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Abstract

In this thesis we discuss various aspects of low energy quantum gravity from
a number of different angles. The ultimate goal we have in mind is to prepare
ourselves for the upcoming wave of low-energy experiments which may test
quantum gravity.

In the first part of this thesis we remain within “conventional” quantum
theory. We start with a study of quantum decoherence via the emission of
low energy gravitational radiation. We find that after sufficiently long times
this radiation can completely decohere a matter system. In studying deco-
herence we needed a better understanding of gauge invariance and physical
states in path-integrals with prescribed boundary data. We generalize the
standard Faddeev-Popov procedure to fit this purpose, and in doing so we
better understand the nature of electric fields around quantum charges. The
analogous work is also done in linearized quantum gravity. This language
is useful for analyzing the debate around a recently proposed gravitational-
entanglement experiment. We do such an analysis, and ultimately agree
that these experiments indeed test conventional quantum gravity. As a tan-
gential project we study the interactions of quarks in a background gluon
condensate, and show how this can cause confinement.

In the second part of the thesis we study an “alternative” quantum grav-
ity theory, the Correlated WorldLine (CWL) theory. We study the theory
perturbatively, and also make use of a large-N expansion to study it non-
perturbatively. We apply our results to physical systems: verifying that
two-path systems experience “path-bunching” which suppresses superposi-
tions of massive objects. We also predict a frequency band in the microhertz
range where tests of CWL involving massive objects are expected to see a
signature.
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Lay Summary

Einstein gave us a theory of gravity described by a flexible spacetime contin-
uum. Quantum physics tells us that small objects are uncertain, fluctuating
around in all possible ways. A theory of quantum gravity aims to unify
these two theories, but it is quite hard to think about, “what does it mean
for space and time to be fluctuating?”

Quantum gravity was long thought to be relevant only at lengths so small
we could never test it, but there is another perspective. Perhaps the gravity
of heavy objects prevents them from behaving quantum mechanically. Could
this be why you and I are in definite locations but an electron is not?

We are currently at the start of an experimental era where these later
theories of quantum gravity may actually be testable. In this thesis we
study one of these “alternative” theories, and perform calculations to make
predictions for these experiments.
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Preface

Much of the body of this thesis has been published, or at least submitted for
publication elsewhere, and in places we include the material here verbatim.

Chapter 3 is a modified version of J. Wilson-Gerow, C. DeLisle, and
P.C.E. Stamp, A functional approach to soft graviton scattering and BMS
charges, Class. Quantum Grav. 35 16400 (2018). The initial idea for the
paper was my own, arising from several conversations with the other two
authors. I performed all of the calculations, except for certain parts of
the section on the WKB approximation—this was initially calculated by C.
DeLisle and checked by myself. C. DeLisle also identified that our results
could be rewritten in terms of the gravitational memory function. P.C.E.
Stamp wrote the first draft of the manuscript, and after input from myself
and C. Delisle, and a referee report, rewrote much of the draft to make it
more suitable for publication. All three authors edited the manuscript.

Chapter 4 is a modified version of J. Wilson-Gerow, P.C.E. Stamp, Gauge
Invariant Propagators and States in Quantum Electrodynamics, arXiv:2011.05305
[hep-th]. There is some overlap between this work and my Master’s thesis
J.Wilson-Gerow, Manifestly gauge invariant transition amplitudes and ther-
mal influence functionals in QED and linearized gravity. Master’s thesis,
University of British Columbia, 2017. This chapter is a significant extension
and generalization of the earlier work in the Master’s thesis. The initial idea,
all calculations, and initial draft were all my own. P.C.E. Stamp helped to
rewrite the initial manuscript to bring it to a form more suitable for publi-
cation. P.C.E. Stamp helped put the work into a context within the existing
literature, and helped clarify the exposition in many places.

Chapter 5 contains some overlapping material with J.Wilson-Gerow,
Manifestly gauge invariant transition amplitudes and thermal influence func-
tionals in QED and linearized gravity. Master’s thesis, University of British
Columbia, 2017. The technical results reported in section 5.1 were also re-
ported in the Master’s thesis, however they have since been derived in a
slightly different manner. The newer calculations are completely analogous
to those presented in Chapter 4, and so they are not written explicitly in
chapter 5.
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Preface

Chapter 6 is a modified version of J. Wilson-Gerow, Yang-Mills Gauss
law and the heavy quark binding energy in the presence of a dimension-2
gluon condensate, arXiv:2011.05312 [hep-ph]. This work was entirely my
own.

Chapter 8 contained significant overlap with A.O. Barvinsky, J. Wilson-
Gerow, and P.C.E. Stamp, Correlated worldline theory: Structure and con-
sistency, Phys. Rev. D 103, 064028, 2021. This work was initiated by
P.C.E. Stamp and A.O. Barvinsky, who first performed the calculations.
The manuscript was also written by those authors. My contribution was
to re-do all of the calculations myself to ensure that we obtained consistent
results. The work presented in Chapter 8 is not verbatim, it is my own
re-telling of the work.

Chapter 9 has not appeared elsewhere, and is entirely my own work.
Chapter 10 has considerable overlap with the paper J.Wilson-Gerow

and P.C.E. Stamp, Paths and States in the Correlated Worldline Theory
of Quantum Gravity, arXiv:2011.14242 [gr-qc]. Although P.C.E. Stamp
contributed to the version on the arXiv, the version presented here repre-
sents my original draft which was written without contribution from P.C.E.
Stamp, except for the suggestion that the theory may be renormalizable.

Chapter 11 has not appeared elsewhere, and is entirely my own work.

vi



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Lay Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Conventional Quantum Gravity . . . . . . . . . . . . . . . . 2

1.1.1 Difficulties . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Covariant quantization . . . . . . . . . . . . . . . . . 3
1.1.3 Effective field theory . . . . . . . . . . . . . . . . . . 5

1.2 Alternative Quantum Gravity . . . . . . . . . . . . . . . . . 8
1.2.1 Stochastic Theories . . . . . . . . . . . . . . . . . . . 9
1.2.2 Semiclassical Gravity . . . . . . . . . . . . . . . . . . 10
1.2.3 Correlated Worldline theory . . . . . . . . . . . . . . 11
1.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 The layout of this thesis . . . . . . . . . . . . . . . . . . . . . 13

2 A brief technical introduction . . . . . . . . . . . . . . . . . . 16
2.1 Density matrices and Closed Time Path (CTP) evolution . . 16

2.1.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Multi-partite systems . . . . . . . . . . . . . . . . . . 18
2.1.3 Time evolution . . . . . . . . . . . . . . . . . . . . . . 19

vii



Table of Contents

I Gauge theories and conventional quantum gravity . . 22

3 A functional approach to soft graviton scattering and BMS
charges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Composite Generating Functional and Influence Functional . 26

3.2.1 Propagators . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Density Matrix Dynamics . . . . . . . . . . . . . . . . 28

3.3 Functional Eikonal Expansion . . . . . . . . . . . . . . . . . 35
3.3.1 Separation of Slow and Fast variables . . . . . . . . . 36
3.3.2 Functional Eikonal expansion for gravitons . . . . . . 39

3.4 Scattering Problems . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.1 Composite Scattering functional S . . . . . . . . . . 46
3.4.2 Composite S-matrix elements . . . . . . . . . . . . . . 48

3.5 Influence Functional, BMS Noether charges, & Gravitational
Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5.1 Form of Influence Functional . . . . . . . . . . . . . . 53
3.5.2 BMS Charges and Gravitational Memory . . . . . . . 55
3.5.3 Decoherence properties . . . . . . . . . . . . . . . . . 60

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Gauge invariant propagators and states in Quantum Elec-
trodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 Background and Rationale . . . . . . . . . . . . . . . 67
4.1.2 Organization of the Chapter . . . . . . . . . . . . . . 69

4.2 Scalar Quantum Electrodynamics . . . . . . . . . . . . . . . 70
4.2.1 States in Quantum Electrodynamics . . . . . . . . . . 70
4.2.2 Gauge Invariant Propagator . . . . . . . . . . . . . . 77
4.2.3 Extracting the Dressing . . . . . . . . . . . . . . . . . 80
4.2.4 Boundary Faddeev-Popov Trick . . . . . . . . . . . . 88

4.3 Spinor Quantum Electrodynamics . . . . . . . . . . . . . . . 91
4.4 Flat spacetime evolution in a causal diamond . . . . . . . . . 95

4.4.1 Formulation of the Problem . . . . . . . . . . . . . . 97
4.4.2 Form of the Propagator . . . . . . . . . . . . . . . . . 105

4.5 Large Gauge Transformations and Additional Constraints . . 107
4.5.1 Large Gauge Transformations: Time Slicing . . . . . 108
4.5.2 Large Gauge Transformations: Causal Diamond Evo-

lution . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

viii



Table of Contents

5 Diffeomorphism invariance and gravity mediated entangle-
ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.1 Gravitational Propagator . . . . . . . . . . . . . . . . . . . . 119
5.2 Gravitational entanglement experiments . . . . . . . . . . . . 123

5.2.1 Review of the BMV proposal . . . . . . . . . . . . . . 123
5.2.2 Review of the controversy . . . . . . . . . . . . . . . . 127
5.2.3 Analysis of the BMV proposal . . . . . . . . . . . . . 132

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 Yang-Mills Gauss law and the heavy quark binding energy
in the presence of a dimension-2 gluon condensate . . . . . 141
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.2 Non-abelian Yang Mills Theory Formalism . . . . . . . . . . 144
6.3 Yang-Mills Gauss law . . . . . . . . . . . . . . . . . . . . . . 149
6.4 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.4.1 Charge Density . . . . . . . . . . . . . . . . . . . . . 155
6.4.2 Color Factors . . . . . . . . . . . . . . . . . . . . . . 157

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

II Foundations and applications of the Correlated World-
line Theory of quantum gravity . . . . . . . . . . . . . . . . . 165

7 The Correlated Worldline Theory of quantum gravity . . 166
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.2 Correlated Worldline Theory . . . . . . . . . . . . . . . . . . 167

8 First order perturbation theory in CWL theory . . . . . . 171
8.1 Generating Functional . . . . . . . . . . . . . . . . . . . . . . 171
8.2 Perturbation theory in the gravitational constant: first order 174

8.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.2.2 Gauge fixing the diffeomorphism invariance . . . . . . 175
8.2.3 Perturbative Expansion . . . . . . . . . . . . . . . . . 178
8.2.4 Gauge independence . . . . . . . . . . . . . . . . . . . 183

8.3 Correlation Functions . . . . . . . . . . . . . . . . . . . . . . 183
8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

ix



Table of Contents

9 CWL Hilbert space, states, and observables . . . . . . . . . 187
9.1 States, Operators, and Correspondence with Conventional

Quantum Theory . . . . . . . . . . . . . . . . . . . . . . . . 188
9.2 Fixing the Source Coupling Function f(n) . . . . . . . . . . 192
9.3 Redefining the CWL generating functional . . . . . . . . . . 195
9.4 Defining the propagator . . . . . . . . . . . . . . . . . . . . . 196
9.5 Observables and the Probability Interpretation in CWL The-

ory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
9.5.1 Hilbert space formulation of CWL theory . . . . . . . 199
9.5.2 Measurement and Probabilities . . . . . . . . . . . . . 201
9.5.3 CWL as a non-linear quantum mechanics theory . . . 203

10 The intrinsic large-N limit of CWL theory . . . . . . . . . . 205
10.1 CWL Generating Functional . . . . . . . . . . . . . . . . . . 205
10.2 Diagrammatics . . . . . . . . . . . . . . . . . . . . . . . . . . 207

10.2.1 Low orders - intuition . . . . . . . . . . . . . . . . . . 207
10.2.2 Higher orders . . . . . . . . . . . . . . . . . . . . . . 211

10.3 Non-perturbative Results . . . . . . . . . . . . . . . . . . . . 212
10.3.1 Generating Functional . . . . . . . . . . . . . . . . . 212
10.3.2 CWL as a Large N Theory . . . . . . . . . . . . . . . 214
10.3.3 Exact calculations of correlation functions . . . . . . 215
10.3.4 Renormalizability . . . . . . . . . . . . . . . . . . . . 218

10.4 Where are the non-linearities? . . . . . . . . . . . . . . . . . 221
10.5 Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
10.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

11 Applications of the Correlated Worldline theory . . . . . . 230
11.1 Quantum Simple Harmonic Oscillator . . . . . . . . . . . . . 231

11.1.1 Ground state two-point function . . . . . . . . . . . . 231
11.1.2 1-pt function in a coherent state . . . . . . . . . . . . 234

11.2 Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
11.2.1 Form of the weak-gravity propagator . . . . . . . . . 236
11.2.2 Evaluating the non-relativistic particle propagator . . 240
11.2.3 Applications to the BMV experiment . . . . . . . . . 244

11.3 Many particle composite object . . . . . . . . . . . . . . . . 245
11.3.1 Technical Introduction . . . . . . . . . . . . . . . . . 247
11.3.2 Composite object in CWL theory . . . . . . . . . . . 252
11.3.3 Summary and Experimental Prospects . . . . . . . . 263

12 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

x



Table of Contents

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Appendices

A Computing Exact Correlation Functions in CWL Theory 303

xi



List of Figures

2.1 An illustration of the complex closed time contour describ-
ing density matrix evolution. Figure a) is a representation of
eq. (2.17), whereas Figure b) is a completely equivalent con-

tour corresponding to the insertion of 1 = e
i
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Chapter 1

Introduction

One of the greatest open challenges in physics is to have a single unified
framework describing both gravitation and quantum mechanics. The most
common approach is to incorporate gravitation into quantum mechanics.
Gravitation, however, is quite different from the other fundamental interac-
tions as it describes the structure of spacetime itself. There have then been
speculations, originating with Feynman, that gravitation may not even fit
within quantum theory, and will instead lead to a breakdown of quantum
mechanics [4–11]. We’ll refer to these two classes of approaches as “conven-
tional” quantum gravity and “alternative” quantum gravity respectively,
reserving ‘quantum gravity’ to broadly refer to both. Historically, these di-
ametrically opposing attempts at unification have received a great deal of
theoretical effort, but without experimental data there has been little to
guide this effort. We are now, however, entering an era which has fantastic
potential to resolve this issue—the era of low-energy experimental quantum
gravity.

There is a variety of experiments, both existing and proposed for the
near future, which are expected to be sensitive to signatures of conventional
and alternative quantum gravity. Proposals have been made for both Earth-
bound and space-based experiments. Just a few examples are: matter-wave
interferometry, cavity optomechanics, small-scale Cavendish apparatuses,
optical nanoparticle levitation, Bose-Einstein condensate tests, and even
gravitational wave detectors [12–26]. The primary utility of these experi-
ments for studying quantum gravity lies in their increasing sensitivity to,
and control over, quantum states of increasingly more massive particles.
To understand the results of these elegant experiments though, one must
make theoretical predictions for physically realistic systems in low-energy
quantum gravity.

The overarching goals in this thesis are to better understand quantum
gravity. There is a plethora of research directions one can take in pursuit
of this goal, ranging from the black-hole information problem to the finer
details of “table-top” experiments. With the start of this new experimen-
tal era though, we have considered it to be particularly important to focus
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recent efforts towards the latter. Specifically, we have been working to-
wards making predictions for various tests of quantum gravity. Despite the
very ‘grounded’ goal, it has actually been essential in this program to com-
plete various formal and technical projects relating to eg., gauge invariance,
quantum decoherence, and infrared divergences in quantum field theory. In-
terestingly, this work also led to tangential projects which have implications
for fields outside of experimental quantum gravity.

1.1 Conventional Quantum Gravity

1.1.1 Difficulties

Gravitation is described by a field theory, as are all other fundamental forces
and particles. One would naturally expect that the framework of quantum
field theory (QFT) can then be applied to gravitation, since it works so in-
credibly well for providing a quantum formulation of all other field theories.
While one can do so in a perturbative sense, there is a host of conceptual
issues which prevent this from being done for a full quantum gravity the-
ory. All of these issues arise from the fact that gravitation is precisely the
phenomenon of a having a dynamical spacetime, and so a quantum gravity
theory is a theory where spacetime itself has a quantum description.

Here we’ll mention just a few examples of the difficulty. We point to the
review article written by S. Carlip for more detail [27].

i) Microcausality: In QFT one has a background spacetime on which
fields can be defined, and the background metric defines notions of space-
like, timelike, and null separations between points. A fundamental tenet of
QFT is that operators which are spacelike separated must commute/anti-
commute. This is meant to ensure that signals propagate causally in the
QFT, and it is quite central to the structure of standard QFT [28]. If the
spacetime itself is quantum mechanical though, there is no longer an ob-
jective statement about whether two points are spacelike, timelike, or null
separated. The microcausality principle simply cannot be imposed as usual.

ii) Observables: General Relativity (GR) is invariant under diffeomor-
phisms (transformations which smoothly move around points on the space-
time manifold). Physical observables are then necessarily invariant under
these transformations, and this generically requires observables to be com-
pletely nonlocal [29–33].

In classical GR one typically understand this in terms of relations be-
tween physical systems. Borrowing the example in [27]: we replace coordinate-
dependent quantities such as ‘the position of the Moon’ with coordinate-
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independent physical quantities, ‘the time it takes for a pulse of light to
travel to the moon, reflect off a mirror, and return to our lab’. Often these
coordinate-independent quantities reduce to measurements of proper time
along a geodesic.

In the classical theory we are really using the proper time as an abstrac-
tion for a physical quantity. In reality we would have a physical system
carried along our worldline, which we could reliably and repeatedly probe.
The properties of this system would be chosen so that it functions as a clock.
The “proper time along a worldline” is really a statement about observations
of this hypothetical physical system following the worldline.

Furthermore, geodesics are useful in classical GR because of the ‘probe’
limit. If we assume the stress-energy of one object is much smaller than
another, then the dynamics of the system is well described by the lighter
object following a geodesic of the spacetime metric sourced by the heavy
object. Specifying a geodesic is really an abstraction of a physical statement
about the relative motion of gravitating objects.

In a quantum theory of gravity, away from the semi-classical limit, these
two physical abstractions become incredibly complicated. Firstly, a quan-
tum system which is meant to serve as a clock cannot be repeatedly and
reliably probed without disturbing its state, so it is unclear what “proper
time” would be referencing here. Furthermore, the dynamics of two gravitat-
ing quantum systems will not have a description in terms of definite paths
and a definite metric, so it is unclear how one would even try to discuss
geodesics.

One can to to make progress by restricting to observables ‘at infinity’,
as is done in scattering theory for asymptotically flat spacetimes [34], or in
holography for asymptotically AdS spacetimes [35, 36]. This then leaves the
problem of ‘bulk reconstruction’, ie. to figure out how questions inside the
spacetime are answered by the description at infinity [37, 38].

The upshot of this whole discussion is that the standard tools of local
QFT do not seem to be useful for understanding a full quantum gravity
theory.

1.1.2 Covariant quantization

Despite the difficulties, one can suspend one’s disbelief and still try to treat
gravity like a quantum field theory. This is the covariant quantization ap-
proach, pioneered largely by DeWitt [39–42]. In this approach one assumes
the existence of a classical background metric, and treats perturbations
about this metric as a quantum field. Ultimately, one attempts to make
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the approach self-consistent by using the resultant quantum effective action
to determine the classical background.

The covariant approach does not evade the conceptual issues, and intro-
duces a number of new technical challenges [27], but it at least provides a
starting place to perform calculations.

In this approach one can use standard QFT tools to compute corre-
lation functions of various operators. The resulting correlation functions
contain divergences, as is typical in QFT, and one tries to renormalize the
results by rescaling various parameters in the Lagrangian. Quantum Gen-
eral Relativity will not allow for such a procedure though, the theory is (at
least perturbatively [43]) non-renormalizable. t’Hooft and Veltmann demon-
strated that the 1-loop divergence in pure gravity vanishes, but including
just a single scalar matter field will reintroduce a non-renormalizable diver-
gence [44]. As a result one must introduce new higher-curvature counter-
terms into the Einstein-Hilbert Lagrangian to cancel these divergences. At
two-loops new non-renormalizable divergences arise which require even more
terms be added to the Lagrangian, and at higher loops one expects this to
continue [45]. There seems to be no fundamental principle preventing this
from continuing ad infinitum, introducing arbitrarily many new terms and
undetermined parameters into the theory.1 To gain any predictive power, it
seems that a new fundamental principle is required which would specify all
of these parameters.

In light of this, there has been enormous effort to go beyond the naive
approach to quantization of General Relativity as a field theory. Two such
candidates which have received the most attention are string theory and
loop quantum gravity.

In loop quantum gravity, the smooth spacetime manifold is abandoned
for a more fundamental description in terms of a discrete quantum graph-like
structure [46]. General relativity emerges from this theory only after a large
scale coarse-graining of the fundamental degrees of freedom. In recent years
progress has been made to understand what this short distance structure
implies for black holes. A picture is starting to emerge that singularities in
quantum black holes may be propped open by the minimal eigenvalue of the
area operator, the area gap ∆ ∝ `2P [47, 48].

In string theory, at least historically, one instead starts from a description
of quantum mechanical strings propagating in flat spacetime [49]. One finds
in the weak-coupling regime that the various modes of excitation of the
string can be understood as different types of particle, and that the theory

1This is the usual story, however we expand on some subtleties in section 10.3.4.
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necessarily contains a mode describing the graviton. Furthermore, one can
perform consistency checks on the allowed coherent states in the theory
to see that Einstein gravity emerges at low energies. Following this logic
one can even compute “stringy-corrections” to predict the coefficients of
higher-curvature terms in the effective gravity action [50]. At weak-coupling
and high-energies though, examples such as high-energy scattering [49] and
closed string T-duality suggest that there is also a fundamental non-locality
in string theory [51]. In these examples, strings propagating in very compact
regions are gauge-equivalent to strings propagating in very large regions—
small length scales don’t really exist in the theory.

In both of these theories, the description of nature at short distances
seems to be nothing like a classical spacetime manifold.

It is fascinating to study these theories to gain insight into the fun-
damental nature of the world, but the unfortunate reality is that there is
likely no hope of experimentally distinguishing the two. Furthermore, the
effective field theory perspective extends this to say that it is very unlikely
that we will ever be able to experimentally distinguish between any mi-
croscopic quantum theories of gravity, unless some drastically new physics
intervenes at energies between current experiments and the Planck energy
EP ≈ 1019 GeV. [52–54],

1.1.3 Effective field theory

Roughly speaking, the first insight of gravitational effective field theory
(EFT) is: any microscopic quantum theory, which generates a generally
covariant gravity theory at large scales, can be described at low-energies as
an effective quantum field theory with a Lagrangian containing an expansion
in curvature invariants and derivatives thereof,

Leff =
√
g

(
1

`2P
R+ c1R

2 + c2RµνR
µν + ...

)
+ Lmatter. (1.1)

This quantum field theory has infinitely many interaction vertices and mod-
ifications to the graviton propagator, all parameterized by unknown coeffi-
cients ci.

The second insight of the effective field theory program is that this La-
grangian is already arranged as a derivative (energy) expansion. The co-
efficients c1, c2 above are dimensionless, and higher coefficients will have
dimensions of increasing powers of length. One expects the dimensionless
coefficients to be of order unity—this would be “natural”—but they may
possibly have large numerical values. Given that the only length scale we
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know to be relevant in gravity is the Planck length, it is also natural to
assume that the higher coefficients will be order unity numbers multiplying
powers of the Planck length. With these “naturalness” assumptions on the
size of numerical coefficients, and also with the assumption that no other
relevant length scales emerge before the Planck length, one can straightfor-
wardly conclude that the higher curvature terms will only contribute signif-
icantly at very high energies∼ 1019 GeV.

It is thus no coincidence that General Relativity, and not some other
gravity theory, emerges at low energies from the different microscopic quan-
tum gravity theories—it is the universal low energy limit of quantum gravity.

The perspective shift here is important. First, one is giving up the quest
to determine every one of the unknown parameters in the field theory. Fur-
thermore, one accepts that quantum field theory is not even necessarily a
fundamental description of nature, instead it is essentially the unique struc-
ture which emerges as a low energy description of many body quantum
systems [55].2 Additionally, the higher-derivative “non-renormalizable” di-
vergences which arise in loop calculations are no longer viewed as a sickness
of the theory, they merely represent that we have truncated the true theory
to a finite order in the derivative expansion. One can confidently renormal-
ize away these terms without worrying about introducing new undetermined
coefficients into the Lagrangian—those higher curvature terms are already
there, they are just irrelevant for low energy physics.

Given the general structure of the effective field theory one can only spec-
ulate about what happens at short distances—the theory loses predictive
power when the infinite number of constants ci become relevant. However,
one is free to try and glean intuition from the nature of the higher curvature
terms themselves.

The introduction of higher-curvature terms into the action can drasti-
cally change the behaviour of the theory at short distances [57]. This can be
seen by very naive dimensional analysis. If we consider the just the following
Lagrangian,

L =
√
g

(
1

`2P
R+ c1R

2

)
, (1.2)

where R is the scalar curvature, `2P = 16πG c−4, and c1 is a presumably
order 1 coefficient, then is is clear that the second term is significant only in
regions with curvature R ∼ 1

`2P
. To further this intuition one can actually

use this Lagrangian classically to find solutions for the gravitational field

2This idea was already clear in condensed matter physics [56].
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outside of a static point mass, m. In the linear limit one finds an effective
gravitational potential [57]

V (r) = −Gm
r

(1− e−r/(`P
√

2c1)), (1.3)

which is regular at the origin. This is further supported by the fact that there
are some novel solutions to the full non-linear equation of motion which have
a regular Kretschmann invariant at the origin [57]. One sees the analogous
behaviour in the Born-Infeld higher-curvature electrodynamics theory: the
electric field of a point charge is everywhere finite [58–60].

The classical theory is certainly not applicable at Planck scales, but
from this discussion one still begins to suspect that a full theory of quantum
gravity will resolve gravitational singularities. Because of the infinite number
of higher curvature terms in the Lagrangian, the theory may even be non-
local at small scales—making an interpretation in terms spacetime become
quite strange. Loop quantum gravity and string theory already seem to
provide explicit examples of this, and we refer to the work of Barvinsky and
Vilkovisky for a more thorough discussion of non-locality in effective field
theory [61].

The effective field theory approach allows for much more than wild spec-
ulation though, it provides a systematic framework for computing universal
results for low-energy quantum gravity. In this sense quantum general rela-
tivity is a perfectly good theory of quantum gravity, provided one does not
try to apply it to length scales of order the Planck length, `P ≈ 10−35 m.
Comparing this with the other quantum fields theories in the standard
model, quantum GR is actually an exceptionally good theory, the standard
model is not expected to be valid for anywhere near this small a scale.

One of the fascinating points highlighted by the EFT program is that
not all predictions of quantum general relativity are local corrections to
the classical theory, in fact one can find long-range quantum corrections
to classical gravity. Indeed, a number of “low-energy theorems of quan-
tum gravity” have been derived [see Donoghue and collaborators’ works
62, 63, and refs. therein]. A select few examples include quantum correc-
tions to: the Schwarzschild, Kerr, Reissner-Nordstrom, and Kerr-Newmann
black hole metrics [64–66], the gravitational potential between two massive
bodies [67], and the bending of light around massive bodies [68, 69]. One
remarkable observation to come out of this all was that the leading quantum
correction to the black-hole metrics looks precisely like a naive smearing of
the black-hole’s location over a region the size of its Compton wavelength.
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1.2 Alternative Quantum Gravity

As we’ve mentioned above, the success of the gravitational effective field
theory is bittersweet—it essentially guarantees that we will never experi-
mentally distinguish between microscopic theories of quantum gravity. This
fact alone would kill experimental efforts in quantum gravity if “conven-
tional” quantum gravity theories were the only options, but that simply is
not the case. There are a variety of “alternative” approaches to building a
theory of both gravitation and quantum mechanics.

We’ve seen above that General Relativity does not fit perfectly within
quantum theory, at short distances it must undergo drastic changes in order
to remain compatible. Alternative quantum gravity theories take a contrary
perspective and propose that it is quantum mechanics (QM) which must
undergo drastic changes at macroscopic scales so that it stays compatible
with General Relativity. One assumes that the theory uniting gravity and
quantum mechanics will predict a breakdown of quantum mechanics for
sufficiently massive objects.

This idea has quite a long history, with speculations dating back at least
to Feynman [4, 70]. Rosen later recognized the potential importance of the
Planck mass here, and proposed that perhaps QM becomes a non-linear
theory for objects heavier than mP ∼ 10−5 g [71]. Shortly after, Károlházy
used Heisenberg uncertainty arguments to suggest that spacetime was fun-
damentally fuzzy below certain length scales and that this would destroy
quantum coherence in large systems [5, 6]. The first serious efforts to devel-
oping a theory of this type came from Kibble and Randjbar-Daemi’s formu-
lation of the Møller and Rosenfeld’s semiclassical theory [72–75]. The other
major figures in the history were Diósi and Penrose. Diósi built upon the
suggestion of Károlházy and developed a model where gravitational “noise”
serves to decohere quantum systems [9, 10]. Penrose put forth a separate
set of arguments suggesting that, even in the absence of noise, an intrinsic
gravitation-induced decoherence must occur [11]. Of course these ideas have
since been refined in various ways [see 76–79, and refs. therein].

There are a variety of approaches to gravity-based QM breakdown, and
it would take us far beyond our purposes here to accurately review each of
their literatures. We refer the reader to some recent reviews for proper detail
[76–79]. Broadly speaking we can classify these approaches as: stochastic
theories, semiclassical theories, and the Correlated Worldline theory. The
new wave of low-energy quantum gravity experiments may be sensitive to
signatures of these theories, and in fact, a very recent experiment performed
by Donadi et al. has lead the authors to claim to have ruled out stochastic
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collapse theories [80].

1.2.1 Stochastic Theories

Stochastic gravity theories come in two distinct types. The first type are
often referred to as gravitational stochastic collapse models. In these models
one retains conventional structures of linear QM, but forgoes the wavefunc-
tion for the density matrix and the Schrodinger equation for a Lindblad
master equation. The evolution becomes non-unitary for large mass ob-
jects because of an introduced interaction with a stochastic “noise” field.
The strength and statistical correlations of this noise field are motivated by
gravitation [9, 10, 81, 82].

The idea of Penrose can also be fit into this category. Penrose did not ac-
tually provide an explicit mechanism, let alone a theory, which implemented
his idea of gravitation-induced quantum decoherence. However, if one makes
the simplifying assumption that his decoherence process is Poissonian, then
one can demonstrate that it must be described by the same model as Diósi
had proposed [80].

These models are successful in their quest, in that they generate deco-
herence which localizes massive objects. They are not actually theories of
gravitation though, as they do not consider the back-reaction of the quan-
tum matter onto spacetime. They are only trying to model a possible feature
of a larger theory which incorporates gravitation and quantum mechanics.

There are various other limitations with these models, perhaps the most
important being that they imply a transfer of energy into the quantum sys-
tem. The noise field in these models is external to the universe, in the
sense that it acts on objects but they do not back-react onto it. Generally
speaking, it is completely possible to have quantum decoherence without a
system gaining energy [83–85], however decoherence in the position basis
will necessarily increase a particle’s average kinetic energy—a wide-spread
wavefunction has a lower average momentum than does a statistical mix-
ture of very narrow wavefunctions. This is a violation of energy-momentum
conservation, a fundamental concept in General Relativity, and it makes it
unclear whether such models can really be incorporated into a theory of
gravity.

Beyond the issues of energy conservation, the increase in 〈p2〉 as a func-
tion of time can be interpreted as a fluctuating acceleration of the parti-
cle, and this leads to photon emission [86, 87]. Donadi et al. performed
a photodetection experiment, and their null result was used to claim such
strong bounds on stochastic collapse models that the authors concluded that
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“gravity-related collapse of the wavefunction, in its present formulation, is
ruled out”.

The other type of stochastic gravity theory is referred to as just “stochas-
tic gravity”, and it is best to discuss it after introducing the semiclassical
models.

1.2.2 Semiclassical Gravity

Semi-classical theories aim to retain classical General Relativity (GR), with
the metric instead sourced by the quantum expectation value of the stress-
energy tensor,

Rµν −
1

2
gµνR =

8πG

c4
〈ψ|T̂µν |ψ〉, (1.4)

and one attempts to self-consistently describe a quantum system evolving
on this background. In conventional quantum gravity this equation is often
taken as an approximation to gain insight into complicated problems [88],
but in the semiclassical gravity theory eq. (1.4) is assumed to be fundamen-
tal. Despite this, useful reviews on semiclassical gravity have come from
those who view it as an approximation to conventional quantum gravity [89–
91].

The result is a non-linear quantum mechanics theory for the matter.
For a single non-relativistic particle, the Newtonian approximation of this
theory gives the Schrödinger-Newton equation for the wavefunction [92, 93],

i~
dψ(x, y)

dt
= − ~2

2m
∇2ψ(x, t)−Gm2

∫
d3y
|ψ(y, t)|2

|x− y|
ψ(x, t). (1.5)

This theory has been heavily criticized. Indeed Kibble raised many issues
right from its earliest days [75]. A few of the points which have been raised
involve issues with: momentum conservation, the uncertainty principle, and
superluminal signaling [94]. Some of these arguments are controversial [95,
96], but one serious issue which remains is the that there is an explicit
protocol for performing superluminal signaling in the Schrödinger-Newton
theory [97]. If this were not enough, it has even been claimed that eq. (1.4)
has been falsified by the Page-Geilker experiment [98], though this too is
not without disagreement [see 79, and refs. therein].

The issues here arise from the use of a non-linear quantum mechanics
theory. Weinberg, Gisin, and Polchinski have each contributed to quite a
general discussion about the how issues like this are generic in non-linear
quantum mechanics theories [99–103]. The major problem is in retaining the
conventional usage of measurements, operators, and states in Hilbert space.
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The most pressing of these issues coming from instantaneous projective mea-
surements. Indeed, Unruh has succinctly pointed out that wavefunction col-
lapse would trigger an instantaneous change on the RHS of eq. (1.4) which
would be inconsistent with the LHS [104].

We note that in the full theory of conventional quantum gravity one
should also be forced to contend with the issue of instantaneous projective
measurements as well. Diffeomorphism invariance effectively forces one into
a description wherein systems are defined only relative to each other, the
relative distances and angles themselves being quantum mechanical quanti-
ties [105]3. This seems to preclude the notion of a projective measurement
acting instantaneously on a global state vector. One may then need a gen-
uine physical description of quantum systems wherein measurements do not
play a central role.

There are theories which aim to preserve the semi-classical structure
as much as possible while ameliorating the superluminal signaling issues.
Though using different motivations, these theories converge on the result
that one must introduce stochastic noise into semiclassical gravity to try
and make it consistent [79, 97, 108–110]. The “stochastic gravity” theory
which we previously alluded to is one such example [108, 109, 111].

1.2.3 Correlated Worldline theory

From Kibble’s analysis, and the many others which followed, it became
clear that a self-consistent theory describing the gravitational breakdown of
QM would necessarily abandon much of the familiar structures of QM. The
Correlated Worldline (CWL) theory, originating with P.C.E. Stamp, is an
attempt at doing this in a controlled manner [112, 113].

The idea is to retain the path-integral from quantum mechanics, but
allow for departures from the superposition principle. In a standard path-
integral one considers all possible paths for an evolving system. Each of the
paths is independent from one another, and their corresponding amplitudes
sum together to produce a total amplitude for the process. In CWL theory,
one introduces gravitational interactions between these paths. It is claimed
that this causes a “path-bunching” to occur, wherein the various paths grav-
itate together. This mechanism is negligible for small mass objects, so CWL
theory reduces to QM in the appropriate limit. For large masses however,

3We note that this is a part of a larger, and very important, question of what are the
observables in quantum gravity. We’ll avoid entering this discussion here, and refer to a
few highlights of that literature [29, 30, 106, 107].
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it is presumed that path-bunching will then dynamically select out only one
classical trajectory for the system.

CWL theory is not a decoherence/wavefunction collapse theory. It was
meant to dispense with the idea of operators, Hilbert space, projective mea-
surements, etc., with measurement processes being described as dynamical
interactions between small and large systems. The idea is that the large-
system will already be “path-bunched” and upon correlating itself with the
small system it will effectively cause path bunching in the small system.

The theory is quite new, being introduced by P.C.E. Stamp in 2012 [112],
with technical details coming a few years later [113, 114]. Aside from the
early work formulating of the theory, we have been involved in all of the
recent work on CWL theory, and this will be presented in Part II of this
thesis. For this reason we will reserve further discussion of CWL theory
until later.

1.2.4 Summary

The majority of physicists believe that conventional quantum gravity is likely
the correct description of nature, this author included, however it is scien-
tifically important to seriously explore possible alternatives. There are a
number of arguments for this. Firstly, there has been no experimental evi-
dence for conventional quantum gravity, so to be pragmatic one must also
consider alternative theories. Secondly, in this exercise one may find the
structures of QM and QR so constraining that there is no sensible alter-
native to quantizing gravity. If instead a self-consistent alternative theory
is found, then it deserves to be taken as seriously as the conventional the-
ory. Thirdly, and most importantly in our opinion, alternative theories can
provide important goals for experimental benchmarks.

It is of obvious interest to science to push technological limits by prepar-
ing and measuring larger and larger quantum systems. Also, the alternative
gravity theories all predict a breakdown of quantum mechanics for large
objects. With these alternative theories being on the horizon of current ex-
perimental capabilities, they serve as motivation to continue this quest, and
provide concrete goals to aim for.

It is an extraordinarily exciting time for quantum gravitational physics
because of the start of this new era of low-energy experimental tests. Some
proposed experiments are even sensitive to signatures of conventional quan-
tum gravity that cannot be mimicked by any alternative theory [13–15, 23,
115]. Although such tests would be completely unable to distinguish be-
tween superstring theory and loop quantum gravity, they may potentially
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determine whether or not gravity is even quantized in the conventional sense
or if it instead leads to a breakdown of QM.

1.3 The layout of this thesis

Conventional quantum gravity (CQG) theories all flow to the same universal
effective field theory (EFT) at low energies [52]. All CQG predictions for
low-energy experiments are then described by one theory with no adjustable
parameters. This makes comparison with alternative quantum gravity the-
ories much more straightforward. The alternative theories all suggest a
breakdown of standard QM behavior for sufficiently massive objects, either
through dynamical wavefunction collapse, path-bunching, or quantum deco-
herence. In many cases this breakdown may resemble quantum decoherence.
Since decoherence can also occur in CQG, it essential to quantify this deco-
herence to disentangle it from geniune breakdowns of QM.

A popular recent paper [116] claimed to do so, however we spotted a
significant error in their work. They did not correctly treat the gauge in-
variance of quantum gravity, mistaking unphysical for physical variables. In
response, we developed a novel method which kept gauge invariance mani-
fest in such path-integral calculations and isolated the true physical degrees
of freedom. An immediate application was to compute the correct gauge-
invariant Feynman-Vernon influence functional which describes conventional
gravitational decoherence. We demonstrated that very large accelerations
and lengthy coherence times would be required for matter to decohere via
graviton emission, correcting the claims of [116] that this could occur for
stationary objects. This work was all reported in the author’s Master’s
thesis [117].

Part I of this thesis is something of a continuation of this work. We
had noticed that our previously developed framework was perfectly suited
to address the problem of soft gravitons in scattering processes. Despite
being experimentally irrelevant, the soft graviton problem had gained con-
siderable attention in the literature after it was claimed that soft gravitons
might be involved in resolving the black hole information problem [118]. We
then applied our understanding of understand gravitational decoherence to
scattering processes [119, 120]. Our results agreed with those derived by
Carney et al. using diagrammatic methods [121], that the soft gravitons
would completely decohere the out-state of scattered quantum matter. Fur-
thermore, we provided a general framework for computing decoherence in
systems with a large separation of scales between the system and environ-
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ment. In this thesis, after we introduce some of the relevant formalism in
chapter 2, the analysis of soft graviton decoherence will be the content of
chapter 3.

In chapter 4 we proceed to refine our understanding of gauge-invariant
path-integrals, and we develop a generalization of the textbook Faddeev-
Popov trick to path integrals with boundary data. We apply this to address
problems in QED regarding the nature of gauge-invariant electric field dress-
ings, both for static charges, moving charges, and charge flux through null
infinity [122]. In the later case we make connection again with the soft
photon problem and clarify the nature of soft-photon dressed states.

In gravity the analogous discussion is quite timely, because of the debate
over the relevance of physical states to an upcoming experiment proposing
to test conventional quantum gravity [13, 14, 123, 124]. In chapter 5 we
discuss the arguments of the various authors, and summarize their main
points. We then use our path-integral framework to substantiate the claims
of Anastopoulos and Hu [123, 124] that the experiments will not be sen-
sitive to the true gravitational degrees of freedom. Despite this, we later
provide a set of arguments suggesting that conventional quantum gravity is
the only consistent theory which could produce a positive signature in these
experiments.

After familiarizing ourselves with constraints in gauge theory we find a
related, but tangential, question in Yang-Mills theory to be quite interesting.
In chapter 6 we demonstrate a mechanism through which a vacuum gluon
condensate can lead to quark confinement [125]. This work centers on a
separation between the constrained and unconstrained degrees of freedom
in Yang-Mills theory. Since this work is quite tangential to our original goal
of understanding quantum gravity experiments, we soon return to quantum
gravity.

In Part II of this thesis we spend quite a lot of time studying the Cor-
related Worldline theory of quantum gravity. We review some work done
in direct collaboration with A.O. Barvinsky and P.C.E. Stamp [126, 127],
however we also provide a lot of our own perspectives on the theory.

In chapter 7 we provide a very brief introduction to the CWL theory. In
chapter 8 we then set-up a perturbative analysis of CWL to leading order
in the gravitational coupling `2P . The primary results are: i) conventional
quantum gravity loop contributions are suppressed by undetermined param-
eters of the theory, ii) novel CWL contributions arise, but at this order they
simply reproduce conventional quantum gravity tree-level results, and iii)
the theory retains the diffeomorphism symmetry of conventional quantum
gravity.
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In chapter 9 we try to develop our own definition/understanding of the
CWL theory in terms of the conventional structure of Hilbert space, oper-
ators, measurement, etc. This approach is quite anti-thematic from P.C.E.
Stamp’s intentions for the theory, however we felt that it was necessary to
do in order to bring the theory closer to experimental test. We discuss how
QM states and operators are embedded in CWL, fix the previously unde-
termined parameters, redefine the theory to simplify redundancies, define
transition amplitudes, and ultimately attempt to discuss measurements.

In chapter 10 we make use of an enormous simplification of CWL theory—
the fact that the theory has an intrinsic large-N limit. We use this to ex-
plicitly evaluate the gravitational path integral, and demonstrate the equiv-
alence to an “in-out” semiclassical gravity theory. We use the exact expres-
sion for the generating functional to compute CWL corrections to various
correlations functions, and discuss the fact that the theory actually seems
to be renormalizable.

In chapter 11 we bring together the formal developments to try and make
predictions for simple experimentally relevant systems. We show that simple
probes of quantum mechanical oscillators will not reveal CWL signatures,
and suggest possible alternatives. We then discuss the CWL modifications
to a particle propagator. For a particle with a single dominant classical
path, we find no non-trivial corrections. We then study a two-path system,
and we find significant modification to the dynamics; the path bunching
mechanism starts to reveal itself. This is followed-up by a discussion of
the gravitationally-mediated-entanglement experimental proposals. We find
that CWL will predict a null result for their experiment, in contrast with
the nontrivial prediction of conventional quantum gravity. Finally, we apply
CWL theory to a many-particle object such as a microscopic solid. The
primary result is an estimate of the experimental timescales required to see
signatures of CWL theory.

Throughout this thesis we will use units in which ~ = c = ε0 = 1, and a
−+ ++ metric signature.
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Chapter 2

A brief technical
introduction

In this thesis we are ultimately motivated by the theoretical side of experi-
mental tests of quantum gravity, however we contribute to this from a variety
of different angles. As discussed in chapter 1, we study: physical systems
in conventional quantum gravity, formal questions in QED and quantum
gravity, physical systems in Yang-Mills theory, and a range of formal and
practical questions in the Correlated Worldline theory. It would be quite
disjointed if we introduced here the relevant technical material for each of
these studies. Instead, we will cover some basic ideas which appear multiple
times throughout the thesis. The formalism relevant for each chapter will
later be introduced as necessary.

2.1 Density matrices and Closed Time Path
(CTP) evolution

2.1.1 Basics

In quantum mechanics, a pure state of a system is described by a state
vector |ψ〉 in a Hilbert space. Observables are described by self-adjoint
operators Oa on this Hilbert space. These operators can be decomposed into
their respective eigenbases as Oa =

∑
j λ

j
a|λja〉〈λja|, where each eigenvalue λja

corresponds to a potential outcome of measuring the observable Oa, and the
eigenstates are orthonormal 〈λja|λka〉 = δjk. One can compute the probability
of obtaining the outcome λja, when measuring the observable Oa on a system
in state |ψ〉, by computing the bilinear function 〈ψ|λja〉〈λja|ψ〉. Using this
one can compute the expected value (mean), 〈ψ|Oa|ψ〉, for measurements of
the observable Oa.

If the state of a system is not known exactly, but the system is understood
to be in any of the pure states {|ψk〉} with probabilities pk, then one says
the system is in a mixed state. Mixed states are described using the density
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matrix
ρ =

∑
k

pk |ψk〉〈ψk|. (2.1)

It is straightforward to see that observables are appropriately computed as

〈Oa〉 = Tr (ρOa) . (2.2)

One particularly useful feature of the density matrix is its connection
with the probability density function in classical physics. Suppose we we’re
interested in an observable O for a single quantum particle. We can write
eq. (2.2) in the position basis,

〈O〉 =

∫
dxdx′ρ(x, x′)〈x′|O|x〉, (2.3)

where
ρ(x, x′) ≡ 〈x|ρ|x′〉. (2.4)

If O is a position space observable O = O(x̂), then this simplifies consider-
ably

〈O〉 =

∫
dxρ(x, x)O(x), (2.5)

and it is clear that the diagonal elements of the density matrix are just
classical probabilities. Off-diagonal density matrix elements then encode
some information about the quantum nature of the system. When the off-
diagonal elements of a density matrix decay with time, we say that the
system is undergoing quantum decoherence.

Another useful feature is for thermodynamics. Consider a system at
temperature T described by the canonical ensemble. The thermodynamic
average of an observable O is then

〈O〉 = Z−1
∑
n

e−βEn〈n|O|n〉, (2.6)

where Z =
∑

n e
−βEn , β = (kBT )−1 and {|n〉} are the energy eigenstates of

the system. This can be conveniently rewritten in terms of the Hamiltonian,

〈O〉 = Z−1Tr
(
e−βĤO

)
, (2.7)

from which it is clear that a thermal state in quantum theory is described
by a density matrix

ρβ =
e−βĤ

Z
. (2.8)
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2.1.2 Multi-partite systems

Consider two subsystems, A and B, and assume they are described by a pure
state |Ψ〉. If it is possible to factor this state into a product of two states,
ie.

|Ψ〉 = |φ〉 ⊗ |χ〉, (2.9)

then the systems are defined to be not entangled, otherwise they are entan-
gled and are instead described by

|Ψ〉 =
∑
i

ci|φi〉 ⊗ |χi〉, (2.10)

where {|φi〉} and {|χi〉} are sets of orthonormal states for the subsystems A
and B respectively. A canonical example of an entangled state is the Bell
state for spins

|ψ〉 = 1√
2

(
| ↑〉| ↓〉+ | ↓〉| ↑〉

)
. (2.11)

Suppose we are interested in an observable for only subsystem A, O =
OA ⊗ 1B. If the system is not entangled (2.9) then we have

〈O〉 = 〈φ|OA|φ〉 〈χ|χ〉 = 〈φ|OA|φ〉. (2.12)

The state (2.9) is, in this sense, reducible: a complete description of A is
contained in |φ〉.

If the system is entangled however, then from eq. (2.10) we have

〈O〉 =
∑
i,j

c∗i cj〈φi|OA|φj〉 〈χi|χj〉

=
∑
i

|ci|2〈φi|OA|φi〉. (2.13)

The entangled state was an irreducible description of the two systems, and
if we ignore system B then we must describe system A by the mixed state
“reduced” density matrix

ρA = TrB
(
|Ψ〉〈Ψ|

)
=
∑
i

|ci|2|φi〉〈φi|. (2.14)

Entanglement and decoherence are intertwined concepts. If A and B are not
entangled, then there is no decoherence. If however A and B are entangled,
then we can say B has caused decoherence in A (or vice versa).
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2.1.3 Time evolution

A pure state evolves, in the Schrödinger picture, as |ψ(t)〉 = e−
i
~ Ĥt|ψ(0)〉,

and thus under Hamiltonian evolution a density matrix evolves as

ρ(t) = e−
i
~ Ĥtρ(0)e

i
~ Ĥt. (2.15)

If an initial state is prescribed at time t = 0, and an observable is measured
at time t, then the expectation value is

〈O〉 = Tr
(
e
i
~ ĤtOe−

i
~ Ĥtρ(0)

)
, (2.16)

where we’ve used the cyclic property of the trace to rearrange the expression.
If we read eq. (2.16) from right to left, it roughly looks as if: we start

with a state, evolve forward to time t, measure the observable O, and then
evolve backwards to time t = 0. There is not actually any backwards in
time evolution occurring here, but it is common terminology to say density
matrix evolution has forward and backward/return time evolution, hence
the name Closed Time Path (CTP) evolution. Additionally, if we start from
an initial thermal state (the ground state is just a thermal state with inverse
temperature β →∞) then this can be written as

〈O〉 = Z−1Tr
(
e
i
~ ĤtOe−

i
~ Ĥte−βĤ

)
. (2.17)

The thermal density matrix can be viewed as describing evolution though
an imaginary time τ = −i~β. One can then view eq. (2.17) as evolution
along a particular complex time loop, with the insertion of an operator O
at time t.
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2.1. Density matrices and Closed Time Path (CTP) evolution

Figure 2.1: An illustration of the complex closed time contour describing
density matrix evolution. Figure a) is a representation of eq. (2.17), whereas
Figure b) is a completely equivalent contour corresponding to the insertion

of 1 = e
i
~ Ĥ(∞−t)e−

i
~ Ĥ(∞−t) into eq. (2.17).

It is possible when using the density matrix to describe time evolution
in a manner more generally than using a Hamiltonian, this is the enormous
topic of open quantum systems [128]. For our purposes it is not necessary
to go deeply into this topic. We will however discuss some basic aspects of
its path-integral formalism. We will now set ~ = 1.

Let us use a single particle for simplicity, but the following discussion
generalizes trivially. The unitary time evolution of a pure state can be
described via the Hamiltonian operator, or via the propagator,

ψ(x, t) =

∫
dyK(x, y|t)ψ(y, 0), (2.18)

where

K(x, y|t) =

∫ q(t)=x

q(0)=y
Dq(τ) eiS[q(τ)]. (2.19)

The integral here is over all paths q(τ) from y at τ = 0 to x and τ = t, and
S is the action for the particle. To describe the unitary time evolution of a
density matrix we would then also describe the return path

ρ(x, x′, t) =

∫
dydy′K(x, x′, y, y′|t)ρ(y, y′, 0), (2.20)

K(x, x′, y, y′|t) =

∫ q(t)=x

q(0)=y

∫ q′(t)=x′

q′(0)=y′
DqDq′ eiS[q]−iS[q′]. (2.21)
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The density matrix propagator K in eq. (2.21) can obviously be factored
into separate integrals for the forward and return paths, and the evolution
of the system is just standard unitary evolution. One can describe an open
quantum system by coupling these paths via a Feynman-Vernon influence
functional F [q, q′] [129]. This functional is often written as F = ei∆−Γ, for
real functions ∆ and Γ > 0,

K(x, x′, y, y|t) =

∫ q(t)=x

q(0)=y
Dq
∫ q′(t)=x′

q′(0)=y′
Dq′ eiS[q]−iS[q′]+i∆[q,q′]−Γ[q,q′]. (2.22)

The function Γ is of most interest to us, it is called the decoherence func-
tional, as it suppresses certain density matrix elements.

This set-up is quite general, it can describe the influence on a system by
an environment which is either classically stochastic or quantum mechanical.
To understand decoherence via a quantum system, one has

F [q, q′] =

∫
dX1 dX

′
1 dX2 ρ0(X1, X

′
1)

∫ X2

X1

DX
∫ X2

X′1

DX ′ eiSX [X,q]−iSX [X′,q′],

(2.23)
where ρ0 is the initial density matrix for the environment X, and the trace
over the environment is represented by tying the final state endpoints to-
gether.

Rather than studying specific elements of the density matrix propagator,
one can instead use this formalism to directly evaluate expectation values.
In this case there is a trace over both the system and environment, with an
operator inserted to measure the system. An example of this would be

〈O〉 =

∮
DqDq′

∮
DXDX ′ eiS[q]+iS[X,q]−iS[q′]−iS[q′,X′]O(q). (2.24)

The symbol
∮

denotes that we are taking the closed loop time contour, as
in fig. 2.1. One can go a step further and produce a generating functional
for these observables,

Z[J, J ′] =

∮
DqDq′

∮
DXDX ′ eiS[q]+iS[X,q]+i

∫
dtJO(q)−iS[q′]−iS[q′,X′]−i

∫
J ′O(q′),

(2.25)
and one can simply take functional derivatives with respect to J, J ′ to com-
pute correlation functions of the desired observables. This is the starting
point for the Schwinger-Keldysh, or “in-in” formalism [130–132] 4.

4We note that the Keldysh approach is actually more general than this. There one
often allows the initial state to be an out-of-equilibrium state. In this case one still has
the closed-time contour in the future, but the past boundary conditions are no longer
specified using a “thermal circle”.
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Gauge theories and
conventional quantum

gravity
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Chapter 3

A functional approach to soft
graviton scattering and BMS
charges

In this chapter we develop techniques for understanding decoherence in
quantum gravity. There are a number of alternative quantum mechanics
theories which posit that for sufficiently large masses gravitational effects
will lead to either decoherence or some other breakdown of quantum me-
chanics. To progress towards any type of test of these theories, one must
understand how decoherence occurs even in conventional quantum gravity,
so that we can have a baseline for comparison. In the author’s Master’s
thesis progress was made in this direction, showing how decoherence effects
arise from unequal gravitational radiation being emitted from the various
paths in a path integral [117]. In that work no explicit calculations were
done which quantified the decoherence for specific examples. Here, we de-
velop a general framework which incorporates the previous work and allows
one to actually quantify the gravitational decoherence in various settings.
Then, as an example, we apply this to quantify the soft-graviton induced
decoherence in scattering events.

We consider the interaction between a matter system and long wave-
length (soft) gravitons. Using a functional eikonal expansion, and a Feyn-
man influence functional, we evaluate the effect of coupling to soft gravitons
on the evolution of a matter system. We also introduce and compute a
“composite generating functional” which allows us to calculate a decoher-
ence functional for the time evolution of the system. These techniques allow
us to formulate scattering problems in a way which deals consistently with
infrared effects, and the expressions are also manifestly invariant under small
diffeomorphisms. We show how the decoherence functional for scattering
processes can be written in terms of the infinitely many conserved charges
associated with asymptotic Bondi-Metzner-Sachs (BMS) symmetries, the
soft-graviton factors, and the asymptotic gravitational memory. The results
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allows us to address the question of how much information is lost to the
gravitational field during the scattering.

3.1 Introduction

Although the black hole information paradox [133, 134] has been with us
now for over 4 decades, it is without any generally accepted resolution -
recent reviews by Unruh and Wald [135] and by Marolf [136] indicate the
depth of the issues involved. One idea that has emerged recently in this
connection focuses on soft gravitons and soft photons, and the asymptotic
charges associated with these [118, 137–144]. Insofar as black holes are
concerned, the idea here is that information loss from the black hole will
arise from both photon and graviton emission, and that this information is
stored at the future boundary of the horizon. The information can, in this
scenario, be described in terms of “charges” at future infinity; in the case of
gravitons, these “BMS charges” are associated with BMS supertranslations.
Extensive discussions of this point of view appear in the recent papers of
Strominger et al. [139, 145, 146].

Quite apart from any implications for the physics of black holes, this work
has raised important questions about the information loss associated with
soft bosons coupled to matter fields: currently there is strong disagreement
over whether there is any information loss at all, and if so how much.

One point of view argues that the emission of soft bosons, with its asso-
ciated infrared catastrophe, must be associated with information loss - the
information is carried off in the form of bremsstrahlung radiation, by an
infinite number of soft bosons. According to this point of view, we must
average over the soft bosons, noting that any information contained in them
is only meaningful if one can access it using some measuring system, which
will inevitably have a finite energy discrimination (typically formulated in
terms of an IR cutoff on the boson excitations). This point of view goes
back to early formulations of the IR divergence problem for QED [147, 148],
which are now standard in many textbooks [55].

An opposing point of view argues instead that this information loss is
illusory - that the IR modes are “carried along” with the relevant matter
field [149–152]. This point of view goes back to Chung [153] and Kibble
[154, and refs. therein] (see also Kulish and Faddeev [155]), who argued
that any calculation of the IR properties should be formulated in terms of
coherent states for the background radiation field, in which no IR cutoff
should be involved. According to this point of view, we do not average
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over the very low-energy bosons when trying to describe any information
loss, and in fact there is no information loss (one can however formulate a
contrary point of view, also using coherent states [156], see also [157] for yet
another perspective).

In order to address this we consider the concrete question: how can one
describe and quantify the decoherence in a gravitational system, and what
is the correct way to describe the information loss? The results we find are
applicable way beyond the scattering problem - using a decoherence func-
tional one can discuss any kind of information loss in the system, whether
one deals with scattering or some quite different set-up.

In this chapter we will also argue that a correct answer to this question
requires a non-perturbative formulation, and moreover one which does not
rely on either IR cutoffs introduced by hand, or on some set of putative
measuring systems acting at future infinity. Thus a second question asks -
how can one formulate the problem of information loss non-perturbatively?

To deal with these various questions we introduce two new techniques in
this chapter, viz.,

(i) we introduce a “composite generating functional” which, amongst
other things, allows us to calculate the time evolution of the matter field
reduced density matrix. This generating functional is a generalization of
the decoherence functional well known in condensed matter physics [158]; in
the present case we specialize to the case of a scalar matter field coupled to
gravitons.

(ii) To formulate the infrared physics non-perturbatively, we adapt a
technique originally devised by Fradkin and collaborators [159, 160], which
takes the form of a WKB expansion about the eikonal limit. No coherent
boson states or IR cut-offs are required in this formulation. This allows us
to directly address the controversy, discussed from different points of view
in refs. [118, 137–144] as well as refs. [121, 145, 146, 149–152, 156, 157],
over information loss in graviton scattering.

Using these techniques we derive a functional eikonal expansion for the
composite generating functional of a scalar field interacting with the gravi-
tational field, written in terms of pairs of Feynman paths Tµν(x), T ′µν(x) for
the matter field stress energy - this is our principal new result. We then look
at the scattering problem that has caused so much discussion. To do this
one needs to further extend the composite generating functional technique,
to calculate the scattering of a reduced density matrix for the matter field
and its “in” and “out” states. We then discover that in the asymptotic limit
where these states are very widely separated, the decoherence functional can
be written in terms of the asymptotic BMS charges for the system, as well
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as in terms of a gravitational memory function. In this way we confirm that
the information loss can be written in terms of these charges, as argued by
Strominger and others [118, 137–145].

The rough plan of this chapter is as follows. In the next section (sec-
tion 3.2) we describe the basic formalism used in this work. We introduce
the composite propagators and generating functional used here, giving de-
tailed expressions for a scalar matter field coupled to gravitons; and we then
show how these can be used to derive the decoherence functional for the
matter field. We also give a brief discussion of how one deals with diffeo-
morphism invariance in this formalism. Then, in section 3.3, we describe the
eikonal expansion technique used here to isolate out the key infrared (IR)
behaviour that we are interested in - this involves first making a formal sepa-
ration between slow and fast variables, and then making a functional eikonal
expansion for the graviton variables, to give expressions for quantities like
the decoherence functional introduced in section 3.2.

In sections 3.4 and 3.5 we move on to discuss the scattering problem for
the matter field. We first derive general results for the “composite S-matrix”
of the reduced density matrix (this is not the scattering matrix for the fields
themselves), in terms of our composite generating functional, and show how
this can be written in terms of the decoherence functional Γ[T, T ′]. Finally,
in section 3.5, we show how both of these can be written as a function of
the BMS Noether charges and in terms of a gravitational memory function;
and we summarize the extent to which these results answer the questions
posed in this introduction.

3.2 Composite Generating Functional and
Influence Functional

In this section we introduce the formal tools to be used, as well as estab-
lishing our notation. In particular, we

(i) describe “composite propagators” and the associated composite gen-
erating functionals. To make this clear we do it both for ordinary quantum
mechanics, and for a matter field coupled to soft gravitons, after integrating
out the soft gravitons.

(ii) introduce the Feynman influence functional for the matter field. For
those unfamiliar with influence functionals and the related decoherence func-
tional, we give a short introduction to these.

We also add brief remarks on the diffeomorphism invariance of the tech-
niques used.
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3.2.1 Propagators

We begin by recalling the usual definitions for propagators in quantum grav-
ity. The following material is standard in quantum field theory [55]; we
simply establish our notation here. We define ordinary propagators in the
usual way as path integrals, so that, eg., a single particle has the propagator

K2(x, x′) =

∫
Dgµν∆(g) eiSG[gµν ]

∫ x

x′
Dq eiSo[q,gµν ]

=

∫
Dgµν∆(g) eiSG[gµν ] K2(x, x′|g) (3.1)

where K2(x, x′|g) is the particle propagator in a fixed background metric
gµν(x), SG[gµν ] is the Einstein action with appropriate gauge breaking terms
added, and ∆(g) is a Faddeev-Popov determinant which provides the appro-
priate integration measure as the gauge breaking terms in the action serve
to divide out diffeomorphism-equivalent metric configurations. At the mo-
ment, this path integral over metrics is only symbolic; we have not defined
the measure, the Faddeev-Popov determinant, nor the “gauge-breaking”
terms in the action. Throughout this chapter, and the entire thesis, we will
only be quantizing a metric perturbation about Minkowski spacetime. In
this limit, one can be precise about the objects mentioned above.

In the same way, for a field φ(x) which propagates between configurations
Φ′(x) and Φ(x) we have

K2(Φ,Φ′) =

∫
Dgµν∆(g) eiSG[gµν ]

∫ Φ

Φ′
Dφ eiSM [φ,gµν ]

=

∫
Dgµν∆(g) eiSG[gµν ] K2(Φ,Φ′|g) (3.2)

where SM [φ, gµν ] is the scalar field action in the background gµν(x).
Our treatment of quantum gravity will be only as a low energy effective

field theory of a metric perturbation about flat spacetime. Since it is an
effective field theory, the energy scale of the problem will determine whether
or not higher order interaction terms will be retained in the expansion on
the action. The absence of fixed boundary data in the path integral for the
metric perturbation implies, in the standard way, that we are considering
vacuum-to-vacuum evolution for this quantum field. Of course, enforcing
that the gravitational field remain in an unexcited state is an unphysical
restriction in most cases—for many applications one should also consider
specifying boundary data for the gravitational field. Indeed, in the following
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3.2. Composite Generating Functional and Influence Functional

sections we will discuss exactly how one handles non-vacuum final states
for the gravitational field, and what the implications are for the quantum
decoherence of matter. Furthermore, in this chapter we will consider such
low energies that linearized gravity is the appropriate description.

The gravitational action is specified by writing gµν = ηµν + 2κhµν in the
usual way, with κ2 = M−2

P = 8πG. We can then write the total action in
the form

S = SM + SG + Sint (3.3)

in which SM is the matter action in flat spacetime, and the graviton action
is

SG = SGHY −
∫
d4xhµν(x)Ḡµν(x) + Sgb (3.4)

in which Ḡµν is the linearized Einstein tensor, viz.,

Ḡµν =
1

2

(
− ∂2hµν − ∂µ∂νh+ ∂ρ∂µhρν

+ ∂ρ∂νhρµ − ηµν∂σ∂ρhσρ + ηµν∂
2h
)

(3.5)

and SGHY is the linearized Gibbons-Hawking-York boundary term [161,
162], and Sgb includes the gauge-breaking terms, and the matter-gravity
coupling term is

Sint = κ

∫
d4xhµν(x)Tµν(x) (3.6)

in which Tµν(x) ≡ Tµν(φ(x)) is the matter stress-energy tensor, viz.,

Tµν = −∂µφ∂νφ− ηµνLφ. (3.7)

for the scalar field.

3.2.2 Density Matrix Dynamics

We will be interested primarily in the direct calculation of probabilities for
the matter field. We will thus be calculating reduced density matrices for the
matter field, taken between two matter field configurations, having already
integrated out the gravitons in a way which we will soon specify.

In chapter 2 we discussed the standard Schwinger-Keldysh formalism, [130,
131], and what follows will be very familiar. Both formalisms include a dou-
bling of the degrees of freedom, with both forward in time and backward
in time evolution. There is however one slight technical difference between
our “composite” formalism and the Schwinger/Keldysh formalism, which we
will describe later when necessary.
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3.2. Composite Generating Functional and Influence Functional

The dynamics of the reduced density matrix is written in terms of a
propagator K(2, 2′; 1, 1′) for the matter density matrix in the form

ρφ(2, 2′) =

∫
d1

∫
d1′K(2, 2′; 1, 1′) ρφ(1, 1′) (3.8)

where here the labels 1, 1′, and 2, 2′, refer abstractly to initial and final values
states of the scalar matter fields φ(x), φ′(x). These states will be described
by inserting operators on the vacuum, so that, eg.,

|1〉 ≡ O1(φ)|0〉 (3.9)

and so on. The operators Oj(φ) will be assumed to be products of field
operators, eg. Oj(φ) = φ(xjn)...φ(xj1). Thus ρφ(1, 1′) ≡ ρφ(O1(φ),O1′(φ)).
We will sometimes refer to this forward/backward combination of paths as
the “Keldysh” paths.

