
Approximate Extended Formulations for Multidimensional

Knapsack and the Unsplittable Flow Problem on Trees

by

Noah J.B. Weninger

B.Sc., The University of Alberta, 2019

a thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in

the faculty of graduate and postdoctoral studies

(Computer Science)

The University of British Columbia

(Vancouver)

August 2021

© Noah J.B. Weninger, 2021

The following individuals certify that they have read, and recommend to the Faculty of
Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

Approximate Extended Formulations for Multidimensional Knapsack and
the Unsplittable Flow Problem on Trees

submitted by Noah J.B. Weninger in partial fulfillment of the requirements for the degree
of Master of Science in Computer Science.

Examining Committee:

F. Bruce Shepherd, Computer Science, UBC
Supervisor

Joseph Paat, Sauder School of Business, UBC
Supervisory Committee Member

ii

Abstract

In this thesis, we study the Multidimensional Knapsack Problem (MKP) and two closely

related special cases: the Unsplittable Flow Problem on Trees (UFPT), and the Unsplittable

Flow Problem on Paths (UFPP). For these problems, when the natural integer programming

formulation is relaxed to a linear program, the integrality gap is O(n). Previous work on

UFPT and UFPP has established that the addition of rank constraints to the linear program

can be effective in some cases at reducing the integrality gap. However, Friggstad and Gao

proved that even with all rank constraints added, the integrality gap of UFPT is Ω(
√

log n).

Faenza and Sanità showed that a formulation for these problems which approximates the

integer hull arbitrarily well must either have exponentially many facets or be described as

an extended formulation (i.e., described in a higher dimensional space). We are interested

in polynomially sized formulations, so we focus our study on extended formulations.

Our first contribution is a greedy algorithm which finds an optimal solution to the linear

programming relaxation for the special case of UFPT where all requests share a common

endpoint. We apply this to tighten the analysis of hard instances described in the litera-

ture. Following this, we describe two approximate extended formulations for MKP using

disjunctive programming. The first is a formulation which improves upon the integrality

gap of the linear relaxation using only a small number of extra variables and constraints.

The second is a polyhedral (1 − ε)-approximate extended formulation for MKP for any

0 < ε ≤ 1, which was originally given by Pritchard. We then introduce a new hierarchy of

strengthened formulations for MKP, which we study in the context of UFPT. The strength-

ened formulations are NP-Hard to separate over, but they can be (1 − ε)-approximated

using the aforementioned result. We conclude by evaluating the strength of this hierarchy

when applied to the known hard instances from the literature. Our results suggest that this

hierarchy may be most useful in conjunction with the rank constraints, but open questions

remain.

iii

Lay Summary

Knapsack problems are about finding the best way to select items given some capacity

constraints. For example, consider the problem of finding which items to pack in a knapsack

so that it isn’t too heavy and the items you pack offer the greatest benefit. This thesis

examines problems like this, but focuses on the case where there are multiple constraints,

such as a limit on the number of cars on each street of a road network. Many of these

problems are considered too difficult to solve exactly, so our focus is on finding fast ways to

achieve good approximate solutions. Our approximate solutions are of a particular form:

they are points on the surface of high-dimensional convex shapes. Describing the solutions

in this way has many advantages which we use to derive new ways of approximating these

problems.

iv

Preface

The ideas behind the proof in Section 1.4.1 were developed with input from F. Bruce

Shepherd. The results in Section 2.2.1 and Chapter 4 are the product of a paper co-

authored with Adam Jozefiak and F. Bruce Shepherd, which is currently being prepared for

publication. Section 3.2 is a generalization of a result by Daniel Bienstock and Benjamin

McClosky [BM12]. Section 3.3 is a result by David Pritchard [Pri10], with the presentation

modified for clarity. The remainder of this document is original and unpublished work by

the author, Noah Weninger.

v

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Figures . viii

List of Algorithms . ix

Notation . x

Glossary . xii

Acknowledgments . xiii

1 Introduction . 1

1.1 Preliminaries . 1

1.2 Knapsack . 2

1.3 Multidimensional knapsack . 4

1.4 Unsplittable flow on paths and trees . 6

1.4.1 LP optimum for single-sink UFPT instances 8

1.4.2 Rank formulations for UFPT . 11

1.5 Our contributions . 12

1.6 Related work . 13

1.6.1 UFPT . 14

1.6.2 UFPP . 14

2 Hard Instances . 16

vi

2.1 Staircase instances . 16

2.2 Friggstad-Gao instances . 18

2.2.1 Basic properties . 19

2.2.2 Integrality gap of the natural LP relaxation 20

2.2.3 Integrality gap of the rank LP . 24

3 Extended Formulations . 25

3.1 Disjunctive programming . 26

3.2 Simple disjunctive programming approximation for m-KP 28

3.3 Disjunctive programming (1− ε)-approximation for m-KP 31

3.3.1 Construction . 32

3.3.2 Analysis . 33

3.4 An extended formulation for UFPT? . 34

4 The Knapsack Intersection Hierarchy . 36

4.1 Primary results . 37

4.1.1 Proof of Proposition 1 . 38

4.2 Integrality gap lower bound . 39

4.2.1 Path instances . 39

4.2.2 Tree instances . 39

4.3 Integrality gap upper bound . 42

4.4 Comparison with other integer programming hierarchies 45

5 Conclusion . 46

Bibliography . 47

vii

List of Figures

Figure 1.1 An example depicting tight edges along the path of a request in a single-

sink UFPT instance. 10

Figure 2.1 Instance S8. 17

Figure 2.2 Instance T 3
FG. 18

Figure 4.1 A diagram to aid with understanding the proof of Lemma 14. 41

Figure 4.2 A diagram to aid with understanding the proof of Lemma 15. 44

viii

List of Algorithms

Algorithm 1.1 The greedy algorithm for 0-1 knapsack. 4

Algorithm 1.2 The greedy algorithm for single-sink instances of UFPT′I 9

ix

Notation

1S The vector with (1S)i = 1 if i ∈ S, and (1S)i = 0 if i /∈ S

αP {αx : x ∈ P}

a Item size

aT b
∑

i aibi

c Knapsack capacity

conv(S) The convex hull of S

d Demand

E(T) The edges of the tree T

[k] {1, 2, . . . , k}

KI(e) The KP instance arising from a single edge e of a UFPT instance

KI(S) The MKP instance arising from a set of edges S from a UFPT instance

m Number of constraints or dimensions

n Number of items, requests, or variables

p
q If used in the context of a vector, this is the vector with all components equal

to p
q and with size inferred from context

Pr The edges of the path that request r routes on

R Real numbers

rank(S) The size of the largest cardinality feasible subset of S

Re The set of requests that route on edge e

x

R(T) The requests with an endpoint in the tree T

u Edge capacity

V (T) The vertices of the tree T

w Profit

x(S)
∑

i∈S xi

Z Integers

xi

Glossary

IP Integer Program

KP Knapsack Problem

LP Linear Program

m-KP m-dimensional Knapsack Problem

MKP Multidimensional Knapsack Problem

UFPP Unsplittable Flow Problem on Paths

UFPT Unsplittable Flow Problem on Trees

xii

Acknowledgments

There are many people without whom this would not have been possible. First and foremost,

I thank my supervisor Bruce Shepherd for his exceptional guidance and encouragement, my

family and friends for their unwavering support, and my second reader Joseph Paat. I

am grateful to Zachary Friggstad, Ryan Hayward, and Abram Hindle for their kindness,

teaching, and encouragement, which led me to pursue graduate studies. This work was

funded by the National Sciences and Engineering Research Council of Canada (NSERC),

Huawei Canada, and UBC’s Department of Computer Science, for which I am very thankful.

xiii

Chapter 1

Introduction

The primary motivation of this thesis is the development of improved approximation al-

gorithms for the unsplittable flow problem on trees (UFPT). This well-studied NP-hard

problem is of theoretical interest as well as practical: UFPT has many applications includ-

ing bandwidth allocation, caching, optical networks, resource allocation, and scheduling

[CMS07, GMWZ18]. In the context of approximation algorithms, UFPT is intriguing be-

cause the best known polytime result is an O(log2 n)-approximation, but the existence of

an O(1)-approximation has not been ruled out. We also consider the special case of UFPT

called the unsplittable flow problem on paths (UFPP), which concerns path graphs rather

than trees. For UFPP, polytime O(1)-approximations are known and it remains open to

find a polynomial-time approximation scheme (PTAS). Both UFPT and UFPP have been

extensively studied. These problems can be seen as generalizations of the 0-1 knapsack

problem (KP), or as special cases of the 0-1 multidimensional knapsack problem (MKP).

Many of our results are, in fact, given in the more general setting of MKP, and hence the

results may be useful on general MKP instances, or for other special cases of MKP. We be-

gin by discussing some preliminaries before introducing these problems, our contributions,

and related work.

1.1 Preliminaries

We assume the reader is familiar with the basics of the theory of linear and integer pro-

gramming, including the existence of optimal extreme point solutions, duality, and comple-

mentary slackness, as well as basic literacy in the topics of graph theory, algorithmics, and

computational complexity.

We consider only maximization problems, that is, problems where all feasible solutions

are associated with some profit value, and our objective is to find a feasible solution of

maximum profit. To clarify what we mean by an approximation algorithm in this context,

1

suppose that for some problem, we have an algorithm A which finds a solution A(I) of

maximum profit for any instance I, and an algorithm B which finds a feasible solution

B(I) which is not necessarily optimal. For α ≥ 1, we say that B is an α-approximation

algorithm if for all instances I, the profit of A(I) is at most α times the profit of B(I).

Due to inconsistencies in the literature, we also use the term α-approximation algorithm

when 0 < α ≤ 1 to mean that the profit of B(I) is at least α times the profit of A(I)

for all instances I. In either case, when α = 1 the algorithm is exact, and the quality of

approximation decreases as α becomes further away from 1.

As the title suggests, our approach involves the use of approximate extended formula-

tions. Extended formulations are not needed for the material in this chapter or in Chapter 2

and are introduced in Chapter 3.

1.2 Knapsack

We begin by defining the 0-1 knapsack problem (KP), the most fundamental problem we

study. This section also introduces some general definitions that are used throughout the

paper.

An instance I = (a, c, w) of this problem consists of a capacity c and n items, with

item i having some size ai (0 < ai ≤ c) and nonnegative profit wi. The objective is to

select a subset of the items which achieves the maximum possible total profit and has total

size at most the capacity. We can formulate this by the following integer program (IP),

which encodes whether to select item i by the 0-1 values xi. We write wTx to mean the dot

product of vectors v and x, that is, wTx =
∑n

i=1wi xi. We also define [k] = {1, 2, . . . , k}.

max wTx

such that aTx ≤ c

0 ≤ xi ≤ 1 ∀ i ∈ [n]

x ∈ Zn.

(KI)

In general, for some formulation P (such as KI), we say that x is in the associated feasible

region of P if x satisfies the constraints but is not necessarily optimal. This may also

be denoted by saying x ∈ P . The optimal value of some instance I for a formulation P is

written OPTP (I) and may be shortened to OPTP or OPT when the instance or formulation

is clear from context. Note that OPT is a scalar, not a vector, since OPT = max{wTx :

x ∈ P}.
Solving KP, or equivalently, optimizing over KI , is NP-Hard [PKP13], hence our focus on

approximations. To find approximations, it is common to consider the linear programming

2

(LP) relaxation KL of KI , where the constraint x ∈ Zn is replaced by x ∈ Rn. We sometimes

call this the natural LP relaxation because it is derived from the IP without any additional

constraints added. The number of variables and constraints in this LP is polynomial in n

and thus it is solvable in polynomial time using standard linear programming algorithms.

max wTx

such that aTx ≤ c

0 ≤ xi ≤ 1 ∀ i ∈ [n]

x ∈ Rn.

(KL)

Evidently, for any instance I, the feasible region of KI is a subset of the feasible region

for KL and so OPTKL ≥ OPTKI . To get an approximation algorithm for KI , we find

an optimal solution x for KL, and then apply some polynomial time algorithm A which

“rounds” x into a feasible solution A(x) ∈ Zn for KI . This two step method (solving the

LP relaxation to optimality and transforming the output into an integral solution) is a

common technique and has been shown to work well on the 0-1 knapsack problem.

Consider some integer program I and corresponding linear relaxation L (such as KI

and KL). To show that this technique is effective we have two concerns: (1) that OPTI

is “close” to OPTL, and (2) that we can find an algorithm A such that for any x which

is optimal for KL, A produces a vector A(x) ∈ Zn that has value “close” to the value

of x. We formalize (1) with the notion of integrality gap: we say that a formulation has

an integrality gap of α on a set S of instances if for I ∈ S, OPTL(I)/OPTI(I) ≤ α.

To formalize (2) we say that the rounding ratio of some algorithm A is the supremum

of (wTx)/(wTA(x)) over all instances. If we find a rounding algorithm which achieves a

rounding ratio equal to the integrality gap α, then we have an α-approximation algorithm

since OPTI(I) ≤ OPTL(I) = wTx ≤ αwTA(x).

We show that the integrality gap of KI is 2 and that a simple algorithm realizes the

ideal rounding ratio of 2. Therefore, this technique gives a 2-approximation. This result is

well known (e.g., see [PKP13]). To show this we first describe a greedy algorithm which

produces a solution which is optimal for KL, as a means to analyze OPTKL .

Lemma 1. Algorithm 1.1 produces a vector x which is optimal for KL.

The proof of this lemma is omitted. We instead prove a more general version of this

statement in Section 1.4. However, the following result is easy to show and is key to

deriving the 2-approximation algorithm.

Lemma 2. Let x be the output of Algorithm 1.1 on some instance. There is at most one

index i such that 0 < xi < 1 (i.e., xi is fractional).

3

1 Order items such that w1/a1 ≤ w2/a2 ≤ · · · ≤ wn/an
2 Let x ∈ Rn
3 r ← c
4 for i = 1, . . . , n do
5 xi ← min(1,max(0, r/ai))
6 r ← r − ai xi
7 end
8 return x

Algorithm 1.1: The greedy algorithm for 0-1 knapsack.

Proof. Since the xi are set such that 0 ≤ xi ≤ 1 and each ai > 0, we know r is monotonically

non-increasing in the loop. As long as r ≥ ai, xi is set to 1. If we reach an iteration p such

that r < ap, we set xp to r/ap, and then decrease r to r − ap(r/ap) = 0. Hence, on all

iterations i > p, r = 0 so xi is set to 0.

Theorem 1. The integrality gap of KI is at most 2.

