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Abstract 

In type 1 diabetes (T1D), autoreactive T cells mediate the destruction of insulin-

producing islet beta cells, leading to an inability to regulate blood glucose. If the patient cannot 

control their disease, the prolonged insulin deficiency will cause chronic hyperglycaemia, which 

may result in blindness and organ failure. Autoreactive T cells initiate pathogenesis upon 

recognition of islet-derived peptides presented by major histocompatibility complexes (MHC). In 

healthy individuals, these autoimmune reactions are normally suppressed by regulatory T cells 

(Tregs), but people with T1D are thought to have dysfunctional Tregs.      

Potential therapeutic strategies for T1D designed to minimize autoimmunity include 

pharmacological T cell inhibition and/or infusion of polyclonal Tregs. However, these strategies 

are non-specific and may have limited effects on beta-cell-directed autoimmunity. Research 

using the non-obese diabetic (NOD) mouse model has shown cell therapy with Tregs bearing a 

transgenic T cell receptor (TCR) specific towards an islet-derived antigen could be superior to 

prevent and/or reverse T1D. However, limitations of TCR-engineered Tregs include mispairing 

with the chains of the endogenous TCR and potential cross-reactivity with other peptides.     

I sought to overcome these limitations by engineering Tregs utilizing chimeric antigen 

receptor (CAR) technology. Advantages of CARs include high-affinity antibody-based 

interactions and self-contained co-stimulation. I studied two CARs in the NOD mouse model: the 

1B2 CAR (specific towards insulin B10-23 complexed to MHC Class II I-Ag7) and the FS1 CAR 

(specific towards p63:I-Ag7). I validated CAR specificity by testing their binding capacity to 

peptide:I-Ag7 tetramers. Proliferation and suppression assays were conducted to compare the 

function of CAR Tregs versus polyclonal Tregs. I found when IB2 or FS1 CAR Tregs were 

cultured with splenocytes pulsed with relevant peptide, they proliferated and upregulated 
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activation markers. FS1 CAR Tregs mediated enhanced suppression of T cell proliferation, and 

both 1B2 and FS1 CAR Tregs suppressed cytokine production more efficiently than polyclonal 

Tregs. Together, these proof-of-concept data show that T1D-peptide-MHC II-specific CARs can 

be used to re-direct the specificity of Tregs. These data set the stage for future testing in in vivo 

models of T1D and the development of similar therapeutic strategies for use in people with T1D.  
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Lay Summary 

In type 1 diabetes (T1D), the insulin-producing beta cells are killed by the patient’s own 

immune cells. If the patient cannot manage their disease, the insulin deficiency may result in 

blindness or organ failure. In healthy individuals, regulatory T cells (Tregs) suppress this 

autoimmune attack, but T1D patients may have dysfunctional Tregs. A potential therapy is to 

treat T1D by infusing additional Tregs. Thus, I engineered Tregs with enhanced specificity 

towards autoimmune cells as a potential treatment. I hypothesized that Tregs engineered to 

specifically suppress autoimmune responses will be more effective than unmodified Tregs. 

Antigen-specific Tregs cultured with target cells could proliferate, unlike unmodified Tregs. 

Antigen-specific Tregs were also more suppressive after culture with autoimmune cells. Overall, 

antigen-specific Tregs are a promising source of cells for Treg therapy, because their specificity 

makes them more effective than unmodified Tregs.   
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Preface 

The work presented in this thesis has yet to be published. Due to the use of mouse models in this 

thesis, the study has been approved by the UBC Animal Care Committee with the animal care 

application ID A16-0149 and A20-0017. I analyzed all the flow cytometry data using FlowJo 

Software versions 10.1.6 and 10.7.1, and performed the subsequent statistical analyses using 

GraphPad Prism Software Version 7.   

Generation of islet-peptide:I-Ag7 MHC Class II CARs and CAR Tregs 

CAR generation was done in collaboration with the Fife lab from the University of Minnesota, 

and the Verchere lab from the University of British Columbia. The Fife lab generated the 

monoclonal antibodies and provided the Levings lab with the DNA sequence. Dr. Paul Orban 

converted the antibody into scFvs compatible with CAR format, and Dr. Majid Mojibian and I 

worked to express the CAR on HEK 293T cells and confirmed expression by flow cytometry.  

With training from Dr. Mojibian, I was responsible for harvesting, isolating, and sorting Tregs 

from NOD mice. I also optimized the retrovirus transduction protocol to generate CAR Tregs 

and designed the flow cytometry panels required to phenotype the cells for CAR expression and 

Treg purity. To assess CAR specificity, the Fife lab provided monomers which I conjugated to 

fluorophores to generate the peptide:I-Ag7 tetramers.  

Performing Functional Assays to Test CAR Tregs in vitro  

I optimized the in vitro functional assays and designed the flow cytometry panels to assess for 

antigen dependent cell activation, proliferation, and suppression. I was responsible for harvesting 

and isolating splenocytes from NOD mice, and the amino acid sequences required for generating 

the peptides used for splenocyte pulsing were provided by the Fife lab. I also harvested and 

isolated T cells from BDC2.5 mice for use as effector T cells in the suppression assays.  
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With training from May Wong, I measured the cytokine production in suppression assay 

supernatants to assess for CAR Treg mediated cytokine suppression. 

Monitoring T1D development in NSG mice following CAR Tconv injection 

With help from Dr. Mojibian and Christine Wardell, we worked together to develop the in vivo 

CAR Tconv model in NSG mice. Dr. Mojibian was responsible for cell injection, and Christine 

and I worked together to monitor mice body condition, blood glucose, and take blood for weekly 

phenotyping. We also optimized the flow cytometry panel used to phenotype the blood. At 

endpoint, Dr. Mojibian, Christine, and I worked together to euthanize the mice, collect the 

necessary organs for histology, and process the spleens and pancreas to phenotype by flow 

cytometry.   
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Chapter 1: Introduction 

1.1 An Introduction to Type 1 Diabetes  

Type 1 diabetes (T1D) is an autoimmune disease affecting over 500,000 children 

worldwide 1. The incidence rates of T1D in children are increasing, with over 90,000 children 

under the age of 15 diagnosed each year 2. Canada is particularly affected, as the country has 

been ranked 6th for highest T1D incidence since 2019 3.   

T1D occurs when the insulin-producing beta cells of the pancreatic islets are destroyed by 

the patient’s own immune system. Insulin is an important hormone for life as it facilitates lipid, 

carbohydrate, and protein metabolism by promoting cellular uptake of glucose from blood 4. This 

autoimmune attack is primarily mediated by immune cells known as T cells: where CD8+ T cells 

are responsible for the majority of beta cell destruction, and the CD4+ T cells initiate and drive 

progression of the disease 1, 5-6. If left untreated, the beta cell mass in the islets will continue to 

decline and ultimately result in hyperglycaemia resulting from insulin deficiency. Chronic 

hyperglycaemia, where blood glucose remains consistently high (> 7 mmol/L), can lead to many 

long-term and life-threatening complications, such as blindness, heart disease, and organ failure 

1,4,6.  

T1D is a multi-stage disease, with each stage defined by clinical symptoms and/or 

immune-related events. The first stage begins when the autoimmune responses towards the beta 

cells develop. During the initial stages of immune attack, the patient will not have any overt 

symptoms and will still present with normal blood glucose levels 7–9. Patients at this stage will 

also have a fasting blood glucose of below 5.6 mmol/L. As the number of beta cells continue to 

decline, the patient will enter stage 2 where they will begin presenting with slightly elevated 

blood glucose levels 9, but will still appear healthy and without symptoms. During these pre-
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diabetic stages, most patients are still unaware of their disease status. Symptomatic T1D (stage 3) 

occurs after the majority of functional beta cell mass has been lost 8,10,11, and patients will begin 

to experience weight loss, excessive thirst, and polyuria 9. At this stage, their fasting blood 

glucose will exceed 7.0 mmol/L and patients will be diagnosed with clinical T1D.  

Children with known familial histories of T1D can be screened for disease development by 

detecting the presence of islet autoantibodies. Antibodies are proteins produced by activated B 

cells and normally target and bind to foreign bodies, such as bacteria or viruses; however, in 

T1D, antibodies targeting islet-derived proteins become detectable in the blood 12. The Diabetes 

Autoimmunity Study in the Young (DAISY) study found that children with particularly high 

genetic risk will likely develop their first islet autoantibody within their first two years of life 13. 

Common islet autoantibodies detected during T1D development include the insulin autoantibody 

(IAA), glutamic acid decarboxylase 65 (GAD65), zinc transporter 8 (ZnT8), and islet tyrosine 

phosphatase 2 (IA-2).  

While these islet autoantibodies are believed to be non-pathogenic 1,12,14, some mouse 

studies have implicated B cells to play an important role in T1D pathogenesis, likely due to their 

function as antigen presenting cells 14,15. Nevertheless, these islet autoantibodies have become 

critical biomarkers to monitor a patient’s progression through the stages of T1D. Even during the 

pre-diabetes stages, two or more autoantibodies can often be detected in patient blood serum, 

with the first islet autoantibodies typically targeting insulin and/or GAD65 1. The risk of diabetes 

stage progression increases when patients present with beta cell autoantibodies within the first 3 

years of life 16,17, and/or with persistently high autoantibody titre 12. The number of different 

autoantibodies is another risk factor defining how quickly a patient will develop clinical diabetes. 

According to The Environmental Determinants of Diabetes in the Young (TEDDY) study, the 
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likelihood a child will progress to stage 3 T1D within 5 years is almost 50% if they carry 3 

different types of beta cell autoantibodies 18. 

 

1.2 Genetic Susceptibility of Type 1 Diabetes 

While the cause of T1D still remains unknown, both genetic and environmental factors 

play a role in determining whether someone will develop the disease. The largest risk factor for 

T1D development is a person’s Human Leukocyte Antigen (HLA) Class II haplotype. According 

to the Type 1 Diabetes Genetics Consortium genome-wide association study, the Major 

Histocompatibility Complex (MHC) DNA region encoding the HLA genes contributes over 50% 

of the genetic risk to developing T1D 19–21.  

MHC molecules are proteins expressed on cell surfaces that present peptides to T cells to 

mediate immune responses. In humans, HLA Class I molecules (HLA-A, B, C) are expressed on 

almost all cell types and present endogenous peptides, whereas HLA Class II molecules (HLA-

DP, DR, DQ, DM, and DO) are primarily expressed on specialized cells known as Antigen 

Presenting Cells (APCs) and present peptides derived from exogenous proteins 22,23.  The HLA 

genes are the most polymorphic in the human genome 22,24, resulting in a diverse catalogue of 

HLA alleles, also known as haplotypes. The HLA class II haplotypes HLA-DR3-DQ2 and HLA-

DR4-DQ8 are predicted to be the largest risk factor in developing T1D 22,25–27. Indeed, 55% and 

70% of T1D patients have been found to carry the DR3-DQ2 and DR4-DQ8 haplotypes, 

respectively 28. The HLA-DR and HLA-DQ susceptible haplotypes have also been associated 

with islet autoantibody development. Children with the HLA-DR4-DQ8 haplotype are more 

likely to develop insulin autoantibodies first 1, whereas those with the HLA-DR3-DQ2 haplotype 

will typically present with GAD65 autoantibodies 1,29. 
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The non-HLA genes individually contribute to the remaining genetic risk of T1D 

development. Using genome-wide association studies, over 50 T1D susceptibility loci/genes 20,30 

have been associated with T1D development. Many of these genes are related to the immune 

system, particularly in areas that involve immune tolerance. Immunological tolerance occurs 

when the immune system works to remain unresponsive, or “tolerant”, to specific tissues or 

substances. When the processes that work to maintain immune tolerance are perturbed, this will 

typically result in the development of autoimmune diseases. One of these genes is IL2RA 20,31, 

which encodes for the cell surface protein CD25 and is part of the high affinity receptor for IL-2.  

IL-2 is a key survival signal for regulatory T cells (Tregs), which play a crucial role in mediating 

immune tolerance and homeostasis. CTLA-4 and IL-10 have also been identified as some of the 

many T1D susceptibility genes 8, and both encode for proteins that play major parts in 

suppressing inappropriate immune responses.  

 

1.3 Autoimmunity is a Failure of Central Tolerance 

Autoimmune T cells arise from a defect in a mechanism called central tolerance, which 

occurs in the thymus. T cell progenitors from the bone marrow migrate to the thymus, where a 

subset of those cells will eventually develop into mature CD4+ or CD8+ T cells. However, these 

immature progenitors must first pass a series of checkpoints before being allowed out into the 

periphery. As immature T cell progenitors arrive in the thymus, their TCR genes undergo 

somatic recombination to result in unique TCRs with a wide array of target specificities and 

binding affinities 32. At this point in their development, the progenitors express both CD4 and 

CD8 as they have yet to commit to a single positive lineage. In the cortex of the thymus, 

specialized cells called cortical thymic epithelial cells (cTECs) express self-peptide-MHC 
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molecules for the progenitors’ TCRs to bind to. If a TCR does not bind, or binds too strongly, the 

progenitor will be deleted from the thymus by apoptosis 32,33.  