In what follows we aim to give useful expressions for the density ma-
trix propagator K(2, 2′; 1, 1′), in terms of a “composite generating func-
tional”, which can itself be written in terms of the Feynman influence func-
tional [129]. We begin by giving formal expressions, and then explain their
physical meaning 5.

Density Matrix Propagator

Let’s start by just listing the main formal results we will require. The idea
is to begin with a density matrix for the total “universe” (here this is the
scalar matter field coupled to the gravitational field) and then trace over the
gravitational environment to get the reduced density matrix for the matter
field, so that

ρ̂φ = TrG ρ̂U (3.10)

We will assume that in the distant past the universal density matrix begins
in an uncorrelated product form, viz.,

ρ̂
(in)
U = ρ̂

(in)
φ

⊗
ρ̂

(in)
G (3.11)

5There have been many formulations of non-equilibrium dynamics which can be ap-
plied in quantum gravity theory, and in which decoherence appears; important examples
include the work of Barvinsky and Vilkovisky [61] as well as [163, 164]. There is some
overlap between some parts of the work presented herein, and these papers. The princi-
ple difference between the current work and the earlier works is the development here of
composite functionals, and their application to the scattering problem.
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3.2. Composite Generating Functional and Influence Functional

and that the gravitational density matrix ρ̂
(in)
G in the distant past can be

described, in linearized gravity, by a thermal density matrix6; the matter
state is initially a vacuum state for the matter field. Entanglement between
the matter field φ(x) and the gravitons is then generated by the gravitational
coupling. The assumption of an initial product state is typically made to
simplify the formal development.

As mentioned in chapter 2, one can write a path integral expression for
the propagator K(2, 2′; 1, 1′) of the reduced density matrix as

K(2, 2′; 1, 1′) =

∫
Dφ
∫
Dφ′ O2(φ)O2′(φ

′)O1(φ)O1′(φ
′)

× eiSφ[φ]−iSφ[φ′]F [φ, φ′] (3.12)

where F [φ, φ′] is the Feynman influence functional, defined below. By a
standard manouevre we rewrite the fields φ, φ′ in this expression in terms
of functional derivatives with respect to their corresponding external source
variables J(x), J ′(x), allowing us to write eq. (3.12) in the form

K(2, 2′; 1, 1′)

= O2

(
−iδ
δJ

)
O2′

(
iδ

δJ ′

)
O1

(
−iδ
δJ

)
O1′

(
iδ

δJ ′

)
Z [J, J ′]

∣∣∣∣
J=J ′=0

(3.13)

where the composite generating functional Z [J, J ′] is defined as

Z [J, J ′] =

∫
Dφ(x)

∫
Dφ′(x) ei[Sφ[φ]−Sφ[φ′]+

∫
d4x (J(x)φ(x)−J ′(x)φ′(x))]F [φ, φ′].

(3.14)
The advantage of this manouevre is that we are no longer restricted

to specific density matrix elements, specified by certain operators Oj . We
can now study, in a much more general framework, the physics of a mat-
ter system interacting with, and radiating, gravitons. Later, when we are
concerned with computing specific density matrix elements, we will simply
take the corresponding functional derivatives of our result for the composite
generating functional.

It is here that we may remark on the difference between this “composite”
formalism and the Schwinger-Keldysh formalism. The crucial difference is
in the treatment of boundary conditions. In the latter, one “connects” the

6We assume a thermal state for the gravitons for two reasons: i) the framework here is
not complicated by this generalization, and ii) it may serve as an approximate model of
a stochastic gravitational wave background. In later sections we will set the temperature
of the background to zero to understand purely radiative effects.
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3.2. Composite Generating Functional and Influence Functional

(a) (b)

Figure 3.1: Graphical representation of typical terms in (a) the propaga-
tor for the matter field density matrix K(2, 2′; 1, 1′), in the absence of any
external currents, and (b) the composite generating functional Z [J] in the
presence of external currents J(x), J ′(x). The matter fields are shown in
heavy black, the graviton propagators in hatched red, and external currents
in hatched blue; the effect of the field operators Oj is shown in finely hatched
black. The closed ends of the black ring in (b) may be misleading, it simply
represents lines which run off to infinity. What they formally represent are
circles in Euclidean time with infinite diameter that prepare the vacuum
density matrix.

matter variables at future infinity, an operation corresponding to performing
a trace. In comparison, in this ‘composite” approach the forward and return
integrals have independent boundary data. In the Schwinger-Keldysh for-
malism, one is then limited to computing expectation values, whereas in the
“composite” formalism one can explicitly compute specific density matrix
elements.

These explicit expressions are rather lengthy, and it is useful to introduce
here a compact notation for the Keldysh paths involved [165], in which
spacetime coordinates, fields and currents, etc., are all represented as 2-
component boldface vectors, referring to the forward and backward segments
of the paths. Then the equation of motion eq. (3.8) for the matter field
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3.2. Composite Generating Functional and Influence Functional

reduced density matrix ρφ becomes

ρφ(2) =
∑

1

K(2; 1) ρφ(1) (3.15)

so that ρφ(1) ≡ ρ(1, 1′) and K(2; 1) ≡ K(2, 2′; 1, 1′). The result eq. (3.12)
for the density matrix propagator is then written as

K(2; 1) =

∫
DΦO2O1e

iSφ[Φ]F [Φ], (3.16)

where Φ ≡ (φ, φ′), where Sφ[Φ] ≡ Sφ[φ] − Sφ[φ′], and where F [Φ] is the
Feynman influence functional. The equivalent result eq. (3.12) for the den-
sity matrix propagator is written as

K(2,1) = O2(δJ)O1(δJ)Z [J]

∣∣∣∣
J=0

. (3.17)

and the composite generating functional is just

Z [J] =

∫
DΦ ei[Sφ[Φ]+

∫
d4xJ·Φ]F [Φ]. (3.18)

where J·Φ ≡ (Jφ−J ′φ′), and δJ ≡ −i(δ/δJ(x), −δ/δJ ′(x)). One can give a
graphical interpretation of the function K(2, 2′; 1, 1′) appearing in eqs. (3.12)
and (3.17) as shown in fig. 3.1(a); the equivalent graphical interpretation of
the composite generating functional Z [J] is shown in fig. 3.1(b).

We can see, that Z [J] is acting as an analogue of the usual generating
functional in ordinary quantum field theory, but now for computing reduced
density matrix elements, in which the gravitons have already been integrated
out, rather than computing the usual vacuum-to-vacuum correlation func-
tions. This is shown in the graphical representation in fig. 3.1(b), in which
an example Feynman graph is shown, with one graviton line representing the
usual interaction of a system with itself in the forward time evolution, and
another graviton line representing gravitational radiation which connects
the forward and backwards lines.

Influence Functional

All the key physics in our problem is in the influence functional F [φ, φ′]; it
not only describes the dephasing and relaxation of the matter field by the
gravitational field, but also all reactive renormalization effects of gravita-
tional interactions on the matter field.
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3.2. Composite Generating Functional and Influence Functional

Formally the influence functional is produced by integrating out the
graviton and interaction terms (eqs. (3.4) and (3.6)) in the density matrix
propagator, so that we have

F [T] =

∫
Dh e

i
~ (SG[h]+Sint[h,T]) (3.19)

where we are again using our compact notation, and we have written F as
a functional of T instead of Φ, using eq. (3.7). Hidden in this compact
notation is the treatment of the initial and final data for the gravitons. The
forward and return paths are connected in the future, which corresponds to
a trace over the graviton degrees of freedom. The paths are also connected
in the past, albeit now by an ring in imaginary time with circumference
1/kBT—recall the discussion from section 2.1.3. This prepares an initial
thermal state for the gravitons at temperature T .

It is convenient to write

F = ei(Ψo+Ψ), (3.20)

where Ψo incorporates all static “self-gravity” effects (the analogue of the
Coulomb contribution in a QED calculation), and where the complex phase
functional Ψ[T, T ′] contains all dynamic effects. In linearized gravity the
gravitational action is quadratic in the field hµν and the interaction is linear,
and it is then a theory of the type which has an exactly computable influence
functional [129]. The details of this calculation can be found in the author’s
Master’s thesis, [117]. Separating the real and imaginary parts as Ψ[T, T ′] =
∆[T, T ′] + iΓ[T, T ′] one has the explicit expressions [117, 166]:

∆[T, T ′]

=
κ2

2

∫ tf

ti

d4x

∫ x0

ti

d4x̃
[
Tµν(x)− T ′µν(x)

]
Dµναβ

1 (x, x̃)
[
Tαβ(x̃) + T ′αβ(x̃)

]
Γ[T, T ′]

=
κ2

2

∫ tf

ti

d4x

∫ x0

ti

d4x̃
[
Tµν(x)− T ′µν(x)

]
Dµναβ

2 (x, x̃)
[
Tαβ(x̃)− T ′αβ(x̃)

]
(3.21)

whereDµναβ(x) = Dµναβ
1 (x)+iDµναβ

2 (x) is just the finite-temperature gravi-
ton propagator:

Dµναβ(x) =

∫
d3q

(2π)3

eiq·x

q
Πµναβ(q)

(
sin qx0 + i cos qx0 coth

βq0

2

)
(3.22)
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defined at temperature T , where we write β = 1/kT , and where Πµναβ(q)
is the “TT projector”, which projects out all but the transverse traceless
modes. Note that eq. (3.21) is for the moment formal, since we have yet to
specify how to deal with high-energy cutoffs, etc.

The imaginary part Γ[T, T ′] of the influence functional phase is what is
usually referred to as the “decoherence functional” [158], and is of primary
interest to us here. Once exponentiated and inserted into the composite
generating functional, its physical meaning is most easily understood by
expanding the exponential. A 4th-order (in κ) term is shown in fig. 3.1; we
see that it generates both “self-energy” graviton interactions on one or other
of the matter lines, or an interaction between the forward and return lines.

The result of the interactions between lines is to cause dephasing in the
dynamics of the matter field - this can happen even at T = 0, if accelerations
are involved in the dynamics of the matter field - this will then lead to the
emission of soft gravitons. At finite T , the matter field is interacting with a
thermal bath, which has a well-defined rest frame - in this case one also has
real relaxation processes caused by inelastic scattering of the gravitons.

Questions of Gauge Invariance

Let us briefly comment here on the use of the TT projector in eq. (3.21); see
also ref. [117]. The need to satisfy both constraints and gauge/diffeomorphism
invariance persists even in linearized gravity. In linearized gravity hµν is
treated as a dynamical variable; however, not all components are indepen-
dent. By linearizing, we break the full diffeomorphism invariance of GR;
nevertheless small diffeomorphisms, for which κhµν remains small, are still
gauge symmetries of linearized gravity. As a consequence, not all compo-
nents of hµν are physical. Likewise, in a Hamiltonian formalism not all
components of hµν are independent canonical coordinates. The timelike
components h0ν do not have conjugate momenta since π0ν = ∂L/∂(∂0h0ν)
vanishes identically; and the timelike components of the linearized Einstein
equation are not dynamical equations describing the time evolution of phase
space data (hjk, π

jk), since they involve no time derivatives of the canonical
variables. Instead, the timelike linearized Einstein equations impose con-
straints on the phase space data which restrict what configurations can even
exist on a time-slice.

In that subspace of phase space where the constraints are satisfied only
the transverse-traceless components are independent. It is trivial to check
that these components of the metric are invariant under gauge transfor-
mations; hence, if the constraints of linearized gravity are satisfied, then
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3.3. Functional Eikonal Expansion

equations written in terms of the remaining variables will be gauge invari-
ant. This is true in any quantum theory if the constraints are treated via
Dirac quantization [166–168]. This is why the transverse-traceless projectors
appear in the interaction kernels in eq. (3.21) - they project the influence
functional onto the appropriate constrained subspace. This point has been
mistaken in the literature, leading some to mistake pure gauge degrees of
freedom as physical, and consequentially arriving at qualitatively incorrect
predictions for gravitational decoherence [116].

Summary

It is helpful here to summarize our basic approach. In quantum field theory
one typically starts from the generating functional of correlation functions,
from which various transition amplitudes are obtained via functional differ-
entiation. The evolution of the full system is unitary and described by the
standard path integral.

Here we have introduced an analogous object for an open quantum sys-
tem, the composite generating functional in eq. (3.18). We can then study
the evolution of generic matter density matrices coupled to an unobserved
background of gravitons in a way entirely parallel to typical quantum field
theory computations, by taking functional derivatives with respect to exter-
nal currents. This new formalism contains at its heart a decoherence func-
tional, which describes both phase decoherence and relaxation processes.
This “composite” formalism is somewhat more general than the related
Schwinger/Keldysh formalism because it allows for a direct computation
of density matrix elements, instead of limiting one to the computation of
expectation values.

Clearly one should be able to extend this formalism to cover scattering
processes, involving multi-particle “in” and “out” states, (in a way analogous
to that LSZ formalism of standard quantum field theory). We develop these
ideas in sections 3.4 and 3.5 below.

3.3 Functional Eikonal Expansion

As just noted, in sections 3.4 and 3.5 we will be applying our formalism to
attack a problem of current interest, viz., information loss in scattering pro-
cesses involving gravitons. However before doing so we must make a detour,
because we require a method which can deal in a fully non-perturbative way
with soft gravitons. A standard Feynman diagrammatic perturbation ap-
proach is not well suited to this problem, because the graviton is a massless
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particle, so that perturbation theory is plagued with infrared divergences.
In this section we will use a more appropriate non-perturbative treatment

of the path-integral, a functional eikonal expansion, which is well suited
to situations in which there is a separation of scales - in the present case
provided by massive particles coupled to long wavelength gravitons. This
will also allow us to give a more precise meaning to the formal expressions
in the last section.

In what follows we begin by discussing how one makes a formal separa-
tion of scales, and then give the functional eikonal expansion for the matter
propagator and for the composite generating functional.

3.3.1 Separation of Slow and Fast variables

The first thing we wish to do is make a formal separation between fast and
slow variables in the composite functionals introduced above, in order to
isolate out the interesting infrared behaviour. To do this we introduce a
cutoff scale Λ0 separating “soft” gravitons (with momentum |q| ≤ Λ0) from
“hard” gravitons (|q| > Λ0). In the course of our calculation we’ll restrict
the value of Λ0, so that Λ0 � scalar particle masses.

Now since the interaction kernels D1 and D2 in the decoherence func-
tional eq. (3.21) are given by a sum over contributions from each graviton
mode, the influence functional can be factored into hard and soft parts, ie.,
we can write

F [Φ] = FS [Φ]FH [Φ] (3.23)

where Λ0 serves as a UV cut-off in FS [φ] and an IR cut-off in FH [φ]. We
can use this to isolate the contributions from soft gravitons to the composite
generating functional,

Z [J] = FH [δJ]

∫
DΦ ei(Sφ[Φ]+

∫
d4xJ·Φ) FS [Φ]

≡ FH [δJ]ZS [J]. (3.24)

where again we use the shorthand FH [δJ] ≡ FH [Φ → −iδ/δJ] introduced
above in eq. (3.17); this transformation pulls the hard influence functional
FH outside the path-integral as a functional differential operator.

Since FH has an IR cutoff Λ0, one can simply expand it perturbatively
without any issues - we will study this series in future work. In what follows
we will focus only on the contributions to decoherence from soft gravitons,
encapsulated in the soft composite generating functional ZS [J], which gen-
erates the propagators describing the evolution of the matter density matrix
under the influence of soft gravitons.
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We now rewrite the soft generating functional in a crucial way. Re-
call that it is always possible to rewrite a matter field propagator coupled
to some dynamic field (here hµν(x)) in the form of a propagator in some
fixed or “frozen” background field configuration, with a subsequent func-
tional integration over these field configurations. Accordingly we do this for
the influence functional itself, pulling it outside of the path integral as a
functional differential operator, to get

ZS [J] =FS [δh]

∫
DΦ ei(Sφ[Φ]+

∫
( 1

2
κTµν ·hµν+J·Φ))

∣∣∣∣
h=0

≡FS [δh] Z[J |h] Z∗[J ′|h′]
∣∣∣∣
h,h′=0

(3.25)

where in the 2nd expression we write the forward and backward path vari-
ables explicitly. Here FS [δh] is defined by the substitution FS [δh] ≡ FS [Tµν →
−2iMP δ/δh

µν ], ie., Tµν and T ′µν are substituted by their conjugate variables,
and Z[J |h] is the generating functional for a scalar field in the slowly-varying
background metric perturbation hµν(x), ie., we have

Z[J |h] =

∫
Dφ eiSφ[φ]+i

∫
d4x ( 1

2
κTµνhµν+Jφ) (3.26)

We see that in eq. (3.25) we have decoupled the primed and unprimed
variables, so that from eq. (3.17) we have the density matrix propagator

KS(2,1) = O2(δJ)O1(δJ) FS [δh]Z[J |h] Z∗[J ′|h′]
∣∣∣∣
h,h′,J=0

(3.27)

Note that since the influence functional is a functional of only the transverse-
traceless parts of the stress tensor, the auxiliary field hµν is also transverse-
traceless in addition to being slowly-varying. We will use these properties
many times throughout the following derivation.

We can now make the calculations much more physically concrete. We’ll
assume for now that aside from interactions with soft gravitons the scalar
field is free, in which case

Sφ[φ] = −1

2

∫
d4x ∂µφ∂

µφ+m2φ2, (3.28)

and

Tµν = −∂µφ∂νφ+
1

2
ηµν(∂λφ∂

λφ+m2φ2). (3.29)
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Figure 3.2: A Feynman diagram representation of one of the terms in the
series expansion of the first exponential factor in eq. (3.30). The solid black
lines represent flat spacetime particle Green’s functions G0, the red hatched
lines leading to yellow circles indicate interaction with an external metric
perturbation hµν . The orange circles represent the interaction vertices.

The path integral for Z[J |h] is then Gaussian and can be written, within a
normalizing constant, as

Z[J |h] = e
1
2

∑∞
n=1 Tr(κG0hµν τ̂µν)ne−

i
2

∫
d4xd4y J(x)G(x,y|h)J(y) (3.30)

in which τ̂µν ≡ ∂µ∂ν− 1
2ηµν(∂2−m2) is a differential operator corresponding

to the stress-energy density of a point-particle, and G(x, y|h) is the scalar
Green function on a fixed background hµν(x), ie.,

(∂2 −m2 + κhµν τ̂µν)G(x, y|h) = δ4(x− y). (3.31)

We have already, and will continue to, make use of the flat-space limiting
form G0(x, y) ≡ G(x, y|h = 0).

Notice that in eq. (3.30) the first exponential factor is just a rewriting
of the functional determinant of the differential operator in eq. (3.31). If
one thinks in terms of Feynman diagrams, a term in the series involving
the trace of n factors of G0hµν τ̂

µν corresponds to a closed scalar loop with
n insertions of the external field (see fig. 3.2). These diagrams describe
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vacuum polarization effects and will be suppressed by powers of Λo/m� 1.
In this limit the polarization diagrams are then negligible. We can therefore
omit the first exponential factor in eq. (3.30) and use the simpler result

Z[J |h] = e−
i
2

∫
d4xd4y J(x)G(x,y|h)J(y) (3.32)

This result for Z[J |h], along with the result eq. (3.27) for the generating
functional and our equation of motion for G(x, y|h), will then be the starting
point for the formal eikonal expansion. Note that if we wish, we can also
include non-gravitational interactions in this expression, by adding the usual
exp(i

∫
Lint[δJ ]) factor as a prefactor on the right-hand side 7.

3.3.2 Functional Eikonal expansion for gravitons

The key intuition underlying any eikonal expansion is one of scale separation.
In the absence of a background (hµν = 0) the free Green’s function G0(x, y)
describes a single relativistic scalar particle propagating between spacetime
points y and x. The dominant path is the straight-line classical solution,
with corrections from quantum fluctuations about this path. In the presence
of a slowly-varying background, the leading order eikonal approximation
only modifies the propagator with an ‘eikonal phase’ accumulated along
the classical path. From a perturbative standpoint this technique is very
powerful - even the leading term sums an infinite class of diagrams, which
here will capture in a non-perturbative way the leading IR-divergent effects
from soft gravitons. Higher corrections capture sub-dominant contributions.

There are various ways to set up an eikonal expansion; in this paper
we do this by adapting functional methods first introduced by Fradkin and
collaborators [159, 160].

Equation of Motion

We begin by re-writing the equation of motion for G(x, y|h) in eq. (3.31) after
a partial Fourier transform. To separate fast and slow variables we note that
on a slowly-varying background the propagator is a rapidly varying function
of the relative coordinate (x− y) (on a scale ∼ 1/m but varies slowly with
the “center of mass” coordinate X ≡ (x+y)/2. We define the partial Fourier

7The addition of interaction terms to the matter action will generally modify the matter
stress tensor, but if the interactions are weak (in the sense that the coupling constant is
small and perturbation theory is valid) then the additions to the stress tensor will be small
compared to the leading order terms discussed here.
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transform over (x− y) according to

G(x, y|h) =
∑
k

eik(x−y)Gk(X|h) (3.33)

to move the fast modes into momentum space.
We then have the equation of motion{

G−1
0 (k)− Ĥh(x, k;h)

}
Gk(X|h) = 1, (3.34)

where the inverse of the free propagator is just

G−1
0 (x) = −∂2 −m2 (3.35)

so that G0(k) = −(k2 +m2), and we’ve also introduced the “Hamiltonian”
operator

Ĥh(x, k;h) = −(∂2 − 2ikµ∂µ) + κhµν(x) [kµkν + 2ikµ∂ν − ∂µ∂ν ] (3.36)

The sense in which this differential operator is a Hamiltonian will soon
become clear.

We now introduce the Schwinger/Fock “proper time” representation for
the propagators. The bare propagator is written as

G0(k) = −i
∫ ∞

0
ds e−is(k

2+m2)

≡ −i
∫ ∞

0
dsG0(k, s), (3.37)

where we haven’t written explicitly the small iε convergence factor in the
exponent. The Schwinger parameterized propagator G0(k, s) satisfies the
equation of motion

i∂sG0(k, s) = (k2 +m2)G0(k, s), (3.38)

subject to the initial condition G0(k, s)|s=0 = 1. To separate the fast vari-
ables from the slow variables we assume an explicit factorization in the
Schwinger parameterization of the full propagator

Gk(X|h) = −i
∫ ∞

0
dsG0(k, s)Y(k, s,X|h), (3.39)

such that Y acts to weight the free propagator term under the proper time
integral. This is completely analogous to the elementary application of the
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3.3. Functional Eikonal Expansion

WKB approximation in which one assumes that the Schrödinger equation
with a slowly varying potential is solved by a plane wave with a slowly
varying amplitude and wavelength. The equation of motion eq. (3.34) is
satisfied if Y satisfies the “proper-time” Schrödinger equation

i∂sY = ĤhY, (3.40)

with the boundary condition Y|s=0 = 1. We see that Ĥh generates evolution
in the time parameter s, hence the name Hamiltonian.

WKB Series Expansion

Now, to set up the eikonal expansion, we introduce a WKB representation
for the function Y, in the form

Y ≡ eχ, (3.41)

with χ expanded as a power series in the coupling

χ ≡
∞∑
n=1

κnχn. (3.42)

In eq. (3.39) we’ve already separated off the free propagator factor, so χ
should vanish when κ = 0 and hence the WKB series should indeed start at
O(κ1). It should then be clear that higher order derivatives of Y will bring
down higher orders in the WKB expansion. Since the background is slowly
varying, we then want to retain only the leading order terms in this series.
To first order the equation of motion for χ1 is[

i∂s + ∂2 + 2ikµ∂µ
]
χ1 = hµν(x)kµkν , (3.43)

and one can continue the hierarchy to find equations of motion for the higher
order terms in the WKB series. We then have a systematic expansion suited
for studying sub-leading soft-graviton effects.

If we now Fourier transform both sides of eq. (3.43) with respect to the
center of mass coordinate X we have a simple linear ODE which has solution

κχ1(q, k, s) = −iκhµν(q)kµkν

∫ s

0
ds′ e−is

′(2k·q+q2). (3.44)

and dropping the ∂2 term in the differential operator in eq. (3.43) - justified
by the slowly-varying background assumption - allows us to drop the q2 term
in the exponent without altering our results to leading order.
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3.3. Functional Eikonal Expansion

Note that in the language of Feynman diagrams, a graviton-scalar vertex
with a transverse-tracless hµν injecting momentum q is κhµν(q)τµν(k, k +
q, q) where τµν(k1, k2, q) = 1

2(kµ1k
ν
2 + kν1k

µ
2 ). When the incoming matter

momentum k is much larger that of the graviton q, k + q ≈ k we recover
the factor κhµν(q)kµkν in the above expression. Recalling the preamble to
this subsection, we see that this factor is a clear manifestation of eikonal
physics—the particle momentum is not changing while interacting with the
slowly-varying graviton background.

If we truncate the WKB series at leading order we have that

Gk(X|h) = −i
∫ ∞

0
ds e−is(k

2+m2)+κ
∑
q e
iq·Xχ1(q,k,s), (3.45)

or, written in position space the leading order eikonal approximation to the
full Green function is,

G(x, y|h) = −i
∑
k

eik·(x−y)

∫ ∞
0

ds e−is(k
2+m2)−iκkµkν

∫ s
0 ds

′ hµν(y−2s′k).

(3.46)

To best understand this expression we will use the method of stationary
phase to evaluate the integrals. The eikonal phase exp(κχ1) is a slowly
varying function of s, k relative to both the bare propagator factor and
the fourier factor. We can then pull it outside the integral and replace its
dependence on s, k by those values extremize the oscillatory part of the
integrand, i.e.

s = σ/2m

kµ =
m(x− y)µ

σ
, (3.47)

where the spacetime interval is σ =
√
−(x− y)2. Substituting in these

values, we obtain the intuitive expression for the full greens function

G(x, y|h) = e
i
2
κ
∫
d4zτµν(z)hµν(z)G0(x, y), (3.48)

where

τµν(z) = −p
µpνσ

m

∫ 1

0
dτ δ4(z −Xcl(τ)), (3.49)

is precisely the stress-energy density for a classical massive relativistic point
particle following the world line Xcl(τ) = y + (x − y)τ . As promised, the
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3.3. Functional Eikonal Expansion

leading order eikonal approximation for the greens function on a slowly
varying background metric perturbation is given by the free Green function
multiplied by an eikonal phase describing the phase accumulated along the
classical worldline connecting the two spacetime points.

In summary, our main result is then that all effects of soft gravitons on a
scalar matter system are described by the composite generating functional

ZS [J] = FS [δh] Z[J |h] Z∗[J ′|h′]
∣∣∣∣
h,h′=0

(3.50)

where
Z[J |h] = e−

i
2

∫
d4xd4y J(x)G(x,y|h)J(y) (3.51)

and the Green function has the simple form

G(x, y|h) = e
i
2
κ
∫
d4zτµν(z)hµν(z)G0(x, y). (3.52)

This object, the eikonal approximated composite generating functional, gen-
erates density matrix propagators which provide expressions for the reduced
density matrix of the matter system in which the state of the graviton field
has been traced out.

There are a variety of potential applications of this general result. Al-
though we have specified to a matter and gravity system, the formalism we
have developed could in principle be applied to any quantum field theory
with a large separation of scales where the low energy modes are unobserved.
This formalism is in some sense the complement to standard renormalization
theory. In renormalization theory one integrates out the high energy modes
and focuses on the low energy modes, whereas here we have integrated out
the low energy modes. The interesting difference here is that one can inte-
grate out high-energy modes and still obtain a effective theory with unitary
evolution. The high energy modes stay in their vacuum state because they
are too difficult to excite, and thus the low energy modes interact with them
only through their vacuum fluctuations. In contrast, when integrating out
low energy modes, the high-energy system of interest can essentially excite
arbitrarily large numbers of the low energy modes. As a consequence the
end-state is not the vacuum, entanglement has developed, and decoherence
can occur.

Although we have not yet put serious effort towards condensed matter
applications of this formalism, one can certain imagine condensed matter
models wherein some excitation of interest moves through an environment
which has gapless (long wavelength/low energy) excitations.
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3.4. Scattering Problems

Returning to the gravity focus, one application of this formalism was our
work using computing various measures of entanglement and information
transfer between the matter and soft gravitons [120]—content which was
not included in this thesis. In the following section we will demonstrate
another application of this formalism, to the study of scattering problems.

3.4 Scattering Problems

In this section we consider the specific example of scattering between mat-
ter fields and soft gravitons. Quite apart from the questions noted in the
introduction, the interest here is that scattering problems are formulated
over an infinite times, and so infinite wavelength gravitons are present. The
methods we’ve developed in this chapter are actually perfectly suited to
the problem of soft gravitons, as the eikonal approximation is more accu-
rate as the graviton momentum goes to zero. In what follows we will recall
the issues with soft gravitons in perturbation theory and then analyze the
problem using our non-perturbative methods.

As we’ve mentioned previously, the presence of infinite wavelength gravi-
tons causes infrared divergences in perturbation theory. One can see this
quite clearly by considering a sample Feynman diagram for an n→ m scat-
tering process (see fig. 3.3). Since all external lines are “amputated” in
scattering diagrams, the addition of a radiated soft graviton line will modify
a scattering amplitude just by a multiplicative factor corresponding to: i)
the new internal line coming from the blue circle to the graviton vertex, and
ii) the coupling factor at the graviton vertex. One quite easily finds then
(see eg. the work of Weinberg [148]) that the new diagram is related to the
original by a factor

(8πG)1/2 (2kµm + qµ)(2kνm + qν)εµν
k2
m +m2 − iε

(3.53)

where εµν is the polarization tensor for the graviton. Now, when the external
particles are put “on-shell” we have q2 = 0 and (km − q)2 +m2 = 0, which
together imply that k2

m + m2 = 2k · q. It is then clear, that as we put the
external particles on-shell and take the limit q → 0 that the soft graviton
factor is divergent as,

(8πG)1/2 k
µ
mkνmεµν

km · q − iε
. (3.54)

It turns out that one can in fact re-sum the infinitely many diagrams in-
cluding both these divergences and the completely analogous divergences
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3.4. Scattering Problems

Figure 3.3: In a) we have a Feynman diagram for a general scattering
process, wherein all of the internal lines/interactions are contained within
the blue circle. In b) we have the related process, where the scattering
process is the same but one of the external legs radiates a soft graviton with
energy q → 0.

coming from internal soft gravitons, but it requires abandoning the stan-
dard S-matrix and considering inclusive scattering cross-sections [148] (or
the density matrix, as recently demonstrated in the work [121] which paral-
lels our final results considerably).

We will now see how to apply the methods we’ve developed above to the
soft-graviton problem, and will see that our formalism implicitly re-sums all
divergences which occur in a perturbative approach, yielding finite results.

In conventional scattering problems, pure states evolve from the asymp-
totic past to the asymptotic future via the S-matrix. In what follows we will
describe how reduced density matrices evolve over the same spatiotemporal
region via a “composite S-matrix”. Consider an initial product state of two
systems Q and X written in the ‘in’ basis, ρQ(α, α′)ρX(a, a′). The ‘out’
density matrix (which is generically not a product state) is related to the
‘in’ density matrix through the S-matrix,

ρX,Q(b, b′;β, β′) =
∑

αa,α′a′

Sβb,αaS
∗
β′b′,α′a′ρQ(α, α′) ρX(a, a′) (3.55)

If we then trace over system X (so that we consider X to be an “environ-
ment”), the evolution of the reduced density matrix for Q can be written

ρQ(β, β′) =
∑
α

Sβ,α ρQ(α, α′), (3.56)
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3.4. Scattering Problems

where the composite S-matrix is defined as

Sβ,α =
∑
b

∑
a,a′

Sβb,αaS
∗
β′b,α′a′ ρX(a, a′) (3.57)

To understand the process of decoherence during any scattering process
we must compute this object. In the following we will first derive a “compos-
ite scattering functional” S from the composite generating functional Z [J].
The computation is analogous to the standard LSZ procedure in quantum
field theory for deriving the S-matrix generating functional [55]. From this
we then derive the result we need for the composite S-matrix Sβ,α. We are
then able to derive the leading eikonal result for the ‘out’ state predicted by
the composite S-matrix, and compare this to recent results in the literature
derived via diagrammatic methods.

3.4.1 Composite Scattering functional S

Recall that the Lehmann-Symanzik-Zimmerman (LSZ) procedure [55] for
computing the usual scattering operator S from a generating functional is
compactly expressed by the formula

S = : e
∫
d4x φin(x)G0(x)−1 δ

δJ(x) : Z[J ]

∣∣∣∣
J=0

, (3.58)

where the colons denote normal-ordering of the operators. Again, G−1
0 (x)

is the inverse free Klein-Gordon Green function in eq. (3.35). The ‘in’ field
φin satisfies the free Klein-Gordon equation

G−1
0 (x)φin(x) = 0, (3.59)

and is related to the full field φ via the weak asymptotic limits

lim
x0→−∞

[
〈p|φ(x)|q〉 − 〈p|φin(x)|q〉

]
= 0, (3.60)

in which |p〉, |q〉 are arbitrary states of the system. We assume that the field
is renormalized such that the pole in the two-point function is at −p2 = m2

and the residue is one, so we do not need to carry around factors of the field
strength renormalization. The scalar field has the expansion in positive and
negative frequency parts

φin(x) = φ+
in(x) + φ−in =

∫
d3pψp(x)ap + h.c. , (3.61)
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where the creation/annihilation operators have the commutation relation

normalized as [ap, a
†
k] = δ3(p − k) and states are defined as |p〉 ≡ a†p|0〉,

implying the wavefunctions are normalized as

ψp(x) =
e−ipx

(2π)3/2
√

2Ep
, (3.62)

where Ep =
√
|p|2 +m2 is the energy of a particle.

The elements of the S-matrix are given as usual by Sβ,α = in〈β|S|α〉in.
The expression for the S-matrix we’re using is convenient because of the
explicit dependence on the generating functional, an object which we can
write in path-integral expression form. It must be noted that, as written,
eq. (3.58) can only generate S-matrix elements with φ particles in the in/out
states. It will soon be clear that for our purposes this won’t cause any
problems.

If we wanted to compute the product of S-matrix elements Sβ,αS
∗
β′,α′

we would consider two copies of the Hilbert space H ⊗H and take matrix
elements of S ⊗ S†, where the operators in the first S commute with those
in the second. Dropping the arguments of the functions we write this as

S ⊗ S† = : e
∫
φinG

−1
0

δ
δJ : ⊗ : e

∫
φ′inG

−1
0

δ
δJ′ : Z[J ]Z∗[J ′]

∣∣∣∣
J=0

. (3.63)

Now we’ve already shown in the derivation of the composite generat-
ing functional that we can incorporate the effects of soft gravitons in some
process by introducing a background metric perturbation hµν , acting with
the soft graviton influence functional operator FS(δh) on the forward and
reverse Keldysh amplitudes, and then setting hµν → 0. The influence func-
tional operator not only ‘dresses’ the process with soft internal gravitons,
it also accounts for the eventual trace over soft graviton brehmstrahlung
by introducing correlations between the forward and reverse Keldysh paths.
Indeed we obtained the composite generating functional by doing precisely
this on Z[J ], in eqs. (3.24) and (3.25).

The form of the composite scattering operator S then follows immedi-
ately; we have:

S = F [δh]S[h]⊗ S†[h′]
∣∣∣∣
h=0

= : e
∫
φinG

−1
0

δ
δJ : ⊗ : e

∫
φ′inG

−1
0

δ
δJ′ : Z [J]

∣∣∣∣
J=0

(3.64)
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where S[h] is the scalar S-matrix evaluated on a background metric pertur-
bation hµν .

The scattering operator, or composite scattering functional S , is in some
ways a rather peculiar object - it describes scattering, but is non-unitary
because it also incorporates the loss of information entailed by the averaging
over the gravitons modes. To properly understand its properties we need to
compute its matrix elements between in and out matter states.

3.4.2 Composite S-matrix elements

By taking matrix elements of the functional operator S in the double copied
Hilbert space we obtain the desired matrix elements Sβ,α. We will start
from S as given in eq. (3.64) to compute these matrix elements.

First we briefly review the derivation of the standard S-matrix as defined
in eq. (3.58); and then we see how the parallel derivation works when deriving
the composite S-matrix.

Bare S-matrix elements

In a typical scattering amplitude calculation in conventional field theory
(see fig. 3.4) one considers “n→ m scattering” between, in our case, scalar
states |α〉 = |p1...pn〉, |β〉 = |k1...km〉. There are no other particles or fields
considered in the problem - all scattering results from interaction potentials,
and is unitary.

One accordingly assumes the existence of scattering states which are
approximate eigenstates of the fully interacting Hamiltonian that look like
eigenstates of the free Hamiltonian in the asymptotic future and past. The
justification is that ultimately one should be working with wavepackets
which are sufficiently well separated in the far future and past that they
are essentially non-interacting. Scattering states then look like eigenstates
of the free Hamiltonian—they are states with definite particle number.

Taking the matrix elements of the scattering operator in eq. (3.58), we
immediately have

Sβ,α = 〈0|ak1 . . . akme
∫
φ−G−1

0
δ
δJ e

∫
φ+G−1

0
δ
δJ a†p1

. . . a†pn |0〉. (3.65)

Commuting the creation/annihilation operators through the S-matrix we
obtain the standard LSZ expression in terms of the amputation and on-shell
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(a) (b)

p1 p2 p3 p4

k3k2k1

p4p3p2p1

k3k2k1

Figure 3.4: The scattering processes considered here. In (a) we see the
scattering without gravitons, where scalar states |α〉 = |p1...pn〉, shown in
black, scatter to |β〉 = |k1...km〉; the blue oval represents the scattering
matrix Sβα. In (b) gravitons are included, in red; the asymptotic graviton
states are soft, with |q| < Λo.

restriction of the correlation function

Sβ,α ≡ Sβ,α[δJ ]Z[J ]

∣∣∣∣
J=0

=

∫
d3y1 . . . d

3ym ψ
∗
k1

(y1) . . . ψ∗km(ym)

∫
d3x1 . . . d

3xn ψp1(x1) . . . ψpn(xn)

×G−1
0 (y1) . . . G−1

0 (ym)G−1
0 (x1) . . . G−1

0 (xn)

× δ

δJ(y1)

δ

δJ(ym)
. . .

δ

δJ(x1)

δ

δJ(xn)
Z[J ]

∣∣∣∣
J=0

. (3.66)

From this expression one can compute any S-matrix element between
these massive particle states, given an expression for the generating func-
tional (which is typically evaluated as a perturbative series in powers of the
coupling constants).

However, let us now note that if one now includes soft gauge excitations
like soft gravitons in the scattering calculations, as in/out states along with
the massive particles, then our basic assumption of free particle asymptotic
states no longer valid. The gravitons have arbitrarily long wavelength, and
cannot then be disentangled from the asymptotic matter states. As is well
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known, this is an essential feature of the infrared divergences in the problem.

Composite S-matrix elements

Now let us consider composite S-matrix elements. To compute such com-
posite S-matrix elements we take matrix elements of the operator eq. (3.64)
in the basis of the double copy of the Hilbert space |p1 . . . pn〉 ⊗ |p′1 . . . p′n〉,
to get

Sβ,α = F [δh]

(
Sβ,α[δJ ]Z[J |h]× S∗β′,α′ [δJ ′ ]Z∗[J ′|h′]

)∣∣∣∣
J,h=0

(3.67)

Let us take a moment to properly understand this equation, a contri-
bution to which is depicted in fig. 3.5. As noted above, we now have ar-
bitrarily long-wavelength gravitons in the problem, which cannot properly
be regarded as free particle states. Note, however, that a state describing a
definite number of matter particles propagating on a very long-wavelength
configuration of the metric perturbation is approximately free - not because
the gravitons are well separated from the matter, but because there is very
limited momentum exchange with the matter.

In our definition of the composite S-matrix eq. (3.57) the environment
“X” is the metric perturbation field hµν(x). Its states, indexed by a, b, a′, b′,
are not states of definite soft-graviton number; instead we assume a basis
of Schrodinger states {|hij〉} corresponding to states with definite slowly-

varying field configuration ĥij(x)|hij〉 = hij(x)|hij〉. We are using this basis
rather than a Fock basis.

We saw in eq. (3.32) that the generating functional for a non-interacting
scalar field living on a slowly varying background metric perturbation can be
be written as a simple Gaussian integral, in which the free scalar propagator
is replaced by the propagator on a background metric perturbation. We can
evaluate the action of Sβ,α[δJ ] on Z[J |h] in eq. (3.67) in precisely the same
way, as a generalization of what we would have if there were no background.

With these remarks in mind, let us now consider the term

Sβ,α[h] = Sβ,α[δJ ]Z[J |h]|J=0, (3.68)

appearing in eq. (3.67); this describes the S-matrix in the presence of the
slowly-varying field hµν(x). There will be both internal processes inside the
“blue oval”, coming from, eg., a φ4 term in the Lagrangian, or perhaps be
mediated by another field; and then there are external matter lines. We
see that the effect of hµν(x) on any diagrams for the matter field will be to
“dress” the scalar propagators according to the eikonal result eq. (3.52).
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k1 k’1k2 k’2

p1 p2 p3 p’1 p’2 p’3

Figure 3.5: A process contributing to the composite S-matrix Sβ,α, where
in the figure α = (p1, p2, p3; p′1, p

′
2, p
′
3), and β = (k1, k2; k′1, k

′
2). The func-

tional integration over the gravitons (shown in red) includes both graviton
exchange between massive particles (shown in black) and gravitons emitted
to/absorbed from infinity.

In what follows we will make a very simple approximation for the inter-
nal scalar propagators - we will assume they can be replaced by the bare
propagator G = G|h=0. This apparently drastic simplification is actually
equivalent to the assumption that is made in a diagrammatic IR treatment
of soft graviton processes [148], where soft boson lines are assumed to attach
to external legs but not to the internal “hard process”. All of the dependence
on hµν is then in the external legs of the diagram.

When acting with G−1
0 on outgoing external lines (thereby “amputating”

them) we then have contributions from each (outgoing) leg, of form∫
d4y eikyG−1

0 (y)G(y, z|h) = eikzei
κ
2

∫
d4w hµν(w)τµν(w), (3.69)

where again τµν(w) = −mUµUν
∫∞

0 ds δ4(w−z−sU) is the eikonal result for
the stress-energy for a scalar excitation whose four-momentum is pµ = mUµ.
Note that G(y, z|h) comes from the functional derivatives of Z[J |h], with the
relevant scattering vertex labeled by z. There is an analogous contribution
for ingoing lines, viz.,∫

d4xe−ikxG−1
x G(z, x|h) = e−ikzei

κ
2

∫
d4w hµν(w)τµν(w), (3.70)
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where for ingoing lines the stress tensor is of the form
τµν(w) = −mUµUν

∫∞
0 ds δ4(w− z+ sU). In the absence of a slowly varying

background metric the external leg would be straightforwardly amputated
(i.e., the inverse propagator acting on the propagator would yield a delta
function), however when the background is treated via this eikonal approx-
imation we obtain an additional eikonal phase for each leg. The analogous
expressions for outgoing/ingoing lines on the return Keldysh path are ob-
tained by taking the complex conjugates of these expressions.

Provided the scattering occurs in a region around the origin much smaller
than Λ−1, we can make the approximation that z ≈ 0 within the eikonal
phases since the slowly varying field hµν(w) is indifferent to such a trans-
lation. With this approximation the eikonal phases all factor out of the
scattering amplitude. For a standard S-matrix computation we then obtain
the eikonal result

Sβ,α[h] = ei
κ
2

∫
d4w hµν(w)

∑
a τ

a
µν(w) SΛ0

β,α, (3.71)

where a runs over all external legs, and SΛ0
β,α is the S-matrix computed with

IR cutoff Λ0. This is an example of the well-known soft-factorization of
scattering amplitudes.

If we now consider the full ‘composite S-matrix’ in eq. (3.67), then by
taking the functional derivative and setting h = 0 we get the very simple
result

Sβ,α = F [
∑
a

τa,
∑
a′

τ ′a
′
] SΛ0

β,αS
′Λ0
β′,α′

∗, (3.72)

for Sβ,α, in which the entire effect of the soft gravitons has been reduced
to the sums,

∑
a τ

a and
∑

a′ τ
′a′ over all scalar particles, of the the stress-

energies from these particles at their asymptotic end-points - these 2 sums
are then the arguments of the influence functional in eq. (3.72).

This is a remarkable simplification, given that the influence functional
is usually a functional over all the paths in the particle path-integral. The
reason is of course that the only effect of soft gravitons here, as incorporated
in the influence functional, is to modify the phases of the ‘classical’ straight-
line asymptotic paths of the particles follow straight lines

We have thus reduced the problem of the effect of real and virtual soft
gravitons on scattering problems to the computation of the influence func-
tional above. In the next section we compute this explicitly and investigate
the consequences
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3.5 Influence Functional, BMS Noether charges,
& Gravitational Memory

In this section we will explore the properties of the composite scattering
matrix, and see how they are influenced by the decoherence functional. We
will simplify the results by setting the initial temperature of the graviton
environment to zero. We find that the decoherence functional yields some
previous results for this regime, and a new interpretation of them.

In what follows we use the expression derived in the last section for
the composite S-matrix to first find the explicit form of the decoherence
functional Γ[T, T ′], and then show how it can be rewritten in terms of the
asymptotic BMS charges and gravitational memory for the scattering of
soft gravitons. Finally, we discuss the implications of these results for the
information loss problem.

3.5.1 Form of Influence Functional

In eq. (3.21) we derived an explicit form for the influence functional eq. (3.19),
which as we recall can be written as F [T, T ′] = eiΨ0+i∆e−Γ, where Ψ0,∆,Γ
are all real. The “self-gravity” and dissipation parts Ψ0[T, T ′] and ∆[T, T ′]
merely lead to an overall phase shift for the composite S-matrix, which we
will ignore here. The more interesting physics is in the decoherence func-
tional Γ[T, T ′] which suppresses coherence in the outgoing state.

It is useful to rewrite the general form of the decoherence functional
given in eq. (3.21) as a momentum space integral, viz.,

Γ[T, T ′] =
1

4M2
P

∑
σ=+,×

∫ Λ0 d3q

(2π)3

1

|q|
|εσµνδTµν(q)|2, (3.73)

where δTµν = Tµν − T ′µν is the difference between the forward and return
stress-tensors, and the on-shell Fourier transform is used

Tµν(q) =

∫
d4zei|q|z

0−iq·z Tµν(z). (3.74)

Written this way it is clear that the decoherence functional is non-negative,
and so the influence functional has modulus |F| ∈ [0, 1]. It either leaves the
composite amplitudes unchanged, or it suppresses them.

If we now specialize to the scattering problem discussed in the last sec-
tion, things simplify drastically. The Fourier transform of the stress-tensor
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for scattering paths is just

τµνa (q) = iηama
Uµa Uνa
q · Ua

(3.75)

where ηa = ±1 depending on whether the index a refers to an outgoing or in-
going particle. Substituting this expression into our decoherence functional
we obtain

Γ[
∑
a

τa,
∑
a′

τ ′a
′
] =

1

2

∑
σ=+,×

∫ Λ0

d3q|δBσ
β,α(q)|2

≡ 1

2

∑
σ=+,×

∫ Λ0

dq

∫
dΩ(n̂) |δBσ

β,α(q,Ω(n̂))|2 (3.76)

where dΩ(n̂) is the infinitesimal solid angle in direction n̂, and

Bσ
β,α(q) =

1

(2π)3/2
√

2|q|
M−1
P

∑
a

ηa
paµp

a
νε
σ
µν(q)

p · q
. (3.77)

is the so-called “soft factor” we discussed previously (eq. (3.54))(see also
eq. 2.29 in ref. [148]). The name comes from the statement that to leading
order in the graviton momentum one can add a single soft graviton emission
event to an S-matrix element Sβ,α by simply multiplying the original S-
matrix element by Bβ,α. This fact is commonly referred to as Weinberg’s
soft-graviton theorem.

The integral in eq. (3.76) is logarithmically divergent. This divergence
means that unless δBσ

β,α(q,Ω(n̂)) = 0 for every angle on the sphere n̂ and
for each polarization σ, the decoherence functional diverges and thus the
influence functional as well as the composite S-matrix element will vanish.

This result was previously reported in a slightly less general form by Car-
ney et al. [121]. These authors used the Weinberg diagrammatic approach
to handle the IR divergences, and assumed that the matter in-state was a
momentum eigenstate (i.e. only α′ = α was considered). If we choose to
assume this initial condition as well, we recover their result.

It is actually illuminating to understand the relation between the WKB
path integral result here and the derivations of Weinberg [148], and other
similar recent discussions [121, 146]. Weinberg showed perturbatively that
a specific infinite diagrammatic sum - of soft factors from all diagrams in
which soft boson lines (both virtual and real) are inserted into a “hard”
process - will exponentiate in a manner that renders scattering rates finite.
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The WKB expansion - which is a natural and systematic approximation
for quantum systems propagating on slowly varying backgrounds - already
yields to lowest order a decoherence functional in which the soft factors
are exponentiated. The next correction to leading WKB then leads to sub-
dominant corrections to the Weinberg result; and so on. The decoherence
functional also allows a useful interpretation of the diagrammatic expan-
sions. For every momentum q with |q| � Λ0, and for each polarization
σ, the decoherence functional eq. (3.76) compares the soft factors for the
forward and return Keldysh paths. If these factors are identical, ie., if an
emitted soft graviton |q, σ〉 does not carry information discerning between
the two processes, then that mode does not contribute to decoherence. Oth-
erwise the soft-factor is different for the two paths, and by eq. (3.76) there
is a contribution to the decoherence functional.

3.5.2 BMS Charges and Gravitational Memory

Let us now turn to several other ways of expressing the decoherence func-
tional. The first will involve the so-called with the Bondi-Metzner-Sachs
(BMS) charges, associated with the Bondi-Metzner-Sachs group of super-
translation symmetries [169–171]. The second will involve what is called
gravitational memory. The connection between information loss, BMS sym-
metries, and gravitational memory has been the topic of a number of recent
papers (see e.g. [139, 145, 152, 172, 173] and refs. therein), sometimes de-
scribed in terms of an “infrared triangle”. We will see that the connection to
the decoherence functional gives further illumination of these relationships.

In what follows we discuss both BMS charges and gravitational memory,
in each case by first briefly recalling what these terms refer to, and then
showing how the decoherence functional can be understood in terms of them.

BMS Charges

There is a large literature on Bondi-Metzner-Sachs (BMS) charges and the
BMS group (see refs. [34, 145] and refs. therein); here we will simply make
the connection with our results on decoherence.

The BMS group is the group of diffeomorphisms whose actions on null
infinity map one asymptotically flat solution to the Einstein equations to
another, potentially physically inequivalent one. A subset of the generators
of this group are the six Lorentz generators; their action is well understood in
quantum field theory and will not be further discussed. The more interesting
part of the group are the remaining supertranslation transformations, of

55



3.5. Influence Functional, BMS Noether charges, & Gravitational Memory

which there are infinitely many.
Supertranslations are defined by functions f(z, z̄) on the sphere. In

retarded Bondi coordinates (u, r, z, z̄) the supertranslation vector field on
future null-infinity is

ζ = f∂u −
1

r
(Dz̄f∂z̄ +Dzf∂z) +DzDzf∂r, (3.78)

where Dz is the covariant derivative with respect to the unit sphere metric
γzz̄ = 2(1 + zz̄)−2. They are a generalization from the four standard global
translations to a group of angle-dependent translations in the retarded time
u. There is an analogous expression in advanced Bondi coordinates for the
supertranslation vector field on past null infinity. In general one can per-
form independent transformations on future null infinity I + and past null
infinity I − and thus the BMS group can be written as the direct product
BMS+ × BMS−. Recently it has been demonstrated that the “diagonal”
subgroup, in which the same function f(z, z̄) is used to simultaneously su-
pertranslate both I + and I −, is a symmetry of quantum gravity linearized
about Minkowski space [137], and the associated Noether charges Qf have
been constructed [138]. Furthermore, Weinberg’s soft graviton theorem [148]
was shown to be a consequence of this symmetry, ie. a Ward identity in the
quantum theory [138].

For pure gravity coupled to massless scalar matter the supertranslation
charge on I + is

Qf =
1

4πG

∫
I +

dud2zγzz̄f

[
Tuu −

1

4
(D2

zN
zz +D2

z̄N
z̄z̄)

]
, (3.79)

where

Tuu =
1

4
NzzN

zz + 4πG lim
r→∞

[
r2TMuu

]
. (3.80)

The matter stress-tensor is denoted by TMµν , and Nzz is the Bondi news ten-
sor describing outgoing gravitational waves. Again, there is an analogous
expression in advanced coordinates on I −. It should be noted that since
supertranslations are defined on null infinity I + ∪I − and massive parti-
cles never reach null infinity, some work must be done to obtain the correct
expression for the hard supertranslation charge in a theory with asymptot-
ically stable massive particles [174]. The supertranslation charge can be
understood as the sum of “hard” and “soft” contributions. The first term
in eq. (3.79) measures the weighted energy flux through I + and is called
Qhard
f while the second term is linear in the zero frequency graviton creation

operator and hence called Qsoft
f .
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There is a particular choice of the function f which picks out a sin-
gle angle n̂ on the asymptotic sphere and a single graviton polarization σ
(see [174]); with this choice, scattering states of the scalar field are eigen-
states of the hard-matter part of the supertranslation charge

Q̂hard
n̂,σ |α〉 = Qhard

n̂,σ (α)|α〉 (3.81)

with the eigenvalue Qhard
n̂,σ (α) given by

Qhard
n̂,σ (α) =

∑
a∈α

−maε
σ
µν(n̂)UµUν

−U0
a + n̂ · ~Ua

(3.82)

We immediately see that we can connect all this with the decoherence
functional - one simply rewrites the decoherence functional in eq. (3.76) in
the form

Γ[
∑
a

τa,
∑
a′

τ ′a
′
] =

1

4M2
P

(∫ Λ0 dq

q

) ∑
σ=+,×

∫
dΩ(n̂)

∣∣∆Qhard
n̂,σ −∆Qhard′

n̂,σ

∣∣2,
(3.83)

where dΩ(n̂) is the solid angle area element, and where ∆Qhard
n̂,σ denotes the

difference between the in- and out-state values of Qhard
n̂,σ , the hard charge

eigenvalue defined in eq. (3.82), ie.,

∆Qhard
n̂,σ = Qhard

n̂,σ (β)−Qhard
n̂,σ (α) (3.84)

where, as usual, we use the primed symbols refer to the return Keldysh path
while the unprimed symbols refer to the forward Keldysh path. Eq. 3.83
expresses the decoherence functional in terms of the “BMS supertranslation
charges”. We note that, as before, because of the logarithmic divergence of
the integration over q, the decoherence functional here diverges unless the
difference in hard supertranslation charges is the same on the forward and
return Keldysh paths, ie., unless

Q̄hard
n̂,σ ≡ (Qhard

n̂,σ (β)−Qhard
n̂,σ (α))− (Qhard

n̂,σ (β′)−Qhard
n̂,σ (α′)) = 0 (3.85)

which is a kind of “sum rule” for the scattering process - decoherence will
suppress all scattering for which this identity is not satisfied.
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Ward identities

The result eq. (3.83) begs for a physical explanation. Actually it follows
from supertranslation charge conservation alone. Recall that the soft theo-
rems are an expression of the Ward identity describing the conservation of
supertranslation charge [138]. The Ward identity can be written in general
as the statement that the charge commutes with the Hamiltonian and thus
the S-matrix

〈β|[Q̂σn̂, S]|α〉 = 0, (3.86)

where S is the usual S-matrix. Decomposing the supertranslation charge
into hard and soft parts, assuming the initial state of the graviton field is
the vacuum with zero soft charge, and noting that scalar scattering states
are eigenstates of hard supertranslation charge, we can rewrite the Ward
identity as the soft graviton theorem[

Qhard
n̂,σ (β)−Qhard

n̂,σ (α)
]
〈β|S|α〉 = 〈β|Q̂soft

n̂,σS|α〉. (3.87)

Following a similar line of argument, we can instead write the following
equation

〈β|S|α〉〈α′|[S†, Q̂n̂,σ]|β′〉 = 〈β|[Q̂n̂,σ, S]|α〉〈α′|S†|β′〉
= 0. (3.88)

Looking at the first equality and again decomposing the charge into hard
and soft parts, assuming an initial state with zero soft charge, and using the
hard charge eigenvalues we can then write

[
(Qhard

n̂,σ (β)−Qhard
n̂,σ (α))− (Qhard

n̂,σ (β′)−Qhard
n̂,σ (α′))

]
Sβ,αS

∗
β′,α′

= 〈β|
[
S|α〉〈α′|S†, Q̂soft

n̂,σ

]
|β′〉 (3.89)

As written, the right hand side is a matrix element between states β, β′ of
a commutator between operators on the full Hilbert space. We could instead
factor the state into hard and soft parts |β〉 = |βS〉|βH〉. If we do this and
trace over the soft part of the outgoing state we obtain the composite Ward
identity[

(Qhard
n̂,σ (β)−Qhard

n̂,σ (α))− (Qhard
n̂,σ (β′)−Qhard

n̂,σ (α′))
]∑
βS

Sβ,αS
∗
β′,α′

=
∑
βS

〈βS |
[
〈βH |S|αH〉|αS〉〈α′S |〈α′H |S†|β′H〉, Q̂soft

n̂,σ

]
|βS〉. (3.90)
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Since the RHS is the trace of a commutator, by the cyclic property of the
trace the RHS vanishes. We have therefore derived the following identity
for the composite S-matrix using the supertranslation Ward identity[

(Qhard
n̂,σ (β)−Qhard

n̂,σ (α))− (Qhard
n̂,σ (β′)−Qhard

n̂,σ (α′))
]∑
βS

Sβ,αS
∗
β′,α′ = 0.

(3.91)
In other words, for a given pair of processes, either the difference in hard

supertranslation charges is the same on the forward and return Keldysh
paths or the composite S-matrix element vanishes. This is precisely the
result we already derived from the decoherence functional, in the form of
the sum rule in eq. (3.85), but now demonstrated using a composite Ward
identity.

Gravitational Memory

Another way of looking at our result for the decoherence functional in
eq. (3.83) is in terms of “gravitational memory”. Classically one can use
the linearized Einstein equations to compute the evolution of a metric per-
turbation hµν(x) far from a source [175]. Thus we can then calculate the
change ∆hµν(x) in the metric, comparing at times well before and well after
any change in the source, in a far field region at some distance r0 from the
source of the gravitational waves, which in our case will be from the scat-
tering event. Any permanent change in the metric, ie., where ∆hµν(x) 6= 0,
is called gravitational memory [176, 177].

The change ∆hµν(x) has been worked out for a large variety of different
sources; given the classical paths considered in the scattering setup here,
then it is well-known that such a process will lead to a static change in the
transverse-traceless part of the asymptotic metric given by the Braginsky-
Thorne formula [177],

∆hTTµν (~q) =
1

r0

1

16π2MP

(∑
j∈α

pjµpjν
q · pj

−
∑
j∈β

pjµpjν
q · pj

)TT
(3.92)

Comparing this with our expression for the the hard supertranslation charges
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we see that we can rewrite the decoherence functional as

Γ[
∑
a

τa,
∑
a′

τ ′a
′
]

= 4π2r2
0

(∫ Λ0 dq

q

) ∑
σ=+,×

∫
dΩ(n̂)

∣∣εσµν∆hµν(q̂)− εσµν∆h′µν(q̂)
∣∣2, (3.93)

where the difference here is taken between the latest time on future null
infinity and the earliest time on future null infinity.

Since the asymptotic shift in the metric is in principle observable by
considering the shifts in the relative positions of asymptotic detectors, we
can understand this expression for the decoherence functional in the follow-
ing way. Suppose we prepare an array of asymptotic detectors with given
relative positions. During a scattering event information about the event
is radiated away as soft gravitons, which will induce a static shift in the
relative positions of the asymptotic detectors (see fig. 3.6). Since the in-
formation about the scattering event is stored as the shift in their relative
positions, the scattered matter is entangled with the detectors. Attempts at
demonstrating interference phenomena in the outgoing state of the scattered
matter will be undermined by this, and the only states which can interfere
will be those obtained by a scattering event which induces the same relative
shifts in the asymptotic detectors. This explains the vanishing of most of
the elements of the composite S-matrix.

3.5.3 Decoherence properties

Let us now discuss the implications of these results for the very physical
question of what form the final state density matrix must take.

In fact it is clear that the vanishing of the composite S-matrix element,
unless the “sum rule” in eq. (3.85) is satisfied, implies that the out-state
density matrix must have a very restricted form. To see how this works,
let us consider two kinds of in-state for the system. One will be a simple
product of momentum eigenstates, whereas the other will be a “Cat state” in
which we superpose two simple product states. We then have the following
results:

(i) Simple Product State: Our first state will be the kind of state usually
assumed in scattering calculations, in which there are no gravitons and where
the initial matter state is a product over momentum eigenstates, ie., we have

|α1〉 =
∏
j

|p(1)
j 〉 (3.94)
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Figure 3.6: The solid black diamond represents null infinity. The solid
black lines with arrows represent incoming and outgoing particles. The blue
circles represent a scattering region. The red lines represent outgoing grav-
itational radiation. The solid blue lines represent two inertial “detectors”
whose relative position is a witness of the the metric. We imagine that
such detectors are located at all angles, this is just an example of two which
receive the strongest part of the gravitational wave pulse. Both a) and b)
have the same initial scattering state, but illustrate different branches of
the outgoing wavefunction, which is a superposition of different scattering
states. When gravitational radiation is accounted for, we see that the differ-
ent branches a) and b) can generate angle dependent gravitational radiation
and thus can have entanglement between the outgoing scattering states of
the matter and the positions of inertial detectors very far away.

so that the incoming reduced density matrix for the matter has the simple
form ρ(α, α′) = δα,α1δα′,α1 , and then by eqs. (3.56) and (3.72), the outgoing
reduced density matrix for the matter is

ρ(β, β′) = Sββ′,α1α1

∼ SΛ0
β,α1

S′Λ0
β′,α1

∗ δQ̄hard
n̂,σ ,0 (3.95)

where the Kronecker δ-function term imposes the BMS charge conservation
sum rule. Thus the final state density matrix will vanish unless Qhard

n̂,σ (β) =

Qhard
n̂,σ (β′) for both polarizations σ and all angles n̂. As noted in refs. [121,

178] this condition is highly restrictive, and except in some pathological
cases it is only satisfied when the two states are identical, β = β′. The trace
over soft graviton emission has then rendered the outgoing matter density
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matrix completely diagonal. Contrasting this with standard unitary scat-
tering in which states like eq. (3.94) can certainly evolve into superpositions
of products of momentum eigenstates, ie., where |α1〉 →

∑
β Sβ,α1 |β〉, we

see that the emission of soft gravitons has led to complete decoherence in
the asymptotic limit where the states have moved off to infinity.

(ii) Cat State: Suppose the incoming state, instead of being a simple
product of momentum eigenstates, is in a Schrodinger’s Cat state, ie., a
superposition of states like eq. (3.94). The simplest example would be a
state of form

|α〉 =
1√
2

(|α1〉+ eiφ|α2〉). (3.96)

where the phase φ is a marker for the relative phase between the two compo-
nents of this superposition (each being a simple product state like eq. (3.94)).

Then, by eq. (3.56), the outgoing matter density matrix is

ρ(β, β′) = = Sββ′,α1α1 + Sββ′,α2α2 + eiφSββ′,α1α2 + e−iφSββ′,α2α1(3.97)

where, as before, the BMS charge conservation condition is built into these
terms using the same δ-function as above. We’ll assume that we are in a
generic situation, where α1 6= α2 implies that Qhard

n̂,σ (α1) 6= Qhard
n̂,σ (α2). In

this case, the BMS charge conservation condition

Qhard
n̂,σ (α2)−Qhard

n̂,σ (α1) = Qhard
n̂,σ (β)−Qhard

n̂,σ (β′), (3.98)

has rather interesting implications for the various terms in section 3.5.3.
The first two “diagonal” terms on the RHS of section 3.5.3 will vanish

unless β = β′. This leads to a rather general statement—diagonal density
matrix elements scatter into diagonal density matrix elements. The last
two “interference” terms on the RHS of section 3.5.3 will also vanish unless
the BMS charge conservation condition is fulfilled. Thus, in the asymptotic
limit, all interference terms are destroyed unless Q̄hard

n̂,σ = 0.
This result is actually quite extraordinary. Physically, for the interfer-

ence term, the condition that Q̄hard
n̂,σ = 0 is precisely the condition required

for the emitted graviton phases as (as encoded in the soft factors) to be
the same for the 2 branches of the superposition. This of course is just
the condition that the gravitons are not able to distinguish between the
two states. This is what one might expect from standard considerations of
measurement theory - an environment cannot cause decoherence between 2
states if it cannot distinguish between them. However it is remarkable that
the condition for this to be the case is just the sum rule in eq. (3.85).
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3.6 Conclusions

Let us now briefly summarize (i) the results we have found, and (ii) summa-
rize the physical conclusions that emerge from these results, and how they
compare with previous arguments.

Summary of Results: To give a unified discussion of soft graviton
problems, we have chosen to use a non-perturbative formalism which allows
us to calculate decoherence and information loss for an arbitrary process
involving soft graviton emission. We have used this formalism to calculate
the decoherence functional for the matter field, and then evaluated this
functional for a scattering problem, in the asymptotic limit appropriate
to the matter field S-matrix. This has allowed us to derive results for a
“composite S-matrix”, which encodes all information about decoherence in
the scattering process.

The decoherence functional Γ encodes all information about information
loss in any quantum-mechanical process. The functional Γ for asymptotic
scattering, appearing in the composite S-matrix we have derived, can be
written either in terms of the BMS asymptotic charges, or the gravitational
memory associated with the scattering (compare eqs. (3.83) and (3.93)).
This makes the connection to known results for the BMS asymptotic charges
and the gravitational memory function, and shows how the BMS charge
conservation condition operates in a very specific way to either impose (or
not impose) decoherence on the final states.