Proof. Let x be the optimal solution for KL returned by Algorithm 1.1. If no index p (as

described in Lemma 2) exists, then x ∈ Zn and thus x is optimal for both KL and KI ,

meaning the integrality gap is 1 for this instance. Otherwise, if p exists, then let x0 be the

vector with x0
p = 1 and x0

i = 0 for i 6= p. Let x1 be x but with x1
p = 0. Since x0, x1 ∈ Zn,

both are feasible for KI and therefore wTx0 ≤ OPTKI and wTx1 ≤ OPTKI . Therefore,

OPTKL = wTx ≤ wT (x0 + x1) ≤ 2OPTKI , i.e., OPTKL/OPTKI ≤ 2.

The structure of this proof in fact immediately reveals how to create an algorithm to realize

the rounding ratio of 2. We now know wTx0, wTx1 ≤ OPTKI ≤ wT (x0 + x1), so the larger

of wTx0 and wTx1 must be at least OPTKI/2. Therefore, a 2-approximation is achieved

by defining the rounding algorithm simply to return x0 if wTx0 > wTx1 and return x1

otherwise.

1.3 Multidimensional knapsack

In this section we generalize the 0-1 knapsack problem to have multiple knapsack constraints.

This generalization can be thought of as adding more dimensions to the problem, where

items can have a different size in each dimension and each dimension has its own capacity.

For example, we may be concerned with maximizing profit while independently limiting the

size, weight, and cost of items. A feasible set of items must not violate the capacity of any

dimension. This problem is also known as the multi-constrained knapsack problem.

An instance I = (a, c, w) of the 0-1 m-dimensional knapsack problem (m-KP or MKP)

consists of m nonnegative vectors of item sizes aj ∈ Rn along each dimension j ∈ [m],

4

scalars cj denoting the capacity of each dimension j ∈ [m], and a vector w ∈ Rn of item

profits. Our goal is to select a subset of the items which maximizes profit while satisfying

the knapsack constraint
∑n

i=1 a
j
ixi ≤ cj for all j ∈ [m]. Note that when m = 1 this is

equivalent to the 0-1 knapsack problem.

max wTx

such that
∑n

i=1 a
j
ixi ≤ cj ∀ j ∈ [m]

0 ≤ xi ≤ 1 ∀ i ∈ [n]

x ∈ Zn.

m-KI

We denote the LP relaxation of this IP by m-KL.

To simplify analysis, we make a few assumptions about the instances we examine. We

assume that for each dimension j and item i, aji ≤ cj , i.e., that each item can be feasibly

packed by itself. We also assume that it is not possible to feasibly pack all items, i.e., we

do not have
∑n

i=1 a
j
i ≤ cj for every dimension j, since otherwise the problem is trivial.

MKP is evidently a very general problem. It can be thought of as a general 0-1 IP but

with the restriction that all coefficients in the constraint matrix are positive. The additional

assumptions we make only eliminate degenerate or trivial instances and do not impact the

generality of the formulation. Hence, we might expect solving MKP to be nearly as hard

as solving general 0-1 IPs. Nonetheless, there is some structure we can exploit.

A simple greedy algorithm analogous to Algorithm 1.1 which solves m-KL to optimality

is not known. However, a generalization of Lemma 2 is well-known and can be proved by

standard LP theory [PKP13].

Lemma 3. There exists an optimal solution x to m-KL which has at most m fractional

variables (variables xi such that 0 < xi < 1).

Proof. We assume that m < n; otherwise the statement holds trivially. First, we rewrite

m-KL in standard form by introducing slack variables y and z.

max wTx

such that Ax+ y = b

x+ z = 1

x, y, z ≥ 0

x, z ∈ Rn

y ∈ Rm.

5

Let (x, y, z) be a basic feasible solution to this LP. The LP has n+m constraints and 2n+m

variables. So, in (x, y, z) there are at most n + m non-zero variables and at least n zero

variables. Among the zero variables at least n−m are part of either x or z, since y ∈ Rm.

For any variable xi = 0, it must be that zi = 1, so neither is fractional. Similarly, when

zi = 0, it must be that xi = 1. So, of the xi, at least n−m must be zero or one, leaving at

most m of them with fractional values.

We can now easily arrive at a result analogous to Theorem 1.

Theorem 2. The integrality gap of m-KI is at most m+ 1.

Proof. Let x̂ be a basic feasible solution to m-KL. Let I = {i : x̂i = 1} and F = {i : 0 <

x̂i < 1}. Let xI be the vector described by I, i.e. xIi = 1 if i ∈ I and xIi = 0 otherwise. For

every j ∈ F , define a vector xFj with x
Fj
i = 1 if i = j and x

Fj
i = 0 otherwise. We know that

|F | ≤ m by Lemma 3, so there are at most m+1 vectors in the set S := {xI , xF1 , . . . , xF|F |}.
All item sizes are positive, xI ∈ m-KI , and since we assume each item is feasible by itself,

xFj ∈m-KI for each j. So, for x ∈ S, wTx ≤ OPTm-KI . Furthermore, the sum x′ =
∑

x∈S x

has x′i ≥ x̂i for every i, so wT x̂ ≤ wTx′. Since |S| ≤ m+1, we have wTx′ ≤ (m+1)OPTm-KI .

Therefore, wT x̂/OPTm-KI ≤ m+ 1 so the integrality gap is m+ 1.

Generalizing from KP, we can easily conclude with an m+1 approximation algorithm: solve

the LP relaxation m-KL, then choose the highest profit vector from the set S as defined in

the proof of Theorem 2. Since the sum of all m + 1 vectors has profit at least OPTm-KI ,

the best vector must have profit at least OPTm-KI/(m+ 1).

We have now seen how to use linear programming to (m+ 1)-approximate m-KP. How-

ever, this approximation ratio is far from ideal and in Chapter 3 we improve upon it. This

concludes our basic introduction to knapsack problems, which is sufficient background to

understand our results. For a more comprehensive discussion please see [PKP13].

1.4 Unsplittable flow on paths and trees

The unsplittable flow problems on paths (UFPP) and trees (UFPT) are generalizations of

KP and special cases of MKP. Since UFPP is a special case of UFPT, we use the term

UFPT to refer generally to the two problems. Unlike KP and MKP, we frame UFPT in

the context of routing demands along paths in a tree, rather than packing items into a

container. The unsplittable flow problem was initially introduced as the problem of routing

flow along a single (i.e., unsplittable) path in a general graph, but we focus on the case

where the graph is a tree. For further discussion about the history of this problem, please

see Section 1.6.

6

An instance I = (T,R) of UFPT consists of an undirected capacitated tree T = (V,E, u)

and a set of requests R, defined as follows. V is the set of vertices and each edge e ∈ E has

some positive capacity ue. Each request r ∈ R imposes some nonnegative demand dr on all

edges along the unique simple path Pr between sr ∈ V and tr ∈ V . We denote the number

of requests |R| by n and the number of edges |E| by m. For simplicity, we assume that

R = {1, . . . , n} = [n] and that sr 6= tr for all r ∈ R. We say that a subset S ⊆ R of requests

is feasible or routable if, for each edge e ∈ E, the total demand of all requests r ∈ S such

that e ∈ Pr is at most the capacity ue of that edge. The goal is to select a feasible subset

S ⊆ R which maximizes the profit
∑

r∈S wr. We formalize this with the following IP.

max wTx

such that
∑

r∈R : e∈Pr drxr ≤ ue ∀ e ∈ E

0 ≤ xr ≤ 1 ∀ r ∈ R

x ∈ Zn.

UFPTI

The LP relaxation UFPTL of UFPTI is defined by replacing x ∈ Zn with x ∈ Rn. UFPP

has an identical formulation, with the only difference being that T must be a path, that is,

the degree of every vertex must be 2, except for the two end vertices which have degree 1.

For simplicity, we make the same assumptions as for m-KI . We assume that all requests

are routable on their own, i.e., for each r ∈ R and e ∈ Pr, dr ≤ ue. Any request which does

not satisfy this condition cannot be included in any feasible solution, so it can be discarded.

We also assume that it is impossible to route all requests together, as the optimal solution

would then be trivial.

In terms of generality and approximability, UFPT is harder than KP and easier than

MKP. When T consists of only a single edge, UFPT reduces to KP. UFPT can be thought of

as MKP but with the restriction that for each item i and dimension j, aji ∈ {0, di} for some

d ∈ Rn+, and the sizes aji which are nonzero for a particular item i must correspond to the

edges of a simple path. UFPT is also closely related to 0-1 column restricted packing integer

programs (CPIP), which are more general, lacking the additional constraints of which sizes

can be nonzero [CEK09].

Both UFPT and UFPP have been extensively researched. Important special cases of

importance are those where all items have equal profit (unit-profit instances), when all

requests route on some common edge (intersecting instances), and when all requests share

a common endpoint (single-sink instances). Other cases have been studied less extensively,

such as when the input graph is a cycle or star1 or when the profit of each request equals

1In the case of a star, the problem generalizes the maximum weight matching problem: make a leaf for
each item in the matching, make a request connecting each pair of items that can be matched, and set all

7

its demand.

Similarly to MKP, we refer to the constraints for each edge e as the knapsack constraint

for e. We refer to the corresponding knapsack instance for a given edge in by KI(e), and

the corresponding MKP instance for a set S of edges by KI(S). Hence, KI(E) = UFPTI .

Like MKP, we do not have a simple greedy algorithm for solving the LP relaxation of UFPT

on paths or trees. However, for single-sink instances, which we discuss extensively, we show

that such an algorithm exists.

1.4.1 LP optimum for single-sink UFPT instances

In this section we describe a greedy algorithm which finds an optimal solution to UFPTL

in the single-sink case, where all requests share a common endpoint vertex r. As far as

we know, such an algorithm has not been described in the literature. We use this result in

Chapter 2 to tighten the analysis of the integrality gap of some well-known UFPT instances.

Assume T is rooted at r, with the root at the top of the tree. Note that by nature of

single-sink instances, we may assume that if edge e1 lies below edge e2 in the rooted tree,

then u(e1) < u(e2). If this is not the case, then we could contract e1 to a single vertex

without affecting the feasible region. To analyze the algorithm we use a slightly different

but equivalent formulation for UFPT, where variables xi range from 0 to di rather than

from 0 to 1.

max
∑

iwixi

such that
∑

i∈Re xi ≤ ue ∀e ∈ E

0 ≤ xi ≤ di ∀i ∈ R

UFPT′I

This LP has the following dual.

min
∑

i dizi +
∑

e ueye

such that zi +
∑

e∈Pi ye ≥ wi ∀i ∈ R

0 ≤ z, y

UFPT′I -Dual

Thus, the complementary slackness conditions are:

xi > 0 =⇒ zi +
∑

e∈Pi ye = wi, (1)

ye > 0 =⇒
∑

i∈Re xi = ue, (2)

zi > 0 =⇒ xi = di. (3)

demands and capacities to 1.

8

We say that an edge e is tight if
∑

i∈Re xi = ue. Assume WLOG that we have w1 ≥ w2 ≥
. . . ≥ wn. We define a greedy algorithm to produce a primal feasible x̄ and dual feasible

(ȳ, z̄), and then use complementary slackness to show that this solution is optimal.

1 x̄← 0
2 for i = 1 to n do
3 Increase x̄i until some some edge becomes tight or until x̄i = di
4 If an edge e first became tight on this iteration, define ti = e

5 end
6 w′ ← w
7 ȳ ← 0
8 z̄ ← 0
9 for i = n down to 1 do

10 if ti is set then
11 ȳti ← w′i
12 for j ∈ R : ti ∈ Pj do
13 w′j ← w′j − w′i
14 end

15 else if x̄i = di then
16 z̄i ← w′i
17 end

18 end
19 return x̄, ȳ, z̄

Algorithm 1.2: The greedy algorithm for single-sink instances of UFPT′I .

Theorem 3. The vector x̄ returned by Algorithm 1.2 is optimal for UFPT′I .

Proof. To show this, we prove that the vectors x̄, ȳ, z̄ returned by Algorithm 1.2 are feasible

and satisfy complementary slackness. Note that since we assume the edge capacities are

strictly decreasing away from the root, only one edge can become tight on each iteration.

First, it is easy to see that x̄ is feasible for UFPT′I , because elements x̄i are ≥ 0 and

only increased until some capacity constraint goes tight or until x̄i = di, which are exactly

the conditions for feasibility.

Next we show complementary slackness conditions (2) and (3). If z̄i > 0 then clearly

x̄i = di, since z̄i is not set otherwise, so (3) is satisfied. If ȳe > 0 for some e, then e = ti for

some i. Therefore, e is tight, i.e.,
∑

i∈Re x̄i = ue and hence (2) is satisfied.

We now prove that condition (1) holds and that ȳ, z̄ is dual feasible. Consider some

i ∈ R and let T = {e ∈ Pi : e is tight}. Since all tight edges are associated with some

tj , we can write T = {tj1 , . . . , tjq} for some q and sequence j1, . . . , jq. Furthermore, since

T ⊆ Pi, we can assume that the edges tj1 , . . . , tjq are ordered by decreasing distance from

r. After some edge e goes tight, no edge in the subtree below e can go tight, because no

9

r

• • •

• • •

• • sj3

sj2 •

si • •

tj3

tj1

tj2

Figure 1.1: An example depicting the tight set T and path Pi for some request i ∈ R.
The source of request i is si, the doubled edges (=) are those in T , and the
dashed edges are those not in Pi. Request i made jt1 go tight (so i = t1), then
request j2 made tj2 go tight, and finally request j3 made tj3 go tight.

more demand can be routed on e. Hence, tj1 went tight first, and tjq went tight last, so we

can assume j1 < · · · < jq. See Fig. 1.1 for an illustration of this.

On any iteration ` not in {j1, . . . , jq}, the values w′jk are not changed, because t` /∈ Pjk
for any k; otherwise t` would be in T . Hence, w′jq is never modified before the iteration

with i = jq of the loop on lines 9-17, so ȳtjq = wjq . We claim that on any iteration jk with

k < q the algorithm sets ȳtjk = wjk − wjk+1
.

On the iteration with i = jq, the algorithm sets w′jk ← wjk − wjq for all k. So, on

iteration jq−1, it assigns ȳtjq−1
= w′jq−1

= wjq−1 − wjq and sets

w′jk ← w′jk − w
′
jq−1

= wjk − wjq − (wjq−1 − wjq) = wjk − wjq−1

for all k. It follows by induction that on any iteration jk with k < q the algorithm sets

ȳtjk = wjk − wjk+1
as desired.

