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Abstract

In contrast with the endangered southern resident killer whales (SRKWs), the northern resident

killer whales (NRKWs) have been thriving in their habitats. The main hypotheses proposed to

explain the differences in survival of these population are associated with differential reproductive

output, body compositions, and feeding rates. Testing some of these hypotheses requires researchers

to identify prey captures for these animals. As these events are difficult to directly observe through

field operations, researchers equip whales with suction-cup attached biologgers and use kinematic

variables during the bottom phase of a dive to predict prey captures. However, universal definitions

of the bottom phase have not been established and often appear arbitrarily chosen, leading to poten-

tially over or underestimating foraging events. Using the diving and kinematic data collected from

three NRKWs, I show that modifying the bottom phase greatly impacts existing methods used to

predict prey capture events. To investigate bottom phase definition variability, I then asked several

whale researchers to identify the bottom phase of various dives via an interactive study. Linear

mixed-effects model analyses showed that there exists substantial variation in bottom phase defi-

nitions across different researchers and across different dive types. I compared several statistical

models of the start and end of the bottom phase of a dive, including modifications to existing meth-

ods, linear regression models, and functional linear regression models. Compared to the currently

used bottom phase definitions, using the model based definitions resulted in significant improve-

ments when predicting prey capture dives. Furthermore, these proposed models offer substantial

increases in prediction accuracy of the bottom phase of a dive when comparing these model pre-

dictions and the currently used methods to the user-provided bottom phases. Finally, I formulated

two methods to determine an adequate sample size for fitting these statistical models. The results

of both methods show that an adequate sample size of approximately 50-100 dives can be used

to obtain satisfactory model predictions for this data. This work shows that dive phase definitions

may impact the results of many existing studies and should be emphasized as an important part of

analyzing diving data.
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Lay Summary

In contrast with the endangered southern resident killer whales (SRKWs), the northern resident

killer whales (NRKWs) are comparatively healthier with a larger population size, higher reproduc-

tive success and generally better body composition. A leading hypothesis proposed to explain the

differences in survival of these populations is based on differences in feeding success, and requires

researchers to identify prey captures. As the events are difficult to directly observe, researchers often

predict prey captures using statistical models. Prediction of prey capture dives depends on several

key components of a dive, called dive phases (typically descent, bottom, and ascent phases), which

are defined by the researcher. In modifying these dive phase definitions, I show that predicted prey

capture dives change substantially. This thesis seeks to ameliorate these user-defined dive phases

through a formal statistical approach. This work shows that dive phase definitions affect a broad

range of important dive metrics, and thus, dive phase definitions may impact the results of many

existing studies.
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Chapter 1

Introduction

The truth, however ugly in itself, is always curious and beautiful to seekers after it.
— Agatha Christie, The Murder of Roger Ackroyd

The northern resident killer whales (NRKWs) are a population of killer whales (Orcinus orca)

which lives along the west coast of the United States and Canada from northern Washington to

southern Alaska. The NRKWs are four times more abundant than the endangered southern resident

killer whales (SRKWs) [2] and have been thriving. Their population size has been relatively stable

with some evidence to suggest it may be increasing [3]. The survival success of these whales is di-

rectly related to their ability to find and capture prey during foraging dives. As such, researchers are

interested in comparing the key features of foraging dives across these two populations of whales to

better understand the survival differences. This may help us understand why the SRKW’s popula-

tion has been relatively stagnant while the NRKW population has been increasing [4].

A major problem with identifying successful prey capture dives is the lack of visual or acoustic

confirmation of prey capture events. Many researchers tag these whales with suction-cup attached

biologgers equipped with an array of sensors such as 3-axis accelerometers, providing information

on their kinematic movements underwater. Along with a hand-full of visually confirmed surface

prey captures and acoustic signals that the whale is “crunching” a prey [3, 5, 6], these kinematic

movements may be used to identify signature features of prey capture dives, which can then be ap-

plied to dives where there is no visual or acoustic data available [1]. To implement these procedures,

key variables during the bottom phase of a dive have been identified as predictive of prey capture

events [1] since the bottom phase of a dive is usually where killer whales capture their prey [3].

Despite the ecological significance of the bottom phase of a dive, the current scientific literature

lacks a cohesive definition for the bottom phase of a dive. Some recent studies use definitions that

involve the maximum depth of the dive [1, 7], and others involve changes in the vertical speed of
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the whale [8, 9]. The definitions vary across researchers and as such, different definitions could

result in different values of the summary statistics used in predicting prey captures. The goal of

this thesis is threefold: 1) to motivate the potential issues with different bottom phase definitions,

2) identify the main sources of this variation, and 3) propose a reproducible statistical framework

that provides researchers flexibility in defining the bottom phase of a dive without using arbitrary

threshold values which may not accurately represent the bottom phase. For example, a common

bottom phase definition for a dive is the first and last time the whale exceeds 70% of its maximum

depth [1, 7]. This percentage threshold value may not be appropriate for all dives and may even

look entirely incorrect for some dives (Figure 1.1).

Figure 1.1: A time-depth profile of a dive of a NRKW from the datasets used in this thesis,
where the bottom phase (in red) has been defined using the 70% maximum depth thresh-
old.

In Chapter 2, I introduce the data collected from the accelerometer tags of three NRKWs. Using

these data, methods are applied from a recent paper (Tennessen et al. [1]) to identify successful prey

capture dives using the 70% of maximum depth bottom phase definition. In modifying the bottom

phase definition of the dives (e.g., increase or decrease the threshold value), I re-predict prey capture

dives and find different results. Moreover, since we have confirmed prey captures from one whale, I

compared the model predictions of prey capture dives using the different bottom phases to the true

prey capture dives. These results demonstrate how bottom phase definitions can impact predicted
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prey captures using the methods in Tennessen et al. [1].

Chapter 3 describes an experimental study wherein I asked several researchers to identify the

location of the bottom phases of a set of dives. Using these data, I quantified the major sources of

variability in bottom phase classifications, including across-researchers, across-dives, and within-

researcher variations. This chapter provides further motivation for the need to have a consistent

and reproducible method in identifying the bottom phase of a dive that can be tailored to each

researcher’s own datasets.

Chapter 4 considers several statistical models of the start and end of the bottom phase of a dive,

including a modifying percentage threshold model, as well as linear and functional regression mod-

els, in order to improve the definition of bottom phase. A dataset of 250 dives is used where a whale

researcher has defined the bottom phase for all dives. Moreover, I also construct confusion matrices

of predicted prey captures versus actual prey captures as in Chapter 2. The chapter concludes by

using cross-validation to compare the models’ predictions of bottom phase to the bottom phases

provided by the user.

Chapter 5 provides an answer to a commonly asked question when building statistical models:

How large of a dataset is required to build the models and have them perform well? Since many

whale researchers have thousands of dives in their datasets, it would be impractical to mark the

bottom phase for all dives. As such, a researcher must determine an adequate sample size when

building these statistical models. Chapter 5 considers two possible approaches to this question with

simulation studies to see how each model performs as the sample size of the training data changes.

In Chapter 6, I conclude with an overview of the significance of this thesis. As well, I discuss

several possible next steps that can be taken to improve upon the methods I developed.
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Chapter 2

Exploratory Analysis

It is the brain, the little gray cells on which one must rely. One must seek the truth
within–not without. — Agatha Christie, Poirot Investigates

2.1 Motivation & Background
In the study of marine diving animals, dive phase definitions are critical since several key statis-

tics used to determine the animals’ behavioural states are computed during different dive phases.

For example, dive efficiency, which is the ratio of time during the bottom phase to the entire dive

duration, helps to quantify cost-efficiency of foraging behaviour in several species including otters

(Lutra lutra) [10], tiger sharks (Galeocerdo cuvier) [11], emperor penguins (Aptenodytes forsteri)

[12], sperm whales (Physeter macrocephalus) [13], bottle-nose dolphins (Tursiops truncatus) [14],

and killer whales (Orcinus orca) [15]. In changing the definition of the bottom phase of a dive,

the resulting analyses can be skewed and as such, may not be entirely accurate of the animals’ be-

haviour. Hence, defining the bottom phase of a dive correctly is of utmost importance for marine

mammal researchers and needs to be approached in a methodical and thorough manner.

In this chapter, I begin by describing the data that have been collected from three NRKWs.

Afterwards, I provide a brief introduction to the important variables that have been collected from

these whales, as well as the variables which could be important for determining foraging success.

Next, I discuss how each dive can be divided into its respective phases since it is believed that the

majority of feeding occurs during the bottom phase of a dive [3]. I then provide a review of the

rules derived in Tennessen et al. [1] to detect foraging dives and apply it to the datasets. Finally,

I consider what would happen if the definition of the bottom phase changes. Specifically, I note

how this affects which dives are determined to be foraging based on Tennessen et al. [1]’s rules.
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I also look at the distributions of the kinematic variables used to detect foraging and how these

distributions change as the bottom phase definition changes. I conclude this chapter by presenting

the main concerns with these rules—they rely on very precise definitions of dive phases.

2.2 Data Description
Each of the three datasets used in this thesis contain information on a single, tagged whale. Each

whale was tagged with a Customized Animal Tracking Solutions (CATs) tag [16]. The CATs tag

was attached to the first whale (referred to as Whale #1) for approximately 6 hours, from 13:16 PM

until 18:30 PM (Pacific Daylight Time) on September 2nd, 2019. The second whale (referred to as

Whale #2) was tagged for about 5 hours, from 10:30 AM to 15:15 PM (Pacific Daylight Time) on

August 31st, 2019. Finally, the third whale (referred to as Whale #3) was tagged for approximately

13 hours from 10:15 AM to 11:30 PM (Pacific Daylight Time) on August 25th, 2020. Notice that

Whales #1 and #2 were tagged in 2019 and Whale #3 was tagged in 2020. The CATs tag collected

information from the whales at 50 Hertz (Hz) meaning there were 50 measurements taken every

second. As such, these datasets are large, each containing hundreds of thousands of rows of data.

The CATs tag collected information on the following variables:

• Date and time (local)

• Depth (meters)

• Acceleration - measured by an accelerometer (3 axes) (m/s2)

• Angular Velocity - measured by a gyroscope (3 axes) (mrad/s)

• Magnetic Field - measured by a magnetometer (3 axes) (microTesla [µT ])

The CATs tag also has a forward facing camera to allow for visually confirmed prey captures

when adequate light was available. Moreover, these tags contained a passive acoustic recorder to

acoustically identify when these whales were hunting (via echolocation) and when successful prey

captures were made (via prey handling sounds like crunches). Figures 2.1, 2.2, and 2.3 show the

complete time-depth plot for the whales during the entire time of tag deployment. We can see that

there are periods of time where data were not collected on Whales #1 and #2, which could have

been due to the CATs tag malfunctioning. It would be difficult to impute the missing data during

those time periods as it is difficult to determine if only a single dive occurred during that time period

or if it contains multiple dives.
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Figure 2.1: The time-depth plot of Whale #1 during the tag attachment period.

Figure 2.2: The time-depth plot of Whale #2 during the tag attachment period.

6



Figure 2.3: The time-depth plot of Whale #3 during the tag attachment period.

2.3 Longitudinal Variables Calculated from Raw Data
The key question for these whales is if there are any potential foraging activities occurring during the

tagged period. These foraging dives tend to have similar kinematic characteristics. By understand-

ing the kinematic behaviour of the whales during foraging, then researchers can better understand

how much energy is being expended and how this affects the survival of the whale.

The kinematic variables that are used to detect prey captures generally utilize dynamic accel-

eration. The total acceleration of any object is the sum of two distinct accelerations: static and

dynamic. Static acceleration affects all objects on earth and is due to gravity. Dynamic acceleration

is the acceleration directly due to the movements of that object, and is thus the most crucial value as

it contains the information about the whales’ kinematic behaviours without any influence of gravity.

Any further mention of acceleration in this thesis will be referring to dynamic acceleration. The

CATs tags do not automatically collect dynamic acceleration data from the whales; however, I used

the CATs Visualizer (CV) to decompose total acceleration into static and dynamic components [16].

Following the methods described by Tennessen et al. [1], there are three variables, each mea-

sured as a function of time, that are important to identify a successful prey capture dive, and one

variable which is used as a proxy for energy expenditure [17]. These variables are defined below.

1. Jerk: Jerk is defined as the rate of change of dynamic acceleration. Jerk can be calculated by

taking the derivative along each axis of the dynamic acceleration vector. There is a measure-
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ment for jerk at each time point in the dataset.

2. Roll: Roll is defined as the rotation about the x-axis (longitudinal axis) of the whale, measured

in degrees, ranging from -180◦ to 180◦. We define right-side up as 0◦, so a value of 180◦ or

-180◦ indicates that the whale is upside down. Below is a picture with arrows indicating the

different rotations about the different axes.

Figure 2.4: A visualization of the three axes of rotation as well as the three directions of move-
ment for an animal freely moving in three dimensions.

3. Heading: Heading is defined as the forward direction or bearing of the whale, relative to the

magnetic North Pole. If the whale is travelling towards the North Pole, then the heading

would be 0◦. Heading ranges from -180◦ to 180◦. This can be calculated mathematically

using the magnetometer data as follows:

Heading =
180
π

arctan2(mx,my)

where arctan2 is defined as the 2-argument arctangent function, and mx and my are the mag-

netometer readings for the x and y axis respectively. This formula will produce an angle

determined by the x-axis and the point (mx,my).
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4. Vectorized Dynamic Body Acceleration (VeDBA): VeDBA is defined as the Euclidean norm

of the dynamic acceleration vector. VeDBA is a proxy for energy expenditure [17]. It can be

calculated for each time point and can be written mathematically as

VeDBA =
√

a2
x +a2

y +a2
z

where ax, ay, and az are the components of the dynamic acceleration vector.