(ii) Physical Implications: As we noted in the introduction, there
has been widespread disagreement in the literature over the extent to which
information loss occurs in scattering processes, with arguments both for
[118, 121, 139, 146], and against [149–152] the existence of information loss
from soft gravitons (or soft photons in QED). Part of the problem is that
even when authors start from similar formal frameworks (typically either
a coherent state approach, or a perturbative approach), they still do not
necessarily arrive at the same conclusions. As an example, one may compare
the discussions of Carney et al. [121, 156] and Kapec et al. [146] with those
of Gabai and Sever, or Mirbabayi and Porrati [149, 150], which arrive at
opposite conclusions about information loss starting from the same coherent
state formulation of the problem.

Part of the disagreement between different groups stems from the fol-
lowing consideration. Clearly, BMS supertranslation charge conservation
requires that classical brehmsstrahlung radiation is emitted when matter is
scattered. A classical charged particle with momentum p, receiving an im-
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pulse which scatters it to momentum p′, creates a gauge field disturbance of
form

hµν(k) ∼ 1

|k|

[
p′µp′ν

k · p′
− pµpν

k · p

]
, (3.99)

a sum of contributions from the incoming and outgoing matter momenta.
Now if we choose to dress the incoming matter with radiation which

destructively interferes with the pµpν/(k · p) part of the radiation field, then
because soft radiation simply passes through the scattering region [151, 152],
the outgoing state will only contain the p′µp′ν/(k · p′) part of the radiation
field. This outgoing state is also a dressed state, similar to the ingoing state
but with different momentum. If one works entirely with dressed states
then the outgoing radiation field knows nothing about the incoming matter
state, and we get no decoherence; but that is because the incoming radiation
field is specifically tuned to get this result! Those groups who do find finite
decoherence [118, 121, 139, 146] do not make this assumption.

It is hardly surprising that changing the initial state changes what one
finds for decoherence - depending on the couplings one has, this is a general
feature of quantum mechanics. The question, of which conditions should
be specified for the incoming matter and radiation fields for the present
problem, is then a physical question about state preparation. Many possible
scenarios can be imagined here, and in the last section we only considered
two of these - we have no space to go through all the possibilities.

One purpose of setting up the formalism described here, which explicitly
calculates a decoherence functional, is that questions about information loss
can be answered just by looking at this functional, which depends only on
the assumed ingoing and outgoing states, and the way in which the average
over the gauge field is performed. In our calculations we did not use dressed
incoming states; the outgoing radiation field then “knows” about both the
in- and out-states of the matter. Tracing out the radiation then gives the
sum rule eq. (3.91), in which the CHANGE in the hard charge must be the
same on the forward and return Keldysh paths. If instead we had assumed
dressed incoming states, then our sum rule would rather say that the FINAL
hard charge must be the same on the forward and return Keldysh paths - a
result consistent with those found in refs. [149–152]. Here we are agnostic
as to whether nature prefers dressed scattering states or not, however in the
next chapter we will arrive at a rather convincing argument for using dressed
states which comes, surprisingly, only from gauge invariance considerations.

Finally, we emphasize that all our scattering calculations involve asymp-
totic states, ie., we have only been looking at what happens after decoherence
has been given an infinite amount of time to take effect. This is why we get
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“all or nothing” results, ie., we find complete decoherence except for a few
special states for which our BMS charge conservation condition Q̄hard

n̂,σ = 0
is satisfied. If we look at the decoherence away from the asymptotic limit,
before full decoherence sets in, one gets much more complex results, to be
developed elsewhere.
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Chapter 4

Gauge invariant propagators
and states in Quantum
Electrodynamics

In the previous chapter we discussed the soft-graviton problem in consider-
able detail, and made remarks on the disagreements in the literature around
informations loss and the possibility that nature chooses “dressed states”,
where matter is accompanied by clouds of zero energy photons and gravi-
tons. In this chapter we develop novel techniques for thinking about states
in QED based on the path-integral. One application of techniques devel-
oped in this chapter is to show how, by enforcing gauge invariance, one can
understand whether or not asymptotic states should be dressed. One of the
motivations behind this chapter is to prepare us for the analogous study in
quantum gravity—which we discuss in the subsequent chapter.

Here we study gauge invariant states in QED, where states are under-
stood in terms of data living on the boundary of gauge invariant path-
integrals. This is done for both scalar and spinor QED, and for boundaries
that are either time slices, or the boundaries of a ‘causal diamond’. We dis-
cuss both the case where the gauge field falls off to zero at the asymptotic
boundaries, and the case of ‘large gauge transformations’, where it remains
finite at the asymptotic boundaries. The dynamics are discussed using the
gauge-invariant propagator, describing motion of both the particles and the
field between the boundaries. We demonstrate how the path-integral nat-
urally generates a ‘Coulomb-field’ dressing factor for states living on time-
slices, and how this is done without fixing any gauge. We show that the form
of the dressing depends only on the nature of the boundaries. We also derive
the analogous dressing for states defined on null infinity, showing both its
Coulombic parts as well as soft-photon parts.
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4.1 Introduction

4.1.1 Background and Rationale

We can begin by recalling some of the motivations for giving path-integrals
a more central place in the formulation of QM and QFT, and particularly
in the definition of states. One key motivation has come from quantum
gravity, where the difficulties in defining diffeomorphism-invariant physical
quantities [29, 30, 107, 179–183] have led to approaches in which states are
defined in terms of information residing on boundaries [184–190]. Much of
modern quantum cosmology is also formulated using path integrals [for an
introduction to quantum cosmology, see 191]. Another motivation for going
beyond conventional “wavefunction & Hamiltonian” QM has been to deal
with topological field theories, and in the theory of fractional statistics for
many-particle systems [192–195]. On a technical level, that path integrals
provide a more general formulation of QM has been known for a long time
[196].

For more general classical spacetimes, and similarly for quantum gravity,
one can argue that path integrals are actually unavoidable, because for any
non-trivial spacetimes involving wormholes, in which there exist achronal
regions [184–186, 197, 198], it is already known that one must employ path
integrals to handle the dynamics of even simple particles. In these situations,
the conventional Hamiltonian framework is then no longer applicable, and
simple Hamiltonian evolution is undefined, whereas path integrals can still
compute transition amplitudes/probabilities between states defined on time
slices far from the achronal regions.

In a related recent development, it has been argued that non-trivial
“wormhole” topologies in the quantum gravitational path-integral may play
a substantial role in resolving the black hole information loss problem [see
eg. 199–201]. The novelty here being that the gravitational path-integral
seems to describe a structure more general than just “wavefunction & Hamil-
tonian” quantum mechanics [202, 203], instead resembling an ensemble of
such theories. For these reasons, and those listed above, one may desire to
have a “path-integral first” formulation of quantum theory.

Path integrals are commonplace in quantum field theory, however their
use has historically been restricted mostly to the calculation of correlation
functions of local operators, and by extension, of S-matrix elements. Re-
cently though it been appreciated that path integrals have a more general
utility, specifically their use in defining states and density matrices (in the
same fashion as the seminal Hartle-Hawking proposal [204] for the wave-

67



4.1. Introduction

function of the universe). This been appreciated most by the overlapping
conformal field theory and quantum gravity communities [see eg. 205, 206].
In this chapter we will use path-integrals with this more modern view, al-
beit in a more down-to-earth setting, as we study the nature of states in
QED. We will start from a “path-integral first” approach to QED, and use
the path-integrals to understand various implications of gauge invariance for
these states.

Often in quantum field theory one is interested in S-matrix elements,
which relate asymptotic scattering states, and it is assumed (not always
correctly) that these asymptotic states of the interacting field theory map
onto free field states. The other objects of interest are typically the corre-
lation functions of various local operators. Of course, one must appreciate
that these quantities can often be more well defined than Schrödinger picture
states, and that they have considerable utility for understanding important
concepts such as eg. excitation spectra, or renormalization group flow and
effective field theories. Furthermore, in conformal field theory the state-
operator correspondence makes it that correlation functions are essentially
the only quantities necessary to consider in such theories. In light of these
facts, we still believe that there are some down-to-earth questions one can
have in low energy effective quantum field theories which are best addressed
by considering Schrödinger picture states.

One simple issue which we will have in mind here, which may soon have
experimental relevance, is the following; if one is dealing with state superpo-
sitions involving a large spatial separation of charge or mass, real confusion
arises in discussion of what are the correct physical variables, or how to test,
eg., whether or not the gravitational field gµν(x) is quantized [13, 14, 123].
The related question of how to properly define notions like decoherence is
also unclear, with different results being derived for decoherence rates by
different authors [116, 117, 119, 166, 207]. It was observed in this author’s
Master’s thesis [117] that the main source of this confusion in the literature
was in how different authors handled gauge invariance in their calculations,
and specifically whether or not they correctly identified the “physical states”
in the gauge theory. This potentially subtle point becomes completely clear
when one uses path-integrals to prepare states.

At a technical level, while integrating separately over gauge field and
matter variables in a path integral, one needs to deal properly with both the
constraints and the gauge redundancy. To deal with the latter one typically
uses the Faddeev-Popov technique [208]. This still leaves the problem of
properly isolating the physical states as one evaluates the “trace” part of
the path-integral (ie. the parts where one connects the Keldysh paths).
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For this, in a path-integral first approach, one needs an extension of the
Faddeev-Popov technique to path integrals with prescribed boundary data.
This is precisely what which we will develop and apply in this chapter.

In gauge theories a crucial role is played by constraints, and by the re-
quirement of gauge invariance. This was recognized early on by Dirac, as
part of his efforts to quantize constrained theories [167, 168]; he used oper-
ator representations of the constraints to annihilate physical states. Dirac
was thereby led to introduce gauge-invariant “physical states” in Quantum
Electrodynamics (QED) [209]; and the constraints were then the generators
of the QED gauge transformations. One can also define gauge-invariant
states prepared by a path integral. These states will satisfy the operator
constraints provided that the action, the measure, and the set of summed
paths are themselves invariant under the transformations generated by the
constraints. A good example is provided in quantum gravity by the Hartle-
Hawking “no-boundary” wave-function of the universe [204], where one has
a Euclidean path-integral over four-dimensional metrics. This state then
satisfies the Hamiltonian constraint of Einstein gravity, in the form of the
Wheeler-DeWitt equation [210].

The main focus here will be to investigate and give explicit expressions
for QED states, defined in the path-integral-first approach, for different
kinds of boundary condition. We will work out the details for both scalar
and spinor QED, and for 2 different flat spacetimes - in one case, boundary
information is specified on two time slices, whereas in the other, it is given on
a causal diamond. We will look at different kinds of boundary information,
depending on whether the EM field Aµ vanishes at infinity or not, and
whether or not one needs to allow for ‘large’ gauge transformations. At
present we have not extended all of the results to linearized gravity although
there seems to been no general obstruction to doing so. Here we focus on
QED just because it is slightly more simple. One hopes in the future to
see this technique to Yang-Mills theory and to quantum gravity beyond the
linear limit.

4.1.2 Organization of the Chapter

This chapter is organized as follows. In section 4.2 we consider a quan-
tum particle coupled to the electromagnetic field and derive the form of the
gauge-invariant propagator between time slices. From the boundary terms
of this propagator we can learn about properties of the quantum states in
this theory. We use this simple example to highlight the gauge independence
of the results, demonstrate how the boundary phases emerge without fixing

69



4.2. Scalar Quantum Electrodynamics

a gauge beforehand, and then sketch an eikonal argument for the dress-
ings coming from the remaining path-integral. We close by introducing the
boundary Faddeev-Popov trick, and show how it gives the same results.

After this warm-up exercise, in section 4.3 we generalize the results to
charged matter described by the Dirac field, ie. discuss how the results and
methods of the previous section apply to full QED.

In section 4.4 we start on the much more complicated derivations re-
quired for general boundary hypersurfaces. In this section we derive the
form of the propagator between states on the future and past regions of a
large causal diamond, again for flat space.

Up to this point, all the discussion has been for gauge transformations
which vanish at infinity. In section 4.5 we lift this restriction, and extend
all of the previous results to the case of “large gauge transformations”.
This leads to an interesting connection with the soft-photon, large gauge
transformation, and dressed state literature. From this work we discuss how
one can understand whether or not nature would prefer to choose dressed
states, connecting with ideas introduced in chapter 3.

4.2 Scalar Quantum Electrodynamics

In this section we discuss scalar QED; the next section will show how the
results carry over to spinor QED. We wish to define gauge invariant physical
states for scalar QED, starting from the path integral.

After briefly reviewing some of the salient issues, we define gauge in-
variant propagators for scalar QED, and show how they can be written so
that a boundary term separates from the rest. This boundary term reveals
features of the physical states of the theory. In this section we will assume
the boundaries are defined by constant time slices in Minkowkski spacetime.
The boundary term we find is reminiscent of Dirac’s well known phase factor.

The calculation is manifestly gauge invariant throughout, and is carried
out in two different ways. The first relies on a ‘natural’ transformation of
the action for the system, whereas the second involves a generalization of
the standard Faddeev-Popov technique [208] to include boundaries.

4.2.1 States in Quantum Electrodynamics

The question of how to define gauge invariant states in QED has a long
history; here we recall some of the key arguments, and set up the calculations
to follow.
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States and Conservation Laws

In classical electrodynamics, Gauss’ law ~∇ · ~E = ρ, obviously does not
completely specify the electric field. One can add to the Coulomb solution
any divergence-less field. In quantum theory the situation is analogous, the
Gauss law operator constraint for physical states,(

~∇ · ~̂E − ρ̂
)
|Ψ〉 = 0, (4.1)

has no unique solution. This becomes particularly important when one
considers the construction of gauge-invariant states of charged particles in
field theory.

Looking at the Schrödinger picture, in the Âj(x) field value basis the
electric field operator is the (negative of the) conjugate momentum and is
thus represented by a functional differential operator

Êj(x) = i
δ

δAj(x)
. (4.2)

If we consider a state with a single charged particle with charge e located
at the origin, then any state of the gauge field of the form

Ψ[A] = UEj ψ[A] = e−ie
∫
d3xEj(x)Aj(x) ψ[A], (4.3)

with ~∇ · ~E(x) = δ(3)(x) and ~∇ · ~̂E(x)ψ[A] = 0 is a valid physical state:
provided that the gauge transformations vanish at spatial infinity1. These
states correspond to coherent electric fields on top of the state ψ[A],

[Êj(y), e−ie
∫
d3xEjÂj ] = eEj(y) e−ie

∫
d3xEjÂj , (4.4)

and this is sometimes referred to as an electric field “dressing” the charge.
Any solution to the classical Gauss law sourced by this point charge will be
a valid function Ej , so we have the same ambiguity in the quantum theory
as in the classical theory.

An intuitive solution for the physical state dressing is just the Coulomb
field

EjC(x) =
1

4π

xj

|~x|3
, (4.5)

1This assumption is essential here, and later in the text we will consider the case with
non-vanishing asymptotic “large” gauge transformations.
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but one could also consider solutions such as the planar field, Ej⊥, or Faraday

line, Ejs , given by

Ez⊥ = 0

Ex⊥ =
1

2π
δ(z)

x

x2 + y2
Ey⊥ =

1

2π
δ(z)

y

x2 + y2
, (4.6)

and

Exs = Eys = 0

Ezs = θ(z)δ(x)δ(y), (4.7)

respectively. More generally one can consider any path Γ coming from spa-
tial infinity and terminating on the charge, By integrating the one-form
Âjdx

j along such a path one can construct a physical state dressing

ÛΓ = e−ie
∫
Γ dx

jÂj , (4.8)

corresponding to a general Faraday line of electric flux. Remarkably, the
Coulomb and planar fields can be seen as certain smearings of these more
general line fluxes, however this equivalence appears to be unique to Abelian
gauge theory [211]. These Faraday line dressings have received considerable
attention historically, and also recently, in both gauge theories and quantum
gravity [32, 33, 203, 211–220].

This discussion is not restricted to states, one could similarly consider
physical (gauge-invariant) operators. Indeed in Dirac’s original paper on the
gauge invariant formulation of QED it was noted that we can take the field
operator for the Dirac field ψ̂(x) of a particle with charge e and modify it

by a dressing of the form in eq. (4.3), ψ̂ → ψ̂e−ieĈ , with

Ĉ =

∫
d3x EjÂj , (4.9)

to obtain a gauge-invariant operator which creates Dirac particles with an
accompanying electric field. In the recent literature, interest in Faraday line
type dressings of field operators has come from inherent non-locality of these
dressed operators. The recent work on this by Giddings and collaborators
demonstrate that this inherent non-locality may have interesting implica-
tions for AdS/CFT, the black hole information problem, and the issues of
soft graviton dressing [203, 217–220]. We do not however have the space
here to review all of these recent developments.
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In electrodynamics one can straightforwardly demonstrate that any so-
lution Ej is just the superposition of a Coulomb solution and propagating
electromagnetic waves. Computing the electromagnetic energy reveals that
the Coulomb solution is that of minimal energy, but one could also just di-
rectly solve the field equations to see that the Faraday line will immediately
dissolve into electromagnetic waves propagating to null infinity leaving be-
hind a static Coulomb field [216]. When considering various dressings to
make charged particle states gauge invariant, it then seems natural to pick
the Coulomb solution. However, the situation is not so straightforward.

To highlight why it is unclear which electric field dressing to chose, first
assume that the Coulomb dressing, call it ÛC , is the correct choice. Now,
a position eigenstate |x1〉 of a charged particle is dressed by a Coulomb
field centered on position x1, ie. ÛC1 |x1〉. This state is an eigenstate of
the longitudinal electric field operator, ie. it has a well defined value if

one measures ~∇ · ~̂E. Considering instead a simple superposition of position
eigenstates: if we dress the particles accordingly, the state now describes a
superposition of Coulomb fields centered on x1 or x2,

1√
2

(
|x1〉+ |x2〉

)
→ 1√

2

(
ÛC1 |x1〉+ ÛC2 |x2〉

)
, (4.10)

and this state of course no longer has a well defined electric field. That is,
the state is no longer an eigenstate of the longitudinal electric field operator.
Intuitively it makes sense though that such a superposition would generate
a superposition of Coulomb fields. But now consider a wavepacket ψ~p(x)
peaked in position space at ~x = 0 and in momentum space at ~p. If Coulomb
dressing is the universally correct prescription for gauge invariant states then
we expect this state to dress in the following way,

|ψ~p〉 →
∫
d3x ψ~p(x) ÛCx |x〉. (4.11)

This superposition of Coulomb fields does not resemble the classical Liénard-
Wiechert field of a moving charge—it doesn’t even have a well defined electric
field eigenvalue.

We might expect instead that the state |ψ~p〉 should be dressed by an
electric field Ej which describes the Liénard-Wiechert field, but this is not
the case here. In hindsight, how could it? The Liénard-Wiechert solution
makes explicit reference to the trajectory of the moving charge, not just its
instantaneous state. This simple example then highlights i) that a universal
choice of dressing (ie. one choice of UE to apply to all states) can generate
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an unusual electric field which is contrary to our physical intuition, and ii)
that any attempt to give state-dependent dressings will require a discussion
of the history of the matter system, ie. a discussion of state preparation.

A natural starting point to understand the electric fields around charged
particles in nature is then the path integral. The path integral will make
explicit reference to trajectories of the matter system, and also has a trans-
parent semi-classical limit which allows us to compare our results with our
intuition. We will see that the correct answer to the questions posed above
will come in a path-integral formulation from the fact that one can give a
unique separation between constrained and unconstrained variables, which
is manifestly gauge invariant.

Set-up

We know from, eg., the Hartle-Hawking work [204] that path-integrals can
be used to prepare gauge-invariant vacuum states. The basic idea is to
then generalize this idea to arbitrary states, maintaining gauge invariance
throughout, and see what emerges. Some of the questions we are interested
in answering include:

(a) What sort of electromagnetic dressing is “chosen” by states defined
in this way?

(b) How do the physical states so defined depend on the geometry of the
surface they live in?

(c) What are the physical degrees of freedom involved in spatial superpo-
sitions of charges, and what is the natural of entanglement between charges
and the electromagnetic field?

(d) In defining decoherence and information loss, what states should we
average over, how do we distinguish between real decoherence and “false”
decoherence, and what is the correct way to calculate decoherence rates?

In all sections of this paper we will use manifestly gauge-invariant path-
integrals to address them. We will introduce a novel ‘boundary Faddeev-
Popov’ (bFP) trick to derive results - it is a straightforward generalization of
the textbook Faddeev-Popov trick to path-integrals with prescribed bound-
ary data. The path integrals we consider will be on the extended configura-
tion space of the gauge field. That is, we prescribe data for all components
Aµ, and do not a priori concern ourselves with the non-canonical nature of
A0, or the implementation of Gauss’ law as a constraint.

However we find that, because all amplitudes are manifestly gauge in-
variant, the expected constraints are naturally implemented. One finds that
boundary phases engender states which are eigenstates of certain parts of the
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electric field operator. We find that a natural separation of variables occurs,
whereby a preferred solution to the constraint equation emerges kinemati-
cally, and the additional gauge invariant data is not inserted by hand, but
rather it emerges dynamically from the path-integral.

In this section we will look at scalar electrodynamics, wherein a single
charged particle and the quantum electromagnetic field propagate between
two time slices (surfaces of constant t) in Minkowski space. We will assume
here (but not later in the paper) that the gauge field Aµ, and thus the
possible gauge transformations of it, will vanish sufficiently quickly at spatial
infinity that surface terms generated by spatial integrations by parts can be
ignored. In the final section we will consider “large” gauge transformations.

We therefore consider a non-relativistic quantum particle with position q,
charge e, in an external potential V (q, t), and coupled to the electromagnetic
field Aµ. The extension to multiple particles is trivial. The action for the
system evolving from an initial time ti to a final time tf is S = SM + SEM ,
where

SM [q] =

∫ tf

ti

dt

[
1

2
mq̇2 − V (q, t)

]
(4.12)

describes the particle alone, and

SEM [q, Aµ] =

∫ tf

ti

d4x

[
− 1

4
FµνF

µν +AµJ
µ

]
(4.13)

describes the electromagnetic field along with the coupling to the matter;
here Fµν = ∂µAν − ∂νAµ is the electromagnetic field tensor, and J0(x) =
eδ3(x−q(t)) and J j = eẋjδ3(x−q(t)) are components of the charge current.
Note here that the current for a charged particle is conserved even when
the equations of motion are not satisfied, ie. for a general path in the path
integral.

We assume the path integral describing the propagator for this system
resides within the region of spacetime shown in Fig. 4.1; we denote the
surface of constant time t = tf by Σf , and likewise for ti,Σi. An asymptotic
timelike cylinder S2×R at arbitrarily large radius will be denoted ΣB. Our
path integral is then over field configurations and particle trajectories in a
region V bounded by ∂V = Σf ∪ Σi ∪ ΣB.
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Figure 4.1: Depiction of the spacetime region through which the propa-
gator Kfi in eq. (4.14) propagates, and thus, where the path-integration
occurs. The initial configuration is on the timeslice surface t = ti, the final
configuration on the surface t = tf . Particle paths propagate between qi at
ti and qf at tf , an example of one such path is illustrated. Additionally,
the gauge field propagates between prescribed configurations Aµi and Aµf on
these same two timeslices.

We will choose to quantize the system on the extended configuration
space, ie. considering all configurations of Aµ(x) before quantization rather
than imposing constraints and gauge conditions at the classical level and
quantizing the remaining degrees of freedom. The path integral describing
the amplitude for transition between configurations qi, Aµ i and qf , Aµ f is
then

Kfi ≡ K(qf , Aµ f ; qi, Aµ i)

=

∫ qf

qi

Dq eiSM
∫ Aµ f

Aµ i

DAµ eiSEM . (4.14)

Here and throughout this paper we will absorb field independent constants
into the path integral measure.

Path integrals over gauge fields are usually handled using a gauge fixing
procedure, to divide out the divergent volume from gauge equivalent field
configurations. Here we will actually delay performing the FP procedure and
perform some formal manipulations of the path-integral before proceeding
to fix a gauge. The final result will ultimately be the same; but this order
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of operations turns out to be illuminating8.

4.2.2 Gauge Invariant Propagator

The propagator in eq. (4.14) is manifestly gauge invariant under independent
transformations of the initial and final data: provided we simultaneously
transform the wavefunction of the particle and transform the gauge field.

To see this explicitly, consider the transformed propagator

KΛ
fi ≡ KΛ(Xf , Aµ f ;Xi, Aµ i)

= e−ieΛf (qf )K(Xf , A
Λf
µ f ;Xi, A

Λi
µ i)e

ieΛi(qi), (4.15)

where Λi(f) is the gauge parameter on the initial (final) time slice, and

the gauge field transforms as AΛ
µ = Aµ + ∂µΛ. The phases come from

transforming the wavefunctions of the charged particle on the initial and final
surfaces. The propagator with transformed boundary data can be expressed
simply in terms of the original propagator. We can take the expression

K(qf , A
Λf
µ f ; qi, A

Λi
µ i) =

∫ qf

qi

Dq eiSM
∫ A

Λf
µ f

A
Λi
µ i

DAµ eiSEM (4.16)

and perform a change of variables, Aµ = A′µ+∂µΛ, for some time dependent
function Λ which takes the value Λi,f on Σi,f .

The boundary data for the new variable A′µ is now just the original con-
figuration, Aµ i,f . The action is not invariant under this change of variables,
but instead, it acquires a boundary term

δΛSEM =

∫
∂V

d3xΛnµJ
µ =

∫
Σf

d3xΛfJ
0 −

∫
Σi

d3xΛiJ
0

= e (Λf (qf )− Λi(qi)) . (4.17)

Note that the contributions from the surface ΣB will vanish as the radius
is taken to infinity because of our initial assumptions, but the contributions
on the space-like parts of the boundary, Σf ∪ Σi, will not. The action is
expressed in terms of A′µ then as

SEM [q, A] = SEM [q,A′] + eΛf (qf )− eΛi(qi), (4.18)

8One may object that the order of operations is not necessarily commutative, since
the gauge group volume is infinite and thus the path-integral is divergent unless a gauge
is fixed. To this we respond: we can always assume that our variables actually live on a
finite spacetime lattice, so that the path-integral is not actually divergent before fixing a
gauge.
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so that the propagator with transformed boundary data then reads

K(qf , A
Λf
µ f ; qi, A

Λi
µ i) =

∫ qf

qi

Dq eiSM [q]

∫ Aµ f

Aµ i

DA′µ eiSEM [q,A′]+eΛf (qf )−eΛi(qi)

= eieΛf (qf ) Kfi e
−ieΛi(qi). (4.19)

The boundary phases in eq. (4.19) generated by the gauge-field action
will then precisely cancel the phases in section 4.2.2 arising from the U(1)
transformation of the matter wavefunctions, and therefore the propagator
for the total system is gauge invariant.

We know from Hamiltonian dynamics that the Gauss law constraint
is the generator of gauge transformations. The propagator (4.14) should
therefore satisfy Gauss’ law as an operator constraint on both Σf and Σi.
To see this, consider a gauge transformation which vanishes on Σi but not
on Σf , and rewrite the transformed propagator using a linear shift operator,
as

KΛ
fi = e

−ieΛf (qf )+
∫
Σf

d3x∂µΛf
δ

δAµ f Kfi (4.20)

Since the propagator is gauge invariant, this implies the following simple
functional differential equation

0 =

[
− ieΛf (qf ) +

∫
Σf

d3x∂µΛf
δ

δAµ f

]
Kfi

=

[ ∫
Σf

d3x ∂0Λf
δ

δA0 f
− i
∫

Σf

d3xΛf

(
eδ3(qf − x)− i∂j

δ

δAj f

)]
Kfi

(4.21)

The remaining functional derivative of the propagator with respect to
Aj f is just the electric field operator. This is seen in a “path-integral first”
treatment by evaluating the functional derivative and using the standard
expression for variations of the action endpoint in mechanics,

δKfi

δxf
=i

∫ xf

xi

Dq δS[q]

δxf
eiS[q]

=i

∫ xf

xi

Dq ∂L

∂q̇(t)

∣∣∣∣
tf

eiS[q]. (4.22)

Written in terms of the electric field operator we then get the constraint
equation

0 =

[ ∫
d3x ∂0Λf

δ

δA0 f
−i
∫
d3xΛf

(
eδ3(qf−x)−∂jÊj

)]
Kfi. (4.23)

78



4.2. Scalar Quantum Electrodynamics

On the surface Σf , the functions Λf and ∂0Λf are independent, but arbi-
trary, functions which vanish at spatial infinity. As a result, the propagator
then satisfies two separate local constraint equations

δ

δA0 f
Kfi = 0 (4.24)(

∂jÊ
j − Ĵ0

)
Kfi = 0, (4.25)

so that, as expected, the gauge invariant propagator defined on the extended
configuration space satisfies the Gauss law operator constraint. It is also
independent of the prescribed data for A0. We wont repeat the exercise,
but the same logic demonstrates that identical constraints also apply on
the initial surface Σi. These constraints are precisely what one imposes on
physical states in Dirac’s formalism for quantizing constrained Hamiltonian
systems [167, 168, 221]. It is reassuring to see that they also emerge here
from the path-integral first approach to defining states.

Since the propagator is independent of the data prescribed for A0, up
to normalization constants we can then freely integrate over the boundary
data for A0, to get

Kfi =

∫ qf

qi

Dq eiSM
∫
DA0

∫ Aj f

Aj i

DAj eiSEM . (4.26)

showing that A0 is not a true dynamical variable. This is a well known point,
but the way we demonstrated it will be useful for more general amplitudes.

No gauge-fixing is required to make the A0 integral convergent, and the
boundary data is unfixed, so we can directly go ahead and evaluate the
integral. As we will see shortly, this rather uniquely determines how we
should gauge fix the remaining Aj integral, and consequentially determines
the form of the dressing for the states.

Notice that the boundary data for A0 naturally fell out of the expression
as a consequence of gauge invariance - there was no need for a detour through
canonical Hamiltonian quantization, or a discussion of the missing conjugate
momentum Π0 to see this point. Geometrically this happens here because we
chose to evolve between constant time slices, and the pullback of the 1-form
Aµdx

µ to these boundaries is independent of A0, making A0 redundant,
ie., not a true dynamical variable. We will see that in other boundary
geometries, the redundant variable will again be the part of Aµ normal to
the boundary.
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4.2.3 Extracting the Dressing

We will now take the form (4.26) as a starting point, and look to evaluate
the A0 integral. Looking at the electromagnetic part of the action we can
separate out the A0 dependent terms

SEM =

∫ tf

ti

d4x

[
− 1

4
FjkF

jk +AjJ
j − 1

2
F j0(∂jA0 − ∂0Aj) +A0J

0

]
(4.27)

Integrating the spatial derivatives by parts we obtain

SEM =

∫ tf

ti

d4x

[
−1

4
FjkF

jk+AjJ
j+

1

2
F j0∂0Aj+

1

2
A0

(
∂jF

j0+J0
)
+

1

2
A0J

0

]
(4.28)

The variable A0 appears quadratically in the action, and since its end-
points are being integrated over in eq. (4.26), it can be integrated out as a
simple Gaussian integral. The result of evaluating the gaussian integral is
to just substitute the saddle point solution Ã0 back into eq. (4.28).

The saddle point equation for A0 is just the Gauss law Maxwell equation,
viz.,

(∂jF
j0 + J0) = −∂j∂jA0 + ∂0∂

jAj + J0 = 0. (4.29)

for which the solution is

Ã0 = ∇−2J0 + g + h, (4.30)

where g is given by
g = ∂0∇−2(∂jAj), (4.31)

where h is an undetermined homogeneous solution to the Laplace equation,
and where ∇−2 is a symbolic representation of the Laplace Green’s function,

∇−2f(x) = − 1

4π

∫
d3y

f(y)

|~x− ~y|
. (4.32)

Regarding the homogeneous solution h, the only such solution which is
regular at the origin while also vanishing at spatial infinity is the trivial
solution, h(x) = 0, so we set h = 0. The solution (4.30) is then unique,
without needing to impose further gauge fixing to eliminate the homoge-
neous solutions. If however we allow for large gauge transformations, then
non-trivial expressions for h(x) arise, and further gauge fixing is required.
We will discuss this in section 4.5.

Notice that Ã0 is given in terms of a gauge invariant term ∇−2J0 and
a gauge variant term g. Under gauge transformation g transforms as δΛg =
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∂0Λ, as it must, so that Ã0 transforms appropriately. Taking inspiration
from this, we formally isolate the gauge invariant part of the remaining
components Aj by defining

Aj = Aj + ∂jΦ, (4.33)

where δΛAj = 0, and Φ is a functional of Aj with the assumed transforma-
tion property δΛΦ = Λ. The functions (Aj ,Φ) are just a new choice of field
variables for the path-integration. To avoid introducing a field-dependent
Jacobian into the integration measure, we will assume the g-potential Φ to
be a linear functional of the Aj . Note that Φ is not given uniquely by the
required transformation property: for now we leave it unspecified.

At this point, one who is familiar with the Hamiltonian quantization of
QED might assume that Aj and ∂jΦ are just the transverse and longitudinal
parts of Aj . This is certainly a valid decomposition, but it is not the only
choice—the freedom here exactly paralleling the freedom in the choice of Ej
discussed in section 4.2.1. Rather than assuming the transverse/longitudinal
decomposition, we will instead rewrite the path-integral in terms of the new
variables Aj and ∂jΦ, and look for a natural decomposition of the path
integral. We will see that the action, transformed to the new variables,
ends up separating into a non-dynamical boundary term, plus terms which
depend only on the charged particle and the new field variables Aj(x).

New Variables for the Action and Propagator

We begin by writing the propagator Kfi in terms of Aj in eq. (4.33) and
the solution (4.30) for Ã0, to get

Kfi =

∫ qf

qi

Dq eiSM
∫ Φf

Φi

DΦ

∫ Aj f
Aj i

DAj eiS̃EM , (4.34)

with a new electromagnetic field action S̃EM given by

S̃EM =

∫ tf

ti

d4x

[
− 1

4
FjkF

jk +AjJ j + ∂jΦJ
j

+
1

2
F̃ j0∂0Aj +

1

2
F̃ j0∂0∂jΦ +

1

2
J0∇−2J0 + gJ0

]
, (4.35)

where we’ve introduced the notation F̃j0 = ∂jÃ0 − ∂0Aj . Note that Fjk is
independent of Φ by antisymmetry.
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We can now integrate by parts to strip the spatial derivatives off Φ, to
get

S̃EM =

∫ tf

ti

d4x

[
1

2
F̃ j0∂0Aj −

1

4
FjkF

jk +AjJ j

+
1

2
J0∇−2J0 − Φ∂jJ

j − 1

2
∂jF̃

j0∂0Φ + gJ0

]
. (4.36)

We then use the definition ∂jF̃
j0 = −J0 along with the fact that ∂µJ

µ for
an arbitrary trajectory of the particle, to rewrite the action as

S̃EM =

∫ tf

ti

d4x

[
1

2
F̃ j0∂0Aj −

1

4
FjkF

jk +AjJ j

+
1

2
J0∇−2J0 + Φ∂0J

0 +
1

2
J0∂0Φ + gJ0

]
, (4.37)

This result reveals something remarkable—if we now make the choice
∂0Φ = g for Φ, then the last three terms sum to a total time derivative.
There is of course nothing forcing us to choose this form for Φ; since we are
just making a change of path-integration variable, the final result for the
propagator cannot depend on which variables we choose. We will make this
choice, and since g itself is given as the time derivative of ∇−2(∂jA

j), we
can simply choose

Φ = ∇−2(∂jA
j). (4.38)

so that our new field variable now becomes

Aj = Aj − ∂j∇−2(∂kAk) (4.39)

This is in fact just the standard transverse-longitudinal decomposition
of Aj . We can see very clearly that ∂jAj = 0, so it is indeed “transverse”.
Note however, that instead of assuming this from the start, we saw that
this decomposition is simply dictated by the solution to the A0 saddle point
equation. This pattern of logic will be used again in later sections when we
consider geometries for which it is much less clear a priori how to define a
‘transverse part’ of Aj .

Let us now complete the process of transforming to the new form for the
field action. Note first that our choice of decomposition also simplifies the
expression for the electric field, to

F̃j0 = ∂jÃ0 − ∂0Aj

= ∂j∇−2J0 − ∂0Aj , (4.40)
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ie., a manifestly gauge invariant form; and it renders Aj divergenceless.
We then find that a simple integration by parts gives∫ tf

ti

d4x
1

2
F̃ j0∂0Aj =

∫ tf

ti

d4x
1

2
∂0Aj∂0Aj . (4.41)

so that the field action takes the form

S̃EM =

∫
∂V
σ d3xJ0∇−2(∂jA

j)+1
2

∫ tf

ti

d4x

[
−∂µAj∂µAj+2AjJ j+J0∇−2J0

]
(4.42)

with σ = ±1 for the future and past parts of the boundary respectively.
Let us now combine this field action, as written here in terms of the new

variables, with the original matter action SM in eq. (4.12), to get a complete
form for the action

S̃ = S̃M + S̃C + S̃A (4.43)

with the three new terms defined as follows:

(i) We incorporate the ‘Coulomb self-energy’ term from S̃EM into the
matter action, to give

S̃M = SM + 1
2

∫ tf

ti

d4xJ0∇−2J0 (4.44)

with SM given by eq. (4.12) as before. We see that S̃M is gauge invariant.

(ii) The term S̃C is just a boundary term; we have

S̃C =

∫
∂V
σ d3xJ0∇−2(∂jA

j)

= −
[∫

Σf
d3xAj f (x)

e

4π

(y − qf )j

|y − qf |3
−
∫

Σf
d3xAj i(x)

e

4π

(y − qi)j

|y − qi|3

]
(4.45)

and we shall see shortly in what way this is related to Dirac’s phase.

(iii) The dynamic part of the EM action - including both the free field
term and the interaction with the matter current - is now

S̃A =

∫ tf

ti

d4x
[
− 1

2∂µA
j∂µAj +AjJ j

]
(4.46)

and we see that, like S̃M , this is also gauge invariant.
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At the risk of future confusion, we will henceforth omit the σ and leave it
implicit that a minus sign should be in front of the integral when integrating
over the past part of the boundary. All of the variables in the bulk action
are gauge invariant, while the boundary term transforms precisely as we
determined it ought to in eq. (4.19). Also, the g-potential Φ is not at all
present in the bulk action: it appears only in the boundary term.

We can now write the propagator Kfi in the form that we want. Since
Φ does not appear in the bulk action, we can freely integrate over it to yield
a harmless overall (divergent) normalization. Doing this, and continuing to
absorb field independent constants into the measure, we arrive at our final
expression for the propagator:

Kfi = eiS̃C
∫ qf

qi

Dq eiS̃M
∫ Ajf
Aji
DAj eiS̃A . (4.47)

where Aji and Ajf are the initial and final configurations of the transverse

gauge field Aj(x).
This equation for Kfi is one of our key results - we have shown that

the original form eq. (4.14) for Kfi can be rewritten as eq. (4.47). If we

compare the boundary phase eiS̃C with the expressions eqs. (4.3) and (4.5),
we see that this boundary phase precisely describes a Coulomb field centered
on the location of the charge. Furthermore, our result demonstrates that
the transverse field will be determined dynamically by the remaining path
integral. We emphasize that the arguments above were clearly independent
of a gauge choice since we never explicitly chose a gauge. Thus the Coulomb
form S̃C in eq. (4.45) arises naturally from boundary terms in the path-
integral, and is not a consequence of choosing the Coulomb gauge.

Demonstrating how these boundary phases emerge was one of our pri-
mary goals here, however in doing so we’ve found that we can actually use
the expression (4.47) to address one of the questions mentioned in the intro-
duction. Specifically, we can address the proper way to describe decoherence
from coupling to a gauge field. Since the transverse components degrees of
freedom are the only independent degrees of freedom in Aµ, if we were to try
and “trace” out the electromagnetic field to get a reduced density matrix
for the particle we would only be able to integrate over the transverse com-
ponents Aj . This observation is not new, however it can be easily missed
when using path-integrals to describe open quantum systems. Typically in
a QED path-integral one simply inserts a gauge-breaking term into the ac-
tion, accompanied by the appropriate ghost terms if necessary. If one uses a
Schwinger-Keldysh path-integral formalism to describe decoherence though,
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naively inserting these terms into the action will not properly account for the
fact that only the transverse field components are independent—one must
instead use an expression such as eq. (4.47) (see [117] for details in QED
and quantum gravity). This mistake was made recent popular publication
[116], and unfortunately their mistake was propagated as their results were
used by others to describe decoherence [222].

Example: Eikonal Approximation

Let us briefly discuss what one expects to find from evaluating the remaining
path-integral over the transverse gauge field degrees of freedom, and the
point charge. We will not, in this chapter, attempt to discuss detailed
examples. However, the lowest-order eikonal approximation does serve to
illustrate what one can expect. We give a very heuristic treatment here -
more detail is found in, eg. the works of Fradkin or Fried [119, 159, 223],
and also in chapter 3.

In this lowest-order eikonal approximation, fluctuations in the charge tra-
jectory about the classical saddle point are neglected in the current. Starting
from the effective field term S̃A in eq. (4.46), we write it as S̃A = S̃0

A + S̃intA ,
where the interaction term is

S̃intA =

∫ tf

ti

d4xAj(x)J j(x) = e

∫ tf

ti

dtq̇j(t)Aj(q(t)) (4.48)

We then expand q(t) as q(t) = qcl(t) + δq(t), where the classical trajectory
qcl is independent of Aµ, so that

S̃intA = e

∫ tf

ti

dt
(
q̇jcl(t) + δq̇j(t)

) ∞∑
n=0

1

n!
∂k1...knAj(qcl)δqk1 ...δqkn . (4.49)

If we were to isolate only the long wavelength parts of Aj , we could trun-
cate the above derivative expansion at n = 0; moreover, the high frequency
trajectory fluctuations would not effectively couple to these long wavelength
parts of Aj so the term linear in δq̇j would also be negligible. Discarding
these terms is of course only valid for the long-wavelength parts of the gauge
field, but if we were to simply carry this through for the whole field then we
will have effectively performed a lowest order eikonal approximation. The
lowest-order contribution in the eikonal approximation for the path-integral
in eq. (4.47) then comes simply from replacing the original interaction term
in the action by one involving just the classical path of the particle

Seikint = e

∫ tf

ti

dt q̇jcl(t)Aj(qcl) =

∫ tf

ti

d4xAj(x)J jcl(x). (4.50)
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Figure 4.2: A representation of a quantum path (grey curve) in a path in-
tegral, where the corresponding classical path xcl is indicated by the black
curve. The characteristic scale of quantum fluctuations is σ. The long wave-
length gauge field, represented here by the red waves is not sensitive to the
high frequency quantum fluctuations, it only sees curves with approximately
the same frequency, ie. only the classical path.

The functional integral for the gauge field coupled to an external classical
source can be done exactly, and the resulting functional dependence on
Aj f is Gaussian. Assuming the initial state of the gauge field is also some
Gaussian state, eg. the vacuum, then the Gaussian form remains even after
using the propagator as a kernel to evolve the initial state. The Gaussian
functional dependence implies that the out state will generally be a coherent
state of the electric field. The equivalent statement of this in the canonical
quantization framework is textbook material, and it is easy to demonstrate
because the Heisenberg equations of motion are still exactly solvable for a
free field coupled linearly to a classical source. The upshot of this discussion
is that without calculation, we can conclude that if the initial state is the
vacuum state then, in the lowest-oder eikonal approximation, the resulting
coherent state will be peaked on the classical electric field created by the
source J jcl.

This particular eikonal approximation illustrates very nicely that, aside
from the universal Coulomb part of the field, coherent dressed states can be
understood in terms of quantum state preparation, as anticipated by Gervais
and Zwanziger as well as by Carney et al. [224, 225]. It also gives a concrete
method for computing the resulting long-wavelength parts of the dressing for
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a given state preparation mechanism. It would be very interesting to apply
this to real world problems, away from the idealized infinity time S-matrix
scattering theory, as it would demonstrate how time-dependent dressings
emerge dynamically. We do not do this here, but we do consider it to be an
interesting open project.

We can now address one of the questions raised in the introduction. If
one considers the dynamics of a charged quantum particle, one will find that
the expectation value for the long wavelength parts of the electric field op-
erator will be precisely that which one finds in the corresponding classical
problem, ie., the Liénard-Wiechert field of a moving charged particle [226].
The dressing can be characterized as follows: the resulting state of the elec-
tromagnetic field is an eigenstate of the longitudinal electric field operator
with eigenvalue corresponding to the Coulomb field, and a coherent state of
the transverse electric field which is peaked on a configuration determined by
the classical limit of the history of the charged particle. This field has both
longitudinal and transverse parts though, and by measuring fluctuations
one can see that they behave quite different from one another in quantum
theory.

Suppose one measures the fluctuations in the average strength of the
electric field over a large region V which may contain a moving quantum
charged particle,

δE2 ≡ 1

V

∫
V
d3x

(
〈EjEj〉 − 〈Ej〉〈Ej〉

)
, (4.51)

where V is the volume of the region V, and we take this to be large. One can
use the fact that the transverse and longitudinal components of the field are
orthogonal when integrated over all of space to obtain the decomposition of
the expression for the fluctuations

δE2 ≡ 1

V

∫
V
d3x

(
〈ETj ETj 〉 − 〈ETj 〉〈ETj 〉+ 〈ELj ELj 〉 − 〈ELj 〉〈ELj 〉

)
. (4.52)

Now since the longitudinal part of the field is constrained and does not have
dynamics independent of the particle, physical states are all eigenstates of
ÊLj , with an eigenvalue corresponding to the Coulomb field sourced by the
charge. As a result, we see that the electric field fluctuations are given by

δE2 =
1

V

∫
V
d3x

(
〈ETj ETj 〉 − 〈ETj 〉〈ETj 〉

+
e2

16π2

〈
1

(x− x̂)4

〉
− e2

16π2

〈
(x− x̂)j

|x− x̂|3

〉〈
(x− x̂)j
|x− x̂|3

〉)
,

(4.53)
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where the angled brackets in the first line denote an expectation value in
the state of the photon field, whereas the angled brackets in the second
line represent expectation value in the state of the charged particle. As a
consequence of the constraint, the electric field strength fluctuations corre-
spond to the sum of fluctuations of a quantum field with only two degrees
of freedom at each point in space (the two independent transverse photon
polarizations) and fluctuations from the fluctuating particle position.

We argued above that in the presence of a quantum charged particle,
the long-wavelength parts of the transverse electric field will generically be
in a coherent state. Coherent states will have the same fluctuations as the
vacuum, and thus after suitable renormalization of the short distance behav-
ior the first line of eq. (4.53) will just describe typical vacuum fluctuations
of the two photon polarization modes. The second line will vanish for a
localized particle, but will generically lead to additional fluctuations in the
electric field strength.

4.2.4 Boundary Faddeev-Popov Trick

We can actually derive eq. (4.47) in a more interesting manner, without
using off-shell current conservation. We will instead use a technique we
refer to as the boundary Faddeev-Popov (bFP) trick. Similar manipulations
have previously appeared in work of Rossi and Testa, [227–229], but we’ll
generalize the results to include quantum matter, and also make the gauge
independence clear.

We start again from from the manifestly gauge-invariant expression for
the propagator eq. (4.14), and now explicitly perform the Faddeev-Popov
(FP) trick to fix a gauge. That is, we multiply the path integral by

1 =

∫
DΛ ∆[AΛ]δ

(
G(AΛ)

)
, (4.54)

where ∆[AΛ] = |det δΛG(AΛ)| is the FP determinant and G(A) is the gauge
fixing function. This expression involves integration over gauge transfor-
mations in the region V over which the path-integral is occurring, and also
over transformations on the boundary time slices Σi ∪Σf . Transformations
residing on the boundary time slices are omitted in textbook applications of
the FP trick, where one typically considers vacuum generating functionals
with no explicit boundaries. The resulting integral is just

Kfi =

∫
DΛ

∫ qf

qi

Dq eiSM
∫ Aµ f

Aµ i

DAµ ∆[AΛ]δ
(
G(AΛ)

)
eiSEM [A] (4.55)
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As before, we now consider a change of variables to A′µ = AΛ
µ = Aµ+∂µΛ.

The FP determinant is gauge invariant, and the action transforms by a
boundary term

SEM [A] = SEM [A′]−
∫
∂V
d3xΛJ0. (4.56)

The propagator can now be written as

Kfi =

∫
DΛ e−i

∫
∂V d

3xΛJ0

∫ qf

qi

Dq eiSM

×
∫ A

Λf
µ f

A
Λi
µ i

DAµ ∆[A]δV
(
G(A)

)
δ∂V
(
G(AΛ)

)
eiSEM [A] (4.57)

where we now omit the primes in the notation, and use superscripts (V)
and (∂V) to denote quantities evaluated in the bulk and the boundary re-
spectively.9 Note that both the boundary data for the gauge field, and the
delta function fixing the gauge on the boundaries, are still dependent on
the gauge parameter Λ – this of course was not changed by a change of
integration variables.

In the standard application of the FP trick one would note that there
was no remaining dependence in the path-integral on Λ, and the integral
over the gauge group would simply be divided out as overall normalization;
but clearly we can’t quite do that here.

To proceed, recall that the A0 integral can be performed unambiguously
without need for gauge-fixing. We therefore assume a gauge fixing function
which does not involve A0, and rewrite the transformed boundary data using
a linear shift, using functional derivatives as we did in eq. (4.20). We define
the operator

L̂Λ =

∫
∂V
d3x
[
ΛJ0 + i∂µΛ

δ

δAµ

]
(4.58)

which now integrates over both past and future boundaries,∫
∂V

=

∫
Σf

−
∫

Σi

, (4.59)

9Although we are borrowing terminology commonly used in AdS/CFT, it should be
clear from the context that the boundary here refers to the spacelike surfaces Σf and Σi.
At no point here will we consider asymptotically AdS spacetimes.
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and get

Kfi =

∫
DΛ δ∂V

(
G(AΛ)

)
e−iL̂Λ

∫ qf

qi

Dq eiSM

×
∫ Aµ f

Aµ i

DAµ ∆[A]δV
(
G(A)

)
eiSEM [A] (4.60)

The boundary delta function depends only on Λi,f and not time deriva-
tives thereof. The gauge transformations of the boundary data for A0 are
then completely decoupled from the transformations of the remaining Aj . In
a time-sliced discretization of the path integral, the transformation involving
Λ on the slices immediately after Σi and Σf will only affect the transfor-
mation of A0 on the boundary. Additionally, there is no dependence in the
integrand on Λ for any intermediate times. This “bulk” integration over the
gauge group can be factored out as usual, leaving a residual integration over
boundary gauge transformations.

The net result is that in eq. (4.60) we can rewrite L̂Λ as

L̂Λ →
∫
∂V
d3x
[
ΛJ0 + i∂jΛ

δ

δAj

]
(4.61)

and omit the boundary data for A0. The omission of A0 boundary data
dictates that its values on the boundary are integrated over.

We can use the delta function to evaluate the integral over the boundary
gauge transformations, and this will fix the boundary phase. Assuming G is
a good gauge fixing function, it will correspond to a unique gauge parameter
Λ = ΛG [A]. Evaluating the integral over the boundary gauge transformation
we then obtain

Kfi = e−iL̂ΛG

∫ qf

qi

Dq eiSM
∫ Aj f

Aj i

DAµ ∆[A]δV
(
G(A)

)
eiSEM [A] (4.62)

where now

L̂ΛG =

∫
∂V
d3xΛG [A]

[
J0 + i∂jΛ

δ

δAj

]
. (4.63)

The difference between the bFP trick and the usual FP technique is
clear from eq. (4.62). While the path integral integrand itself is standard,
the additional boundary phase effects a particular gauge transformation of
the boundary data, which depends on the choice of bulk gauge fixing func-
tion G. This boundary phase ensures that the resulting propagator remains
independent of the choice of gauge fixing; it remains a gauge invariant object.
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Since the propagator is independent of gauge choice, we can choose the
most convenient gauge. The argumentation is then similar to what we did
earlier. We first recall that after the A0 integration, and the change of vari-
ables to the fields Aj and Φ, we’re left with an effective action (4.36). Great
simplification came if we then chose ∂0Φ = g, where g given in eq. (4.31) was
the unique gauge-dependent part of the saddle point solution Ã0. Addition-
ally, a few more terms in the effective action which involved g and the current
summed to a total derivative after using off-shell current conservation.

We could actually skip the off-shell current conservation argument at this
point, by simply choosing the Coulomb gauge G(A) = ∂jAj . The particular
usefulness of this gauge choice is that it sets g = Φ = 0, considerably
simplifying the action. It also makes the FP determinant irrelevant, and
implies

ΛG [A] = −∇−2∂jAj , (4.64)

for our boundary phases. The resulting expression for the propagator is

Kfi = e
i
∫
∂V d

3x∇−2(∂kAk)
[
J0−i∂j δ

δAj

] ∫ qf

qi

Dq eiS̃M
∫ Aj f
Aj i

DAµ eiS̃A[A]

(4.65)

in which we now write things in terms of the effective actions S̃M and S̃A,
as in eq. (4.47).

We can show the equivalence of this result to (4.47) by noting that the
remaining path-integral is independent of the longitudinal part of the gauge
field. In the shift operator, the functional derivative ∂j

δ
δAj

then vanishes

and we’re left with an expression for the propagator Kfi in the precisely
same form as eq. (4.47) above. Again, we find that the charge is dressed by
a Coulomb field.

This concludes our analysis of the propagator Kfi for scalar particles
evolving between time slices. We stress again that the propagator is gauge-
independent, and thus so too are the states it defines on its endpoints. The
propagator has clearly defined boundary phases which describe properties
of the boundary states, and the form of these boundary phases is a simple
consequence of the gauge invariance of the action, not a consequence of some
a priori choice.

4.3 Spinor Quantum Electrodynamics

We have devoted considerable space to scalar electrodynamics; it is now
fairly straightforward to generalize to real QED, with Dirac spinors coupled
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to the EM field. Again we will consider the manifestly gauge invariant path-
integral for Kfi, and we will find the same Coulomb form for the dressing.
The manipulations are similar to those for scalar electrodynamics, the only
difference being that the matter field also changes under gauge transforma-
tion, and the U(1) charge current in the boundary phase will become an
operator.

The gauge invariant path integral representation of the transition am-
plitude is now

Kfi =

∫ ψf

ψi

DψDψ̄
∫ Aµ f

Aµ i

DAµ eiS[A,ψ,ψ̄], (4.66)

where ψ, ψ̄ are Grassmann fields, and the omission of boundary data for
ψ̄ indicates that this variable is to be integrated over on the boundary—
necessary because the Dirac Lagrangian has a first-order form.10 The action
is the QED action with a single Dirac fermion field of charge e, viz.,

S[A,ψ, ψ̄] =

∫ tf

ti

d4x

[
− 1

4
FµνF

µν − ψ̄
(
γµ∂µ − ieγµAµ +m

)
ψ

]
(4.67)

This action is completely invariant, without need to discard a boundary
term, under the U(1) gauge transformation

Aµ → Aµ + ∂µΛ

ψ → eieΛψ, ψ̄ → e−ieΛψ̄. (4.68)

One can easily verify that the propagator (4.66) is gauge invariant in the
same way done in the previous section, ie. by transforming its data, undoing
the transformation by a change of variables in the path integral, and using
the invariance of the action.

The gauge invariance of the propagator implies that it satisfies the con-
dition ∫

∂V
d3x

[
ieΛψ

δ

δψ
+ ∂µΛ

δ

δAµ

]
Kfi = 0. (4.69)

By explicitly differentiating the path integral we can confirm that the func-
tional derivatives are proportional to the conjugate momenta for the fields:

δ

δψi,f
= ±iΠ̂i,f = ∓ψ̂†i,f , (4.70)

10Typical formulations of the path integral in terms of fermionic coherent states end up
instead with data for fixed ψi and ψ̄f . What we have here is equally valid, [55], differing
only by a change of basis in the out state.
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δ

δAj i,f
= ∓iΠ̂j

i,f = ±iÊji,f . (4.71)

Together with the expression for the U(1) charge density J0 = iψ̄γ0ψ =
−ψψ†, the invariance condition (4.69) then implies that the propagator sat-
isfies the operator constraints(

∂jÊ
j − Ĵ0

)
K(A,ψ) = 0 (4.72)

δ

δA0
K(A,ψ) = 0, (4.73)

on both the future and past boundary time slices.
We now proceed to use the bFP trick to see exactly how this constraint

is implemented, ie., how the electric field dressing of the states emerges.
Starting from Kfi we again insert a gauge fixing function by multiplying by
(4.54), but now we must change variables for both the gauge field and the
Dirac field if the action is to be invariant:

Kfi =

∫
DΛ

∫ ψ
Λf
f

ψ
Λi
i

DψDψ̄

×
∫ A

Λf
µ f

A
Λi
µ i

DAµ ∆[A]δV
(
G(A)

)
δ∂V
(
G(AΛ)

)
eiS[A,ψ,ψ̄]. (4.74)

The A0 integral can again be done without gauge fixing, and we can ex-
tract the transformations of the boundary data using exponentiations of the
functional derivatives,

Kfi =

∫
DΛ δ∂V

(
G(AΛ)

)
eL̂Λ

∫ ψf

ψi

DψDψ̄

×
∫ Aµ f

Aµ i

DAµ ∆[A]δV
(
G(A)

)
eiS[A,ψ,ψ̄]. (4.75)

in which the operator L̂Λ now takes the form

L̂Λ =

∫
∂V
d3x
[
ieΛψ

δ

δψ
+ ∂µΛ

δ

δAµ

]
=

∫
∂V
d3x
[
Λ
(
∂jÊ

j − Ĵ0
)
− i∂0Λ

δ

δA0

]
(4.76)

where the 2nd expression uses the relations (4.70), (4.71).
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From this stage onwards, the manipulations are identical to those in
the previous section except that the charge density in the boundary phase
is an operator rather than a c-number. The resulting expression for the
propagator is

Kfi = eiL̂ΛG

∫ ψf

ψi

DψDψ̄

×
∫ Aj f

Aj i

DAµ ∆V [A]δV
(
G(A)

)
eiS[A,ψ,ψ̄] (4.77)

where now

L̂ΛG =

∫
∂V
d3xΛG [A]

[
∂jÊ

j − Ĵ0
]

(4.78)

The final expression for the propagator will of course be independent
of choice of G(A). For formal manipulations the most convenient choice
is the Coulomb gauge, because this sets the g-potential ∇−2∂jAj to zero,
leaving only the invariant field components. With this choice we then get
ΛG[A] = −∇−2(∂jAj). Since this choice eliminates the dependence of the
integral on the longitudinal part of Aj , the shift operator exp

(
i
∫
∂V Λ∂jÊ

j
)

has nothing to shift, and the propagator is then

Kfi = eiS̃C
∫ ψf

ψi

DψDψ̄ eiS̃M
∫ Aj f
Aj i

DAj eiS̃A . (4.79)

ie., of the same form as eq. (4.47) except that now the matter action is

S̃M =

∫ tf

ti

d4x
[
− ψ̄

(
γµ∂µ +m

)
ψ +

1

2
J0∇−2J0

]
, (4.80)

and the charge density in S̃C is now an operator which generates a U(1)
transformation on the fermion boundary data. The dynamic gauge field
action is as before (cf. eq. (4.46)), except that now the matter current is
J j = ieψ̄γjψ.

We emphasize that if we had chosen a different gauge fixing function
G(A), the resulting gauge fixed action would look different, and so would
the resulting boundary phase, but this difference would only be temporary;
the shift operator in eq. (4.78) would no longer give zero in any other gauge,
instead enacting a gauge transformation which would set the boundary term
and action back into the form presented above. In this form the theory is
not manifestly Lorentz invariant, but this is simply because we evaluated
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4.4. Flat spacetime evolution in a causal diamond

Kfi between two constant t surfaces. In principle, one could choose a co-
variant gauge to compute the path-integral as long as one also evaluates the
necessary shift of the longitudinal mode in the final expression.

Note, in this connection, that we could take the expression in eq. (4.79)
one step further if we explicitly act with the U(1) transformation effected by
the boundary phase. This locally rotates the boundary data for the Dirac
field by an angle which depends on the longitudinal part of the gauge field,
giving our final expression for the gauge invariant QED propagator on the
extended configuration space,

Kfi =

∫ e
−ie∇−2∂jAj f ψf

e−ie∇
−2∂jAj iψi

DψDψ̄
∫ Aj f
Aj i

DAj eiS̃M+iS̃A . (4.81)

Expanding the shorthand notation this reads

e−ie∇
−2∂jAjψ = exp

(
i

∫
d3yAj(y)

e

4π

yj − xj

|y − x|3

)
ψ(x). (4.82)

The gauge invariant propagator dresses every point excitation of the Dirac
field by a Coulomb electric field sourced by the corresponding point charge.
This is the central result of applying the bFP trick to QED. As with the
particle considered in the first section, the transverse dressing will be deter-
mined dynamically by the remaining integral over gauge invariant variables.
The expression here is precisely the form suggested by Dirac for a gauge
invariant electron field [209]. Furthermore we have demonstrated that it is
the Coulomb solution which naturally emerges from the path integral, not
one of the exotic solutions such as the Faraday line (4.8).

4.4 Flat spacetime evolution in a causal diamond

Up to now we have dealt with the rather simple problem of QED on a flat
background, defined between time slices. However it is clearly crucial to be
able to discuss this for much more general kinds of boundary and bound-
ary information. In principle this should extend to spacetimes including
achronal regions; as noted in the introduction, discussions of this sort of
problem began in the 1980’s [184–186, 197, 198, 204, 230].

To give such a generalization has also been the goal of the “general
boundary quantum field theory framework” [187–190], where one consider
general spacetime regions V bounded by some boundary hypersurface ∂V. A
field configuration on ∂V is then mapped to an amplitude via a path integral
over field configurations in V.
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In this formulation, as in the work of Hartle and Hawking [204], states
can then be defined as non-local wave functionals, over configurations spec-
ified on all of ∂V. If the general boundary hypersurface involves a union of
future and past surfaces, then one can still interpret such “states” on ∂V
as a transition amplitude [187, 188]. However, for more general spacetimes,
such an interpretation is not valid, although one can obtain a probabilistic
interpretation of the modulus squared of the state on ∂V in terms of a condi-
tional probability to find a given field configuration on a subregion Σ ⊂ ∂V,
given another specified field configuration on the complementary region Σ̄.

As we have seen, the approach in this chapter to defining states is in the
same philosophy of the “general boundary” framework. In our view such an
approach is essential for general spacetimes - one of the ultimate motivations
in the present work is to set up a technique which can be used for achronal
spacetimes, in which information fixed on just the past time slice is not
always sufficient to predict quantum evolution [197, 230]. In our opinion
such a technique may also be useful to properly address issues concerning
black hole information loss.

In pursuit of this end, in the present section we apply the bFP trick
to amplitudes for a more general boundary hypersurface. The region we
will consider is a causal diamond in Minkowski spacetime, where the state
is fixed on the null boundary hypersurface. Here there is still a natural
splitting into past and future sections, and so we can define a propagator
which represents a transition amplitude between states on the past and
future null cones (which tend to null infinity as we take the limit of an
infinitely large diamond).

A technical note—there is a subtlety here in the specification of bound-
ary data for the path-integral. Because the conjugate momentum on a null
surface involves a derivative along that surface, specifying the field configu-
ration also specifies the conjugate momentum. Specifying this data on both
the past and future boundaries would be an over-specification of boundary
data for the classical evolution, and the corresponding interpretation as a
quantum amplitude is then unclear.

One fixes this by specifying “half” of the field data in some chosen way
[231]. We will assume throughout that it is only the positive frequency parts
of the field which are specified: a choice which gives this amplitude an in-
terpretation in terms of states in the Bargmann representation, ie. coherent
states. In the following discussion we will avoid making this explicit, so as
not to clutter the notation.
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4.4.1 Formulation of the Problem

In the time-slice geometry, the variable A0 was ultimately unphysical, and
the remaining variables Aj split into purely physical transverse and pure
gauge longitudinal parts - the transverse part being divergenceless, ie., ∂jAj =
0. For more general boundary hypersurfaces, a natural idea would be to con-
tinue to decompose the field into parts with and without divergence. This is
not possible, for 2 reasons. First, as before, there is still the issue of unique-
ness – given a transverse-longitudinal decomposition of the vector field, one
can freely add some transverse parts onto the longitudinal part and the re-
sult still transforms correctly under gauge transformation. Second, on null
hypersurfaces there is no unique notion of divergence – the induced metric
is degenerate, and so there is no unique inverse metric with which to define
the divergence hjk∇jAk.

For these reasons we again use a procedure whereby the path integral is
used to generate a unique decomposition into pure gauge and gauge invariant
parts of the field.

We recall that for flat timeslice boundaries, the boundary data of the
component A0was integrated over. The saddle point solution for this Gaus-
sian integral determined the g-potential Φ, ie., the functional of Aj trans-
forming as δΛΦ = Λ; the pure gauge part of Ã0 was the time derivative of
Φ, and the longitudinal part Aj was the gradient of Φ. For more general
boundaries we will then need to single out the component of Aµ normal to
the boundary hypersurface. This component will play the same role as A0,
and the pure gauge part of its solution will yield a corresponding g-potential.

