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Abstract 

Auto-dependency has triggered many public health challenges for North American citizens 

including increases in physical inactivity rates, road collisions, and Greenhouse Gas emissions. 

As a result, there has been a growing interest in addressing these challenges by promoting more 

sustainable and livable neighbourhood planning.  

In response, researchers from the University of British Columbia and the Canada Mortgage 

and Housing Corporation have developed the SMARTer Growth (SG) neighbourhood design 

principles. However, no previous research has evaluated the impact of the full-fledged 

SMARTer Growth design principles on travel behaviour and community quality of life.  

To conduct a comprehensive evaluation of the SG principles, this research developed an agent-

based model that evaluates the impact of neighbourhood design on travel pattern by simulating 

agents’ daily trip activities. It employs a framework that integrates Random Utility 

Maximization-based modelling with reinforcement learning concepts to account for the 

bounded rationality and knowledge learning process. Moreover, the model utilizes the 

Diffusions of Innovations Theory to account for the impact of social interactions by simulating 

how agents share their knowledge and propagate information. It also accounts for the iterative 

feedback process between agents’ actions and the environment. In addition, a suite of tools has 

been identified to evaluate the impact of neighbourhood design on community quality of life, 

including: i-THRIVE, air quality, noise pollution, walkability, bikeability, transitability, 

playability, and social interactions.  

The agent-based model and the QoL suite of tools were utilized to evaluate the outcome of 

three scenarios in three urban centres in Kelowna, BC; the three scenarios are 1) existing, 2) 

2040 business as usual, and 2040 SG. The results of the agent-based simulation show promise, 

as retrofitting the three urban centres using the SG design principles resulted in significant 

modal shift towards active transportation and reduction in auto use compared to the existing 

and 2040 business as usual scenarios. Moreover, the QoL evaluation revealed that applying the 

SG design principles improves walkability, bikeability, playability, and decreases air and noise 

pollution on local roads. 
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Lay Summary 

Canadians are dealing with several health challenges including increase in physical inactivity 

rates, road collisions, and Greenhouse Gas emissions. Given the limited impact of existing 

neighborhood designs in addressing these challenges, researchers have developed SMARTer 

Growth (SG), a novel neighbourhood design that combines the best characteristics of the 

traditional grid and culs-de-sac neighbourhood designs. The objective of this research is to 

evaluate the SG design principles on transportation travel behaviour and community quality of 

life (QoL). To achieve this objective, this research proposes an agent-based model that 

appropriately characterize human behaviour and their bounded rationality, accounts for 

transportation networks and infrastructure, considers land use characteristics and traffic safety, 

and allows for interactions between different transportation users as well as people-to-built 

environment interactions. In addition, a suite of tools has been identified to evaluate SG QoL 

outcomes in terms of health, safety, air quality, noise pollution, walkability, bikeability, 

transitability, playability and social interactions. 
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Chapter 1     Introduction 

1.1 Problem Statement 

Historically, urban areas have been shaped by the evolution of the transportation system. For 

instance, the introduction of horse-drawn streetcars in 1852 enabled cities, for the first time, to 

slowly expand outwards away from their walking-friendly city centers. Further, the innovation of 

the electric motor has sparked the “first urban transport revolution” that witnessed the introduction 

of electric streetcars in 1888; elevated rapid transit lines in 1892; and subway systems in 1898 

(Hanson & Giuliano, 2017). Such urban transit technologies have supported further expansion of 

metropolitan areas in a star-shaped pattern along main transit corridors (Adams, 1970). 

Meanwhile, a second urban transport evolution was in the making with the introduction of cars in 

American cities in the 1890s. During this period, cars were primarily owned by the wealthy, but 

with time, cars started to become affordable to the masses in the 1920s. While cars were initially 

used for leisure and recreational activities, their influence on urban areas was substantial by 

making more land accessible for development. This encouraged people to move away from dense 

“crowded” urban areas located along transit lines to newly developed low-density suburban areas 

that feature single and multiple dwellings built on larger lots with paved alleys and garages 

(Adams, 1970). By the late 1930s, people started to rely on cars on every aspect of their daily life 

activities (e.g. commuting, shopping, and socializing) which led to a significant decrease in public 

transport ridership and increase in congestion and road collisions. In response, transportation 

professionals focused mainly on traffic engineering in an effort to improve traffic safety and flow. 

Note that transportation engineering during that era was called “traffic engineering”. This 

overwhelming acceptance of cars from the public as well as the widespread emphasis on them by 
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professionals and governments (e.g. the 1956 Interstate Highway Act) further accelerated the 

sprawl of cities and land use segregation. 

In addition, land use segregation was supported by urban planners as the main concerns 

about public health were infectious diseases and poor sanitation (Perdue, Gostin, & Stone, 2003). 

At that time, it was well established that creating zones to segregate different land uses, such as 

residential and industrial, would improve public health by limiting emissions and noise in 

residential areas (Corburn, 2007; Scott, 1969). Scott (1969) affirms that “Zoning was the heaven-

sent nostrum for sick cities, the wonder drug of the planners, the balm sought by lending 

institutions and householders alike”. However, the unlimited expansion of cities and excessive 

land use segregation have contributed to increasing the distances between trip origins and 

destinations, which also contributed to the creation of the auto-dependency culture that we are 

facing today.  

Auto-dependency has caused many public health challenges for North American citizens 

including the increase in physical inactivity rates, road collisions, and Greenhouse Gas (GHG) 

emissions. First, the increasing levels of physical inactivity has become a major challenge for 

public health. Strain et al. (2020) found that physical activity prevents around  4 million early 

deaths annually. Unfortunately, only 17.5 percent of Canadian adults (18-79 years) meet the 

Canadian physical activity guidelines by accumulating at least 150 minutes of moderate-to-

vigorous physical activity each week (Centre for Surveillance and Applied Research, Public Health 

Agency of Canada, 2018). Physical inactivity is associated with increased risk for obesity and 

many chronic diseases such as type 2 diabetes, stroke, and ischaemic heart disease (Pratt, Norris, 

Lobelo, Roux, & Wang, 2014; Sallis, Frank, Saelens, & Kraft, 2004; VanBlarcom & Janmaat, 
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2013; Wang, G. et al., 2005). It is therefore not surprising that physical inactivity imposes a large 

economic burden on our nation. For instance, the burden of physical inactivity in Canada was 

estimated at $6.8 billion in direct (i.e. hospitalization, physician, medication) and indirect (i.e. 

economic output lost due to illness, disability, or premature mortality) costs in 2009 (Janssen, 

2012). Similarly, Krueger et al. (2015) estimated the annual economic burden of physical inactivity 

to be as high as 10.8 billion in direct and indirect costs in 2012. 

Second, road collisions are one of the leading causes of death and injury worldwide, 

responsible for approximately 1.35 million fatalities annually (World Health Organization, 2018). 

In Canada, almost 2,000 people are killed and 165,000 are injured per year in road collisions 

(Canadian Council of Motor Transport Administration, 2016). The Canadian economic impact of 

road collisions is estimated at 37 billion annually or 2.2 percent of Canada’s Gross Domestic 

Product (GDP) (Canadian Council of Motor Transport Administration, 2016). WHO research 

shows that 95 percent of road collisions are a result of driver errors, which has led to calls for 

private automobiles use reduction and Active Transportation (AT) use increase. In response, 

Canada introduced in 2016 its Road Safety Strategy (RSS) 2025, with a long-term vision of 

Towards Zero collisions, which aims to make Canadian roads and highways the safest in the world.   

Finally, the Canadian Government has committed, under the Paris Agreement, to reduce 

GHG emissions by 30 percent below 2005 levels (Environment and Climate Change Canada, 

2016). However, current indicators suggest that Canada will not be able to meet this target, as 

GHG emissions in 2030 are estimated to be only 21 percent below 2005 levels (Environment and 

Climate Change Canada, 2018a). Transportation is the second largest contributor to GHG 

emissions in Canada, accounting for 28 percent of the total emissions nationwide  (Environment 
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and Climate Change Canada, 2018b). At the provincial level, 40 percent of British Columbia’s 

GHG emissions are from the transportation sector  (BC Ministry of Environment, 2016). Such 

high levels of transportation-related emissions highlight the critical role of the transportation sector 

in achieving the 2030 target  (Rahman & Idris, 2017).   

Consequently, there has been a growing interest in addressing these challenges by 

promoting more sustainable neighbourhood designs that reduce automobile dependency and 

encourage people to use more sustainable modes of transportation. The two most employed 

neighbourhood designs in North America today are 1) the traditional grid pattern and 2) the culs-

de-sac or loops and lollypop pattern. The culs-de-sac pattern was employed to address problems 

associated with the grid street pattern by precluding neighbourhood traffic shortcutting. However, 

the culs-de-sac pattern has its own disadvantages including being disorienting to navigate within 

a neighbourhood and increasing distances between origins and destinations (Sun & Lovegrove, 

2013). 

Neighbourhood design influences individuals’ travel pattern in three ways: 1) it shapes 

potential travel routes and their characteristics, 2) determines public transit accessibility, and 3) 

defines available activities (e.g. shopping, work, leisure)  (Jin, 2010). Beyond travel pattern, which 

is usually the focus of transportation engineers, neighbourhood design also influences many 

aspects of human behaviour and our quality of life, including childhood development and human 

social interactions.  

Over one billion children are growing up in urban areas around the world (UNICEF, 2012). 

In Canada, over 50% of children and youth live in the country’s largest urban cities such as 

Vancouver, Calgary, Toronto, and Montreal (Canadian Institute of Child Health, 2013). While 
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living in cities provides children a greater access to services such as schools and hospitals, it 

reduces their contact with natural environment, such as parks, forests, and riverbank. In his book, 

Last Child in the Woods, Richard Louv coined the phrase “nature deficit disorder” to describe 

children’s retrieval to indoors due to urbanism (Louv, 2010). A significant discussion on the 

benefits of nature contact for children is presented by Chawla (2015). Neighbourhood design has 

the potential to alleviate this problem as it determines how children engage with public places and 

their level of access to green spaces. Additionally, parents’ perception of a neighbourhood design 

determines their children’s level of freedom and independent mobility (Smith et al., 2019). These 

factors, in turn, affect children’s cognitive, emotional, social, and bodily development (Garau & 

Annunziata, 2020).  

As for adults, social isolation is a major public health concern, especially among older 

people (Alpass & Neville, 2003; Gerst-Emerson & Jayawardhana, 2015; Luo, Hawkley, Waite, & 

Cacioppo, 2012; Stessman, Rottenberg, Shimshilashvili, Ein-Mor, & Jacobs, 2014). It is even 

claimed that social isolation is worse for our physical health than smoking 15 cigarettes a day, 

which makes it “twice as harmful as obesity and as lethal as alcoholism” (Frame, 2017). It has 

been well established in the literature that mental health problems (including social isolation) are 

connected to the built environment (Gehl & ebrary, 2011; Halpern, 1995; Srinivasan, O'Fallon, & 

Dearry, 2003). In fact, several road design guidelines emphasize the role of roads as public spaces 

that provide opportunities for social interactions (Meyer, 2016; NACTO, 2013; Transportation 

Association of Canada, 2017). In addition, one of the main goals of the new urban neighbourhood 

concepts in urban planning is to increase social interactions (Jin, 2010).  



 

6 

Given the limited impact of neighbourhood designs in promoting more livable and 

sustainable communities and AT, researchers from the University of British Columbia (UBC) and 

the Canada Mortgage and Housing Corporation (CMHC) developed the SMARTer growth 

neighbourhood design principles (formerly known as the fused grid). Figure 1.1 depicts the 

differences between the traditional grid, culs-de-sac, and SMARTer Growth network patterns. The 

SMARTer Growth principles combine the best characteristics of both the traditional grid and culs-

de-sac street patterns, plus many sustainable community planning principles, including:  

1) The tranquility and safety of the culs-de-sac and loop street patterns, but with continuous 

AT routes connecting between dead ends (Grammenos, Craig, Pollard, & Guerrera, 2008; 

Sun & Lovegrove, 2013);   

2) The high connectivity of the grid pattern, but focused on AT network connectivity within 

neighborhoods while disrupting and focusing vehicular connectivity onto perimeter 

arterial/collector roads; and 

3) The ubiquity of large and small restorative, socially interactive, and natural play spaces 

within a one-minute walk of every person living and/or working in the neighborhood. 

 

Figure 1.1: Street network patterns 

SMARTer Growth 
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1.2 Motivation 

There is a relatively small body of literature relating to the performance of SMARTer Growth 

neighbourhood design. Most of these studies address individual aspects of the SMARTer Growth’s 

performance such as safety  (Sun & Lovegrove, 2013), traffic performance  (IBI Group, 2007), 

and walkability  (Frank, L. & Hawkens, 2007). The low number of studies can be attributed to the 

fact that the SMARTer Growth principles are relatively new, compared to other neighbourhood 

designs, and have only been implemented partially in Calgary (Saddlestone development). 

Moreover, the research to date has mainly studied the SMARTer Growth as a street network layout, 

neglecting the fact that SMARTer Growth is a system-based design that involves many 

components other than simply a road network layout, including human-scale block sizes, active 

transport, intersection design, green spaces layout, and land use distribution. Creating a model that 

can account for the influence of all these factors will provide a more comprehensive evaluation of 

the SMARTer Growth design.  

The research on modelling and evaluation of neighbourhood design in terms of daily travel 

behaviour has been continuously evolving over the past decades to provide a better understanding 

of the complexity of neighbourhood design. However, most of the developed models have limited 

scope as they were aimed to gain further knowledge on a specific aspect of travel behaviour. In 

addition, many of the proposed models in the literature either only consider walking mode or treat 

walking and cycling as one mode. Besides, most of the existing work lacks the consideration of 

psychological factors (e.g. habits), micro-scale built environment characteristics (i.e. current 

models focus on aggregated zone systems), and the feedback process between people and the built 

environment. Accordingly, it is necessary to develop a model that appropriately characterize 
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human behaviour and their bounded rationality, accounts for transportation networks and 

infrastructure, considers land use characteristics and traffic safety, and allows for interactions 

between different transportation users as well as people-to-built environment interactions.  

Additionally, neighbourhood design plays an important role in enhancing (or degrading) 

our quality of life beyond influencing travel behaviour. For instance, neighbourhood design 

influences social interactions, residents’ sense of community, children’s playability, and air and 

noise pollutions. Thus, there is a need to assemble a suite of tools to evaluate the performance of 

the SMARTer Growth neighbourhood design for each of these factors. 

1.3 Research Goal and Objectives  

The over-arching goal of this thesis is to address the challenges of putting the SMARTer Growth 

neighbourhood design into practices in Canada by providing a better understanding of the 

influence of neighbourhood design as a system (i.e. not the individual characteristics of 

neighbourhood design) on travel behaviour and quality of life. This goal will be achieved by 

pursuing the following main objectives: 

1) Develop a state-of-the-art agent-based travel behaviour analysis framework to provide a 

comprehensive evaluation of the influence of neighbourhood design on travel behaviour; 

2) Propose a suite of tools that can be used to evaluate the influence of the SMARTer 

neighbourhood design on community quality of life; and 

3) Demonstrate the developed framework and the suite of evaluation tools via an application 

to assess the sustainability benefits of the SMARTer Growth design in the city Kelowna. 
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1.4 Thesis Structure 

This dissertation is comprised of seven chapters. Chapter Two summarizes the literature review of 

the SMARTer Growth neighbourhood design principles, traditional mode choice modelling, agent-

based modelling, and reinforcement learning, followed by a discussion on the concept of ‘quality 

of life’ and current practices of assessing it. Chapter Three proposes a conceptual framework for 

an adaptive agent-based model including a discussion on modelling agents’ awareness and 

information learning process, constructing the built environment using GIS data, and generating 

the synthetic population. Chapter Four outlines the data used in this dissertation and their sources. 

In addition, the chapter presents a detailed statistical summary of the explanatory variables 

considered for the agent-based model development and quality of life assessment. Chapter Five 

discusses the model development and calibration of the various components of the proposed 

adaptive agent-based model for the city of Kelowna, BC. Chapter Six presents the microsimulation 

results of travel behaviour and quality of life assessment in Kelowna, BC. Chapter Seven presents 

the research summary, conclusions, contributions, and embarks on an outlook towards prospective 

research directions.  
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Chapter 2     Literature Review 

2.1 SMARTer Growth Neighbourhood Design 

SMARTer Growth (SG) Neighbourhood Design principles have evolved out of two independent 

but simultaneous research streams exploring ways to make development patterns and housing 

forms into more livable and sustainable communities. One stream of research was occurring at 

UBC (3-way Offset Grid neighborhood design) by Lovegrove et al. (2006), while the second was 

at the Canada Mortgage and Housing Corporation (Fused Grid neighborhood design) by 

Grammenos et al. (2008). Their subsequent collaboration resulted in a book on SG design 

principles (Grammenos & Lovegrove, 2015).  

SG begins with a human scale of connecting elements on which green open space, land 

uses, and transportation systems are superimposed. SG provides the easy orientation and 

connectivity of a grid road pattern, in combination with the safety and efficiency of an 

impermeable cul-de-sac development pattern (Grammenos et al., 2008; Sun & Lovegrove, 2013). 

SMARTer Growth is modular (see Figure 2.1) and at its simplest and most efficient form, consists 

of four 400-square meter neighbourhood quadrants. Each quadrant consists of a five-by-five grid 

of walkable, 80 meter blocks. Traffic shortcutting is precluded by a network of ubiquitous corner 

parks connected by greenways and off-road paths to a larger central community green. These green 

spaces, which account for approximately 8 percent of the land, render impermeable the local road 

network, but provide a continuous AT grid network of on-road and off-road routes that allow 

convenient walking and cycling across the neighborhood in less than five minutes, and, in less 

time than it takes to drive across (Grammenos & Lovegrove, 2015). Traffic mobility is provided 

at the periphery of the quadrants using the following spacing: 1) minor collectors at 400 m, 2) 
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major collectors at 800 m, and 3) arterials at 1,600 m; one-way couplets are used for all major 

perimeter collectors and arterials, which allows for safer 3-way intersections with internal 

neighborhood roads, as well as safer pedestrian/bike access to perimeter service blocks (e.g. 

shopping, jobs, health services, etc.), and across to adjacent neighborhoods. All internal local road 

intersections in the SMARTer Growth module are calmed in favor of low speed, raised pedestrian 

and bicycle crossings.  All other road intersections are controlled with roundabouts. Moreover, 

approximately 23% of street space that would normally be used in a traditional grid network is 

reclaimed and used in SG for parks and housing which results in a 30% decrease in total 

infrastructure cost, including construction, operation, and maintenance costs (IBI Group, 2008). 

In summary, SMARTer Growth is composed of several grids built upon the human scale: 

1) a continuous pedestrian/bike pathway system of interconnected on/off-road social, green, park, 

and play spaces; 2) a discontinuous, low-speed local access road grid that serves internal residents, 

protects pedestrians, and precludes shortcutting; 3) a through mobility grid comprised of major 

arterial/collector roads for district and regional connectivity arranged in 1-way couplets and 

controlled by roundabouts; and 4) a service grid overlayed with major, regional services along the 

perimeter couplets, and with local services (e.g. schools, churches, community centers) along 

internal local collectors and/or in the central greens. This modular SMARTer Growth 

Neighborhood design has been demonstrated to support both lower and higher densities, with 

lower densities (mostly residential) typically in the core, and higher densities (mostly commercial 

with some residential above) typically along the perimeters, in keeping with conventional urban 

development planning practices. 
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Figure 2.1: SMARTer Growth neighbourhood module (Sun and Lovegrove, 2013) 

The above SMARTer Growth principles have been investigated in several studies that 

report on its key features. For instance, Sun and Lovegrove (2013) compared the traffic safety 

level of five neighbourhood designs (i.e. grid, culs-de-sac, SMARTer Growth, Dutch sustainable 

road safety patterns, and 3-way offset) using macro-level collision prediction models. The 

researchers created a total of 45 different neighbourhood test modules to account for different 

neighbourhood and block sizes. Although the vehicle kilometer travelled (VKT) is arguably an 

inherited characteristic for each neighbourhood design, the study did control for VKT along with 

congestion level and socio-demographics to allow for fair and consistent cross-sectional 

comparisons. By normalizing the impact of density and land use, the study found that the 

SMARTer Growth neighbourhood design was significantly associated with 30-60 percent fewer 

road collisions compared to traditional neighbourhood designs (i.e. grid and cul-de-sac). 

In addition, CMHC collaborated with UBC researchers to expand on this research and 

conducted a comparative evaluation of the traffic performance of the Conventional Suburban, Neo-
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traditional, and SMARTer Growth neighbourhood designs (IBI Group, 2007). The neighbourhood 

of Barrhaven in Ottawa, ON was selected for this research because it represents a typical suburb 

in Ottawa with higher than average population density. The street network of the neighbourhood 

is classified as conventional suburban layout. CMHC developed two design alternatives that 

represent the Neo-traditional and SMARTer Growth designs. Five land use scenarios were 

developed to apply for each design of the study area. Traffic volume and modal share for transit 

and auto modes were first estimated using the city of Ottawa travel demand model developed on 

EMME/2. Then, Corsim, a microscopic modelling software, was used to estimate delay, level of 

service and other parameters on each road segment and intersection. The SMARTer Growth 

neighbourhood design was found to be the most efficient street network in terms of managing 

traffic flow in/out of the neighbourhood. Moreover, it was found to maintain safer traffic flows on 

local roads compared to other neighbourhood designs, especially with higher density scenarios. 

Jin and White (2012) utilized agent-based modelling to explore the effect of neighbourhood 

design on local trip patterns such as mode choice, pollution exposure, and social interaction 

opportunities; the agent-based modelling aspect of this research will be discussed in section 3.3.1. 

Similar to Sun and Lovegrove (2013), Jin and White developed seven hypothetical neighbourhood 

designs that represent different layouts. Mode choice models were estimated using multinomial 

logit formulation based on the random utility maximization framework. In contrast to the study 

conducted by CHMC, the mode choice models developed in this study accounted for changes in 

AT trips as well; however, it neglected land use factors. Several parameters were considered in 

this model related to socio-economic factors (e.g. vehicles per person in a household) and route 

characteristics (e.g. walking distance within the neighbourhood).  The results suggested the SG 
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design promotes the best quality of life in terms of providing high social interaction possibilities, 

more walking due to shorter distances, and less exposure to harmful air pollution. These benefits 

were achieved mainly due to the ubiquity and connectivity of the SG design’s active transport grid.  

Similar to Jin and White (2012), Masoud et al. (2017)  utilized multinomial logit mode 

choice models to explore the influence of fused grid neighborhood design principles on mode 

choice behaviour in a medium size community for work and non-work trips. This was done by 

hypothetically retrofitting an existing neighbourhood in the city of Kelowna, BC using the 

SMARTer Growth design principles. Two design alternatives were developed to show the 

variability possible in designs that follow SG principles. Although there was small variation in the 

results, both SG designs showed potential, when compared to the existing neighborhood, to 

significantly reduce auto use and to significantly increase transit and AT use for work trips.  

Together, these studies suggest that the SG neighbourhood design can improve and sustain 

the quality of life for neighborhood residents, businesses, and visitors in several aspects, including: 

safer communities, more efficient traffic flow, higher social interaction possibilities, less air and 

noise pollution, reducing auto use, and increasing the use of transit and AT modes. 

However, one significant knowledge gap that remains is the ability to robustly assess SG 

design impacts on AT mode choice in a reliably empirical manner. Due to computational and 

methodological limitations, SG research to date has focused on assessing on-road and vehicular 

traffic impacts. Recent research and computational progress suggest that it is now possible to 

assess the impacts of non-road components and AT activities related to the system-based approach 

SG neighborhood design, including SG land use density and mix, green spaces, and off-road 

pathways. 
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Therefore, there is an opportunity to provide a more robust assessment of a neighbourhood, 

including traditional versus SG designs, while accounting for both on and off-road system 

interactions, and for the feedback process between individuals and the entire built environment 

within which they live.  Moreover, this opportunity would provide the needed additional 

knowledge to link to quality of life metrics that help define the success of a neighborhood design, 

and community desirability overall.     

2.2 Mode Choice Modelling 

Models are used in transportation engineering and other disciplines as one of the most effective 

ways to simplify complex, real systems; they facilitate increased understanding and analysis. 

Models also allow us to better predict how a complex system would behave in response to changes, 

without the need for real life experiments that may be costly, destructive, and/or impractical 

(Railsback & Grimm, 2012). Discrete mode choice (DMC) models are used to analyze the 

decision-making behaviour of transportation system users. DMC models predict users’ mode 

choices among discrete alternatives that are collectively exhaustive and mutually exclusive 

(Koppelman & Bhat, 2006). Mode choice models are conventionally based on the fundamental 

Random Utility Maximization (RUM) framework. According to the RUM framework, travellers 

choose a mode that maximizes their utility (benefits) based on their characteristics (e.g. income, 

sex, etc.) and the attributes of the modes (e.g. travel distance, cost, etc.) (Banister, 1978). In 

contrast to deterministic utility models, this framework accounts for the analyst’s incomplete 

information on travellers’ characteristics, trip attributes, and decision-making circumstances by 

introducing a random error term to the utility function besides the systematic component as shown 

in Equation 2-1. The deterministic component is commonly formulated (Equation 2-2), as the 
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additive of three components: 1) characteristics of the individual, 2) attributes of alternative modes, 

and 3) the interaction between these two components. The random error term in the utility function 

accounts for the modeller’s uncertainty and captures the unmeasured portion of the utility 

(McFadden, 1986). The assumption about the distribution of the random error term determines the 

mathematical representation of the model. One of the most common assumptions is that the error 

term is Independently and Identically Distributed (IID) following the Gumbel (Extreme Value 

Type I) distribution which eventually lead to the Multinomial Logit (MNL) model formulation as 

shown in Equation 2-3. 

𝑈𝑖𝑚 =  𝑉𝑖𝑚 +  𝜖𝑞𝑚, 2-1 

where: 

Uqm: utility that individual (q) associates with mode (m), 

Vqm: deterministic component of the utility of mode (m) for individual (q), 

εqm: random term. 

𝑉𝑞𝑚 =  𝑉(𝑋𝑞) +  𝑉(𝑍𝑚) +  𝑉(𝑋𝑞 , 𝑍𝑚),  2-2 

where: 

𝑉(𝑋𝑞): characteristics of the individual (q). 

𝑉(𝑍𝑚): attributes of alternative mode (m), 

𝑉(𝑍𝑚, 𝑋𝑞): the interaction between the characteristics of individual (q) and the attributes of 

alternative mode (m). 

𝑃𝑞𝑚 =  
𝑒(𝑈𝑞𝑚)

∑ 𝑒(𝑈𝑞𝑚)
𝑚∈𝐶𝑞

, 2-3 

where: 

Pqm : Probability of individual (q) selecting mode (m), 

Uqm: Utility of individual (q) for mode (m), 

Cq: Set of alternative modes available for individual (q). 
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The RUM framework fails to capture the transportation users’ lack of information about 

the attributes of the trip (Banister, 1978; Ben-Akiva, Moshe & Bierlaire, 1999; Koppelman & Bhat, 

2006). Consequently, the analyst needs to make some assumptions about the rationality of the 

travellers. The underlying assumption of the RUM framework is that travellers are overly rational 

with unlimited knowledge of the available options and make decisions based on extremely 

complex computations (Ben-Akiva & Bierlaire, 1999). This assumption implies that individuals 

have consistent and transitive preferences (Ben-Akiva, Moshe E. & Lerman, 1985; Garrow, 2016). 

Consistent preferences means that decision makers will keep choosing the same mode if faced 

with the same circumstances, while transitive preferences suggest that if option A is preferred to 

option B, and option B is preferred to option C, then option A is preferred to option C as well 

(Ben-Akiva & Lerman, 1985). In addition, the rationality assumption implies that travellers are 

constantly taking into account all changes that occur to each mode (e.g. price, travel time, wait 

time) and that they are immediately aware of these changes as they occur (Chorus & Timmermans, 

2009).  

It can be argued that this overly rational, perfectly predictable behaviour assumption in the 

RUM framework does not realistically describe a human decision-making process and fails to 

capture its limitations (Idris, Ahmed Osman, 2013). In other words, the RUM framework describes 

how travellers would behave in a perfect world, not how they actually do behave (Banister, 1978). 