Since jk < jk+1 for all k < q, we have wjk − wjk+1
≥ 0, which is needed for dual

feasibility. Furthermore,
∑

e∈Pi ȳe = wjq +
∑q−1

k=1wjk − wjk+1
= wj1 . If ti is defined, then

i = j1, because otherwise one of the other tight edges would be blocking request i from

routing at all. So, x̄i > 0 and we have
∑

e∈Pi ȳe = wi. Therefore, in this case, condition (1)

is satisfied and ȳ, z̄ is dual feasible. Assume instead that ti is not defined. If x̄i = di, then

the algorithm sets z̄i = wi−wj1 by a similar argument to how we determined ȳtk , and hence

z̄i +
∑

e∈Pi ȳe = wi, satisfying (1) and dual feasibility. Finally, if x̄i = 0, then we only need

to check dual feasibility. We know j1 < i because request j1 blocked request i, so wj1 ≥ wi

10

and hence the solution is dual feasible.

1.4.2 Rank formulations for UFPT

In this section, we discuss the use of rank constraints as a means for strengthening the LP

formulation of UFPT. Intuitively, the rank of some set of requests is the size of the largest

feasible subset, and a rank constraint enforces that limit.

Definition 1. Consider some UFPT instance. For S ⊆ R define

rank(S) = max{|T | : T ⊆ S and T is feasible}.

To motivate this, we make a simple observation. Let P be the feasible region of some IP. We

say that some inequality aTx ≤ b is a valid inequality for this IP if conv(P) ⊆ {x : aTx ≤ b}.

Observation 1. Let S ⊆ R. The inequality
∑

i∈S xi ≤ rank(S) is a valid inequality for

UFPT.

Hence, including all such inequalities is a valid formulation for UFPT, which we call the

rank LP or rank formulation.

max
∑

iwixi

such that
∑

r∈S : e∈Pr dixi ≤ ue ∀ e ∈ E∑
i∈S xi ≤ rank(S) ∀S ⊆ R

0 ≤ xr ≤ 1 ∀ r ∈ R

x ∈ Rn.

Rank-UFPT

Unfortunately, we cannot compute rank(S) efficiently for general instances of UFPT because

rank(S) is itself the optimal value of an UFPT instance where all wi = 1, which is known to

be NP-hard to compute [CEK09]. Formally, rank(S) is the optimal value of the following

IP.

rank(S) = max
∑

i xi

such that
∑

r∈S : e∈Pr dixi ≤ ue ∀ e ∈ E

0 ≤ xr ≤ 1 ∀ r ∈ R

x ∈ Zn.

Card-UFPT

The best known approximation for Card-UFPT, and hence for rank(S), is an O(log |S|)-
approximation [CEK09]. Although it is hard to approximate rank(S) for arbitrary sets S, it

11

turns out that for certain sets S we can compute rank(S) efficiently, and that enforcing the

rank constraints only for those sets is sufficient to solve the rank LP to within a constant

factor. Specifically, Friggstad and Gao show that we only need to consider rank constraints

for a collection F of sets S with rank(S) = 1 in order to 9-approximate Rank-UFPT [FG15].

We call these sets S with rank(S) = 1 cliques. They use this result to define a formulation

called the compact rank LP. In their paper, |F| = O(nm), so this formulation is solvable in

polytime.

max
∑

iwixi

such that
∑

r∈S : e∈Pr dixi ≤ ue ∀ e ∈ E∑
i∈S xi ≤ 1 ∀S ∈ F

0 ≤ xi ≤ 1 ∀ r ∈ R

x ∈ Rn.

Compact-Rank-UFPT

Theorem 4 (Theorem 5 from [FG15]). If x is feasible for Compact-Rank-UFPT then x/9

is feasible for Rank-UFPT.

In Chapter 2 we present a family of single-sink tree instances for which Rank-UPFT has

integrality gap Ω(
√

log n). Furthermore, adding the rank constraints only improves the

integrality gap by a constant factor over the natural LP relaxation for these instances. On

the other hand, for intersecting path instances it is known that Rank-UFPT has integrality

gap O(1) [CEK09]. For general path instances, the integrality gap of Rank-UFPT is known

to be O(log n), and it is conjectured to be O(1) [CEK09].

Although the rank formulation does not improve significantly on the natural LP relax-

ation in the general case, there are some interesting properties of the rank LP which we

present in Chapter 2.

1.5 Our contributions

In Chapter 2 we tighten results related to a class of UFPT instances introduced by Frig-

gstad and Gao [FG15], determining exactly the optimal solutions to the IP and LP (see

Theorem 6). To accomplish this, we also prove a number of new structural results about

the instances, some of which are used in Chapter 4.

In Chapter 3 we generalize a result by Bienstock and McClosky [BM12] from knapsack

to multidimensional knapsack. Our result is a linear extended formulation which performs

better than the natural LP relaxation yet only has O(n) times as many variables and

constraints (see Theorem 9). Following this, we present a result by Pritchard [Pri10],

which, for any 0 < ε ≤ 1, gives a (1 − ε)-approximate formulation for multidimensional

12

knapsack which does not depend on the profits (see Theorem 10). We do not improve on

Pritchard’s result, but we have modified the presentation for clarity.

In Chapter 4 we introduce a new hierarchy of strengthened formulations for multidi-

mensional knapsack problems called the knapsack intersection hierarchy and investigate

its performance in the context of UFPT. Using results from Chapter 3 we show that the

strengthened formulations can be approximately separated in polynomial time when the

number of rounds is constant (see Corollary 2). We then prove that after applying t rounds

of this hierarchy to the natural LP relaxation for UFPT, the integrality gap is Ω(n/t) (see

Theorem 11). However, this result does not generalize to the rank LP and our results suggest

that this new hierarchy may be effective where the rank LP is not: for the Friggstad-Gao

instances, which evidence the worst known integrality gap for the rank LP, we prove that

the hierarchy performs better, achieving an integrality gap of Θ(1/c) after nc rounds for

any c > 0 (see Theorem 12).

1.6 Related work

The name “unsplittable flow problem” was introduced in the doctoral thesis of Kleinberg

[Kle96]. In the original definition, it is not required that the underlying graph is a tree.

Hence, one not only has to determine which requests to include in the solution but also

which path between terminals to route those requests on. This problem was also sometimes

referred to as the integer multicommodity flow problem in operations research, a name

which Kleinberg remarks did not have a standardized meaning in the literature, leading

him to adopt the term unsplittable flow. The idea of routing flow on a single path can be

further traced back to the ring loading problem introduced by Cosares and Saniee [CS94],

which examined the case where the graph is a simple cycle.

The name unsplittable flow would go on to refer to a wide variety of problems as well,

including the special cases of paths and trees, where all flows are inherently unsplittable

(the route between two vertices cannot be “split” between multiple paths since there is only

one such path). Additionally, the same name has come to refer to both the cases where the

no-bottleneck assumption—which states that the maximum demand must be at most the

minimum capacity—is assumed and where it is not (Kleinberg assumes it in the original

definition, calling it the balance assumption).

The term all-or-nothing flow (ANF) was introduced to deal with this problem [CKS13].

It captures the essential property that for any request we must route all the demand (= di)

or nothing (= 0). However, most recent papers still use the UFP terminology. On paths,

the problem has also been studied under names such as resource allocation, bandwidth allo-

cation, resource constrained scheduling, temporal knapsack, and interval packing [BSW14].

Although the name “unsplittable flow on trees” is not ideal, for consistency with the

13

recent literature, we adopt it. Specifically, we define the unsplittable flow problem on paths

(UFPP) and the unsplittable flow problem on trees (UFPT) without the no-bottleneck

assumption. The no-bottleneck case was effective settled in [CMS07].

We now discuss related work regarding UFPT and UFPP. The literature on integer

programming hierarchies, extended formulations and disjunctive programming is discussed

in Chapters 3 and 4.

1.6.1 UFPT

Currently, the best known approximation for UFPT is an O(k log n)-approximation where

k is the pathwidth of the tree [ACEW16]. All trees have pathwidth O(log n), so this is an

O(log2 n)-approximation in general. Furthermore, this result holds for arbitrary submodular

objectives, and implies an O(log n) approximation for UFPP since paths have constant

pathwidth. Prior to this work, an O(log2 n)-approximation was first given by Chekuri, Ene,

and Korula [CEK09]. Later, Friggstad and Gao matched this with an LP formulation for

UFPT with integrality gap O(log2 n) [FG15].

When all demands and item profits are 1 it is possible to obtain a 2-approximation for

UFPT, and with arbitrary profits there is a 4-approximation [CMS07]. On the other hand,

when all profits are 1 but demands are arbitrary, the best known result is an O(log n)-

approximation [CEK09]. This suggests that much of the difficulty in this problem comes

from the fact that the requests can vary in demand.

UFPT is known to be APX-hard, thus ruling out a PTAS unless P = NP [GVY97].

However, there is a quasi-PTAS under some assumptions about the number of leaves and

the magnitude of demands and capacities [ACH09]. It can be shown that UFPT is APX-

hard when the number of leaves is Ω(nε) for any ε > 0 [ACH09].

1.6.2 UFPP

Since every path graph is a tree, the results from the previous seciton on UFPT all apply

to UFPP. However, UFPT is known to be a harder problem, so better results are known

for UFPP. Of the two problems, UFPP has received the most attention in the literature.

At the time of writing, the best known polytime approximation for UFPP is a (1 + 1
1+e +

ε)-approximation by Grandoni, Mömke, and Wiese [GMW20]. Prior to this, Grandoni,

Mömke, and Wiese also published a (5/3 + ε)-approximation, the first paper to break the

2 + ε barrier, which stood for a number of years [GMWZ18]. Many recent results classify

requests as either small or large depending on how large their demand is relative to the

smallest capacity edge that they route on (the bottleneck edge). For instances that contain

only large or only small requests, a PTAS is known, so a (2 + ε)-approximation can be

achieved by either discarding all small requests or all large requests [AGLW18]. To achieve

14

a (5/3+ε)-approximation, a dynamic programming algorithm is used that is able to partially

combine the solutions for only small and only large requests.

Prior to the (2 + ε)-approximation, an extended formulation with integrality gap (7 + ε)

was defined by embedding a dynamic program into an LP [AGLW13]. This is currently

the best known LP formulation for this problem. Before this, a combinatorial (7 + ε)-

approximation was already known [BSW14]. This was the first O(1)-approximation for

UFPP; the best result prior to this is an O(log n)-approximation—the first known o(n)

approximation—which uses dynamic programming [BFKS09]. An O(n)-approximation is

easily obtained by rounding the natural LP relaxation (see Theorem 2).

It is not known whether a PTAS for UFPP exists, and resolving this is considered an

important open problem [GMWZ18]. However, a quasi-PTAS is known, which suggests a

PTAS may indeed exist since the existence of a quasi-PTAS rules out APX-hardness unless

NP ⊆ DTIME
(
2polylog(n)

)
[BCES06]. Currently, the fastest quasi-PTAS for UFPP runs in

time nOε(log logn) [GMW21].

Despite this open problem, a PTAS is known for many important special cases of UFPP.

We already mentioned that there is a PTAS for instances with only large or only small

requests. More formally, there is a PTAS if for some δ > 0 the instance contains only

requests which have demand at least a δ-fraction of the capacity of the smallest edge they

route on [AGLW18]. On the other hand, if no requests fit this criteria (all requests are

small), then there is also a PTAS [CMS07]. A PTAS is also known for instances where all

requests cross an edge from a set of O(1) edges, and hence for intersecting instances as well

[GMWZ17]. Other cases which admit a PTAS include the case where the profit density of

the requests falls within a constant sized range [BGK+14], and in the case where all profits

are 1 and the optimal profit is a fixed parameter [Wie17]. When the number of edges is

constant, there is a PTAS via MKP (see Section 3.3).

15

Chapter 2

Hard Instances

In the literature on UFPT, two notable instances were introduced which serve to evidence

lower bounds on the integrality gap of UFPTL and Rank-UFPT. The first such instance Sn

has T defined as a path graph on n vertices, for which UFPTL has an integrality gap of Θ(n)

but Rank-UFPT has an integrality gap of O(1). The second is a tree T hFG on Θ(2h
2
) vertices

for which UFPTL and Rank-UFPT both have an integrality gap of Θ(
√

log n). Hence, Sn

evidences how poor of an approximation the LP relaxation is, while T hFG evidences that the

rank LP is not ideal either.

In this section we first define Sn and prove some of its well-known properties. We then

define T hFG and prove some new structural results and tightened bounds for it. These new

results are key to our contributions in Chapter 4.

2.1 Staircase instances

For n ≥ 2, we define the staircase1 instance Sn = (T,R) as follows. Let T be a path graph

on n vertices, that is, V = {1, . . . , n} and E = {(1, 2), (2, 3), . . . , (n − 1, n)}. We refer to

vertex 1 as the root or just r. For each i = 1, . . . , n− 1, define u(i,i+1) = 2i−1 and create a

request i with si = i, ti = n, di = 2i−1, and wi = 1. See Fig. 2.1 for an illustration. These

instances were first described by Chakrabarti, Chekuri, Gupta, and Kumar [CCGK02].

Theorem 5. On instances Sn, the integrality gap of UFPTL is n/2, but the integrality gap

of Rank-UFPT is 1.

Proof. First we show that the integrality gap of the LP relaxation is n/2. Notice that each

request routes on an edge with capacity equal to the demand of the request. So, since all

requests share a common endpoint, for any two requests there must be an edge which both

1In the literature, this instance is referred to as a staircase because of a common way of visualizing UFPP
instances where the capacity is plotted above the vertices on the Y axis.

16

r
64 32 16 8 4 2 1

1248163264

Figure 2.1: Instance S8 is a path graph on 8 vertices. Each vertex marked with a
bullet (•) is associated with a request (dashed line) which routes between that
vertex and r. The value under each edge denotes the capacity of that edge, and
the value above each vertex denotes the demand of the request associated with
that vertex. All requests have profit 1.

requests route on, with capacity equal to the demand of the larger of the two requests.

Hence, routing either of the requests does not leave enough capacity for the other, so any

optimal integral solution must contain only a single request. All requests have profit 1, so

therefore the optimal integral profit is 1.

We now show the LP optimum. Recall that the greedy algorithm in Section 1.4.1 selects

requests in order of decreasing profit density. Request i has profit density 21−i, so the greedy

algorithm starts by fully routing request 1, i.e., it sets x1 = 1. Now, the remaining capacity

on the edge with capacity 2 is 1; to fill this capacity we can route 1/2 of the request with

demand 2, i.e., we set x2 = 1/2. Inductively for all other i, the edge with capacity 2i−1 is

1/2 full when we assign to the request with demand 2i−1, so we set xi = 1/2 in order to fill

the capacity. This gives a profit of 1 + (n − 2)/2 = n/2. Hence, the integrality gap of the

LP relaxation is (n/2)/1 = n/2.