2.4 Dive Level Characteristics
These datasets contain multiple, separate dives that need to be isolated since a dive is the unit of

interest. A dive is defined as the period when the whale descends below the surface, surpasses the

user-defined minimum depth requirement, and then returns to the surface. The surface could be

defined as 0 meters, but since a dive begins and ends when a whale intakes oxygen, the surface is

defined as any point between sea level and the length of the animal. Between these two points, the

whale could potentially be breathing, hence, it has returned to the surface. For these datasets, the

surface threshold was chosen to be 1 meter, even though killer whales can be upwards of 9 meters

in length [18]. Moreover, the minimum depth requirement for a dive was chosen to be 1.5 meters.

These criteria were established in collaboration with biologists who agreed that these values were

appropriate for these datasets.

I have excluded from the analysis any dive that contained missing data. Upon applying the

surface threshold and minimum depth criteria, we found that there were 300 dives during the tag

deployment for Whale #1, 246 dives for Whale #2, and 250 dives for Whale #3. Table 2.1 provides

summary statistics of several commonly reported variables regarding dives.

Whale #1 Whale #2 Whale #3

(300 dives) (246 dives) (250 dives)

Mean SD Mean SD Mean SD

Max Depth (m) 4.08 3.82 5.78 9.66 25.39 41.75

Dive Duration (s) 39.12 42.41 36.08 57.36 92.24 112.79

Max Jerk – Whole Dive (m/s3) 37.78 35.81 26.46 33.03 664.87 572.49

VeDBA – Whole Dive (m/s2) 0.72 0.16 1.51 0.63 1.04 0.85

Table 2.1: Several summary statistics of important variables for each whale. The VeDBA for
a single dive is calculated as the average VeDBA over the duration of the dive.
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From Table 2.1, we can see that Whale #3 tends to have much deeper dives, on average, with a

higher variation in the max depth than both Whale #1 and Whale #2. This is evident from Figures

2.1, 2.2, and 2.3 as Whale #3 has many deep dives exceeding the deepest dives from the other two

whales. Moreover, we can also look at the mean VeDBA between these whales, which is higher

in Whale #2. This could indicate that this whale was expending more energy than Whale #1 and

Whale #3 as VeDBA is a proxy for energy expenditure. Furthermore, Whale #3 has much richer

data than the other two whales. This tag was attached for over 12 hours and does not have any

missing data. Moreover, this whale had significantly deeper and longer dives. From 2.1 and 2.2,

the majority of missing data for these whales occurs during very deep dives. Because of this, the

statistics presented in this table could be biased.

The next step is to divide each dive into its corresponding phases: descent, bottom, and ascent.

The bottom phase is likely where the majority of foraging occurs, and indeed Tennessen et al. [1]

uses summary statistics during the bottom phase of a dive to determine foraging activity.

Tennessen et al. [1], following Arranz et al. [7], defines the beginning of the bottom phase of a

dive as the first time the whale achieves 70% of the maximum depth of that dive, and the end of the

bottom phase as the last time the whale reaches 70% of the maximum depth of that dive. Arranz

et al. [7] justify this definition by citing Hooker and Baird [19] where the authors set out rules

for the bottom phase to be 85% of maximum depth. Tennessen et al. [1] modifies this percentage

threshold for the bottom phase so that it fits better with their datasets. They chose this value by

visually confirming the bottom phase of a random sample of 25% of their dives. To be consistent

with Tennessen et al. [1], I decided on using the 70% of maximum depth threshold definition when

applying their methods to detect foraging activity. This concept of defining the proper bottom phase

is a central aspect to this thesis which will be discussed in more detail in Chapters 3 and 4, including

the potential benefits and downfalls to having a rigid definition for the bottom phase of a dive.

Once the bottom phase has been identified, the next steps taken in Tennessen et al. [1] were

to determine which kinematic variables were highly predictive of successful prey captures. The

primary kinematic variables of interest, as described in Tennessen et al. [1], are as follows.

1. Jerk Peak: Jerk Peak is defined as the maximum jerk during the bottom phase of a dive, scaled

by the median jerk of the bottom phase of that dive. This is measured in ms−3. To compute

jerk peak, the magnitude of the jerk is calculated at each time point, then the maximum jerk

during the bottom phase is found. Finally, the maximum jerk during the bottom phase is

divided by the median jerk during the bottom phase so that jerk peaks are comparable across

multiple dives. As such, there is a clear distinction between maximum jerk and jerk peak.

2. Bottom to Whole Ratio: Bottom to Whole Ratio (BTWR) is defined as the ratio of the duration
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of the bottom phase of a dive to the duration of the entire dive. This is a value between 0 and

1, exclusively.

3. Rate of Ascent: Rate of Ascent is defined as the average speed, in m/s, that the whale achieves

during its ascent phase.

4. Roll at Jerk Peak: Roll at Jerk Peak is defined as the absolute value of the instantaneous roll at

the same time of the jerk peak. This is measured in degrees (◦). Since we are using absolute

values, the roll at jerk peak is strictly positive.

5. Mean VeDBA: Mean VeDBA is defined as the average VeDBA during the bottom phase of

the dive.

6. Heading Variance: Heading Variance is defined as the circular variance of the sequence of

heading values during the bottom phase of the dive. Circular variance must be used when

calculating heading variance since this is a circular quantity. Circular variances can only take

on values between 0 and 1, where 0 indicates that all the data points are concentrated at one

point, whereas a value of 1 indicates that there is a large spread amongst all of the points. A

large heading variance for a whale indicates that the whale has made several changes in its

heading during the bottom phase of the dive. Such variance could imply that the whale is

chasing prey, which may be moving erratically to evade being captured.

2.5 Detection of Foraging Dives
To detect foraging dives, Tennessen et al. [1] built a generalized linear mixed effects model (GLMM)

with a binary response variable (successful prey capture or not), a logistic link function, and several

fixed and random effects. The authors labelled each dive in their dataset as either having a successful

prey capture or not. To determine which dives were successful prey capture dives, they identified

12 dives with a visually confirmed prey capture event. The fixed effects included in the model are

the kinematic variables described in the previous section, other kinematic variables that are of less

interest, as well as the sex of the whale. The year and the tag deployment were included in the

model as random effects.

Using this GLMM, the authors determined that only three of these variables are significant

predictors of successful prey capture events: Jerk Peak, Roll at Jerk Peak, and Heading Variance.

They then derived a “prey detector” from this model. Given a single dive, if all of these three

predictors met or exceeded a minimum threshold value, then this model would classify the dive as

a successful prey capture dive. The three criteria which a dive must satisfy in order to be classified

as a successful prey capture dive are:
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1. Jerk Peak ≥ 14.38 ms−3,

2. Roll at Jerk Peak ≥ 22.93◦,

3. Heading Variance ≥ 0.40.

The authors also verified the model by using it to predict prey capture success for all dives in

their dataset, then confirming the results with acoustic data. Acoustic data continuously collected

sounds in the immediate vicinity of the whales during the entire deployment. In doing so, they were

able to identify the true positive and false positive rates for their model which were 78.7% and 0.2%

respectively.

The models used in Tennessen et al. [1] provide a basis for detecting prey capture dives based

on those three kinematic variables. It would be useful to generate and build our own prey capture

detection model for our data, however, we do not have any confirmed prey capture events for Whale

#1 or #2, and we only have 7 confirmed prey capture events for Whale #3. Building a logistic

regression model from this data will not provide meaningful results since there are too few successes

and too many failures in our datasets. As such, we rely on Tennessen et al. [1]’s rules to detect

successful prey captures.

Upon applying these three criteria to our datasets, their model predicts 2 successful prey capture

dives from Whale #1, 0 from Whale #2, and 21 from Whale #3. From Whale #1, I labelled these

dives as dive 64 and dive 142 due to their relative location in the tag deployment. These dives are

both shallow, reaching approximately 6 meters in depth (Figs 2.5 and 2.6). Occasionally, killer

whales are known to chase their prey towards the surface of the water, then consume the prey during

the next, shallow dive [5]. As such, it is possible that both of these dives from Whale #1 were in fact

successful prey captures, however, without visual or acoustic confirmation, it is difficult to confirm.

Since these dives were shallow and prey captures tend to occur during deeper dives, [3], these dives

could also be false positives, or the whales could be exhibiting some other associated behaviour.

Furthermore, the dives immediately preceding both dive 64 and dive 142 do not exhibit signs of

potential foraging activity based on the dive metrics used.

Since Whale #3 had many deep, long dives, we expected there to be more predicted prey cap-

tures from this model, and indeed there are 21. Of these 21 dives, 6 of them are in fact successful

prey capture dives. From Whale #3, we have 250 dives in total, of which, 7 are confirmed prey

capture dives, 179 are confirmed non-prey capture dives, and 64 are not known since there was no

acoustic data for validation during these dives. We can tabulate the total dives classified by the

prediction algorithm against the true state of these dives (Table 2.2).

From this table, we can see that this model correctly predicted 6 out of the 7 successful prey

capture dives, but failed to identify 1 successful prey capture. This model predicted 15 additional
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Figure 2.5: Dive 64 from Whale #1 which occurred from approximately 13:51:43 PM until
13:52:29 PM (about 46 seconds in duration).

Figure 2.6: Dive 142 from Whale #1 which occurred from approximately 15:01:59 PM until
15:02:31 PM (about 32 seconds in duration).
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Truth
Prey Capture Non-Prey Capture Unknown Total

Prediction
Prey Capture 6 15 0 21
Non-Prey Capture 1 164 64 229

Total 7 179 64 250

Table 2.2: Model predictions versus actual prey capture status for dives from Whale #3

dives as successful prey captures when they were not. There are also 64 dives which do not have

a true label attached to them. However, this model failed to predict any of them as prey captures.

As such, we can claim that the false positive rate, among the dives for which we have a correct

classification of prey capture status, is about 8.38 % (15 / 179) since we incorrectly identified 15

dives as prey capture dives when they in fact were not.

Figure 2.7 shows the time-depth plots for all the predicted prey capture dives from Whale #3

using the 70% depth threshold. All the dives have been scaled on the x-axis to be between 0 and 1 for

demonstration purposes. Dives 47, 54, 62, 124, 125, and 136 are actual successful prey captures and

they are highlighted in red. A clear commonality between these dives is that they are all relatively

deep, except for Dive 126 which is not a successful prey capture dive.

2.6 Modifying the Bottom Phase Definition
A critical aspect to the methods used in Tennessen et al. [1] is the bottom phase definition. They

define the bottom phase using a 70% of max depth threshold. As mentioned earlier, this threshold

value was derived based on past studies and visual assessments, which could be considered ad hoc.

In this section, we will repeat the previous analysis for detecting successful prey capture dives as

we did in Section 2.5 but now we consider different threshold values for the definition of the bottom

phase of a dive. The thresholds are 50%, 60%, 70%, 80% and 90% of maximum depth.

Moreover, we use other bottom phase definitions which do not depend on depth. For example,

we use vertical velocity, as calculated from the time-depth data, as a threshold for the start and end

of the bottom phase. Viviant et al. [8] and Viviant et al. [9] define the start of the bottom phase for

Antarctic fur seals (Arctocephalus gazella) as the first time the seal surpasses 0.4 m/s, and the end of

the bottom phase as the last time the animal reaches 0.4 m/s. Le Bras et al. [20] also uses a similar

approach except they use the value 0.75 m/s. We denote this as the vertical velocity threshold.

However, for some dives, these velocities are never achieved, and thus, those dives would not have

a bottom phase. To address this issue, we use a similar technique as we did for the max depth

thresholds by using the percentage of minimum (or maximum) velocity in a dive as the threshold.

For example, suppose the velocity threshold is 50%. The whale begins the bottom phase when it
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Figure 2.7: Predicted prey capture dives for Whale #3 using the 70% depth threshold and ap-
plying the methods in Tennessen et al. [1]. Confirmed prey capture dives are highlighted
in red.
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reaches 50% of its minimum velocity for the first time, and it finishes the bottom phase when it

reaches 50% of its maximum velocity for the last time.

There is a necessary distinction between minimum and maximum velocity because during the

descent of a dive, the vertical velocity is negative, and during the ascent of a dive, the vertical

velocity is positive. Moreover, the magnitude of the minimum and maximum velocities will not

necessarily be equal. Biologically, whales usually do not ascend and descend at the same velocities

[21]. For example, the minimum velocity could be -1 m/s whereas the maximum velocity could

be 3 m/s. If the bottom phase begins and ends at 50% of the maximum velocity, then there would

not be a well-defined start of the bottom phase for this dive since the whale never achieves -1.5 m/s

during the descent. Hence, we could run into the same issue as before of either not having a start

or end of the bottom phase since the whale never actually reaches the percentage threshold of the

velocity.

To decide on threshold values for velocity, we considered several plots of time-depth data for

individual dives. On these plots, we looked at how the bottom phase definitions change for differ-

ent values of these thresholds. As the threshold values increase, the bottom phase becomes wider

and wider. When the threshold values for velocity are small, the bottom phase is narrower. This

threshold value for velocity is in contrast to the max depth thresholds, which result in a smaller, nar-

rower bottom phases as the threshold value increases. As such, we decided on five thresholds which

would be reasonable for this data: 10%, 20%, 30%, 40%, and 50%. Since this is for demonstration

purposes, the exact values are not critical, rather, it is important to be using a wide range of values.

