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Abstract

Compressed sensing (CS) is a paradigm in which a structured high-dimensional
signal may be recovered from random, under-determined, corrupted linear
measurements. Lasso programs are effective for solving CS problems due to
their proven ability to leverage underlying signal structure. Three popular
Lasso programs are equivalent in a sense and sometimes used interchange-
ably. Tuned by a governing parameter, each admits an optimal parameter
choice yielding minimax order-optimal error. CS is well-studied, though
theory for Lasso programs typically concerns this optimally tuned setting.
However, the optimal parameter value for a Lasso program depends on
properties of the data, and is typically unknown in practical settings. Per-
formance in empirical problems thus hinges on a program’s parameter sensi-
tivity : it is desirable that small variation about the optimal parameter choice
begets small variation about the optimal risk.

We examine the risk of three Lasso programs as a function of their
governing parameters and further demonstrate that their parameter sen-
sitivity can differ for the same data, thereby informing the selection of a
Lasso program in practice. We prove a gauge-constrained program admits
asymptotic cusp-like behaviour of its risk in the limiting low-noise regime;
a residual-constrained program has asymptotically suboptimal risk for very
sparse vectors (i.e., for any fixed parameter choice, the ratio of the risk to the
optimally achievable risk grows unbounded). These results contrast observa-
tions about an unconstrained program with sufficiently large parameter. Our
theory is supported with extensive numerical simulations, demonstrating the
parameter sensitivity phenomenon for even modest dimensional parameters.
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We first analyze these risks for proximal denoising (PD), in which one
directly observes signal plus noise (i.e., the measurement matrix is identity).
There, we further reveal a data regime in which the unconstrained PD risk
can be asymptotically suboptimal. We also show how our theory extends to
analyze generalized Lasso programs for generalized CS. Finally, we extend a
keystone of our theoretical analysis, the projection lemma. We generalize the
result to an arbitrary Hilbert space, and extend it from scaled projections to
proximal mappings of a dilated gauge. We discuss applications and possible
directions for these results.
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Lay Summary

CS is a paradigm to recover high-dimensional structured data from a small
number of random measurements, with important applications in medical
imaging, geophysics and data science. Lasso programs are popular in CS
for implementing this recovery in practice. There are many Lasso variants
and each is typically tuned by a governing parameter. Existing theory has
thoroughly characterized Lasso performance when the parameter is chosen
optimally. However, the optimal parameter value is typically unknown in
practice. Therefore, it is important to characterize Lasso program perfor-
mance for sub-optimal parameter values, too. Ideally, small deviations in
the parameter value would still offer nearly optimal recovery performance.
In this thesis, we prove the ideal is not upheld in general. The parameter
choice for some Lasso programs can be highly sensitive to measurement
noise; to underlying signal structure for others. Importantly, one program
can be sensitive, even when others are not, which challenges the commonly
held intuition that Lasso programs can be treated interchangeably.
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Preface

Amajority of this thesis is based on an article and two conference proceedings
that have been published, as well as an article that has been submitted for
publication.

A version of Chapter 3 has been published as Sensitivity of `1 minimiza-
tion to parameter choice. Authored by myself, Plan Y and Yilmaz Ö (my
advisors). It is published in Information and Inference: A Journal of the
IMA (doi:10.1093/imaiai/iaaa014). A preliminary version of this work first
appeared as a conference paper: Parameter Instability Regimes in Sparse
Proximal Denoising Programs, in the proceedings for 2019 13th Interna-
tional conference on Sampling Theory and Applications (SampTA) (pages
1–5), authored by myself, Plan Y and Yilmaz Ö. In both cases, I was the
lead investigator for the work and was responsible for preparing the original
manuscript and performing revisions.

The content of Chapter 4 is unpublished original work that has been
submitted for publication. The manuscript, On the best choice of Lasso

program given data parameters was co-authored with Plan Y and Yilmaz Ö.
I was the lead investigator for this project, and was responsible for drafting
the original manuscript. Additional credit goes to Li X, a fellow student of
Plan Y and Yilmaz Ö, for helpful comments on the manuscript to improve
correctness and clarity of presentation.

The content of Chapter 5 is unpublished original work excerpted from a
manuscript that will be co-authored with Plan Y and Yilmaz Ö. I was the
lead investigator for this project and was responsible for drafting the original
manuscript. It is worth noting that this chapter begins with an original
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presentation of a previously known result, which motivates the novel work
comprising the chapter’s remainder.
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Chapter 1

Introduction

{(x, y) : y ≥ f(x)} — Federico Poloni (2015)

A fundamental problem of signal processing concerns the development
and analysis of efficacious methods for structured signal recovery that are
widely applicable in practice. Frequently in applications, the signal is as-
sumed to be structured according to some data model and measured by a
particular acquisition method. For example, in image deblurring one might
assume the objects of interest lie in the dual of a Besov space and their
coefficients are obtained in the Radon transform domain [38, 51], while in
magnetic resonance imaging (MRI) applications, one might assume the im-
ages are sparse in a wavelet domain, and measured by subsampling their
Fourier coefficients [48, 49]. There is extensive literature concerned with
those applications in which the goal is to recover the ground-truth signal
from acquired measurements by a prescribed convex program that exploits
the signal structure. For example, compressed sensing (CS) has demon-
strated that a scale-invariant structure such as sparsity can be captured by
convex optimization [35].

This latter point is a remarkable property of CS that may seem surprising
at first. Indeed, the set of sparse vectors is non-convex, scale-invariant, thin
(e.g., it has Lebesgue measure 0) and has infinite diameter; the feasible set of
a CS convex program has full measure and (in some formulations) is bounded.
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Nevertheless, in the coming pages, we shall describe how the convex setting
may serve as a proxy for the true underlying structure. In turn, we will
specialize our discussion to a particular group of convex programs for CS,
and examine some issues that arise in constructing a convex program with
the “wrong” proxy set.

The CS paradigm can be put into the following mathematical language.
One aims to recover or approximate an unknown ground truth signal x0 ∈
RN from noisy measurements y ∈ Rm when m� N . In the simplest setting,
CS prescribes that the signal x0 be s-sparse (i.e., have no more than s non-
zero entries), or sparse in a basis; and that the measurements be linear:
y = Ax0 + ηz. Here, z is a random or deterministic corruption with noise
scale η > 0. The measurement matrix A ∈ Rm×N is typically random. We
reserve a discussion on the kinds of admissible randomness for A until later.

The now classical CS result [20–22, 29, 30, 35] shows that when x0 ∈ RN

is an s-sparse signal, m ≥ Cs log(eN/s) measurements suffice to efficiently
recover x0 from (y,A) with high probability on the realization of A. In fact,
so-called `0 minimization can achieve these optimal results with an error
that is also proportional to η2s log(N/s). Remarkably, methods in convex
optimization can also achieve these rates when their parameters are tuned
correctly. Research has typically focused on this optimally tuned setting.
However, the optimal parameter value depends on properties of the data,
and is typically unknown in practical settings. In this thesis, we analyze
three such convex optimization approaches for the entire range of their pa-
rameters. We show how two of the programs exhibit undesirable error rates
in particular data regimes as a function of their parameter and show how our
results inform a practitioner’s selection of optimization program for solving
CS problems.

The Lasso is a common and well-analyzed tool for effecting the recovery
of x0 [13, 24, 25, 35, 69, 73, 75]. Currently, “Lasso” is an umbrella term
referring to three or more different convex optimization programs, though it
originally referred to the `1-constrained program introduced by Tibshirani
[73], which we introduce below as (LSτ ). Effective for its ability to perform
simultaneous best-basis and subset selection [73], the Lasso is a convex
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optimization approach that has several variants and cousins [13, 56, 72, 75].
The problem posed by CS is a type of under-determined linear inverse

problem. Generally, under-determined inverse problems are of fundamen-
tal importance to modern mathematical and machine learning applications.
In these problems, one aims to recover or approximate an unknown ground
truth signal from a number of (noisy) measurements less than the dimension
of the signal’s ambient space. For example, in geophysics, one may wish
to determine a region’s bathymetry from a small number of radar measure-
ments taken at the surface [46], or to obtain a subsurface image using a small
number of geophones [42]. Recent investigations suggest how well-analyzed
approaches for solving inverse problems may help to elucidate “mysterious”
behaviours of high-dimensional non-linear function approximators [41, 50].
Moreover, compressed sensing theory may be used to prove recovery guaran-
tees for certain neural network architectures and particular data regimes [39].

A recurring theme in the solution of under-determined linear inverse
problems is a notion of the effective dimension of the underlying structure
set. For example, solvability of CS hinges on the characterization of the
effective dimension of the set of sparse signals. Several approaches exist for
characterizing the effective dimension of sparse signals [2, 35, 47, 77]. Com-
mon to modern approaches is the notion of approximating the structure set
by a convex structural proxy. For example, the convex proxy set for the set
of sparse vectors is frequently the (scaled) `1-ball. Indeed, convexifying the
structure set is the connection that permits the aforementioned efficient ap-
proximation of the ground truth via convex optimization. We discuss some
approaches to quantifying the effective dimension of the convexified structure
set in § 2.1.

To motivate this convexificiation process we provide a brief derivation of
convex `1 minimization programs for compressed sensing. First, for x ∈ Rn

define the so-called `0 norm of x by ‖x‖0 := |{j ∈ [n] : xj 6= 0}|, where
[n] := {1, . . . , n}. The `0 norm gives the number of non-zero entries of x. An
s-sparse signal x0 thereby satisfies ‖x0‖0 ≤ s, and an exactly s-sparse signal
‖x0‖0 = s. Importantly, ‖ · ‖0 is not a norm, but is named suggestively,

3



because

‖x‖0 = lim
p→0
‖x‖pp.

It is a well-known fact [35, Theorem 2.13] that if every subset of 2s

columns of A is linearly independent (necessitating m ≥ 2s), then one may
uniquely recover an unknown s-sparse signal x0 from noiseless (i.e., η = 0)
linear measurements using `0 minimization:

x̂`0 := arg min {‖x‖0 : Ax = Ax0} .

Thus, without further considerations, `0 minimization is the natural choice
for recovering sparse vectors. However, critically, Natarajan [54] established
that any program for `0 minimization is NP-hard [3]. Moreover, implemen-
tations for `0 minimization are typically not stable in practice. Namely, they
may be susceptible to error if the ground truth has sparsity defect [35] (i.e.,
if the true signal is not exactly s-sparse, but close enough to an exactly
s-sparse vector in `2 norm).

Remarkably, the above optimization problem admits a convex relaxation
with more favourable properties. Basis pursuit, referred to as (BPσ) in
this thesis, was introduced by Chen and Donoho [24], Chen et al. [25] and
has been well studied [35]. Notably, (BPσ) is stable with respect to sparsity
defect, and robust to measurement noise ηz. Finally, the Cs log(N/s) sample
complexity referred to previously is minimax order-optimal over the class of
arbitrary estimators that yield stable recovery [17, 35]. In addition to (LSτ )

and (BPσ), which are both constrained optimization programs, we introduce
a third variant of the Lasso, known as the unconstrained Lasso, which is
hereafter referred to as (QPλ). These three programs and their solutions are

4



of particular interest to this thesis, and are defined as:

x̂(τ) ∈ arg min
x∈RN

{
‖y −Ax‖22 : ‖x‖1 ≤ τ

}
(LSτ )

x̃(σ) ∈ arg min
x∈RN

{
‖x‖1 : ‖y −Ax‖22 ≤ σ2

}
(BPσ)

x](λ) ∈ arg min
x∈RN

{1

2
‖y −Ax‖22 + λ‖x‖1

}
. (QPλ)

The advent of suitable fast and scalable algorithms has made this collection of
convex `1 minimization programs extremely useful in practice [36, 37, 57, 75].
Note that some naming ambiguity for these programs exists in the literature.
Our notation and naming convention for these three programs is similar to
that used in Van Den Berg and Friedlander [75]. A purpose of this thesis is
to compare and contrast these three programs. Thus, we reserve until later
further discussion on their interrelation.

Generalizations of these programs, commonly referred to as generalized
Lasso, allow for the recovery of signals with other kinds of structure that
are well modelled by convex proxy sets. For instance, generalized Lasso

programs are favoured for solving generalized compressed sensing (GCS)
problems. To introduce the three generalized Lasso programs of greatest
relevance to this thesis, first let ∅ 6= K ⊆ RN be a convex set and denote by
‖ · ‖K the Minkowski functional of K (i.e., gauge, as defined in § 2.1). For
σ, τ, λ > 0, the following generalized Lasso programs, which are convex, are
defined by:

x̂(τ ;A, y,K) ∈ arg min
x∈RN

{
‖y −Ax‖22 : x ∈ τK

}
(LSτ,K)

x̃(σ;A, y,K) ∈ arg min
x∈RN

{
‖x‖K : ‖y −Ax‖22 ≤ σ2

}
(BPσ,K)

x](λ;A, y,K) ∈ arg min
x∈RN

{1

2
‖y −Ax‖22 + λ‖x‖K

}
. (QPλ,K)

For brevity of notation, when it is clear from context, we omit explicit de-
pendence of x̂, x̃, x] on y,A and K. Note that the argmin may not be unique.
When A is under-determined and has a suitable randomness, it is straight-
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forward to show the programs (BPσ) and (QPλ) admit unique solutions
almost surely on the realization of A. A detailed exposition for (QPλ) is
given in Tibshirani [74]. For a sufficient condition on A giving uniqueness
of (BPσ), see Zhang et al. [80]. However, (LSτ ) does not always admit a
unique solution. For instance, if τ is “too large”, then there may be infinitely
many solutions x ∈ τBN

1 satisfying ‖y−Ax‖2 = 0. This fact is fundamental
to one of our results in § 4.2. By mild abuse of notation, when the solution
to a program is unique we will replace “∈” with “=” in the definitions of
the solutions for each program. Otherwise, we define each of x̂(τ), x̃(σ), and
x](λ) as the solution yielding worst-case error, and which appears first when
ordered lexicographically. For example, x̂(τ) refers to the particular solution
solving (LSτ ) such that ‖x̂(τ) − x0‖2 ≥ ‖x̂ − x0‖2 for any other x̂ solving
(LSτ ). We make an analogous modification to the definitions of the solutions
to the generalized Lasso programs.

In the standard CS setting, the gauge is the `1-norm, though x0 is as-
sumed to belong to the set of s-sparse vectors ΣN

s := {x ∈ RN : | supp(x)| ≤
s}, where supp(x) := {j ∈ [N ] : xj 6= 0} denotes the support of the vector
x ∈ RN . So, x0 does not necessarily belong to the convex proxy set K = BN

1 ,
where BN

1 := {x ∈ RN : ‖x‖1 ≤ 1} denotes the N -dimensional unit 1-norm
ball. In particular, BN

1 itself serves as a convex proxy set for sparse vectors
in the sense that if x ∈ RN is s-sparse, then ‖x‖1/‖x‖2 is small relative to
non-sparse vectors. We include below several other examples of this general
set-up, noting that 2 is a repetition of the CS programs already introduced:

1. To obtain total variation (TV) denoising for (continuous-valued dis-
crete) images, define for x ∈ RN×N ,

‖x‖BV := ‖x‖1 +
∑

α∈[N ]2

∑
β∈ν(α)

|xα − xβ|,

where ν : [N ]2 → P([N ]2) is the neighbour map that determines
which “pixels” xβ of the image are the neighbours of the pixel xα.
If α = (i, j) and 2 ≤ i, j ≤ N − 1 then one typically has ν(i, j) =

{(i − 1, j), (i, j − 1), (i + 1, j), (i, j + 1)} with a variety of choices for
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the remaining indices. So defined, x](λ; y, I,K) is a well-known de-
noising model for two-dimensional images when A = I is the iden-
tity matrix and K := {‖x‖BV ≤ 1} [66]. Instead defining ‖x‖BV :=

‖x‖1 +
∑N−1

i=1 |xi+1−xi| for x ∈ RN , one obtains an equivalent denois-
ing method for one-dimensional signals. With minor modification of
x](λ) to allow for A to act as a bounded linear operator on x ∈ RN×N

(e.g., convolution with a Gaussian kernel), one may extend the model
for image deblurring [28].

2. Say that x ∈ RN is s-sparse if x ∈ ΣN
s := {x ∈ RN : ‖x‖0 ≤ s} where

‖x‖0 = |{j : xj 6= 0}|. Define K := BN
1 , where BN

1 ⊆ RN is the unit `1
ball. Suppose x0 ∈ RN is s-sparse for some s ≥ 1 and suppose that A ∈
Rm×N is a Gaussian random matrix with Aij

iid∼ N (0,m−1/2). Then we
obtain three common variants of the Lasso that solve the “vanilla” CS
problem: the constrained Lasso yielding x̂(τ ; y,A,K), basis pursuit
denoise yielding x̃(σ; y,A,K), and the unconstrained Lasso yielding
x](λ; y,A,K).

3. When A = I is the identity matrix, (LSτ,K) yields the orthogonal
projection onto τK, which we denote by ProjτK(y) := x̂(τ ; y, I,K).
Similarly, (QPλ,K) yields the proximal operator for the gauge induced
by K, which we denote by proxλ−1K(y) := x](λ; y, I,K). Proximal op-
erators are the workhorses of proximal algorithms: projected gradient
descent methods rely on ProjτK(y), while proximal gradient descent
methods rely on proxλ−1K(y).

4. Assume that x′ ∈ RN is s-sparse and let x0 = ψ−1x′ where ψ is the or-
thonormal DFT matrix. Given y = x0+ηz, the vector x̂(τ ; y, ψ−1, BN

1 )

gives an analogue of running so-called constrained proximal denoising
in Fourier space.

5. Consider a matrix x ∈ RN×N , let ‖x‖∗ denote its nuclear norm and
define K := {x ∈ RN×N : ‖x‖∗ ≤ 1}. Then x̃(σ) gives the standard [34]
optimization program for recovering a low-rank matrix x0 ∈ RN×N

from measurements Ax := 〈Ai, x〉 =
∑

α∈[N ]2 Ai,αxα.
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To relate the recovery performance of each program, we compare their
recovery errors. While there are several possibilities for measuring the recov-
ery error, the expected squared error and noise-normalized expected squared
error of the estimator are common when the noise, z, is random [56]. In this
thesis, we’ll define the loss for an estimator as the noise normalized squared
error of that estimator (with respect to the ground truth signal x0); and de-
fine the estimator’s risk as the expectation of the loss with respect to z. Note
that the risk and loss are functions of the random matrix A. Specifically, the
loss is defined for (LSτ ), (BPσ), (QPλ) respectively by:

L̂(τ ;x0, A, ηz) := η−2‖x̂(τ)− x0‖22, (1.1)

L̃(σ;x0, A, ηz) := η−2‖x̃(σ)− x0‖22, (1.2)

L](λ;x0, A, ηz) := η−2‖x](ηλ)− x0‖22, (1.3)

and the risk by:

R̂(τ ;x0, A, η) := E
z
L̂(τ ;x0, A, ηz) (1.4)

R̃(σ;x0, A, η) := E
z
L̃(σ;x0, A, ηz) (1.5)

R](λ;x0, A, η) := E
z
L](λ;x0, A, ηz). (1.6)

Similar definitions may be given for the generalized Lasso variants.
Minimax order-optimal error rates are well-known for x̂(τ ; y,A,K) when

τ is equal to the optimal parameter choice, A is a matrix whose rows are
independent, isotropic subgaussian random vectors, and K is a symmetric,
closed convex set containing the origin [35, 47, 56]. A kind of equivalence
between the three estimators (cf. Proposition 4.1.4) allows, in kind, for
the characterization of the error rates for x̃(σ) and x](λ) when σ and λ are
optimally tuned. However, the error of x̂(τ ; y,A,K) is not fully characterized
in the setting where τ is not the optimal choice. Similarly, the programs
(LSτ ), (BPσ) and (QPλ) are often referred to interchangeably, but a full
comparison of the error of the three estimators x̂(τ), x̃(σ), and x](λ), as a
function of their governing parameters, is lacking. It is an open question if
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there are settings in which one estimator is always preferable to another.
Understanding the sensitivity of a Lasso program to its parameter choice

is crucial. While theoretical guarantees for recovery error are typically given
for an oracular choice of the parameter, the optimal parameter setting is
generally unknown in practice. Thus, the usefulness of theoretical recovery
guarantees may hinge on the assumption that the recovery error is stable
with respect to variation of the governing parameter. In particular, one may
hope that small changes in the governing parameter beget no more than
small changes in the risk or loss. In other words, if the optimal choice of
parameter yields order-optimal recovery error, then one may hope that a
“nearly” optimal choice of parameter admits “nearly” order-optimal recovery
error, too, in the sense that the discrepancy in error is no greater than a mul-
tiplicative constant that depends smoothly on the discrepancy in parameter
choice. For example, if R(α) is the mean-squared error of a convex program
with parameter α > 0, and α∗ > 0 is the value yielding minimal error, then
one may hope for smooth dependence on α, such as

R(α) . µ(α)R(α∗),

where µ : R → R+ is a nonnegative smooth function with µ(α∗) = 1. For
example, the risk for (QPλ) satisfies such an expression with µ(λ) ≈ (λ/λ∗)2

when λ ≥ λ∗ [13, 67, 71, 72].
In Chapter 4, we take a step toward characterizing the performance and

sensitivity of the three programs introduced by examining particular asymp-
totic parameter regimes for each program. In the setting where A has rows
that are independent, isotropic subgaussian random vectors, we prove the ex-
istence of regimes in which CS programs exhibit parameter sensitivity (PS).
Namely, the programs exhibit sensitivity to their parameter choice, in that
small changes in parameter values can lead to blow-up in risk. Despite the
notion of equivalence captured by Proposition 4.1.4, we demonstrate regimes
in which one program exhibits sensitivity, while the other two do not. For
example, in the very sparse regime, our theory and simulations suggest not
to use (BPσ). In the low-noise regime, they suggest not to use (LSτ ). As-
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suredly, we identify situations where CS programs perform well in theory and
in silico alike. As an additional aim of this thesis, we hope that the asymp-
totic theory and fairly extensive numerical simulations aid practitioners in
deciding which CS program to select.

A precursor to analyzing the more general CS setting, the simpler setting
of proximal denoising (PD) is treated in Chapter 3. This treatment follows
the original of that published in Berk et al. [8, 9]. PD is a simplification
of its more general CS counterpart, in which the measurement matrix is
identity. PD uses convex optimization as a means to recover a structured
signal corrupted by additive noise. We define three convex programs for
PD: constrained proximal denoising, basis pursuit proximal denoising, and
unconstrained proximal denoising. To bear greatest relevance to CS, we
assume that x0 is s-sparse and that y = x0 + ηz, where z iid∼ N (0, 1) and
η > 0. For τ, σ, λ > 0, respectively,

x̂(τ ; y, IN , B
N
1 ) := arg min

x∈RN

{
‖y − x‖22 : ‖x‖1 ≤ τ

}
(LS∗τ )

x̃(σ; y, INB
N
1 ) := arg min

x∈RN

{
‖x‖1 : ‖y − x‖22 ≤ σ2

}
(BP∗σ)

x](λ; y, IN , B
N
1 ) := arg min

x∈RN

{1

2
‖y − x‖22 + λ‖x‖1

}
. (QP∗λ)

These are clear simplifications of (LSτ,K), (QPλ,K) and (BPσ,K) introduced
above, in which K = BN

1 is the `1 ball and where we use ∗ to denote that the
measurement matrix is identity, A = IN ∈ RN×N . Where clear from context,
we may again overload notation and, for example, refer to x̂(τ ; y, IN , B

N
1 )

simply as x̂ or x̂(τ). Since the focus of this thesis concerning PD is largely
relegated to Chapter 3, and that for CS to Chapter 4, we are confident there
shall be no ambiguity.

In both the PD setting of Chapter 3 and CS setting of Chapter 4, we
explore PS numerically. In particular, we analyze sensitivity for the three
programs in myriad data regimes, both for completely synthetic experiments
and for more realistic experiments using a modification of the Shepp-Logan
phantom [68], a standard test image for image reconstruction algorithms.
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1.1 Related work
PD is a simple model that elucidates crucial properties of models in gen-
eral [32]. As a central model for denoising, it lays the groundwork for CS,
deconvolution and inpainting problems [33]. A fundamental signal recovery
phase transition in CS is predicted by geometric properties of PD [2], be-
cause the minimax risk for PD is equal to the statistical dimension of the
signal class [55]. This quantity is a generalized version of R∗(s,N) introduced
below.

Robustness of PD to inexact information is discussed briefly in Oymak
and Hassibi [55], wherein sensitivity to constraint set perturbation is quan-
tified, including an expression for right-sided stability of unconstrained PD.
Essentially, PD programs are proximal operators, a powerful tool in convex
and non-convex optimization [14, 27]. For a thorough treatment of proximal
operators and proximal point algorithms, we refer the reader to Bertsekas
et al. [11], Eckstein and Bertsekas [31], Rockafellar [64]. Thus, PD is inter-
esting in its own right, as argued in Oymak and Hassibi [55].

Equivalence of the above programs is illuminated from several perspec-
tives [11, 55, 75]. PD risk is considered with more general convex constraints
in Chatterjee [23]. A connection has been made between the risk of Un-
constrained Lasso and R](λ;x0, N, η) in Bayati and Montanari [5, 6], and
the risk of unconstrained Lasso, as a function of its governing parameter,
has been analyzed in Thrampoulidis et al. [70, 72]. In addition, there are
near-optimal error bounds for worst-case noise demonstrating that equality-
constrained basis pursuit (σ = 0) performs well under the noisy CS model
(η 6= 0) [79]. It should be noted that these results do not contradict those of
this thesis, as random noise can be expected to perform better than worst-
case noise in general. Recently, Miolane and Montanari [52, Theorem 3.2]
proved a bound on the unconstrained Lasso mean squared error (mse),
which is uniform in λ and uniform in x0 ∈ BN

p . Note that this also does
not run contrary to the left-sided PS result mentioned below as the unifor-
mity in λ is over a pre-specified interval chosen independently of the optimal
parameter choice λ∗, and the assumption on signal structure is different.
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Several versions of the Lasso program are well-studied in the context of
solving CS problems [35]. The program (LSτ ) was first posed in Tibshirani
[73]. An analysis of its risk when τ = ‖x0‖1 and the noise z is deterministic
may be found in Foucart and Rauhut [35]. A sharp non-asymptotic analysis
for the generalized constrained Lasso may be found in Oymak et al. [56].
There, the risk was shown to depend on specific geometric properties of the
regularizer. When the measurement matrix has independent isotropic sub-
gassian rows, Liaw et al. [47] demonstrated how a geometric quantity may
unify the quantification of generalized constrained Lasso risk. Risk bounds
for generalized constrained Lasso with nonlinear observations were charac-
terized in Plan and Vershynin [62]. Recent work has shown how dimensional
parameters governing signal recovery problems in ridgeless least squares re-
gression affect the average out-of-sample risk in some settings [41, 50].

Non-asymptotic bounds for the unconstrained Lasso were developed
in Bickel et al. [13], which also determines an order-optimal choice for the
program’s governing parameter. The asymptotic risk for the unconstrained
Lasso is determined analytically in Bayati and Montanari [5, 6]. Sharp,
non-asymptotic risk bounds for the generalized unconstrained Lasso are de-
veloped in Thrampoulidis et al. [70, 71]. In Thrampoulidis et al. [71], R](λ)

is examined for λ about λopt, while Thrampoulidis et al. [72] examined the
risk as a function of its governing parameter for other kinds ofM -estimators.
Both assume Gaussianity of the data, and neither considers sensitivity with
respect to parameter choice.

Basis pursuit is a third popular phrasing of the Lasso program, first pro-
posed in Chen and Donoho [24], Chen et al. [25]. For a theoretical treatment
of basis pursuit, we refer to Foucart and Rauhut [35]. Analytic connections
between basis pursuit and other Lasso programs are exploited for fast com-
putation of solutions in Van Den Berg and Friedlander [75].

Other modifications of the standard Lasso have also been examined.
For example, sharp non-asymptotic risk bounds for the so-called square-root
Lasso were obtained in Oymak et al. [56]. Related to basis pursuit, instance
optimality of an exact `1 decoder is analyzed in Wojtaszczyk [79].

As already noted, sensitivity to parameter choice was analyzed for three
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proximal denoising (PD) programs that have CS analogues [8, 9]. There,
Berk et al. [9] prove an asymptotic cusp-like behaviour for constrained PD
risk in the low-noise regime, an asymptotic phase transition for unconstrained
PD risk in the low-noise regime, and asymptotic suboptimality of the basis
pursuit PD risk in the very sparse regime. Berk et al. [10] develop non-
trivial generalizations of those results, proving asymptotic results about the
sensitivity of `1 minimization for the generalized constrained Lasso and
generalized basis pursuit. These works comprise two main chapters of this
thesis.

1.2 Roadmap
The main content of this thesis is developed in Chapters 3, 4 and 5. In Chap-
ter 3, we begin by establishing theory for PD parameter sensitivity. First, we
show that (LS∗τ ) risk develops a cusp-like behaviour in the limiting low-noise
regime, admitting a single optimal choice of its governing parameter. Next,
in contrast, we highlight how (QP∗λ) exhibits right-sided parameter stability,
and prove the existence of a data regime in which (QP∗λ) exhibits left-sided
PS. Namely, (QP∗λ) asymptotically exhibits PS if its governing parameter
is below the optimal choice. Finally, we establish a data regime in which
(BP∗σ) risk is asymptotically sub-optimal for any choice of its governing pa-
rameter. Following the theory, we showcase extensive numerical simulations
for PD supporting the theoretical results. In particular, our simulations sug-
gest that parameter sensitivity manifests for realistic problem sizes. They
further showcase how a PD loss may exhibit cusp-like behaviour, though this
is not directly suggested by theory pertaining to the associated risk.

The content of Chapter 4 is structured similarly to Chapter 3, and de-
velops theory for CS parameter sensitivity. First, we show that (LSτ ) risk
develops a cusp-like behaviour in the limiting low-noise regime, admitting a
single optimal choice of its governing parameter. In fact, components of this
result are proved in the stronger setting of GCS for L̂. Again, we contrast the
PS result by highlighting how (QPλ) exhibits parameter stability if its gov-
erning parameter is at least as large as the optimal choice. Finally, we prove
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existence of a data regime in which (BPσ) risk is asymptotically suboptimal
for any choice of its governing parameter (with convergence in probability
on A). Following the theory, we showcase extensive numerical simulations
for CS supporting the theoretical results. We additionally note how some
commonality is borne between the PD and CS numerical simulations. The
numerical simulations again demonstrate that PS is readily observed for real-
istic problem sizes. Moreover, the simulations suggest a relationship between
the sensitivity of the loss and that of its associated risk.

Some of the aforementioned results rely strongly on Lemma 2.1.2, pre-
sented in § 2.1.1. In particular, this key result concerns the ordering of the
norm of points projected onto scaled sets. In Chapter 5, we show that this
result may be generalized to an arbitrary Hilbert space, and extended from
projection operators to proximal operators. Due to the difference in theme
of this content, we reserve until § 5.1 a discussion of additional background.
Though Lemma 2.1.2 is not a novel result, our original proof is presented
in § 5.1.1 to build intuition for the fully general case. Helpful intermedi-
ate results are given in § 5.1.2. Finally, the main result of the chapter is
presented in § 5.2.2, with applications and potential directions of interest
described in § 5.4.

1.3 Notation
We use the standard notation for the p-norm, ‖ · ‖p, for values p ≥ 1. For
0 ≤ p ≤ ∞, denote the unit `p-ball in Rn by Bn

p := {x ∈ Rn : ‖x‖p ≤ 1}.
We use sgn to denote the operator that returns a vector whose elements
are the “signs” of the argument. Namely, if x ∈ Rn then sgn(x) ∈ Rn and
sgn(α) := 1 if α > 0, sgn(α) = −1 if α < 0 and sgn(0) = 0. We denote the
set whose elements are the first n positive integers by [n] := {1, 2, . . . , n}.

We occasionally make use of the notation ‖x‖0 := |{i ∈ [N ] : xi 6= 0}|
to denote the number of non-zero entries of a vector x; ‖ · ‖0 is not a norm.
Throughout this document, m,n,N ∈ N will be positive integers repre-
senting dimension. We use the notation N (µ, σ2) to refer to the univari-
ate normal distribution with mean µ and variance σ2; N (~µ,Σ) the multi-
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dimensional normal distribution with vector mean ~µ and covariance matrix
Σ. If a random vector g ∈ Rn has independent identically distributed (iid)
standard normal entries we may write either gi

iid∼ N (0, 1) or equivalently
g ∼ N (0, In). In the latter expression, 0 denotes the 0 vector and In

the n × n identity matrix. Denote the set of at most s-sparse vectors by
ΣN
s := {x ∈ RN : 0 ≤ ‖x‖0 ≤ s} and define ΣN

−1 := ∅. Let x0 ∈ ΣN
s ⊆ RN be

an s-sparse signal with support set T ⊆ [N ] := {1, 2, . . . , N}, where s� N .
Whereas x0 shall refer to the “ground truth” signal for a given problem in-
stance, we use x or x′ to denote an arbitrary s-sparse signal, except where
otherwise noted. For a vector x ∈ RN with support set S ⊆ [N ], we denote
xS ∈ RN to be the vector with entries (xS)i = xi for i ∈ S and (xS)i = 0

otherwise. We shall use z to represent a normal random vector with co-
variance matrix equal to the identity: zi

iid∼ N (0, 1), η > 0 to represent the
standard deviation of the noise (the “noise scale”), and y to represent a set
of noisy linear measurements. For example, in Chapter 3, we shall typically
have z ∈ RN with y = x0 + ηz ∈ RN and in Chapter 4 we shall typically
have z ∈ Rm with y = Ax0 + ηz ∈ Rm where A ∈ Rm×N is the sensing
matrix. For convenience, we may use Z ∼ N (0, 1) to denote a univariate
standard normal random variable. Let φ and Φ denote the standard univari-
ate normal pdf and cdf, respectively. In particular, φ(t) := 1√

2π
exp(−t2/2)

and Φ(t) = P(Z ≤ t) =
∫ t
−∞ φ(u) du.

As discussed above, reference to R̂, R̃ and R]; L̂, L̃ and L] could be in
either the PD or CS setting. This will be connoted by the argument list
when ambiguity may be present. Specifically, if the argument list includes
the sensing matrix (e.g., R̂(τ ;x0, A, η)), then the function refers to the CS
variant; otherwise, to the PD variant (e.g., R̂(τ ;x0, N, η)). The argument
list may be omitted when the setting is clear from context. Finally, we clarify
notation of constants and asymptotics. We will write K̃ := K

√
logK, and

in each such instance it will be the case that K is a constant with K > 1.
We will also use C to denote an absolute positive constant whose value may
change from one appearance to the next. When we write something like
Cε, we likewise refer to a positive constant whose value depends only on
ε. Throughout this thesis we may make use of standard Bachmann-Landau
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notation (i.e., asymptotic notation), similar to how it was defined in Knuth
[45]. In particular, say that g(n) = O(f(n)) if there exist positive constants
C and n0 such that |g(n)| ≤ Cf(n) for all n ≥ n0. Say that g(n) = Ω(f(n))

if there exist positive constants C and n0 such that |g(n)| ≥ Cf(n) for all
n ≥ n0. Say that g(n) = Θ(f(n)) if g(n) = O(f(n)) and g(n) = Ω(f(n)).

All additional notation used in this thesis shall be introduced in context.
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Chapter 2

Mathematical Background

In this chapter, we synthesize several known results from convex analysis and
probability theory, some with proof sketches to provide intuition. We outline
notation to refer to common objects from convex analysis. We introduce two
well-known tools for characterizing the effective dimension of a set, and state
a result that connects these tools with PD estimators [55]. In § 2.1.1, we
re-state a lemma first appearing in Oymak and Hassibi [55]. This projection
lemma gives a notion of ordering for projection operators. In § 2.3.1 we
state two recent results giving refined bounds on the Gaussian mean width
of convex polytopes intersected with Euclidean balls [7].

2.1 Tools from convex analysis
Let f : RN → R be a convex function and let x ∈ RN . Denote by ∂f(x) the
subdifferential of f at the point x,

∂f(x) := {v ∈ RN : ∀y, f(y) ≥ f(x) + 〈v, y − x〉}

Note that ∂f(x) is a nonempty, convex and compact set. Given C ⊆ Rn and
λ > 0, denote by

λC := {λx : x ∈ C}, cone(C) := {λx : x ∈ C, λ ≥ 0}
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the scaling of C by λ, and the cone of C, respectively. Observe that cone C is
not necessarily convex, but is convex if C is convex. Let cvx(C) denote the
convex hull of the set C:

cvx(C) :=


J∑
j=1

αjxj : xj ∈ C, αj ≥ 0,
∑

αj = 1, J <∞


=

⋂
C′⊇C

C′ is convex

C′.

For a non-empty convex set C ⊆ Rn, denote the gauge (i.e., Minkowski
functional) of C by ‖ · ‖C : Rn → [0,∞] where

‖x‖C := inf{λ > 0 : x ∈ λC}.

Define the descent cone of a convex function f : Rn → R at x ∈ Rn by

Tf (x) := cone
{
z − x : z ∈ RN , f(z) ≤ f(x)

}
.

When f = ‖ · ‖1 we write T (x) := T‖·‖1(x). By abuse of notation, we write
TC(x) := T‖·‖C(x) to refer to the descent cone of a gauge ‖ · ‖C at a point x
when C is a non-empty convex set.

For a nonempty set C and x ∈ RN , denote the distance of x to C by
d(x, C) := infw∈C ‖x−w‖2. If C is also closed and convex, then there exists a
unique point in C attaining the minimum. This point is called the projection
of x onto C and is denoted

ProjC(x) := arg min
w∈C

‖x− w‖2.

Denote by C◦ := {v | ∀x ∈ C, 〈v, x〉 ≤ 0} the polar cone of C; and define the
statistical dimension [2] of C by

D(C) := E[d(g, C◦)2], g ∼ N (0, IN ).

Given a non-empty convex set C and a point x ∈ RN , consider FC(x) := {h :
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x+ h ∈ C} = C − x. The tangent cone is given by TC(x) := cl(cone(FC(x)))

where cl denotes the closure operation; it is the smallest closed cone contain-
ing FC(x). With these tools, we recall a result [55] in the PD context, giving
a precise characterization of the risk for (LS∗τ ).

Theorem 2.1.1 ([55, Theorem 2.1]). Let C be a non-empty closed and convex
set, let x ∈ C be an arbitrary vector and assume that z ∼ N (0, IN ). Then

sup
η>0

1

η2
E ‖ProjC(x+ ηz)− x‖22 = D(TC(x)). (2.1)

Oymak and Hassibi [55] note that D(TC(x)) ≈ w2
(
TC(x) ∩ BN

2

)
, where

w(·) denotes the Gaussian mean width (gmw). Specifically, gmw gives a
near-optimal characterization of the risk for (LS∗τ ). Thus, w2(·) serves as an
effective dimension for a bounded set; w2(· ∩ BN

2 ) for a cone (or a set well
represented by a cone) [59, 61, 62].

Definition 1 (Gaussian mean width). The Gaussian mean width (gmw) of
a set K ⊆ RN is given by

w(K) := E sup
x∈K
〈x, g〉, g ∼ N (0, IN ).

A closely related quantity that may also be used to capture the effective
dimension of a set is the Gaussian complexity.

Definition 2 (Gaussian complexity). Let K ⊆ RN . Define the Gaussian
complexity of K by

γ(K) := E sup
x∈K
|〈x, g〉| , g ∼ N (0, IN ).