We now determine the rank LP integrality gap. We saw that no two requests can route

together integrally. Thus, rank(R) = 1 so
∑

i xi ≤ 1 is a valid rank inequality. With this

inequality there is clearly no assignment that produces a profit greater than 1, so the optimal

profit for the rank formulation is 1, and hence the integrality gap of the rank formulation

is also 1, i.e., the rank LP is equal to the integer hull.

We can conclude from this that in general, the integrality gap of the LP relaxation is Ω(n).

These instances evidence the worst known integrality gap for the natural LP relaxation,

yet the rank formulation (in fact, only a single rank constraint) is equal to the integer hull.

So, it is natural to question whether the integrality gap of the rank formulation is O(1)

in general. This is not currently known—for path instances the integrality gap is known

to be O(log n), and is conjectured to be O(1) [CEK09]. However, for tree instances, the

17

r

23 − 20

26 − 23

29 − 26

dv

23

26

29

ue

2−4

2−2

20

wv

Figure 2.2: Instance T 3
FG. Each vertex marked with a bullet (•) is associated with a

request which terminates at r; a select few such requests are indicated by dashed
lines. The values on the left indicate the demands/capacities of requests/edges
in each level, respectively. The values on the right indicate the profit of the
requests in each level.

integrality gap is Ω(
√

log n) [FG15].

2.2 Friggstad-Gao instances

In this section, we describe the family of Friggstad-Gao UFPT instances, and prove that they

have an integrality gap of Θ(
√

log n) for both the LP relaxation and the rank formulation.

We define the tree T hFG with height h ≥ 2 as follows. There is a root vertex r which

has a single child v1. Apart from r, all vertices have 2h−1 children. We denote the set

of vertices with distance k from r by levelk, that is, level0 = {r}, level1 = {v1}, and for

k ∈ [h], |levelk| = 2(h−1)(k−1). For each edge e = uv with u ∈ levelk−1 and v ∈ levelk, define

ue = 2h(h−k+1). For all k ≥ 1 and each vertex v ∈ levelk, create a request associated with

v with sv = v, tv = r, demand dv = 2h(h−k+1) − 2h(h−k), and profit wv = 2−(h−1)(k−1). See

Fig. 2.2 for an example. This defines a single-sink instance since every request terminates

at r. Moreover, since the profit of each request in any level is the inverse of the number

of requests in that level, the total profit of requests in any level is exactly 1. A simple

calculation shows that the number of requests—and equivalently the number of edges or

number of vertices—in levels 0 through ` is

n(`) =
`−1∑
i=0

(2h−1)i =
2(h−1)` − 1

2h−1 − 1
= Θ

(
2(h−1)(`−1)

)
. (2.1)

Thus, h = Θ(
√

log n), where n := n(h) is the total number of requests/edges, and for any

`, we have ` = Θ
(

logn(`)
h

)
.

18

We denote by K(e) the set of vectors x ≥ 0 which satisfy the edge capacity constraint

for e. Hence, a subset J of requests is routable if and only if 1J ∈ K(e) for every edge e.

For convenience, when referring to this instance, we often associate a request Rv routing

between r and v with the vertex v or variable xv. We write T<v to denote the subtree

rooted at v with v itself removed. We use 1S to denote the indicator vector of the set S,

that is, the vector with (1S)i = 1 if i ∈ S and (1S)i = 0 if i /∈ S.

2.2.1 Basic properties

Our main results rely on the following lemmas.

Lemma 4. For any edge e = uv where u ∈ level`−1 and v ∈ level` for some `, the set of

requests in T<v is routable on e. That is, 1T<v ∈ KI(e).

Proof. In any level k > `, 2h(h−k+1) is an upper bound for the demand 2h(h−k+1) − 2h(h−k)

of the requests. The number of vertices in levelk that are also in the subtree below

e is 2(h−1)(k−`). Thus, the demand on e from routing all requests in levelk is at most

2(h−1)(k−`)2h(h−k+1) = 2h
2−h`−k+`+h. Therefore, summing over all k > `, we have

∑h
k=`+1 2h

2−h`−k+`+h = 2h
2−h`+`+h∑h

k=`+1 2−k

= 2h
2−h`+`+h(2−` − 2−h)

≤ 2h(h−`+1) = ue.

Lemma 5. The vector 1
2 is in KI(e) for every edge e.

Proof. Consider any edge e = uv where u ∈ level`−1 and v ∈ level`. The only requests

which route on e are those in the subtree rooted at v. Therefore it is sufficient to show that

b := 1
2(1{v} + 1T<v) ∈ KI(v). Note that 1{v} is in KI(e) since

dv = 2h(h−`+1) − 2h(h−l) < 2h(h−`+1) = ue,

and by Lemma 4, we have that 1T<v ∈ KI(e). It follows that any convex combination of

these vectors, and hence b, lies in KI(e).

Lemma 6. Let r be the root of the tree TFG and P be any path from r to a leaf. Then the

demands for the requests of P form a routable set.

Proof. The requests associated with level k have demand 2h(h−k+1) − 2h(h−k), so the total

19

demand of such a path is

h∑
k=1

2h(h−k+1) − 2h(h−k) = 2h
2 − 2h(h−1) + 2h(h−1) − 2h(h−2) + · · ·+ 22h − 2h + 2h − 20

= 2h
2 − 1.

This is less than 2h
2
, the capacity of the topmost edge. A similar argument shows that no

other edges are violated by leveraging the self-similar structure of the tree.

Lemma 7. For any ` ≥ 1, any request v ∈ level`, and any k > `, the set of requests

{v} ∪ {u : u ∈ levelk is in the subtree below v}

is not feasible.

Proof. Recall that the demand of v is 2h(h−`+1) − 2h(h−`) and the demand of u ∈ levelk is

2h(h−k+1) − 2h(h−k). The number of requests u ∈ levelk which are in the subtree below v is(
2h−1

)k−`
= 2(h−1)(k−`). So, in total the demand is

2h(h−`+1) − 2h(h−`) + 2(h−1)(k−`) ·
(

2h(h−k+1) − 2h(h−k)
)

= 2h(h−`+1) − 2h(h−`) + 2h
2−h`+h+`−k − 2h

2−h`+`−k

= 2h(h−`+1) + 2h(h−`) ·
(

2h+`−k − 2`−k − 1
)

> 2h(h−`+1).

Since 2h(h−`+1) is the demand of the edge immediately above v, this set is not feasible.

2.2.2 Integrality gap of the natural LP relaxation

In their paper, Friggstad and Gao proved an upper bound of 2 for the integral optimum

and a lower bound of h/2 for the linear optimum on instances T hFG, implying an integrality

gap of h/4 [FG15]. Here, we tighten these results by deriving closed form expressions for

the optimal solutions to the IP and LP formulations, and hence for the integrality gap. We

show that the true integral optimum is at most 1.5625 and the linear optimum is at least

(h+ 1)/2, implying an integrality gap of (h+ 1)/3.125.

Theorem 6. For instances T hFG, the integrality gap of the natural LP relaxation is

(h+1)2h−1
2h+1−2

1 + 2−(h−1)2
⌊

2h(h−1)

2h−1

⌋ ≥ h+ 1

3.125
= Θ(

√
log n).

20

To prove this, we first establish the LP optimum and then the IP optimum.

Lemma 8. The optimal profit of the LP relaxation for instances T hFG is

(h+ 1)2h − 1

2h+1 − 2
≥ h+ 1

2
= Θ(

√
log n).

Proof. In this proof we consider instances T hFG to be “hanging down” from the root vertex r,

with the leaves at the bottom, as in Fig. 2.2. By Theorem 3, the LP optimum is achieved by

an algorithm which greedily routes requests to the maximum (fractionally) feasible extent

in order of decreasing profit density wi/di. The solution we construct assigns the same value

to every request in a given level, so we represent it by a vector x ∈ Rh.

Recall that the root is in level 0, and the leaves are in level h. In level k of the tree,

requests have profit 2−(h−1)(k−1) and demand 2h(h−k+1) − 2h(h−k), so their profit density

increases monotonically towards the leaves:

2−(h−1)(k−1)

2h(h−k+1) − 2h(h−k)
= Θ

(
2k−1−h2

)
.

By Lemma 4, we can route all the requests from any individual level together, so the greedy

algorithm first assigns a value of 1 to each request in the lowest level of the tree (k = h),

i.e., it sets xh = 1.

By Lemma 7, we know that we cannot fully route any two levels of the tree together.

Hence, the other levels must be fractionally routed. We now determine how much we can

fractionally route the requests in level h − 1, given how much capacity is occupied by the

requests in level h. The requests in level h have demand 2h− 1. Since the branching factor

is 2h−1, the demand imposed by the requests in level h on the edges immediately above level

h− 1 is 2h−1 ·
(
2h − 1

)
. Since these edges have capacity 2h(h−(h−1)+1) = 22h, the amount of

remaining capacity is 22h − 2h−1 ·
(
2h − 1

)
= 2h−1 · (2h − 1).

By Lemma 4, even if all of these edges are tight, none of the other edges can be violated

by these requests alone, so we only need to consider the capacity of these edges at this step.

The requests in level h− 1 have demand 2h(h−(h−1)+1)− 2h(h−(h−1)), so to fill the remaining

capacity the greedy algorithm assigns

xh−1 =
2h−1 · (2h − 1)

2h(h−(h−1)+1) − 2h(h−(h−1))
=

2h + 1

2h+1 − 2
.

We now show by induction that for k ≤ h−2, the greedy algorithm assigns xk = 2h−1/(2h−
1). Assume k ≤ h−2 and that xk+1 < 1. This assumption holds at the base case of k = h−2,

since xh−1 < 1. It also holds in the inductive case because 2h−1/(2h − 1) < 1.

Since xk+1 < 1, the edges below level k must be tight; otherwise the greedy algorithm

21

would have assigned more value. Thus, the demand imposed so far on the edges above

level k is equal to the branching factor 2h−1 times the capacity of the edges below level

k. Simplifying, this is 2h−1 · 2h(h−(k+1)+1) = 2h(h−k+1)−1. Since the edges above level k

have capacity 2h(h−k+1), the amount of remaining capacity is 2h(h−k+1) − 2h(h−k+1)−1 =

2h(h−k+1)−1. Hence, the requests in level k can be assigned value

xk =
2h(h−k+1)−1

2h(h−k+1) − 2h(h−k)
=

2h−1

2h − 1
,

concluding the inductive argument.

Recall that in any level k, the profit of each request is 2−(h−1)(k−1) and the number of

requests is 2(h−1)(k−1). Since we assign the same value to all requests in a level, the profit

contributed by the requests in level k is xk · 2−(h−1)(k−1) · 2(h−1)(k−1) = xk, i.e., the profit of

those requests is simply equal to the value assigned to them. Therefore, the total profit of

the constructed solution is

h∑
i=1

xi = 1 +
2h + 1

2h+1 − 2
+ (h− 2) · 2h−1

2h − 1
=

(h+ 1)2h − 1

2h+1 − 2
= Θ(h).

Lemma 9. The optimal integral solution profit for instances T hFG is

1 + 2−(h−1)2

⌊
2h(h−1)

2h − 1

⌋
≤ 1.5625.

Proof. We consider instances T hFG to be “hanging down” from the root vertex r as in Fig. 2.2.

To prove this, we show a stronger statement: for any request/vertex v which is in level k of

the tree, the maximum profit of any feasible subset S of the requests in the subtree rooted

at v is

2−(h−1)(k−1) + 2−(h−1)2

⌊
2h(h−k)

2h − 1

⌋
.

The case k = 1 proves the lemma. The proof is by induction from k = h to 1. For the base

case where k = h, v is a leaf, so the subtree rooted at v contains only v itself. Since h ≥ 2,

we have ⌊
2h(h−k)

2h − 1

⌋
= 0,

so it suffices to show that the profit of S = {v} is at most 2−(h−1)(k−1), and indeed,

wv = 2−(h−1)(k−1), concluding the base case. We now assume that k < h and that the

22

claim holds for all children of v, and show that it holds for v itself. We consider two cases:

where v ∈ S and where v /∈ S.

Case 1: v ∈ S. Here, we gain profit 2−(h−1)(k−1) from v itself, so it remains to show that

the rest of the requests in S contribute profit

2−(h−1)(h−1)

⌊
2h(h−k)

2h − 1

⌋
.

After routing v, the amount of capacity remaining on the edge immediately above v is

2h(h−k+1) −
(

2h(h−k+1) − 2h(h−k)
)

= 2h(h−k).

The requests in level h have the highest profit density (see Lemma 8), so filling the remaining

capacity fractionally with requests from that level achieves the maximum possible fractional

profit. We show, in fact, that filling the remaining capacity integrally with those requests

is the optimal choice, even if there is a small amount of remaining capacity.

Recall that the requests in level h have demand 2h − 1. Level h contains 2(h−1)(h−1)

requests and 2h(h−k)/(2h−1) ≤ 2(h−1)(h−1), so there are enough such requests to completely

fill the remaining capacity. We add to S as many of these requests as possible while

maintaining feasibility. However, since we need an integral solution, there may be some

remaining capacity. Since the demand of requests in levels < h is even higher than for

level h, there is not enough capacity left to include any requests from other levels in S.

Furthermore, removing any set of level h requests from S in order to include a request from

a level < h would reduce the profit of S: since demand increases by a factor of 2h for each

level towards the root, we would need to remove at least 2h−1 level h requests from S to fit

one request from level h− 1. If we performed this operation, the difference in profit would

be at most

−(2h − 1)2(h−1)(h−1) + 2(h−1)(h−2) < 0.

Therefore, including only v and as many level h requests as possible in S is optimal, and

this produces the desired profit.

Case 2: v /∈ S. By the induction hypothesis, for each of the 2h−1 children of v we can gain

profit

2−(h−1)((k+1)−1) + 2−(h−1)(h−1)

⌊
2h(h−(k+1))

2h − 1

⌋
.

23

Therefore, the maximum profit of a feasible subset of the subtree rooted at v is

2h−1 ·

(
2−(h−1)((k+1)−1) + 2−(h−1)2

⌊
2h(h−(k+1))

2h − 1

⌋)
≤ 2−(h−1)(k−1) + 2−(h−1)2

⌊
2h(h−k)

2h − 1

⌋

as desired.

Proof of Theorem 6. From the previous two lemmas it is straightforward to show that the

integrality gap is

(h+1)2h−1
2h+1−2

1 + 2−(h−1)2
⌊

2h(h−1)

2h−1

⌋ ≥ h+1
2

1.5625
=
h+ 1

3.125
= Θ (h) = Θ(

√
log n).