Progenitors that pass the first checkpoint express TCRs that bind to MHC molecules with 

low affinity, and depending on whether the bound MHC molecules were Class I or Class II, the 

progenitors will commit to either the single CD8+ or CD4+ lineage, respectively 32,33. The single 

positive progenitors will then migrate to the medulla, where they will encounter their second 

checkpoint. Medullary thymic epithelial cells (mTECs) are highly specialized APCs and are 

critical in eliminating any potential autoimmune progenitors from the final T cell pool. mTECs 

are unique to the other thymic APCs as they express a nuclear protein called autoimmune 

regulator (AIRE) 34,35. This allows for mTECs to express proteins found in other non-thymic cell 

types of the body and present these peptides onto their MHC molecules. The single positive T 

cell progenitors are now able to encounter tissue specific antigens (TSAs) without leaving the 

thymus 32,33. Again, progenitors with TCRs that bind to presented TSAs with high affinity will be 

deleted, as they would have resulted in autoreactive T cells; however, a special subset of these 

CD4+ cells will be spared, provided they also express the nuclear transcription factor FoxP3 36. 

These CD4+FoxP3+ cells will give rise to the Treg population, which require high affinity TCRs 

towards TSAs to be able to migrate and protect tissues from immune related attacks. 

 

1.4 Islet Beta Cell Pathogenesis by Autoimmune T cells 

Despite central tolerance in the thymus working to delete autoreactive T cell populations, 

a small population of autoimmune T cells will be successful in bypassing the checkpoints to 

escape into the periphery. It has been found that polymorphisms in the INS gene, which encodes 

for the insulin protein, influence an individual’s genetic risk towards developing T1D. As 
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previously explained, AIRE allows for mTECs to express various proteins normally found on 

other cell types outside of the thymus. Therefore, even though insulin production is restricted to 

beta cells in the pancreas, CD4 and CD8 progenitor T cells can still be screened for TCR 

reactivity against insulin peptides via AIRE expression. Studies using genome sequencing have 

found many patients with T1D carry polymorphisms in their INS gene 7,37. These INS mutations 

have been linked to poor expression of insulin by mTECs in the thymus 38,39, resulting in subpar 

T cell screening and insulin-reactive T cells being allowed to escape. Certain INS polymorphisms 

have also been linked to an inefficiency in generating islet specific Tregs 40, therefore resulting in 

less Tregs homing to the pancreas to suppress the autoimmunity.  

The pathogenesis of T1D begins when beta cell-specific T cells infiltrate pancreatic islets 

to destroy the beta cells in a process known as insulitis. Under normal conditions, beta cells 

produce a variety of proteins, such as insulin and GAD 41, which are regularly picked up by the 

resident pancreatic APCs. The proteins are then processed into peptides and presented on their 

MHC Class II molecules. In healthy individuals, this presentation of self peptides is 

unproblematic, as a functional central tolerance and other protective mechanisms in the 

periphery (such as Tregs) will prevent beta cell-autoreactive T cells from mounting an immune 

response. However, in patients with T1D, a failure in at least one of these mechanisms will allow 

for inappropriate T cell activation and subsequent immune cell infiltration. The activated beta-

cell-targeting CD4+ T cells will activate and recruit cytotoxic CD8+ T cells and pro-inflammatory 

macrophages 32,37,38,40, where both macrophages 42 and CD8+ T cells 43,44 work to directly kill the 

beta cells. Furthermore, interferon production by infiltrating T cells drive the islet cells to 

overexpress HLA Class I molecules 45, unfortunately increasing their susceptibility to cytotoxic 

attack.  
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1.5     Regulatory T Cells (Tregs) Protect Against Autoimmunity 

Regulatory T cells (Tregs) are critical for health by preventing the development of  

autoimmune diseases 46. The importance of Tregs in maintaining immune homeostasis can be 

demonstrated by infants with Immunodysregulation Polyendocrinopathy Enteropathy X-linked 

(IPEX) Syndrome. These patients develop a multitude of autoimmune diseases involving 

multiple organs early in life, such as severe autoimmune enteropathy and T1D 47, and can be 

fatal within the first year of life without medical intervention. Patients with IPEX all have 

mutations within the FOXP3 gene locus, the master transcription factor responsible for proper 

Treg development 47,48.  

While the majority of autoreactive T cells are deleted by central tolerance, a small 

proportion of the autoreactive T cells are able to escape thymic negative selection 49,50. As central 

tolerance primarily focuses on deleting T cells expressing TCRs with strong avidity towards self-

peptide-MHC complexes, this allows for T cells with relatively low avidity towards self-peptides 

to evade detection and escape into the periphery 49,51. While these cells have the potential to 

instigate autoimmune responses, they will often be swiftly stopped by the secondary tolerance 

mechanism, peripheral tolerance.  

Tregs are known to be one of the key mediators of peripheral tolerance, as they suppress 

inappropriate effector T cell responses through a variety of mechanisms. These mechanisms can 

be either be cell contact-dependent or -independent 52, and allow Tregs to inhibit T cell activation 

and proliferation, as well as induce apoptosis 53,54.  Tregs can suppress inflammation by 

producing suppressive cytokines, such as IL-10 and TGF-β 52,55. IL-10 mediates immune 

suppression by dampening antigen presentation and co-stimulation on APCs by downregulating 

their MHC Class II expression 56 and co-stimulatory molecule CD40 expression 57. IL-10 
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signalling in effector T cells has also been found to limit their activation and proliferation 

potential, as well as suppress the production of pro-inflammatory T helper 1 cytokines, IFN-γ 

and TNF-α 56,58,59. The potent anti-inflammatory activities of IL-10 have been demonstrated in 

numerous mouse models 60–63. For instance, blocking Treg production of IL-10 prevented Tregs 

from protecting mice against developing severe colitis 61, and the presence of IL-10+ Tregs in the 

central nervous system of mice have been linked to better protection against experimental 

autoimmune encephalomyelitis (EAE) 60.  TGF-β also inhibits the proliferation and function of 

activated effector T cells 55,64,65, and mice born with a TGF-β1 deficiency develop T cell 

mediated autoimmunity within the first weeks of life 52,63. Furthermore, TGF-β plays an 

important role in Treg generation by promoting the expression of FoxP3 64, and thus has been 

used to successfully convert effector T cells into CD4+FoxP3+ Treg cells 66,67 with suppressive 

function in vitro 68. 

In addition to utilizing inhibitory cytokines, Tregs can suppress effector T cell growth 

through metabolic disruption by depriving neighbouring T cells of cytokines. IL-2 is an 

important cytokine for both effector T cells and Tregs, and is required to mediate long-term 

survival potential 69,70. Effector T cells must be activated to upregulate the high affinity IL-2 

receptor CD25, but Tregs naturally express CD25 even at resting state. It is hypothesized when 

Tregs congregate at a site of inflammation, they can quickly deplete the local area of IL-2 in 

order to induce IL-2 deprivation-mediated apoptosis in effector T cells 71. Tregs can also induce 

apoptosis by secreting granzyme A, granzyme B, and perforin 55,72. Upon interaction with their 

effector T cell targets, activated human Tregs have been shown to direct the release of granules 

containing granzymes A and B, and perforin into the extracellular space between the Treg and T 
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cell 73–75.  The perforin molecules will create pores in the target cell membrane and once inside 

the cell, the granzymes can induce apoptosis in a caspase-dependent or independent manner. 

Tregs can also prevent T cell activation by targeting and suppressing APCs, such as 

dendritic cells (DCs), by expression of classical T cell inhibitory molecules. Tregs constitutively 

express CTLA-4, a T cell checkpoint inhibitor 76,  and CTLA-4 expression has been shown to be 

critical in preventing spontaneous autoimmune development in mice 77,78. CTLA-4 has greater 

affinity for the co-stimulatory molecules CD80 and CD86 on APCs 79, thereby being able to 

outcompete the T cell co-stimulation protein CD28 for receptor-ligand binding. Thus, Tregs are 

hypothesized to outcompete effector T cells for APC binding to slow T cell activation 80. CTLA-

4 binding can also induce downregulation of CD80 and CD86 on DCs 81 and has been shown to 

condition DCs to express a more suppressive phenotype. Following CTLA-4 binding to 

CD80/CD86, DCs will begin to produce indoleamine 2,3-dioxygenase (IDO) 82,83, an 

immunosuppressive enzyme. IDO activity by DCs results in the production of highly pro-

apoptotic metabolites that also suppress effector T cell growth.  

 

1.6     Treg Dysfunction in Type 1 Diabetes 

Using their various mechanisms to mediate immune suppression, Tregs have the potential 

to control islet-specific T cell activation and stop T1D progression. In fact, autoreactive T cells 

specific towards islet antigens can be found in the circulation of healthy, non-diabetic individuals 

84; however, Tregs from T1D patients have been shown to be dysfunctional and are less efficient 

in suppressing effector T cell responses. Tregs derived from patients with T1D have been shown 

to be less suppressive compared to their healthy Treg counterparts, as T1D Tregs were unable to 

suppress autologous effector T cell proliferation in vitro 85,86. T1D Tregs also display an 
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abnormal cytokine profile, as seen in studies of children with T1D. A higher proportion of Tregs 

from these subjects were found to produce more pro-inflammatory cytokines, such as IL-12, IL-

18, and IFN-γ 81,87, whereas Tregs taken from non-diabetic controls produced primarily anti-

inflammatory cytokines, such as IL-10 and TGF-β 85,88.  

In addition to poor functional responses, T1D Tregs also exhibit a defective phenotype. 

For instance, Tregs from T1D patients have less stable FoxP3 expression 89 and also express 

lower levels of GITR 90, a marker of functional Tregs, and high GITR expression is associated 

with long term Treg survival 91. Accordingly, Tregs from patients in both the pre-diabetic and 

clinical diabetic stages have been found to be more prone to undergo apoptosis 92. Furthermore, 

while the number of Tregs found in non-diabetic versus diabetic patients are reported to be 

similar 93, the frequency of activated FoxP3+ Tregs were found to be reduced in T1D patients 

compared to healthy controls 94. The inability of T1D Tregs to convert from a resting to activated 

state has been attributed to a defect in TNFR2 signaling 94.  

 

1.7     Adoptive Treg cell therapy to treat Type 1 Diabetes 

 Currently, the only widely available treatment for patients living with T1D is insulin 

therapy to help regulate their blood sugar levels. Pancreas or islet cell transplantations are also 

viable approaches to manage T1D, but patients must take a regimen of immunosuppressive drugs 

to prevent graft rejection. Nevertheless, none of these treatments address the fundamental 

autoimmunity underlying T1D. Even with successful transplantation, the patient will still have an 

imbalanced immune system containing beta cell-specific effector T cells and defective Tregs that 

are unable to protect the new graft.  
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 New strategies devised to address beta cell autoimmunity have revolved around restoring 

the immune balance by either targeting the autoreactive effector T cells or by strengthening 

immune regulation by enhancing Tregs. One such therapy to sway the immune system towards a 

more anti-inflammatory phenotype is adoptive Treg cell therapy, where autologous Tregs are 

transferred to increase Treg frequency in the circulation. Tregs are taken from the blood of 

patients and FoxP3high Tregs can be isolated by sorting the CD4+CD25highCD127low surface 

phenotype 88. The purified Tregs can then be expanded until viable numbers are reached for cell 

infusion back into the patients.  

In 2012, the first clinical trial involving adoptive transfer of ex vivo expanded, polyclonal 

Tregs was completed in children with T1D 95. Shortly following administration, Treg frequency 

significantly increased, and the majority of subjects experienced a decrease in insulin 

dependency up to one year post infusion 96. A second clinical trial in 2015 assessed the safety of 

adoptive Treg transfer therapy in adult T1D patients and observed similar results. Transferred 

Tregs could still be found in blood after one-year post infusion 97, and the Tregs also retained 

their FOXP3+CD4+CD25highCD127low
 phenotype. Furthermore, many subjects still expressed 

detectable levels of C-peptide, a biomarker of insulin production, even after two years post cell 

transfer 97.  

 

1.8     Antigen-Specific Tregs May be Superior in Treating Autoimmunity  

 The clinical trials using polyclonal, autologous Tregs have demonstrated that adoptive 

Treg transfer is both feasible and safe as a potential T1D treatment therapy. In fact, in the non-

obese diabetic (NOD) mouse model, infusions of 10 x 106 polyclonal NOD Tregs were 

successful in reversing T1D onset 98,99. However, there are some concerns regarding the use of 
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polyclonal Tregs in adoptive cell transfer therapies in humans. If 10 x 106 polyclonal Tregs are 

required to reverse diabetes in mice, then it is likely billions of polyclonal Tregs would be 

required for infusion when this therapy is translated into human patients 98. Given that polyclonal 

Tregs contain cells with varying specificities, the large numbers of cells needed for infusion 

could carry the risk of generalized immunosuppression. Furthermore, their lack of specificity 

would also mean only a small minority of infused polyclonal Tregs would likely be able to 

migrate to the pancreatic islets to mediate immune suppression.  