Remark. If K ⊆ RN is symmetric, then

w(K) =
1

2
E sup
x∈K−K

〈x, g〉 = γ(K).
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2.1.1 Projection lemma

The projection lemma and extensions thereof receive a full treatment in Chap-
ter 5. However, the usefulness of this result throughout Chapters 3 and 4
makes prescient its introduction here. An alternate form of the result be-
low was first proved in Oymak and Hassibi [55, Lemma 15.3], and a simpler
proof given in Berk et al. [9]. Given a point z ∈ Rn, the lemma provides
an ordering for the one-parameter family of projections zt := ProjtK(z) as
a function of t > 0 when K is a closed convex set with 0 ∈ K. Namely,
‖ProjtK(z)‖2 ≤ ‖ProjuK(z)‖2 for 0 < t ≤ u < ∞. The result is depicted
graphically in Figure 5.1a.

Lemma 2.1.2 (Projection lemma). Let K ⊆ Rn be a non-empty closed and
convex set with 0 ∈ K, and fix λ ≥ 1. For z ∈ Rn,

‖ProjK(z)‖2 ≤ ‖ProjλK(z)‖2.

The following is an alternative version of Lemma 2.1.2 which quickly
follows. The corollary is useful in establishing Lemma 4.6.13. Its proof is
deferred to § A.1.2.

Corollary 2.1.3. Let K ⊆ Rn be a non-empty closed and convex set with
0 ∈ K and let ‖ · ‖K be the gauge of K. Given y ∈ Rn define

xα := arg min{‖x‖K : ‖x− y‖2 ≤ α}

Then ‖xα‖2 is non-increasing in α.

2.2 Tools from probability theory
For a full treatment of the topics herein, we refer the reader to Adler and Tay-
lor [1], Foucart and Rauhut [35], van Handel [76], Vershynin [77]. We start by
introducing subgaussian random variables, which generalize Gaussian ran-
dom variables, but retain certain desirable properties, such as Gaussian-like
tail decay and moment bounds.
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Definition 3 (Subgaussian random variable). A random variable X is called
subgaussian if there exists a constantK > 0 such that the moment generating
function of X2 satisfies, for all λ such that |λ| ≤ K−1,

E exp(λ2X2) ≤ exp(K2λ2).

The subgaussian norm of X is defined by

‖X‖ψ2 := inf{t > 0 : E exp(X2/t2) ≤ 2}.

We recall Hoeffding’s inequality, which characterizes how subgaussian
random variables concentrate in high dimensions.

Theorem 2.2.1 (General Hoeffding’s inequality [77, Theorem 2.6.3]). Let
Xi, i = 1, . . . n, be independent mean-zero subgaussian random variables and
let a ∈ Rn. For t > 0,

P
(∣∣ n∑

i=1

aiXi

∣∣ ≥ t) ≤ e · exp
( −t2

C
∑n

i=1 a
2
i ‖Xi‖2ψ2

)
One may similarly define subexponential random variables.

Definition 4 (Subexponential random variable). A random variable X is
called subexponential if there exists a constant K > 0 such that the moment
generating function of |X| satisfies, for all λ such that 0 ≤ λ ≤ K−1,

E exp(λ|X|) ≤ exp(Kλ).

The subexponential norm of X is defined by

‖X‖ψ1 := inf{t > 0 : E exp(|X|/t) ≤ 2}.

They, too, admit a concentration inequality.

Theorem 2.2.2 (Bernstein’s inequality [77, Theorem 2.8.1]). Let X1, . . . , Xn

be independent mean-zero subexponential random variables. Then, for k :=
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maxi ‖Xi‖ψ1, for all {a1, . . . , an} ∈ Rn and any t ≥ 0,

P
(
|
n∑
i=1

aiXi| ≥ t
)
≤ 2 exp

(
− C min

{ t2

k2‖a‖22
,

t

k‖a‖∞

})
.

Additionally, we callX ∈ Rn aK-subgaussian random vector if ‖X‖ψ2 :=

supa∈Rn ‖〈a,X〉‖ψ2 ≤ K; analogously so for K-subexponential random vec-
tors. Where it is either clear or irrelevant, we may omit observing the norm
parameter and refer to a K-subgaussian random vector simply as a sub-
gaussian random vector; likewise with a subexponential random vector. For
properties and equivalent definitions of subgaussian and subexponential ran-
dom variables and vectors, see Vershynin [77, Chapter 2]. Say that a matrix
A ∈ Rm×N is isotropic if EAiATi = IN where ATi is the ith row of A, i ∈ [m].
Next, we introduce a piece of jargon for the sake of concision.

Definition 5 (K-subgaussian matrix). Given m,N ∈ N, call A ∈ Rm×N

a K-subgaussian matrix if A has rows ATi that are independent, isotropic
K-subgaussian random vectors:

EAiATi = I, ‖Ai‖ψ2 ≤ K, i ∈ [m].

Further, call 1√
m
A a normalized K-subgaussian matrix.

A core element of CS is that the measurement matrix act as an approxi-
mate isometry for the signal class of interest. We will see that (normalized)
subgaussian matrices indeed behave this way for s-sparse vectors. In essence,
mandating isotropy of the rows is a mathematical expression of this notion;
requiring that each row have subgaussian decay ensures the matrix usually
behaves as such in high dimensions. The idea of a matrix behaving as an
approximate isometry for a particular signal class is formalized as the now
classical restricted isometry property (RIP), which can be stated in terms
of restricted isometry constants, δs. Informally, A satisfies RIP if δs is small
for reasonably large s.
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Definition 6 ([35, Definition 6.1]). The sth restricted isometry constant
δs = δs(A) of a matrix A ∈ Rm×N is the smallest δ ≥ 0 such that, for all
x ∈ ΣN

s ,

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22.

In Chapter 4, we crucially leverage the fact that A satisfies a RIP. An
exposition on RIP and restricted isometry constants may be found in Fou-
cart and Rauhut [35]. As some results in this thesis concern K-subgaussian
matrices, we state a classical version of RIP for such matrices restricted to
the set of s-sparse vectors.

Theorem 2.2.3 (RIP for subgaussian matrices [35, Theorem 9.2]). Let A ∈
Rm×N be a normalized K-subgaussian matrix and fix ε > 0. There exists a
constant C = CK > 0 such that the restricted isometry constant of A, δs,
satisfies δs ≤ δ with probability at least 1− ε provided

m ≥ Cδ−2(s ln(eN/s) + ln(2ε−1)).

Remark 1. Setting ε = 2 exp(−δ2m/(2C)) yields the condition

m ≥ 2Cδ−2s ln(eN/s)

which guarantees that δs ≤ δ with probability at least 1−2 exp(−δ2m/(2C)).

Importantly, restricted isometry may be generalized. Indeed, large classes
of random matrices satisfy deviation inequalities on sets (such as the set BN

1 ).
We formalize this idea in § 2.2.1 and connect it with RIP in § 2.3 and § 2.3.1.

Finally, we introduce a result that characterizes the variance and tail
decay of the supremum of a Gaussian process. In particular, it establishes
that the supremum of a Gaussian process defined over a topological space T
behaves nearly like a normal random variable. This result is necessary in the
development of the results of § 4.2 and § 4.4 (specifically Propositions 4.6.8,
4.6.16 and 4.6.19). We refer the reader to Adler and Taylor [1, Theorem 2.1.1]
for a proof. More broadly, for an introduction to random processes, see Adler
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and Taylor [1], Vershynin [77].

Theorem 2.2.4 (Borell-TIS inequality [15, 26]). Let T be a topological space
and let {ft}t∈T be a centred (i.e., mean-zero) Gaussian process almost surely
bounded on T with

|||f |||T := sup
t∈T

ft, σ2
T := sup

t∈T
E
[
f2
t

]
(2.2)

such that |||f |||T is almost surely finite. Then E |||f |||T and σT are both finite
and for each u > 0,

P
(
|||f |||T > E |||f |||T + u

)
≤ exp

(
− u2

2σ2
T

)
.

Observe that |||f |||T is notation; |||·|||T is not a norm. By symmetry,
one may derive an analogous lower-tail inequality. Consequently, under the
assumptions of the theorem one also has for each u > 0,

P
(
||||f |||T − E |||f |||T | > u

)
≤ 2 exp

(
− u2

2σ2
T

)
.

Finally, we state the following comparison inequality for two centred
Gaussian processes.

Theorem 2.2.5 (Sudakov-Fernique inequality [77, Theorem 7.2.11]). Let
(Xt)t∈T , (Yt)t∈T be mean-zero Gaussian processes. Assume, for all s, t ∈ T ,

E(Xt −Xs)
2 ≤ E(Yt − Ys)2.

Then,

E sup
t∈T

Xt ≤ E sup
t∈T

Yt.

2.2.1 Geometric tools from probability

To establish a connection between the notions of effective dimension intro-
duced, and some of the probabilistic notions discussed above, we state two
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results controlling the deviation of a K-subgaussian matrix on a bounded
set, which generalize the idea of RIP introduced in Theorem 2.2.3. These
results were first proved in Liaw et al. [47], and dependence on the constant
K was later improved [43]. The results are stated using the improved con-
stant K̃ := K

√
logK; we refer the reader to Jeong et al. [43, Theorem 2.1]

for further details.

Theorem 2.2.6 ([47, Theorem 1.1]). Let A ∈ Rm×N be a K-subgaussian
matrix and T ⊆ RN bounded. Then

E sup
x∈T

∣∣‖Ax‖2 −√m‖x‖2∣∣ ≤ CK̃γ(T ).

Another version of this result holds, where the deviation is instead con-
trolled by the gmw and radius, rather than the Gaussian complexity.

Theorem 2.2.7 ([47, Theorem 1.4]). Let A ∈ Rm×N be a K-subgaussian
matrix and T ⊆ RN bounded. For any u ≥ 0 the event

sup
x∈T

∣∣‖Ax‖2 −√m‖x‖2∣∣ ≤ CK̃ [w(T ) + u · rad(T )] (2.3)

holds with probability at least 1 − 3 exp(−u2). Here, rad(T ) := supx∈T ‖x‖2
denotes the radius of T .

In particular, the deviation of the image of A restricted to a set T may
be controlled using the gmw.

Remark 2. If u ≥ 1 the bound in (2.3) can be loosened to the following
simpler one:

sup
x∈T

∣∣‖Ax‖2 −√m‖x‖2∣∣ ≤ CK̃uγ(T ).

Setting T := SN−1, and using the improved constant obtained in Jeong
et al. [43, Theorem 2.1] gives the following corollary.

Corollary 2.2.8 (Largest singular value of K-subgaussian matrices). Let
A ∈ Rm×N be a K-subgaussian matrix. For all t ≥ 0, with probability at
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least 1− 3 exp(−t2),

∣∣‖A‖ − √m∣∣ ≤ CK̃ [√N + t
]
,

where ‖A‖ := supx∈SN−1 ‖Ax‖2 denotes the operator norm of A.

2.3 Effective dimension of structured signals
Because the deviation of a matrix can be controlled in terms of the gmw it is
important to be able to express tight upper bounds on this quantity. In this
section, we introduce tools primarily relevant to obtaining recovery bounds
for compressed sensing in the classical setting where K = BN

1 . Throughout
this thesis, it will be useful to make reference to the following sets. For r > 0,
define:

Ls(r) := r · cvx
(
ΣN
s ∩ SN−1

)
, Ls := Ls(2), L∗s := L2s(4). (2.4)

Further, define the sets

JNs := {x ∈ RN : ‖x‖1 ≤
√
s‖x‖2}, (2.5)

KNs := {x ∈ RN : ‖x‖2 ≤ 1 & ‖x‖1 ≤
√
s}. (2.6)

Observe that JNs is a cone and that KNs = BN
2 ∩
√
sBN

1 = cvx
(
JNs ∩ SN−1

)
.

We start by recalling that sparse vectors have low effective dimension, as
does their difference set.

Lemma 2.3.1 (gmw of the sparse signal set [59, Lemma 2.3]). There exist
absolute constants c, C > 0 such that

cs log(2N/s) ≤ w2
(
(ΣN

s ∩BN
2 )− (ΣN

s ∩BN
2 )
)

≤ Cs log(2N/s)

For possibly different absolute constants c, C > 0, one also has

cs log(2N/s) ≤ w2
(
ΣN
s ∩BN

2

)
≤ Cs log(2N/s).
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The descent cone of the `1 ball has comparable effective dimension to the
set of sparse vectors. For example, Foucart and Rauhut [35, Proposition 9.24]
present a result establishing w2

(
TBN1

(x) ∩ SN−1
)
≤ 2s log(eN/s) when x is

s-sparse. The following result further clarifies the connection between the
gmw of BN

1 and that of ΣN
s .

Lemma 2.3.2 (Convexification [60, Lemma 3.1]). With KNs as defined in (2.6),
one has

cvx(ΣN
s ∩BN

2 ) ⊆ KNs ⊆ 2 cvx(ΣN
s ∩BN

2 ).

Next, it will be useful to leverage the following equivalent characteriza-
tion for the `1 descent cone. These results are effectively simplifications of
classical results [35].

Lemma 2.3.3 (Equivalent `1 descent cone characterization). Let x ∈ ΣN
s

with non-empty support set T ⊆ [N ] and define C := ‖x‖1BN
1 . Then TC(x) =

K(x), where

K(x) := {h ∈ RN : ‖hTC‖1 ≤ −〈sgn(x), h〉}.

Finally, recall the following well-known descent cone condition.

Lemma 2.3.4 (`1 descent cone condition). Let x ∈ ΣN
s have non-empty

support set T ⊆ N and suppose x̂ ∈ RN satisfies ‖x̂‖1 ≤ ‖x‖1. Then ‖h‖1 ≤
2
√
s‖h‖2, where h = x̂− x.

Proof of Lemma 2.3.4. We use Lemma 2.3.3 above before applying Cauchy-
Schwarz:

‖x̂− x‖1 = ‖hT ‖1 + ‖hTC‖1
≤ 〈sgn(x̂T − x), hT 〉 − 〈sgn(x), h〉

≤ ‖sgn(x̂T − x)− sgn(x)‖2‖h‖2
≤ 2
√
s‖h‖2.
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Remark. Lemma 2.3.4 specializes to Lasso solutions in the following way.
Let x ∈ ΣN

s with s > 0. Suppose y = Ax + ηz for η > 0, z ∈ Rm, and
A ∈ Rm×N . Let x̂ solve (LSτ ) with τ = ‖x‖1. Then ‖h‖1 ≤ 2

√
s‖h‖2, where

h = x̂− x.

Remark 3. An analogous result holds in the PD setting. For example, we
present the following version for (BP∗σ), used in the proof of Lemma 3.4.1.

For s ≥ 0, let x ∈ ΣN
s and suppose y = x+ ηz where η > 0 and z ∈ RN

with zi
iid∼ N (0, 1). Condition z on the event E := {‖z‖22 ≤ N−2

√
N}. Let x̃

solve (BP∗σ) with σ ≥ η
√
N . Then ‖x̃‖1 ≤ ‖x‖1 and ‖h‖1 ≤ 2

√
s‖h‖2 where

h := x̃− x.

2.3.1 Refined bounds on Gaussian mean width

Two recent results of Bellec [7] yield improved upper- and lower-bounds
on the gmw of convex polytopes intersected with Euclidean balls. Each
is integral to establishing (BP∗σ) parameter sensitivity in § 3.4 and (BPσ)

parameter sensitivity in § 4.4. These results are a fine-tuning of standard
gmw results for bounded convex polytopes that describe how local effective
dimension of a convex hull scales with neighbourhood size.

Proposition 2.3.5 ([7, Proposition 1]). Let m ≥ 1 and N ≥ 2. Let K be the
convex hull of 2N points in Rm and assume K ⊆ Bm

2 . Then for γ ∈ (0, 1),

w(K ∩ γBm
2 ) ≤ min

{
4
√

max
{

1, log(8eNγ2)
}
, γ
√

min{m, 2N}
}
.

The second result shows that Proposition 2.3.5 is tight up to multiplica-
tive constants.

Proposition 2.3.6 ([7, Proposition 2]). Let m ≥ 1 and N ≥ 2. Let γ ∈
(0, 1] and assume for simplicity that s = 1/γ2 is a positive integer such that
s ≤ N/5. Let M ∈ Rm×N have columns {Mi}i∈[N ] ⊆ Sm−1. Let K be the
convex hull of {±Mi}i∈[N ]. Assume that for some real number κ ∈ (0, 1) we
have

κ‖θ‖2 ≤ ‖Mθ‖2 for all θ ∈ RN such that ‖θ‖0 ≤ 2s.
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Then,

w(K ∩ γBm
2 ) ≥ (

√
2/4)κ

√
log(Nγ2/5).

In particular, the above two results may be combined to obtain a bound
on a random polytope, obtained by considering the image of a (non-random)
polytope under a normalized K-subgaussian matrix; proved in § A.1.1. This
corollary is central to establishing the main result of § 4.4.

Corollary 2.3.7 (Controlling random hulls). Fix δ, ε > 0, γ ∈ (0, 1] and let
A ∈ Rm×N be a normalized K-subgaussian matrix. Assume for simplicity
that s = 1/γ2 ∈ N with s < N/5 and let T denote the convex hull of the 2N

points {±Aj : j ∈ [N ]}. Assume m > Cεδ
−2K̃2s log(2N/s). With probability

at least 1− ε, for any α ∈ (0, (1− δ)),

(
√

2/4)(1− δ)2

√
log

Nα2

5(1− δ)2

≤ w(T ∩ αBm
2 )

≤ min
{

4(1 + δ)

√
max

{
1, log

8eNα2

(1 + δ)2

}
, α
√

min{m, 2N}
}
.
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Chapter 3

Proximal denoising parameter
sensitivity

3.1 Overview
We provide an overview of this chapter by presenting three sibling results that
are simplifications of the main results presented in Chapter 3. In particular,
these simplified results are asymptotic versions of the main results to follow.
Throughout this chapter, “loss” refers to the noise-normalized squared error
(nnse) of a PD estimator, and “risk” to the expected nnse of a PD estimator,
unless otherwise noted. The losses and risks for CS estimators were given
in (1.1)–(1.3) and (1.4)–(1.6), respectively. In the PD setting, we re-state the
definition of the risks to incorporate one significant change in the definition
of the risk associated to (QP∗λ), and a minor notational change for all three:

R̂(τ ;x0, N, η) := η−2 E ‖x̂(τ ; y)− x0‖22,

R](λ;x0, N, η) := η−2 E ‖x](ηλ; y)− x0‖22,

R̃(σ;x0, N, η) := η−2 E ‖x̃(σ; y)− x0‖22.

The choice to use x](ηλ) in the definition of R], rather than x](λ), clarifies
the presentation of the results in § 3.3. One could have similarly defined R̃
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using x̃(ησ), which would result in an appropriate change of normalization
for the results of § 3.4.

We denote the optimally tuned worst-case risk for (LS∗τ ) by R∗(s,N).
This quantity is given by:

R∗(s,N) := sup
x0∈ΣNs

R̂(‖x0‖1;x0, N, η) = max
x0∈ΣNs
‖x0‖1=1

lim
η→0

R̂(1;x0, N, η).

A proof of the second equality appears in Proposition 3.6.2. We use R∗(s,N)

as a benchmark, noting it is order-optimal in Proposition 3.1.5.
In § 3.2, we show that (LS∗τ ) exhibits an asymptotic phase transition

in the low-noise regime. There is exactly one value τ∗ of the governing
parameter yielding minimax order-optimal error, with any choice τ 6= τ∗

yielding markedly worse behaviour. The intuition for this result is that
(LS∗τ ) is extremely sensitive to the value of τ in the low-noise regime, making
empirical use of (LS∗τ ) woefully unstable in this regime.

Theorem 3.1.1.

lim
N→∞

max
x0∈ΣNs
‖x0‖1=1

lim
η→0

R̂(τ ;x0, N, η)

R∗(s,N)
=


∞ τ < τ∗

1 τ = τ∗ = 1

∞ τ > τ∗

Next, in § 3.3, we show that (QP∗λ) exhibits an asymptotic phase tran-
sition. The worst-case risk over x0 ∈ ΣN

s is minimized for parameter choice
λ∗ = O(

√
log(N/s)) [55]. While λ∗ has no closed form expression, it satisfies

λ∗/
√

2 log(N)
N→∞−−−−→ 1 for s fixed (Proposition 3.3.5). Thus, we consider

the normalized parameter µ = λ/
√

2 log(N). The risk R](λ;x0, N, η) is
minimax order-optimal when µ > 1 and suboptimal for µ < 1.

Theorem 3.1.2. Let λ(µ,N) := µ
√

2 logN for µ > 0. Then,

lim
N→∞

sup
x0∈ΣNs

R](λ(µ,N);x0, N, η)

R∗(s,N)
=

O(µ2) µ ≥ 1

∞ µ < 1
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Lastly, we show in § 3.4 that (BP∗σ) is poorly behaved for all σ > 0 when
x0 is very sparse. Namely, R̃(σ;x0, N, η) is asymptotically suboptimal for
any σ > 0 when s/N is sufficiently small.

Theorem 3.1.3.

lim
N→∞

sup
x0∈ΣNs

inf
σ>0

R̃(σ;x0, N, η)

R∗(s,N)
=∞

All numerical results are discussed in § 3.5, and proofs of most theoretical
results are deferred to § 3.6. Next, we add two clarifications. First, the three
PD programs are equivalent in a sense.

Proposition 3.1.4. Let 0 6= x0 ∈ RN and λ > 0. Where x](λ) solves
(QP∗λ), define τ := ‖x](λ)‖1 and σ := ‖y−x](λ)‖2. Then x](λ) solves (LS∗τ )

and (BP∗σ).

However, τ and σ have stochastic dependence on z, and this mapping
may not be smooth. Thus, parameter stability of one program is not implied
by that of another. Second, R∗(s,N) has the desirable property that it is
computable up to multiplicative constants. The proof follows by Oymak
and Hassibi [55] and standard bounds in Foucart and Rauhut [35]. We don’t
claim novelty for this result, and defer its full proof to § 3.6.1.

Proposition 3.1.5. Let s ≥ 1, N ≥ 2 be integers, let η > 0 and suppose
y = x0 + ηz for z ∈ RN with zi

iid∼ N (0, 1). Let

M∗(s,N) := inf
x∗

sup
x0∈ΣNs

η−2‖x∗ − x0‖22

be the minimax risk over arbitrary estimators x∗ = x∗(y). There is c, C1, C2 >

0 such that for N ≥ N0 = N0(s), with N0 ≥ 2 sufficiently large,

cs log(N/s) ≤M∗(s,N) ≤ inf
λ>0

sup
x0∈ΣNs

R](λ;x0, N, η)

≤ C1R
∗(s,N) ≤ C2s log(N/s).
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Thus, in the simplified theorems above, we could have normalized by any
of the quantities in the conclusion of Proposition 3.1.5 instead of R∗(s,N),
because these expressions are asymptotically equivalent up to constants. A
consequence of Theorem 3.1.3 offers a stark contrast to Proposition 3.1.5:

inf
σ>0

sup
x0∈ΣNs

R̃(σ;x0, N, η) ≥ sup
x0∈ΣNs

inf
σ>0

R̃(σ;x0, N, η)� R∗(s,N).

In particular, removing the parameters’ noise dependence destroys the equiv-
alence attained in Proposition 3.1.4.

3.2 On parameter sensitivity for (LS∗τ)

We describe a PS regime for (LS∗τ ), revealing a regime in which there is
exactly one choice of parameter τ∗ > 0 such that R̂(τ∗;x0, N, η) is min-
imax order-optimal. Specifically, Theorem 3.2.1 shows that R̂(τ ;x0, N, η)

exhibits an asymptotic singularity in the limiting low-noise regime (by low-
noise regime, we mean hereafter the regime in which η → 0).

In § 3.5.1 we complement this asymptotic result with numerical simula-
tions that contrast how the three risks behave in a simplified experimental
context. The numerics support that Theorem 3.2.1 provides accurate intu-
ition to guide how (LS∗τ ) can be expected to perform in practice when the
noise level is small relative to the magnitude of the signal’s entries.

The analogue of the classical CS result is included in our result as the
special case τ = τ∗ = ‖x0‖1 (cf. Proposition 3.1.5). The cases for τ 6= τ∗

may seem surprising initially, but can be understood with the following key
intuition: the approximation error is controlled by the effective dimension of
the constraint set.

First, one should generally not expect good recovery when the signal lies
outside the constraint set. When τ < τ∗, y lies outside of the constraint set
with high probability in the limiting low-noise regime. Accordingly, there is a
positive distance between the true signal and the recovered signal which may
be lower-bounded by a dimension-independent constant. Hence, the risk is
determined by the reciprocal of the noise variance, growing unboundedly as
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η → 0.
On the other hand, when τ > τ∗, y lies within the constraint set with high

probability in the limiting low-noise regime. Thus, the problem is essentially
unconstrained in this setting, so the effective dimension of the constraint set
for the problem should be considered equal to that of the ambient dimension.
In particular, one should expect that the error be proportional to N .

Theorem 3.2.1 ((LS∗τ ) parameter sensitivity). Let s ≥ 1, η > 0 and let
x0 ∈ ΣN

s \ ΣN
s−1. Given τ > 0,

lim
η→0

R̂(τ ;x0, N, η) =


∞ τ < ‖x0‖1
R∗(s,N) τ = ‖x0‖1
N τ > ‖x0‖1

In summary, the surprising part of this result is that there is a sharp phase
transition between two “unstable” regimes, with the optimal regime lying on
the boundary of the two phases. We argue this suggests that there is only one
reasonable choice for τ in the low-noise regime. Observe, that Theorem 3.2.1
connects with Theorem 3.1.1 by taking the limit of the problem as N →∞
after first restricting to signals of a finite norm (arbitrarily, 1) so that the
essence of the result is preserved.

3.3 On parameter sensitivity for (QP∗λ)

We show that R](λ;x0, N, η) is smooth in the low-noise regime. This re-
sult becomes evident from the closed-form expression for R](λ; s,N) that
emerges for this special case. At first, this smoothness result seems to stand
in contrast to the “cusp-like” behaviour that we observe analytically and
numerically for limη→0 R̂(τ ;x0, N, η) (cf. Figure 3.2). However, R](λ; s,N)

possesses unfavourable dependence on N that is elucidated in Theorem 3.3.4.
Briefly, if the governing parameter λ is too small, then the risk grows

unboundedly as a power law of N in high dimensions. This rate of growth
implies that the risk is minimax suboptimal for such λ. To our knowledge,
the establishment of this result in Berk et al. [9] was novel. In contrast,
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for all suitably large λ, R](λ; s,N) admits the desirable property suggested
in Chapter 1: R](λ; s,N) . (λ/λ∗)2R∗(s,N). The result, stated in Theo-
rem 3.3.6, essentially follows from known Lasso bounds for RIP matrices:
R(λ) ≤ λ2s. Thus, in the low-noise regime, R](λ;x0, N, η) exhibits a phase
transition between order-optimal and suboptimal regimes.

The numerics of § 3.5.2 suggest a viable constant for the growth rate of
the risk when λ is too small, and support Theorem 3.3.6 in the case where λ
is sufficiently large. These numerics also clarify the role that the dimension-
dependent growth rate serves in the stability of (QP∗λ) about λ∗.

3.3.1 Smoothness of the risk

The (QP∗λ) estimator for a problem with noise level η > 0 and with parameter
λ > 0 is given by soft-thresholding by ηλ. In particular, x](ηλ) is a smooth
function with respect to the problem parameters, hence so is R](λ;x0, N, η)

(being a composition of smooth functions). However, the closed form ex-
pression for R](λ;x0, N, η) is unavailable, because the expectations involved
are untractable in general. When the noise-level vanishes this is no longer
true and we may compute an exact expression in terms of λ, s and N for the
risk. Specifically, we note that the smoothness result below is not special to
the case where η → 0, but is notable because of the closed form expression
for the risk that is obtained.

Moreover, the result is notable, because the closed form expression is
equivalent (in some precisely definable sense) to R](λ;x0, N, η) when η > 0

and the magnitudes of the entries of x0 are all large (i.e., “the signal is well-
separated from the noise”). We make this connection after the main results
discussed below. In turn, this connects Theorem 3.3.4 and Theorem 3.3.6 to
Theorem 3.1.2, where the analytic expression is used to derive the so-called
left-sided PS and right-sided parameter stability results.

Proposition 3.3.1 (R](λ;x0, N, η) smoothness). Let s ≥ 0, N ≥ 1, x0 ∈ ΣN
s

and λ > 0. Then, where φ and Φ are the normal pdf and cdf,

lim
η→0

R](λ;x0, N, η) = s(1 + λ2) + 2(N − s)
[
(1 + λ2)Φ(−λ)− λφ(λ)

]
(3.1)
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Remark 4. Here and beyond, we denote the limiting low-noise risk by

R](λ; s,N) := lim
η→0

R](λ;x0, N, η),

and define the function G(λ) := (1+λ2)Φ(−λ)−λφ(λ) for notational brevity.

An equivalence in behaviour is seen between the low-noise regime η → 0

and the large-entry regime |x0,j | → ∞ for j ∈ supp(x0) with η > 0. For
both programs, the noise level is “effectively” zero by comparison to the size
of the entries of x0. This type of scale invariance allows us to re-state the
previous result as a max formulation.

Corollary 3.3.2 (max-formulation). Let s ≥ 0, N ≥ 1, x0 ∈ ΣN
s and η > 0.

For λ > 0,

sup
x0∈ΣNs

R](λ;x0, N, η) = R](λ; s,N)

3.3.2 Left-sided parameter sensitivity

We reveal an asymptotic regime in which R](λ; s,N) is minimax suboptimal
for all λ sufficiently small. The result follows from showing the risk deriva-
tive is large for all λ < λ̄ when s is sufficiently small relative to N . Here,
λ̄ :=

√
2 logN is an Ansatz estimate of λ∗ used to make the proof proceed

cleanly. Finally, we show in what sense λ̄ is asymptotically equivalent to λ∗

in Proposition 3.3.5.
The proof for the bound on the risk derivative follows by calculus and

a standard estimate of Φ(−λ) in terms of φ(λ). Its scaling with respect to
the ambient dimension destroys the optimal behaviour of R](λ;x0, N) for all
λ < λ̄. The proof of this result, stated in Theorem 3.3.4, follows immediately
from Lemma 3.3.3 by the fundamental theorem of calculus.

Lemma 3.3.3 (risk derivative growth). Fix s ≥ 1. For any ε ∈ (0, 1), there
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exists C > 0 and an integer N0 = N0(s) ≥ s so that for all N ≥ N0

− d

du

∣∣∣∣
u=1−ε
R](uλ̄; s,N) ≥ CN ε

where λ̄ =
√

2 log(N) is an estimate of the optimal parameter choice for
(QP∗λ).

Theorem 3.3.4 ((QP∗λ) parameter sensitivity). Under the conditions of the
previous lemma, for ε ∈ (0, 1) there exists a constant C > 0 and integer
N0 ≥ 1 such that for all N ≥ N0,

R]((1− ε)λ̄; s,N) ≥ C N ε

logN
.

Though these results may initially seem surprising, we claim they are
sensible when viewed in comparison to unregularized proximal denoising (i.e.,
λ = 0). In this case, sparsity of the signal x0 is unused and so one expects
the error to be proportional to the ambient dimension, as in § 3.2. In the
low-noise regime, the sensitivity of the program to λ is apparently amplified,
and for λ > 0 one may still expect (QP∗λ) to behave similarly to unregularized
proximal denoising, begetting risk that behaves like a power law of N .

Proposition 3.3.5 (Asymptotic equivalence). Let N ∈ N with N ≥ 2,
s ∈ [N ] and λ̄ =

√
2 logN . For given problem data, suppose x](λ) solves

(QP∗λ), and let λ∗ be the optimal parameter choice for R](λ; s,N). Then

lim
N→∞

λ̄

λ∗
= 1

Remark 5. The value λ̄ estimates the optimal parameter choice for (QP∗λ)

in the following sense as N →∞ with s = o(N) [55].

λ∗ = O(
√

log(N/s)) ≈
√

2 logN =: λ̄
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3.3.3 Right-sided parameter stability

In the low-noise regime, R] may still be order-optimal if λ is chosen large
enough. Specifically, if λ = Lλ∗ for some L > 1, then R](λ;x0, N) is still
minimax order-optimal. We claim no novelty for the result of this section
(for example, this result is a consequence of [55, Theorem 2.2]), but use it
as a contrast to elucidate the previous theorem. Whereas for λ < λ̄ we are
penalized for under-regularizing in the low-noise regime in high dimensions,
the theorem below implies that we are not penalized for over-regularizing.

Theorem 3.3.6. (QP∗λ) is parameter stable in the sense that for any λ > 0

satisfying L = λ/λ∗ > 1, there is N0 = N0(s, λ) ≥ 2 so that for all N ≥ N0,

R](λ; s,N)

R∗(s,N)
≤ CL2.

Observe that the theorem still holds in the event that λ∗ is replaced by
λ̄. Thus, one may obtain the exact point of the phase transition, λ̄, observed
in Theorem 3.1.2. In fact, with this note, Theorem 3.1.2 follows as a direct
consequence of the results of this section by letting N →∞.

3.4 On parameter sensitivity for (BP∗σ)

The program (BP∗σ) is maximin suboptimal for very sparse vectors x0. We
show that R̃(σ;x0, N, η) scales as a power law of N for all σ > 0. This
rate is significantly worse than R∗(s,N). When x0 is very sparse and (BP∗σ)

is underconstrained, then σ ≥ ηN and § 3.4.1 proves that R̃(σ;x0, N, η) =

Ω(
√
N). When (BP∗σ) is overconstrained, then σ ≤ η

√
N and § 3.4.2 proves

that R̃(σ;x0, N, η) = Ω(N q) for some q > 0 when x0 is very sparse.
Intuitively, (BP∗σ) kills not only the noise, but also eliminates too much

of the signal content when underconstrained and s is small compared to N .
Because the signal is very sparse, destroying the signal content is disastrous
to the risk. When overconstrained, the remaining noise overwhelms the
risk, because the off-support has size approximately equal to the ambient
dimension.
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The above two steps are combined in Theorem 3.4.6 as a minimax for-
mulation over all σ > 0 and x0 ∈ ΣN

s . In Theorem 3.4.9, this result is
strengthened to a maximin statement over x0 ∈ ΣN

s and all σ > 0.
Although these results may seem to run contrary to the apparent efficacy

of the CS analogue of (BP∗σ) in empirical settings, we assure the reader that
they are consistent. The type of PS described in this section occurs at very
large dimensions, in the setting where s ≥ 1 is fixed. Thus, although these
results bode poorly for the ability of (BP∗σ) to recover even the 0 vector
(arguably a desirable property of a denoising program), many structured
high-dimensional signals observed in practice are not so sparse [in a basis] as
to belong to the present regime. Nevertheless, this result serves as a caveat
for the limits of a popular `1 convex program.

3.4.1 Underconstrained (BP∗σ)

The proof of this result uses standard methods from CS and may be found
in § 3.6.4.

Lemma 3.4.1. Let s ≥ 1 and let x0 ∈ ΣN
s \ ΣN

s−1 be an exactly s-sparse
signal with |xj | & N for all j ∈ supp(x0). If σ > η

√
N , then there exists a

constant C > 0 and integer N0 = N0(s) ≥ 2 such that if N ≥ N0 then

R̃(σ;x0, N, η) ≥ C
√
N.

3.4.2 Overconstrained (BP∗σ)

The proof that R̃(σ;x0, N, λ) scales as a power law of N when σ ≤ η
√
N

proceeds by an involved argument, hinging on two major steps. The first
step is to find an event whose probability is lower-bounded by a universal
constant, on which (BP∗σ) fails to recover the 0 vector when σ = η

√
N . Then,

Lemma 2.1.2 extends this result to all σ ≤ η
√
N . At this point, one may

obtain the minimax result of Theorem 3.4.6, as well as a partial maximin
result for all x0 ∈ ΣN

s on the restriction to σ ≤ η
√
N . Then, to strengthen

these claims to a maximin result over all σ > 0, we prove a lemma that
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leverages elementary properties from convex analysis to show how the error
of an estimator may be controlled by that of a lower dimensional estimator
from the same class.

In this section, we state key results for building intuition and defer tech-
nical results and proofs to § 3.6.4.

Theorem 3.4.2 (Overconstrained Maximin). There exist universal con-
stants C > 0, q ∈ (0, 1

2) and integer N0 ≥ 2 such that for all N ≥ N0, s ≥ 0

and η > 0,

sup
x0∈ΣNs

inf
σ≤η
√
N
R̃(σ;x0, N, η) ≥ CN q.

By scaling, it is sufficient to prove this result in the case where η = 1.
The discussion below thus assumes y = x0 + z, while results are stated in
full generality. The main result relies on proving

inf
σ≤
√
N
R̃(σ;x0, N, 1) ≥ CN q

when x0 ≡ 0, trivially implying the equation before it. Thus, the prob-
lem now becomes that of recovering the 0 vector from standard normally
distributed noise:

x̃(σ) = arg min{‖x‖1 : ‖x− z‖22 ≤ σ2}.

Here and below, we denote the feasible set in (BP∗σ) by F (z;σ) = BN
2 (z;σ)

and use the notation F := F (z;
√
N). For λ > 0 and 0 < α2 ≤ α1 < ∞,

define Ki = λBN
1 ∩ αiBN

2 to be the intersection of the `1-ball scaled by λ
with the `2-ball scaled by αi for i = 1, 2.

With σ =
√
N , we prove a geometric lemma. A pictorial representation

of this lemma appears in Figure 3.1, in which we have represented λBN
1

using Milman’s 2D representation of high-dimensional `1 balls to facilitate
the intuition for how they behave in the present context. The key to the
proof of Theorem 3.4.2 is the geometric lemma below, Lemma 3.4.3. It
proves there exists an `1 ball of radius λ that intersects the feasible set,
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hence a solution x̃(σ) must satisfy ‖x̃(σ)‖1 ≤ λ. Further, it shows that any
vector in the ball λBN

1 which has small Euclidean norm does not intersect
the feasible set. Thus, the solution must have large Euclidean norm.

Finally, this geometric lemma verifies that the previous three conditions
hold simultaneously with probability at least k3 > 0. As an immediate
consequence, this lemma yields a lower risk bound, Corollary 3.4.4.

Lemma 3.4.3 (Geometric lemma). Let K1,K2, F be defined as above. For
a particular choice of α1, there is a positive integer N (3.4.3)

0 , strictly positive
universal constants k3 = k3(N0), C3, q, and an event

E := {K1 ∩ F 6= ∅} ∩ {K2 ∩ F = ∅} ,

such that for any N ≥ N (3.4.3)
0 , it holds that P(E) > k3 and α2 > C3N

q.

Corollary 3.4.4. Fix η > 0. There are universal constants C, q > 0 such
that for all N ≥ N (3.4.3)

0 ,

R̃(η
√
N ; 0, N, η) ≥ CN q.

Note that N (3.4.3)
0 may be selected as the maximum of the N0 values

determined by the technical results Proposition 3.6.8 and Proposition 3.6.11
of § 3.6.4.

z

λB1
N

α2B2
N

α1B2
N

0
F

x(σ)~

Figure 3.1: A visualization of
the geometric lemma.
We use Milman’s 2D
representation of high-
dimensional `1 balls to fa-
cilitate intuition. In this
setting, x̃(σ) lies within
λBN

1 . On the lemma’s
event E , one has simulta-
neously K1 ∩ F 6= ∅ and
K2 ∩ F = ∅.

41



Next we extend Corollary 3.4.4 from the case where σ =
√
N to any

positive σ ≤
√
N . The proof of this result follows near immediately from

the projection lemma in Lemma 2.1.2. Thus, one finds x̃(σ) has Euclidean
norm at least as large as x̃(

√
N) when x̃(σ) is an estimator of the 0 vector.

Lemma 3.4.5. Let 0 < σ1 < σ0 =
√
N and x0 ≡ 0. Define x̃(σ0), x̃(σ1) as

in (BP∗σ) for σ = σ0, σ1, respectively. Then ‖x̃(σ1)‖22 ≥ ‖x̃(σ0)‖22. Moreover,
for N ≥ 2,

E ‖x̃(σ1)‖22 ≥ E ‖x̃(σ0)‖22.

