(δ) = {(x, t) ∈ Rn × [0, 1] : |x− a− td| ≤ δ},

where d ∈ [−1, 1]n and a is only allowed to take values such that Ta,d(δ) ⊂
[−1, 1]n× [0, 1]. The axis of such a tube is clearly {(a, 0)+t(d, 1) : t ∈ [0, 1]}.
Hence (a, 0) is the base point of the tube and (d, 1) is the direction of the

tube. We also note that {(a, d) ∈ R2n : Ta,d(δ) ⊂ [−1, 1]n × [0, 1]} ⊂
[−1, 1]2n. We define the angle/direction separation between the tubes Ta,d(δ)

and Ta′,d′(δ) to be |d−d′|. Now we are ready to state the appropriate version

of theorem 4.0.3 with λ = 1. This can alternately be viewed as Kakeya

conjecture (conjecture 1.3.4) for semialgebraic sets.

Theorem 4.1.1. (Katz-Rogers’ theorem for λ = 1) Let S ⊂ [−1, 1]n×
[0, 1] be a semialgebraic set of complexity at most E, then the number of

δ-tubes pointing in δ-separated directions that can be contained in S is at

less than or equal to C(n,E, ε)|S|δ−n−ε.

Gromov’s algebraic lemma is a key component of the proof of the the-

orem. Before we prove the theorem, we need some lemmas which we now

state and prove. The Tarski–Seidenberg principle (theorem 3.2.5) will play

a crucial play in the proof of two of the lemmas. The first lemma shows the

set of parameters for which a δ-tube can be contained in a semialgebraic set

S is semialgebraic.

Lemma 4.1.2. Let S ⊂ [−1, 1]n× [0, 1] be a semialgebraic set of complexity

at most E and let δ > 0 be fixed. Then L = {(a, d) ∈ [−1, 1]2n : Ta,d(δ) ⊂ S}
is a semialgebraic set of complexity at most C(n,E), a constant depending

only on n and E.

Proof. We first define the semialgebraic set Y = {(a, d, x, t) ∈ [−1, 1]3n ×
[0, 1] : (x, t) /∈ S, (x, t) ∈ Ta,d(δ)}. This set is semialgebraic because (x, t) ∈
Ta,d(δ) iff |x−a− td|2 ≤ δ2 (the left hand size of this inequality is a polyno-

mial with variables a, d, x, t). Writing Z = Π(Y ) where Π is the projection

(a, d, x, t) 7→ (a, d), by theorem 3.2.5 we conclude that Z is semialgebraic of
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complexity depending only on n and E. Finally we observe L = [−1, 1]2n\Z
which completes the proof.

It will be useful to extract a semialgebraic section of L in which for every

direction d ∈ [−1, 1]n, there is at most one associated base point a.

Lemma 4.1.3. Let L ⊂ [−1, 1]2n be a compact semialgebraic set of com-

plexity at most E. Let Π be the orthogonal projection into the final n coor-

dinates (a, d) 7→ d. Then there is a constant C(n,E) > 0 and a semialgebraic

set L′ of complexity at most C(n,E), so that L′ ⊂ L and Π(L′) = Π(L) and

so that for each d ∈ [−1, 1]n, there is at most one a with (a, d) ∈ L′.

Proof. It suffices to show that for the projection Π1 defined by (a, d) 7→
(a2, . . . , an, d), there is a constant C(E) > 0 and a semialgebraic set L1 of

complexity at most C(E) so that L1 ⊂ L and Π1(L1) = Π1(L), so that

for any (a2, . . . , an, d) there is at most a1 with (a1, . . . , an, d) ∈ L1. Having

done that, we obtain L2 by applying the same result to L1 with the first

coordinate replaced by the second. Similarly we obtain Lj from Lj−1 with

the first coordinate replaced by the jth, and finally setting L′ = Ln.

So we now show how to construct L1. Whenever (a2, . . . , an, d) ∈ Π(L)

we let (a1, . . . , an, d) ∈ L1 with a1 the maximal value so that (a1, . . . , an, d) ∈
L. We now need to show this set is semialgebraic of bounded complexity.

For this, let Y = {(x, a, d) ∈ R×L : x > a1, (x, a2, . . . , an, d) ∈ L}. Then we

get L1 if we project Y to its last 2n coordinates and take its complement in

L. By theorem 3.2.5, the complexity will be bounded. This completes the

proof.