Studies using autoimmune and transplantation animal models have shown treating with 

antigen-specific Tregs can be 100 times more effective than polyclonal Tregs in achieving the 

same therapeutic effect 100. The enhanced efficacy of antigen-specific Tregs is likely attributed to 

their enhanced longevity upon successful migration to target tissues. In a skin transplant 

humanized mouse model, Dawson et al. showed that Tregs bearing a chimeric antigen receptor 

(CAR) towards the MHC Class I molecule HLA-A*02 could migrate and persist in the HLA-

A*02+ skin graft for multiple weeks 101. In comparison, polyclonal Tregs were undetectable after 

3 days post injection into the mice. Therefore, perhaps the superior approach regarding Treg 

therapy to treating T1D may be to infuse Tregs specific towards beta cell-derived proteins, as 

fewer cells would be required for successful treatment. Indeed, while 10 x 106 polyclonal NOD 

Tregs could reverse T1D onset in NOD mice 98,99, infusion of as few as 4 x 104 Tregs bearing an 

islet-antigen specific T cell receptor (TCR) was sufficient in both preventing insulitis 99,102–104 

and reversing disease 102,105.  

As a result, there have been many trials attempting to bolster the antigen-specific Treg 

population pre-existing in T1D patients by utilizing a variety of novel antigen-specific 

interventions 106. The most common autoantigen to be utilized as the therapeutic target is insulin, 
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and the use of insulin vaccinations to induce antigen specific tolerance have shown some 

promising results. In the Pre-POINT study, giving high doses of oral insulin to children at high 

risk for T1D had been shown to expand their insulin-specific Treg population 107. Immunization 

using Insulin B chain nanoparticular emulsions in NOD mice induced Treg generation and could 

protect the mice from developing diabetes 108. Meanwhile in human trials, Insulin B chain 

vaccinations also resulted in the expansion of CD4+FoxP3+CD127low T cells that produced TGF-

β and IL-10 upon antigen stimulation 109, although improvement of beta cell function has yet to 

be seen. 

Alternative approaches to generate antigen-specific Tregs that have yet to reach the clinic 

include the use of viral gene transfers and nanoparticles. In NOD mice, lentiviral vectors 

conferring expression of the insulin B9-23 epitope to hepatocytes were successful in inducing 

insulin-specific Tregs by exploiting the liver’s natural tolerogenic properties 110. When combined 

with low dose anti-CD3 therapy, the combination treatment resulted in T1D reversal. 

Nanoparticle based therapies have been tested in a variety of autoimmune models, including 

multiple sclerosis and T1D 106. The nanoparticles are engineered to display peptide:MHC 

complexes at high densities and aims to convert autoreactive T cells into antigen specific Tregs. 

In NOD mice, delivery of NRP-V7-Kd
 nanoparticles expanded their autoregulatory T cell 

population, and the treatment could prevent and reverse disease by suppressing the antigen 

presentation of islet autoantigens in the pancreatic draining lymph node 111. These results have 

also been replicated using human GAD555–567(557I)-HLA-DR4 nanoparticles to generate CD4+ 

Tregs from engrafted PBMCs in a humanized mouse model 112. 

 

 



14 

 

1.9     Engineering Artificial Antigen Specificity onto T cells 

An alternative approach to generate antigen-specific Tregs would be to isolate and 

expand the cells ex vivo. Antigen-specific T cells can be isolated from a pool of polyclonal cells, 

then cloned and expanded to clinical numbers for infusion. However, Tregs are a fairly rare cell 

population, as they comprise of only 5-10% of all circulating CD4+ T cells in peripheral blood 

113. Therefore, attempting to isolate naturally-occurring, antigen-specific Tregs will result in very 

low cell yields and will likely be very difficult to expand to clinically relevant numbers. The 

expansion will also be a long and costly process, and lengthy in vitro Treg expansions may 

increase the risk of the cells destabilizing towards a more pro-inflammatory, conventional T cell-

like phenotype 114. To circumvent this limitation, many groups have taken to artificially 

engineering antigen specificity onto polyclonal T cells by either modifying their TCR specificity, 

or by introducing expression of Chimeric Antigen Receptors (CARs).  

Genetically modified TCRs arise from introducing the expression of different TCR α and 

β chains to alter antigen specificity. One common approach is to transfer the TCR genes of 

known antigen specificity into polyclonal T cells by virus transduction. This has been done in 

some cancer immunotherapies where TCRs from tumour infiltrating lymphocytes (TILs) of 

patients experiencing cancer remission are transferred onto T cells of patients with the same 

cancer 115,116. In the context of T1D, generation of islet-specific Tregs has also been conducted 

by transferring the TCRs from IA-2 specific and insulin-specific T cell clones by lentiviral gene 

transfer 117. The engineered Tregs were found to be suppressive in vitro, but their potency was 

noted to be significantly lower compared to viral specific TCRs and required additional methods 

to isolate the functional islet specific Tregs.  
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Another caveat to genetically modified TCRs would be their tendency to mispair the 

endogenous and engineered TCR components. While no clinical trials to date involving 

genetically modified TCRs have observed any toxicities attributed to TCR mispairing, the 

potential interchain mispairing may result in defective TCRs incapable of antigen binding, or 

TCRs with reduced or altered specificity 118.  This can lead to dangerous off-target effects, as 

effector T cells with mispaired TCRs may recognize self-antigens and could potentially cause 

graft-versus-host disease (GvHD) 119,120. Indeed, in a study by Bendle et al, mice infused with 

genetically-modified-TCR transduced T cells experienced lethal GvHD driven by IFN-γ, and 

was attributed to the formation of self reactive TCRs from mispairing of endogenous and 

engineered TCR components 120. Therefore, perhaps a safer and more efficient method of 

generating antigen-specific Tregs may be to utilize CAR technology instead. 

   CARs are recombinant molecules comprised of an antigen binding domain, a 

transmembrane domain, and an intracellular signalling domain which all work to modify antigen 

specificity and T cell function when expressed on the cell surface 121,122. One major advantage of 

CARs compared to engineered TCRs is their modularity, as each domain can be replaced with 

new components to adjust antigen specificity and binding efficiency, or even optimize the 

biological activity of any CAR.   

The antigen binding domain is responsible for tailoring antigen specificity and is 

typically derived from the single chain variable fragment (scFv) of a high affinity antibody 123. 

The scFv is linked to the transmembrane and intracellular domains by a region known as the 

hinge. The hinge can enhance the general stability of CAR expression on the cell surface 122, as 

well as provide flexibility to the CAR to increase the scFv binding efficiency to complex targets 

124,125. The CAR transmembrane domain is responsible for anchoring the CAR molecules to the 
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T cell membrane 122 , and many groups have shown the transmembrane domain also helps 

facilitate CAR dimerization and immune synapse formation to amplify T cell signaling and 

activation 126,127.  

Finally, the intracellular domain of a CAR consists of one or more T cell activation 

signalling domains. CARs can be categorized into first, second, or third generation CARs 

depending on the composition of the intracellular domains used. In a first-generation CAR, the 

sole intracellular domain responsible for T cell activation is the CD3ζ signaling domain. In a 

second-generation CAR, the signalling domain of a T cell co-stimulatory molecule is joined to 

the CD3ζ signaling domain. Common co-stimulatory domains used are from the CD28 and 

TNFR family 122, and depending on the co-stimulatory domain used, T cell activation by CAR 

stimulation could enhance T cell growth, influence T cell differentiation, as well as tailor 

biological function 128–130. The third generation CARs utilize > 2 co-stimulatory domains linked 

to the CD3ζ signaling domain to combine the functional properties of different co-stimulatory 

signals into a single CAR T cell. While third generation CARs are reported to have enhanced 

effector functions, the number of CAR molecules expressed on T cell surfaces is often lower 

compared to cells expressing first or second generation CARs 131.   

 

1.10    Chimeric Antigen Receptor Expression on Tregs 

 Tregs require CD28 co-stimulation to mediate their expansion and maintain suppressive 

function 132 . When Tregs were expanded with artificial APCs that provided alternative co-

stimulation, they expressed less FoxP3 and were unable to suppress effector cells in vitro as well 

as their CD28 expanded counterparts 132. Therefore, the CARs described in this thesis will all be 
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second generation CARs with a CD28 co-stimulatory domain linked to the CD3ζ signaling 

domain. 

 The Levings lab has successfully generated second generation CAR Tregs that work to 

prevent GvHD and allograft rejection of skin transplants in various mouse models 133,134. CAR 

Tregs were generated from humans 101,133 and mice 134 by transducing the cells with virus 

encoding an HLA-A*02 targeting CAR, as the HLA-A*02 molecule is commonly mismatched 

during organ transplantation. When comparing the suppressive activity of HLA-A*02 CAR 

Tregs to polyclonal Tregs, the antigen-specific Tregs were more efficient in suppressing the 

growth of peripheral blood mononuclear cells (PBMCs) and T cells in vitro 101,133,134 when Tregs 

were cultured with HLA-A*02 expressing cells. 

The Levings lab has also shown the HLA-A*02 CAR Tregs are effective in vivo. In a 

xenogeneic GvHD mouse model, mice were injected with human HLA-A*02+ PBMCs and 

treated with either HLA-A*02 CAR Tregs or Tregs bearing an irrelevant CAR (Her2 CAR). 

Mice that were treated with the HLA-A*02 CAR Tregs exhibited delayed GvHD symptoms and 

improved survival rates compared to mice treated with Her2 CAR Tregs 101,133. For the allograft 

transplant models, mice were transplanted with both HLA-A*02+ and HLA-A*02- skin grafts and 

injected with HLA-A*02 CAR Tregs or Her2 CAR Tregs. Sicard et al. observed that only the 

HLA-A*02 CAR Tregs were capable of delaying skin graft rejection, and could reduce the 

frequency of graft-specific antibodies and B cells 134. When monitoring CAR Treg migration via 

bioluminescent imaging, Dawson et al. observed the HLA-A*02 CAR Tregs quickly migrated to 

the HLA-A*02+ skin graft only, while the polyclonal Tregs could not 101. The Levings lab has 

demonstrated CAR technology can be utilized to tailor antigen specificity and enhance Treg 

function. Therefore, I will be using my prior experience working with HLA-A*02 CAR Tregs to 
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generate CAR Tregs specific towards beta cell peptides complexed with MHC Class II 

molecules for use as a T1D therapeutic in murine Tregs.   

 

1.11 Diabetic Mouse Models: The Non-Obese Diabetic Mouse  

The non-obese diabetic (NOD) mouse model is the main animal model for the study of 

T1D, primarily due to the similarities of T1D development between NOD mice and humans. 

Like humans, NOD mice develop insulitis very early in life and the disease is also largely T cell 

mediated. From as early as 3 weeks of age, innate immune cells such as dendritic cells and 

macrophages 135,136 infiltrate the pancreas. Studies in NOD mice have shown this initial 

infiltration is important for the initiation of the diabetogenic T cell response, as depletion of 

monocytes and dendritic cells significantly delay diabetes onset 137,138. The infiltration of CD4+ 

and CD8+ T cells occurs between 4-6 weeks of age, and both subsets are required for diabetes to 

progress 139. NOD mice also suffer from a defect in central tolerance and have autoreactive T 

cells towards islet related antigens. Like humans, these autoreactive T cell clones have been 

found to target similar diabetes related autoantigens, such as insulin and GAD65 139. 

 The genetic risk of developing T1D in NOD mice has also been attributed to their MHC 

Class II molecule. Just as patients with T1D predominantly express the HLA-DR3-DQ2 and 

HLA-DR4-DQ8 MHC Class II haplotypes, NOD mice express the MHC Class II molecule I-Ag7, 

an ortholog of the human HLA-DQ 139. Studies on the I-Ag7 molecule revealed a polymorphism 

unique to the NOD mouse strain that is required for T1D development 140. When the 

polymorphism was adjusted to be aligned with other mouse strains 141,142, or when NOD mice 

were engineered to express the MHC Class II molecule I-E instead 142,143, NOD mice were 

protected from developing diabetes. While it is still unclear in precisely how the I-Ag7 
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polymorphism contributes to disease progression, it has been hypothesized this polymorphism is 

responsible for the defect in central tolerance. The I-Ag7 molecule is reported to express poorly 

on cell surfaces, as well as being a weak peptide binder 144,145. Thus, diabetogenic NOD T cells 

might escape into the periphery due to incomplete presentation of the self-peptide repertoire.  

 While polymorphisms in the MHC gene is the dominant genetic risk factor in NOD mice, 

multiple other gene loci have been found to contribute to T1D development. Over 50 disease loci 

have been identified, which are grouped under the term insulin-dependent diabetes, or “Idd loci”. 