3.4.3 Minimax results

We now have the tools to state a minimax sensitivity result for (BP∗σ). Infor-
mally, the best worst-case risk scales as a power law of N in the very sparse
regime. In particular, for s fixed and N sufficiently large, there is no choice
of σ > 0 yielding order-optimal risk for its corresponding worst-case signal.

Theorem 3.4.6 (Minimax Suboptimality). There are universal constants
C > 0, q ∈ (0, 1

2 ], N0 ≥ 2 such that for all N ≥ N0, η ≥ 0 and s ≥ 1,

inf
σ>0

sup
x∈ΣNs

R̃(σ;x,N, η) ≥ CN q

3.4.4 Maximin results

The final result of this section establishes maximin PS for all x0 ∈ ΣN
s and

σ > 0. To do this, we must show there exists a choice of signal x0 ∈ RN

admitting no choice of σ > 0 bestowing order optimal recovery error. To
this end, we will demonstrate that the previous overconstrained sensitivity
results extend to s-sparse signals with s ≥ 1. This will be enough to yield a
choice of x0 whose recovery is suboptimal over the whole parameter range.

Lemma 3.4.7 (Overconstrained (BP∗σ), s ≥ 1). Let x0 ∈ ΣN
s with supp(x0) ⊆

T ⊆ [N ], let y = x0 + ξ for some ξ ∈ RN , let x1 := 0 ∈ RN−s, and fix σ > 0.
Let x̃ = x̃(σ) ∈ RN be the solution of (BP∗σ) where x0 is the ground truth,
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and let x̃′ = x̃′(σ) ∈ RN−s be the solution of (BP∗σ) where x1 is the ground
truth. Then

‖x̃TC‖2 ≥ ‖x̃′‖2.

An immediate consequence of this result is the following inequality be-
tween the Euclidean norms of the error vectors.

Corollary 3.4.8. Let h := x̃ − x0 and h′ := x̃′ − x1, where x0, x1, x̃, x̃
′ are

defined as above. Then,

‖h‖2 ≥ ‖h′‖2.

Remark 6. The above corollary is not yet sufficient to imply the desired
maximin result below. As per the lemma, if N − s ≥ N

(3.4.3)
0 then x̃′ is

parameter unstable for σ ≤
√
N − s and hence so is x̃. The fix for this slight

mismatch is trivial, but technical. The result can be extended to the range
σ ≤

√
N by adjusting the constants in the proof of Lemma 3.4.3 and its

constituents, leveraging the fact that (N − s)/N → 1 as N → ∞ and re-
selecting N (3.4.3)

0 if necessary. We omit the details of this technical exercise.

We proceed under the assumption that the constants have been tuned to
allow for x̃′ PS to imply x̃ PS for all σ ≤

√
N . Thus equipped, we state the

following maximin PS result for (BP∗σ). The proof of this result proceeds by
finding a signal x0 ∈ ΣN

s such that R̃(σ;x0, N, η) is suboptimal for all σ > 0.
Since Lemma 3.4.1 applies only to signals x0 with at least one non-zero entry,
one shows there exists such a signal which simultaneously admits poor risk
for σ ≤ η

√
N and σ ≥ η

√
N . For example, it is enough to take x0 := Ne1

where e1 ∈ RN is the first standard basis vector.

Theorem 3.4.9 ((BP∗σ) maximin suboptimality). There are universal con-
stants C > 0, q ∈ (0, 1

2 ] and N0 ≥ 1 such that for all N ≥ N0

sup
x0∈ΣNs

inf
σ>0

R̃(σ;x0, N, η) ≥ CN q.

43



Remark 7. The current result is given in a maximin framework. This frame-
work is stronger than the minimax one in which these types of results are
typically framed. In essence, the maximin framework assumes that the min-
imizer has knowledge about the ground truth signal x0. Even still, it is not
possible to choose σ to achieve order-optimal risk.

3.5 Numerical Results
Let P ∈ {(LS∗τ ), (QP∗λ), (BP∗σ)} be a PD program with solution x∗(υ), where
υ ∈ {τ, λ, σ} is the associated parameter. Given a signal x0 ∈ RN and noise
ηz ∈ RN , denote by L (υ;x0, N, ηz) the loss associated to P. For instance,
if P = (LS∗τ ), then L = L̂. In most cases, the signal x0 for our numerical
simulations will be s-sparse and s will be “small”. For simplicity, and to
ensure adequate separation of the “signal” from the “noise”, each non-zero
entry of x0 will be equal to N , except where otherwise noted.

Define υ∗ := υ∗(x0, η) > 0 to be the population minimizer of L (·;x0, N, ηz)

— that is, the value υ where Ez L (·;x0, N, ηz) is minimal. Let the nor-
malized parameter ρ for the problem P be given by ρ := υ/υ∗ and let
L(ρ) := L (ρυ∗) denote the loss for P as a function of the normalized pa-
rameter. Note that ρ = 1 corresponds to a population minimizer of L

via the re-parametrization. For {ρi}ni=1 being a sequence of points in the
normalized parameter space, define the average loss for P at any ρi by

L̄(ρi;x0, N, η, k) := k−1
k∑
j=1

L(ρi;x0, N, ηẑij), (3.2)

where ẑij is the (i, j)-th realization of noise; ẑij ∼ N (0, IN ) for all (i, j) ∈
[n] × [k]. We may refer to L as the nnse. We may also refer to L̄ as the
empirical risk, average noise-normalized squared error (nnse) or simply the
average loss. Note that L̄ depends on (ẑij : i ∈ [n], j ∈ [k]) and that notat-
ing this dependence is omitted for simplicity. Below, ẑij are not necessarily
sampled independently. In fact, to obtain tractable computational simula-
tions, we will frequently have ẑij = ẑi′j for i, i′ ∈ [n]. Where necessary, we
disambiguate the average losses with a subscript: L̄(LS∗τ ), L̄(QP∗λ), and L̄(BP∗σ)

44



for the programs (LS∗τ ), (QP∗λ) and (BP∗σ), respectively.
For example visualizations of the average loss for each program, we refer

the reader to Figures 3.2a, 3.2b, 3.3c, 3.4a and 3.5. Typically the average loss
was evaluated on a grid {ρi}ni=1 of size n and plotted on a log-log scale. Each
of the nk realizations of the noise is distributed according to ẑij ∼ N (0, 1)

unless otherwise noted. The noise level is denoted by η > 0 and the signal is
given by x0 where x0 = N

∑s
i=1 ei with ei being the ith standard basis vector.

The grid {ρi}ni=1 was logarithmically spaced and centered about ρ(n+1)/2 = 1

with n always odd. The solutions to each PD problem were obtained using
standard available methods in Python: sklearn’s minimize_scalar func-
tion from the optimize module was used for solving (LS∗τ ) and (BP∗σ) [58],
while the solution to (QP∗λ) was obtained via soft-thresholding. Finally,
the optimal values τ∗, λ∗ and σ∗ were either determined analytically (e.g.,
τ∗ = ‖x0‖1), or estimated on a dense grid about an approximately opti-
mal value for that parameter. Initial guesses for σ∗ and λ∗ were η

√
N and

η
√

2 log(N/s) respectively.

3.5.1 (LS∗τ ) numerical simulations

This section presents numerical simulations demonstrating PS of (LS∗τ ) in
the low-noise regime for two different ambient dimensions N = 103, 106.
This repetition has the benefit of showcasing the behaviour of (LS∗τ ) at
two different sparsity levels, as well as contrasting the behaviour of (LS∗τ )

with (QP∗λ) and (BP∗σ) at relatively low and high dimensions. Using the
notation above, n = 501 points and s = 20; (k,N) = (50, 103) for Fig-
ure 3.2a, while (k,N) = (25, 106) for Figure 3.2b. In both regimes, x0 is
quite sparse (s/N ∼ 10−2, 10−5) with entries that are well separated from
the noise (N/η ∼ 106, 109).

We may glean several pieces of information from these two plots. Most
notably, the (LS∗τ ) PS manifests in very low dimensions, relative to practical
problem sizes. Moreover, the curve for (LS∗τ ) average loss seems to approach
something resembling the sharp asymptotic phase transition described by
Theorem 3.2.1. One may also notice the behaviour of the other two programs
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Figure 3.2: (LS∗τ ) PS in the low-noise regime. The loss for (LS∗τ ), in
green, exhibits greater parameter sensitivity than either (BP∗σ)
(in orange) or (QP∗λ) (in blue). Plotted is the average loss,
as per (3.2), for each program. The data are shown on a
log-log scale and plotted with respect to the normalized pa-
rameter ρ. The data parameters for (a) are (s,N, η, k, n) =
(20, 103, 10−3, 50, 501) and those for (b) are (s,N, η, k, n) =
(20, 106, 10−3, 25, 501).

in the low-noise regime. It is apparent that the magnitude of the derivative
for the (QP∗λ) risk increases markedly on the left-hand side of the optimal
normalized parameter value (i.e., below 1) between theN = 103 andN = 106

plots. This behaviour is consistent with the result in Theorem 3.3.4 that the
left-sided risk scales as a power law of N .

Finally, we observe that (BP∗σ) develops a shape resembling the sensi-
tivity of (LS∗τ ) when N = 106. We defer commentary on this behaviour
to § 3.5.3.

3.5.2 (QP∗λ) analytic plots

In this section we plot R](λ; s,N) using (3.1). In addition we plot the mag-
nitude of its derivative with respect to the normalized parameter u, where
λ = uλ∗. For fixed sparsity, we visualize R] as a function of u and the
ambient dimension N .

In Figure 3.3a we plot R](uλ∗; 1, N) as a function of N for u ∈ {1/2, 1 +

10−6, 2}. As reference, we also plot the curves y = CNκ for κ ∈ {1/20, 7/10}.
It is evident from the reference lines that R](uλ∗; 1, N) scales like a power law
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of N for u = 0.5, while R](uλ∗; 1, N) appears to have approximately order-
optimal growth for u = 1 + 10−6, 2. The derivatives of these three functions
are visualized in Figure 3.3b, which includes reference lines y = CNκ, κ ∈
{1/20, 7/10}. Again, it is evident that the derivative scales as a power law
of N for those risks with u < 1; apparently order-optimal otherwise. As a
technical point, we note that we selected u = 1 + 10−6 instead of u = 1,
because in the latter case the derivative is 0, which is poorly represented on
a log-log scale.

In Figure 3.3c we plot R](uλ∗; 1, 1010) as a function of the normalized
parameter u. One may observe PS for u < 1 (i.e., λ < λ∗), for example
by comparison to the plotted reference line y ∼ u−25. Similarly, one may
observe right-sided parameter stability of R](uλ∗; 1, 1010) by comparing with
the second plotted reference line, y ∼ u2. From these simulations one may
observe that choosing λ = .5λ∗ accrues at least a 106 fold magnification of
the risk. Observe that the plot of the analytic expression for R](λ; s,N)

agrees well with the simulations approximating R](λ;x0, N, η) in Figure 3.2
and Figure 3.4. In Figure 3.3d we plot

∣∣ d
duR

](uλ∗; 1, 1010)
∣∣ as a function of

the normalized parameter u. Again, the right-sided stability and left-sided
sensitivity are apparent. The cusp about u = 1 is due to the fact that the
derivative vanishes for u = 1 (this is by definition the value of u yielding
minimal risk); this cusp was cut-off at 10−5 for visualization purposes.

Finally, we would like to clarify a potentially confusing issue. Though our
theory for (QP∗λ) refers to λ∗ only through its connection with λ̄, we were able
to approximate λ∗ empirically in our numerical simulations. Accordingly, we
have made reference to it when discussing parameter stability regimes.

3.5.3 (BP∗σ) numerical simulations

This section presents numerical simulations demonstrating PS of (BP∗σ) in
the regime where x0 is very sparse. Figure 3.4a is generated as described by
the above procedure in § 3.5, with parameters (s,N, η, k, n) =

(1, 106, 1, 31, 501), while Figure 3.4b was generated in a way that mirrors the
proof of Theorem 3.4.9, with parameters (s, η, k, n) = (1, 1, 31, 51).
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Figure 3.3: (QP∗λ) PS in the low-noise regime. All curves are gen-
erated analytically using the expressions obtained in § 3.3 and
plotted on a log-log scale. (a) A plot of R](uλ∗; 1, N) as a func-
tion of N for u ∈ {1/2, 1 + 10−6, 2}. The lines y = CNκ

for κ ∈ {1/20, 7/10} are plotted for reference. (b) A plot
of the magnitude of d

duR
](uλ∗; 1, N) as a function of N for

u ∈ {1/2, 1 + 10−6, 2}. The lines y = CNκ for κ ∈ {1/20, 7/10}
are plotted as reference. Note that d

duR
](λ∗; 1, N) = 0 and so we

have omitted plotting this quantity on a log-log scale. (c) A plot
of R](uλ∗; 1, 1010) as a function of the normalized parameter u.
Two lines are plotted as reference for risk growth rate with re-
spect to u. (d) A plot of

∣∣ d
duR

](uλ∗; 1, 1010)
∣∣ as a function of

the normalized parameter u. We exclude u = 1 from the plot;
the function’s value at this point is undefined on a log-log scale,
since d

du

∣∣
u=0

R](uλ∗; 1, 1010) = 0.

The purpose of Figure 3.4a is to resolve PS of (BP∗σ) about the optimal
parameter choice. Because the theory suggests that R̃(σ;x0, N, η) is surely
resolved when the ambient dimension is sufficiently large, we set N = 106;
this value was expected to resolve the sensitivity, as per the discussion later
in this section. We limited the number of realizations, because the problem
size was computationally prohibitive. The minimal average loss observed on
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the plot was significantly larger than the respective minimal average losses
of (LS∗τ ) and (QP∗λ) by a factor of 5.9, supporting the theory. We expect this
discrepancy to increase as dimension increases; however, this investigation
was limited by the computational demands of the problem. We also noticed
a cusp-like behaviour, which would be an interesting object of further study.

Figure 3.4b was generated so as to mirror the theory backing Theo-
rem 3.4.9. Specifically, noise realizations were constrained to the constant
probability event {‖z‖22 − N ∈ (.5

√
N, 5
√
N)}. Plotted in the figure is the

best average loss as a function of N , for each program,

L̄best(N ;x0, η, k, n) :=
1

k
min
i∈[n]

k∑
j=1

L(ρi(N);x0, N, ηẑj).

The domain for N ranges from 103 to 4.786 · 106, computed on a logarithmi-
cally spaced grid composed of 47 points. For each program and each value N
in the grid, the average loss was computed for n = 51 values of the normal-
ized parameter, each using k = 31 realizations of noise. The grid of n values
were centered at the optimal value of the normalized parameter, and were
densest about this value, so as to best resolve the average loss curves about
their optimal values. Included for reference is a simple linear regression fitted
on the log-scaled data (i.e., a linear regression fitted to the log-best average
loss as a function of the log-normalized parameter, for each program). The
regression coefficients were computed using standard tools in Python [58].
The slope of the linear regression corresponds to the power law of the data,
as depicted in the legend. Observe that the value for (BP∗σ) approximately
matches the lower bound derived for R̃(η

√
N ;x0, N, η) in Lemma 3.4.1.

Finally, observe that in both Figures 3.4a and 3.2b, the average loss for
(BP∗σ) has a cusp-like shape resembling the sensitivity of (LS∗τ ) in Figure 3.2b
when N = 106. We offer the plausible explanation that the relative sparsity
of the signal is small (s/N = 2/105) and thus this regime coincides with
the regime in which (BP∗σ) develops PS. We observed similar behaviour
in Figure 3.4, which depicted cusp-like behaviour about the optimal choice
of the normalized parameter. It is interesting that parameter sensitivity
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Figure 3.4: (BP∗σ) PS in the very sparse regime. (a) Data parameters:
(s,N, η, k, n) = (1, 106, 1, 31, 501). Average losses plotted on a
log-log scale with respect to the normalized parameter. (b) Best
average loss for (BP∗σ) as a function of N . Data parameters:
(s, η, k, n) = (1, 1, 31, 51). The function σopt(N) was obtained
as the value of σ bestowing minimal average loss of the program
for each N . A simple linear regression was fitted the log-scaled
data and plotted for reference; each model’s slope is equal to the
power appearing in its respective legend entry. .

developed by (BP∗σ) seems to manifest in a way similar to that of (LS∗τ ),
because Theorem 3.4.9 shows that there is no good choice of parameter σ,
though Figure 3.4 supports that there is a single best choice, albeit minimax
suboptimal, when N is moderately large.

Simulating theorem parameters

Here we clarify the relationship between some of the constants appearing in
the proofs of Theorem 3.4.6 and Theorem 3.4.9. We provide two examples of
minimal N0 values guaranteeing PS behaviour of (BP∗σ) for given parameter
choices. The theory does not claim these values to be optimal, nor do we
claim that the constants are tuned. In particular, these demonstrations seem
rather pessimistic, especially by comparison with the numerical simulations
in Figure 3.4.

The following values were determined by computing

N0 := max{N (3.6.6)
0 (a1, C1, L), N

(3.6.9)
0 (C2, L)}
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for particular choices of a1, C1, C2 and L, using their definitions in the techni-
cal results of § 3.6.4. Thus, the theory of § 3.4 guarantees PS for all N ≥ N0

when

N0 ≈ 1.5e6 and (a1, C1, C2, L) ≈ (1.45, 5, 4, 3.78) or

N0 ≈ 4.9e5 and (a1, C1, C2, L) ≈ (1.58, 4.04, 4, 3.62).

These numbers appear pessimistic, given that N0 is large, while (C2, C1) ≈
(4, 5) implies the sensitivity arises on the event {‖z‖22−N ∈ (4

√
N, 5
√
N)},

which occurs with relatively minute (but constant) probability. Thus, it may
not be all that surprising that (BP∗σ) suboptimality is difficult to ascertain
empirically from a small number of realizations in only moderately large
dimension when σ ≈ σ∗.

3.5.4 Parameter stability in sparse proximal denoising

In this section we show numerical simulations in which the three programs
appear to exhibit better parameter stability. For these simulations, η ≈
233.0, s = 2500 and N = 104. Average loss was computed from k = 31

realizations for n = 501 grid points. As the noise is large, this setting lies
(mostly) outside the regime in which (LS∗τ ) and (QP∗λ) exhibit PS. Moreover,
the signal is not very sparse, since s/N = .25. Thus, this setting also lies
outside the regime in which (BP∗σ) exhibits PS. Accordingly, smooth risk
curves are seen for (BP∗σ) and (QP∗λ). While (QP∗λ) and (BP∗σ) appear rel-
atively gradual, (LS∗τ ) appears to avoid a pronounced cusp-like point about
τ/τ∗ = 1. These data are visualized in Figure 3.5.

3.5.5 Triptych comparison of program sensitivity

Here, we include two sets of visualizations. In each, a key parameter is varied
to explicitly show the way in which it affects the PS of a program without
affecting the PS of the other(s).

In Figure 3.6, the parameters for the synthetic experiment were (s,N, k, n) =

(1, 105, 50, 501) with η ∈ {102j−1}2j=−2. As usual, the plots visualize the
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Figure 3.5: Parameter stability of sparse PD programs when
(s,N, η, k, n) = (2500, 104, 233, 31, 501). Plotted curves repre-
sent average loss, plotted on a log-log scale.

average loss as a function of the normalized parameter, with the plots cor-
responding to (BP∗σ), (LS∗τ ) and (QP∗λ), respectively, from left to right. One
readily observes that the average loss curves for (LS∗τ ) become sharper as
the noise-level decreases (centre plot). In contrast, there is little observable
difference in the average loss for both (BP∗σ) (left plot) and (QP∗λ) (right
plot) as η varies. We relegate other comparisons drawn between the three
programs to the relevant subsections of this thesis.

The parameters for the synthetic experiment shown in Figure 3.7 were
(N, η, k, n) = (106, 100, 50, 501) with s ∈ {1, 5, 25, 125}. As above, the plots
visualize average loss as a function of the normalized parameter for the pro-
grams (BP∗σ), (LS∗τ ), and (QP∗λ), respectively, from left to right. In each plot,
which is plotted on a log-log scale, s is varied to showcase this behaviour.
The plots serve to exemplify PS of (BP∗σ) in the very sparse regime. The
average curves for (BP∗σ) become more parameter unstable as s decreases
(left-most plot). Indeed, away from the optimal choice of the normalized
parameter, the curves are nearly identical; however, at the optimal parame-
ter, the minimum average loss increases as s does (the minimum average loss
values for (BP∗σ) are highlighted by arrows of matching colour). Thus, when
the sparsity level is small, small perturbations about the optimal parameter
choice lead to larger changes in average loss relative to larger values of s. In
particular, when s is small, small variations in the normalized parameter es-
sentially destroy the advantage imbued by sparsity. In contrast, the average
loss curves for (LS∗τ ) become sharper about τ/τ∗ = 1 as sparsity increases.
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Figure 3.6: Dependence of each PD program on noise level η;
(s,N, k, n) = (1, 105, 50, 501). Each plot corresponds to a sin-
gle program: (BP∗σ), (LS∗τ ), (QP∗λ), from left to right. In
each plot, that program’s average loss is plotted with respect
to its normalized parameter on a log-log scale for each η ∈
{10−5, 10−3, 10−1, 101, 103}. These plots are best observed on
a computer (in colour).

As s increases, so too does the norm of x0; we have seen that this is in a
sense equivalent to decreasing η. Therefore, as s increases, one expects the
average loss curve to become sharper (i.e., more parameter unstable). This
is indeed what happens. Similarly, one sees that small variations about the
optimal choice of the normalized parameter lead to larger variation in (QP∗λ)

average loss when s is smaller. Still, in the present regime, this program
appears to be the most stable of the three with respect to variation of the
normalized parameter about its optimal value.

3.5.6 Realistic denoising examples

Image-space denoising

We visualize how proximal denoising behaves for a realistic denoising prob-
lem. The ground truth signal is the standard 512 × 512 × 3 colour image
of a mandrill face, ravelled to a vector x0 ∈ [0, 1]N ⊆ RN , N = 786 432.
The denoising is performed in image space. Specifically, the signal x0 is not
sparse: 99.98% of its coefficients are nonzero. We set yj = x0,j + ηzj ∈ RN

where η = 10−5, 1 and zj
iid∼ N (0, 1). The results of this example are dis-

played in Figure 3.8: the ground truth and noisy images in the top row, and

53



10 1 100 101

Normalized Parameter

102

104

106

108

1010
(BP* )

1
5
25
125

10 1 100 101

Normalized Parameter

102

104

106

108

1010
(LS*)

1
5
25
125

10 1 100 101

Normalized Parameter

102

104

106

108

(QP*)
1
5
25
125

Figure 3.7: Dependence of each PD program on sparsity level s;
(N, η, k, n) = (106, 100, 50, 501). Each plot corresponds to
a single program: (LS∗τ ), (BP∗σ), (QP∗λ), from left to right.
In each plot, that program’s average loss is plotted with re-
spect to its normalized parameter on a log-log scale for each of
s ∈ {1, 5, 25, 125}. For (BP∗σ), the minimum average loss for
each value of s is annotated with an arrow of matching colour.
These plots are best observed on a computer (in colour).

quantitative results captured by plots of the average loss (3.2) in the bottom
row.

The plots of average loss were generated from k = 25 realizations of noise
z, with a logarithmically spaced grid of n = 501 points centered about the
optimal parameter value for each of the three proximal denoising programs.
The optimal parameter value for each program was determined analytically
where possible, or numerically using standard solvers [78]. A smooth ap-
proximating curve of the non-uniformly spaced point cloud of loss realiza-
tions was computed using radial basis function (RBF) approximation (see
§ A.2.2). The RBF approximation used multiquadric kernels with param-
eters (εrbf, µrbf, nrbf) = (10−3, 10−2, 301). Here, εrbf is the associated RBF
scale parameter, µrbf is a smoothing parameter and nrbf is the number of grid
points at which to approximate [78]. The RBF parameters for the approx-
imation were selected so as to generate a smooth line that best represents
the path about which the individual (noisy) data points concentrate.

About the optimal average loss (where the normalized parameter is 1),
an average difference of 1% in the value of τ results in a nearly 5 × 105

fold difference in nnse on average when η = 10−5. In contrast, that error
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Figure 3.8: Top (left-to-right): The underlying signal is the 512 ×
512 × 3 mandrill image; the middle image is corrupted by iid
normally distributed noise (η = 10−5); the right-most image
is corrupted by iid normally distributed noise (η = 1). The
pixel values of the original image lie in [0, 1]3; those of the
noisy images are scaled to this range for plotting. Bottom:
Average loss is plotted with respect to the normalized param-
eter for (LS∗τ ), (QP∗λ) and (BP∗σ) respectively when η = 10−5

(left) and η = 1 (right). The associated parameters are
(N, k, n) = (786 432, 25, 501). Plotted lines are smoothed ap-
proximations of loss realization data using multiquadric RBFs.
In the left-hand plot, the nnse curve for (BP∗σ) is obscured by
that of (QP∗λ).

varies by no more than a factor of three in the large noise regime (η = 1).
Moreover, we observe that the average losses computed for η = 10−5 upper
bound those computed for η = 1. These results suggest not to use (LS∗τ ) for
proximal denoising when η is small, even when the underlying data are not
sparse.

1D denoising example

In this section, we demonstrate PS regimes for a realistic example of a 1D sig-
nal using wavelet domain denoising. Specifically, an s-sparse 1D signal x0 ∈
RN was generated in the Haar wavelet domain, where (s,N) = (10, 4096).
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In the signal domain, iid normal random noise was added to the signal to
generateW−1y :=W1x0 +ηz where η = N

100 ,
N
10 . The denoising problem was

solved in the wavelet domain on a grid of size 501 centered about the op-
timal normalized parameter and logarithmically spaced. Namely, the input
to each program was y. The loss was computed in the signal domain after
applying the inverse transform to the estimated solution:

L(ρ;x0, N, ηẑ) := η−2‖W−1(x∗(ρ)− x0)‖22.

A smooth approximation to the average loss L̄(ρi;x0, N, η, k) was computed
from k = 50 realizations of the noise using linear radial basis function ap-
proximation with parameters (µrbf, nrbf) = (2, 501).

In Figure 3.9, we visualize how the three programs behave for denoising
a 1D signal, sparse in the Haar wavelet domain, which has been corrupted
by one of two different noise levels in the signal domain. The top row visu-
alizes the ground truth signal with a realization of the corrupted signal for
η = N/100 (top-left) and η = N/10 (top-right). The bottom row visualizes
the average loss with respect to the normalized parameter of each program.
In the high-noise regime (bottom-right), it is clearly seen that (BP∗σ) is the
most parameter unstable about the optimal parameter choice. Moreover,
the best average loss for (BP∗σ) is greater than that for (QP∗λ) or (LS∗τ ), as
suggested by the supporting theory. We note that (QP∗λ) also has an average
loss greater than the minimal one, and suggest — noting the local variability
in the curve — that this is an artifact of the RBF approximation through the
optimality region. In the moderate-noise regime, we see a situation in which
(QP∗λ) appears to be the most parameter stable — again consistent with
our reasoning that unconstrained programs should exhibit better stability.
In contrast, (LS∗τ ) is most parameter unstable below the optimal parameter,
while it is (BP∗σ) that is most parameter unstable above the optimal param-
eter. This behaviour may be indicative of a regime intermediate to those we
have previously discussed (i.e., lying between strictly low-noise and strictly
very sparse).

With the grid in Figure 3.10, we intend to elucidate how PS manifests
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for each program as a function of the normalized parameter, by visualizing
the recovered signal for different values of the normalized parameter. The
top plot shows the same average losses that are plotted in the bottom-left of
Figure 3.9. The dotted lines at ρ = .5, .75, 1, 4/3, 2, and the markers located
approximately at the intersection of these lines with the loss curves, mark
sections of the loss for which the solution to the program will be visualized.
Indeed, for each value of ρ and each program, there is a corresponding plot
in the grid that depicts the solution to the program for that normalized
parameter value ρ, along with the original signal x0, which is depicted as a
black dotted line in each of the 15 plots. When ρ is too small for (BP∗σ) and
(QP∗λ), it is clear that the noise fails to be thresholded away. In contrast, this
occurs for (LS∗τ ) when ρ is too large. On the other hand, the signal content
is thresholded away by (BP∗σ) when ρ too large, and by (LS∗τ ) when ρ is
too small. Notice that this behaviour does not seem to occur with (QP∗λ),
further supporting that (QP∗λ) admits right-sided parameter stability.

Wavelet-space denoising

In this section, we demonstrate PS regimes for a realistic example using
proximal denoising of an image signal in a wavelet domain. Namely, noise
is added in the image domain, the data denoised in Haar wavelet space, and
performance of the back-transformed estimator is evaluated in the image
domain. The image was designed to resemble a Shepp-Logan phantom, but
to admit a very sparse expansion in Haar wavelets. This modified phantom,
which we coin the “Square Shepp-Logan phantom”, was created so as to be
sparse enough to allow for better visualization of (BP∗σ) PS. Specifically, if
one were to generate the same figures for the Shepp-Logan phantom, one
would see that (BP∗σ) is less parameter stable than (QP∗λ), but that the
behaviour is markedly less pronounced than the behaviour we visualize in
Figure 3.11 or Figure 3.13. Indeed this discrepancy results from the standard
Shepp-Logan phantom being less sparse (having more non-zero entries) in its
Haar wavelet transform than our modification. An alternative demonstration
using the standard Shepp-Logan phantom might proceed using a different
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Figure 3.9: Haar wavelet space denoising of a 1D signal that is sparse
in the Haar wavelet domain for two different noise levels, η =
N/100 (left column) and η = N/10 (right column). Top: each
plot contains a realization of the noisy 1D signal plotted in or-
ange with the ground truth signal in blue. Bottom: plots of the
average loss as a function of the normalized parameter for each
program, computed using RBF approximation. The parameters
for this example are: (s,N, k, n) = (10, 4096, 50, 501).

transform domain in which its representation is sparser.
A corrupted Square Shepp-Logan phantom was obtained by adding iid

noise zi,j
iid∼ N (0, 1) to the image pixels I = (Ii,j)i,j , yielding y where

yi,j = Ii,j + ηzi,j with η = 10−5, 0.5 and where Ii,j ∈ [0, 1] is the (i, j)th
pixel of the uncorrupted Square Shepp-Logan phantom. The input signal to
each recovery program was the vectorized 2D Haar wavelet transform of yi,j :
w =W(yi,j)i,j where W is the operator connoting a Haar wavelet transform
to (vectorized) Haar wavelet coefficients. Loss was computed in the image
domain, using the nnse of the inverse-transformed proximal denoising esti-
mator. For example, the loss for (BP∗σ) is given by η−2‖W−1(x̃(σ)) − I‖22.
Average loss (3.2) was thus computed by averaging the loss over k = 25

realizations of the noise z.
The associated parameters of the problem are (s,N, k, n) =

(5188, 409618, 25, 501), implying a relative sparsity of 1.27%. To create ef-
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Figure 3.10: Wavelet space denoising of a 1D signal for different values
of the normalized parameter when η ≈ 41. Top: The sections
of the average-loss surface for which estimator recovery will
be visualized are depicted by the dots which lie nearly on the
black dotted lines, themselves located at ρ = 0.5, 0.75, 1, 4/3, 2.
Bottom: This group of fifteen plots represents a program’s
solution for a particular value of the normalized parameter,
arranged in a grid. Each row of the 15 plot grouping represents
a program, as denoted by the legend label; each column a value
of the normalized parameter, as determined by the heading
above the top row.

fective visualizations of the PS behaviour, the noisy images seen in the top
row of Figure 3.11 are scaled to the interval [0, 1]. Subsequent visualizations
do not perform this rescaling so that a perceptual evaluation of the recovery
is better facilitated.

The plots in the bottom row of Figure 3.11 depict the average loss as a
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function of the normalized parameter ρ of each program. For each of the k re-
alizations, the loss was computed on a logarithmically spaced grid of n = 501

points about the optimal parameter. As in § 3.5.6, a smooth approximat-
ing curve to the non-uniformly spaced point cloud of loss realizations was
computed using RBF approximation. The RBF approximation used mul-
tiquadric kernels with parameters (εrbf, µrbf, nrbf) = (10−3, 10−2, 301) [78].
The RBF parameters for the approximation were selected so as to gener-
ate a smooth line that best represents the path about which the individual
(noisy) data points concentrate, especially so as to resolve the behaviour of
the loss about ρ = 1.

About the optimal average loss, an approximate 108 fold difference in
average loss results from a less than 2% perturbation of τ with τ < τ∗ in the
low-noise and very sparse regime (η = 10−5, s/N ≈ 1.27%); an approximate
102 fold difference in average loss results from a less than 2% perturbation of
τ with τ > τ∗, which is consistent with the theory. In this regime, we observe
that (BP∗σ) is less stable than (QP∗λ) for values of the normalized parameter
greater than 1, as suggested by our theory. In the very sparse regime with
large noise (η = 0.5), (BP∗σ) is markedly more parameter unstable than (LS∗τ )

or (QP∗λ), especially for values of the normalized parameter exceeding 1.
In Figure 3.12 and Figure 3.13 we depict estimator performance by vi-

sualizing the solution to each program at specific values of the normalized
parameter. The description of each figure is identical, but the noise levels
η differ between them. Specifically, for each program we show the recov-
ered image and its pixel-wise nnse for values of the normalized parameter
ρ = 0.5, 0.75, 1, 4/3, 2. The plot in the top row of the figure depicts the loss
as a function of the normalized parameter for each program and for a real-
ization of the noise z. Also depicted are reference lines for the corresponding
values of the normalized parameter whose recovered image are visualized.
The middle row contains a grid of 15 images; each column corresponds to
a value of the normalized parameter as denoted by the title heading, while
each row corresponds to a proximal denoising program as denoted by the
labels along the left-most y-axis. The bottom grouping of 15 images de-
picts the pixel-wise nnse, arranged identically to the middle row. Because
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the average loss curves were computed on a grid of n logarithmically spaced
points centered about the optimal parameter value, we do not visualize the
recovered image for the exact values of ρ given above, but for those values
represented by the coloured points seen in the plot of the top row. These
points are sufficiently close to the quoted values of ρ so as to visualize the
program behaviour all the same.

The numerics of Figure 3.12 occur in the low-noise regime (η = 10−5),
and so, as expected, demonstrate PS of (LS∗τ ). We note that pixel-wise
nnse for (BP∗σ) is approximately 20 times worse than (QP∗λ) when ρ ≈ 2.
Moreover, the pathologies (in the sense of pixel-wise nnse) of these latter two
programs appear similar. We also observe that the pixel-wise nnse varies
more greatly for (BP∗σ) than for (QP∗λ) as ρ varies from 0.75 to 4/3. This
is consistent with our theory for the behaviour of (BP∗σ) in the very sparse
regime. The numerics of Figure 3.13 occur in the high-noise regime (η = 0.5).
Failure of (BP∗σ) in the very sparse regime is seen from examining the solution
itself. For example, when ρ < 1, pixel values of the solution to (BP∗σ)

may reach more than 2 or even be negative. This pathology manifests as
large-magnitude pixelation in the corresponding plots of pixel-wise nnse.
Catastrophic failure of (BP∗σ) is observed for ρ > 1, in which the program
fails to recover any semblance of the original image. Specifically, large σ
shrinks the wavelet coefficients to near the origin, enforcing few non-zero
components that are small in magnitude. This yields the rectangular pattern
observed in the solutions for (BP∗σ) (top-right of the middle row). In contrast,
moderate deformation of the image is observed for ρ 6= 1 for both (QP∗λ) and
(LS∗τ ).
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Figure 3.11: Top (left-to-right): The underlying signal is the 640×
640 Square Shepp-Logan phantom image; the middle image
is corrupted by iid normally distributed noise (η = 10−5); the
right-most image is corrupted by iid normally distributed noise
(η = 0.5). The pixel values of the original image lie in [0, 1];
those of the noisy images are scaled to [0, 1]. Bottom: Av-
erage loss is plotted with respect to the normalized parame-
ter for (LS∗τ ), (QP∗λ) and (BP∗σ) respectively when η = 10−5

(left) and η = 0.5 (right). The associated parameters are
(s,N, k, n) = (5188, 409618, 50, 501), implying relative spar-
sity of 1.27%. Plotted lines are smoothed approximations of
loss realization data using multiquadric RBFs.

3.6 Proofs

3.6.1 Preliminary results

Proof of `1 tangent cone equivalence

Proof of Lemma 2.3.3. First observe that the definition of FC(x) is equiva-
lent to

FC(x) = {h ∈ RN : h = z − x, ‖z‖1 ≤ ‖x‖1}.
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Next, observe that K(x) is a cone. So, for left containment, it suffices to
show FC(x) ⊆ K(x) since the cone generated by a set is no larger than any
cone containing that set. By definition of h = z − x ∈ FC(x):

〈sgn(x), x〉 = ‖x‖1 ≥ ‖z‖1 = ‖zT ‖1 + ‖hTC‖1;

‖zT ‖1 = 〈sgn(z), zT 〉 ≥ 〈sgn(x), zT 〉.

The above expressions combine to yield left containment:

‖hTC‖1 ≤ −〈sgn(x), zT − x〉 = −〈sgn(x), hT 〉 = −〈sgn(x), h〉.

To show right containment, it suffices to show, for any w ∈ K(x), that there
exists α > 0 so that αw ∈ FC(x). Fix w ∈ K(x) and select α > 0 sufficiently
small so that z := x+ αw admits zjxj ≥ 0 for all j ∈ T . Using α‖wTC‖1 ≤
−α〈sgn(x), wT 〉, we show ‖z‖1 ≤ ‖x‖1 implying that αw ∈ FC(x), whence
w ∈ TC(x). Defining h := αw = z − x, we have

‖z‖1 = ‖zT ‖1 + ‖zTC‖1 = 〈sgn(zT ), zT 〉+ ‖hTC‖1
≤ 〈sgn(zT ), zT 〉 − 〈sgn(x), hT 〉

= 〈sgn(zT ), zT 〉 − 〈sgn(x), hT 〉+ 〈sgn(x), x〉 − 〈sgn(x), x〉

= 〈sgn(x), x〉+ 〈sgn(zT ), zT 〉 − 〈sgn(x), zT 〉

= ‖x‖1 + 〈sgn(zT )− sgn(x), zT 〉 = ‖x‖1.

The latter equality follows from the fact that 〈sgn(zT )− sgn(x), zT 〉 = 0 by
choice of α. Thus, w ∈ TC(x) and TC(x) = K(x) as desired.

Proof of worst-case risk equivalence

Lemma 3.6.1 (Increasing risk). Fix x0 ∈ ΣN
s , ‖x0‖1 = 1. Then R̂(τ ; τx0, N, η)

is an increasing function of τ ≥ 0.

Proof of Lemma 3.6.1. Given y(τ) := τx0 + ηz for η > 0 and z ∈ RN , zi
iid∼
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N (0, 1), let x̂(τ) := x̂(τ ; y(τ)) solve

x̂(τ ; y(τ)) := arg min
x
{‖y(τ)− x‖2 : ‖x‖1 ≤ τ}

Let K := BN
1 − x0, a convex set containing the origin. Using a standard

scaling property of orthogonal projections,

x̂(τ)− τx0 = arg min
w
{‖ηz − w‖2 : ‖w + τx0‖1 ≤ τ}

= ProjτK(ηz).

Hence, it follows by Lemma 2.1.2 that ‖x̂(τ)−τx0‖2 is an increasing function
of τ .

Proposition 3.6.2 (Risk equivalence). Let η, τ > 0 and fix N ≥ 2. Then

sup
x∈ΣNs

R̂(‖x‖1;x,N, η) = max
x∈ΣNs
‖x‖1=1

lim
τ→∞

R̂(τ ; τx,N, η) = max
x∈ΣNs
‖x‖1=1

lim
η→0

R̂(1;x,N, η).