2.2.3 Integrality gap of the rank LP

It remains to show that the integrality gap of the rank formulation is at most a constant

factor better than the natural LP relaxation, that is, the rank formulation also has inte-

grality gap Θ(
√

log n). To show this we follow a similar proof to one presented by Friggstad

and Gao [FG15].

Theorem 7. For instances T hFG, the integrality gap of the rank LP is Θ(
√

log n).

Proof. First, we show that given any set S ⊆ R, at least two of the requests in the set can

be routed together. Let i, j ∈ R be arbitrary requests and suppose i ∈ levela and j ∈ levelb,
WLOG with a < b (if a = b, then the requests could not conflict). If i and j were to conflict,

they would do so on the parent edge of i because capacity increases towards the root. The

capacity of this edge is 2h(h−a+1), the demand of i is 2h(h−a+1) − 2h(h−a), and the demand

of j is 2h(h−b+1) − 2h(h−b) ≤ 2h(h−a) − 2h(h−a−1). Hence, the total demand is less than the

capacity, so the two requests can route together. So, given any S ⊆ R, any two requests in

S can route together and thus rank(S) ≥ 2. Hence, there are no clique constraints for this

instance and thus Compact-Rank-UFPT is equivalent to UFPTL.

Therefore, the optimal solution x∗ to UFPTL, given in Lemma 8, is also optimal for

Compact-Rank-UFPT. By Theorem 4, x∗/9 is feasible for Rank-UFPT, and hence the

integrality gap of Rank-UFPT on this instance is Θ(
√

log n)/9 = Θ(
√

log n).

Instances T hFG evidence the worst known lower bound for Rank-UFPT, i.e., the integrality

gap of Rank-UFPT is Ω(
√

log n). However, the integrality gap of Rank-UFPT is known to

be O(log n) on general instances [CEK09]. It remains an open problem to close this gap,

either by tightening the upper bound to O(
√

log n) or finding an instance with integrality

gap ω(
√

log n).

24

Chapter 3

Extended Formulations

In the previous section, we saw that the rank formulation for UFPT, while somewhat

effective at strengthening the natural LP relaxation, still has an integrality gap of Ω(
√

log n).

To improve this gap, one might consider generalizing the rank inequalities, for example to

those of the form
∑
aixi ≤ b for ai ∈ {0, 1, 2}. Although these directions may in fact

lead somewhere, some negative results are known which suggest there are limits to this

approach—which extended formulations can overcome.

Definition 2. Let w ∈ Rn+ and 0 ≤ ε ≤ 1. A (1 − ε)-approximate extended formulation

for P ⊆ Rn is a polyhedron Q ⊆ RN with N > n, such that for all x ∈ P there is some

x′ ∈ RN−n such that (x, x′) ∈ Q, and

max{wTx : x ∈ P} ≥ (1− ε) max{wTx : ∃x′ ∈ RN−n s.t. (x, x′) ∈ Q}.

We may also refer to (1+ε)-approximate extended formulations where it is more convenient

to do so. For ε > 0 we have a (1 + ε)-approximation if

max{wTx : ∃x′ ∈ RN−n s.t. (x, x′) ∈ Q} ≤ (1 + ε) max{wTx : x ∈ P}.

Evidently, there is a (1 + ε)-approximation if and only if there is a (1− ε′)-approximation;

just take ε′ = ε/(1 + ε) or ε = ε′/(1− ε′). Since we only deal with maximization problems,

this is not ambiguous; we can determine what is meant by x-approximation depending on

whether x > 1. We motivate this definition using the following result of Faenza and Sanità

[FS15].

Theorem 8. For sufficiently small ε > 0, there is no (1 − ε)-approximate formulation

Q ⊆ Rn for a 0-1 knapsack polytope P ⊆ Rn such that the number of facets of Q is

polynomial in n.

25

Therefore, if we want to define a (1 − ε)-approximate formulation for KP which has a

polynomial number of facets for every fixed ε, we need to use an extended formulation; no

formulation in the original space Rn exists.

In this section we explore approximate extended formulations for multidimensional knap-

sack using a technique called disjunctive programming; in the next section we apply these

formulations to derive strengthened formulations for UFPT.

3.1 Disjunctive programming

Let P ⊆ [0, 1]n be an arbitrary set, w ∈ Rn+, and suppose we wish to solve max{wTx : x ∈
P}. We say that Q1, . . . , QL ⊆ [0, 1]n is a disjunction for P if P ⊆ Q1 ∪ · · · ∪QL. The Qi

are called the disjuncts. Clearly, Q := conv(Q1 ∪ · · · ∪QL) ⊇ P and therefore

max {wTx : x ∈ P} ≤ max{wTx : x ∈ Q},

so Q is a relaxation for P . Disjunctive programming effectively amounts to enumerating a

number of cases (the Qi), but the enumeration is implicit—we end up with a single convex

optimization problem with extra variables (an extended formulation). By the definition of

conv(·), we can optimize over Q with the following formulation:

max wTx

such that
∑L

i=1 λ
ixi = x∑L

i=1 λ
i = 1

λi ≥ 0 ∀ i ∈ [L]

xi ∈ Qi ∀ i ∈ [L]

DP1

However, this formulation is nonlinear because of the λixi terms. This can be alleviated

if we have a linear description of the Qi, that is, if there is some Ai and bi such that

Qi = {x ∈ [0, 1]n : Aix ≤ bi} for all i. If we have such a linear description, then we can

linearize the optimization problem over Q by making each term λixi into a variable which

we denote by zi. This is called homogenization and is achieved by adding an extra dimension

zi0 for each zi. Optimization over Q can thus be formulated as an LP which uses the extra

26

variables zi:

max wTx

such that
∑L

i=1 z
i
j = xj ∀ j ∈ [n]∑L

i=1 z
i
0 = 1

zi0 ≥ 0 ∀ i ∈ [L]

Aizi ≤ zi0bi ∀ i ∈ [L]

zij ≤ zi0 ∀ i ∈ [L], ∀ j ∈ [n]

DP2

Lemma 10. DP1 and DP2 are equivalent.

Proof. If we take (x, λ) ∈ DP1, then we can define zi0 = λi and zij = λixij for i ∈ [L] and

j ∈ [n], so that (x, z) ∈ DP2. Conversely, for any (x, z) ∈ DP2, we can take λi = zi0 for all

i, so that (x, λ) ∈ DP1.

The following result is key for the application of disjunctive programming to approximation

algorithms.

Lemma 11. Let OPT = max{wTx : x ∈ P}. If there is a constant 0 ≤ γ < 1 such that for

each i ∈ [L] we have OPT ≥ (1 − γ) max{wTx : x ∈ Qi}, then OPT ≥ (1 − γ) max{wTx :

x ∈ Q}.

Proof. Let (x, z) be optimal for DP2. Then for all i ∈ [L], we have zi ∈ zi0Qi, so

zi0 OPT ≥ zi0 (1− γ) max{wTx : x ∈ Qi} ≥ (1− γ)wT zi.

If we sum this over all i ∈ [L] we find, as desired, that

OPT =
L∑
i=1

zi0 OPT ≥ (1− γ)

L∑
i=1

wT zi = (1− γ)wTx.

This simple result is enough for us to begin applying disjunctive programming. For a more

comprehensive introduction to disjunctive programming, please refer to [Bal79]. We first

give a simple disjunctive programming formulation for m-KP which improves upon the

(m+ 1)-approximation seen in the introduction. Following this we present a polynomially

sized (1− ε)-approximate formulation for m-KP for any 0 < ε ≤ 1.

27

3.2 Simple disjunctive programming approximation for
m-KP

In this section we give a (1+0.79m)-approximate extended formulation for m-KP which uses

justO(n) disjuncts. This result is generalized from a 1.79-approximate extended formulation

for KP given by Bienstock and McClosky [BM12]. Their result was provided in response

to the question of whether there was any “simple” relaxation for KP with polynomially

separable inequalities which has an integrality gap of less than 2 (the integrality gap of the

natural LP relaxation). We show that their result generalizes very cleanly to m-KP. Their

result uses only O(1) disjuncts while we require O(n), but the construction is still relatively

simple.

Theorem 9. There is a (1 + m · r(m))-approximate extended formulation for m-KP with

size polynomial in n and m, where

r(m) =

√
8m4 + 28m3 + 29m2 + 10m+ 1− 3m− 1

4m2 + 2m
≤ 0.79.

If desired for simplicity, the analysis also works with r = (
√

19 − 2)/3, but the above

definition of r gives a tighter bound for large m, since limm→∞ r(m) =
√

2/2.

Proof. Fix some instance I and assume WLOG that the optimal profit OPTL for m-KL is

m+ 1. If not, we can scale all the profits so that this is the case. Let OPTI be the optimal

profit for m-KI . Since m is fixed, we write r instead of r(m). As we showed in Section 1.3,

the integrality gap of m-KL is m+ 1, i.e., OPTL/OPTI ≤ m+ 1, and therefore OPTI ≥ 1.

We now define an extended formulation relaxation for m-KI of size polynomial in n and

show that it has optimal profit at most (1 +mr)OPTI .

We divide the disjuncts we define into three types: Q2
h, Q1

h, and Q0. Let Ω = {i : wi ≥ r}
and Ωh = {i ∈ Ω \ {h} : aji + ajh ≤ c

j ∀j ∈ [m]}. First, for each h ∈ Ω such that Ωh 6= ∅, we

make a disjunct Q2
h as follows:

∑n
i=1 a

j
ixi ≤ cj ∀ j ∈ [m]

xh = 1∑
i∈Ωh

xi ≥ 1

0 ≤ xi ≤ 1 ∀ i ∈ [n]

(Q2
h)

28

Next, for every h ∈ Ω we make a disjunct Q1
h:

∑n
i=1 a

j
ixi ≤ cj ∀ j ∈ [m]

xh = 1

xi = 0 ∀ i ∈ Ω \ {h}
xi = 0 ∀ i where ∃ j s.t. aji + ajh > cj

0 ≤ xi ≤ 1 ∀ i ∈ [n]

(Q1
h)

And finally we make a single disjunct Q0:∑n
i=1 a

j
ixi ≤ cj ∀ j ∈ [m]

xi = 0 ∀ i ∈ Ω

0 ≤ xi ≤ 1 ∀ i ∈ [n]

(Q0)

We now show that this construction has the desired integrality gap. Let Q be the convex

hull of the union of all of these disjuncts. We claim that m-KI ⊆ Q ⊆ m-KL. Let S be

such that 1S ∈ m-KI . If |S ∩Ω| ≥ 2, then 1S ∈ Q2
h for every h ∈ S ∩Ω. If |S ∩Ω| = 1, then

it is easily verified that 1S ∈ Q1
h for {h} = S ∩ Ω. If |S ∩ Ω| = 0, then clearly 1S ∈ Q0. So,

m-KI ⊆ Q. Now let x ∈ Q. Since all disjuncts have the constraints
∑n

i=1 a
j
ixi ≤ cj for all

j ∈ [m], we have x ∈ m-KL by definition. So, Q ⊆ m-KL.

If there is some h ∈ Ω such that Ωh 6= ∅, then for every i ∈ Ωh, 1{h,i} ∈ m-KI .

Furthermore, 1{h,i} achieves profit at least 2r because h, i ∈ Ω so both h and i have profit

at least r. Since OPTL = m+1, as desired the integrality gap of Q is at most (m+1)/(2r) ≤
1 +mr.

Now we assume that Ωh = ∅ ∀h ∈ Ω, i.e., no two items of profit at least r can be packed

together feasibly. So, we are only concerned with the disjuncts Q1
h and Q0 from this point

on.

Let h ∈ Ω be arbitrary and let x̂ be an extreme point optimal solution to max{wTx :

x ∈ Q1
h}. Observe that if wT x̂ ≤ 1 + mr, then the integrality gap is at most 1 + mr as

desired, since OPTI ≥ 1. Therefore, we assume wT x̂ > 1 +mr.

Furthermore, observe that if for some i we have wi ≥ (m + 1)/(1 + mr), then we are

done because then packing item i alone implies that OPTI ≥ (m + 1)/(1 + mr), so the

integrality gap of m-KL—and hence the integrality gap of Q—is at most

m+ 1

(m+ 1)/(1 +mr)
= 1 +mr.

So, we assume from here on that wi < (m + 1)/(1 + mr). Now, since x̂ ∈ Q1
h, x̂ contains

29

exactly one nonzero item h from Ω, so we have the following:

∑
i∈Ω

wix̂i = wh <
m+ 1

1 +mr
,

and
∑
i∈Ω

aji x̂i = ajh ∀ j ∈ [m].

Let Γ = {i 6∈ Ω : ∀j, aji + mink∈Ω a
j
k ≤ cj}. Clearly Γ ∩ Ω = ∅. Recall that Q1

h has the

constraint that xi = 0 for all i such that aji + ajh > cj for some j. For i /∈ Γ ∪ Ω, there is

some j such that aji + mink∈Ω a
j
k > cj . Since h ∈ Ω, we have aji + ajh ≥ a

j
i + mink∈Ω a

j
k > cj ,

so x̂i = 0. So, Γ ∪ Ω = {i : xi > 0}. Therefore, since we assumed wT x̂ > 1 +mr, we have

∑
i∈Γ

wix̂i = wT x̂−
∑
i∈Ω

wix̂i > 1 +mr − m+ 1

1 +mr
,

and
∑
i∈Γ

aji x̂i =
∑
i

aji x̂i −
∑
i∈Ω

aji x̂i ≤ c
j − ajh ∀ j ∈ [m].

Since x̂ ∈ m-KL, which has integrality gap m+ 1, we can use the rounding algorithm from

Section 1.3 to find a feasible set S ⊆ Γ which achieves profit at least (
∑

i∈Γwix̂i)/(m+ 1).

So, there exists a set S ⊆ Γ with 1S ∈ m-KI which satisfies the following:

∑
i∈S

wi ≥
1

m+ 1

(
1 +mr − m+ 1

1 +mr

)
,

and
∑
i∈S

aji ≤ c
j − ajh ∀ j ∈ [m].

There is enough space left along each dimension to pack item h along with S, so there is a

feasible integral solution S ∪ {h} with profit at least

1

m+ 1

(
1 +mr − m+ 1

1 +mr

)
+ r ≥ m+ 1

1 +mr
,

i.e., OPTI ≥ (m+1)/(1+mr). Note that the above inequality requires a significant amount

of algebra to prove and depends on the value of r. We have omitted this for brevity. Since

wT x̂ ≤ OPTL = m+ 1, the integrality gap of Q1
h is 1 +mr.