Coordination specification

To implement these ideas we need to choose coordinates appropriately. We
pick hypersurface adapted coordinates xµ = {S, yk} such that S = const.
surfaces foliate the spacetime region V, and the boundary hypersurface ∂V
is described by particular values, S = Si, Sf . Then, using a coordinate basis
it is AS which is the component generalizing A0, because the pullback of
Aµdx

µ to ∂V will be independent of AS .
For a finite size causal diamond in Minkowski spacetime we then need to

construct coordinates adapted to the boundary null cones. The coordinates
we will use are rather intuitive. Consider a sphere of radius R at time t = 0,
and from each solid angle send an inwards going radial null ray to the future
and to the past. These null geodesics will converge at r = 0 at times t = R
and t = −R respectively, and the surface generated by the null rays is the
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Figure 4.3: The r, η-coordinates. Each point represents a two-sphere of
radius r. This is a standard Minkowski spacetime diagram, not a conformal
diagram. The blue lines are lines of constant r, while the red lines are lines
of constant η.

boundary of our causal diamond.
To construct coordinates in the interior we again start from the sphere

r = R at t = 0, and now send inwards going spacelike geodesics to the
future and past. These spacelike rays converge at r = 0 but at times t
dictated by their “velocities”. The angles and radii of spheres are still useful
coordinates, but now we will replace the time coordinate t with a coordinate
parameterizing the “velocity” of each ray.

Each of the rays joining r = 0 to r = R is described by a solid angle and
t, r satisfying the simple relation

t = ηf(r), (4.83)

for
f(r) = 1− r

R
, (4.84)

and for some η ∈ [−R,R]. From this relation we can quickly verify that
the surfaces η = ±R are the future and past null boundaries of the causal
diamond.

Inside the boundary, η parameterizes spacelike surfaces and thus serves
as a useful time coordinate. Thus, as desired, we’ve found hypersurface
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adapted coordinates where certain values of “time” denote the boundary.
We can straightforwardly compute the metric in these coordinates:

ds2 = −f(r)2dη2 + 2
η

R
f(r)dηdr +

(
1− η2

R2

)
dr2 + r2dΩ2 (4.85)

where dΩ2 is the standard line element on the unit 2-sphere.
It is clear from this expression that η = 0 is just a standard time slice of

Minkowski spacetime and that η = ±R are null hypersurfaces. Since f(r)
vanishes at r = R, there is a coordinate singularity. This is obvious from
fig. 4.3, and indeed several components of the inverse metric will diverge as
r → R.

To deal with this we need to recall why we are interested in this geometry.
Ultimately we wish to take R to be larger than all other length scales. The
sphere r = R then resembles spatial infinity, and the surfaces η = ±R
resemble null infinity. As long as we don’t take the strict limit R → ∞,
we can still specify data for massive fields on the boundary. The boundary
considered here then plays a role similar to null infinity, but is not obtained
via conformal compactification. Timelike worldlines will be able to connect
all points interior to some point on the boundary.

Since the electromagnetic field is massless we expect field excitations
to reach null infinity but we do not expect the same for spatial infinity.
For this reason we make the assumption that all important quantities will
vanish sufficiently fast for r → R, while allowing for finite limits as η → ±R.
We assume the fall-offs are sufficiently rapid that we can restrict r � R
throughout, and allow the metric to take the simple form

ds2 = −dη2 + 2
η

R
dηdr +

(
1− η2

R2

)
dr2 + r2dΩ2 (4.86)

For reference, the non-zero inverse metric components are

gηη = −(1− η2

R2
), gηr =

η

R
,

grr = 1, gAB = r−2qAB (4.87)

where xA are sphere coordinates, and qAB is the inverse metric on the unit
2-sphere.

We will formally “blow up” this surface r = R, that is, we excise the
sphere r = R from the boundary and consider the boundary as an open set
where limits r → R can now be η dependent. Note that for all values of η,
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Figure 4.4: The blow-up procedure which treats the corners of the causal
diamond geometry. The black lines show regions of the boundary, the light-
est grey lines show the true causal diamond, and the darker grey lines show
the boundaries of the boundary, which in the infinite limit coincide with
the true causal diamond. Blue lines follow null generators of the boundary,
while red lines denote constant t cuts.

the boundary region r = R has relative measure zero. Thus when spatially
integrating by parts, both r = 0 and r = R will be zero volume surfaces,
and we can then discard any spatial surface terms.

This deals with the singular behaviour of the spatial “corner” of the
boundary hypersurface, but there are still the corners at the top and bottom
of the causal diamond, r = 0, η = ±R. We will also formally blow up
these points to allow fields to take angle dependent limits as r → 0 on the
boundary; see fig. 4.4. In doing this, we assume nothing enters or leaves V
through the strict points r = 0, η = ±R.

If one now considers a QED propagator with information specified on
the boundary of this causal diamond, the transformation of the component
Aη involves ∂ηΛ, ie., a derivative normal to surfaces of constant η and thus
independent of the actual pullback of Λ to the surface. Thus any boundary
data specified for Aη in the path integral will be superfluous. In addition
the QED Lagrangian will be quadratic in Aη, allowing it to be integrated
out via Gaussian saddle point substitution.

Decomposition of the Action

For brevity we just consider the gauge field coupled to a conserved external
source Jµ; this is easily generalized to scalar charged particles or to a Dirac
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field by promoting Jµ in the resulting boundary phase to an operator. As
before, we first obtain results without explicitly fixing a gauge, then discuss
how the bFP trick shortcuts the computation. Expanding the action so as
to explicitly write Aη we have

S = −1

2

∫
V
d4x
√
g

[
F jk∂jAk − 2AjJ

j + F ηj∂ηAj

− Aη
(

1
√
g
∂j(
√
gF jη) + Jη

)
−AηJη

]
(4.88)

where
√
g = r2 sin θ, and j = {r, θ, φ}. In writing this we’ve already freely

integrated by parts in spatial directions. To integrate out Aη, we need to
solve its saddle point equation, ie.

1
√
g
∂j(
√
gF jη) + Jη = 0. (4.89)

Since the metric is non-diagonal, the resulting equation is qualitatively
different from the previous equation for A0. In terms of Aη the equation of
motion reads

∂r
(√
g∂rAη

)
− gηη∂A

(√
ggAB∂BAη

)
= gηr∂A

(√
ggABFBr

)
+
√
gJη + ∂r

(√
g∂ηAr

)
− gηη∂A

(√
ggAB∂ηAB

)
(4.90)

On the RHS the first two terms are obviously gauge invariant, and the
last two terms together transform as required so that the solution to this
equation, Ãη, will transform as δΛÃη = ∂ηΛ.

Note that ∂ηg
ηη = 2η/R2, a dimensionful quantity of order R−1. By

our original assumptions, R is parametrically much larger than any other
dimensionful quantity and thus this entire term is sub-leading. With R
sufficiently large we can simply assume ∂ηg

ηη = 0, allowing (4.90) to be
written compactly as

Dj∂jAη =
1
√
g
gηr∂A

(√
ggABFBr

)
+ Jη + ∂ηD

jAj , (4.91)

where we’ve defined the divergence-like differential operator Dj , acting as

Djwj =
1
√
g
∂r(
√
gwr)− gηη

1
√
g
∂A(
√
ggABwB). (4.92)
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Now eq. (4.90) can be formally solved by assuming a Green’s function G
satisfying

Dj∂jG(x, x′) =
δ3(x− x′)
√
g

, (4.93)

that is,
Ãη = ÃIη + g + h, (4.94)

where

ÃIη =

∫
Ση

d3x′
√
gG

[
1
√
g
gηr∂A

(√
ggABFBr

)
+ Jη

]
(4.95)

g = ∂η

∫
Ση

d3x′
√
gGDjAj , (4.96)

and h is a homogeneous solution Dj∂jh = 0. The integration in these
expressions is over Ση, the constant η hypersurface corresponding to the
time η at which Ãη is being evaluated.

We don’t have a general expression for this Green’s function; however
the results that we’re interested in will ultimately only depend on its value
on the null boundary, and one can find G on this boundary as well as at
η = 0. At η = 0 we have gηη = −1, and the differential operator simplifies
to

Dj∂jf(x)
∣∣
η=0

=
1
√
g

[
∂r

(√
g∂rf(x)

)
+ ∂A

(√
ggAB∂Bf(x)

)]
(4.97)

which is of course just the standard Laplacian in spherical coordinates. This
is because the hypersurface η = 0 is just the hypersurface t = 0. Thus at
η = 0 the Green’s function is given by

G(x, x′)
∣∣
η=0

= − 1

4π

1

|x− x′|
. (4.98)

At the boundary, the operator Dj∂j simplifies considerably because gηη

vanishes; we then have

Dj∂jf
∣∣
η=±R =

1
√
g
∂r
(√
g∂rf

)
, (4.99)

which can be immediately integrated to find the Green’s function

G(x, x′)
∣∣
η=±R =

δ2(xA − xA ′)
sin θ

θ(r′ − r)
[

1

r
− 1

r′

]
. (4.100)
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which propagates along the null generators of the boundary. 11

More progress can be made when looking at the homogeneous solutions.
A general homogeneous solution, Dj∂jh = 0, will have the form

h(x) =
∑
m,l

Y m
l (θ, φ)

[
c1
ml(η)r

− 1
2

+
√

1
4
−gηηl(l+1)

+ c2
ml(η)r

− 1
2
−
√

1
4
−gηηl(l+1)]

(4.101)

with Y m
l a spherical harmonic and c1,2

ml a set of time dependent coefficients.
We can immediately set c2

ml = 0, since it is the coefficient of a term
which will never be regular at the origin. The other term will either grow
monotonically with r or be constant in r. With our assumptions that the
fields vanish at large r, both situations are unacceptable and we can set
c1
ml=0. The solution (4.94) with h = 0 is then the unique solution satisfying

the boundary conditions.
As an aside, note that if we relax the asymptotic spatial boundary condi-

tions and simply demand for the fields to be finite as r →∞, we can accept
solutions that are independent of r. Such solutions satisfy

−gηηl(l + 1) = 0. (4.102)

For all spacelike slices, gηη < 0, and the only solution is l = 0, ie. a constant
function of θ, φ, r. These are the time dependent global U(1) rotations.
However on the null boundaries gηη = 0, and the homogeneous solution
space is enlarged to include any function on the sphere. This is interesting
in the context of large gauge transformations, soft photons, etc, and we will
return to this point in section 5.

Returning to the solution (4.94), note that the gauge-variant part g
transforms as δΛg = ∂ηΛ. From (4.96) we see we can identify it as a g-
potential of form g = ∂ηΦ with Φ given by

Φ =

∫
Ση

d3x′
√
gGDjAj . (4.103)

For the causal diamond we can now decompose the gauge field into a
gauge-invariant part Aj = Aj − ∂jΦ, and a pure gauge part ∂jΦ; the subse-
quent development then parallels to that for the time slice. We substitute
Ãη into the action (4.88) and rewrite the action in the new variables Aj ,Φ.
Using current conservation, we then get an effective action

11The boundary condition for G is chosen so that influence propagates towards smaller
radii, ie. causally on the future portion of ∂V. When considering the past portion of ∂V
one must flip the argument of the step function appropriately.
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S̃ =

∫
∂V
d3x
√
gΦJη − 1

2

∫
V
d4x
√
g

[
F̃µj∂µAj − 2AjJ j

− Jη
∫

Ση

d3x′
√
gG

(
Jη +

1
√
g
gηr∂A(

√
ggABFBr)

)]
,

(4.104)

with
F̃µj = ∂µÃj − ∂jÃµ. (4.105)

Note that all of the terms involving Φ again summed to a total time
derivative, and thus formed a boundary term in the action. The remaining
bulk action is written in terms of explicitly gauge invariant variables.

We can actually take this expression further because the variable Aj =
Aj − ∂jΦ is actually transverse in the sense that DjAj = 0. Using this, and
a few spatial integrations by parts, we expand the effective action in terms
of the gauge invariant variables to get

S̃ =

∫
∂V
d3x
√
gΦJη

+ 1
2

∫
V
d4x
√
g

[
∂ηAr∂ηAr − gηηgAB∂ηAA∂ηAB − 2gηrgAB(∂ηAA)FrB

− FAB∂AAB + gABFrAFrB + 2AjJ j

+

(
Jη +

1
√
g
gηr∂A(

√
ggABFBr)

)∫
Ση

d3x′
√
gG

(
Jη +

1
√
g
gηr∂C(

√
ggCDFDr)

)]
(4.106)

This is the expression we will work with - although we will not actually
perform computations with this action. The purpose of the derivation was
rather to demonstrate that when propagators are considered for different
boundary geometries, by decomposing the gauge field into gauge-variant
and gauge-invariant parts we can still unambiguously extract a boundary
term from the action which describes the dressing required to make charged
states gauge invariant.

As expected the action (4.106) is non-local in space. The “Coulomb”
interaction term now contains not just the charge density Jη but also terms
describing the magnetic field. These apparent interactions arise because our
coordinates are no longer adapted to the isometries of Minkowski spacetime.
One can set η = 0, and thus gηr = 0, to verify that on a standard constant
time slice, this gives the usual Lagrangian.
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4.4.2 Form of the Propagator

We can now take all of this and consider the propagator

K(Aµ∂V) =

∫
Aµ ∂V

DAµ ei
∫
V d

4x
√
g
[
− 1

4
FµνFµν+AµJµ

]
(4.107)

for evolution of the gauge field coupled to a source Jµ, through a large causal
diamond.

Since Φ doesn’t appear in the integrand, the path integral over Φ can
again be removed by a Faddeev-Popov procedure. Additionally, since the
pullback of Aµ to the boundary of this causal diamond is independent of
Aη, we know that the propagator does not depend on the value specified for
Aη. We then conclude that the propagator is equal to

K(Aµ∂V ) = ei
∫
∂V J

ηΦ

∫
Aj ∂V

DAj eiS̃[Ã|J ], (4.108)

where the effective action S̃ is given by the bulk part of eq. (4.106), and
the phase pre-factor describes the generalized Coulomb dressing, in which
Φ is given by eqs. (4.100) and (4.103) evaluated on the boundary. The
contribution from the future part reads

Φ
∣∣
∂V(r′, x′A) =

∫ ∞
r′

dr

(
1

r′
− 1

r

)
∂r
(
r2Ar(r, x

′A)
)
, (4.109)

whereas on the past part the integration is over all r interior to r′.
This dressing describes the radial electric field at each point on ∂V, with

a strength determined by the total charge flux through ∂V at earlier times.
This is one of our central results for the causal diamond geometry.

We emphasize again that this result is not the result of a specific gauge
choice, and that the definition of gauge-invariant variables Aj again emerged
naturally from the path integral. Remarkably, our procedure succeeded even
though there is no unambiguous notion of the ‘transverse’ vector field, since
one cannot define an intrinsic divergence on a null boundary.

If we now give the matter current Jµ its own dynamics, we can easily
generalize the above derivation. This is possible because U(1) charge current
is conserved off shell for particles. Alternatively, as before, we can go back
and skip the step which invokes current conservation by using the bFP
trick. The derivations are as before; for Dirac fermions we then get the
gauge invariant QED amplitude on the large causal diamond to be
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4.4. Flat spacetime evolution in a causal diamond

K(Aµ∂V , ψ∂V) =

∫
e−ieΦψ∂V

DψDψ̄
∫
Aj ∂V

DAj eiS̃[A|J ]−i
∫
V d

4x
√
g ψ̄
(
γµ∂µ+m

)
ψ,

(4.110)

where Φ is given by eq. (4.109). Analogous to the time-slice amplitude we
see a dressing of each Dirac excitation in the boundary state by a Coulombic
electric field.

Since we have skipped the explicit derivation of eq. (4.110) and fore-
gone the discussion of general boundaries in curved spacetime, we should
at least mention that to do the bFP trick for more general boundaries one
must necessarily use generalizations of canonical conjugate momenta and
commutation relations. To highlight this, for a general path integral with
data specified on boundary ∂V, we can consider a variation of this boundary
data, viz.,

δ

∫
φ∂V

Dφ eiS[φ] = i

∫
φ∂V

Dφ eiS[φ]δS. (4.111)

A general variation of the action is of the form

δS =

∫
V
d4xE(φ)δφ+

∫
∂V
d3x (∂µS)θµ(φ, δφ), (4.112)

where E(φ) is the scalar density equation of motion, the boundary is defined
by a constant S hypersurface, and the symplectic potential current density
θµ is given for a general Lagrangian in ref. [232]. For a Lagrangian density
which is a function only of the fields and their first derivatives we have

θµ(φ, δφ) =
∂L
∂∇µφ

δφ. (4.113)

For non-null boundaries
√
g∂µS can be related to the normal covector and

intrinsic volume element for the hypersurface, but the form in eq. (4.112) is
more general and also applies to null boundaries.

For variations with support only on the boundary data we then have the
functional derivative

δ

δφ∂V(x)

∫
φ∂V

Dφ eiS[φ] = i

∫
φ∂V

Dφ eiS[φ]

[ ∫
∂V
d3x′

δθS(φ, δφ)

δφ(x)

]
(4.114)

Defining δ
δφ(x)φ(x′) = δ3(x− x′)/√g, the commutation relation between

φ and −iδ/δφ is obviously canonical. The functional derivatives −iδ
δφ∂V

used
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in the bFP trick will then be operator representations of the generalized
conjugate momentum

Π∂V(x) =

∫
∂V
d3x′ θS(φ, g−1/2δ3(x− x′)). (4.115)

This expression was used in deriving (4.110), and will be explicitly used in
the following section.

4.5 Large Gauge Transformations and Additional
Constraints

Up to now we have assumed that both Aµ and the gauge transformations
on Aµ vanish sufficiently fast at spatial infinity that one can freely integrate
by parts any expression with spatial derivatives. Energy-flux finiteness ar-
guments lead one to expect the field strength Fµν to obey such asymptotic
fall-off conditions, at least in many physical situations. However, it is not
clear why either Aµ, or gauge transformations of Aµ, should vanish at infin-
ity.

Gauge transformations which don’t fall off as quickly as required for the
above manipulations are referred to as large gauge transformations. These
have a long history, especially in gravity [169–171], and have also been widely
discussed in recent years [see, eg. 145, 233–237, and refs. therein]. Many
different choices of asymptotic fall-off conditions for Aµ have been made in
the literature.

Invariance under the set of large gauge transformations implies a further
set of constraints, in addition to Gauss’ law and E0 = 0. In this section we
enlarge the set of allowed gauge transformations to those which are finite
and non-vanishing at the spatial boundary, and generalize the techniques
used above to handle these. The invariant propagators then shed light on
the constraints implied by large gauge invariance; and the path integral gives
explicit solutions to the operator constraint equations.

We will treat the spatial boundary as a large sphere or cylinder of ra-
dius R → ∞, and we allow for gauge transformations which have finite
asymptotic limits, viz.,

λ(t, xA) ≡ lim
r→R

Λ(t, r, xA). (4.116)

With finite asymptotic limits for Λ, we must also allow for finite asymptotic
limits for the gauge field, viz.,

aµ(t, xA) ≡ lim
r→R

Aµ(t, r, xA). (4.117)
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We warm up by first discussing large gauge transformations for propa-
gation between time slices; we then proceed to the causal diamond.

4.5.1 Large Gauge Transformations: Time Slicing

We would like to compute the propagator

K(Aµ∂V) =

∫
Aµ ∂V

DAµ eiS , (4.118)

where the region V over which we integrate is again part of Minkowski
space, bounded by the constant t slices Σi, Σf and the large cylinder of
radius R → ∞, ΣB, and the action is just (4.13). Again, for brevity we
assume that the source is an external conserved current, but as was the case
in the first section, the following manipulations easily generalize to dynamic
matter fields. As just discussed, while we fix boundary data Aµ∂V on all of
∂V, we now lift the restriction that Aµ vanishes at spatial infinity.

At the technical level, the new challenge is that we can no longer uniquely
invert the Laplacian operator when solving the Gauss law equation as in
eq. (4.30): there is now nothing restricting the homogeneous solutions.

To proceed with the integral we need to again use the boundary Faddeev-
Popov trick. Suppose now that one tries to fix a Coulomb gauge in the FP
path-integral, ie., write G(A) = ∂jAj in the expression (4.54). However in
the enlarged gauge group this choice will leave the gauge under-determined,
because there are homogeneous solutions, ∇2Λ = 0 which are non-vanishing
at spatial infinity.

If however we restrict ourselves to gauge functions which are finite at
spatial infinity, then the only remaining homogeneous solution is Λ(x) =
c(t). The only residual gauge transformations in the FP integral (4.54)
are then time dependent global U(1) rotations. These leave the spatial
components Aj invariant, and only shift the spatially constant part of A0.
To properly implement the bFP trick we then must supplement the Coulomb
gauge fixing delta function with another delta function which eliminates
these residual transformations.

A sufficient choice is to gauge fix the l = 0 spherical harmonic mode
of the asymptotic gauge function λ(t, xA). We refer to the l = 0 part of a
function on the sphere using a superscript “(0)”. Up to field-independent
normalization we may then write

1 =

∫
DΛ δ(∂jAΛ

j )δ(a
(0) Λ
0 ). (4.119)
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in place of (4.54).
In what follows it is more clear if we explicitly separate out the asymp-

totic l = 0 part of all functions. The notation may seem heavier than
necessary but it will allow for a much quicker generalization to the later
treatment of the causal diamond amplitude. We will therefore write,

Λ(t, r, xA) = Λ̄(t, r, xA) + λ(0)(t), (4.120)

where Λ̄ has a finite asymptotic limit λ̄(t, xA) = limr→∞ Λ̄(t, r, xA), but the
function λ̄(t, xA) has a vanishing l = 0 mode. We’ll use this same notation
for the gauge field,

Aµ = Āµ + a(0)
µ , (4.121)

in terms of which the action is simply

S[A] = S[Aj , Ā0] +

∫ tf

ti

dta
(0)
0 Q, (4.122)

where Q =
∫
d3xJ0 is the total charge.

With this, we can now multiply the propagator (4.118) by a carefully
chosen factor of 1, from (4.119), to obtain

K(A∂V) =

∫
DΛ̄ dλ(0)

×
∫
Aµ ∂V

DĀ0Da(0)
0 DAj δ(∂

jAΛ
j ) δ(a

(0) Λ
0 ) eiS[Aj ,Ā0]+i

∫ tf
ti

dt a
(0)
0 Q.

(4.123)

Now, we implement the bFP trick by changing variables, as done before (cf.
eqs. (4.55) to (4.57) and eq. (4.60)) to get

K(A∂V) =

∫
DΛ̄dλ(0) δ∂V(∂jAj +∇2Λ̄)δ∂V(a

(0)
0 + ∂0λ

(0))

× e
−i
∫
∂V

[
Λ̄J0+λ(0)J0+i∂0Λ̄ δ

δĀ0
+i∂0λ(0) δ

δa
(0)
0

+i∂jΛ̄
δ
δAj

]
×
∫
Aµ ∂V

DĀ0Da(0)
0 DAj δ(∂

jAj)δ(a
(0)
0 ) eiS[Aj ,Ā0]+i

∫ tf
ti

dt a
(0)
0 Q

(4.124)

In the bulk part of the path integral we have effectively inserted gauge
fixing delta functions as desired. The additional gauge fixing delta function

simply sets a
(0)
0 = 0, reducing the action to its usual form. As always in the
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4.5. Large Gauge Transformations and Additional Constraints

bFP trick, we’ve also obtained a number of delta functions and linear shift
operators outside the path integral. The crucial observation here is that the
delta functions constraining the boundary gauge transformations constrain
only Λ̄ and ∂0λ

(0), they do not constrain the other independent functions
∂0Λ̄ and λ0.

In factoring out the bulk gauge group integral we are then left with
residual integrals over ∂0Λ̄ and λ0. The remaining boundary integrals over
Λ̄ and ∂λ(0) are trivially performed using the delta functions. The result is
then

K(A∂V) =

(∫
dλ(0)e−i

∫
∂V λ

(0)J0

)
ei
∫
∂V ∇

−2(∂jAj)J
0

×
∫
Ãj ∂V

DĀ0DAj δ(∂jAj)eiS[Aj ,Ā0], (4.125)

where Aj is the transverse component of Aj . We can now perform the Ā0

integral and there is no ambiguity in its saddle point solution; it is again
given by Ã0 = ∇−2J0 and the homogeneous solution is necessarily zero
because by definition Ā0 has vanishing asymptotic l = 0 mode.

Note the remarkable feature, that the vestige of working on the config-
uration space for Aµ with non-vanishing asymptote is just the integral over
λ(0) on the boundary. This does nothing other than add a delta function
enforcing charge neutrality on the boundary state. In hindsight it is com-
pletely obvious that if we demand the amplitude to be invariant under global
U(1) transformations the state must be charge neutral - by enlarging the
gauge group, we’ve simply imposed this new constraint.

If this constraint is physically unacceptable, then we can simply restrict
the gauge group. Note however, that we do not need to eliminate all gauge
functions which are finite asymptotically, only those which are constant
on the sphere at spatial infinity. Gauge functions which approach l 6= 0
functions on the asymptotic sphere may still be allowed; however they do
not affect time slice amplitudes. In the next subsection we see that allowing
such gauge transformations actually has a nontrivial effect on the causal
diamond amplitude.

4.5.2 Large Gauge Transformations: Causal Diamond
Evolution

We would now like to consider the amplitude

K(Aµ∂V) =

∫
Aµ ∂V

DAµ eiS , (4.126)
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where, as before, S is given by the sourced Maxwell action and the integra-
tion region V is the causal diamond of radius R→∞, but now we allow the
gauge fields to be finite as r → R. The story is very similar to the treatment
of large fields in the time slice propagator, but with an interesting additional
feature.

Looking back to (4.91) and its solution (4.94), we can see that without
the assumption that the gauge field vanishes as r →∞, there are infinitely
many possible homogeneous solutions. In the bulk, η ∈ (−R,R), the only
acceptable homogeneous solution (4.101) is a time-varying h(η) which is
constant in space.

The situation for these time-dependent global U(1) transformations is
identical to the case considered above for A0 in the time slice amplitude,
and the same remedy applies. We must separate off the asymptotic l = 0

part, a
(0)
η , and enforce an additional gauge fixing which sets a

(0)
η = 0 in the

bulk. This will allow for a unique saddle point solution for the remaining

field Āη = Aη − a(0)
η . The upshot is the same as the previous case; properly

treating this asymptotic l = 0 part will just introduce delta functions on the
boundary which enforce overall charge neutrality

∫
∂V d

3x
√
gJη = 0.

However there is another, more interesting, result in the causal diamond
geometry. When we implement the bFP trick, we aim to introduce the
Faddeev-Popov gauge fixing as in eq. (4.119) above; but the integrand here
still does not uniquely fix the gauge. This is because when η = ±R, ie.
on the boundary of the causal diamond, there are homogeneous solutions
Dj∂jΛ = 0 which are arbitrary functions on the sphere. The above delta
functions will uniquely determine the gauge function Λ in the bulk, but on
the boundary there is still a residual gauge freedom given by all functions
Λ approaching a non-constant (l 6= 0) function on the sphere, λ(l 6=0)(xA), as
η → ±R.

Such functions will be discontinuous at r = 0, η = ±R, but this is allowed
since these singular points have been formally “blown up”, allowing for such
angle dependent limits as r → 0 on the boundary.

To uniquely fix the gauge we then append a further gauge fixing term
on the boundary. Since the propagator is gauge invariant, the final result
will not depend on this choice. To simplify many expressions, we choose
∇BaΛ

B = 0, where ∇BaB is the vector divergence on the unit two-sphere.
These choices together uniquely fix the gauge, so that we can write

1 =

∫
DΛ δ(DjAΛ

j )δ(a(0) Λ
η )δ∂V(∇BaΛ

B), (4.127)

up to a field independent constant. We can now multiply this into our path
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integral representation for the causal diamond propagator. Doing this and
implementing again the bFP trick, we obtain

K(A∂V) =

∫
DΛ̄dλ(0) δ∂V(DjAj +Dj∂jΛ̄)δ∂V(a(0)

η + ∂ηλ
(0))δ∂V(∇BaB +∇B∇Bλ)

× e
−i
∫
∂V

[
Λ̄Jη+λ(0)Jη+i∂ηΛ̄ δ

δĀη
+i∂ηλ(0) δ

δa
(0)
η

+i∂jΛ̄
δ
δAj

]
×
∫
Aµ ∂V

DĀηDa(0)
η DAj δ(DjAj)δ(a

(0)
η ) eiS[Aj ,Āη ]+i

∫R
−R dη a

(0)
η Q

(4.128)

The propagator (4.128) is structurally very similar to (4.124), except for
the new factor we’ve introduced to gauge fix the residual transformations
which are allowed on the causal diamond boundary. Again, we can freely
evaluate the integral over ∂ηΛ̄ and λ(0) in the boundary gauge transforma-
tions since they are not fixed by the boundary gauge fixing delta functions.
We can evaluate the integrals over Λ̄ and ∂ηλ

(0) using the delta functions.
The boundary delta functions now constrain Λ̄ to be

Λ̄ = −
∫
∂V
d3x
√
gGDjAj −

∫
d2ΩḠ∇BaB (4.129)

where, up to a minus sign, the first term is just Φ given in (4.109); d2Ω is the
area element on the unit two-sphere, and Ḡ is the Green’s function for the
Laplacian (less the l = 0 mode) on the unit two-sphere. Evaluating these
integrals we obtain the final expression for the large gauge transformation
invariant causal diamond amplitude

K(A∂V)

=

(∫
dλ(0)e−i

∫
∂V λ

(0)Jη
)
ei
∫
∂V d

3x
√
g
[ ∫

∂V d
3x′
√
gGDjAj+

∫
∂∂V d

2Ω′Ḡ∇BaB)
]
Jη

×
∫
Aj ∂V

DĀηDAj δ(DjAj) e
iS[Aj ,Āη ] (4.130)

The first factor in parentheses described charge neutrality for each of the
states. If we deem that it is too strong a constraint, that the net charge flux
through each of the past and future boundaries must vanish, then we can
simply drop this factor and disallow gauge transformations which approach
a constant function on the asymptotic sphere. Alternatively, we could just
make this constant the same on the past and future parts of the boundary:
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this would cause the delta function to enforce charge conservation on the
propagator, not charge neutrality on the states. Ultimately, we have this
direct relationship between allowed transformations in the gauge group and
the constraints applied on our system. Nature ultimately decides whether
certain constraints are enforced, and thus whether the gauge group includes
the corresponding transformation, in the absence of an experimental indi-
cation all we can do is describe the possibilities.

We also see that in addition to the total charge flux constraint, we’ve
found that invariance under large gauge transformations with higher spher-
ical harmonics enforces a new constraint on the system. Since Ḡ and aB are
just angular functions, the new boundary phase in eq. (4.130) implies that
a certain part of the electric field at each angle is determined solely by the
net charge flux of charge through the boundary at each angle. Specifically,
if we define the functional derivative

δ

δaA(xA)
aB(xA′) = δAB q

−1/2δ2(xA − xA′), (4.131)

where q is the determinant of the metric on the unit two-sphere, then we
see from eq. (4.130) that the gauge invariant amplitude satisfies

−i δ

δaB(xA)
K(A∂V) =

(∫
∂V
d3x′
√
gJη(x′)∇BḠ(xA′, xA)

)
K(A∂V),

(4.132)
on each of the future and past parts of the causal diamond boundary.

It remains to understand what, physically, this functional differential op-
erator represents. We can do so by using the relationship between functional
derivatives and the symplectic current density in eq. (4.114). For the gauge
field AB we have

θη(Aµ, δAB) =
∂L

∂∇ηAB
δAB = −√gF ηBδAB, (4.133)

and if we separate the field as AB = ĀB + aB, where aB is independent of
r and ĀB is vanishing at spatial infinity, then by linearity we have

θη(Aµ, δaB) =
∂L

∂∇ηAB
δaB = −√gF ηBδaB. (4.134)

Invoking (4.114) we then find

−i δ

δaB(xA)
K(A∂V) =

∫
A∂V

DAµ eiS[A]

(∫
∂V
d3x′
√
gFBηq−1/2δ2(xA − xA′)

)
=

∫
A∂V

DAµ eiS[A]

(∫ ∞
0

dr r2FBη(r, xA)

∣∣∣∣
∂V

)
. (4.135)
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The bFP trick has then illustrated that physical (gauge invariant) states
on the boundary of the large causal diamond satisfy the constraint equation

(∫ ∞
0

dr r2F̂Bη(r, xA)

∣∣∣∣
∂V

)
K(A∂V) =

(∫
∂V
d3x′
√
gJη(x′)∇BḠ(xA′, xA)

)
K(A∂V),

(4.136)
at every angle xA on the sphere, independently, on each of the past and
future parts of the boundary. This is an exact relation, irrespective of the
data specified for the fields or the dynamics of the charged matter, ie. it
is kinematically required. It is a direct consequence of gauge invariance for
the causal diamond path-integral on the extended configuration space when
the gauge fields are allowed to take finite values at spatial infinity.

This result bears a clear resemblance to results at null infinity which have
been widely discussed in the literature, notably by Strominger [119, 145].
Indeed, since eq. (4.136) holds at each angle, we can multiply it by ∂Bε(x

A),
for any function on the sphere ε(xA), and integrate over the sphere. We
then obtain∫

∂V
d3x
√
q

(
(qAB∇Aε(xA))F̂Br + ε(xA)(r2Jr)

)
K(A∂V) = 0. (4.137)

If we go to complex stereographic coordinates (z, z̄) on the unit sphere such
that the metric is

dΩ2 = 2γzz̄dzdz̄, (4.138)

with

γzz̄ =
2

(1 + zz̄)2
, (4.139)

we obtain the operator constraint equation∫
∂V
drd2z

(
− ∂zε(z, z̄)F̂z̄r − ∂z̄ε(z, z̄)F̂z̄r + ε(z, z̄)γzz̄(r

2Jr)

)
K(A∂V) = 0.

(4.140)
If we recall that in our coordinates r is the affine parameter on the null

boundary, then we immediately recognize the operator above as the large
gauge charge operator Q̂ε in (compare ref. [145], section 2.5.11). The electric
part of this operator creates soft photon states (with strictly zero energy).
When the matter is quantum mechanical the computation can be carried
though with no additional complications, and the result is to simply replace
Jr by a functional differential operator representation of the U(1) current
operator Ĵr.
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From our analysis we can see clearly that if we blow up spatial infinity
such that the value of the gauge field at spatial infinity, λ(xA), can be
different whether approached from the future or past part of the boundary,
then the amplitude satisfies (4.140) on the past and future null boundaries
separately. As a consequence, in the same way that the boundary phases
in eq. (4.47) describe a Coulomb dressing of the charges, the new boundary
phase in eq. (4.130) indicates that the states the past and future parts are
necessarily dressed in the way described originally by Kibble, Chung, and
Faddeev and Kulish [153–155, 238–240], with zero energy photons.

If however, we do not blow up spatial infinity, then eq. (4.140) holds only
when integrated over the whole null boundary of the causal diamond, and
the dressing involving Ḡ∇BaB need only occur on the future boundary. This
then implies the infinitely many conservation laws discussed by in the recent
literature [119, 145], and is equivalent to Weinberg’s soft photon theorem.
It demonstrates how an initial state with no soft photon content evolves to
a final state dressed with zero energy photons. We won’t take a position
here on whether such a condition must be imposed on λ(xA), rather we’d
just like to highlight how, from the bFP trick on a configuration space with
asymptotically finite Aµ, one finds either soft dressing or large gauge charge
conservation.

4.6 Conclusions

In this chapter we have given a manifestly gauge invariant analysis of prop-
agators describing QED amplitudes. A primary goal was to define and
understand gauge invariant states in QED, where we use the modern un-
derstanding of states as data living the boundaries of path-integrals. Much
of the analysis was done for the gauge field coupled to a conserved external
current, but we also saw that all our results trivially generalize to the full
dynamic theory, in which a gauge field couples to quantum charged particles
or to the Dirac field.

We adopted a ‘general boundary QFT framework’, in which the path-
integral allows us to go beyond the canonical quantization framework. This
framework uses path-integrals, with data fixed on general closed hypersur-
faces, to compute amplitudes - the interpretation in terms of states and
transition amplitudes is then secondary, and only applies to particular ge-
ometries.

To treat the gauge redundancy in the QED path integral we intro-
duced a boundary Faddeev-Popov trick, a natural generalization of the usual
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Faddeev-Popov procedure to path-integrals with fixed boundary data. Al-
though the bFP trick should be applicable for general boundaries, in this
paper we considered two simple examples, viz., (a) when ∂V consists of two
finitely separated constant time slices and a time-like cylinder at spatial in-
finity, and (b) when ∂V is the null boundary of a large causal diamond. The
former case is then a conventional transition amplitude which has a represen-
tation in terms of a Hamiltonian operator, whereas the later is most easily
described via the path-integral. In this limit the causal diamond boundary
resembles null infinity and the amplitude resembles a scattering amplitude.

We worked in the extended configuration space of U(1) gauge theory, in
that we considered the amplitude to ostensibly be a functional of all field
configurations Aµ prescribed on the boundary. Using a “path integral first”
approach, we did not concern ourselves a priori with identifying canonical
variables for quantization; instead we simply prescribed boundary data for
the full four-vector potential. As a consequence of the gauge invariance of
the QED action, the resulting amplitudes were gauge-invariant and indepen-
dent of non-canonical variables. The resulting path integrals were written
explicitly in terms of gauge invariant variables, and as a consequence of the
bFP trick we obtained unique expressions for the dependence of the ampli-
tudes on the gauge-variant parts of Aµ. The dependence arose only as a
boundary phase.

The novel result here is that rather than solving the constraint equa-
tion, an equation which under-determines the state, we analyzed the path
integral itself, and found unique expressions for boundary phases which in-
dicated how the constraint equation ought to be satisfied. The amplitude’s
dependence on the gauge-variant parts of the field were determined kine-
matically, whereas the dependence on the gauge-invariant parts of the field
remained to be determine dynamically, by a path integral over gauge invari-
ant variables.

For each of the two geometries considered we considered both the case
where gauge transformations vanish at spatial infinity, and the case where
they have finite limits. In both cases, when gauge transformations were
required to vanish at spatial infinity we obtained Coulombic dressing of the
charges in the boundary state. When the gauge group was extended, only the
causal diamond amplitude had noteworthy changes. The boundary states
were annihilated by the “large-gauge charge” discussed previously in the
literature on null infinity [145, 233–236]. Furthermore, just as the Coulomb
field emerged naturally from the path integral in the previous scenario, from
the large causal diamond path integral an explicit expression for the soft-
photon dressing of states on the null boundary emerges very naturally. Our
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coordinate system, and the specific limit taken to null infinity, were sufficient
to include both null and timelike matter. The resulting expressions were not
novel, but the bFP technique used here was, and it provided a manifestly
gauge invariant derivation of the result.

One of our main motivations in studying these questions was to develop
methods which will allow us to study some rather concrete problems in
quantum gravity - in particular, the ongoing debates about how one may
test experimentally whether the gravitational field is quantized [13, 14, 123],
and how to properly define and calculate decoherence rates [116, 117, 119,
166, 207]. The answer to both of these problems depends essentially on how
one defines physical states for the metric field. The generalization of our
methods to linearized gravity - which is all that is necessary to deal with
these two problems - is straightforward if somewhat messy, and we will give
our results in the following chapter.

On a more formal level, it is of considerable interest to generalize the
bFP trick to gauge theories beyond QED, as well as to amplitudes in curved
spacetime, and ultimately to full quantum gravity.
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Chapter 5

Diffeomorphism invariance
and gravity mediated
entanglement

This chapter will be quite related to the previous chapter, however we will
pivot back to the discussion of quantum gravity. We have not yet repeated
all of the calculations of chapter 4 for linearized gravity, however we can
report some gravitational results for the Kfi studied above. Some of the
technical results reported in this chapter were already discussed in the au-
thor’s Master’s thesis [119], however in that previous formulation the gauge
independence of the results was not as clearly demonstrated as in chapter 4.
Nonetheless, since we have now properly demonstrated the gauge indepen-
dence of these propagators, we can confidently quote our previously obtained
results for linearized gravity.

In this chapter we first report our results for the gauge invariant prop-
agator in linearized quantum gravity, and the related topic of constraints
and physical states. We then discuss one of many related experimental
proposals which aim to test conventional quantum gravity in a tabletop ex-
periment [13, 14]. We review the proposal and the controversy surrounding
it—ie. the debate over whether it can actually test quantum gravity. We
finish by demonstrating how the discussion of physical states in quantum
gravity introduced at the start of the chapter is actually crucial to under-
standing the different arguments, and we use the results to work towards a
conclusion which neither side should be able to disagree with.

After preparing this chapter, we received a draft manuscript [241], which
has some overlap with the content of this chapter. Except for some shared
discussions before the manuscript preparation, our work and the work of
[241] was done completely independently.
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5.1. Gravitational Propagator

5.1 Gravitational Propagator

Let us consider quantum gravity linearized about Minkowski spacetime, with
a single scalar matter field. The action, for this system propagating in the
region V considered above (fig. 4.1), is then

S =

∫
∂V
d3xhijπ

(1)
ij −

∫ tf

ti

d4x

(
hµνG(1)

µν − LM (φ, ηµν)− 1

MP
hµνTµν

)
,

(5.1)
where

π
(1)
ij ≡ K

(1)
ij − δijK

(1) (5.2)

is the linearized conjugate momentum to hij ,

K
(1)
ij =

1

2
(∂0hij − ∂ih0j − ∂jh0i) (5.3)

is the linearized extrinsic curvature of the boundary, and

G(1)
µν =

1

2
(−∂2hµν−∂µ∂νh+∂ρ∂µhρν+∂ρ∂νhρµ−ηµν∂σ∂ρhσρ+ηµν∂2h) (5.4)

is the linearized Einstein tensor. The Planck mass is taken as MP =
(8πG)−1/2. We use the shorthand notation for the trace h = hµµ. The
superscript ‘(1)’ is used to emphasize that these quantities are first-order
in hµν , however in what follows we will drop the superscript ‘(1)’ since all
geometric objects are linearized. The stress-energy tensor Tµν is defined as
the right-hand side of Einstein’s equation

Tµν = −2
∂LM (φ, gµν)

∂gµν

∣∣∣∣
g=η

+ ηµνLM . (5.5)

Under a linearized diffeomorphism, this action transforms by only a
boundary term, and thus these are gauge symmetries of the classical theory.
These transformations are of the form

xµ → xµ +
2

MP
ξµ

hµν → hξµν = hµν + ∂µξν + ∂νξµ (5.6)

where ξ is sufficiently small and slowly varying that hξµν is of the same order
as hµν . Under a transformation of this form, which does not vanish on ∂V,
the linearized action changes by a boundary term

S → S − 2

∫
∂V
d3x ξ0

(
2G00 +M−1

P LM
)
. (5.7)

119



5.1. Gravitational Propagator

For this system, the propagator on the extended configuration space is
given by

K(hf , φf ;hi, φi) =

∫ φf

φi

Dφ
∫ hf

hi

Dhµν eiS[h,φ]. (5.8)

Using the same manipulations as in chapter 4, we find that the transforma-
tion (5.7) implies that the propagator transforms as

K(h
ξf
f , φ

ξf
f ;hξii , φ

ξi
i ) = (5.9)

= e
−2i

∫
Σf

ξ0
(

2Ĝ00+ 1
MP
L̂M

)
K(hf , φf ;hi, φi)e

2i
∫
Σi
ξ0
(

2Ĝ00+ 1
MP
L̂M

)
,

under small diffeomorphisms of the boundary data.
We see that the propagator is invariant under small spatial diffeomor-

phisms, but not invariant under time-like diffeomorphisms which are non-
vanishing on ∂V. These time-like diffeomorphisms correspond to a “many-
fingered” time evolution of the system, where different locations in space are
time evolved differently. It would be quite unusual if the propagator were
actually invariant under timelike diffeomorphisms, since simple time trans-
lation of the final state qualifies as one such transformation and we would
then have a propagator describing a system with no dynamics!12

One can perform manipulations completely analogous to those done for
QED in section 4.2.2, and the results are that eq. (5.9) implies that the
propagator satisfies

π0νKfi = −i δ

δh0ν
Kfi = 0, (5.10)

and (
Ĝ0ν − 1

2MP
T̂ 0ν

)
Kfi = 0, (5.11)

on each of Σf and Σi, where the operator representations Ĝ0ν in the field
basis are

Ĝ00 = 1
2(∂j∂k − δjk∇2)hjk

Ĝ0k = −1

2
∂jπ

jk =
i

2
∂j

δ

δhjk
. (5.12)

12In the full gravitational theory this does indeed happen to some extent—the so called
“problem of time” in gravity. See the discussions of Unruh and of Isham [242, 243].
However here in the linear limit we have a well defined background metric which defines
a time variable. The small diffeomorphisms which remain are gauge symmetries of the
system, and they do not act on this background time variable. Thus, we still have a
description of the system evolving in time.
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5.1. Gravitational Propagator

These are precisely the first class constraints one imposes on the wave-
function in the canonical “Dirac” formalism for quantizing General Relativ-
ity [167, 210, 221, 244–246], although here they have only been derived in
the weak-field limit. A project of great interest would be to generalize this
work to understand invariant propagators in full quantum gravity.13

There are two things of interest to note about the operator representation
of the linearized Einstein tensor above. Firstly, for each of k = 1, 2, 3 the so-
called “momentum constraints”, involving Ĝ0k, has a completely analogous
form to the Gauss law constraint from QED (recall eqs. (4.1) and (4.2)).
Secondly the so-called “Hamiltonian” constraint, involving Ĝ00, depends
only on the field hjk and not its conjugate momentum. The Hamiltonian
constraint has no analogy in QED, since it is a constraint on the canonical
coordinates and not the canonical momenta it is a holonomic constraint; a
better analogy for it would be the constraint on the relative distance between
particles in the rigid rotor model.

Again, manipulations analogous to the those in chapter 4 show that the
propagator (5.8) can be rewritten as

K(hf , φf ;hi, φi) =δ(Ĥ) ÛG

∫ φf

φi

Dφ eiSM [φ]+iSSG[φ]

∫ hTTf

hTTi

DhTTjk eiSg [hTT ,φ],

(5.13)

where the operator

δ(Ĥ) ≡
∫
dξ0 e

4σi
∫
∂V d

3x ξ0
(
G00− 1

2MP
T̂ 00

)
(5.14)

is the projector onto the kernel of Ĥ ≡ Ĝ00 − 1
2MP

T̂ 00. That is, it projects
onto the subspace of the Hilbert space satisfying the Hamiltonian constraint
ĤΨ = 0, on both the initial and final surfaces. Here σ = ±1 on the Σf and
Σi respectively.

The operator ÛG ensures the “momentum constraints”, ie. those involv-
ing G0k, are satisfied: it is defined as

ÛG = exp

(
iσ

1

MP

∫
∂V
d3xhjkB̂jk

)
, (5.15)

where

B̂jk = − 1

∇2

(
δjl∂k + δkl∂j −

∂j∂k∂l
∇2

)
T̂ 0l. (5.16)

13Much of this proposed project has been done already by Mattei et al. [229], however
they did not start from invariant propagators on the extended configuration space, nor
did they include quantum matter.
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5.1. Gravitational Propagator

In analogy with ÛC = eiS̃C in QED (4.47), we see that all of the dependence
on the longitudinal part of the metric field is contained in ÛG.

We have also defined here the instantaneous gravitational self-interaction
term

SSG[φ] =

− 1

4M2
P

∫ tf

ti

d4x
1

∇2

(
T 00T 00 − 4T 0jPjkT

0k + 2T 00PjkT
jk +

∂0T
00∂0T

00

∇2

)
.

(5.17)

The remaining path-integral is over the gauge invariant part of the metric,
the transverse-traceless (TT) components hTTjk , which satisfy by definition

∂jhTTjk = δjkhTTjk = 0. The action describing these components is

Sg[h
TT , φ] =

∫ tf

ti

d4xΠjklm

(
−1

2
∂σhjk∂

σhlm +
1

MP
hjkTlm

)
, (5.18)

where we’ve utilized the TT projector
Πjklm = 1

2

(
P jlP km + P jmP kl − P jkP lm

)
, with Pjk = δjk − ∇−2∂j∂k. In

momentum space the TT projector has a simple form in terms of the + and
× graviton polarization tensors14,

Πjklm = εjk+ ε
lm
+ + εjk× ε

lm
× . (5.19)

Using this identity it is clear that we just have two independent massless
fields,

Sg[h
TT , φ] =

∫ tf

ti

dt

∫
d3p

∑
a=+,×

(
−1

2
∂σha∂

σha +
1

MP
haTa

)
, (5.20)

where we’ve defined h+,× = εjk+,×hjk.
The upshot of this whole discussion is that, as in QED, gauge invari-

ance requires that nearly all of the variables in the metric are constrained.
The only true dynamical variables in linearized gravity are the transverse-
traceless components of the metric, and this is a gauge invariant statement.
We reiterate that this is not a consequence of choosing to fix transverse-
traceless gauge, rather it is because these are precisely the components of
the metric which are invariant under gauge transformation.

14For a graviton plane-wave with momentum ~p along the x3 axis, the polarization tensors

are ε+(p) =

1 0 0
0 −1 0
0 0 0

 and ε×(p) =

0 1 0
1 0 0
0 0 0

 .
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5.2. Gravitational entanglement experiments

5.2 Gravitational entanglement experiments

Since all of this discussion of constrained variables, physical states, etc. has
been somewhat abstract, it is useful to consider a specific example where
this language is clearly important. The example we have in mind is (a
slight modification of) an experiment recently proposed by Bose et al. [13]
and independently by Marletto and Vedral [14], hereafter referred to as the
‘BMV’ experiment. This experiment aims to test whether the gravitational
field is fundamentally quantum mechanical, like all other fields in nature.
These authors have proposed an experiment which they claim is: i) within
experimental limitations of the near future, and ii) sensitive to signatures of
conventional low energy effective quantum gravity.

The claim that these experiments do indeed test quantum gravity has
been very controversial, with arguments focused on which part of the gravi-
tational field is actually being tested by the experiment. In what follows we
will review their proposal as well as the controversy. We’ll then analyze the
proposal using the language introduced above, of constraints and physical
states. We then use this analysis to discuss what exactly the experiment
can say about the gravitational field.

5.2.1 Review of the BMV proposal

The central idea of the BMV proposal is to have gravitation serve to generate
entanglement between two masses. Using a fact from quantum information
theory, that local operations and classical communication (LOCC) cannot
create entanglement between two systems15 [248], they conclude that the
generation of entanglement proves that the gravitational field is quantum
mechanical.

The proposal of Bose et al. [13] differs slightly from that of Marletto and
Vedral [14]; they are both matter-wave interferometry experiments, how-
ever with different read-out protocols. There has also been a number of
subsequent experimental proposals which also use the idea of gravitation-
ally mediated entanglement as a witness to the quantum nature of gravity.
A few examples are experiments based on: the development of quantum
squeezing in the light fields of gravitationally coupled optomechanical cavi-
ties [115], the development of non-gaussianities in Bose-Einstein condensate
correlation functions [23], and atom interferometry in the vicinity of massive
oscillators [15]. We’ll review only the set-up of Bose et al., but the essential
idea of all of these experiments is the same.

15This is true, provided there are no closed timelike curves in the spacetime [247].
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5.2. Gravitational entanglement experiments

The experimental set-up of Bose et al. is illustrated heuristically in
figs. 5.1 and 5.2. The idea is to take a pair of particles and split them
each into superpositions of two well-localized states. The particles then
interact gravitationally and become entangled. The intuition behind the
two-particle two-path set-up is actually quite simple. One would like to cre-
ate and probe a superposition of the gravitational field. The first particle
can be taken as the source, presumably generating such a superposition of
gravitational fields. One must then determine how to probe such a gravita-
tional superposition. One simple idea is to just allow a quantum particle to
freely fall in this gravitational field—surely then the particle will itself evolve
into a superposition (see fig. 5.3). It is argued that if the gravitational field
were classical, then one does not expect the second particle to evolve into
a superposition. Detection of a superposition of the probe particle which
is appropriately correlated with the source particle then serves as evidence
that the gravitational field can be superposed. This idea actually arises nat-
urally from a thought experiment which had been analyzed earlier by Mari
et al. [1]. In the BMV context it is noticed that the probe particle need not
freely fall to be sensitive to the superposed gravitational field, the essential
feature of the Mari et al. thought experiment is that the probe particle is
in a superposition.

The two particles, labeled 1 and 2, are prepared such that each particle
is in a superposition of two well-localized position states |L〉 and |R〉. The
joint wavefunction is separable, ie. the particles are unentangled,

|ψ0〉 = 1
2

(
|L〉1 + |R〉1

)(
|L〉2 + |R〉2

)
, (5.21)

and we can think of the system’s wavefunction as having four “branches”

|ψ0〉 = 1
2

(
|L〉1|L〉2 + |L〉1|R〉2 + |R〉1|L〉2 + |R〉1|R〉2

)
. (5.22)

In the branches where the particles are both L, or both R, they are separated
by a distance ds. In the branches where the particles are on opposite sides,
they are separated by a distance dl =

√
d2
s + (∆x)2. The system is allowed

to evolve for a time t before each of the two-path set-ups are recombined
such that the particles are both back in their initial location |C〉.
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Figure 5.1: A schematic representation of the BMV experiment. Two
particles are each made to pass through a two-path interferometry apparatus
as in, eg. fig. 5.2. The spatial extent of the superposition is ∆x and the initial
distance between the two particles is ds. The dashed red lines indicate each
of the possible Newtonian gravitational interactions on the four branches of
this system’s wavefunction.
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5.2. Gravitational entanglement experiments

Figure 5.2: A rough illustration of a two-path thought experiment, where
an arrangement of Stern-Gerlach magnets is set up such that a quantum
particle is split into a superposition of two symmetric paths and then re-
combined. On each of the paths, left L and right R, the particle’s spin
is entangled with the particle’s position. The intermediate state is then
|ψ〉 = 1√

2
(|L〉| ←〉+ |R〉| →〉). Measurements are performed on the outgo-

ing spin state, and deviations from | ↑〉 indicate that quantum decoherence
has occurred.

Assuming that the superposition is created sufficiently slowly that the
particles are always moving non-relativistically, then the gravitational in-
teraction between them is just the Newtonian interaction. The state of the
system just before recombination is then

|ψ(t)〉 = 1
2

(
|L〉1|L〉2 + ei∆Et|L〉1|R〉2 + ei∆Et|R〉1|L〉2 + |R〉1|R〉2

)
, (5.23)

where we’ve omitted an overall phase, and where the relevant energy scale
is ∆E, defined by

∆E = Gm1m2

(
1√

d2
s + (∆x)2

− 1

ds

)
. (5.24)

For generic values of the experimental parameters, the state eq. (5.23) is no
longer separable, and the particles are entangled.

If the paths for the each of the particles are recombined, then the final
state would just equal the initial state, |C〉1|C〉2, and the entanglement
would be gone. Bose et al. [13] get around this issue by using the intrinsic
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5.2. Gravitational entanglement experiments

spin of the particles. If the superposition is prepared using a Stern-Gerlach
set-up (fig. 5.2), then for a each particle the initial states of its position is
maximally entangled with its spin, ie. for particle 1

|ψ0〉1 = 1√
2

(|L〉1| ←〉1 + |R〉1| →〉1) , (5.25)

and likewise for particle 2. Initially there is maximal entanglement between
each of the particles and their spin. The system evolves as discussed above,
and entanglement is generated between the two particles. After recombining
each of the particles’ positions the entanglement remains only between the
spin degrees of freedom, and the final state of the system is

|ψ(t)〉 = |C〉1|C〉2

× 1
2

(
| ←〉1| ←〉2 + ei∆Et| ←〉1| →〉2 + ei∆Et| →〉1| ←〉2 + | →〉1| →〉2

)
,

(5.26)

This is state is best written in the z basis,

|ψ(t)〉 = |C〉1|C〉2
(

cos

(
∆Et

2

)
| ↑〉1| ↑〉2 − i sin

(
∆Et

2

)
| ↓〉1| ↓〉2

)
, (5.27)

where as long as t is not an integer multiple of π/∆E, there is entanglement
between the particles. It is completely obvious that when t = π/(2∆E)
the spins are actually in a maximally entangled Bell state. At this point,
completely standard joint measurements on the two spins can verify the
entanglement.

Bose et al., and the other groups proposing related experiments, then
rely on the fact that local operations and classical communication (LOCC)
cannot create entanglement between two systems [248]. The operations of
preparing each particle is a superposition are obviously local to the respec-
tive particle. They claim that the gravitational interaction between the
particles is then necessarily non-classical communication, and thus that the
gravitational field is quantum mechanical.

5.2.2 Review of the controversy

These experimental proposals have been controversial for a number of rea-
sons. Firstly there is the issue of whether the necessary experimental pa-
rameters will actually be within technical limitations, as the authors claim.
Many believe that the authors may have overestimated the capabilities of
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5.2. Gravitational entanglement experiments

current experimental technology [249]. Since this is outside of our expertise,
we will not comment on this issue, instead deferring to those who are more
familiar with the necessary experimental technology. Secondly, it has been
argued that the authors’ conclusions are incorrect, and that a positive ob-
servation of the gravitationally mediated entanglement in these experiments
does not necessarily imply that gravity is quantum mechanical [124, 250]16

(see also [251, 252]); we’ll focus on the debate initiated by [123, 124].
In the comment [123] and follow-up [124], both written by Anastopou-

los and Hu, it is argued that the part of the gravitational field relevant
for the BMV experiment, ie. the Newtonian part, is not a true degree of
freedom of the gravitational field. Here we will try to faithfully paraphrase
their argument. Classically, the component of the metric perturbation, φ,
which describes the ‘Newton field’ is pure gauge, and after fixing the gauge
it is determined entirely by the Poisson equation ∇2φ = −4πGµ, where
µ(x) is the mass density. The only freedom in the gravitational field is in
the transverse-traceless graviton modes, not this ‘Newtonian’ part which is
‘slaved’ to the matter. Since the Newtonian interaction can be understood
as simply another term in the matter’s Hamiltonian, such an interaction is
merely a property of matter. If one wants to quantize the gravitational field,
they would then quantize the transverse-traceless graviton modes—only these
would have a Hilbert space, non-commuting observables, etc.

We are actually quite sympathetic to the point of view expressed by
these authors. One can consider the simple analogy of the Coulomb field in
electrodynamics. If one considers two free quantum particles, with charge,
moving non-relativistically they have the Hamiltonian

Ĥ =
p̂2

1

2m1
+

p̂2
2

2m2
− e1e2

4π

1

|x̂1 − x̂2|
. (5.28)

One can then apply the BMV logic to say that any entanglement between
the two particles generated by the Coulomb interaction is “proof” that the
electromagnetic field is quantum mechanical. We’re then led to ask, “why
then would physicists work so incredibly hard to test the quantum field the-
ory predictions for QED? Wouldn’t an observation of the reduced mass in
the Rydberg spectrum for hydrogen be sufficient confirmation of the the-
ory?” We say this only with tongue-in-cheek—one could hardly take this
line of reasoning seriously as a reductio ad absurdum—but we do believe

16The authors of [124] immediately argued against the claims in the experimental pro-
posals [13, 14] in the form of a short comment [123]. This work was later re-purposed
within a large paper; see section 5.1 in [124].
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that it serves to illustrate that there is considerable confusion around what
exactly the BMV-type experiments tell us about quantum gravity. We will
soon use our language of physical states etc. to substantiate the arguments
of [123, 124] in better detail, but first let us finish the story up to present of
the arguments around the BMV experiments.

There has been significant pushback to the criticisms in [123, 124], from
the original authors in the Bose group and from Marletto and Vedral [253–
255] and also from others [eg. 2, 3, 256? ]. The original authors empha-
size their assumption of locality for the mediator, our paraphrasing of their
responses is as follows: The Newtonian interaction emerges in the non-
relativistic limit from the propagation of signals in a gravitational field. If
we assume that this field ultimately has local interactions, as it does in con-
ventional linear quantum gravity, then the whole gravitational field must be
quantum mechanical. To this we comment: “We agree that the locality as-
sumption plays a central role here. However the ‘whole’ gravitational field
doesn’t see the mass density T 00, only certain components of the metric
are sensitive to this source. One must be careful in thinking about the
gravitational field as a single entity.”

Christodoulou and Rovelli have a different argument [256, 257]. Our
interpretation of their claim is: In General Relativity one can understand
the Newtonian interaction between the two particles as a mutual modification
of each other’s local metric, and therefore of their experienced proper time.
As a consequence, in superpositions with different Newtonian interactions
one must be describing superpositions of different spacetime geometries. To
this we have two comments: i) There is an inherent assumption here that
General Relativity, with all of its symmetries and thus interpretations as
the dynamics of a spacetime, persists as the description of gravity when the
sources are quantum mechanics objects. It is certainly natural to assume
this (up to higher curvature corrections at very small scales), however there
is no experimental basis to believe this to be true. ii) The interpretation in
terms of a mutual modification of each other’s proper time arises only with
a particular choice of coordinates, it is a gauge dependent interpretation and
not necessarily the true description of the phenomenon. For example, one
could choose the temporal gauge, where g00 = −1, and the interaction is
described by the spatial components of the metric.

Belenchia et al. have, in our opinion, most clearly exposed the heart of
the argument [2]; however we also think their claims in the follow-up article
[3] are flawed. They identify that the entanglement is indeed mediated
only by the Newtonian part of the field, and they discuss the issues this
introduces with causality. They then show how these issues are resolved
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when one includes quantized gravitational radiation.

Figure 5.3: An illustration of the thought experiment considered by Mari
et al.[1] and Belenchia et al.[2, 3]. Particle 1 was prepared in a spatial
superposition long ago (denoted by the dashed lines), while particle 2 has
been contained in a trap. Particle 1 sources a superposition of gravitational
fields. When the trap is released, particle 2 freely falls in this superposed
gravitational field. Alice and Bob later perform local measurements, MA

and MB respectively, on their particles.

In their work Belenchia et al. reanalyze the thought experiments of Mari
et al. [1], which we’ve described above. If Alice and Bob each have a particle,
and are widely separated, then the particles can become entangled by the in-
stantaneous Newton/Coulomb interaction if they are both in superpositions
of two locations. Bob then seems to have the ability to generate entangle-
ment with Alice’s particle, even over spacelike separations, and this would
be seen as anomalous decoherence if Alice performed local experiments on
her particle. By choosing whether or not to let his particle freely fall and
evolve into a superposition, Bob seems to have a protocol for superluminal
communication. Belenchia et al. demonstrate how this apparent issue with
causality is resolved within conventional low energy quantum gravity.

The essential point of their argument is that although the interaction be-
tween the particles is described by only the Newtonian part, there are two
inescapable facts about the gravitational field: i) the graviton is massless and
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is therefore always radiated in some capacity during the experiment, and ii)
quantum fluctuations of the graviton field can interfere with the sensitivity
of position measurements. The upshot is that by including a quantum field
describing quantized gravitational radiation, the protocol which would have
allowed Bob to effectively communicate superluminally is now unusable be-
cause of an inability to sufficiently localize his particle and/or because of
significant decoherence due to the radiation of gravitons.

Belenchia et al. provide a nice demonstration of how, in conventional
quantum gravity, the radiative graviton degrees of freedom conspire to pre-
vent superluminal signaling that one may attempt to perform using the
Newtonian part of the field. The authors also consider a different parame-
ter regime, where the particle motions are adiabatic and Bob is not trying
to signal to Alice. This is the regime where the BMV experiments would
operate. In this case they highlight that no gravitons are radiated but en-
tanglement still develops between the particles. They then try to reconcile
the fact that Bob is making a local operation on his particle, in deciding
to release it from the trap, yet somehow entanglement is still generated be-
tween his particle and Alice’s. The issue here being the ‘local operations’
part of the statement “LOCC cannot create entanglement”.

In their follow-up [3], Belenchia et al. conclude that to make sense of this
one must think of particles as being entangled with their own Newtonian
fields. Their idea is then: Alice’s particle is entangled with her Newtonian
field, releasing Bob’s particle is a local operation acting on his particle and
the field, but this is no issue because any entanglement with Alice’s particle
is now just transferred from the field to Bob’s particle. We have issues with
this interpretation since it seems to completely disregard the point implied
by Anastopolos and Hu, that the Newtonian part of the field is not a real
degree of freedom. If the Newtonian part is not a real degree of freedom, how
could it be entangled with something? We will soon address this question
quantitatively.

The arguments of Belenchia et al. demonstrate how apparent issues
with superluminal signaling are resolved within conventional quantum grav-
ity, however their arguments are not comprehensive—they do not prove
that conventional quantum gravity is the only possible theory with: i) a
Newtonian interaction between quantum particles at low energies, and ii) a
mechanism which precludes superluminal signaling. One would ultimately
like to have a constructive argument, where one actually assumes i) and ii)
above and uses these postulates to determine the structure of the theory. To
do so would actually be somewhat of a quantum analog of Einstein’s effort
to unite Newtonian gravity with special relativity (which of course resulted
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in General Relativity). We will discuss this further in the next section.

5.2.3 Analysis of the BMV proposal

As mentioned previously, the understanding of gravity as a constrained
theory takes back over 60 years to Dirac [245]. In a previous section we
demonstrated that Dirac’s constraints emerge when states are defined via
the gauge invariant path integral, and we also showed that the path integral
generates a solution to the constraint of a certain form. In this section we
then take the this language which we have now familiarized the reader with,
and demonstrate its utility for real experiments.

We’ll aim, here, to substantiate the arguments of Anastopoulos and Hu
[123, 124] regarding the nature of real gravitational degrees of freedom, and
then address the points made by Belenchia et al. [3] about the entanglement
between the particles and their Newtonian fields.

Let us consider eq. (5.13), except now with the matter replaced by two
non-relativistic massive particles. In this limit, all components of the stress
tensor except for T00(x) =

∑
jmjδ

(3)(qj(t)−x) can be effectively neglected.
The result is then,

K(hf , q2 f , q1 f ;hi, q1 i, q2 i) =

∫ hTTf

hTTi

DhTTjk eiSg [hTT ] (5.29)

× δ(Ĥ)

∫ q2 f

q2 i

∫ q1 f

q1 i

Dq2Dq1 e
iS[q1]+iS[q2]+iSNtn[q1,q2],

where the renormalized gravitational self-interaction (previously SSG[φ]) is
now just given by Newtonian gravity

SNtn =− 1

4M2
P

∫ tf

ti

d4xT 00∇−2T 00

=

∫ tf

ti

dt
Gm1m2

|q1(t)− q2(t)|
. (5.30)

The transverse-traceless components are now effectively decoupled from the
matter, since gravitational radiation is negligible in a non-relativistic limit.