Proof of Proposition 3.6.2. The first equality is an immediate consequence
of Lemma 3.6.1:

sup
x∈ΣNs

R̂(‖x‖1;x,N, η) = max
x∈ΣNs
‖x‖1=1

sup
τ>0

R̂(τ ; τx,N, η) = max
x∈ΣNs
‖x‖1=1

lim
τ→∞

R̂(τ ; τx,N, η).

The second equality follows from a standard property of orthogonal projec-
tions, and the risk expression derived in Lemma 3.6.1. For K := BN

1 − x,

max
x∈ΣNs
‖x‖1=1

lim
τ→∞

R̂(τ ; τx,N, η) = max
x∈ΣNs
‖x‖1=1

lim
τ→∞

η−2 E ‖ProjτK(ηz)‖22

= max
x∈ΣNs
‖x‖1=1

lim
τ→∞

τ2

η2
E ‖ProjK(τ−1ηz)‖22 = max

x∈ΣNs
‖x‖1=1

lim
η̃→0

η̃−2 E ‖ProjK(η̃z)‖22

= max
x∈ΣNs
‖x‖1=1

lim
η→0

R̂(1;x,N, η).
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Proof of (LS∗τ ) optimal risk

Proof of Proposition 3.1.5. Directly from Theorem 2.1.1,

R∗(s,N) = max
x0∈ΣNs
‖x0‖1=1

D(TBN1
(x0)),

whereD(TBN1
(x0)) is the statistical dimension of the `1 descent cone (i.e., the

mean-squared distance to the polar of the `1 descent cone. The operator D
has the following desirable relation to the Gaussian mean width: if C 6= {0}
is a non-empty convex cone [2, Prop 10.2],

w2(C ∩ SN−1) ≤ D(C) ≤ w2(C ∩ SN−1) + 1.

Thus, it suffices to lower- and upper-bound w2
(
TBN1

∩ SN−1
)
. The desired

upper bound is an elementary but technical exercise using Hölder’s inequal-
ity, Stirling’s approximation and a bit of calculus. The lower bound may
be computed using Sudakov’s inequality and [35, Lemma 10.12]. It thereby
follows that

cs log(N/s) ≤ D(TBN1
(x0)) ≤ Cs log(N/s),

where c, C > 0 are universal constants. Accordingly, cs log(N/s) ≤ R∗(s,N) ≤
Cs log(N/s).

From Theorem 3.3.6, R](λ∗; s,N) ≤ Cs logN for any N ≥ N0(s) with
N0(s) sufficiently large. Using the above equation gives, for c, C1 > 0,
Cs logN ≤ C1cs log(N/s) ≤ C1R

∗(s,N). Finally, R](λ∗; s,N) is lower-
bounded trivially by M∗(s,N) and M∗(s,N) = Θ(s log(N/s)) [17].

Elementary results from probability

We briefly recall two aspects of how normal random vectors concentrate in
high dimensions.
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Proposition 3.6.3. Let z ∈ RN with zi
iid∼ N (0, 1), fix constants C2 < C1 <

∞ and define the event Z± by Z± := {C2

√
2N ≤ ‖z‖22 − N ≤ C1

√
2N}.

There exists a constant p = p(C1, C2) > 0 and integer N0 ≥ 1 such that for
all N ≥ N0,

P
(
Z±
)
≥ p

Proof of Proposition 3.6.3. Define the following random variable, which is
an affine transformation of a χ2

N -distributed random variable:

XN :=
‖z‖22 −N√

2N
.

By applying the central limit theorem for the collection {Z2
i }Ni=1 one has that

XN converges in distribution to the standard normal distribution: for every
t ∈ R,

lim
N→∞

P (XN ≤ t) = Φ(t),

where Φ is the standard normal cdf. In particular, for any ε, t > 0 there is
N0 ∈ N such that

∣∣P(XN ≤ t
)
− Φ(t)

∣∣ ≤ ε
for all N ≥ N0. As such, one need merely choose ε > 0 so that

P
(
Z±
)
≥ Φ(C1)− Φ(C2)− 2ε =: p(C1, C2) > 0

and choose the first N0 for which the chain of inequalities is valid for all
N ≥ N0.

Corollary 3.6.4. Fix N,N0 ∈ N with N ≥ N0 ≥ 2. Let z ∈ RN with
zi

iid∼ N (0, 1) and define the event

AN :=
{
‖z‖22 ≤ N − 2

√
N & ‖z‖∞ ≤

√
3 logN

}
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There exists a real constant C = C(N0) > 0 such that P(AN ) ≥ C.

Proof of Corollary 3.6.4. Given N , define the events EN := {‖z‖22 ≤ N −
2
√
N} and FN := {‖z‖∞ ≤

√
3 logN}. Using the standard identity Φ(−x) ≤

φ(x)/x, we note that

P(FN ) ≥ 1− 2NP(|Z| >
√

3 logN) ≥ 1− 2√
3
2πN0 logN0

> 0

With this, and noting that P(EN | FN ) ≥ P(EN ), one has

P(AN ) = P(EN ∩ FN ) = P(EN | FN )P(FN ) ≥ P(EN )P(FN ) ≥ C ≥ 0.

We also recall that an event holding with high probability, intersected
with an event occurring with constant probability, still occurs with constant
probability.

Proposition 3.6.5. Let N ≥ 1 be an integer and suppose that E = E(N) is
an event that holds with high probability in the sense that

P(EN ) ≥ 1− p(N)

for some function p(N) > 0 with limN→∞ p(N) = 0. Suppose also that for
an event F = F(N) there exists q > 0 such that infN≥1 P(F(N)) ≥ q. Then
there exists a constant q′ > 0 and integer N0 ≥ 1 such that P

(
E(N)∩F

)
≥ q′

for all N ≥ N0.

Proof of Proposition 3.6.5. The proof is very similar to that of Proposi-
tion 3.6.3. Simply choose a threshold ε > 0 and select the first N0 ≥ 1

for which

P
(
E(N) ∩ F

)
≥ q − p(N) ≥ q − ε =: q′ > 0

for all N ≥ N0.
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Remark 8. An example of such a p(N) as in Proposition 3.6.5 is p(N) ∼
O(e−N ) when EN := {|X − µ| ≤ t} for X a subgaussian random variable,
EX = µ and t > 0.

3.6.2 Proof for (LS∗τ ) parameter sensitivity

Proof of Theorem 3.2.1. Let x0 ∈ ΣN
s with non-empty support and let τ > 0

be the governing parameter of (LS∗τ ). First suppose the parameter is chosen
smaller than the optimal value, i.e., τ < ‖x0‖1. The discrepancy of the guess,
ρ := |‖x0‖1 − τ | = ‖x0‖1 − τ > 0, induces the sensitivity.

The solution x̂(τ) to (LS∗τ ) satisfies 0 ≤ ‖x̂(τ)‖1 ≤ τ by construction.
Therefore, by the Cauchy-Schwarz inequality and an application of the tri-
angle inequality,

‖x̂(τ)− x0‖22 ≥ N−1‖x̂(τ)− x0‖21 ≥
ρ2

N
> 0.

Accordingly,

lim
η→0

1

η2
‖x̂(τ)− x0‖22 ≥ lim

η→0

ρ2

Nη2
=∞.

Next assume τ is chosen too large, with discrepancy between the correct and
actual guesses for the parameter again being denoted ρ = τ − ‖x0‖1 > 0.
Two key pieces of intuition guide this result. The first is that the error of ap-
proximation should be controlled by the effective dimension of the constraint
set. The second suggests that y continues to lie within the constraint set for
sufficiently small noise level, meaning recovery behaves as though it were
unconstrained. Hence, the effective dimension of the problem is that of the
ambient dimension, and so one should expect the error to be proportional
to N .

First, we show that for η sufficiently small, y ∈ τBN
1 with high proba-

bility. Fix a sequence ηj
j→∞−−−→ 0 and define yj := x0 + ηjz. Since ‖z‖1 is

subgaussian, Theorem 2.2.1 implies there is a constant C > 0 such that for
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any t > 0,

P
(
‖z‖1 ≥ t+N

√
2

π

)
≤ P

(∣∣‖z‖1 −N√ 2

π

∣∣ ≥ t) ≤ e · exp
(−t2
CN

)
.

In order to satisfy x0 + ηz ∈ τBN
1 , we need ‖x0 + ηz‖1 < τ , for which

η‖z‖1 < ρ is sufficient. We select a t > 0 so that the probability this event
does not occur may be upper bounded as

P
(
‖z‖1 ≥

ρ

η

)
≤ P

(
‖z‖1 ≥ t+N

√
2

π

)
≤ e · exp

(
− t2

CN

)
.

For t = ρ/η −N
√

2
π , and C̃ > 0 a new constant,

P
(
‖z‖1 ≥

ρ

η

)
≤ e · exp

(
−
(
ρ/η −N

√
2/π

)2
CN

)

≤ C̃ exp

(
− ρ2

CNη2

)
η→0−−−→ 0.

Let Ej := {‖z‖1 <
ρ

ηj
} for j ≥ 1; their respective probabilities lower-

bounded by pj := 1− C̃ exp(−ρ2/Nη2
j ). Given 0 < ε� 1, denote by j0 the

first integer such that pj ≥ 1−ε for all j ≥ j0. On Ej with j ≥ j0, yj ∈ τBN
1

so yj is the unique minimizer of (LS∗τ ), meaning:

1

η2
‖x̂(τ)− x0‖22 = ‖z‖22.

The result follows by bounding the following expectations:

lim
η→0

1

η2
E ‖x̂(τ)− x0‖22

= lim
j→∞

E
[
η−2
j ‖x̂(τ)− x0‖22 χ(Ej)

]
+ E

[
η−2
j ‖x̂(τ)− x0‖22 χ(ECj )

]
. (?)

The first term converges by dominated convergence theorem:

lim
j→∞

E
[
η−2
j ‖x̂(τ)− x0‖22 χ(Ej)

]
= lim

j→∞
E
[
χ(Ej)‖z‖22

]
= E

[
‖z‖22

]
= N.
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On ECj , ‖x̂(τ)− x0‖22 ≤ ‖x̂(τ)− x0‖21 ≤ ρ2η2, so by dominated convergence
theorem,

lim
j→∞

E
[
η−2
j ‖x̂(τ)− x0‖22 χ(ECj )

]
≤ lim

j→∞
E
[
‖z‖21 χ(ECj )

]
= 0.

This immediately yields the desired result,

lim
η→0

1

η2
E ‖x̂(τ)− x0‖22 = N.

To prove the final case where τ = ‖x0‖1, set C = BN
1 in (2.1) of Theo-

rem 2.1.1. Then,

lim
η→0

η−2 E ‖x̂(τ)− x0‖22 = D(TBN1
(x0)) = Θ(s log(N/s))� N.

3.6.3 Proofs for (QP∗λ) results

Proof of Proposition 3.3.1. Because z is isotropic and iid, one can split the
signal x0 = x+

0 − x
−
0 into “positive” and “negative” components, and so it

suffices to consider the case where x0,j ≥ 0 for all j ∈ [N ]. The heart
of this proposition again relies on the fact that the noise limits to 0. In
general, λ > 0 is finite and typically small (∼ O(η

√
logN), so we require

only that |x0,j | = O(1) for j ∈ T = supp(x0). This requirement can be
written x0,j ≥ a > 0 for all j ∈ T and some real number a > 0. Recall that
the minimizer of (QP∗λ) is given by the soft-thresholding operator which we
denote by

x](ηλ) = Sηλ(x0 + ηz).
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Where k ∈ T, ` ∈ TC so that x0,k ≥ a, x0,` = 0, one has

Sηλ(x0,k + ηzk)− x0,k =


η(zk − λ) x0,k > η(λ− zk)

−x0,k |x0,k + ηzk| ≤ ηλ

η(zk + λ) x0,k < −η(λ+ zk)

Sηλ(ηz`) =


η(z` − λ) z` > λ

0 |z`| ≤ λ

η(z` + λ) z` < −λ

.

Independence of zj yields

lim
η→0

1

η2
E ‖x](ηλ)− x0‖22

= lim
η→0

s

η2
E
[
(Sηλ(x0,k + ηzk)− x0,k)

2
]

+ lim
η→0

N − s
η2

E
[
Sηλ(z`)

2
]
.

Passing to a sequence ηj → 0, there exists J ∈ N such that for all j ≥ J ,

Sηjλ(x0,k + ηjzk)− x0,k = ηj(zk − λ) with high probability. (?)

If this equality were true almost surely, it would follow that for k ∈ T ,

η−2 E ‖(x](ηλ)− x0)T ‖22 = sE
[
(zk − λ)2

]
= s(1 + λ2).

Indeed this is still true in the case of (?) with η → 0. In particular, using
independence of zk for k ∈ T and denoting by Ej the high probability event
(?), we obtain by similar means as in the proof of Theorem 3.2.1,

lim
η→0

η−2 E ‖(x](ηλ)− x0)T ‖22

= lim
j→∞

s

η2
j

E
[
η2
j (zk − λ)2 χ(Ej)

]
+

s

η2
j

E
[
(x]k(ηjλ)− x0,k)

2 χ(ECj )
]

= s(1 + λ2)
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Next, define G(λ) := (1+λ2)Φ(−λ)−λφ(λ). By independence of the entries
of zTC , with any ` ∈ TC , the second quantity is exactly computable as

lim
η→0

η−2 E ‖(x](ηλ)− x)TC‖22 = (N − s)E
[
Sλ(z`)

2
]

= 2(N − s)G(λ),

where the final equality is by definition of Sλ and elementary calculations
(cf. Remark 10). Therefore, as desired,

lim
η→0

η−2 E ‖x](ηλ)− x‖22 = s(1 + λ2) + 2(N − s)G(λ).

Proof of Corollary 3.3.2. For 0 ≤ t ≤ s, where we define for simplicity of
notation ΣN

−1 := ∅, observe that

sup
x0∈ΣNt \ΣNt−1

R](λ;x0, N, η) = R](λ; t,N)

because the regime η → 0 is equivalent, by a rescaling argument, to the
regime in which η > 0 and |x0,j | → ∞ for j ∈ supp(x0) (as shown explicitly
in the proof of Proposition 3.6.2). Therefore,

sup
x0∈ΣNs

R](λ;x0, N, η) = max
0≤t≤s

sup
x0∈ΣNt \ΣNt−1

R](λ;x0, N, η)

= max{R](λ; 0, N), R](λ; s,N)}

= R](λ; s,N)

by linearity of the max argument and the fact that 1 + λ2 ≥ G(λ) for
λ > 0.

Proof of (QP∗λ) parameter sensitivity

Proof of Lemma 3.3.3. By Proposition 3.3.1, R](λ; s,N) = s(1+λ2)+2(N−
s)G(λ). We prove the result by controlling G′(λ) using integration by parts.
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Thus,

d

dλ
G(λ) = 2λΦ(−λ)− 2φ(λ)

≤ 2λ(
1

λ
− 1

λ3
+

3

λ5
)φ(λ)− 2φ(λ) = −2

λ2 − 3

λ4
φ(λ)

A simple substitution yields, for all N > exp
(

3
2(1− ε)−2

)
,

d

du

∣∣∣∣
u=1−ε
G(uλ̄) ≤

[
−2

(uλ̄)2 − 3

u4λ̄3
φ(uλ̄)

∣∣∣∣
u=1−ε

= −2(1− ε)2 log(N)− 3

(1− ε)4

√
π log3(N)

N−(1−ε)2 =: −1

2
γ(N, ε)N−(1−ε)2 .

Multiplying G((1− ε)λ̄) by N − s yields∣∣∣∣ d

du
R](uλ̄; s,N)

∣∣∣∣
u=1−ε

≥ (N − s)γ(N, ε)N−(1−ε)2 − 2s(1− ε)
√

2 logN

= γ(N, ε)N2ε−ε2 − sγ(N, ε)N−(1−ε)2 − 2s(1− ε)
√

2 logN

≥ CN ε

for some constant C > 0 under the condition that N ≥ N0, where N0 >

exp
(

3
2(1−ε)−2

)
is chosen so that for allN ≥ N0 the following two conditions

are satisfied:
(N − s)γ(N, ε)N−(1−ε)2 ≥ 2s(1− ε)

√
2 logN

γ(N, ε)
(
1− s

N

)
≥ 2s(1− ε)N−2ε+ε2

√
2 logN + CN−ε+ε

2

In this regime, one achieves unbounded growth of the risk as a power law of
the ambient dimension.
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Remark 9. Using integration by parts, one has for x > 0,

Φ(−x) =

∫ ∞
x

φ(t) dt =
(1

x
− 1

x3

)
φ(x) + 3

∫ ∞
x

tφ(t)

t5
dt

≤
(1

x
− 1

x3

)
φ(x) + 3x−5

∫ ∞
x

tφ(t) dt =
(1

x
− 1

x3
+

3

x5

)
φ(x)

Proof of Theorem 3.3.4. Define f(u) := d
duR

](uλ̄; s,N) and write F (u) :=

R](uλ̄; s,N) for its anti-derivative. The proof is an application of the fun-
damental theorem of calculus:

F (1)− F (1− ε) =

∫ ε

0
f(1− t) dt ≤ −C

∫ ε

0
N t dt = C

1−N ε

logN
.

The result follows by substituting:

R]((1− ε)λ̄; s,N) ≥ CN
ε − 1

logN
+R](λ̄; s,N) ≥ C N ε

logN

where the latter inequality holds after taking N sufficiently large, and C > 0

is a universal constant that has changed values in the final expression.

Proof of Proposition 3.3.5. By Proposition 3.3.1, R](λ; s,N) = s(1 + λ2) +

2(N − s)G(λ). We prove the result by controlling G′(λ). One may lower
bound G′(λ) as

d

dλ
G(λ) = 2λΦ(−λ)− 2φ(λ) ≥ 2λ

( λ

λ2 + 1

)
φ(λ)− 2φ(λ) = −2

φ(λ)

λ2 + 1
.

This gives the following lower bound for d
dλR

](λ; s,N):

dR]

dλ
(λ; s,N) ≥ 2sλ− 4(N − s) φ(λ)

λ2 + 1
≥ 2λ− 4N

φ(λ)

λ2 + 1

=
2

λ2 + 1

(
λ(λ2 + 1)− 2Nφ(λ)

)
.

Substituting λ̄ gives a positive quantity, since N ≥ 2:

2

2 logN + 1

(√
2 logN(2 logN + 1)− 2√

2π

)
> 0.
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Consequently, λ∗ < λ̄ because λ∗ is the value giving optimal risk and
d

dλR
](λ; s,N) is increasing for all λ ≥ λ̄. Then it must be that |λ∗−λ̄| < ε for

any ε > 0 when N is sufficiently large. Indeed, fix ε > 0. By Lemma 3.3.3
there exists N0 ≥ 1 so that for all N ≥ N0 (QP∗λ) is parameter unstable
for λ < λ̄, yielding R](λ; s,N) & N ε. But R](λ∗; s,N) ≤ CR∗(s,N) for
N ≥ N0 by Proposition 3.1.5, where we re-choose N0 = N0(s) if neces-
sary. Thus, it must be that |λ∗ − λ̄| < ε for all N ≥ N0. In particular,
limN→∞ λ̄/λ

∗ = 1.

Remark 10. One may derive the following lower bound using integration by
parts:

Φ(−λ) ≥ λ

λ2 + 1
φ(λ).

Let Z ∼ N (0, 1) be a standard normal random variable and let Sλ(·) denote
soft-thresholding by λ > 0. Then,

0 ≤ E
[
Sλ(Z)2

]
= 2

∫ ∞
λ

(z − λ)2φ(λ) dz = 2(1 + λ2)Φ(−λ)− 2λφ(λ).

Thus, (1 + λ2)Φ(−λ) ≥ λφ(λ), giving the desired lower bound.

Proof of (QP∗λ) right-sided stability

A more general version of Theorem 3.3.6 for general convex regularizers
appears in Oymak and Hassibi [55]; and a related version for CS appears
in Bickel et al. [13]. The present case allows for a simpler, direct proof to be
given, proceeding by (3.1).

Proof of Theorem 3.3.6. Given L = λ/λ∗ > 1, define L̄ = L̄(s,N) > 0 by
λ = L̄λ̄ = L̄

√
2 logN . Note limN→∞ L̄(s,N) = L, because λ̄ is asymptot-

ically equivalent to λ∗ up to constants. A direct substitution of λ = L̄λ̄ =

L̄
√

2 logN in the analytic formula for R](λ; s,N) yields the desired bound,
noting that R](λ∗; s,N) equals R∗(s,N) up to constants. Thus, there is
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C > 0 and N0 = N0(s) ≥ 2 so that for all N ≥ N0

R](λ; s,N) ≤ s(1 + 2L̄2 logN) +
N − s

L̄N L̄2√π logN
≤ CL2R∗(s,N).

3.6.4 Proofs for (BP∗σ) parameter sensitivity

Proof of underconstrained (BP∗σ) suboptimality

Proof of Lemma 3.4.1. By scaling properties of the risk, it suffices to con-
sider the case where η = 1. Define the event

AN :=
{
‖z‖22 ≤ N − 2

√
N & ‖z‖∞ ≤

√
3 logN

}
.

On AN , it follows from the KKT conditions, where h = x̃(σ)− x0, that

N ≤ σ2 = ‖h‖22 − 2〈h, z〉+ ‖z‖22 ≤ ‖h‖22 − 2〈h, z〉+N − 2
√
N.

By Cauchy-Schwartz and definition of AN ,

1

2
‖h‖22 ≥

√
N + 〈h, z〉 ≥

√
N − ‖h‖1‖z‖∞ ≥

√
N − ‖h‖1

√
3 logN.

Applying Remark 3 and the binomial inequality 2ab ≤ a2 + b2 gives

√
N − ‖h‖1

√
3 logN ≥

√
N − 2

√
s‖h‖2

√
3 logN

≥
√
N − 1

2
‖h‖22 − 6s logN.

Combining these two groups of inequalities gives ‖h‖22 ≥
√
N − 6s logN .

Hence, by Bayes’ rule and Corollary 3.6.4 there exist dimension independent
constants C,C ′ > 0 such that

E ‖x̃(σ)− x0‖22 ≥ P(AN ) · E
[
‖x̃(σ)− x0‖22 | AN

]
≥ C ′

(√
N − 6s logN

)
≥ C
√
N.
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The final inequality follows by the assumption that N ≥ N0(s).

Supporting propositions for the geometric lemma

This section is dedicated to several results necessary for the proof of Lemma 3.4.3,
a main lemma in the proofs of Theorem 3.4.6 and Theorem 3.4.9. We state
and prove these propositions in line.

Proposition 3.6.6. Fix C1 > 0. Let K1 := λBN
1 ∩α1B

N
2 with α1 := a1N

1/4

and λ := L
√

N
logN . There exists a choice of universal constants a1 > 0, L > 1

and N0 = N
(3.6.6)
0 (a1, C1, L) ≥ 1 satisfying

N
(3.6.6)
0 (a1, C1, L) := D

2/(2D2−1)
1 , where

D1 :=
a2

1

5L2
< 1, D2 := 2

(C1 + a2
1

L2

)2
<

1

2
,

so that for all N > N0,

w(K1) ≥ (
a2

1 + C1

2
)
√
N.

Proof of Proposition 3.6.6. Since w(K1) = Ez supq∈K1
〈q, z〉 is the Gaussian

mean width of K1, we may invoke Proposition 2.3.6 to obtain a sufficient
chain of inequalities:

E sup
K1

〈q, z〉 = gmw(K1)
(2.3.6)
≥
√

2

4
κλ

√
log
(Nα2

1

5λ2

) (∗)
≥
(α2

1 + C1

2

)√
N.

In particular, Proposition 2.3.6 holds with κ = 1, since κ is the lower-RIP
constant of the sensing matrix for (BP∗σ), which is the identity. We thus turn
our attention to (∗), which is equivalent to

log
(
D1

√
N logN

)
≥ D2 logN, D1 :=

a2
1

5L2
, D2 := 2

(C1 + a2
1

L2

)2
.
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Rearranging gives

1

2
+

logD1 + log logN

logN
≥ D2,

and for D1, 2D2 ≤ 1, this is certainly satisfied for N ≥ D
2/(2D2−1)
1 (e.g.,

L = 11 imposes N & 105 when a1 = 1, C1 = 2). Accordingly, it suffices to
choose N0 = N0(a1, C1, L) as in the proposition statement so that for all
N ≥ N0, as desired,

w(K1) ≥
(a2

1 + C1

2

)√
N.

Proposition 3.6.7. Fix δ > 0, c ∈ (0, 1). Let K1 = λBN
1 ∩ α1B

N
2 be as

defined above. There are universal constants D̃1 > 0, N0 ≥ 2 such that for

N > N0 := N
(3.6.7)
0 (c, D̃1, δ, L) :=

( 1

D̃1L2(1− c)2
log
(1

δ

))2

there exists q ∈ K1 such that 〈q, z〉 ≥ cw(K1) with probability at least 1− δ,
where z ∈ RN with zi

iid∼ N (0, 1).

Proof of Proposition 3.6.7. Note that K1 ⊆ RN is a topological space and
define the centered Gaussian process fx := 〈x, g〉 for gi

iid∼ N (0, 1). Observe
that ‖f‖K1 := supx∈K1

|fx| is almost surely finite. For any u > 0,

P
(

sup
x∈K1

|〈x, g〉| < w(K1)− u
)
≤ exp

(
− u2

2σ2
K1

)
.

by Theorem 2.2.4. Therefore, for c ∈ (0, 1),

P
(

sup
x∈K1

|〈x, g〉| < cw(K1)
)
≤ exp

(
− (1− c)2 w2(K1)

2σ2
K1

)
≤ exp

(
− (1− c)2L2

√
N log(D1

√
N logN)

16 logN

)
≤ δ
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because

σ2
K1

= sup
x∈K1

E |〈x, g〉|2 = sup
x∈K1

N∑
i=1

x2
i E |gi|2 = sup

x∈K1

‖x‖22 = α2
1 =
√
N.

A specific choice of q ∈ K1 follows by choosing the q ∈ K1 that realizes the
supremum, since K1 is closed.

Proposition 3.6.8. Fix C1, δ > 0 and define the event Z− := {‖z‖22 ≤
N + C1

√
N} for z ∈ RN with zi

iid∼ N (0, 1). There is a universal constant
N0 = N

(3.6.8)
0 ≥ 1 satisfying

N
(3.6.8)
0 ≥ max{N (3.6.6)

0 (a1, C1, L), N
(3.6.7)
0 (c, D̃1, δ, L)

}
,

and a universal constant k1 = k1(N
(3.6.8)
0 , δ) > 0 so that for all N ≥ N0

there is an event E ⊆ Z− satisfying

K1 ∩ F 6= ∅ on E and P(E) ≥ P(Z−)− δ.

Proof of Proposition 3.6.8. By Proposition 3.6.7, for any c1 ∈ (0, 1) there is
an event E1 that holds with high probability such that supq∈K1

〈q, z〉 ≥ c1 w(K1)

on E1. Subsequent statements are made on the restriction to E1.
As K1 is closed, there is q ∈ K1 realizing the supremum, whence 〈q, z〉 ≥

c1 w(K1). Now, choose C ′1 > 0 such that C1 ≥ c−1
1

(
a2

1 + C1

)
− a2

1. Then
q ∈ K1 satisfies

〈q, z〉 ≥ c1 w(K1) ≥ c1

(a2
1 + C ′1

2

)√
N ≥

(a2
1 + C1

2

)√
N.

Now, because ‖q‖2 ≤ α1 and q ∈ K1, it holds on the event E1 ∩ Z− that

(a2
1 + C1

2

)√
N ≥ 1

2
‖q‖22 +

1

2

(
‖z‖22 −N

)
.
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Combining the two previous chains of inequalities implies

‖q − z‖22 ≤ N.

Namely, there exists an event Z− ∩ E1, such that q ∈ K1 ∩ F , so long as
N ≥ N

(3.6.8)
0 . Because E1 holds with high probability and the probability

of Z− is lower-bounded by a universal constant, Proposition 3.6.5 implies
P(Z− ∩ E1) ≥ k1(N

(3.6.8)
0 , δ) for N ≥ N (3.6.8)

0 , where

N
(3.6.8)
0 ≥ max{N (3.6.6)

0 (a1, C1, L), N
(3.6.7)
0 (c, D̃1, δ, L)

}
.

Proposition 3.6.9. Fix C2 > 0 and let L ≥ 1. Set K2 := λBN
1 ∩ α2B

N
2 ,

where λ = L
√

N
logN . There is a maximal choice of α2 = α2(N) > 0 so that

for all N ≥ 1,

w(K2) ≤ C2

2

√
N.

Proof of Proposition 3.6.9. Since w(K2) = Ez supq∈K2
〈q, z〉 is the Gaussian

mean width of K2, we may invoke Proposition 2.3.5 to obtain a sufficient
chain of inequalities:

w(K2)
(2.3.5)
≤ 4λ

√
log(

4eNα2
2

λ2
)

(∗∗)
≤ C2

2

√
N.

The first inequality follows by Proposition 2.3.5 immediately. Rearranging
and substituting for λ, (∗∗) is equivalent to

D3 logN ≥ log
(
D4α

2
2 logN

)
, D3 :=

(C2

8L

)2
, D4 :=

4e

L2
.

This inequality is satisfied for any α2 with

α2
2 ≤

ND3

D4 logN
=: A2(C2, N).
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For example, one may choose

α2 =
LND5

2
√
e logN

, D5 :=
C2

2

32L2
.

For such 0 < α2 ≤ A(N ;C2, L), it holds as desired that w(K2) ≤ C2
2

√
N .

Remark 11. Notice that we want to choose N0 so that A(C2, N) is increasing
for all N ≥ N0. A quick calculation reveals that N0 = N

(3.6.9)
0 (C2, L) :=

exp
(
(2D5)−1

)
is sufficient.

Proposition 3.6.10. Fix δ > 0, and C > 1. Let K2 = λBN
1 ∩ α2B

N
2 as

above. There are universal constants D̃2 > 0, N0 ≥ 1 such that for

N > N0 := N
(3.6.10)
0 (C, D̃2, δ, L) :=

( 1

D̃2L2(C − 1)2
log
(1

δ

))2

one has supq∈K2
〈q, z〉 ≤ C w(K2) with probability at least 1−δ, where z ∈ RN

with zi
iid∼ N (0, 1).

Proof of Proposition 3.6.10. Define the centered Gaussian process fx := 〈x, g〉
for x ∈ K2 ⊆ RN , a topological space, and where gi

iid∼ N (0, 1). Observe
‖f‖K2 = supx∈K2

|fx| <∞ almost surely. For any u > 0,

P
(

sup
x∈K2

|〈x, g〉| > w(K2) + u
)
≤ exp

(
− u2

2σ2
K2

)
by Theorem 2.2.4. Hence, for C > 1,

P
(

sup
x∈K2

|〈x, g〉| > C w(K2)
)
≤ exp

(
− (C − 1)2 w2(K2)

2σ2
K2

)
≤ exp

(
− (C − 1)2L2N log(D1

√
N logN)

16α2
2 logN

)
≤ δ
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because

σ2
K2

= sup
x∈K2

E |〈x, g〉|2 = sup
x∈K2

N∑
i=1

xi E |gi|2 = sup
x∈K2

‖x‖22 = α2
2 ≤ α2

1 =
√
N.

Finally, for δ > 0 and C > 1, supx∈K2
|〈x, g〉| ≤ C w(K2) with probability at

least 1− δ for any N ≥ N (3.6.10)
0 .

Proposition 3.6.11. Fix C2, δ > 0 and define the event Z+ := {‖z‖22 ≥
N +C2

√
N} where z ∈ RN with zi

iid∼ N (0, 1). There is a universal constant
N0 := N

(3.6.11)
0 ≥ 1 satisfying

N
(3.6.11)
0 ≥ max

{
N

(3.6.9)
0 , N

(3.6.10)
0

}
.

and a universal constant k2 = k2(N0, δ) > 0 so that for all N ≥ N0 there is
an event E ⊆ Z+ satisfying

K2 ∩ F = ∅ on E and P(E) ≥ k2 := P(Z+)− δ.

Proof of Proposition 3.6.11. By Proposition 3.6.10, for any 0 < c2 < 1 there
is an event E2 that holds with high probability such that supq∈K2

〈q, z〉 ≤
c2 w(K2) on E2. BecauseK2 is closed, there is q ∈ K2 realizing the supremum
when restricted to E2, whence

〈q, z〉 ≤ sup
q′∈K2

〈q′, z〉 ≤ c2 w(K2).

Now, choose C ′2 > 0 such that 0 ≤ C2 ≤ c2C
′
2. Then q ∈ K2 satisfies

〈q, z〉 ≤ c2 w(K2) ≤ c2
C ′2
2

√
N ≤ C2

2

√
N.

On the other hand, for any q′ ∈ F on the event Z+,

C2

√
N ≤ ‖q′‖22 + ‖z‖22 −N ≤ 2〈q′, z〉,
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whence K2 ∩F = ∅ on the event Z+ ∩ E2. Because E2 holds with high prob-
ability and the probability of Z+ is lower-bounded by a universal constant,
Proposition 3.6.5 implies P

(
Z+∩E2

)
> k2(N

(3.6.11)
0 , δ) for N ≥ N (3.6.8)

0 where

N
(3.6.11)
0 ≥ max

{
N

(3.6.9)
0 , N

(3.6.10)
0

}
.

Proof of the geometric lemma

We now have the tools required for Lemma 3.4.3. A graphical depiction of
the result appears in Figure 3.1 of § 3.4.2.

Proof of Lemma 3.4.3. We obtain the event E trivially from Proposition 3.6.8
and Proposition 3.6.11, choosing α1 := a1N

1/4 as in Proposition 3.6.6.
Namely, define the event

E := Z− ∩ E1 ∩ Z+ ∩ E2.

Observe that P
(
E
)
≥ P

(
Z−∩Z+

)
−2δ ≥ k3 for all sufficiently large N . This

is a direct consequence of Proposition 3.6.3 and Proposition 3.6.5. Proving
that α2 > C3N

q follows from a note in Proposition 3.6.9. Specifically, the
result holds for any choice of α2 satisfying

0 < α2 ≤ A(N ;C2;L) =
LND5

2
√
e logN

, D5 :=
C2

2

32L2
.

Hence, choose C3, q > 0 so that α2 > C3N
q for all N ≥ N

(3.4.3)
0 ≥ N

(3.6.9)
0 .

Proofs for overconstrained suboptimality

We start by proving a key ingredient of the main results for parameter sen-
sitivity of R̃(σ;x0N, η). Then, we prove the lemma that extends (BP∗σ)

parameter sensitivity from σ =
√
N and x0 ≡ 0 to σ ≤

√
N and x0 ≡ 0. Fi-
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nally, we prove the restricted maximin result, yielding PS for overconstrained
(BP∗σ).

Proof of Corollary 3.4.4. Restrict to the event E as given in the lemma and
assume that N ≥ N

(3.4.3)
0 . K1 ∩ F is non-empty, so x̃(σ) ∈ K1 ∩ F by

definition. K2 ∩ F = ∅ thereby implies

x̃(σ) ∈ λBN
1 ∩

(
α1B

N
2 \ α2B

N
2

)
∩ F = (K1 \K2) ∩ F.

Whence follows ‖x̃(σ)‖1 ≤ λ and α2 ≤ ‖x̃(σ)‖2 ≤ α1. Applying Bayes’ rule
to the noise-normalized risk yields:

R̃(σ; 0, N, η) ≥ P(E)

η2
E
[
‖x̃(σ)‖22 | E

]
≥ k3C3N

q =: CN q.

Proof of Lemma 3.4.5. This result is an immediate consequence of Corol-
lary 2.1.3.

Proof of Theorem 3.4.2. Without loss of generality, assume η = 1. We may
trivially lower-bound the minimax expression by considering only the case
where x0 ≡ 0,

sup
x0∈ΣNs

inf
σ≤
√
N
R̃(σ;x0, N, 1) ≥ inf

σ≤
√
N
R̃(σ; 0, N, 1).

Then, Lemma 3.4.5 and Corollary 3.4.4 imply in turn,

inf
σ≤
√
N
R̃(σ; 0, N, η) ≥ R̃(

√
N ; 0, N, η) ≥ CN q

for all N ≥ N0, where N0 ≥ N
(3.4.3)
0 and C, q > 0 are chosen according

to Lemma 3.4.3.
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Proof of (BP∗σ) minimax suboptimality

In this section we prove Theorem 3.4.6, establishing a data regime in which
(BP∗σ) is asymptotically minimax suboptimal.

Proof of Theorem 3.4.6. Without loss of generality, take η = 1. Observe,

inf
σ>0

sup
x0∈ΣNs

R̃(σ;x0, N, 1) = min
{

inf
σ≤
√
N
S(σ), inf

σ>
√
N
S(σ)

}

where S(σ) := supx0∈ΣNs
R̃(σ;x0, N, 1). Next, assume N ≥ N

(3.4.3)
0 . Then

one has infσ>
√
N S(σ) ≥ C1

√
N by Lemma 3.4.1. Next, successively applying

a trivial lower bound, Lemma 3.4.5, and Corollary 3.4.4 gives

inf
σ≤
√
N
S(σ) ≥ inf

σ≤
√
N
R̃(σ; 0, N, 1) ≥ R̃(

√
N ; 0, N, 1) ≥ C2N

q.

In particular, there is a universal constant C > 0 so that

inf
σ>0

sup
x0∈ΣNs

R̃(σ;x0, N, 1) ≥ min{C2N
q, C1

√
N} ≥ CN q.

Proof of (BP∗σ) maximin suboptimality

In this section we prove Theorem 3.4.9, establishing a data regime in which
(BP∗σ) is asymptotically maximin suboptimal. We begin with a proof of the
key ingredient, Lemma 3.4.7.

Proof of Lemma 3.4.7. The proof is completed by the following chain of in-
equalities. The first and last equalities are by definition of the (BP∗σ) es-
timator. The first inequality follows by relaxing the objective; the second
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inequality follows by relaxing the constraint condition.

‖x̃TC‖2 =
∥∥ arg min{‖x‖1 : ‖y − x‖22 ≤ σ2}TC

∥∥
2

≥
∥∥ arg min{‖xTC‖1 : ‖y − x‖22 ≤ σ2}TC

∥∥
2

≥
∥∥ arg min{‖xTC‖1 : ‖(y − x)TC‖22 ≤ σ2}TC

∥∥
2

≡ ‖x̃′‖2

Proof of Theorem 3.4.9. We may trivially lower-bound the maximin expres-
sion by considering the case where x0 := Ne1 where e1 is the first standard
basis vector. Without loss of generality, we may assume that this entry is in
the first coordinate, and is at least N . Again without loss of generality, it
suffices to consider the case where η = 1. We write the lower bound as

sup
x∈ΣNs

inf
σ>0

R̃(σ;x,N, 1) ≥ inf
σ>0

R̃(σ;x0, N, 1).

If σ ≥
√
N , then the result follows by Lemma 3.4.1. Otherwise, it must be

that σ ≤
√
N , in which case the result follows immediately by Lemma 3.4.7.

In this latter case, we have implicitly assumed that if σ ∈ (
√
N − 1,

√
N),

then the omitted technical exercise of adjusting constants in Corollary 3.4.4
and its constituents has been carried out. For further detail on this caveat,
see the remark immediately succeeding Corollary 3.4.8.