Finally, if Q1
h = ∅ for all h, then Q = Q0. In the definition of Q0 we force xi = 0 for

all items with wi ≥ r. By Lemma 3 any extreme point optimal solution has at most m

fractional items, so the profit of the LP is less than OPTI+mr ≤ (1+mr)OPTI . Therefore,

the integrality gap of Q0 is at most 1 +mr, as desired.

We have now shown that every disjunct has optimal value at most (1 + mr)OPTI , so

if we take γ = mr/(1 + mr), then by Lemma 11, Q itself also has optimal value at most

30

(1 +mr)OPTI and therefore is a (1 +mr)-approximate extended formulation.

3.3 Disjunctive programming (1− ε)-approximation for
m-KP

In this section we present a (1 − ε)-approximate extended formulation for m-KP for any

0 < ε ≤ 1 which has size polynomial in n for fixed ε and m. This construction was first

given by Pritchard [Pri10]. In his paper, Pritchard presents a non-polyhedral version of

this result in detail and notes how to modify the construction to achieve a polyhedral

approximation. Here, we present the full details of the polyhedral version. We do not

improve upon the original result, but have modified the presentation for clarity. Our proof

also borrows ideas from an earlier result for the 1-dimensional case by Bienstock [Bie08],

which was the inspiration behind Pritchard’s result.

This section partially answers a question posed by Van Vyve and Wolsey [VW06], which

asked whether there exist (1+ε)-approximate extended formulations for knapsack polytopes

which have size polynomial in n and ε−1. The formulation we present here is polynomial

in n for each fixed ε but is not polynomial in ε−1. It remains an open problem to find an

extended formulation with size polynomial in both n and ε−1, even for the 1-dimensional

case. We discuss this further in the conclusion of this section.

In this section we denote the integral multidimensional knapsack polytope m-KP by PI .

The main result is the following:

Theorem 10. Let 0 < ε ≤ 1. There exists some A ∈ Rs×n, A′ ∈ Rs×t, and b ∈ Rs with

t = O(n1+m3ε−1
) and s = O(n1+m3ε−1

), such that

PI ⊆ Pε :=
{
x ∈ Rn : ∃x′ ∈ Rt s.t. Ax+A′x′ ≤ b

}
,

and for any w ∈ Rn+,

max
{
wTx : x ∈ PI

}
≥ (1− ε) max

{
wTx : x ∈ Pε

}
.

It is easy to see that the extended formulation Pε has size polynomial in n for any fixed ε

and m, and thus can be optimized over in polynomial time. Since Pε does not depend on

the profits w, we have the following additional desirable property. We show in Chapter 4

that this implies that the intersection of many polytopes Pε is itself a (1− ε)-approximation

for the intersection of the corresponding integral polytopes PI .

31

Corollary 1. Pε is a polyhedral (1− ε)-approximation for PI , that is,

(1− ε)Pε ⊆ PI ⊆ Pε.

The idea behind this construction mirrors a well known approach for achieving a PTAS for

multidimensional knapsack. In essence, we want to guess a set of the largest sized items

that are assumed to be in the solution, and then solve the LP relaxation for the remaining

small items. Since the LP only decides whether to include relatively small items, it can be

rounded to an integral solution without much loss. As long as the size of the large item set

we guess is constant, there are only polynomially many such sets to try, so the algorithm

run in polytime.

We now describe how to construct Pε, before proving that it achieves the desired ap-

proximation.

3.3.1 Construction

The construction uses disjunctive programming to effectively enumerate all possible guesses

up to a certain size. Let H be an integer depending on ε and m which we define later. Our

guesses are of size H.

First, we handle the cases where the number of items in the solution is smaller than H.

To do this we create a disjunct QSsmall for all sets S ⊆ [n] such that |S| < H and 1S ∈ PI .
These disjuncts are trivial: they only contain the single point 1S . There are O(nH) such

disjuncts.

Next, we create a disjunct QSlarge for each set family S = {S1, S2, . . . , Sm} such that for

all j, |Sj | = H and 1S1∪···∪Sm ∈ PI . Hence, the number of these disjuncts is O(nmH). S is

analogous to the guess described above and QSlarge is analogous to the LP for the remaining

small items after the guessed items are fixed. For convenience we say S = S1 ∪ · · · ∪ Sm.

Essentially, we want the feasible solutions for this disjunct to include all items in S, and

exclude items not in S which have size larger than those in Sj for some dimension j. In

other words, we only allow our guess S along with fractionally feasible items that are smaller

on every dimension than the items we guessed. So, we define QSlarge as follows:

xi = 1 ∀ i ∈ S (3.1)

xi = 0 ∀ i /∈ S : ∃ j aji > mink∈Sj a
j
k (3.2)

x ∈ P (3.3)

32

3.3.2 Analysis

First, we show that this disjunctive formulation is indeed a relaxation for PI .

Lemma 12. Let Pε be the convex hull of the union of all disjuncts. Then PI ⊆ Pε.

Proof. For x ∈ [0, 1]n define suppt(x) = {i : xi = 1}. We claim that if x ∈ PI ∩ {0, 1}n,

then x is in one of the disjuncts. If | suppt(x)| < H, then trivially x ∈ Qsuppt(x)
small . Otherwise,

we show x ∈ QSlarge for some S = {S1, . . . , Sm}. For each dimension j, let Sj contain the

H largest items in suppt(x). Then, we have xi = 1 for each i ∈ S, satisfying Eq. (3.1). For

each dimension j, we picked Sj to contain the H largest items in suppt(x), so no other item

in suppt(x) can have size greater than mink∈Sj a
j
k, and hence Eq. (3.2) is satisfied. Finally,

Eq. (3.3) is trivially satisfied because x ∈ PI .

It remains to prove that this formulation has the desired integrality gap.

Lemma 13. Let w ∈ Rn+ and let OPTI = max
{
wTx : x ∈ PI

}
. For any disjunct Q,

OPTI ≥ (1− ε) max {wTx : x ∈ Q}.

Proof. First consider the case of the small disjuncts. For any S, QSsmall contains only the

single point 1S , which is in PI by definition, so the inequality trivially holds.

Now we consider the large disjuncts QSlarge. Let S be arbitrary. It suffices to prove that

for any extreme point optimal solution x for max {wTx : x ∈ QSlarge}, we have OPTI ≥
(1− ε)wTx. By Lemma 3, x contains at most m fractional elements. Let X = {i : xi > 0}
be the set obtained by rounding up all of these fractional elements. For each dimension j,

let Dj = arg min{w(D) : D ⊆ X, |D| = m,
∑

i∈X\D a
j
i ≤ cj}. In other words, Dj is the

smallest profit set of m items from X such that X \D satisfies the knapsack constraint for

dimension j. Let I = X \ (D1 ∪ · · · ∪Dm) be the feasible set resulting from deleting all Dj

from X.

Fractional elements of x are not in S and thus are subject to Eq. (3.2). So, for i ∈ Sk
and i′ fractional, we have aji ≥ a

j
i′ , i.e., the elements in Sj are all larger than the fractional

elements. Deleting the fractional elements of x from X must yield a feasible set. Hence, for

any D ⊆ Sj with |D| = m, deleting D from X yields a set which is feasible for dimension

j, that is, we have
∑

i∈X\D a
j
i ≤ cj . Therefore, such sets D are among those considered by

the arg min when selecting the sets Dj .

There must exist some such set D which has profit at most m
Hw(Sj), the average profit

of m items from Sj . Furthermore, since Sj ⊆ X, we have m
Hw(Sj) ≤ m

Hw(X). Hence, each

set Dj also has w(Dj) ≤ m
Hw(X). There are m sets D1, . . . , Dm, so the profit of their union

33

is at most m2

H w(X). Therefore,

OPTI ≥ w(I) ≥ w(X)− m2

H
w(X) =

(
1− m2

H

)
w(X) ≥

(
1− m2

H

)
wTx,

and taking H = dm2/εe finishes the proof.

We can now conclude with Theorem 10.

Proof of Theorem 10. In Section 3.1, we saw how we can optimize over disjunctive programs

using the linear formulation DP2, which is equivalent to optimizing over Pε := conv(Q1 ∪
· · · ∪ QL) for disjuncts Qi. By Lemma 12, Pε is a relaxation for PI , and given Lemma 13

we can apply Lemma 11 to conclude that Pε is indeed a (1 − ε)-approximation. From the

construction it is clear that Pε does not depend on the profits w as desired.

There are at most
(
n
mH

)
= O(nmH) disjuncts QSlarge and at most

∑H
k=1

(
n
k

)
= O(HnH)

disjuncts QSsmall, so the homogenized LP DP2 has O((n+m)(nmH +HnH)) = O(n1+m3ε−1
)

constraints and O(n1+mH +Hn1+H) = O(n1+m3ε−1
) variables.

In comparison with the simple disjunctive programming formulation given in Section 3.2,

this construction is significantly larger when ε is set to achieve a similar approximation

factor. In Section 3.2 we achieved a (1 + r(m) ·m)-approximation, or equivalently, a (1 −
r(m) · m/(1 + r(m) · m))-approximation. If we take ε = r(m) · m/(1 + r(m) · m), the

construction here sets H = O(m2) and thus uses O(nm
3
) disjuncts, in stark contrast to the

O(n) disjuncts used by the simple formulation.

However, the construction in this section is a polyhedral approximation (i.e., not de-

pending on the cost function; see Corollary 1), while the construction in Section 3.2 is not.

There is a non-polyhedral variant of this construction given by Pritchard [Pri10], which

requires only O(nm) disjuncts to achieve the same approximation factor. Still, the simple

construction does better, which suggests that there may be some room for improvement

here. In particular, it may be possible to use ideas from the simple formulation to find a

(1−ε)-approximate extended formulation with size polynomial in both n and ε−1, answering

the open question posed by Van Vyve and Wolsey [VW06].

3.4 An extended formulation for UFPT?

We have now seen a (1− ε)-approximate extended formulation for MKP, and by extension

for UFPT. However, the size of the formulation for UFPT that this approach gives is

exponential in the number of edges. Since MKP is such a general problem, it is natural to

question whether there is an extended formulation which exploits the structure of UFPT

instances to get a (1 − ε)-approximate formulation with size polynomial in the number of

34

edges and requests. This would imply a PTAS, so given that UFPT is APX-hard, we do not

expect this to be possible. However, UFPP is not known to be APX-hard, so a formulation

may exist for path instances—although, we expect this to be quite hard to resolve, because

no PTAS for UFPP is currently known despite the significant effort put towards finding

one.

35

Chapter 4

The Knapsack Intersection

Hierarchy

In this section we introduce a method of strengthening LP formulations for multidimensional

knapsack which we call the knapsack intersection hierarchy. We study the application of

this hierarchy to UFPT, but it is a general framework that may have applications in other

settings.

Computational solution strategies for MKP often use some form of branch and cut

method. One of the most effective approaches is to rely on cuts for the knapsack polytopes

associated with individual constraints [CJP83]. For each j ∈ [m], let K(j) denote the

polytope {x ∈ [0, 1]n :
∑

i a
j
ixi ≤ cj}, i.e., the polytope associated with constraint j. The

knapsack cuts for K(i) are the inequalities which are valid for the integer hull KI(j) =

conv(K(j) ∩ {0, 1}n). On each iteration of a branch and cut approach (e.g., see [Sch98]),

one has a feasible—but fractional—solution x̃ for a current relaxation P ′ of m-KI . One

then generates knapsack cuts for some constraint. That is, for some j, we find a valid

inequality bTx ≤ d for KI(j) for which bT x̃ > d. Adding these inequalities to P ′ gives a

tighter formulation for m-KI on which to recurse.

This approach has also been extended to multi-row cuts. This can be done in two distinct

ways: (1) By aggregating multiple constraints to form a single knapsack and using it to

generate cutting planes [DLTW14, Xav17, DM18] and (2) by considering cuts associated

with the integer hull of the intersection of several knapsack polytopes [LW08, KPP04]. The

latter set-up is potentially stronger in the following sense: there are instances where adding

all cuts of type (2) defines the integer hull but adding (any number of) cuts of type (1) does

not.1

1A well-known example for the Chvátal rank actually shows that one may need an unbounded number
of rounds of aggregated cuts in order to obtain the integer hull (e.g., see Section 23 in [Sch98]).

36

We discuss a framework to measure the strength of cuts in the latter setting. For

some S ⊆ [m], we study the intersection of the knapsack polytopes K(S) := ∩j∈SK(j).

The paradigm generates cuts for the associated integer hull KI(S). We define a knapsack

intersection hierarchy of relaxations for PI as follows. For each t = 1, . . . ,m, define

P t :=
⋂
|S|=t

KI(S).

In other words, P t is obtained from P by adding, for each S ⊆ [m] with |S| = t, all valid

inequalities for KI(S). Clearly, P t+1 ⊆ P t and Pm = PI , so we have the following hierarchy:

P ⊇ P 1 ⊇ . . . ⊇ Pm−1 ⊇ Pm = PI .

Since separating over KI(S) is NP-Hard, it is already hard to separate over P 1 (a fate shared

by the Chvátal closure of a polyhedron [Eis99]). However, we show that a polynomially

sized, but approximate, formulation can be used when t is constant.

This hierarchy appears to differ from other integer programming hierarchies in the sense

that the levels of the hierarchy are parameterized by the number of constraints (m), rather

than the number of variables (n). For example, the hierarchies introduced by Lovász-

Schrijver [LS91], Sherali-Adams [SA90], Parillo [Par03] and Lasserre [Las01] are all equal to

the integer hull PI at level n. However, it can be shown that for any UFPT instance there

exists an equivalent instance with m ≤ 4n (see Appendix A.3 in [FG15]), so our hierarchy

is equal to the integer hull at level 4n.

4.1 Primary results

We show how to approximate P t using the formulation presented in Section 3.3, which

gives a polyhedral (1−ε)-approximate extended formulation for multidimensional knapsack

problems. This leads to the following result:

Proposition 1. For 0 < ε ≤ 1, there is a (1− ε)-approximate extended LP formulation for

P t of size O(nt
3ε−1+t+1), i.e., a formulation for which the value of an optimal solution is

at most a (1/(1− ε))-factor larger than the optimal solution to P t.

Corollary 2. For fixed t there is a PTAS for max{wTx : x ∈ P t}.

Let Prank and P trank be the polytopes P and P t with all rank constraints added. We deter-

mine the integrality gap of P t and P trank for the “staircase” instances Sn and the Friggstad-

Gao instances T hFG which we used to lower bound the integrality gap of LP formulations

in Chapter 2. The following result establishes a lower bound using the instances Sn—for

which Prank, and hence P trank, is known to have an integrality gap of O(1).

37

Theorem 11. The integrality gap of P t is Ω(n/t), even for path graphs where all requests

share a common endpoint.