Tversky and Kahneman (1974), argue that humans tend to reduce the complexity of decision-

making and use simple judgmental operations based on heuristic techniques. These findings 

suggest that concepts, such as bounded rationality, that do consider cognitive limitations are more 

appropriate to describe human behaviour. According to the concept of bounded rationality, 
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individuals have limited capacity to access and process information (i.e. limited resources) and 

rely on simplified thought processes. Hence, they tend to seek a satisfactory decision rather than 

the optimal one (Acquisti & Grossklags, 2005; Zhang, L., 2006).   

Moreover, psychological factors, such as habit, could play a role in influencing the mode 

choice decision-making process. For example, the Theory of Repeated Behaviour proposes that 

habit is an important factor in determining repeated behaviour (Singleton, 2013). This view is also 

supported by the Theory of Interpersonal Behaviour, which suggests that the intention to do a 

behaviour is mediated by both contextual situation and habit formation (Galdames, Tudela, & 

Carrasco, 2011). For instance, a person who always drives to the convenience store would most 

likely keep doing so, even if the context changes and cycling/walking become as fast as driving. 

This repeated behaviour occurs because driving to the convenience store for that person is an 

unconscious, habitual behaviour and will not change without mindful intention. The research 

question became how to empirically construct a model that included aspects of repeated behaviour 

and yet allowed for the possibility of mindful intention factors that could influence future changes 

in behaviour. 

All the factors discussed earlier suggest that human decision-making is a complex process 

that can not be appropriately captured using conventional mode choice modelling. To overcome 

the aforementioned limitations, researchers developed several extensions to traditional discrete 

choice models such as the nested logit model (relaxes the independence of irrelevant alternatives, 

IIA, property) (Berkovec & Rust, 1985), mixed logit model (allows for random taste variation) 

(Bhat, Chandra R. & Castelar, 2002), and integrated choice and latent variable models (allows for 

the inclusion of users’ attitudes and perceptions) (Ashok, Dillon, & Yuan, 2002). However, no 



 

19 

evidence was found in the literature that a statistical mode choice model overcame the limiting 

awareness problem related to all individuals being immediately and fully aware of changes to the 

transportation and land use systems as they occur. 

Recognizing this complex nature of the transportation mode choice decision making 

process has led researchers to explore alternative techniques to model it without being limited by 

mathematical intractability. Over the years, a considerable literature has been developed around 

utilizing computational techniques in mode choice modelling (Auld et al., 2016; Chen, Peng, 

Zhang, & Li, 2016; Klugl & Rindsfuser, 2011; Mao, Zou, Xue, Li, & Liu, 2015; McDonnell & 

Zellner, 2011; Zou et al., 2016); of which Agent-based Modelling has received a lot of attention. 

Agent-based Modelling research to date has shown the capability to account for human bounded 

rationality, awareness, and psychological factors that influence mode choice behaviour by using 

simple rules that can be represented in various forms. A literature review of agent-based modelling 

is presented in the following section.  

2.3 Agent-based Modelling 

Agent-based modelling (ABM) is a simulation of the interaction of a collection of entities (agents) 

with each other and their environment, with these micro-level interactions resulting in an 

emergence of a macro-level phenomena (Epstein, Joshua M. & Axtell, 1996). Agents are defined 

as unique and autonomous entities (e.g. travellers) that interact locally with each other and make 

adaptive decisions affected by their status and the status of other agents and their environment 

(Railsback & Grimm, 2012). Agents are unique because each agent has its own characteristics 

such as location, attributes, rules of behaviour, and interaction history (Boero, 2015; Epstein & 

Axtell, 1996; Railsback & Grimm, 2012). Being autonomous means that agents make independent 
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decisions to pursue their own objectives based on rules that govern their behaviour (Railsback & 

Grimm, 2012). It is also argued that agents must have the capability to adapt new behaviour based 

on their own experience. In addition, agents usually do not have global information (i.e. they have 

imperfect knowledge) (Boero, 2015; Epstein & Axtell, 1996; Macal & North, 2017). A set of 

topologies or connectedness traits define how and with whom agents can interact, which could be 

static or dynamic (Macal & North, 2017). Agent-based modelling is considered a multi-level 

model because it is used to understand the behaviour of the system in response to agents’ actions, 

and at the same time, the behaviour of the agents in response to change(s) in their environment 

(Railsback & Grimm, 2012).  

Agent-based modelling has been utilized in a broad spectrum of applications including the 

social sciences (Billari, Prskawetz, Diaz, & Fent, 2007; Epstein, J. M., 2002), biology (Folcik, An, 

& Orosz, 2007; Gorochowski, 2016), and economics (Ma & Leung, 2007). In transportation 

engineering, Agent-based modelling has been used to study numerous transportation-related 

phenomena such as hurricane evacuation (Yin, W. H., Murray-Tuite, Ukkusuri, & Gladwin, 2014), 

traffic congestion simulation (Anantsuksomsri & Tontisirin, 2016), car-sharing  (Balac, Ciari, & 

Axhausen, 2017; Ciari, Balac, & Axhausen, 2016), and driver decision-making processes (Kim, 

S., Son, Chiu, Jeffers, & Yang, 2016).  

2.3.1 Agent-based Mode Choice Models 

A number of studies have begun to explore the integration of mode choice modelling with agent-

based modelling. Mode choice models are incorporated into the behavioural rules component of 

agent-based models. These rules can be formalized in numerous ways such as logical statements 

(i.e. if-then statements) or mathematical functions (Parunak, Savit, & Riolo, 1998), which provide 
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researchers with the flexibility to incorporate various mode choice modelling techniques. For 

example, McDonnell and Zellner (2011) represented the mode choice behaviour in their agent-

based model as a decision to switch between two transportation modes (bus and car) if the increase 

in travel time exceeds the agents’ tolerance. Although this research was useful to evaluate new 

transportation systems with limited data, it oversimplified the mode choice decision making 

process and failed to consider factors other than the effect of increasing travel time. 

A number of studies have explored incorporating more realistic decision-making processes 

into their agent-based models. Most of these studies used logical statements that were derived 

based on machine learning algorithms or fuzzy set theory. For instance, Zou et al. (2016) developed 

an agent-based model for travel mode choice and departure time that considered bounded 

rationality to evaluate the impact of various traffic management strategies and policies. Agents in 

the model gain spatial and temporal knowledge based on their own accumulated travel experience 

through a Bayesian learning model, then decide whether to search for alternative travel modes and 

departure times if their perceived search gain exceeds search cost. This search process was 

modelled using if-then statements that were derived from socioeconomic and demographic 

variables as well as trip-related information (e.g. travel distance). Subsequently, agents decided 

whether to switch to the travel mode and departure time identified earlier in the search process, or 

to make no changes based on another set of decision rules. These rules were also represented as 

if-then statements that were derived using the JRip machine learning algorithm (Cohen, 1995). 
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However, their research was limited to study the mode choice behaviour of drivers who switch to 

public transit only (i.e. metro or bus). 

Similarly, in their proposed public traffic demand forecast framework, Chen et al. (2016) 

represented the human decision-making process as logical statements based on the Belief–

Desired–Intention (BDI) model. In BDI, the belief set contained all available mode choices for 

different scenarios. The desired set contained all available mode choices for the current scenario, 

where the intention set showed the preferable mode choice for a certain agent. In contrast to Zou 

et al. (2016), Chen et al.’s framework did not account for human lack of information. 

Although the aforementioned studies discussed how their models addressed some of the 

limitations of conventional mode choice modelling, most of them did not provide an evaluation on 

how their models performed compared to the conventional techniques. Mao et al. (2015) conducted 

a study to compare agent-based modelling with equation-based modelling by developing an agent-

based model that utilized the same framework used by Zou et al. (2016) and a comparison 

Multinomial Logit (MNL) model using the same dataset. Three main findings were reported based 

on this comparison. First, the forecasting performance of the agent-based model slightly 

outperformed the traditional MNL model. However, the forecasting performance for both models 

became similar when the dataset was categorized into two sub-groups and separate MNL models 

were developed for each sub-group. Second, the forecasting precision of the agent-based model 

increased with sample size while the traditional MNL model precision appeared to be less sensitive 

to changes in sample size. Finally, the agent-based model was less influenced by ‘noisy’ (i.e. high 

variance) data compared to the MNL model.  
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A case could be made that these three factors (i.e. precision, dataset size, and data noise) 

are not inherent to agent-based models. Rather, they depend on the algorithm used to generate 

agent’s behavioural rules. For instance, Mao et al. (2015) utilized the JRip, which implements a 

rule induction learner algorithm called the RIPPER, based on Cohen (1995). RIPPER is known for 

avoiding overfitting and providing high forecasting accuracy compared to other machine learning 

algorithms. Thus, different model behaviour is expected if the researchers were to use the same 

dataset with a different algorithm (e.g. neural network, random forest, etc.) to generate the 

decision-making rules.  

That being said, analysts need to be careful when choosing which algorithm to use to 

generate the decision-making rules. For example, in contrast to regression modelling that focus on 

the statistical validity of models, the main focus in rule induction learner algorithms (e.g. RIPPER) 

is to search for patterns that generalize the data to be able to make accurate future predictions 

(Johannes Furnkranz & Tomas Kliegr, 2015; Weiss & Indurkhya, 1998). Moreover, being an 

induction approach implies that these patterns are non-deterministic since infinite sets of patterns 

could be induced for the same dataset. For further discussion on this topic, see Freitas (2000). 

Thus, analysts need to be cautious when utilizing such algorithms in mode choice modelling 

applications where the focus is usually on the policy implications of the models (i.e. model 

inference and interpretability).  

In addition to logical statements, a few researchers attempted to incorporate mathematical 

functions in agents’ behavioural rules. For instance, Jin and White (2012) developed a mode choice 

agent-based model that represented the human decision-making process as mathematical functions 

based on the RUM framework. Agents were populated with unique socio-economic characteristics 
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and trip plans according to data obtained from the 2001 household travel survey in Ottawa, ON. 

In addition, agents were randomly allocated on the map since address information was not 

available in the dataset. During the first iteration, agents traveled according to their trip plans (i.e. 

travel destination and mode choice) recorded in the household travel survey. Agents choose travel 

route based on a customized Dijkstra’s shortest path algorithm that accounts for automobile and 

pedestrian traffic, sidewalks and AT corridors availability, and road user’s imperfect knowledge. 

Agents’ mode choice for the following iterations were estimated using an MNL model, where the 

utility for each mode was expected to change according to an agents’ accumulated experience. The 

utility measure considered in this study were related to the trip (e.g. travel time), socio-economic 

status (e.g. income), and route characteristics (e.g. traffic volume). For the last measure, the authors 

used neighbourhood average values based on their assumption that people choose travel modes 

according to their perceived evaluation of the entire neighbourhood transportation network, not 

the specific route they choose. While this model accounted for novel characteristics related to 

travel behaviour such as pedestrian-automobile interactions, it still lacked consideration for human 

bounded rationality (i.e. awareness, learning) and land use factors (e.g. population and 

employment densities). 

Overall, it would appear that most of the previous studies have focused primarily on using 

supervised learning techniques to model agents’ behavioural rules and overlooked incorporating 

simple traditional statistical techniques (i.e. MNL), that have been well established in mode choice 

modelling. In fact, it can be argued that incorporating both, agent-based modelling and traditional 

statistical techniques can address most limitations of the latter, and thus, maintain the simplicity 

and interpretability of mode choice models for transportation planners and engineers. However, 
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there are other factors that need to be addressed in this agent-based mode choice modelling 

research in order to also address its limitations. First, most of the agent-based mode choice models 

lack the consideration for psychological factors such as habit formation. Second, most of the 

developed models treat walking and cycling as one mode, instead of studying each one 

individually. Research on these and other factors are discussed below in more detail.  

2.4 Factors Influencing Mode Choice 

Other factors that influence individuals’ transportation decision making process can be grouped 

into four sections for discussion, including: socio-economic characteristics (e.g. age, income), built 

environment (e.g. land use, density, parks), trip specific route characteristics (e.g. number of 

pedestrian crossings), and social interactions (e.g. pedestrian/car encounters).  

2.4.1 Built Environment 

A considerable amount of literature has been published on the relationship between the built 

environment and transportation mode choice including automobile, transit, and AT (Frank, 

Lawrence et al., 2006; Gebel et al., 2005; Khan, M. Kockelman, & Xiong, 2014; Kim, D., Ahn, 

Choi, & Kim, 2016; Munshi, 2016; Newman & Kenworthy, 1999). While most of these studies 

provided evidence that the built environment indeed influences mode choice behaviour, there is 

still a debate regarding the magnitude and statistical significance of different built environment 

factors (Ding, Wang, Liu, Zhang, & Yang, 2017).  For instance, Frank et al. (2006) studied the 

relationship between built environment, measured by a walkability index, and physical activity. After 

controlling for sociodemographic variables, the results revealed a significant correlation between 

higher AT use and living in a “walkable” neighbourhood, characterized by high density, mixed 

land use, more AT accessible retail, and connected road network. Cervero (2002) explored the 
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effect of the three core dimensions of built environment, known as the “3 Ds” (density, diversity, 

and design) on mode choice behaviour in Montgomery County, Maryland. The results indicated 

that the 3 Ds, especially at a trip destination, have low to moderate impact on driving mode choice 

for work trips. Specifically, the design dimension revealed the most significant negative 

relationship with driving. Zhang (2004) used the MNL model to evaluate the impact of built 

environment on Mode choice behaviour in Boston and Hong Kong. The results revealed that built 

environment variables have a variable degree of influence on mode choice behaviour depending 

on trip purpose (i.e. work or non-work) and the trip end at which the variable was measured (i.e. 

origin or destination). Lee (2006) used the directed acyclic graphs method to investigate the 

relationship between built environment and travel behaviour. The results indicated that low land 

use mix contributes to captive-driving for work trips. In addition, the results showed that higher 

job density and regional accessibility are statistically correlated and causally connected to less 

driving.  

The majority of the previous studies that investigated the impact of built environment on 

mode choice behaviour have used aggregate built environment data at a predefined administrative 

boundary, such as TAZ (Cervero, 2002; Khan et al., 2014; Lee, 2006; Zhang, 2004). However, 

using such aggregate data leads to a spatial analytical problem, known in the geographic literature 

as the modifiable areal unit problem (Páez & Scott, 2004; Zhang, M. & Kukadia, 2005). This 

problem makes it inappropriate to make statistical inferences and draw conclusions about human 

behaviour using such data (Ewing & Cervero, 2010). Few studies have investigated capturing built 

environment variables using different geographic scales. Krizek (2003) divided the Central Puget 

Sound metropolitan area into 150-m grid cells and then averaged their values over one-quarter 
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mile buffer (walking distance) for each household. Lee et al. (2014) explored the impact of the 

built environment on mode choice behaviour using two geographic scales:  at the TAZ level and 

over one quarter-mile buffer. The results revealed that the buffer-based built environment 

measures were more significant and explained more variance than the TAZ-based measures.  

2.4.2 Social Interactions & Personal Security 

While the built environment does not have a direct effect on the content and quality of social 

interactions, it does increase possibilities of passive contacts — “possibilities that both take on a 

quality of their own and become important as background and starting point for other forms of” 

restorative, stress-reducing interactions (Gehl & ebrary, 2011). Appleyard and Lintell (1972) 

conducted one of the first comprehensive studies to examine the social impact of built environment 

design in 1972. The study found that there was a link between people-friendly transportation 

designs and an increase in social interactions among residents. Similarly, Leyden (2003) studied 

the effect of the built environment on people’s social capital (i.e. social networks and interactions). 

The results indicated that people living in a walkable and mixed-use neighbourhood are more 

likely to have higher levels of social capital than those living in a car-dependent suburb.  

Similarly, social interactions in turn influence transportation travel behaviour. In fact, the 

concept of “people-attract-people” has been discussed in the urban planning literature for over 

three decades (Yin, L., 2013). However, the concept and methodology to assess it has only recently 

become more common in transportation modelling (Dugundji et al., 2011; Páez, 2009). The 

concept of ‘people-attract-people’ implies that a higher number of people walking/cycling in a 

spatial or social network will encourage others to walk/cycle in that network, and vice versa. For 

instance, Lund (2003) found that the frequency of social interactions is positively and significantly 
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correlated with the frequency of walking trips. In addition, a study conducted by the Mineta 

Transportation Institute reported that almost two-thirds of the participants (60%) agree or strongly 

agree that the presence of other pedestrians influences their route choices (Weinstein Agrawal, 

Schlossberg, & Irvin, 2008).  

While the studies presented thus far provide considerable theoretical evidence that social 

interactions influence travel behaviour, few studies have tested this claim objectively, with robust 

empirical accuracy, due to data and/or computational limitations. Instead, researchers have been 

making subjective assumptions about the mechanism and the weight of which social interactions 

influence travel behaviour. For instance, Jin and White (2012) utilized perceived distance to model 

the influence of social interactions on route choice, such as people perceive the road to be longer 

with high car traffic, and shorter with high pedestrian traffic. In addition, they assumed that the 

neighbourhood average values of encountering other pedestrians or cars influence walking mode 

choice. 

The concept of people-attract-people has also been predicted in other transportation 

research: safety in numbers and crime prevention through environmental design. Safety in numbers 

describes the phenomenon that the pedestrian or cyclists’ collision rate with motorized vehicles 

(per-pedestrian/per-cyclist) declines as the number of pedestrians or cyclists increases (Jacobsen, 

Peter Lyndon, Ragland, & Komanoff, 2015). Many researchers attribute this counterintuitive 

phenomenon to the change in drivers’ behaviour as they encounter more non-motorized users 

(Elvik & Goel, 2019; Jacobsen, P. L., 2003; Robinson, 2005). For instance, Fyhri et al. (2017) 

utilized the seasonal variation in cycling frequency in Oslo, Norway to understand the factors 
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contributing to the safety in numbers concept. They found that cyclists’ volume is negatively 

correlated with near-misses and occasions of being overlooked by cars. 

Crime prevention through environmental design is based on the idea that “the proper design 

and effective use of the built environment can lead to a reduction in the fear and incidence of crime, 

and an improvement in the quality of life” (Crowe, 2000). In particular, a neighbourhood design 

that facilitates walkability increases natural surveillance “extra eyes on the street” which leads to 

increased level of safety and security (Foster, Giles-Corti, & Knuiman, 2010). In addition, Wood 

et al. (2008) found that a higher level of social interactions in a neighbourhood is associated with 

an increased perception of safety and personal security.  

2.4.3 Traffic Safety 

Numerous studies in the literature have identified traffic safety as a significant factor that 

influences transportation mode choice behaviour, especially for walking and cycling modes. For 

instance, Winters et al. (2011) conducted a study to assess the main motivators and deterrents of 

cycling in Metro Vancouver, BC by surveying 1,402 potential and current cyclists. The results 

revealed that safety was the most frequently cited factor that influences the likelihood of cycling. 

Similarly, Handy et al. (2006) found that traffic safety increases the likelihood of walking even if 

self-selection is controlled. In addition, Aziz et al. (2018a) explored the influence of traffic safety 

on mode choice behaviour for AT commuting trips using a mixed logit model. They found that 

improving traffic safety for pedestrians and cyclists (i.e. reducing the number of walk and bike 

crashes) was correlated with an increase in the likelihood of walking and cycling. While the 

estimated impact of improving traffic safety on the likelihood of walking and cycling was 

statistically significant, its magnitude was limited. In addition, Lee (2020) developed an empirical 
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model to predict cyclists’ perception of comfort and safety. He found a strong significant 

correlation between cyclists’ perceived level of safety and infrastructure type (i.e. bike lane width 

and level of separation). In addition, he found that infrastructure type had a predictive effect on 

perceived level of safety, even more so than adjacent traffic volume and speed.  

The chapter that follows presents a learning-based travel behaviour model which utilizes 

an adaptive learning-based mode choice model that integrates the RUM Theory with reinforcement 

learning concepts (Idris, A. O., Shalaby, & Habib, 2012) . Therefore, the following section 

provides a brief summary of the literature review relating to reinforcement learning.    

2.5  Reinforcement Learning (RL) 

Reinforcement learning is a computational approach to learning through interactions in which a 

learner aims to maximize its rewards by learning from experience (i.e. learn by trial and error), 

while having no prior information about the environment (Sutton, Richard S. & Barto, 1998). The 

roots of reinforcement learning go back to the work of Edward Thorndike on learning by trial and 

error and his law of effect which states that “actions that lead immediately to pleasure are 

remembered and repeated, eventually fossilizing into habits, whereas actions leading to pain are 

suppressed or avoided”  (Thorndike, 1911). At each stage, the learner observes the environment, 

takes an action, and then receives immediate evaluation of its action as negative or positive 

rewards, see Figure 2.2. The learner in a reinforcement learning system is usually referred to as an 

agent which is an entity (e.g. a traveller) that perceives the environment and then acts to achieve a 

goal, while the environment is the space in which the agent operates and interacts (e.g. built 

environment, pathways) (Schwartz, 2014). This previous research confirms a good fit between 
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reinforcement learning models and observed human behaviour, subject to an acceptable modeling 

framework. 

  

Figure 2.2: Reinforcement learning framework 

2.5.1 Markov Decision Process 

Reinforcement learning systems are usually modelled under the framework of Markov 

Decision Processes (MDPs) which defines a transition model for states, actions, and rewards in an 

uncertain environment (Russell & Norvig, 2010; Schwartz, 2014; Sutton & Barto, 1998). In an 

MDP, the interaction between an agent and the environment occur sequentially over discrete time 

steps (i.e. t=0, 1, 2, 3, ...). At each time step, the agent perceives the environment as state (𝑠𝑡 ∈ 𝑆) 

and based on this state, the agent selects an action (𝑎𝑡 ∈ 𝐴). In the following time step (t+1), the 

agent receives a numerical reward (𝑟𝑡+1 ∈ 𝑅) and the environment makes a transition to state 

(𝑠𝑡+1). The sequence of the agent selecting an action, receiving a reward, and transitioning to a 

Action at 
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new state creates a trajectory that can be represented as (𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟2, 𝑠2, 𝑎2, 𝑟3, …). Since 

sets S, A, and R have finite discrete elements, the random variables 𝑟𝑡and 𝑠𝑡 have a discrete 

probability distribution that only depends on the state and action at time step (t). Thus, the 

probability of transitioning to a new state (𝑠′) and receiving reward (r) after making action (a) in 

state (s) can be expressed as (Sutton & Barto, 1998): 

𝑝(𝑠′, 𝑟 | 𝑠, 𝑎) = 𝑃𝑟{𝑆𝑡 = 𝑠′, 𝑅𝑡 = 𝑟 | 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎}.  
2-4 

In summary, a reinforcement learning is said to satisfy the Markov assumption if the 

“future is independent of the past, given the present” (Russell & Norvig, 2010). 

2.5.2 Reinforcement Learning Elements 

In addition to the agent and the environment, reinforcement learning consists of three sub-

elements: 1) policy, 2) reward signal, and 3) value function (Sutton & Barto, 1998). First, policy 

defines the actions an agent takes at each state of the environment (i.e. the sequence of actions that 

an agent will take at each state of the system). A policy can be either deterministic or stochastic. 

A deterministic policy specifies uniquely which action to take at each state. For instance, if an 

agent follows deterministic policy π, then 𝐴𝑡 = 𝜋(𝑠) where (𝐴𝑡) is action at time (t) and 𝜋(𝑠) is a 

mapping function from states to actions for all s ∈ 𝑆 and 𝜋(𝑠) ∈ 𝐴. On the other hand, if an agent 

follows stochastic policy (π), then the action to be taken in state (s) is probabilistically determined 

as a conditional probability 𝜋(𝑎|𝑠) of 𝐴𝑡 = 𝑎 in state (s) (Sugiyama, 2015).  

The second sub-element of a reinforcement learning system is the reward signal which 

implicitly defines the goal of the system.  A reward signal is a negative or positive value that an 

agent receives after taking an action in a given state to indicate what is good or bad now (i.e. just 
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for the current state). For example, if the system goal is to assess walkability, then the reward 

signal would be a positive value for the act of walking in the current state. 

In contrast to a reward signal, a value function determines what is good or bad in the long-

term based on an agent’s actions and resulting reward signals over many states; an agent’s 

objective is to optimize their value function (i.e. maximize cumulative rewards) across all assumed 

states (Sutton & Barto, 1998). In other words, the value function is the mechanism used by an 

agent to update its knowledge. A value function is usually expressed in terms of the expected return 

when following policy (π) starting from state (s). In the simplest form, expected return can be 

calculated as the sum of future rewards 𝐺𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 + ⋯ + 𝑅𝑇 along trajectory ℎ =

[𝑠1, 𝑎1, … , 𝑠𝑇 , 𝑎𝑇 , 𝑠𝑇+1, 𝑎𝑇+1]. This approach is most appropriate in applications where there is a 

terminal state followed by a new episode that starts independently of the previous one. However, 

in applications with continuing tasks (i.e. 𝑇 = ∞), expected return is calculated as cumulative 

discounted reward 𝐺𝑡 = ∑ 𝛾𝑘𝑅𝑡+𝑘+1
∞
𝑘=0 , where (𝛾) is a discount rate for future rewards (i.e. the 

immediate reward is preferred over future rewards), 0 < 𝛾 ≤ 1. Under this assumption, the state-

value function of state (s) when following policy (π) can be mathematically expressed as the 

following: 

𝜐𝜋(𝑠) = 𝔼𝜋 [∑ 𝛾𝑘𝑅𝑡+𝑘+1

∞

𝑘=0

|𝑆𝑡 = 𝑠], 2-5 

where 𝔼𝜋 is the expected value of a random variable given that the agent follows policy (π). 

Similarly, the action-value function of taking action (a) in state (s) and following policy (π) 

afterward can be expressed as (Sutton & Barto, 1998). 



 

34 

𝑞𝜋(𝑠, 𝑎) = 𝔼𝜋 [∑ 𝛾𝑘𝑅𝑡+𝑘+1

∞

𝑘=0

|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]. 2-6 

2.5.3 The Exploration-Exploitation Dilemma 

One of the challenges in RL is the trade-off between exploitation and exploration, which is usually 

illustrated in the RL literature through the multi-armed bandit (MAB) problem. MAB was 

introduced by Robbins (1952) where a gambler facing multiple slot machines must decide which 

arms to pull to maximize their total rewards given their limited resources. To maximize expected 

rewards, one might tend to exploit the actions (i.e. bandits) that have accumulated the most rewards 

based on their experience. However, this habitual approach risks missing opportunities to explore 

emerging and/or higher value actions that will result in accumulating even higher rewards. On the 

other hand, too much exploration may not be of practical benefit as it will not enable agents to 

apply what they have learned from their experience (Sugiyama, 2015; Sutton, R. S., 1999; Sutton 

& Barto, 1998).  

There are various methods to resolve this exploitation-exploration dilemma; two common 

methods are the ‘ϵ-greedy’ selection and ‘soft-max’ selection. For the ϵ-greedy selection, an agent 

selects the best actions most of the time, but occasionally picks another action at random without 

taking into account the expected reward for each action (i.e. all actions have identical 

probabilities). The soft-max selection method tweaks the ϵ-greedy method by assigning greater 

probabilities for actions with higher expected reward (Poole & Mackworth, 2010). The probability 

of each action can be estimated using the Boltzmann distribution as shown in Equation 2-7 

(Abdulhai & Kattan, 2003): 
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𝑃𝑎 =  
𝑒

𝑄𝑡(𝑎)
𝜏

∑ 𝑒
𝑄𝑡(𝑏)

𝜏

𝑛

𝑏=1

, 
2-7 

where: 

𝑃𝑎: probability of selecting action a, 

𝑄𝑡: the value of action a, 

𝜏: temperature parameter. 

The temperature parameter is a positive parameter that determines the extent to which 

actions with different expected rewards vary in their selection probability. It is usually determined 

via the calibration process. As the temperature parameter, 𝜏, approaches zero, the soft-max 

selection policy becomes greedy (i.e. always selects the highest reward action).  

2.6 Quality of Life – Objective/Subjective Measures 

No standard published definition for ‘quality of life’ (QoL) was found in the literature, due in large 

part to its historically abstract references.  However, many researchers argue that it is a 

multidimensional construct of interacting objective and subjective dimensions (Bowling et al., 

2003; Lawton, 1991; Lee, Richard J. & Sener, 2016), with Lee and Sener (2016) arguing QoL can 

be classified into four categories: 1) objective, 2) subjective, 3) combination of objective and 

subjective, and 4) domain specific. QoL in its simplest form can be defined as “how well we are 

doing, and how well things are going for us” (Ferkany, 2012). At the opposite extreme, the WHO 

(World Health Organization, 1997) has defined QoL as “individuals’ perception of their position 

in life in the context of the culture and value systems in which they live and in relation to their 

goals, expectations, standards and concerns. It is a broad ranging concept affected in a complex 

way by the person's physical health, psychological state, level of independence, social 
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relationships, personal beliefs and their relationship to salient features of their environment”. The 

question then becomes how to assess QoL, and thus the success of a neighborhood’s design (e.g. 