86



10 1 100 101

Normalized parameter

105

107

109

1011

1013
(BP* )
(QP*)
(LS*)

(B
P* )

0.5 0.75 1 1.3 2

(Q
P* )

(L
S* )

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(B
P* )

0.5 0.75 1 1.3 2

(Q
P* )

(L
S* )

0
10 3

10 2

10 1

100

101

0
10 3

10 2

10 1

100

101

0
10 3

10 2

10 1

100

101

10 3

10 2

10 1

100

101

102

10 3
10 2
10 1
100
101
102
103

0
10 3

10 2

10 1

100

101

0
10 3

10 2

10 1

100

101

0
10 3

10 2

10 1

100

101

0
10 3

10 2

10 1

100

101

0
10 3

10 2

10 1

100

101

102

104
105
106
107
108
109

102
103
104
105
106
107
108
109

0
10 3

10 2

10 1

100

101

0
10 3

10 2

10 1

100

101

0
10 3

10 2

10 1

100

101

Figure 3.12: Wavelet space denoising of the square Shepp-Logan
phantom for different values of the normalized parameter when
η = 10−5. Top: The sections of the loss for which estima-
tor recovery will be visualized are depicted by the dots which
lie nearly on the blacked dotted lines, themselves located at
ρ = 0.5, 0.75, 1, 4/3, 2. Middle: This group of fifteen plots
represents a program’s solution for a particular value of the
normalized parameter, arranged in a grid. Image pixel values
are not scaled to [0, 1]; their range is given by the associated
colour bar. Bottom: This group of fifteen plots depicts pixel-
wise nnse for each (program, normalized parameter) pairing. In
both the middle and bottom groups, the program is denoted
along the left-hand side, while the normalized parameter value
is denoted along the top row of each group.
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Figure 3.13: Wavelet space denoising of the square Shepp-Logan
phantom for different values of the normalized parameter when
η = 0.5. Top: The sections of the loss for which estima-
tor recovery will be visualized are depicted by the dots which
lie nearly on the blacked dotted lines, themselves located at
ρ = 0.5, 0.75, 1, 4/3, 2. Middle: This group of fifteen plots
represents a program’s solution for a particular value of the
normalized parameter, arranged in a grid. Image pixel values
are not scaled to [0, 1]; their range is given by the associated
colour bar. Bottom: This group of fifteen plots depicts pixel-
wise nnse for each (program, normalized parameter) pairing. In
both the middle and bottom groups, the program is denoted
along the left-hand side, while the normalized parameter value
is denoted along the top row of each group.



Chapter 4

Compressed sensing parameter
sensitivity

4.1 Overview
In this chapter, we examine parameter sensitivity in the setting of CS. We
start by presenting three sibling results as an allusion to the main results
of this chapter. We intend for each result to encapsulate the behaviour of
the three `1 programs that are the main focus of this chapter. Define the
worst-case risk for (LSτ ) in the low-noise regime by:

R∗(s,A) := lim
η→0

sup
x∈ΣNs ∩∂BN1

R̂(1;x,A, η).

Importantly, under mild assumptions, R∗(s,A) is nearly equivalent to the
optimally tuned worst-case risk for (LSτ ). Namely, for all η > 0,

R∗(s,A) ≤ sup
x∈ΣNs

R̂(‖x‖1;x,A, η) ≤ CR∗(s,A).

This result is treated formally in § 4.6.2. In each case discussed below, the
performance of the estimators will be compared to R∗(s,A) as a benchmark,
noting that this quantity is minimax order optimal in the sense of Proposi-
tion 4.1.5.
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In § 4.2, we show that (LSτ ) exhibits an asymptotic PS in the low-noise
regime. There is exactly one value τ∗ of the governing parameter yielding
minimax order-optimal error, with any choice τ 6= τ∗ yielding markedly
worse behaviour. This result holds for normalized K-subgaussian matrices
A, which are defined in Definition 5. The intuition provided by this result is
that (LSτ ) is extremely sensitive to the value of τ in the low-noise regime,
making empirical use of (LSτ ) woefully unstable in this regime.

Theorem 4.1.1 ((LSτ ) sensitivity simplified). Fix ε > 0 and let 1 ≤ s ≤
m < N < ∞ be integers. If A ∈ Rm×N is a normalized K-subgaussian
matrix with m > CεK̃

2s log (N/s), then with probability at least 1− ε on the
realization of A,

lim
η→0

sup
x∈ΣNs ∩BN1

R̂(τ ;x,A, η)

R∗(s,A)
=

1 τ = 1

∞ otherwise

Next, in § 4.3 we state a rephrasing of Shen et al. [67, Theorem 3]. The
result shows there is a parameter λ∗ such that (QPλ) is not sensitive to its
parameter choice for λ ≥ λ∗. Right-sided parameter stability of (QPλ) was
first established in Bickel et al. [13, Theorem 7.2]. This well-known result is
contrasted in § 4.5 with numerical results demonstrating a left-sided PS for
(QPλ) in the regime of high sparsity, low noise, and large dimension.

Theorem 4.1.2 ((QPλ) right-sided stability). Fix ε > 0, let 1 ≤ s ≤ m <

N < ∞ be integers, x0 ∈ ΣN
s and A ∈ Rm×N a normalized K-subgaussian

matrix. There is an absolute constant C > 0 such that if λ ≥ C
√

logN and
m ≥ CεK̃

2s log(N/s), then with probability at least 1 − ε on the realization
of A,

R](λ;x0, A, η) ≤ Cλ2s.

In the initial work, λ∗ = 2
√

2 logN [13, Theorem 7.2]. In the present
phrasing, we write only that λ∗ = C

√
logN for an absolute constant C > 0.

Note that when the data are Gaussian, right-sided stability of (QPλ) and
(QPλ,K) has been examined by Thrampoulidis et al. [71, 72].
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Finally, in § 4.4 we show that (BPσ) is poorly behaved for all σ > 0 when
x0 is very sparse. In particular, under mild restrictions on the aspect ratio
of the measurement matrix, we show that R̃(σ;x0, N, η) is asymptotically
suboptimal for any σ > 0 when s/N is sufficiently small. Below, this theorem
shows that the minimax risk for (BPσ), relative to the benchmark risk R∗,
converges in probability to ∞.

Theorem 4.1.3 ((BPσ) sensitivity simplified). Fix η > 0, an integer s ≥ 1,
and suppose for m : N→ N that m(N)/N → γ ∈ (0, 1). For each N , suppose
A = A(N) ∈ Rm(N)×N is a normalized K-subgaussian matrix. Then, for all
M > 0,

lim
N→∞

P

(
inf
σ>0

sup
x∈ΣNs

R̃(σ;x,A, η)

R∗(s,A)
> M

)
= 1.

Numerical results supporting § 4.2 and § 4.4 are discussed in § 4.5. Proofs
of most of the theoretical results are deferred to § 4.6. Next, we add two
clarifications. First, the three programs are equivalent in a sense.

Proposition 4.1.4 (Program equivalence [35, Proposition 3.2]). Let 0 6=
x0 ∈ RN and λ > 0. Where x](λ) solves (QPλ), define τ := ‖x](λ)‖1 and
σ := ‖y −Ax](λ)‖2. Then x](λ) solves (LSτ ) and (BPσ).

However, τ and σ are functions of z, a random variable, and this mapping
may not be smooth. Thus, parameter stability of one program is not implied
by that of another. Second, R∗(s,A) has the desirable property that it is
computable up to multiplicative constants [47].

Proposition 4.1.5 (Risk equivalences). Fix ε > 0, let 1 ≤ s ≤ m <∞, N ≥
2 be integers, let η > 0. Suppose A ∈ Rm×N is a normalized K-subgaussian
matrix satisfying m > CεK

2 logKs log(N/s), and suppose that y = Ax0 +ηz

for z ∈ Rm with zi
iid∼ N (0, 1). Let

M∗(s,N) := inf
x∗

sup
x0∈ΣNs

η−2‖x∗ − x0‖22
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be the minimax risk over arbitrary estimators x∗ = x∗(y). There are c, C > 0

such that with probability at least 1− ε on the realization of A,

cs log(N/s) ≤M∗(s,N) ≤ inf
λ>0

sup
x0∈ΣNs

R](λ;x0, A, η)

≤ CR∗(s,A) ≤ Cs log(N/s).

In this thesis, we focus primarily on the versions of Lasso for which
‖ · ‖1 is the structural proxy, and ΣN

s the structure set for the data x0. In
addition, we discuss the pertinence of our results to the Generalized Lasso

setting. For instance, in Lemma A.1.1, we show how Theorem 4.2.1 adapts
to the setting of PS for low-rank matrix recovery using the nuclear norm.
Further, we connect our discussion on (QPλ) in § 4.3 to results for more gen-
eral gauges [71, 72], which works have developed tools suitable for analyzing
PS of (QPλ,K) when the data are Gaussian. While it remains an open ques-
tion to determine how our results in § 4.4 may be extended to analyze PS
of (BPσ,K), we conjecture that a suboptimality result like that exemplified
in Theorem 4.1.3 exists under analogous assumptions for (BPσ,K).

4.2 On parameter sensitivity for (LSτ)

The main result of this section is proved in the case of standard CS, where
x0 ∈ ΣN

s and where tight bounds on the effective dimension of the structure
set are known (e.g., bounds on the Gaussian complexities γ(Ls) or γ(KNs )).
Define τ∗ := ‖x0‖1. The following result states that L̂ is almost surely
suboptimal in the limiting low-noise regime when τ 6= τ∗, while R̂(τ∗) is
order-optimal. A proof of the result may be found in § 4.6.3, with supporting
lemmata in § 4.6.3.

Theorem 4.2.1 (Asymptotic singularity). Fix δ, ε > 0 and let 1 ≤ s ≤
m < N < ∞ be integers. Let x0 ∈ ΣN

s \ ΣN
s−1 with τ∗ := ‖x0‖1 and τ > 0

such that τ 6= τ∗. Let η > 0 and let z ∈ Rm with zi
iid∼ N (0, 1). Suppose
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A ∈ Rm×N is a normalized K-subgaussian matrix, and assume m satisfies

m > CεK̃
2δ−2s log

eN

s
.

Almost surely on the realization of (A, z),

lim
η→0

L̂(τ ;x0, A, ηz) =∞.

With probability at least 1 − ε on the realization of A, there exist constants
0 < cδ < Cδ <∞ such that

cδs log
N

s
≤ lim

η→0
sup
x∈ΣNs

R̂(‖x‖1;x,A, η) ≤ Cδs log
N

2s
.

For clarity, observe the similarity to the definition of τ∗ of the precise
parameter, ‖x‖1, appearing in the lower bound. Importantly, the spirit of
this result extends to the situation where x0 belongs, more generally, to some
convex proxy set K ⊆ RN . In particular, the blow-up of L̂ in the limiting
low-noise regime holds independent of the assumptions on K, except that K
be bounded. For instance, Lemma A.1.1 addresses an analogous result in
the case where the signal is a d × d matrix and K is the nuclear norm ball.
Further, worst-case bounds on R̂ are well-known in the case where K is a
convex polytope, and are useful when K has small gmw [7, 47].

4.3 A brief note regarding (QPλ)

4.3.1 Right-sided parameter stability

In this section we present a contrast to the type of sensitivity observed
in § 4.2. Specifically, we observe via Theorem 4.1.2 that (QPλ) is not sen-
sitive to its parameter choice if the chosen parameter is too large. This so-
called right-sided parameter stability is important in practical settings, as it
suggests that recovery will not be penalized “too heavily” if the parameter
is chosen incorrectly to be too large. Having such a leniency is reassuring,
since knowing the exact choice of λ in an experimental setting is unlikely at
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best.
The right-sided parameter stability for (QPλ) was first proved in [13,

Theorem 7.2]. When the data are Gaussian, right-sided stability of (QPλ)

has been examined for (QPλ) and (QPλ,K) by Thrampoulidis et al. [71,
72]. Here, Theorem 4.1.2 is a specialized rephrasing of a known result [67,
Theorem 3] that is more suitably adapted to the present work.

In particular, over-guessing λ results in no more than a quadratic penalty
on the bound for the recovery error. Consequently, (QPλ) is right-sided
parameter stable — it is not sensitive to variation of its governing parameter
when the parameter is sufficiently large. We note, thereby, that there exist
regimes in which Lasso programs are not sensitive to their parameter choice.
Perhaps more importantly: there are regimes in which one program may be
sensitive to its parameter choice, and another program is not. Namely, we
see that (LSτ ) can be sensitive to its parameter choice in the low-noise regime
(so the correct choice of τ is an imperative), while recovery for the very same
data using (QPλ) is not sensitive to λ (if λ is sufficiently large).

4.4 On parameter sensitivity for (BPσ)

The final program that we subject to scrutiny is (BPσ). It is well-known
under standard assumptions that an optimal choice of σ yields order-optimal
risk R̃(σ∗;x0, A, η) with high probability on the realization of A. In this
section, we demonstrate the existence of a regime in which any choice of σ
fails to yield order-optimal recovery for (BPσ). A key message of this section
is that (BPσ) performs poorly if the signal is too sparse and the number of
measurements is too large. We demonstrate this behaviour for two regimes:
the underconstrained setting, where σ is “too large” and the overconstrained
setting where σ is “too small”. Each of these settings covers the case where
σ is chosen “just right”; we will see how (BPσ) risk fails to achieve order
optimality in this case, as well.

For the duration of this section, we will consider x0 ∈ ΣN
s where s may or

may not be allowed to be 0. We will clarify this explicitly in each instance.
The main result of the section will be stated in the case where A ∈ Rm×N is
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a normalized K-subgaussian matrix with m = m(N) satisfying a particular
growth condition. Thus, the measurement vector will be given by y = Ax0 +

ηz where η > 0 is the noise scale and zi
iid∼ N (0, 1) as before. For the sake of

analytical and notational simplicity, we assume that η is independent of N .
However, we eventually make clear how σ may be allowed to depend on the
ambient dimension, and that our result holds irrespective of this dependence.

4.4.1 Underconstrained parameter sensitivity

As a “warm-up” for the main result, we start by demonstrating that there
is a regime in which R̃(σ;x0, A, η) fails to achieve minimax order-optimality
when restricted to σ ≥ η

√
m. Specifically, if m is too large, then there is

a (sufficiently sparse) vector x0 ∈ ΣN
s such that, with high probability on

the realization of A, the risk R̃(σ;x0, A, η) is large regardless of the choice
of σ ∈ [η

√
m,∞). We defer the proof of this result to § 4.6.4.

Lemma 4.4.1 (Underconstrained maximin (BPσ)). Fix δ, ε, η > 0, let 1 ≤
s < m ≤ N be integers, and suppose A ∈ Rm×N is a normalized K-
subgaussian matrix. If

m > Cεδ
−2K̃2s2 log2

(
N

s

)
,

then with probability at least 1− ε on the realization of A,

inf
σ≥η
√
m

sup
x∈ΣNs

R̃(σ;x,A, η) ≥ C
√
m.

Remark 12. In some settings, it may be not be appropriate for m to depend
logarithmically on N . If m and N satisfy the power law relation m = Nk

for some k ∈ (0, 1), then under the assumptions of Lemma 4.4.1,

E
z
‖x̃(σ)− x0‖22 = Ω(Nk/2).
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4.4.2 Minimax suboptimality

Just as observed in § 4.4.1, the results of this section hold in the regime
where the aspect ratio approaches a constant: m/N → γ ∈ (0, 1). Our
simulations in § 4.5.3 support suboptimality of R̃, and sensitivity of (BPσ)

to its parameter choice for aspect ratios ranging from γ = 0.1 to γ = 0.45.
Our result is of an asymptotic nature in one additional sense. We have

stated that R̃ may be suboptimal for “very sparse” signals x0. This is spec-
ified in the sense that, while m and N may be allowed to grow, s remains
fixed. Our numeric simulations demonstrate how this assumption may be
interpreted as the inability of (BPσ) to effectively recover the off-support
of the signal x0 (i.e., the all 0 sub-vector xTC where T ⊆ [N ] denotes the
support of x0). Thus, it is in this setting, where the number of measure-
ments is sufficiently large, and the sparsity sufficiently small, that we show
R̃(σ;x0, A, η) is asymptotically suboptimal, regardless of the choice of σ.

Theorem 4.4.2 ((BPσ) minimax suboptimality). Fix ε, η > 0 and m : N→
N with m(N)/N → γ ∈ (0, 1). There is N0 ≥ 2 and p > 0 so that for
any N ≥ N0 and any 1 ≤ s < m(N0), if A ∈ Rm×N is a normalized K-
subgaussian matrix, then with probability at least 1 − ε on the realization of
A,

inf
σ>0

sup
x∈ΣNs

R̃(σ;x,A, η) ≥ Cγ,KNp. (4.1)

A minor modification of the above result allows one to show that the
minimax risk for (BPσ), relative to the benchmark risk R∗(s,A), converges
in probability to ∞.

Corollary 4.4.3 ((BPσ) suboptimal in probability). Fix η > 0, an integer
s ≥ 1, and suppose for m : N → N that m(N)/N → γ ∈ (0, 1). For each
N , suppose A = A(N) ∈ Rm(N)×N is a normalized K-subgaussian matrix.
Then, for all M > 0,

lim
N→∞

P

(
inf
σ>0

sup
x∈ΣNs

R̃(σ;x,A, η)

R∗(s,A)
> M

)
= 1.
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4.5 Numerical results
Let P ∈ {(LSτ ), (QPλ), (BPσ)} be a CS program with solution x∗(υ), where
υ ∈ {τ, λ, σ} is the associated parameter. Given a signal x0 ∈ RN , matrix
A ∈ Rm×N , and noise ηz ∈ Rm, denote by L (υ;x0, A, ηz) the loss associated
to P. For instance, if P = (LSτ ), then L = L̂. In most cases, the signal
x0 for our numerical simulations will be s-sparse, and s will be “small”.
For simplicity, and to ensure adequate separation of the “signal” from the
“noise”, each non-zero entry of x0 will be equal to N , except where otherwise
noted. Unless otherwise noted the measurement matrix A will have entries
Aij

iid∼ N (0,m−1).
Define υ∗ := υ∗(x0, A, η) > 0 to be the value of υ yielding best risk (i.e.,

where Ez L (·;x0, A, ηz) is minimal) and let the normalized parameter ρ for
the problem P be given by ρ := υ/υ∗. Note that ρ = 1 is a population es-
timate of the argmin of L (ρυ∗;x0, A, ηz); by the law of large numbers, this
risk estimates well an average of such losses over many realizations ẑ. Let
L(ρ) := L (ρυ∗) denote the loss for P as a function of the normalized pa-
rameter, let {ρi}ni=1 denote a sequence of points in the normalized parameter
space, and define the average loss for P at any point ρi by

L̄(ρi;x0, A, η, k) := k−1
k∑
j=1

L(ρi;x0, A, ηẑij), (4.2)

where ẑij is the (i, j)-th realization of noise; ẑij ∼ N (0, Im) for all (i, j) ∈
[n] × [k]. We may also refer to L̄ as the empirical risk or average noise-
normalized squared error (nnse). Note that L̄ depends on (ẑij : i ∈ [n], j ∈
[k]) and that notating this dependence is omitted for simplicity. Below, ẑij
are not necessarily sampled independently. In fact, to obtain tractable com-
putational simulations, we will frequently have ẑij = ẑi′j for i, i′ ∈ [n]. Where
necessary, we disambiguate the average losses with a subscript: L̄(LSτ ),
L̄(QPλ) and L̄(BPσ) for the programs (LSτ ), (QPλ) and (BPσ), respectively.
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Given two signals x∗, x define the peak signal-to-noise ratio (psnr) by

psnr(x∗, x) := 10 log10

(maxi∈[N ] x
2
i

mse(x∗, x)

)
, (4.3)

mse(x∗, x) :=
1

N

N∑
i=1

(x∗i − xi)2. (4.4)

As with defining loss L(ρ;x0, N, ηẑij), by abuse of notation we define psnr
as a function of the normalized parameter ρ:

psnr(ρ) := psnr(ρ;x0, N, ηẑij) := psnr(x∗(ρυ∗), x0).

In this section, we include plots representing average loss of a program
with respect to that program’s normalized governing parameter. Both the
optimal parameter υ∗ and the average loss L̄ are approximated by υ† and
L†, respectively, using RBF interpolation as described in § A.2.2. Parameter
settings for the interpolations are provided in § A.2.3. To this end, the
average loss Ez L(ρ;x0, A, ηz) is approximated from k realizations of the
true loss on a logarithmically spaced grid of n points centered about ρ = 1.
The approximation is computed using multiquadric RBF interpolation and
the values of the parameters of the interpolation, (k, n, εrbf, µrbf, nrbf), are
stated in each instance where the computation was performed. In every
case, due to concentration effects, for a given program and given parameter
value the realizations cluster very closely about the average loss. Therefore,
RBF interpolation is very close to the true approximated average loss curve
computed from the loss realizations; and has the added advantage of facility
to account for nonuniformly spaced data points. In the main graphics, we
omit the original data point cloud in favour of presenting clean, interpretable
plots. However, we include auxiliary plots of the average loss approximant
and the point cloud to visualize goodness of fit. In addition, these latter
visualizations serve to support how a program’s order-optimality for a single
realization may be impacted by averaging over noise.

There is one final caveat to note in how the plots were generated. Compu-
tational methods available to the authors for computing solutions to (BPσ)
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and (LSτ ) were much slower than those available for (QPλ). Consequently,
ensuring computational tractability of our numerical simulations required
solving (QPλ) and obtaining corresponding parameter values from those
problem instances. Namely, given {ρi}ni=1 and solutions x](λi) where λi =

ρiλ
∗, i ∈ [n], we use Proposition 4.1.4 to obtain τi := ‖x](λi)‖1 and σi := ‖y−

Ax](λi)‖2. Thus, we obtain loss curves L̂(τi;x0, A, ηz) and L̃(σi;x0, A, ηz)

by solving (QPλ) on a sufficiently fine grid, yielding (λi, x
](λi)). This allows

us to approximate the optimal parameter choices for (LSτ ) and (BPσ) and
therefore determine within some numerical tolerance all of L̄(LSτ ), L̄(QPλ)

and L̄(BPσ). Further details for approximating the average loss of a program
are given in § A.2.2 where we describe (RBF) interpolation [16, 78].

4.5.1 (LSτ ) numerics

The data generating process for the numerics in this section is as follows.
Fix A ∈ Rm×N , η > 0 and x0 ∈ ΣN

s . Fix a logarithmically spaced grid
of n points for the normalized parameter, {ρi}ni=1, centered about 1. Gen-
erate k realizations {zj}kj=1 of the noise. Obtain λi := ρiλ

∗(A, x0, η) and
obtain `ij := L](λi;x0, A, ηzj) after computing x](λi; zj). Observe that
L̂(τij ;x0, A, ηzj) = `ij where τij := ‖x](λi; zj)‖1. Similarly, for σij :=

‖yj−Ax](λi; zj)‖2, one has L̃(σij ;x0, A, ηzj) = `ij . Finally, for a sufficiently
fine and wide numerical grid, one may approximate the normalized parameter
grids {τij} and {σij} using the values {`ij}. Consequently, for each program
we are able to approximate the average loss L̄ by obtaining a clever approxi-
mate interpolant of {(τij , `ij) : (i, j) ∈ [n]× [k]}, {(σij , `ij) : (i, j) ∈ [n]× [k]}
or ∪j∈[k]{(ρi, `ij) : i ∈ [n]}, respectively, while only having to solve (QPλ).
This particular bit of good fortune is guaranteed to us by Proposition 4.1.4.
As stated, the clever approximant is obtained using multiquadric RBF in-
terpolation [16, 78]. For more background on kernel methods for function
approximation and radial basis functions in particular, we refer the reader
to Buhmann [16], Hastie et al. [40], Murphy [53]. Some additional detail to
this end is provided in § A.2.2.

The numerics for (LSτ ), appearing in Figure 4.1, concern the case in
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Figure 4.1: (LSτ ) PS in the low-noise regime. Average loss (left) plot-
ted on a log-log scale with respect to the normalized parame-
ter; average psnr (right) plotted on a log-linear scale with re-
spect to the normalized parameter. The data parameters are
(s,m,N, η, k, n) = (1, 2500, 104, 2 · 10−3, 15, 301).

which η is small. When the ambient dimension is modest (N = 104) and
the noise scale only moderately small (η = 2 · 10−3), PS of (LSτ ) is readily
observed. Minute changes in τ lead to blow-up in the nnse and the psnr (left
and right plot, respectively). Indeed, for the range plotted, it is difficult to
visually segment the left half of the (LSτ ) average loss curve from the right
half. These observations support the asymptotic theory of § 4.2. Moreover,
the simulations suggest that the other two programs, (BPσ) and (QPλ) are
relatively much less sensitive to the choice of their governing parameter.

4.5.2 (QPλ) numerics

In this section we visualize the average loss of (QPλ) as a function of its
normalized parameter ρ = λ/λ∗. In Figure 4.2, the average loss for (QPλ)

is plotted with respect to the ρ for an aspect ratio δ ranging between 0.25

and 4. As suggested by Theorem 4.1.2, the average loss appears to scale
quadratically with respect to the normalized parameter for values ρ > 1.
For ρ ∈ (0.5, 0.9), the average loss appears to scale super-quadratically with
respect to the normalized parameter, with the rate of growth increasing as
a function of δ. This behaviour suggests that (QPλ) can be sensitive to its
parameter choice if ρ is too small. The intuition for the observed behaviour
is that (QPλ) increasingly behaves like ordinary least squares when λ → 0.
Each average loss was approximated from 15 realizations of the loss using
multiquadric RBF interpolation. Due to concentration effects, the realiza-
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tions for each parameter value clustered very closely to the approximated
average loss. The left-hand plot Figure 4.2 is plotted on a log-log scale,
while the right-hand plot is plotted on a linear-linear scale. The linear-linear
plot readily demonstrates how over-guessing λ by a factor of 2 is more robust
to error than under-guessing λ by a factor of 2.
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Figure 4.2: Average loss of (QPλ) plotted with respect its normalized
parameter in the low-noise, high sparsity regime. Parameters for
the simulation are (s,N, η, k, n) = (1, 104, 10−5, 15, 301). The
aspect ratio of the matrix A ∈ Rm×N with Aij

iid∼ N (0,m−1)
takes values δ ∈ {4−1, . . . , 4}, as shown in the legend. The data
are visualized on a log-log scale (left) and linear scale (right).

In Figure 4.3, we visualize (QPλ) average loss with respect to its normal-
ized parameter. In the top row, we include two plots similar to Figure 4.2,
but for δ = 0.25, 0.45 only. Again, the left-hand plot is on a log-log scale
while the right-hand plot is on a linear-linear scale. The bottom row depicts
the goodness of fit of the RBF approximation for the average loss.

4.5.3 (BPσ) numerics

This section includes numerical simulations depicting the sensitivity of (BPσ)

to its parameter choice. These numerics serve to support the asymptotic
theory developed in § 4.4.

The graphics in Figure 4.4 serve as an initial depiction of (BPσ) PS,
depicting the average loss for each program and for N ∈ {4000, 7000},
δ ∈ {0.1, 0.25, 0.45}. Each plot depicts the average loss as a function of the
normalized parameter for (LSτ ) (green), (BPσ) (orange) and (QPλ) (blue).
The domain of the normalized parameter in each plot is (0.2, 5). A single
realization of A was fixed and the average loss was computed from k = 50
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Figure 4.3: Average loss of (QPλ) plotted with respect to its normal-
ized parameter in the low-noise, high-sparsity regime. Parame-
ters for the simulation are (s,N, η, k, n) = (1, 104, 10−5, 25, 201).
The aspect ratio of the matrix A ∈ Rm×N with Aij

iid∼ N (0,m−1)
takes values δ = 0.25, 0.45, as shown in the legend. The data
in the top row are visualized on a log-log scale (left) and linear
scale (right). The bottom row depicts the quality of fit for the
RBF approximation of the average loss for δ = 0.25 (left) and
δ = 0.45 (right).

realizations of the noise by constructing a function approximator using radial
basis function approximation with a multiquadric kernel. The RBF approx-
imator was evaluated on a logarithmically spaced grid of nrbf = 301 points
centered about 1. The loss values for (LSτ ) and (BPσ) were computed by
using the program equivalence described by Proposition 4.1.4. In particular,
for computational expediency, once A and z were fixed, the Lasso program
was solved only using (QPλ), for all λ in a specified range. For each x](λ),
we obtained x̂(τ) and x̃(σ) using that x̂(τ) = x̃(σ) = x](λ) for τ := ‖x](λ)‖1
and σ := ‖y −Ax](λ)‖2.

For convenience, we refer to each plot in Figure 4.4 via its (row, column)
position in the figure. The collection of plots serves to depict how the av-
erage loss changes as a function of N and δ = m/N when η = 1. Namely,
as N increases, the average loss for (BPσ) becomes sharper about the op-
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timal parameter choice. In addition, as δ increases, we observe the same
phenomenon. In Figure 4.6, similar content is depicted, but for η = 100. In
this case, nrbf = 501 was used.

Specific parameter settings for the RBF approximation for each set of
problem parameters and program are detailed in Table A.3. Because (BPσ)

PS is not easily visualized in small dimensions (e.g., for N < 106), we supply
several plots visualizing the quality of the RBF approximation. Namely,
approximation quality plots corresponding with Figure 4.4 may be found
in Figure 4.5; and approximation quality plots are included in Figure 4.6.
Each row of these plots is a triptych; each column corresponds to a program:
(LSτ ) for the left-most, (BPσ) in the centre; and (QPλ) on the right. These
plots depict a single line and a collection of points. The points correspond to
individual loss values for each realization of the noise and each normalized
parameter value computed. The line corresponds to the RBF approximation
of the average loss for that program. The domain for the (LSτ ) plots is
(0.95, 0.95−1) in the normalized parameter space. For (BPσ) it is (0.9, 0.9−1),
and for (QPλ) (0.75, 0.75−1).

In Figure 4.5, one may observe by inspection that the loss realizations
for (LSτ ) and (QPλ) typically are achieved very close to 1. In contrast, there
is a relatively wider range in the domain for where the (BPσ) loss achieves
its optimum. This is integral to how (BPσ) risk is sensitive to the choice of
σ.

There appear to be two competing factors that impact sensitivity to
parameter choice and program optimality. The first is sensitivity of the
parameter with respect to variation due to the noise realization. This has
already been described: because σ(λ∗, z) varies greatly as a function of z,
program optimality is destroyed by suboptimal loss values near σ = σ∗. On
the other hand, this also tends to have somewhat of a smooth effect about
the optimal normalized parameter. Thus, as τ(λ∗, z) does not vary as greatly
in this manner, its sensitivity to parameter choice is not smoothed due to
local averaging effects.
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4.5.4 More synthetic examples

In this section, we display three synthetic examples where only s and η were
changed. Thus, the effect of sparsity and noise scale is readily observed. In
each of these figures, the aspect ratio of the measurement matrix was δ =

0.25, 0.45 for the left- and right-hand plots respectively (except Figure 4.8
where δ = 0.25 was too small to achieve recovery). The average loss curves
for each program were computed from k = 25 realizations of loss curves
that were, themselves, generated on a logarithmically spaced grid of n = 201

points centered about the optimal choice of the normalized parameter, ρ = 1.
The loss realizations were again computed by solving (QPλ) and using the
correspondence between Lasso programs to compute the loss curves for
(LSτ ) and (BPσ).

The bottom row of Figure 4.7 and Figure 4.9, and the right half of Fig-
ure 4.8 depict the quality of the approximation of the average loss curve for
each program. Specifically, each program appears with its own facet, in which
are displayed the individual loss realizations L(ρi;x0, A, ηzj), i ∈ [n], j ∈ [k]

as grey points, and the average loss L̄(ρ;x0, A, η) as a coloured line. The
top row of Figure 4.7 and Figure 4.9, and the left half of Figure 4.8 compare
the the average loss curves for each program, where the average losses are
plotted on a log-log scale with respect to the normalized parameter.

The first figure, Figure 4.7, displays a setting similar to Figure 4.1. The
noise scale was η = 10−5 and s = 1. Thus, the setting depicts the low-noise
high-sparsity regime. The second figure, Figure 4.8, depicts a moderately
low-noise regime, with a large value of s (so large that δ = 0.25 did not yield
adequate recovery). Thus, this figure depicts the regime in which x0 is near
the limit of acceptable sparsity for the CS regime. Finally, the parameter
settings for Figure 4.9 were s = 100 and η = 100. In particular, sparsity
is modest, and the noise scale is large (the variance equals the ambient
dimension, η2 = N = 104).

It is readily observed that (LSτ ) is highly sensitive to its parameter choice
in both low-noise regimes. We observe that (BPσ) becomes more sensitive to
its parameter choice as sparsity decreases from 750 to 100 to 1. Finally, we
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observe that (QPλ) is most sensitive to its parameter choice in the low-noise
high-sparsity regime. This left-sided sensitivity is consistent with the theory
and numerical simulations for the corresponding proximal denoising setting
in Chapter 3 [8, 9].

4.5.5 Realistic Examples

We next include two realistic examples in addition to the synethetic ones
of the previous sections. We show how CS programs may exhibit sensi-
tivity as a function of their governing parameter for a 1D and 2D wavelet
problem. In each example, we will include plots similar to those appearing
above; however there will be some key differences. As above, the average
loss is computed from several realizations of the loss, which depend in turn
on realizations of the noise. However, we will plot the loss corresponding to
a single realization as a function of the normalized parameter. Computing
the normalized parameter is what requires computing the average loss. As
before, we approximate the average loss and the normalized parameter using
RBF interpolation, described in § A.2.2. The figures of this section contain
three main pieces. We will plot psnr, as a function of the normalized param-
eter; loss, equal to the nnse, as a function of the normalized parameter; and
we will include a grid of plots that allows for comparison of CS recovery by
visualizing the recovery in the signal domain. The latter grid of plots shall
be referred to as “grid plots” while the psnr and nnse plots shall be referred
to as “reference plots”, as they contain annotations that relate them to the
grid plots.

We now include a brief description of the so-called grid plots and asso-
ciated reference plots that appear in this section. Other than plotting loss,
rather than average loss, a key difference of the reference plots to the plots
of § 4.5.1–4.5.3 is that they have been annotated with vertical black dashed
lines, and coloured dots. Where the loss for a program intersects the black
dashed line, we show a representative solution for that program where the
normalized parameter for the problem is given by the intercept of the ver-
tical line (approximately). Because the programs were solved on a grid, the
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true value of the normalized program is given by the coloured dot appearing
nearest the black dashed line. The horizontal axis for the reference plots
is the normalized parameter (plotted on a log scale). The vertical axis for
the reference plots is either the psnr (plotted on a linear scale) or the nnse
(plotted on a log scale). The representatives for each chosen normalized
parameter value and each program are plotted as a faceted grid below the
reference plot. The chosen normalized parameter value is given at the top
of each column, while the program used to recover the noisy ground truth
signal is described in the legend.

1D wavelet compressed sensing

The signal ξ0 ∈ RN , N = 4096, was constructed in the Haar-wavelet domain.
In particular, x0 ∈ RN has 10 non-zero coefficients, each equal to N . Let
W1 denote the 1D Haar wavelet transform. Thus, ξ0 =W1x0 where ‖x0‖0 =

10. Next, for A ∈ Rm×N where m = 1843, define y = Ax0 + ηz where
zi

iid∼ N (0, 1) and η = 50. The signal’s wavelet coefficients were recovered
using (LSτ ), (QPλ) and (BPσ) for several realizations of the noise z and over
a grid of normalized parameter values. For example x̂(τi;x0, A, z

(j)) is the
(LSτ ) recovery of the wavelet coefficients x0 from (y(j), A) with τ = τi, where
y(j) := Ax0 + ηz(j). The recovered signal is thus given by ξ̂(τi) :=W−1x̂(τi)

and the loss given by η−2‖ξ̂(τi)− ξ0‖22. The loss is modified similarly for the
other programs. Specifically, the loss is measured in the signal domain and
not the wavelet domain. The average loss was approximated from k = 50

loss realizations using RBF interpolation, as described in § A.2.2, on a grid
of n = 501 points logarithmically spaced and centered about ρ = 1.

Results of this simulation are depicted in Figure 4.10 with RBF interpola-
tion parameter settings given in Table A.4. The results shown in Figure 4.10
depict data from only a single noise realization: the top-most graphic shows
psnr as a function of the normalized parameter; the middle graphic plots
the loss as a function of the normalized parameter; and the bottom group
compares the ground-truth signal and recovered signals in the signal do-
main. While psnr and loss are plotted instead of average psnr and average
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loss, the normalized parameter was computed from the average loss, as usual
(cf. § A.2.2). Correspondingly, observe that the optimal parameter choice
for each program may not appear at ρ = 1, since the optimal normalized
parameter for a particular loss realization is not necessarily equal to the op-
timal normalized parameter for the expected loss. In the bottom group of
15 plots, each row corresponds with a particular program — (LSτ ), (QPλ)

and (BPσ), from top to bottom — while each column corresponds with a
particular vaue of the normalized parameter — 0.5, 0.75, 1, 1.3 and 2, from
left to right. The recovered signal for that program and normalized parame-
ter value is shown as a coloured line, while the ground truth signal is shown
as a black line.

As η = 50, the problem lies outside of the small-noise regime. As such,
(BPσ) is more sensitive to its parameter choice than (QPλ), and more sen-
sitive than (LSτ ) for ρ > 1 due to the relatively high sparsity of the signal.
Since suboptimality of (BPσ) is observed for risk or average loss rather than
for individual loss realizations, we do not observe suboptimality of (BPσ) loss
in these graphics. As expected, (LSτ ) is sensitive to its parameter choice for
ρ < 1, as the ground-truth solution lies outside the feasible set in this setting.
It appears that the loss is mildly more sensitive to under-guessing τ in this
regime, than it is to over-guessing σ. This is readily observed from all of the
plots in the figure, especially by comparing those in the bottom group of 15.

For comparison with the middle plot of Figure 4.10, we include a plot
of the average loss for each program as a function of the normalized param-
eter in Figure 4.11 (left plot). Beside it is a triptych visualizing the RBF
approximation quality for the average loss.

2D Wavelet Compressed Sensing

In this section, we describe numerical simulations for a 2D wavelet com-
pressed sensing problem. The signal, ξ0, is an 80× 80 image of the so-called
square Shepp-Logan phantom (sslp), visualized in Figure 4.12. The sslp was
first used in Berk et al. [9]. Let W denote the Haar wavelet transform and
define x0 := Wξ0 ∈ R6400 to be the vector of Haar wavelet coefficients for
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the signal ξ0. The linear measurements are taken as

y = Ax0 + ηz, Aij
iid∼ N

(
0,m−1

)
, zi

iid∼ N (0, 1), η > 0.

The signal’s wavelet coefficients were recovered using (QPλ) to obtain x](λi),
where i ∈ [n] enumerates the grid of parameter values. The recovered image
is then given by ξ](λi) := W−1(x](λi)). By using the method described
previously at the beginning of § 4.5, the corresponding solutions for (LSτ ) and
(BPσ) were computed, obtaining x̂(τi) and x̃(σi), respectively, in addition
to the corresponding images ξ̂(τi) := W−1(x̂(τi)) and ξ̃(σi) := W−1(x̃(σi)),
i ∈ [n]. As in § 4.5.5, the loss has been modified to measure the nnse in
the image domain. For example, the (LSτ ) loss is given as η−2‖ξ̂(τi)− ξ0‖22;
similarly for the other two programs.

Average loss as a function of the normalized parameter ρ is shown in
Figure 4.13 for η = 10−2, 1/2 with m = 2888 (i.e., m/N ≈ 0.45). The aver-
age loss was approximated using RBF interpolation from k = 50 realizations
along a logarithmically spaced grid of 501 points centered about ρ = 1 using
the method described in § A.2.2. The parameter settings for the RBF inter-
polation are provided in Table A.5. Plots showing the approximation quality
of the RBF interpolation are given in the bottom row of Figure 4.13. In these
plots, individual realizations of the nnse for the recovery are shown as grey
points. The RBF interpolant is given by the coloured line in each plot. The
approximation quality is only visualized for a narrow region about ρ = 1.
Indeed, the approximation quality of the RBF interpolant was observed, in
every case, to be better away from ρ = 1 than about ρ = 1: ensuring good
interpolation of the loss realizations about ρ = 1 was observed to be suffi-
cient for ensuring good interpolation of the average loss over the region of
interest, ρ ∈ [10−1, 101].