The gravitational field now only sees the matter through the Hamiltonian
constraint. If Ψ[φ, hjk] denotes a physical state, ie. either of the endpoints
of the propagator, the Hamiltonian constraint implies

ĤΨ[q2, q1, hjk] =

[
1

2
(∂j∂k−δjk∇2)hjk− 1

2MP
T̂ 00

]
Ψ[q2, q1, hjk] = 0. (5.31)
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This constrains a particular combination of the longitudinal parts of the
metric ∂jhLjk 6= 0, and the trace of the metric δjkhjk. These parts of the
metric are clearly not dynamical degrees of freedom though; although they
appear in the path-integral eq. (5.8), one ultimately finds (5.13) that these
parts are completely constrained to the matter, leaving only the transverse-
traceless parts as true dynamical degrees of freedom.

We also must consider the implications of the momentum constraints,
eqs. (5.11) and (5.12). These constrained the way in which the state can
depend on the longitudinal part of the field, hLjk. In particular, the result was
that the state can only depend on the longitudinal part of the field through
the operator ÛG, (eqs. (5.15) and (5.16)). When the momentum density
parts of the stress tensor, T 0j , are negligible, we see that the momentum
constraint implies that the state cannot depend on the longitudinal part of
the metric. Taking the two constraints together we then find that a physical
state for this system has the form

Ψ[q2, q1, h
TT
jk , φ] = δ

(
∇2φ+ 4πG T̂ 00

)
ψM (q1, q2)ψg[h

TT
jk ], (5.32)

where we’ve defined the “scalar” part of the metric

φ ≡
δjkhjk
2MP

. (5.33)

The momentum constraint has ensured that the wavefunctional has sup-
port only on transverse field configurations ∂jhTjk = 0, and the Hamiltonian
constraint has ensured that the wavefunctional has support only on config-
urations where the trace of the transverse metric components is determined
by a quantum Poisson equation. As anticipated, the remaining transverse-
traceless components are the only independent gravitational degrees of free-
dom, and are described by free massless fields. Note that the constraint on
φ is precisely that which was anticipated by Anastopulous and Hu [123].
Although their arguments were based on classical gravity, we’ve seen that
in the quantum theory φ still precisely satisfies the Poisson equation.

Since the TT gravitons are decoupled, it is clear that the Newtonian
interaction between particles is determined solely by the additional term in
the matter action eq. (5.30). In terms of fields, only the scalar part of the
metric, φ, is sensitive to mass density T 00. Observation of entanglement
generated by the Newtonian field clearly does not directly imply the exis-
tence of the TT gravitons. In principle one could consider a gravity theory
which describes only the Newtonian part of the interaction quantum me-
chanically. This could be done as we have here, using the field φ and the
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interaction term eq. (5.30). One could then also consider some wildly dif-
ferent treatment of the TT modes, such as a the semi-classical coupling (eg.
[250, 251], see also [252] for a review of various schemes for coupling classical
and quantum systems). In the previous section we discussed the likely issues
with Lorentz invariance and causality in such a theory, but using this path
integral framework it seems possible to at least formulate it.

From our discussion just above and in the previous section, we come
to our final understanding of the arguments around the BMV experiment.
Nobody is criticizing anyone else’s calculation; ultimately it seems to boil
down to an argument over semantics. The issue is the ambiguity in calling
something “quantum mechanical”— to our knowledge, there is no unique
mathematical expressions which go along with this statement.

As an example, consider a particle which is constrained to move on a
sphere of radius a. One would certainly formulate a theory in Hilbert space
for this particle, and enforce the constraint using the physical state condition
(r̂ − a)|Ψ〉 = 0. There is an operator r̂ acting on the Hilbert space, but is
the radial position of this particle really “quantum mechanical”?

Better yet, consider two non-relativistic particles moving in 1-dimension
which are permanently joined by an indestructible and incompressible rod of
length a. One would impose the constraint on the two-particle Hilbert space
as (x̂1 − x̂2 − a)|Ψ〉 = 0. Is it truly correct to say that both particle 1 and
particle 2 are quantum mechanical? It seems so, but one must ask, “Are the
particles really distinct entities?” Supposing it is widely agreed upon that
particle 1 is indeed a quantum mechanical object, then there isn’t anything
interesting to say about particle 2 since it has no existence distinct from
particle 1. One could describe the physics completely equivalently by saying
that particle 1 feels forces which act at its location and also at the location
a distance a to its right, and in this formulation is seems as if particle 2
merely describes a property of particle 1. It is likely best to think of the two
particles as two aspects of a single object—the two ends of a rigid body, but
this is merely a matter of interpretation, not of calculation/physics.

The analogy with the constraints in QED and gravity should be clear.
The Newtonian field is quantum mechanical, but ultimately it is not distinct
from the locations of the massive particles. One can consider the particles
as quantum mechanical entities with the Newtonian field being a property
of these particles, or equivalently think of the Newtonian field as quantum
mechanical, with the locations of the particles describing properties of this
field, or equivalently think of the particles and Newtonian field as different
sides of the same coin. When Anastopolous and Hu [123, 124] criticize
the BMV proposal, they are saying that there is nothing about quantum
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gravity to learn from the observing a superposition of the Newtonian field
since it is just a property of matter, and obviously matter can be put in a
superposition. To call the gravitational field quantum mechanical, they say,
one would need to demonstrate non-classical properties of the actual degrees
of freedom of the gravitational field, the TT gravitons.

Those supporting the BMV proposal consider the gravitational field more
holistically, and they don’t entertain the possibility that gravity violates
Lorentz invariance at microscopic scale. If one does assume Lorentz invari-
ance though, it seems to follow naturally then that the BMV experiment
demonstrates that the whole gravitational field is quantum mechanical even
in the stricter sense of Anastopoulos and Hu.

To see this, consider observers at a point (~x = 0, t = 0) which are moving
relative to one another. These observers will all have different timeslices rep-
resenting their “now”, and they will then specify states on different surfaces.
As a consequence, these observers will identify different components of the
metric as the transverse-traceless, longitudinal, and scalar17 parts, and thus
they will identify different parts of the metric as constrained. An obser-
vation of quantum properties of the scalar part of the metric in one frame
is then a demonstration of quantum properties of the transverse-traceless
components in another frame. If all uniformly moving observers are equiva-
lent, it follows that the BMV experiment can indeed determine whether the
whole metric behaves quantum mechanically.

From all of this discussion we arrive at our own perspective on this ex-
periment. We believe that the BMV-type experiments can only reveal that
there is a Newton interaction between the masses, and that this alone does
not imply anything about the true radiative degrees of freedom in the grav-
itational field. In a related manner it does not necessarily imply anything
about the quantum nature of the gravitational field in the relativistic limit,
and therefore of its interpretation as quantum mechanical spacetime curva-
ture. The possibility remains that relativistic gravitation at small length
scales is quite unlike that at large length scales, and that an interpretation
in terms of spacetime curvature only emerges as an effective description in
a large-scale classical limit of an underlying theory.

The enumerable successes of relativistic quantum field theory for particle
physics indicates that Lorentz symmetry is a (at the very least, incredibly
good approximate-) symmetry of the local spacetime at microscopic scales.
It follows that the appropriate description of the gravitational field should

17The term “scalar” here refers only to invariance under spatial rotations, it is not
invariant under boosts.
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be a relativistic field theory (at these scales). Of course we know this to be
true of classical gravity, as it is described exceptionally well by General Rel-
ativity, but we could chose to play agnostic about whether this continues to
be true for gravity at microscopic scales. If this microscopic relativistic field
theory is to describe the Newtonian interaction quantum mechanically, then
it should be some type of quantum field theory. From here one can follow the
logical chain developed largely by Kraichnan, Feynman, Weinberg, Deser,
and Boulware [70, 258–264] which essentially proves that a unitary Lorentz
invariant theory of gravitation must equal Einstein gravity, up to higher
curvature corrections. The logic of Deser actually extends even further, re-
quiring only local Lorentz invariance. Deser argued that a consistent theory
of gravitation, which takes place on a background spacetime described by
a Lorentzian manifold [263], is necessarily Einstein gravity (again, up to
higher curvature corrections). It then follows that if the BMV-type experi-
ments yield a positive result (entanglement is detected), one would need to
violate standard physical principles to come up with a theory other than
conventional low energy effective quantum gravity which would mimic its
predictions.

The interpretation of a positive result for these experiments seems to
be only one two options: i) the full gravitational field is indeed quantum
mechanical, and quantized gravitons exist or ii) there is an inherent quantum
gravitational non-locality which exists in nature at a length scale much larger
than the Planck length, Lorentz symmetry is likely broken, and, unless there
is a completely novel mechanism which abhors superluminal communication,
new quantum gravitational technologies should be able to exploit this non-
locality for communication purposes. Occam’s razor suggests that option i)
is likely the correct interpretation of the experiment, but here we are trying
to take the hypothetical BMV experiment results literally, to see what they
can and cannot say about nature.

Entanglement with the Newtonian field

Let us now consider the claims of Belenchia et al. regarding entanglement
with the gravitational field in the BMV experiment. We’ll omit: the spin
variables as they are just carried along and clutter the notation, and the
TT gravitons as they are independent of the matter. As we saw above in
eq. (5.32), the relevant degrees of freedom are then just the particle coor-
dinates q1, q2 and the scalar part of the metric, φ. To further simplify the
discussion, we’ll consider time t = 0, where the superpositions have been
created but the Newtonian energy has not yet led to an accumulation of
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phase on each of the branches of the wave function. Again, referring back
to eq. (5.32) we see that the physical states describing the system is

Ψ[q2, q1, φ] =1
2

(
δ(φ− φLL)ψL(q1)ψL(q2) + δ(φ− φLR)ψL(q1)ψR(q2)

+ δ(φ− φRL)ψR(q1)ψL(q2) + δ(φ− φRR)ψR(q1)ψR(q2)
)
,

(5.34)

where ψL,R are well localized wavefunctions on the L and R paths, and
where the various configurations of φ are given by permutations of L and R
in the expression

φLR(~x) =
Gm1

|~x− (~qL + ~ds)|
+

Gm2

|~x− ~qR|
. (5.35)

The vectors ~qL,R point to locations in the apparatus for particle 2, while ~ds
points in the direction up to the apparatus for particle 1 (fig. 5.1).

To simplify the discussion we could even consider just a single particle,
where the physical state would be

Ψ[q, φ] = 1√
2

(
δ(φ− φL)ψL(q) + δ(φ− φR)ψR(q)

)
. (5.36)

From this expression it is clear that the physical state condition implies that
the state of φ and of q is not separable. Does this then support the claim
of Belenchia et al. that the particle is entangled with its own Newtonian
gravitational field? We believe the answer is no.

Indeed, the state in eq. (5.36) is not separable, so there is certainly
correlation between the field φ and the particle, but in the space of physical
states for q and φ there are no separable states! Without a basis of separable
states, it doesn’t seem possible to quantify entanglement. We cannot even
obtain a reduced density matrix for q. Suppose we naively tried to do so by
tracing over φ field configurations,

ρparticle =

∫
dφ(x) 〈φ(x)|Ψq,φ〉〈Ψq,φ|φ(x)〉

=

∫
dq dq′ ρ(q, q′)|q〉〈q′|. (5.37)

Since there is an injective map from the configuration space of the particle’s
position to the configuration space of φ(x), upon tracing out the gravita-
tional field we would find a completely diagonal density matrix, ρ(q, q′) =
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p(q)δ(q − q′). If the state |Ψq,φ〉 described a spatial superposition, then the
resulting density matrix would be completely decoherent.

Decoherence of this type is known as “false decoherence” [265]. In-
deed, Unruh mentioned the example of a spatially superposed charge and
its Coulomb field in [265], however the only field theory involved in their
calculations was a relativistic scalar field. If we were to take the superpo-
sition eq. (5.36) and recombine the particle into a position eigenstate at q0,
then upon tracing out the φ field we would simply obtain the pure state
ρ = |q0〉〈q0|, and we would have apparently reversed any decoherence.

Although this seems reasonable, we argue that the idea of false decoher-
ence is not quite applicable in QED and linearized quantum gravity. The
issue is that in writing eq. (5.37), we have used the states |φ(x)〉 and |q〉
which are unphysical! Neither of these states satisfy the Hamiltonian con-
straint of quantum gravity. If we wanted to compute an observable, we
would need to evaluate

〈Ô〉 = Trphys

(
Ô|Ψq,φ〉〈Ψq,φ|

)
, (5.38)

where the trace is only over the physical subspace of the Hilbert space.
The analogy of the particles joined by a rigid rod is again useful here. If

we naively traced out one of the two particles, we would completely decohere
the state of the other particle unless it was already in a position eigenstate.
The naive calculation suggests if we ignored particle 2 that we could not
demonstrate interference phenomenon with particle 1. This is certainly not
true; the rigid rod system is completely quantum mechanical and in isolation
it would evolve coherently. It is not possible to ‘trace out’ particle 2, because
measurements on particle 1 would not involve marginalizing over all possible
position of particle 2—a measurement of the position of particle 1 would
immediately tell us the position of particle 2.

The upshot of all this discussion is that we cannot describe the state
eq. (5.36) as an entangled state between the field φ and particle because there
is no such thing as a particle without its field, the constraints of quantum
gravity imply that they are actually two aspects of the same entity.

5.3 Conclusions

In this chapter we discussed the consequences of diffeomorphism invariance
in linearized quantum gravity. We begun by reviewing our findings for the
gauge invariant propagator in linearized quantum gravity. This was work al-
ready reported in the author’s Master’s thesis [117], however the subsequent
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developments discussed for QED in chapter 4 solidify and clarify the gauge
independence of the previously reported results. We then used these results
here to provide a technical context throughwhich we could analyze and in-
terpret the recent experimental proposals of Bose et al. [13] and Marletto
and Vedral [14].

The main technical results were that we could start from a path-integral
describing a propagator on the extended configuration space in linearized
quantum gravity, demonstrate its invariance under small diffeomorphisms,
and rewrite it in such a way that an integral remained only over the gauge-
invariant transverse-traceless components. Without imposing it by hand,
the resulting form of the propagator was independent of the non-canonical
variables h0µ. Furthermore, the dependence on the longitudinal and ‘trace’
parts of the metric emerged in a specific form as boundary phases outside
of the path-integral. In a ‘path-integral first’ perspective, these boundary
phases then tell us about the structure of “physical states” in the theory.
What we observed, is that these boundary phases were particular solutions
to the Dirac first class constraints on the states. The resulting constraints
on the physical states were certainly not new, but the technique for finding
their solutions from the path-integral is, to our knowledge, new.

After the discussion of physical states we were able to address the debate
around the “BMV” experimental proposal. These experiments aim to use
matter-wave interferometry to test whether the gravitational field is indeed
quantum mechanical, but there has been considerable debate over whether
the experiments do actually test this.

Our analysis supported the objections of Anastopoulos and Hu [123,
124]. Since the experiment is sensitive only to the Newtonian part of the
gravitational field, and this part of the field is completely constrained to the
matter, the experiment does not directly test whether the true dynamical
degrees of freedom of the gravitational field are quantum mechanical. We did
not agree with the conclusions of Anastopoulos and Hu [123, 124] however,
that the experiment can teach us nothing about the proper gravitational
degrees of freedom.

We discussed the possible issues with superluminal communication that
can occur in a theory where only the Newtonian part of the field is quantum
mechanical. Belenchia et al. [2, 3] discuss how these issues are resolved
in conventional quantum gravity by considering the quantum mechanical
effects of the “true” gravitational degrees of freedom. Based on this, we
asked whether this is the only possible resolution, or whether some alter-
native theory of gravitation at microscopic scales would still be viable. We
then presented the outline of an argument, based on Lorentz invariance and
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the uniqueness of Einstein gravity as a low energy effective field theory for
gravity, which suggested that one would need to abandon deep physical prin-
ciples such as the local Lorentz invariance of spacetime, causality, and/or
unitarity at the microscopic level, if they wanted to believe that the BMV
experiment does not reveal the quantum nature of the spacetime metric.

We did not discuss one interesting possibility though. Suppose a theory
is a proper unitary relativistic theory of quantum gravity at the microscopic
scale, but describes an intrinsic breakdown of quantum mechanics at larger
scales, ie. for masses approaching the Planck mass. Since a theory of this
type is conventional quantum gravity at the microscopic scale, the BMV
experiment should not be able to distinguish it from conventional quantum
gravity. A theory which is claimed to be of this type is the Correlated
Worldline (CWL) theory [113, 114, 126]. In part II of this thesis, we will
discuss our own perspective on the CWL theory, and address if it is indeed
equal to conventional quantum gravity at microscopic scales or if we expect
it to be distinguishable from conventional quantum gravity in the BMV
experiment.
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Chapter 6

Yang-Mills Gauss law and
the heavy quark binding
energy in the presence of a
dimension-2 gluon
condensate

We’ll now take a tangent from our previous considerations of quantum grav-
ity, before returning again in part II of the thesis. In chapters 4 and 5 dis-
cussed how one can see the importance of constraints in QED and quantum
gravity path integrals. One result coming from that was a nice separation
in the path-integral between parts associated with radiative degrees of free-
dom and parts describing the constrained piece of the gauge fields. The
constrained part of the gauge field generated an interaction energy asso-
ciated to the matter, even when it was static and not radiating on-shell
photons/gravitons. We decided to take this observation and ask whether
something similar would happen in Yang-Mills theory. We then posed the
question, “Can we isolate the constraint equation in a Yang-Mills path-
integral, and does this allow us to compute the binding energy between
static quarks?”. This chapter is our attempt at answering this.

In a sense we consider this as a warm-up exercise, to see how things work
in a non-linear gauge theory, before we try to better understand gravity
beyond the linear regime. A number of assumptions were made throughout
this chapter which a proper expert in Yang-Mills theory should scrutinize.
We hope that aspects of this calculation survive scrutiny so that ultimately
some of this work can serve as a useful tool for particle physics.

In this chapter we study the binding energy of a heavy quark-antiquark
(qq̄) pair using the first-order path integral formalism. This makes the Yang-
Mills constraint equation explicit, and highlights that it is valid without
relying on a semiclassical approximation. A generalized “gauge-covariant
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Coulomb gauge” is chosen to allow for a decomposition of the chromoelec-
tric field into a gauge-covariant generalization of transverse and longitudinal
parts. This decomposition makes it clear that the qq̄ binding energy is de-
termined solely by the solution to the constraint equation. Assuming that
the low-energy physics is dominated by the existence of a dimension-2 gluon
condensate, we develop an asymptotic series solution to the constraint equa-
tion and thus to the qq̄ binding energy. We predict a short distance QCD
string tension in terms of the condensate strength and quadratic Casimir
eigenvalues, and match our result to results coming from OPE analyses.

6.1 Introduction

The discovery of asymptotic freedom in Yang-Mills theory by Gross and
Wilczek and Politzer [266, 267] signaled a blessing and a curse for the the-
ory. The discovery demonstrated that perturbative calculations could be re-
liable and experimentally testable at high-energies, allowing for high-energy
experiments to confirm that SU(3) Yang-Mills theory is the correct funda-
mental theory of the strong nuclear interaction. Simultaneously though, it
confirmed that low energy phenomenon could not be described using weak
coupling methods, such as perturbation theory or semi-classical approxima-
tions.

Perhaps the most important low energy phenomenon to understand in
Yang-Mills theory is hadron formation. At low energies one never observes
individual quarks; rather, these objects with non-trivial color charge are
always bound together in colorless hadronic states. Despite having this
empirical observation for over 55 years [268], we still do not have an accepted
theoretical post-diction of the phenomenon, commonly referred to as quark
(or color-) confinement.

Early analysis of the various mesonic states observed in nature found that
they quite accurately fit into linear Regge trajectories [269–271], a hallmark
feature of the spectrum of a relativistic quantum string [272–276]. Fur-
thermore, one could read off the effective “QCD-string” tension from these
trajectories. This observation narrowed the study for quark confinement.
One then had the idea that some underlying low-energy Yang-Mills physics
should lead to the emergence of an effective string of chromoelectric flux con-
necting two quarks [277]. It remained, however, to understand why and how
the chromoelectric field lines in non-abelian Yang-Mills theory would bunch
together to form a string-like object rather than spreading radially as they
would in electrodynamics. A variety of proposals have been given for this
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mechanism, many of which involving a non-trivial vacuum structure arising
from non-perturbative topological excitations such as magnetic monopoles,
instantons, dyons, and center vortices [see eg. 278–280, 280–287].

The most useful tool we’ve had to understand low-energy Yang-Mills
physics has been the lattice simulations. By discretizing the underlying
spacetime one simultaneously provides a necessary short-distance regular-
ization of the theory and also truncates to a finite number of degrees of
freedom so that the the theory can be simulated on a computer. This ap-
proach has been remarkably successful [see some of the many reviews for a
summary, eg. 288–292], the result most relevant to us being the confirma-
tion of the above intuition that the interaction potential between a quark
and anti-quark is Coulombic at short distances where perturbation theory
is applicable, but becomes linear at larger distances (see eg. [293–299]).

Despite its successes, lattice simulations have some limitations as theo-
retical tools. Firstly, to ensure proper convergence of the path-integral one
is typically restricted to a Euclidean rather than Minkowskian description.
This considerably limits the types of observables one can compute, because
it obfuscates time dependence. Secondly, and more importantly, the simu-
lations primarily function as a “black-box”. One provides the YM action
and coupling constant, and a lattice structure, and the computer code will
compute observables. From simulations we do not necessarily get an intu-
itive physical description of the QCD string formation phenomenon, nor do
we necessarily get clear insights on how to better predict the phenomenon
analytically.

Recently though, there has been interest in the lattice community in
studying the effects of a gluon condensate [300–304]. Notably, one finds
that lattice measurements of the running coupling constant are not well
fit by models unless the models include significant contributions from a
dimension-2 gluon condensate, 〈AaµAaµ〉 6= 0. [301, 302] Using operator prod-
uct expansion (OPE) techniques, relationships have been made between this
condensate and quark confinement. Additionally, using lattice simulations it
has been observed that there are relationships between this condensate and
a vacuum described by a topological instanton liquid [304]. This observation
hints that if we more deeply understand the dimension-2 condensate, and
the phenomenological consequences of its existence, we may come full circle
back to the original topological/non-perturbative intuitions for the nature
of quark confinement [278–281].

In this chapter we aim to provide a new analytical approach to the study
of the quark confinement problem. We use a heavy quark approximation to
study a quark-antiquark pair at fixed separation. We use the path-integral,
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and assume that the vacuum is described by a gluon condensate. We do not
remark however on the mechanism which generates this condensate. The
approach we use here has two primary features. Firstly, we use the first-
order path-integral formalism so that the chromoelectric field is an explicit
variable in the path-integral. Yang-Mills theory is a constrained theory, and
in the first order formalism one sees explicitly that the chromoelectric field
must satisfy the Yang-Mills analog of the Gauss law. Since it is a constraint,
this equation holds exactly and does not rely on a semiclassical approxima-
tion to be valid in the quantum theory. This point is essential, as we do not
expect a semi-classical description to be valid as the coupling flows to larger
values. Secondly, we use a judicious gauge choice as well as a generaliza-
tion of the transverse and longitudinal fields familiar from electrodynamics.
These choices allow for a decomposition of the field variables such that the
contribution to the quark-antiquark binding energy is determined solely by
the solution to the constraint equation. We proceed to compute this bind-
ing energy as an asymptotic series with increasing powers of the particle
separation r.

In section 6.2 we review the Yang-Mills path integral, introducing the:
first-order formalism, gauge-covariant Coulomb gauge, and gauge-covariant
transverse-longitudinal decomposition. We further demonstrate how with
this choice of variables we can isolate the contributions to the quark-antiquark
static potential as arising solely from the solution to the constraint equation.

In section 6.3 we discuss the constraint equation and introduce a path-
integral description of the condensate following that of [305]. We then
develop an asymptotic series expansion in powers of r for the interaction
potential, with higher order terms predicted by a recursion relation.

In section 6.4 we relate our approach to the study of Wilson loops, and
proceed to compute the first few terms in the interaction energy. We predict
a Yang-Mills string tension in terms of the condensate strength, the coupling
constant, and the quadratic Casimir eigenvalues of the adjoint representation
and the chosen quark representation.

Finally, in section 6.5 we relate our prediction to predictions coming from
OPE analyses and comment on various deficiencies of our model.

6.2 Non-abelian Yang Mills Theory Formalism

In Yang-Mills theory there is a gauge field Aµ which takes values in the Lie-
algebra of the group G. From this one constructs the field strength tensor
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Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ], (6.1)

and then the action

S =

∫
d4x

(
− 1

2g2
trFµνF

µν + trAµJ
µ

)
. (6.2)

Here the trace is taken in the fundamental (lowest dimension) representa-
tion of the gauge group, and the generators T a, a = 1, ...,dim(G), in the
fundamental representation have been normalized as usual

trT aT b =
1

2
δab. (6.3)

The source Jµ is a Lie-algebra valued current, and we’ll specify to the case
where it is the sum of contributions from particles on fixed worldlines

Jµ(y) =
∑
n

∫
dτ
dxµn
dτ

qn(τ)δ4(y − xn(τ)). (6.4)

In this we’ve introduced the Lie-algebra valued, time dependent, color charge
qn(τ).

Under infinitesimal gauge transformations Ω ≈ 1 + iω, with ω in the
Lie-algebra, we have

δFµν = i[ω, Fµν ]

δAµ = ∂µω − i[Aµ, ω] ≡ Dµ(A)ω. (6.5)

The gauge-covariant derivative Dµ(A) defined here will appear frequently
throughout the following calculations. From these transformation rules we
can see that the Yang-Mills action is gauge invariant if the current satisfies

Dµ(A)Jµ = 0. (6.6)

Since A is a dynamical quantum variable, this is not a requirement which
could be imposed on a fixed external current, and so the internal color degree
of freedom must also be quantum mechanical. It remains consistent though
to fix the particle worldlines. This is effectively an approximation in which
the masses of the charges have been taken to be arbitrarily large. For the
time being, we’ll treat Jµ as fixed and then later introduce the internal
dynamics for the color variables.
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6.2. Non-abelian Yang Mills Theory Formalism

The Yang-Mills generating functional is then just the path-integral

Z[J ] =

∫
DAµ e

i
∫
d4x
(
− 1

2g2
trFµνFµν+trAµJµ

)
. (6.7)

We can transition to a first-order form by introducing a Lie-algebra valued
chromoelectric field variable Ej if we multiply eq. (6.7) by 1, represented
as a particular gaussian integral. For convenience we also use the conven-
tional redefinition Aµ → gAµ, F

µν → ∂µAν−∂νAµ− ig[Aµ, Aν ] to make the
coupling constant appear with the interaction terms. The result is

Z[J ] =

∫
DEj e−itr

∫
d4x
(
Ej+(∂0Aj−∂jA0)

)2

Z[J ], (6.8)

which can be better rewritten as

Z[J ] =

∫
DEj

∫
DAµ eiS , (6.9)

with first-order action

S = tr

∫
d4x
(
− EjEj − 2Ej∂0Aj − 2A0Dj(A)Ej − 1

2
FijF

ij + 2AµJ
µ
)
.

(6.10)

We can now immediately integrate out A0 since it appears as a Lagrange
multiplier. Assuming sources with fixed locations in space, J j = 0, J0 ≡
gρ 6= 0, then the sources will now only appear in the constraint equation

Z[J ] =

∫
DEj

∫
DAj δ(Dj(A)Ej − gρ) eitr

∫
d4x
(
−EjEj−2Ej∂0Aj− 1

2
FijF

ij
)
.

(6.11)

It is now convenient to isolate the part of the chromoelectric field which
is constrained from that which is not. To that end, we define the gauge-
covariant-transverse and gauge-covariant-longitudinal chromoelectric fields
via the relationship

Ej = EjT + EjL, Dj(A)EjT = 0. (6.12)

For brevity we’ll hereafter refer to these as the GC-transverse and GC-
longitudinal parts. This decomposition is similar to the typical transverse/longitudinal
decomposition of vector fields which are defined by the relations

Ej = EjL + EjT , ∂jE
j
T = 0, (6.13)
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and are written in terms of the transverse projection

EjL = ∂j
(
∇−2∂k

)
Ek

EjT =
(
δjk − ∂

j
(
∇−2∂k

))
Ek, (6.14)

where∇−2 is the Laplace Green’s function. This decomposition of the field is
particularly useful because transverse and longitudinal fields are orthogonal∫

d3xEjTE
j
L = 0. (6.15)

This orthogonality relation also holds for the GC-transverse decomposition,
and is key to the decomposition being useful.

We can invert the defining relationship for these components to see that
the GC-longitudinal part is a GC-gradient

EjL = Dj(A)
(
Dk(A)Dk(A)

)−1
Di(A)Ei. (6.16)

We can hereafter use a scalar (Lie-algebra valued) variable V , where EjL =
−Dj(A)V . Since the second order elliptic differential operator Dj(A)Dj(A)
is strictly positive, its inverse is well defined [306].

With this decomposition, the first-order form path-integral simplifies.
Firstly, the Yang-Mills Gauss law constraint does not affect EjT , and all
information about the sources is contained in the exact equation

−Dj(A)Dj(A)V = gρ, (6.17)

where Aj is a background and V is the variable to be solved for.
The next simplification is that the chromoelectric energy term separates

because the two components are orthogonal

tr

∫
d3xEjEj = tr

∫
d3x
(
EjLE

j
L + EjTE

j
T

)
= tr

∫
d3x
(
gρV [ρ,Aj ] + EjTE

j
T

)
. (6.18)

In the first term we used the constraint equation to rewrite EjL in terms of
the Yang-Mills charge density and the solution V [ρ,Aj ] to the constraint
equation eq. (6.17).

The final simplification comes in the “pq̇” term in eq. (6.10). It can be
rewritten as

2 tr

∫
d4xEj∂0Aj = 2 tr

∫
d4x

(
EjT∂0Aj − V [ρ,Aj ]

(
Dj(A)∂0Aj

))
, (6.19)
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and we can eliminate this second term by a judicious choice of gauge. Indeed,
it has been proven that the so-called generalized Coulomb gauge,

Dj(A)∂0Aj = 0, (6.20)

is a valid gauge condition which is free of Gribov ambiguities [306–308]. This
gauge choice has a nice geometrical interpretation [306], the details of which
we will not discuss here, which make it quite useful. There has been recent
work trying to use this gauge choice in the canonical quantization using the
constraint formalism of Dirac, however the authors’ conclusions were that
the canonical formulation was far more complicated than a path-integral
formulation [309].

All together then, we have the first-order form for the generating func-
tional

Z[J ] =

∫
DAj

∫
DETj ∆[A]δ(Dj(A)Ȧj)e

−itr
∫
d4xgρV [ρ,Aj ]

× eitr
∫
d4x
(
−EjTE

j
T−2EjT ∂0Aj− 1

2
FijF

ij
)
, (6.21)

where ∆[A] is the Faddeev-Popov determinant corresponding to the gener-
alized Coulomb gauge. At this stage, we can conveniently integrate out the
GC-transverse electric field to obtain a Lagrangian form

Z[J ] =

∫
DAj ∆[A]δ(Dj(A)Ȧj)e

−itr
∫
d4xgρV [ρ,Aj ]

× eitr
∫
d4x
(
∂0Aj∂0Aj− 1

2
FijF

ij
)
. (6.22)

The most important difference between the non-abelian and abelian cases
is that now the solution V [ρ,Aj ] depends on the “background” Aj . To
compute the interaction energy between static sources, we must then solve
eq. (6.17) for general background Aj and then evaluate the functional inte-
gral over Aj . This obviously cannot be done exactly, so what follows we will
set-up approximate methods for doing so.

The interaction energy between the static sources is then given by the
effective Hamiltonian H[ρ] defined by

e−i
∫
dtH[ρ] = 〈e−i tr

∫
d4xgρV [ρ,Aj ]〉, (6.23)

where the angled brackets denote the vacuum expectation value for gauge
fields in generalized Coulomb gauge,

〈O[A]〉 =Z[0]−1

∫
DAj ∆[A]δ(Dj(A)Ȧj)O[A] eitr

∫
d4x
(
∂0Aj∂0Aj− 1

2
FijF

ij
)
.

(6.24)
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The interaction energy between static sources has now been isolated, and
it remains then to solve the linear differential equation eq. (6.17) and to
evaluate the functional integration over backgrounds.

6.3 Yang-Mills Gauss law

To understand the constraint equation we’re going to expand out the Lie-
Algebra valued fields in terms of the generators and work with components,
V = V aT a, ρ = ρaT a, with a = 1, ...,dim(G). The constraint equation
(6.17) then reads

− ∂j∂jV a + 2gfabcAbj∂jV
c − g2fabcf cdeAbjA

d
jV

e = gρa − gfabcV c∂jA
b
j ,

(6.25)

where fabc are the group’s structure constants, [T a, T b] = ifabcT c. We won’t
attempt to solve this equation for a general background, rather we’re going
to try and understand the nature of the solution when there is a gluon
condensate.

One can make a simple intuitive argument suggesting the instability of
the empty gluon vacuum, a precursor for the formation of a condensate.
The argument is actually borrowed from Fukuda [310]. Yang-Mills the-
ory contains a three-point vertex, and thus “H” diagrams describing the
interaction between gluons via the exchange of a gluon. It has been demon-
strated that in the singlet channel the attractive force described by this
gluon exchange is dominant over the repulsive force described by the four-
gluon vertex. For very long-wavelength particles the binding energy will
have larger magnitude than the kinetic energy of the particles and they will
form a negative energy (bound) state. Moreover, since gluons are massless
the bound states will appear as tachyonic poles in correlation functions and
the entire field will be unstable to a pairing condensation quite analogous
to the cooper pair condensation phenomenon in BCS superconductors. This
argument is only suggestive18, however one can substantiate this intuition
quantitatively in Yang-Mills theory by using Bethe-Salpeter equations [310–
312]. One can also argue for the instability of the empty Yang-Mills vacuum
using background field methods [313, 314]. Additionally, recent numerical-
lattice evidence has emerged suggesting that the Yang-Mills vacuum may

18One can ask why this argument doesn’t also work for gravitation, and to this we do
not have a concrete response but we do have a hypothesis. The gravitational interaction
scales with the particle’s kinetic energy, so perhaps the interaction energy between long
wavelength gravitons is bounded from exceeding the kinetic energy.
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6.3. Yang-Mills Gauss law

be best described by an instanton liquid, the dimension-2 condensate being
a consequence [304].

The gluon pairing intuition suggests that while 〈Aaj 〉 = 0 one may
still find non-zero vacuum expectation values for eg. the gauge-dependent
dimension-2 operator 〈AaµAaµ〉 or for the gauge-independent dimension-4 op-
erator 〈F aµνF aµν〉. In the context of quark confinement, where one expects a
dynamically generated QCD string tension σ to arise, it is the dimension-2
condensate which has the correct dimensions to generate a tension. It isn’t
obvious how this should occur though because AaµA

a
µ is not a gauge invariant

observable.
Despite the dimension-2 condensate being gauge dependent, one can

minimize its value over the gauge group. This minimal value is gauge in-
variant, and furthermore one finds that it is obtained in Landau gauge [315].
Since lattice QCD simulations have been performed in Landau gauge, with
results demonstrating a non-zero value for the condensate [300, 301, 303], it
is expected that regardless of gauge condition one should expect a positive
definite value for the dimension-2 condensate.

To describe a gluon condensate we will use a pairing parameter φ0, and
assume vacuum expectation values,

〈Aaj 〉 = 0, 〈AajAaj 〉 = φ2
0. (6.26)

This approach has been discussed in the literature by [305, 316]. We will
not aim to calculate φ0, rather we will investigate the consequences of it
being non-zero. It is natural to expect however that φ0 would take a value
of order the QCD scale, 0.2 GeV [317]. We will return to this point later.

To describe the gluon pairing condensate we’ll follow [305] and decom-
pose the gluon field in the path-integral as

Aaj (x) = A a
j (x) + φ0η

a
j , (6.27)

where A a
j (x) has no infinite wavelength mode, and φ0, η

a
j are constants.

Translation invariance will then ensure 〈A a
j 〉 = 0. The tensor ηaj is con-

strained only to satisfy the normalization

ηaj η
a
j = 1. (6.28)

We’ll then treat it as a βG-dimensional unit vector with no preferred direc-
tion, where

βG ≡ (d− 1)× dim(G), (6.29)
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and we’ll always restrict to d = 4 spacetime dimensions throughout. The
intuitive picture of this description of the vacuum is similar to that of spon-
taneous symmetry breaking. The effective potential, when computed in
manner which accounts for instantons and other possible topological config-
urations, is assumed to have a non-trivial minimum which gives a vacuum
expectation value of φ2

0 to the pairing field AajA
a
j . Every semiclassical solu-

tion then has Aaj = φ0η
a
j , however the vacuum is in a uniform superposition

of equally likely condensate angles ηaj , so that ultimately the vacuum expec-
tation value of the gauge field is still vanishing, 〈Aaj 〉 = 0.

Since we are ultimately interested in the static-long range force between
sources, we will just formally evaluate the functional integration over the
short-wavelength degrees of freedom A a

j (x). We assume that this integration
does two things, i) it generates the effective potential which allows φ0 to take
a non-zero and rigid value, and ii) that it leads to a running coupling g in
our Gauss’ law constraint equation eq. (6.25). We will not compute this
scale dependence perturbatively as usual because we will not need the form
of the function g(p2), rather we will just need certain assumptions about
this function. We’ll make our assumptions explicit at a later point when
necessary.

With the above assumptions, the complicated Yang-Mills functional in-
tegral (6.24) is reduced to a simple integral over the condensate angle ηaj .
Vacuum expectation values are then computed as

〈O[A]〉 =

∫
dηaj δ(η

a
j η

a
j − 1)O[φ0η

a
j ]∫

dηaj δ(η
a
j η

a
j − 1)

. (6.30)

In this model we can exactly compute the generating function for correlation
functions of the condensate angles ηaj , the result being

z[baj ] =
∑
m=0

1

m!

(
− 1

4
baj b

a
j

)m Γ(βG/2)

Γ(βG/2 +m)
, (6.31)

where Γ(x) is the Euler gamma function. A few examples of vacuum corre-
lators are

〈ηai ηbj〉 =
δabδij
βG

〈ηai ηbjηckηdl 〉 =
(δabδcdδijδkl + all other contractions)

βG(βG + 2)
, (6.32)

where “all other contractions” indicates that all pairings of indices into Kro-
necker delta symbols should be included in the sum. Note that this model
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is approximately gaussian in the sense that the higher order connected cor-
relation functions are suppressed by factors of βG. For example,

〈ηai ηbjηckηdl 〉conn.
≡ 〈ηai ηbjηckηdl 〉 − 〈ηai ηbj〉〈ηckηdl 〉 − 〈ηai ηck〉〈ηbjηdl 〉 − 〈ηai ηdl 〉〈ηbjηck〉

= − 1

βG

(δabδcdδijδkl + all other contractions)

βG(βG + 2)
. (6.33)

In the large-N limit of SU(N) theory, these higher order connected corre-
lators would then vanish at least as fast as N−2.

With the above description of the gluon condensate, and short-wavelength
modes integrated out to give a running coupling, we arrive at the following
effective Gauss law constraint equation which is local in Fourier space

p2V a(p)+2igφ0f
abcηbjpjV

c(p)− (gφ0)2fabcf cdeηbjη
d
jV

e(p) = gρa(p). (6.34)

This is now just a set of linear algebraic equations which could in principle
be solved exactly. We will not attempt this here, rather we will set up a
series expansion in powers of the condensate strength gφ0. Since φ0 has
dimensions of inverse length, the validity of this expansion will ultimately
determined by the smallness of rgφ0, where r is a length scale characterizing
the source charge density. We will soon see this explicitly.

To proceed we’ll assume an expansion of the form

V a(p) =
∑
n

(gφ0)nV a
(n)(p). (6.35)

The lowest order solutions are

V a
(0) =

gρa

p2
,

V a
(1) = −2ifabc

pjη
b
j

p2

(
gρc

p2

)
, (6.36)

and for n ≥ 2 we have the recursion relation

V a
(n+2) = −2ifabc

pjη
b
j

p2
V c

(n+1) + fabcf cde
ηbjη

d
j

p2
V e

(n). (6.37)

The interaction energy (before averaging over ηaj ) then has a series expansion

H =
1

2

∑
n

∫
d3p

(2π)3
(gφ0)ngρa(−p)V a

(n)(p) (6.38)
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Some low order terms in the solution which are relevant to our upcoming
discussion are

ρaV a
(2) =

gρafaαbf bβcρc

p4
ηαj η

β
k

(
δjk − 4

pjpk
p2

)
, (6.39)

ρaV a
(4) =

gρafaαbf bβcf cγdfdδeρe

p6

× ηαi η
β
j η

γ
kη

δ
l

(
16
pipjpkpl
p4

+ δijδkl − 4δkl
pipj
p2
− 4δij

pkpl
p2
− 4δjk

pipl
p2

)
.

(6.40)

Note the factor of two in the recurrence relation eq. (6.37). This factor
of two is responsible for the relative factor of four appearing in the tensor
structure in eq. (6.39). Without this factor of four the tensor structure would
be the standard transverse projector appearing often in QED calculations,
but crucially this factor of four ensures that the longitudinal term dominates.

In the nth order term in the solution, V a
(n), there is always a purely

spatial (kinematic) tensor and a purely group theoretic tensor consisting of
n structure constants contracted between the two source charges. These
color and kinematic structures are contracted together by the product of n
ηaj ’s. Because of the rotational invariance of the vacuum state we know that,
after the spatial tensor is contracted with the functionally integrated ηaj ’s, it
will be independent of p. We can then conclude that all of the p dependence
in the solution V a

(n) will be in the charge densities ρa, the running coupling

g(p2), and in the overall factors p−2−n. Once we’ve specified the charge
densities, we can then evaluate the fourier integral in eq. (6.38) without yet
specifying details about the state of the internal colour degrees of freedom
or the condensate angle ηaj .

To set this up, we can implicitly define the p-independent part at each
order,

Gab(n)ρ
b ≡ p−2−nV a

(n). (6.41)

We then have the interaction energy between the sources

H =
∑
n

1

2
φn0G

ab
(n)

∫
d3p

(2π)3
g2+n(p2)

ρa(−p)ρb(p)
p2+n

, (6.42)

where Gab(0) = δab, Gab(2) and Gab(4) can be read off of eqs. (6.39) and (6.40), and

higher order terms can be computed from the recurrence relation eq. (6.37).
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To evaluate this integral we’ll need to specify the spatial form the of charge
density, and make some assumptions about the nature of the running cou-
pling function.

Before proceeding to understand the sources, we can further simplify
this expression. From the definition of the effective Hamiltonian, eq. (6.23),
we need to exponentiate eq. (6.42) and evaluate the functional integral over
the condensate angles ηaj . We’ve observed however, eq. (6.33), that the
higher-order connected correlation functions are suppressed by powers of
β−1
G , which is eg. for SU(3) theory β−1

SU(3) = 1/24. To leading order in a

β−1
G expansion we can then simply retain the mean field approximation for

the effective Hamiltonian19

〈e−i tr
∫
d4xgρV [ρ,Aj ]〉 = e−i tr

∫
d4xgρ〈V [ρ,Aj ]〉, (6.43)

where the angled brackets denote the condensate angle average eq. (6.30).
We can then write the effective Hamiltonian for the Yang-Mills charges as

H =
∑
n

1

2
φn0 〈Gab(n)〉

∫
d3p

(2π)3
g2+n(p2)

ρa(−p)ρb(p)
p2+n

. (6.44)

For later use we list some of the expectations values for the Gab(n). Clearly

〈Gab(0)〉 = δab, and at lowest non-trivial order we have

〈Gab(2)〉 = faαcf cβb
δαβδjk
βG

(
δjk − 4

pjpk
p2

)
= −f

aαcf cαb

βG

= δab
CA
βG

, (6.45)

where CA is the quadratic Casimir eigenvalue in the adjoint representation.
At the next order we find

〈Gab(4)〉 =
1

βG(βG + 2)

(
− 4C2

Aδ
ab + 7fαβγ(fαacf

β
cdf

γ
db)
)
. (6.46)

19In SU(N) theory we have β−1
G ∼ N−2 at large N , which allows us to use the following

expression exactly in the large N limit. We also have β−1
G ∼ d−1 in a large number

of dimensions d. We could then also use this tool to study Yang-Mills theory in many
dimensions.
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For SU(N), there is a nice identity which allows us to see that the last term
is proportional to the quadratic Casimir operator in the adjoint representa-
tion [318]. As a result, we find for SU(N) Yang-Mills theory

〈Gab(4)〉 = −δab
C2
A

2βG(βG + 2)
. (6.47)

6.4 Sources

6.4.1 Charge Density

The formalism established thus far is applicable to any matter source which
is i) described by a gauge invariant action and ii) static (Jaj = 0, Ja0 6= 0).
As a first application of this formalism we’ll specify to the case of a heavy
quark-antiquark pair separated by a fixed distance r. We use the term
quark loosely to describe a particle in some representation R of the gauge
group, its corresponding antiquark being in the conjugate representation.
The Yang-Mills charge density for this quark-antiquark pair can be written
as

ρa(x) = ρaqδ
(3)(x− r/2) + ρaq̄δ

(3)(x+ r/2). (6.48)

We’ll soon discuss the actual form of ρaq , ρ
a
q̄ , but for now we’ll first note that

the numerator in the interaction energy is

ρa(−p)ρb(p) = ρaqρ
b
q + ρaq̄ρ

b
q̄ + ρaqρ

b
q̄e
i~p·~r + ρaq̄ρ

b
qe
−i~p·~r. (6.49)

Clearly the first two terms are self-energy terms which are independent of
the mutual separation, and we’ll simply ignore these. The interaction energy
can then be written as

H = (ρaqρ
b
q̄ + ρaq̄ρ

b
q)
∑
n

1

2
φn0 〈Gab(n)〉

∫
d3p

(2π)3
g2+n(p2)

ei~p·~r

p2+n
. (6.50)

At the point we must make certain assumptions about the running cou-
pling g(p2). The full non-perturbative form of this function, valid in both
the UV and IR is obviously not known. As a result of asymptotic freedom
one can approximate the functional perturbatively in the UV, but there is
significant disagreement about the IR form. Indeed, it is not agreed upon
whether as p2 → 0 the coupling diverges, vanishes, or “freezes” at a finite
value (see [319] for a recent review). Even within these three camps there
is quantitative disagreement [319]. We will not attempt to discuss all of
the reasons for disagreement in the literature, but we note that a primary
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issue is that different calculation approaches lead to different definitions of
the running coupling. For our purposes we want to understand whether our
approach is more in-line with those suggesting g diverges in the IR or those
suggesting the contrary.

It seems that generically, one finds an IR divergent running coupling if
the interaction potential is written as

V (p) ∼ g2(p2)

p2
, (6.51)

and all non-Coulombic behaviour is folded into the running coupling [319].
In our expression for the interaction potential, eq. (6.42), the running cou-
pling is separate from a series of terms of increasing inverse powers of p. We
then expect that the divergent behaviour as p2 → 0 is already accounted for
and will not arise in the running coupling. In what follows we will assume
that g(p2) reaches a non-zero freezing as p2 → 0.

With the divergence set aside, we will assume that g2(p2) is described
well by perturbation theory at high-energies, and that its form for lower
energies is just that of a smooth function which is not too rapidly varying. A
number of calculations in the literature suggest that as energies are decreased
g2(p2) smoothly departs from the perturbative prediction, simply flattening
out and approaching a constant value at zero energy [see the review 319,
and the many refs. therein].

We can then start to understand the Fourier integral in eq. (6.50),

In(r) =

∫
d3p

(2π)3
g2+n(p2)

ei~p·~r

p2+n
. (6.52)

For n = 0, this is just the Coulomb expression with running coupling and it
follows from our above discussion that we do not expect the running coupling
in this expression to drastically change the qualitative shape of the effective
Coulomb potential.

To understand the higher order terms, We see two approaches. If the
running coupling function was known, in particular if its analytic structure
were known, then one might try to evaluate the integral using typical meth-
ods from complex analysis such as the residue theorem etc. Some properties
of the analytic structure are understood, [320], so perhaps this could be a
fruitful research direction.

In what follows however we will make the considerably more simple ap-
proach, and simply assume that we are interested only in short distance
physics. In this approximation the coupling constant runs slowly and is es-
sentially just equal to the value specified at the high-energy renormalization
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point. After a few standard manipulations, the integral for the higher order
terms can be evaluated as a residue integral

In(r) =
g2+n

0

4π
Re

∫ π/2

0
dθ sin θ iRes

(
eip|r cos θ|

pn

)∣∣∣∣
p=0

, (6.53)

where it remains to evaluate the residue of the function within the paren-
theses. Here g0 is the high-energy “constant” value of the running coupling,
fixed at the renormalization point. For n > 1 we have a higher-order pole
and the residue will involve various derivatives of this function. After inte-
gration we obtain the resulting Hamiltonian

H =(ρaqρ
a
q̄)

∫
d3p

(2π)3
g2(p2)

ei~p·~r

p2

+ (ρaqρ
b
q̄ + ρaq̄ρ

b
q)
g2

0

8π

∞∑
n=1

(−1)n〈Gab(2n)〉
(φ0g0)2n|r|2n−1

(2n)!
. (6.54)

6.4.2 Color Factors

At this point we must work to understand the color factor, Gab(2n)(ρ
a
qρ
b
q̄ +

ρaq̄ρ
b
q), at least for the first few orders. The factor Gab(2n) still depends on

a product of (2n) condensate angles ηaj which will need to be functionally
integrated over, but also, the internal color degrees of freedom contained
in ρaq , ρ

a
q̄ are also quantum mechanical and this must be described as well.

The effective Hamiltonian H[ρ] defined in eq. (6.23) is either an operator
on the color Hilbert space, or equivalently, a function of color variables in
a path-integral. To extract an energy which depends only on the quark-
antiquark separation we’ll need to average over the color degrees of freedom
appropriately.

The most common discussion of the quark-antiquark pair involves the
Wilson loop [321],

W [C] = trP exp

(
i

∮
A

)
, (6.55)

where P denotes path ordering along the closed curve C, and the trace is
performed in some representation R of the gauge group. If we specify to
quarks in the fundamental representation of the gauge group SU(N), it is
straightforward to see that this Wilson loop comes from a path-integral over
color degrees of freedom [322]. Explicitly it is

W [C] =

∫
DλDwDw† eiSw[A]wj(τ = τf )w†j(τ = τi), (6.56)
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where w,w† are complex N -dimensional vectors and the action is

Sw[A] =

∫ τf

τi

dτ

[
iw†
(
d

dτ
− iA(x(τ))

)
w + λ(w†w − 1)

]
, (6.57)

and the gauge-field 1-form is

A(x(τ)) =
dxµ(τ)

dτ
T aAaµ(x(τ)). (6.58)

When the gauge field is turned off this is just a spin-coherent state path
integral for the “spin”-vector of SU(N).

Following common practice, we take the curve xµ(τ) to be a rectangle
in spacetime composed of a straight spacelike segments of length r = 2a at
each of the far future and past t→ ±∞ which are connected by two straight
timelike lines. With this configuration the contribution from the spacelike
segments is irrelevant and we can rewrite the above colour path integral as
the product of integrals for the quark and antiquark

W [C] =

∫
DλDwDw† eiSw

∫
Dλ̄Dw̄Dw̄† eiSw̄+i

∫
d4xJµAµ

× wj(t =∞)w̄j(t =∞)w†k(t = −∞)w̄†k(t = −∞). (6.59)

Here we’ve pulled out the gauge interaction term, Sw = Sw[A = 0], and
defined the current density

Jaµ(x) = δ0µδ(3)(x− r/2)w†jT
a
jkwk − δ0µδ(3)(x+ r/2)w̄†j(T

a
jk)
∗w̄k, (6.60)

where the asterisk denotes complex conjugation. From this form, with the
initial and final state operator insertions made explicit, we can see that this
Wilson loop computes a transition amplitude between an initial singlet state
for the quark-antiquark pair to a final singlet state.

It may not be immediately clear how the operator insertions at t = ∞
arose in this expression. Since the Wilson loop curve is a closed loop, when it
is split into quark and anti-quark integrals there is an implicit delta function
constraining their color variables in the future to be equal. This final state
variable is integrated over in the path integral, but one can replace this with
a sum over possible operator insertions. One can check that the constraint
enforced by the Lagrange multiplier will set the amplitude to vanish unless
there is one insertion of w̄†jw

†
k in the past and one insertion of w̄†lw

†
m in the

future. The resolution of the identity in the future can then be expanded
in a Fock basis and the constraint ensures that only the final singlet state
leads to a non-zero result.
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We can take the Wilson loop current density eq. (6.60) and extract from
it the SU(N) charges ρaq , ρ

a
q̄ defined in eq. (6.48),

ρaq = w†jT
a
jkwk,

ρaq̄ = −w̄†j(T
a
jk)
∗w̄k. (6.61)

In principle, we could then compute the Yang-Mills vacuum expectation
value of the Wilson-loop by evaluating the color path-integrals

W [C] =

∫
DλDwDw† eiSw

∫
Dλ̄Dw̄Dw̄† eiSw̄ e−i

∫
dtH

× wj(t =∞)w̄j(t =∞)w†k(t = −∞)w̄†k(t = −∞), (6.62)

with H given by eq. (6.54) and the charges written in terms of the wj as
in eq. (6.61). However as we will see shortly, the operator method is more
straightforward.

Although we only have the explicit path-integral representation for the
internal color variables of quarks in the fundamental representation of SU(N),
we can proceed more generally following the above statement that Wilson
loops compute transition amplitudes for quark-antiquark pairs evolving from
initial singlet states to final singlet states. In an operator representation, the
Yang-Mills charges ρaq , ρ

a
q̄ for a general representation R of group G would

then have the form

ρaq = δĀB̄T
a
AB(R),

ρaq̄ = −δAB(T a(R)T )ĀB̄, (6.63)

where T denotes the transpose, A,B are indicies in the quark-color Hilbert
space and Ā, B̄ are indicies in the antiquark-color Hilbert space. In this
basis the singlet state has wavefunction

ψsing
AĀ

= (dim(R))−1/2δAĀ. (6.64)

In the Hamiltonian eq. (6.54), the color charge operators are contracted
at each order with the factor 〈Gab(2n)〉. We’ve also demonstrated that the

lowest order contributions, 〈Gab(0)〉, 〈G
ab
(2)〉, 〈G

ab
(4)〉, are all proportional to δab.

It then follows that up to O(φ4
0) the singlet state is an eigenstate of the

Hamiltonian. We see this from the definition of the quadratic Casimir op-
erator

(ρaqρ
a
q̄)AĀ,BB̄ ψ

sing
BB̄

= −T aAB(R)T a(R)BĀ(dim(R))−1/2

= −CR ψsingAĀ
. (6.65)
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When computing Wilson loops, since the color states start in an eigen-
state of the Hamiltonian (up to O(φ4

0)), they remain in this state and we
can replace the charge operator ρaqρ

a
q̄ by the eigenvalue in the singlet state,

CR. The energy eigenvalue for a singlet state is then

Esing =− CR
∫

d3p

(2π)3
g2(p2)

ei~p·~r

p2

+
g2

0

4π

CRCA
2βG

(φ0g0)2|r|+ g2
0

4π

CRC
2
A

4βG(βG + 2)

(φ0g0)4|r|3

4!
+ ... . (6.66)

The first two terms are universal, whereas the r3 term has been proven here
only for the SU(N) gauge group. The overall proportionality of the energy
to the quadratic Casimir eigenvalue of the representation is a nice check of
our result thusfar. It has been demonstrated quite convincingly in lattice
simulations that this ought to occur [323–325].

Assuming r(g0φ0) is sufficiently small that we can neglect the non-linear
terms in this series, we can read off an effective string tension from eq. (6.66),

σ =
g2

0

4π

CRCA
2βG

(φ0g0)2, (6.67)

and for fundamental quarks in SU(N) theory this is

σ =
g2

0

48π
(g0φ0)2. (6.68)

The condensate strength g0φ0 remains as an unfixed parameter.

6.5 Discussion

There are a number of ways that we could estimate the parameter g0φ0

by comparing with reported values in the literature. Unfortunately, the
dimension-2 condensate strength is gauge dependent. This precludes any
direct comparison since we could not find previously reported results involv-
ing this quantities in the generalized Coulomb gauge. We’ll instead make
a rough estimates based on reported values in other gauges and also try to
use phenomenological constraints.

Let’s first return to the assumption that r(g0φ0) is small. We can look
at the relative size of the cubic term to the linear term in the binding energy
as a function of r. If the magnitude of cubic term is to be less than 5% of
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the magnitude of the linear term then we must have

r <

(
1

g0φ0

)√
12(βG + 2)

5CA
. (6.69)

For SU(3) theory, with appropriate factors of ~ and c replaced, this is

r <
0.9 fm GeV

g0φ0
. (6.70)

One expects that at sufficiently large separations, when it is energetically
favourable, the QCD string will snap and a quark-antiquark pair will be
produced. This leads to a flattened static potential above some critical
separation rc. Such an effect could not be seen in our heavy quark model,
but it has been observed in lattice simulations with dynamical quarks. In
these simulations a value rc ≈ 1.2 fm is found consistently [326, 327].

In the “quenched” simulations which do not include dynamical quarks,
the linear rise of the potential has been shown to continue past the 1.2 fm
mark and no cubic behavior has been conclusively demonstrated to arise [293,
296–299]. Furthermore, one can prove that invariance of Wilson loops under
space/time interchange implies that the potential cannot grow faster that
linearly with |r| at large distances [328]. Unfortunately, these considerations
then cast serious doubt on the validity of the model we’ve developed here.

Despite the inconsistencies between this model and the constraints from
quenched lattice data, we can still ask whether the model may be rendered
consistent by the inclusion of dynamical quarks, ie. string-breaking effects.
Since the string-breaking phenomenon has been demonstrated to flatten the
potential above r = 1.2 fm we can require only that our non-linear terms are
negligible up to this distance. This then implies the bound

g0φ0 . 0.75 GeV. (6.71)

Additionally, from Particle Data Group, ref. [317], we can borrow an ap-
proximate value for the strong coupling constant at, for an example, the
scale of the Z-boson mass,

g2(MZ)

4π
≈ 0.12. (6.72)

Taking this together with the above constraint of the condensate strength,
we can estimate a bound on our model’s prediction of the QCD string tension

σ . (0.0056 GeV)2. (6.73)
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This value is, however, completely inconsistent with the commonly under-
stood value for the QCD string tension σ ≈ (0.18− 0.22) GeV2 [329].

Although the string tension predicted by our calculation is ruled out by
meson phenomenology, it may simply indicate that we need to follow the
alternative route which we’ve previously mentioned wherein one inserts a
model function for the IR complete running coupling constant. We note
that values have been quoted for the running coupling at zero energy rang-
ing from αs(0) = 2.97 − 4.74, with the lower end coming from Landau
gauge calculations and the higher end coming from Coulomb gauge calcula-
tions [319, 330, 331]. Inserting these values for the coupling into the bound
eq. (6.71) we find

σ . (0.14− 0.22) GeV, (6.74)

which is no longer inconsistent with the commonly understood value for the
QCD string tension σ ≈ (0.18 − 0.22) GeV. To confidently rule out the
model we’ve studied here, it seems that one would need to perform a more
careful analysis using an (at least approximate) IR complete model of the
running coupling function.

It also remains important to try and predict the model parameters from
genuine calculations in the generalized Coulomb gauge, using tools which
have been previously used in Landau or Coulomb gauge to understand the
IR limit of Yang-Mills theory. For the IR behaviour of the coupling, one
may try to use Schwinger-Dyson techniques as in, for example, [331] (see
also the review [319] and refs. therein). For the condensate strength, one
may try to use Bethe-Salpeter equation techniques [310–312, 316].

In addition to the above bound which we’ve used to assess the validity of
this model, we can also try to compare with calculations of the QCD string
tension coming from rather different approaches. Most studies involving a
dimension-2 condensate are interested in the Lorentz invariant condensate
g2〈AaµA

µ
a〉, not just the spatial parts which we’ve isolated. We can try to

find a comparison by using the Lorentz invariance of the vacuum, which
implies

〈AajAaj 〉 = 3〈Aa0Aa0〉. (6.75)

suggesting that in the commonly used Euclidean spacetime

〈AaµAµa〉 = (4/3)φ2
0. (6.76)

One must be careful when comparing the RHS of this expression to our eq. (6.26)
though; the dimension-2 condensate is in principle a gauge-dependent quan-
tity and the above considerations may only apply in a covariant gauge.
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Nonetheless we can still try make contact between our calculation on the
QCD string tension and some previously reported calculations which used
quite different approaches.

In the literature, investigations of the dimension-2 condensate and its
studies have predominantly used operator product expansion (OPE) tech-
niques [300–304, 332–336], we hope that the rather different approach we’ve
provided here may prove to be complementary. For example, ref. [337] dis-
cusses the connection between the QCD string tension, the tachyonic gluon
mass, and the dimension-2 condensate. Their analysis is an extension of
refs. [338, 339] in which the physics of the condensate of modeled by assum-
ing the existence of a term λ2/Q2 in the OPE of various QCD correlation
functions ΠJ(Q2).

We can actually make direct contact with some of this work. In ref. [337]
the authors claim a short distance string tension for SU(N) theory,

σ0 =
g2

72π

N2

N2 − 1
g2〈AµAµ〉, (6.77)

and although it isn’t explicitly stated, from their references it appears they
are working in Euclidean spacetime. Using the 4/3 factor we then translate
their expression into our notation

σ0 =
g2

0

54π

N2

N2 − 1
g2

0φ
2
0. (6.78)

Although this doesn’t explicitly agree with our formula eq. (6.68) for general
N , we do find agreement for the phenomenologically interesting case of N =
3. The disagreement for general N may just be the result of their relative
rescaling of the condensate for general N , but it is not clear. Either way it is
encouraging that using either OPE techniques, or our current formalism, one
can arrive at apparently identical expressions for the QCD string tension.
This provides optimism that despite the limitations of this approach, it
may still prove to be a useful avenue for performing further Yang-Mills
calculations.

6.6 Conclusions

In this chapter we have provided an analysis of the static quark-antiquark
binding energy in the presence of a gluon condensate. We used the first-
order path-integral formalism, wherein the chromoelectric field is an explicit
variable. The benefit of this approach was that the Yang-Mills constraint
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equation was explicit and exact. We used a gauge-covariant generalization
of the typical transverse/longitudinal decomposition from electrodynamics
to separate out the constrained variables from the unconstrained variables.
Doing all of this, and fixing the generalized Coulomb gauge condition, we
demonstrated that the static quark-antiquark binding energy is determined
solely by the solution to the Yang-Mills Gauss law equation.

We modeled the Yang-Mills vacuum as a dimension-2 gluon pairing con-
densate and used this to set-up a series expansion for the solution to the
Yang-Mills Gauss law equation. As a consequence, we arrived at a series
expansion for the static quark-antiquark binding energy in powers of the
condensate strength, with a recursion relation to compute the higher-order
terms. Our central result was a prediction of the coefficient of the term
linear in quark separation, ie. the meson string tension. Our result matches
a prediction coming from OPE analysis, suggesting that the techniques used
here may indeed provide a useful complementary approach for more detailed
calculations.

As mentioned previously, this chapter was quite tangential to the rest
of the thesis. We ultimately found it to be an interesting investigation,
ie. whether we could indeed exploit the Yang-Mills constraint equation to
compute quark binding energy. We thought this may serve as a warm-up for
calculation in non-linear quantum gravity, but it is quite unclear whether
this will be the case. Regardless, we hope that in the hands of actual experts
in particle physics some of the ideas of this chapter may eventually prove to
be useful.
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Part II

Foundations and applications
of the Correlated Worldline
Theory of quantum gravity
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Chapter 7

The Correlated Worldline
Theory of quantum gravity

7.1 Introduction

Classical gravitation is described by the classical field theory General Rela-
tivity (GR) and has been well tested for large scales and heavy objects with
many constituents. This should be contrasted with conventional quantum
theory which has been well tested at small scales for small mass objects com-
posed of relatively few constituents20. In the quest for marrying gravitation
with quantum theory it grows clear that there is an intermediate regime
where both quantum and gravitational effects are expected to be relevant
which is entirely untested. Taking the fundamental constants associated
with quantum theory and GR (~, G, c) we can follow Planck and estimate
the quantum gravity scale

`P =

√
~G
c3
∼ 10−35 m,

tP =

√
~G
c5
∼ 10−44 s,

EP =

√
~c5

G
∼ 1019 GeV

mP =

√
~c
G
∼ 10−8 kg (7.1)

The Planck length and time are unfathomably small in standard units, and
when written in units relevant for particle physics the Planck energy is un-
fathomably large. This is often taken as evidence that phenomena requiring
both quantum theory and GR are not experimentally accessible. It must
be remarked however, that the Planck mass is only large if one considers it

20Experiments involving “macroscopic” superpositions of currents in superconductors
actually involve a relatively small number of superposed electrons [340].
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in the context of elementary particle physics, a human eyelash has a mass
∼ 1mP . If quantum-gravitational phenomena are to be observed it is pos-
sible that they would be seen on the Planck mass scale, ie. for an object
with mass ∼ 10−8 kg composed of ∼ 1018 nucleons. To date no experiment
has tested either GR or quantum theory at this scale, and so we do not
necessarily have reason to assume that GR is valid below this scale or that
quantum theory is valid above it.

7.2 Correlated Worldline Theory

The Correlated WorldLine (CWL) theory is an example of an “alternative”
quantum gravity theory in which massive objects exhibit departures from
the superposition principle. The primary mechanism in CWL theory is that
different paths in a path integral for a single system now interact gravi-
tationally [112, 113]. The intuition behind the CWL proposal is that the
different paths describing the evolution of a spatially superposed mass will
gravitate towards each other, which ultimately prevents large superpositions
of macroscopic objects and thereby causes a quantum-to-classical transition.