The Idd3 gene locus contains the IL2 gene, and data from NOD mice suggests the polymorphisms 

found in Idd3 results in reduced IL-2 production by effector T cells. IL-2 is critical for Tregs, thus 

a loss of IL-2 will contribute to the diabetes progression in NOD mice by impeding Treg survival 

88,146. Another important Idd gene locus specifically impacting Tregs is Idd5.1, which encodes for 

the CTLA-4 gene. As mentioned previously, CTLA-4 is used by Tregs to suppress the growth of 

effector T cells and induce a more tolerogenic phenotype in APCs. NOD mice are reported to 

express lower levels of CTLA-4 compared to other mouse strains 147. Furthermore, they can also 

express a splice variant of CTLA-4, which encodes for defective CTLA-4 molecules which lack 

the CD80/CD86 binding domain 148.  

 

1.12     Diabetic Mouse Models: BDC2.5 Transgenic T Cell Receptor  

 To discover the islet autoantigens that trigger diabetes development in the NOD mouse 

model, T cells were isolated and cloned by their ability to react with NOD islet cell suspensions 

149. One of the most widely known diabetogenic clones identified by this method is the BDC2.5 

TCR, named after its location of discovery at the Barbara Davis Center 149,150. The BDC2.5 T 

cell clone has become an invaluable tool to investigate disease progression in vivo, due to its 
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consistent ability to quickly induce diabetes in mice following adoptive transfer. While it would 

take between 4-6 months for approximately 50% of female NOD mice to spontaneously develop 

disease 149, one dose of BDC2.5 T cells is sufficient to induce diabetes 2 weeks post injection 

99,102.  

 The BDC2.5 TCR was sequenced and used to generate a transgenic mouse strain derived 

from NOD mice 151. Thus, NOD.BDC2.5 transgenic mice carry CD4+ T cells that uniformly 

express the BDC2.5 TCR. While adoptive transfer of BDC2.5 CD4+ T cells into other mice is 

highly diabetogenic, the BDC2.5 mice themselves are relatively resistant to developing T1D 

compared to NOD mice 152. As Tregs are also CD4+, it is likely their modified antigen specificity 

now allows for enhanced homing to the islets to better protect against the effector T cells.  

When the identity of the islet antigen responsible for activating BDC2.5 T cells was still 

unknown, peptide libraries were generated and screened to identify peptide mimotopes capable 

of stimulating BDC2.5 T cells in vitro 153. To date the identified peptide mimotopes with the 

highest reactivity are still frequently used to stimulate and expand BDC2.5 T cells in vitro 102–104. 

Mass spectrometric analysis of purified beta cell fractions later revealed the probable antigen of 

BDC2.5 T cells to be Chromogranin A 154, a secretory protein encoded by neurons and endocrine 

cells, including islet beta cells. This possibility was supported when BDC2.5 T cells were found 

to be unable to produce IFN-γ after culture with APCs and islets from Chga−/− mice 154.  

The WE-14 peptide is a natural cleavage product of Chromogranin A 155; sequencing of 

this peptide fragment showed that the WE-14 peptide shared an amino acid motif with many of 

the highly reactive BDC2.5 peptide mimotopes 153,154. While WE-14 was predicted to bind 

poorly to I-Ag7, adding WE-14 peptide into cultures containing BDC2.5 T cells and I-Ag7-

expressing APCs resulted in IFN-γ responses 154. However, the BDC2.5 T cell response to the 



21 

 

WE-14 peptide was less potent compared to the response towards total islet cell extracts 156. This 

led to the conclusion that there must be an additional post-translational modification to WE-14 to 

create the natural diabetogenic epitope that stimulates BDC2.5 T cells in vivo.  

One novel form of post-translational modification is peptide fusion, where different 

peptides degraded by the proteasome spontaneously crosslink together to become a single hybrid 

product 157. In 2016, Delong et al. generated a library of hybrid peptides consisting of insulin 

peptide fragments fused to random peptides derived from secretory granules. One hybrid was a 

fusion between insulin and WE-14, and when added to BDC2.5 T cell and APC cocultures, it 

strongly stimulated BDC2.5 T cells, even at low nanomolar concentrations 158. Thus, it was 

hypothesized the natural islet antigen targeted by the BDC2.5 TCR was a hybrid peptide (HP) 

between WE-14 and insulin. Indeed, mass spectrometry analysis has confirmed the presence of 

this so-called 2.5HP in mouse beta cells 156, and 2.5HP reactive T cells have also been found in 

the spleens, pancreas, and islets of NOD mice with increasing frequency as mice developed 

diabetes 156,159.  

 

1.13     Summary and Synopsis of Research Questions 

 Type 1 diabetes is an autoimmune disease where autoreactive T cells target and kill the 

insulin-producing beta cells of the pancreas. If left untreated, the chronic insulin deficiency will 

result in hyperglycaemia and lead to severe complications, such as organ failure and blindness 1, 

6.  Patients that are susceptible to developing T1D have been found to express a multitude of 

genetic risk factors such as polymorphisms in genes involved in insulin processing 7,37, immune 

tolerance 8,20,31, and most importantly, the expression of specific T1D-susceptible MHC Class II 

haplotypes 20,23.  



22 

 

 T1D pathogenesis is initiated when autoreactive T cells encounter islet APCs presenting 

endogenous beta-cell derived peptides on their MHC molecules 41. When the T cells become 

activated, this will result in a cytotoxic attack directed towards the islet beta cells, mediated 

primarily by autoreactive CD8+ T cells and pro-inflammatory macrophages 42,43,44. In healthy 

individuals, autoreactive T cells that have managed to escape into the periphery are silenced by 

Tregs, key immune mediators that inhibit inappropriate immune responses 52.  However, it has 

been found patients with T1D carry dysfunctional Tregs, with many defects found involved in 

cell activation and suppression 84-90.  

 Currently the most accessible treatment available for T1D patients is insulin therapy, but 

there have been increasing efforts to research and develop therapeutic strategies that will address 

the causal underlying autoimmunity. One such strategy is adoptive Treg transfer therapy where 

Tregs are expanded ex vivo then transferred back into a patient, thus increasing the number of 

Tregs to allow for better suppression of ongoing autoimmunity. While phase I clinical trials with 

diabetic patients have established the feasibility and safety of adoptive polyclonal Treg transfer 

as a potential therapy for humans 95,96, studies in mouse models have suggested using antigen 

specific Tregs would be more effective. Pre-diabetic and diabetic mice injected with Tregs 

bearing a islet antigen specific TCR have been shown to prevent diabetes development 99,102–104 

and even reverse disease 102,105 much more swiftly than mice injected with polyclonal Tregs.  

 CARs have become a popular tool to engineer antigen specificity due to their modular 

nature and high antigen specificity. The Levings lab has expertise in generating antigen specific 

Tregs by utilizing CARs 101,133,134,160 to better tailor Treg specificity and function. For instance, 

infusion of human Tregs expressing a CAR targeting a common transplant antigen can greatly 

delay rejection of transplanted allografts by preventing xenogeneic GvHD 101,121. Thus, the goal 
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of my work was to generate antigen-specific Tregs expressing CARs targeting islet peptides 

complexed to MHC Class II molecules for the treatment of murine T1D. I collaborated with the 

Fife lab from the University of Minnesota, which generated two monoclonal antibodies specific 

for p63:I-Ag7 or Insulin B10-23:I-A
g7. At the Levings lab, the antibodies were converted into 

CARs and I optimized methods to test their function in vitro. 

 Patients with T1D have an autoimmune disorder where their autoreactive T cells target 

and kill their pancreatic beta cells. Tregs have long been considered to be key mediators in 

suppressing inappropriate immune responses, and diabetic mouse models have shown Tregs 

engineered to target the pancreas are superior in preventing diabetes development. Thus, I 

hypothesized that CAR Tregs specific for peptide:I-Ag7 complexes would be functionally 

superior to polyclonal Tregs when stimulated with relevant antigen. To test this hypothesis, I first 

had to ask whether the engineered CAR Tregs were antigen specific. If they are antigen specific, 

does this specificity translate to biological cell function when stimulated with the relevant 

antigen? Finally, does their antigen specificity also enhance their suppressive capacity compared 

to polyclonal Tregs? 
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Chapter 2: Materials and Methods 

2.1     CARs and Retrovirus 

To generate the antigen binding domain of the CARs, the variable regions of the heavy 

and light chains were cloned from hybridomas produced by the Fife lab 161. Mice were 

immunized with p63:I-Ag7 (RTRPLWVRME) or InsB10–23:I-A
g7 (HLVERLYLVCGEEG) 

monomers with repeated boosters over a period of 45 days. The spleens of immunized mice were 

harvested and stained with either p63:I-Ag7 or InsB10–23:I-A
g7 tetramers conjugated to 

streptavidin-phycoerythrin (PE). The tetramer specific B cells were then isolated by magnetic 

enrichment using anti-PE beads and fused with myeloma fusion partners to generate hybridomas 

(Fig. 1A). Antibodies were screened by harvesting hybridoma supernatants for ELISA to confirm 

peptide:I-Ag7 specificity.  

Hybridoma clones validated for antigen specificity were sequenced and the DNA 

sequences were then converted into an scFv format and fused to a Myc epitope tag to allow for 

cell surface detection. The extracellular domains were fused to the hinge (derived from mouse 

CD8), transmembrane (derived from mouse CD28), and intracellular domains. The intracellular 

domains were comprised of a fusion of mouse CD28 and CD3ζ signalling domains. The CARs 

were named 1B2 (targets InsB10–23:I-A
g7) and FS1 (targets p63:I-Ag7) and cloned into a murine 

stem cell virus (MSCV)–based retroviral vector. Retroviral particles were produced by using the 

Platinum-E (Plat-E) Retroviral Packaging Cell Line transfected with the pCL-Eco Retrovirus 

Packaging Vector, according to the manufacturer’s recommendations (Cell Biolabs). 
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2.2     CD4+ Treg and Conventional T cell Sorting, Transduction, and Expansion 

Spleens and (popliteal, axillary, mandibular, and mesenteric) lymph nodes were 

harvested from 8-12-week-old NOD.FOXP3 GFP mice. Mice were kept under pathogen-free 

conditions at the animal facility at British Columbia Children's Hospital Research Institute. The 

organs were crushed and strained to isolate single cells, and CD4+ cells were magnetically 

enriched using mouse CD4+ T cell isolation kits (STEMCELL Technologies). Live regulatory T 

cells (Tregs) and conventional CD4+ T cells (Tconvs) were sorted by fixable viability dye eF780 

(Thermo Fisher Scientific) and CD4 antibody staining (clone RM4-5, BD Biosciences), as well 

as high and low FoxP3-GFP expression (for Tregs and Tconvs respectively) using the MoFlo 

Astrios cell sorter (Beckman Coulter).  Both sorted Tregs and Tconvs were cultured in 

ImmunoCult™-XF T Cell Expansion Medium (STEMCELL Technologies) supplemented with 

50 μmol/L of β‐mercaptoethanol and 100 units/mL of Penicillin/Streptomycin (Thermo Fisher 

Scientific). Sorted Treg cultures also contained 1000 U/mL of IL-2 (Proleukin) and 50 nmol/L of 

rapamycin (Sigma‐Aldrich), whereas Tconv cultures only contained 100 U/mL of IL-2. Tregs 

and Tconvs were stimulated with mouse T-Activator CD3/CD28 DynabeadsTM (ThermoFisher 

Scientific) at a bead to cell ratio of 3:1 and 2:1, respectively.  

Two days post sorting, Tconvs were transduced with the 1B2-, FS1-, or Her2-encoding 

retrovirus. LipofectamineTM 2000 (2 µg/mL, ThermoFisher Scientific) and hexadimethrine 

bromide (Polybrene, 1.6 µg/mL, Sigma) were added to increase the efficacy of retroviral 

transduction, and cells were centrifuged for 90 minutes at 805 x g at 32°C. Tregs were 

transduced using the same method, but on day 3 post sorting.  

Cell cultures were monitored and split accordingly depending on media colour and cell 

density. IL-2 and rapamycin were replaced when cultures were split. On day 7, CD3/CD28 
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DynabeadsTM were magnetically removed and both Tregs and Tconvs were rested for 2 days 

with a decreased dose of IL-2 (300 U/mL and 30 U/mL respectively) before use for functional in 

vitro assays.   

 

2.3     Flow Cytometry 

All antibody staining was conducted at room temperature for 30-40 minutes away from 

light. The cell phenotyping, proliferation, and suppression assays were read using the Cytoflex 

(Beckman Coulter), whereas the activation assays were read using the Fortessa (BD 

Biosciences). All resulting flow data was analyzed using FlowJo Software versions 10.1.6 and 

10.7.1.  

On Day 5 and 7 post cell sort, transduction efficiency was assessed by cell surface 

staining using mouse anti-CD4-BV605 (clone RM4-5, BD Biosciences), anti-Myc-AF647 (clone 

9E10, UBC Ablab), and live cells were detected using the fixable viability dye eF780 

(eBioscience). To evaluate CAR antigen specificity, CAR Tregs and Tconvs were stained with a 

panel of peptide:I-Ag7 tetramers (provided by the Fife lab). The tetramers used were Insulin B10-

23:I-A
g7, p63:I-Ag7, 2.5HP:I-Ag7and Hen Egg Lysozyme (HEL11-25):I-A

g7, and all tetramers were 

conjugated with BV421 Streptavidin (Biolegend).  