In the left column of the figure, where η = 10−2, we observe that (LSτ )

is relatively more sensitive to its parameter choice than either (BPσ) or
(QPλ). In particular, for this problem, we observe that η = 10−2 is sufficient
to lie within the low-noise regime. Due to how the solutions for (LSτ ) were
computed from those for (QPλ), the average loss curve for (LSτ ) is not
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resolved over the full domain for the normalized parameter. This reinforces
how small changes in the normalized parameter value for (LSτ ) correspond to
relatively much larger changes in the normalized parameter value for (QPλ).

In the right column of the figure, where η = 1/2, we observe that (BPσ) is
relatively more sensitive to its parameter choice than either (LSτ ) or (QPλ).
We expect this is due to the relatively high sparsity of the signal. Again,
the average loss curve for (BPσ) is not resolved over the full plotted domain
of the normalized parameter. This underscores how changes in the govern-
ing parameter for (QPλ) correspond with relatively smaller changes in the
governing parameter for (BPσ). In particular (BPσ) is more sensitive to its
governing parameter than (QPλ) in the present problem. This observation
is supported by the theory of § 4.4.2.

As in previous numerical simulations, the bottom row of Figure 4.13
includes triptyches depicting the average loss approximation quality for the
RBF interpolation of the loss realizations (cf. § A.2.2).

In both Figure 4.14 and Figure 4.15, we use four main elements to de-
pict the results of a 2D wavelet CS problem, each for a single realization
of the noise. In each figure, the top row depicts the psnr curves for each
program (left) and loss curves for each program (right). The bottom row of
the figure contains two groupings of the 15 plots each. Each grid of 15 plots
is faceted by program ((LSτ ), (BPσ) and (QPλ), top-to-bottom) and nor-
malized parameter value (0.5, 0.75, 1, 1.3, 2, left-to-right). Each (program,
normalized parameter) tuple on the left-hand side of the figure corresponds
with its partner on the right-hand side. Specifically, the left-hand grid of
images depicts the recovered image for a given (program, normalized param-
eter) tuple, while the corresponding right-hand image depicts the pixel-wise
nnse in the signal domain. The details of these images are best examined on
a computer.

In Figure 4.14, the parameter settings are
(s,N,m, η, k, n) = (416, 6418, 2888, 10−2, 50, 501). In particular, η lies within
the low-noise regime, as observed by the relative sensitivity of (LSτ ) to its pa-
rameter choice. In Figure 4.15, the parameter settings are (s,N,m, η, k, n) =

(416, 6418, 2888, 1/2, 50, 501). In particular, the noise scale is relatively larger.
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The relatively high sparsity of the signal causes (BPσ) to be relatively more
sensitive to its parameter choice than either (LSτ ) or (QPλ). These obser-
vations are supported by the theory of § 4.2 and § 4.4.2.

4.6 Proofs

4.6.1 Risk equivalences

Proof of Proposition 4.1.5. The left-most inequality,

cs log(N/s) ≤M∗(s,N),

is a consequence of [17, Theorem 1], and the second inequality,

M∗(s,N) ≤ inf
λ>0

sup
x0∈ΣNs

R](λ;x0, A, η)

is trivial. The third inequality,

inf
λ>0

sup
x0∈ΣNs

R](λ;x0, A, η) ≤ CR∗(s,A)

is a consequence of [13, Theorem 6] and Corollary 4.6.3. Indeed, R∗(s,A)

may be lower-bounded by the optimally tuned worst-case risk, given by
supx∈ΣNs

R̂(‖x‖1;x,A, η), which is in turn lower-bounded by cs log(N/s) due
to [17, Theorem 1]. In particular, selecting constants appropriately gives

inf
λ>0

sup
x0∈ΣNs

R](λ;x0, A, η)

≤ Cs log(N/s) ≤ CM∗(s,N)

≤ C sup
x∈ΣNs

R̂(‖x‖1;x,A, η) ≤ CR∗(s,A).

The final inequality, a variant of which may be found in [47] or [56], easily
follows from Lemma 4.6.9.
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4.6.2 R̂ is nearly monotone

We first quote a specialized version of a result introduced in [47], which
gives a kind of local characterization of the deviation inequality presented
in Theorem 2.2.7.

Theorem 4.6.1 ([47, Theorem 1.7]). Let A be a normalized K-subgaussian
matrix and T ⊆ RN a convex set. For any t ≥ 1, it holds with probability at
least 1− exp(−t2) that

∣∣‖Ax‖2 −√m‖x‖2∣∣ ≤ t · CK̃γ(T ∩ ‖x‖2BN
2 ), for all x ∈ T.

We now present the main result of this section.

Proposition 4.6.2 (R̂ is nearly monotone). Let A be a normalized K-
subgaussian matrix and K ⊆ RN a non-empty closed convex set. Fix δ, η > 0,
0 < τ1 ≤ τ2 < ∞ and x0 ∈ K with ‖x0‖K = 1. For any t ≥ 1, if m satisfies
m > Ct2K̃2δ−2γ2(TK(x0)∩SN−1), then with probability at least 1−exp(−t2)

on the realization of A,

R̂(τ1; τ1x0, A, η) ≤ 1 + δ

1− δ
R̂(τ2; τ2x0, A, η).

Proof of Proposition 4.6.2. Given 0 < τ1 ≤ τ2 < ∞, let τ ∈ {τ1, τ2}, define
y(τ) = Aτx0 + ηz, and define

q(τ) := Aŵ(τ), where ŵ(τ) := x̂(τ ;A, y)− τx0,

τ ∈ {τ1, τ2}.

Observe that q(τ) may be written as

q(τ) ∈ arg min{‖q − ηz‖2 : q ∈ τK′},

K′ := {A(x− x0) : x ∈ K}.

The set K′ ⊆ Rm is non-empty, closed and convex, with 0 ∈ K′. In particular,
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Lemma 2.1.2 implies

‖q(τ1)‖2 ≤ ‖q(τ2)‖2.

By [47, Theorem 1.7], for any t ≥ 1 it holds with probability at least 1 −
exp(−t2) on A that for all w ∈ TK(x0),

√
m · |‖Aw‖2 − ‖w‖2| ≤ CtK̃γ(TK(x0) ∩ SN−1).

Accordingly, since ŵ(τ) ∈ TK(x0) for τ = τ1, τ2, under the assumption on m
it holds with probability at least 1− exp(−t2)

(1− δ)‖ŵ(τ1)‖2 ≤ ‖q(τ1)‖2
≤ ‖q(τ2)‖2 ≤ (1 + δ)‖ŵ(τ2)‖2.

In particular, ‖ŵ(τ1)‖2 ≤ 1+δ
1−δ‖ŵ(τ2)‖2. As z was arbitrary, the result follows:

R̂(τ1, τ1x0, A, η) ≤ 1 + δ

1− δ
R̂(τ2; τ2x0, A, η).

Corollary 4.6.3. Under the assumptions of Proposition 4.6.2, the optimally
tuned worst-case risk for (LSτ ) is nearly equivalent to R∗(s,A), in the sense
that

R∗(s,A) ≤ sup
x∈ΣNs

R̂(‖x‖1;x,A, η) ≤ CR∗(s,A).

Proof of Corollary 4.6.3. The sup defining the optimally tuned worst-case
risk may be decoupled as

sup
x′∈ΣNs

R̂(‖x′‖1;x′, A, η) = sup
τ>0

sup
x∈ΣNs ∩SN−1

R̂(τ ; τx,A, η). (4.5)
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Applying a standard scaling property gives the relation:

R̂(τ ; τx,A, η) =

(
τ

η

)2

E ‖x̂(1; y/τ,A)− x‖22

= R̂(1;x,A, η/τ).

The lower bound follows trivially from these two observations. To prove the
upper bound, we start by observing two facts. First, ΣN

s ∩SN−1 is compact,
so there is x∗(τ) achieving the supremum over the set ΣN

s ∩ SN−1 in (4.5).
Next, if the supremum over τ > 0 is achieved for τ → ∞, there is nothing
to show, since

sup
τ>0

sup
x∈ΣNs ∩SN−1

R̂(τ ; τx,A, η)

= lim
τ→∞

sup
x∈ΣNs ∩SN−1

R̂(τ ; τx,A, η)

= lim
τ→∞

sup
x∈ΣNs ∩∂BN1

R̂(1;x,A, η/τ)

= lim
η→0

sup
x∈ΣNs ∩∂BN1

R̂(1;x,A, η).

Otherwise, the supremum is achieved for some 0 ≤ τ∗ <∞. Let (τi)i∈Z be an
arbitrary bi-infinite monotone sequence with τi

i→−∞−−−−→ τ∗ and τi
i→∞−−−→ ∞.

For any i ≤ j, Proposition 4.6.2 and properties of the supremum give

sup
x∈ΣNs ∩SN−1

R̂(τi; τix,A, η)

= R̂(τi; τix
∗(τi), A, η)

≤ CR̂(τj ; τjx
∗(τi), A, η)

≤ CR̂(τj ; τjx
∗(τj), A, η)

= C sup
x∈ΣNs ∩SN−1

R̂(τj ; τjx,A, η)

As the above chain of inequalities holds for any pair i < 0 and j > 0, taking
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i→ −∞ and j →∞ gives,

sup
τ>0

sup
x∈ΣNs ∩SN−1

R̂(τ ; τx,A, η) ≤ C sup
x∈ΣNs ∩SN−1

R̂(τj ; τjx,A, η)

j→∞−−−→ C lim inf
τ→∞

sup
x∈ΣNs ∩SN−1

R̂(τ ; τx,A, η).

Finally, combining the above with an application of the standard scaling
property yields

sup
τ>0

sup
x∈ΣNs ∩SN−1

R̂(τ ; τx,A, η)

≤ C lim inf
τ→∞

sup
x∈ΣNs ∩SN−1

R̂(τ ; τx,A, η)

= C lim inf
τ→∞

sup
x∈ΣNs ∩∂BN1

R̂(1;x,A, η/τ)

= C lim inf
η→0

sup
x∈ΣNs ∩∂BN1

R̂(1;x,A, η)

Controlling a conditionally Gaussian process

Here we ready two technical results that are used to control the error of
the tuned approximation (τ = τ∗) uniformly with respect to the noise scale
η > 0. First, we specialize a result of [47]. Next, with high probability
we control in expectation the extreme values of a conditionally Gaussian
process.

Lemma 4.6.4 (Corollary of Theorem 2.2.7). Fix δ, ε, r > 0 and let A ∈
Rm×N be a normalized K-subgaussian matrix. For a constant Cε > 0, if

m > Cεδ
−2K̃2r2s log

(
2N

s

)
, (4.6)
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it holds with probability at least 1− ε on the realization of A that

sup
x∈Ls(r)

|‖Ax‖2 − ‖x‖2| < δ. (4.7)

Proof of Lemma 4.6.4. If s = 0 the result holds trivially. For s ≥ 1, this
lemma is a straightforward consequence of Theorem 2.2.7. Set u :=

√
log(2ε−1).

Indeed, by that result, it holds with probability at least 1− ε on the realiza-
tion of A that

sup
x∈Ls(r)

|‖Ax‖2 − ‖x‖2|

≤ C1m
−1/2K̃r

[
w(ΣN

s ∩ SN−1) + u
]
,

where C1 is an absolute constant. By Lemma 2.3.1, there is an absolute
constant C2 > 0 so that

w2(ΣN
s ∩ SN−1) ≤ C2

2s log

(
2N

s

)
.

In particular, (4.7) holds if

C1K̃m
−1/2r

[
C2

√
s log

(
2N

s

)
+ u

]
< δ.

Observe that this condition is satisfied if (4.6) holds:

m > Cεδ
−2K̃2r2s log

(
2N

s

)
,

Cε := 4C2
1 ·max

{
log
(
2ε−1

)
, C2

2

}
.

Lemma 4.6.5 (Conditionally Gaussian process). Let K ⊆ KNs ∩ SN−1 and
suppose A ∈ Rm×N is a normalized K-subgaussian matrix. Let z ∈ Rm with
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zi
iid∼ N (0, 1) and define

f(A, z) := sup
x∈K
〈Ax, z〉.

Let δ, ε > 0 and s ∈ N with s ≥ 1. There is an absolute constant Cε > 0,
depending only on ε, so that if

m > Cεδ
−2K̃2s log(N/s),

then with probability at least 1− ε on the realization of A,

E [f(A, z) | A] ≤ Cδ
√
s log(2N/s)

where Cδ > 0 is an absolute constant depending only on δ.

Proof of Lemma 4.6.5. By Lemma 2.3.2,

K ⊆ KNs ∩ SN−1 ⊆ Ls.

Therefore, f(A, z) ≤ supx∈Ls〈Ax, z〉. Furthermore,

Ls − Ls ⊆ L∗s.

By Lemma 4.6.4,

max
j∈[N ]

∣∣‖Aj‖2 − 1
∣∣ ≤ sup

x∈L∗s
|‖Ax‖2 − ‖x‖2| < δ (4.8)

with probability at least 1− ε if m satisfies

m > 32Cεδ
−2K̃2s log(N/s). (4.9)

Next, where x ∈ Ls, define the random processes

Xx := 〈Ax, z〉, zi
iid∼ N (0, 1);

Yx := (1 + δ)〈x, g〉, gi
iid∼ N (0, 1).
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Assume (4.9) holds and condition on the event A described by (4.8). Then
x− y ∈ Ls − Ls ⊆ L∗s, so

E(Xy −Xx)2 = ‖A(x− y)‖22
≤ (1 + δ)2‖x− y‖22 = E(Yy − Yx)2.

Namely, conditioned on A, the Sudakov-Fernique inequality (Theorem 2.2.5)
gives

E [f(A, z) | A] ≤ E
[

sup
x∈Ls

Xx

]
≤ E

[
sup
x∈Ls

Yx

]
= (1 + δ) w(Ls)

≤ 2C(1 + δ)
√
s log(2N/s),

where C > 0 is an absolute constant.

Remark 13 (Subgaussianity of f(A, z) | A). Conditioned on A, Borell-TIS
(Theorem 2.2.4) gives subgaussian concentration of f(A, z) about E[f(A, z) |
A]. In particular,

‖f(A, z)− E [f(A, z) | A]‖ψ2
. σK

where, on the event A as defined in the proof of Lemma 4.6.5,

σ2
K = sup

x∈K
E
[
|〈Ax, z〉|2

]
= sup

x∈K
‖Ax‖22 ≤ (1 + δ)2.

Note that subgaussianity of f(A, z) about E[f(A, z) | A] can also be estab-
lished using concentration of Lipschitz functions of Gaussians. Indeed, since
K ⊆ SN−1, for each A it holds that f(A, z) is Lipschitz in z. In fact, one can
show that “for most” A, f(A, z) is “nearly” 1-Lipschitz.
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4.6.3 Proofs for constrained Lasso sensitivity

Suboptimal choice of τ

The first result required to prove Theorem 4.2.1 concerns the case where
(LSτ ) is controlled by a parameter that is too large. Under mild regularity
assumptions on the mapping A, we show that this underconstrained problem
cannot recover even the least-squares proximal denoising error rate in the
limiting low-noise regime. The second result of this section concerns the
situation where τ is too small, τ < τ∗. In this overconstrained problem,
the ground truth does not lie in the feasible set and one expects this to be
detrimental to recovery performance. We confirm this intuition irrespective
of the assumptions on the measurement matrix A.

Lemma 4.6.6 (Underconstrained (LSτ )). Let A ∈ Rm×N and assume that
dim(null(A)) > 0. Given x0 ∈ RN , η > 0 and z ∈ Rm with zi

iid∼ N (0, 1), let
y := Ax0 + ηz. Suppose τ > ‖x0‖1. Almost surely on the realization of z,

lim
η→0

L̂(τ ;x0, A, ηz) =∞.

Proof of Lemma 4.6.6. Define ρ := τ−τ∗, where τ∗ := ‖x0‖1. For simplicity,
first assume span(A) = Rm. There exists ζ ∈ RN such that Aζ = z, and so
A(x0 +ηζ) = Ax0 +ηz = y. Moreover, if η < ρ‖ζ‖−1

1 then x0 +ηζ ∈ τBN
1 . In

particular, ξ := x0 + ηζ solves (LSτ ), because it is feasible and achieves the
lowest possible objective value for (LSτ ). Notice ‖ζ‖1 < ∞ almost surely,
so for any realization of z, η < ρ‖ζ‖−1

1 holds for all η sufficiently small.
Specifically, we have constructed ξ solving (LSτ ), and lying on the interior of
τBN

1 . Consequently, almost surely there is ν ∈ null(A) so that ξ + ν ∈ τBN
1

and still A(ξ + ν) = y. Scale ν if necessary so that ‖ξ + ν‖1 ∈ [1
2(τ + τ∗), τ ].
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Then, almost surely on the realization of z,

L̂(τ ;x0, A, ηz) ≥ η−2‖ξ + ν − x0‖22

≥ 1

Nη2
‖ξ + ν − x0‖21

≥ ρ2

4Nη2

η→0−−−→∞.

The case span(A) 6= Rm is similar. This case is interesting only when z ∈
Rm \ span(A) 6= ∅, otherwise we argue as above. In this setting, define P to
be the projection onto the range of A with P⊥ = (I−P ) being its orthogonal
component. We may re-write the objective of (LSτ ) as

‖y −Ax‖22 = ‖(P + P⊥)(y −Ax)‖22
= ‖P (y −Ax) + P⊥y‖22
= ‖ỹ −Ax‖22 + ‖P⊥y‖22

where ỹ := Py. Therefore, when z 6∈ span(A), solving (LSτ ) is equivalent to
solving

arg min {‖Py −Ax‖2 : ‖x‖1 ≤ τ} . (?)

By construction, ỹ = Py ∈ range(A), so we may apply the same argument
as above to the program (?), implying

lim
η→0

L̂(τ ;x0, A, ηz) =∞.

Lemma 4.6.7 (Overconstrained (LSτ )). Fix τ < τ∗. Almost surely on the
realization z,

lim
η→0

L̂ (τ ;x0, A, ηz) =∞.

Proof of Lemma 4.6.7. Let ρ := τ∗ − τ > 0. For any solution ξ to (LSτ ),

119



one has

η−2‖ξ − x0‖22 ≥
ρ2

Nη2
.

By definition, the desired result follows immediately:

lim
η→0

L̂(τ ;x0, A, ηz) ≥ η−2‖ξ − x0‖22 ≥
ρ2

Nη2

η→0−−−→∞.

Uniform control over noise scales

In this section, we control (LSτ ) in the optimally tuned setting, uniform over
the noise scale η. Specifically, for any x0 ∈ ΣN

s we control the expected error
of recovery for (LSτ ) uniformly over the noise scale η > 0. The results of
§ 4.6.2 are crucial for this purpose.

Proposition 4.6.8 (Uniform over noise scale). Let 0 ≤ s < N < ∞ be
integers and let m ∈ N. Let A ∈ Rm×N be a normalized K-subgaussian
matrix, and fix δ, ε > 0. Suppose that y = Ax0 + ηz for η > 0 and z ∈ Rm

with zi
iid∼ N (0, 1). With probability at least 1 − ε on the realization of A,

there exist constants Cδ, Cε > 0 so that if

m > Cεδ
−2K̃2s log

(
N

2s

)
,

then for all η > 0:

E
[
‖x̂− x0‖22 | A

]
≤ Cδη2s log

(
N

2s

)
.

where x̂ = x̂(τ∗) solves (LSτ ) with τ = τ∗ := ‖x0‖1.

Proof of Proposition 4.6.8. If s = 0, the result holds trivially as, by con-
struction, ‖x̂ − x0‖2 = 0 almost surely. Suppose s ≥ 1. By definition of x̂,
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where h := x̂− x0,

‖Ax̂− y‖22 ≤ ‖Ax0 − y‖22 =⇒ ‖Ah‖22 ≤ 2η〈Ah, z〉.

Step 1: Lower bound ‖Ah‖2 with high probability. Note that ‖Aw‖2 =

‖w‖2‖Aŵ‖2 for w 6= 0 where ŵ := w/‖w‖2. By Lemma 4.6.4, there is an
event A1 with P(A1) ≥ 1− ε/2 on which

sup
x∈KN4s

|‖Ax‖2 − ‖x‖2| ≤ sup
x∈L4s

|‖Ax‖2 − ‖x‖2| < δ1

if m satisfies

m > 16C ′εδ
−2
1 K̃2s log

(
N

2s

)
. (4.10)

Specifically, h ∈ JN4s by Lemma 2.3.4, meaning ĥ ∈ JN4s ∩ SN−1 ⊆ KN4s if
h 6= 0. So, conditioning on A1 and enforcing (4.10), one has

‖Ah‖22 = ‖h‖22‖Aĥ‖22 ≥ ‖h‖22
(
‖ĥ‖2 − δ1

)2
≥ (1− δ1)2‖h‖22. (4.11)

The inequality (1− δ1)2‖h‖22 ≤ ‖Ah‖22 holds also for h = 0.
Step 2a: Upper bound 〈Ah, z〉. Again using that h ∈ JN4s ,

2η〈Ah, z〉 ≤ 2η‖h‖2 sup
ĥ∈KN4s∩SN−1

〈Aĥ, z〉. (4.12)

Step 2b: Control the latter quantity in expectation. By Lemma 4.6.5, there
is C ′′ε > 0 so that for

m > 4C ′′ε δ
−2K̃2s log

(
N

4s

)
, (4.13)

there is an event A2 holding with probability at least 1−ε/2, on which there
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is a constant Cδ > 0 such that

E

[
sup
ĥ∈KN4s

〈Aĥ, z〉 | A

]
≤ 2Cδ

√
s log

(
N

2s

)
.

Step 3: Now combine steps 1 and 2a. Assume m simultaneously satis-
fies (4.10) and (4.13), and condition on A1∩A2, which holds with probability
at least 1− ε. Combining (4.11) and (4.12), and letting δ1 := 1−2−1/2 gives

‖h‖2 ≤ 4η sup
ĥ∈KN4s

〈Aĥ, z〉.

Take expectation of both sides and bound the quantity by applying step 2b.
This yields,

E [‖h‖2 | A] ≤ 8Cδη

√
s log

(
N

2s

)
.

Note that by setting Cε := max{ 32C′ε
3−2
√

2
, 4C ′′ε }, it suffices to require

m > Cεδ
−2K̃2s log

(
N

2s

)
.

Alternatively, one may also apply a standard fact for subgaussian random
variables. Recall as in (2.2), |||Xw|||KN

4s
:= supw∈KN

4s
Xw. Then∥∥∥|||Xw|||KN

4s
− E |||Xw|||KN

4s

∥∥∥
ψ2

≤ σ2
KN

4s

by Theorem 2.2.4. So, there is an absolute constant C > 0 such that on A1,∥∥∥|||Xw|||KN
4s
− E

z
|||Xw|||KN

4s

∥∥∥2

L2

= E
z
|||Xw|||2KN

4s
−
(
E
z
|||Xw|||KN

4s

)2

≤ Cσ2
KN

4s
≤ C(1 + δ1)2.

where Xw := 〈Aw, z〉 conditioned on A. In particular, choosing instead
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δ1 := 1− 2−1/4,

E
[
‖h‖22 | A

]
≤ 8η2

(
4C2

δ s log
N

2s
+ C
√

2

)
.

Rearranging, and observing that the right hand term in parentheses is small
relative to the left hand term, we may obtain a new absolute constant Cδ > 0

depending only on δ such that

η−2 E
[
‖x̂− x0‖22 | A

]
≤ Cδs log

N

2s
.

Remark 14. In the proof above, no attempt was made to optimize constants.
In fact, several simplifications were made for clarity of presentation, which
in turn resulted in larger than necessary constants.

Remark 15 (Uniform control over noise scale and signal class). Observe that
the result above is uniform over noise scale η > 0 and signal x0 ∈ ΣN

s . In
particular, we could have written (conditioning on A),

sup
η>0

sup
x0∈ΣNs

R̂(τ∗;x0, A, η) ≤ Cδs log
N

2s
.

Optimal choice of τ and phase transition

Here, we synthesize the technical results of § 4.6.3 to show that, with high
probability on the realization of A, (LSτ ) achieves order-optimal risk in the
limiting low-noise regime when m is sufficiently large and τ = τ∗.

Lemma 4.6.9 (Tuned (LSτ )). Fix δ, ε > 0 and let A ∈ Rm×N be a nor-
malized K-subgaussian matrix. For s ∈ N fixed with 0 ≤ s ≤ m, suppose
x0 ∈ ΣN

s and η > 0. If m satisfies

m > C ′εδ
−2K̃2s log

N

2s
,

then, with probability at least 1−ε on the realization A, there exist constants
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0 < cδ < Cδ <∞ such that

cδ · s log

(
N

s

)
≤ lim

η→0
sup

x0∈ΣNs

R̂(τ∗;x0, N, η)

≤ Cδ · s log

(
N

2s

)
.

Proof of Lemma 4.6.9. For simplicity of the proof, we assume K̃2 = 1.
Upper bound: Given δ, ε1 > 0, assume

m > Cε1δ
−2s log

N

2s
.

With probability at least 1−ε1 on the realization of A, by Proposition 4.6.8,
for any x0 ∈ ΣN

s and η > 0,

R̂(τ∗;x0, A, η) ≤ Cδ · s log
N

2s
.

In particular,

lim
η→0

sup
x0∈ΣNs

R̂(τ∗;x0, A, η) ≤ Cδ · s log
N

2s
.

Lower bound: From Corollary 4.6.3 and [17, Theorem 1],

sup
x0∈ΣNs

R̂(τ∗;x0, A, η) ≥ inf
x∗

sup
x0∈ΣNs

η−2 E ‖x∗ − x0‖22

≥ C1N

‖A‖2F
s log

(
N

s

)
.

In particular,

lim
η→0

sup
x0∈ΣNs

R̂(τ∗;x0, A, η) ≥ C1N

‖A‖2F
s log

(
N

s

)
.

Now, E ‖A‖2F = N , and ‖A‖2F admits subexponential concentration around
its expectation by Bernstein’s inequality [77, Corollary 2.8.3]. Therefore,
with probability at least 1 − ε2 on the realization of A, there is a constant
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cδ > 0 depending only on C1 and δ such that

lim
η→0

sup
x0∈ΣNs

R̂(τ∗;x0, A, η) ≥ cδ · s log

(
N

s

)
,

under the condition that

m ≥ Cδ−2N−1 log
2

ε2
.

Combine: Finally, set ε1 = ε2 = ε/2. Under the assumptions on m, with
probability at least 1− ε on the realization of A it holds that

cδ · s log

(
N

s

)
≤ lim

η→0
sup

x0∈ΣNs

R̂(τ∗;x0, A, η)

≤ Cδ · s log
N

2s
.

We conclude this section with the proof of Theorem 4.2.1 which combines
Lemma 4.6.9 and the results of § 4.6.3. Namely, even when m is sufficiently
large, (LSτ ) admits order-optimal risk in the limiting low-noise regime only
when the governing parameter is chosen optimally.

Proof of Theorem 4.2.1. This result follows immediately from the lemmata
of this section. Indeed, a direct application of Lemma 4.6.9 gives

cδ · s log

(
N

s

)
≤ lim

η→0
sup
x∈ΣNs

R̂(τ∗;x,A, η)

≤ Cδ · s log
N

2s
.

Otherwise, τ 6= τ∗. First, if τ < τ∗, then Lemma 4.6.7 immediately implies

lim
η→0

L̂(τ ;x0, A, ηz) =∞.

Otherwise, assume τ > τ∗. In order to apply Lemma 4.6.6, A must sat-
isfy dim(null(A)) > 0, which holds trivially, as m < N . In particular,
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Lemma 4.6.6 implies almost surely on (A, z),

lim
η→0

L̂(τ ;x0, A, ηz) =∞.

Remark 16. The proof for Theorem 4.2.1 proceeds whether z be deterministic
(say with fixed norm ‖z‖2 =

√
m) or have entries zi

iid∼ N (0, 1). We have
presented it this way so that the assumption is consistent with the implicit
assumption on the noise for the result concerning R̂(τ∗;x0, A, η).

4.6.4 Proofs for basis pursuit suboptimality

Suboptimal regime for underconstrained basis pursuit

This section contains the proof for Lemma 4.4.1 in § 4.4.1.

Proof of Lemma 4.4.1. It suffices to prove this result for the best choice of
σ and any x ∈ ΣN

s . In particular, choose x0 ∈ ΣN
s having at least one

non-zero entry, and for which the non-zero entries have magnitude satisfying
|x0,j | ≥ Cη

√
m, j ∈ supp(x0) ⊆ [N ]. For this choice of x0, let y = Ax0 + ηz

and define the event F := {‖y‖2 ≤ σ}.
For any σ ≥ η

√
m, re-choose x0 ∈ ΣN

s if necessary so that moreover
P(FC) ≥ 0.99. Restricting to FC , the solution to (BPσ) satisfies, by the
KKT conditions [11],

η2m ≤ σ2 = ‖Ah‖22 − 2η〈Ah, z〉+ η2‖z‖22.

By Lemma 4.6.4, it holds with probability at least 1 − ε on the realization
of A that

(1 + δ)2‖h‖22 ≥ ‖Ah‖22 ≥ η2(m− ‖z‖22) + 2η〈Ah, z〉

Define the event Z≤ := {‖z‖22 ≤ m − 2
√
m} and observe that further re-
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stricting to FC ∩ Z≤ thereby gives

(1 + δ)2‖h‖22 ≥ 2η2√m− 2η‖h‖2f(A, z)

≥ 2η2√m− 1

2
‖h‖22 − 2η2f2(A, z),

where f(A, z) is defined as in Lemma 4.6.5 with K = KN2s ∩ SN−1. Indeed,
where ĥ = h/‖h‖2, one has 〈Aĥ, z〉 ≤ f(A, z) since ĥ ∈ KN2s ∩ SN−1 with
high probability on the realization of A. This yields the following bound on
the risk:

R̃(σ;x0, A, η)

≥ η−2 E
z

[
‖h‖22 · χ

(
FC ∩ Z≤

)]
≥ Cδ E

z

[(√
m− f2(A, z)

)
· χ
(
FC ∩ Z≤

)]
= Cδ

√
mP

(
FC ∩ Z≤

)
− Cδ E

z

[
f2(A, z) · χ

(
FC ∩ Z≤

)]
≥ Cδ

√
mP

(
FC ∩ Z≤

)
− Cδ E

z
f2(A, z) (4.14)

Finally, we bound Ez f2(A, z) = E[f2(A, z) | A]. With high probability on
the realization of A:

E[f2(A, z) | A] ≤ C E[f(A, z) | A]2 ≤ Cδs log(N/s).

Above, we have first used [77, Exercise 7.6.1] followed by an application
of Lemma 4.6.5. Another way to see this would be through the successive
application of Remark 13 and Lemma 4.6.5, noting that f(A, z)−E[f(A, z) |
A] is a centered subgaussian random variable.

Consequently, using that P(FC ∩ Z≤) ≥ C, (4.14) becomes

R̃(σ;x0, A, η) ≥ Cδ
(√
m− s log(N/s)

)
. (4.15)

The result follows trivially from the definition of sup and by the initial as-
sumption on m.
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Suboptimal regime for overconstrained basis pursuit

In this section, we show that R̃(σ;x0, A, η) is suboptimal for σ ≤ η
√
m.

To the chagrin of the beleaguered reader, the proofs in this section require
several technical lemmata, some assumptions and notation. In particular,
we state and prove the technical lemmata required for the main lemma,
Lemma 4.6.11 in § 4.6.4.

The flow of this section will proceed as follows. After establishing re-
quired preliminary details, we state and prove results concerning the ability
of (BPσ) to recover the 0 vector from noisy random measurements. The
results exhibit a regime in which R̃(σ;x0, A, η) may be lower-bounded in the
case where σ = η

√
m. Then, we proceed by showing that (BPσ) performs

no better if σ is allowed to be smaller. In particular, we obtain lower bounds
on R̃(σ;x0, A, η) for σ ≤ η

√
m. Motivation for this latter result is readily

observed by a re-phrasing of the projection lemma in Proposition 4.6.10.

Preliminaries. For z ∈ Rm and σ > 0 define the set of feasible points by
F (z;σ) := {q ∈ Rm : ‖q − z‖22 ≤ σ2} and denote F := F (z;

√
m). For a

matrix A ∈ Rm×N , denote B1,A := {Ax ∈ Rm : x ∈ BN
1 }, and define the

gauge of B1,A by

‖q‖1,A := inf{‖x‖1 : Ax = q, x ∈ RN}

= inf{λ > 0 : q ∈ λB1,A}. (4.16)

Recall a gauge is nonnegative, positively homogeneous, convex and vanishes
at the origin. Moreover, note that B1,A is a random set, and so ‖ · ‖1,A is
random. Now, for a matrix A ∈ Rm×N , z ∈ Rm and σ > 0, define the
program

q̃(σ;A, z) := arg min
{
‖q‖1,A : q ∈ F (z;σ)

}
, (BQσ)

where ‖ · ‖1,A is defined as in (4.16). Where clear, we omit notating the
dependence of q̃(σ;A, z) on A and z, writing simply q̃(σ).

With the above notation, we define an admissible ensemble. The el-
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ements of an admissible ensemble will be used to state the main lemma,
Lemma 4.6.11. The technical arguments characterizing an admissible en-
semble appear in § 4.6.4.

Definition 7 (Admissibile ensemble). Let 0 ≤ s < N be integers, and let
m : N → N be an integer-valued function mapping N 7→ m(N) such that
limN→∞m(N)/N = γ ∈ (0, 1). For any 0 < θ < min{1 − γ, γ}, define
Nθ ≥ 1 to be the least integer such that for all N ≥ Nθ,∣∣∣∣m(N)

N
− γ
∣∣∣∣ < θ.

Where N ≥ 2, let A(N) be a family of normalized K-subgaussian matrices
A = A(N) ∈ Rm(N)×N . Define N∗ := max{Nθ, NRIP} where NRIP ≥ 1 is
the least positive integer such that for all N ≥ NRIP,

m(N) ≥ Cεδ−2K̃2s log
2N

s
.

where δ, ε > 0 are fixed in advance.
Let z = z(N) ∈ Rm(N) with zi

iid∼ N (0, 1). Define F = F (z;
√
m(N)) =

{q ∈ Rm(N) : ‖q−z‖22 ≤ m(N)} and omit writing explicitly its dependence on
N , unless necessary. Define α1 = α1(N) := a1m(N)1/4 for some dimension-

independent constant a1 > 0; λ = λ(N) := L
√

m(N)
logN for some dimension-

independent constant L > 1; and

K1 = K1(N) := λ(N)B1,A ∩ α1(N)B
m(N)
2 ,

K2 = K2(N) := λ(N)B1,A ∩ α2(N)B
m(N)
2 ,

where 0 < α2 = α2(N) ≤ α1 will be quantified in Proposition 4.6.18. Lastly,
define the following random processes. For g ∈ Rm with gi

iid∼ N (0, 1), let

X1 := sup
x∈K1

|〈x, g〉|, X2 := sup
x∈K2

|〈x, g〉|.

Thus we define an (s,m(N), N, δ, ε, θ)-admissible ensemble as the collec-
tion (A(N), z(N),K1(N),K2(N), X1, X2) satisfying the conditions just de-
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scribed, defined for all N ≥ N∗. This collection will generally be abbreviated
to (A, z,K1,K2, X1, X2) where clear.

Where possible, we simplify notation by omitting explicit dependence on
arguments. For example, if N is fixed, then we may refer to m(N) simply
as m. Note, however, that for any N ≥ 2, K1 and K2 always depend on
α1 = α1(N) and α2 = α2(N), respectively. Further observe that K1 and K2

are random, as they depend on the matrix A. Observe that Nθ depends on
θ, γ and m(·), and omit writing explicitly its dependence on the latter two;
we assume m(·) and γ are fixed in advance. Requiring N ≥ NRIP is the key
condition on m(N) so that Lemma 4.6.4 holds. Clearly, NRIP depends on
the parameters δ, ε,K, s and the function m(·); for simplicity of presentation
we omit writing explicitly its dependence on these parameters. Finally, note
that the parameters on which N∗ depends are exactly those for which Nθ

and NRIP depend.

Proposition 4.6.10. Let z ∈ Rm and A ∈ Rm×N be a normalized K-
subgaussian matrix with 1 ≤ m < N . If 0 < σ1 < σ2 < ∞ and q̃(σ) solves
(BQσ) then almost surely on (A, z),

‖q̃(σ1)‖2 ≥ ‖q̃(σ2)‖2.

Proof of Proposition 4.6.10. The result follows by Corollary 2.1.3, because
‖ · ‖1,A is a gauge.

The geometric lemma. Next, we state a lemma with a geometric flavour,
Lemma 4.6.11, which is the main workhorse for proving suboptimality of R̃
in the overconstrained setting. It is a generalization of [9, Lemma 6.2].

Lemma 4.6.11 (Geometric Lemma). Fix δ, ε1, ε2 > 0 and θ ∈ (0, γ). Given
an (s,m,N, δ, ε1, θ)-admissible ensemble, there is a choice of a1 > 0 defining
α1(N); L > 1 defining λ(N); an integer N0 ≥ N∗; and absolute constants
p, k > 0, so that the following occurs. For all N ≥ N0, with probability at
least 1− ε1 on the realization of A, there is an event E := E(ε1, ε2) for z on
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which

1. K1 ∩ F 6= ∅, 2. K2 ∩ F = ∅,

3. α2 > CNp, 4. P(E) > k.

Above, k depends on N0 and ε2 only; p on δ, γ and θ only.

Proof of Lemma 4.6.11. For constants 0 < C2 < C1 <∞, define the events

Z< := {‖z‖22 ≤ m+ C1

√
m}

Z> := {‖z‖22 ≥ m+ C2

√
m}.

By Propositions 4.6.17 and 4.6.20, there is an integer N0 ≥ N∗ (select the
larger of the two bestowed by each result), and respective events, E1, E2, so
that with probability at least 1− ε1 on the realization of A,

P(E1) ≥ P(Z<)− ε2 P(E2) ≥ P(Z>)− ε2.

In particular, for E := E1 ∩ E2, choose a largest such absolute constant
k := k(N0, C1, C2, ε2) > 0 so that

P(E) = P(E1 ∩ E2) ≥ P(Z< ∩ Z>)− 2ε2 ≥ k.

As per Proposition 4.6.17 and Proposition 4.6.20, conditioning on E and
letting N ≥ N0 gives K1 ∩ F 6= ∅ and K2 ∩ F = ∅ with probability at least
1 − ε1 on the realization of A, as desired. In this regime, that there exists
p > 0 satisfying α2 = α2(N) ≥ CNp is a consequence of Proposition 4.6.19.
One need simply select the largest p satisfying for all N ≥ N0:

CNp
√

logN ≤ Cδ,γ,L,θNd/2.

Thus, for all N ≥ N0, with probability at least 1− ε on the realization of A
there exists an event E for z on which all four of the desired criteria hold.
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Implications for overconstrained basis pursuit. Finally, we state the main
results of this section. The first result, Lemma 4.6.12, uses the geometric
lemma to show that there exists a regime in which R̃ is suboptimal in the
setting where x0 = 0 and σ = η

√
m. From there, we show in Lemma 4.6.13

that R̃ is no better if σ is any larger. This is enough to state a maximin sub-
optimality result for (BPσ), with σ restricted to (0, η

√
m], in Theorem 4.6.14.

Notably, this result is stronger than the analogous minimax statement, which
necessarily follows from the maximin result.

Lemma 4.6.12 (Lower bound R̃(η
√
m; 0, A, η)). Fix δ, ε, η > 0 and suppose

m : N→ N satisfies m(N)/N → γ ∈ (0, 1). There is N0 ∈ N and an absolute
constant p > 0 so that for all N ≥ N0, if A ∈ Rm(N)×N is a normalized K-
subgaussian matrix, then with probability at least 1 − ε on the realization of
A,

R̃(η
√
m; 0, A, η) ≥ Cδ,γ,KNp.