SG). 

Given that QoL covers a wide array of life domains, several indicators and indices have 

been proposed to measure it. For instance, Poortinga et al. (2004) proposed a list of 22 indicators 

based on an extensive literature review of human values and wellbeing in regard to sustainable 

development, as shown in Table 2.1. The list includes indicators related to, but not limited to, 

social aspects (e.g. partner and family, social relationships, and social justice), health, safety, 

security, privacy, freedom, environmental quality, spirituality, materialism (e.g. money/income 

and Material beauty), access to nature, education, and leisure. The indicators can be used to 

estimate the change in people’s quality of life by constructing a multi-attribute evaluation matrix 

given predefined weights for each indicator.  
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Table 2.1 Quality of life Indicators as proposed by Poortinga et al. (2004) 

Indicator Description 

Aesthetic beauty Being capable of enjoying culture and nature beauty. 

Challenge/excitement Facing challenges and experiencing exciting things. 

Change/variation Having various experiences in life. 

Comfort Having an easy and convenient life. 

Education Having access to good training and education. 

Environmental quality Having access to clean water, air, and soil. 

Freedom Having the right to act and speak freely.  

Health Having a good health and being able to access adequate health 

services. 

Identity/self-respect Being able to develop a unique identity. 

Leisure time Having a good work/life balance. 

Material beauty Owning nice possessions. 

Money/income Having sufficient income to make ends meet and live a pleasant 

life. 

Nature/biodiversity Having access to natural landscapes and parks. 

Partner and family Having an intimate partner and stable family relationships. 

Privacy Being able to seclude from others. 

Safety Being protected from accidents and criminality. 

Security Feeling cared for by others. 

Social justice Having the same rights, responsibilities, and possibilities as 

others in the society. 

Social relations Being able to make social interactions and connect with family, 

friends, and colleagues. 

Spirituality/religion Being able to freely practice spirituality and/or religion. 

Status/recognition Being valued by others. 

Work Being able to find employment equitable opportunities with 

adequate working conditions/ 

Similar to Poortinga et al. (2004), Felce and Perry (1995) proposed a QoL model that 

incorporates objective and subjective dimensions, as well as a new dimension that captures 

personal autonomy of individuals’ values and preferences across domains, In particular, their 
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model accounts for 1) physical wellbeing, 2) material wellbeing, 3) social wellbeing, 4) 

development and activity, and 5) emotional wellbeing, as shown in Table 2.2.  

Table 2.2 Quality of life Indicators as proposed by Felce and Perry (1995) 

Domain Indicator 

Physical wellbeing Health, fitness, mobility, and personal safety. 

Material Wellbeing Finance income, stability/tenure, housing quality, 

neighbourhood, security, transport, possessions, and meals/food. 

Social Wellbeing Interpersonal relationships, acceptance and support, activities 

and events, relatives, friends and social life, family/household 

life, and community involvement. 

Development and Activity Competence/independence, job, homelife/housework, 

leisure/hobbies, education, choice/control, and 

productivity/contribution. 

Emotional Wellbeing Positive affect, status respect, satisfaction, fulfillment, self-

esteem, faith/belief 

These previous measures come from the sociology literature, as do most quality of life 

measures, which is not surprising since the concept ‘quality of life’ evolved from research on social 

indicators (Ferriss, 2004). Few researchers have explored developing urban and/or transportation 

quality of life measures. 

For urban-specific measures, the Dutch government have identified six sustainability 

principles related to improving quality of life: 1) health, climate resistance, mobility, circularity 

(i.e. recycling and reusing), energy, and social economy. Serag El Din et al. (2013) identified seven 

domains of quality of life: 1) environmental, 2) physical, 3) mobility, 4) social, 5) psychological, 

6) economical, and 7) political. In addition, Bonaiuto et al. (2006) presented more compact urban 

quality of life measures with four domains: 1) architectural and town-planning (i.e. peoples’ 

perception of space and green areas), 2) socio relationship (i.e. social interactions), 3) functionality 

(i.e. welfare, recreational, commercial, and transportation services), and 4) Contextual (i.e. 
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psychological wellbeing). Table 2.3 presents a summary of the three aforementioned QoL models 

(a complete list of each Urban QoL model is presented in Appendix A). Together these studies 

provide important insights into some of the critical/universal QoL indicators including: 1) 

sustainable transportation 2) multi-modal connectivity, 3) green public areas, 4) compact, mixed 

land use neighbourhood with close proximity to services, 5) healthy urban living, 6) social 

interactions, and 7) job accessibility.  

Table 2.3 A Summary of the Urban QoL Indicators 

Indicator Dutch 
Serag El Din et 

al. (2013) 

Bonaiuto et al. 

(2006) 

Compact, mixed land use 

neighbourhood with close proximity to 

services 
   

Affordable housing    

Mix housing types    

Healthy Urban Living    

Long-term community plan    

Green public spaces    

Job accessibility     

Sense of Community    

Sustainable transportation    

Multi-modal connectivity    

Traffic safety    

Shared mobility    

Well-defined street hierarchy    

Preserving heritage and historic sites    

Social interactions    

Maintenance management    

Security and tolerance    

Gender Equity and social justice    

Privacy    

Integrated urban governance    
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Indicator Dutch 
Serag El Din et 

al. (2013) 

Bonaiuto et al. 

(2006) 

Public consultation    

School services    

Social-care services    

Sport services    

Waste Management     

Energy saving    

Biodiversity    

As for transportation-related QoL, Jamal (2019) identified seven QoL indicators based on 

an extensive literature review including 1) energy saving, 2) air quality, 3) health, 4) road safety, 

5) congestion and travel time, 6) noise, and 7) equity. In addition, Lee and Sener (2016) proposed 

a framework for the interactions of transportation planning and quality of life. In particular, their 

framework linked three components of the transportation system (vehicular traffic, 

mobility/accessibility, and the built environment) to four domains of quality of life (physical, 

mental, economic, and social well-being). Likewise, Wey and Huang (2018) identified 18 

indicators to be related with three dimensions of quality of life as follows: 

1. Environment: GHG emissions, land consumption in transportation, energy use, air and 

noise pollution, active transportation use, and land use density. 

2. Economy: infrastructure, government investment on transportation, congestion level, 

household expenses on transportation, mix land use, and intelligent transportation 

systems (ITS). 

3. Society: diversity of the transportation system, quality of the transportation for 

disadvantaged groups (e.g. elderly citizens and people with disabilities), safety, health 

impact, satisfaction. 
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Table 2.4 presents a summary of these transportation QoL indicators. Five indicators were 

common in the previous studies including: 1) air quality, noise pollution, transit and non-motorized 

modes, road safety, and congestion and travel time. 

Table 2.4 A Summary of the Transportation QoL Indicators 

Indicator Jamal (2019) 
Lee and Sener 

(2016) 

Wey and 
Huang (2018) 

Air quality    

Noise pollution    

Transit and non-motorized modes    

Energy use    

Road Safety    

Density and mixed land use    

Congestion and travel time    

Transit accessibility    

Transportation cost    

Government funding    

Equity    

Satisfaction    

 

QoL evaluation tools have also been previously identified and/or developed by 

researchers at the Sustainable Transport Safety lab at the University of British Columbia 

Okanagan (Jamal, 2019; Ovi, 2020). In particular, eight tools and indicators are considered and 

discussed below, including: 1) i-THRIVE , 2) air quality, 3) noise pollution, 4) walkability, 5) 

bikeability, 6) transitability, 7) playability, and 8) social interactions. Table 2.5 presents a 

summary of the QoL evaluation tools.  
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Table 2.5 STS Identified QoL Evaluation Tools 

Tool Reference Methodology 

i-THRIVE (Masoud, 2015) An excel based tool that was developed 

based on the theoretical foundations of the 

Peel Healthy Development Index and the 

Sustainable Transport Safety Principles. 

The i-THRIVE score is calculated by 

summing the points achieved for each of the 

i-THRIVE metrics.  

Air Quality (Rahman & Idris, 2017) Emissions are estimated by multiplying 

emissions factors by vehicle kilometres 

travelled (VKT) on each road segment. 

Noise Pollution (Khalil, 2015) Noise population is estimated using the 

Ontario Ministry of Transportation traffic 

noise model which is a function of traffic 

composition, volume, and speed. 

Walkability (Frank et al., 2009) The sum of the z-score of four variables at 

the block group level: 1) intersection 

density, 2) residential density, 3) retail 

FAR, and 4) land use entropy.  

Bikeability (Winter et al., 2013) Bikeability is computed by first creating 

10m grid-cell raster surfaces for 1) cycling 

route density, 2) cycling route separation 

level, 3) connectivity of cycling friendly, 4) 

topography, and 5) destination density. 

Then, each surface was reclassified to 

deciles with a scale from 1 to 10. Finally, 

the bikeability index for each grid-cell is 

computed by summing the score of the five 

components. 
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Tool Reference Methodology 

Transitability (i.e. 

access to transit 

service) 

(Foda and Osman, 2010) Transitability is calculated using the Stop 

Coverage Ratio Index (SCRI) which equals 

to the 400 m pedestrian network buffer 

divided by the 400 m circular buffer around 

the stop.  

Playability (Kurka et al., 2015; 

Lambert, Vlaar, 

Herrington, & Brussoni, 

2019; Page, Cooper, 

Griew, & Jago, 2010; 

Waygood, Friman, 

Olsson, & Mitra, 2020) 

Subjectively evaluated based on key 

elements of the built environment that have 

been identified to be associated with 

children playability, including: 1) 

destinations, walkability, traffic safety, 

green space, and residential density. 

Social Interactions  (Appleyard & Lintell, 

1972; Jin, 2010) 

Number of potential encounters of 

pedestrians and cyclists. 

2.6.1 I-THRIVE (Health & Safety) 

The Interactive Sustainable Transport Safety/Healthy Development Index Valuation (i-THRIVE) 

is an MS Excel-based tool that has been developed to help community planners and engineers in 

assessing the sustainability benefits of developing/retrofitting transportation and land use designs 

of a neighbourhood (Masoud, 2015). The theoretical foundations of the tool have been relied on 

heavily, but modified slightly from the Peel Healthy Development Index (Dunn, Creatore, 

Peterson, Weyman, & Glazier, 2009) and the Sustainable Road Safety principles (Wegman, Aarts, 

& Bax, 2008). The tool is accordingly divided into two components: healthy development and 

sustainable transport safety. 

The healthy development component consists of seven elements including density, 2) 

service proximity, 3) land-use mix, 4) street connectivity, 5) road network and sidewalk 
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characteristics, 6) parking, 7) aesthetics and Human Scale. Each element is further broken down 

into quantifiable measures, as shown in Table 2.6. 

The STS component consists of five elements including: 1) functionality, 2) predictability, 

3) homogeneity, 4) forgivingness, and 5) state awareness. The STS principles were proposed in 

1992 by the Dutch Road Safety Research Institute with two goals to prevent road collisions by 

decreasing the risk of human errors and, 2) to reduce the severity of road collisions, if any, to a 

level that the human body can tolerate (Wegman et al., 2008). Similar to the healthy development 

component, each element of the STS principles is further broken down into quantifiable measures 

and scores, as shown in Table 2.6. The first element of the STS principles is functionality, which 

aims to create clear road classifications according to their traffic functions. Thus, street layout 

should be designed to serve one function only, such as providing access for local roads and 

providing high mobility for arterial roads.  

The second element, predictability, aims to develop recognizable road environment by 

including distinguishable characteristics (e.g. road surface and edge marking) for each road 

category; thus, the road user will be able to predict the speed, acceptable maneuvers, and type of 

road users.  

The third element, homogeneity, aims to separate road users that have high variance in 

speed, mass, and direction. For example, cyclists should be separated from high-speed vehicles 

and heavy traffic volume streets. If separating cyclists and motorists is not possible (i.e. limited 

right of way), then the speed need to be reduced to minimize the VRUs injury risk.  
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The fourth element is forgivingness which aims to provide a road environment that 

minimizes the negative consequences of driver errors. Forgiving road design measures include, 

but are not limited to, rumble strips, medians, and wide shoulders.  

The last element is state awareness which aims to encourage the inclusion of intersection 

design that reduces drivers’ task demand, such as 3-way intersections, and roundabouts.  The bulk 

of research evidence suggests that roundabouts and 3-way intersections provide safer environment 

for all road users (Elvik, 2003; Lovegrove & Sayed, 2006; Tanner, 1953).  

Table 2.6 The  i-THRIVE Metrics and Scores 

Element Metric 

Density Residential density 

Floor-area ratio 

Service proximity Proximity to services 

Proximity to transit 

Proximity to employment 

Land-use mix Heterogeneity of land use mix 

Heterogeneity of building mix 

Mixed housing types 

Street Connectivity Intersection density 

Road network and sidewalk 

characteristics 
Traffic Calming 

Speed Control / Pedestrian Priority 

Sidewalks and buffer strips 

Cycle friendly design 

Lighting 

Parking Unbundled & Shared parking 

Parking price and restrictions 

Parking location and alleys 
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Element Metric 

Aesthetics and human scale Building height to street width ratio 

Setbacks and street walls 

Tree placement and characteristics 

Functionality Functional classification 

Access Management on collector roads 

Predictability Distinguishable design characteristics 

Homogeneity Road users homogeneity 

Forgivingness Forgiving road design measures  

State Awareness Reducing motorists task demand 

Reducing cyclists task demand 

2.6.2 Air Quality (GHG & Particulates)  

In addition to GHG emissions, the transportation sector is a major contributor of other air pollutants 

such as particulate matter, carbon monoxide, nitrogen oxide, and volatile organic compounds (Xia 

et al., 2015). Passenger vehicles account for a large sum of the total transportation related 

emissions in Canada including 4% of particulate matter, 21% of nitrogen oxide, and 51% of 

volatile organic compound emissions (Environment and Climate Change Canada, 2017). A 

number of epidemiologic investigations have provided strong evidence that traffic-related air 

pollution exposure is associated with human health effects including increased risk of coronary 

heart disease, chronic bronchitis, and asthma attacks (Gan et al., 2011; Han & Naeher, 2006; 

Künzli et al., 2000). In addition, Tsai et al. (2010) found that traffic-related air pollution exposure 

is associated with cardiovascular mortality. In fact, a Coroner's court in London, UK just recently, 
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in an unprecedented decision, ruled that air pollution (specifically, nitrogen dioxide and particulate 

matter) contributed to the death of a nine-year girl, Ella Kissi-Debrah, who passed away in 20131.  

Numerous studies have been conducted to assess the impact of the built environment on 

transportation-related emissions (Derrible, Saneinejad, Sugar, & Kennedy, 2010; Duncan, 

Nadella, Giroux, Bowers, & Graham, 2017; Mahendra, Bowen, Simons, & Adler, 2012; Rahman, 

2016; Tiwari, Cervero, & Schipper, 2011; VandeWeghe & Kennedy, 2007). There is a great Dutch 

case study for the Central Business District (CBD) of The Hague, which has been totally closed to 

private auto traffic and rebuilt as a pedestrian/transit/bike-only, car-free zone due to higher than 

permitted air pollution indicators (Reurings, 2010). A common approach for estimating 

transportation-related emissions is utilizing emission factors (EF) to calculate total traffic 

emissions based on vehicle kilometres travelled (VKT), as shown in Equation 2-8 (Rahman & 

Idris, 2017). 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 =  𝑉𝐾𝑇 × 𝐸𝐹. 2-8 

Table 2.7 presents GHG emission factors which were extracted from BC Community Energy 

and Emissions Inventory (BC Ministry of Environment, 2014). In addition, Table 2.8 presents (BC 

Ministry of Environment, 2014) other traffic air pollutants’ emission factors which were obtained 

from the United States Environmental Protection Agency’s Motor Vehicle Emission Simulator 

(MOVES) (Cai, Burnham, & Wang, 2013).  

 

1 Merali, F. (2020, December 17). In landmark decision, coroner rules air pollution contributed to nine-year-old 
girl's death in the U.K. | CBC News. Retrieved December 18, 2020, from https://www.cbc.ca/news/world/coroner-
rules-air-pollution-contributed-to-young-girls-death-1.5845117 
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Table 2.7 GHG Emission Factors 

Vehicle type Fuel 
No. of 

Vehicles 

Average 

VKT 

CO2 (eq. 

ton) 
EF (kg/km) 

Small Passenger 

Cars 

Hybrid 58 21,100 144 0.118 

Gasoline 25,125 16,600 89,728 0.215 

Diesel 682 23,900 2,913 0.179 

Large Passenger 

Cars 
Hybrid 243 25,300 776 0.126 

Gasoline 12,350 16,500 52,202 0.256 

Diesel 123 14,500 440 0.247 

Light Trucks, 

Vans, SUVs 
Hybrid 118 26,400 612 0.196 

Gasoline 32497 20,100 212,846 0.326 

Diesel 970 19,800 8,190 0.426 

Other 120 11,700 365 0.260 

Table 2.8 Other Air Pollutant Emission Factors 

Vehicle type Fuel 
Emissions Factors (kg/km) 

VOC CO NOx PM10 PM2.5 

Passenger Cars Gasoline 8.6×10-05 2.2×10-03 1.5×10-04 4.9×10-06 4.5×10-06 

Diesel 5.2×10-05 9.8×10-04 4.2×10-04 1.4×10-05 1.3×10-05 

Light Trucks, 

Vans, SUVs 
Gasoline 1.7×10-04 3.9×10-03 3.5×10-04 8.6×10-06 7.9×10-06 

Diesel 1.6×10-04 1.0×10-03 1.5×10-03 5.6×10-05 5.5×10-05 

 

2.6.3 Noise Pollution  

Noise pollution is a major concern for many urban areas. Gandelman et al. (2012) suggested that 

eliminating noise pollution significantly improves individuals’ leisure and social life satisfaction. 

In addition, epidemiologic studies indicate that noise exposure can induce annoyance, sleep 

disturbance, reduction in children’s cognitive ability, hearing impairment, hypertension, and 

ischemic heart diseases (Öhrström & Skånberg, 2004; Passchier-Vermeer & Passchier, 2000; 

World Health Organization, 2011).  
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WHO has established noise level guidelines of maximum 55 A-weighted decibel levels 

(dBA) during daytime and 45 dBA during nighttime (World Health Organization, 1999). A study 

conducted by Toronto Public Health found that the average noise levels in Toronto, ON in 2016 

were around 63 dBA, of which 60% were attributed to traffic noise (Drew et al., 2017). The study 

also found that over 60% of residents during daytime and 92% of residents during nighttime are 

exposed to traffic noise levels above 55 and 45 dBA, respectively. In addition, they found that 

residents in areas with low-income households are more likely to experience high noise levels 

compared to the rest of the population. Similarly, an environmental equity assessment in Montreal, 

QC revealed that low-income and visible minority groups are more likely to inhabit a 

neighbourhood with a higher than average noise level during the night (Carrier, Apparicio, & 

Séguin, 2016). 

Traffic noise is a complex phenomenon that is influenced by several factors including 

traffic speed, volume and composition, road surface, meteorological factors, ground surface, tire 

type, etc., most of which are country specific (Garg & Maji, 2014). As a result, several noise 

forecasting models have been developed around the world. In Canada, the Ontario Ministry of 

Transportation proposed a statistical traffic noise model (Khalil, 2015) that accounts for traffic 

composition, volume, and speed, as illustrated in Equation 2-9 (Khalil, 2015).  

𝐿𝑒𝑞 = 42.3 + 10.2 × log(𝑉𝐶 + 6 × 𝑉𝑇) − 13.9 × log(𝐷) + 0.1𝑆, 2-9 

where 𝐿𝑒𝑞 is the one-hour equivalent sound level at a point of reception, 𝑉𝐶 is the light-vehicle 

traffic volume per hour, 𝑉𝑇 is the heavy-vehicle traffic volume per hour, D is the distance from the 

road to the observation point, and S is the average traffic speed (km/hr). 
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2.6.4 Walkability 

Up till the end of the twentieth century, the primary focus of transportation (traffic) engineers has 

been on utilizing the transportation right of way (ROW) for motorized modes. On the other hand, 

including pedestrians in the transportation planning process is only a recent addition (Lo, 2009). 

With this addition, the term “walkability” has emerged as a new area of research that aims at 

identifying metrics of the level to which the built environment, including transportation ROW, is 

walking friendly.  

A number of approaches have been previously proposed to measure walkability 

(Dobesova, 2012; Frank, L. D. et al., 2009; Krambeck, 2006; Stockton et al., 2016). A common 

theme between most of the proposed walkability indices is that they try to capture three 

components of the built environment: 1) network connectivity, 2) residential density, and 3) land 

use diversity. The most widely used walkability index was proposed by Frank et al. (2009) for a 

quality of life study. The index is a function of four components as follows: 

• Net residential density: the number of dwelling units per land area of residential block groups. 

• Retail floor area ratio: the floor area footprint of a retail building divided by the land lot area. 

• Intersection density: the number of intersections in the walking network per block group area. 

• Land use mix: measured in entropy score of five land use types: residential, retail (excluding 

big box stores), entertainment, office, and institutional. 

The four variables were then normalized using z-score. Finally, the walkability index for each 

block group was calculated as the sum of the z-scores of the four components as shown in Equation 

2-10. 
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Walkability Index = (2 × z-intersection density) + (z- residential density) 

                                 + (z- retail floor area ratio) + (z-land use entropy).  
2-10 

2.6.5 Bikeability 

Similar to walkability, bikeability refers to the extent to which the urban built environment is 

cycling friendly. However, the development of a bikeability index has received relatively lesser 

attention than walkability. Nevertheless, few researchers have proposed a bikeability index 

(Arellana, Saltarín, Larrañaga, González, & Henao, 2020; Emery, Crump, & Bors, 2003; Harkey, 

Reinfurt, Knuiman, Stwetart, & Sorton, 1998; Winters, Brauer, Setton, & Teschke, 2013), of which 

the index developed by Winter et al. (2013) was the most cited and widely used.  This index 

measures bikeability based on metrics of five components: 1) cycling route density, 2) cycling 

route separation level, 3) connectivity of cycling friendly streets, 4) topography, and 5) destination 

density. The index value is computed by first creating a high-resolution surface of 10m grid-cell 

raster in ArcGIS for each of the five components, as follows: 

• Cycling route density: the line density of designated cycling facilities within a 400 m radius 

circular buffer of each grid-cell. The resulted values were then converted to the length of 

designated cycling facilities within a 400m radius buffer. 

• Cycling route separation level: A 200m buffer around physically separated cycling facilities. 

• Connectivity of cycling friendly streets: the point density of all intersections that are connected 

to at least one cycling friendly link (i.e. local road and designated cycling facility) within a 

400m radius circular buffer of each grid-cell. The resulted values were then converted to the 

number of intersections within a 400m radius buffer. 
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• Topography: the value of the maximum slope between each grid-cell and its neighbouring 

grid-cells using a Digital Elevation Model. 

• Destination density: the point density of potential cycling friendly destinations within a 400 m 

radius circular buffer of each grid-cell. Cycling friendly destinations are defined as parcels 

with either of the following land uses: neighbourhood commercial, education, entertainment, 

and office.  

Second, each surface was reclassified to deciles with a scale from 1 to 10, where 1 is least 

cycling friendly and 10 is the most cycling friendly. Finally, the bikeability index for each grid-

cell is computed by summing the score of the five components as shown in Equation 2-11.  

Bikeability Index = (cycling route density) + (cycling route separation level) 

                                 + (connectivity of cycling friendly streets)  

                                 + (topography) + (destination density).   

2-11 

2.6.6 Transitability 

Public transit is a critical service that provides a more affordable alternative mode of transportation 

to the public, especially disadvantaged groups (Zuo, Wei, & Rohne, 2018). In addition, public 

transit is widely viewed as a mean to alleviate traffic congestion, reduce GHG emissions, and 

promote healthier lifestyles (Wang, K. & Woo, 2017; Zuo et al., 2018). Most transit users start 

their trips as pedestrians or cyclists (Bhat, Chandra R., Guo, Sen, & Weston, 2005) which 

emphasizes the importance of evaluating the accessibility of transit stops using actual pedestrian 

and cyclist networks. To address this point, Foda and Osman (2010) proposed the Stop Coverage 

Ratio Index (SCRI) to estimate transit stops access coverage. The SCRI for a transit stop can be 
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calculated as the 400 m pedestrian network buffer divided by the 400 m circular buffer around the 

stop as shown in Equation 2-12.  

𝑆𝐶𝑅𝐼 =  
𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑆𝑡𝑜𝑝 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐵𝑢𝑓𝑓𝑒𝑟

𝐵𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑆𝑡𝑜𝑝 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝐵𝑢𝑓𝑓𝑒𝑟
 . 2-12 

While the index was proposed as a measure of pedestrians’ accessibility to transit, it is important 

to account for cyclists’ accessibility as well. The integration of cycling and public transit, also 

known as bike and ride, can minimize total travel time and thus become a strong competitive alternative 

to driving (Martens, 2004). The SCRI can be easily modified to account for cyclists’ accessibility 

by changing the transit stop catchment buffer distance. While there is no agreement on the cycling 

threshold distance to transit, the literature indicates that it ranges from 1.2 to 5km with an average 

of 3 km (Lee, Jaeyeong, Choi, & Leem, 2016; Rietveld, 2000; Zuo et al., 2018; Zuo, Wei, Chen, 

& Zhang, 2020). 

2.6.7 Playability 

The Canadian 24-hour movement guidelines identify four key elements that are associated with 

notable health and cognitive benefits for children and youth: 1) accumulation of no less than 60 

minutes per day of moderate to vigorous physical activity, 2) several hours of a variety of 

structured and unstructured light physical activities, 3) uninterrupted sleep of eight to 11 hours, 

and 4) no more than 2 hours per day of recreational screen time (Tremblay et al., 2016). However, 

only less than one-fifth of Canadian children and youth adhere to these guidelines 

(ParticipACTION, 2020) . This figure could be partially attributed to children’s retreat from the 

street to indoors as walking to school and playing outside is no longer the norm in many urban 

areas (Brussoni et al., 2020). Hart (2002) pointed to the irony that children in underdeveloped 
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countries have more opportunities to play outside than children in middle-class areas in many 

developed nations. Hart also argued that the rapid growth in playgrounds is motivated by public 

agencies attempt to keep children away from streets and make room for high speed, high traffic 

roads, in what Hart’s call “the battle for sidewalks and streets”. However, children’s desire to 

experience and explore their surroundings cannot be accommodated by only providing public 

playgrounds (Hart, 2002). In fact, this approach of focusing primarily on playgrounds and 

excluding children from the planning process of all other built environment elements has resulted 

in counterproductive results of children spending enormous time indoors and on screens (Brussoni 

et al., 2020; Hart, 2002).  

While there is no recognized playability index for the built environment, several studies in 

the literature have identified key elements of the built environment that are associated with children 

playability, including: 

1. Destinations – playability is positively associated with close proximity to destinations, 

such as schools and parks (Page et al., 2010; Waygood et al., 2020). 

2. Walkability – playability is positively associated with high walkable neighbourhoods 

(Kurka et al., 2015). 

3. Traffic safety – higher perception of traffic safety is associated with higher playabilities 

for girls  (Page et al., 2010). 

4. Green space – close proximity to open green spaces is positively associated with 

playability (Lambert et al., 2019).  

5. Residential density – playability is positively associated low residential density (Lambert 

et al., 2019).  
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2.6.8 Social Interaction    

As discussed in section 2.4.2, built environment does not have a direct effect on the content and 

quality of social interactions; however, it does increase possibilities of passive contacts. As a result, 

the existing literature on the relationship between social interaction and the built environment 

focused particularly on social interaction potential (Farber, Neutens, Miller, & Li, 2013; Germann-

Chiari & Seeland, 2004; Jin, 2010; LEE, JAE YONG & KWAN, 2011; Neutens, Farber, 

Delafontaine, & Boussauw, 2013; Wood, Frank, & Giles-Corti, 2010). For instance, Neutens et al. 