Figures 2.8, 2.9, and 2.10 show the distribution of the dive metrics for the whales using the

varying bottom phase definitions that depend on the maximum depth thresholds. Notice that these

dive metrics have been log-transformed since they are heavily skewed.
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Figure 2.8: Boxplots of the distributions of log jerk peaks for various bottom phase definition
thresholds involving maximum depth. Horizontal line indicates one of the criteria a dive
needs to meet to be classified as a successful prey capture, based on Tennessen et al. [1].
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Figure 2.9: Boxplots of the distributions of rolls at jerk peak for various bottom phase defini-
tion thresholds involving maximum depth. Horizontal line indicates one of the criteria a
dive needs to meet to be classified as a successful prey capture, based on Tennessen et al.
[1].
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Figure 2.10: Boxplots of the distributions of heading variance for various bottom phase defini-
tion thresholds involving maximum depth. Horizontal line indicates one of the criteria
a dive needs to meet to be classified as a successful prey capture, based on Tennessen
et al. [1].

We see that the distributions of these variables tend to change, albeit minimally, for different

definitions of bottom phase based on maximum depth. A fair number of dives surpass the successful

prey capture criterion for jerk peak, as indicated by all the points lying above the horizontal line.

As we increase the percentage of maximum depth threshold, we notice that the distribution begins

to shift towards zero as the bottom phase is getting smaller and smaller, thus excluding more dives

from satisfying this criteria. In contrast, we note that as the maximum depth threshold increases, the

distributions for the log of the heading variance shift away from zero, becoming more negative (Fig

2.10). However, since the heading variance is on the log scale, it indicates that the untransformed

heading variance is actually trending towards 0. Intuitively, we know that as the maximum depth

threshold increases, the bottom phase becomes narrower and narrower. The heading variance is

only calculated during the bottom phase of a dive. Since we only use a very narrow interval of data

points to compute the heading variance, we may find an overall smaller value for heading variance

unless there are sudden and rapid changes in this interval.

Similarly for the velocity thresholds, boxplots of the distributions of the dive metrics are given

in Figures 2.11, 2.12, and 2.13.
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Figure 2.11: Boxplots of the distributions of log jerk peaks for various bottom phase definition
thresholds involving velocity. Horizontal line indicates the criterion used in Tennessen
et al. [1].

Figure 2.12: Boxplots of the distributions of rolls at jerk peak for various bottom phase def-
inition thresholds involving velocity. Horizontal line indicates the criterion used in
Tennessen et al. [1].
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Figure 2.13: Boxplots of the distributions of heading variance for various bottom phase def-
inition thresholds involving velocity. Horizontal line indicates the criterona used in
Tennessen et al. [1].

These plots provide a similar interpretation as the max depth threshold plots. As the speed

threshold increases, we generally see a widening of the bottom phase since the vertical speed of the

whale close to the bottom of the dive tends towards zero resulting in a low percentage threshold. On

the other hand, as the percentage threshold increases, the bottom phase tends to get wider.

Next, for each of these bottom phase definitions, I applied the rules from Tennessen et al. [1] to

detect successful prey capture dives.
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Table 2.3: Dive numbers for the predicted successful prey capture dives as per the rules de-
termined by Tennessen et al. [1] for Whale #1, #2, and #3 for multiple different bottom
phase definitions. Dives in red are confirmed prey capture dives, and dives in blue are not
confirmed to be either prey capture or non-prey capture dives.

Whale #1 Whale #2 Whale #3

Depth Threshold

50% None 126, 210 14 44 46 47 53 54 62 63 77 88 117 119 121

122 124 125 126 129 136 148 169 171 172

180 184 185 186 187 194

60% 142 126, 210 14 16 44 46 47 54 62 63 77 88 117 119 121

122 124 125 126 129 136 148 169 171 172

180 184 186 187 188

70% 64, 142 None 14 16 44 46 47 54 62 63 77 119 121 122 124

125 126 129 136 148 169 180 184

80% 142 None 14 16 44 46 47 54 62 63 77 119 121 122 124

125 126 129 136 148 169 171 184

90% None None 14 16 46 47 54 62 77 119 121 122 124 125

126 129 136 148

Speed Threshold

10% None None 14 44 46 47 54 62 77 119 121 122 124 125

126 129 136 148 169 172 184 185 186

20% None None 14 43 44 46 47 54 62 77 95 106 113 119 121

122 124 125 126 129 136 148 169 172 184

185 187

30% None 126 14 44 46 47 54 62 63 77 88 95 106 113 119

121 122 124 125 126 129 136 148 169 172

184 185 186 187 188 194

40% None 126 14 44 47 54 62 63 77 88 106 113 119 121

122 124 125 126 129 136 148 169 172 184

185 186 187 194

50% None 126 14 44 47 54 62 63 77 88 106 113 119 121

122 124 125 126 129 136 148 169 171 172

184 185 186 187
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The identification of predicted successful prey capture dives is not consistent across all bottom

phase definitions (Table 2.3). We can see that successful prey captures predicted by the methods

described in Tennessen et al. [1] vary widely depending on which definition of bottom phase is used,

especially when varying the depth thresholds. However, using the velocity threshold results in more

consistent predicted successful prey capture dives, although the results conflict with the predictions

using the depth thresholds.

Without visual or acoustic confirmation for Whale #1 and #2, we do not know which of these

dives are actually successful prey captures. For Whale #3, however, the rules were able to detect

6 of the 7 successful prey capture dives (47, 54, 62, 124, 125, and 136) for every bottom phase

definition, as shown in red. On the other hand, the number of additional predicted prey capture

dives does vary as the definitions of bottom phase change. Notice that the dives shown in blue are

not confirmed to be either prey capture or non-prey capture dives, as there was no acoustic data for

validation, as explained earlier.

The one prey capture dive that this model was not able to detect was dive 67. Since this dive is

consistently misidentified as a non-prey capture dive, I looked at the values for the three important

dive metrics – jerk peak, roll at jerk peak, and heading variance – for each bottom phase definition

(Table 2.4). This dive is different from the other prey captures since the jerk peak and roll at jerk

peak are quite low for all definitions. Furthermore, the heading variance is also low, although it is

near the required threshold for several of the bottom phase definitions. The time-depth plot of this

dive (Figure 2.14) is indicative of a prey capture dive, however, this dive did not exhibit extreme

kinematic variables resulting in the failure to detect it based on these methods.
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Table 2.4: Dive metrics from dive 67 from Whale #3.

Jerk Peak Roll at Jerk Peak Heading Variance

Depth Threshold

50% 9.41 5.48 0.31

60% 9.41 5.48 0.29

70% 9.41 5.48 0.30

80% 9.41 5.48 0.29

90% 9.16 15.13 0.21

Speed Threshold

10% 9.17 15.13 0.14

20% 9.17 15.13 0.14

30% 9.17 15.13 0.19

40% 9.41 5.48 0.36

50% 9.41 5.48 0.36

Figure 2.14: Time-Depth plot of dive 67 from Whale #3
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Of the three kinematic variables used to predict successful prey capture dives, jerk peak tends to

be the least volatile measurement as the bottom definition changes. Since jerk peak is computed by

finding the maximum jerk during the bottom phase, then dividing by the median jerk of the bottom

phase, as long as the new definition of bottom phase does not exclude this maximum jerk value, the

jerk peak will remain relatively stable since the median jerk is robust to these changes. Similarly,

roll at jerk peak tends to remain relatively constant for each dive. The heading variance seems to be

the variable which changes abruptly as the bottom phase changes because it is computed by finding

the circular variance using the data points during the bottom phase. If the bottom phase includes

more or less points, then this value may change accordingly.

The values for jerk peak, roll at jerk peak, and heading variance for each of the aforementioned

potential prey capture dives, for Whale #1 and #2, stratified by the bottom phase definition for max

depth thresholds are shown below (Table 2.5). The same variables for the single dive which was

predicted to be a successful prey capture using the speed thresholds is also shown (Table 2.6).

From these tables, it is apparent that dive 126 from Whale #2 could potentially be a successful prey

capture dive since it constantly appears to satisfy the three dive metric criteria for several definitions

of bottom phase. Notice however that it does not appear as a successful prey capture dive when

using the 70% of max depth threshold which is why it was not detected previously. The time-depth

plot of dive 126 is given in Figure 2.15 with a plot of the jerk as well. This dive is much more

indicative of a successful prey capture dive than the previously identified dives since it is almost 20

meters deep and is approximately 2 minutes in duration. We can also see the reason why this dive

was not predicted to be a successful prey capture dive at the 70% depth threshold, but it was for

the 60% depth threshold. Since the 70% threshold barely excluded that large jump in jerk, the jerk

peak metric was not large enough to predict the dive as a prey capture. However, upon widening the

bottom phase using the 60% threshold, we include this sharp measure in jerk, allowing the model

to detect this dive as a successful prey capture dive. This example only further demonstrates the

importance of a well-defined bottom phase as well as well-defined metrics used for detecting prey

capture dives.
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(W1) Dive 64 (W1) Dive 142 (W2) Dive 126 (W2) Dive 210

JP RaJP HV JP RaJP HV JP RaJP HV JP RaJP HV

Depth Thresholds

50 9.28 148.97 0.30 44.01 170.22 0.32 22.98 29.75 0.56 20.41 39.18 0.52

60 14.13 148.97 0.59 40.88 170.22 0.40 23.05 29.75 0.57 19.38 39.18 0.431

70 14.44 148.97 0.47 29.55 170.22 0.55 8.02 7.59 0.57 17.26 42.39 0.25

80 13.43 148.97 0.37 17.03 170.22 0.72 8.02 7.59 0.58 3.68 1.54 0.17

90 14.69 148.97 0.17 13.58 170.22 0.73 6.45 14.17 0.75 4.11 1.54 0.01

Table 2.5: Values for the dive metrics used to identify successful prey captures using the criteria established by Tennessen
et al. [1] stratified by different bottom phase definitions according to maximum depth thresholds. Rows highlighted in blue
indicate predicted successful prey capture dives.

(W2) Dive 126

JP RaJP HV

Speed Thresholds

10 8.22 7.59 0.62

20 8.13 7.59 0.59

30 23.96 29.75 0.46

40 23.84 29.75 0.45

50 23.45 29.75 0.44

Table 2.6: Values for the dive metrics used to identify successful prey captures using the criteria established by Tennessen
et al. [1] stratified by different bottom phase definitions according to vertical velocity thresholds. Rows highlighted in blue
indicate predicted successful prey capture dives.
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Figure 2.15: Dive 126 from Whale #2. Plots of depth and jerk with two definitions of bottom
phase labeled via vertical lines. The red line indicates a 60% depth threshold whereas
the blue line indicates a 70% depth threshold. The 70% threshold excluded the sharp
jerk measure as seen between the two vertical lines on the right-hand side. This is the
reason why the dive was not predicted as a successful prey capture using this threshold,
but it was predicted using the other threshold which contained this sharp jerk measure-
ment.
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2.7 Conclusions
Through this exploratory analysis of the datasets, I uncovered several inherent limitations of using

a static threshold for bottom phase definitions and that these definitions can affect the results of

prey capture detection algorithms. In particular, by applying the thresholds in Tennessen et al. [1]

to our dataset while varying the definition of the bottom phase of a dive, we saw that the predicted

successful prey capture dives were dependent on which definition was used. There appears to be

no consensus on the definition of a bottom phase in the animal movement literature (see definitions

used in [7], [8], [9], [22], and [23], as well as the methods used in the R Package diveMove [24]).

Thus, there is a need to develop a more quantitative and flexible definition of the bottom phase of

a dive. I devote the remainder of the thesis to the bottom phase definition and present potential

remedies using formal statistical models.
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Chapter 3

Getting to the Bottom of It: An
Experimental Study

No man can hope to find out the truth without investigation — George F. Richards

3.1 Background & Motivation
The definition of the bottom phase of a dive is dependent not only on the type of animal being

studied but also on the authors’ preferences for their specific datasets. For example, Tennessen et al.

[1] define the bottom phase of a dive as the part between the first and last occurrences of the whale

reaching 70% of the maximum depth for that dive. In the seminal methodological review, Hooker

and Baird [19] use an 85% threshold rather than 70%. The authors also state that this percentage is

subject to change depending on the dives that are being studied as well as the authors’ preferences,

but do not provide explicit guidance on how to modify this percentage. Halsey et al. [25] provides a

thorough method for understanding and classifying diving behaviour of seabirds with methods that

can be applied to dives in general, also indicating that bottom phases of dives can be quite complex

and require detailed descriptions depending on several factors. Many authors visually assess a

subset of their dives to determine a reasonable bottom phase definition. These definitions of bottom

phase are variable across not only different researchers, but also across dives. In this chapter, I use

an experimental approach to formally investigate these variations.
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3.2 Experimental Design
To quantify the sources of variability in the classification of dive phases, I designed a study in which

multiple researchers classify the bottom phase of several different dives. I recruited 18 volunteer

marine mammal researchers via word-of-mouth (Ethics Approval Permit ID: H20-02096). We used

diving data from Whale #1 and #2 for this experiment since we did not have data from Whale #3 at

the time. The researchers were asked several preliminary questions such as how much experience

they have working with diving data. Researchers in this study were experts in this research area,

with 12 participants having over 10 years of experience. Each researcher was presented with a

sequence of 75 dives. These dives were shown one at a time and in a random order. For each dive,

the researcher was asked to identify the bottom phase. Once the researcher was confident with their

decision, they submitted their response and proceeded to the next dive, repeating the same procedure

until all 75 dives were classified. Once the researcher completed the study, they were asked how

confident they were in their responses.