Proof of Lemma 4.6.12. By a simple scaling argument, it suffices to assume
η = 1. Consider an (s,m,N, δ, ε, θ)-admissible ensemble. By Lemma 4.6.11,
there is a choice of a1 > 0 for α1(N) and L > 1 for λ(N), an integer N0 ≥ N∗
and absolute constants k, p > 0 so that with probability at least 1−ε/2 on the
realization of A, there is an event E for z on which K1 ∩F 6= ∅, K2 ∩F = ∅,
and for which P(E) ≥ k3. Where q̃ solves (BQσ), observe that q̃ = Ax̃(

√
m)

and moreover, by construction, q̃ ∈ (K1 \K2) ∩ F . In particular,

‖q̃‖1,A ≤ λ, α2 ≤ ‖q̃‖2 ≤ α1.

By Corollary 2.2.8 and our initial assumptions,

‖A‖ ≤ 1 + CK̃

(
1 +

√
N

m

)
≤ 1 + CK̃

(
1 + (γ − θ)−1/2

)
= Cγ,K,θ,
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with probability at least 1−C exp(−m). Note, by re-choosingN0 if necessary,

1− C exp(−m) ≥ 1− C exp(−N(γ − θ))

≥ 1− Cγ,θ exp(−N0) ≥ 1− ε/2.

In particular, for N ≥ N0, with probability at least 1− ε on the realization
A, it holds with probability at least k on z that

α2 ≤ ‖q̃‖2 ≤ ‖A‖‖x̃(
√
m)‖2 ≤ Cγ,K,θ‖x̃(

√
m)‖2.

On the same event, by item 3 of Lemma 4.6.11, there is an absolute constant
p > 0 so that α2 ≥ Cδ,γ,L,θNp, whence

‖x̃(
√
m)‖2 ≥ Cδ,γ,K,L,θNp.

Finally, this immediately implies that for N ≥ N0, with probability at least
1− ε1 on the realization of A,

R̃(
√
m; 0, N, 1) ≥ E

[
‖x̃(
√
m)‖22 | E

]
P(E) ≥ Cδ,γ,K,L,θkNp.

Lemma 4.6.13 (Lower bound R̃(σ; 0, A, η), σ < η
√
m). Fix δ, ε, η > 0 and

suppose m : N → N satisfies m(N)/N → γ ∈ (0, 1). There is N0 ∈ N
and absolute constant p > 0 so that for all N ≥ N0, if A ∈ Rm(N)×N is a
normalized K-subgaussian matrix, it holds with probability at least 1 − ε on
the realization of A that for any 0 < σ ≤ η

√
m,

R̃(σ; 0, A, η) ≥ Cδ,γ,KNp.

Proof of Lemma 4.6.13. The proof of this result is nearly identical to that of
Lemma 4.6.12. The crucial difference is its use of Proposition 4.6.10, using
which one argues

α2 ≤ ‖q̃(
√
m)‖2 ≤ ‖q̃(σ)‖2 ≤ Cγ,K,θ‖x̃(σ)‖2
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to show, in the appropriate regime, that ‖x̃(σ)‖2 ≥ Cδ,γ,K,L,θNp.

Theorem 4.6.14 (Overconstrained maximin). Fix δ, ε, η > 0 and suppose
m : N → N satisfies m(N)/N → γ ∈ (0, 1). For any s ≥ 0, there is an
integer N0 ∈ N and an absolute constant p > 0 so that for all N ≥ N0,
if A ∈ Rm(N)×N is a normalized K-subgaussian matrix, then it holds with
probability at least 1− ε on the realization of A that

sup
x∈ΣNs

inf
σ≤η
√
m
R̃(σ;x,A, η) ≥ Cδ,γ,K,θNp.

Proof of Theorem 4.6.14. By a scaling argument, it suffices to consider the
case η = 1. Establishing an admissible ensemble and using Lemma 4.6.13,
there is N0 ≥ N∗ such that for any N ≥ N0, with probability at least 1− ε
on A,

sup
x∈ΣNs

inf
σ≤
√
m
R̃(σ;x,A, 1) ≥ inf

σ≤
√
m
R̃(σ; 0, A, 1) ≥ Cδ,γ,K,θNp.

Technical lemmata for overconstrained basis pursuit

The six lemmata of this section are the elements establishing Lemma 4.6.11.
These lemmata are strict generalizations of their analogues in § 3.6.4.

Proposition 4.6.15 (Lower bound w(K1)). Fix C1, δ, ε > 0 and 0 < θ <

min{1−γ, γ}. Given an admissible ensemble, there exists a choice of absolute
constants a1 > 0 and L > 1, as well as an integer N (4.6.15)

0 ≥ N∗ so that, for
each N ≥ N

(4.6.15)
0 , it holds with probability at least 1− ε on the realization

of A that

w(K1) ≥
(
a2

1 + C1

2

)√
m.

Proof of Proposition 4.6.15. Since w(K1) = E supq∈K1
〈q, z〉 is the gmw of
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K1 we may invoke Corollary 2.3.7 to obtain a sufficient chain of inequalities:

w(K1) ≥
√

2

4
(1− δ)2λ

√
log

(
Nα2

1

5(1− δ)2λ2

)
(4.17)

(∗)
≥
(
a2

1 + C1

2

)√
m. (4.18)

The first inequality, by Corollary 2.3.7, holds with probability at least 1− ε
on the realization of A. Therefore, it is enough to show (∗) holds. Rewriting
(∗) gives the equivalent condition:

Cδ,L

√
m

logN

√
log

(
N logN

Cδ,L,a1
√
m

)
≥ Ca1,C1

√
m.

The latter term of the left-hand side may be simplified using that m ≤
N(γ + θ), since N ≥ Nθ:

log

(
N logN

Cδ,L,a1
√
m

)
≥ log

(
Cδ,L,a1,γ,θ

√
N logN

)
.

In particular, (∗) is satisfied if

log
(
Cδ,L,a1,γ,θ

√
N logN

)
≥ Cδ,L,a1,C1 logN,

which holds when(
1

2
− Cδ,L,a1,C1

)
log (N) ≥ − log (Cδ,L,a1,γ,θ logN) .

This is eventually true so long as one chooses (a1, L) abiding

Cδ,L,a1,C1 = 2

(
a2

1 + C1

(1− δ)2L

)2

<
1

2
.

Proposition 4.6.16 (Lower bound X1). Fix δ, ε1, ε2 > 0 and θ ∈ (0, γ).
Given an admissible ensemble, there exists a choice of absolute constants
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a1 > 0 and L > 1, as well as an integer N (4.6.16)
0 ≥ N∗ so that, for each

N ≥ N (4.6.16)
0 , it holds with probability at least 1− ε1 on the realization of A

that with probability at least 1− ε2 on the realization of z, for any c ∈ (0, 1)

there exists q ∈ K1 satisfying 〈q, z〉 ≥ cw(K1).

Proof of Proposition 4.6.16. Observe that K1 ⊆ Rm is a topological space
and define the centered Gaussian process Tx := 〈x, g〉 for gi

iid∼ N (0, 1).
Observe that X1 = supx∈K1

|Tx| is almost surely finite. So, for any u > 0,

P (X1 < w(K1)− u) ≤ exp

(
− u2

2σ2
K1

)

by Theorem 2.2.4, where

σ2
K1

= sup
x∈K1

ET 2
x = sup

x∈K1

N∑
i=1

x2
i E |gi|2

= sup
x∈K1

‖x‖22 = α2
1 = a2

1

√
m.

Now, combine Theorem 2.2.4 and Corollary 2.3.7. For N ≥ N∗, it holds with
probability at least 1− ε1 on the realization of A that for any c ∈ (0, 1),

P (X1 < cw(K1)) ≤ exp

(
−(1− c)2 w2(K1)

2σ2
K1

)

≤ exp

−Ca1,c,δ,L√m · log
(
Ca1,δ,γ,L,θ

√
N logN

)
logN

 .

Choose N1 ≥ N∗ so that the following chain of inequalities is satisfied:

log
(
Ca1,δ,γ,L,θ

√
N logN

)
logN

=
1

2
+

log (Ca1,δ,γ,L,θ logN)

logN

≥ 1

4
.
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Further, select N (4.6.16) ≥ N1 such that all N ≥ N (4.6.16) satisfy

N ≥ log2 ε−1
2

Ca1,c,δ,γ,L,θ
.

Then, for all N ≥ N (4.6.16), it holds with probability at least 1 − ε1 on the
realization of A that for any c ∈ (0, 1),

P (X1 < cw(K1)) ≤ exp
(
−Ca1,c,δ,L

√
m
)
< ε2.

Thus, under the specified conditions, X1 ≥ cw(K1) with probability at
least 1 − ε1 on the realization of A and probability at least 1 − ε2 on the
realization of z. In particular, since K1 is closed, it holds with probability
at least (1 − ε1)(1 − ε2) that there exists q ∈ K1 realizing the supremum,
thereby admitting existence of a q as claimed.

Proposition 4.6.17 (Control K1 ∩ F ). Fix C1, δ, ε1, ε2 > 0 and θ ∈ (0, γ).
Given an admissible ensemble, there is an integer N (4.6.17)

0 ≥ N∗ and an
absolute constant k1 = k1(N

(4.6.17)
0 , C1, ε2) > 0 so that for all N ≥ N (4.6.17)

0 ,
with probability at least 1− ε1 on the realization of A, there is an event E for
z satisfying

K1 ∩ F 6= ∅ on E , and P(E) ≥ k1.

Proof of Proposition 4.6.17. Fix c1 ∈ (0, 1). By Proposition 4.6.16, there is
a choice of a1 > 0 and L > 1, and an integer N0 ≥ N∗ such that, with
probability at least 1− ε1/2 on the realization of A, there is an event E1 for
z, with P(E1) ≥ 1− ε2, on which

sup
q∈K1

〈q, z〉 ≥ c1 w(K1).

Further, there exists q ∈ K1 realizing that supremum because K1 is closed.
Selecting this q, we have 〈q, z〉 ≥ c1 w(K1). Next, define C ′1 := c−1

1 (a2
1 +

C1)−a2
1. By Proposition 4.6.15, increasing L if necessary, there is an integer
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N1 ≥ N0 so that with probability at least 1− ε1/2 on the realization of A,

w(K1) ≥
(
a2

1 + C ′1
2

)√
m.

In particular, with probability at least 1 − ε1 on the realization of A and
probability at least 1− ε2 on the realization of z, one has simultaneously:

〈q, z〉 ≥ c1 w(K1) ≥
(
a2

1 + C1

2

)√
m.

Define the event Z< := {‖z‖22 ≤ m + C1
√
m}. Because q ∈ K1, ‖q‖2 ≤

a1m
−1/4, whence conditioning on E1 ∩ Z< gives q ∈ F . Indeed,

‖q − z‖22 = ‖q‖22 − 2〈q, z〉+ ‖z‖22
≤ a2

1

√
m− (a2

1 + C1)
√
m+m+ C1

√
m

= m.

Choose N (4.6.17)
0 := N1. Then, for each N ≥ N

(4.6.17)
0 , with probability at

least 1− ε1 on the realization of A, there is an event E := E1 ∩Z< on which
q ∈ K1 ∩ F . Next, define

k1 := k1(N
(4.6.17)
0 , C1, ε2) :=

[
inf

N≥N(4.6.17)
0

P(Z<)

]
− ε2

and observe that k1 > 0, because P(Z<) is bounded below by a dimension
independent constant for N ≥ 2. Finally, because E1 holds with probability
at least 1− ε2 on the realization of z one has

P(E) ≥ P(Z<)− ε2 ≥ k1.

Proposition 4.6.18 (Upper bound w(K2)). Fix C2, δ, ε > 0 and θ ∈ (0, γ).
Given an admissible ensemble, there exists a choice of absolute constants
a1 > 0 and L > 1, an integer N (4.6.18)

0 ≥ N∗, and a maximal choice of
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α2 = α2(N) so that, for each N ≥ N (4.6.18)
0 , it holds with probability at least

1− ε on the realization of A that

w(K2) ≤ C2

2

√
m.

Proof of Proposition 4.6.18. First, invoke Corollary 2.3.7 in obtaining a suf-
ficient chain of inequalities on w(K2):

w(K2)
(2.3.7)
≤ 4(1 + δ)λ

√
log

(
8eNα2

2

(1 + δ)2λ2

)
(∗∗)
≤ C2

2

√
m.

The first inequality holds with probability at least 1− ε on the realization of
A. Therefore, showing (∗∗) implies the desired result. Rewriting (∗∗) gives
the equivalent condition

log

(
Cδ,Lα

2
2

N logN

m

)
≤ CC2,δ,L logN.

The left-hand side may be simplified using thatm ≥ N(γ−θ), since N ≥ Nθ,
yielding a new sufficient condition:

log
(
Cδ,γ,L,θα

2
2 logN

)
≤ CC2,δ,L logN. (4.19)

Thus, (4.19) is valid for any α2 satisfying α2 ≤ α2(N), where

α2
2(N) := Cδ,γ,L,θ

Nd

logN
, where

d :=

(
C2

8(1 + δ)L

)2

,

Cδ,γ,L,θ :=
(1 + δ)2L2(γ − θ)

8e
.

Finally, set N (4.6.18)
0 := N∗ and observe that for any N ≥ N

(4.6.18)
0 , with

α2 := α2(N), it holds with probability at least 1− ε on the realization of A
that w(K2) ≤ C2

2

√
m, as desired.

Remark 17. It will be convenient to reselect N (4.6.18)
0 ≥ N∗ in Proposi-
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tion 4.6.18 so that α2(N) is increasing for all N ≥ N
(4.6.18)
0 . A quick calcu-

lation verifies that N (4.6.18)
0 ≥ exp(d−1) suffices.

Proposition 4.6.19 (Upper bound X2). Fix δ, ε1, ε2 > 0 and 0 < θ <

min{1−γ, γ}. Given an admissible ensemble, there exists a choice of absolute
constants a1 > 0 and L > 1, as well as an integer N (4.6.19)

0 ≥ N∗ so that, for
each N ≥ N (4.6.19)

0 , it holds with probability at least 1− ε1 on the realization
of A and with probability at least 1 − ε2 on the realization of z that for any
C > 1,

sup
q∈K2

〈q, z〉 ≤ C w(K2).

Proof of Proposition 4.6.19. Define the centered Gaussian process Tx := 〈x, g〉
for x ∈ K2 ⊆ Rm, a topological space, where gi

iid∼ N (0, 1). Observe that
X2 = supx∈K2

|Tx| <∞ almost surely. So, for any u > 0,

P (X2 > w(K2) + u) ≤ exp

(
− u2

2σ2
K2

)

by Theorem 2.2.4, where

σ2
K2

= sup
x∈K2

E
g
|〈x, g〉|2 = sup

x∈K2

m∑
i=1

xi E
i
|gi|2

= sup
x∈K2

‖x‖22 = α2
2 ≤ α2

1 = a2
1

√
m.

Now, invoke Corollary 2.3.7. For N ≥ N∗, it holds with probability at least
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1− ε1 on the realization of A that for any C > 1,

P (X2 > C w(K2)) ≤ exp

(
−(C − 1)2 w2(K2)

2σ2
K2

)

≤ exp

(
−

(C − 1)2Cδ,L
√
m log(Cδ,γ,L,θα

2
2 logN)

2a2
1 logN

)
= exp

(
−Ca1,C,δ,L

√
m log(Cδ,γ,L,θN

d)

logN

)
= exp

(
−Ca1,C,δ,L

√
m

(
d+

Cδ,γ,L,θ
logN

))
≤ exp

(
−Ca1,C,δ,Ld

√
m
)
< ε2.

The latter line follows by taking N1 ≥ N∗ sufficiently large so that for all
N ≥ N1,

Cδ,γ,L,θ
logN

> −d
2
, and N ≥ log2 ε−1

2

Ca1,C,δ,Ld
2(γ − θ)

.

Finally, set N (4.6.19)
0 := N1. Then, for all N ≥ N

(4.6.19)
0 , it holds with

probability at least 1 − ε1 on the realization of A that, for any C > 1,
X2 ≤ C w(K2) with probability at least 1 − ε2 on the realization of z, as
desired.

Proposition 4.6.20 (Control w(K2) ∩ F ). Fix C2, δ, ε1, ε2 > 0 and θ ∈
(0, γ). Given an admissible ensemble, there is an integer N (4.6.20)

0 ≥ N∗

and an absolute constant k2 = k2(N
(4.6.20)
0 , C2, ε2) > 0 so that for all N ≥

N
(4.6.20)
0 , with probability at least 1 − ε1 on the realization of A, there is an

event E for z satisfying

K2 ∩ F = ∅ on E and P(E) ≥ k2.

Proof of Proposition 4.6.20. Fix c2 > 1. By Proposition 4.6.19, there is a
choice of a1 > 0 and L > 1, and an integer N0 ≥ N∗ such that, with
probability at least 1− ε1/2 on the realization of A, there is an event E2 for
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z, with P(E2) ≥ 1− ε2, on which

sup
q∈K2

〈q, z〉 ≤ c2 w(K2).

Now, select C ′2 > 0 so that 0 < c2C
′
2 < C2. By Proposition 4.6.18, increasing

L if necessary, there is an integer N1 ≥ N0 so that with probability at least
1− ε1/2 on the realization of A,

w(K2) ≤ C ′2
2

√
m.

In particular, with probability at least 1 − ε1 on the realization of A and
probability at least 1− ε2 on the realization of z, one has simultaneously:

sup
q∈K2

〈q, z〉 ≤ c2 w(K2) < c2
C ′2
2

√
m <

C2

2

√
m.

Define the event Z> := {‖z‖22 ≥ m + C2
√
m}. With probability at least

1− ε1 on the realization of A, conditioning on E2∩Z> gives, for any q ∈ K2,

‖q − z‖22 = ‖q‖22 − 2〈q, z〉+ ‖z‖22
> ‖q‖22 − C2

√
m+m+ C2

√
m

≥ m.

In particular, ‖q − z‖22 > m for all q ∈ K2, and so K2 ∩ F = ∅. Choose
N

(4.6.20)
0 := N1. Then, for each N ≥ N

(4.6.20)
0 , with probability at least

1 − ε1 on the realization of A, there is an event E := E2 ∩ Z> on which
K2 ∩ F = ∅. Next, define

k2 := k2(N
(4.6.20)
0 , C2, ε2) :=

[
inf

N≥N(4.6.20)
0

P(Z>)

]
− ε2

and observe that k2 > 0 because P(Z>) is bounded below by a dimension
independent constant for N ≥ 2. Finally, because E2 holds with probability
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at least 1− ε2 on the realization of z, one has

P(E) ≥ P(Z>)− ε2 ≥ k2.

Remark 18 (Dimension-independent bound for k1, k2). In Proposition 4.6.17
and Proposition 4.6.20 above, it is not necessary to have k1 depend on
N

(4.6.17)
0 or k2 on N

(4.6.20)
0 . For example, one could bound P(Z<) for all

N ≥ 2. However, the dependence of k1 on N
(4.6.17)
0 is simply to note that

the lower bound on P(Z<) is improved by considering N ≥ N
(4.6.17)
0 as op-

posed to merely N ≥ 2. Analogously so for k2.

Suboptimal regime for basis pursuit

This section contains the proof for Theorem 4.4.2, the main result of § 4.4
establishing a regime in which (BPσ) is minimax suboptimal. In essence, it
combines Lemma 4.4.1 and Lemma 4.6.13.

Proof of Theorem 4.4.2. By a scaling argument, it suffices to consider the
case η = 1. Re-write the minimax expression (4.1) as

inf
σ>0

sup
x∈ΣNs

R̃(σ;x,A, 1) = min

{
inf

σ≤
√
m
S(σ), inf

σ>
√
m
S(σ)

}
,

S(σ) := sup
x∈ΣNs

R̃(σ;x,A, 1).

For any N ≥ N∗, by Lemma 4.4.1, it holds with probability at least 1− ε/2
on the realization of A that

inf
σ>
√
m
S(σ) ≥ Cδ,γ,θ

√
N.

Next observe that the trivial lower bound S(σ) ≥ R̃(σ; 0, A, 1) holds for any
σ > 0, because 0 ∈ ΣN

s . In particular, Lemma 4.6.13 yields an N0 ≥ N∗ and
absolute constant p > 0 such that, with probability at least 1 − ε/2 on the
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realization of A,

inf
σ≤
√
m
S(σ) ≥ inf

σ≤
√
m
R̃(σ; 0, A, 1) ≥ Cδ,γ,K,θNp.

Consequently, there is an absolute constant p > 0 so that, for all N ≥ N0,
it holds with probability at least 1− ε on the realization of A that

inf
σ>0

sup
x∈ΣNs

R̃(σ;x,A, 1) ≥ min
{
Cδ,γ,θ

√
N,Cδ,γ,K,θN

p
}

≥ Cδ,γ,K,θNp.
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Figure 4.4: Each plot depicts the average loss as a function of the
normalized parameter for each of the three programs under con-
sideration. The collection of plots depicts how the average loss
changes as a function of N and δ = m/N . Details for each plot
will be given by referencing the (row, column) position of the plot
in this figure. The domain of the normalized parameter in each
plot is (0.2, 5). A single realization of A was fixed and the aver-
age loss was computed from k = 50 realizations of the noise by
constructing a function approximator using radial basis function
approximation with a multiquadric kernel. The RBF approxima-
tor was evaluated on a logarithmically spaced grid of n = 301
points centered about 1. (1,1): (s,N, δ, η) = (1, 4000, 0.1, 1);
(1,2): (s,N, δ, η) = (1, 7000, 0.1, 1); (2,1): (s,N, δ, η) =
(1, 4000, 0.25, 1); (2,2): (s,N, δ, η) = (1, 7000, 0.25, 1); (3,1):
(s,N, δ, η) = (1, 4000, 0.45, 1).
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Figure 4.5: Each plot depicts the quality of the RBF approxima-
tion about the optimal normalized parameter. The left-most
plot is in every case depicting the loss and (approximate) av-
erage loss of (LSτ ); the middle that for (BPσ); and the right
that for (QPλ). Top-to-bottom:(s,N, δ, η) = (1, 4000, 0.1, 1);
(s,N, δ, η) = (1, 4000, 0.25, 1); (s,N, δ, η) = (1, 4000, 0.45, 1);
(s,N, δ, η) = (1, 7000, 0.1, 1); (s,N, δ, η) = (1, 7000, 0.25, 1).
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Figure 4.6: Top row: Each plot depicts the average loss as a func-
tion of the normalized parameter for each of the three programs
under consideration. The collection of plots depicts how the
average loss changes as a function of δ = m/N . The domain
of the normalized parameter in each plot is (0.2, 5). A single
realization of A was fixed and the average loss was computed
from k = 50 realizations of the noise by constructing a function
approximator using radial basis function approximation with a
multiquadric kernel. The RBF approximator was evaluated on a
logarithmically spaced grid of nrbf = 501 points centered about
1. Bottom row: Each plot depicts the quality of the RBF ap-
proximation about the optimal normalized parameter. In each
triptych, the left plot depicts the loss and (approximate) average
loss of (LSτ ); the middle that for (BPσ); and the right that for
(QPλ). Left column: (s,N, δ, η) = (1, 7000, 0.1, 100); Right
column: (s,N, δ, η) = (1, 7000, 0.25, 100).
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Figure 4.7: PS numerics in the low-noise, high-sparsity regime. Top
row: Average loss is plotted with respect to the normalized
parameter for each program. Bottom row: Visualizations of
RBF approximation quality for average loss (best seen on a com-
puter). Left: (s,N,m, η, k, n) = (1, 104, 2500, 10−5, 25, 201);
Right: (s,N,m, η, k, n) = (1, 104, 4500, 10−5, 25, 201).
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Figure 4.8: PS numerics in the low-sparsity regime with parameters
(s,N,m, η, k, n) = (750, 104, 4500, 10−1, 25, 201). Left: Aver-
age loss is plotted with respect to the normalized parameter for
each program. Right: Visualizations of the RBF approximation
quality for average loss.
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Figure 4.9: PS numerics for intermediate parameter values:
(s,N, η, k, n) = (102, 104, 10−1, 25, 201). Left: m = 2500;
Right: m = 4500. Top: Average loss is plotted with respect
to the normalized parameter for each program. Bottom:
Visualizations of average loss approximation quality.
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Figure 4.10: Realistic example in 1D for (s,N,m, η, k, n) =
(10, 4096, 1843, 50, 50, 501). Ground truth signal x0 defined in
the Haar wavelet domain with first s coefficients equal to N .
Noise added in the Haar wavelet domain; recovery error mea-
sured in the signal domain. Top: Average psnr as a function
of the normalized parameter for each parameter. Middle: Av-
erage nnse as a function of the normalized parameter for each
parameter. Bottom: The ground truth and recovered signal
for a single realization of the noise, faceted by the approximate
normalized parameter value (given in the title) and by program
(as depicted in the legend).
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Figure 4.11: PS numerics for 1D wavelet CS example with parameter
settings (s,N,m, η, kn) = (10, 4096, 1843, 50, 50, 501). Left:
Average loss for each program plotted with respect to the nor-
malized parameter. Right: A visualization of approximation
quality for the average loss: (LSτ ), (BPσ) and (QPλ), from left
to right.
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Figure 4.12: The square Shepp-Logan phantom (sslp).
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Figure 4.13: Average loss for a 2D wavelet compressed sensing prob-
lem, plotted as a function of ρ; (s,N,m) = (416, 6418, 2888)
with (k, n) = (50, 501). Left: η = 10−2. Right: η = 1/2.
Top: The average loss (i.e., nnse) for each program as a func-
tion of ρ. The average loss was approximated using RBF inter-
polation with parameters given in Table A.5. Bottom: Plots
to evaluate the quality of the RBF interpolation. In each polot,
individual realizations of the loss are visible as grey points; the
approximation to the average loss is visible as the coloured line
through those points.
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Figure 4.14: A 2D wavelet compressed sensing problem us-
ing the square Shepp-Logan phantom; (s,N,m, η) =
(416, 6418, 2888, 10−2) with (k, n) = (50, 501). Top row:
psnr (left) and nnse (right), plotted as a function of ρ. The
plotted curves were generated from the single realization of
the measurements that correspond to the grids depicted below
them. Bottom grids: The left grid of 15 images shows the
recovered image for each of five values of ρ: ρ ∈ {1

2 ,
3
4 , 1,

4
3 , 2};

and for each program: (LSτ ), (QPλ), (BPσ). The right grid
of 15 images shows the pixel-wise nnse of the recovered image
for the same values of ρ, and for the three programs. Colour
bars provide scale, and are best observed on a computer. The
stated values of ρ are approximate; the values of ρ for which
the images are depicted are marked by points in the nnse and
psnr plots of the same colour as the loss curve on top of which
they’re plotted.
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Figure 4.15: A 2D wavelet compressed sensing problem us-
ing the square Shepp-Logan phantom; (s,N,m, η) =
(416, 6418, 2888, 1/2) with (k, n) = (50, 501). Top row:
psnr (left) and nnse (right), plotted as a function of ρ for
each program. The plotted curves were generated from the
single realization of the measurements that correspond to the
grids depicted below them. Bottom grids: The left grid of
15 images shows the recovered image for each of five values
of ρ: ρ ∈ {1

2 ,
3
4 , 1,

4
3 , 2}; and for each program: (LSτ ), (QPλ),

(BPσ). The right grid of 15 images shows the pixel-wise nnse
of the recovered image for the same values of the normalized
parameter, and for the three programs. Colour bars provide
scale, and are best observed on a computer. The stated values
of ρ are approximate; the values of ρ for which the images
are depicted are marked by points in the nnse and psnr plots
of the same colour as the loss curve on top of which they’re
plotted.



Chapter 5

A well-ordering property for
proximal operators

This chapter is devoted to the development of a theoretical property satis-
fied by the proximal mapping of certain functions. We begin by supplying
the relevant background material and notation, including the definition of
a proximal operator. Then, we include a more detailed discussion of the
projection lemma, introduced in § 2.1.1 (cf. Lemma 2.1.2). A re-statement
of Lemma 2.1.2 was first proved in Oymak and Hassibi [55, Lemma 15.3].
However, Berk et al. [9] provided an alternative proof that allows the lemma
to be generalized to a larger class of operators.

5.1 Additional background

5.1.1 Proof technique

We begin the additional background with a proof of Lemma 2.1.2, as origi-
nally given in Berk et al. [9]. This proof will provide a framework for gen-
eralizing the projection lemma. An element of the proof is the following
well-known projection theorem [11, Proposition 2.2.1].

Proposition 5.1.1 (Projection Theorem). Let C ⊆ Rn be nonempty closed
and convex.
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1. For every x ∈ Rn, there is a unique vector that minimizes ‖w−x‖ over
all w ∈ C, which we refer to as ProjC(x).

2. For every x ∈ Rn, a vector z ∈ C is equal to ProjC(x) if and only if

〈w − z, x− z〉 ≤ 0, ∀w ∈ C.

If C is affine, this is equivalent to x− z ∈ S⊥ where S is the subspace
parallel to C.

3. The function ProjC : Rn → C is continuous and nonexpansive:

‖ProjC(y)− ProjC(x)‖ ≤ ‖y − x‖, ∀x, y ∈ Rn.

4. The distance function d : Rn → R, defined by

d(x, C) := min
z∈C
‖z − x‖2

is convex.

We may now present the proof.

Proof of Lemma 2.1.2. Define zα := ProjαK(z) for α = 1, λ and define
f(t) := ‖ut‖22, where ut := tzλ + (1 − t)z1 for t ∈ [0, 1]. Our goal is to
show d

dt

∣∣
t=0

f(t) ≥ 0; this implies ‖zλ‖2 ≥ ‖z1‖2, because f is convex. Ex-
panding f(t) gives

f(t) = t2
(
‖zλ‖22 − 2〈z1, zλ〉+ ‖z1‖22

)
+ 2t

(
〈z1, zλ〉 − ‖z1‖22

)
+ ‖z1‖22.

Thus, it is required to verify the condition (?):

d

dt
f(t)

∣∣∣∣
t=0

=
[
2t‖zλ − z1‖22 + 2〈z1, zλ − z1〉

∣∣
t=0

= 2〈z1, zλ − z1〉
(?)

≥ 0

The projection condition says that if ProjC(x) is the projection of x onto a
convex set C then for any y ∈ C, 〈y − ProjC(x), x − ProjC(x)〉 ≤ 0. From
the projection condition [11], we have
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• 〈λ−1zλ − z1, z − z1〉 ≤ 0

• 〈λz1 − zλ, z − zλ〉 ≤ 0.

Accordingly,

0 ≥ 〈zλ − λz1, z − z1〉+ 〈λz1 − zλ, z − zλ〉

= 〈λz1 − zλ, z1 − zλ〉 = 〈(λ− 1)z1, z1 − zλ〉+ ‖z1 − zλ‖22
≥ (λ− 1)〈z1, z1 − zλ〉

which is equivalent to 〈z1, zλ − z1〉 ≥ 0. Therefore, f is a convex function
increasing on the interval t ∈ [0, 1], whence ‖z1‖2 ≤ ‖zλ‖2 as desired.

Lemma 2.1.2 has immediate consequences for the ability of PD algo-
rithms to recover the 0 vector from corrupted measurements, as revealed
in Chapter 3. More generally, this lemma has consequences on the sensitiv-
ity of recovery error for both PD and CS Lasso programs. Its role is seen
in § 3.6 and § 4.6. Note that the set K need be neither symmetric nor origin-
centered. However, it must be convex and contain the origin, in general; we
have included a pictorial counterexample in Figure 5.1b to depict why.

Our proof of Lemma 2.1.2 examines the derivative of the function f(t) :=

‖ut‖22, where ut := tProjλK(z) + (1 − t) ProjK(z). From the latter lines of
the proof, observe that a growth condition on the derivative at t = 0 can be
specified:

1

2

d

dt
f(t)

∣∣∣∣
t=0

= 〈z1, zλ − z1〉 ≥
‖zλ − z1‖22
λ− 1

. (5.1)

Remark 19. There is a simpler way to begin the proof of the projection
lemma. To show

‖z1‖2 ≤ ‖zλ‖2 ⇐⇒ ‖z1‖22 ≤ ‖z1‖2‖zλ‖2,

one may instead prove the following chain,

‖z1‖22 ≤ 〈z1, zλ〉 ≤ ‖z1‖2‖zλ‖2.
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The latter inequality is true by Cauchy-Schwarz, so it remains only to prove
the former:

〈z1, zλ〉 − ‖z1‖22 ≥ 0 ⇐⇒ 〈z1, zλ − z1〉 ≥ 0.

Rearranging shows this inequality is equivalent to (?), and the remainder
of the proof proceeds as is. This remark is included for intuition, but this
approach is less generalizable. For example, it does not yield the aforemen-
tioned rate of growth on the derivative.

5.1.2 Proximal operators and projections

Let H denote a Hilbert space equipped with inner product 〈·, ·〉. The asso-
ciated norm is given as ‖x‖ :=

√
〈x, x〉. Observe that the previous notion

of projection still applies in the Hilbert space setting. Namely, for a closed,

zz1
z!

0

(a)

z!
0

zz1

K

λK

(b)

Figure 5.1: (a) A visualization of the lemma. Projecting z onto the
outer and inner sets gives zλ and z1, respectively; evidently,
‖z1‖2 ≤ ‖zλ‖2. (b) A counterexample using scaled `p balls for
some 0 < p < 1, suggesting why K must be convex in general.
Here, z is projected inwards onto λK, but towards a distal ver-
tex when projected onto K. This figure has been reproduced
from Berk et al. [9].
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convex and nonempty set K ⊆ H and point x ∈ H one has

ProjK(x) = arg min
w∈H

‖x− w‖.

We define a proper function in the fashion of Bertsekas et al. [11, §1.2].

Definition 8 (Proper). An extended real-valued convex function f : H →
(−∞,∞] is proper if there exists x ∈ H such that f(x) <∞.

Next, we recall the definition of lower semi-continuous.

Definition 9 (lower semi-continuous (lsc)). Say that a function f is lower
semi-continuous at a point x if for every net (xa)a∈A, xa → x implies that
f(x) ≤ lim inf f(xa). If f is lower semi-continuous for all x in its domain
then we say that f is lower semi-continuous (lsc).

Denote the set of proper lsc convex functions on H by Γ0(H).

Definition 10 (Proximal mapping). Let f ∈ Γ0(H). For a parameter λ > 0

define the envelope function envλ f and the proximal mapping proxλ f by

envλ f(x) := inf
w∈H

{
f(w) +

1

2λ
‖w − x‖2

}
,

proxλ f(x) := arg min
w∈H

{
f(w) +

1

2λ
‖w − x‖2

}
.

If λ = 1 we write simply prox f := prox1 f . We refer the reader to Bert-
sekas et al. [11, Ex. 2.13–14] for common properties of env and prox; and
to Chapter 1 and § 1.1 for a discussion about motivations for and applica-
tions of proximal operators. Observe that ProjK is the special case of prox

in which f := χK is the indicator function of the set K. Specifically, the
indicator function χK : H → {0,∞} of the set K is defined as χK(x) = 0 if
x ∈ K and χK(x) =∞ otherwise.

We next state a well-known result [65, Theorem 2.26] that describes
important behaviour of the prox and env operators when f ∈ Γ0(H).

Theorem 5.1.2. Suppose f ∈ Γ0(H). Then, for every λ > 0.
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1. The proximal mapping proxλ f is single-valued and continuous. In fact,
proxλ f → proxλ̄ f(x̄) whenever (λ, x)→ (λ̄, x̄) with λ̄ > 0.

2. The envelope envλ f is convex and continuously differentiable, with gra-
dient

∇ envλ f(x) =
1

λ
(x− proxλ f(x)) .

Proximal operators and envelopes admit the following scaling property.

Proposition 5.1.3. Let φ : H → R and τ > 0. Define fτ (x) := φ(x/τ).
Then

prox fτ (x) = τ prox

(
φ

τ2

)(x
τ

)
,

env fτ (x) = τ2 env

(
φ

τ2

)(x
τ

)
.

Proof of Proposition 5.1.3. Establishing the first identity is a direct compu-
tation:

prox fτ (x) = arg min
w∈H

{
φ(w/τ) +

1

2
‖x− w‖22

}
= τ arg min

w′∈H

{
φ(w′) +

1

2
‖x− τw′‖22

}
= τ arg min

w′∈H

{
φ(w′)

τ2
+

1

2
‖x
τ
− w′‖22

}
= τ prox

(
φ

τ2

)(x
τ

)
.

Similarly for the envelope of fτ ,

env fτ (x) = min
w∈H

{
φ(w/τ) +

1

2
‖x− w‖22

}
= min

w′∈H

{
φ(w′) +

τ2

2
‖x
τ
− w′‖22

}
= τ2 env

(
φ

τ2

)(x
τ

)
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Proximal operators also admit nice subgradients in the sense of the fol-
lowing proposition [4, Proposition 12.26].

Proposition 5.1.4 (prox-subgradient connection). Let f ∈ Γ0(H) and let
x, p ∈ H. Then p = prox f(x) iff

∀y ∈ H, f(y) ≥ f(p) + 〈y − p, x− p〉. (5.2)

5.2 A notion of ordering for proximal operators

5.2.1 Derivation and notation

The purpose of this chapter is to establish an analogue of Lemma 2.1.2
for proximal operators. To this end, we use Proposition 5.1.4 above and
the scaffold established in the proof of Lemma 2.1.2. First, we derive an
expression that suggests what ordering proximal operators should satisfy.

As noted, projections onto a set K satisfy ProjK(x) = proxχK(x). Pro-
jections onto scalings of K satisfy, in turn,

χτK(x) = 0 ⇐⇒ x ∈ τK ⇐⇒ τ−1x ∈ K ⇐⇒ χK(τ−1x) = 0.

Define the map µλ(x) := λx and observe that the latter equivalence may be
re-written as (χK ◦µτ−1)(x) = 0. Thus, ProjτK(x) = prox(χK ◦µτ−1)(x). In
this special case, Lemma 2.1.2 establishes that if τ > 1, then

‖prox(χK ◦ µτ−1)(x)‖ ≥ ‖proxχK(x)‖ .

For the remainder of this chapter, we assume φ : H → [0,∞) to be a
gauge and define φτ (x) := (φ ◦ µτ−1)(x) = φ(x/τ). Further, denote pτ :=

proxφτ (x).

Proposition 5.2.1 (Gauge-ordering of solutions). Let φ : H → (−∞,∞] be
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a gauge and define pτ := proxφτ (x). Then,

φ(pτ ) ≥ φ(p1).

Proof of Proposition 5.2.1. This result is a straightforward application of
Proposition 5.1.4. Indeed, one has

φ(pτ )− φ(p1) ≥ 〈pτ − p1, x− p1〉;

φτ (p1)− φτ (pτ ) ≥ 〈p1 − pτ , x− pτ 〉.

Adding the two inequalities produces

〈pτ − p1, x− p1〉+ 〈p1 − pτ , x− pτ 〉

= ‖pτ − p1‖2 ≤ φ1(pτ )− φ1(p1) + φτ (p1)− φτ (pτ )

= φ(pτ )− φ(p1) + φ
(p1

τ

)
− φ

(pτ
τ

)
.

Since φ is a gauge, it is positively homogeneous, whence

0 ≤ ‖pτ − p1‖2

τ − 1
≤ φτ (pτ )− φτ (p1).

In particular, one has φ(pτ ) ≥ φ(p1) with equality if and only if pτ = p1.

5.2.2 Main result

We now have the tools to state and prove the first main result of this chapter.

Theorem 5.2.2 (Proximal lemma). Let H be a Hilbert space with norm ‖ ·‖
and inner product 〈·, ·〉. Suppose x ∈ H and that φ : H → [0,∞) is a gauge.
For τ ∈ [0,∞), define φτ (x) := φ(x/τ) and let

pτ := proxφτ (x) := arg min
w∈H

φτ (w) +
1

2
‖x− w‖2.