The proof of this result is simple, and possibly even expected, given that the same lower

bound holds for the Sherali-Adams hierarchy [CEK09]. With a bit more work, we can also

lower bound the integrality gap for tree instances by using the Friggstad-Gao instances.

We were not able to resolve a general upper bound on the integrality gap for P t; however,

specifically for the Friggstad-Gao instances, we give an upper bound matching our lower

bound.

Theorem 12. For constant t, the integrality gap of both P t and P trank is Ω(
√

log n). How-

ever, on the Friggstad-Gao instances, for any c > 0 the integrality gap of both Pn
c

and Pn
c

rank

is Θ(1/c).

Unfortunately, for t = o(nc), the integrality gap of P trank is super-constant, and hence this

does not lead to a quasi-PTAS. The Friggstad-Gao instances have no cliques, that is, each

pair of requests is routable. So, we speculate whether this improved integrality gap upper

bound could hold for general tree instances which do not have any cliques, and whether the

rank formulation could be effective against instances which do have cliques.

4.1.1 Proof of Proposition 1

Proof of Proposition 1. In Section 3.3, following the work of Pritchard [Pri10], a (1 − ε)-
approximate extended formulation is given for KI(S) with size O(n1+t3ε−1

). For 0 < ε ≤ 1,

denote the projection of this extended formulation onto Rn by Kε(S). Furthermore, denote

by P tε the polytope
⋂
|S|=tKε(S). Since Kε(S) is a polyhedral approximation, as shown in

Corollary 1, we have (1− ε)Kε(S) ⊆ KI(S) ⊆ Kε(S). It follows that

(1− ε)P tε = (1− ε)
⋂
|S|=t

Kε(S) =
⋂
|S|=t

(1− ε)Kε(S) ⊆
⋂
|S|=t

KI(S) = P t

and

P t =
⋂
|S|=t

KI(S) ⊆
⋂
|S|=t

Kε(S) = P tε .

Therefore, P tε is a polyhedral (1 − ε)-approximate extended formulation for P t. There are(
n
t

)
= O(nt) sets S with S = |T |, so since each Kε(S) has size O(n1+m3ε−1

)tnO(t2/ε), P tε has

size O(n1+t3ε−1
) ·O(nt) = O(nt

3ε−1+t+1) as desired.

38

4.2 Integrality gap lower bound

In this section, we prove Theorem 11 and the lower bound part of Theorem 12. In Sec-

tion 4.2.1, we start by showing that the knapsack intersection hierarchy may be an ineffective

approach for approximating the solution to certain path instances—for which adding the

rank constraints yields a constant integrality gap. However, in contrast we show in Sec-

tion 4.2.2 that on the Friggstad-Gao tree instances, for any c > 0 the integrality gap is

reduced to Ω(1/c) for both Pn
c

and Pn
c

rank, despite that the rank LP has integrality gap

Ω(
√

log n) for these instances.

4.2.1 Path instances

For path instances, it is known that the integrality gap of Prank is O(log n) and it is con-

jectured to be O(1) [CEK09]. However, the natural LP formulation has an integrality gap

of Ω(n), as evidenced by the staircase instances Sn. We now prove Theorem 11 by showing

that the integrality gap of P t is Ω(n/t).

Proof of Theorem 11. Let t > 1. We show that 1
t+1 ∈ P

t for instances Sn, as defined in

Section 2.1. Let S ⊆ E(Sn) with |S| = t. For each edge (i, i+ 1) ∈ S, request i is routable

alone. All other requests can route together without violating this edge’s capacity, because

any other request j which routes on (i, i + 1) has demand 2j , edge (i, i + 1) has capacity

2i, and
∑i−1

j=0 2j < 2i. This defines a partition of R(Sn) into t + 1 sets: a set for each of

the requests with the same indices as the t edges of S and a set of all other requests. Since

all of these sets are routable, the indicator vector for each of these sets lies in KI(S). Since

these sets partition R(Sn), the vector 1
t+1 is a convex combination of these sets, and hence

1
t+1 ∈ KI(S). Since this holds for every such S, we have 1

t+1 ∈ P
t and its total profit is

Ω(n/t), thus establishing the integrality gap.

4.2.2 Tree instances

In this section, we prove the first part of Theorem 12 which gives a lower bound on the

integrality gap of P t on instances T := T hFG. Recall that Lemma 5 establishes 1/2 ∈ P 1

by proving that for each edge e, the 1/2 vector can be written as a convex combination of

(incidence vectors of) two sets, each of which is routable on e. We generalize this to any

value of t by showing that for 1/c ∈ P t for sufficiently small c, and thus the integrality gap

is Ω(
√

log n/c).

Let S ⊆ E(T). We call a set X ⊆ R(T) S-routable if ∀e ∈ S,
∑

i∈X∩R(e) di ≤ µe.

Our key structural result gives a condition when we can express a vector 1/c as a convex

combination of S-routable sets.

39

We cast this convex combination question as a question of colouring the set of all re-

quests. For S ⊆ E(T), we define the S-chromatic number, denoted by χ(S), to be the

minimum value c such that R(T) can be partitioned into c sets, each of which is S-routable.

Given such a partition, the vector 1/c is trivially a convex combination of the indicator

vectors of the S-routable sets in the partition. Thus, if we can show that χ(S) ≤ c for

every |S| = t, we have guaranteed that 1/c ∈ P t. Hence, the integrality gap established by

Friggstad and Gao decreases by at most a factor of c/2 for P t, since the result of Friggstad

and Gao is associated with the feasible vector 1/2 ∈ P 0. In fact, the following holds even if

we start with the stronger formulation Prank; we explain why at the end of this section.

Observation 2. The integrality gap of P t is Ω(h/c), where c(t) := max{χ(S) : S ⊆ R, |S| =
t}.

The lower bound half of Theorem 12 follows from the next results.

Proposition 2. If |S| ≤ 2h(c−1), then χ(S) ≤ c+ 1.

Corollary 3. For constant t and S ⊆ R with |S| = t, χ(S) ≤ 2 for sufficiently large h.

Thus, the integrality gap of P t is Ω(h).

Our proof is based on the following colouring result. The tree T ′ plays the role of a subtree

essentially induced by the edges from some set S with |S| = t.

Lemma 14. Let T ′ be a subtree of T rooted at some vertex v. If each level of T ′ has at most

2h(c−1) vertices, then V (T ′) can be partitioned into at most c sets which are E(T ′)-routable.

Proof. We prove this by induction using a stronger induction hypothesis. Specifically, not

only does the colouring exist but we may use the following special type of colouring. We

define layers Lk of T ′ inductively where L1 = {v}. For each k ≥ 1, Lk+1 consists of the

children of the requests in layer Lk which are contained in T ′. Then for each i = 1, 2, . . . , c

we claim that Xi = Li ∪ Li+c ∪ Li+2c ∪ . . . is E(T ′)-routable. Hence, X1, X2, . . . , Xc is a

valid c-colouring which we call layered. We claim that a layered colouring always exists for

any such subtree T ′. The base case is a single-vertex tree which is trivially true for any

c ≥ 1.

Now consider the children of v in T ′. Call these v1, v2, . . . vp and let Ti be the subtrees

of T ′ associated with each vi. By induction, each Ti has a layered colouring which uses

at most c colours. Assume we have such a colouring and without loss of generality that

each vi has colour class 2, the next layer below that has color class 3, and so on up to

color class c, after which the next layer has color class 1. We show that v can be added to

color class 1. Let Xi denote the union of the colour classes i which occur for the Tj . Each

40

v

v1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

vp

. . .

. . .

. . .

. . .

. . .

L1

L2

L3

. . .

Lc+1

Lc+2

. . .

Figure 4.1: A diagram to aid with understanding the proof of Lemma 14. The key
observation is illustrated by the arrows on the left: the total demand of every
request in the box at the tail of an arrow is at most the demand of a single
request at the tip of that arrow.

layered colour class Xi is E(Ti)-routable and thus is also E(T ′)-routable. Hence, it only

remains to show that X1 ∪{v} is also E(T ′)-routable. Note that X1 ∪{v} consists of layers

L1 ∪ Lc+1 ∪ L2c+1 ∪ . . . ∪ Lqc+1 of T ′ for some choice of q. Recall that Lemma 6 asserts

that the requests along any path from v to the leaves of T is routable. We show that for

all i, the total demand of requests of Lic+1 is at most the demand of a single request in

L(i−1)c+2, so the total demand from requests in X1 on any edge is at most the demand from

routing a path from v to a leaf, and thus is routable. See Fig. 4.1 for a visual depiction of

this. Suppose this is not the case. By the self similarity of the tree, we can assume that the

demand of a request in Lic+1 is

2h(h−(ic−1)+1) − 2h(h−(ic+1)) = (2h − 1)2h(h−ic−1)

and the demand of a request in L(i−1)c+2 is

2h(h−((i−1)c+2)+1) − 2h(h−((i−1)c+2)) = (2h − 1)2h(h−(i−1)c−2).

41

Then, we have

|Lic+1| · (2h − 1)2h(h−ic−1) > (2h − 1)2h(h−(i−1)c−2)

⇔

|Lic+1| >
2h(h−(i−1)c−2)

2h(h−ic−1)
= 2h(c−1),

which contradicts our hypothesis.

We now complete the proof of Proposition 2.

Proof. Let v be the least common ancestor of the vertices which are incident to the edges

in S. We now create a subtree T ′ which is a sort of closure of S. T ′ is obtained by adding

edges to S of any path between v and some vertex incident to an edge e ∈ S. We also

include the parent edge of v. We claim that T ′ satisfies the hypothesis of Lemma 14. To

see this, consider some level of T ′ consisting of vertices a1, . . . , ap. Let Ei denote the set

of edges which are either incident to vertex ai or lie in its subtree. Note that the Ei are

disjoint. Since each ai is either incident to an edge of S, or is the internal vertices of

some path used to define the closure T ′, it follows that Ei ∩ S 6= ∅ for each i, and hence

p ≤
∑p

i=1 |Ei ∩ S| ≤ |S| ≤ 2h(c−1).

We now colour all the requests of T . We first invoke Lemma 14 to colour R(T ′) using c

colours. We can partition R(T) \R(T ′) as A∪B, where B denotes the requests “below” T ′

(their paths to the root of T intersect T ′) and A denotes the remaining “above” requests.

The set B is S-routable by Lemma 4. Requests in the set A do not even route on any edge

of S. Hence, A ∪B can be the (c+ 1)st colour class.

To establish that this lower bound holds even when all rank inequalities are added, we

use Theorem 4, a result by Friggstad-Gao [FG15] which shows that x/9 satisfies all rank

constraints if x satisfies all valid constraints of the form xi + xj ≤ 1, which are trivially

satisfied by the vector 1/c.

4.3 Integrality gap upper bound

In this section, we prove the upper bound part of Theorem 12, namely that for instances

T hFG and c > 0, the integrality gap of both Pn
c

and Pn
c

rank is O(1/c).

Theorem 13. Let ` be the largest integer such that n(`) ≤ t. The integrality gap for

optimizing over P t (with profits defined in Section 2.2) for instances T hFG is O(h/`).

42

We saw in Section 2.2 that ` = Θ (log(n(`))/h) and h = Θ
(√

log n
)
. For c > 0 and

t = nc, the theorem statement chooses ` = Θ (log(nc)/h), so the integrality gap is O(h/`) =

O(1/c) as desired.

We show a particular way to partition the requests of the tree into O(h/`) sets, and

then show that for each set the profit of any x ∈ P t which uses only the requests in that

set is O(1). Since the integral optimum for instances T hFG is Θ(1) (see Lemma 9), it follows

that the integrality gap of P t is O(h/`) on these instances. The proof relies on the self

similar structure of the Friggstad-Gao instances, namely that every vertex except for the

leaves and the root has exactly 2h−1 children, and capacities and demands scale down by

2h for each step away from the root.

For v 6= r let T `v be the subtree consisting of the first ` levels of the children of vertex

v along with the edge immediately above v. The edge immediately above v has its upper

endpoint outside of the subtree. We denote the edges of the subtree, vertices of the subtree,

and requests with an endpoint inside the subtree by E(T `v), V (T `v), and R(T `v), respectively.

For Friggstad-Gao instances, |E(T `v)| = |V (T `v)| = |R(T `v)|; we denote this size simply by

|T `v |. Notice that we have |T `v | ≤ n(`) by self similarity—and this holds with equality—

unless v is less than ` levels from the leaves. Since we assumed n(`) ≤ t, we have |T `v | ≤ t.

For vectors x ∈ Rn, we denote by xT `v the restriction of x to those requests with an endpoint

in T `v .

We now define, for each 0 ≤ i < dh/`e, a set of subtrees Pi =
{
T `v : v ∈ leveli`+1

}
. Let

xPi denote the restriction of x to those requests with an endpoint in some T `v ∈ Pi. Observe

that the union P =
⋃
Pi of these subtrees is a partition of T hFG \ {r} into edge and vertex

disjoint subtrees. See Fig. 4.2 for a visual depiction of this. The following lemma bounds

the profit obtainable using requests with an endpoint in some Pi.

Lemma 15. For any feasible vector x ∈ P t we have wTPixPi ≤ 2 for all 0 ≤ i < dh/`e.

Proof. Let T `v ∈ Pi. First we show that every feasible subset of R(T `v) has profit at most

2−(h−1)i`+1. This follows by the self similarity of the instance; scaling all demands and

capacities in T `v by 2hi` and all profits by 2(h−1)i` produces a tree identical to T `v1 (recall v1

is the single child vertex of the root r). From Lemma 9 we know that every routable set

has profit at most 1.5625 so if we only use requests in T `v1 the profit certainly must be less

than 2. By scaling as necessary, it then follows that any feasible subset of R(T `v) has profit

at most 2−(h−1)i`+1, as desired.

Now, we show that to determine feasibility of a subset of R(T `v) it is sufficient to check

only the capacity constraints of the edges E(T `v). If S is routable, then clearly no capacity

constraints are violated, so assume conversely that S is not routable. By Lemma 4, no edge

which is outside of E(T `v) and is an ancestor (towards the root) of any edge in S has its

43

r

. . .

. . .

.

Figure 4.2: The partition of T hFG used to upper bound the integrality gap of the
knapsack intersection hierarchy. Each vertex marked by • is associated with a
subtree T `v , indicated here by a dashed triangle. Each triangle spans ` layers of
the tree, i.e., if a vertex marked by • is in level k, then the vertex marked by ◦
immediately below it are in level k + `− 1. The set Pi contains the ith level of
subtrees. For example, P0 contains the single triangle under r and P1 contains
all the triangles immediately below that.

capacity violated by routing all requests in T . Furthermore, any other edge which is outside

of E(T `v) is not routed on by the requests in S and thus cannot be violated. Thus, in order

for S to not be routable, the capacity of one of the edges in E(T `v) must be violated.