(2013) and Farber et al. (2013) utilized space–time prism intersection to model social interaction 

potential. In addition, Jin (2010) defined social interaction potential as two pedestrians passing 

within 25m of each other during a simulation time step (20 second).  

2.6.9 QoL Concluding Remarks 

Overall, the varied results of these numerous studies suggest that measuring the influence of land 

use and transportation systems on quality of life is exceedingly complex. In addition, the wide 

variation of the proposed indicators reflects how there is no global agreement on the definition of 

quality of life nor the importance of the factors that influence quality of life. Nevertheless, it is 

clear from these studies that neighbourhood design influences our quality of life in two ways. 

First, it directly influences our travel behaviour which in turn influences some quality of life 

indicators such as air and noise pollution, traffic volume, and traffic safety. Second, 

neighbourhood design indirectly influences other aspects of human behaviour that are related to 

quality of life such as social interactions and child development as discussed in sections 1.1 and 

2.4.2. This dissertation will not attempt to develop the perfect neighborhood system design that 

‘maximizes’ human quality of life, as humans by nature are each unique, experience life 
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differently, and thereby value the quality of their life experiences differently.  Rather, what is 

most practical, would be to identify a reliable suite of empirical tools that could be utilized by 

community planners and engineers to objectively evaluate key factors of a neighbourhood’s 

design using previously researched quality of life metrics. 
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Chapter 3     Framework for Learning-based Travel Behaviour Model 

This research presents an agent-based model to simulate agents’ daily trip activities for morning 

commuting trips, with mode choices that include: driving, transit, walking, and cycling. The model 

(see Figure 3.1) has been constructed using the Recursive Porous Agent Simulation Toolkit 

(Repast), which is an open-source agent-based simulation platform that was first authored by 

researchers at the University of Chicago (Collier, Howe, & North, 2003) and then established as a 

reusable software infrastructure by the Argonne National Laboratory (North et al., 2013).  Repast 

has been widely used in various transportation-related studies, such as commute travel patterns 

(Jin, 2010), network traffic controls (Abdul Aziz & Ukkusuri, 2016), walking behaviour (Yang, 

Diez Roux, Ana V.,PhD, MD, Auchincloss, Rodriguez, & Brown, 2011), and decision evaluation 

for AT infrastructure investment (Aziz et al., 2018b).  

 

Figure 3.1: Agent-based model Framework 
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Following a typical structure of the agent-based framework, the presented model consists 

of three major components: environment, agents, and interaction rules as discussed below.   

3.1 Agents 

Agents in this model represent autonomous (i.e. make independent decisions based on their own 

goals) and adaptive transportation system users that seek to optimize their utility by learning and 

adapting a new behaviour based on experience. Each agent has its own characteristics (e.g. income, 

age, gender, occupation, and residential location) and a daily trip plan that includes trips origins, 

destinations, purposes, and cost. Agents were grouped into households where they share some 

characteristics such as available number of vehicles and income. Households were randomly 

allocated in the neighbourhood as a point feature according to each parcel land use zoning, density, 

and dwelling type. This means that households were only allocated on parcels that were classified 

as residential or mix land use and the number of households in each parcel was determined by the 

parcel density.  

3.1.1 Mode Choice Behaviour 

The developed agent-based model simulates agents’ mode choice behaviour using decision rules 

based on the RUM Theory. As discussed in section 2.2, the utility function consists of two 

components: a deterministic component and a random error term. In this model, the deterministic 

component takes into account 1) characteristics of agents, 2) attributes of alternative modes, 3) the 

interaction between these two components, 4) the influence of built environment, 5) safety factors, 

and 6) agents’ social interactions. With these factors included, the deterministic component can be 

formulated as:  
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𝑉𝑞𝑚 =  𝑉(𝑋𝑞) +  𝑉(𝑍𝑚) +  𝑉(𝑋𝑞 , 𝑍𝑚) +  𝑉(𝛣) +  𝑉(𝑆), 3-1  

where 𝑉(𝑋𝑞), 𝑉(𝑍𝑚), 𝑉(𝑋𝑖, 𝑍𝑚), 𝑉(𝛣𝑚), 𝑉(𝑆𝑞), and 𝑉(𝛪𝑞𝑚) refer to characteristics of agent (q), 

attributes of alternative mode (m), the interaction between the characteristics of individual (q) and 

the attributes of alternative mode (m), built environment characteristics, and safety factors, 

respectively.  

Built environment measures considered in the model include density (e.g. population and 

employment), diversity (e.g. land use entropy), design indicators (e.g. availability of public spaces 

and AT facilities), and transit service. The built environment measures were quantified at a fine 

spatial resolution of 1 km (max) area from trip origins and destinations to avert any spatial 

aggregation bias as well as to account for people’s perceived limit of neighbourhood (Lee, Chanam 

& Moudon, 2006). In addition, this approach makes it possible to capture the effect of micro land 

use changes on mode choice behaviour. 

For traffic safety measures, numerous studies found that AT crashes have a significant 

effect on AT mode choice behaviour, such that less AT crashes increases the likelihood of walking 

and cycling. However, while the importance of collision data is undeniable, there are still concerns 

regarding collision data accuracy and availability (Burns & Wilde, 1995; Shaw & Ison, 2018). 

Collision data is not always available due to the infrequency of collision events and when a new 

infrastructure is proposed, where no previous data is available (e.g. SMARTer Growth) (Guo, 

Klauer, Hankey, & Dingus, 2010; Wei & Lovegrove, 2013). For these reasons, this study utilizes 

indirect measures of safety such as intersection density, availability of sidewalk/bike lane, and 

proportion of pedestrian actuated traffic signal. These factors do not only influence mode choice 
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behaviour, but they also influence route choice for those who decide to walk or bike as will be 

discussed in Section 3.2.  

Similar to traffic safety measures, it was also hypothesized that social interaction measures 

influence both route and mode choices. For route choice, it was assumed that agents prefer routes 

with high AT and low automobile traffic. For mode choice, the Diffusions of Innovations theory 

(Rogers, 2003) was utilized to simulate how agents share their knowledge and propagate 

information about their preferred travel mode across family members and co-workers. According 

to the Diffusions of Innovations theory, people were classified into five categories based on their 

level of social influence: 1) innovators, 2) early adopters, 3) early majority, 4) late majority, and 

5) laggards. Innovators are characterised by strong social influence and are very eager to seek 

information about new alternatives, while laggards lack social influence and are the last to adopt 

new alternatives. Similar to the work of Aziz (2018) and Doo (2012), agents in the model were 

randomly assigned to one of the five categories, while keeping the number of agents in each 

category as per the proportions proposed by Rogers (2003) as shown in Table 3.1. Rogers proposed 

these proportions based on the time element of adopting innovations, which was found to follow 

a normal, bell-shaped curve. In addition, an influence probability was assigned to each group to 

capture how agents in different categories vary in terms of willingness to seek and propagate 

information. Finally, it was hypothesized that the choice probability of the predominant mode 

(𝑃𝑞𝑑) is an indicator of the level of satisfaction towards that mode. In other words, higher choice 

probability implies higher satisfaction level, and thus agents are more willing to propagate their 

choices with others.  
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Table 3.1 Agents Categories (Rogers, 2003; Doo, 2012) 

Category Proportion 
Social influence 

probability (ω) 

Innovator 2.5% 0.9 

Early Adopters 13.5% 0.45 

Early Majority 34% 0.23 

Late Majority 34% 0.1 

Laggards 16% 0.05 

 

3.1.2 Knowledge Learning Process 

As discussed in section 2.2, the RUM framework has been criticized for its lack of consideration 

for humans’ bounded rationality, as well as its lack of consideration for psychological factors that 

influence mode choice behaviour such as habit. Several techniques have been proposed to address 

the aforementioned gaps in the RUM theory. This study utilizes a conceptual framework presented 

by Idris et al. (2012), which proposed an adaptive learning-based mode choice model that 

integrated the RUM Theory with reinforcement learning concepts. The proposed model employed 

various reinforcement learning concepts to model decision-making behaviour considering the 

bounded rationality assumption. In particular, the proposed framework addresses three properties 

of bounded rationality: habit formation, awareness level, and information provision. 

Agents’ decision-making policy in the proposed agent-based model was to choose the 

transportation mode that maximizes their rewards in the long run. Rewards were defined as an 

agent’s perceived utility for each of the available transportation modes. Agents in the model use 

adaptive behaviour to form their beliefs about the available transportation modes through an 
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iterative process. In each iteration, agents choose the transportation mode that has the greatest 

probability based on the RUM Framework. During the iteration, agents acquire new information 

(e.g. traffic conditions) by interacting with other agents and the environment, which then were 

used to update agents’ perceived utility for the subsequent iteration based on the following 

reinforcement learning algorithm: 

𝑉(𝑠𝑡+1) ⃪  𝑉(𝑠𝑡) + 𝛼𝑖[𝑅(𝑠𝑡) − 𝑉(𝑠𝑡)], 3-2 

where: 

𝑉(𝑠𝑡+1): Cumulative rewards at time step (t+1),  

𝑉(𝑠𝑡): Cumulative rewards until time step (t), 

𝑅(𝑠𝑡): Immediate reward gained at time step (t), 

𝛼𝑞: Step size parameter (0 ≤ αq ≤ 1), associated with agent (i). 

Equation 3-2 includes an adaptive step size parameter (α) to simulate habitual tendency 

and its influence on learning from previous experience. Idris et al. (2012) hypothesized that the 

habitual tendency of a particular mode can be indicated by the choice probability of that mode, 

such that the greater the choice probability, the greater the habitual tendency. Since habitual 

tendency acts against learning from previous experience, Idris et al. (2012) formulated the step 

size parameter to be inversely proportional to the previous dominating mode choice probability as 

shown in equation 3-3. This formulation implies that the greater the habitual tendency towards a 

certain mode, the lower the step size parameter, and thus the less the agent learns from previous 

experience. 

𝛼𝑞 = 1 − 𝑃𝑞𝑑, 3-3  
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where: 

𝛼𝑞: Step size parameter for agent (q), 

𝑃𝑞𝑑: Previous mode choice probability that agent (q) selects the dominating mode (d). 

In addition, a soft-max selection policy based on the Boltzmann distribution was used in 

this research to ensure an appropriate trade-off between exploitation and exploration as shown in 

Equation 3-4.  

𝑃𝑞𝑎 =  
𝑒

𝑄𝑡(𝑎)
𝜏

∑ 𝑒
𝑄𝑡(𝑏)

𝜏

𝑛

𝑏=1

, 
3-4 

where: 

𝑃𝑞𝑎: Probability of individual (q) selecting action (a),  

𝑄𝑡(𝑎): value of action (a) at time step (t), 

𝜏: temperature parameter. 

Within this selection policy, agents choose whether to exploit or explore an action to 

explore based on three components: 1) dominating mode choice probability, 2) agents’ utility value 

for each available mode, and 3) the weighted average effects of social influence. First, a greater 

choice probability indicates a greater habitual tendency, which hinders an agent’s willingness to 

explore new alternatives. Thus, the temperature parameter was assumed to be inversely 

proportional to the choice probability of the recent dominating mode, (𝛼𝑞 = 1 − 𝑃𝑞𝑑) (Idris et al., 

2012). Second, it was hypothesized that agents choose which action to explore based on the 

combined effect of their formed beliefs about each available mode (i.e. utility values) and the level 

of social influence from an agent’s social network. Thus, the value of choosing action (a) can be 

estimated using a weighted average as shown in Equation 3-5.  
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𝑄𝑡(𝑎) = (1 − 𝜔𝑞)  ×  𝑉𝑞𝑎 + 𝜔𝑞 × 𝜆𝑞𝑎, 3-5  

where the 𝜔𝑞 is the social influence probability assigned to agent (q) as in Table 3.1, 𝜆𝑞𝑎 was 

calculated based on the social influence of those in agent (q) social Network (j) if their predominant 

mode choice was action (a), as follows: 

𝝀𝒒𝒂 =  
∑ (𝑽𝒋𝒅 ×𝝎𝒋)

𝑱
𝒋=𝟏

∑ (𝝎𝒋)
𝑱
𝒋=𝟏

,  ∀ 𝒅 ∈  {𝒂}. 
3-6  

3.1.3 Information Provision 

In this research, agents were grouped into three categories based on their information acquisition 

and response behaviour. The first category conceptualized the state of partial information 

provision, in which agents do not have global information (i.e. imperfect knowledge) and thus can 

only adapt new behaviour based on their own experience. In other words, at the end of each 

iteration, agents only update the utility of the selected mode while the utility of unselected modes 

remained unchanged as shown in equation 3-7. 

𝑉𝑞𝑚(𝑡 + 1) =  𝑉𝑞𝑚(𝑡) + 𝛼𝑞[𝑅𝑞𝑚(𝑡) − 𝑉𝑞𝑚(𝑡)],  𝑉𝑞𝑛(𝑡 + 1) =  𝑉𝑞𝑛(𝑡), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≠ 𝑚, 3-7 

where: 

𝑉𝑞𝑚(𝑡): Utility that agent (q) obtained from mode (m) until time step (t), 

𝑉𝑞𝑛(𝑡): Utility that agent (q) obtained from any other mode (n≠m) until time step (t), 

𝑅𝑞𝑚(𝑡): Immediate utility that agent (q) obtains from mode (m) at time step (t), 

𝑉𝑞𝑚(𝑡 + 1): Updated utility that agent (q) obtains from mode (m) at time step (t+1), 

𝑉𝑞𝑛(𝑡 + 1) : Updated utility that agent (q) obtains from any mode (n≠m) at time step (t+1), 

𝛼𝑞: Step size parameter (0 ≤ αq ≤ 1), associated with agent (q). 
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The model expressed in equation (3.10) utilized a temporal-difference learning method to 

simulate an agent’s behaviour, such that an agent updates its long-term utilities 𝑉𝑞𝑚(𝑡 + 1) based 

on the difference between the immediate utility obtained at the current time step 𝑅𝑞𝑚(𝑡) and the 

accumulated utility until the current time step 𝑉𝑞𝑚(𝑡). Note that agents only update the utility for 

the selected mode, as information about the other modes would not be available.  

The second category also conceptualized the state of partial information provision; 

however, the updating rules were revised to incorporate how agents become unfamiliar with 

unselected modes. Thus, an agent’s mental and cognitive efforts to explore unselected modes 

declines over time as shown in Equation 3-8: 

𝑉𝑞𝑚(𝑡 + 1) =  𝑉𝑞𝑚(𝑡) + 𝛼𝑞[𝑅𝑞𝑚(𝑡) − 𝑉𝑞𝑚(𝑡)], 

𝑉𝑞𝑛(𝑡 + 1) = {
𝑉𝑞𝑛(𝑡)  +  [𝛼𝑞 ∗ 𝑉𝑞𝑛(𝑡)], 𝑉𝑞𝑛(𝑡) < 0

𝑉𝑞𝑛(𝑡) −  [𝛼𝑞 ∗ 𝑉𝑞𝑛(𝑡)], 𝑉𝑞𝑛(𝑡) ≥ 0
   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≠ 𝑚. 

3-8 

On the other hand, the evolution of new Advanced Traveller Information Systems (ATIS) 

gives transportation users access to real-time information about different modes simultaneously. 

Thus, people are now capable of gaining knowledge and updating their preferences for each 

available travel mode prior to each trip (i.e. including unselected modes). Under this assumption 

the updating rules could be re-written as follows: 

𝑉𝑞𝑚(𝑡 + 1) =  𝑉𝑞𝑚(𝑡) + 𝛼𝑞[𝑅𝑞𝑚(𝑡) − 𝑉𝑞𝑚(𝑡)],            𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 = 1 𝑡𝑜 𝑀. 3-9 

Agents were randomly assigned to one of the three information provision categories as will 

be discussed in section 5.5. Previous research showed that information provision has a relatively 
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small impact on travel behaviour, with an estimated impact that varies between 30-40% (Englisher, 

Juster, Bregman, Koses, & Wilson, 1996; Khattak, Yim, & Prokopy, 2003; Peirce & Lappin, 2003; 

Wang, X., Khattak, & Fan, 2009).   

3.2 Environment 

The environment represents the space where agents make activities and interact with each other. 

In the developed agent-based model, the environment was comprised of several GIS datasets 

including a transportation system (e.g. roads and sidewalks), activity locations (e.g. households 

and workplaces), and built-environment (e.g. parks). The transportation system was modelled as a 

multi-layer network where different transportation modes were represented by different layers. 

This makes it possible to simulate multi-modal trips where agents might need to use different 

transportation modes to reach their destinations (e.g. walking from home to transit stop, then riding 

the bus to a destination). In a multi-layer network, any node that is coincident with a node of 

another layer acts as a point of transfer between the two layers as shown in Figure 3.2.  

 

Figure 3.2: Example of a multi-layers network 
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In addition, the transportation system was represented in the model by two separate classes; 

both classes extend super classes from JgraphT, which is a Java library of graph structures and 

algorithms (Michail, Kinable, Naveh, & Sichi, 2020). The first network class was an undirected 

weighted graph class that was used to calculate the number of walking and cycling agents and their 

social interactions on each road segment. The second network class was a directed weighted graph 

class that was used to map the network and calculate the best route for each trip according to the 

selected travel mode. For automobiles, a customized Dijkstra algorithm was used to calculate the 

best route based on travel time as shown in Equation 3-10. The algorithm was customized to 

express travel time as a function of road segments volume to capacity ratio based on the Bureau 

of Public Roads (BPR) Volume Delay Function (VDF) (Spiess, 1990). 

𝒕 =  ∑ 𝒕𝒐 [𝟏 + (
𝒗

𝒄
)

𝜶

]

𝒏

𝒊=𝟏

, 
3-10  

where: 

to: free flow travel time, 

v: hourly traffic volume when the trip occurs, 

c: road capacity, 

α: congestion effect coefficient.  

Similarly, a Dijkstra algorithm was customized to determine the shortest route for AT users 

based on a perceived length function which accounts for the influence of 1) AT volume, 2) traffic 

volume, 3) and AT infrastructure type, as shown in Equation 3-11. In addition, Jin (2010) 

suggested that AT users are less sensitive to any change in AT and automobile volumes in already 
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congested segments. Thus, the influence of automobile and AT volumes on perceived length were 

calculated as per Equation 3-12 

𝐷𝑖 =  ∑ 𝐷𝑖 [
𝑃𝑎𝑢𝑡𝑜

𝑃𝐴𝑇
− 𝑤𝑖𝑚]

𝑛

𝑖=1

, 3-11 

where: 

𝐷𝑖: perceived length of a road segment, 

𝑤: the influences of AT infrastructure type (m) on link (i), 

𝑃: the influence of AT and automobile volume, 

𝐷𝑖: actual length of a road segment. 

𝑃𝑖𝑗 = (𝑉𝑖𝑗 + 1)
𝛼

, 3-12  

where:   

𝑉𝑖𝑗: Traffic volume of mode (j) on link (i), 

α: refers to the influence level coefficient.  

3.3 Population Synthesis 

Agent-based models usually require a fully disaggregated dataset about the entire population in a 

study area. However, acquiring such data is impractical due to time constraint, high cost, low 

response rates, and privacy laws. To tackle this issue, agents in the developed model were 

synthesized at the parcel level for the entire study area based on the following four steps: 1) 

generation of agents at the finest zonal level using a population synthesizer 2) allocation of the 

synthesized households at the parcel level, 3) assignment of the synthetic agents to workplace 

dissemination area, and 4) assignment of the synthetic agents to workplace parcel. First, agents 

were generated at the finest zonal level by matching the joint distribution of key attributes from a 

disaggregate sample of the population with known marginal distributions of the actual population 
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in the study area. Typically, the disaggregate sample is obtained from regional household travel 

surveys while the marginal distributions are obtained from aggregate census data. In the developed 

model, synthetic agents were generated using PopGen, an open-source population synthesizer that 

employs the iterative proportional updating (IPU) algorithm. The IPU is a heuristic iterative 

procedure that was proposed by Ye et al. (2009) to fill the gap in the standard iterative proportional 

fitting (IPF) procedure of not controlling for both household and personal level attributes. In the 

IPU algorithm, weights are adjusted iteratively among households of the same type until they 

match the known distributions of households and personal level attributes of interest, such as 

dwelling type, household income, gender and age. Second, synthesized households were randomly 

assigned to a home parcel within their dissemination area (based on the results of the first step).  

Third, synthesized persons were assigned to workplaces using a disaggregate destination 

choice model with nonlinear multinomial logit formulation. The alternatives for the destination 

choice model are aggregated zones (dissemination areas), not elemental alternatives (parcels). 

Nevertheless, the alternative choice set for each person is still large which makes it difficult to 

estimate the model’s parameters. Assuming that choice probabilities satisfy independence from 

irrelevant alternatives assumption (i.e. error term is independent and identically distributed), the 

model parameters could be estimated using random subset of the full choice set (McFadden, 1978; 

Pozsgay & Bhat, 2001). Assuming that the number of elemental alternatives in each zone is large 

and their systematic utility is homogeneous, the utility of individual (q) in zone (i) choosing 

alternative (j) can be expresses as (Bhat, Chandra, Govindarajan, & Pulugurta, 1998): 

𝑈𝑞𝑖𝑗 =  𝛽′𝑥𝑞𝑖𝑗 + 𝜂 log(𝐷𝑗) + 휀𝑞𝑖𝑗, 3-13 
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where: 

𝑥𝑞𝑖𝑗: Vector of explanatory variables including travel impedance (e.g. cost or time), zonal 

attributes and attractiveness, and interaction of travel impedance with socio-economic 

characteristics of individuals (q), 

𝛽′: Vector of coefficients to be estimated, 

𝐷𝑗: Number of elemental alternatives in zone (j), 

𝜂: Scale parameter. 

The number of elemental alternatives, 𝐷𝑗 , in each zone is difficult to quantify; however, it 

could be modelled by a set of size variables such as the zone area and number of employments. 

Thus, utility function can be rewritten as: 

𝑈𝑞𝑖𝑗 =  𝛽′𝑥𝑞𝑖𝑗 + 𝜂 log(𝛿′𝑑𝑗) + 휀𝑞𝑖𝑗, 3-14  

where 𝑑𝑗 is a vector of proxy variables and 𝛿′ is a vector of corresponding parameters. 

After assigning destination zones to the agents, the last step is to randomly assign each agent to a 

parcel within its destination zone.  

3.4 Simulation Setup 

In period 0, the initialization process, the model reads the shapefiles that contain information about 

the transportation system (e.g. network layout, speed limits, and one-way roads), as well as the 

synthesized agents’ information and locations for an entire region. The next step in the model 

initialization process was to compute base utility and the corresponding probability of choosing 

available modes for each agent. In the first iteration, agents choose the travel mode with the highest 

probability and travel on the map according to the calculated shortest path. During each iteration, 

agents acquired new information (e.g. traffic conditions, volume of pedestrians and automobiles 

encountered) by interacting with other agents and the environment, which then were used to update 
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agents’ perceived utility for the subsequent iteration as presented in Equation 3.10, 3.11, or 3.12, 

depending on the agents’ information provision category. In the following iterations, agents chose 

whether to explore or exploit, based on a generated random number; if the number was less than 

the exploration rate, then agents chose to explore new alternatives using the soft-max selection 

process described in the previous section. On the other hand, if the generated random number was 

greater than the exploration rate, agents exploited the action with the highest Q-value, as shown in 

Figure 3.3. 

  

Figure 3.3: The proposed framework flowchart 
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Chapter 4     Dataset Description 

4.1 Study Area 

The city of Kelowna is part of the Regional District of Central Okanagan (RDCO) in the southern 

interior of the province of British Columbia, as illustrated in Figure 4.1. The city is located on the 

traditional and unceded territory of the Syilx Okanagan people. It encompasses 21,779 hectare and 

a population of 127,380 individuals and 53,925 households distributed at 167 dissemination areas. 

Kelowna’s population is growing rapidly at an annual rate of 1.51%, which means that the city’s 

population is expected to grow to 161,701 by 2030 and 179,200 in 2040. Given that the average 

household size is expected to decline, it is projected that around 20,084 dwellings will be needed 

to accommodate the growth in the city. Further, the city is expected to experience substantial 

growth in older age groups compared to younger age groups (City of Kelowna, 2018).  

To limit urban sprawl, the city has mandated to accommodate 44 percent of future growth 

in five urban centres, as shown in Figure 4.1. In addition, the city has identified eight pseudo 

SMARTer Growth principles to guide the planning process of the urban centers as follows: 

• Mix it up: promote high density, mix land use, and active streets (e.g. commercial usage 

on ground floors) within close proximity to high quality transit service.  

• Places for people: creating a pedestrian friendly design through consistent street-wall 

heights and setbacks that relate to the width of sidewalks. 

• Healthy housing mix: promote mix of housing types, affordable housing, and family-

oriented units.  

• Social spaces: promote Social Interaction in public spaces. 
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• Placemaking: promote local character of communities and sense of identity in public 

spaces. 

• Going green: promote the integration of greenways, parkways, and parks. 

• People first transportation: prioritize alternative modes of transportation. 

• Make it walkable: improve pedestrian connectivity through short blocks and/or mid-block 

pathways and promote pedestrian friendly sidewalk landscaping.  

 

Figure 4.1: Location of the City of Kelowna
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Three urban centres are examined in this study: Capri-Landmark, South Pandosy, and 

Rutland, as shown in Figure 4.2. The Capri-Landmark neighbourhood is approximately 98 

hectares with a total population (density) of 2,886 residents (30 people/hectare) and a total 

employment (density) of 8,523 jobs (87 jobs/hectare). Of the five official urban centres, 

Capri-Landmark has been identified as top priority for a new comprehensive urban centre 

plan due to its lack of previous comprehensive planning, increasing development pressure, 

and several built-environment challenges including limited green spaces and disconnected AT 

infrastructure (City of Kelowna, 2016). The neighbourhood is serviced by a rapid bus service 

on its north boundary (Harvey Avenue) and a frequent bus service on its south boundary 

(Springfield Road). 

The South Pandosy neighbourhood is approximately 156 hectares with a total 

population of 4,184 residents (27 people/hectare) and 3,895 jobs (25 jobs/hectare). The 

neighbourhood is characterized by unique pedestrian-oriented streetscape and concentration of 

retail on one of its major corridors (Pandosy Street) as well as several waterfront public spaces 

and parks. The neighbourhood is serviced by several frequent bus services. 

The Rutland neighbourhood is approximately 169 hectares with a total population of 

5,607 residents (33 people/hectare) and 1,400 jobs (8 jobs/hectare). It is characterized by the 

availability of several public parks and a community market. However, a major highway (Hwy 

33) cuts through the neighbourhood. Similar to the South Pandosy neighbourhood, Rutland is 

also serviced by several frequent bus services.     

All the three neighbourhoods were hypothetically retrofitted using the SMARTer 

Growth (SG) principles as shown in Figure 4.3 to Figure 4.8. The retrofitting process involved 
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a series of local road closures to preclude through traffic on local roads and direct it to the 

perimeter, without altering the existing non-motorized network. Moreover, some areas that 

resulted from road closures were used to provide green spaces in the neighborhood. These 

green spaces eventually supplemented the local road network to provide more ambiant off-

road pathways that allow convenient walking and cycling across the neighborhood. Finally, 

the distribution of population and employment within the neighbourhood was changed 

according to the SG Principles such as higher density and mixed land use located along the 

perimeter arterial and major collector corridors. Table 4.1 presents a summary of the 

transportation and land use metrics for the existing scenarios and the proposed retrofits. 
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Figure 4.2: Locations of the study areas & existing roads and land use 
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Figure 4.3: SMARTer Growth transportation retrofit of the Capri-Landmark 

neighbourhood 
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Figure 4.4: SMARTer Growth land use retrofit of the Capri-Landmark neighbourhood 
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Figure 4.5: SMARTer Growth transportation retrofit of the South Pandosy 
neighbourhood 

!

!

!

!!
!

!
!

!

!
!

!

! !

! !

!

!
!

!
!

!

!

!
!

Transit Network 2040 SG

Walking Network 2016

Road Network 2040 SGRoad Network 2016

!

!

!

!!
!

!
!

!

!
!

!

! !

!

!

!

!
!

!
!

!

!