Of the 75 dives that each researcher saw, 25 dives were only classified by that researcher, and

another 25 dives were classified by all researchers, twice. We refer to the former as the unique dives

and the latter as the common dives. The 25 common dives allow us to assess two contributions

of variability. By comparing how researchers classified the 25 common dives, we quantify the

variability across researchers. By comparing how the same researcher classifies the same dive twice,

we can quantify the consistency of researchers. The 25 unique dives allow us to quantify how

the dive phase definitions vary dive-to-dive. We will use these data to make inferences about the

variability across researchers, within researcher, and across dives.

To conduct this study, I created a web application that makes it easier for someone to classify the

bottom phase of a dive, with the resulting data being stored remotely. Using the shiny package in

R, I built the app which plots an individual dive along with 2 vertical lines that determine the bottom

phase. The user is able to move these verticals lines, then submit their information once they are

satisfied with their choice (Figure 3.1).

3.3 Notation & Definitions
In the model to determine the variability of bottom phase definitions, the response variable of inter-

est, denoted Y , is the proportion of time into a dive when the bottom phase begins. The analysis is

the same for when Y is the proportion of time into a dive when the bottom phase ends. Note that Y

is untransformed even though it is a proportion since the following analysis is quite similar with and

without a transformation, but the untransformed model is easy to interpret. There are r researchers

in total indexed by i = 1, · · · ,r.
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Figure 3.1: Example of a dive that a researcher would be presented with on the Shiny App.
The user is free to move the vertical lines to determine where they believe the bottom
phase of a dive to be.
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The general forms of this model for the common and unique dives are defined separately. For

the common dives, the model is

YC
i`k = µ +Ri +DC

` +
(
RDC)

i`+ ε
C
i`k (3.1)

and for the unique dives, the model is

YU
i j = µ +Ri +DU

i j +
(
RDU)

i j + ε
U
i j (3.2)

where YC
i`k is the ith researcher’s kth response for the `th common dive, where i = 1, · · · ,r, ` =

1, · · · ,dC, k = 1, · · · ,Ki`, and the total number of common dives that each researcher sees is denoted

dC. For our study where all common dives are observed twice, Ki` = 2. Moreover, YU
i j is the response

from the ith researcher’s jth unique dive for j = 1, · · · ,mi, so that researcher i observes mi unique

dives. I acknowledge that the index j depends on i, however, we omit the dependency in the notation

for simplicity. Finally, µ is the mean proportion of time into the dive for the start (or end) of the

bottom phase.

I define these two models separately to emphasize the different indices which represent the

complex structure of this dataset, specifically the occurrence of repeated common dives. In essence,

these two models are equivalent, and their marginal distributions are technically the same.

The random effects from these models are defined as follows:

• Ri is the random effect for researcher i, i = 1, ...,r. We assume that

Ri ∼ N(0,σ2
R).

• DC
` is the random effect for the `th common dive, `= 1, ...,dC. We assume that

DC
` ∼ N(0,σ2

D).

• DU
i j is the random effect for the ith researcher’s jth unique dive, i = 1, ...,r and j = 1, ...,mi.

We assume that

DU
i j ∼ N(0,σ2

D),

noting that the σ2
D here is the same as the one presented above since all dives are assumed to

come from the same distribution, regardless of if they are unique or common to all researchers.

•
(
RDC

)
i` is the random effect for the interactions between researcher and common dive for
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i = 1, ...,r, `= 1, ...dC. We assume that

(
RDC)

i` ∼ N(0,σ2
RD).

•
(
RDU

)
i j is the random effect for the interactions between researcher and unique dive for

i = 1, ...,r, j = 1, ...,mi. We assume that

(
RDU)

i j ∼ N(0,σ2
RD).

Again, σ2
RD is the same as above for similar reasons as already stated.

• εC
i`k is the random error of the response variable associated with the common dives respec-

tively, for i = 1, ...,r, k = 1, ...,Ki`, `= 1, ...,dC, and k = 1, ...,Ki`. We also assume that

ε
C
i`k ∼ N(0,σ2

E).

• εU
i j is the random error of the response variable associated with the unique dives for i= 1, ...,r,

j = 1, ...,mi. We also assume that

ε
U
i j ∼ N(0,σ2

E).

Again, σ2
E is the same as above for similar reasons as already stated.

We also assume all of the above random effects and random errors are independent of one another.

The ith researcher’s response vector for the common dives is

YC
i =

(
YC

i11, · · · ,YC
i1Ki1

,YC
i21, · · · ,YC

i2Ki2
, · · · ,YC

idC1, · · · ,YC
idCKidC

)T
∈ RK′i

where K′i = ∑
dC
p=1 Kip. The vector of responses for the unique dives is defined as

YU
i =

(
YU

i1 ,Y
U
i2 , · · · ,YU

imi

)T

Thus, we can write the models in Equations 3.1 and 3.2 in matrix notation as

YC
i = µ1K′i +Ri1K′i + IiDC + Ii

(
RDC)

i + εεε
C
i

and

YU
i = µ1mi +Ri1mi +DU

i +
(
RDU)

i + εεε
U
i

33



where 1k denotes a vector of ones of length k, and

Ii =


1Ki1 0 0 . . . 0

0 1Ki2 0 . . . 0
...

...
...

0 0 0 . . . 1KidC


is a K′i by dC matrix of ones and zeros. Finally, we stack both the common and unique responses

into the complete response vector for the ith researcher as

Yi =

(
YC

i

YU
i

)

and thus, we define

Y =
(
YT

1 ,Y
T
2 , · · · ,YT

r
)T

which leads to the complete model in matrix form as

Y = µ1+ZR+WD+XT+ εεε (3.3)

where Z, W, and X are the design matrices of zeroes and ones for the random effects for the re-

searcher, R, for the dive, D, and for the interaction between researcher and dive, T, respectively. The

exact structure and form of these vectors and matrices are given in Appendix A.1 for completeness.

I fit the model in Equation 3.3 using the data collected from the experiment. The only fixed

effect in this model is the mean, µ , while the remaining parameters of interest are the variance

components of the random effects and the errors. Since this is a linear mixed-effects model with

only random intercepts, the computation of these estimates is straightforward and can be done using

the lme4 package in R [26]. The confidence intervals for the estimated variance parameters were

computed using likelihood profiles via the confint function in R.

3.4 Results
The estimated variance components of the random effects indicate clear variation across researchers,

across dives, and within researchers as well (Table 3.1). An easier way to compare the relative

magnitudes of these variance estimates is to consider the proportion of variance explained by each

random intercept, also called the intraclass correlation coefficient (ICC) or the variance partition

coefficient [27]. The ICC for the ith variance component is defined as:
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ρi =
σ2

i

σ2
total

where σ2
total is the total variance, here σ2

total = σ2
D+σ2

R +σ2
RD+σ2

E . The ICC will range between

0 and 1 since it is the ratio of an individual variance component to the total variance [28, p. 448].

The ICC values indicate that the dive-to-dive variability of the start of the bottom phase is much

larger than the dive-to-dive variability of the end of the bottom phase (σ̂D in Table 3.2). We can also

see a substantial researcher-to-researcher variability as estimated by σ̂R for both the start and end

of the bottom phase. Finally, σ̂E , which quantifies the variation in the response when a researcher

classifies the same dive twice, is the smallest estimate for both models.

Table 3.1: Summary of output of the mixed-effects model presented in Equation 3.3 for both
the proportion of time into the dive at the start and end of the bottom phase. Notice that
estimates are for the standard deviations rather than the variances. These two analyses are
computed separately.

Proportion of Time into Dive at

Start of the Bottom Phase End of the Bottom Phase

Estimate 95% CI Estimate 95% CI

µ̂ 0.339 [0.312, 0.367] 0.696 [0.668, 0.724]

σ̂D 0.089 [0.081, 0.099] 0.058 [0.048, 0.068]
σ̂R 0.054 [0.039, 0.077] 0.056 [0.040, 0.079]
σ̂RD 0.050 [0.046, 0.055] 0.061 [0.056, 0.066]
σ̂E 0.039 [0.036, 0.042] 0.038 [0.036, 0.041]

Figures 3.2 and 3.3 show the responses (proportion of time into the dive) from each researcher

for the start and end of the bottom phase, respectively, for the dives that they saw twice. Each plot

shows how consistent the researcher was; the closer the points are to the line, the more consistent

the researcher.

3.5 Discussion
My analysis indicates that specifications of the bottom phase for dives tends to vary more for the start

than for the end, as indicated by the estimated standard deviation for the random effect for dive. A
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Table 3.2: Intraclass Correlation Coefficients (ICCs) for each of the estimated variances of the
random intercepts in the two models.

Model for Proportion of Time Into Dive for

Start of the Bottom Phase End of the Bottom Phase
ICC ICC

σ̂2
D 53% 29%

σ̂2
R 20% 27%

σ̂2
RD 17% 32%

σ̂2
E 10% 12%

Figure 3.2: Plots of the responses for the start of the bottom phase for dives that were viewed
twice by the researchers. On the x-axis is the response for the first time a researcher
viewed the dive. The y-axis is the response for the second time the researcher viewed the
dive. Each plot is for a different researcher, and the line y = x is included.
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Figure 3.3: Plots of the responses for the end of the bottom phase for dives that were viewed
twice by the researchers. On the x-axis is the response for the first time a researcher
viewed the dive. The y-axis is the response for the second time a researcher viewed the
dive. Each plot is for a different researcher, and the line y = x is included.

possible reason for this is that as the whales descend, they may slowly transition to the bottom phase

of the dive, making the distinction between descent and bottom phase difficult to identify. Moreover,

in speculating the possible reasons for this difference in variation, the distinct, sharper change in the

whale’s depth, resulting in a “corner” or “kink” between the bottom phase and the ascent phase,

could potentially be due to the whale needing to return to the surface to breathe. Hence, it may be

easier to distinguish the end of the bottom phase. On the other hand, these differences in variation

could actually be due to the bathymetry, or bottom depth, of the ocean floor, forcing the whale along

a particular vertical path. Without bathymetry data, it is difficult to determine whether this is true or

not. There could also be other biological reasons why the start of the bottom phase is more variable

than the end, specifically due to buoyancy. For example, North American right whales (Eubalaena
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glacialis) have been shown to be positively buoyant during their descent, meaning they must fight

against the buoyancy whereas they are negatively buoyant during their ascent [29]. Killer whales

(Orcinus orca) are known to be buoyant and they accumulate fat to increase their buoyancy [30].

The buoyant force could result in a more distinct end of the bottom phase compared to the start,

resulting in lower variation for the end. Both of these reasons are plausible, and moreover, are both

potentially contributing to this variation.

This analysis has also revealed that a large researcher-to-researcher variability exists, and it ac-

counts for approximately 20% and 27% of the variability of the identified starts and ends of the

bottom phase respectively. A clear implication of this result is that a one-size-fits-all approach may

not be appropriate for bottom phase definitions since there exists clear variability across researchers,

indicating that researchers may have personal preferences in defining dive phase definitions, espe-

cially depending on the species that they are studying. Moreover, the majority of the researchers

said that they were confident in their classifications, and yet substantial researcher-to-researcher

variation exists.

Furthermore, the low values for σ̂E imply that researchers tend to be consistent in their labeling

of the start and end of the bottom phase when presented with the same dive multiple times. As such,

there may be some “true” bottom phase for any given researcher. However, researchers varied in

how consistent they were when presented with the same dives twice, with some researchers being

far more variable than others (Figures 3.2 and 3.3). For example, for the start of the bottom phase,

we can see that researchers 3 and 18 were somewhat inconsistent with their labelling, whereas

researchers 6 and 13 were highly consistent. Using the additional information provided by the

researchers, we found that both researchers 3 and 18 had less experience working with diving data

than researchers 6 and 13, which may be a reason why their bottom phase definitions were less

consistent.

All of this evidence suggests that a formal, reproducible method of modelling the bottom phase

should be considered. These models, which can be used to predict the bottom phase of dives,

should incorporate the researcher’s own data allowing for more personalized predictions. This will

be considered in the next chapter. Furthermore, the shiny app that I developed for this experiment

is available for researchers to use to make the labelling of bottom phases easier and readily usable

[31]. Future studies may wish to further quantify the researcher-to-researcher variability or the

consistency within researchers on a larger scale since this study was preliminary and included only

18 participants.
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Chapter 4

Statistical Models for the Bottom Phase

To every problem, there is a most simple solution. — Agatha Christie, The Clocks
(1963)

4.1 Background
As was shown in Chapter 2, the definition of the dive phases is important when attempting to predict

prey capture dives. Changing this definition can result in different predicted prey capture dives. The

current definitions usually involve a percentage threshold of maximum depth or speed, and these

definitions are not necessarily informed by the data [1, 7–9]. Moreover, Chapter 3 showed that

researchers tend to classify the bottom phase of dives differently from one another. To address some

of these issues, I developed several statistical models for the bottom phase of a dive, with the goal

being to predict the bottom phase of dives in a systematic and reproducible way, from researchers’

phase specifications.

In this chapter, I consider three models: percentage of maximum depth, linear regression, and

functional regression. Tennessen et al. [1] define the start and end of the bottom phase of a dive as

the first and last time the whale achieves 70% of its maximum depth for that dive, respectively. This

percentage is referred to as the percentage threshold. The authors chose this percentage threshold

and then validated it visually using a random subset of their dives. A simple improvement to this

definition is to use a training dataset to estimate the percentage threshold to define the bottom phase.