The final lemma is a calculation which concerns the integral of a monic

polynomial.

Lemma 4.1.4. For n ≥ 1, there exists constants C(n) > 0 such that∫ 1

0
|tn + cn−1t

n−1 + . . .+ c0| dt ≥ C(n),

where c0, . . . , cn−1 are arbitary complex numbers.
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Proof. Using the fundamental theorem of algebra, we can factorize |tn +

cn−1t
n−1 + . . . + c0| = |t − α1| . . . |t − αn|. By plane geometry given any

arbitrary α ∈ C, we have |t − α| ≥ 1
4n for t ∈ [0, 1] except possibly on

an subinterval of length 1
2n . So |t − α1| . . . |t − αn| ≥ 1

(4n)n for t ∈ [0, 1]

except possibly on n subintervals each of length at most 1
2n . So we have

|t−α1| . . . |t−αn| ≥ 1
(4n)n on a subset of [0, 1] of measure at least 1/2. This

proves the lemma.

The crucial fact in the above lemma is that the lower bound is indepen-

dent of the coefficients c0, . . . , cn−1. We are now ready to prove theorem

4.1.1 i.e Katz-Rogers’ theorem for λ = 1.

Proof of Theorem 4.1.1. We prove by contradiction. Suppose the theorem is

false. Then there exist n,E, ε with the following property: for every C > 0,

there exists a semialgebraic set of complexity E, a collection of δ-tubes T
pointing in δ-separated directions contained in S such that #T > C|S|δ−n−ε.
Also δ → 0 as C → ∞ since the theorem holds for δ > c > 0. Further we

must have |S| &n δ
n as S by hypothesis must contain at least one tube. In

this proof as n,E, ε are fixed, we will shorten .n,E,ε to just ..

Now using lemma 4.1.2, we have L = {(a, d) ∈ [−1, 1]2n : Ta,d(δ/2) ⊂ S}
is semialgebraic of bounded complexity. As before, let Π be the orthogonal

projection into the final n coordinates (a, d) 7→ d. Next using lemma 4.1.3,

we extract a semialgebraic section L′ ⊂ L i.e. Π(L′) = Π(L) and for every

d ∈ [−1, 1]n, there is at most one (a, d) ∈ L′. Further lemma 4.1.3 assures

us that L′ has bounded complexity. Every tube Ta,d(δ) ∈ T has radius δ,

hence we can wiggle around tubes of radius δ/2 inside Ta,d(δ). The set of

directions of tubes of radius δ/2 that can be contained in Ta,d(δ) is B(d, cδ).

Since the tubes in T point in δ-separated directions, the sets B(d, cδ) are

finitely intersecting as we vary d over the directions of tubes in T. Using

this and our hypothesis, we get

|Π(L′)| & #Tδn > C|S|δ−ε. (4.1)

We now wish to apply Gromov’s algebraic lemma (theorem 3.3.2) to
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the semialgebraic set L′ ⊂ [−1, 1]2n. Since L′ is in bijection with Π(L′) ⊂
[−1, 1]n, the dimension of L′ is n. We pick r to be the greatest integer greater

than 4n2

ε . By Gromov’s algebraic lemma, there exists an integer N . 1 and

Cr maps (F1, G1), . . . , (FN , GN ) : [−1, 1]n → [−1, 1]2n such that

N⋃
j=1

(Fi, Gi)
(
[−1, 1]n

)
= L′ and ‖(Fj , Gj)‖Cr ≤ 1. (4.2)

Observe that
⋃N
j=1Gj([−1, 1]n) = Π(L′). Since N . 1, the pigeonhole prin-

ciple and inequality (4.1) imply the existence of j such that |Gj([−1, 1]n)| &
C|S|δ−ε. A ball of radius δ

ε
2n in [−1, 1]n has volume δε/2. So we can decom-

pose [−1, 1]n into δ−ε/2 many balls of radius δ
ε
2n which are finitely intersect-

ing. By applying pigeonhole principle again, we can find a ball B ⊂ [−1, 1]n

of radius δ
ε
2n centered at x0 such that

|Gj(B)| & C|S|δ−ε

δ−ε/2
= C|S|δ−ε/2. (4.3)

The next step involves replacing the Cr-function (Fj , Gj) by its (r− 1)-

th degree Taylor polynomial (F,G) at x0. By the derivative estimates from

Gromov’s algebraic lemma (inequality 4.2) and our choice of r, for x ∈ B
we have

|(Fj , Gj)(x)− (F,G)(x)| ≤ |x− x0|r . (δ
ε
2n )

4n2

ε = δ2n. (4.4)

Consequently |Gj(x) − G(x)| . δ2n for all x ∈ B. So G maps B into the

δ2n-neighborhood of Gj(B). By inequality (4.3) and recalling that |S| ≥ δn,

we can conclude that

|G(B)| & C|S| (4.5)

whenever C is sufficiently large so that δ is sufficiently small.