Transit Network 2016

Cycling Network 2040 SG

Walking Network 2040 SG

Cycling Network 2016

µ

0 250 500125
Meters

µ

µ

µµ

µ

µ

µ

0 250 500125
Meters

0 250 500125
Meters

0 250 500125
Meters

0 250 500125
Meters

0 250 500125
Meters

0 250 500125
Meters

0 250 500125
Meters

Parcel

Park

MOTI

Arterial

MajorCollector

MinorCollector

Local

Parcel

Park

One-way couplet

Arterial

MajorCollector

MinorCollector

Local

Parcel

Road

! Bus Stop

Parcel

Park

Off-road Path

On-road Path

Sidewalk

Road

Parcel

Park

Off-road Path

On-road Path

Sidewalk

Road

Parcel

Park

Bikelane

Cycle Track

On-road Path

Off-road Path

Road

Parcel

Park

Bikelane

Cycle Track

On-road Path

Off-road Path

Road

Parcel

Road

! Bus Stop



 
80 

 

Figure 4.6: SMARTer Growth land use retrofit of the South Pandosy neighbourhood 
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Figure 4.7: SMARTer Growth transportation retrofit of the Rutland Neighbourhood 

!

!

!
! ! !

!

!! ! !

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!!

!
!

Transit Network 2040 SG

Walking Network 2016

Road Network 2040 SGRoad Network 2016

!

!

!
! ! !

!

!! ! !

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!!

Transit Network 2016

Cycling Network 2040 SG

Walking Network 2040 SG

Cycling Network 2016

µ

0 300 600150
Meters

µ

µ

µµ

µ

µ

µ

0 300 600150
Meters

0 300 600150
Meters

0 300 600150
Meters

0 300 600150
Meters

0 300 600150
Meters

0 300 600150
Meters

0 300 600150
Meters

£¤33£¤33

Transit Route

Active Transportation

! Bus Stop

Transit Route

Active Transportation

! Bus Stop

Parcel

Park

Sidewalk

On-road Path

Off-road Path

Road

Parcel

Park

Sidewalk

On-road Path

Off-road Path

Road

Parcel

Park

MOTI

Arterial

MajorCollector

MinorCollector

Local

Parcel

Park

MOTI

Arterial

MajorCollector

MinorCollector

Local

Parcel

Park

Bikelane

Cycle Track

On-road Path

Off-road Path

Road

Parcel

Park

Bikelane

Cycle Track

On-road Path

Off-road Path

Road



 
82 

 

Figure 4.8: SMARTer Growth land use retrofit of the Rutland Neighbourhood 
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Table 4.1 A summary of the transportation and land use metrics for the existing 

scenarios and the proposed retrofits 

Metric 
Capri-Landmark South Pandosy Rutland 

Existing 2040 SG Existing 2040 SG Existing 2040 SG 

Population density 

(pop/hectare) 
23.7 107.7 25.7 43.7 35.6 57 

Employment density 

(jobs/hectare) 
106 118.1 27.3 37.4 13.8 28.3 

Green area (hectare) 2.2 5.6 8.8 11.3 12.8 15.1 

TLKM (km) 17.9 18.3 15.1 16.2 22.5 22.0 

Road connectivity 

(links/nodes) 
1.33 1.12 1.30 1.18 1.31 1.10 

Sidewalk length 

(km) 
9.3 9.7 11.6 13.3 12.3 15.7 

Bike lane length 

(km) 
2.8 0.8 6.8 5.5 3.2 1.3 

Cycle track length 

(km) 
0 4.6 0 5.5 0 7.8 

On-road Path (km) 0.3 0.3 0 0 1.9 0.7 

Off-road Path (km) 0.2 1.1 0.35 2.9 0.89 5.2 

 

4.2 Dataset Description 

This research utilized four types of data for the development and calibration of the proposed 

adaptive ABM including: 1) a disaggregate sample of the population at the household and 

person level, 2) socio-economic marginal distributions of the population, 3) transportation 

networks, and 4) land use information. A description of each of the four data types and their 

sources is presented below.   

4.2.1 Disaggregate Sample of Population 

The disaggregate sample was obtained from the Okanagan Travel Survey (OTS). The OTS is 

a household-based travel survey for the residents of the RDCO and the City of Vernon. The 

OTS data includes both socioeconomic and demographic characteristics (e.g. auto ownership, 
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income, age, and sex) as well as information on travel patterns (e.g. travel mode, trip purpose). 

In addition, travel time and distance for all reported trips were generated for car, transit, 

walking, and cycling using the Google Directions API, given the respondents' residential and 

work postal codes (Idris, 2013).The survey was conducted during weekdays in the fall of 2013, 

with a response rate of 3.3 percent, total responses of 3,050 households, and 22,500 trip 

records. In this research, only observations where both trip ends were located in Kelowna were 

used for the development of models. In addition, the dataset was cleaned to exclude 

observations with missing data, such as the chosen mode and trip information. Figure 4.9 and 

Figure 4.10 show the number of excluded observations by reason for mode and destination 

choice models and population synthesis, respectively. 

 

Figure 4.9: Description of the sample used for population synthesis 

Full Dataset
2,868 Households 
5,817 Individuals
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2,519 Individuals
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3,287 Individuals

Missing Age Group
6 Households 
11 Individuals
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Figure 4.10: Description of the sample used for transport mode and destination choice 

models 

For population synthesis, the OTS data was filtered to only include households located 

within the city boundary (1,628 households and 3,287 persons). For the development and 

validation of the MNL mode and destination choice models, the data was filtered to only 

include home-to-work trips during the morning peak (6 am - 9 pm) for which both trips ends 

are in Kelowna (1,344 trips). Home-to-work trips were used in this study due to their 

permanence, non-discretionary nature, and resemblance of long-term decisions. Table 4.2 and 
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Table 4.3 show the characteristics of the sample used for mode and destination choice models 

and population synthesis, respectively. 

Table 4.2 Socio-economic Characteristics of the OTS Subsets Used for Model 

Development and Validation 

Variable Category N % 

Number of vehicles in a 

household 
0 29 2.2 

1 366 27.2 

2 603 44.9 

3+ 346 25.7 

Number of bicycles in a 

household 
0 162 12.1 

1 183 13.6 

2 351 26.1 

3+ 648 48.2 

Household dwelling type Single Detached House 905 67.3 

Apartment or Condo 214 15.9 

Townhouse or Row House 156 11.6 

Duplex 54 4.0 

Mobile Home 15 1.1 

Age (05-14) 249 18.5 

(15-24) 207 15.4 

(25-34) 247 18.4 

(35-44) 219 16.3 

(45-54) 234 17.4 

(55-64) 173 12.9 

65 and over 15 1.1 

Sex Men 627 46.7 

Women 717 53.3 

Monthly or annual transit pass Yes 159 11.8 

No 1185 88.2 

Driver’s license Yes 1020 75.9 

No 324 24.1 
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Table 4.3 Socio-economic Characteristics of the OTS Subsets Used for Population 

Synthesis  

Variable Category N % 

Households Characteristics 

Household size 1 334 20.5 

2 823 50.6 

3 212 13.0 

4+ 259 15.9 

Household dwelling type Single Detached House 960 59.0 

Apartment or Condo 370 22.7 

Townhouse or Row House 206 12.7 

Duplex 63 3.9 

Mobile Home 29 1.8 

Persons Characteristics 

Age (05-14) 365 11.1 

(15-24) 436 13.3 

(25-34) 511 15.5 

(35-44) 482 14.7 

(45-54) 525 16.0 

(55-64) 534 16.2 

65 and over 434 13.2 

Sex Men 1506 45.8 

Women 1781 54.2 

4.2.2 Marginal Distributions of the Population 

The socio-economic marginal distributions of the population were based on aggregate census 

data at the dissemination area level, which is the smallest geographic area for which census 

data are disseminated. The dataset was extracted from Statistics Canada 2016 Census Profiles 

files using the Canadian Census Analyser tool (Statistics Canada, 2017). It included various 

explanatory variables at the household and individual level such as age, sex, dwelling type, 
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employment, modal share, etc. Table 4.4 shows summary statistics of the characteristics of the 

population in Kelowna in 2016. 

Table 4.4 Socio-economic Characteristics of the population in Kelowna in 2016 

Variable Category N % 

Households Characteristics 

Household size 1 15,740 29.2 

2 20,985 39.0 

3 7,385 13.7 

4+ 9,730 18.1 

Household dwelling type Single Detached House 24,740 45.8 

Apartment or Condo 16,390 30.4 

Townhouse or Row House 8,100 7.3 

Duplex 3,920 15.0 

Mobile Home 810 1.5 

Persons Characteristics 

Age (00-04) 5,565 4.4 

(05-14) 12,250 9.6 

(15-24) 15,980 12.5 

(25-34) 17,030 13.4 

(35-44) 14,710 11.5 

(45-54) 17,300 13.6 

(55-64) 18,105 14.2 

65 and over 26,440 20.8 

Sex Male 61,605 48.4 

Female 65,735 51.6 

4.2.3 Transportation Networks 

Transportation networks data was obtained from the City of Kelowna’s open data portal. The 

data includes spatial and temporal (built year) dimensions of road centerlines, road 

intersections, sidewalks, bike lanes, cycle tracks, on-road paths, off-road paths, and walkways. 
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Figure 4.11, Figure 4.12 and Figure 4.13 depict the road, walking, and cycling networks in 

Kelowna, respectively, in 2016. 

In addition, transit routes and stop locations were created using the General Transit 

Feed Specification (GTFS) dataset for Kelowna. The GTFS is a data specification that allows 

public transport agencies to publish transit data in a format that can be easily consumed by 

wide range of applications, including google maps. It was developed by Google in 

collaboration with TriMet. The GTFS is comprised of a series of at least six tables (formatted 

as text files .csv) including: routes, trips, stop_times, stops, calendar, and shapes. The transit 

network for the city of Kelowna with frequency levels for bus stops appended as a temporal 

dimension is illustrated in Figure 4.14. The frequency level for each bus stop was determined 

by computing the headway for all transit routes utilizing the bus stop during the morning 

working-day hours (6 am – 9 am), and then calculating the average headway of all these transit 

routes. The frequency classification of bus stops is divided into five categories based on 

average headway as shown in Table 4.5.  

Using the city and GTFS datasets, two multi-modal transportation networks were 

constructed to imitate the transportation network in the city of Kelowna for two years of 

interest: 2014 and 2016. 

Table 4.5 Bus Stops Frequency Classification by Average Headway 

Level Average Headway 

High service Less than 20 min 

Medium service From 20 min to 30 min  

Low service From 30 min to 45 min 

Very low service More than 45 min 

No service — 
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Figure 4.11: City of Kelowna’s road network  
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Figure 4.12: City of Kelowna’s walking network 
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Figure 4.13: City of Kelowna’s cycling network 
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Figure 4.14: City of Kelowna’s transit network 
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4.2.4 Land Use Information 

Finally, land use data for the study area in 2014 were obtained from the city of Kelowna. The 

data was compiled at the parcel level using various sources including Census Canada profiles, 

BC Assessment, Canada Business Points, and the Central Okanagan School District’s 

enrollment counts.  Figure 4.15 shows several land use characteristics of Kelowna aggregated 

at the dissemination area level; a parcel was associated with a dissemination area if its centroid 

falls within the dissemination area boundary. 

The land use data at the parcel level for the year of 2016 were not available to the 

researcher. Thus, there were approximated by assuming a uniform rate of change for all parcels 

in a dissemination area. The rate of change for each dissemination area was calculated using 

the aggregated number of population and employment in each dissemination area in 2014 and 

2016. 
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Figure 4.15: Land use Characteristics of Kelowna 
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Chapter 5     Model Development & Calibration 

5.1 Population Synthesis 

A population synthesizer, namely Popgen, was used to generate a population for the city of 

Kelowna using the disaggregate OTS data and the aggregated census data. PopGen is an open-

source population synthesizer that employs the iterative proportional updating (IPU) algorithm 

(Bar-Gera, Konduri, Sana, Ye, & Pendyala, 2009; Konduri, You, Garikapati, & Pendyala, 

2016; Ye, Konduri, Pendyala, Sana, & Waddell, 2009b). It adjusts weights iteratively among 

households of the same type until they match the known marginal distributions of households 

and personal level attributes of interest. In this research, the household level attributes included 

dwelling type and number of people per household; the person level attributes included age 

and sex. 

Table 5.1 compares the characteristics of the synthetic agents with the observed 

population. It can be seen from the data in this table that the maximum difference between the 

synthetic and observed population was 0.7%, which was for the sex variable, while the lowest 

difference was 0%. While this preliminary comparison suggests that the population synthesis 

module generated a representative synthetic population, further empirical testing was required 

to support this hypothesis. 

Several goodness-of-fit measures were found in the literature for evaluating the fit 

between the actual and synthetic population. The most commonly used indicator in the 

literature is the standardized root mean square error (SRMSE), as illustrated in Equation 5-1 

(Farooq, Bierlaire, Hurtubia, & Flötteröd, 2013; Fatmi & Habib, 2018; Pritchard & Miller, 

2012; Saadi, Mustafa, Teller, Farooq, & Cools, 2016). The SRMSE is a distance-based 
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statistic. It has a lower limit of zero, which represents a perfect fit, and a variable upper limit 

depending on the distribution of Tij, that is usually assumed to be 1 (Pritchard & Miller, 2012). 

While the SRMSE is superior over traditional goodness-of-fit measures (e.g. R2 and chi-

square), it can only be used when the totals match (i.e. ∑ �̂�𝑖𝑗𝑖,𝑗 =  ∑ 𝑡𝑖𝑗𝑖,𝑗 ) (Knudsen & 

Fotheringham, 1986).  

SRMSE =

√
1

𝐼 × 𝐽
 ∑ ∑ (�̂�𝑖𝑗 − 𝑡𝑖𝑗)

2𝐽
𝑗

𝐼
𝑖

1
𝐼 × 𝐽

∑ ∑ �̂�𝑖𝑗
𝐽
𝑗

𝐼
𝑖

, 5-1 

where: 

�̂�𝑖𝑗: is the synthesized number of agents with the combination of the attributes i, j, 

𝑡𝑖𝑗: is the observed number of people with the combination of the attributes i, j. 

The population synthesis results show that Popgen generated a synthetic population of 

54,355 households, compared to 54,445 observed households, and 123,135 individuals, 

compared to 123,035 observed individuals.  These results reveal an insignificant under-

representation of the number of households and a slight over- representation of the number of 

individuals by 0.17% and 0.08%, respectively. Thus, the SRMSE cannot be used to evaluate 

the synthetic population in this research. 

An alternative approach is to use the statistic ψ̅ (Equation 5-2), an information-based 

statistic, which was among the three goodness-of-fit measures recommended by Knudsen and 

Fotheringham  (1986). Similar to the SRMSE, the lowest limit for the statistic ψ̅ is zero, which 

indicates a perfect fit. The resulted statistic ψ̅ for the synthetic population was calculated to be 

0.037, which indicates a realistic synthetic population. 
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Table 5.1 Socio-economic Characteristics of the OTS Subsets Used for Model 

Development 

Variable Category Observed Synthetic Difference 

  % % % 

Households Characteristics 

Household size 1 29.2 29.2 0.00 

2 39.0 39.0 0.01 

3 13.7 13.7 0.01 

4+ 18.1 18.1 0.02 

Household 

dwelling type 
Single Detached House 45.8 45.9 0.02 

Apartment or Condo 30.4 30.4 0.01 

Townhouse or Row House 7.3 7.3 0.02 

Duplex 15.0 15.0 0.03 

Mobile Home 1.5 1.5 0.01 

Persons Characteristics 

Age (05-14) 10.1 10.1 0.06 

(15-24) 13.1 13.2 0.11 

(25-34) 14.0 13.9 0.09 

(35-44) 12.1 12.4 0.28 

(45-54) 14.2 14.2 0.03 

(55-64) 14.9 15.0 0.16 

65 and over 21.7 21.2 0.55 

Sex Men 48.4 47.7 0.66 

Women 51.6 52.3 0.66 

ψ̅ = ∑ ∑ 𝑝𝑖𝑗 |log
𝑝𝑖𝑗

𝑠𝑖𝑗
|

𝑗𝑖

+ ∑ ∑ 𝑞𝑖𝑗 |log
𝑞𝑖𝑗

𝑠𝑖𝑗
| ,

𝑗𝑖

 
5-2 

where: 

𝑝𝑖𝑗 =  
𝑡𝑖𝑗 

∑ ∑ 𝑡𝑖𝑗𝑗𝑖
, 5-3 
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𝑞𝑖𝑗 =  
�̂�𝑖𝑗 

∑ ∑ �̂�𝑖𝑗𝑗𝑖

, 5-4 

𝑠𝑖𝑗 =
(𝑝𝑖𝑗 + 𝑞𝑖𝑗)

2
. 5-5 

In addition, statistic ψ̅ was computed at the dissemination area level to assess the spatial 

distribution of the synthetic population matrix compared to the observed population matrix. 

The results, as shown in Figure 5.1 (a), show that around 72% of the dissemination areas have 

a ψ̅ less than 0.1 and a maximum ψ̅ value of 0.166, which is consistent with levels found in 

the literature to be acceptable goodness of fit.  

Similarly, the second measure used to assess goodness of fit, the standardized absolute 

error (SAE) goodness-of-fit measure, Equation 5-6, was also computed at the dissemination 

area level to assess the spatial distribution of the total number of synthetic agents in comparison 

with the observed population. The results, as depicted in Figure 5.1, reveal that around 64% 

and 92% of the dissemination areas have SAE values of less than 5% and 10%, respectively. 

Overall, the results from both measures show that the population synthesis module used in this 

research generated a synthetic population that yields a high level of goodness of fit.  

𝑆𝐴𝐸𝑘 = |
𝑇𝑘 − �̂�𝑘

𝑇𝑘
| × 100, 5-6 

where: 

𝑇𝑘: is the total number of observed population in dissemination area (k). 

�̂�𝑘: is the total number of synthetic agents in dissemination area (k). 
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Figure 5.1: Goodness-of-fit measures of the synthetic population at the dissemination 

area level 
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5.2.1 Modelling Methods 
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explanatory variables are considered for the model including travel impedance, zonal attributes 

and size measures, and the interaction of travel impedance with socio-economic characteristics 

of individuals.  

A composite travel impedance was utilized in this study to account for modal 

availability between zones, such as the unavailability of a travel mode should increase the 

impedance value for a zone pair (Bhat et al., 1998). While driving was available for all zone 
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pairs in the study area, transit, walking, and cycling were not available for several zone pairs. 

In theory, walking and cycling are also available for all zone pairs; however, practically, there 

is a threshold distance that people are willing to commute. One approach to estimate the 

walking/cycling threshold distance is by calculating the 95th percentile of walking/cycling 

commuting trip distances. In this research the walking and cycling threshold distances are 

estimated to be 1.9 km and 10 km, respectively, as shown in Figure 5.2 and Figure 5.3. The 

composite travel impedance was calculated as the following (Bhat et al., 1998): 

imp =
𝑇𝑇𝑐

1 + (𝑦𝑡 ×
𝑇𝑇𝑐

𝑇𝑇𝑡
𝛽) + (𝑦𝑤 ×

𝑇𝑇𝑐

𝑇𝑇𝑤
𝛾) + (𝑦𝑏 ×

𝑇𝑇𝑐

𝑇𝑇𝑏
𝜆)

, 
5-7 

where 𝑦𝑡, 𝑦𝑤, and 𝑦𝑤 are dummy variables that indicate the availability of transit, 

walking, and cycling modes, respectively (1 if available, 0 otherwise), and 𝑇𝑇𝑐, 𝑇𝑇𝑡, 𝑇𝑇𝑤, 𝑇𝑇𝑏 

are driving, transit, walking, and cycling travel times, respectively. The parameters 𝛽, 𝛾, and 

𝜆  have a positive value and they denote the importance of transit, walking, and cycling modes 

compared with driving mode. These parameters were determined empirically by estimating the 

model in Equation 5-8, assuming that the probability of a trip in zone i to be attracted to zone 

j is only influenced by composite impedance. The results reveal that 𝛽, 𝛾, and 𝜆 were 

statistically significant with values of 5.86, 2.24, and 4.0, respectively.   

𝑃𝑞𝑖𝑗 =
𝑒𝛼𝑓(𝑖𝑚𝑝𝑞𝑖𝑗)

∑ 𝑒𝛼𝑓(𝑖𝑚𝑝𝑞𝑖𝑗)
𝑗∈𝐶𝑞

. 5-8 
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Figure 5.2: Cumulative walking distance distribution curve 

 

Figure 5.3: Cumulative cycling distance distribution curve 
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employments, number of non-retail employment, and number of retail employment. The non-

size measures included land-use mix (population and employment), employment mix (retail 

and non-retail), and an urban core dummy variable (1 if located in the city’s urban core, 0 

otherwise). Both land-use mix and employment mix were measured in terms of entropy score 
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and are computed as illustrated in Equation 5-9, where 𝑃𝑗 is the proportion of land use 

development for type j and J is the number of land use types. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =
∑ ⌊𝑃𝑗 × ln 𝑃𝑗⌋𝑗

ln 𝐽
. 5-9 

The last set of explanatory variables considered for the discrete attraction-end model is 

the interaction between travel impedance and individual attributes such as age, gender, and 

occupation.  

The model parameters were estimated using the DONLP2 optimization algorithm 

(Spellucci, 1998a; Spellucci, 1998b) coded in Biogeme (2003), an open source package for 

maximum likelihood estimation; the DONLP2 algorithm is used due to the nonlinear form of 

the logit model. The choice subset was restricted to seven alternatives, including the chosen 

alternative. In addition, the forward stepwise method is used for variable selection based on 

three criteria: 1) statistical significance of the parameter estimates, 2) the parameter estimate 

signs are intuitive, and 3) the model goodness-of-fit. A variable is retained in the model if it 

exhibits statistical significance at the 95% confidence interval level, which corresponds to 

critical values of 1.96 for 2-tailed test and 1.645 for 1-tailed test. In addition, the parameter 

signs should be in the expected direction. For instance, a positive sign for a travel impedance 

parameter would imply that the probability of choosing an alternative will increase as travel 

impedance increases, which is contrary to expected travel behaviour and thus should be 

eliminated. Finally, a variable is selected if it increases the model goodness-of-fit. It has been 

well established that adding a variable to a model will always increase its training error 

regardless of the variable importance and thus measures such as the McFadden's pseudo ρ2 
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cannot be used to compare models with different number of variables. Thus, a modeller should 

consider either directly estimating the test error or using a goodness-of-fit measure that 

accounts for overfitting bias (James et al., 2017). One popular approach is to use the adjusted 

ρ2 (Koppelman & Bhat, 2006), as presented in Equation 5-10, which places a penalty for adding 

a new variable. Therefore, if the decrease in the training error due to adding a variable is less 

than the penalty, then the value of the adjusted ρ2 will decrease. 

Adjusted ρ2  = 1 −
𝐿𝐿(�̂�) − 𝐾

𝐿𝐿(0)
, 5-10 

where 𝐿𝐿(�̂�) is the log-likelihood for the estimated model, 𝐿𝐿(0) is the log-likelihood 

with zero parameters, and K is the number of estimated parameters.  

5.2.2 Modelling Results 

The final model parameter estimates result of the attraction-end choice model and their 

corresponding statistical significance are shown in Table 5.2. The negative coefficient for the 

composite impedance measure indicates that the probability of choosing a candidate 

destination decreases with the increase between the production zone and the candidate zone. 

In addition, the results show that individuals in the higher income groups are less sensitive to 

travel impedance than those in the lower-income groups. Similarly, the number of vehicles per 

person in a household reduces individuals’ sensitivity to travel impedance. The coefficient of 

the zonal size measures indicates that individuals are more likely to choose zones with a high 

number of total employments. Moreover, the positive coefficient for the Urban Core dummy 

variables indicates zones that are located in the urban core are more likely to attract work 

activities.  
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Table 5.2 Parameter Estimation Results for the Discrete Morning Home-to-work 

Attraction-end Choice Model 

Null log-likelihood -4881.142 

Final log-likelihood -2736.256 

Adjusted ρ2 0.438 

Variable Parameter t-stat. 

Composite impedance  -0.225 -25.33 

Urban Core 0.295 3.36 

Log of zonal size measures   

Size of the zone (hectare) 1.0 — 

Total number of Employment 0.434 2.46 

Socio-economic interactions with composite impedance   

Household Income ($100,000 or more) 0.0182 3.05 

Vehicles/person in a household 0.0251 3.54 

In addition, Figure 5.4 shows that the projected travel time distribution from the 

discrete choice model mimics the actual travel time distribution observed in the OTS dataset. 

 

Figure 5.4: Trip time distribution comparison between the actual and estimated trips 
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5.3 Discrete Morning Home-to-work Mode Choice Model 

5.3.1 Modelling Methods 

An MNL model for morning home-to-work mode choice decisions was developed for the city 

of Kelowna. The model accounts for socioeconomic characteristics, level of service attributes, 

and built-environment measures. The built-environment measures were quantified at various 

buffer distances (300, 400, up to 1,000 m) for all trips’ origins and destinations. Two type of 

buffers were used in this study including circular and road network buffers (Figure 5.5). 

Population density, employment density, land use diversity, employment diversity, and length 

of AT infrastructure were quantified using circular buffers while proximity to bus stops and 

green spaces were quantified using road network buffers.  

 
Figure 5.5: Network buffer vs circular buffer 
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Four utility functions were estimated for the four travel modes considered in this 

research which are: 1) automobile, 2) transit, 3) walk, and 4) bike; these travel modes represent 

the universal choice set. However, not all alternatives in the universal choice set were feasible 

for the entire population, which could be due to legal regulations, the individual’s 

characteristic, and trip attributes. The subset of the universal choice set that is available for an 

individual is called the feasible choice set, and it was used for model calibration. 

Several assumptions were made regarding the availability of the four travel modes 

considered in this research. For instance, the automobile mode is assumed to be available for 

individuals since it comprises both drive-alone and shared-ride alternatives. Transit is assumed 

to be available for all trips, unless transit travel time cannot be calculated using the Google 

Maps Directions API, which indicates that trip origin and/or destination is at least 3 km away 

from the nearest bus stop. Finally, walking and cycling availability is determined using the 95th 

percentile of walking/cycling commuting trip distances as discussed in Section 4.2.1. 

The model parameters were estimated using the BIerlaire's Optimization (BIO) 

algorithm adapted in Biogeme. Similar to the attraction-end choice model, the forward 

stepwise method is used for variable selection based on the three criteria: statistical 

significance, intuitive parameter sign, and goodness-of-fit. Nevertheless, explanatory variables 

that provide significant behavioural insights and policy implications were retained in the model 

even if they were below the 95% confidence interval level (Fatmi, 2017; Rahman, 2016). In 

addition, in light of numerous studies suggesting a non-linear relationship between non-

motorized modes and their predictors (Cervero, Denman, & Jin, 2019; Hanson & Giuliano, 

2017), several non-linear forms for walking and cycling utilities were examined including 
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exponential, logarithmic and quadrant functions. However, the results indicated that a linear 

utility function for walking and cycling modes provides better goodness-of-fit for the mode 

choice model.  

5.3.2 Modelling Results 

The final model parameter estimates result of the mode choice model and their corresponding 

statistical significance values are shown in Table 5.3. The modelling results show that travel 

distance and time are negatively associated with all travel modes, as one would expect. 

However, females are more sensitive to the increase in cycling distance than males. In addition, 

the results show that those in the age range from 15 to 24 years are less likely to use the auto 

mode and more likely to walk to work, which could be explained by youth having limited 

access to a driving license and/or a vehicle. The number of vehicles and bikes per person in 

the household has a significant negative association with auto use and bike use, respectively; 

however, the influence of the increase in the number of vehicles per person is much stronger 

and more significant than the increase of the number of bikes per person.  

For the built environment measures, the results indicate that higher employment density 

within a 400m buffer of trip destinations increases the likelihood of using transit and cycling 

modes. In addition, land use diversity, measured by entropy at a 700m buffer of trip origins, is 

found to be positively associated with the increase of the likelihood of walking. The availability 

of high frequency bus stops within 800m of trip origins has a significant positive association 

with transit use. On the other hand, the availability of medium frequency bus stops within 

500m of trip origins has a positive association, but not statistically significant, with the increase 

of the likelihood of using transit. These results indicate that people are willing to walk longer 
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distances, than usually assumed in transportation studies, to reach bus stops with high 

frequency service. Moreover, the length of bike lanes within an 800m buffer of trips origins 

and a 600m buffer of trip destinations decreases the likelihood of using the auto mode. Finally, 

the availability of green spaces and off-road paths are positively associated with the cycling 

mode, which could be attributed to the higher perceived level of safety on off-road paths 

compared to on-road facilities.    