Furthermore, the percentage threshold need not be the same for the start and end of the bottom phase.

Since there exists plenty of data from each dive, and the bottom phase may depend on these

additional covariates, I also consider a linear regression model. These linear regression models are

simple to understand and use and, they can provide improvements in modeling the bottom phase

over the 70% threshold model or the estimated percentage threshold model.
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Functional linear regression extends the linear regression model by including a function or curve

as a covariate in the model [32, p. 157]. Each functional covariate, which in this case is a depth,

speed, or acceleration curve, is scaled to [0,1] on the time axis. However, because the functional

curve is measured at many discrete time points, including all of this data in the model as a vector

of covariates would result in an overparametrized model. Furthermore, each curve has a different

number of measurements which would make it difficult to include as a vector of covariates since the

lengths differ. Finally, there is an inherent time ordering within this type of data which would be

lost if the data was included as a covariate vector. Functional regression properly accounts for these

issues by representing this discretely measured data as a single smooth function [33, 34].

For each model, I will specify the mathematical form and present the fitted results. I will also

perform model diagnostics. I will apply the methods from Chapter 2 to predict prey capture dives

for each model’s fitted bottom phase classification. I will construct confusion matrices of these

results to compare the predicted versus actual prey capture dives. Moreover, I will also perform

k-fold cross validation of these models to see how they improve upon the current 70% max depth

definition.

4.2 Methods
To fit statistical models for the bottom phase, Dr. Sarah Fortune, a marine mammal whale researcher,

independently identified the bottom phases of all 250 non-randomized dives from Whale #3. I

selected this whale for this chapter, because unlike for Whale #1 and Whale #2, the data of Whale

#3 have no sequences that are missing, have several deep dives, and have confirmed prey captures.

Thus, the data of Whale #3 could be used to assess the effect of my proposed dive phase models on

prey capture predictions.

4.2.1 Percentage Threshold

Let Y S
i and Y E

i be the percentage of time into a dive, entered by a researcher, for the start and end

of the bottom phase respectively for the ith dive, where i = 1, ...,N. Let XS
i (θ) and XE

i (θ) be the

percentage of time into the ith dive when the whale reaches (100×θ)% of its maximum depth for the

first and last time, respectively for θ ∈ (0,1). To avoid any extraneous distributional assumptions,

we assume that

E(Y S
i |Di) = XS

i (θ) (4.1)

where Di is the time-depth trajectory of the ith dive. Similarly, we assume that

E(Y E
i |Di) = XE

i (θ) (4.2)
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for the end of the bottom phase. We estimate θ by minimizing the sum of squared errors

N

∑
i=1

(
Y S

i −XS
i (θ)

)2
(4.3)

for the start of the bottom phase. In a similar manner, for the end of the bottom phase, we estimate

θ by minimizing
N

∑
i=1

(
Y E

i −XE
i (θ)

)2
. (4.4)

These equations are appealing in that you obtain different percentage threshold values for the start

and end of the bottom phase which are easily interpretable; however, these models are simplistic in

that their definition of the bottom phase only focuses on the maximum depth of the dive. From now

on, I refer to these models as Mθ .

The estimation of θ for the start and end of the bottom phase involves minimizing the nonlinear

functions in Equations 4.3 and 4.4. Using a set of appropriate starting values, I use the optimize

function in R [35] to minimize the function and yield values for θ̂ . Confidence intervals are com-

puted using standard bootstrap techniques with B = 500 samples and a confidence level of 95% [36,

p. 13].

4.2.2 Linear Regression

Let Yi be the researcher’s response for the ith dive, where Yi is the percentage of time into the dive

when the bottom phase begins (or ends). Let xi = (xi1,xi2, ...,xip)
T be a p× 1 vector of covariates

for the ith dive, i = 1, ...,n. We can write a basic linear regression model as

Yi = xT
i βββ + εi (4.5)

where βββ = (β1,β2, ...,βp)
T is a vector of unknown coefficients and εi ∼ N(0,σ2) are i.i.d. random

errors.

Since the two most common measures available from diving data are maximum depth and total

duration (e.g. [7], [8]), I consider a linear regression model with maximum depth and total duration

as covariates, along with their product, which I refer to as their interaction term. We will refer to

these models as MLM.

4.2.3 Functional Regression

Assume for dive i, there is a single scalar response variable, Yi, a set of fixed scalar covariates,

xi1,xi2, . . . ,xip, as well as Di, a functional covariate that yields densely sampled data measured at
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times tik, for k = 1, . . . ,Ki and i = 1, . . . ,N. Each Di is scaled to [0,1] on the time axis. In a linear

model, the response vector, Yi, is regressed on the covariates, xT
i βββ . Note that xT

i βββ can be written

as 〈xi,βββ 〉 where 〈,〉 is the standard Euclidean inner product on Rp. To incorporate Di into a model

with its own estimable functional coefficient, say γ , we add 〈γ,Di〉 into the model, where 〈,〉 is

an inner product over the vector space of square-integrable functions defined on the closed interval

[0,1]. The usual functional regression model is written as

Yi = β1xi1 + · · ·+βpxip +

1∫
0

γ(t)Di(t)dt + εi, (4.6)

where βββ = (β1, . . .βp)
T is a vector of unknown coefficients, γ is an unknown, smooth functional

coefficient, and εi are i.i.d. normal random variables with mean 0 and constant variance σ2. Since

γ is a function in an infinite dimensional space, a finite number of basis functions must be used to

represent γ . Let φφφ = (φ1,φ2, . . . ,φM) be a vector of known basis functions defined on the interval

[0,1]. Commonly used bases are B-splines bases, polynomial bases, and Fourier bases. Assume

γ(t) is of the form

γ(t) =
M

∑
j=1

g jφ j(t). (4.7)

The g j’s are unknown and will be estimated. The value of M determines the degree of smoothness

for γ(t). Using this assumption, we write the model in Equation 4.6 as

Yi =
p

∑
w=1

βwxiw +
M

∑
j=1

g j

1∫
0

φ j(t)Di(t)dt + εi.

Since we have extremely dense tag data (sampled at 50 Hz), we can approximate
1∫
0

φ j(t)Di(t)dt

using a Reimann sum, yielding the final model

Yi ≈
p

∑
w=1

βwxiw +
M

∑
j=1

g jx∗i j + εi (4.8)

where x∗i j =
Ki

∑
k=1

φ j(tik)Di(tik)(∆t)i are known covariates for the ith dive and the jth basis function,

Ki is the number of measurements taken on the ith dive, and (∆t)i = 1/Ki is the time between

two consecutive measurements for the ith dive, i = 1, . . . ,N and j = 1, . . . ,M. For large enough

values of Ki, this approximation will be accurate. To simplify notation, and since for our dataset

523 < Ki < 23,491, I replace the approximation sign with an equality sign.
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For the two different response variables (percent of time into a dive for the start and end of the

bottom phase), I fit the model in Equation 4.8 for three different functional covariates: depth, speed,

and acceleration (Figures 4.1–4.3). From now on, these models will be referred to as MγD (using

depth), MγS (using speed), and MγA (using acceleration) (Table 4.3). I used cubic B-splines as basis

functions for γ , with M = 20, since cubic B-splines are ubiquitous in the literature for functional

data, and they have desirable properties such as being twice differentiable and non-oscillatory unlike

Fourier series. Cubic B-splines also exhibit local behaviour and have good computational properties

since their support is small. The choice of M is arbitrary, but M = 20 provides adequate detail and

smoothness for the functional regression coefficient, γ . Each model also includes maximum depth,

total duration, and their product as fixed covariates.

The response variable is a percent of time into the dive when the bottom phase begins or ends and

this is bounded between 0 and 100. Thus, this response variable can never be normally distributed.

However, for our dataset, the response variables actually resemble a normal distribution and this

assumption fits well. We also tried several transformations of the response variable such as a logit

transformation, however, these transformations did not provide any additional benefits to the fit of

the models. As such, we maintained the untransformed response variable for ease of interpretation.
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Figure 4.1: Plots of the depth curves for the 250 dives from Whale #3 to be used as functional
covariates in Equation 4.8. The times for each depth curve were scaled to [0,1].
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Figure 4.2: Plots of the speed curves for the 250 dives from Whale #3 to be used as functional
covariates in Equation 4.8. The times for each speed curve were scaled to [0,1].
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Figure 4.3: Plots of the acceleration curves for the 250 dives from Whale #3 to be used as
functional covariates in Equation 4.8. The times for each depth curve were scaled to
[0,1].

4.2.4 Model Comparison

To compare the different models, including the linear models, the percentage threshold models,

and the functional regression models, I will consider k-fold cross validation, as well as comparing

predicted prey capture dives. For the k-fold cross validation, I compute the mean squared error

(MSE) and mean absolute error (MAE) for each of the k withheld groups, then I average the k
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MSEs and the k MAEs resulting in one metric for each model. To make everything comparable and

on the same scale, I take the square root of the averaged MSE and refer to this as the root mean

squared error (RMSE). The MSE and MAE are defined as:

MSE =
1
n

n

∑
i=1

(
Yi− Ŷi

)2 and MAE =
1
n

n

∑
i=1
|Yi− Ŷi| (4.9)

where Yi is the actual response for the ith dive and Ŷi is the predicted response from a model and

n = 250/k.

For the predicted prey capture comparison, audio and visual data confirmed 7 prey capture dives

from Whale #3. For several of the remaining 243 dives, the whale could have been feeding, but there

are no acoustic or visual data available to confirm or deny any prey capture events. Specifically,

dives #1 through #186 have been correctly classified as either prey capture dives or non-prey capture

dives, whereas Dives #187 to #250 are unclassified. I then create fitted values for the bottom phase

for each of the aforementioned models and apply the prey capture detection algorithm described in

Chapter 2.

4.3 Results

4.3.1 Percentage Threshold

A linear grid search over the interval (0,1), which is not computationally intensive, provides appro-

priate starting values for the minimization (Figures 4.4 and 4.5).

Table 4.1: Results from fitting the percentage threshold models (from Equations 4.3 and 4.4)
with 95% boostrapped confidence intervals.

Percentage Threshold Model for

Start of the Bottom Phase End of the Bottom Phase

θ̂ 95% CI θ̂ 95% CI

0.8051 [0.7611,0.8543] 0.8242 [0.7707,0.8750]

The estimates for both the start and the end of the bottom phase are quite similar to one another

(Table 4.1), however, the 70% threshold from Tennessen et al. [1] is not in either of these confidence

intervals, indicating that the 70% threshold is unlikely to be appropriate for this dataset. Model

diagnostics indicate a few outlier points with very large residuals (see Appendix A.2 for diagnostic
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Figure 4.4: Sum of squared errors versus theta for the start of the bottom phase for values of
theta over 0 to 1.

Figure 4.5: Sum of squared errors versus theta for the end of the bottom phase for values of
theta over 0 to 1.
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plots). The difference between the user-defined bottom phase and the predicted bottom phase from

the model for these dives (Figures 4.6 and 4.7) is most likely due to the awkward shapes. Since this

model uses a proportion of maximum depth to define the bottom phase, it tends to misrepresent the

bottom phase of dives which have a slower ascent as well as dives with a second, albeit smaller,

descent phase sometimes referred to as a “step in the ascent phase” [7] (see Dives 21 and 188 in

Figure 4.7 as examples). As such, the percentage of max depth model may not adequately handle

these specific types of dives.

Figure 4.6: Identified outlier dives for the percent of max depth model for the start of the
bottom phase. The red line indicates the user-provided start of the bottom phase, and the
turquoise line indicates the predicted start of the bottom phase from the model.

4.3.2 Linear Model

The estimated coefficients from fitting the linear model to the dataset are all highly significant

(Table 4.2), except the maximum depth coefficient for the start of the bottom phase. The fitted

models indicate that start (end) of the bottom phase tends to be closer to the beginning of the dive
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Figure 4.7: Identified outlier dives for the percent of max depth model for the end of the bot-
tom phase. The red line indicates the user-provided end of the bottom phase, and the
turquoise line indicates the predicted end of the bottom phase from the model.

(closer to the end of the dive) for longer duration dives, and that as the maximum depth increases,

this relationship with duration is more pronounced (Figures 4.8 and 4.9).

Diagnostic plots show the normality assumptions are appropriate, although the tails are slightly

heavy, and that there are no obvious temporal trends in residuals or clear heteroskedasticity (see

Appendix A.3 for diagnostic plots). While there are no influential points, there are a few outlier

dives with large standardized residuals that have awkward shapes and are typically skewed, meaning

the bottom phase occurs in either the first half or second half of the dive, rather than somewhere in

the middle (Figures 4.10 and 4.11). To address some of these minor model assumption violations,

I considered several transformations of both the response variable and the covariates, but I found

negligible improvements in the residual plots. Since this model is meant to be a foundational, basic

model with easier interpretations, I settled on using the original model in Equation 4.5 without any

transformations.
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Figure 4.8: Predicted responses for the start of the bottom phase as a function of duration for
several values of max depth

Figure 4.9: Predicted responses for the end of the bottom phase as a function of duration for
several values of max depth
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Table 4.2: Results from fitting the basic linear regression
model.