Having establish this upper bound on S, our goal now is to come up with

a lower bound on S which will contradict the upper bound. For x ∈ [−1, 1]n,

the line segment {(Fj(x) + tGj(x), t) : t ∈ [0, 1]} is the axis of a tube of the

form Ta,d(δ/2) contained in S. So the line segment is contained in S. Using
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inequality (4.4), we can conclude that {(F (x) + tG(x), t) : t ∈ [0, 1]} ⊂ S

whenever x ∈ B. Hence

|S| ≥
∫ 1

0
|(F + tG)(B)| dt. (4.6)

We ultimately want only |G(B)| on the left hand side as this would

contradict inequality (4.5). This will take a few more steps. We would like

to apply change of variable formula to the expression |(F + tG)(B)|. But

as F + tG may not be one to one, we need an extra factor. By Bézout’s

theorem, the function F + tG maps at most (r−1)n points of B to the same

place. So by change of variables, we have

|F + tG(B)| ≥ 1

(r − 1)n

∫
B
|det[(DF + tDG)(x)]| dx. (4.7)

Combining the inequalities (4.6) and (4.7), we obtain

|S| &
∫ 1

0

∫
B
| det[(DF + tDG)(x)]| dx dt (4.8)

since r depends only on n and ε. We now want to remove F from the

left hand side. Lemma 4.1.4 will help us do this. Observe that det[(DF +

tDG)(x)] is a degree n polynomial in t with leading coefficient det[(DG)(x)].

So we can write det[(DF + tDG)(x)] = det[(DG)(x)]Px(t) where Px(t) is a

monomial in t of degree n whose lower order coefficients depend on x. Now

using Fubini’s theorem and lemma 4.1.4, we get

|S| &
∫ 1

0

∫
B
|det[(DF + tDG)(x)]| dx dt

=

∫
B

∫ 1

0
|det[(DF + tDG)(x)]| dt dx

=

∫
B
| det[(DG)(x)]|

(∫ 1

0
|Px(t)| dt

)
dx

&
∫
B
| det[(DG)(x)]| dx

= |G(B)|
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The above inequality, together with inequality (4.5) implies 1 & C. Recall

& means &n,E,ε and n,E, ε are fixed throughout the proof. Hence, since C

is allowed to be any positive number, we have arrived at a contradiction.

This completes the proof.
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Chapter 5

KMFC for semialgebraic

mappings

In this chapter, we will use theorem 4.0.3 of Katz and Rogers [17] to prove the

operator version of Kakeya maximal function conjecture (conjecture 2.1.1)

for semialgebraic mappings. This is an original, unpublished result which

is the joint work of the author and his supervisors, Drs. Izabella  Laba and

Joshua Zahl.

Before we begin, we recall the definition of Kakeya maximal function.

Let f ∈ L1
loc(Rn) and δ > 0, then the Kakeya maximal function f∗δ : Sn−1 →

[0,∞] is defined by

f∗δ (e) = sup
a∈Rn

1

|T δe (a)|

∫
T δe (a)

|f |. (5.1)

5.1 KMFC for characteristic functions of semial-

gebraic sets

We first prove the operator version of KMFC (conjecture 2.1.1) for charac-

teristic functions of semialgebraic sets.

Theorem 5.1.1. Let S ⊂ [−1, 1]n be a semialgebraic set of complexity at
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most E. There exists constants C(n,E, ε) > 0 such that

‖(χS)∗δ‖Ln(Sn−1) ≤ C(n,E, ε)δ−ε|S|1/n.

Proof. Let us denote χS = f . We split the proof into two cases. In the first

case, suppose |S| ≤ δn. We have the trivial inequality f∗δ (e) ≤ Cnδ
1−n|S|

for every e ∈ Sn−1, and hence for this case we have the inequality

‖f∗δ ‖Ln(Sn−1) . δ1−n|S| ≤ δ1−n|S|
n−1
n |S|1/n ≤ |S|1/n.