Table 5.3 Parameter Estimation Results for the Discrete Morning Home-to-work Mode 

Choice Model 

Null log-likelihood - 1856.379 

Final log-likelihood - 600.114 

Adjusted ρ2 0.663 

Variable Auto Transit Walking Cycling 

Alternative Specific Constant  — -3.69 1.77 -2.78 

level of service     

Travel Time 
-0.144  

(-3.36) 

-0.0188 

(-1.57) 
— — 

Travel Distance — — 
-2.33 

(-10.53) 

-0.361 

(-5.35) 

Socio-economic     

Age Group (15-24) 
-1.17 

(-4.06) 
— 

0.902 

(2.15) 
— 

Age Group (55-64) 
-0.551 

(-1.91) 
— — — 

Driver's license 
0.632 

(2.32) 
— — — 

Monthly transit pass — 
3.82 

(12.23) 
— — 

Vehicles/person in the 

household 

1.77 

(6.38) 
— — — 

Bikes/person in the household — — — 
1.23 

(7.22) 

Female × Distance — — — 
-0.132 

(-2.38) 
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Variable Auto Transit Walking Cycling 

Built Environment     

Employment density 400 m (at 

destination) 
— 

0.00588 

(1.61) 
— 

0.0105 

(3.42) 

Land use entropy 700 m (at 

origin) 
— — 

1.27 

(2.31) 
— 

# high frequency bus stops 800 

m (at origin) 
— 

0.0601 

(2.07) 
— — 

# medium frequency bus stops 

500 m (at origin) 
— 

0.117 

(0.83) 
— 

-0.270 

(-1.64) 

Green spaces availability 500 

m (at origin) 
— — — 

0.860 

(1.84) 

Bike lane length 800 m (at 

origin) 

-0.119 

(-1.91) 
— — — 

Sidewalk length 300 m (at 

destination) 
— — 

0.307 

(2.21) 
— 

Off-road path length 800 m (at 

destination) 
— — — 

0.194 

(1.32) 

values within parenthesis () show t-stat value 

5.4 Calibrating Route Choice 

The complex nature of agent-based models makes them difficult to calibrate and validate, 

especially with the lack of significantly detailed datasets for various components of the system. 

In such cases, pattern-oriented modelling (POM) becomes an extremely useful tool, in which 

multiple patterns are used to guide the calibration process (O'Sullivan & Perry, 2013; Wiegand, 

Jeltsch, Hanski, & Grimm, 2003). Grimm et al. (2005) described patterns as “defining 

characteristics of a system and indicators of essential underlying processes and structures”. As 

participants in the OTS were not asked to report their trips routes, pedestrian and cyclists route 

choice algorithms in this research are calibrated by comparing ABM simulation’s predicted 

walking and cycling traffic patterns with those found in the literature, as discussed below. 
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5.4.1 Pedestrian Route Choice 

Several studies have examined the route choice behaviour of pedestrians. Seneviratne and 

Morrall (1985) conducted a survey to evaluate the factors affecting the route choice of walking 

trips within the CBD of Calgary, Alberta, Canada. With 2,685 valid questionnaires, they found 

that the shortest path was the most important factor that influences pedestrians route choice 

and that people unconsciously try to minimize their walking trips. Similarly, Schlossberg et al. 

(2007) found that pedestrians’ first priority is to minimize travel time and distance (i.e. 

choosing the most direct and shortest route). In addition, Verlander and Heydecker (1997) 

found that around three quarters of pedestrians chose the shortest path. On the other hand, the 

increase in trip length for the other quarter was highly variable. 

The results of the simulation using the calibrated pedestrian route choice model 

estimated that around 79% of walking trips are using the shortest route. The increase in the 

number of walking trips that are using the shortest path compared to the literature is attributed 

to the fact that neighbourhoods in the city of Kelowna have mixed street patterns (e.g. grid, 

loops and lollipops, cul-de-sacs, etc.), which means that some pedestrians do not have the 

option to choose among several comparable route options (i.e. they only have one feasible 

route from origin to destination, so they take it, and, it is the shortest route); previous research 

have studied neighbourhoods with a grid street pattern. In addition, walking trips are, on 

average, 21 m longer than the shortest route, which represents a 1.54% increase over the 

shortest distance. Figure 5.6 shows that the increases in trip distance are fairly well distributed 

over the length of the shortest path with a poor least square fit of -2.3 + 0.017x and R2 = 0.06. 
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These results are in accord with the literature indicating that pedestrians tend to minimize their 

physical effort by choosing the shortest path. 

 

Figure 5.6: Scatter plot of the increase in trip distance over the shortest path length 

5.4.2 Cyclist Route Choice 

In contrast to pedestrians’ route choice behaviour, minimizing travel time and distance is not 

the sole element that determines cyclists’ route choice. Cyclists generally prefer using off-

street paths and lower-volume roads (Winters, Teschke, Grant, Setton, & Brauer, 2010). Li et 

al. (2017) tracked the route choice of about 4,600 cyclists in Toronto, Ontario, Canada using a 

smartphone application that collects cyclists’ GPS data. They found that the average overlap 

between the chosen route and the shortest route was around 29 percent, which indicates that 

other factors, such as bicycle facilities, play an important role in determining cyclists’ route 

choice. Upon further investigation, they found that cyclists were willing to detour around 6% 

in distance from the shortest route to avoid high traffic volume. In addition, Li et al. (2017) 
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found that increasing the proportion of the route along off-road facilities by 1% is perceived 

by cyclists as decreasing the trip’s distance by around 5%. These findings were supported by 

Larsen and El-Geneidy (2011), who also found that cyclists would ride farther to travel along 

off-road facilities as compared to bike lanes. Additionally, the research found that the 

availability of cycling facilities within 400 m of the home and destination increases the odds 

of using the facility by 129%  (Larsen & El-Geneidy, 2011). Likewise, Stinson and Bhat (2003) 

estimated that cyclists are willing to increase their travel time by 10% to travel along routes 

with cycling facilities. In addition, Krizek et al. (2007) found that cyclists endured, on average, 

a 67% additional travel distance to use off-road facilities. Furthermore, Winters (2010) found 

that 75% and 90% of cycling trips are within 10% and 20% of the shortest distance, 

respectively.  In contrast, a study in Guelph, Ontario, Canada found that the majority of cyclists 

prefer using on-road facilities rather than using off road paths (Aultman-Hall, Hall, & Baetz, 

1997)—this is an old study that may have had significant confounding and masking factors; it 

may also have been a local cultural effect related to the relatively low-volume, rural roads and 

the high number of university students typical in the Guelph community population. On a side 

note, the classification of the road where the AT facility is located also influences AT use as 

well as driver attitudes. Audirac (2008) showed that drivers would be annoyed the most to 

share the road with cyclists on an arterial road (83 percent), followed by highways (80 percent), 

and finally collector and local roads (58 percent). 

My simulation predicted that around 33% of cycling trips are using the shortest route, 

while the remaining trips are, on average, 322 m longer than the shortest route, which 

represents a 9.5% increase over the shortest distance. Figure 5.7 shows that around 77% of 
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cycling trips are within 10% of the shortest distance and 90% of the cycling trips are within 

20% of the shortest distance. 

 
Figure 5.7: Distribution of the increase in predicted cycling trip distance comparted to 

the shortest path trip distance 

In addition, distance-decay functions provide a robust way to understand travellers’ 

spatial behaviour  (Krizek et al., 2007). In this research, the distance examined in the decay 

function is the increase in trip distance relative to the distance of the shortest route. Figure 5.8 

depicts distance-decay curves by three cycling facility types: off-road paths; on-road physically 

separated, and on-road bike lanes. Examining the decay curves revealed similar trends to those 

observed by Larsen and El-Geneidy (2011) who found that cyclists would ride farther to travel 

along an off-road facility than any on-road facility regardless of the level of separation. 

Similarly, they found that cyclists would ride farther to travel along a physically separated on-

road facility (e.g. cycle track) than a bike lane. The simulation results show that cyclists, on 

average, traveled 249, 288, and 430 m further to use on-road bike lanes, on-road physically 

separated facility, and off-road paths, respectively.   
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Figure 5.8: Distance-decay curves by facility type 

5.5 Calibrating Information Provision 

A genetic algorithm (GA) approach is utilized to automate the process of calibrating the 

proportions of information provision categories in the synthetic population. GA is used in this 

research due to its easy implementation, good performance, and robust response to dynamic 

changes (Liu & Fan, 2020; Sivanandam & Deepa, 2007). GA is an iterative and stochastic 

search process that attempts to mimic natural evolution (Sivanandam & Deepa, 2007). 

Moreover, GA uses genetic population terminology to describe a mathematical model.  The 

model consists of a population of individuals that breed repeatedly to produce fitter individuals. 

Individuals are described by their genetic material, chromosomes, which contain a set of genes 

(parameters); each chromosome represents a solution to the problem at hand. During each 

iteration, GA works with a new population set that is commonly called generation.  
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The first step in a GA algorithm, as shown in Figure 5.9, is initializing the population 

variables: 1) population size and 2) initial population. The population size is determined based 

on the complexity of the problem. The initial population is usually randomly generated to 

explore a large search space and account for a wide range of possibilities. The second step is 

calculating the fitness of each individual of the population using a fitness function. The third 

step is breeding which consists of four operators, as follows: 

1. Parents selection: is the process of choosing individuals that will be used to 

produce new offspring for the next generation. Since fitter parents are expected 

to produce fitter offspring, the basic parent selection method is to choose the 

two best individuals. Other parent selection methods include roulette selection, 

random selection, rank selection, and soft-max selection.  

2. Crossover: is the process of recombining the genes of the parents to make new 

children. Crossover swaps two randomly selected subset of genes between two 

individual chromosomes. The crossover probability parameter describes the 

frequency of a crossover in a generation, such that a probability of 0% means 

that the offspring will be exact copies from their parents and a probability of 

100% means that all offspring have genes from both parents.  

3. Mutation: is a random tweak in the genes of a chromosome. Similar to 

exploration in RL, mutation prevents the algorithm from getting stuck at a local 

optimum and allows it to explore a new search space. In GA, mutation occur 
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randomly and does not happen often; the frequency of mutation could be 

decided by specifying the mutation probability (pm) parameter.  

4. Replacement: is the process of selecting individuals from the current generation 

and their offspring to survive and become part of the next generation. Choosing 

the replacement strategy is critical since it influences the convergence 

behaviour of the GA. Some of the commonly used convergence strategies 

include entire generation replacement, random replacement, both parents 

replacement, and elitism. 

  

Figure 5.9: Flow chart of Genetic Algorithm 
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output at the dissemination area level to the actual modal share reported in the Census Data. 

The next step was to select parents to produce offspring, which was done by selecting the two 

fittest individuals in the GA population. After that, offspring are created using the single point 

crossover with a crossover probability of 100%. In a single point crossover, the two selected 

parent chromosomes are cut at a randomly generated point and the genes before the point are 

exchanged. Next, a random number is generated to decide if an offspring will perform 

mutation, such that a mutation will occur if the random number is less than the mutation 

probability, which is 20%. Finally, the fitness values for the offspring are calculated and the 

least two fit individuals are be replaced by the newly created offspring. The stopping criteria 

was set to either reaching an SRMSE value of zero or after six iterations without a change in 

the SRMSE value. 

Due to computational constraints, it was not possible to use all, or even a large number 

of, dissemination areas in the calibration process of information provision. Thus, the 

dissemination areas were randomly divided into two sets: training (51 dissemination areas) and 

validation (118 dissemination areas). A comparison between the characteristics of the 

dissemination areas in the training set, validation set, and the entire study area was conducted 

to ensure that both sets are representative of the land use (Figure 5.10) and demographic 

characteristics (Table 5.4) of the study area. The results show that the distribution of population 

density, employment density, and land use entropy in the training and testing sets have the 

same distribution as the original dataset (Figure 5.10). These results were further supported by 

conducting the Kolmogorov-Simirnov (K-S) test to compare the overall shape of the 

distribution of the two sets. The K-S results revealed a D value of 0.111, 0.114, and 0.149 and 

p-values of 0.771, 0.742, and 0.408 for population density, employment density, and land use 
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entropy, respectively, which means that the null-hypothesis that both samples have the same 

distribution can be accepted. Moreover, the Fligner-Killeen test was computed to evaluate the 

homogeneity of the training and testing sets. The test results revealed a p-value of 0.377, 0.085, 

and 0.918 for population density, employment density, and land use entropy, all of which are 

greater than 0.05, which indicates that there is no significant difference in variance between 

the training and testing sets.  

 

Figure 5.10: Comparison of the land use characteristics of the validation and testing 

datasets 
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For the demographic characteristics, Table 5.4 shows that the characteristics of training 

and testing sets at the individual level represent a negligible difference from the original 

dataset; however, the difference is slightly greater at the household level. For instance, single 

person households are over-represented in the training set by 1.2% and under-represented in 

the testing set by 2.6%. Similarly, the training set underrepresents the apartment dwelling type 

and overrepresents the single attached house dwelling type and vice versa for the testing test.  

Table 5.4 Comparison of the Demographic Characteristics of the Validation and 

Testing Datasets 

Variable Category All Training Testing 

  % % Δ % Δ 

Households Characteristics 

Household size 

1 29.3 30.5 1.20 26.8 2.57 

2 39.1 38.7 0.41 40.0 0.87 

3 13.6 13.3 0.37 14.4 0.80 

4+ 17.9 17.5 0.42 18.8 0.90 

Household 

dwelling type 

Single Detached House 45.6 44.3 1.33 48.5 2.85 

Apartment or Condo 30.1 31.6 1.51 26.8 3.24 

Townhouse or Row House 7.2 7.0 0.10 7.4 0.22 

Duplex 14.8 14.4 0.35 15.5 0.75 

Mobile Home 2.4 2.7 0.27 1.8 0.58 

Persons Characteristics 

Age 

(05-14) 10.0 9.9 0.11 10.2 0.23 

(15-24) 13.0 12.9 0.11 13.3 0.23 

(25-34) 13.9 14.1 0.22 13.4 0.47 

(35-44) 12.0 11.9 0.07 12.2 0.15 

(45-54) 14.2 14.2 0.01 14.2 0.03 

(55-64) 14.9 14.9 0.00 14.9 0.00 

65 and over 21.9 21.9 0.05 21.8 0.11 

Sex 
Men 48.3 48.43 0.10 48.13 0.20 

Women 51.7 51.57 0.10 51.87 0.20 
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In addition, the statistic ψ̅ was utilized to ensure that the OTS observations in the 

training and validation sets are representative of demographics and trip characteristics 

observed in the study area. It was computed based on four variables: 1) trip distance, 2) trip 

purpose, 3) age, and 4) gender. The resulted ψ̅ for the training and testing sets is calculated to 

be 0.451 and 0.481, respectively, which indicates a good representation of the OTS 

observations in the study area. 

The GA reached conversion after 14 iterations; Figure 5.11 shows the convergence of 

the GA procedure. The calibration process revealed the following information provision 

proportions: 32% partial information, 18% partial information with knowledge decay, and 50% 

perfect information. The proportion of users with perfect information is higher than that of 

previously reported in the literature. This difference could be attributed to significant 

advancement in digital technology and higher smartphone ownership over the years. For 

instance, household subscription to mobile services increased by 47.5% from 2004 to 2016 

(CRTC, 2019). 

 

Figure 5.11: Convergence for calibrating information provision in the ABM simulation 
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5.6 Summary 

This presented and discussed the development and calibration of the various components of 

the ABM simulation. First, a synthetic population was generated for the city of Kelowna, BC 

based on the following four steps: 1) generation of agents at the dissemination area level 

using an iterative proportional updating algorithm 2) random allocation of the synthesized 

households at the parcel level, 3) assignment of the synthetic agents to workplace 

dissemination area, and 4) random assignment of the synthetic agents to workplace parcel. 

The population synthesis goodness-of-fit results show that the population synthesis module 

used in this research generated a synthetic population that yielded a high level of goodness of 

fit, with a ψ̅ value of 0.037. In addition, the results revealed 64% and 92% of the 

dissemination areas have standardized absolute error values of less than 5% and 10%, 

respectively. The next step in the population synthesis process was to assign workplace 

dissemination areas to the synthesized population using a multinomial logit attraction-end 

choice model. Several explanatory variables were considered for the model including 

composite travel impedance, zonal attributes and size measures, and the interaction of travel 

impedance with socio-economic characteristics of individuals. The model yielded an adjusted 

ρ2 value of 0.438 and its parameter estimate indicated that individuals in the higher income 

groups are less sensitive to travel impedance than those in the lower-income groups. 

Similarly, the number of vehicles per person in a household reduces individuals’ sensitivity 

to travel impedance. 

Second, An MNL model for morning home-to-work mode choice decisions was 

developed for the city of Kelowna, BC. The model accounts for socioeconomic 
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characteristics, level of service attributes, and built-environment measures. The built-

environment measures were quantified at various buffer distances for all trips’ origins and 

destinations. The model yielded an adjusted ρ2 value of 0.663 and its parameter estimate 

indicate the following: 1) females are more sensitive to the increase in cycling distance than 

males, 2) the availability of high and medium frequency bus stops within 800m and 500m, 

respectively, of trip origins has a positive association with transit use, 3) the availability of 

green spaces and is positively associated with the cycling mode. 

Third, section 5.4 presented the calibration process of the walking and cycling 

shortest path algorithms. For walking, the ABM simulation estimated that around 79% of 

walking trips are on the shortest path. In addition, walking trips are, on average 1.5% longer 

than the shortest path. As for cycling, the ABM estimated that around 33% of cycling trips 

are using the shortest path, while the remaining trips are, on average, 9.5% longer than the 

shortest route. In addition, 77% of cycling trips are within 10% of the shortest distance and 

90% of the cycling trips are within 20% of the shortest distance.  

Finally, section 5.5 presented and discussed the calibration process of the proportions 

of the information provision categories using a genetic algorithm. The algorithm reached 

convergence after 14 iterations and revealed the following information provision proportions: 

32% partial information, 18% partial information with knowledge decay, and 50% perfect 

information.  
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Chapter 6     Results and Discussion 

6.1 Overview 

This chapter presents the modelling results of evaluating the impact of the SMARTer Growth 

(SG) neighbourhood design principles on transportation travel behaviour and quality of life 

(QoL). As described in Chapter 4, Three urban centres in the city of Kelowna are examined in 

this research including: Capri-Landmark, South Pandosy, and Rutland. Three scenarios were 

examined for each of the urban centres, as follows: 1) 2016 transportation and land use systems 

(S1), 2) 2040 projected transportation and land use systems based on city of Kelowna’s 

endorsed official community plan (S2), and 3) 2040 projected transportation and land use 

systems utilizing SG design principles, given the city’s projected urban growth (S3). Section 

6.2 presents the results from an initial model of the ABM simulation. Section 6.3 examines the 

impact of the three scenarios on neighbourhood travel pattern using the proposed agent-based 

model, presented in Chapter 3. In addition, it presents and discuses the QoL evaluation of the 

three scenarios, for each of the urban centres, utilizing the suite of tools recommended in 

Section 2.6. 

6.2 Preliminary Modelling Results 

This section reports on results from an initial model of the ABM simulation. The model was 

applied to the Capri-Landmark urban centre. However, there were few actual internal trips 

reported in the City’s provided dataset (i.e. where both trip ends were located in the Capri-

Landmark urban centre). Hence, it would have been difficult to both calibrate the model and 

forecast the influence of the retrofitted design on internal trips. Therefore, 5,000 trips were 

randomly generated within the neighbourhood. 
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For further simplicity, only three travel modes were considered in this case study as 

follows: 1) automobile, 2) transit, and 3) non-motorized modes, with the MNL model 

specification shown in Table 6.1.  

Table 6.1 Parameter Estimation Results for the Discrete Morning Home-to-work Mode 

Choice Model considering three transportation modes  

Null log-likelihood -2,378.191 

Final log-likelihood -849.680 

Adjusted ρ2 0.643 

Variable Auto Transit 
Non-

motorized 

Alternative Specific Constant  — -5.49 -0.346 

level of service    

Travel Time -0.159 (-3.83) -0.012 (-1.09) — 

Travel Distance — — -0.838 (-11.1) 

Socio-economic    

Age Group (15-24) -0.639 (-2.87) — — 

Driver's license — -1.02 (-2.48) — 

Monthly transit pass 1.44 (-3.86) 3.11 (8.26) — 

Vehicles/person in the household 1.24 (5.30) -1.06 (-2.34) — 

Bikes/person in the household -0.433 (-1.86) — 0.505 (2.06) 

Female — — -0.281 (-1.63) 

Built Environment    

Employment Density 600 m (at 

Destination) 
— 0.008 (1.88) 0.012 (3.21) 

Land use entropy 600 m (at 

Destination) 
— — — 

Population Density 800 m (at 

Origin) 
— — — 

Bike Lanes Length 400 m (at 

Origin) 
— — 0.339 (1.84) 

values within parenthesis () show t-stat value 



 

126 

This preliminary case study examined the influence of several policy scenarios on 

neighborhood travel patterns, including increased activity density and/or non-motorized to 

vehicle route directness ratio, and transportation demand management (TDM) strategies. The 

first set of scenarios examined the influence of transportation network connectivity on travel 

behaviour, including the influence of: 1) retrofitting the road network only, 2) retrofitting the 

non-motorized network only, and 3) retrofitting both the road and non-motorized networks, as 

depicted in Figure 4.3. To comprehend the magnitude of change in both networks, the 

percentage change in travel time and distance between the existing scenario and the proposed 

retrofit were estimated as follows: 19.3% increase in driving travel time and 9.2% decrease in 

non-motorized travel distance. 

The second set of scenarios examined the influence of increasing population and 

employment densities on travel behaviour. The three cases considered in this scenario 

correspond to 10%, 20%, and 30% increase in activity density (i.e. population and employment 

densities combined). The third scenario examined the combined effect of retrofitting the 

transportation network and a 30% increase in activity density on travel behaviour. 

The last set of scenarios explored the effect of transportation and land use changes 

(third scenario) coupled with TDM strategies. Contrary to traditional mode choice modelling 

techniques, this research assumes that people vary with regards to levels of information 

provision. One could argue that the most optimistic modal shift towards active transportation 

modes (transit and non-motorized) is achieved under the assumption that 100% of the agents 

have perfect information. While this assumption might not be practical, TDM strategies, such 

as improving ATIS and media awareness campaigns, can be used to increase information 
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provision and awareness of the current state as well as any changes in transportation and land 

use systems. Three cases of increasing information provision are compared: practical-, 

medium-, and high-level scenarios. In addition, another scenario was designed to explore the 

effect of providing 25% and 50% of the population in the study area with a temporary free 

transit pass to gain familiarity with the transit service in the city. This scenario was coded in 

the simulation by assuming that the transit pass dummy variable is 1 when calculating the soft-

max selection policy. This assumption results in increasing the probability of exploring the 

transit mode for agents that are enrolled in the free transit pass program. 

The first three sets of scenarios (transportation, land use, and combined) were run four 

times in this case study. They were run once for each of the three information provision 

categories (i.e. all agents are assigned to a category). For the fourth run, agents were randomly 

assigned to information provision and social interaction categories as per the following 

proportions 60, 10 and 30%, respectively. On the other hand, the TDM strategy scenarios were 

run assuming the latter only. The assumed proportion value of each category were exogenous 

and were based on previous research that shows information provision has relatively small 

impact on travel behaviour, with an estimated impact that varies between 30-40% (Englisher, 

Juster, Bregman, Koses, & Wilson, 1996; Khattak, Yim, & Prokopy, 2003; Peirce & Lappin, 

2003; Wang, X., Khattak, & Fan, 2009). It is also worth noting that earlier modelling 

experimentation showed that the perfect information category reflects traditional mode choice 

modelling. Thus, its modal share results can be used to compare traditional mode choice 

modelling with those of the proposed framework. 
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Figure 6.1 shows learning process of agents with various information provision rules, 

which demonstrates how agents are behaving in a unique and different based on their assigned 

learning updating rules, social network, and the randomness introduced in the model through 

the soft-max exploration technique.  

 

Figure 6.1: Learning process and habit formation for agents with various information 

provision categories 

Figure 6.2 illustrates the percentage change in modal split for the proposed 

transportation and land use retrofits compared to the existing conditions. The figure shows that 

all proposed information provision scenarios produce almost similar modal shift trends except 

for the partial information with knowledge decay category. For this category, the results show 
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a significant increase in the auto modal share despite the proposed hypothetical changes in the 

transportation and land use systems that were in favour of transit and non-motorized modes. 

Another unanticipated finding is the slight increase in auto modal share when retrofitting the 

road only in the random information provision assignment scenario, as shown in Figure 6.2d. 

A possible explanation would be that the reduction in auto utility due to retrofitting the road 

network was relatively small compared to the decline of unselected modes’ utilities over time 

for agents with knowledge decay. This hypothesis can be validated by looking at the results of 

the perfect information run (see Figure 6.2c) which shows that the auto modal share decreases 

as expected. 

Another interesting finding is that the modal shift in the non-motorized scenario was 

greater than the road network scenario despite the fact that the change in travel time in the 

former scenario was less than the latter scenario. This suggests that increased accessibility for 

non-motorized users has more impact on modal share than restricting car use. Nevertheless, 

the multi-modal, multi-prong retrofit strategies had the greatest beneficial influence on mode 

choice. These trends were observed in both the perfect information scenario (Figure 6.2c) and 

the random information provision assignment scenario (Figure 6.2d).  

Moving to increasing the activity density scenarios, 10%, 20%, and 30% increase in 

activity density resulted in -0.44%, 5.2%, and 9.04% modal shifts toward transit, and they 

reduced auto modal share by 0.2%, 2.24%, and 4.29%, respectively. Finally, the combined 

transportation and land use scenario achieved the highest modal shift from auto towards transit 

and non-motorized modes. Note that the shift towards transit in this scenario is slightly less 
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than the scenario of increasing activity density by 30%, which illustrates how transit competes 

with non-motorized modes.  

 
Figure 6.2: Modal shift for the transportation and land use scenarios of the preliminary 

analysis 

In addition, the proposed framework adds a time dimension to the modal shift process. 

This dimension might not represent the actual time that it takes individuals to reform their 
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beliefs about transportation modes. However, it could give a hint regarding the relative 

duration it would take to reap the full benefits of two proposed policies. This duration was 

calculated as the time steps it would take the simulation to terminate, which is when the average 

modal shift of all modes is less than 0.0001%. For this case study, our analysis shows that 

while land use policies are superior over retrofitting the transportation network, changing land 

use requires twice as much time as changing the network to reap the full benefits of land use 

policies.  

Finally, using TDM policies to augment transportation and land use changes 

reinforces their effectiveness. For instance, running the simulation assuming the medium-

level information provision scenario resulted in 10.13% and 10.6% increase in transit and 

non-motorized modal shares (Figure 6.3a). Similarly, the high-level information provision 

scenario resulted in 11.7% and 11.6% increase in transit and non-motorized modal share 

(Figure 6.3a). In addition, providing temporary transit pass for 25% and 50% of the 

population resulted in 8.12% and 8.79% increase in transit modal share, as shown in Figure 

6.3b. This scenario was particularly useful for agents with knowledge decay as it increased 

their chances of exploring the transit mode and thus maintaining familiarity with the service 

as illustrated in Figure 6.4. 
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Figure 6.3: Modal shift for TDM strategy scenarios of the preliminary analysis 

 

Figure 6.4: The change in auto and transit mode choice probability based on an agent’s 

familiarity with the transit service 
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6.3 Case Study Results 

6.3.1 Mode Choice Modelling Results 

Table 6.2 shows the ABM modal shift forecasting results for the 2016, 2040 OCP and 2040 

SG scenarios in the three urban centres. The results show that the Capri-landmark exhibited 

the highest modal shift towards non-motorized modes in both the 2040 OCP and SG scenarios. 

In particular, the 2040 OCP scenario resulted in 12% decrease in auto use, 70% increase in 

walking, and 17% increase in cycling. Similar but more pronounced modal shift was forecasted 

for the 2040 SG scenario with 22% decrease in auto use, 92% increase in walking, and 74% 

increase in Cycling.  

Similarly, the 2040 OCP scenario in Rutland resulted in 5 and 24% decrease in auto 

use and cycling trips, respectively, and 36% increase in walking trips. Whereas the 2040 SG 

scenario resulted in 19% decrease in auto use, 76% increase in walking trips, and 82% increase 

in cycling trips. 