Response Variable†

Start of the End of the

Bottom Phase Bottom Phase

Intercept 35.79∗ 66.58∗

(0.91) (0.88)

Max Depth −0.01 −0.24∗

(0.04) (0.04)

Duration −0.08∗ 0.04∗

(0.01) (0.02)

Max Depth × Duration 0.00042∗ 0.00053∗

(0.00011) (0.00014)

Number of Observations 250 250
R2 0.20 0.23
Adjusted R2 0.19 0.22
Residual Std. Error 9.1 8.7
F Statistic (df = 3; 246) 20.75∗ 24.37∗

∗p<0.01
† Response variable is the percentage of time from the start of the

dive.

4.3.3 Functional Model

The estimated fixed covariates show high significance for most of the covariates in each model

(Table 4.3). The functional regression coefficients (Figure 4.12) can be interpreted by considering a

simple example of predicting the start of the bottom phase of a dive (Figure 4.13) using the model

with depth as a functional predictor (Equation 4.8). For dives that are very deep near the beginning

of the dive, this model tends to predict an earlier start to the bottom phase since the integral will be

very negative. On the other hand, for dives which are shallow near the beginning of the dive, this

integral will be less negative, resulting in a predicted start of the bottom phase closer to the middle

of the dive. Similarly, for the end of the bottom phase (Figure 4.12), the estimated functional

regression coefficient is positive in the second half of the time interval, which implies that dives that
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Figure 4.10: Identified outlier dives for the linear regression model in Equation 4.5 for the
start of the bottom phase. The red line indicates the user-provided start of the bottom
phase, and the turquoise line indicates the predicted start of the bottom phase from the
model.

are very deep near the end of the time domain will have a late bottom phase. These interpretations

can be extrapolated to the other functional regression models.

Visual inspection of diagnostics plots indicates that the functional regressions appear to fit the

data well, except for a few non-influential outliers and some moderate heteroskedasticity (see Ap-

pendix A.4 for details). For the three models for the start of the bottom phase, the same six dives

have fairly large residuals for each model, indicating that these dives are outliers (Figure 4.14). For

the three models for the end of the bottom phase, six dives have large residuals for each model,

although these outliers are not the same outliers for the start of the bottom phase (Figure 4.15). The

outlier dives in Figure 4.14 are mostly “V-shaped” dives where the deepest portion of the dive occurs

in the second half of the time domain, producing predictions which occur much earlier than what
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Figure 4.11: Identified outlier dives for the linear regression model in Equation 4.5 for the end
of the bottom phase. The red line indicates the user-provided end of the bottom phase,
and the turquoise line indicates the predicted end of the bottom phase from the model.

the whale researcher had marked. Similarly, in Figure 4.15, the outlier dives are mainly “V-shaped”

dives where the deepest portion occurs in the first half of the time domain, resulting in predictions

that occur a lot later in the dive than where the researcher had marked.

4.3.4 Model Comparison

Overall, using any model results in improvements compared to using the 70% threshold method,

M70%, based on the RMSE and MAE (Table 4.4). The percentage threshold model, Mθ , performs

well in terms of MAE, but performs poorly in terms of RMSE, due to a few extreme outliers. The

linear regression model, MLM, tends to perform poorly compared to the other models based on both

the RMSE and MAE. The functional regression models, MγD, MγS, and MγA, all tend to perform

similarly for both the start and end of the bottom phase, and are better than the other models. As
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Figure 4.12: Plots of the fitted regression coefficients, γ̂ , from Equation 4.8, with 95% point-
wise confidence bands in red. The left and right hand columns are the results for the
start and the end of the bottom phase, respectively. The rows correspond to the models
for the different functional covariates, depth, speed, and acceleration.

55



Figure 4.13: Plots illustrating the interpretation of the impact of the functional predictor on the
response variable. Top plot is of the estimated functional regression curve when depth
is used as a functional covariate (Equation 4.8). Middle plot is of a single, deep dive.
The bottom plot is the estimated functional regression curve multiplied (pointwise) by
the depth curve. Integrating the bottom plot over the entire time domain gives the value
of the functional predictor.
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Dependent Variable

Start of Bottom Phase End of Bottom Phase

Functional
Covariate

Depth
(MγD)

Speed
(MγS)

Acc
(MγA)

Depth
(MγD)

Speed
(MγS)

Acc
(MγA)

Coefficient

Intercept 35.81 35.84 35.60 66.00 66.06 66.10

(0.83) (0.97) (0.89) (0.84) (0.95) (0.88)

Max Depth -0.29 -0.33 -0.21 0.37 0.32 0.25

(0.18) (0.18) (0.19) (0.16) (0.18) (0.19)

Duration -0.064 -0.066 -0.064 0.037 0.037 0.033

(0.013) (0.012) (0.015) (0.012) (0.013) (0.015)

Max Depth × Duration -0.0009 -0.0008 -0.0007 0.0001 0.0001 0.0002

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0001)

Adj R2 0.347 0.346 0.344 0.301 0.306 0.309

Table 4.3: Estimates of the regression coefficients from fitting Equation 4.8 for the start and
end of the bottom phase for each functional covariate. Adjusted R2 is also given.

such, these functional regression models should be considered as the best alternative to the 70%

threshold method.

When applying the prey capture detection algorithm from Chapter 2 using the different bottom

phases predicted from these models, 6 out of the 7 confirmed successful prey capture dives are

detected, except when using bottom phases from the linear model, which results in only 4 out of

the 7 (Table 4.5). These are the same 6 dives that were previously mentioned in Chapter 2 (Dives

47, 54, 62, 124, 125, and 136). Dive 67 is never detected as a successful prey capture from any of

the models. When considering only confirmed non-prey capture dives, the 70% threshold method

results in a false positive rate of 8.37% (15/179), whereas the models containing either depth or

acceleration as a functional covariate resulted in the lowest false positive rate (8/179 = 4.47%),

which is a 46% reduction in false positives. Since all of these models have the same true positive rate

(6/7 = 85.7%), the models with lower false positive rates are typically preferred. With a lower rate

of false positives and the same rate of true positives than other methods, defining the bottom phase

using a functional regression model with depth or acceleration as a functional covariate improves
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Figure 4.14: The outlier dives for all 3 models for the start of the bottom phase from Equation
4.8. The purple vertical lines indicate what the whale researcher said was the bottom
phase, and the remaining 3 lines (which overlap) indicate the model predictions.

the capacity of Tennessen et al. [1]’s method to predict prey capture events for our data. Finally,

in Table 4.5, I provide the results of the prey capture detection algorithm for the user provided

bottom phase as well as for comparison purposes. While the user provided bottom phases perform

similarly to the other models in terms of false positives, some models (MγD and MγA) outperformed

the user-provided data.

4.4 Conclusions
My results suggest that modeling the bottom phase using expert information and formal statistical

models rather than an arbitrarily set threshold appears to improve the identification of the bottom

phase, which in turn improves our capacity to predict key ecological features such as prey captures.

Of the many models I explored, the functional models outperformed the linear models and the per-

centage threshold models in terms of RMSE and MAE, as shown by the cross-validation procedure,

as well as reduced false positive rates for predicted prey capture dives. However, each of these
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Figure 4.15: The outlier dives for all 3 models for the end of the bottom phase from Equation
4.8. The purple vertical lines indicate what the whale researcher said was the bottom
phase, and the remaining 3 lines (which overlap) indicate the model predictions.

models has its own set of advantages and disadvantages.

The percentage threshold model extends the basic 70% threshold method by incorporating a

user’s own data and estimating this percentage. This model was shown to have major improvements

over the 70% method in terms of both reductions in RMSE and MAE, but also in terms of predicting

prey capture dives. The percentage threshold model may however not be detailed enough since it

only incorporates maximum depth and does not incorporate other important variables such as total

dive duration. The linear regression model tends to be easy to understand and interpret, but may not

be detailed enough to model the complexity of the bottom phase. The linear model provides minor

improvements to the 70% threshold model, but when predicting prey capture dives, the predicted

bottom phases from this model failed to capture enough information to detect all the prey capture

dives. As such, these two simple models may provide slight benefits over the 70% threshold method,

but the improvements are marginal.

The functional regression models are promising, alternative models that incorporate functional

covariates. While they are more complicated models, they appear to provide better predictions
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Dependent Variable

Start of Bottom Phase End of Bottom Phase

Avg RMSE Avg MAE Avg RMSE Avg MAE

k = 5 k = 10 k = 5 k = 10 k = 5 k = 10 k = 5 k = 10

Model

M70% 0.103 0.091 0.125 0.110

Mθ 0.089 0.089 0.060 0.057 0.102 0.104 0.062 0.063

MLM 0.093 0.093 0.072 0.072 0.089 0.089 0.066 0.066

MγD 0.082 0.082 0.063 0.064 0.085 0.083 0.062 0.062

MγS 0.083 0.082 0.063 0.063 0.085 0.084 0.062 0.062

MγA 0.083 0.083 0.063 0.062 0.085 0.084 0.061 0.061

Table 4.4: Results from running 5- and 10-fold cross validation for each of the models men-
tioned in this chapter.

for detecting prey capture dives. From the analysis in this chapter, the functional regression mod-

els, regardless of the functional covariate, performed better than all the other models during cross

validation, except in minor cases. Moreover, the models provide flexibility to the standard and

widely accepted bottom phase definitions. These models also outperform the raw inputted data

directly from the user, according to our results using our dataset. Hence, in using these models,

researchers can produce more accurate bottom phase definitions which can then be reproduced by

other researchers. Thus, researchers should state the parameter estimates for these models when dis-

seminating their results so that others can use their model estimates as well. There are also several

limitations to these functional models. While these models can produce global standard errors for

the functional coefficient, the resulting bands are often too wide to be useful. As such, we rely on

the point-wise confidence bands which may not be representative of the bounds for the functional

coefficient. Moreover, these models require a large dataset to estimate the large number of parame-

ters. As such, we will discuss possible approaches to determine just how many dives are needed to

fit these models in the next chapter. These functional regression models may not be appropriate for

every scenario since they require a deeper understanding of the methodology in order to properly

interpret the results.

For researchers to collect bottom phase data from their dives, I have developed a Shiny App [37]

which allows a user to view a dive then mark the bottom phase and save the results. The relevant
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Truth
Model Prediction Prey Capture Non-Prey Capture Unknown Total

MLM
Prey Capture 4 9 1 14
Non-Prey Capture 3 170 63 236

Mθ%
Prey Capture 6 13 0 19
Non-Prey Capture 1 166 64 231

M70%
Prey Capture 6 15 0 21
Non-Prey Capture 1 164 64 229

MγD
Prey Capture 6 8 1 15
Non-Prey Capture 1 171 63 235

MγS
Prey Capture 6 10 1 17
Non-Prey Capture 1 169 63 229

MγA
Prey Capture 6 8 1 15
Non-Prey Capture 1 171 63 235

Truth
Prediction Prey Capture Non-Prey Capture Unknown Total

User Prey Capture 6 10 0 16
Provided Non-Prey Capture 1 169 64 234

Table 4.5: Confusion matrices for predicting prey captures via Tennessen et al. [1]’s criteria,
but with the bottom phase determined by the different models. The last table is the confu-
sion matrix when predicting prey captures using the user provided bottom phases.

code and instructions comprise my custom R package called bustR, which can be found on my

personal GitHub page [31].
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Chapter 5

How Many Dives To Choose? Methods
for Researchers

Decision making is an art only until the person understands the science. — Pearl Zhu

5.1 Background
In Chapter 4, I demonstrated that several statistical models for the start and end of the bottom phase

of a dive outperformed current methods. However, diving datasets typically contain thousands of

dives (e.g. Tennessen et al. [1] analyzed over 6,000 dives and Viviant et al. [8] analyzed over 5,000

dives). These models require the researcher to define the bottom phase for each dive. Since it is

impractical to classify the bottom phase for thousands of dives, researchers need to determine an

adequate number of dives for these models. In this chapter, I address possible solutions to this

problem with two potential approaches: one relying on matching two model predictions, one from

a fit to the whole data set and the other from a fit to a subsample of the data set, while the other

approach matches model predictions to the user-provided response.

Let Yi be the proportion of time into a dive for the start (or end) bottom phase that the researcher

would mark for the ith dive in their dataset, i = 1, ...,N. Let Ŷ k
i be the predicted bottom phase for

the ith dive, i = 1, ...,N, using a model that was fit using only k ≤ N randomly selected dives. Note

that when k = N, Ŷ N
i is the predicted bottom phase for the ith dive using a model that was fit using

all N dives in the dataset. The two possible approaches that I will discuss to determine an adequate

sample size to fit these models are as follows.

1. A probabilistic approach based on the distribution of Ŷ N
i − Ŷ k

i , requiring covariates from all

N dives and a value for the regression error variance.
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2. A user-provided approach to directly compare Yi to Ŷ k
i , requiring users to prove Y1, ...,YN and

possibly other covariates.

This chapter shows researchers how to assess the trends in prediction accuracy as the sample size,

k, approaches the total number of dives in the dataset, N. For the two approaches discussed in this

chapter, I use the 250 dives from Whale #3 which were used to fit the models in Chapter 4, and in

particular, I use the user’s responses of the bottom phase for the second approach.

5.2 Methods
For the probabilistic approach, I consider a linear model which assumes normality (see Section

4.2.2). Nonlinear models (such as the percentage threshold model) cannot be handled by the first

method, so they are not considered here. The linear model includes maximum depth, total duration,

and their product (referred to as the interaction term) as fixed covariates. I also consider a functional

regression model which includes depth as a functional predictor. See Section 4.2.3 for complete

details of functional regression models. Interestingly, the first approach does not require the user’s

responses, rather it only requires a reasonable estimate for the variability of the data.