A proper motivation for the principles of this theory and its mathe-
matical definition were given by P.C.E. Stamp and collaborators in refs.
[113, 114]. In what follows we will only have the space to just sketch some
of these key arguments which determine the form of the theory. We do this
to illustrate how one arrives at such a theory, however our perspective in this
thesis will be more consequentialist than the perspective of Stamp in [113].
The research question taken here will be, “Assuming one is interested in
modifying quantum theory such that various paths in a path integral for a
single system are now coupled via gravity, is there a consistent mathematical
theory to describe this, and what are the predictions of such a theory?”.

To motivate the CWL theory one can start with the key insights of
Kibble et al. on generalizations of QM [7, 74, 75]. Our mains takeaways from
this are that: i) the non-linear nature of GR would require an alternative
QG theory to be a non-linear generalization of quantum mechanics, and
ii) that a non-linear quantum mechanics theory will be fraught with issues
unless one abandons some of the formal structure of Hilbert space, projective
measurement operators, etc. Motivated by this, Stamp has then argued [113]
that attempts at generalizing QM should start from the path-integral rather
from state vectors and operators.

In conventional quantum theory one describes the evolution of a particle
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via the propagator

K(B;A) ≡ K(xB, tB;xA, tA) =

∫ xB

xA

Dx e
i
~S[x]. (7.2)

As a consequence of the superposition principle each of the paths in the
path integral is independent from any other path. If there are two “classi-
cal” paths, ie. two possible trajectories for which the action is stationary,
then both paths contribute significantly to the propagator and interference
phenomena will occur (eg. the two-slit system). One colloquially says that
the particle took both paths simultaneously, or was in a superposition of
trajectories during its evolution.

Starting from this path-integral, one must then determine what gener-
alization to make which incorporates gravity. The goal here is, of course, to
construct an alternative theory of quantum gravity, ie. one a theory in which
QM breaks down for macroscopic systems. Here one must appeal to a phys-
ical principle to determine the mathematical structure, otherwise there is no
constraint on the possible modifications that one can make. Stamp appeals
to a principle central to classical general relativity [113], the equivalence
principle.

Although there is a number of different statements of the equivalence
principle, one could phrase it as Wesson has “All test particles at the alike
spacetime point, in a given gravitational field, will undergo the same accel-
eration, independent of their properties, including their rest mass” [341].
Based on this, Stamp has argued that the gravitational field should not dis-
tinguish between: i) two paths of a single particle and ii) a path from each
of two distinct but otherwise identical particles [113]. The consequence of
this, is that one should allow for gravitational interactions between differ-
ent paths of a single system. The same reasoning implies that gravitational
interactions should be between all possible paths, not just pairs.

We will soon discuss how one formulates this mathematically, but for the
moment we will follow this idea just heuristically to anticipate the general
consequences. To do so, we’ll start by considering only interactions between
just one pair of paths for a non-relativistic particle. To do so we must
consider two path-integrals for the particle, ie. an object of the form

K(B;A) =

∫ xB

xA

Dx1

∫ xB

xA

Dx2 e
i
~ (S[x1]+S[x2]+Scor[x1,x2]), (7.3)

where the term Scor couples two paths, and can be written simply as

Scor[x1, x2] =

∫ tB

tA

dt
Gm2

|x1 − x2|
. (7.4)
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Figure 7.1: Two replicas (1 and 2) of a particle propagating from xA to
xB. There are two dominate classical paths L and R. The particle paths
are indicated by the solid black lines. The replica particles interact via Scor
(indicated by dashed red lines) when they are on different paths.

It is essential to understand that a new particle has not been actually been
introduced to the system, rather there is a new rule for describing the evo-
lution of a single particle. We refer to the variables x1, x2 in the different
path integrals as the different replicas21. The addition of Scor has correlated
the previously independent paths in the path integral.

A very simple model of this, which we can use to build intuition, is to
assume

Scor[x1, x2] = −
∫ tB

tA

dt
1

2
mΩ2

corr(x1 − x2)2. (7.5)

The equivalence principle arguments imply that the only interaction between
the paths are gravitational, however we can use this simple model to see what
generally happens when paths are correlated by an attractive interaction.

If the particle action S[x] is such that there are two classical paths L and
R, then in the double path integral there are four “paths” for the coupled
system. The two replicas may: both follow path L, both follow path R,
replica 1 follows L while 2 follows R, or replica 1 follows R while 2 follows L
(see fig. 7.1). When both replicas follow the same path, Scor = 0, and there
is no hint of the modification. When the replicas follow different paths,
Scor > 0 and there is a penalty. Thus by correlating the worldlines we have
changed the rules for evolution so that the particle is less likely to be in
a superposition, the paths tend to bunch together. Since the interaction
(7.4) depends on the particle’s mass, one expects microscopic systems to be
unaffected while macroscopic systems strongly “path-bunch” and effectively
collapse onto a classical trajectory.

Now of course Newton’s law is not the full theory of gravitation, so to

21Note that the term “replica” here is not to be confused with replicas from the “replica
trick” often used in spin-glass theory.
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find a bunching mechanism which satisfies correspondence with classical GR
in the appropriate limit we must introduce generally covariant interactions.
We could then propose a first departure from conventional quantum theory

K(B;A) =

∫
Dg e

i
~SG[g]

∫ xB

xA

Dx1

∫ xB

xA

Dx2 e
i
~ (S[x1|g]+S[x2|g]). (7.6)

where we have introduced the Einstein-Hilbert action SG for general rela-
tivity and suppressed tensor indices on the metric.

The integral over the metric here is expected to have the same ambigu-
ities with the measure, conformal instability, and gauge-redundancies as in
conventional quantum gravity [27]. Here we will not address these issues,
rather we will assume that the notation

∫
Dg includes the appropriate mea-

sure factors. Furthermore, in this thesis we will assume a flat background
on which metric fluctuations are treated quantum mechanically; we do not
however restrict these fluctuations to be in the linear regime.

Again, the equivalence principle arguments imply that the theory must
include gravitational interactions between not just two paths, but between
all paths. One is then naturally led to the notion of levels. At level n there
are n replicas interacting via gravity. Equation (7.6) above is then level 2,
and we will introduce a product over all possible levels n, for n = 1, 2, ....
The CWL propagator is then written as22

K(B;A) = lim
N→∞

 N∏
n=1

∫
Dg(n) e

i
~SG[g(n)]

n∏
j=1

∫ xB

xA

Dx(n)
j e

i
~S[x

(n)
j |g

(n)]

 .
(7.7)

In the next few chapters we will investigate many consequences of this
expression. We will find various small mathematical adjustments which need
to be made to ensure the theory is consistent with known physics, but the
core ideas will remain unchanged.

22It has previously been commented that the above logic does not necessarily imply
the notion of levels, merely that one should consider a single level with infinitely many
replicas. We will actually demonstrate later, that the two formulations are equivalent.
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Chapter 8

First order perturbation
theory in CWL theory

In this chapter we work to get a sense of how CWL theory describes de-
partures from conventional quantum gravity. First we provide a technical
introduction to CWL by reviewing the definition of the theory given in
[114]. We then set up a perturbative expansion of the gravitational part
of the generating functional for a general matter field theory, and identify
the contributions up to O(G). The formal results of this chapter are later
used to explicitly evaluate the CWL modifications to various quantities of
physical interest, such as: correlation functions, time evolution of coherent
states, and particle propagators.

In chapter 10 we will derive very general results for CWL theory which
subsume most of the results in this chapter. We include this chapter to i)
familiarize the reader with the language and notation we will be using else-
where, and ii) because in this thesis we are aiming to provide a chronology
of the author’s involvement with the CWL theory.

8.1 Generating Functional

We will start our discussion from the definition of the “product version CWL
theory”, given in eqs. (85-91) of [114]. We will not concern ourselves with
their alternative “summed version”, because only the product version was
properly consistent with General Relativity in the classical limit.

We will start with a conventional QFT for our “matter” (non-gravitational
field). To avoid introducing additional labels we will restrict ourselves to a
single scalar field φ. It is not necessary for the calculations which follow
to restrict our matter to being a scalar field, or even just a single field.
The generalization to multiple fields, scalars and vectors, is trivial and just
requires carrying around extra indices and labels. The generalization to in-
clude fermions would require introducing the tetrad formalism, but we see
no reason a priori that one could not perform calculations which parallel
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those in this chapter. We’ll leave the matter action S[φ] unspecified, as
it will be irrelevant for the following discussions. The formal calculations
below will also not rely on a specific form of the gravitational action, in
principle higher curvature terms could be included without difficulty, but
we will consider only Einstein gravity for now.

We first recall that in conventional QFT, on a background spacetime
with metric g one has the generating functional

Z[J, g] =

∫
Dφ eiS[φ,g]+i

∫
Jφ. (8.1)

The source is assumed to vanish asymptotically, and the integrals are over
all of spacetime, with a slight rotation into the imaginary time direction.
This expression then generates vacuum correlation functions. To simplify
the writing, in what follows we will actually complete the “Wick rotation”
to Euclidean time t→ −iτ . The resulting expression is

Z[J, g] =

∫
Dφ e−S[φ,g]+

∫
Jφ, (8.2)

where we now use the “Euclidean action” for φ, and the integration is now
over a 4-dimensional Riemannian manifold. This manouevre is standard
in flat spacetime QFT, and commonly done in quantum gravity as well—
though it is far from trivial in quantum gravity to see whether it is always
valid [342–345]. From eq. (8.2) one obtains the connected parts of the cor-
relation functions by functional differentiation

〈φ(x1) . . . φ(xl)〉c =
δl lnZ[J, g]

δJ(x1) . . . δJ(xl)

∣∣∣∣
J=0

. (8.3)

Now, we can state the definition of CWL theory given in [114]. We start
with the conventional QFT of our matter φ, and replicate it into infinitely
many copies φj with j = 1, 2, ... We organize these copies into levels n =

1, 2, ... such that at level n there are n replicas of the scalar field φ
(n)
k with

k = 1, ..., n. The generating functional for such a theory is

ZU [J, g] =

∞∏
n=1

n∏
k=1

∫
Dφ(n)

k e
−S[g|φ(n)

k ]+
∫
φ

(n)
k

J
f(n)

=

∞∏
n=1

(
Z

[
J

f(n)
, g

])n
, (8.4)
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8.1. Generating Functional

where Z[J ] is just the generating functional for a single copy of the field. We
want to emphasize here that these are not the replicas of the “replica trick”
used often in conventional quantum theory to study disorder or compute
entropies. Here the replicas are a mathematical device introduced to allow
for interactions between different realizations of the matter field’s evolution,
ie. different paths in a path integral. Moreover, in the “replica trick” one is
typically interested in the behaviour of quantities near n = 0 or n = 1, and
we will eventually see that in CWL theory one is much more interested in
the large n behaviour.

The superscript U in eq. (8.4) denotes that the various replicas are uncor-
related with each other, in contrast with later discussed correlated worldline
theory. Note that the same external source J couples to all of the replicas.
This is done because the various fields are not meant to be physically dis-
tinct objects, just tools for describing novel correlations in a single field’s
path-integral. The constants f(n) are unspecified as of yet, but they have
been introduced to regulate possible divergences arising from the infinite
number of levels.

To correct for the replication of all the fields, ref. [114] provides the
following prescription for obtaining connected correlation functions from
eq. (8.4),

〈φ(x1) . . . φ(xl)〉c =

( ∞∑
n=1

n

f l(n)

)−1
δl

δJ(x1) . . . δJ(xl)
lnZU [J, g]

∣∣∣∣
J=0

, (8.5)

and it is easy to see that this yields the same results as conventional QFT.
For each level one then introduces gravitation between each of the repli-

cas, however each of the levels stay uncoupled. The result is the CWL
generating functional

Z[J ] =

∞∏
n=1

∫
Dg(n) e−nSG[g(n)]

n∏
k=1

∫
Dφ(n)

k e
−S[φ

(n)
k ,g(n)]+

∫
φ

(n)
k

J
f(n)

≡
∞∏
n=1

Zn[J ] (8.6)

where SG[g] is the Einstein-Hilbert action23,

SG[g] =
1

16πG

∫
d4x
√
gR, (8.7)

23Technically speaking we should also include the Gibbons-Hawking-York boundary
term [161, 162], however it will be irrelevant for our purposes because we are ultimately
interested in correlation functions of local operators and not the actual value of the par-
tition function.
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8.2. Perturbation theory in the gravitational constant: first order

We’ve also written
∫
Dg, which schematically represents the functional inte-

gral over spacetime metrics. We will provide more meaning to this notation
shortly.

Using the prescription (8.5) we can ensure that we obtain conventional
QFT results as G → 0, ie. when gravitational effects are irrelevant. This
correspondence limit with QFT is the first of many checks which we will
perform on CWL theory.

In eq. (8.6) a factor of n has been inserted in front of SG. This is
necessary so that we obtain the correct classical equations of motion. For
example, at level n we have

0 = −
∫
Dg(n)

n∏
k=1

∫
Dφ(n)

k

δ

δg(n)
e
−nSG[g(n)]−

∑n
k=1 S[φkn,g(n)]+

∑n
k=1

∫
φ

(n)
k

J
f(n)

=

〈
n
δSG

δg(n)
+

n∑
k=1

δS[φ
(n)
k , g(n)]

δg(n)

〉
. (8.8)

This then implies the Einstein equation〈
nGµν(g(n))− 8πG

n∑
k=1

Tµν(φ
(n)
k , g(n))

〉
= 0. (8.9)

Since each of the replicas has identical boundary data and action, they will
all yield the same stress tensor. The sum of stress tensors is then n times the
result for a single scalar field. We can then see that the factor of n placed
in front of the SG was necessary to obtain the correct classical Einstein
equation.

Note that this also implies that at level n we have the effective grav-
itational constant Gn = G/n, or equivalently, the effective Planck mass
M2
P n = nM2

P . This suppresses aspects of the “quantum” part of the quan-
tum gravity theory at level n. In chapter 10 we will study the consequences
of this in great detail. For now we observe that at each level n we just have
conventional quantum gravity for n identical matter fields, and a compen-
sating rescaling of the gravitational constant.

8.2 Perturbation theory in the gravitational
constant: first order

Let us now set-up a perturbation series expansion to evaluate eq. (8.6) up
to order G. One could certainly do this using Feynman diagrams; however
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8.2. Perturbation theory in the gravitational constant: first order

we found it more convenient to write the terms explicitly, albeit in a very
compact notation. We will later use diagrams to give intuition into the
various terms in the series.

8.2.1 Notation

Before setting up the series expansion we will introduce the highly compact
notation first introduced by DeWitt [40, 41]. This notation will allow us
to proceed in a very general manner, without using explicit forms for the
matter action nor the gravitational action. Furthermore, because of the
proliferation of terms and indices in gravitational perturbation theory, this
notation is almost essential to keep equations readable.

The first aspect of the DeWitt notation is to group together spacetime
coordinates, discrete labels, and spacetime indices all together into a single
label. For example, a the group of scalar fields at level n which are usually
indexed by the distinct label k = 1, .., n is now written as

φ
(n)
k (x)→ φi, (8.10)

where i represents the tuple (n, k, x0, x1, x2, x3). Another example is the
metric, which can be condensed as

gµν(x)→ ga. (8.11)

The second aspect of the DeWitt notation is to extend the Einstein sum-
mation convention to include integration over the continuous variables, eg.

T aga =

∫
d4xTµν(x)gµν(x). (8.12)

This notation runs the risk of leaving the reader confused about what
a certain index represents in large equations. We will attempt to be very
consistent with the indexing. Latin letters from the start of the alphabet will
be reserved for metric indices, latin letters from the middle of the alphabet
will be reserved for matter field indices, and Greek letters will be reserved
for indexing gauge (diffeomorphism) transformations.

8.2.2 Gauge fixing the diffeomorphism invariance

From eq. (8.6) it is clear that each level is independent. We will then discuss
the perturbation theory only for a specific level, n, and combine the results
only at the end. Since at each level we have conventional quantum gravity
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8.2. Perturbation theory in the gravitational constant: first order

(up to n dependent factors), until we combine the results from various levels
we are doing conventional quantum gravity calculations. The schematic
generating functional at level n is

Zn[J ] =

∫
DgDφi e−SG[g]−S[φ,g]+Jiφi , (8.13)

where the matter action is given by the sum of actions for each of the replicas,

S[φ, g] =
n∑
i=1

S[φi, g]. (8.14)

Throughout this thesis we will omit the superscript (n) on the metric when
we are considering only one level and there is no risk for confusion.

The gravitational path integral above has all of the typical issues: eg.
measure ambiguities, unbounded conformal modes, and Gribov ambiguities
(see eg. [27] for review). We will avoid these issues by using the path-integral
to simply defines a perturbative series for an effective quantum field theory
describing metric fluctuations about a classical background spacetime.

Even while working with metric perturbations, we need to deal with
diffeomorphism invariance. When J = 0 the action is invariant under dif-
feomorphisms, ie. transformations of the field variables corresponding to
general coordinate transformations. We treat this using the Faddeev-Popov
(FP) trick to factor out redundant parts of the path-integral. For this we
will need to consider only infinitesimal diffeomorphisms, xµ → xµ + ξµ(x).
Under this action the fields transform by a Lie derivative

φi → φi + Lξφi
ga → ga + Lξga, (8.15)

and we write this using the generators Rµ,

Lξφi = ξµRiµ(φ)

Lξga = ξµRaµ(g). (8.16)

Using the metric as an example, we can unpack the notation and write
the Lie derivative explicitly

Lξgµν = ∇µξν +∇νξµ. (8.17)

We can introduce an integral and a delta function, and integrate by parts
to rewrite this as

Lξgµν =

∫
d4y ξα(y)Rαµν(x, y|g), (8.18)
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8.2. Perturbation theory in the gravitational constant: first order

with the generator written in the unpacked notation

Rαµν(x, y|g) =

(
gαν(y)

∂

∂xµ
+ gαµ(y)

∂

∂xν

)
δ(4)(y − x). (8.19)

To perform the FP gauge fixing, we introduce the gauge fixing function
ξµ(g). As one often does in gauge theory, we assume this function to be
linear in the quantum part of the metric, ie.

χµ(g) = χµag
a − χµaga0 , (8.20)

where we define ga0 as the solution to the classical vacuum Einstein equa-
tion.24 Fixing this gauge requires introducing the FP determinant

det |Qµν [g]| ≡ det

∣∣∣∣δχµ[gξ]

δξν

∣∣∣∣
ξ=0

. (8.21)

Our choice (8.20) simplifies our calculations, as we get the compact expres-
sion

Qµν = Raνχ
µ
a . (8.22)

Finally, rather than inserting a strict gauge fixing factor δ(χµ) into our path-
integral we can use the standard trick of smearing this delta function with
a gaussian functional. In general this smearing functional has an invertible
quadratic form cµν .

The end result of all this is a more precisely defined generating functional
for CWL at level n,

Zn[J ] =

∫
DgDφi det |Q| e

− n

`2
P

I[g]−S[φ,g]+Jiφi
, (8.23)

where `P = (16πG)1/2, and we’ve defined

I[g] = `2PSG[g] +
1

2
χµ[g]cµνχ

ν [g]. (8.24)

For some applications one may choose to represent the FP determinant
using fermionic “ghost” fields

Zn[J ] =

∫
DgDφiDω̄µDων e

− n

`2
P

I[g]−ω̄µQµν [g]ων−S[φ,g]+Jiφi
, (8.25)

24At higher orders in perturbation theory we would actually need to solve the saddle
point equation for the quantum effective action to self-consistently determine g0.
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8.2. Perturbation theory in the gravitational constant: first order

but we’ll find it more convenient to “integrate out” the ghosts and instead
use the expression

Zn[J ] =

∫
DgDφi e

− n

`2
P

I[g]+Tr lnQ[g]−S[φ,g]+Jiφi
. (8.26)

This expression will be our starting point for perturbation theory.

8.2.3 Perturbative Expansion

We will now consider expanding the metric about a classical background g0

which is a solution to the vacuum Einstein equation.25 We will then expand
the action in terms of the metric perturbation ha = ga− ga0 .26 We will refer
to the nth term in a Taylor series as

f(n) =
1

n!

δnf [g]

δga1 · · · δgan

∣∣∣∣
g=g0

ha1 · · ·han , (8.27)

The classical solution g0 is defined by requiring

I(1) = 0. (8.28)

With all of the notation established we can finally start writing out the
expansion. The lowest non-trivial order involves expanding the action to
O(`2P ),

Zn =

∫
DφDh exp

[
−n

I(0)

`2P
+ Tr lnQ(0) − S[φ, g0] + J iφi − I(2)

]
× exp

[
− n−1/2`P I(3) − n−1`2P I(4)

+ n−1/2`P (Tr lnQ)(1) − n−1`2P (Tr lnQ)(2)

− n−1/2`PS(1) − n−1`2PS(2).

]
(8.29)

The notation we’re using is sufficiently compact that one could straight-
forwardly go beyond lowest order, but we will reserve that discussion for
chapter 10 .

25Although we did not write it explicitly, there is nothing here preventing us from
including a cosmological constant, so that the vacuum may be AdS spacetime for example.
Additionally, we could have included external classical matter sources to generate other
non-trivial spacetimes, and the formal results to follow would be unchanged.

26To simplify the graviton propagator we will actually define the metric perturbation
as ha = n−1/2`P (ga − ga0 ).
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8.2. Perturbation theory in the gravitational constant: first order

The term I(2) is an O(`0P ) quadratic form, and thus defines the graviton
wave equation on the background g0. Now we expand the exponential as a
Taylor series in powers of `P . We also use the fact that the O(`0P ) action is
even in h to immediately drop terms in the expansion which are odd in h.
The result is

Zn[J ] = exp

[
−n

I(0)

`2P
+ Tr lnQ(0) −

1

2
Tr ln Iab

]
×
∫
Dφi e−S[φ,g0]+Jiφi

[
1 +

1

n
E [φ, g0]

+
`2P
n

〈
1

2
I2

(3) − I(4) + (Tr lnQ)(2) +
1

2
(Tr lnQ)2

(1) + I(3)(Tr lnQ)(1)

〉
h

+O(`4P )

]
,

(8.30)

where we’ve collected all of the terms involving the matter together as

E [φ, g0] = `2P

〈
1

2
S2

(1) − S(2) + I(3)S(1) + (Tr lnQ)(1)S(1)

〉
h

, (8.31)

and where the angled brackets denote the expectation value in the graviton
vacuum

〈O〉h = e
1
2 Tr ln Iab

∫
Dh e−

1
2 Iabh

ahb O, (8.32)

If we define the graviton Green’s function via IabD
bc = δca, then Wick’s

theorem ensures that
〈hahb〉h = Dab (8.33)

and
〈hahbhchd〉h = DabDcd +DacDbd +DadDbc. (8.34)

We can use this to evaluate the various expectation values in eq. (8.31).
For the functional derivatives of the terms in the action we will use the
notation

Ia1...an ≡
δnI[g]

δga1 · · · δgan

∣∣∣∣
g=g0

Sa1...an ≡
δnS[φ, g]

δga1 · · · δgan

∣∣∣∣
g=g0

. (8.35)

The resulting expression is then

E [φ, g0] = `2P

[
DabSaSb

2
−D

abSab
2
−SaDab

(
δRcµ
δgb

)
χµc (Q−1)νµ+

1

2
SaD

abIbcdD
cd

]
.

(8.36)
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The terms in the last line of eq. (8.30) involve only gravitons and ghosts,
and will not contribute to matter correlation functions.

It remains only to make sense of 〈〈E [φ, g0]〉〉, where we use the double
angled brackets to indicate that this is an expectation value in the replicated
field theory,

〈〈E [φ, g0]〉〉J =

∫
Dφi e−S[φ,g0]+Jiφi E [φ, g0]∫
Dφi e−S[φ,g0]+Jiφi

. (8.37)

Recalling that the action is a sum over the actions for each of the replica
fields, we can write 〈〈E [φ, g0]〉〉J explicitly as

〈〈E [φ, g0]〉〉J =`2P

n∑
j=1

〈〈 n∑
k=1

DabSa[φj ]Sb[φk]

2
− DabSab[φj ]

2

− Sa[φj ]Dab

(
δRcµ
δgb

)
χµc (Q−1)νµ +

1

2
Sa[φj ]D

abIbcdD
cd

〉〉
J

.

(8.38)

We now see clearly that in the first term there are “diagonal” and “off-
diagonal” contributions , j = k and j 6= k respectively. The diagonal con-
tributions are just those of conventional quantum gravity for a single scalar
field, but the off-diagonal terms are new CWL specific terms describing
gravitation between replica fields. We now write this as

〈〈E [φ, g0]〉〉J = −nWCQG[J, g0]− n(n− 1)WCWL[J, g0], (8.39)

where

WCQG[J, g0] = −`2P
[

1

2
Dab〈SaSb〉J −

1

2
Dab〈Sab〉J

− 〈Sa〉JDab

(
δRcµ
δgb

)
χµc (Q−1)νµ +

1

2
〈Sa〉JDabIbcdD

cd

]
,

(8.40)

and where

WCWL[J, g0] = −`2P
1

2
Dab〈Sa〉J〈Sb〉J , (8.41)

and angled brackets refer to a conventional QFT expectation value for a
single scalar field.

Let us now pass to the generating functional for connected correlation
functions, Wn = − lnZn. Because of its lengthy name we will simply refer
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to Wn as the free energy. To compute this we evaluate the logarithm of
eq. (8.30) to O(`2P ). The result is

Wn[J ] =
n

`2P
WG
tree +WG

1−loop +
`2P
n
WG

2−loop

+ nW0[J, g0] +WCQG[J, g0] + (n− 1)WCWL[J, g0]. (8.42)

The pure gravitational terms here are

WG
tree = I(0),

WG
1−loop =

1

2
Tr ln Iab − Tr lnQ(0),

WG
2−loop = −

〈
1

2
I2

(3) − I(4) + (Tr lnQ)(2) +
1

2
(Tr lnQ)2

(1) + I(3)(Tr lnQ)(1)

〉
h

,

(8.43)

the conventional matter free energy for a single scalar field on a fixed back-
ground is

W0[J, g0] = − ln

∫
Dφ e−S[φ,g0]+Jiφi , (8.44)

and the matter-gravity terms are defined in eqs. (8.40) and (8.41).

i. Tr ln Iab ii. Tr lnQ(0)

Figure 8.1: Feynman diagrams contributing to WG
1−loop. Dashed red lines

represent graviton propagators Dab, and dotted blue lines represent ghost
propagators (Q−1)νµ.
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i. 〈I2
(3)〉 ii. 〈I2

(3)〉

iii. 〈I(4)〉 iv. 〈I(3)(Tr lnQ)(1)〉

v. 〈(Tr lnQ)(2)〉 iv. 〈(Tr lnQ)2
(1)〉

Figure 8.2: Feynman diagrams contributing to WG
2−loop.

i. Dab〈SaSb〉 ii. Dab〈SaSb〉

iii. Dab〈Sab〉 iv. 〈Sa〉DabIbcdD
cd

v. 〈Sa〉Dab
(
δRcµ
δgb

)
χµc (Q−1)νµ

Figure 8.3: Feynman diagrams contributing to WCQG. The solid black lines
represent matter propagators. The inner color accent labels the replicas,
and is useful for latter figures where replicas need be to distinguished.

Dab〈Sa〉〈Sb〉

Figure 8.4: A Feynman diagram contributing to WCWL. The inner color
accent distinguishes the replicas.
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Observe that eqs. (8.40), (8.43) and (8.44) are all conventional quantum
gravity results, only eq. (8.41) is novel. Indeed, we can perform a sanity
check and set that if we set n = 1 in eq. (8.42) we eliminate the CWL term
and recover conventional quantum gravity at O(`2P ).

Equation (8.42) is the primary formal result of this chapter. We will soon
use this result, and the CWL “path-bunching” term (8.41) in particular, to
study specific examples.

8.2.4 Gauge independence

The action we started with in eq. (8.13), is diffeomorphism invariant when
J = 0. We used the Faddeev-Popov procedure to fix the gauge in the level-n
generating functional (8.26), but because of the underlying diffeomorphism
we have that Zn[J = 0] is independent of the gauge fixing function χµa . One
would like to verify however that this is indeed true order by order in the
`2P expansion, to ensure that the result (8.42) can be trusted.

It turns out that one can explicitly demonstrate this at at O(`P )2.
We will not reproduce the proof here, we instead refer to our published
work [126]. The computation is tedious, but essentially reduces to repeated
applications of the fundamental Ward identities

〈Raµ
δSG
δga
〉 = 0,

〈Raµ
δS

δga
+Riµ

δS

δφi
〉 = 0, (8.45)

and the descendant Ward identities obtained by functionally differentiating
eq. (8.45) with respect to gb, φi and J .

The main result we found is that the conventional quantum gravity term
WCQG is gauge independent, and separately the CWL term WCWL is also
gauge independent.

8.3 Correlation Functions

We can now proceed to set up the computation of connected correlation
functions in the `2P approximation. At this stage, we just evaluate functional
derivatives with respect to J .

Since the CWL generating functional is a product over levels, the CWL
free energy is simply the sum over levels

W[J ] =

∞∑
n=1

Wn[J/f(n)]. (8.46)
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Using the prescription (8.5) for computing connected correlation functions
we have

〈φ(x1) . . . φ(xl)〉c = −

( ∞∑
m=1

m

f l(m)

)−1 ∞∑
n=1

1

f l(n)

δl

δJ(x1) . . . δJ(xl)
Wn[J ]

∣∣∣∣
J=0

,

(8.47)
and if we insert the result (8.42) we arrive at the expression

〈φ(x1) . . . φ(xl)〉c =− δl

δJ(x1) . . . δJ(xl)

(
W0[J, g0] +WCWL[J, g0]

)∣∣∣∣
J=0

− Cl
δl

δJ(x1) . . . δJ(xl)

(
WCQG[J, g0]−WCWL[J, g0]

)∣∣∣∣
J=0

,

(8.48)

where the coefficient is

Cl = lim
N→∞

(∑N
n=1

1
f l(n)

)
(∑N

m=1
m

f l(m)

) < 1. (8.49)

Before we insert our results for the perturbative free energy function-
als, we first note the simple rule for functionally differentiating expectation
values,

δ

δJ
〈O〉J =

δ

δJ

∫
Dφ e−S+

∫
JφO∫

Dφ e−S+
∫
Jφ

= 〈Oφ〉J − 〈O〉J〈φ〉J (8.50)

Scalar field

Let us start with a single scalar field in Minkowski spacetime. We’ll assume
it has φ → −φ symmetry, and that the vacuum energy density has been
renormalized to zero. These two assumptions are actually sufficient to elim-
inate the CWL contribution to the two-point function. The result comes
purely from conventional quantum gravity

G(x1, x2) =〈φ1φ2〉 − C2`
2
P

[
1

2
Dab〈SaSbφ1φ2〉c −

1

2
Dab〈Sabφ1φ2〉c

− 〈Saφ1φ2〉cDab

(
δRcµ
δgb

)
χµc (Q−1)νµ +

1

2
〈Saφ1φ2〉cDabIbcdD

cd

]
,

(8.51)
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where again, the subscript c denotes the connected part, eg.

〈Sabφ1φ2〉c = 〈Sabφ1φ2〉 − 〈Sab〉〈φ1φ2〉. (8.52)

This result is identical to the conventional quantum gravity result, except
for the coefficient C2 which serves to weaken the gravitational coupling.

We can also work out the CWL theory prediction for the four-point
function. The conventional quantum gravity results are lengthy so we will
not write them explicitly, but we note that they are ultimately suppressed
by a factor of C4. The CWL specific term is however straightforward to
compute, and we find the total result

G(x1, x2, x3, x4) = 〈φ1φ2〉
+ `2PG

ab [〈Saφ1φ2〉〈Saφ3φ4〉+ 〈Saφ1φ3〉〈Saφ2φ4〉+ 〈Saφ1φ4〉〈Saφ2φ3〉]
+ `2PC4

[
CQG ghost and graviton loop diagrams

]
. (8.53)

Upon quick inspection one actually recognizes the three terms in the CWL
contribution as the s, t, and u channels in 2 → 2 scattering. We then see
that we get exactly the standard tree-level gravitational scattering term,
while all of the loop diagrams are suppressed by a factor of C4.

Without a specification of the function f(n) we cannot compute the
Cl, and thus we cannot work out precisely how strongly the loop diagrams
are suppressed. In the following chapter we will work to understand the
structure of CWL theory better, and ultimately we will use a correspondence
limit with conventional QFT to fix the f(n).

Non-relativistic systems

The idea for CWL theory was that gravitation would suppress superposi-
tions of matter states by a “path-bunching” mechanism in the path integral.
We then expect to see some signatures resembling this intuition when we
look at the correlation functions predicted by the theory. So far, for the
scalar field we have seen no such signature. There seems to be something
peculiar going on, with a suppression of gravitational loop diagrams, but
nothing yet describing the prevention of matter superpositions. To investi-
gate this further, we will proceed in later chapters to simplify the discussion
from a relativistic field theory to the non-relativistic quantum mechanics of
particles. In that case we will better see the novelty of CWL theory.

For now, let us lay groundwork for a future calculation, and write the
expression for a two-point function for a system which does not have a
vanishing ground state stress-energy density (eg. a non-relativistic particle).
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In this case, using φ as a placeholder degree-of-freedom we get the resulting
two-point function

G(x1, x2) = 〈φ1φ2〉

+ `2PG
ab

[
〈Saφ1〉〈Sbφ2〉+ 〈Sa〉〈Sbφ1φ2〉 − 〈Sa〉〈Sb〉〈φ1φ2〉

]
− C2

[
CQG ghost and graviton loops

]
, (8.54)

. We will use this result in a later chapter.

8.4 Conclusions

In this chapter we started by reviewing the technical definition of CWL the-
ory given in [114]. This included introducing the useful notion of matter
replicas and levels, not to be confused with the replicas from the “replica
trick” in conventional quantum theory. We then discussed the form of the
CWL generating functional, and demonstrated that it describes a theory
with the correct semi-classical Einstein equation. The prescription for com-
puting correlation functions differs from conventional QFT, but we discussed
how one gets conventional QFT results when gravity is negligible.

We then performed a systematic expansion of the CWL theory gener-
ating functional for connected correlation functions (free energy) to up to
leading order, O(`2P ), in an expansion in the gravitational coupling. The
discussion was sufficiently general that it did not rely on the details of the
matter system. Rather, we arrived at expressions which require us only
to input the matter action and evaluate the resulting Feynman integrals.
In a sense, what we’ve done is simply arrange the Feynman diagrammatic
expansion, except we’ve done so symbolically rather than with diagrams.

We used the results to set-up calculations for the two and four-point
functions in scalar field theory. We noted that the tree-level conventional
gravity contributions were unchanged, and the only novel feature in CWL
was that ghost and graviton loop diagrams were suppressed by factors C2,4

which remain unspecified.
In the following chapters we will work to better understand the structure

of CWL theory in various ways including: looking at its Hilbert space for-
mulation, discussing observables, embedding conventional QM within CWL,
etc. The discussions there will allow us to determine the Cl for all l.
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Chapter 9

CWL Hilbert space, states,
and observables

In the previous chapter we reviewed the definition of CWL theory, as given
in ref. [114], in terms of a generating functional. The generating functional
allowed us to compute CWL corrections to correlation functions, however
there are many other questions one would also like to see addressed. For
example, one could ask how CWL theory would modify the interference pat-
tern seen in a hypothetical large mass matter wave interferometer. This is
precisely the type of thought experiment which should reveal the “path-
bunching” mechanism which is expected to exist in CWL and preclude
superpositions of large masses. Given that this basic example cannot be
studied by computing n-point correlation functions, we seek a deeper for-
mulation of CWL theory—one which gives rules for analyzing observables,
computing probabilities etc.

To address these much more down to earth questions, we aim in this
chapter to provide a formulation of CWL theory in terms of vectors in
Hilbert space. We note, though, that much of the discussion in this chapter
is tentative—we will raise a number of points which require further thought.
The discussion in this chapter will allow us to understand CWL theory as
an example of a particular type of non-linear quantum mechanics theory. In
doing this reformulation we’ll find that it takes some thought to determine
how to properly ask and answer standard quantum mechanics questions
within CWL theory.

We note here that this entire chapter goes against not only the spirit
of the original formulation of CWL theory by P.C.E. Stamp [113], but also
some of its motivating arguments. Indeed, Stamp argued that paths are
primary and states/measurements are supposed to give way to a purely
dynamical description of nature in terms of interactions and path-bunching.
As mentioned previously, we believe that such a description may be in the
future for CWL theory but it will require much more work. Here we take
an entirely different perspective on the theory, where we’ll actually try to
retain as much of the conventional QM framework as possible. Despite going
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against the original intentions for the theory, we find that this approach has
its benefits. In particular it allows us to use familiar language and intuitions
from QM which ultimately guides us on how to embed QM questions into
CWL.

9.1 States, Operators, and Correspondence with
Conventional Quantum Theory

In CWL we have a great multiplicity of the fields (g, φ) which we use to
describe nature. At each level n, we have a single metric gn and n replicas

φ
(n)
i of the matter. There are an infinite number of levels indexed by positive

integers n = 1, 2, ...∞. When performing calculations we truncate the num-
ber of levels at an arbitrary large integer N and then take the limit N →∞,
assuming it exists. With this great multiplicity of degrees of freedom, we
have a Hilbert space which is infinitely larger than that in QM27

HCWL =
∞⊗
n=1

(Hg)n
n⊗
k=1

(Hφ)
(n)
k . (9.1)

In general, a state in this enormous Hilbert space may have every matter
replica in a different state and every metric in a different state

|ψ〉CWL = |g1〉1 ⊗ |φ(1)
1 〉

(1)
1 ⊗ |g2〉2 ⊗ |φ(2)

1 〉
(2)
1 ⊗ |φ

(2)
2 〉

(2)
2 ⊗ · · · . (9.2)

The great enlargement of the Hilbert space presents a challenge in the
proper formulation of CWL theory. Since the CWL Hilbert space is in-
finitely larger than the QM Hilbert space, there is clearly no one-to-one
correspondence between states in Hg ⊗Hφ to states in HCWL. Suppose we
have a state |ψ〉 = |g〉 ⊗ |φ〉 in QM and want to study the CWL corrections
to its time evolution, clearly we first need a prescription telling us which
state in HCWL corresponds to |ψ〉. A naive guess would say that we should
fix all replicas at all levels to be in the same state,

|ψ〉 → |ψ〉CWL = |g〉1 ⊗ |φ〉(1)
1 ⊗ |g〉2 ⊗ |φ〉

(2)
1 ⊗ |φ〉

(2)
2 ⊗ · · · , (9.3)

27Here we are referring to the kinematical Hilbert space, where operators corresponding
to the classical dynamical variables are defined. Einstein gravity is a constrained theory,
and the subspace of the kinematical Hilbert space in which the constraints are obeyed as
an eigenvalue equation is the physical Hilbert space. The physical Hilbert space does not
factor into gravitation and matter Hilbert spaces (eg. Gauss’ law tying static fields to
particles), but the kinematical Hilbert space does indeed factor. Also, note that here we
are being very casual with the term Hilbert space, as states in a QFT are not technically
elements of a Hilbert space.
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we will hereafter refer to such a state as a replica equal state. We will find
that for some situations this is the appropriate choice, however not always.

For the remainder of this section, to avoid unnecessary complication,
we’ll assume a fixed background metric g0 and simply turn off gravitational
dynamics, (ie. set G→ 0). We’ll continue to refer to the resulting replicated
theory as the “uncorrelated worldline theory” (UWL) but of course we will
always require UWL predictions to agree with conventional QM. In this case
the generating functional is

ZU [g0, J ] =
∞∏
n=1

n∏
k=1

∫
Dφ(n)

k e
−S[g0,φ

(n)
k ]+

∫
J

f(n)
φ

(n)
k =

∞∏
n=1

(
Z

[
g0,

J

f(n)

])n
(9.4)

and hereafter we will stop explicitly writing the g0 argument.
The generating functional involves an integration over an infinite Eu-

clidean time and hence computes vacuum correlation functions. Since every
replica undergoes an integral over the same infinite time, a cut in the above
path integral prepares the UWL vacuum state,

|0〉CWL = |0〉(1)
1 ⊗ |0〉

(2)
1 ⊗ |0〉

(2)
2 ⊗ · · · , (9.5)

in which every replica at every level is in the vacuum state. This is an
example of a replica equal mapping from the vacuum |0〉 in QM to the
vacuum |0〉UWL in UWL.

We can also ask about excited states such as φ(x)|0〉 in QM, what is the
appropriate corresponding state in UWL? There are two natural ways to

build a state from the operators φ
(n)
k and the UWL vacuum; we can act on

the vacuum with either the direct product of φ
(n)
k operators

Φp =
∞⊗
n=1

n⊗
k=1

φ
(n)
k (9.6)

or the direct sum of φ
(n)
k operators

Φs =

∞⊕
n=1

c(n)
n⊕
k=1

φ
(n)
k , (9.7)

with the level weights c(n) not yet determined. In the former case we’d
create a replica equal state,

Φp(x)|0〉UWL =
(
φ

(1)
1 (x)|0〉(1)

1

)
⊗
(
φ

(2)
1 (x)|0〉(2)

1

)
⊗
(
φ

(2)
2 (x)|0〉(2)

2

)
⊗ · · · ,

(9.8)
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whereas in the latter case we’d create a replica symmetric superposition of
excited states

Φs(x)|0〉UWL =c(1)
(
φ

(1)
1 (x)|0〉(1)

1

)
⊗ |0〉(2)

1 ⊗ |0〉
(2)
2 ⊗ · · ·+

c(2) |0〉(1)
1 ⊗

(
φ

(2)
1 (x)|0〉(2)

1

)
⊗ |0〉(2)

2 ⊗ · · ·+

c(2) |0〉(1)
1 ⊗ |0〉

(2)
1 ⊗

(
φ

(2)
2 (x)|0〉(2)

2

)
⊗ · · ·+ · · · , (9.9)

We see that in a replica symmetric superposition the excitation created by
φ is “shared” over all of the replicas. The replicas are in an entangled state,
in contrast with the product form of the replica equal state.

To determine which is the correct choice we use the fact that overlaps
of states φ(x)|0〉 in QM compute correlation functions. Since we already
have a prescription for computing correlation functions from the generating
functional (9.4) which match the correlation functions of QM, we can refer
to that construction.

If we take a functional derivative with respect to J of the generating
functional (9.4) we obtain

δ

δJ(x)
ZU [J ] =

( ∞∏
n=1

n∏
k=1

∫
Dφ(n)

k

)
δ

δJ(x)
e
−S[φ

(n)
k ]+

∑∞
n=1

∑n
k=1

∫
J

f(n)
φ

(n)
k

=

( ∞∏
n=1

n∏
k=1

∫
Dφ(n)

k

) ( ∞∑
n=1

n∑
k=1

1

f(n)
φ

(n)
k (x)

)
e
−S[φ

(n)
k ]+

∑∞
n=1

∑n
k=1

∫
J

f(n)
φ

(n)
k .

(9.10)

Since the source couples to each replica linearly the functional derivative has
brought down an operator which is the sum of replica fields. In operator
language it is then clear that the source J couples to the direct sum,

∞⊕
n=1

1

f(n)

n⊕
k=1

φ
(n)
k (9.11)

which is just the operator Φs with the level weights c(n) = f(n)−1. Thus
when we compute correlation functions in UWL theory we are actually dis-
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cussing overlaps of replica symmetric superposition states of the form

Φs|0〉UWL =
1

f(1)

(
φ

(1)
1 |0〉

(1)
1

)
⊗ |0〉(2)

1 ⊗ |0〉
(2)
2 ⊗ · · ·+

1

f(2)
|0〉(1)

1 ⊗
(
φ

(2)
1 |0〉

(2)
1

)
⊗ |0〉(2)

2 ⊗ · · ·+

1

f(2)
|0〉(1)

1 ⊗ |0〉
(2)
1 ⊗

(
φ

(2)
2 |0〉

(2)
2

)
⊗ · · ·+ · · · , (9.12)

and not replica equal states.
The next type of state we’d like to generalize from QM to CWL/UWL

is the coherent state—are these replica equal or replica symmetric superpo-
sition states? Given that the free field vacuum is a particular coherent state
centered on the classical field value φ = 0 and that the CWL vacuum is a
replica equal state, we might expect that more general coherent states will
also be replica equal states. We will demonstrate below that this intuition
is indeed correct.

To prepare a coherent state of a harmonic system (free fields or SHOs)
in QM one couples the system to an external classical source and evolves it
in time. A simple example of this is applying a static force to a harmonic
oscillator. If we apply a static force f0 to an oscillator with spring constant
k = mω2, the new ground state will be displaced from the origin by x̃ =
f0/k. Thus if we consider time evolution from t ∈ (−∞, 0) (with a slight
Euclidean rotation to prepare the ground state) under the influence of a
force f(t) = x̃0mω

2 θ(−t), we will obtain a coherent state at time t = 0
centered on x̃0,

||x[f ]〉〉 = T
{
ei
∫ 0
−∞ dtf(t)x(t)

}
|0〉 = e−ix̃0p̂ |0〉 ≡ ||x̃0〉〉. (9.13)

Here and throughout this chapter we use double brackets on the kets to
denote coherent states.

To understand coherent states in CWL we will then consider time evo-
lution under the influence of an external source. Since all of the replicas in
UWL theory are decoupled we can describe the time evolution of a CWL

state using the direct sum of the Hamiltonians H
(n)
i for each replica. Time

evolution in the presence of a source is then

||φ[J ]〉〉UWL = T
{
ei
∫ 0
−∞ JΦs

}
|0〉UWL = T

{
e
i
∑∞
n=1

∑n
k=1

∫ 0
−∞

J
f(n)

φ
(n)
k

}
|0〉UWL.

(9.14)
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Each of the replica fields commute with one another, so the state factorizes
into the product of coherent states,

||φ[J ]〉〉UWL =
∞⊗
n=1

n⊗
k=1

||φ[Jn]〉〉(n)
k = ||φ[J1]〉〉(1)

1 ⊗||φ[J2]〉〉(2)
1 ⊗||φ[J2]〉〉(2)

2 ⊗· · ·

(9.15)
where Jn = J/f(n).

Notice the effect of the level weights f(n). These modify the coupling of
each of the fields to the source, such that different levels see different source
strengths. As a result, while the coherent states of each replica within a level
are all the same, replicas in different levels are in different coherent states.
The resulting UWL state is clearly not a replica symmetric superposition,
and because of the function f(n) it is also not a replica equal state. We’ve
now seen a third type of state which naturally arises in UWL theory, a
level-weighted symmetric state.

In principle one could imagine other types of states, but we don’t have
an interest at the moment in classifying all possible states in the UWL
theory. Instead, we’ve been interested in finding the natural embedding of
QM states in UWL theory. We’ve decided that the “natural” embedding is
the one coming from a physical state preparation procedure.

9.2 Fixing the Source Coupling Function f(n)

As previously discussed (9.14) one can prepare a coherent state by evolving
a system in the presence of a source. This time evolution can be described
using a path integral. The wave functional of the coherent state ||φ[J̃ ]〉〉 is
given by

Ψφ[J̃ ][φ
′(x)] = 〈φ′(x)||φ[J̃ ]〉〉 =

∫ φ′(x)

Dφ eiS[φ]+i
∫
J̃φ, (9.16)

where the integral is taken over time (−∞, 0) (with a slight Euclidean rota-
tion). Expectation values in this state are computed by considering operator
insertions on a closed-time-path (CTP) or Schwinger-Keldysh contour which
extends from past infinity to future infinity and wraps back to past infin-
ity [114, 130, 131].The forward path represents the state ket and the return
path represents the state bra,

〈〈φ[J̃ ]|| Oσ1 ||φ[J̃ ]〉〉 =

∮
Dφ′ eiS[φσ ]+i

∫
J̃σφσOσ1 . (9.17)
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Here σ = ± labels which path the operator is to be inserted on.
One can consider a CTP generating functional which generates correla-

tion functions taken for the system prepared in the coherent state by intro-
ducing another (auxiliary) source J

Zφ[J̃ ][J ] = Z[J̃ + J ] =

∮
Dφ eiS[φ]+i

∫
(J̃+J)φ, (9.18)

where we’ve condensed the notation by not writing the path labels σ explic-
itly. By taking functional derivatives with respect to J and setting J = 0
(while leaving J̃ 6= 0) we can compute correlation functions in the coherent
state ||φ[J̃ ]〉〉.

To study coherent states in UWL theory we’ll do the same procedure of
translating the source and taking a CTP contour,

ZUWL,φ[J̃ ][J ] =ZUWL[J̃ + J ] =

∞∏
n=1

n∏
k=1

∮
Dφ(n)

k e
iS[φ

(n)
k ]+iJ+J̃

f(n)
φ

(n)
k

=

∞∏
n=1

(
Z

[
J + J̃

f(n)

])n
. (9.19)

If we now us the prescription (8.5) for computing connected correlation
functions we obtain( ∞∑
n=1

n

fm(n)

)−1
(−i)mδm

δJ(x1)...δJ(xm)
logZUWL[J + J̃ ]

∣∣∣∣
J=0

=

=

( ∞∑
n=1

n

fm(n)

)−1 ∞∑
n=1

n
(−i)mδm

δJ(x1)...δJ(xm)
logZ

[
J + J̃

f(n)

]

=

( ∞∑
n=1

n

fm(n)

)−1 ∞∑
n=1

n

fm(n)
〈〈φ[J̃/f(n)]||φ(x1)...φ(xm) ||φ[J̃/f(n)]〉〉

6= 〈〈φ[J̃ ]||φ(x1)...φ(xm) ||φ[J̃ ]〉〉, (9.20)

and we do not agree with conventional QM.
Since the states themselves depend on f(n) through the source coupling,

the normalization procedure that works when J̃ = 0 no longer works for
general f(n). The only resolution here is to set f(n) = 1, in which case the
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above expression does indeed yield the desired result( ∞∑
n=1

n

)−1
(−i)mδm

δJ(x1)...δJ(xm)
logZUWL[J + J̃ ]

∣∣∣∣
J=0

=

=

( ∞∑
n=1

n

)−1( ∞∑
n=1

n

)
〈〈φ[J̃ ]||φ(x1)...φ(xm) ||φ[J̃ ]〉〉

= 〈〈φ[J̃ ]||φ(x1)...φ(xm) ||φ[J̃ ]〉〉. (9.21)

We then see that the free parameters f(n) for n = 1, 2, .. in CWL theory
must all equal 1 if CWL theory is to reduce to conventional quantum theory
in the limit G = 0. In hindsight this is all obvious, but it is nice to have an
explicit demonstration here showing why we must indeed fix f(n) = 1 for
all n.

One immediate consequence of setting the f(n) = 1 is that coherent
states in CWL are proper replica equal states

||φ[J ]〉〉UWL =
∞⊗
n=1

n⊗
k=1

||φ[J ]〉〉(n)
k = ||φ[J ]〉〉(1)

1 ⊗||φ[J ]〉〉(2)
1 ⊗||φ[J ]〉〉(2)

2 ⊗· · · ,

(9.22)
however we will shortly find that there are a number of other remarkable
consequences.

Here we can get a glimpse into the consequences of setting f(n) = 1, but
the detailed analysis will come in chapter 10. For now, let us refer back to the
Cl coefficients from chapter 8. These coefficients (8.49) ultimately showed
up suppressing conventional quantum gravity contributions to correlation
functions (8.48). In particular, we saw in the scalar field two-point function
(8.51) and four-point function (8.53) that C2 and C4 respectively suppressed
contributions from ghost and graviton loop diagrams.

Upon setting f(n) = 1 we can now see quite simply that Cl = 0 for
all l. This is somewhat remarkable, since at least to lowest order in CWL
perturbation theory we find that matter loops are preserved while graviton
and ghost loops are completely suppressed. In eq. (8.48) we still have non-
trivial CWL corrections to compute, and we will study these contributions
further in upcoming chapters.
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9.3 Redefining the CWL generating functional

The CWL generating functional (8.6) now has the form

Z[J ] =
∞∏
n=1

∫
Dgn e−nSG[gn]

n∏
k=1

∫
Dφ(n)

k e−S[gn,φ
(n)
k ]+

∫
Jφ

(n)
k , (9.23)

and the prescription for computing correlation functions is

G(x1, .., xm) = lim
N→∞

( ∞∑
N=1

n

)−1
δm

δJ(x1)...δJ(xm)
logZ[J ]

∣∣∣∣
J=0

. (9.24)

Note that this expression appears ill-defined; the pre-factor vanishes and the
functional derivatives diverge because of the infinite number of replicas and
levels. One can be reassured because the divergence does precisely cancel
the zero; however it is clear that this expression for the correlation function
is not the most convenient to work with. In this section we will reformulate
CWL theory to avoid this issue.

Firstly, now that the normalization for the m-point function no longer
depends on m, we can simply absorb the Green’s function normalization
factor into a redefinition of the generating functional. From now on, we will
define the CWL generating functional as

Z[J ] = lim
N→∞

[
N∏
n=1

∫
Dg(n) e−nSG[g(n)]

n∏
k=1

∫
Dφ(n)

k e−S[φ
(n)
k ,g(n)]+

∫
Jφ

(n)
k

]αN
,

(9.25)
with

αN ≡
1(∑N
n=1 n

) =
2

N(N + 1)
. (9.26)

This is completely equivalent to the previous prescription, we’ve just ab-
sorbed a constant scaling into lnZ. With this definition of the CWL gener-
ating functional we compute the connected part of correlation functions by
straightforwardly differentiating

G(x1, .., xm) =
δm

δJ(x1)...δJ(xm)
logZ[J ]

∣∣∣∣
J=0

. (9.27)

We can see an immediate result of doing this if we return to the per-
turbative result (8.42) for the free energy. After rescaling we now have the
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expression for the generating functional at lowest order

Z[J ] = lim
N→∞

exp

[
αN

N∑
n=1

(
n

`2P
WG
tree +WG

1−loop +
`2P
n
WG

2−loop

+ nW0[J, g0] +WCQG[J, g0] + (n− 1)WCWL[J, g0]

)]
. (9.28)

Evaluating the limit simplifies the expression considerably

Z[J ] = exp

[
1

`2P
WG
tree +W0[J, g0] +WCWL[J, g0]

]
= exp

[
1

`2P
WG
tree +W0[J, g0]− `2P

1

2
Dab〈Sa〉J〈Sb〉J +O(`4P )

]
. (9.29)

We then see explicitly that the graviton and ghost loop contributions vanish
at this order. In chapter 10 we will explore this further, at higher orders in
perturbation theory.

When written in this way it is obvious that we recover conventional
quantum theory when gravitation is turned off. As G→ 0 we’ve seen already
(8.43) that the gravitational path integral is dominated by the action of the
classical vacuum solution. The value of the classical vacuum action is a
constant and is typically renormalized to zero, ie. we have I(0) ≡ I[g0] = 0.
The CWL generation functional is then,

Z[J ]

∣∣∣∣
G=0

= lim
N→∞,G→0

[
N∏
n=1

∫
Dg(n) e−

n
16πGI[g

(n)]
n∏
k=1

∫
Dφ(n)

k e−S[φ
(n)
k ,g(n)]+

∫
Jφ

(n)
k

]αN

= lim
N→∞

[
N∏
n=1

(∫
Dφ e−S[φ,g0]+

∫
Jφ

)n]αN
=

∫
Dφ e−S[φ,g0]+

∫
Jφ. (9.30)

We will see in upcoming sections, and also in chapter 10, that writing the
generating functional in this form leads to a much simpler understanding of
the nature of this theory.

9.4 Defining the propagator

To progress with our understanding of CWL theory, we’d like to understand
its predictions for the dynamics of various systems. The place to start, given
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the theory’s foundational formulation in terms of path integrals, is with is
with the propagator, ie. transition amplitude between defined configura-
tions. First, we must determine what the form of transition amplitudes in
CWL theory should be. To do this we must take certain postulates. We
will take the expression given for the generating functional eq. (9.25) as a
foundational equation in CWL, and its form will determine for us the rules
for computing various other quantities.

The generating functional (as defined as a path integral over all of space-
time with a Euclidean rotation) is by definition, a vacuum-to-vacuum transi-
tion amplitude in the presence of an external source. If we freeze gravity for
a moment, and we turn off the external source, we know that the generating
functional has the form in terms of conventional QM states

Z[0] = lim
N→∞

[
N∏
n=1

n∏
k=1

〈0|(n)
k |0〉

(n)
k

]αN
, (9.31)

or completely equivalently

Z[0] = lim
N→∞

[( N⊗
n=1

n⊗
k=1

〈0|(n)
k

)( N⊗
n=1

n⊗
k=1

|0〉(n)
k

)]αN
. (9.32)

We then see that according to the prescription eq. (9.25) which we take as a
postulate, to compute an amplitude in CWL theory we first take the inner
product in the large replicated Hilbert space with N levels and then take
the power αN as N →∞.

With this prescription derived the last step before computing a particle
propagator in CWL theory is to determine the natural embedding into CWL
theory of the QM position eigenstate |x〉. We’ve seen previously that the
natural embedding of vacuum states and coherent states are is the form of
replica equal states, eqs. (9.5) and (9.22), where all replicas are identical.
In comparison though, we’ve also seen that a single quantum excitation of
a field is naturally described by a replica symmetric superposition state,
(9.12), where the excitation is shared among the different replicas. It is not
immediately obvious which, if either, of these two classes of states would
naturally describe the embedding of a position eigenstate in CWL theory.

To proceed we can draw analogy with the coherent states. Both coherent
states and position eigenstates are defined as eigenstates of certain funda-
mental operators in QM. For the coherent state, we can trivially confirm
that eq. (9.22) is an eigenstate of the positive frequency part of the field
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operator

Φ̂(+) =
N⊗
n=1

n⊗
k=1

φ̂
(n)(+)
k , (9.33)

with eigenvalue φ[J ]
N(N+1)

2 , such that[
〈ψ|Φ̂(+)||φ[J ]〉〉CWL

]αN
= φ[J ]

[
〈ψ||φ[J ]〉〉CWL

]αN
, (9.34)

for arbitrary CWL state |ψ〉. If we then demand that the position eigenstate
in CWL satisfies the eigenvalue equation above in the same way, except for
the position operator, then we are led to conclude that the correct embedding
of position eigenstates into CWL theory are is replica equal states,

|x〉CWL =

N⊗
n=1

n⊗
k=1

|x〉(n)
k . (9.35)

With the correct prescription for computing amplitudes determined, as
well as the correct embedding for position eigenstates, we can now write
down the definition of a particle propagator in CWL theory. The propagator
for a particle propagating from position x1 to x2 is given by

K(x2, x1) = lim
N→∞

[ N∏
n=1

∫
Dg(n) einSG[g(n)]

n∏
k=1

∫ x2

x1

Dq(n)
k eiS[q

(n)
k ,g(n)]

]αN
,

(9.36)
where S[q|g] is the action for the particle on a background metric g. In
following chapters we will study this propagator in some detail both pertur-
batively and non-perturbatively.

9.5 Observables and the Probability
Interpretation in CWL Theory

The content of this section is the most recent of the research done by the
author on the CWL theory. We stress that it is tentative, and has not
been thoroughly scrutinized by the other researchers involved with CWL
theory. Although this choice of thesis layout may be confusing, to organize
the chapters and sections chronologically would likely be more confusing. In
light of this, we ask the reader to be generous as they read the chapters.
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9.5.1 Hilbert space formulation of CWL theory

We’ve already begun to discuss, in section 9.1, how one can formulate aspects
of the CWL theory in terms of state vectors and operators. In this section
we’d like to expand on that discussion more deeply to help to address the
question of observables as well as to properly understand the probability
interpretation of the theory.

As mentioned previously, the states in the CWL theory can also be
understood as vectors in a Hilbert space. We have previously defined them
in eq. (9.1) in terms of a state vector in the Hilbert space which has been
replicated limN→∞

1
2N(N + 1) fold. One remarkable consequence of the

rescaled version of the CWL theory generating functional eq. (9.25), which
may not be apparent until we perform explicit calculations in the following
chapter, is that the theory is equivalent to a similar but much more simple
theory.

Recall that we have N levels, n = 1, . . . , N , each with n replicas of
the matter fields. When the take the product of all the amplitudes and
compute its fractional power αN in the N → ∞ limit, we’ll see that the
result is always completely dominated by the largest level, n = N . As a
consequence we can dispense of the notion of levels entirely, and consider
CWL theory as a theory with only one metric and N → ∞ replicas. The
generating functional can then be redefined once more as

Z[J ] = lim
N→∞

[∫
Dg e−NSG[g]

N∏
k=1

∫
Dφk e−S[φk,g]+J

kφk

]1/N

. (9.37)

Although the expression eq. (9.37) is equivalent to the previous eq. (9.25),
the new definition allows for a much more simple discussion. Before impos-
ing diffeomorphism invariance constraints, the states in CWL theory for a
system consisting of gravity and a single matter field φ are now vectors in
the kinematic Hilbert space

HCWL = lim
N→∞

Hg
N⊗
k=1

Hφ. (9.38)

Of course we have not strictly defined the limit here, rather the notation
serves as a reminder that N will be taken to be arbitrarily large at the
end of computations. In subsequent expressions we will not write this limit
explicitly, but will instead keep in mind that N is an arbitrarily large integer.
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Given orthonormal bases {|gi〉} ofHg and {|φj〉} ofHφ from conventional
quantum gravity, we can then write a generic state in CWL in the form

|Ψ〉 =
∑

i,j1,...,jN

Ψi,j1,...,jN |gi〉|φj1〉 ⊗ · · · ⊗ |φjN 〉. (9.39)

In addition to the quantum gravitational constraints, there is a novel CWL
constraint on the allowed wavefunctions Ψi,j1,...,jN . Since all of the replicas
are copies of the same matter system, the wavefunctions must be invariant
under permutations of the replicas. That is, we impose the physical state
condition

Ψi,j1,...,jN = Ψi,jσ(1),...,jσ(N)
, (9.40)

for σ ∈ SN a permutation of the set {1, 2, ..., N} In this sense, the allowed
wavefunctions are “bosonic”. The previously discussed replica identical and
replica symmetric superposition states are examples of such wavefunctions.
It might be interesting to consider models wherein the allowed wavefunc-
tions over the replica Hilbert space are fermionic but that seems to be quite
different from our goals here, so we will not pursue it further.

To understand observables in CWL theory, we must determine the best
prescription for embedding the operators of conventional quantum theory
into CWL theory. The most natural way to do this (for operators on the
matter Hilbert space) while maintaining the replica permutation invariance,
is to use the replicated operator,

O = O⊗N =
N⊗
k=1

O, (9.41)

where O is the conventional operator.
Of course one could also consider operators which satisfy replica permu-

tation invariance and cannot be written in this form, eg. using the direct
sum

O =
N⊕
k=1

O = O ⊗ 1⊗ 1⊗ · · · ⊗ 1

+ 1⊗O ⊗ 1⊗ · · · ⊗ 1
+ · · ·+
+ 1⊗ 1⊗ · · · ⊗ 1⊗O, (9.42)

however operators of this type can often be derived from the direct product
type operators. One way to see this is to use O = exp iεA as a sort of
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generating function, and then compute various derivatives, eg.

−i d
dε

N⊗
k=1

eiεA
∣∣∣∣
ε=0

=

N⊕
k=1

A. (9.43)

9.5.2 Measurement and Probabilities

The above replicated system with its bosonic permutation symmetry is still
a conventional quantum mechanics theory. The major departure of CWL
theory from conventional quantum mechanics comes from the further rule
for computing observables. When G → 0, CWL theory must return the
same results as conventional quantum mechanics. To enforce this, and to
follow the same prescription as eq. (9.37), we would then naturally define
the rule for computing observables to be

〈Oa〉CWL =
[
〈Ψ|Oa|Ψ〉

]1/N
, (9.44)

where Oa is the appropriate operator on the replicated Hilbert space, and
where it is understood that N will be taken arbitrarily large. We can show
shortly how this cannot necessarily be correct.

Consider an observable O with possible outcomes {λj}. If we follow the
prescription (9.44), we would conclude that the probability in CWL theory
for obtaining outcome λj in state |Ψ〉 would be

p(λj) =

[
〈Ψ|

(
|λj〉〈λj |

)⊗N
|Ψ〉
]1/N

. (9.45)

The first check on whether this is a sensible definition is to check that it
reduces to the conventional definition when G → 0. It is trivial to check
than in a replica identical state, |Ψ〉 =

⊗N
j=1 |ψ〉, this prescription indeed

reduces to the conventional definition

p(λj) = 〈ψ|λj〉〈λj |ψ〉. (9.46)

The second check is to see that the sum of probabilities for all outcomes
is equal to 1, ie. that the set of probabilities is properly normalized. Let us
first recall how this is seen in conventional quantum theory. Conventionally,
we use the completeness relation for the eigenvectors of Hermitian operators
to show ∑

j

p(λj) = 〈ψ|
(∑

j

|λj〉〈λj |
)
|ψ〉

= 〈ψ|ψ〉. (9.47)
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Since unitary time evolution preserves the norm of states, if a state is nor-
malized 〈ψ|ψ〉 = 1, then the sum of probabilities will equal 1 for all time.
In CWL theory, using the prescription (9.45), the sum of probabilities is

∑
j

p(λj) =
∑
j

[
〈Ψ|

(
|λj〉〈λj |

)⊗N
|Ψ〉
]1/N

6=
[
〈Ψ|

(∑
j

|λj〉〈λj |
)⊗N
|Ψ〉
]1/N

,

(9.48)
where the rightmost expression would equal 1 for normalized states.

We can see clearly that when the state |Ψ〉 is a replica equal state, then
the sum of probabilities in CWL will indeed equal 1. If the state is not a
replica equal state, then in general the sum of probabilities as given by the
prescription eq. (9.45) will not equal 1. A natural question to ask is then,
“If the matter system is initially in a replica equal state and evolves under
the CWL time evolution, will it remain in a replica equal state?” To this
the answer is simply no.