 To assess Treg purity, both Tregs and Tconvs (for use as negative controls) were stained 

with anti-CD4-BV605 and fixable viability dye eF780. Cells were then fixed and permeabilized 

using the FOXP3/Transcription Factor Staining Buffer Set (eBioscience) for 40 minutes at room 

temperature in the dark. Intracellular staining using anti-FoxP3-PE (clone FJK-16s, eBioscience) 

and anti-Helios-eF450 (clone 22F6, eBioscience) was performed in Permeabilization Buffer 

(eBioscience).  
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Both proliferation and activation assay samples were stained with anti-Myc-AF647 and 

fixable viability dye eF780. Proliferation assays were stained with anti-CD4-BV605, whereas 

activation assays were stained with anti-CD4-PE-Cy7 (clone RM4-5, BD Biosciences). 

Proliferation of CAR Tregs and Tconvs was analyzed by the dilution of the CPD eF450 signal, 

whereas CAR Treg and CAR Tconv activation was read out by staining with anti-CD69-BV785 

(clone H1.2F3, Biolegend), anti-LAP-PE (clone TW7-16B4, eBioscience), and anti-CTLA4-

BV605 (clone UC10-4B9, Biolegend). Suppression assays were also stained with anti-CD4-

BV605 and fixable viability dye, and BDC2.5 T cell proliferation was also read out by the 

dilution of CPD eF450 signal (eBioscience), whereas CAR Treg proliferation was read out by 

the dilution of CPD eF670 signal (eBioscience).  

For the in vivo experiment, peripheral blood from the saphenous vein (60-80 µL blood) 

was collected to determine the cell engraftment of the injected Tconvs. Erythrocytes were lysed 

using the 10X RBC Lysis Buffer (eBioscience) and anti-mouse Fc block (BD Biosciences) was 

added to the remaining leukocytes. Following Fc blocking, cells were stained with anti-CD8-PE 

(clone 53.6-7, invitrogen), anti-CD45-eF450 (clone 30-F11, invitrogen), anti-CD4-BV605, and 

labelled with fixable viability dye eF780. To determine whether the injected CAR Tconvs were 

still expressing the CAR, cells were also stained with anti-Myc-AF647. After staining, 123count 

eBeads™ (ThermoFisher Scientific) were added to all samples to allow for absolute counting of 

cells by flow cytometry. The samples were then read out using the LSRII (BD Biosciences) and 

results were analyzed using FlowJo Software versions 10.1.6 and 10.7.1. 
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2.4     In vitro Activation, Proliferation, and Suppression Assays 

All functional assays were conducted on day 9 post sort, after two days of cell resting 

(Fig. 3B). CAR Tregs and Tconvs were collected, counted, and washed prior to processing in 

preparation for their respective assays. To collect cells for use as APCs, spleens were harvested 

from NOD.FOXP3 GFP negative mice and crushed to isolate the splenocytes. T cells were then 

depleted from the splenocyte population by magnetic selection using the Mouse CD90.2 Positive 

Selection Kit (STEMCELL Technologies).  

For use in activation assays, depleted splenocytes were labelled with cell proliferation 

dye CPD eF450 before being pulsed with 15 µM Insulin P8E (HLVERLYLVAGEEG), p63 

(RTRPLWVRME), 2.5HP (LQTLALWSRMD) or Hen Egg Lysozyme (HEL11-25 

AMKRHGLDNYRGYSL) peptides and cultured with 1B2 CAR, FS1 CAR, or untransduced 

cells at a 1:1 ratio. Treg cocultures were supplemented with 100 U/mL IL-2 and incubated 

overnight at 37°C. The Treg activation markers CD69, LAP, and CTLA-4 were then assessed by 

flow cytometry the following day.  

 For use in proliferation assays, T-cell-depleted and non-labelled splenocytes were 

irradiated by X-ray at 2000 rad. Meanwhile, collected CAR Tregs and Tconvs were labelled with 

Cell Proliferation Dye CPD eF450 (eBioscience). The irradiated splenocytes were pulsed with 10 

µM Insulin P8E, p63, 2.5HP, or HEL peptides and cultured with labelled CAR Tregs or Tconvs 

at a 1:1 ratio to assess for antigen dependent proliferation. Proliferation assay cocultures were 

incubated at 37°C and antigen dependent cell proliferation was assessed by flow cytometry 

following 3 days of incubation. CAR Tregs also received supplemental 100 U/mL IL-2 one day 

into incubation.  
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To set up suppression assays, the spleen and lymph nodes were harvested from BDC2.5 

mice to isolate for T cells bearing the BDC2.5 TCR. The organs were crushed to isolate cells and 

CD4+ T cells were enriched by using the EasySep™ Mouse CD4+ T Cell Isolation Kit 

(STEMCELL Technologies). To discriminate CAR Tregs from BDC2.5 T cells, BDC2.5 T cells 

were labelled with the Cell Proliferation Dye CPD eF450 (eBioscience), and CAR Tregs were 

labelled using the CPD eF670 (eBioscience). Fifty thousand BDC2.5 T cells were added to each 

well and CAR Tregs were plated by serial dilution from a ratio of 2 CAR Tregs : 1 BDC2.5 T 

cell to  1 CAR Treg : 16 BDC2.5 T cells. Splenocytes were harvested and treated as in the 

proliferation assay and 100,000 irradiated splenocytes were plated and pulsed with 10 nM p63 

peptide to stimulate BDC2.5 T cell proliferation. Splenocytes that were plated with 1B2 CAR 

Tregs were also pulsed with 10 µM Insulin P8E peptide to stimulate the 1B2 CAR Tregs. 

Suppression assay cocultures were incubated at 37°C and suppression of BDC2.5 T cell 

proliferation was assessed by flow cytometry following 3 days of incubation.  

To measure cytokine production, supernatants from suppression assays were collected 

and frozen after the 3 days of incubation. Supernatants from select conditions were thawed and 

cytokine concentration was determined by using the mouse Th1/Th2/Th17 Cytokine Kit (BD 

Biosciences) and analyzed by the FCAP Array Software v. 3.0.1 (Soft Flow).  

 

2.5     In vivo Experiments 

 4 x 106 CAR Tconvs were transferred to male NSG mice (The Jackson Laboratory, bred 

in house) by tail-vein injection. Mice that did not receive any cells served as the negative 

controls. Following cell injection, the overall health of the mice was monitored by body weight, 

fur texture, posture, activity level, and grimace scale one-two times per week. Blood glucose was 
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checked on a weekly basis to monitor for diabetes development via the OneTouch Ultra® 2 Blood 

Glucose Meter (Lifescan). A mouse was considered diabetic if their blood glucose readings 

exceeded 15 mmol/L for three consecutive readings/days. After 7 weeks, all remaining mice 

were euthanized. Sections of spleen, pancreas, liver, lung, duodenum, ileum, and colon were 

collected for histology and fixed in 4% paraformaldehyde overnight. Afterwards, all tissues 

samples were transferred to 70% ethanol and stored at 4°C.  

 

2.6     Statistics 

 Analysis of results were performed using Prism 7 software (Graphpad). Results were 

considered statistically significant when p < 0.05. Statistical analyses of activation and 

proliferation were calculated using one-way ANOVA with Tukey’s multiple comparison’s post 

tests. Significance of Treg mediated suppression of BDC2.5 T cell proliferation was determined 

by two-way ANOVA with Tukey’s multiple comparison’s post test and suppression of cytokine 

production was calculated by two-way ANOVA with Bonferroni's multiple comparisons post 

test.  
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Figure 1. Background information of islet peptide:MHC II CAR Generation 

(A) Representative immunization schedule of mice to induce and isolate islet-peptide:MHC Class 

II specific B cells and their subsequent isolation and fusion into hybridoma cells. (B) Amino acid 

sequences of CAR peptide targets. Amino acids in red are predicted to bind in the MHC binding 

groove by filling the anchor positions. (C) Comparison of anti-islet peptide:MHC II antibody 

binding affinities to their target antigen. 
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Chapter 3: Results 

3.1     Generation and expression of islet-peptide:I-Ag7 MHC Class II CARs 

 I aimed to generate CARs specific towards known diabetogenic beta cell peptides in the 

context of MHC Class II molecules. As detailed in Methods, collaborators from the Fife lab 

generated monoclonal antibodies against peptide bound to MHC Class II by immunizing mice 

with recombinant peptide:MHC monomers (Fig. 1A) 161. The peptides I was interested in 

developing antibodies towards were the p63 peptide, a mimotope of the Chromogranin A 

cleavage product WE-14 153,154, and the InsB10–23 (P8E) peptide (Fig. 1B). Insulin P8E is a 

mutant where the 22nd amino acid of the wild type Insulin B peptide (arginine) is mutated into 

glutamic acid. This mutation was predicted to enhance peptide binding to the MHC binding 

groove and would improve InsB10–23 presentation by I-Ag7 162. In the Fife lab, hybridomas were 

screened for their specificity and affinity (Fig. 1C), and the top performing antibodies were 

sequenced and converted into single chain antibodies. The monoclonal antibodies (mAb) that 

were chosen were the FS1 mAb (specific towards p63:I-Ag7) and the 1B2 mAb (InsB10-23:I-A
g7). 

Both scFvs were cloned into a retroviral vector 134 to create second-generation CARs encoding 

the CD8 hinge, CD28 transmembrane, and CD28 and CD3ζ intracellular domains (Fig. 2A). A 

Myc-epitope tag was also added to allow detection of CAR expression on the cell surface. 

  Preliminary testing of the 1B2 and FS1 CARs was conducted by transient transfection of 

HEK 293T cells, and I was able to detect cell surface CAR expression by flow cytometric 

staining of the Myc-epitope tag (Fig. 2B). I then utilized p63:I-Ag7 and InsB10-23:I-A
g7 tetramers 

to ensure the conversion into single chain antibodies did not compromise the antigen binding 

capabilities of the FS1 and 1B2 CARs. As seen in Fig. 2C, both the FS1 and 1B2 CARs were 
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Figure 2. Generation and Validation of islet-peptide:MHC II CARs 

(A) Schematic of domains in the 1B2 and FS1 CARs. ScFv, Single chain variable fragment; Myc, 

Myc-tag; TM, transmembrane; Co-stim, Co-stimulation. (B) Validation of CAR expression on 

HEK 293T cells following transient transfection. Surface expression of both CARs were assessed 

by flow cytometry of the Myc-tag. (C) 293T cells expressing the 1B2 or FS1 CAR were stained 

with either their relevant tetramer (Insulin B10-23:I-A
g7 and p63:I-Ag7, respectively) or an 

irrelevant tetramer (HEL:I-Ag7) 
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able to bind specifically to the p63:I-Ag7 and InsB10-23:I-A
g7 tetramers respectively and did not 

bind to the irrelevant Hen Egg Lysozyme (HEL):I-Ag7
 tetramer.  

  



34 

 

3.2     Generation of islet-peptide:I-Ag7 MHC Class II CAR Tregs 

 To generate the 1B2 and FS1 CAR Tregs, I sorted CD4+GFP+ cells harvested from 

spleens and lymph nodes of NOD.FOXP3-cre mice (Fig. 3A). The mice have been engineered to 

express a FOXP3-EGFP/cre BAC transgene conferring expression of a fusion protein containing 

green fluorescent protein (GFP) fused to a humanized cre recombinase 163. The transgene 

expression is under the control of the FoxP3 promoter, thus the sorted CD4+GFP+ cell population 

will result in an almost pure population of Tregs, as FoxP3 is the master transcription factor for 

Tregs. CD4+GFP- cells were also sorted in parallel for use as conventional T cell (Tconv) 

controls. Following sorting, Tregs were stimulated using anti-CD3/28 DynabeadsTM, and 

cultured in the presence of a high concentration of IL-2 (1,000 U/ml) and rapamycin (to limit 

expansion of any contaminating Tconv cells). The activated Tregs were then transduced with 

1B2 CAR-, or FS1 CAR-encoding retrovirus and expanded for 4 additional days (Fig. 3B). In 

addition to untransduced Tregs, Her2 CAR Tregs were also generated for use as an irrelevant 

CAR control, as the Her2-specific scFv targets the human Her2 antigen which is not expressed in 

mice.   

After 7 days, Tregs that were transduced with the 1B2 CAR or FS1 CAR had high levels 

of CAR cell surface expression, as determined by flow cytometric staining of the Myc-epitope 

tag (Fig. 3C). To determine the specificity of each CAR, Tregs were stained with relevant and 

irrelevant peptide:MHC Class II tetramers. The 1B2 CAR Tregs only bound the InsB10–23:I-A
g7 

tetramer, while the FS1 CAR Tregs only bound the p63:I-Ag7 tetramer (Fig. 3D). None of the 

CARs bound to the irrelevant HEL:I-Ag7 tetramer, suggesting that both 1B2 and FS1 CAR Tregs 

are highly specific to their relevant antigen.   
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Figure 3. Generation of 1B2 and FS1 CAR Tregs. 