In the second approach, using the user’s responses, I consider both linear and non-linear models

since the methods used are more flexible to model choice. For this so-called user-provided approach,

I consider the 70% threshold method used in Tennessen et al. [1], the estimated percentage threshold

model used in Section 4.2.1, a simple linear regression model used in Section 4.2.2 with the same

covariates as described above, and a functional regression model with depth as a functional predictor

from Section 4.2.3 again with the same covariates as described above. The other two predictors

in the functional regression models (speed and acceleration) are omitted since they behave very

similarly to the depth model.

5.2.1 Probabilistic Approach

The probabilistic approach is based on the distribution of the difference between Ŷ N
i and Ŷ k

i , using a

linear model. All notation is defined as in Equation 4.5. Let XN be the N× p matrix of covariates for

all data points, and Xk be the matrix of covariates for the k randomly chosen dives. The associated

response vectors are denoted YN and Yk. For convenience, construct XN and YN so that their first k

rows contain the k randomly chosen dives. Now, we derive the conditional probability distribution

of ŶN− Ŷk given XN and Xk as a means to determine an adequate sample size, k.

Claim 5.2.1. Assume that both XN and Xk are full rank. Then ŶN − Ŷk
∣∣∣XN ,Xk has a mul-

tivariate normal distribution with mean vector 0 and variance-covariance matrix ΣΣΣ where ΣΣΣ =

σ2XN

[(
XT

k Xk
)−1−

(
XT

NXN
)−1
]

XT
N with Var(εi

∣∣∣XN ,Xk) = σ2.
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Proof. Fitting the linear model in Equation 4.5 to k randomly selected dives results in

β̂ββ
k
=
(
XT

k Xk
)−1 XT

k Yk

and when k = N, then β̂ββ
k
= β̂ββ

N
=
(
XT

NXN
)−1 XT

NYN . The predicted responses for all N dives in the

dataset are given by:

Ŷk = XN β̂ββ
k
.

From this, we can see that

E
[
ŶN− Ŷk

∣∣∣XN ,Xk

]
= E

[
ŶN
∣∣∣XN ,Xk

]
−E

[
Ŷk
∣∣∣XN ,Xk

]
= XNβββ −XNβββ = 0N×1.

To derive the variance-covariance matrix, write Ŷk as

Ŷk = XN β̂ββ
k

= XN
(
XT

k Xk
)−1 XT

k Yk

= XN
(
XT

k Xk
)−1 XT

k [Xkβββ + εεεk]

= XNβββ +XN
(
XT

k Xk
)−1 XT

k

[
Ik 0k×(N−k)

]
εεεN .

Similarly, write ŶN as ŶN = XNβββ +XN
(
XT

NXN
)−1 XT

NεεεN . Thus,

ŶN− Ŷk = XN

{(
XT

NXN
)−1 XT

N−
(
XT

k Xk
)−1 XT

k

[
Ik 0k×(N−k)

]}
εεεN

= XN [AN−Ak]εεεN

where AN and Ak are defined accordingly to simplify notation. Now,

Var
[
ŶN− Ŷk

∣∣∣XN ,Xk

]
= XN (AN−Ak)Var

[
εεεN

∣∣∣XN ,Xk

]
[XN (AN−Ak)]

T

= σ
2XN (AN−Ak)(AN−Ak)

T XT
N

which, after calculations, simplifies to

Var
[
ŶN− Ŷk

∣∣∣XN ,Xk

]
= σ

2XN

[(
XT

k Xk
)−1−

(
XT

NXN
)−1
]

XT
N ≡ ΣΣΣ

which must be positive definite since it is a variance-covariance matrix. I show directly in Appendix
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A.5 that
(
XT

k Xk
)−1−

(
XT

NXN
)−1 is positive definite—a surprising result on its own. Finally, since

ŶN− Ŷk = XN [AN−Ak]εεεN and εεεN
iid∼MV N(0,σ2I) then

ŶN− Ŷk
∣∣∣XN ,Xk ∼MV N (0,ΣΣΣ)

By utilizing the above result, then

Pr
(
−d≤ ŶN− Ŷk ≤ d

∣∣∣XN ,Xk

)
(5.1)

can be computed for a given XN ,Xk,σ
2, and d, where d is a vector of so-called tolerance levels.

The inequality, −d ≤ ŶN − Ŷk ≤ d, implies that every entry of the vector ŶN − Ŷk is between the

corresponding entries in −d and d. For this chapter, d = d1, so all entries of d are equal to d;

however, this does not need to be the case.

To determine an adequate value for k, we compute

Pr
(
−d≤ ŶN− Ŷk ≤ d

∣∣∣XN ,k dives chosen
)
=

1(N
k

) ∑
Xk∈X

Pr
(
−d≤ ŶN− Ŷk ≤ d

∣∣∣XN ,Xk

)
(5.2)

where X denotes the set of design matrices from all possible samples of size k generated from

the N dives. Since generating all possible samples would be computationally impractical, instead,

Equation 5.2 is estimated using 500 randomly chosen samples of size k. This simulation study

proceeds as follows:

1. Choose a set K of sample sizes, a set S of σ values, and a set D of d values.

2. For each k ∈K , σ ∈ S , and d ∈D , randomly select k rows from XN to create Xk and compute

the probabilities given in Equation 5.1.

3. Repeat Step 2 500 times and approximate Equation 5.2 by the average of these five hundred

probabilities.

The sets chosen for this simulation are

• S = {0.05,0.10,0.15,0.20} for the linear model and S = {0.010,0.025,0.050,0.100} for the

functional regression model.

• D = {0.010,0.025,0.050,0.100}
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• K = {5,10, . . . ,95,100,110, . . . ,230,240,249} for the linear model and

K = {30,35, . . . ,95,100,110, . . . ,230,240,249} for the functional model.

For reference, the estimate of σ for the linear model in Section 4.5 for our data is σ̂ = 0.091 for the

start of the bottom phase and σ̂ = 0.087 for the end of the bottom phase when using all 250 dives.

For the functional model with depth as a functional predictor from Section 4.8, σ̂ = 0.078 for the

start of the bottom phase and σ̂ = 0.075 for the end of the bottom phase when using all 250 dives.

5.2.2 User-Provided Approach

For this approach, the RMSE and MAE is computed using Ŷ k
i and Yi in order to determine an

adequate value of k. I perform simulations as follows:

1. For each k ∈K , where K = {30,35, . . . ,245,250}, randomly select k dives from all N dives,

and fit each model to this random sample.

2. Compute the fitted values, Ŷ k
i , for every dive, and use Ŷ k

i and Yi to compute the RMSE and

MAE using Equation 4.9.

3. Repeat steps 1 and 2 500 times.

5.3 Results
The first simulation for the probabilistic approach in Section 5.2.1 shows that as the sample size k

increases, the probability also increases (Figures 5.1, 5.2). This positive relationship can be thought

of as an increase in a user’s confidence in that a certain level of precision will be ascertained as the

sample size increases. Moreover, as the tolerance level increases (i.e. target precision decreases),

and all else remaining constant, the confidence that a user has in the model will also increase.

Furthermore, for highly variable data (large σ ), more data are required to fit these models to achieve

the same level of confidence in these predictions. Finally, comparing the linear regression model

results to the functional regression model results, more data are needed for the functional regression

model since there are more parameters to be estimated.

For the user-provided approach in Section 5.2.2, all models needed less than 100 user-marked

dives to perform well (Figure 5.3), according to both the RMSE and MAE metric. The 70% thresh-

old model, which does not depend on the training data and hence is constant for all sample sizes,

underperforms against every other model when k > 50. The RMSE and MAE for the percentage

threshold model also remain relatively constant for all sample sizes; however, this model performs

better than the 70% threshold model for both the start and end of the bottom phase. The estimated
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percentage threshold value, θ̂ , stabilizes early, resulting in stable values for RMSE and MAE for

this model. Hence, for this dataset, the percentage threshold model does not require a large sample

size. The RMSE and MAE for the basic linear regression model are variable for low sample sizes,

but eventually level out and tend to perform better than the 70% threshold model, but worse than the

functional regression models. The RMSE and MAE for the functional regression model are high

for small sample sizes, as expected; however, when the sample size is large (k > 50), the RMSE

and MAE for the functional models are low compared to the other models. Finally, the RMSE and

MAE are both lower for the end of the bottom phase than for the start of the bottom phase.

5.4 Conclusions
The probabilistic approach provides a significant advantage in determining an adequate sample size

as the researchers can carry out these simulations using their own datasets, which will depend on the

covariates used in the models as well as the total number of dives in the dataset. This approach is

limited to a linear model and assumes normality. This method also requires a reasonable estimate for

σ , the variability in the error, which can be estimated by fitting the models to a preliminary sample

of dives. To account for error in the estimation of σ , I recommend conducting the simulations for

several values of σ which are close to the estimate from the preliminary sample. In doing so, these

simulations can allow a researcher to determine an adequate value of k for their own datasets.

The meaning of the tolerance level d, which is on the same scale as the prediction vectors

(proportion of time into the dive), can be understood by considering a simple example. Suppose

the researcher decides to use a tolerance level of d = 0.01. Then, the researcher chooses a sample

size, k, and computes the probability in Equation 5.1 to get 0.85. As such, the user can be 85%

confident that the difference between Ŷ k
i and Ŷ N

i equates to 1% of the dive duration. So, if a dive

is 100 seconds in duration, then this would equate to a difference of 1 second, whereas for a dive

that is 200 seconds in duration, this difference would be 2 seconds. Moreover, if 85% confidence is

not high enough, then the sample size can be increased until the desired confidence is achieved. A

researcher could also increase the tolerance level to achieve a higher confidence level.

The user-provided approach shows that, for this dataset, only about 100 dives needed to have

the bottom phase marked before the RMSE and MAE both leveled off, after which point, the im-

provements are marginal regardless of the model chosen. This approach shows that the functional

regression model tends to perform better than the other models. However, all models still perform

better than the traditional 70% threshold method. Moreover, the RMSE and MAE are generally

smaller for all models when comparing the start of the bottom phase to the end of the bottom phase.

This result is consistent with the prior hypothesis that the end of the bottom phase is less variable
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than the start, as discussed in Section 3.4. While replicating these simulations would require the user

to have a user-provided bottom phase, Yi, for every dive, the results from this simulation can give

an indication of the sample size needed for each model, before there are no further improvements

in the RMSE or MAE (approximately 100 dives for each model). As such, I recommend using the

results of the simulation presented here to guide researchers in the trends as k increases, rather than

replicating the simulation.
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Figure 5.1: Results of the simulation study for the basic linear regression model in Equation
4.5 for the probabilistic approach in Section 5.2.1. Each plot corresponds to a different
value for σ . The x-axis is the sample size and the y-axis is the probability. The tolerance
levels, d, are shown by the different coloured lines.

69



Figure 5.2: Results of the simulation study for the functional regression model in Equation
4.8 for the probabilistic approach in Section 5.2.1. Each plot corresponds to a different
value for σ . The x-axis is the sample size and the y-axis is the probability. The tolerance
levels, d, are shown by the different coloured lines.
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Figure 5.3: Results of the simulation study for the user-provided approach. The plots on the
top row correspond to the RMSE metric while the plots on the bottom row correspond
to the MAE metric. The left column plots are for the start of the bottom phase, and the
right column plots are for the end of the bottom phase. The x-axis is the sample size and
the y-axis is the value of the metric. Each model is represented by a different coloured
line. Error bars are omitted for clarity.

71



Chapter 6

The Bottom Line

The end of a melody is not its goal: but nonetheless, had the melody not reached its
end it would not have reached its goal either. A parable. — Nietzsche

This work highlights proposed solutions for a reproducible and statistically sound definition for

the bottom phase of a dive. Through using different bottom phase definitions, which are used when

computing summary statistics to predict prey capture dives (see Section 2.5), I demonstrated the

importance of having an accurate and well-defined bottom phase for a dive. I determined the major

sources of variation in user-based dive phase definitions using an experimental study, discovering

substantial researcher-to-researcher variation, within-researcher variation, and across-dives varia-

tion in bottom phase definitions, indicating a strong need for a statistical model for bottom phase

definitions rather than relying on threshold values which may not represent the data appropriately.

I then presented several models that could be used by individual researchers to model the bottom

phase of a dive while incorporating their own personal datasets as well as bottom phase identifica-

tions that they deem appropriate. These statistical models proved to be more effective at matching

the researcher’s choices of the bottom phase compared to the previously used common threshold

definitions. Finally, I established two approaches to determine an adequate sample size for these

statistical models and implemented them via simulation studies. Of these sample size calculations,

the probabilistic approach was designed in such a way so that a researcher can recreate the simula-

tion and produce their own results for their dataset, allowing them to determine an adequate sample

size.

The methods proposed in this thesis show several advantages over the currently used methods.

Firstly, the statistical models I proposed provide a more theoretical, reproducible, and justifiable

framework in defining the start and end of the bottom phase of a dive. These models incorporate

the researcher’s own tagging data, as well as their own researcher-specified starts and ends of bot-
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tom phases to train said models. These models can be easily presented and possibly used by other

researchers, assuming that both datasets are similar and that both researchers have similar varia-

tion in user-defined bottom phases. As such, it is imperative for a researcher to report the model

estimates in their findings to allow for reproducibility. Moreover, these models provide substantial

improvements in matching user bottom phase markings of a dive compared to the commonly used

threshold methods. Specifically, I showed that by implementing a functional regression model with

the time-depth curve of a dive as a functional predictor and using the researcher’s choices of bottom

phase as the response variable, I reduced the number of false positive prey capture dives by nearly

50% using the aforementioned prey capture detection algorithm from Section 2.5. These findings

make intuitive sense since the threshold models did not work well for complex dives with awkward

shapes, whereas the functional models are able to handle these types of dives.