A replica equal state is a product state for the various replicas: there is no
entanglement between replicas. The CWL evolution, before observables are
measured and quantities are raised to powers of 1/N , is just conventional
unitary time evolution for a system consisting of gravity and N different
copies of the matter system. When dynamical gravity is turned off, the
replicas do not couple to each other, and thus remain in a product state.
When gravity is turned on however, the replicas will interact with each other
and generically they will evolve into an entangled state—and thus away
from a replica equal state. It is interesting to observe that the failure of the
probabilities to remain normalized is strongly linked to the development of
entanglement between replicas—this relationship deserves more research at
a later time.

Generally speaking then, it seems that we must “renormalize” the proba-
bilities in CWL theory. Doing so, we arrive at the prescription for computing
CWL probabilities

p(λj) =

[
〈Ψ|

(
|λj〉〈λj |

)⊗N
|Ψ〉
]1/N

∑
i

[
〈Ψ|

(
|λi〉〈λi|

)⊗N
|Ψ〉
]1/N

. (9.49)

An immediate consequence of this is that the prescription for computing
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expectation values should be modified by this same renormalization,

〈O〉CWL =

[
〈Ψ| O⊗N |Ψ〉

]1/N

∑
i

[
〈Ψ|

(
|λi〉〈λi|

)⊗N
|Ψ〉
]1/N

. (9.50)

9.5.3 CWL as a non-linear quantum mechanics theory

When written in this way (eqs. (9.49) and (9.50)), one sees that the CWL
theory seems to be a particular example of a non-linear quantum mechanics
theory, not unlike the class considered by Weinberg [99]. Authors including
Weinberg, Czachor, Gisin, and Polchinski have argued that such theories
have many potential issues including for example: issues with the sprobabil-
ity interpretation [99], observables being basis dependent [99, 346], superlu-
minal EPR communication [101–103], and ambiguities in generalizing from
pure states to mixed states [103]. It is very important to check whether these
issues also plague the CWL theory, or if it evades them in an interesting way.

We have not yet performed sufficient research to be conclusive on these
issues, however we can share some preliminary observations. Our first obser-
vation is regarding the superluminal EPR communication proven by Gisin
for non-linear quantum mechanics theories [101, 102]. In the models con-
sidered by Gisin, the proof of EPR communication relied on the projection
postulate for quantum measurement. That is, the assumption that upon
performing a measurement of the observable O on a state |ψ〉 and finding
the outcome λj , the state instantaneously transforms

|ψ〉 → |λj〉〈λj |ψ〉√
〈ψ|λj〉〈λj |ψ〉

. (9.51)

To this we note Polchinksi’s observation that in such non-linear quantum
mechanics theories, one may not need to impose the projection postulate, in-
stead computing observables in a more operational sense [103]—relying on a
relative-state (aka many-worlds) interpretation rather than the Copenhagen.
In the CWL theory we will abandon the Copenhagen idea of the projection
postulate. A genuine example of this is to view quantum theory merely
as a “logic” for computing correlations between subsequent measurement
outcomes— a perspective emphasized by Wigner [347] with a corresponding
path-integral formalism developed by Caves [see 348, 349, and refs. therein].

We should add however, that in the original conception of the theory (ref.
[113]) it was argued that in this theory one should ultimately abandon the
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unphysical mathematical crutch that is instantaneous “projective” measure-
ments. The arguments of Stamp imply that one should instead describe the
physical interaction between a system and a macroscopic apparatus, and
that the CWL “path-bunching” would render the apparatus classical and
force the system into a particular state as the result of dynamics. We be-
lieve that there has not been enough work done in CWL theory to prove that
this mechanism indeed replicates the standard projective operator approach
to measurements for microscopic systems, however it remains important to
try and see whether it does indeed occur. In this thesis we will continue to
use the conventional approach, where operator insertions describe idealized
measurements.

The other comment we’d like to make on superluminal communication is
regarding the arguments of Polchinski [103]. Polchinski makes no use of the
projection postulate, and still demonstrates that a wide class of non-linear
quantum mechanics theories have issues with EPR communication. The
non-linear observables which Polchinski claims will not lead to superluminal
communication are those which can be written as functions of the system’s
density matrix. If we simply rewrite ρ = |Ψ〉〈Ψ|, then the CWL prescription
eq. (9.50) can be written as

〈O〉CWL =

[
Tr
(
ρO
)]1/N

∑
i

[
Tr

(
ρ
(
|λi〉〈λi|

)⊗N)]1/N
. (9.52)

We then see that the non-linear observables in CWL theory are precisely the
type which Polchinski excludes from the superluminal signaling proof. It was
also demonstrated in [103] however that such theories will necessarily involve
communication between different branches of the wavefunction, but that is
exactly what CWL theory is meant to model—gravitation between different
paths in a path integral. More research is certainly required to be conclusive
about whether CWL evades the various issues that other non-linear quantum
theories suffer from, but as mentioned above, our early observations are
promising.
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Chapter 10

The intrinsic large-N limit of
CWL theory

In this chapter we study aspects of the non-perturbative behaviour of a
correlated worldline (CWL) theory of quantum gravity. We start with the
generating functional to study how quantum field theory is modified in CWL
and discover that because of the infinite number of “replica” paths in the
path integral there is an intrinsic large-N limit to the theory. We study
the novel CWL combinatorics for the Feynman diagrammatic expansion to
develop an important intuition: that only tree diagrams will contribute in
the limit N →∞.

We then use functional methods to prove that our intuition is correct
and formally compute the exact CWL generating functional. There is an
apparent inconsistency between the lack of loop diagrams and the necessity
of loop diagrams for reproducing full non-linear General Relativity in the
classical limit, however we demonstrate how it is resolved when the many
“replicas” appear to coincide, thus enabling tree-level CWL diagrams to
mimic conventional quantum field theory loop diagrams. This leads to rather
different predictions for the CWL corrections to the correlations functions
of a field theory in comparison with the CWL corrections for a particle
propagator.

We close by identifying the relationship between CWL theory and large
N approximations in conventional quantum gravity. As a consequence of all
the simplifications, we conjecture that CWL theory is renormalizable with
only a finite number of counter terms added to the Lagrangian.

10.1 CWL Generating Functional

In a later section we will return to further discuss propagators but for now
we pivot the discussion back to field theory, where correlation functions are
of more interest. Our starting point will be the generating functional Z[J ],
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as written in eq. (9.25). From this we define the free-energy functional

W[J ] = − logZ[J ]

= − lim
N→∞

[
αN

N∑
n=1

logZn[J ]

]
. (10.1)

Observe the utility of the normalizing factor αN—in the limit N → ∞, it
will vanish as N−2.

We will soon demonstrate that logZn[J ] can be expanded in powers of
n, and that it grows no faster than linearly with n. This allows us to expand
Wn[J ] = − logZn[J ] as

Wn[J ] =W(1)[J ]n+W(0)[J ]n0 +O(n−1), (10.2)

and when we substitute this into the full free energy functional (10.1) we
obtain

W[J ] = lim
N→∞

[
αN

N∑
n=1

(
W (1)[J ]n+O(n0)

)]
= W (1)[J ] lim

N→∞

[
1 +O(N−1)

]
= W (1)[J ]. (10.3)

Thus when computing the CWL free energy functional perturbatively we
need only retain connected diagrams at each level n, which scale linearly
with n. Any term scaling as nP for P < 1 will be canceled out by the CWL
normalization.

In this sense, CWL has a built-in “large-N limit” which is different in
spirit from large-N limits considered in conventional QFT; here N refers
not to the number of matter fields but to the number of levels (and thus to
the number of matter replicas in the highest level, ie., the number of matter
paths connected by CWL gravitational interactions).28 The interpretation of
the replicas in CWL is different from the interpretation of the multiple fields
in a conventional QFT large-N limit. In conventional QFT each field has an
independent existence and the permutations of the field labels is treated as a

28After this chapter was written, we became aware of some literature on the large-N
approximation in quantum gravity, notably the works of Tomboulis, Hartle and Horowitz,
and Kay [350–353]. We were originally unaware of this work, but in this chapter there is
considerable overlap between our ideas in CWL and theirs in conventional quantum grav-
ity. In particular, they discuss the connection between 1/N expansions and semiclassical
gravity theories.
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symmetry under which the states can be organized into representations. In
CWL the replicas of a field are mathematical devices introduced to describe
the evolution of that single object. In contrast with conventional QFT,
replica permutation in CWL should be treated as a discrete gauge symmetry.

10.2 Diagrammatics

In this section we will return to the discussion of perturbation theory initi-
ated in chapter 8. Now, equipped with the knowledge that we need only re-
tain connected diagrams which are linear in n, we can take the diagrammatic
expansion much further. We’ll start by thinking in terms of conventional
Feynman diagrams, then we will use a more general approach to classify
diagrams at all orders.

10.2.1 Low orders - intuition

Let us first review the n dependence of various elements of Feynman dia-
grams. The level n generating functional is

Zn[J ] =

∫
Dg e−nSG[g]

n∏
k=1

∫
Dφk e−S[φk,g]+J

kφ
(n)
k . (10.4)

We start by considering the metric perturbation about flat spacetime, ga =
ηa + ha, and expand each action in powers of h. Since the matter action
is independent of n each of the matter-graviton vertices will be the same
as conventional quantum gravity. Since the Einstein-Hilbert action appears
multiplied by n, each graviton-graviton vertex will come with a factor of
n, and the graviton propagator (which is the inverse of the quadratic form
in the action) will come with a factor of n−1. Finally, factors of n will
appear due to the combinatorics of diagrams due to the fact that there are
n replicas. In Figure 10.1 we illustrate some diagrams contributing to the
free energy functional in CWL scalar field theory to gain some intuition for
which diagrams scale linearly with n.

From fig. 10.1 we can make a simple observation: only diagrams con-
taining no graviton loops will scale linearly with n and thus contribute to
the CWL free energy functional. It follows that there are no gravitational
interactions coupling a replica to itself.

In conventional quantum gravity a diagram such as Figure 10.1-ii. con-
tributes to 2 → 2 scattering. We see this by taking four functional deriva-
tives of the diagram with respect to the source and then setting J = 0 to
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i. O(n1) ii. O(n0) iii. O(n1)

iv. O(n−1) v. O(n0) vi. O(n0)

vii. O(n1) viii. O(n1) ix. O(n−1)

x. O(n0) xi. O(n1)

Figure 10.1: Some low order diagrams in perturbation theory contributing to
Wn[J ] for scalar field theory. Thick solid black lines denote “sourced” matter
propagators (2-point correlation functions computed while the source J is
still on.). We use a thinner solid coloured line to distinguish an excitation
of one replica field from an excitation in another replica field. Dashed red
lines represent graviton propagators.

obtain the 4-pt correlation function. This “breaks” open the matter loop to
give the tree-level scattering diagram (see Figure 10.2).

In CWL though, the diagram in Figure 10.1-ii. doesn’t contribute to
the free energy functional: instead the corresponding CWL diagram is Fig-
ure 10.1-iii. If we functionally differentiate this diagram with respect to the
source to break open the matter lines we see that the lowest order diagrams
describing 2 → 2 scattering in CWL between particles A and B involve
particle A in one replica interacting with particle B in the other replicas.

The 2 → 2 scattering amplitude in CWL was computed perturbatively
to lowest order in ref. [114] and it was shown to equal exactly the lowest
order perturbative scattering amplitude from conventional quantum gravity.
It was not emphasized in [114] how remarkable it was that one obtains the
exact same result as conventional quantum gravity, despite the dominant in-
teraction occurring between two excitations of different replica fields, rather
than between excitations of the same field. This feature (that interactions
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i.

ii. iii.

Figure 10.2: i. A perturbative expansion of the sourced propagator.
ii. Breaking open the sourced propagators in Figure 10.1-ii. to reveal the
tree-level scattering diagram.

Figure 10.3: Gravitational scattering of particle A (an excitation in one
replica field) with particle B (an excitation in a different replica field).

only occur between different replicas) will have significant implications for
the higher-order diagrams.

Going beyond lowest order perturbation theory we expect new contribu-
tions to the 2→ 2 scattering amplitude. In conventional quantum gravity we
would see diagrams such as those in Figure 10.4 where the matter lines ex-
change two gravitons, or where an exchanged graviton splits via a 3-graviton
vertex, etc.

From eq. (10.3) we can see that the only CWL diagrams in which these
higher order gravitational interactions arise are those involving three repli-
cas (see Figures 10.1-vii, viii, xi.). If we take four functional derivatives with
respect to J to break open the matter lines we find that in many of these
diagrams the excitations either couple to a tadpole or there is a polarization
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Figure 10.4: Some higher-order contributions to 2→ 2 scattering in conven-
tional quantum gravity.

Figure 10.5: Breaking open higher order CWL free energy diagrams to study
2→ 2 scattering.

bubble affecting the graviton graviton propagator (see fig. 10.5). Upon set-
ting J = 0, we then find that all of these second order diagrams except the
polarization diagram will vanish! There are no diagrams involving gravi-
ton loops and as a consequence it seems that, up to a renormalization of
the graviton propagator, the exact CWL 4-pt function is given by a single-
graviton exchange diagram. In the following section we will prove this to be
true.

We see from this example that these higher-order contributions involving
multi-graviton exchange and graviton-graviton vertices do still arise in CWL.
However they are seen only as interactions involving more than two replicas,
and when we functionally differentiate to obtain the 4-pt correlation function
all of the higher-order contributions vanish.
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10.2.2 Higher orders

The following argument is somewhat standard in field theory texts for com-
puting the powers of ~ in an arbitrary diagram, and we adapt the logic to
compute the power of n. Although the argument is standard we will review
it for completeness [55].

We can go further with our understanding if we formally integrate out
the matter fields. Since each of the replicas has the same action we simply
obtain

Zn[J ] =

∫
Dg e−nSG[g]+−nW0[J |g], (10.5)

where W0[J |g] is the free energy functional for the conventional QFT of a
single replica on a fixed background metric g,

W0[J |g] = − log

∫
Dφ e−S[φ|g]+

∫
Jφ. (10.6)

At this stage only the metric is being integrated over so a diagrammatic
expansion of this integral will contain only: graviton propagators, graviton-
graviton vertices, and matter sources on which graviton lines can terminate.
Furthermore, since n appears as a prefactor in front of both SG[g] and
W0[J |g] we can see that every propagator will come with a factor of n−1 and
every vertex will come with a factor of n. A diagram with I propagators
and V vertices then scales as nV−I .

We also know that for a connected graph i) every propagator comes
with a 4-momentum integral and ii) every vertex comes with a momentum
conserving delta function. One of these delta functions conserves total mo-
mentum and thus doesn’t “cancel out” any of the integrals coming from the
propagators. The number of remaining 4-momentum integrals (ie. number
of loops) is then given by L = I − (V − 1). It follows that a diagram with
I propagators and V vertices will scale with n as n1−L. Thus only those
diagrams with zero graviton loops will scale linearly with n and therefore
contribute to the CWL free energy functional W[J ].

Although we did not explicitly include ghosts in this discussion, it is
trivial to do so. The entire purpose of ghosts is to cancel out the unphysical
“pure gauge” contributions running around graviton loops. Since we have
determined that there are no such loops contributing toW[J ] there will also
be no ghost contributions.

Also, to be clear, this does not just eliminate closed loops containing
only gravitons. Any diagram which has a loop involving a graviton is now
eliminated.
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This is a large departure from conventional quantum gravity which ap-
pears to spell disaster for CWL because of the well understood fact that
graviton loop diagrams describe both quantum corrections and also classical
GR non-linearities [354]. It appears that the 2→ 2 gravitational interaction
in CWL is only that of linearized gravity and not of full general relativity. In
the following sections we will elucidate this point and demonstrate that the
appropriately defined semi-classical limit of CWL is indeed full non-linear
general relativity.

10.3 Non-perturbative Results

10.3.1 Generating Functional

In the previous section we looked at some Feynman diagrams in CWL theory.
From a simple power counting argument, we found that in CWL there is
interplay between the combinatorics of the replicas and the rescaling of the
gravitational coupling, and together they imply that the theory contains no
diagrams with gravitons loops. In this section we will exploit this fact to
explicitly evaluate the functional integral.

We can now formally evaluate the functional integral in eq. (10.5) using
the stationary-phase method. Let’s consider the expansion of the metric g
about a stationary point ḡJ satisfying(

δSG[g]

δg
+
δW0[J |g]

δg

)∣∣∣∣
g=ḡJ

= 0. (10.7)

Note that δgW0[J |g] is proportional to the expectation value of the stress-
energy tensor for the matter,

δW0[J |g]

δgµν
=
−1

Z[J |g]

∫
Dφ e−S[φ|g]+

∫
Jφ

(
−δS[φ|g]

δgµν

)
= −1

2
〈Tµν [g]〉J (10.8)

and that δgSG is proportional to the Einstein tensor, so ḡJ is the solution
to the semi-classical Einstein equation

Gµν(ḡJ) = 8πG〈Tµν [ḡJ ])〉J . (10.9)

We now write g = ḡJ + n−
1
2h and expand the effective action in powers
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of h,

Zn[J ] = e−nSG[ḡJ ]−nW0[J |ḡJ ]

×
∫
Dh exp

[
−
∞∑
m=2

n1−m/2

m!

δm

δga1 ...δgam
(SG[g] +W0[J |g])

∣∣
g=ḡJ

× ha1 ...ham
]
.

(10.10)

In writing this we’ve included a “DeWitt” index on the metric. We’ve
also omitted an overall factor of n raised to a power which came from the
Jacobian of the integration variable change. After taking the logarithm of
Zn this factor will not be linear in n, and will not contribute to the free
energy.

Now if we look at the remaining functional integral and consider eval-
uating it perturbatively in a Feynman diagram expansion, we see that the
term quadratic in ha in the effective action functional is proportional to n0

and all vertices are proportional to n to a negative power. It follows then,
that no diagram in the perturbative expansion of this functional integral
will grow with n. We may then write the level-n generating functional as

Zn[J ] = e−nSG[ḡJ ]−nW0[J |ḡJ ]+O(n0), (10.11)

and if we refer back to our general statements from eqs. (10.1) and (10.3)
we conclude that only the stationary-phase solution contributes to the final
result

W[J ] = SG[ḡJ ] +W0[J |ḡJ ]. (10.12)

The central result is then that the CWL generating functional can be
written as

Z[J ] = e−SG[ḡJ ]−W0[J |ḡJ ], (10.13)

where W0[J |g] = − logZ[J |g] is the free energy functional for a conventional
matter QFT on a background metric g, and ḡJ solves the semi-classical
Einstein equation, eq. (10.9).

Despite the fact that the semi-classical Einstein equation appears here,
it does not seem clear whether or not CWL is simply equal to semi-classical
gravity. In semi-classical gravity one has a classical metric gc which satisfies
the same semi-classical differential equation. In CWL though the metric is
not a classical variable, it is a a quantum variable and can ostensibly exist
in a superposition state. The metric in CWL is not equal to the solution of
the semi-classical Einstein equation but its evolution is however determined
entirely by that solution. The situation is unclear though, because there
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does not seem to be a dynamical mechanism for preparing the metric in a
superposition state.

In sections 10.5 and 11.2 when we discuss propagators it will become
clear that CWL is certainly not the standard “in-in” semiclassical gravity,
where the metric is sourced by the expectation value of the stress tensor [88,
89, 91]. Instead we will make clear that it is in the form of a “in-out” semi-
classical gravity—the type discussed by Hartle and Horowitz and Kay [352,
353], where the metric is sourced by a certain matrix element of the stress
tensor. In this case one can obtain a complex metric, and this metric also
requires boundary data in the past and the future. These two facts each
seem to preclude the typical interpretation of the saddle point solution ḡ
as “the” classical metric.29 In-out models for semi-classical gravity were
briefly considered in the literature but were quickly dismissed because they
can produce a complex metric [355]; in CWL theory there is no a priori
issue with a complex metric solution since it is not “the” classical metric.30

10.3.2 CWL as a Large N Theory

The result (10.13) is remarkably simple, and this is essentially a consequence
of the normalizing power αN . We saw in eqs. (10.1) and (10.3) that this
allows us to retain only the connected diagrams at level n which scale lin-
early with n. We keep certain contributions from each level, but only those
contributions which are common to every level. Said differently, the theory
is entirely determined by the physics at the largest level, n = N →∞, where
things simplify.

If we consider this largest level, level N , it is completely obvious that
only diagrams which scale with N will contribute. From counting powers of
n in the diagrammatic expansion we know that the free energy functional
has a 1/N expansion,

ZN [J ] = e−
∑
i=0 N

1−iW(1−i)[J ], (10.14)

and for arbitrarily large N it is obvious thatW(1) completely dominates. In
fact, eq. (10.11) tells us that this can be written as

ZN [J ] = e−NSG[ḡ]−NW0[J |ḡJ ]+O(N0). (10.15)

29In light of this strange semi-classical behaviour, we will still refer to CWL as a quantum
gravity theory.

30If issues eventually arise because of the complex metric, then it is likely that the CWL
generating functional would need to be redefined using an in-in framework. In that case
one expects to recover standard semiclassical gravity.
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If we strip off the factor of N we then exactly recover the result (10.13) of
the previous section.

We then see that CWL theory, as defined by eq. (9.25), is completely
equal to the theory with just one level containing an infinite number of
replicas,

Z[J ] = lim
N→∞

[ ∫
Dg e−NSG[g]

N∏
k=1

∫
Dφk e−S[φk,g]+J

kφk

]1/N

. (10.16)

This result is just conventional quantum gravity with N matter fields with
N taken arbitrarily large while keeping GN fixed. This is precisely how one
sets up a 1/N expansion in field theory, and we see that the CWL generating
function is precisely equal to the leading order result of this expansion.

10.3.3 Exact calculations of correlation functions

Let us now compute some exact correlation functions. We’ll only concern
ourselves with the connected part of correlation functions, so we can func-
tionally differentiate the free-energy functional W[J ] rather than the gener-
ating functional Z[J ].

The free energy functional is a functional of the source J , but depends
on J both explicitly and implicitly through the metric solution ḡJ . Thus,
functional derivatives are to be expanded using the chain rule. We illustrate
this here using the 1-point function as an example,

〈φα〉CWL =
δ

δJα
W[J ]

∣∣∣∣
J=0

=

(
∂

∂Jα
+
δḡaJ
δJα

∂

∂ga

)(
SG[g] +W0[J |g]

)∣∣∣∣
g=ḡJ , J=0

. (10.17)

Upon setting g = ḡJ and then J = 0, we effectively set ga = ηa (the
Minkowski metric). If we were to compute higher correlation functions, we
would have many functional derivatives which would have to commute past
the δḡa/δJα term arising from the chain rule. This leads to a proliferation of
terms which we will relegate to an appendix and here only discuss qualitative
features of the calculation.

In eq. (10.17) above we have a few types of terms which arise that we
should discuss before claiming the results more general correlation functions:

Firstly the direct derivative with respect to J , this will act only on the
matter free-energy term and upon setting the metric to flat g = η it generates
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a term 〈φ〉 which is no different than that from standard flat space quantum
field theory.

Secondly there is a factor δḡ/δJ . One does not need to solve the full
Einstein equation to compute ḡJ since one is only interested in its derivative
evaluated at J = 0. Said differently, if we had the full solution ḡJ and ex-
panded it perturbatively in J , we would only be interested in the coefficient
of the linear term, ie. the solution to the linearized Einstein equation.

Thirdly, in eq. (10.17) we are taking the functional derivative of SG[g] +
W0[J |g] with respect to g and then setting g = ḡJ . Recall though that this
is just the semi-classical equation of motion (eq. (10.7)) and ḡJ is precisely
its solution. Thus the term with a functional derivative with respect to g
will vanish.

All together, for the CWL one-point function we find

〈φα〉CWL =
∂

∂Jα
W0[J |g]

)∣∣∣∣
g=ḡJ , J=0

= 〈φα〉, (10.18)

There are no CWL corrections to the 1-point function, and this is a non-
perturbative statement.

When computing higher order correlation functions one introduces higher-
order vertices such as the three-graviton vertex, the “seagull” vertex, etc.
The coefficients of these terms will involve factors such as δḡ/δJ , δ2ḡ/δJ2

etc., and these require knowledge of the solution to the Einstein equation.
In appendix A we perform explicit computations for the exact 1, 2, 3, and

4-point connected correlation functions for a theory with φ→ −φ symmetry.
The results are

〈φαφβ〉CWL =
∂2

∂Jα∂Jβ
W0[J |η]

∣∣∣∣
J=0

= 〈φαφβ〉, (10.19)

〈φαφβφγ〉CWL =
∂3

∂Jα∂Jβ∂Jγ
W0[J |η]

∣∣∣∣
J=0

= 0. (10.20)

and

〈φαφβφγφδ〉CWL =
δ4

δJαδJβδJγδJδ
W0[J |η]

∣∣∣∣
J=0

+ 〈φαφβSa〉
(
SG,ab + 〈SaSb〉

)−1

〈φγφδSb〉. (10.21)
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Figure 10.6: Diagram representation of the exact scalar 4-pt function in
CWL theory, written in terms of the effective graviton propagator (thickened
red line).

If we specialize to the case where the matter is non-interacting, except
for gravitational interactions, then the stress tensor is quadratic in the fields,

Sa =
1

2
τ̂αβa φαφβ. (10.22)

Defining the matter Green’s function as 〈φαφβ〉 = Gαβ, we can write eq. (10.21)
as

〈φαφβφγφδ〉CWL = GασGβρτ̂
σρ
a Dabτ̂ληb GγλGδη

+GασGγρτ̂
σρ
a Dabτ̂ληb GβλGδη

+GασGδρτ̂
σρ
a Dabτ̂ληb GγλGβη. (10.23)

This is just the sum of the three crossings of the tree diagram in fig. 10.2
from conventional QFT, but with a modified graviton propagator (see fig. 10.6)

Dab =
(
SG,ab −Πab

)−1
, (10.24)

where the vacuum polarization is given by the matter bubble

Πab =
1

2
τ̂αβa τ̂γδb GαδGβγ . (10.25)
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Figure 10.7: A diagrammatic representation of the effective graviton propa-
gator (10.24) in terms of the “bare” graviton propagator and the polarization
bubble Π.

Figure 10.8: The Feynman diagram corresponding to the expression (10.25)
for Π.

We see that the 1, 2, and 3 point correlation functions receive no correc-
tions in CWL theory,and that the CWL correction to the 4-point correlation
function is exactly equal to a single graviton exchange diagram with an ef-
fective graviton propagator, a small subset of the contributions which one
finds in conventional quantum gravity. These are non-perturbative state-
ments about the theory, including all possible diagrams.

10.3.4 Renormalizability

Before we move on, let us just comment on the effective graviton propagator
(10.24). It has been long known that the divergences from this matter loop
diagram cannot be renormalized by counterterms in the Einstein-Hilbert
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action, and that one must introduce additional higher curvature terms [44].
For completeness we’ll review the heuristic argument for this.

If we fix harmonic gauge, then in momentum space we can write eq. (10.24),

Dµνσρ(q) =

(
`−2
P Pµνσρq2 −Πµνσρ(q)

)−1

, (10.26)

where

Pµνσρ ≡ 1

2

(
ηµσηνρ + ηνσηµρ − ηµνησρ

)
. (10.27)

The first term in eq. (10.26) highlights both that SG ∝ `−2
P and that the

term quadratic in metric fluctuations is second order in derivatives, hence
the q2.

We can evaluate eq. (10.25) for a massless scalar matter field. We’ll
retain only the divergent parts to make our point. The 1-loop integral is

Πµνσρ(q) =
1

2

∫
d4k

(2π)4

τµν(k, q + k)τσρ(q + k, k)

k2(k + q)2
, (10.28)

where the vertex is

τµν(p, k) = pµkν + kµpν − ηµνp · k. (10.29)

Evaluating this 1-loop integral using dimensional regularization, we obtain
the result for the divergent parts

Πµνσρ(q) =
1

16π2
Bµνσρ
αβγδ q

αqβqγqδ
(

2

4− d
− ln

(
q2

µ2

))
, (10.30)

where µ is an arbitrary renormalization scale, and where B is a tensor con-
structed from sums of products of the Minkowski metric with O(1) coeffi-
cients. The specific form of B is irrelevant for our heuristic argument.

The important feature of this result is that the divergence in Πµνσρ(q)
goes as q4. Since there is no term in SG involving four derivatives of the
metric, the 1-loop divergence cannot be absorbed into a renormalized cou-
pling in SG. One must then include higher-curvature terms in the action,
R2 and RµνR

µν , in order to provide the appropriate counter terms.31

Since there are no higher-loop contributions to Πab, there is no need at
this point to include cubic curvature scalars to cancel divergences propor-
tional to q6. It then seems possible that the inclusion of quadratic curvature
invariants in the action renders CWL renormalizable.

31One need not consider RµνσρR
µνσρ since the Gauss-Bonnet identity ensures that it

can be expressed in terms of the other two scalars.
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If we look back at the derivation of eqs. (10.24) and (10.25) in ap-
pendix A, we can see that including higher curvature terms in the action
would not change Πab, only SG, ab, and thus would not seem to introduce
any new divergences. All of this needs to be done rigorously, using eg. the
background field method for example to maintain covariance throughout the
calculation. We have not yet done this calculation, but it seems promising.

Concretely, we would like to determine whether or not the following
generating functional generates finite correlation functions (after suitable
redefinitions of the coupling constants etc.)

Q[J ] =

lim
N→∞

[ ∫
Dg e

−N
∫ √

g
(

1

`2
P

R+αR2+βRµνRµν
)

N∏
k=1

∫
Dφk e−

∫ √
g 1

2
gµν∂µφk∂νφk+Jkφk

]1/N

(10.31)

N.B.: We note that after this chapter was originally written we discov-
ered the papers of Tomboulis [350, 351], and of Stelle [356], in which they
discussed the renormalizability of gravity with quadratic curvature invari-
ants. Stelle proved the renormalizability of quadratic gravity with general
matter fields using standard loop expansion methods; Tomboulis proved this
in the context of a 1/N expansion. Tomboulis verifies our suspicion above,
that the theory defined by eq. (10.31) is renormalizable and that the UV
behaviour is dominated by the asymptotically free coupling of the quadratic
terms.

It seems that quadratic gravity has been largely dismissed as an unphys-
ical quantum gravity theory because the higher derivative terms imply of
the existence of massive negative norm ‘ghost’ states, which are claimed to
cause issues with unitarity [27, 357]. In the classical theory this manifests as
Ostragradsky instabilities/acausalities in the theory. Lee and Wick actually
considered precisely this type of problem well before quadratic gravity was
proven renormalizable [358, 359]; their main point was that there is no issue
with unitarity because these negative norm states are unstable and exist
only for very short times. One loses the typical notion of causality at small
length scales, but because this violation is deep within a quantum process
and it cannot lead to deterministic inconsistencies at the classical level.

Recently quite a bit of attention has been given to reviving the ideas of
Lee and Wick [eg. 360, 361], in particular by Donoghue and Menezes [362–
364]. They further highlight that the classical instabilities/acausalities in
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quadratic gravity are utterly irrelevant because they occur at the Planck
scale, where classical gravity is inapplicable and a quantum gravity descrip-
tion is necessary. One should then focus only on whether quadratic gravity is
a sensible quantum field theory. Tomboulis actually explicitly demonstrated
in the large−N limit that quadratic gravity was unitary [350, 351]. Further-
more, arguments of Donoghue and Menezes imply that quadratic gravity is
unitary, even away from the large-N limit. It then seems quite possible to
us that quadratic gravity could actually be taken seriously as a quantum
theory of gravity.

10.4 Where are the non-linearities?

The result for the CWL generating functional is remarkably simple to state
but actually quite confusing. To evaluate the generating functional one
must solve the full non-linear semi-classical Einstein equation to find the
metric ḡJ , so it seems like CWL is a non-perturbative quantum gravity
theory. Additionally though, we’ve seen that only diagrams without graviton
loops will contribute to free-energy functional, and as a consequence the
connected 4-point function is described entirely by a diagram containing a
single renormalized graviton exchange.

We thus have an apparent inconsistency. Single graviton exchange di-
agrams do not fully describe classical non-linearities; the tree-level 2 → 2
scattering amplitude only contains information on linearized gravity and not
full GR. It is well established that the further non-linear classical effects are
contained in the non-analytic parts of loop diagrams (see [52, 354] and refs.
therein).

As an aside, we note that the non-analytic parts of loop diagrams in
quantum gravity reveal genuine non-linear features of quantum gravity which
are not just renormalized away by local counter terms. These contributions
are easily separated into quantum and classical non-linear parts. In the early
70’s it was recognized that one could use this to compute O(G2) corrections
for the two-body problem in classical GR [365, 366]. This idea gained
considerable popularity in the 90’s, when it was used to compute quan-
tum corrections to the Newtonian potential and to black hole metrics [see
eg. 52, 65, 67, 367–373]. Recently this idea has been central to a whole
industry which uses using cutting edge techniques coming from S-matrix
bootstrap/unitarity methods for computing quantum gravity scattering am-
plitudes, and uses them to compute state-of-the-art post-Minkowskian pre-
dictions in classical GR. [see eg. 374–387]
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Returning to the question at hand here, since CWL theory seems to
only have tree diagrams, we’re lead to ask whether it is actually a quantum
theory of full non-linear GR, or if it ultimately only describes linearized
gravitational interactions.

To make sense of this, let us think about how we compute correlation
functions from eq. (10.13). The details of the calculation can be found in
appendix A, but for now we only need to focus on the part of the calculation
involving functional derivatives with respect to ḡJ .

Since we set g = ḡJ and J = 0 after taking functional derivatives we
never need to explicitly solve the Einstein equation for ḡJ , instead we’ll only
ever need to know a finite number of derivatives of ḡJ with respect to J .
This implies that we can compute a CWL n-pt correlation function exactly
by only computing ḡJ perturbatively in J up to a finite order determined by
n. A remarkable conclusion from this is that when computing correlation
functions in CWL perturbatively, the perturbative expansion will effectively
truncate. For correlation functions with few operator insertions the pertur-
bation series will truncate quite quickly, and for correlation functions with
many operator insertions the perturbation series will truncate at a higher
order. We then conclude that CWL is indeed a quantum theory of full non-
linear gravity, but its non-linearities will only reveal themselves when the
theory is probed by a large number of local operator insertions.

Supposing we were interested in the dynamics of a many particle state,
perhaps a composite object formed from m particles for some number m�
1. In principle we could study its evolution by looking at the 2m-point
function in the appropriate channel. In doing so we would find gravitational
non-linearities up to the 2mth order in the graviton expansion. We then see
that CWL treats objects differently depending on their relative numbers of
constituents. Systems containing more constituents can more deeply probe
the non-linear nature of gravity. For objects formed from a macroscopic
number of constituents CWL has interactions very closely approximating
full GR, but not exactly! It is fascinating to think about what implications
this might have for the resolution of gravitational singularities.

10.5 Propagators

Let’s now transition to studying propagators, ie. transition amplitudes be-
tween definite configurations. In conventional quantum field theory there is
an equivalence between the 2-point correlator of fields and the one particle
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propagator. Indeed, for free scalar field theory we have that

〈0|T {φ(x1)φ(x2)}|0〉 =

∫
d4p

(2π)4
eip(x1−x2) −i

p2 +m2 − iε
, (10.32)

and also that∫
d4p

(2π)4
eip(x1−x2) −i

p2 +m2 − iε
=

∫ ∞
0

ds

∫ xµ2

xµ1

Dx e
−i
2

∫ s
0 dτ
(
ẋµẋµ+m2−iε

)
,

(10.33)

which is precisely the transition amplitude for a relativistic scalar particle.
After incorporating CWL corrections we will find that this can no longer
be true. We’ve already argued that the CWL correction to the 2pt function
vanishes because any such correction would be a loop diagram, however
we will shown here that the CWL correction to the propagator is actually
non-trivial.

We’ll start with our prescription for the CWL propagator, eq. (9.36),
which we write again here for reference,

K(x2, x1) = lim
N→∞

[ N∏
n=1

∫
Dg(n) einSG[g(n)]

n∏
k=1

∫ x2

x1

Dq(n)
k eiS[q

(n)
k ,g(n)]

]αN
.

(10.34)
Before moving on to calculations, we should take a moment to address tech-
nical points regarding this propagator. Firstly, we’ve been cavalier with the
functional integration measure. We acknowledge the subtleties in its defini-
tion, however we will continue to write it only symbolically. Secondly, in the
above we’ve omitted the boundary data for the metric field. This omission
is a subtle point which we’ll expand on below.

Typically in flat spacetime quantum field theory one can prepare a vac-
uum state at a time t = 0 by evolving an arbitrary state over an infinite
amount of time T with a small rotation of the time contour into the imagi-
nary direction,

|0〉 ∝ lim
ε→0

lim
T→∞

e−iĤT (1−iε)|ψ〉. (10.35)

Since the state |Ψ〉 is arbitrary, one could equally well describe the vacuum
by evolving from a state which is a superposition of all states |ψ〉 in some
basis,

|0〉 ∝ lim
ε→0

lim
T→∞

∫
dψ e−iĤT (1−iε)|ψ〉. (10.36)

Thus when computing vacuum expectation values of products of local op-
erators, or vacuum persistence amplitudes, one often simply writes them as
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operator insertions in a path-integral which extends over all of spacetime
with no fixed initial/final data, eg. in scalar field theory

〈0|T {φ̂(x1)φ̂(x2)}|0〉 ∝
∫
Dφ ei

∫
d4xL(φ,∂µφ)φ(x1)φ(x2), (10.37)

with an appropriate iε prescription in the Lagrangian density.
In quantum gravity one may try to do the same trick for the metric field,

but the situation is far less clear. Firstly, because of the diffeomorphism in-
variance of General Relativity time evolution is not altogether distinct from
an unphysical coordinate transformation—the Hamiltonian is a constraint,
and thus Ĥ|phys〉 = 0 for all physical states |phys〉 [210, 245]. Without an
obvious notion of energy, there is clearly no obvious notion of ‘ground state’
or ‘vacuum state’.

One can get around this issue by breaking the diffeomorphism invariance
in certain ways, by eg. imposing boundary conditions such as the spacetime
being asymptotically flat or asymptotically Anti-de Sitter32. In each of these
cases the asymptotic symmetry group of the spacetimes will include a time-
like Killing vector which can be used to define the energy. One sees this
explicitly by observing that Hamiltonian in gravity is the sum of ‘bulk’ and
‘boundary’ terms, and only the bulk term is required to vanish while the
boundary term contains the physical information [390, 392]. Ostensibly this
construction precludes any definition of energy/ground state for spacetimes
with compact spatial slices, or for general spacetimes without these simple
asymptotic forms. There is a very popular proposal for the ‘natural’ ground
states in quantum gravity based on the Euclidean time rotation, ie. the
Hartle-Hawking wave function of the universe [204], however recently this
has received quite pointed criticism by Turok and collaborators [see eg. 393,
394], which bring doubt upon its validity.

Even for spacetimes with ‘nice’ asymptotics, one still must contend with
fact that the Hamiltonian is not obviously bounded from below. There are
classical positive energy theorems, such as the standard theorem proved
by Schoen and Yau and by Witten [395–397], or the extension by Gib-
bons, Hawking, Horowitz, and Perry [398]. There is also the classical proof
of the nonlinear stability of flat spacetime by Christodoulou and Klainer-
man [399]. According to Smolin though, it is quite unclear if the energy
positivity and/or vacuum stability continue to hold in the non-perturbative
quantum theory of gravitation [400].

32For just a few influential papers in this large literature, see some of the classic “ADM”
papers [388, 389] and other influential works by Regge and Teitelboim and Henneaux and
Teitelboim [390, 391].
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10.5. Propagators

It suffices to say that it is quite unclear what one means when they omit
the boundary data for the metric path-integral as we’ve done in eq. (10.34).
One is seemingly left with two options: i. prescribe boundary data (induced
three-metrics on the bounding space-like hypersurfaces) and deal with the
challenge of finding physically sensible data to prescribe, or ii. accept that
the calculation is not truly background-independent and define the ground
state perturbatively about a vacuum solution to Einstein’s equations—hand-
waving past possible risks with energy boundedness/vacuum stability. Here
and in the remaining parts of the thesis, we accept the risks and choose
option ii. The upshot of this discussion is that when field equations for
the gravitational field arise, we will be imposing past-boundary conditions
which correspond to, in the absence of matter, flat spacetime.

With this technical detour out of the way, we can proceed to study
the propagator path integral in a similar manner to how we studied the
generating functional. Let us first rewrite the standard propagator on a
background g as

K0(x2, x1|g) ≡ eiψ0(x2,x1|g) =

∫ x2

x1

Dq eiS[q|g], (10.38)

and also write the full CWL propagator as

K(x2, x1) ≡ eiΨ(x2,x1). (10.39)

We then have the following expression for Ψ,

Ψ(x2, x1) = −i lim
N→∞

[
αN

N∑
n=1

logKn(x2, x1)

]
, (10.40)

where the level-n propagator is

Kn(x2, x1) =

∫
Dg einSG[g]+inψ0(x2,x1|g). (10.41)

To simplify this expression we can use essentially the same station-
ary phase arguments from the previous section that led us from eq. (10.5)
to eq. (10.11). As a reminder, since αN goes like N−2, we need the log of
Kn to return a quantity linear in n so that

∑N
n logKn will yield a factor

proportional to
∑N

n=1 n = α−1
N ∼ N2. Thus when we evaluate the path

integral for the level-n propagator eq. (10.41) we need only retain the part
scaling as eO(n). The arguments of the previous section demonstrate that
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10.5. Propagators

this contribution to the path integral is precisely the stationary-phase part,
ie.

Kn(x2, x1) = einSG[ḡ21]+inψ0(x2,x1|ḡ21)+O(n0), (10.42)

where the stationary-phase metric ḡ21 satisfies the differential equation

δ

δg

(
SG[g] + ψ0(x2, x1|g)

)∣∣∣∣
g=ḡ21

= 0. (10.43)

Note that the metric solution here depends on x1 and x2, and thus on which
amplitude is being computed.

Note that in contrast with W0[J = 0|g] in eq. (10.7), the function
ψ0(x2, x1|g) is not real valued in general. In some cases we must then solve
for a complex metric! We have not yet fully investigated the consequences of
this, but one possibility is that it could lead to a suppression of amplitudes
for highly quantum states of states with significant gravitational interaction.
In the following chapter we will study the propagator for systems with weak
gravity, and in that context we can discuss when one expects the imaginary
part of δgψ0 to be significant.

If we substitute this expression into eq. (10.40) and take the limitN →∞
we obtain the following result for the CWL propagator,

K(x2, x1) = eiSG[ḡ21]+iψ0(x2,x1|ḡ21), (10.44)

up to an overall normalization.
We can understand this result by returning to the path integral definition

of the propagator. A quick calculation reveals that the source here resembles
a conditional matrix element of the stress tensor

δψ0(x2, x1|g)

δgµν(x)
= −1

2

∫ x2

x1
Dq eiS[q|g]Tµν(x)∫ x2

x1
Dq eiS[q|g] . (10.45)

If we then define the notation

〈〈T̂µν(x)〉〉21 ≡
∫ x2

x1
Dq eiS[q|g]Tµν(x)∫ x2

x1
Dq eiS[q|g] , (10.46)

we see that the CWL propagator is given by eq. (10.44) where the stationary-
phase metric ḡ21 satisfies a type of semi-classical Einstein equation

Gµν(ḡ21) = 8πGN 〈〈T̂µν〉〉21. (10.47)
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10.5. Propagators

We emphasize that (10.45) is a transition matrix element, not an expectation
value. This is thus an “in-out” type semiclassical Einstein equation, not an
“in-in” type [353].

From this we can conclude that gravitational interactions involved when
computing the CWL propagator are those of full non-linear general rela-
tivity, albeit with a semi-classical matter source. We can now address the
concern raised earlier, that is, how do we reconcile this result with the fact
that there are no loop diagrams in CWL theory since we know that it is
the non-analytic contributions from loop diagrams that generate classical
non-linearities.

The resolution relies on the fact that there are replicas in CWL. When
computing a propagator all replicas are evolving between the same end-
points. In fig. 10.9 we sketch some diagrams describing the two-particle
propagator in CWL. Each of the particles (A and B) has many replicas.
For a given particle, each of its replicas will have the same dynamics and
thus the many replicas appear to collapse down to a single matter object.
The interactions occur between particle A and a replicas of particle B, but
because all of the replicas approximately follow the same path, tree dia-
grams involving many replicas can mimic certain “classical” contributions
from conventional loop diagrams. One can substantiate this properly using
the Feynman tree theorem to decompose conventional loop diagrams into
sums of tree diagrams, but we will not work through the details here as our
result (eqs. (10.44) and (10.47)) already demonstrates the point.

Since propagators involve fully non-linear gravitational interactions and
correlation functions do not, it is not true in CWL that 2-point correla-
tion functions are equal to particle propagators. What then is the correct
mathematical object to compute to describe the dynamics of particles? To
this question we unfortunately do not have a definite answer. It seems that
there is an issue in CWL with either of: i) our technique for computing
correlators, ii) our interpretation of correlators, or iii) our definition of the
propagator. We will need to spend more effort to understand this important
point, but this is a work in progress.

One idea we have here pertains to objects composed from many con-
stituents, such as a macroscopic mass. In this case, even if the propagator
prescription is flawed and one should only look at correlators, then we would
need to look at a 2m-point correlation function to understand the dynamics
of an object with m constituents. If m is a very large number, then we know
that for all practical purposes we will involve full non-linear GR interactions.
We then expect that the effective CWL description for the center of mass
propagation of this macroscopic system should then be just as well described
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i) ii)

Figure 10.9: i) Some diagrams contributing to the two-particle propagator
in CWL at level 3. Note that they are only tree diagrams, as CWL theory
requires. ii) If there is a single dominant classical trajectory, all of the
replicas follow roughly the same path and their lines appear to coincide.
The resulting “collapsed replica” diagrams look like loop diagrams from
field theory.

by the 1-particle propagator. We will focus more attention on precisely this
idea in the upcoming chapter.

10.6 Conclusions

In this chapter we have studied CWL theory beyond the linearized limit both
by looking at the combinatorics of higher-order Feynman diagrams and also
by functional methods. We demonstrated that when computing field theory
correlation functions perturbatively in CWL only tree diagrams contribute.
This was a consequence of the intrinsic large-N limit in CWL coming from
the infinite number of replicas. To see higher non-linear gravitational effects
one needs to look at n-point correlation functions with sufficiently large n
that higher-order vertices can arise without introducing loops.

We later provided a prescription for computing the exact CWL pre-
dictions for n-point correlation functions and in the appendix we do these
computations explicitly up to n = 4. From the exact results for the 4-pt
function we were able to see how CWL modifies the gravitational interaction
between masses—the result being that the graviton propagator is modified
by a polarization diagram which can be computed exactly. This led to a dis-
cussion of the possibility that CWL theory can be made renormalizable by
including just quadratic curvature invariants into the gravitational action.
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10.6. Conclusions

One corollary of our exact results is that correlation functions with
many operator insertions are able to more deeply probe gravitational non-
linearities, and as a consequence large composite systems interact gravita-
tionally in a manner more resembling full GR than elementary particles
do. As a consequence, large macroscopic objects (built from many operator
insertions) will be almost exactly described by GR but the gravitational in-
teractions involved will not involve arbitrarily high-order graviton vertices.
One may then speculate that this could have implications for resolving space-
time singularities. We will not speculate on these points further though until
proper calculations have been done.

Finally, we looked at propagators within CWL theory. For these we
showed that a similar semi-classical mechanism is at play, but the full non-
linearity of the gravitational interaction is involved. Despite the fact that
the theory does not allow for graviton loop diagrams (which we know contain
classical non-linearities), the replicas in CWL can effectively coincide on one
trajectory and tree diagrams will mimick loop diagrams—thereby generating
the necessary classical non-linearities.
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Chapter 11

Applications of the
Correlated Worldline theory

In this chapter we will take all of the formal developments over the last few
chapters and try to perform some concrete calculations. The ultimate goal
here is to study physical systems which are experimentally relevant, and to
try compute observable signatures of the CWL theory.

This project in ongoing, as we’ve only recently gotten to a stage in the
formal development of CWL theory where we have an idea how to perform
such calculations. As we’ve discussed previously there are a variety of exper-
iments which may be sensitive to gravitationally induced departures from
conventional QM, and we are only just starting to address these physical
situations in the CWL theory.

Given the open questions remaining on the formal development side of
things, there is a sense in which the upcoming calculations are premature.
However we still believe it is important to proceed forward with physical
calculations. If anything, by addressing concrete problems we may simply
gain insight into fundamental flaws of the theory, and this too would be a
worthwhile effort.

We start by considering the most simple system, a particle in a har-
monic well. We’ll look at the CWL predictions for its 2-point correlation
function and also for the evolution of a coherent state. This study then
covers both the replica symmetric superposition and replica identical states
of the oscillator.

We then discuss the propagator for a non-relativistic particle in a general
potential. We study two cases: when the particle has one dominant classical
trajectory, and when there are two dominant classical trajectories (as in
matter-wave interferometry experiments). In the former case we find sensible
results, and for the later we discuss why the result is confusing. These results
appear to have implications for the BMV gravity mediated entanglement
experiment which we discussed at length for conventional quantum gravity
in chapter 5.

Finally, we move beyond the idealized discussion of a point particle and

230



11.1. Quantum Simple Harmonic Oscillator

consider an extended mass consisting of many bound particles. In this case
we are able to generate estimates of the relevant time scales for experimental
tests of CWL theory.

11.1 Quantum Simple Harmonic Oscillator

We’ll consider an idealized situation here, where a massive particle has been
trapped in an anisotropic potential such that it is effectively described by
a one-dimensional oscillator with frequency ω. This effective theory has a
high-energy cutoff scale determined by the energy levels of excitations in
the perpendicular directions, ie. ω⊥. We will not explicitly write this cutoff
dependence, but formulas which appear UV divergent should be understood
as having this implicit regulator.

11.1.1 Ground state two-point function

We’ll start our discussion here from the general perturbative result for the
two-point function (8.54) adapted to the oscillator,

G(t1, t2) = 〈x1x2〉+ `2PD
ab

[
〈Sax1〉〈Sbx2〉+ 〈Sa〉〈Sbx1x2〉 − 〈Sa〉〈Sb〉〈x1x2〉

]
.

(11.1)

Here x1,2 = x(t1,2), and we are considering the time-ordered correlation
function.

We remind the reader that the DeWitt indices a, b encompass the space-
time indices of the metric tensor and also a spacetime coordinate. The
source is a compact notation for the stress tensor

Sa =
δS[x, gµν ]

δgµν(x)

∣∣∣∣
gµν=ηµν

= −1

2
Tµν(x). (11.2)

For the oscillator only the mass-energy density is significant gravita-
tionally, and in the non-relativistic limit the graviton Green’s function Dab

simplifies to describe the Newtonian interaction. We then have

G(t1, t2)− 〈x1x2〉 =

= −
`2P
8π

∫
dt
d3yd3z

|y − z|

[
〈S00(y, t)x1〉〈S00(z, t)x2〉+ 〈S00(y, t)〉〈S00(z, t)x1x2〉

− 〈S00(y, t)〉〈S00(z, t)〉〈x1x2〉
]
, (11.3)
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11.1. Quantum Simple Harmonic Oscillator

where the mass-energy density is just S00(y, t) = m
2 δ

3(x̂(t)−y) = m
2 |y(t)〉〈y(t)|.

The individual terms can be computed in terms of the oscillator’s energy
eigenfunctions ψn(x):

〈S00(z, t)〉 =
m

2
|ψ0(z)|2, (11.4)

〈S00(z, t)x(t2)〉 =
m

2

√
mωψ0(z)ψ1(z) 〈x(t)x(t2)〉, (11.5)

and∫
dt 〈S00(z, t)x(t1)x(t2)〉

= 〈x(t)x(t1)〉m
2

[
|ψ0(z)|2

(∫
dt

)
+

√
2

iω
ψ2(z)ψ0(z) +

i

ω
|ψ1(z)|2

]
+m2ω|ψ1(z)|2

∫
dt 〈x(t)x(t1)〉〈x(t)x(t2)〉. (11.6)

All together we find that the two point function in frequency space has
the form

G(Ω) = G0(Ω) + `2PAG0(Ω) + `2PBG0(Ω)G0(Ω)

=
1 + `2PA

G−1
0 (Ω)− `2PB

, (11.7)

where the contribution to the “field strength renormalization” is

A =
−im2

32πω

∫
dydz

|y − z|
|ψ0(z)|2

(
|ψ1(y)|2 −

√
2ψ2(y)ψ0(y)

)
=
−im2

64πω

1√
2πmω

[
3

(∫
dr

|r|
e−

1
2
r2

)
− 1

]
, (11.8)

and the contribution to the “self energy” is

B =
−m2

32π
(2mω)

∫
dydz

|y − z|

(
|ψ0(y)|2|ψ1(z)|2 + ψ0(y)ψ1(y)ψ0(z)ψ1(z)

)
= −m

2(mω)
3
2

16π2

√
π

2

(∫
dr

|r|
e−

1
2
r2

)
. (11.9)

Both of these quantities have logarithmic UV divergences, which are regu-
lated by the cut-off scale of this effective theory, ω⊥.
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11.1. Quantum Simple Harmonic Oscillator

The factor A doesn’t contain much physical information and should
be effectively eliminated by a redefinition (renormalization) of the “field
strength” x, whereas the factor B has a very simple physical interpretation.

The term `2PB generates a shift in the pole of the two-point function,
and we can compute the location of the new pole, G−1(Ω∗) = 0. The pole is
shifted from the bare frequency ω to a new frequency Ω∗ = ω+ ∆ω, where

∆ω = `2P
B

2mω
= −1

~
1

2

GNm
2

∆x0

√
1

2π

(∫
dr

|r|
e−

1
2
r2

)
. (11.10)

Here we’ve restored ~ where appropriate and introduced the width of the

simple harmonic oscillator ground state, ∆x0 =
( ~
mω

) 1
2 . The dimensional

factor is exactly what one would guess, ie. the gravitational energy of two
particles of mass m at a distance ∆x0 divided by ~ to convert the energy
into a frequency. Indeed if we compute the gravitational energy of a mass
density ρ(y),

ESG = −1

2
GN

∫
dydz

ρ(y)ρ(z)

|y − z|
, (11.11)

and if we substitute the expectation value for the mass density of an oscil-
lator in its ground state ρ(y) = m〈δ(x̂− y)〉 = m|ψ0(y)|, then we obtain the
gravitational energy of a “self-gravitating” wave-function

ESG = −1

2
GNm

2

∫
dydz

|y − z|
|ψ0(y)|2|ψ0(z)|2

= −1

2

GNm
2

∆x0

√
1

2π

(∫
dr

|r|
e−

1
2
r2

)
. (11.12)

We find that ~∆ω is precisely ESG.
This shift is in principle unobservable: if we were to return to the action

and write the frequency in terms of the physical value and a counter-term,
ω = ωphys + δω, then we would fix δω to cancel off the gravitational self-
energy part. The oscillator two-point function would then have a pole at
the physical frequency ωphys and we would see no CWL correction to this
function.

Although this is unobservable, it is interesting to see the CWL mechanics
at play. There is a sense in which the wave-function is self-gravitating as it
evolves, however the width of the wavefunction seems to be unchanging; if
the wavefunction were narrowing with time we would see signatures of the
instability of the ground state in the pole of this two-point function. We
would likely need to go to higher orders in perturbation theory to see such
an effect though, if it is even there.
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11.1.2 1-pt function in a coherent state

To further probe the CWL oscillator we can compute correlation functions
in states other than the ground state. We’ve actually discussed this already
in section 9.2, where sources are used in a Schwinger-Keldysh closed-time-
path (CTP) integral to prepare coherent states. The generating functional
for this scenario is given by eq. (9.18).

In CWL the situation is the same except nominally one must include a
trace over the final state of the gravitational field. As discussed in chap-
ter 3 such a procedure is precisely how one computes an influence functional
to describe the decoherence of the matter due to information leakage to
gravitons.

For a non-relativistic matter source which evolves for a finite amount
of time, gravitational radiation is completely negligible. In conventional
quantum gravity one can then completely neglect the influence functional
for such situations. Intuitively we should also be able to do this in CWL
theory, and this is what we will do below.

To lowest order in gravitational coupling the CWL CTP generating func-
tional has the same form as the CWL vacuum generating functional (9.29)
except the expectation values in WWLC are generalized from vacuum ex-
pectation values to CTP expectation values. The upshot of this is that we
can compute CWL correlation functions in more general states without the
machinery looking very different.

An interesting observable to check is the one-point function (ie. position
expectation value) in a coherent state. In conventional QM one has the
intuition that coherent states are the most classical type of states. They are
minimal uncertainty states and their one-point functions oscillate exactly
as classical oscillators. They are also classical states in a technical sense,
because their Wigner functions are non-negative [401]. We’d like to see this
“classical” property of coherent states preserved in the CWL theory because
we live in a world where springs behave normally at macroscopic scales.

We’ll consider an oscillator which has been subject to a static force for a
sufficiently long time that it is in a displaced ground state at the location x̃0.
At time t = 0 we remove the force instantaneously, performing a rudimentary
“quantum quench” on the system. We do so by including a classical source
j(t) = θ(−t)j0, j0 = x̃0/(mω

2), and this prepares a coherent state ||x[j]〉〉 =
||x̃0〉〉 at time t = 0.

Computing

G(t)x̃0 =
δ

δJ(t)
logZ[J + j]

∣∣∣∣
J=0

(11.13)
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we then get

G(t)x̃0 = 〈x(t)〉j + `2PG
ab〈Sa〉j

[
〈Sbx(t)〉j − 〈Sb〉j〈x(t)〉j

]
. (11.14)

Here we use the subscript j on the angled brackets to denote the expectation
value in the state ||x̃0〉〉. The conventional contribution is just 〈x(t)〉j =
x̃0 cos(ωt). The CWL contribution can be computed and the result is

∆G(t)x̃0 ≡ G(t)x̃0 − 〈x(t)〉j

=
i`2Pm

2

64πω

∫
dydz

|y − z|
|ψ0(y)|2ψ0(z)

[
ψ0(z)x̃0 cos(ωt) + ψ1(z)

]
.

(11.15)

Both terms are UV divergent, but if we regulate the divergence we see that
the last term vanishes by symmetry,∫

dydz

|y − z|
|ψ0(y)|2ψ0(z)ψ1(z) ∝

∫
dydz

|y − z|
e−y

2−z2
(y + z)

=

∫ ∞
ε

dr
e−

r2

2

|r|

(∫ ∞
−∞

dR e−2R2
R

)
= 0. (11.16)

The only remaining term involves only vacuum wavefunctions,

∆G(t)x̃0 =
i`2Pm

2

64πω

(∫
dydz

|y − z|
|ψ0(y)|2|ψ0(z)|2

)
x̃0 cos(ωt). (11.17)

This is also UV divergent, but it oscillates as cos(ωt).
If we return to the Lagrangian and write j0 = j0(1 + δj0) where δj0 is a

counter term for the coupling to the force, then the coherent state one-point
function has the form

G(t)x̃0 =

[
x̃0 +

δj0 x̃0

mω2
+
i`2Pm

2

64πω

(∫
dydz

|y − z|
|ψ0(y)|2|ψ0(z)|2

)
x̃0

]
cos(ωt).

(11.18)
We can clearly choose the counter term to cancel the UV divergence and we
arrive at the result

G(t)x̃0 = x̃0 cos(ωt). (11.19)

Thus to first lowest order in perturbation theory CWL predicts that oscil-
lators in coherent states will still oscillate as classical oscillators.
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We’ve seen that simple probes of a quantum harmonic oscillator do not
provide evidence of any CWL corrections. One case we have not considered
here is non-gaussian states. We hypothesize that CWL may not generate
corrections for gaussian (pseudo-classical) states, but for non-gaussian states
there may be novel CWL effects because they are “more quantum”. In the
next section, to further understand CWL theory, we will consider examples
of non-gaussian states as we study particle propagators.

11.2 Propagators

11.2.1 Form of the weak-gravity propagator

Let us now evaluate the propagator for a non-relativistic particle in CWL
theory. We’ll make the assumption that only weak gravitational fields are
relevant. While this is presumably appropriate for a non-relativistic particle
we will discuss possible issues with this assumption at a later point.

We will start from our previously derived non-perturbative results eqs. (10.44)
and (10.47),

K(x2, x1) = eiSG[ḡ21]+iψ0(x2,x1|ḡ21) (11.20)

where ψ0(x2, x1|g0) is determined by the matter propagator on a fixed back-
ground metric g0

K0(x2, x2|g0) = eiψ0(x2,x1|g0) =

∫ x2

x1

Dq eiS[q|g0] (11.21)

and the metric ḡ21 satisfies a version of the semi-classical Einstein equation

Gµν(ḡ21(x)) = 8πG

∫ x2

x1
Dq eiS[q|ḡ]Tµν(x)∫ x2

x1
Dq eiS[q|ḡ] . (11.22)

This expression is obviously very non-linear, with the classical non-linearity
already inherent in the Einstein tensor, and the further non-linearity intro-
duced by the backreaction of the quantum matter. To proceed with it, we
will make a weak field approximation.

We will perturb the metric about flat spacetime, (ḡ21)µν = ηµν + hµν .
We then expand the phase SG[ḡ21] + ψ0(x2, x1|ḡ21) to leading order in hµν
and insert the solution to just the linearized version of the semi-classical
Einstein equation eq. (11.22).

To provide an example of a calculation in conventional notation, in this
section we will expand the compact Dewitt notation used previously and be
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explicit about spacetime indices, coordinates, and integrations. Expanding
the phase argument in powers of the metric perturbation, we find

K(x2, x1) = eiSG[η]+iψ0(x2,x1|η)

× exp

[
i

∫
d4x

δ

δgµν(x)

(
SG[g] + ψ0[g]

)∣∣∣∣
g=η

× hµν(x)

]

× exp

[
i

2

∫
d4x

∫
d4y

δ

δgµν(x)

δ

δgσρ(y)

(
SG[g] + ψ0[g]

)∣∣∣∣
g=η

× hµν(x)hσρ(y)

]

× exp

[
O(h3)

]
. (11.23)

Note that here, and in the following spacetime integrals we omit the limits
of integration. It should not be forgotten though that we are integrating
over the spacetime region bounded by two constant time slices x0 = t1 and
x0 = t2.

This expression can be simplified considerably. Firstly, since the flat
spacetime metric is a solution to the vacuum Einstein equation and has
vanishing action, we can immediately see that

SG[η] =
δ

δgµν(x)
SG[g]

∣∣∣∣
g=η

= 0. (11.24)

Secondly, from the linearized Einstein equation, it will be obvious that
δ
δgψ0[g]

∣∣
g=η

= O(h). As a consequence, we will drop the matter term in

the second line of eq. (11.23), as it is O(h3). The resulting CWL propagator
for a system with weak gravitational fields is

K(x2, x1) = eiψ0(x2,x1|η) exp

[
i

∫
d4x

δψ0[g]

δgµν(x)

∣∣∣∣
g=η

× hµν(x)

]

× exp

[
i

2

∫
d4x

∫
d4y

δ2SG[g]

δgµν(x)δgσρ(y)

∣∣∣∣
g=η

× hµν(x)hσρ(y)

]

× exp

[
O(h3)

]
. (11.25)

This expression simplifies one step further when we use the formal ex-
pression for the linearized semi-classical Einstein equation(∫

d4y
δ2SG[g]

δgµν(x)δgσρ(y)
hσρ(y) +

δψ0[g]

δgµν(x)

)∣∣∣∣∣
g=η

= 0, (11.26)
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which gives the formal result for the propagator

K(x2, x1) = K0(x2, x1|η) exp

[
i

2

∫
d4x

δψ0[g]

δgµν(x)

∣∣∣∣
g=η

× hµν(x) +O(h3)

]
.

(11.27)

All that remains is to explicitly solve the linearized semi-classical Einstein
equation. The analogous calculation in classical gravity is standard [175],
but we’ll very briefly review here for completeness.

Linearizing the Einstein tensor we obtain

G(1)
µν (η + h) =

1

2
(∂2hµν + ∂µ∂νh− ∂ρ∂νhρµ − ∂ρ∂νhρµ + ηµν∂

σ∂ρhσρ − ηµν∂2h),

(11.28)

where h = ηµνhµν . Although in recent chapters we have not been explicit
about how we are dealing with gauge fixing, all of our recent discussions
have implicitly involved the Faddeev-Popov gauge fixing procedure discussed
explicitly in eqs. (8.23) and (8.24). The upshot of this is that here we can
choose to impose a gauge condition on hµν .

In what follows we’ll choose the familiar harmonic gauge. To do so, we
define the trace reversed metric perturbation h̄µν = hµν− 1

2ηµνh, and impose
the condition ∂µh̄µν = 0. With harmonic gauge imposed, the linearized
Einstein tensor is simply

G(1)
µν (η + h) =

1

2
∂2h̄µν . (11.29)

Linearizing the matter side of the semi-classical Einstein equation fixes
the source as equal to the flat-spacetime stress tensor, giving the result

∂2h̄µν(x) = 16πG

∫ x2

x1
Dq eiS[q]Tµν(x)∫ x2

x1
Dq eiS[q]

. (11.30)

To save on writing in subsequent equations, we’ll define the notation

〈〈T̂µν(x)〉〉21 =

∫ x2

x1
Dq eiS[q]Tµν(x)∫ x2

x1
Dq eiS[q]

, (11.31)

but we’d like to be clear: this iss not simply an expectation value of the
stress-tensor operator.
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At this stage we can simply invert the differential operator in eq. (11.30)
using the retarded Green’s function to obtain the solution

hµν(x) = −4G

∫
d4y

δ
(
(x0 − y0)− |~x− ~y|

)
|~x− ~y|

〈〈 ˆ̄Tµν(x)〉〉21. (11.32)

Inserting this solution into eq. (11.27), we obtain the final expression for the
weak field CWL propagator

K(x2, x1) = K0(x2, x1|η)

× exp

[
iG

∫
d4x

∫
d4y〈〈T̂µν(x)〉〉21

δ
(
(x0 − y0)− |~x− ~y|

)
|~x− ~y|

〈〈 ˆ̄Tµν(y)〉〉21

]
.