So this case is done. Now for the second case, suppose |S| > δn. Let

{ek} be a maximal δ-separated subset of Sn−1. Let θk = {e ∈ Sn−1 :

dists(e, ek) ≤ δ}, so we can decompose Sn−1 = ∪kθk into finitely intersecting

caps. The value of f∗δ is approximately equal on each of these caps. To be

more precise, using equation (2.4), we can find a constant Cn such that when

dists(e, e
′) ≤ δ, we have f∗δ (e) ≤ Cnf

∗
δ (e′). Choose a collection of tubes T

with directions {ek} such that the tubes of T maximize intersection with S.

So if T δek(ak) ∈ T, then

|T δek(ak) ∩ S|
|T δek(ak)|

= f∗δ (ek).

The existence of such ak is assured by the dominated convergence theorem.

To get an upper bound on ‖f∗δ ‖Ln(Sn−1), we aim to get an upper bound

on the distribution function µ({e ∈ Sn−1 : f∗δ (e) ≥ λ}) where µ denotes

the surface measures on Sn−1. Since we have seen that the value of f∗δ
is approximately equal on each cap, we essentially only need to count the

number of k such that f∗δ (ek) ≥ λ. The last step is exactly what the result

of Katz and Rogers [17] i.e theorem 4.0.3 is about.

We now carry out this argument more rigorously. Let λ > Cnδ. Now

suppose f∗δ (ek) <
λ
Cn

. When dists(e, ek) ≤ δ, we have f∗δ (e) < λ i.e f∗δ is
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less than λ on θk. So we have

{e ∈ Sn−1 : f∗δ (e) ≥ λ} ⊂
⋃

{k:f∗δ (ek)≥ λ
Cn
}

θk.

Since θk are finitely intersecting we have

µ({e ∈ Sn−1 : f∗δ (e) ≥ λ}) ≤
∑

{k:f∗δ (ek)≥ λ
Cn
}

µ(θk)

. #

({
k : f∗δ (ek) ≥

λ

Cn

})
δn−1

= #

({
T ∈ T : |T ∩ S| ≥ λ

Cn
|T |
})

δn−1

≤ C(n,E, ε)|S|δ−ελ−n.

We used the result of Katz and Rogers [17] i.e theorem 4.0.3 in the last line

of the above calculation, observe that λ
Cn

> δ so it is applicable.

Using the above inequality we are ready to compute ‖f∗δ ‖Ln(Sn−1). Con-

sider

‖f∗δ ‖
n
Ln(Sn−1) = n

∫ ∞
0

λn−1µ({e ∈ Sn−1 : f∗δ (e) ≥ λ}) dλ

≤ n

[
µ(Sn−1)

∫ Cnδ

0
λn−1 dλ+ C(n,E, ε)|S|δ−ε

∫ 1

Cnδ
λ−1 dλ

]
≤ C(n)δn + C(n,E, ε)|S|δ−ε

≤ C(n,E, ε)|S|δ−ε

The last line above follows because we have assumed |S| > δn, we have

also used C(n,E, ε) to denote multiple constants which is a slight abuse of

notation. Taking n-th root on both sides, the proposition is established.
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5.2 KMFC for general semialgebraic mappings

Now that we have established the operator version of KMFC (conjecture

2.1.1) for the characteristic function of a semialgebraic set, we use dyadic

pigeonholing to extend our result to general semialgebraic functions.

Theorem 5.2.1. For every n,E ≥ 2 and ε > 0, there exists constants

C(n,E, ε) > 0 such that

‖f∗δ ‖Ln(Sn−1) ≤ C(n,E, ε)δ−ε ‖f‖Ln(Rn)

whenever f is a semialgebraic function of complexity at most E supported

in [−1, 1]n.

Proof. Without loss of generality, we may assume ‖f‖Ln(Rn) = 1. Let Sh =

{x ∈ [−1, 1]n : |f(x)| > δ−1)} and Sl = {x ∈ [−1, 1]n : |f(x)| ≤ δ−1)}.
Further let fh = fχSh and fl = fχSl . Then clearly f = fh + fl. Since

‖f‖Ln(Rn) = 1, we would expect the measure of Sh to be small. To be more

precise, we have

1 =

∫
|f |n ≥

∫
Sh

|fh|n ≥ (δ−1))n|Sh|,

rearranging, we get |Sh| ≤ δn. This allows us to get an L∞ bound on (fh)∗δ
by using Hölder’s inequality as follows

(fh)∗δ(e) = sup
a∈Rn

1

|T δe (a)|

∫
T δe (a)

|fh|

≤ Cnδ1−n
∫
Sh

|fh| · 1

≤ Cnδ1−n ‖fh‖Ln(Rn) |Sh|
n−1
n

≤ Cn.