Several extensions to the methods presented in this thesis can be considered as a next step. I

first note that the start and end of the bottom phase have an inherent dependence in that the start

must occur before the end. As such, one could jointly model the start and end of the bottom phase

simultaneously to guarantee that the start occurs before the end [38]. Even though the analyses

presented in this thesis never encountered this issue, jointly modeling the response variables may be

provide more advantages since the inherent dependence is accounted for. Moreover, other variables

such as jerk, roll, or heading, as well as acoustic data, all of which are measured over the same

time domain as the depth curve, could be incorporated into these models as functional predictors.

One may also consider models where the functional predictors depend on other aspects of the dive

itself, such as shape or behaviour exhibited [39]. Of course, this would require each dive to be

labeled accordingly, either by the researcher or by other techniques such as a hidden Markov model

[40–42]. Furthermore, if multiple whales are being analyzed, then random effects can be used to

deal with the natural correlation of the dives clustered within a whale [39]. Finally, in this thesis, I

only used the data from three NRKWs and more specifically, I only used data from one NRKW in

the modeling section. The small sample size used here is a clear limitation, and future work should

attempt to incorporate more data into the analyses to achieve more accurate and general results.

The models and methods presented in this thesis can be extended to other species beyond killer

whales. Seals, sharks, otters, penguins, dolphins, and other species of whales are air breathing

marine animals which exhibit diving behaviour, and predicting prey captures for these animals is

also critical [8, 10–15]. Moreover, in contrast to solely predicting prey capture dives, other variables

are used in the analysis of these diving data. For example, dive efficiency, which is the ratio of the

time during the bottom phase of a dive to the total duration of the dive, is used when analyzing

energy expenditures of diving animals [11–13]. Having a well-defined bottom phase can produce

better estimates of dive efficiency.
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Furthermore, some dives may exhibit more than one possible bottom phase. Sometimes, these

are referred to as “steps in the ascent/descent” [8] and occur when an animal changes its vertical

trajectory during either the ascent or descent phase, hence creating a pseudo-bottom phase. These

steps typically occur due to changes in bathymetry (the ocean floor) [8], the animals engaging in

social behaviours [3], or the animals searching for prey usually via echolocation [9]. Modeling and

investigating the multiple bottom phases of these dives would be another extension of the methods

presented in this thesis. Studying the implications of including these pseudo-bottom phases when

attempting to detect prey capture dives could provide for interesting future work.

The parameter estimates and threshold values identified by Tennessen et al. [1] to predict prey

capture dives depend on the bottom phase definition, species being studied, and potentially extra-

neous factors like time of year or researcher analyzing the data. As such, further work in this area

could include creating a prey capture detection model akin to the ones presented in Tennessen et al.

[1], except modifying the bottom phase definition using the methods shown in Chapter 4. Since

these prey capture detection models depend on the bottom phase definition, one can compare the

new estimated threshold values (similar to the values shown in Section 2.5) when using model-based

bottom phase definitions to the currently existing thresholds values and examine how much they dif-

fer and the implications thereof. Moreover, one may find that these new threshold values, which are

used to predict prey capture events, may include variables other than the ones determined by Ten-

nessen et al. [1], such as ascent velocity, descent velocity, or dive efficiency. Overall, it would be

pertinent to investigate new prey capture detection algorithms using the model-based bottom phase

definitions.

Since the overarching issue here is to study the reasons for the differences in survival rates

between the NRKWs and the SRKWs, studying the energy consumption of these two populations of

whales is imperative. To do so requires knowledge of prey capture events, which can be identified in

several ways such as by using a prey capture detection algorithm or by visually observing the events.

When using a predictive model to determining prey capture events, the bottom phase definition

has been shown to be highly important. The models used in this thesis may be able to provide

more accurate estimates of the bottom phase of a dive, and thus, more accurate estimates of energy

consumption allowing for accurate comparisons of survival rates between species.
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Appendix A

Supporting Materials

A.1 Matrix and Vector Formulation of Models from Chapter 3
Here, we present the exact structure and form of the vectors and matrices from Eq 3.3. For com-

pleteness, Eq 3.3 states

Y = µ1+ZR+WD+XT+ εεε

From this model, we have the following vectors and matrices:

• Y is the complete vector of responses containing data from each researcher on their unique

and common dives.

Y =
(
YT

1 ,Y
T
2 · · · ,YT

r
)T

(A.1)

• µ is the overall mean and 1 is a vector of ones of length n where n = ∑
r
i=1 K′i .

• R is a vector of researcher effects given as R = (R1,R2, · · · ,Rr)
T , and thus the matrix Z is

defined as

Z =


1K′1+m1 0 0 . . . 0

0 1K′2+m2 0 . . . 0
...

...
...

0 0 0 . . . 1K′r+mr

 (A.2)

• D is the vector of dive effects given as D =
(
DC,DU

1 , · · · ,DC,DU
r
)T . We define Wi as the

matrix for the ith researcher as
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Wi =



1Ki1 0 0 . . . 0 0

0 1Ki2 0 . . . 0 0
...

...
...

0 0 0 . . . 1KidC
0

0 0 0 . . . 0 Imi×mi


(A.3)

Then, putting each one of these together, we get

W =


W1 0 0 . . . 0

0 W2 0 . . . 0
...

...
...

0 0 0 . . . Wr

 (A.4)

• T is the vector of interaction effects given as T=
((

RDC)
1 ,
(
RDU)

1 , · · · ,
(
RDC)

r ,
(
RDU)

r

)T

and thus we define the matrix Xi as

Xi =



1Ki1 0 0 . . . 0 0

0 1Ki2 0 . . . 0 0
...

...
...

0 0 0 . . . 1KidC
0

0 0 0 . . . 0 Imi×mi


(A.5)

Then, stacking these matrices together for each researcher, we get

X =


X1 0 0 . . . 0

0 X2 0 . . . 0
...

...
...

0 0 0 . . . Xr

 (A.6)

• Finally, we define εεε as the vector of random errors as

εεε =
(
εεε

C
1 ,εεε

U
1 , · · · ,εεεC

r ,εεε
U
r
)T

(A.7)

The notation for these models is quite complex, but when it is broken down to its base com-

ponents, it is really just matrices of ones and zeros arranged in a specific way to accommodate the

desired form of this model.
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A.2 Model Diagnostics for Percentage Threshold Model
Residual plots for the percentage threshold model are given here.

Figure A.1: Residuals versus fitted values for the start of the bottom phase for the percent of
max depth model.

A.3 Model Diagnostics for the Linear Model
To check the model assumptions for the linear model, consider the diagnostic plots (Figures A.3

and A.4). The standardized residuals versus fitted values tend to vary randomly about the blue

smoothed line, albeit there are some outliers. For the start of the bottom phase (Figure A.3), there

is minimal heteroskedasticity and most residuals are between -2.5 and 2.5, with a few exceptions.

The assumptions of independent residuals seems to be satisfied for this model. For the end of the

bottom phase (Figure A.4), there is variation in the residuals indicating potential violation of equal

variance assumption. Both QQ-plots indicate that the Normality assumption is appropriate, since

most sample quantiles follow along the line y = x, as expected, with few exceptions near the tails.

Cook [43] proposed a method to detect influential points, called Cook’s D, where any point

which is larger than F(p,n−p)(0.5), the median quantile of the F-distribution with p and n− p degrees

of freedom, where p is the total number of covariates in the model (including an intercept) and n is

the total number of data points in the dataset, is deemed influential. For our dataset, F(p,n−p)(0.5) =

F(4,246)(0.5) = 0.8415, since p = 4 and n = 250 and no points are deemed to be influential (Figures
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Figure A.2: Residuals versus fitted values for the end of the bottom phase for the percent of
max depth model.

A.3 and A.4).
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Figure A.3: Residual plots for the linear model in Equation 4.5 for the start of the bottom
phase
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Figure A.4: Residual plots for the linear model in Equation 4.5 for the end of the bottom phase

Residuals over time help to identify temporal patterns and trends as well as changes in the

variance (Figure A.5). There is a slight change in the variance near the end of the residuals in both

plots. One reason for this change in variance could be that the researcher became more consistent

in defining the bottom phase of dives as time progressed. Also, there are several shallow dives

near the end of the tag deployment which could result in more similar and consistent bottom phase

definitions.

A.4 Model Diagnostics for the Functional Regression Models
Residual plots, QQ plots, and Cook’s distance plots for the fitted models in Equation 4.8 are pre-

sented here for the functional regression models. The residual versus fitted plots are all similar for

the start of the bottom phase, and there appears to be some distinct heteroskedasticity present. A

similar, but less severe heteroskedasticity exists for the models for the end of the bottom phase as

well. The QQ plots show that normality is a reasonable assumption for each model, although the

tails are fairly heavy possibly due to a few outliers. Using the same rule discussed in Cook [43], the

84



Figure A.5: Standardized residual plots versus index for both the start and end of the bottom
phase.
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data points with a Cook’s D larger than F(24,226)(0.5) = 0.9752 are influential (since there are 20

basis function coefficients, an intercept, and three additional covariate coefficients to be estimated).

However, no dives achieved a Cook’s D higher than this threshold, indicating that there are unlikely

to be highly influential points in this dataset.

Figure A.6: Residuals versus Fitted Values for the functional regression models in Chapter 4.
Plots 1, 2, and 3 are for the depth, speed, and acceleration models for the start of the
bottom phase respectively. Plots 4, 5, and 6 are for the depth, speed, and acceleration
models for the end of the bottom phase respectively.
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Figure A.7: QQ plots for the functional regression models in Chapter 4. Plots 1, 2, and 3 are
for the depth, speed, and acceleration models for the start of the bottom phase respec-
tively. Plots 4, 5, and 6 are for the depth, speed, and acceleration models for the end of
the bottom phase respectively.
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Figure A.8: Cook’s distance plots for the functional regression models in Chapter 4. Plots 1,
2, and 3 are for the depth, speed, and acceleration models for the start of the bottom
phase respectively. Plots 4, 5, and 6 are for the depth, speed, and acceleration models
for the end of the bottom phase respectively. Each line corresponds to an individual data
point.

A.5 Positive Semi-Definiteness of Σ

Lemma A.5.1. Let A,B be two positive definite symmetric matrices. Then, if B− A is positive

definite, then CT (B−A)C is also positive definite for any matrix C with appropriate dimensions.

Proof. Consider the quantity uTCT (B−A)Cu for any vector u of appropriate dimension. This can

be written as (Cu)T (B−A)Cu. If we let x =Cu, then we have xT (B−A)x > 0 since B−A is positive

definite. Thus, uTCT (B−A)Cu > 0 and hence CT (B−A)C is positive definite as required.
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Lemma A.5.2. Let B be a positive definite symmetric matrix. If B− I is positive definite, then

I−B−1 is positive definite.

Proof. Firstly, we note that every positive definite matrix is invertible, so B−1 exists. Next, if B−I is

positive definite, then (B−1/2)T (B− I)B−1/2 is also positive definite by Lemma A.5.1. Simplifying

everything yields

(B−1/2)T (B− I)B−1/2 = B−1/2(B− I)B−1/2

= B−1/2BB−1/2−B−1/2IB−1/2

= I−B−1

Thus I−B−1 is also positive definite.

Lemma A.5.3. Let A,B be symmetric and positive definite matrices. If B−A is positive definite,

then A−1−B−1 is positive definite.

Proof. If B−A is positive definite, then by Lemma A.5.1, we have that A−1/2(B−A)A−1/2 must

also be positive definite (using the fact that A is symmetric as well). Then,

A−1/2(B−A)A−1/2 = A−1/2BA−1/2−A−1/2AA−1/2

= A−1/2BA−1/2− I

is positive definite. Now, applying Lemma A.5.2, we must also have that I−
[
A−1/2BA−1/2

]−1
is

positive definite, which upon simplifying, we get I−A1/2B−1A1/2. Now, applying Lemma A.5.1 to

this expression by multiplying on the left and right by A−1/2, we get

A−1/2
(
I−A1/2B−1A1/2

)
A−1/2 = A−1/2IA−1/2−A−1/2A1/2B−1A1/2A−1/2

= A−1−B−1

is positive definite.

Theorem A.5.4. Suppose XN is an N× p matrix and Xk is a k× p matrix of k randomly selected

rows from XN . Suppose XN is constructed such that XN =
[
XT

k (X∗)T
]T where X∗ are the remaining

rows not chosen from XN . Then, XN

[(
XT

k Xk
)−1−

(
XT

N XN
)−1
]

XT
N is positive definite.
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Proof. It should be clear that both XT
k Xk and XT

N XN are positive definite. We can see that

XT
N XN =

[
XT

k X∗T
][ Xk

X∗

]
= XT

k Xk +X∗T X∗

Hence, XT
N XN−XT

k Xk = X∗T X∗. Clearly, X∗T X∗ is positive definite, so XT
N XN−XT

k Xk is positive

definite. Using Lemma A.5.3, we get that
(
XT

k Xk
)−1− (XT

N XN)
−1 is positive definite too. Applying

Lemma A.5.1, we get that XN

[(
XT

k Xk
)−1−

(
XT

N XN
)−1
]

XT
N is positive definite, as required.
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