  For the South Pandosy urban centre, the results of the 2040 OCP scenario revealed a 

4% increase in auto use, 6% decrease in walking, and 18% decrease in Cycling. On The other 

hand, the 2040 SG scenario resulted in 7% decrease in auto use and 48% increase in walking 

and cycling trips, respectively. A possible explanation for this low increase in walking trips is 

the already high number of walking trips in South Pandosy, which was estimated to be 27% in 

2016, compared to 13 and 14% in Capri-Landmark and Rutland, respectively. 
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Table 6.2 Modal Shift in the Urban Centres  

Scenario Auto (%) Transit (%) Walking (%) Cycling (%) 

Capri-Landmark     

Existing 2016 68.7 12.3 13.4 5.6 

2040 OCP 
60.4 

(-12.2%) 

10.4 

(-15.8%) 

22.7 

(69.8%) 

6.5 

(17.4%) 

2040 SG 
53.6 

(-22.0%) 

11.1 

(-10.0%) 

25.6 

(91.5%) 

9.7 

(73.6%) 

South Pandosy     

Existing 2016 60.1 8.0 26.9 5.0 

2040 OCP 
62.6 

(4.2%) 

8.2 

(2.4%) 

25.1 

(-6.6%) 

4.1 

(-18.7%) 

2040 SG 
55.8 

(-7.3%) 

9.2 

(14.3%) 

27.7 

(3.1%) 

7.4 

(47.7%) 

Rutland     

Existing 2016 71.7 11.0 13.7 3.6 

2040 OCP 
68.2 

(-4.9%) 

10.4 

(-4.8%) 

18.7 

(36.0%) 

2.7 

(-24.5%) 

2040 SG 
57.4 

(-20.0%) 

11.9 

(9.0%) 

24.1 

(75.7%) 

6.5 

(81.6%) 

values within parenthesis () show modal shifts compared to the 2016 scenario 

6.3.2 QoL Evaluation Results 

Eight tools and indicators are utilized in this research to evaluate the QoL of a neighbourhood, 

including: 1) i-THRIVE , 2) air quality, 3) noise pollution, 4) walkability, 5) bikeability, 6) 

Transitability, 7) playability, and 8) Social Interactions. The following subsections will report 

and discuss the results of each of the QoL evaluation tools for study areas.  

6.3.2.1 i-THRIVE  

The i-THRIVE Tool consists of 12 elements, including 1) density, 2) service proximity, 3) land 

use mix, 4) street connectivity, 5) road network and sidewalk characteristics, 6) parking, 7) 
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aesthetics and Human Scale, 8) functionality, 9) predictability, 10) homogeneity, 11) 

forgivingness, and 12) state awareness. A summary of the i-THRIVE evaluation is presented 

in Figure 6.5 and Appendix B and discussed below. 

 
(a) Capri-landmark 

 
(b) Pandosy 

 

 
(c) Rutland 

Figure 6.5: i-THRIVE evaluation of the study area 

6.3.2.1.1 The 2016 Scenario (S1) 

The existing scenario (S1) for all three urban centres scored poorly on the i-THRIVE, with a 

total score of 33%, 38%, and 35% for Capri-Landmark, South Pandosy, and Rutland, 
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Density: the average dwelling unit density for Capri-landmark, South Pandosy, and 

Rutland are 23, 27, and 26 units/hectare, well below the minimum i-THRIVE requirement of 

35 units/hectare. In addition, the non-residential floor area ratio (FAR) in the three urban 

centres are 0.62, 0.94, and 0.54, respectively. The low FAR values are attributed stand-alone 

parkade structure in the Capri-Landmark, and strip malls with vast parking lots in all three 

urban centres.  

Service proximity: to be rated highly in the service proximity element, i-THRIVE 

requires that 1) 100 % of residential units within 800m of at least 20 neighbourhood services, 

including at least three food markets one park, 2) at least 90 % of residential units within  800m, 

and 70 % of residential units within 400m of a suitable transit stop, and 3) be within 4 km of 

an existing or planned employment centre. In the three urban centres, more than 75% of the 

residential units are within 800m of 20 neighbourhood services, three food markets, and a park. 

In addition, 100% of residents are within 800m of a bus stop and 96, 84, and 88% are within 

400m of a bus stop.  

Land-use mix: the i-THRIVE has several metrics related to land use mix, including 1) 

providing outdoor public spaces; 2) providing new services to an existing neighbourhood, 3) 

providing a mix of housing types, and 4) including ground floor pedestrian use along 

commercial, mixed-use, and multifamily buildings. In the three urban centres, outdoor public 

spaces comprise approximately 2, 4, and 7% of the total neighbourhood land, which means 

that only the Rutland neighbourhood meets the i-THRIVE requirement of dedicating at least 

5% of the total community land as an outdoor public space. In addition, all three urban centres 

provide new services to the community and a mix of three housing types while only the South 



 

137 

and Rutland has a public school within 800m of the community centre. On the other hand, 

none of the urban centres provide pedestrian use on the ground floor of all mixed-use buildings 

and 50% of multifamily residential buildings. 

 Street connectivity: all three urban centres barely meet the i-THRIVE’s street 

connectivity requirement of achieving active transportation to vehicle route directness ration 

of 1; the lower the value, the higher the score. 

Road network and sidewalk characteristics: to achieve high score in this element, 

the i-THRIVE requires traffic calming measures to control speed and eliminate vehicles 

shortcutting. In addition, it requires implementing complete street designs, as well as having a 

comprehensive AT network augmented by off-street AT pathways and lighting. All three urban 

centres performed poorly on this element due to the lack pedestrian and cyclists’ friendly street 

designs. For instance, none of the neighbourhoods has at least 4 traffic calming 

measure/hectare nor pedestrian-priority local roads with a posted speed limit of 15 km/hr. 

Functionality: this element encourages eliminating grey roads, such as each road 

fulfills only a single function. Both Capri-Landmark and Rutland scored relatively higher on 

this element than South Pandosy as more than 75% of the roads in both neighborhoods are 

categorized based on the single function they fulfill with a good access management on 

collector roads of 25-30 access/km.   

Predictability: this element aims to reduce human errors by creating a predictable road 

environment for each road type in terms of expected speed, acceptable maneuvers, and type of road 
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users. All three urban centres performed poorly on this element as current road designs do not 

create distinguishable environments for road users.  

Homogeneity: the criterion aims to prevent serious injuries in traffic collisions by 

minimizing differences in mass, speed and direction between road users. With the current road 

design in the three neighborhoods separate pedestrians from both cyclists and vehicles, they 

provide little to no separation between cyclists and motorists.  

Forgivingness: this criterion aims to reduce the consequences of human error by 

providing a forgiving road environment (e.g. rumble strips, wide shoulder, etc.). All three 

urban centres did not achieve the minimum requirement of having at least one forgiving road 

environment measure on more than 60% of arterial and collector roads.    

State awareness: this criterion aims to reduce the road users’ perception of a driving 

task compared to their capabilities. The i-THRIVE requires that at least 20% of intersections 

to be either 3-way or roundabout with at least one treatment that decreases task demand for 

pedestrians and cyclists. Both Capri-Landmark and Rutland did not achieve minimum 

requirement for this element. On the other hand, more than 40% of the intersections in the 

south Pandosy neighborhood are 3-way.   

6.3.2.1.2 2040 Official Community Plan Scenario (S2) 

The 2040 OCP scenario resulted in an improve i-THRIVE score for the urban centres. In 

particular, Capri-Landmark, South Pandosy, and Rutland achieved an i-THRIVE score of 62, 
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58, and 53%, respectively. The following will discuss individual i-THRIVE elements 

evaluation1: 

Density: According to the city’s OCP, The Capri-Landmark urban, South Pandosy, 

and Rutland centre are expected to grow by approximately 7800, 2000, and 3600 people by 

2040. Given a forecasted average occupancy of 1.7 person per new household, it is expected 

that around 4500, 1200, and 2100 new units are needed to accommodate the growth in the the 

three neighbourhoods. Therefore, the residential unit densities for this scenario are assumed to 

be 84.5, 30.1, and 44, respectively. In addition, given the planned building heights map in the 

OCP, the non-residential FAR in the three urban centres are estimated to be 2.87, 6.02, and 

2.71, respectively. 

Service proximity: No significant zoning changes that would influence service 

proximity in the three urban centres.  

Land-use mix: Based on the OCP, outdoor public spaces comprise approximately 5.3, 

9.3, and 7.5% of the Capri-Landmark urban, South Pandosy, and Rutland total land. With 

regards to proximity to public schools, the Capri-Landmark is the only neighbourhood that did 

not meet this requirement in the 2016 scenario; however, the city is investigating the possibility 

of redeveloping the Parkinson recreational centre to add a new public school on the property. 

 

1 Note that not all i-THRIVE elements were addressed/affected by the changes proposed in 
the OCP, and thus the score for these elements were assumed to be similar to the 2016 
scenario. 
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Finally, the OCP encourages active human-scale amenities on the ground floor of mixed-use 

buildings.  

 Street connectivity: No significant changes to the transportation network. 

Road network and sidewalk characteristics: The city of Kelowna’s Transportation 

Master Plan includes several objectives that aim to improve pedestrians and cyclists safety and 

convenience, including: expanding cycle track network on the city’s active transportation 

corridors, implementing intersection treatments to improve cyclists and pedestrian safety (e.g. 

elephant feet and bike signals), and installing traffic calming features on local streets. 

Functionality: Based on the Capri-Landmark urban centre map, 100% of the roads in 

the neighbourhood are categorized based on one function they fulfil. No similar plans were 

found for the South Pandosy and Rutland urban centres and thus their i-THRIVE score for this 

element was assumed to be similar to the 2016 scenario.      

Predictability Not addressed in the OCP.  

Homogeneity: The i-THRIVE evaluation for this element improved due to the city’s 

plan to expand its protected bike facilities network.  

Forgivingness: Not addressed in the OCP.    

State awareness: The i-THRIVE evaluation for this element improved due to the city’s 

plan to implement intersection treatments to improve cyclists and pedestrian safety, such as 

elephant feet and bike signals. 
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6.3.2.1.3 2040 SMARTer Growth Scenario (S3) 

The 2040 SG scenario achieved the highest i-THRIVE score among for the urban centres. In 

particular, Capri-Landmark, South Pandosy, and Rutland achieved an i-THRIVE score of 96, 

87, and 84%, respectively. The following will discuss individual i-THRIVE elements 

evaluation: 

Density: The residential unit density for this analysis was assumed to be similar to the 

2040 OCP scenario in order to be consistent with city’s projected urban growth. However, the 

distribution of the residential density was different from the OCP since SMARTer Growth 

encourages higher density near the central arterial corridor to provide a greater proximity to 

services. For the FAR, the intensified mixed-use zones in the arterial corridor along with the 

high residential and employment densities ensures that the SG scenario will have a FAR value 

greater than 2.5.   

Service proximity: In a SG neighbourhood, mixed, high residential and commercial 

land uses are located along calmed collectors and arterials. In addition, the SG design 

principles requires that each quadrant centre is within a maximum of 400m to the nearest 

collectors and/or arterial. This configuration allows residents to walk or bike to services in all 

four directions of the neighbourhood within five-minutes.  

Land-use mix: The SG design principles facilitates a self-contained community with 

mixed land use that provides short commuting distances to work, school, or other services. In 

addition, SG provides at least 5% of the community land as outdoor public spaces since they 

provide the core of the AT off-road pathway network. In particular, the outdoor public spaces 
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in the SG retrofit of the three urban centres account for approximately 5.7, 15.0, and 8.9% of 

the Capri-Landmark urban, South Pandosy, and Rutland total land. Moreover, 30% of street 

space that would normally be used in a traditional grid network is reclaimed and used in the 

SG for additional development, green space, and off-road AT networks. In addition, as 

discussed earlier, the variety of services the community provides and the mix of housing types 

allow the FG to easily achieve the heterogeneity of Land Use Mix element of the i-THRIVE.  

 Street connectivity: One of the key elements that make the SG unique is its high AT 

connectivity compared to vehicle connectivity via an off-road grid and calmed local roads. For 

the SG retrofits the Capri-Landmark, South Pandosy, and Rutland, the route directness ratio 

was calculated to be 0.81, 0.91, and 0.93, respectively. 

Road network and sidewalk characteristics: The SG design principles assigns higher 

priority to AT users through AT cut-throughs, and off-street pedestrians and cyclist paths. In 

addition, the SG principles includes many traffic calming measures, such as roundabout, three-

way intersection, and raised cross walks on major collectors to reduce the severity of collisions. 

Furthermore, all local roads have a posted speed of 15 km/hr. Moreover, the SG retrofits 

include sidewalks wider than 2.5 m, buffer strips, and side parking on major collector and 

arterial roads. For cyclists, facilities are provided according to the road classification that suits 

the road speed and volume as follow: 1) local roads with low speed and traffic will be designed 

to be pedestrian/cyclists priority streets, and 2) major collectors and arterials with moderate 

speed and high traffic volume have cycle tracks. 

Functionality: The three SG retrofits follow a strict hierarchy street network system 

in which each road fulfils a single function only. For instance, local roads in the SG retrofits 
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only provide accessibility to final destinations within neighborhoods. On the other hand, minor 

and major collectors distribute traffic between local and arterial roads. 

Predictability: The SG principles encourage consistent and distinguishable road 

design features for each road classification. Thus, road users can easily predict the road class, 

speed, and availability of other types of road uses (e.g. pedestrians and cyclists). For 

example, local roads in an SG neighbourhood are narrow, two-way, with lower speed limits. 

On the other hand, arterial roads are wider with cycle tracks and wide sidewalks. Moreover, 

most of the intersections in an SG neighbourhood are either controlled by roundabouts or T-

intersections.  

Homogeneity: SG offers continuous grid networks of dedicated paths in the central 

green spaces to separate AT users from motorists. However, in cases where AT users and 

motorists are sharing the same space on local roads, the posted speed is reduced to 15 km/h. In 

addition, wide sidewalks and cycle tracks are provided on arterial roads where the traffic speed 

volume is high.  

Forgivingness: The SG retrofits of the urban centres provide many forgiving features 

to reduce collisions, injury risk, and the risk of death such as t-intersections and roundabouts-

controlled intersections and enforcing relatively low speed limits at all roads; 15 km/h on local 

roads and 50 km/h on arterial roads. 

State awareness: The SG retrofits comply the user state awareness principle of the i-

THRIVE by maintaining the task demand at a lower level than most of the road users’ 
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capabilities. For instance, the SG retrofits include t-intersections, roundabouts, off-road paths, 

and one-way couplets to reduce traffic conflict points between all the road users. 

6.3.2.2 Air Quality 

Traffic emissions in this research are assumed to be correlated with VKT only (i.e. speed, 

acceleration, and # of stops are not considered); thus, similar trends are expected for the various 

air pollutants (e.g. GHG, particulate matter, carbon monoxide). The results below show the 

GHG forecast for the three urban centres. GHG emissions were estimated for each road link 

for the 2016, 2040 OCP, and 2040 SG scenarios. Surprisingly, the SG retrofit resulted in 1.82, 

1.80, and 0.44% increase in total GHG emissions compared to the 2040 OCP scenario in Capri-

Landmark, South Pandosy, and Rutland, respectively. This increase can be attributed to the 

slight increase in trip lengths due to the discontinuous local vehicular network in the SG 

retrofits. In addition, some off-road driveways in gated communities and large residential 

developments were not modelled in the existing and 2040 OCP scenario; however, they were 

defined as local roads in the 2040 SG scenario.  Moreover, if we expanded the scale of analysis 

from a neighborhood to a city-wide level, resulting emissions would reasonably be expected 

to show significant reductions across all road classes in the SMARTer Growth scenario. 

Examining GHG emissions by road classification, Figure 6.6 shows that the Capri-

Landmark SG retrofit significantly reduced emissions on local roads by 72% compared to the 

2040 OCP scenario, while emissions on arterials and collectors increased by 14.6 and 30%, 

respectively. Similar trend but of reduced magnitude was observed in the Rutland urban centre, 

where emissions on local roads decreased by 3.6% while emissions on arterials and collectors 

increased by 2.6 and 4.9%, respectively. Interestingly, the results of the South Pandosy urban 
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centre revealed an increase of emissions on local roads compared to 2040 OCP scenario. This 

counterintuitive result could be attributed discrepancies in road classification between the OCP 

and SG scenarios. In particular, some roads in the South Pandosy urban centre were not 

classified according to the function they serve; however, these roads were reclassified in the 

SG scenario. 

 
Figure 6.6: Traffic GHG emissions aggregated by road classification 

This figure shows results at a neighborhood level.  If we expanded the scale of analysis from a 

neighborhood to a city-wide level, resulting emissions would reasonably be expected to show 

significant reductions across all road classes in the SMARTer Growth scenario. 

Overall, these results demonstrate that the well-defined SG’s street hierarchy did 

succeed in re-routing through traffic away from local/residential roads to arterials and 

collectors. In addition, the simulation results show that pedestrian traffic in the SG retrofits 

tend to be concentrated on local roads and off-road path, as illustrated in Figure 6.7, which 

means reduced air pollution exposure for more pedestrians. 
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Figure 6.7: Pedestrian Traffic 

6.3.2.3 Noise Pollution 

Similar to traffic emissions, noise pollution was estimated for each road link and then 

aggregated by road classification. The results show that the SG retrofits have the lowest noise 

pollution on local roads. In particular, the Capri-Landmark, South Pandosy and Rutland 

retrofits achieved 11.8, 6.6, and 6.0% reduction in noise levels in local roads. The low noise 

pollution in the SG retrofits is due to low posted speed limit on local roads and the strict street 
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Figure 6.8: Traffic noise pollution aggregated by road classification 

6.3.2.4 Walkability 
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intersection density, and land use mix) were estimated at the dissemination area level. Second, 

the four components were normalized using z-score. Third, the walkability score was 
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dissemination areas were grouped into deciles based on their walkability score, where the top 
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final walkability score in each dissemination area and subsequently identify areas for 

improvement. 

For the 2016 scenario, the walkability index scores ranged from -4.49 to 10.77. The 

South Pandosy urban centre was classified in the highest walkability decile, while the Capri-

Landmark and Rutland were classified in the second highest decile. Specifically, the capri-

Landmark had high scores for residential density and FAR, moderately high score for 

intersection density, but scored moderately in land use mix. The South Pandosy urban centre 

scored high in terms of residential density, FAR, and Land use mix; however, it scored poorly 

in intersection density, which suggests that it would benefit greatly from improving its walking 

network via the SG principles. Finally, Rutland had high scores for residential density and land 

use mix and moderately high scores for FAR and intersection density. 

For the 2040 OCP scenario, the walkability index scores ranged from -4.33 to 16.93. 

In this scenario, the three urban centres achieved the highest walkability decile, which could 

be attributed to the significant projected growth in population.   

Finally, the 2040 SG scenario’s walkability index scores ranged from -4.32 to 16.41. 

This scenario achieved the most significant increase in walkability for the three urban centres. 

This increase can be attributed to the significant increase in population, similar to the OCP 

scenario, and intersection density. The latter is attributed to the SG’s highly connected walking 

grid network of an on-road and off-road paths that allow convenient walking and cycling across 

the neighbourhood in less than 5 min.   
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Figure 6.9: Walkability index for the 2016 scenario 
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     Figure 6.10: Walkability index for the 2040 OCP scenario 
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     Figure 6.11: Walkability index for the 2040 SG scenario 
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6.3.2.5 Bikeability 

A bikeability surface of 10m grid-cell raster for each of the considered scenarios. First, a raster 

data was generated for each of the bikeability components (cycling route density, cycling route 

separation level, connectivity of cycling friendly streets, topography, destination density), as 

described in section 2.6.5. Second, each surface was reclassified into deciles and recoded from 

1 to 10, with the 1st decile assigned a value of 1 and the 10th decile assigned a value of 10. 

Third, the five surfaces were combined to generate the bikeability score for each 10m cell. 

Finally, the urban centre’s bikeability score was generated by aggregating the cells values that 

are located within them. Figure 6.12, Figure 6.13, and Figure 6.14 show Kelowna’s bikeability 

surface for the 2016, 2040 OCP, and 2040 SG scenarios, respectively.  

For the 2016 scenario, the three urban centres scored well on topography, due to their 

flat slopes. In addition, they scored well on connectivity of cycling friendly streets and 

potential destination density for the 2016 scenario, which is expected due to their relatively 

high employment and retail area. On the other hand, the bikeability evaluation revealed a lack 

of dedicated cycling routes in the Capri-Landmark and Rutland urban centres as well as a lack 

of the availability of separated bike infrastructure in all three urban centres. 

The 2040 OCP scenario did improve the bikeability score of the Capri-landmark and 

Rutland urban centres. Surprisingly, there was a slight decrease in the bikeability score of the 

South Pandosy. This rather contradictory result could be attributed to the low investment rate 

in new cycling infrastructure in the South Pandosy urban centre compared to the rest of the 

city. Keep in mind that the bikeability index score for a zone is a function of its performance 

relative to the performance of the other zones in the study area.  
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Finally, the 2040 SG scenario achieved the most significant increase in bikeability for 

the three urban centres. This increase could be attributed to two factors. First, the SG’s 

continuous grid network of off-road paths and cycle tracks (physically separated) to provide 

full walk/bike connectivity. Second, the intensified mixed land uses, commercial, and services 

along collector the arterial corridors in a SG neighbourhood.  
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     Figure 6.12: Bikeability index for the 2016 scenario 
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     Figure 6.13: Bikeability index for the 2040 OCP scenario 
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     Figure 6.14: Bikeability index for the 2040 SG scenario 
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6.3.2.6 Transitability 

Figure 6.15 shows the stop coverage ratio index (SCRI) for the 2016 and 2040 SG scenarios 

using 100-400m buffer distances; the 2040 OCP transit network was assumed to be similar to 

the 2016 scenario. The figure shows that all three urban centres achieved a high SCRI score in 

the 2016 Scenario, which indicates a high transit accessibility. In particular, the Capri-

Landmark resulted in the highest value of 95.6% for the 400m buffer distance, while the South 

Pandosy resulted in the lowest value of 84.4%. These results demonstrate how well the three 

urban centres are supported from a transit perspective. 

Nevertheless, the 2040 SG scenario resulted in a significant increase in the SCRI value, 

especially for the 300m buffer in South Pandosy and Rutland. For instance, the 300m SCRI 

value increased by 7, 36, and 19% in Capri-Landmark, South Pandosy, and Rutland. This 

increase in the SCRI value is attributed to the highly connected walkable network in the SG 

retrofits. 
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Figure 6.15: The SCRI score for the study area 

6.3.2.7 Playability 

As discussed in section 2.6.7, playability in this research was evaluated subjectively based on 

the following elements: 1) close proximity to destinations, 2) walkability, 3) traffic safety, and 
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4) residential density. First, numerous research has found that playability is positively 

associated with having accessible child-friendly destinations such as schools, parks and play 

spaces. For the 2016 scenario, all three urban centres score high on this element as 100% of 

the population live within a 400m buffer to a park and around 80, 100, and 88% are within an 

800m radius buffer of a school. Similarly, a high proximity to child-friendly destinations is 

expected for the 2040 OCP and SG scenario, especially for the later scenario as all residents 

are expected to live within one-minute walk of a park without crossing ay streets. 

Second, playability was found to be positively associated with high walkable 

neighbourhoods. The walkability of each urban centre was discussed in section 6.3.4 in which 

it was demonstrated that the 2040 SG scenario achieved the highest walkability score, followed 

by the 2040 OCP scenario and finally the 2016 scenario. 

Third, higher perception of traffic safety is associated with higher playabilities for girls. 

Previous research has predicted that the SG design would significantly improve road safety, 

with over 60% fewer crashes compared to the traditional grid and cul-de-sac pattern 

neighbourhood designs (sun and Lovegrove, 2013). In addition, the SG design controls the 

speed (15 km/h) and volume of traffic on local roads maintains low traffic volume on local 

roads even in its highest density scenario. Therefore, the 2040 SG scenario is expected to score 

higher on this element that the 2016 and 2040 OCP scenarios. 

Finally, playability is positively associated low residential density. This association 

could be explained by other features that usually accompany high density such as higher traffic 

volume and speed and lack of sufficient play and public spaces. The SG design by definition 

provides traffic calmed with self-enforcing infrastructure that ensures low vehicular speeds in 
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the neighbourhood core. These traffic calming measures include but are not limited to 15 km/h 

maximum design speed, roundabouts/traffic circles, three-way intersections, discontinuous 

internal vehicle grid (culs-de-sac), and continuous internal walking and cycling network. All 

these features are expected to mitigate the negative effects of high residential density in the 

2040 SG scenario. 

6.3.2.8 Social Interactions 

A social interaction opportunity in this research is defined as two walking/cycling agents 

passing each other. The simulation only counts and logs the location of the first interaction 

between two agents, such that if agents pass each other at another time step, it would not be 

counted. The simulation results show that the 2040 OCP scenario is likely to facilitate 34, 25, 

and 6% more social interaction opportunities than the 2040 SG scenario in the Capri-landmark, 

South Pandosy, and Rutland urban centres. A possible explanation is that pedestrian traffic in 

the 2040 OCP scenario is likely to be concentrated on collectors due to the lack of alternative 

routes, as shown in Figure 6.16. Whereas the SG retrofits provide more reasonable alternative 

routes for pedestrian traffic is distributed evenly along the walking network. 
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Figure 6.16: Social interaction special pattern 

In addition, Figure 6.17 illustrates the number of social interactions aggregated by road 

classification. The figure revealed that the SG retrofits resulted in more social interaction 

opportunities on local roads and off-road paths, compared to the 2040 OCP scenario. This 

finding reflects that the SG design principles might facilitate fewer, but higher quality social 

interaction opportunities. In addition, it suggests that SG increases natural surveillance on local 

roads, which contributes to an increase in perception of safety and personal security. 
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Figure 6.17: Number of social interactions aggregated by road classification 
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Chapter 7     Conclusions & Recommendations 

7.1 Overview 

This chapter summarizes the dissertation along with the research conclusions. Section 7.2 gives 

a summary of the research objectives. Section 7.3 presents a summary of the dissertation. 

Finally, Section 7.4 discusses the research conclusions.  

7.2 Research Objectives 

The objectives of this research have been to: 

1. Develop a state-of-the-art agent-based travel behaviour framework to provide a 

comprehensive evaluation of the influence of neighbourhood design on travel 

behaviour; 

2. Propose a suite of tools that can be used to evaluate the influence of the SMARTer 

neighbourhood design on community quality of life; and 

3. Demonstrate the developed framework and the suite of evaluation tools via an 

application to assess the sustainability benefits of the SMARTer Growth design in the 

city Kelowna 

7.3 Research Summary 

Auto-dependency has caused many public health challenges for North American citizens 

including the increase in physical inactivity rates, road collisions, Greenhouse Gas (GHG) 

emissions, and our ability to sustain a desired Quality of Life (QoL). Consequently, there has 

been a growing interest in addressing these challenges by promoting more sustainable 

neighbourhood designs that reduce automobile dependency and encourage people to use more 

sustainable modes of transportation.  
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Given the limited impact of neighbourhood designs in promoting more livable and 

sustainable communities, researchers from the University of British Columbia and the Canada 

Mortgage and Housing Corporation developed the SMARTer Growth (SG) neighbourhood 

design principles. SG (aka Fused Grid) is an alternative neighbourhood model that combines 

the easy orientation and connectivity of the traditional grid pattern with the land-use efficiency 

and quietness of the contemporary cul-de-sac pattern. Its objective is to provide a balance 

between walkability and traffic flow while optimizing the use of land for infrastructure, 

increasing social interactions, encouraging AT modes, and improving neighbourhood safety.  

Nevertheless, there is a relatively small body of literature relating to the performance 

of SG neighbourhood design. Most of these studies were limited to evaluating the performance 

of the transportation network layout component of the SG design; hence, the former name of 

Fused Grid. However, the performance of a neighbourhood design and its resultant travel 

behaviour are results of a complex interaction between many factors including transportation 

network layout, personal preferences, socio-economic status, land use, behavioural aspects, 

and operating conditions, perceived safety, and social interactions. As a result, evaluating a 

neighbourhood design in terms of each one of these performance measures individually, 

without accounting for their cumulative interactions, does not draw the full picture of its 

performance. Thus it has been rebranded as SMARTer Growth Neighborhood design in 

recognition of the need for a system-based approach to its design and evaluation. 