(A) Sorting strategy to isolate for FoxP3-GFP+ Tregs from CD4 enriched cells. (B) Workflow of 

CAR Treg manufacturing detailing expansion, transduction, and resting process prior to in vitro 

functional assay set up. (C) Representative flow analyses of CAR surface expression on Tregs 

(n=6-11) by detection of the Myc tag. (D) CAR Tregs were stained with relevant and irrelevant 

peptide:MHC II tetramers to assess for CAR specificity. (E) Expression of FoxP3 and Helios was 

assessed on Day 7 post sort to evaluate Treg purity during expansion (mean ± SD, n=6-11).  
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To ensure the CAR Tregs remained stable during expansion, samples were taken for flow 

cytometric analysis of FoxP3 and Helios expression. Helios is another transcription factor 

expressed in Tregs and has been found to be positively correlated with Treg lineage stability 164. 

The deletion of Helios within Tregs has been shown to promote conversion to an effector T cell 

phenotype, with increased production of proinflammatory cytokines and enhanced antitumour 

immunity 165. During the 7 days of stimulation and expansion, all CAR Tregs retained high 

(>70%) FoxP3 and Helios expression compared to the Tconv controls (Fig. 3E). Furthermore, 

CAR Treg expression of FoxP3 and Helios was comparable to untransduced NOD Tregs, 

suggesting neither virus transduction nor CAR expression altered the phenotype of NOD Tregs 

in vitro.  

 

3.3     CAR Tregs are activated in an antigen-specific manner 

 Once I confirmed the CARs were expressed on Tregs, and that the 1B2 and FS1 CARs 

were specific towards the relevant peptide:MHC Class II tetramer, I then tested whether the 

CARs mediated antigen-specific effects in Tregs. To assess the function of the 1B2 and FS1 

CAR Tregs, cells were cultured overnight with NOD splenocytes pulsed with 15 µM of insulin 

B10–23 peptide, p63 peptide, or HEL11-25 peptide. When CARs were cultured with the relevant 

peptide, both 1B2 CAR and FS1 CAR Tregs increased CD69 (Fig. 4A), LAP (Fig. 4B), and 

CTLA-4 expression (Fig. 4C). However, when cultured with irrelevant peptides, the expression 

of these activation markers remained similar to baseline (no peptide added), confirming antigen-

specific, CAR-mediated Treg activation. 

To test whether CAR stimulation would result in cell proliferation, CAR Tregs were 

labelled with cell proliferation dye (CPD) and cultured with irradiated NOD splenocytes pulsed  
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with Insulin B10–23 peptide, p63 peptide, or HEL11-25 peptide (Fig. 4D and 4E). 1B2 CAR Tregs 

only proliferated in response to the Insulin B10–23 pulsed splenocytes, and FS1 CAR Tregs only 

proliferated when cultured with p63 pulsed splenocytes. Neither 1B2 nor FS1 CAR Tregs 

responded to the splenocytes pulsed with the irrelevant diabetogenic peptide, nor to the 

splenocytes pulsed with the negative control HEL peptide.  

 

3.4     FS1 CAR Tregs suppress BDC2.5 T cells better than polyclonal NOD Tregs 

 After confirming peptide presentation by APCs can stimulate CAR Tregs in an antigen 

dependent manner, I then asked whether CAR Tregs would be able to mediate antigen dependent 

suppression of CD4+ T cells. I aimed to set up an in vitro suppression assay that would mimic the 

conditions of a diabetic mouse, so I used BDC2.5 transgenic T cells as the responder T cell 

population. Conveniently, the BDC2.5 T cells can also be activated by the p63 peptide, as it is a 

mimotope of the natural epitope of Chromogranin A 153. Therefore, I set up a p63 peptide 

titration to determine the optimal p63 concentration to stimulate BDC2.5 T cell proliferation 

(Fig. 5A). The BDC2.5 mimic peptides are known superagonists for BDC2.5 T cells 166, thus I 

had to determine a minimum amount of peptide that could be used to stimulate T cell 

proliferation, since high levels of stimulation were expected to make the cells resistant to CAR 

Treg suppression. 

Figure 4. 1B2- and FS1-CAR Tregs activate and proliferate in an antigen dependent manner 

CAR Tregs were cultured with peptide pulsed splenocytes overnight (mean ± SEM, n=3-7) and 

assayed for expression of (A) CD69, (B) LAP, and (C) CTLA-4. (D) CAR Tregs were cultured with 

peptide pulsed splenocytes for 3 days and proliferation was assayed by dilution of the CPD fluorescent 

signal. (E) The cell division index (CDI) was calculated for each peptide condition. CDIs of CAR 

Tregs cultured with peptide were normalized to the CDI of CAR Tregs cultured without peptide (mean 

± SEM, n=7). Significance for activation and proliferation were determined by one-way ANOVA with 

Tukey’s multiple comparison’s post tests. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. 
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Figure 5. FS1 CAR Tregs mediate enhanced suppression over polyclonal Tregs when stimulated 

with relevant peptide 

(A) p63 peptide titration to optimize BDC2.5 T cell stimulation. (B) Schematic of suppression assay set 

up: BDC2.5 T cells were stimulated with p63 and CAR Tregs were stimulated with relevant peptide, both 

presented by splenocytes. (C) Representative proliferation histograms of BDC2.5 T cells cultured with 

FS1 CAR Tregs (n=7) versus untransduced Tregs (top; n=6) or Her2 CAR Tregs (bottom; n=3). (D) 

Representative proliferation histograms of BDC2.5 T cells cultured with 1B2 CAR Tregs (n=4) versus 

untransduced Tregs (top) or Her2 CAR Tregs (bottom). (E) Averaged data (mean ± SEM, n=3-7) pooled 

from independent suppression assays. Significance was determined by two-way ANOVA with Tukey’s 

multiple comparison’s post test. *FS1 vs UT; #FS1 vs Her2. *p < 0.05; **p < 0.01 
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The BDC2.5 T cells were labelled with cell proliferation dye and cultured with irradiated 

NOD splenocytes pulsed with 10 nM of p63 peptide and a decreasing ratio of CAR Tregs (Fig. 

5B). Surprisingly, despite decreasing the p63 peptide concentration by 1000X (compared to the 

proliferation assays), the FS1 CAR Tregs were still able to suppress BDC2.5 T cell proliferation 

(Fig. 5C). Furthermore, the FS1 CAR Treg mediated suppression was superior to both Treg  

Figure 6. Only 1B2 CAR Tregs and Tconvs proliferate following culture in suppression assays 

(A) Representative proliferation histograms of CAR-Tregs (top; n=3-7) and CAR-Tconvs (bottom; 

n=3) at the 2 Treg/Tconv : 1 BDC T cell ratio. Proliferation was assessed by dilution of the cell 

proliferation dye fluorescent signal. (B) Representative proliferation histograms of BDC2.5 T cells 

after culture with CAR-Tconvs at the 2 Tconv : 1 BDC2.5 T cell ratio (n=3).  
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(A) Representative proliferation histograms of CAR Tregs (top; n=3-7) and CAR Tconvs (bottom; 

n=3) at the 2 Treg/Tconv : 1 BDC T cell ratio. Proliferation was assessed by dilution of the cell 

proliferation dye fluorescent signal. (B) Representative proliferation histograms of BDC2.5 T cells 

after culture with CAR Tconvs at the 2 Tconv : 1 BDC2.5 T cell ratio (n=3).  
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controls, as BDC2.5 T cells proliferated significantly less when cultured with FS1 CAR Tregs  

compared to untransduced and Her2 CAR Tregs (Fig. 5E).  

To evaluate the suppressive capacity of the 1B2 CAR Tregs, splenocytes were pulsed 

with insulin peptide to stimulate the 1B2 CAR Tregs. However, while 1B2 CAR Tregs were able 

to suppress BDC2.5 T cell proliferation, I did not observe any differences in their suppressive 

ability compared to either Treg controls (Fig. 5D and E). The untransduced and Her2 CAR Tregs 

were able to suppress BDC2.5 T cell growth to the same extent as 1B2 CAR Tregs, despite the 

extra insulin peptide stimulation provided to the 1B2 CAR Tregs. When analyzing the Treg 

proliferation in suppression assays (Fig. 6A), I noticed that only the 1B2 CAR Tregs had 

proliferated. Therefore, while the 1B2 CAR Tregs did not exhibit enhanced suppression of 

BDC2.5 T cell proliferation, the 1B2 CAR Tregs were activated in response to the insulin 

peptide. Conversely, neither Her2 nor untransduced Tregs showed any proliferative response 

towards p63 or insulin, validating the proliferation assay results. The FS1 CAR Tregs also did 

not proliferate in the suppression assays, likely due to the low p63 concentration in the culture. 

Yet, FS1 CAR Tregs suppressed BDC2.5 T cell proliferation significantly moreso than the other 

Treg groups, despite 1B2 CAR Tregs exhibiting a more traditionally activated phenotype. These 

data suggest that Tregs do not need to be actively proliferating to mediate suppression.  

  Parallel cultures with CAR Tconvs were also set up as negative controls to confirm 

whether the observed CAR Treg mediated suppression of BDC2.5 T cells could be attributed to 

Treg function, or if the lack of BDC2.5 T cell proliferation was merely due to resource 

competition for space and nutrients. As shown in Figure 6B, BDC2.5 T cells proliferated well in 

the presence of CAR Tconvs, confirming the suppression observed in the Treg based assays was 

mediated by the CAR Tregs. 
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3.5     CAR Tregs mediate enhanced suppression of cytokine production compared to 

polyclonal NOD Tregs  

 While the classical measurement of Treg function is suppression of lymphocyte 

proliferation, Tregs inhibit multiple aspects of effector T cell activity 167. One such effect is 

suppression of T cell cytokine production, such as IL-2 and IFN-γ. Therefore, I collected 

supernatants from select suppression assay conditions to measure the effects of Tregs on 

production of IL-2, IFN-γ, IL-6 and TNF (Fig. 7A). As expected, supernatants collected from 

conditions with high Treg to BDC2.5 T cell ratios had the lowest levels of cytokines detected. At 

the 2 Tregs to 1 BDC2.5 T cell ratio, the Treg ratio was so high that there was no difference in 

suppression of the four cytokines between the different Treg groups. However, antigen-specific 

cytokine suppression became pronounced at the lower Treg ratios. FS1 CAR Tregs suppressed 

the IFN-γ and TNF production from stimulated BDC2.5 T cells significantly better compared to 

the polyclonal untransduced Tregs (Fig. 7A and B). FS1 CAR Treg mediated suppression of IL-6 

production also appeared to be more efficient compared to the untransduced Tregs, although the 

trend was not significant. While the 1B2 CAR Tregs were unable to suppress BDC2.5 T cell 

proliferation better than untransduced Tregs, the 1B2 CAR Tregs did appear to dampen BDC2.5 

T cell cytokine production more efficiently. Similar to the FS1 CAR Tregs, there was a trend 

towards more efficient 1B2 CAR Treg-mediated suppression of IFN-γ, IL-6 and TNF compared 

to untransduced Tregs at the low Treg to BDC2.5 T cell ratios.  

Figure 7. CAR Tregs mediate suppression of cytokine production. 

(A) Supernatants from independent suppression assays were frozen and thawed to measure their 

cytokine content. The CAR Treg : BDC2.5 T cell ratios selected were 2:1, 1:4, and 1:8 (mean + SEM, 

n=3). (B) The concentrations of each cytokine were normalized to the cytokine concentrations found 

in the BDC2.5 T cell only controls to calculate the efficiency of cytokine suppression mediated by 

each CAR-Treg. Significance was determined by two-way ANOVA with Bonferroni's multiple 

comparisons post test. *FS1 vs UT ; *p < 0.05; **p < 0.01 
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3.6     FS1 CAR Tregs recognize the natural diabetogenic hybrid peptide presented by I-Ag7 

 In 2016, Delong et al. reported the discovery of the natural peptide target of the BDC2.5 

T cell receptor 158. They determined that WE-14, a cleavage product of Chromogranin A, could 

fuse with a portion of insulin to form a hybrid peptide, called 2.5HP. Given that the FS1 CAR 

was raised against the p63 peptide, a mimotope of 2.5HP, I wondered whether FS1 would also be 

able to bind to 2.5HP in the context of the Class II molecule I-Ag7. I added a 2.5HP:I-Ag7 

tetramer to my tetramer staining panel and found the FS1 CAR could indeed bind to the natural 

hybrid peptide (Fig. 8A). While the binding of the FS1 CAR to the 2.5HP:I-Ag7 tetramer was 

highly specific, the binding efficiency to the p63:I-Ag7 tetramer appeared to be superior (Fig. 

8B). Measurements of the affinity for the FS1 mAb and 2.5HP:I-Ag7 are now underway in Dr. 

Fife’s laboratory. 

 When I discovered the FS1 CAR could target 2.5HP in the context of I-Ag7, I realized 

that the FS1 CAR Tregs now had high potential in vivo, as it could recognize a naturally 

occurring diabetogenic peptide. To determine whether the FS1 CAR would be able to stimulate 

Treg activation with 2.5HP, I set up functional assays with splenocytes pulsed with the 2.5HP 

peptide. I hoped to see a similar level of Treg activation and proliferation when the FS1 CAR 

Tregs were stimulated with the hybrid peptide as when they were cultured with p63 pulsed 

splenocytes.  