If τ > 1 then ‖pτ‖ ≥ ‖p1‖.

Proof of Theorem 5.2.2. The proof proceeds in the same fashion as that for
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Lemma 2.1.2. Define uα := (1 − α)p1 + αpτ and F (α) := ‖uα‖2. We see
that F is smooth and convex on α ∈ [0, 1], whence it suffices to establish
that F (α) is non-decreasing on α ∈ [0, 1]. By convexity of F , it suffices to
establish that F ′(0) ≥ 0. A calculation verifies that

1

2
F ′(0) = 〈p1, pτ 〉 − ‖p1‖2 = 〈p1, pτ − p1〉.

Hence, it remains to establish that 〈p1, pτ − p1〉 ≥ 0. Before proceeding,
we note that if τ = 1 there is nothing to show. Similarly, if τ > 1, but
p1 = pτ , then there is still nothing to show. Thus, we consider only the more
interesting case where τ > 1 and p1 6= pτ .

First, assume that φ(p1) > 0. Recall from Proposition 5.2.1 that φ(pτ )−
φ(p1) ≥ 0 achieves equality iff p1 = pτ . Since we assume p1 6= pτ , it must
be that φ(pτ ) > φ(p1). Select the value λ > 1 such that φτ (λp1) = φτ (pτ )

and observe that φ(λ−1pτ ) = φ(p1) by positive homogeneity. Using Propo-
sition 5.1.4 establishes:

0 = φ(λ−1pτ )− φ(p1) ≥ 〈λ−1pτ − p1, x− p1〉; (5.3)

0 = φ(λp1)− φ(pτ ) ≥ 〈λp1 − pτ , x− pτ 〉. (5.4)

Taking a linear combination of these expressions yields

0 ≥ λ〈λ−1pτ − p1, x− p1〉+ 〈λp1 − pτ , x− pτ 〉

= 〈pτ − λp1, x− p1〉+ 〈pτ − λp1, pτ − x〉

= 〈pτ − λp1, pτ − p1〉

= ‖pτ − p1‖2 + (1− λ)〈p1, pτ − p1〉,

In particular, as desired, we have

〈p1, pτ − p1〉 ≥
‖pτ − p1‖2

λ− 1
> 0.

Consequently, ‖pτ‖ > ‖p1‖. Now, if φ(p1) = 0, then p1 ∈ null(φ). It is
straightforward to show that null(φ) = null(φτ ) is a linear subspace because
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φ is a gauge. So, if pτ ∈ null(φ), then

pτ = Projnull(φτ )(x) = Projnull(φ)(x) = p1.

Otherwise there is qτ ∈ null(φ)⊥ such that pτ = p1 + qτ , whence ‖pτ‖2 =

‖p1‖2 + ‖qτ‖2. Chiefly, ‖pτ‖ ≥ ‖p1‖.

Remark 20 (Projection lemma on Hilbert space). Observe that the same
elements in the proof of Theorem 5.2.2 may be used to prove a version
of Lemma 2.1.2 in the same general setting. Namely, it is straightforward
to show Lemma 2.1.2 holds in the case where 0 ∈ K ∈ H with H being an
arbitrary Hilbert space equipped with inner product 〈·, ·〉 and induced norm
‖ · ‖ :=

√
〈·, ·〉.

Remark 21. We seek the most general assumptions on φ under which a result
like Theorem 5.2.2 or Lemma 2.1.2 remains true. Certainly, the indicator
function of a set is not a gauge; it is not positively homogeneous, for one. As
such, Lemma 2.1.2 falls outside the realm of consideration of Theorem 5.2.2.
It is then natural to ask if one may state a unified version of these two results,
where φ belongs to a class of functions containing both indicator functions
of origin-containing convex sets, and proximal operators of gauges. We leave
this as an open question.

5.3 Quasi-ordering of generalized projections
This section is motivated by the study of solvability of Lasso programs, in
the sense seen in Chapters 3 and 4. We start by introducing a generalization
of projections onto convex sets, which bears strong resemblance to (LSτ,K).
Given K ⊆ RN , A ∈ Rm×N and y ∈ Rm define xα(y,A) by

xα(y,A) := arg max {‖x∗‖2 : x∗ ∈ S(y,A, αK)} , (5.5)

S(y,A, αK) := arg min {‖y −Ax‖2 : x ∈ αK} . (5.6)

For the duration of this chapter we assume that K ⊆ RN is a non-empty
closed convex set containing the origin, and that α ≥ 0. We may refer to
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S(y,A, αK) colloquially as the solution set. The solution set is non-empty
because 0 ∈ αK. If the solution set contains more than one element, then
xα(y,A) corresponds to a member of the solution set with maximal `2 norm.
In the event that the solution set has more than one element with largest
`2 norm, simply order those members lexicographically by their coordinate
values and define xα(y,A) to be the first. In this way we write equality
in (5.5).

Theorem 5.3.1 (Generalized projection lemma). Let K ⊆ RN be a non-
empty closed and convex set with 0 ∈ K and rad(K) ≤ 2. Fix λ ≥ 1, suppose
that A ∈ Rm×N is a normalized K-subgaussian matrix and let y ∈ Rm. There
exists δ > 0 sufficiently small so that if

m > Cδ−2K̃2 w2(K),

then with probability at least 1− 3 exp(−cmδ2/K̃2) on the realization of A,

‖x1(y,A)‖2 ≤ ‖xλ(y,A)‖2.

Proof of Theorem 5.3.1. If λ = 1 the result follows trivially, so we assume
λ > 1. We assume that y ∈ range(A). If A is from a continuous distribution,
it has full rank almost surely, and so y ∈ range(A) almost surely. The case
y 6∈ range(A) follows easily.

Define Zy := {x ∈ RN : y = Ax}. We first assume |λK∩Zy| ≤ 1. In this
setting, x1(y,A) and xλ(y,A) are unique almost surely. For brevity, define
xα := xα(y,A) for α ∈ {1, λ}. Set

f(t) := ‖u(t)‖22 where u(t) := txλ(y,A) + (1− t)x1(y,A).

Our goal is to show f ′(0) ≥ 0, which implies ‖xλ‖2 ≥ ‖x1‖2, because f is
convex. As before, this is equivalent to showing 1

2f
′(0) = 〈x1, xλ − x1〉 ≥ 0.

If x1 = xλ, the result holds trivially. So, we proceed under the assumption
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that xλ 6= x1. For x ∈ RN , define F (x) := ‖y −Ax‖22 and observe that

F ′(x) = AT (Ax− y),

whence by the optimality conditions for convex programs, it holds for all
x ∈ αK that

〈y −Axα, A(x− xα)〉 ≤ 0.

Using again the same style of trick as in § 5.1.1 and § 5.2.2, we make an
appropriate subsititution and take a linear combination of the following re-
lationships:

〈A(λ−1xλ − x1), y −Ax1〉 ≤ 0, 〈A(λx1 − xλ), y −Axλ〉 ≤ 0.

The linear combination yields

0 ≥ 〈A(xλ − λx1), y −Ax1〉+ 〈A(λx1 − xλ), y −Axλ〉

= 〈A(λx1 − xλ), A(x1 − xλ)〉

= (λ− 1)〈Ax1, A(x1 − xλ)〉+ ‖A(x1 − xλ)‖22.

Rearranging the expression gives

0 ≤ ‖A(xλ − x1)‖22
λ− 1

≤ 〈Ax1, A(xλ − x1)〉.

Effectively, it is enough to show 〈Ax1, A(xλ − x1)〉 ≈ 〈x1, xλ − x1〉. For
simplicity, write:

u := x1 v := xλ w := v − u.

Thus, our aim is to show that 〈Au,Aw〉 behaves like 〈u,w〉; correctly con-
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trolling 〈u,w〉 finishes the proof. To this end, set B := ATA− I and write

sup
u∈K
v∈λK
w:=v−u

|〈Au,Aw〉 − 〈u,w〉| = sup
u∈K
v∈λK
w:=v−u

∣∣uTBw∣∣
=

1

2
sup
u∈K
v∈λK
w:=v−u

∣∣vTBv − uTBu− wTBw∣∣ .
We bound this quantity with high probability on the realization of A. Ob-
serve that 0 ∈ K implies K ⊆ (1 + λ)K′, where K′ := (1 + λ)−1(λK−K), so
it suffices to control

sup
x∈(1+λ)K′

∣∣xTBx∣∣ = sup
x∈(1+λ)K′

∣∣‖Ax‖22 − ‖x‖22∣∣ .
For any δ ∈ (0, 1), if m ≥ Cδ−2K̃2 w2(K′), then Jeong et al. [44, Corol-
lary 1.2] yields with probability at least 1 − 3 exp(−cmδ2/K̃2) on the real-
ization of A that

sup
x∈(1+λ)K′

∣∣‖Ax‖22 − ‖x‖22∣∣ ≤ (1 + λ)2δ.

Consequently, on such an event,

(λ− 1)−1
(
‖w‖22 − (1 + λ)2δ)

)
≤ (λ− 1)−1‖Aw‖22
≤ 〈Au,Aw〉

≤ 〈u,w〉+
3

2
δ(1 + λ)2.

Rearranging gives

〈u,w〉 ≥ ‖w‖
2
2

λ− 1
− (1 + λ)2δ

λ− 1
− 3

2
δ(1 + λ2).

The right-hand expression is positive for any

δ <
2‖w‖22

(1 + λ2)(3λ− 1)
.
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Finally, w(K′) ≤ w(K), so it suffices to require m ≥ Cδ−2K2 logKw2(K).
Thus, with the stated probability on the realization of A, f is a convex
function increasing on the interval t ∈ [0, 1], and so ‖x1‖2 ≤ ‖xλ‖2 as desired.

Next, assume that |λK ∩ Zy| > 1. One of two cases occurs: either
K ∩ Zy = ∅ or K ∩ Zy 6= ∅. In the former case, choose λ̃ ∈ (1, λ) such that
λ̃K ∩ Zy 6= ∅ and λ̃K◦ ∩ Zy = ∅ (i.e., Zy has non-empty intersection only
with the boundary of λ̃K). We may now apply the argument above to K and
λ̃K, immediately yielding ‖xλ̃(y,A)‖2 ≥ ‖x1‖2 with high probability on the
realization of A for appropriate choice of δ and m. By construction, it holds
that xλ̃(y,A) ∈ S(y,A, λK), so ‖x1‖2 ≤ ‖xλ̃(y,A)‖2 ≤ ‖xλ‖2 by definition
of xλ. Next, in the latter case where K ∩ Zy 6= ∅, it holds trivially that
S(y,A,K) ⊆ S(y,A, λK), whence ‖x1‖2 ≤ ‖xλ‖2 as desired.

Remark 22 (Uniformity in y ∈ Rm). Observe that the bound

sup
x∈(1+λ)K

∣∣‖Ax‖22 − ‖x‖22∣∣ ≤ (1 + λ)2δ

is uniform over all x ∈ (1 + λ)K, and moreover, for all y ∈ Rm one has
u, v, w ∈ (1+λ)K. Thus, suppose there is c > 0 so that infy∈Rm ‖x(λ; y,A)−
x(1; y,A)‖22 ≥ c and define

c(λ) :=
2c

(1 + λ2)(3λ− 1)
.

Then, for all y ∈ Rm, for any δ ∈ (0, c(λ)), if m ≥ Cδ−2K2 logK w(K),
then it holds with probability at least 1 − 3 exp(−cmδ−2/(K2 logK)) that
‖x(λ; y,A)‖2 ≥ ‖x(1; y,A)‖2.

Corollary 5.3.2. Let K ⊆ RN be a non-empty closed and convex set with
0 ∈ K and rad(K) ≤ 2. Suppose that A ∈ Rm×N is a K-subgaussian matrix
and let y ∈ Rm. For β > 0, define

x̃(β; y,A) := arg min{‖x‖K : ‖y −Ax‖2 ≤ β}.
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There exists δ > 0 sufficiently small and a constant λ > 0, each depending
on β0, β1, y and A, so that if

m > Cδ−2K2 log(K)w2(K),

then with probability at least 1−3 exp
(
−cmδ2/(K2 logK)

)
on the realization

of A,

‖x̃(β0; y,A)‖2 ≥ ‖x̃(β1; y,A)‖2.

Proof of Corollary 5.3.2. Observe that the problem defining x̃(β; y,A) is a
generalized Lasso program. In particular, by Proposition 4.1.4, given 0 <

β0 < β1 <∞, there exists 0 ≤ α1 ≤ α0 <∞ so that

x(αi; y,A) = x̃(βi; y,A), i = 0, 1.

If x(α0; y,A) = x(α1; y,A), then there is nothing left to prove. Otherwise,
define λ := α0α

−1
1 . By Theorem 5.3.1 there exists δ > 0 satisfying

δ <
2‖x(λ;α−1

1 y,A)− x(1;α−1
1 y,A)‖22

(1 + λ)2(3λ− 1)

so that ifm > CK2 logKw2(K), then with probability at least 1−3 exp(−cmδ2/(K2 logK))

on A,

α1‖x(1;α−1
1 y,A)‖2 = ‖x(α1; y,A)‖2 ≤ ‖x(α0; y,A)‖2 = α1‖x(λ;α−1

1 y,A)‖2.

In particular, one has, as desired:

‖x̃(β0; y,A)‖2 ≥ ‖x̃(β1; y,A)‖2.
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5.4 Applications
As already noted, a version of Lemma 2.1.2 was first developed [55, Lemma 15.3]
to control the worst-case error for a constrained denoising problem. The
present variant was used to control worst-case error for a constrained de-
noising problem for arbitrary parameter choices [9]. Additionally, it is used
to obtain an ordering of the solutions for a basis pursuit PD problem, in
order to obtain lower bounds on the maximin error of the problem [9]. The
simpler variant has moreover been adapted to establish lower bounds on the
minimax error for (BPσ) problems in a particular data regime [10]. In Berk
et al. [10], it is also used to compare worst-case error for (LSτ ) with arbitrary
values of its governing parameter.

First, we present a “non-example”. Observe that Theorem 5.2.2 may not
be used to analyze R] as in Lemma 3.6.1. There, we relied on x0 +BN

1 being
a set that gives rise to a gauge, whereas ‖x0 + ·‖1 is not itself a gauge.

Next, let us analyze (QP∗λ) of Chapter 3 through the lens of Theo-
rem 5.2.2. In particular, we analyze its ability to recover the 0 vector. As
argued previously, efficacy of recovering 0 is a desirable property of a de-
noiser. Suppose, then that H = RN and ‖ · ‖ = ‖ · ‖2. By definition, for
z ∈ H,

x](λ; z) := arg min
x∈H

{1

2
‖z − x‖22 + λ‖x‖1} = proxλ ‖ · ‖1(z).

Setting φ := ‖ · ‖1 and defining φλ(x) = φ(x/λ) as above, observe that

x](λ; z) = proxφλ−1(z).

Indeed, we know that x](λ; z) is simply the soft-thresholding of z by λ.
Separately applying Proposition 5.2.1 and Theorem 5.2.2 shows for p = 1, 2

that ‖x](λ; z)‖p ≤ ‖x](λ′; z)‖p when λ ≥ λ′. Moreover, it is easy to use
similar ideas from the proof of Theorem 5.2.2 to obtain the relationship for
λ > 0,

〈z, x](λ; z)− z〉 ≥ λ−1‖z − x](λ; z)‖22.
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While this example was presented in the PD context discussed earlier, we
observe that this relationship remains valid for arbitrary H and choice of
‖ · ‖.

It would be interesting to explore if this analysis could be adapted to
analyze novel properties of common approaches to dictionary learning, or an
infinite-dimensional de-noising problem. For example, the Beurling Lasso [12,
63] seeks to recover an unknown sparse measure

ma,θ :=

n∑
i=1

aiδθi , ai ∈ R, θi ∈ Θ ⊆ RN ,

using measurements y ∈ H that are acquired via a continuous linear func-
tional Ψ of the form

Ψm :=

∫
Θ
ψ(θ) dm.

Here, ψ : Θ→ H is a continuous function mapping into some Hilbert space
H; necessarily, Ψ : M(Θ) → H, where M(Θ) is the space of compactly
supported Radon measures. The unconstrained Beurling Lasso [12, 63] is
then defined by

min
m∈M(Θ)

1

2
‖Ψm− y‖22 + λ‖m‖TV

where ‖m‖TV := sup{Ai}⊆Θ

∑
i |m(Ai)| denotes the total variation norm of

the measure m. Similarly, Beurling basis pursuit is given by

min
m∈M(Θ)

‖m‖TV such that Ψm = y.

Natural questions may thus concern the regimes in which each Beurling
Lasso variant exhibits PS; it is natural to expect that answers to these
questions may rely on the Hilbert space generalization of Lemma 2.1.2.
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Chapter 6

Conclusion

We conclude by discussing the results of this thesis in a broader context. In
addition, we discuss intriguing avenues for future work.

6.1 Proximal denoising
Chapter 3 of this thesis investigated the stability of three sibling convex
programs. Specifically, it investigated the stability of their recovery error
with respect to variation in their governing parameter. We have illustrated
regimes in which each of the three PD programs is parameter sensitive. The
theory of § 3.2–3.4 proves asymptotic results for each program, while the
numerics of § 3.5 support using the asymptotic behaviour as a basis for
practical intuition. Thus, we hope these results inform practitioners about
which program to use.

In § 3.2 and § 3.5.1 we observe that (LS∗τ ) exhibits parameter sensitivity
in the low-noise regime. The risk R̂(τ ;x0, N, η) develops an asymptotic sin-
gularity as η → 0, blowing up for any τ 6= ‖x0‖1, where R̂(‖x0‖1;x0, N, η)

attains minimax order-optimal error. Numerical simulations support that
R̂(τ ;x0, N, η) develops cusp-like behaviour in the low-noise regime, which
agrees with the asymptotic singularity of Theorem 3.2.1. Notably, (LS∗τ )

parameter sensitivity manifests in very low dimensions relative to practical
problem sizes. Outside of the low-noise regime, (LS∗τ ) appears to exhibit
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better parameter stability, as exemplified in Figures 3.5, 3.9 and 3.13.
In § 3.3 and § 3.5.2 we observe that (QP∗λ) exhibits left-sided parameter

sensitivity in the low-noise regime. When λ < λ̄ we prove that R](λ; s,N)

scales asymptotically as a power law of N . The suboptimal scaling of the
risk manifests in relatively higher dimensional problems, as suggested by Fig-
ure 3.3a. Minimax order-optimal scaling of the risk when λ ≥ λ̄ is clear
from Figure 3.3c. The numerics of § 3.5 support that (QP∗λ) is generally the
most stable of the three PD programs considered.

In § 3.4 and § 3.5.3 we observe that (BP∗σ) exhibits parameter sensitivity
in the very sparse regime. Notably, R̃(σ;x0, N, η) is maximin suboptimal for
any choice of σ > 0 for s/N sufficiently small. This behaviour is supported
by Figure 3.4a, in which the best average loss of (BP∗σ) is 82.2 times worse
than that for (LS∗τ ) and (QP∗λ). Further, the average loss for (BP∗σ) exhibits
a clear cusp-like behaviour in Figure 3.4a, like for that of (LS∗τ ), which would
be an interesting object of further study. Outside of the very sparse regime,
(BP∗σ) appears to exhibit parameter stability, as exemplified in Figure 3.5.

Finally, in § 3.5.6 we portray how estimators behave as a function of the
normalized parameter for each program. We show the kinds of pathologies
from which these estimators suffer in regimes of sensitivity. These examples
were performed in the setting of relatively more realistic data: a modification
of the Shepp-Logan phantom.

6.2 Compressed sensing
Chapter 4 of this thesis examined the relative sensitivity of three Lasso pro-
grams to their governing parameters: (LSτ ), (BPσ) and (QPλ). We proved
asymptotic cusp-like behaviour of R̂(τ ;x0, A, η) in the limiting low-noise
regime in § 4.2. Numerical simulations in § 4.5.1 support these observations
for even modest dimensional parameters and noise scales, as do additional
numerics later in § 4.5. We motivated how § 4.2 may be applicable to the
(LSτ,K) setting by highlighting parameter instability of nuclear norm recov-
ery in Lemma A.1.1. Interestingly, the theoretical and numerical results for
(LSτ ) closely mirror those obtained for (LS∗τ ).
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In § 4.3, we recall a result establishing right-sided stability of (QPλ)

for a class of matrices that satisfy a version of RIP. The result does not
address sensitivity of (QPλ) to its governing parameter when the governing
parameter is less than its optimal value. In § 4.5, we demonstrate numerically
that there are regimes in which (QPλ) is sensitive to its governing parameter
λ when λ < λ∗. This sensitivity is readily observed in the rightmost plot
of Figure 4.2. This observation establishes a numerical connection to the
numerics and theory of Chapter 3. Moreover, we observe that (QPλ) is
more sensitive to its choice of parameter when the aspect ratio is larger. We
believe this is due to there being a smaller null-space, which has the effect of
shrinking the space of possible solutions. This behaviour is visible in both
plots of Figure 4.2: the error curves for larger δ are steeper for λ < λ∗ than
those for smaller values of δ.

In § 4.4, we proved asymptotic suboptimality of R̃(σ;x0, A, η) in a cer-
tain dimensional regime that falls outside the typical CS regime where m ≈
Cs log(N/s). In particular, for m ≈ δN , δ ∈ (0, 1), we show that (BPσ) risk
is asymptotically suboptimal for “very sparse” signals. We demonstrate that
this theory is relevant to the CS regime in § 4.5, in which we show that the
loss and average loss for (BPσ) are sensitive to the value of the governing
parameter if the ground-truth signal is very sparse. Furthermore, Figure 4.4
and Figure 4.6 depict suboptimality of the (BPσ) risk for modest choices
of dimesional parameters. Again, it is interesting to note that these results
closely mirror those obtained for (BP∗σ).

6.3 Projection lemma and extensions
We have demonstrated the usefulness of Lemma 2.1.2, which was an inte-
gral component of several results in this thesis. By this result, the size of
x̃(η
√
N) controls the size of x̃(σ) for σ ≤ η

√
N when x0 ≡ 0. This was key

to demonstrating risk suboptimality for underconstrained (BP∗σ) and (BPσ).
Moreover, Lemma 2.1.2 was used to prove that R̂(τ ; τx0, N, η) is an increas-
ing function of τ when ‖x0‖1 = 1 (Lemma 3.6.1) and similarly for R̂ in the
CS setting (Proposition 4.6.2). Thus, the projection lemma was particularly
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effective for proving minimax order-optimality of R∗(s,N) and R∗(s,A).
In Chapter 5, we showed that the projection lemma may be generalized

along two directions. In particular, Theorem 5.2.2 extends the projection
lemma to the more general setting of arbitrary gauges defined on an arbitrary
Hilbert space. The proof of Theorem 5.2.2 itself shows that Lemma 2.1.2
holds in the same general setting. Thus, as argued in § 5.4, equivalent notions
of parameter sensitivity could be extended to the infinite dimensional setting.
On the other hand, Theorem 5.3.1 establishes an ordering for projection-like
operators, namely those resembling (LSτ,K) when the structure set K gives
rise to a gauge and A is a subgaussian random matrix. This extension is
imperfect in that it necessitates a sufficiently small choice of δ, meaning that
it is not possible to use this result to obtain uniform statements, like those in
§ 4.6.2. Nevertheless, we believe this result reinforces the satisfying geometric
link between the PD and CS problems. As argued in § 5.4, we hope that
this result may motivate similar study of other variants of projection-like
operators.

6.4 Future directions
Future works related to Chapter 3 include extending the main results in the
PD setting to more general atomic norms. These results may also extend to
ones under more general noise models. It would be interesting to see what
role parameter instability might play in proximal point algorithms and those
algorithms relying on proximal operators. Conversely, it would be useful to
understand rigorously when a PD program exhibits parameter sensitivity,
and to determine systematically the regime in which that sensitivity arises.
A non-asymptotic theoretical analysis of parameter sensitivity remains an
open problem.

Future works related to Chapter 4 include fully extending the main re-
sults to the generalized Lasso setting, using more general atomic norms.
A rigorous examination of low-rank matrix recovery, particularly the (BPσ)

variant, could be interesting. Finally, it would be useful to understand when
a convex program is expected to exhibit sensitivity to its governing param-
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eter, and to determine systematically the regime in which that instability
arises. Again, a non-asymptotic analysis for the CS setting remains open.
Finally, it would be interesting to establish how parameter sensitivity relates
to other popular Lasso variants, such as the so-called square-root Lasso,
which is touted to be “noise-scale agnostic”.

Future works related to Chapter 5 are relatively open. For instance,
applications of Theorem 5.2.2 remain largely unexplored. Separately, note
that indicator functions like χK are not gauges. Thus, a notion of ordering
has been established for both projection operators and for proximal operators
of gauges. In particular, it is an open question to determine the largest class
of functions that satisfy an inequality like that of Theorem 5.2.2. Moreover,
the uniform (“coarse”) analysis in the proof of Theorem 5.3.1 gave a result
that requires a specific range for δ. It would be interesting to determine if a
local analysis in the proof could relax the requirements on δ, improving the
potential applicability of the theorem in applications.
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Appendix A

Supporting Materials

A.1 Auxiliary proofs (CS)

A.1.1 Proofs for refinements on bounds for gmw

Proof of Corollary 2.3.7. Assuming

m > Cεδ
−2K̃2s log

2N

s
,

Lemma 4.6.4 gives

sup
x∈Ls(1)

|‖Ax‖2 − ‖x‖2| < δ,

with probability at least 1 − ε on the realization of A. In particular, (1 −
δ)−1‖Aj‖2 ≥ 1 and (1 + δ)−1‖Aj‖2 ≤ 1 for all j ∈ [N ]. Define the sets

T+ := cvx{±(1 + δ)−1Aj : j ∈ [N ]},

T− := cvx{±(1− δ)−1Aj : j ∈ [N ]}.

We will apply Proposition 2.3.5 and Proposition 2.3.6 to T+ and T−, respec-
tively, then use that T+ = (1 + δ)−1T and T− = (1− δ)−1T . Indeed, observe
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that

(1 + δ)−1 w(T ∩ (1 + δ)γBm
2 )

= w((1 + δ)−1T ∩ γBm
2 ) = w(T+ ∩ γBm

2 )

≤ min
{

4
√

max
{

1, log(8eNγ2)
}
, γ
√

min{m, 2N}
}
.

Rearranging, with α = (1 + δ)γ gives

w(T ∩ αBm
2 )

≤ min
{

4(1 + δ)
√

max
{

1, log(8eN(1 + δ)−2α2)
}
, α
√

min{m, 2N}
}
.

Similarly, one may derive the lower bound for α ∈ (0, (1 − δ)), using that
κ = 1− δ,

w(T ∩ αBm
2 ) ≥ (

√
2/4)(1− δ)2

√
log

Nα2

5(1− δ)2
.

A.1.2 Proofs for projection lemma

Proof of Corollary 2.1.3. Define β := ‖qα‖K. Then qα ∈ βK and so ‖y −
ProjβK(y)‖2 ≤ α by definition of ProjβK(·). Again by definition of ProjβK(·),
it holds that ‖ProjβK(y)‖K ≤ β. In particular, ProjβK(y) is feasible and

‖ProjβK(y)‖K ≤ ‖qα‖K,

whence optimality of qα implies qα = ProjβK(y). Thus, by an elementary
sequence of steps, the proof follows from the projection lemma.

A.1.3 Parameter sensitivity of nuclear norm recovery

This section is a supplement to § 4.6.3, in support of the comment made at
the end of § 4.2. We include a result that ports the two lemmata of § 4.6.3
from the setting of constrained Lasso to that of constrained nuclear norm
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recovery. Before we state the lemma, define B∗ := {X ∈ Rd×d : ‖X‖∗ =∑d
i=1 σi(X) ≤ r}, where σi(X) is the ith largest singular value of the matrix

X. Recall that ‖ · ‖∗ is dual to the operator norm ‖ · ‖ and so they admit
the following inequality for any X,Y ∈ Rd×d

〈X,Y 〉 ≤ ‖X‖‖Y ‖∗.

Finally, since the space of matrices is finite, all matrix norms are equivalent.
In particular, if X is a rank r matrix (i.e., σi(X) = 0 for i = r + 1, . . . , d),
then

‖X‖F ≤ ‖X‖∗ ≤
√
r‖X‖F .

Lemma A.1.1 (Nuclear Norm Recovery). Let A : Rd×d → Rm be an op-
erator mapping AX = (〈Ai, X〉)mi=1 for Ai ∈ Rd×d. Given X0 ∈ Rd×d,
η > 0 and z ∈ Rm with zi

iid∼ N (0, 1), let y = AX0 + ηz. Suppose that
either τ > ‖X0‖∗ and dim kerA > 0 or τ < ‖X0‖∗. Almost surely on the
realization of z,

lim
η→0

L̂(τ ;X0,A, ηz) = lim
η→0

η−2‖X̂(τ ; y,A, B∗)−X0‖2F

=∞.

Proof of Lemma A.1.1. First, we examine the setting where τ > ‖X0‖∗. In
like manner as the proof for Lemma 4.6.6, define τ∗ := ‖X0‖∗ and set ρ :=

τ − τ∗. Assume span(A) = Rm. There exists ζ ∈ Rd×d such that Aζ = z,
and so A(X0 + ηζ) = y. If η is sufficiently small then X ′ := X0 + ηζ ∈ τB∗
where B∗ = {X ∈ Rd×d : ‖X‖∗ ≤ 1} is the nuclear norm ball. In particular,
X ′ is a solution for (LSτ,K) where K = B∗. Applying a similar argument as
before, noting that

‖X ′ −X0‖F ≥
‖X ′‖∗ − ‖X0‖∗

d
≥ ρ > 0,

will complete the proof in the case where A spans Rm. The case where
spanA ( Rm is similar.
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Next, we examine the setting where τ < ‖X0‖∗. For any solution Ξ to
(LSτ,K), one has by norm equivalence and triangle inequality:

L̂(τ ;X0,A, B∗) ≥ η−2‖X0 − Ξ‖2F ≥
(‖X0‖∗ − ‖Ξ‖∗)2

η2d2

η→0−−−→∞.

Note that risk bounds are well-known for constrained nuclear norm recov-
ery in the case where τ = ‖X0‖∗ and A : X 7→ (〈Ai, X〉)mi=1 with Ai ∈ Rd×d

independent and having independent subgaussian entries [18, 19]. In partic-
ular, combining such a result with the lemmata above gives an analogue to
Theorem 4.2.1 in the constrained nuclear norm setting.

A.2 RBF Approximation

A.2.1 Why RBF approximation?

Before we describe the radial basis function (RBF) approximation method in
detail, we include here a motivation for our choice to use RBF interpolation
to obtain an approximation to the average loss. We describe the motivation
in reference to the numerics of § 4.5, but the motivation equally well applies
to those instances in § 3.5 where RBF approximation was used. As noted in
those sections, the desideratum is the quantity L̄(ρi), where ρi is a normalized
parameter value in a grid of such points {ρi}i∈[n]. Recall from (4.2) ((3.2) for
the PD setting) that for each i, L̄(ρi) is an average of k points. Unfortunately,
computing this average directly is computationally intractable. In particular,
this approach would involve solving each of the three programs directly for
each ρi and each ẑj . Thus, taking the direct approach means solving 3nk

problem instances (particularly burdensome in the CS setting where one is
required to re-sample a realization Â of A ∈ Rm×N ). Exacerbating this issue
is that (LSτ ) and (BPσ) are significantly more computationally intensive
than (QPλ).
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Instead, loss values for (LSτ ) and (BPσ) were obtained by solving (QPλ)

for certain parameter values λ, and using Proposition 4.1.4 to obtain the
corresponding parameter values for (LSτ ) and (BPσ) that correspond to
the obtained loss. This reduces the number of solved problem instances
to nk, using only the fastest of the three programs, (QPλ). Consequently,
the collection of nk loss values for each of (LSτ ) and (BPσ) were a non-
uniformly sampled point cloud. In particular, there is no way to average
k loss realizations for a fixed parameter ρi. Instead, one seeks a localized
average that approximates the quantity.

Several approaches exist for computing a localized average. For example,
one could average the losses of all points whose parameter value is within a
certain radius r of the desired value ρi:

L̄(ρi;x0, A) ≈
∑

{ρ:|ρ−ρi|<r}

L(ρ;x0, A, ηẑj).

However, few options are entirely suitable for our purposes. In the exam-
ple just given, there are two key issues. The first issue is how to select an
appropriate neighbourhood size, especially as the resolution of the resulting
curve may vary, particularly when PS is exhibited. The second difficulty
is ensuring that each ρi-neighbourhood contains enough points. It is not
enough to select a fixed neighbourhood size r, as that could result in aver-
aging too few points in some regions, and yielding too low a resolution in
others. Otherwise suitable localized averaging alternatives, such as Gaussian
process regression, are computationally intractable due to the data size. For-
tunately, RBF approximation is a standard approach for localized averaging
that is both forgiving with hyperparameter selection, and computationally
tractable in the present setting.

A.2.2 RBF approximation of the average loss

For a particular program P, A ∈ Rm×N , zi
iid∼ N (0, 1), η > 0 and x0 ∈ ΣN

s ,
define y(j) = Ax0 + ηẑ(j), j ∈ [k] where ẑ(j) is an iid copy of z. For the
program P denote the solution to the program by x∗(υ; y(j), A), where υ > 0
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is the governing parameter. Here, υ ∈ Υ(j), where Υ(j) is a logarithmically
spaced grid of n points whose centre is approximately equal to the optimal
parameter choice υ∗(x0, A, ηz

(j)). Next, define the concatenated vectors

z := (z(j) : j ∈ [k]) ∈ Rkn, y := (y(j) : j ∈ [k]) ∈ Rkn,

and define the collection

Γ := Γ(x0, A, ηz)

:= {(υij ,L (υij ;x0, A, ηz
(j))) : υij ∈ Υ(j), i ∈ [n], j ∈ [k]},

where L is the loss corresponding to P. From here, we describe how to ap-
proximate the average loss and the normalized parameter ρ. Specifically, we
construct the RBF approximators L †, L† satisfying L †(υ; Γ) = L†(ρ; Γ) ≈
L̄(ρ;x0, A, η, k). Define the multiquadric RBF kernel by

κ(υ, υ′) :=

√
1 +

(
|υ − υ′|
εrbf

)2

, υ, υ′ > 0,

and define the matrix X ∈ Rkn×kn by

Xij = κ(υi, υj), υi, υj ∈ Γ.

For µrbf ≥ 0, the coefficients of the RBF approximator are given by w̃ ∈ Rkn

where w̃ solves

y = (X − µrbfIkn)w̃

with Ikn ∈ Rkn×kn being the identity matrix. To evaluate the approximant
at a set of points ξ ∈ Rnrbf , one simply computes

ỹ = L †(ξ; Γ(y, A)) := X̃w̃ where X̃ij := κ(ξi, υj), i ∈ [nrbf], j ∈ [kn].
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The optimal parameter choice for the approximator, υ† > 0, is given as

υ† ∈ arg min
υ>0

L †(υ; Γ),

Finally, the normalized parameter ρ is approximated as ρ ≈ υ/υ† and the
average loss thus approximated by

L†(ρ; Γ(x0, A, ηz)) := L (ρυ†; Γ(x0, A, ηz)).

A.2.3 Interpolation parameter settings

This subsection includes the RBF parameter settings used throughout the
numerics in § 3.5 and § 3.5. Note that any settings not presented in this sec-
tion are either unavailable or already included in-line in the relevant section.

The RBF interpolation parameter settings for each of the approximations
of the average loss pertaining to (LSτ ) PS numerics appearing in § 4.5.1 can
be found in Table A.1. For those pertaining to (QPλ), appearing in Fig-
ure 4.3 and 4.7–4.9, see Table A.2. For those pertaining to (BPσ), appearing
in § 4.5.3, see Table A.3. The RBF interpolation parameter settings for each
of the average loss approximations in § 4.5.5 are given in Table A.4. For
those pertaining to Figure 4.13–4.15 of § 4.5.5, see Table A.5.

program εrbf µrbf

(LSτ ) 10−5 0.1

(QPλ) 3 · 10−2 0.5

(BPσ) 3 · 10−2 0.5

Table A.1: Average loss interpolation parameter settings for (LSτ )
PS numerics in § 4.5.1. (s,N,m, η) = (1, 105, 2500, 2 · 10−3);
(nrbf, function) = (301,multiquadric).
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s N m η program εrbf µrbf

1 10000 2500 10−5 (LSτ ) 0.005 1

1 10000 2500 10−5 (QPλ) 0.05 1

1 10000 2500 10−5 (BPσ) 0.04 0.9

1 10000 4500 10−5 (LSτ ) 0.005 1

1 10000 4500 10−5 (QPλ) 0.05 1

1 10000 4500 10−5 (BPσ) 0.04 0.9

750 10000 4500 0.1 (LSτ ) 0.005 1

750 10000 4500 0.1 (QPλ) 0.05 1

750 10000 4500 0.1 (BPσ) 0.05 0.5

100 10000 2500 100 (LSτ ) 0.005 1

100 10000 2500 100 (QPλ) 0.05 1

100 10000 2500 100 (BPσ) 0.05 0.5

100 10000 4500 100 (LSτ ) 0.005 1

100 10000 4500 100 (QPλ) 0.05 1

100 10000 4500 100 (BPσ) 0.05 0.5

Table A.2: Average loss interpolation parameter settings for (QPλ) PS
numerics in Figure 4.3 and Figure 4.7, 4.8 and 4.9. nrbf = 501,
function = multiquadric.
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N m η δ program εrbf µrbf nrbf

4000 400 1 0.1 (BPσ) 0.05 1 301

4000 400 1 0.1 (LSτ ) 0.001 1 301

4000 400 1 0.1 (QPλ) 0.05 1 301

4000 1000 1 0.25 (BPσ) 0.05 1 301

4000 1000 1 0.25 (LSτ ) 0.001 1 301

4000 1000 1 0.25 (QPλ) 0.05 1 301

4000 1800 1 0.45 (BPσ) 0.05 1 301

4000 1800 1 0.45 (LSτ ) 0.001 1 301

4000 1800 1 0.45 (QPλ) 0.05 1 301

7000 700 1 0.1 (BPσ) 0.05 1 301

7000 700 1 0.1 (LSτ ) 0.001 1 301

7000 700 1 0.1 (QPλ) 0.05 1 301

7000 1750 1 0.25 (BPσ) 0.05 1 301

7000 1750 1 0.25 (LSτ ) 0.001 1 301

7000 1750 1 0.25 (QPλ) 0.05 1 301

7000 700 100 0.1 (LSτ ) 0.05 1 501

7000 700 100 0.1 (QPλ) 0.05 1 501

7000 700 100 0.1 (BPσ) 0.05 1 501

7000 1750 100 0.25 (LSτ ) 0.05 1 501

7000 1750 100 0.25 (QPλ) 0.05 1 501

7000 1750 100 0.25 (BPσ) 0.05 1 501

Table A.3: The RBF interpolation parameter settings for each of the
approximations of the average loss in § 4.5.3, including for Fig-
ure 4.4. s = 1, function = multiquadric.
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program εrbf µrbf nrbf

(LSτ ) 0.01 1 501

(QPλ) 0.01 1 501

(BPσ) 0.01 1 501

Table A.4: The RBF interpolation parameter settings for each of
the average loss approximations in § 4.5.5. (s,N,m, η) =
(10, 4096, 1843, 50); function = multiquadric.

η program εrbf µrbf nrbf

0.01 (LSτ ) 0.001 1 501

0.01 (QPλ) 0.05 1 501

0.01 (BPσ) 0.05 1 501

0.5 (LSτ ) 0.05 1 501

0.5 (QPλ) 0.05 1 501

0.5 (BPσ) 0.05 1 501

Table A.5: The RBF interpolation parameter settings for each of the
RBF interpolations in Figure 4.13–4.15 of § 4.5.5. (s,N,m) =
(416, 6418, 2888); function = multiquadric.
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