(11.33)

If we take the non-relativistic limit, then T00 is dominant and it is not
changing on relativistic time scales, and we can simply the expression to

K(x2, x1) = K0(x2, x1|η)

× exp

[
i

2
G

∫ t2

t1

dt

∫
d3xd3y 〈〈T̂00(x)〉〉21

1

|~x− ~y|
〈〈 ˆ̄T00(y)〉〉21

]
. (11.34)

This result looks somewhat natural, however we must recall the unusual
form of this stress tensor eq. (11.31), which is not an expectation value but
something like a “normalized” transition matrix element. Furthermore, one
notices that to compute eq. (11.34), we need not actually study the dynamics
of objects interacting via gravitation. Instead, we simply compute the two
standard quantum mechanics quantities∫ x2

x1

Dq eiS[q] and

∫ x2

x1

Dq eiS[q]T00(x), (11.35)

and assemble the results into a quantity which computes K(x2, x1).
The result eq. (11.34) is valid for systems where only weak non-relativistic

gravity is relevant. We could also consider the further approximation, wherein
the CWL gravitational effect is small compared with the standard dynamics
of the system, described by ψ0(x2, x1|η). In this case the CWL phase can
be expanded perturbatively, giving the lowest order correction which can be
written most transparently as

K(x2, x1) =

∫ x2

x1
Dq
∫ x2

x1
Dq′ eiSq]+iS[q′]

(
1 + iSCWL[q, q′]

)
∫ x2

x1
Dq eiS[q]

, (11.36)
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where the CWL “path-bunching” action is given in this approximation by

SCWL[q, q′] =

∫ t2

t1

dt
Gm2

2

1

|q − q′|
. (11.37)

Written in the above form, we can develop a simple intuition for the
perturbative CWL propagator. One considers just two copies of the system
(sets of paths), interacting perturbatively via Newtonian gravity, and then
divides the resulting two-body propagator by the original standard quan-
tum mechanical result. In section 11.3 we will consider how this calculation
is modified for a more realistic experimental mass, consisting of many con-
stituent particles.

11.2.2 Evaluating the non-relativistic particle propagator

This subsection, and the following, are somewhat preliminary. These results
have not yet been scrutinized by other researchers familiar with the CWL
theory.

Let us now return to the expression eq. (11.34), and in particular, to the
strange semi-classical stress tensor eq. (11.31). We’ll actually find it useful
to return to its definition eq. (10.45).

As we’ve previously shown using an eikonal calculation, eqs. (3.48) and (3.49),
a particle propagating in a weak, slowly varying gravitational field will have
a propagator its modified by just an additional phase factor,

K0(x2, x1|h) ≈ e−
i
2

∫
d4xhµν(x)Tµνcl (x)K0(x2, x1|η), (11.38)

where Tµνcl (x) is the stress tensor for a particle following the “classical” path
between the endpoints. Note that this above form holds when there is only
one “classical” path between the endpoints, however we will soon consider
the case where there are two dominant classical paths.

Written in this way it is straightforward to see that in this limit we
effectively have

δψ

δhµν(x)
= −1

2
Tµνcl (x), (11.39)

and the CWL phase in the propagator eq. (11.34) would then just describe
the gravitational self-energy of the classical trajectory for the particle,

K(x2, x1) = K0(x2, x1|η) exp

[
i

2
GN lim

ε→0

∫ t2

t1

dt
1

|~q(t)− ~q(t)|+ ε

]
. (11.40)
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This result is divergent, because it effectively describes two interacting repli-
cas which are infinitesimally close together. This then calls into question the
assumptions of a weak, slowly-varying, gravitational fields which went into
the use of eq. (11.38) for computing the semi-classical source. We will not
take the result too literally, but will instead take it as a hint at what the
structure of the propagator will look like for a single quantum particle with
one dominant classical trajectory—it just accumulates a phase describing
its gravitational self-energy. We also note that this result requires a proper
regularization and renormalization procedure.

Let us now consider the propagator for a particle which has two dominant
classical paths (labeled A and B) between its endpoints. One example of
this would be a matter-wave interferometry experiment where the potential
energy function is initially a single well, but is transformed into a two-well
shape and then recombined into a single well. This is actually precisely what
is proposed to be done for optically trapped nanoparticles [402]. We expect
that the dynamics of each particle in the BMV experiment [13, 14], which
we discussed at length in chapter 5, would also be well described by this
model.

It is straightforward to discuss the propagator for this system in a WKB
approximation. To do so we would perform a stationary phase approxima-
tion about each of the two classical paths and retain only the quadratic
fluctuations about either path. Suppressing the arguments of functions, the
WKB approximated propagator describing this scenario would be

K0(x2, x1|h) = e−
i
2

∫
hµνT

(A)
µν K

(A)
0 + e−

i
2

∫
hµνT

(B)
µν K

(B)
0 , (11.41)

where T
(A)
µν (T

(B)
µν ) denotes the classical stress tensor for the particle following

path A (B), and where the contribution from each path is, up to an irrelevant
overall constant,

K
(A,B)
0 =

√
∆(A,B) e

iS[q
(A,B)
cl |η]. (11.42)

The factors ∆(A,B) are the van Vleck determinants coming from integrating
out the quantum fluctuations about the classical path to quadratic order,
and S[q(A,B)] is the action evaluated on either classical solution, ie. Hamil-
ton’s principle function for each path.

If we evaluate the CWL semi-classical stress-tensor (11.31) for this two-
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path system we then have

〈〈Tµν〉〉21 = −2
δψ0

δhµν

∣∣∣∣∣
h=0

=
T

(A)
µν K

(A)
0 + T

(B)
µν K

(B)
0

K
(A)
0 +K

(B)
0

. (11.43)

Considering this two-well potential in which the particle is propagating,
if the quadratic terms in the expansion of the potential about each classical
path are the same, ie. have the same effective “oscillator frequency”, then
the van Vleck determinants will be the same for each path, ∆(A,B) ≡ ∆0.
Let us assume this is true as we go forward. In this case the determinants
will factor out of eq. (11.43) completely. The result can then be written
nicely as

〈〈Tµν〉〉21 =
T

(A)
µν + T

(B)
µν

2
+ i

T
(A)
µν − T (B)

µν

2
tan

(
S[q(A)]− S[q(B)]

2

)
, (11.44)

where we’ve omitted the tensor indices on the right side to make the resulting
formulas more readable.

This expression is quite interesting; the effective stress tensor, and thus
the saddle point solution for the metric, is complex! The real part of the
CWL stress-tensor displays exactly the behaviour one might expect from a
semi-classical stress tensor; it is the average of the stress tensors of the two
classical paths. The imaginary of this expression is quite unusual though,
and comes about because this is an “in-out” type semi-classical source, in
contrast with an “in-in” expectation value, 〈ψ|Tµν |ψ〉 , which would neces-
sarily be real.

Let us first define the sum and difference of actions,

S+ ≡ 1
2

(
S[q(A)] + S[q(B)]

)
∆S ≡ S[q(A)]− S[q(B)]. (11.45)

Note then that the imaginary part of this CWL stress tensor vanishes when
∆S = 2nπ for integer n—precisely when the two paths interfere construc-
tively. The imaginary part will diverge however when ∆S = (2n + 1)π, ie.
when the paths interfere destructively.

We can now substitute this result, eq. (11.44) into the expression for the
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CWL propagator eq. (11.34). We find,

K(x2, x1) = 2
√

∆0 e
iS+ cos

(
∆S

2

)
× exp

{
i

2
G

∫ t2

t1

dt

∫
d3xd3y

|~x− ~y|

[
1

cos2(∆S/2)
T (A)(x)T (B)(y)

+
1

2

(
T (A)(x)T (A)(y) + T (B)(x)T (B)(y)

)
(1− tan2(∆S/2))

+ i

(
T (A)(x)T (A)(y)− T (B)(x)T (B)(y)

)
tan(∆S/2)

]}
, (11.46)

where we’ve written the mass density compactly as T (j) ≡ T
(j)
00 . In this

expression we see the novel contributions from the imaginary part of the
CWL stress tensor. The intuitive result is obtained by taking ∆S = 0.

In regions of constructive interference, ∆S = 2nπ, we have conventional
Newtonian gravity acting between the paths. This is precisely the “path-
bunching” phenomenon that we anticipated in the introduction (chapter 7).

For general ∆S 6= 2nπ though, we can notice a few changes. In the path
bunching term the effective gravitational interaction is now strengthened as
∆S grows from zero and ultimately diverges for ∆S = ±π. The second
term, which is the sum of self-energy terms for each path, is now modified
by the − tan2 term. When ∆S = ±π/2 this term will cross over from
positive to negative, ultimately diverging when ∆ = ±π. The last term is
imaginary, and corresponds to a difference in gravitational self-energies for
the two paths. This term seems to have the possibility of suppressing of
the two-path amplitude, however this speculation is questionable. Since the
gravitational self-energy for each path should be equal, we actually expect
this term to vanish in general.

Ultimately, we see that the CWL interaction between the two paths is a
non-trivial function of ∆S, with wild departures from standard gravitational
interactions in regions where the amplitudes for each path are destructively
interfering. Unfortunately, we do not yet have a complete interpretation of
this strange behaviour.

It seems that something strange is happening in regions where destruc-
tive interference would occur. If we ignore the self-energy terms and focus
only on the interactions between path (A) and (B), we see that the gravita-
tional interaction between the paths grows arbitrarily large as the replicas
head towards a location where the paths would destructively interfere. In
our calculation we used an eikonal approximation which assumed that the
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gravitational field is too weak to change the path of the particle, and this ap-
proximation would be valid if it were not for this sec2(∆S) enhancement of
the gravitational interaction. To properly understand this enhanced grav-
itation for destructively interfering trajectories we would then need to go
beyond our eikonal approximations and self-consistently deal with the at-
traction between the paths.

This is a confusing result, but it is fascinating to see that something
strange happens in the ‘highly quantum’ region where destructive interfer-
ence should occur. More work will need to be done to see precisely what the
effect is for interference fringes, and to determine whether CWL actually
predicts a suppression of such fringes.

11.2.3 Applications to the BMV experiment

At this point we can see what CWL would predict for the BMV experi-
ment [13, 14]. For this we consider two particles, each undergoing their own
two-path evolution as above. If we label the classical paths for particle 2 as
C and D, the conventional QM propagator describing this system is (in the
WKB approximation)

K0 =
(√

∆(A) e
iS[q(A)] +

√
∆(B) e

iS[q(B)
)(√

∆(C) e
iS[q(C)] +

√
∆(D) e

iS[q(D)]
)
.

(11.47)
For simplicity we can assume the set-up is totally symmetric so that all the
van Vleck determinants equal the same quantity, ∆0. In this case, the four
branches of the wavefunction are clear to see

K0 = ∆0

(
eiS[q(A)]+iS[q(C)] + eiS[q(A)]+iS[q(D)]

+eiS[q(B)]+iS[q(C)] + eiS[q(B)]+iS[q(D)]
)
. (11.48)

Let us recall our discussion in section 5.2. If we define the the gravita-
tional phase

Φ[T (1), T (2)] =
G

2

∫ tf

ti

dt

∫
d3xd3y

T (1)(x)T (2)(y)

|~x− ~y|
, (11.49)

then conventional quantum gravity predicts a different phase accumulating
on each of these four branches

K0 = ∆0

(
eiS[q(A)]+iS[q(C)]eiΦ[T (A),T (C)] + eiS[q(A)]+iS[q(D)]eiΦ[T (A),T (D)]

+eiS[q(B)]+iS[q(C)]eiΦ[T (B),T (C)] + eiS[q(B)]+iS[q(D)]eiΦ[T (B),T (D)]
)
,

(11.50)
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and generically this is an entangled state of the two particles.
To see what CWL predicts, we first compute 〈〈T00〉〉21 for this system.

The result is just the sum for each particle

〈〈T00〉〉21 =
T (A) + T (B)

2
+ i

T (A) − T (B)

2
tan

(
S[q(A)]− S[q(B)]

2

)

+
T (C) + T (D)

2
+ i

T (C) − T (D)

2
tan

(
S[q(C)]− S[q(D)]

2

)
. (11.51)

In the proposal of Bose et al. one recombines the paths symmetrically,
such that S[q(A)] = S[q(B)], and S[q(A)] = S[q(B)]. In this case the imaginary
terms vanish and 〈〈Tµν〉〉21 is just the sum of the average stress tensors for
each particle. We can then compute the CWL propagator for this system
using eq. (11.34). The result is

K = ∆0

(
eiS[q(A)]+iS[q(C)] + eiS[q(A)]+iS[q(D)] + eiS[q(B)]+iS[q(C)] + eiS[q(B)]+iS[q(D)]

)
× exp

[
i

4
Φ

[ ∑
j=A,...,D

T (j),
∑

k=A,...,D

T (k)

]]
. (11.52)

The gravitational interaction is between all 4 paths.
The essential point to notice here is that there is not a different gravita-

tional phase sitting on each of the four branches of the wavefunction, rather
there is a single overall phase describing the mutual interaction of all four
branches. We could then trivially factorize this result

K = ∆0

(
eiS[q(A)] + eiS[q(B)]

)(
eiS[q(C)] + eiS[q(D)]

)
× exp

[
i

4
ΦG

[ ∑
j=A,...,D

T (j),
∑

k=A,...,D

T (k)

]]
, (11.53)

and conclude that the CWL theory predicts no entanglement will develop
between the two particles as a result of gravity.

If the BMV proposal [13, 14], and/or its relatives [15, 23, 115], are ac-
tually experimentally feasible, then they will be able to distinguish between
conventional quantum gravity and CWL theory.

11.3 Many particle composite object

We’ll conclude our study of CWL by considering the most experimentally
relevant system, a “composite body” consisting of a large number of bound
particles.

245



11.3. Many particle composite object

One can motivate this by estimating the scale at which CWL effects
may be significant. This was done already by Stamp in [113]. Consider
two quantum particles of mass m, (a proxy for the CWL replicas), inter-
acting via Newtonian gravity. We can immediately port over results from
atomic physics to this gravitational “atom” to find the binding energy for
this system,

EG = −EP
2

(
m

MP

)5

, (11.54)

where EP ∼ 1019 GeV is the Planck energy and MP ∼ 10−5 g ≈ 1019 AMU
is the Planck mass. From this we can see that the CWL binding energy will
only reach the eV scale for particles with mass m ≈ 2 × 1015 AMU. CWL
theory should then be irrelevant at atomic scales.

The above estimate only considered point particles, and a detailed calcu-
lation will need to be done for a composite body, but it is at least suggestive
that experiments studying the quantum mechanics of large objects may be
perfect for testing CWL theory.

The kind of systems we have in mind here range over many length scales.
There is currently enormous experimental effort going towards studying in-
creasing massive quantum systems. We currently have three specific scales
in mind, which we very roughly classify as the: “highly quantum”, “weakly
quantum”, and “potentially quantum”.33

Examples of the highly quantum regime:

• Matter-wave interferometry of large molecules with ≈ 2000 atoms, a
total mass∼ 104 AMU, and displacements over a few hundred nanome-
ters. [12]

• Generation of entangled phonon states in spatially separated 3-mm-
sized diamonds [403]. The masses here are∼ 1017AMU but the relative
displacement in the superposition is only ∼ 10−11 m.

An example of a weakly quantum system:

• Optically trapped/levitated 150-nm-diameter silica nanoparticles, with
masses up to ∼ 1011 AMU. These have been cooled to their center-of-
mass ground states [21], and there are detailed proposals for creating
and verifying both non-gaussian squeezed states [404] and delocaliza-
tions of order 105 times the zero-point motion [402].

33We do not use the term “weakly” here to degrade the experimental achievements, it is
just that their systems are much more massive and the demonstrated properties are still
near the gaussian regime. Likewise, we use the term “potentially quantum” only because
there is existing debate about whether the system is actually quantum mechanical.
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For the potentially quantum system:

• The LIGO detector—Despite the LIGO mirrors having masses of 40 kg,
the LIGO scientific collaboration has used squeezed-input techniques
[originally concieved by W.G. Unruh 405] to perform measurements
below the ‘standard quantum limit’ coming from quantum fluctuations
in the apparatus [26].

It is claimed in [26] that this experiment demonstrates non-classical
correlations between photons and the center-of-mass degree of freedom
of the mirror. However this claim is questioned by many [406], some
of whom are even co-authors on ref. [26]. We also note that older
work by some of the originators of the LIGO design argued [407] that
non-classical photon correlations do not require a quantum mechanical
mirror coordinate, so it is unclear to us whether or not LIGO serves
as a test of macroscopic quantum mechanics.

With this wide array of potential applications, we will proceed quite
generally. In this section we study N-particle systems in the non-relativistic
perturbative limit of CWL theory. We use collective coordinate methods to
separate the center of mass of the system from the internal relative motions
of its constituent particles. The internal motions can be integrated out, and
this generates an effective CWL “path-bunching” action for the center of
mass coordinate.

A proper microscopic theory is set-up and it involves the general shape
of the object and the spectrum of its internal phonons. We make no attempt
to perform a sophisticated calculation though, as this would require detailed
numerics and should only be done once a specific experiment is being ana-
lyzed. To proceed we make the somewhat crude approximation which treats
the fluctuations of each particle as independent of the others. This allows
us to write a general expression for the effective action in terms of a sum
over all particles in both the body and its replica.

Our central result is that the 1/r singularity of the Newtonian potential
is nicely smoothed out at short distances, but 1/r behavior is still found at
large distances. We close by comparing the predicted CWL timescales with
relevant experimental timescales.

11.3.1 Technical Introduction

In the non-relativistic effective CWL path-integral we have only pairwise
Newtonian interactions. For a single ‘elementary’ particle of mass m, we
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have the double path integral (11.36)

K(β, α) = K0(β, α)−1

∫ β

α
Dq
∫ β

α
Dq′ eiS[q]+iS[q′]

(
1 + iSCWL[q, q′]

)
(11.55)

where the CWL-bunching action is given in this approximation by

SCWL[q, q′] =
Gm2

2

∫ t2

t1

dt
1

|q(t)− q′(t)|
. (11.56)

We stress again, that this is just the O(`2P ) perturbative result. We also note
that similar calculations to those which follow have been done independently
by Stamp [408].

Although the particle position q is a three-dimensional vector, we refer
to
∫
Dq as a single path integral. This is just a choice of language to keep

the counting more simple as we introduce more particles.
If we generalize to a system of N -particles mutually interacting by some

non-gravitational forces, as in eg. a solid body, the CWL theory in the `2P
approximation would have 2N path integrals.

Collective Coordinate Method

We will first work with the conventional QM propagator for the N -particle
system and then later generalize it to CWL.

We’ll start with some standard ‘collective coordinate’ manipulations to
set up the path integral more conveniently. Each particle is indexed by
j = 1, 2, ..., N , and we assume the particles interact via a pairwise potential
in a translation invariant background. This gives us the propagator

K0({βj}, {α}j) =
N∏
j=1

∫ βj

αj

Dqj ei
∫ t2
t1
dt
(∑N

j=1
1
2
miq̇

2
j−

1
2

∑
i 6=j V (|qi−qj |)

)
. (11.57)

Note that the action is invariant under shifts of all the coordinates qj =
R+ rj , for any constant displacement R.

To factor out the center of mass (CoM) motion of the whole system we
can multiply the path integral by

1 =

∫
DR(t) δ

(
R(t)− 1

M

N∑
j=1

mjqj

)
, (11.58)
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where M =
∑

jmj , and change variables from qj(t) to rj(t) = qj(t)−R(t).
Now the path integral for the system reads

K0 =
N∏
j=1

∫ bj

aj

Drj
∫ B

A
DRei

∫ t2
t1
dt
(

1
2
MṘ2+Ṙ

∑
j mj ṙj

×e
1
2

∑
j mj ṙ

2− 1
2

∑
i6=j V (|ri−rj |)

)
δ
( 1

M

∑
j

mjrj
)
.

(11.59)

Here we’ve taken the boundary data {αj}, {βj} for the qj and used them to
define boundary data {aj}, {bj} and A,B for the relative coordinates {rj}
and the CoM coordinate R respectively. The relationships are

aj = αj −A,
bj = βj −B,

A =
1

M

∑
j

mjαj ,

B =
1

M

∑
j

mjβj . (11.60)

It may seem like we’ve turned the N degrees of freedom describing {qj}
into N + 1 degrees of freedom describing {rj} and R, but we haven’t really:
there is a constraint in the {rj} path integral which enforces these to be
relative coordinates. This constraint actually sets the cross term (∼ Ṙṙ) in
the action to zero. The CoM is then explicitly decoupled from the internal
degrees of freedom and the propagator can be written as

K0 =

∫ B

A
DRei

∫ t2
t1
dt 1

2
MṘ2

×
N∏
j=1

∫ bj

aj

Drj ei
∫ t2
t1
dt
(

1
2

∑
j mj ṙ

2− 1
2

∑
i6=j V (|ri−rj |)

)
δ
( 1

M

∑
j

mjrj
)
.

(11.61)

Phonons

At this stage we can go through a standard phonon discussion. We as-
sume that the object is a solid body, so that the inter-particle potential
is minimized when each of the particles are at a certain fixed locations, r̄j .
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11.3. Many particle composite object

We’ll further assume that the system admits a sensible expansion about this
minimum, rj = r̄j + uj such that the potential need only be expanded to
quadratic order in the fluctuations uj .

V (|ri − rj |) = V (|r̄i − r̄j |) +
1

2
V ′′(|r̄i − r̄j |)(ui − uj)2 + ...

≡ V0,ij +
1

2
kij(ui − uj)2 + ... . (11.62)

Note that we will neglect the terms above quadratic order. These terms
correspond to anharmonic phonon-phonon interactions. The relevant ex-
periments will most likely take place at temperatures much less than the
Debye temperature of the system, and in this regime the effect should be
negligible because the phonon occupation number will be low.

In this fluctuation expansion we now have the propagator for our system

K0 =

∫ B

A
DRei

∫ t2
t1
dt 1

2
MṘ2

×
N∏
j=1

∫ bj−r̄j

aj−r̄j
Duj ei

∫ t2
t1
dt
(

1
2

∑
j mj u̇

2−
∑
i<j

1
2
kij(ui−uj)2

)
δ
( 1

M

∑
j

mj(r̄j + uj)
)
,

(11.63)

where we’ve discarded the ground state energy term.
In this above discussion there is no coupling between the CoM coordi-

nate and the relative coordinates, and this is because there are no forces
in consideration other than the translation invariant pairwise potential be-
tween the various particles. In eq. (11.57) we have boundary data fixed for
each particle’s position, and as a result eq. (11.63) has boundary data fixed
for the CoM position and each of the relative fluctuation positions. Since
the CoM is decoupled, a more natural quantity to compute would be the
transition amplitude between product states with definite CoM positions
and some states |ψα〉, |ψβ〉 describing the fluctuations,

K0 = 〈B|〈ψβ|e−iHt|ψα〉|A〉. (11.64)

For example we could consider choosing the phonon vacuum, |ψα〉 = |ψβ〉 =
|0〉. A more experimentally relevant choice however would be to assume
a thermal state for the phonons, but this would then force us into using
density matrices and computing a density matrix propagator for the CoM
coordinate.

If we were to introduce a potential coupling directly to some of the
particle coordinates, eg. a Ṽ =

∑
j Vj(qj). Then, for non-linear Vj we
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11.3. Many particle composite object

would induce coupling between the CoM and relative coordinates. This is
precisely what will happen in CWL theory. We will introduce a gravitational
potential depending on the qj , and this will induce a coupling between the
relative coordinate fluctuations and the CoM displacement. In the spirit
of the renormalization group, we will then integrate out the assumed ‘fast’
fluctuations to generate an effective gravitational potential for the ‘slow’
CoM coordinate. This effective gravitational potential is expected to have
no short distance singularity because of a ‘smoothing’ effect from the fast
fluctuations.

In the standard high-energy QFT renormalization group context the
term “integrate out” comes loaded with an assumption that the ‘fast’ or
high-energy modes start and end in their vacuum state: there are no incom-
ing or outgoing high-energy excitations, rather they appear only as internal
states in Feynman graphs. Because of the assumption that the initial state
and final state of the high-energy modes is i) known and ii) unaffected by
the evolution of low-energy degrees of freedom, one can “integrate out”
the high-energy modes without “tracing” them out and forcing an influence
functional description for the effective low-energy evolution. For our mun-
dane purposes here, if we want an effective theory for the CoM which is
describes pure state evolution rather than density matrix evolution via an
influence functional, we will need to make an analogous assumption. We
will need to assume that even if the phonon variables couple to the CoM
variable, the initial and final state for the phonons is known and unaffected
by the evolution of the CoM.

In terms of eq. (11.64) we could summarize the above by making the
point that the following equation defining an effective Hamiltonian H̃ is
sensible

〈B|e−iH̃t|A〉 = 〈B|〈0|e−iHt|0〉|A〉, (11.65)

whereas
〈B|e−iH̃t|A〉 = 〈B|trphone−iHtρphon|A〉 (11.66)

is not. In terms of path integrals, we will write the phonons evolving from
vacuum to vacuum as

K0(B, 0;A, 0) =

∫ B

A
DRei

∫ t2
t1
dt 1

2
MṘ2

N∏
j=1

∫ |0〉
|0〉
Duj eiS[{uj}]δ

( 1

M

∑
j

mj(r̄j+uj)
)
,

(11.67)
where

S[{uj}] =

∫ t2

t1

dt

(
1

2

∑
j

mj u̇
2 −

∑
i<j

1

2
kij(ui − uj)

)
(11.68)
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From a condensed matter perspective, the phonon vacuum approxima-
tion is actually reasonable. There is discussion of this point in Stamp’s
original paper [113], which we recapitulate here. In the relevant experi-
ments the temperatures will be much smaller than the Debye temperature
of the solid. As a consequence there will be a very low occupation number
for the phonons, except at very long wavelengths. One can then straight-
forwardly see that the motion of a single ion in a solid composed entirely of
identical ions with mass m will be

〈x2〉 =
~2

2m

∫
dE

E
g(E)[1 + 2n(E)] (11.69)

where g(E) is the phonon density of states, and n(E) is the Bose distribution.
In any real solid g(E) ∼ E2 at low E, and is cut off for energies θD = kBTD,
where TD ∼ 100− 800 K depending of the material. It then follows that the
mean distance of the ion from it’s equilibrium position is

x̄ ∼ 3

2
~(1/mθD)1/2 (11.70)

to very high accuracy; for many solids this would be accurate to less than
1% even at a temperature ∼ 50 K.

11.3.2 Composite object in CWL theory

Lets now take eq. (11.67) and generalize it to describe an N -particle object
in CWL theory. Looking at eq. (11.55) we do this by making two modifi-
cations. First we must double the path-integral, ie. we introduce variables
q′j , or equivalently R′ and u′j , which have the same path integral and action
as the original variables. Next, we introduce a new CWL bunching term
SCWL[{qj}, {q′j}] which couples every particle via gravity. We now have 2N
particles to consider.

We effectively have two identical universes which we can call replica uni-
verses. There are N particles in one universe, and N corresponding particles
in the replica universe. For consistency, every particle must couple gravita-
tionally to every other particle, whether in the same replica universe or not.
Of course, for particles in the same replica universe mutual gravitational
interactions are irrelevant. They correspond to extremely small corrections
to the spring constants kij . Thus, we’ll need only to consider interactions
which couple a particle in one replica universe to a particle in the other
replica universe.
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11.3. Many particle composite object

We can then write the CWL propagator as

K(B, 0;A, 0) = K−1
0

∫ B

A
DR

∫ B

A
DR′ ei

∫ t2
t1
dt 1

2
MṘ2+ 1

2
MṘ′2

×
N∏

j,k=1

∫ |0〉
|0〉
Duj

∫ |0〉
|0〉
Du′k eiS[{uj}]+iS[{u′k}] (1 + iSCWL)

× δ
( 1

M

∑
j

mj(r̄j + uj)
)
δ
( 1

M

∑
k

mk(r̄k + u′k)
)
, (11.71)

where the CWL bunching action is

SCWL =
N∑

j,k=1

Gmjmk

∫ t2

t1

dt
1

|R(t) + r̄j + uj(t)−R′(t)− r̄k − u′k(t)|
.

(11.72)
Let’s focus on the CWL correction term. We can actually write it a little

more conveniently by using the ket representation of the phonon vacuum

K(1)(B, 0;A, 0) = K−1
0

∫ B

A
DR

∫ B

A
DR′ ei

∫ t2
t1
dt 1

2
MṘ2+ 1

2
MṘ′2

×
N∑

j,k=1

Gmjmk

∫ t2

t1

dt〈0|〈0| 1

|R(t) + r̄j + ûj(t)−R′(t)− r̄k − û′k(t)|
|0〉|0〉.

(11.73)

The goal is to evaluate the vacuum expectation value here to compute the
effective CWL action.

The difficulty in evaluating this effective action is two-fold. Firstly the
coordinates uj are not the normal-mode coordinates, so the ground state
wavefunction will not be a simple Gaussian function of each uj . Secondly,
even if we could evaluate this expectation value we would still need to eval-
uate the sum over the N2 terms desribing the interactions of each particle
with every particle in the other replica universe.

Evaluating the effective action

Assuming the solid body has a lattice structure, a proper decomposition
into normal-modes would involve writing

~un,a(t) =
∑
i,~q

Qi(~q, t)~ε
i
a (~q)

ei~q·
~Rn

√
maN

, (11.74)
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where the index j for each particle in the solid has been expanded to n, a,
where n indexes the unit cell within the lattice and a indexes the atom
within the unit cell. Here i labels the phonon polarization, ~q is the lattice
momentum, ~ε ia is a polarization vector, ~Rn is the vector pointing to unit cell
n, N is the total number of unit cells in the solid, and Qi(~q, t) is the ampli-
tude of the phonon with polarization i and lattice momentum ~q. It is these
Q which diagonalize the phonon Hamiltonian, and they have corresponding
eigenfrequencies ωi(~q).

In this form we can see exactly what the constraint delta function is
doing; it sets

∑
jmjuj equal to a constant, ie. it sets

∑
jmj u̇j = 0. This

constraint (really three, one for each spatial direction) eliminates the zero
frequency longitudinal phonon from the spectrum of fluctuations. This hap-
pens because we’ve already separated out this ‘Nambu-Goldstone mode’
with an explicit description in terms of the variable R.

In terms of these normal-mode coordinates the phonon vacuum wave-
function is a product of Gaussian functions for each mode,

Ψ0[{Qi(~q)}] =
3∏
i=1

∏
~q∈B.Z.

(
ωi(~q)

π

) 1
4

e−
1
2
ωiQ

2
i (~q), (11.75)

where ~q ranges over the Brillouin zone. To evaluate the expectation value,
we’d then first need to insert eq. (11.74) in for each of uj and u′j into
eq. (11.73). Then, we’d need to replace the vacuum kets by

Ψ0[{Qi(~q)}]Ψ∗0[{Qi(~q)}]Ψ0[{Q′i′(~q′)}]Ψ∗0[{Q′i′(~q′)}] (11.76)

and integrate over all values of Qi(~q) and Q′i(~q) for each i, i′, ~q, and ~q′.
While any individual integral would be manageable, the fact that each the
denominator in the Newtonian potential would contain a sum involving every
Qi(~q) makes the calculation completely intractable in practice.

Approximate evaluation of the effective action

At this stage we’ll make a very crude approximation to the phonon spectrum,
as this may be the only way to proceed analytically. We’ll assume that each
of the atomic fluctuations un,a in the solid body is independent from one
another, and that each of these can be described as an isotropic simple
harmonic oscillator in its ground state, with zero point motion 〈~u 2

j 〉 = 3σ2
j .

This then defines each oscillator frequency to be ωj = (σ2
jmj)

−1.
We’ll parameterize the size of these fluctuations as σj = ηja0, where a0

is the typical inter-atomic spacing in the solid, and ηj ∈ (0, 1) are parame-
ters characterizing the size of the displacement fluctuations for particles in
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the solid relative to the typical nearest neighbor distance. With the above
assumption, the ground state of the lattice fluctuations is then modeled as

Ψ[{~uj}] =
N∏
j=1

(
1

πσ2
j

) 3
4

e−
1
2
σ−2
j ~u2

j . (11.77)

Using this model of the lattice fluctuation background we can write the
effective action as

S̃CWL =
N∑

j,k=1

Gmjmk

(
1

πσ2
j

) 3
2 ( 1

πσ2
k

) 3
2
∫ t2

t1

dt

×
∫
d3uj

∫
d3u′k e

− 1
2
σ−2
j ~u2

j e−
1
2
σ−2
k

~u′
2
k

1

|R(t) + r̄j + uj(t)−R′(t)− r̄k − u′k(t)|
.

(11.78)

We can organize this as a sum over the effective gravitational interactions
of every atom,

S̃CWL = −
∫ t2

t1

dt
N∑

j,k=1

GmjmkV (~∆jk), (11.79)

where we’ve defined the displacement between the equilibrium positions of
atoms j and k, ~∆jk ≡ ~R− ~R′+~̄rj−~̄rk, and defined the effective gravitational
potential for each pair of atoms as

V (~∆jk) =

−
(

1

πσ2
j

) 3
2
(

1

πσ2
k

) 3
2
∫
d3uj

∫
d3u′k e

− 1
2
σ−2
j ~u2

j e−
1
2
σ−2
k

~u′
2
k

1

|~∆jk + ~uj(t)− ~u′k(t)|
.

(11.80)

This integral is obviously more manageable than we would have had if tried
to perform the proper analysis in terms of the phonon spectrum.

To proceed we conveniently use sum and relative variables

~l = ~∆jk + ~uj − ~u′k

~s = ~uj + ~u′k, (11.81)

and we will assume for simplicity that all of the atoms are identical. The
integral is then

V (~∆jk) = −
(

1

πσ2

)3 ∫
d3De−2σ−2 ~D2

∫
d3l e−

1
2
σ−2(~l−~∆jk)2 1

|~l|
. (11.82)
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The integrations are elementary, and the result is the very simple effective
gravitational potential

V (~∆jk) = − 1

|~∆jk|
Erf

(
|~∆jk|√

2σ

)
. (11.83)

We’ve found after integrating out atomic fluctuations, albeit in an crude
model, that the effective gravitational potential between atom j in one
replica universe and atom k in the other replica universe is just the standard
potential but modified with an error-function form factor. At small | ~∆jk|
the effective potential between atoms has the expansion

V (~∆jk) = −
√

2

πσ2
+

1

3
√

2πσ3
|~∆jk|2 + ... . (11.84)

Thus the CWL interaction between an atom and a replica which are very
close together is just a harmonic potential! It is important to remember
though that this is not the effective potential between the two replica N -
particle bodies, ie. the effective potential felt by the CoM coordinates. To
obtain the CoM effective gravitational potential we still need to sum over
all particles in each body,

S̃CWL

=

∫ t2

t1

dt
N∑

j,k=1

Gmjmk
1

|~R(t)− ~R′(t) + ~̄rj − ~̄rk|
Erf

(
|~R(t)− ~R′(t) + ~̄rj − ~̄rk|√

2σ

)
.

(11.85)

Small body numerical approximation

There is a large number (N2) of terms in the sum (11.85). We can get a sense
for the result by considering a simple model solid. We’ll consider a cubic
object with cubic lattice and L atoms per side length. In fig. 11.1 we present
numerical plots of the effective potential for the cases L = 7, 13, and 33. The
computation time scales as N2 ∼ length6, so it is quite costly to compute for
objects of significantly larger size. Note that in the plots we are considering
CoM separation along one of the lattice vectors. We will see in the plots
that this generated a periodic array of spikes in the effective CWL potential,
which are just artifacts of this particular alignment. More generally, if the
angle between the lattice vector differs from that of the displacement vector
by
√
〈∆x2〉/a0 ≈ 0.01, then one expects only the central spike to persist.
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Moreover, in an amorphous solid one will certainly only retain the central
spike.
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Figure 11.1: Plots of eq. (11.85), the effective CWL gravitational potential
between cubic solids with cubic lattices with 7, 13, and 33 atoms per side
length. The fluctuation parameter is η = 0.01, and the particle separation
is presented in units of the nearest neighbor distance a0. The units are such
that Gm2 = 1, where m is the atomic mass. The CoM separation is along
one of the lattice vectors, so it is something of a special case and has a high
degree of periodicity—hence the periodic spike structure in the plots.
.

Let’s work to gain a qualitative understanding of these plots so that
we can understand how they would scale for larger system size. There are
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really two important features to observe. All of the potentials take the
form of a smooth well with a series of sharp spikes located at separations
|R−R′| = na0 for integer n, and na0 < 2L. Additionally, these spikes have a
size which decreases relative to the size of the smooth part of the potential as
we increase the system size. This can be understood quite straightforwardly.

Lets look at eq. (11.85) at zero separation, ~R− ~R′ = 0. In the sum there
are N = L3 diagonal terms, ie. when i = j, and a particle is interacting with
its own replica rather than a replica of another particle. For these diagonal
contributions the Newtonian potential would diverge, but the error function
smooths out the short distance behaviour and gives a 1

σ contribution. There
are also O(N2 = L6) off-diagonal terms. For these terms the error function
has large argument and is thus irrelevant. The contribution from the off-
diagonal terms is the just that of classical gravitation between a particle at
site i and all of the particles at sites j 6= i.

Quantitatively, at ~R− ~R′ = 0 we have the potential,

Ṽ (0) = −Gm2
∑
i,j

1

|~rj − ~rk|
Erf

(
|~rj − ~rk|√

2σ

)
. (11.86)

We split it into diagonal and off-diagonal terms. If we use the Taylor series
for the error function at small x, Erf(x) ≈ 2π−1/2x, and use the limiting
value Erf(x) ≈ 1 at large x. This gives

Ṽ (0) = −Gm
2

σ

√
2

π

(
N∑
i

)
−Gm2

∑
i 6=j

1

|~rj − ~rk|

= −GMm

σ

√
2

π
− Gm2

a0

∑
~n6=~m

1

|~n− ~m|
, (11.87)

where we’ve defined the total object mass M = mN , and we’ve introduced
~n, ~m, which are vectors with integer valued components running over the
lattice sites.

In the second term of eq. (11.87), we have L6 terms and a length−1 con-
tribution from each term. We then expect the sum to be of order O(L5).
We’ll parameterize this contribution by defining the geometric structure co-
efficient γ as

γ =
1

L5

∑
~n6=~m

1

|~n− ~m|
. (11.88)

As L, or equivalently as the volume V scales, γ should vary only weakly,
and should reach a limiting value at large system size given by the integral
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limit

γmax = V −5/3

∫
V
d3x

∫
V
d3y

1

|~x− ~y|
. (11.89)

The geometrical structure coefficient primarily describes the shape of the
object, not it’s size. We’ve confirmed the weak scaling of γ with system
size by directly evaluating the sum for a few examples and we found for
L = 7, 13, 19 that γ = 1.84, 1.87, 1.88 respectively.

In terms of γ we can write the potential as

Ṽ (0) = −GMm

σ

√
2

π
− Gm2

a0
L5γ

= −GMm

σ

√
2

π
− GM2

La0
γ. (11.90)

Since the second term comes from the off-diagonal contribution, ie. the
gravitation from all other atoms, we expect it to generate the smooth part
of the potential. Since the first term comes from the diagonal contribution,
and would be absent if ~R− ~R′ 6= a0~n, it generates the spike.

The periodic array of spikes in the plots is then special, and comes about
only because the displacement was assumed to be along a lattice vector. For
general displacements we would only expect the central spike. Similarly for
an amorphous solid, with no regular lattice structure, we would expect only
a central spike for all displacements.

Note that the relative magnitude of the spike term to the smooth term
is

Vspike
Vsmooth

=
1

N2/3

√
2

π

1

ηγ
. (11.91)

The fluctuation parameter η is typically small, η = 0.01, and the geometrical
structure coefficient γ ∼ O(1), so the prefactor in this ratio is numerically
large. The scaling with system size however will suppress this ratio for large
systems. For the cube γ ≈ 1.88, we find that for L = 7, 13, 33 the ratio of
spike size to smooth well size is 0.87, 0.25, 0.04 respectively. At system size
L = 16, the spikes are already small enough to be treated as perturbation
of the smooth potential generated by the off-diagonal components.

Of course, the smooth part of the well is only relevant if the CoM separa-
tions are larger than σ = 0.01a0. If only very small separations are relevant,
then instead we may disregard the smooth part and consider only the the
spike part of the potential.
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We can verify this intuition in the following way. From the plots, the
smooth part of the potential appears to have the shape

Vsmooth(x) = −a
x

Erf (bx) , (11.92)

for constants a, b. We can determine these constants uniquely by matching
the asymptotic behaviors and the minimum values of the functions. At large
separation it is clear from eq. (11.85) that the true effective potential should
be approximately

Ṽ (~R) ≈ −
N∑

j,k=1

Gmjmk
1

|~R|
Erf

(
|~R|√
2σ

)
= −GM

2

|~R|
. (11.93)

This determines the fit parameter a = GM2. At zero separation we have

Vsmooth(0) = −2π−1/2ab, (11.94)

and we can match this with the off-diagonal contribution in eq. (11.90),

−2π−1/2ab = −GM
2

La0
γ. (11.95)

This determines the remaining fit parameter b. We then have a fit to the
smooth part of the function equal to

Vsmooth(~R) = −GM
2

|~R|
Erf

(√
π

2
γ
|~R|
a0L

)
. (11.96)

This fit is quite good, as we see in fig. 11.2:
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Figure 11.2: Plots of the effective CWL gravitational potential between
cubic solids with cubic lattices with 13 and 33 atoms per side length. The
solid blue curve is the true potential eq. (11.85), the dashed orange curve is
a plot of the “smooth” or “off-diagonal” part eq. (11.96).
.

Approximate Harmonic Well of the Smooth Part

Now that we’ve approximated the effective potential by the smooth part
eq. (11.96), we can extract an effective harmonic potential. From the Taylor
series we find

Vsmooth(~R) ≈ −GM
2

a0L
γ +

π

12
γ3GMρavg|~R|2, (11.97)

where we’ve defined the average density of the object

ρavg =
M

(a0L)3
. (11.98)

From this we can then extract an effective oscillator frequency

ωeff =
(π

6
γ3Gρavg

)1/2
. (11.99)
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The most important observation about this result, is that it is not de-
termined by the total mass of the object, only its average density. This is
somewhat discouraging if we hope to make experimental comparison.

Approximate Harmonic Well of the Spike

As mentioned previously, if experimental parameters are such that the sep-
aration between the CoM each of the replicas is always very small, ie.
|~R − ~R′| � σ = 0.01a0, then the effective CWL potential is just that of
the central spike.

The spikes themselves are well modeled by a potential,
Vspike = −(a/x)Erf(x/(

√
2σ)) for constant a to be determined. To fit this,

we only need to look at the value of the spike potential at the bottom of
the well. Since we’ve already worked this out (eq. (11.87)) we just do some
matching

Vspike(0) =
2a√
2πσ

− GMm

σ

√
2

π
, (11.100)

to determine a = GMm. For small separations the spike potential is then
well approximated as

Vspike(|~R|) = −GMm

|~R|
Erf

(
|~R|√
2σ

)
= −GMm

σ

√
2

π
+

GMm

3
√

2πσ3
|~R|2 + ... .

(11.101)
We confirm this is a nice approximation by overlaying this fit with a zoom
in on the exact L = 33 potential (fig. 11.3).
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Figure 11.3: Plots of the effective CWL gravitational potential between
cubic solids with cubic lattices with 33 atoms per side length. The solid blue
curve is the true potential eq. (11.85), the dashed orange curve is a plot
of the “spike” or “diagonal” part eq. (11.101). The fluctuation parameter
is η = 0.01, and the particle separation is presented in units of the nearest
neighbor distance a0. The units are such that Gm2 = 1, where m is the
atomic mass.
.

From eq. (11.101) we can look at the quadratic part and extract an
effective harmonic oscillator frequency for the CoM CWL potential

ωeff =

(√
2

π

Gm

3σ3

) 1
2

. (11.102)

This too is independent of the total mass of the solid, however it has a
significant larger effective density than the previous result valid for larger
separations.34

11.3.3 Summary and Experimental Prospects

If we ignore the off-center spikes (since they are not generic), we then have
the total effective CWL potential for the center of mass of the composite

34After preparing this section we came across the paper of Bassi et al. [409]. They
consider the same system, except in the context of the Schrödinger-Newton equation for
a self-gravitating wavefunction. Since we were unaware of this result, our calculation was
independently done, however our result eq. (11.102) is exactly equal to the Schrödinger-
Newton frequency they compute in their eq. (24).
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bodies

Ṽ (|~R|) = −GMm

|~R|
Erf

(
|~R|√
2σ

)
− GM2

|~R|
Erf

(√
π

2
γ
|~R|
a0L

)
, (11.103)

and this is characterized by two frequency scales: the slow

ωeff =
(π

6
γ3Gρavg

)1/2
, (11.104)

and the relatively fast

ωeff =

(√
2

π

Gm

3σ3

) 1
2

. (11.105)

Let us close by comparing these frequencies with the experiments dis-
cussed in the introduction.

For both the levitated nanoparticles and the LIGO interferometer the
masses are made primarily of silica. We can get an order of magnitude
understanding of the CWL prediction by using σ = 0.01∗160 pm andm = 1

3∗
60 g/mol, and the average density of 2.65 g/cm3. This gives a characteristic
CWL frequency and timescale for the narrow spike part of the effective
potential

fSiO2
spike ≈ 60.4 mHz τSiO2

spike ≈ 16 s, (11.106)

and
fSiO2
smooth ≈ 0.78 mHz τSiO2

spike ≈ 21.2 min. (11.107)

for the wide part of the potential.
These frequencies are many orders of magnitude smaller than the fre-

quency of the harmonic well that the nanoparticle sits in, (80 − 305) kHz
depending on the direction of displacement [21].

As for LIGO, we aren’t quite sure how to compare, but we note that
the interferometer was designed to detect strains in the frequency range
(10 Hz− 10 kHz) [25]. This too is orders of magnitude faster than the CWL
frequency. We note though, that the proposed space-based gravitational
wave detector LISA is planned to be sensitive to frequencies in the range
(0.1 mHz− 1 Hz) [24]. This would actually be the perfect frequency band to
be sensitive to the predicted CWL frequency for the mirrors. What we’ve
done thus far is very approximate, but, given that the LISA parameters are
so near to our estimates, it is time for serious calculations to be performed
which predict a CWL signature in the readout of the LISA experiment.
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We note, however, that the LISA experiment will not use squeezed light
to subvert the standard quantum limit. The utility of squeezed light in
LIGO is central to the arguments that the experiment probes the quantum
state of the 40 kg mirrors. Thus without squeezed light it is unclear whether
LISA can actually probe CWL theory. In future research we plan to address
these finer points more carefully.
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Chapter 12

Conclusions

In this thesis we have discussed quantum gravity from many different angles.
Ultimately we were interested in contributing towards an understanding of
upcoming low-energy quantum gravity experiments, but we took a number
of tangents to also address important technical problems which were related
to our goal.

In Part I of this thesis we focused on conventional quantum gravity, as
well as QED and non-abelian Yang-Mills theory. In chapter 3 we expanded
on the discussion of decoherence via graviton emission presented in [117].
We developed a general framework for computing decoherence in systems
where the central system and environment have a large separation of scales.
We then applied the general framework to graviton emission in scattering
processes. The primary results were that soft gravitons are completely corre-
lated with the outgoing matter from scattering processes, and that tracing
them out would completely decohere the system. These findings were in
agreement with the findings of the Semenoff group, who performed a dia-
grammatic re-summation [121]. We then explained the results using density
matrix Ward identities. Finally we commented on the relationships to the
coherent state formalism and the black hole information problem.

In chapter 4 we developed methods for understanding manifestly gauge-
invariant path integrals. The main utility here was to provide a path-integral
first approach to understanding constraints in gauge theories. One applica-
tion of this was to understand the nature of electric fields around quantum
charged particles. We looked at a number of examples, including: non-
relativistic scalars, Dirac fermions, and massless scalars. Our discussion
naturally addressed the ideas of “large gauge transformations”, and the re-
lationship with the coherent state formalism.

In chapter 5 we reported on how some of the results from chapter 4
extend to linearized gravity. The results were not new, but we used them
to discuss a controversy surrounding a proposed quantum gravity experi-
ment [13, 14]. The experiment is meant to demonstrate the quantum na-
ture of the gravitational field, however some claim that it does not actually
probe the true gravitational degrees of freedom [123, 124]. We applied the
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gauge-invariance tools to substantiate these latter claims, and sharpen the
arguments on each side. Finally, we agreed with those who proposed the
experiment that it could indeed test conventional quantum gravity. We
presented a set of arguments which imply that conventional quantum grav-
ity is the only consistent theory which could yield a positive result in the
experiment.

In chapter 6 we took a tangent to study the consequences of the con-
straint equation in Yang-Mills theory. We demonstrated that a vacuum
gluon condensate will, according to the constraint equation, lead to quark
confinement [125].

Part II of this thesis exclusively discussed the Correlated Worldline the-
ory of quantum gravity.

We started with a very brief introduction to the theory in chapter 7. In
chapter 8 we made a start on proper calculations by setting up a pertur-
bative expansion in powers of the gravitational coupling `2P . We evaluated
the contributions up to leading order, and the main results were: i) conven-
tional quantum gravity loop contributions are suppressed by undetermined
parameters of the theory, ii) novel CWL contributions arise, but at this order
they simply reproduce the contributions from conventional quantum gravity
tree-diagrams, and iii) the theory retains the diffeomorphism symmetry of
conventional quantum gravity.

In chapter 9 we tried to define the theory in terms of an infinitely repli-
cated Hilbert space. In doing so, we were able to address how QM states and
operators are embedded in CWL, fix the undetermined parameters, redefine
the theory to simplify redundancies, define transition amplitudes. We later
reported on some work in its infancy, as we tried to discuss measurements
and the relation of CWL to a non-linear QM theory.

In chapter 10 we illustrated that CWL theory has an intrinsic large-N
limit, and we used this fact to drastically simplify calculations. We demon-
strated the equivalence of CWL to an “in-out” semiclassical gravity theory,
and computed exact expressions for various correlations functions. From
our results it became clear that CWL was likely renormalizable.

In chapter 11 we finally took the formal developments and applied them
to calculations for simple physical systems. We showed that quantum me-
chanical oscillators are unaffected by CWL when in gaussian states. We
discussed a general non-relativistic particle propagator and showed that
there are no leading order CWL effects when there is a single dominant
classical path. For a two-path system though, we demonstrated how the
path bunching mechanism emerges. We then studied the gravitationally-
mediated-entanglement experimental apparatus and determined that CWL
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will predict a null result for their experiment. Finally, we applied CWL
theory to a many-particle object. For an object made of silica, as are the
LIGO mirrors, we predicted relevant CWL corrections near the frequency
band (0.8 − 60) mHz. This is irrelevant to most current experiments, but
right within the intended sensitivity band of LISA, giving some hope that
the project may be able to test the CWL theory.
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Appendix A

Computing Exact
Correlation Functions in
CWL Theory

We can start here from eq. (10.12) for the exact CWL free energy functional.
We can compute connected correlation functions by functionally differenti-
ating this with respect to the source J and setting J = 0. As a consequence
of setting J = 0, the stationary phase solution ḡµνJ simply becomes ηµν be-
cause there is no matter source. In the body of the paper we do this for the
1-point function 〈φα〉 and conclude that CWL offers no correction for this.
Here we will explicitly compute the 2, 3, and 4-point functions in this way.

For the two-point function we have

〈φαφβ〉CWL = (−i)2 δ

δJα
δ

δJβ
W[J ]

∣∣∣∣
J=0

. (A.1)

Since the free energy functional depends on the source J both explicitly and
implicitly through the stationary phase solution ḡJ , we must use the chain
rule

〈φαφβ〉CWL =(−i)2

(
∂

∂Jα
+
δḡaJ
δJα

∂

∂ga

)(
∂

∂Jβ
+
δḡbJ
δJβ

∂

∂gb

)
× (SG[g] +W0[J |g])

∣∣∣∣
J=0,g=η

. (A.2)

Let us be clear about this notation, functional derivatives are typically writ-
ten using the symbol δ rather than the d from standard calculus. Here
though, we have a situation analogous to taking the convective time deriva-
tive

d

dt
f(xj(t), t) =

(
∂

∂t
+
dxj

dt

∂

∂xj

)
f(xj(t), t). (A.3)

In standard calculus we have the symbols ∂ and d to distinguish partial from
total derivatives and in our expressions above we are adopting the symbol
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Appendix A. Computing Exact Correlation Functions in CWL Theory

∂ to represent a “partial”-functional derivative (where we functionally dif-
ferentiate the functional only with respect to a function where it appears
explicitly) and we reserve the symbol δ for “total”-functional derivatives.

In evaluating the expression in eq. (A.2) we found it convenient to first
expand out the derivatives before differentiating W[J ]. Doing this we find

〈φαφβ〉CWL = (−i)2

(
∂

∂Jα
∂

∂Jβ

+
δḡaJ
δJα

∂

∂Jβ
∂

∂ga
+
δḡbJ
δJβ

∂

∂Jα
∂

∂gb

+
δ2ḡaJ

δJαδJβ
∂

∂ga
+
δḡaJ
δJα

δḡbJ
δJβ

∂

∂ga
∂

∂gb

)
(SG[g] +W0[J |g])

∣∣∣∣
J=0,g=η

. (A.4)

To simplify this we note that all terms linear in g derivatives will vanish
because ∂

∂g (SG[g]+W0[J |g])
∣∣
g=ḡJ

= 0 by the definition of ḡJ . What remains
is

〈φαφβ〉CWL = (−i)2 ∂

∂Jα
∂

∂Jβ
W0[J |η]

∣∣∣∣
J=0

+ (−i)2 δḡ
a
J

δJα
δḡbJ
δJβ

∂2

∂ga∂gb
(SG[g] +W0[J |g])

∣∣∣∣
J=0,g=η

. (A.5)

The first term is just the 2-point correlation function from conventional
quantum field theory with no gravitational corrections and the second term
is novel.

To compute the second term we must compute ḡJ at least to linear order
in J . To to this we will set up an iterative procedure for solving the semi-
classical Einstein equation in powers of J . We will do this mathematically
and later interpret the result diagrammatically. We note that a similar pro-
cedure for understanding classical GR using quantum gravity was described
in [410]. We start with the semi-classical Einstein equation

δ

δgb

(
SG[g] +W0[J |g]

)∣∣∣∣
ḡJ

= 0. (A.6)

Now expand the Einstein-Hilbert action about a flat background ga = ηa+ha

and separate the quadratic term from the cubic and higher terms.

SG[g] =

∞∑
m=2

1

m!
SG,a1...amh

a1 ...ham

=
1

2
SG,a1a2h

a1ha2 + Sint
G [h], (A.7)
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where we use the comma notation for functional derivatives

SG,a1...am ≡
(

δm

δga1 ...δgam
SG[g]

)∣∣∣∣
g=η

. (A.8)

The expansion starts at quadratic order because Minkowski space is a solu-
tion to the vacuum Einstein equation with zero action. The semi-classical
Einstein equation then reads

SG,abh̄
a
J = − δ

δhb

[
Sint
G [h̄J ] +W0[J |η + h̄J ]

]
. (A.9)

We can formally solve this by inverting the quadratic form using the Green’s
function Dab ≡ (SG,ab)

−1,

h̄aJ = −Dab

[
Sint
G,b[h̄J ] +W0,b[J |ḡJ ]

]
. (A.10)

When the source J = 0 the matter is in its vacuum state and W0[0|g] de-
scribes the vacuum energy. After appropriate renormalization of the vacuum
energy we know that Minkowski spacetime is the solution to the vacuum
Einstein equation with the appropriate boundary conditions. We can then
conclude that h̄J=0 = 0. To go beyond this to find derivatives of the solution
we can implicitly differentiate eq. (A.10) with respect to J . Doing this we
obtain

δh̄cJ
δJα

=−
[
δca +DcbSint

G,ba[h̄J ] +DcbW0,ba[J |ḡJ ]

]−1

×Dab ∂

∂Jα
W0,b[J |ḡJ ]. (A.11)

We can now evaluate this when J = 0. Focus on the last factor, involving
derivatives of the matter free energy functional. It is straightforward to
show that it can be written

∂

∂Jα
W0,b[J |η]

∣∣∣∣
J=0

= (i)2〈φαSb〉 − i〈φα〉〈Sb〉, (A.12)

where the correlation functions are to be evaluated in the conventional mat-
ter without gravity theory in Minkowski vacuum. If we assume a theory
of matter which has vanishing vacuum n-point functions for odd n, then
〈φαSb〉 = 〈φα〉〈Sb〉 = 0. Thus the first derivative of the solution with re-
spect to the source will vanish when evaluated at J = 0,

δh̄cJ
δJα

∣∣∣∣
J=0

= 0, (A.13)
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and then by eq. (A.5), the CWL corrections to the matter 2-point function
will also vanish

〈φαφβ〉CWL = −i ∂

∂Jα
∂

∂Jβ
W0[J |η]

∣∣∣∣
J=0

. (A.14)

This procedure can be extended to the 3-point function. After expanding
out the derivatives using the chain rule we obtain

〈φαφβφγ〉CWL = (−i)2

(
∂3

∂Jα∂Jβ∂Jγ

+
δḡaJ
δJα

∂

∂ga
∂2

∂Jβ∂Jγ
+

δ2ḡaJ
δJαδJβ

∂

∂ga
∂

∂Jγ
+

δ3ḡaJ
∂Jα∂Jβ∂Jγ

∂

∂ga

+
δḡaJ
δJα

δḡbJ
δJβ

∂2

∂ga∂gb
∂

∂Jγ
+
δḡaJ
δJα

δ2ḡbJ
δJβδJγ

∂2

∂ga∂gb

+
δḡaJ
δJα

δḡbJ
δJβ

δḡcJ
δJγ

∂3

∂ga∂gb∂gc

+ Permutations of (α, β, γ)

)
(SG[g] +W0[J |g])

∣∣∣∣
J=0,g=η

. (A.15)

If we use the previously discussed facts, ie. that terms linear in derivatives
with respect to ga as well as terms involving single derivatives of ḡJ will all
vanish, then we see that all of the CWL corrections to the 3-point function
vanish. The first term in eq. (A.15), involving only J derivatives, is the only
surviving term and it is just the conventional QFT result

〈φαφβφγ〉CWL = (−i)2 ∂3

∂Jα∂Jβ∂Jγ
W0[J |η]

∣∣∣∣
J=0

, (A.16)

which itself vanishes in our case of interest.
Thusfar we’ve seen that CWL offers no corrections to the 1, 2 and 3-

point functions for scalar field theory, but this is to be expected based on the
conclusion from the text that no loop diagrams contribute in CWL theory.
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Next, at 4-point we expect corrections. Expanding the derivatives we have

〈φαφβφγφδ〉CWL = (−i)3

(
δ4

δJαδJβδJγδJδ

+
δḡaJ
δJα

∂

∂ga
∂3

∂Jβ∂Jγ∂Jδ
+
δḡaJ
δJα

δḡbJ
δJβ

∂2

∂ga∂gb
∂2

∂Jγ∂Jδ

+
δ2ḡaJ

δJαδJβ
∂

∂ga
∂2

∂Jγ∂Jδ
+
δḡaJ
δJα

δḡbJ
δJβ

δḡcJ
δJγ

∂3

∂ga∂gb∂gc
∂

∂Jδ

+
δ2ḡaJ

δJαδJβ
δḡbJ
δJγ

∂2

∂ga∂gb
∂

∂Jδ
+

δ3ḡaJ
δJαδJβδJγ

∂

∂ga
∂

∂Jδ

+
δḡaJ
δJα

δḡbJ
δJβ

δḡcJ
δJγ

δḡdJ
δJδ

∂4

∂Jα∂Jβ∂Jγ∂Jδ

+
δ2ḡaJ

δJαδJβ
δḡbJ
δJγ

δḡcJ
δJδ

∂3

∂ga∂gb∂gc
+

δ2ḡaJ
δJαδJβ

δ2ḡbJ
δJγδJδ

∂2

∂ga∂gb

+
δ3ḡaJ

δJαδJβδJγ
δḡbJ
δJδ

∂2

∂ga∂gb
+

δ4ḡaJ
δJαδJβδJγδJδ

∂

∂ga

+ Perms.

)
(SG[g] +W0[J |g])

∣∣∣∣
J=0,g=η

, (A.17)

where “Perms.” denotes all permutations of α, β, γ, δ in the above which
yield distinct terms. Applying the equation of motion and eq. (A.13) we
find that in the above expression only the first term as well as the tenth
term and its permutations are non-zero. We can then simplify the above to

〈φαφβφγφδ〉CWL = (−i)3 δ4

δJαδJβδJγδJδ
W0[J |η]

∣∣∣∣
J=0

+ i

(
δ2ḡaJ

δJαδJβ
δ2ḡbJ
δJγδJδ

∂2

∂ga∂gb
+ Perms.

)
SG[g]

∣∣∣∣
J=0,g=η

+ i

(
δ2ḡaJ

δJαδJβ
δ2ḡbJ
δJγδJδ

∂2

∂ga∂gb
+ Perms.

)
W0[J |g]

∣∣∣∣
J=0,g=η

(A.18)

The first term is of course just the connected 4-point correlation function
from standard QFT. To understand the second term we need to compute
the second derivative of the solution h̄J . To do so we implicitly differenti-
ate eq. (A.10) twice with respect to J . We won’t write the lengthy result
here, but once we evaluate this at J = 0 and use h̄J

∣∣
J=0

= δ
δJ h̄J

∣∣
J=0

= 0,
we obtain

δ2h̄aJ
δJαδJβ

∣∣∣∣
J=0

= −
(
SG,ac +W0,ac[0|η]

)−1

W0,cαβ[0|η]. (A.19)

307



Appendix A. Computing Exact Correlation Functions in CWL Theory

Notice that here we have the inverse of the differential operator SG,bc+W0,bc,
which itself shows up in eq. (A.18). This then leads to a rather drastic
simplification when we substitute eq. (A.19) back into eq. (A.18),

〈φαφβφγφδ〉CWL = (−i)3 δ4

δJαδJβδJγδJδ
W0[J |η]

∣∣∣∣
J=0

+ iW0,aαβ[0|η]

(
SG,ab +W0,ab[0|η]

)−1

W0,bγδ[0|η]

+ Perms. (A.20)

We can understand this expression by computing these derivatives of
W0, and then thinking in terms of diagrams. First we have

W0,aαβ[0|η] = (i)2〈φαφβSa〉, (A.21)

where all terms proportional to 〈φα〉 vanished because of the previously as-
sumed internal symmetry of the Minkowski vacuum state. Also, all terms
proportional to 〈Sa〉 vanish. This is because it is the vacuum expectation
value of a local operator and since the Minkowski vacuum is Poincaré in-
variant it must equal a constant: and we renormalize this constant vacuum
energy density to zero. We also have

W0,ab[0|η] = i〈SaSb〉+ 〈Sbc〉 − i〈Sa〉〈Sb〉. (A.22)

Again, 〈Sa〉 vanishes here, but it is easy to see that Sab is also a local
operator and its Minkowski vacuum expectation value should also vanish
after renormalization. Our final, exact expression for the 4-point function
in CWL is then

〈φαφβφγφδ〉CWL = (−i)3 δ4

δJαδJβδJγδJδ
W0[J |η]

∣∣∣∣
J=0

+ i〈φαφβSa〉
(
SG,ab + i〈SaSb〉

)−1

〈φγφδSb〉. (A.23)

This expression can be understood quite simply. Up to operator ordering,
〈φαφβSa〉 is proportional to the expectation value of the matter stress-energy
tensor in the state created by perturbing the vacuum by sources Jα and
Jβ, ostensibly a two-particle state provided the source insertions are widely
separated. We then have two stress-energy sources at a and b created by
the source insertions. These stress-energy sources interact via the exchange
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of a single graviton with renormalized propagator. To see this we can use
the Green’s function Dab ≡ (SG,ab)

−1,(
SG,ab + i〈SaSb〉

)−1

=

(
δbc + iDbd〈SdSc〉

)−1

Dca

=
∞∑
k=0

(
− iDbd〈SdSc〉

)k
Dca, (A.24)

and see that this object is just the sum of diagrams contributing to the
graviton 2-point function with all numbers of insertions of the vacuum po-
larization Πdc = 〈SdSc〉. The exact 4-point function predicted by CWL is
then described by the exchange of a single graviton which is renormalized
by a vacuum polarization which can be computed in conventional flat space
QFT.

If we consider a theory of matter which is free except for gravitational
interactions, the stress-energy tensor will be quadratic in the fields Sa =
1
2 τ̂

αβ
a φαφβ and the flat space correlation functions can be expressed in terms

of the matter Green’s function 〈φαφβ〉 = iGαβ ≡ i(Sαβ)−1 using Wick’s
theorem. The result for the exact 4-point function can then be written
explicitly as

〈φαφβφγφδ〉CWL = iGασGβρτ̂
σρ
a Dabτ̂ληb GγλGδη

+ iGασGγρτ̂
σρ
a Dabτ̂ληb GβλGδη

+ iGασGδρτ̂
σρ
a Dabτ̂ληb GγλGβη, (A.25)

which is just the sum of the thee crossings of the tree diagram in fig. 10.2
from conventional QFT, but with a renormalized graviton propagator Dab =(
(Dab)−1 + iΠab

)−1
where the vacuum polarization is given by the matter

bubble

Πab = −1

2
τ̂αβa τ̂γδb GαδGβγ . (A.26)
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