Since KI(E(T `v)) is an integer hull, any x ∈ KI(E(T `v)) can be written as a convex

combination of integral vectors in KI(E(T `v)). We saw that to determine feasibility of a

subset of R(T `v) it is sufficient to check the capacity constraints of edges in E(T `v). Thus,

for x ∈ KI(E(T `v)) such that x ≤ 1R(T `v), we can write x as a convex combination of integral

vectors 1S for routable sets S ⊆ R(T `v), which we know all have profit at most 2−(h−1)i`+1.

Given |T `v | ≤ t, any x ∈ P t has x ∈ KI(E(T `v)), so wT
T `v
xT `v ≤ 2−(h−1)i`+1. Finally, |Pi| =

|leveli`+1| = 2(h−1)i`, so we can conclude that wTPixPi ≤ 2−(h−1)i`+1 · 2(h−1)i` = 2.

Proof of Theorem 13. Let x ∈ P t. From Lemma 15, we know that for each ≤ i ≤ bh/`c
we have wTPixPi ≤ 2. Summing over all i, we find that wTx ≤ 2bh/`c ≤ 2h/`. We know

that the integral optimum is Ω(1), so the integrality gap of P t is O(h/`). Since the rank

formulation is stronger than the natural LP formulation, the integrality gap of P trank is

O(h/`) as well.

44

4.4 Comparison with other integer programming
hierarchies

The use of hierarchies for integer programs dates back to the notion of Chvátal rank [Chv73].

The Chvátal closure of a polyhedron P is the polyhedron P ′ ⊆ P which is defined by the

system of Chvátal-Gomory cutting planes obtainable from P . If we denote by P 1
C = P ′,

then the hierarchy is generated by P t+1
C = (P tC)′. Chvátal proved that P ⊇ P 1

C ⊇ . . . ⊇
Pn−1
C ⊇ PnC = PI . Other hierarchies have also been introduced and widely studied, such

as those introduced by Lovász-Schrijver [LS91], Sherali-Adams [SA90], Parillo [Par03], and

Lasserre [Las01].

There are few studies on the effectiveness of classical integer programming hierarchies

on UFPT. Friggstand and Gao showed that the Lovász-Schrijver hierarchy is ineffective at

reducing the integrality gap of UFPT after 2 rounds, and amounts to adding the clique

constraints [FG15]. Additionally, Chekuri, Ene, and Korula prove that after applying t

rounds of the Sherali-Adams hierarchy to the natural LP relaxation, the integrality gap

is Ω(n/t) [CEK09], matching the result for our hierarchy. For the case of 0-1 knapsack,

Karlin, Mathieu, and Nguyen show that t2 rounds of Lasserre reduce the integrality gap to

t/(t− 1) [KMN10], but there does not appear to be any work done on whether this would

generalize to UFPT or m-KP.

45

Chapter 5

Conclusion

Our investigation of extended formulations for MKP and UFPT has led to new results and

revealed some interesting new directions for future research.

In Chapter 2 we re-examined the hard instances for UFPT introduced by Friggstad and

Gao and presented a tight analysis of the integrality gap for those instances. We could not

find any way to modify the Friggstad-Gao instances to make the integrality gap larger.

In Chapter 3 we gave a new (1 + 0.79m)-approximate extended formulation for m-KP

which uses only a linear number of extra variables and constraints. At a matching approx-

imation ratio, this formulation is significantly smaller than Pritchard’s (1− ε)-approximate

extended formulation, which we presented in Section 3.3. We speculate that it may be

possible to use ideas from our result to derive an improved (1−ε)-approximate formulation.

Future work in this area would also include modifying our result to not depend on the

objective function.

In Chapter 4 we introduced a new hierarchy of strengthened formulations for multi-

dimensional knapsack and related problems which measures the ultimate power of adding

“t-row cuts”. While separating over the tth level P t is NP-hard, there is a (1−ε)-approximate

version based on results of Pritchard. We examined the efficacy of this hierarchy for the

well-studied unsplittable flow problem on trees. An important problem we did not resolve is

to analyze the integrality gap of our hierarchy for general instances when applied to the rank

LP. We have yet to establish any strong link between this new hierarchy and others, such

as those introduced by Lasserre, Parillo, Lovász-Schrijver, or Sherali-Adams. Our hierarchy

may also be useful in strengthening formulations for other special cases of multidimensional

knapsack. We speculate that it will be most beneficial in the case when each item has a

relatively large size in only a few dimensions, because then a formulation close to the integer

hull could be captured by adding t-row cuts for small t.

46

Bibliography

[ACEW16] Anna Adamaszek, Parinya Chalermsook, Alina Ene, and Andreas Wiese.
Submodular unsplittable flow on trees. Mathematical Programming, 172,
2016. → page 14

[ACH09] Chrisil Arackaparambil, Amit Chakrabarti, and Chien-Chung Huang.
Approximability of the unsplittable flow problem on trees. Dartmouth
Computer Science Technical Report, (642), 2009. → page 14

[AGLW13] Aris Anagnostopoulos, Fabrizio Grandoni, Stefano Leonardi, and Andreas
Wiese. Constant integrality gap LP formulations of unsplittable flow on a
path. In International Conference on Integer Programming and
Combinatorial Optimization, pages 25–36. Springer, 2013. → page 15

[AGLW18] Aris Anagnostopoulos, Fabrizio Grandoni, Stefano Leonardi, and Andreas
Wiese. A mazing 2+ε approximation for unsplittable flow on a path. ACM
Transactions on Algorithms, 14, 2018. → pages 14, 15

[Bal79] Egon Balas. Disjunctive programming. Annals of discrete mathematics,
5:3–51, 1979. → page 27

[BCES06] Nikhil Bansal, Amit Chakrabarti, Amir Epstein, and Baruch Schieber. A
quasi-PTAS for unsplittable flow on line graphs. In Proceedings of the
Thirty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’06,
page 721–729, New York, NY, USA, 2006. Association for Computing
Machinery. → page 15

[BFKS09] Nikhil Bansal, Zachary Friggstad, Rohit Khandekar, and Mohammad R.
Salavatipour. A logarithmic approximation for unsplittable flow on line
graphs. ACM Transactions on Algorithms, 10, 2009. → page 15

[BGK+14] Jatin Batra, Naveen Garg, Amit Kumar, Tobias Mömke, and Andreas Wiese.
New approximation schemes for unsplittable flow on a path. In Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 47–58. SIAM, 2014. → page 15

[Bie08] Daniel Bienstock. Approximate formulations for 0-1 knapsack sets.
Operations Research Letters, 36, 2008. → page 31

47

[BM12] Daniel Bienstock and Benjamin McClosky. Tightening simple mixed-integer
sets with guaranteed bounds. Mathematical Programming, 133, 2012. →
pages v, 12, 28

[BSW14] Paul Bonsma, Jens Schulz, and Andreas Wiese. A constant-factor
approximation algorithm for unsplittable flow on paths. SIAM journal on
computing, 43(2):767–799, 2014. → pages 13, 15

[CCGK02] Amit Chakrabarti, Chandra Chekuri, Anupam Gupta, and Amit Kumar.
Approximation algorithms for the unsplittable flow problem. Lecture Notes in
Computer Science, 47, 2002. → page 16

[CEK09] Chandra Chekuri, Alina Ene, and Nitish Korula. Unsplittable flow in paths
and trees and column-restricted packing integer programs. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques,
pages 42–55. Springer, 2009. → pages 7, 11, 12, 14, 17, 24, 38, 39, 45

[Chv73] Vasek Chvátal. Edmonds polytopes and a hierarchy of combinatorial
problems. Discrete mathematics, 4(4):305–337, 1973. → page 45

[CJP83] Harlan Crowder, Ellis L Johnson, and Manfred Padberg. Solving large-scale
zero-one linear programming problems. Operations Research, 31(5):803–834,
1983. → page 36

[CKS13] Chandra Chekuri, Sanjeev Khanna, and F Bruce Shepherd. The
all-or-nothing multicommodity flow problem. SIAM Journal on Computing,
42(4):1467–1493, 2013. → page 13

[CMS07] Chandra Chekuri, Marcelo Mydlarz, and F. Bruce Shepherd.
Multicommodity demand flow in a tree and packing integer programs. ACM
Transactions on Algorithms, 3, 2007. → pages 1, 14, 15

[CS94] Steve Cosares and Iraj Saniee. An optimization problem related to balancing
loads on SONET rings. Telecommunication Systems, 3(2):165–181, 1994. →
page 13

[DLTW14] Santanu S Dey, Andrea Lodi, Andrea Tramontani, and Laurence A Wolsey.
On the practical strength of two-row tableau cuts. INFORMS Journal on
Computing, 26(2):222–237, 2014. → page 36

[DM18] Santanu S Dey and Marco Molinaro. Theoretical challenges towards
cutting-plane selection. Mathematical Programming, 170(1):237–266, 2018. →
page 36

[Eis99] Friedrich Eisenbrand. Note on the membership problem for the elementary
closure of a polyhedron. Combinatorica, 19(2):297–300, 1999. → page 37

[FG15] Zachary Friggstad and Zhihan Gao. On Linear Programming Relaxations for
Unsplittable Flow in Trees. In Naveen Garg, Klaus Jansen, Anup Rao, and

48

José D. P. Rolim, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2015),
volume 40 of Leibniz International Proceedings in Informatics (LIPIcs), pages
265–283, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. → pages 12, 14, 18, 20, 24, 37, 42, 45

[FS15] Yuri Faenza and Laura Sanità. On the existence of compact ε-approximated
formulations for knapsack in the original space. Operations Research Letters,
43, 2015. → page 25

[GMW20] Fabrizio Grandoni, Tobias Mömke, and Andreas Wiese. Unsplittable flow on
a path: The game! 2020. → page 14

[GMW21] Fabrizio Grandoni, Tobias Mömke, and Andreas Wiese. Faster
(1 + ε)-approximation for unsplittable flow on a path via resource
augmentation and back. 2021. → page 15

[GMWZ17] Fabrizio Grandoni, Tobias Mömke, Andreas Wiese, and Hang Zhou. To
augment or not to augment: solving unsplittable flow on a path by creating
slack. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 2411–2422. SIAM, 2017. → page 15

[GMWZ18] Fabrizio Grandoni, Tobias Mömke, Andreas Wiese, and Hang Zhou. A
(5/3 + ε)-approximation for unsplittable flow on a path: placing small tasks
into boxes. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, pages 607–619, 2018. → pages 1, 14, 15

[GVY97] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Primal-dual
approximation algorithms for integral flow and multicut in trees.
Algorithmica, 18(1):3–20, 1997. → page 14

[Kle96] Jon M Kleinberg. Approximation algorithms for disjoint paths problems. PhD
thesis, Massachusetts Institute of Technology, 1996. → page 13

[KMN10] Anna R. Karlin, Claire Mathieu, and C. Thach Nguyen. Integrality gaps of
linear and semi-definite programming relaxations for knapsack. arXiv:
Computational Complexity, 2010. → page 45

[KPP04] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Multidimensional
knapsack problems. In Knapsack problems, pages 235–283. Springer, 2004. →
page 36

[Las01] Jean B Lasserre. An explicit exact SDP relaxation for nonlinear 0-1
programs. In International Conference on Integer Programming and
Combinatorial Optimization, pages 293–303. Springer, 2001. → pages 37, 45

[LS91] László Lovász and Alexander Schrijver. Cones of matrices and set-functions
and 0–1 optimization. SIAM journal on optimization, 1(2):166–190, 1991. →
pages 37, 45

49

[LW08] Quentin Louveaux and Robert Weismantel. Polyhedral properties for the
intersection of two knapsacks. Mathematical programming, 113(1):15–37,
2008. → page 36

[Par03] Pablo A Parrilo. Semidefinite programming relaxations for semialgebraic
problems. Mathematical programming, 96(2):293–320, 2003. → pages 37, 45

[PKP13] David Pisinger, H Kellerer, and U Pferschy. Knapsack problems. Handbook of
Combinatorial Optimization, page 299, 2013. → pages 2, 3, 5, 6

[Pri10] David Pritchard. An LP with integrality gap 1 + ε for multidimensional
knapsack. arXiv: Discrete Mathematics, 2010. → pages v, 12, 31, 34, 38

[SA90] Hanif D Sherali and Warren P Adams. A hierarchy of relaxations between the
continuous and convex hull representations for zero-one programming
problems. SIAM Journal on Discrete Mathematics, 3(3):411–430, 1990. →
pages 37, 45

[Sch98] Alexander Schrijver. Theory of linear and integer programming. John Wiley
& Sons, 1998. → page 36

[VW06] Mathieu Van Vyve and Laurence A. Wolsey. Approximate extended
formulations. Mathematical Programming, 105, 2006. → pages 31, 34

[Wie17] Andreas Wiese. A (1 + ε)-approximation for unsplittable flow on a path in
fixed-parameter running time. In 44th International Colloquium on
Automata, Languages, and Programming (ICALP 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017. → page 15

[Xav17] Alinson Santos Xavier. Computing with multi-row intersection cuts. PhD
thesis, The University of Waterloo, 2017. → page 36

50

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Figures
	List of Algorithms
	Notation
	Glossary
	Acknowledgments
	1 Introduction
	1.1 Preliminaries
	1.2 Knapsack
	1.3 Multidimensional knapsack
	1.4 Unsplittable flow on paths and trees
	1.4.1 LP optimum for single-sink UFPT instances
	1.4.2 Rank formulations for UFPT

	1.5 Our contributions
	1.6 Related work
	1.6.1 UFPT
	1.6.2 UFPP

	2 Hard Instances
	2.1 Staircase instances
	2.2 Friggstad-Gao instances
	2.2.1 Basic properties
	2.2.2 Integrality gap of the natural LP relaxation
	2.2.3 Integrality gap of the rank LP

	3 Extended Formulations
	3.1 Disjunctive programming
	3.2 Simple disjunctive programming approximation for m-KP
	3.3 Disjunctive programming (1-epsilon)-approximation for m-KP
	3.3.1 Construction
	3.3.2 Analysis

	3.4 An extended formulation for UFPT?

	4 The Knapsack Intersection Hierarchy
	4.1 Primary results
	4.1.1 Proof of Proposition 1

	4.2 Integrality gap lower bound
	4.2.1 Path instances
	4.2.2 Tree instances

	4.3 Integrality gap upper bound
	4.4 Comparison with other integer programming hierarchies

	5 Conclusion
	Bibliography