Beyond travel behaviour, neighbourhood design influences our QoL in two ways. 

First, it directly influences our travel behaviour which in turn influences some quality of life 

indicators such as air pollution and traffic safety. Second, neighbourhood design indirectly 
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influences other aspects of human behaviour that are related to quality of life such as social 

interactions and child development. However, no study has been able to draw on any 

systematic research into evaluating the impact of the SG principles on community QoL. 

To address these gaps, this research proposed a systematic evaluation process.  First, it 

developed an agent-based travel behaviour model, using Repast, to provide a comprehensive 

evaluation of the influence of neighbourhood design at a fine spatial resolution (i.e. parcel 

level) on travel behaviour. The model simulates agents’ daily trip activities and it employs a 

framework that integrates Random Utility Maximization-based modelling with reinforcement 

learning concepts to account for the bounded rationality and knowledge learning process. 

Moreover, the developed agent-based model utilizes the Diffusion of Innovations Theory to 

account for the impact of social interactions by simulating how agents share their knowledge 

and propagate information about their preferred travel mode across family members and co-

workers. In addition, the model accounts for the iterative feedback process between agents’ 

actions and the environment. It also adds a time dimension to the modal shift process which 

could be used to indicate the relative duration it would take to reap the full benefits of various 

proposed scenarios. 

To complement this mode choice model, this thesis proposed a suite of proven 

empirical tools that could be utilized by community planners and engineers to objectively 

evaluate key factors of a neighbourhood’s design using previously researched quality of life 

metrics. While most of these were pre-existent, this thesis applied them in the first systematic 

analysis to evaluate the QoL of a neighbourhood, including: 1) i-THRIVE, 2) air quality, 3) 
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noise pollution, 4) walkability, 5) bikeability, 6) Transitability, 7) playability, and 8) Social 

Interactions. 

To demonstrate the developed agent-based model and QoL suite of tools, three urban 

centres in Kelowna, BC were examined in this research: Capri-Landmark, South Pandosy, and 

Rutland. These urban centres have been selected as a study area for two main reasons: 1) the 

city has mandated to accommodate 26% of its future growth in them and 2) the selected urban 

centres represent various levels of land use mix.  

Four primary data sources were utilized for the development and calibration of the 

agent-based model and QoL evaluation, including: 1) the 2014 Okanagan Travel Survey 

(OTS), 2) Statistics Canada 2016 Census Profiles, 3) transportation networks, and 4) land use 

information. First, the OTS is a household-based travel survey for the residents of the Regional 

District of Central Okanagan (RDCO) and the City of Vernon. The OTS data includes both 

socioeconomic and demographic characteristics as well as information on travel patterns. 

Second, socio-economic marginal distributions of the population in Kelowna were extracted 

at the dissemination area level from Statistics Canada 2016 Census Profiles files using the 

Canadian Census Analyser tool. Third, transportation networks data was obtained from the 

City of Kelowna’s open data portal and the General Transit Feed Specification (GTFS) dataset 

for Kelowna. Finally, land use data for the study area in 2014 were obtained from the city of 

Kelowna. The data was compiled at the parcel level using various sources including Census 

Canada profiles, BC Assessment, Canada Business Points, and the Central Okanagan School 

District’s enrollment counts. 
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Using the previously mentioned datasets, agents were generated for the city of Kelowna 

using the following four steps 1) generation of agents at the dissemination area level using an 

iterative proportional updating algorithm 2) random allocation of the synthesized households 

at the parcel level, 3) assignment of the synthetic agents to workplace dissemination area, and 

4) random assignment of the synthetic agents to workplace parcel. The population synthesis 

results yielded a high level of goodness of fit, with a statistic ψ̅ value of 0.037 (a value of zero 

indicates a perfect fit). Moreover, the results revealed 64% and 92% of the dissemination areas 

have standardized absolute error values of less than 5% and 10%, respectively, which is 

consistent with accepted research tolerances. The next step in the population synthesis process 

was to assign workplace dissemination areas to the synthesized agents using a multinomial 

logit attraction-end choice model, which had an adjusted ρ2 value of 0.438.  The resultant 

attraction-end choice model parameter estimate indicated that individuals in the higher income 

groups were less sensitive to travel impedance than those in the lower-income groups, which 

is consistent with previous research. Similarly, the number of vehicles per person in a 

household were found to be associated with a reduced sensitivity to travel impedance. 

In addition, a multinomial logit model for morning home-to-work mode choice 

decisions was developed for the city of Kelowna, BC. The model accounted for socioeconomic 

characteristics, level of service attributes, and built-environment measures. The built-

environment measures were quantified at various buffer distances for all trips’ origins and 

destinations. The model yielded an adjusted ρ2 value of 0.663, which is consistent with 

recognized goodness-of-fits found in the literature. The model parameter estimate indicate the 

following: 1) females are more sensitive to the increase in cycling distance than males, 2) the 
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availability of high and medium frequency bus stops within 800m and 500m, respectively, of 

trip origins has a positive association with transit use, 3) the availability of green spaces and is 

positively associated with the cycling mode. 

A preliminary case study was conducted to examine the influence of several land use 

and transportation demand management policies on transportation travel behaviour, including 

increased activity density and/or non-motorized to vehicle route directness ratio, and 

transportation demand management (TDM) strategies. The case study was carried out using an 

initial model of the agent-based simulation that was applied to the Capri-Landmark urban 

centre. The results showed that retrofitting non-motorized networks have more impact on 

modal shift than retrofitting road networks. In addition, the results highlighted the significance 

of land use policies and maintaining users’ familiarity with the offered service on active 

transportation modal share. Finally, the results revealed an increase in auto modal share when 

retrofitting the road network only, which is contrary to expectations. In addition, agents with 

knowledge decay displayed a significant increase in driving probability in all the proposed 

scenarios. 

This agent-based model and accompanying suite of tools was applied to evaluate the 

impact of the SG neighbourhood design on mode choice behaviour and community QoL, in 

three major urban centres in Kelowna, BC, including: Capri-Landmark, South Pandosy, and 

Rutland. Three scenarios were examined for each of the urban centre as follows: 1) 2016 

transportation and land use systems, 2) 2040 projected transportation and land use systems 

based on city of Kelowna’s endorsed Official Community Plan, which represents business as 
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usual scenario, and 3) 2040 projected transportation and land use systems based on the 

previously noted, UBCO-developed SG neighborhood design principles.  

Compared to the existing and 2040 official community plan scenarios, the results of 

the mode choice modelling show promise, as retrofitting the three urban centres using the SG 

principles resulted in significant modal shift towards active transportation. away from auto use. 

In addition, the results show that the Capri-landmark exhibited the highest potential for modal 

shift towards non-motorized modes in both the 2040 OCP and SG scenarios. With the SG 

results in (brackets), the 2040 OCP (SG) scenario resulted in 12% (22%) decrease in auto use, 

70% (92%) increase in walking, and 17% (74%) increase in cycling, respectively. 

Finally, eight indicators were utilized in this research to evaluate the QoL outcomes of 

the existing, 2040 OCP, and 2040 SG scenarios, as follows: 

1. The i-THRIVE evaluation of the urban centres resulted in the 2040 SG scenario 

achieving the highest score. With the SG results in (brackets), the i-THRIVE scores of 

the 2040 OCP (SG) scenario are 62% (96%) in Capri-Landmark, 58% (87%) in South 

Pandosy, and 53% (84%) in Rutland, respectively.    

2. Traffic air and noise pollution were estimated on each road link in the study areas. The 

results demonstrated that the 2040 SG scenario re-routed through-traffic away from 

local/residential roads to arterials and collectors, which resulted in a significant 

decrease in pollution on local roads, compared to the 2040 OCP scenario. In addition, 

the simulation results showed that pedestrian traffic in the SG retrofits tend to be 

concentrated on local roads and off-road path which means reduced air pollution 

exposure for more pedestrians. 



 

170 

3. Walkability, bikeability, and transitability surfaces were generated at the dissemination 

area levels for each of the considered scenarios. The results showed that the 2040 SG 

scenario achieved the most significant improvement in the three indices, which could 

be attributed to two factors: 1) the SG’s continuous grid network of off-road paths and 

cycle tracks to provide full walk/bike connectivity and 2) the intensified mixed land 

uses, commercial, and services along collector the arterial corridors in a SG 

neighbourhood.  

4. Playability was evaluated subjectively based on elements that have been identified 

earlier in the literature review. The results show that the 2040 SG scenario is expected 

to achieve high playability due to 1) high close proximity to child destinations as all 

residents will be live within one-minute walk of a park without crossing any streets, 2) 

high walkability, 3) improved road safety, and 4) low traffic volumes at load roads even 

at the highest density scenario. On the other hand, the 2040 OCP scenario is expected 

to achieve lower playability relative to the SG scenario due to high traffic volume on 

local roads lesser road safety. 

5. Social interaction opportunities were quantified in each scenario by counting the first 

encounter between two walking/cycling agents. The results show that 2040 OCP 

scenario is expected to facilitate more overall social interaction opportunities than the 

2040 SG scenario. However, the SG is judged to promote a higher QoL as it is expected 

to facilitate higher quality interactions, whereby more social interaction opportunities 

would occur on local roads and off-road paths, which contributes to an increase in 

natural surveillance and higher perception of safety and personal security. 
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7.4 Conclusions & Policy Implications 

Based on the development and calibration of the agent-based simulation and the results 

obtained from the case studies presented in this research, the following conclusions and policy 

implications can be drawn: 

• Linear utility functions work best to predict AT mode choice: Considering numerous 

studies suggesting non-linear relationship between non-motorized modes and their 

predictors, several non-linear forms for walking and cycling utilities were examined 

including exponential, logarithmic and quadrant functions. However, the results indicated 

that a linear utility function for walking and cycling modes provides better goodness-of-fit 

for the mode choice model. 

• Compact development promotes gender equity: The modelling results of the morning 

home-to-work mode choice model revealed that females are more sensitive to the increase 

in cycling distance than males, which indicates a potential gender gap in opportunities 

available for females to be more physically active. This gap can be filled by land use 

policies that aim at limiting urban sprawl and supporting higher densities and mixed land 

use (i.e. SMARTer Growth). 

• People will walk farther to use higher frequency transit service: The availability of 

medium and high frequency bus stops within 500m and 800m, respectively, of trip origins 

is positively associated with an increase in the likelihood of using transit. These results 

indicate that people are willing to walk longer distances to reach bus stops with high 

frequency service than previously assumed. 
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• Commuters are better informed of their mode choices: The calibration process of the 

proportions of the information provision categories using a genetic algorithm revealed the 

following information provision proportions: 32% partial information, 18% partial 

information with knowledge decay, and 50% perfect information. The proportion of 

commuters with perfect information is higher than that of previously reported in the 

literature, which could be attributed to people’s improved technology platforms to access 

real-time vehicular traffic and transit service information.  

• AT network improvements are the better investment: Retrofitting the non-motorized 

network scenario resulted in higher modal shift towards non-motorized modes compared 

to retrofitting the road network only scenario. This implies that infrastructure investments 

related to providing more accessibility for non-motorized users might have more impact 

on decreasing auto use compared to restricting vehicular network connectivity. 

• Go after the low hanging fruit first to increase AT use: The previous finding also 

suggests that applying SG to a neighborhood with more opportunities to increase non-

motorized connectivity (e.g. cul-de-sac) will have more impact than applying it to a 

neighborhood with already high non-motorized and vehicular connectivity (e.g. grid 

pattern). 

• Integrated land use planning is critical to the AT shift: The overall modal share results 

for various scenarios indicate that land use policies have a more significant impact on 

modal shift towards active transportation modes compared to retrofitting the transportation 

network. This finding highlights the importance of the integration of transportation and 

land use planning in reducing auto-dependency.  



 

173 

• Road network changes alone will fail: The results of the preliminary analysis revealed 

an increase in auto modal share when retrofitting the road network only, which is contrary 

to expectations. In addition, agents with knowledge decay displayed a significant increase 

in driving probability in all the proposed scenarios. These results suggest that altering the 

behaviour of individuals with rooted driving culture requires significant changes to the 

transportation and land use systems in order to be successful.  

• TDM programs help to introduce AT choices: The forecasted modal shift for the TDM 

policy scenarios demonstrated the significance of familiarity and awareness on active 

transportation modal share. Municipalities and transit agencies can benefit from 

implementing programs (e.g. temporary free transit service, bike to work week, and transit 

marketing campaigns) that aim to entice the public to try active transportation modes and 

thus gain familiarity with the offered service. 

• SG better than OCP, especially for Capri-landmark: Retrofitting the Capri-Landmark, 

South Pandosy, and Rutland urban centres using the SG design principles resulted in 

significant modal shift towards transit and non-motorized modes and a reduction in auto 

for morning home-to-work trips. In addition, the results show that the Capri-landmark 

exhibited the highest potential for modal shift towards non-motorized modes, followed by 

Rutland and South Pandosy. 

• SG promotes overall QoL: The community QoL evaluation of the three urban centres 

shows that applying the SG design principles improves walkability, bikeability, and 

playability, and decreases air and noise pollution on local roads. 
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• SG promotes higher quality social interactions and perceived safety: The agent-based 

simulation results showed that pedestrian traffic in the SG retrofits tend to be concentrated 

on local roads and off-road path which means reduced air and noise pollution exposure for 

more pedestrians and an increase in natural surveillance, which could contribute to an 

increase in perception of safety and personal security. 

7.5 Contributions of this Research 

There were four major contributions of this dissertation, as follows: 

This research set out to fill a key knowledge gap related to putting the SMARTer 

Growth neighbourhood design into practices in Canada by providing a better understanding of 

the influence of neighbourhood design as a system on travel behaviour. The literature review 

has shown that previous agent-based models lack the consideration of one or a combination of 

the following: end-to-end travel demand, psychological factors such as habit formation, social 

interactions and their influence on travel behaviour, considering walking and cycling as 

separate modes of transportation, the effect of micro-scale built environment measures. To 

address this knowledge gap, the first significant contribution of this research is the 

development of a novel agent-based travel behaviour model, using Repast, to provide a 

comprehensive evaluation of the influence of neighbourhood design at a fine spatial resolution 

(i.e. parcel level) on travel behaviour. The developed model integrates the traditional Random 

Utility Maximization (RUM)-based modelling technique with reinforcement learning concepts 

to account for the bounded rationality of human beings and knowledge learning process. 

Moreover, the developed agent-based model utilizes the Diffusion of Innovations Theory to 

account for the impact of social interactions by simulating how agents share their knowledge 
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and propagate information about their preferred travel mode across family members and co-

workers. In addition, the model accounts for the iterative feedback process between agents’ 

actions and the environment. It also adds a time dimension to the modal shift process which 

could be used to indicate the relative duration it would take to reap the full benefits of various 

proposed scenarios. 

A second significant contribution of this research has emerged from the work related 

to the first objective which is that this research offers new insights into the influence of 

information provision and of habit formation on commuting behaviour. For example, the 

calibration process of the proportions of the information provision categories revealed a 

proportion of commuters with perfect information that is higher than that of previously 

reported in the literature. This finding indicates that commuters are becoming more informed 

of their mode choices and changes in the transport system. In addition, an experimentation of 

the agent-based simulation showed that increasing driving travel time by 19% resulted in a 

slight increase in auto modal share. Similarly, agents with knowledge decay displayed a 

significant increase in driving probability in all the proposed scenarios. These results suggest 

that altering the behaviour of individuals with rooted driving culture requires significant 

changes to the transportation and land use systems to be successful. Finally, the simulation 

results demonstrated the importance of maintaining users’ familiarity of the with the offer 

service through programs such as temporary free transit service, bike to work weak, and transit 

marketing campaigns. 

A second objective of this research was to fill the knowledge gap related to evaluating 

the influence of the SG neighbourhood design on community quality of life. This has led to a 
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third significant contribution on that this dissertation identified a reliable suite of empirical 

tools that could be utilized by community planners and engineers to objectively evaluate key 

factors of a neighbourhood’s design and their influence on a community quality of life. In 

particular, eight tools and indicators were utilized in this research to evaluate the QoL of a 

neighbourhood, including: 1) i-THRIVE, 2) air quality, 3) noise pollution, 4) walkability, 5) 

bikeability, 6) Transitability, 7) playability, and 8) Social Interactions. This is a significant 

contribution as it addresses the need of small and medium municipalities for a practical tool 

that uses open source data to explore alternative transportation and land use scenarios and 

subsequently identify best policies to meet/sustain their communities’ desired quality of life. 

The proposed suite of tools was demonstrated in an application to three urban centres in 

Kelowna, BC to explore the influence of various policy scenarios on quality of life. 

The third research objective of this research was to utilize the agent-based framework 

and the suite of evaluation tools to assess the sustainability benefits of the SMARTer Growth 

design as a system in the city Kelowna. Most of previous studies address individual aspects of 

the SMARTer Growth’s performance such as safety, traffic performance, and walkability. 

Moreover, the research to date has mainly studied the SMARTer Growth as a street network 

layout, neglecting its system-based approach that involves many components other than simply 

a road network layout, including human-scale block sizes, active transport, intersection design, 

green spaces layout, and land use distribution. As such, the fourth significant contribution 

of this research is that it is the first attempt to evaluate the impact of the full-fledged SMARTer 

Growth design principles on travel behaviour and community quality of life. This contribution 

also addresses the city of Kelowna’s need for a robust evaluation tool that aids its effort to 
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update the city’s Official Community Plan (OCP). In addition, the presented case study, that 

is related to this contribution, provides a critical building block in the city’s objective to 

develop detailed urban centre plans that outlines the long-term transportation and land use 

policies for each of the urban centres in the city of Kelowna.  

7.6 Limitations & Future Research 

This section presents some limitations and recommendations for future research that have been 

identified during this study, as follows: 

• This research evaluated the impact of the SMARTer Growth design principles on weekday 

morning home-to-work trips due to their permanence, non-discretionary nature, and 

resemblance of long-term decisions. A previous investigation by the author on the 

influence of the street connectivity component of the SMARTer Growth on travel 

behaviour revealed a minor modal shift for non-work trips, compared to work trips. This 

minor effect was attributed to the lack of consideration of other elements of the SMARTer 

Growth design including high density and mixed land use, aesthetically pleasing due to 

green open spaces, and increased neighbourhood safety. Therefore, a further study could 

utilize the developed agent-based framework to assess the effect of the full-fledged SG 

design travel behaviour for non-work trips. In addition, examining if there is any variation 

in the influence of SMARTer Growth design on travel behaviour between weekday and 

weekends would be a fruitful area for further research. 

• Modeling only morning commuting trips, rather than 24-hour activities, constitute a major 

limitation of the QoL evaluation of the SMARTer Growth design in this research. Morning 

commuting trips represent a relatively small number of trips out of people’s daily activities. 
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In addition, a person’s behaviour varies between commuting trips and non-commuting 

trips. For instance, a commuter could be using transit in the morning but drive long 

distances in the evening for non-work trips. Therefore, the results of the QoL evaluation of 

the SMARTer Growth design based on modeling only morning commute trips  should be 

confirmed using an all-day modeling analysis in future research. The agent-based model 

developed in this research can simulate multiple trips for each agent; however, it lacks an 

activity scheduling module. A natural progression therefore would be to add an activity 

scheduling microsimulation module to generate an agent’s 24 -hour activity schedule. 

• Due to data availability, the proportions of information provision categories in the synthetic 

population were calibrated by simulating the period 2014-2016, which reflects a shift in 

travel behaviour over a short-range period of two years. However, the agent-based 

framework developed in this research was designed to assess the long-term impact of 

transportation and land use policies on travel behaviour. Therefore, a natural progression 

of this work is to validate/re-calibrate the proportions of information provision categories 

using the 2021 census data once they become available. In addition, the use of genetic 

algorithm for model calibration was due to its easy implementation and relatively good 

performance; however, the author acknowledges that other advanced optimization 

algorithms might provide better performance and efficient computation, and should be 

checked in future research. 

• The current implementation of the agent-based simulation assigns agents randomly to a 

social influence group and an information provision category. Future research would 

benefit from developing a systematic procedure to dynamically assign agents to each of 
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these groups based on empirical data, which potentially would provide insights on the link 

between transportation users’ socio-economic characteristics and how they share their 

knowledge, propagate information, and learn from their experience. It is also worth 

exploring whether agents are expected to change their information provision/social 

interaction groups over time during a simulation run. In addition, further research could 

explore incorporating the influence of social interactions from transportation perspective 

using theories that are more related to travel behaviour.    

• The assumption that the step size parameter (i.e. how much do agents learn from previous 

experience) and the temperature parameter (i.e. how much are agents willing to explore 

new alternatives) are inversely proportional to the choice probability of the recent 

dominating mode has not been validated. A natural progression of this work is to calibrate 

these parameters using longitudinal travel data. The data should be collected over the 

course of new land use and transportation policies implementation as well as post-

implementation. In addition, the time between each two waves of data should be as short 

as practical (e.g. three or six months). Similar to the proportions of information provision 

categories, the step size and temperature parameters could be calibrated using a genetic 

algorithm. 

• The current implementation of the agent-based simulation utilized a transit routing solution 

that was developed on the based of graph theory and utilizes a simple Dijkstra algorithm 

to compute agents’ door-to-door transit path. Some of the limitations of this algorithm is 

that it does not account for waiting and transfer nor transit vehicle capacity constraint. 

Additionally, the algorithm does not simulate public transit vehicles in mixed traffic, with 
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cars, to account for the interaction between both modes. This limitation could be addressed 

by developing an in-house Repast implementation of a public transit shortest path 

algorithm that accounts for the aforementioned factors and utilizes Open Street Map 

(OSM) and General Transit Feed Specification (GTFS) data to allow for universal 

implementation of the algorithm. Alternatively, future research could explore integrating 

the developed agent-based framework with a third-party timetable-based transit routing 

algorithm. Similarly, the current implementation of the traffic assignment algorithm 

requires further refinements to appropriately capture traffic flow while accounting for 

network equilibrium. This limitation could be addressed by integrating the developed 

agent-based framework with an established traffic assignment module, such as EMME.  

Doing this would also help to ascertain the expectation that emissions and noise at a city-

wide scale of analysis would show more significant benefits from a SMARTer Growth 

design. 

• This research proposed a reliable suite of empirical tools that can be utilized to evaluate 

the influence of neighbourhood design on community quality of life. However, a major 

limitation is that it did not offer a methodological framework to combine all of the proposed 

metrics into an overall normalized index/score for use across different cultures and locales. 

One way to calculate an overall score could be to assign a weight to each of the proposed 

quality of life metrics. The weights could be estimated using the Analytic hierarchy process 
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(AHP) based on inputs from expert panels of stakeholders, such as: residents, decision-

makers, urban planners, and/or transportation engineers. 

• The simulation performance in terms of runtime needs improvement. The simulation was 

run on desktop computers with Intel i7-6700 CPU @ 3.40GHz and 32 GB RAM. The one-

day run-time for the city of Kelowna case study, which has 60,000 agents and 19,000 

transportation links, averaged 110 minutes. This poor performance has caused delays in 

the calibration process of the model, which took around two months to complete. The 

model performance also limited the use of a larger dataset for the calibration process; only 

30% of the dataset was used for calibration. Repast Simphony, the version used in this 

research, does not provide automatic parallelisation of the simulation code; hence, the 

developed agent-based model runs on a single thread. Therefore, future research should 

explore parallelizing the developed model using Java’s Thread Pools. Alternatively, the 

model could be translated to C++ in order to utilize Repast for High Performance 

computing, which is designed for use on large computing clusters and supercomputers.  
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Appendix A: Urban Quality of Life Indicators 

Table A.1 Urban Quality of life Indicators 

Model Domain Indicators 

Dutch Health • Environmental quality/ physical living  

• Microclimate (heat stress) 

• Movement stimulation (walking and cycling) 

• Collisions 

• Amenity Value 

Climate resistance • Rainwater management 

• Green 

• Biodiversity 

Mobility • Active transportation 

• Shared mobility 

• Connectivity with public transit 

• Sustainable transportation 

Circularity • Circular demolition 

• Circular design 

• Material Passport 

Energy • Indoor climate 

• Green energy 

• Heat network 

Social economy • Healthy Urban Living 

• Local activity 

• Cooperation 

 • Sharing 

Serag El Din 

et al. (2013) 
Environmental • Biodiversity 

• Energy saving 

• Green spaces 

• Waste management 

Physical • Compact, mix land use neighbourhood 

• Close proximity to services 

• Eco-buildings and housings 

• Well-structured building layout 

• Well-defined street hierarchy 
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Model Domain Indicators 

• Maintenance management 

Mobility • Alternative modes of transportation 

• Close proximity to transit and activities 

• High walking network connectivity 

• Pedestrian-friendly streets 

Social • Gender Equity and social justice 

• Safe environment 

• Mix housing types 

• Public spaces 

• Social interactions 

• Traffic safety 

Psychological • Preserving heritage and historic sites 

• Privacy 

• Pleasing environment 

Economical • Job accessibility  

• Affordable housing 

Political • Integrated urban governance 

• Public consultation 

• Long-term community plan 

Bonaiuto et 

al. (2006) 
Architectural/ 

town-planning 

features 

• Building density 

• Building aesthetics 

• Building volume 

• Internal practicability 

• External connections 

• Green areas 

Socio relationship • Security and tolerance 

• Discretion and civility 

• Sociability and cordiality 

Functionality • School services 

• Social-care services 

• Sport services 

• Socio-cultural activities 

• Commercial services 
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Model Domain Indicators 

• Transport services 

Contextual • Relaxing vs. Distressing 

• Stimulating vs. Boring 

• Environmental health 

• Upkeep and care 

Neighbourhood 

Attachment 
• Neighbourhood Attachment 
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Appendix B: i-THRIVE Evaluation Summary 

Table B.1 A detailed summary of the i-THRIVE evaluation for each of the urban centres 

Element Metric Max 
Capri South Pandosy Rutland 

S1 S2 S3 S1 S2 S3 S1 S2 S3 

Density Residential density  10 0 10 10 0 0 0 0 1 1 

Non-residential 

Floor Area Ratio 
10 0 10 10 2 10 10 0 10 10 

Service 

proximity 

Proximity to 

services 
15 10 10 15 10 10 15 10 10 15 

Proximity to transit 10 10 10 10 10 10 10 10 10 10 

Proximity to 

employment 
10 10 10 10 10 10 10 10 10 10 

Land-use mix Heterogeneity of LU 

mix 
10 3 10 10 8 10 10 6 10 6 

Heterogeneity of 

building mix 
10 4 8 10 4 8 10 4 8 10 

Mixed housing 

types 
5 0 3 5 0 0 5 0 0 5 

Street 

connectivity 
Street connectivity 10 1 1 10 1 1 3 1 1 3 

Road network 

and sidewalk 

characteristics 

Traffic calming 10 1 1 10 1 1 10 1 1 10 

Speed 

control/pedestrian 

priority 

10 0 0 10 0 0 10 0 0 10 

Sidewalks and 

buffer strips 
5 0 1 5 0 1 5 0 1 5 

Cycle friendly 

design 
10 4 9 10 3 8 10 4 9 10 

Lighting 5 5 5 5 5 5 5 5 5 5 

Parking Unbundled & 

Shared parking 
10 7 7 10 7 7 10 7 7 10 

Parking price and 

restrictions 
10 0 0 10 6 6 10 0 0 10 

Parking location and 

alleys 
10 2 2 10 2 2 10 2 2 10 

Aesthetics and 

human scale 

Building height to 

street width ratio 
7 3 7 7 1 7 7 1 7 7 

Setbacks and street 

walls 
8 6 6 8 8 8 8 6 6 8 

Tree placement and 

characteristics 
10 10 10 10 10 10 10 10 10 10 

Functionality Functional 

Classification 
7 3 7 7 0 1 7 3 1 7 

Access Management 
on collector roads 

5 3 3 3 0 0 3 3 3 3 
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Predictability Distinguishable 

design 

characteristics 

12 0 0 8 0 0 8 0 0 8 

Homogeneity Road Users 

Homogeneity 
12 0 9 9 0 3 12 0 3 9 

Forgivingness Forgivingness 12 0 0 12 0 0 12 0 0 12 

State 

Awareness 

Reducing motorists 

task demand 
6 0 0 6 6 6 6 0 0 6 

Reducing cyclists 

task demand 
6 0 6 6 0 6 6 0 6 6 

 