 Unfortunately, I was unable to observe any activation (Fig. 8C) or proliferation (Fig. 8D) 

when the FS1 CAR Tregs were cultured with 2.5HP pulsed splenocytes in vitro. While the FS1 

CAR Tregs were able to bind to the 2.5HP:I-Ag7 tetramer, the FS1 CAR Tregs were not 

stimulated by the 2.5HP pulsed splenocytes, as they did not upregulate CD69, LAP, or CTLA-4 

expression (Fig. 8C) above baseline. Furthermore, FS1 CAR Tconvs did not proliferate in 
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response to splenocytes pulsed with 2.5HP (Fig. 8D), whereas they responded positively when 

cultured with p63 pulsed splenocytes.  

 

 

  

Figure 8. FS1-CAR can bind to 2.5HP:I-Ag7 but does not induce cell activation. 

(A) The 2.5HP:I-Ag7 tetramer was added to the staining panel to assess if FS1 CAR Tregs could 

recognize the natural ChgA epitope. (B) Mean Fluorescence Intensity (MFI) comparison of FS1 CAR 

bound to p63:I-Ag7 tetramer versus 2.5HP:I-Ag7 tetramer (mean ± SEM, n=2). (C) Expression of 

activation markers on FS1 CAR Tregs when cultured with splenocytes pulsed with 2.5HP peptide 

overnight (mean ± SEM , n=2 for assays involving 2.5HP). (D) Proliferation histograms of 2.5HP 

specific Tconvs and FS1 CAR Tconvs after culture with splenocytes pulsed with 2.5HP for 3 days.  

Figure 8. FS1 CAR can bind to 2.5HP:I-Ag7 but does not induce cell activation. 

(A) The 2.5HP:I-Ag7 tetramer was added to the staining panel to assess if FS1 CAR Tregs could 

recognize the natural ChgA epitope. (B) Mean Fluorescence Intensity (MFI) comparison of FS1 CAR 

bound to p63:I-Ag7 tetramer versus 2.5HP:I-Ag7 tetramer (mean ± SEM, n=2). (C) Expression of 

activation markers on FS1 CAR Tregs when cultured with splenocytes pulsed with 2.5HP peptide 

overnight (mean ± SEM , n=2 for assays involving 2.5HP). (D) Proliferation histograms of 2.5HP 

specific Tconvs and FS1 CAR Tconvs after culture with splenocytes pulsed with 2.5HP for 3 days.  
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3.7     1B2 CAR Tconvs, not FS1 CAR Tconvs, induce GvHD-like symptoms in NSG mice 

To determine how well each CAR could function in vivo, I set up an experiment with 

immunodeficient NOD/SCID IL-2Rγnull (NSG) mice to determine whether CAR Tconvs could 

cause diabetes. NSG mice are engineered to be deficient in mature lymphocytes, and lack the 

expression of functional NK cells, B cells, and T cells 168. This strain is useful as their lack of T 

cells will make it easier to detect the circulating CAR Tconvs following injection. Their lack of 

lymphocytes also provides another advantage in providing our injected cells with space, 

nutrients, and other resources that may not be offered in an immunocompetent mouse, due to the 

other lymphocytes competing for the same immune niche. I also decided to go forward with a 

preliminary diabetes induction model using CAR Tconvs as I believed diabetes development to 

be a faster and easier experimental endpoint to evaluate, compared to diabetes prevention. I had 

noticed our parallel CAR Tconv controls were more sensitive to antigen in vitro (Fig. 9A and 

9B) than their Treg counterparts, suggesting injection of CAR Tconvs into mice could potentially 

have a more efficient biological effect. 

NSG mice were injected with 4 x 106 1B2 CAR, FS1 CAR, Her2 CAR, or untransduced 

Tconvs, and monitored for 7 weeks as described in Methods. Surprisingly, the mice receiving the 

1B2 CAR Tconvs had a rapid biological effect. Almost immediately after injection, mice that 

had received 1B2 CAR Tconvs quickly began losing weight (Fig. 9C) and showed acute 

symptoms of illness, such as decreased activity, facial pain, and distended abdomens. While 

none of the mice achieved the desired experimental endpoint (blood glucose > 15 mmol/L), I did 

notice that mice injected with 1B2 CAR Tconvs exhibited the largest week-to-week variance in 

blood glucose (Fig. 9D). Due to the severity of illness, all animals that had received the 1B2  
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Figure 9. CAR Tconvs are more sensitive to peptide stimulation in vitro and may be more suitable 

for testing in vivo. 

(A) Proliferation histograms of CAR Tconvs after culture with splenocytes pulsed with 10 µM peptide 

for 3 days. (B) CD69 expression on CAR Tconvs after culture with splenocytes pulsed with 15 µM 

peptide overnight (mean ± SEM, n=5-8). Significance was determined by one-way ANOVA with 

Tukey’s multiple comparison’s post tests; ****p < 0.0001. (C) 4 x 106 CAR Tconvs were injected into 

NSG mice. The body weight of each individual mouse was monitored and plotted as change in percent 

body weight relative to the start of experiment. (D) The blood glucose of each mouse was monitored to 

assess for diabetes development. (n=4 mice/group from 1 experiment) 

 

Figure 9. CAR Tconvs are more sensitive to peptide stimulation in vitro and may be more suitable 

for testing in vivo. 

(A) Proliferation histograms of CAR Tconvs after culture with splenocytes pulsed with 10 µM peptide 

for 3 days. (B) CD69 expression on CAR Tconvs after culture with splenocytes pulsed with 15 µM 

peptide overnight (mean ± SEM, n=5-8). Significance was determined by one-way ANOVA with 

Tukey’s multiple comparison’s post tests; ****p < 0.0001. (C) 4 x 106 CAR Tconvs were injected into 

NSG mice. The body weight of each individual mouse was monitored and plotted as change in percent 

body weight relative to the start of experiment. (D) The blood glucose of each mouse was monitored to 

assess for diabetes development. (n=4 mice/group from 1 experiment). 
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CAR Tconv injections were euthanized early in the experiment, so I was unable to ascertain 

whether the 1B2 CAR Tconvs would have eventually caused diabetes.  

Engraftment of the CAR Tconvs was monitored once a week by taking blood from the 

saphenous vein (Fig. 10A). As NSG mice lack T cells, I presumed any CD4+ leukocytes were the 

injected CAR Tconvs. I initially analyzed cell engraftment by determining the % CD4+ of mouse 

CD45+ cells and observed increasing cell engraftment of untransduced and Her2 CAR Tconvs 

with each subsequent week (Fig. 10B). However, upon enumeration of cells via count beads, I 

determined mice injected with 1B2 CAR Tconvs actually had the highest number of circulating 

CD4+ T cells, whereas FS1 CAR, Her2 CAR, and untransduced Tconvs had similar numbers of 

CD4+ T cells each week (Fig. 10C). Myc expression on CD4+ Tconvs was also monitored each 

week to assess the stability of each CAR in vivo (Fig. 10D). Initially, both 1B2 and FS1 CAR 

Tconvs retained very high levels of CAR expression following injection, but FS1 CAR 

expression declined after 3 weeks post injection.  

The endpoint of the experiment occurred on day 54 post injection. All remaining mice 

were euthanized, and parts of the spleen, pancreas, lung, liver, and gut were harvested and 

preserved for histology. A small segment of the spleen and half of the pancreas were crushed to 

isolate the Tconvs for flow cytometric analysis. Even after almost 8 weeks post injection, CAR 

Tconvs could still be found in both the spleen and the pancreas (Fig. 11A). There was no 

difference in the proportion of CD4+ cells found in either organ between the FS1 CAR Tconvs 

versus the Her2 CAR or untransduced Tconvs. However, only a small population of CD4+ cells 

was found in either organ in mice injected with 1B2 CAR Tconvs. This is likely because the 

mice were euthanized much earlier (day 15-22) compared to the experimental endpoint of day 

54. While the population of injected 1B2 CAR Tconvs found in each organ was small, the  
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Figure 10. CAR Tconv phenotype following injection into NSG mice.  

(A) Representative flow analysis of CAR expression on CAR Tconvs recovered from blood of injected 

NSG mice (n=4 mice/group). CD4+ T cell engraftment in each mouse was monitored for up to 8 weeks 

post CAR Tconv injection. Engraftment was reported as a proportion (B) and as absolution cell 

numbers (C). (D) Changes in CAR expression were also monitored by detection of the Myc-tag with 

flow cytometry.  

Figure 10. CAR Tconv phenotype following injection into NSG mice.  

(A) Representative flow analysis of CAR expression on CAR Tconvs recovered from blood of injected 

NSG mice (n=4 mice/group). CD4+ T cell engraftment in each mouse was monitored for up to 8 weeks 

post CAR Tconv injection. Engraftment was reported as a proportion (B) and as absolution cell 

numbers (C). (D) Changes in CAR expression were also monitored by detection of the Myc-tag with 

flow cytometry.  
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majority still retained high CAR expression (Fig. 11B). The 1B2 CAR expression in the spleen 

and pancreas was higher compared to the cells found in the blood (Fig. 10D and 11B), 

suggesting the environment within in the pancreas and spleen may be better at stimulating 1B2 

CAR Tconv activation to maintain higher CAR expression. The FS1 and Her2 CAR Tconvs 

found in the organs had much lower CAR expression, although their CAR expression could not 

be directly compared to 1B2 CAR Tconvs due to the time difference between euthanization. 

Interestingly, while the Her2 CAR expression was fairly similar across blood, spleen, and 

pancreas on day 54 (between 20-30% Myc+), I observed that the FS1 CAR Tconvs found in the 

pancreas had almost double the FS1 CAR expression (40%) compared to spleen and blood 

(20%).  

 

  

Figure 11. Isolation of CD4+ T cells found in spleens and pancreas of injected mice at endpoint. 

Mice were euthanized on day 54 (†1B2 mice were euthanized early between day 15-22 due to poor 

health) and samples from each spleen and pancreas were taken to analyze their contents by flow 

cytometry (n=4 mice/group). (A) The proportion of CD4+ T cells found in the spleen (left) vs. the 

pancreas (right). (B) CAR expression on CD4+ T cells found in the spleen (left) and pancreas (right) 

was determined by the detection of the Myc tag.   

Figure 11. Isolation of CD4+ T cells found in spleens and pancreas of injected mice at endpoint. 

Mice were euthanized on day 54 (†1B2 mice were euthanized early between day 15-22 due to poor 

health) and samples from each spleen and pancreas were taken to analyze their contents by flow 

cytometry (n=4 mice/group). (A) The proportion of CD4+ T cells found in the spleen (left) vs. the 

pancreas (right). (B) CAR expression on CD4+ T cells found in the spleen (left) and pancreas (right) 

was determined by the detection of the Myc tag.   
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Chapter 4: Discussion 

There is currently a lack of therapies available to patients living with type 1 diabetes that 

aim to treat the underlying autoimmunity of the disease 1,6,169. Thus, a growing field of research 

for T1D therapies involves immunomodulation to promote the shift towards a tolerogenic 

immune state 5. Tregs are critical in maintaining immune homeostasis, and early clinical data has 

shown adoptive polyclonal Treg transfer therapies to be safe in humans, but with limited efficacy 

95–97. However, preclinical research has demonstrated that antigen-specific Tregs are superior to 

polyclonal Tregs in preventing and reversing disease in pre-diabetic and diabetic mice 102–105. 

These antigen-specific Tregs bear a TCR specific towards islet antigens, but recent work in 

cancer immunotherapy has illustrated the power of CARs to redirect antigen specificity and 

modulate T cell function 118,170,171. In this thesis, I aimed to generate antigen-specific CAR Tregs 

from NOD mice specific towards islet antigens complexed to MHC Class II molecules.  

Monoclonal antibodies targeting InsB10-23:I-A
g7 and p63:I-Ag7 were converted into CARs 

named 1B2 and FS1, respectively. Both 1B2 and FS1 CARs expressed well on NOD Tregs 

following retroviral transduction and mediated activation and proliferation in an antigen 

dependent manner. However, when testing whether CAR expression would result in enhanced 

suppression of effector T cell proliferation, there was no difference observed between the 1B2 

CAR Tregs versus the polyclonal NOD Tregs. Both Her2 CAR and untransduced Tregs 

exhibited a very high level of suppression of BDC2.5 T cell proliferation, even though the Tregs 

were supposed to remain unstimulated. My proliferation and activation results had shown both 

Her2 CAR and untransduced Tregs were unable to respond to APCs pulsed with p63 peptide. 