Since the surface measure of Sn−1 depends only on n, we get

‖(fh)∗δ‖Ln(Sn−1) ≤ Cn. (5.2)
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So we have sufficient control over the fh part. We now need to focus

on the fl piece. Let S0 = {x ∈ [−1, 1]n : |f(x)| ≤ 1}. Further let Sj =

{x ∈ [−1, 1]n : 2j−1 < |f(x)| ≤ 2j} for j = 1, 2, . . . , log(δ−1). Then we

can write fl =
∑log(δ−1)

j=0 fj where fj = fχSj . Further we have ‖fl‖nLn(Rn) =∑log(δ−1)
j=0 ‖fj‖nLn(Rn) ≤ 1. Now using sublinearity and theorem 5.1.1, we get

‖(fl)∗δ‖Ln(Sn−1) ≤
log(δ−1)∑
j=0

‖(fj)∗δ‖Ln(Sn−1)

≤
log(δ−1)∑
j=0

2j
∥∥(χSj )

∗
δ

∥∥
Ln(Sn−1)

≤ C(n,E, ε)δ−ε
[
|S0|1/n +

log(δ−1)∑
j=1

2j |Sj |1/n
]
. (5.3)

By Hölder’s inequality, we have
∑M

i=1 ai ≤M
n−1
n

(∑M
i=1 a

n
i

) 1
n . Therefore we

get
log(δ−1)∑
j=1

2j |Sj |1/n ≤ (log(δ−1))
n−1
n

( log(δ−1)∑
j=1

2jn|Sj |
)1/n

. (5.4)

Now let us find a lower bound for ‖fl‖nLn(Rn).

1 ≥ ‖fl‖nLn(Rn) =

log(δ−1)∑
j=0

‖fj‖nLn(Rn) ≥
log(δ−1)∑
j=1

2(j−1)n|Sj | = 2−n
log(δ−1)∑
j=1

2jn|Sj |.

(5.5)

Putting together equations (5.4) and (5.5), we get that

log(δ−1)∑
j=1

2j |Sj |1/n ≤ C(n, ε)δ−ε. (5.6)

Since S0 ⊂ [−1, 1]n, we have the trivial inequality |S0|1/n ≤ 2. Using this
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along with equations (5.3) and (5.6), we get that

‖(fl)∗δ‖Ln(Sn−1) ≤ C(n,E, ε)δ−ε. (5.7)

Obviously we have ‖f∗δ ‖Ln(Sn−1) ≤ ‖(fh)∗δ‖Ln(Sn−1) +‖(fl)∗δ‖Ln(Sn−1). Chain-

ing this inequality with inequalities (5.2), (5.7), we get

‖f∗δ ‖Ln(Sn−1) ≤ C(n,E, ε)δ−ε.

As we had assumed ‖f‖Ln(Rn) = 1, we are done.
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Chapter 6

Conclusion

This thesis discusses applications of algebraic methods in the Kakeya family

of problems. We went into the details of an important result in this area,

namely theorem 4.0.3 proved by Katz and Rogers [17]. Using this result, the

author along with Drs. Izabella  Laba and Joshua Zahl proved the Kakeya

maximal function conjecture for semialgebraic mappings (theorem 5.2.1).

This is an original and unpublished result. The Kakeya maximal function

conjecture was discussed in Chapter 2 and it is a quantitative, single scale

formulation of the Kakeya conjecture.

There is potential for further research and to improve upon the original

work done in this thesis. One goal is thinking about whether one actually

needs the δ−ε in theorem 5.1.1. The usual example showing that a δ−ε term

is needed in the general case comes from a Kakeya set that has Lebesgue

measure zero. But the usual construction of a measure zero Kakeya set

isn’t semi-algebraic. Katz and Rogers have δ−ε in their bound, but it might

be possible to remove it. If this could be done, then it would have a nice

interpretation: while measure zero Kakeya sets exist, they can’t be semi-

algebraic. The author will pursue this goal along with his advisors Drs.

Izabella  Laba and Joshua Zahl.
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