Therefore, it is unlikely the high suppression from polyclonal Tregs is due to p63 stimulus. 
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Why were the polyclonal Tregs activated? It is possible they were receiving stimulation 

from endogenous peptides presented by the cocultured splenocytes. The spleen does not have 

afferent lymph vessels 172, and is therefore connected directly to the bloodstream in order to 

recruit leukocytes. As beta cells secrete insulin into the blood to mediate cellular adsorption of 

glucose, it is possible that some antigen presenting cells from the spleen will pick up the protein 

and present insulin peptides on their MHC Class II 173. Furthermore, even though the splenocytes 

were sourced from NOD mice that did not display any diabetes symptoms, the immune cell 

infiltration of islets begins within the first weeks of life 136–138. The early destruction of beta cells 

could also release additional insulin or other islet related antigens into the bloodstream, 

increasing the likelihood of splenocytes encountering islet antigens for presentation.  

It has been shown that insulin-specific T cells make up a significant component of the T 

cell repertoire in NOD mice 174; therefore, it is likely a portion of the NOD Tregs may bear 

insulin-specific TCRs. If the APCs in my suppression assays are presenting endogenous insulin, 

they may be stimulating the insulin-specific Treg population just enough to suppress BDC2.5 T 

cell proliferation. However, I have shown neither Her2 CAR nor untransduced Tregs upregulate 

early activation makers or proliferate in response to APCs pulsed with high levels of insulin 

peptide. These data suggest that if this insulin-specific population does exist within polyclonal 

Tregs, they must occur at a very low frequency and remain undetected in in vitro proliferation 

assays. Furthermore, while endogenous insulin-specific Tregs may partially explain why the 

polyclonal Tregs could suppress effector T cell proliferation, it still does not resolve why the 1B2 

CAR Tregs were unable to exhibit enhanced antigen dependent suppression. The 1B2 CAR 

Tregs were provided additional insulin peptide, yet the 1B2 CAR Tregs displayed a similar 

suppressive capacity as both Her2 and untransduced Tregs.  
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As mentioned previously, Tregs mediate cellular suppression by various mechanisms 

through cellular contact, soluble factors, or metabolic disruption 52. While it is still unclear which 

mechanisms are more biologically relevant when comparing in vitro versus in vivo studies 167, 

there is evidence suggesting cell-contact dependent mechanisms may be more important for in 

vitro suppression assays. It has been shown Tregs are unable to suppress T cell proliferation when 

the cells were separated by a membrane 175, and Treg supernatant alone could not suppress T cell 

proliferation in vitro 176,177.  One of the many contact dependent mechanisms of suppression is 

CTLA-4 engagement of CD80/86 on APCs. In my activation assays, I observed that 1B2 CAR 

Tregs and untransduced Tregs expressed similar levels of CTLA-4 (Fig. 4C). Even when 1B2 CAR 

Tregs were cultured with APCs pulsed with insulin, CTLA-4 upregulation was not particularly 

striking in comparison to their upregulation of CD69 (Fig. 4A) and LAP (Fig. 4B). Therefore, 

perhaps the similar suppressive capacity between the untransduced, Her2 CAR, and 1B2 CAR 

Tregs is partially due to similar levels of CTLA-4 expression.  

I have noticed in all three in vitro functional assays that FS1 CAR Tregs appear to 

consistently perform better than 1B2 CAR Tregs. The FS1 CAR Tregs exhibited larger increases 

in CD69, LAP, and CTLA-4 expression (Fig. 4A-C), they proliferated moreso in response to 

relevantly pulsed splenocytes (Fig. 4D and E), and they suppressed both BDC2.5 T cell 

proliferation (Fig. 5C and E) and cytokine production (Fig. 7A and B) better than 1B2 CAR 

Tregs. The enhanced suppression demonstrated by FS1 CAR Tregs is even more striking when 

considering 1000X less peptide is added to stimulate the FS1 CAR Tregs compared to 1B2 CAR 

Tregs. The Fife lab had determined that the FS1 mAb affinity towards p63:I-Ag7 is much higher 

than the 1B2 mAb affinity towards InsB10-23:I-A
g7 (Fig. 1C). In cancer immunotherapy, 

increasing the CAR affinity towards its target antigen can increase their capacity to recognize 
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low-density antigens 178. CAR T cells expressing a lower affinity CAR targeting EGFR were 

only capable of killing cells over-expressing EGFR, whereas the cytotoxicity of T cells 

expressing a higher affinity CAR did not change regardless of antigen density 179. Since peptide-

MHC complexes are considered to be relatively low-density antigens 180, the superiority of the 

FS1 CAR may be due to its higher affinity causing increased sensitivity towards p63:I-Ag7 

stimulation.   

 One interesting finding I made was that although the FS1 mAb was raised towards the 

p63 peptide in the context of I-Ag7, when re-formatted into a CAR, it could also bind to the 

2.5HP:I-Ag7 tetramer. Prior testing by the Fife lab had found that the FS1 CAR was unable to 

recognize the p31 peptide, another chromogranin A mimotope that only differs from p63 by 2 

amino acids. Therefore, this suggests that FS1 CAR binding is highly dependent on the identity, 

size, and charge of the exposed resides that make up the FS1 epitope. The first amino acid in p31 

is a tyrosine 181, p63 has an arginine, and 2.5HP has a leucine, and they are all predicted to bind 

to P1 of the MHC binding groove, which is a position often involved in TCR recognition 182.  

Therefore, these amino acids are likely to be exposed residues and will heavily influence the 

strength of FS1 binding. Tyrosine and leucine are hydrophobic, but arginine is positively charged 

under physiological conditions. This could greatly enhance the binding energy of FS1, resulting 

in stronger electrostatic interactions between FS1 and p63:I-Ag7. Another consideration is 

tyrosine is very bulky compared to leucine and arginine, due to its aromatic side chain. In 

combination with its weak interactions, tyrosine may further block FS1 binding to p31 by steric 

hinderance. On the other hand, the 2.5HP epitope still allows for FS1 binding as its smaller size 

would not prevent FS1 from interacting with the epitope, even though its electrostatic 

interactions may be weaker compared to the p63 epitope.  
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Although the FS1-CAR could bind to the 2.5HP:I-Ag7 tetramer, this did not translate to 

functional activity in vitro with 2.5HP pulsed APCs. While the affinity measurements of the FS1 

CAR towards 2.5HP:IAg7 have yet to be determined, I predict its affinity will be much lower 

than the affinity towards p63:I-Ag7 due to the predicted poor electrostatic interactions of 2.5HP 

as well as my comparison of FS1 tetramer binding MFIs (Fig. 8B). Perhaps the difference in 

affinity is large enough that the FS1 CAR is unable to recognize naturally presented 2.5HP 

complexed to I-Ag7, especially when considering that peptide-MHC complexes are low-density 

antigens. It is also likely the strong binding of the FS1 CAR to the 2.5HP:I-Ag7 tetramer may 

have been artificially enhanced by the “avidity effect” 183, where multimerization of 

peptide:MHC significantly extends the duration of the receptor-multimer interaction. These data 

have significant implications for our understanding of CAR Treg biology and suggest that the 

affinity of the scFv is a key consideration, especially for low-density target antigens.  

I set up an in vivo study to determine whether the peptide:I-Ag7 targeting CAR Tconvs 

would cause diabetes. While MHC Class II expression is classically described as restricted to 

antigen presenting cells only, it has been shown MHC Class II can be induced in other cell types 

as well 184–186. In the NOD mouse model, pancreatic beta cells were found to increase their 

expression of I-Ag7 during inflammation by IFN-γ exposure 187. Therefore, I did not expect any 

of the CAR Tconvs to induce any form of illness. Since I injected non-diabetic NSG mice, the I-

Ag7 expression on their islets should have been minimal, and both CARs were specifically 

designed to only target islet APCs. In fact, Zhang et al. has shown a single infusion of CD8+ 

effector T cells expressing an InsB9-23:I-A
g7 targeting CAR in pre-diabetic NOD mice was 

sufficient to delay hyperglycemia by 5 weeks compared to irrelevant CAR controls 188. They 

hypothesized the InsB9-23:I-A
g7 CAR redirected the cytotoxic CAR T cells to kill the APCs 
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presenting the InsB9-23
 peptide, thereby preventing the activation of diabetogenic T cells and 

delaying diabetes onset. 

I was surprised to observe how pathogenic effects of the 1B2 CAR Tconvs after cell 

injection. The mice experienced substantial weight loss, fluctuations in blood glucose, and a 

large expansion of injected CD4+
 cells. Upon organ harvest, I noticed the liver, spleen, and 

pancreas were noticeably inflamed, resembling a GVHD/cytokine storm like disease. I wondered 

if this could be indicative that the 1B2 CAR was not as specific as I initially thought. However, 

the tetramer staining and functional in vitro assays have consistently shown the 1B2 CAR only 

binding to InsB10-23:I-A
g7 tetramers, and 1B2 CAR bearing cells could only activate and 

proliferate in response to APCs pulsed with InsB10-23 peptide. Given that insulin is present in the 

bloodstream, I then wondered whether APCs residing outside of the pancreas might present 

insulin peptides. Indeed, it has been recently found in NOD mice that circulating B cells and 

other blood leukocytes are able to present insulin peptides 173. The APCs were isolated from 

blood after a glucose challenge and could stimulate antigen-specific T cell responses after 

immediate coculture with diabetogenic T cells 173. Although NSG mice lack B cells, they retain 

expression of an innate immune cell population that can process antigen for presentation to T 

cells 168. It may be possible that the 1B2 CAR Tconvs were activated systemically by the APCs 

in the blood, causing symptoms reminiscent of cytokine release syndrome seen by CAR T cells 

in cancer immunotherapy  189.  However, it is also possible the 1B2 CAR Tconvs were activated 

by an unknown systemic antigen in vivo. 

On the other hand, transfer of FS1 CAR, Her2 CAR, and untransduced Tconvs appeared 

to be non-toxic, as the mice maintained a normal body weight, and appeared physically active 

and healthy. The injected cells could still be found in the circulation almost 2 months post cell 
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injection (Fig. 10B and C) and were able to expand within the mice without causing disease. I 

was also able to find a population of injected CD4+ cells in the spleen and pancreas after 54 days 

post injection, whereas the CD4+ population was still quite low in the 1B2 mice that were 

euthanized much earlier. An interesting observation was the increased CAR expression by FS1 

CAR Tconvs that were found in the pancreas, compared to the spleen and blood. Even though 

the FS1 CAR Tconvs did not appear to recognize any of the naturally presented diabetogenic 

peptides (insulin or 2.5HP) in vitro, this finding suggests that the FS1 CAR may recognize a 

natural target in the pancreas to maintain the higher CAR expression.  

Unfortunately, as I did not induce diabetes in our NSG mice prior to injection, I was 

unable to determine whether any of the CAR Tconvs (apart from 1B2) were exhibiting any effect 

on a diabetes-relevant phenotype. Given Zhang et al. has shown some promising results with 

their InsB9-23:I-A
g7 CAR T cells, if I were to try the in vivo experiment again, I would use pre-

diabetic NOD mice. Then, I would be able to properly assess whether infusion of islet-peptide:I-

Ag7 CAR Tconvs could kill the islet-peptide presenting APCs to prevent diabetogenic T cell 

activation and delay diabetes. While this in vivo experiment could be conducted using diabetic 

NSG mice (diabetes can be quickly induced by injecting NSG mice with BDC2.5 T cells), their 

immunodeficiency may potentially result in subpar CAR Tconv activation. In addition to T cells, 

NSG mice are engineered to lack B cells, and mouse studies have implicated B cells as important 

APCs for the development of murine T1D 14,15,173. Furthermore, NSG mice also have defective 

macrophages and dendritic cells 168, and their functional immaturity may result in inefficient 

antigen presentation and thus, weakened CAR Tconv responses.  

In summary, I have successfully generated two CAR constructs (1B2 and FS1) that are 

specific to islet peptides complexed to the mouse MHC Class II I-Ag7. Both CAR constructs 
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were expressed on the surface of Tregs and Tconvs, and could induce antigen dependent cell 

activation and proliferation when stimulated with the relevant antigen. While only the FS1 CAR 

Tregs suppressed BDC2.5 T cell proliferation beyond the levels of background suppression, both 

1B2 and FS1 CAR Tregs suppressed inflammatory cytokine production. I also discovered the 

FS1 CAR, originally raised against an artificial peptide, had the potential to recognize the natural 

diabetogenic peptide found in NOD mice.  

Thus, I believe the 1B2 and FS1 CAR Tregs may have the therapeutic potential to delay 

T1D onset in pre-diabetic NOD mice. Preliminary in vivo work using CAR Tconvs showed that 

the infusion of FS1 CAR Tconvs was non-toxic, and CAR Tconvs were able to survive and 

maintain CAR expression for an extended period in an NSG mouse model. While the 1B2 CAR 

Tconvs did induce illness in mice, the response also suggests that the 1B2 CAR is capable of 

strong activation by natural antigen recognition. Altogether, our in vitro and in vivo work with 

1B2 and FS1 CARs lay the groundwork for a proof-of-concept where human CAR Tregs 

targeted towards islet-peptide:MHC Class II complexes are a feasible and efficacious therapy for 

Type 1 diabetes. Adoptive transfer therapy with antigen-specific Tregs can suppress the 

autoimmune attack causing the disease, which may lead to disease remission and rescue of any 

remaining insulin producing islet beta cells.  
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