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Abstract

Detecting clusters of data points in physical or high-dimensional (HD) space is a common task in biology

and biomedicine. Single-molecule localization microscopy (SMLM), a category of super-resolution mi-

croscopy, is often used to analyze spatial distributions of proteins on the surface membranes of, or inside,

biological cells. Proteins sometimes need to form clusters to surpass a critical signalling threshold for func-

tional activity. Therefore, investigating protein clustering can yield important insights about protein and

cell functions in health and disease. Mass cytometry, also called CyTOF, is a high-throughput technique

for investigating the abundance of multiple proteins simultaneously in single cells, resulting in HD data in

which cells cluster into different phenotypes. Cluster analysis of CyTOF data is important for understanding

heterogeneity in biological cell populations, which has clinical implications in cancer biology.

This dissertation first describes a new method, called StormGraph, to detect clusters in diverse SMLM

data. StormGraph converts 2D or 3D SMLM data to a weighted graph, applies a community detection algo-

rithm to assign localizations to clusters at multiple scales, and includes a new algorithm to generate a single-

level clustering from a multi-level cluster hierarchy. Unlike most other clustering algorithms, StormGraph

utilizes uncertainties associated with point positions. Results of using SMLM and StormGraph to analyze

clustering of B-cell antigen receptors on the membranes of normal and malignant B cells are presented.

Next, this dissertation describes a new measure of similarity between clusters in HD data. Computed by a

method called ASTRICS, it is based on local dimensionality reduction and triangulation of alpha shapes. A

strategy for clustering and visualizing HD data, with ASTRICS used to construct a graph from an initial set

of fine-grained clusters, is presented and demonstrated on three very different HD datasets, including pub-

lic CyTOF data. Finally, new CyTOF experiments were designed and performed to analyze heterogeneity

among diffuse large B-cell lymphoma (DLBCL) cell lines. Results of the analysis, including clustering and

visualization using the strategy based on ASTRICS, are presented. Most interesting were revelations about

signalling dynamics linked to the cell cycle, which differed between DLBCL subtypes.
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Lay Summary

Many analyses in biology and biomedicine require finding clusters of data points that are particularly close

together or similar to each other. A new method was developed to find and analyze clusters of molecules

on the surface of (or inside) biological cells that have been imaged using a type of super-resolution mi-

croscopy. This method was used to analyze clusters of molecules on normal and cancerous B cells (a type

of immune cell). Next, a new method to measure similarity between different groups of high-dimensional

data points (i.e. data points that have many dimensions) was proposed and then integrated into a strategy

for visualizing and analyzing high-dimensional data. Finally, experiments were designed and performed

to investigate quantities of various proteins in cancerous B cells. Comprehensive analysis of the resulting

high-dimensional data revealed new biology and variability in cells of a common B-cell cancer.
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Preface

Much of the work presented in this dissertation was collaborative, and the chapters describing original

research (Chapters 2–5) are written in the style of manuscripts, versions of which either have been or will be

submitted for publication in scientific journals. I, Joshua M. Scurll, conceived and designed the projects that

constitute this dissertation and will be the first author on all manuscripts that result directly from this work,

but others also contributed as detailed in this preface. The introductory and concluding chapters (Chapters 1

and 6 respectively) are my own work and contain no text from other works, published or not. Each research

chapter includes its own chapter-specific introduction and discussion. Consequently, Chapter 1 provides

relevant background that should enable both mathematicians and biologists to read this dissertation, but

literature is primarily reviewed in the chapter-specific introductions within the research chapters. Chapter 6

repeats some of the discussion points from the preceding research chapters, though not verbatim, but in the

main it provides an overall discussion that ties together aspects from different chapters of this dissertation

and goes beyond the individual chapter-specific discussions.

A version of Chapter 2 has been submitted as a co-authored manuscript, of which I am the first au-

thor, to a scientific journal. A version has also been posted on the preprint server bioRxiv (doi: https:

//doi.org/10.1101/515627). The following people are co-authors of the manuscript and therefore contributed

to Chapter 2: Dr. Libin Abraham, Da Wei (David) Zheng, Dr. Reza Tafteh, Dr. Keng Chou, Dr. Michael

R. Gold, and Dr. Daniel Coombs. I proposed and planned the work in Chapter 2, and I designed and devel-

oped the computational methods with some assistance in the early phases of development from David Zheng,

an Undergraduate Student Research Assistant (USRA) whom I supervised for one summer. I was entirely

responsible for the conception and design of the actual StormGraph clustering algorithm, but David Zheng

contributed to the code for implementing StormGraph in MATLAB. Under my direction, David Zheng wrote

the MATLAB code for quantifying clusters output by StormGraph (e.g. computing the areas of clusters) and

for computing measures of overlap between two-dimensional clusters in two separate colour channels. He

also contributed other small elements to the StormGraph code. The rest of the StormGraph code was writ-

ten exclusively by me using some code from PhenoGraph [1], which was publicly available under a GNU

General Public License, as a basis and using third-party code (also available under GNU General Public

Licenses) to implement the Louvain method [2] and Infomap [3, 4]. I also developed the graphical user

interface (GUI) for StormGraph myself, though others will contribute to further development of the GUI in

the future. David Zheng additionally contributed to other computational aspects of Chapter 2: he adapted

code from ClusterViSu [5] to batch process testing of ClusterViSu on simulated data, and he simulated data
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for algorithm testing in the early phases of the development of StormGraph, though these early simulated

data and algorithm tests were not included in the chapter. Dr. Abraham and I jointly planned all experi-

ments described in Chapter 2, and Dr. Abraham alone performed all of the experiments. The Experimental

methods section of Chapter 2 was written by Dr. Abraham. Dr. Tafteh and Dr. Chou designed and built the

dSTORM microscope used for all single-molecule localization microscopy (SMLM) experiments in Chap-

ter 2, and they performed all computational processing and fitting of the raw dSTORM fluorescence data to

generate lists of localization coordinates and their positional uncertainties (i.e. precision), which were inputs

to StormGraph. Dr. Coombs and Dr. Gold supervised the work for Chapter 2. To reflect the collaborative

nature of Chapter 2 as a co-authored manuscript, Chapter 2 is written in plural first person, even to describe

work that was entirely my own. The StormGraph software resulting from the work in Chapter 2 will be

made publicly available following acceptance of the manuscript for publication; until then, the software is

freely available directly from me by request.

Chapter 3 was entirely my own work. To reflect this, it is written in singular first person. The work

in Chapter 3 has been posted on the preprint server arXiv in a manuscript of which I am the sole author

(arXiv:2107.07603). A MATLAB function to implement my ASTRICS method presented in Chapter 3 has

been made publicly available for free here: https://bitbucket.org/jscurll/astrics/src/master/.

Chapters 4 and 5 were collaborative works and will be submitted to scientific journals as co-authored

manuscripts. To reflect this, these chapters, like Chapter 2, are written in plural first person, even to describe

work for which I was solely responsible. The following people contributed to Chapters 4 and 5: Kate Choi,

Dr. Libin Abraham, May Dang-Lawson, Dr. Michael R. Gold, and Dr. Daniel Coombs. I conceived, pro-

posed, designed, and led the overall project spanned by Chapters 3–5. The project was jointly supervised by

Dr. Coombs and Dr. Gold, but I wrote the research proposal for the grant that funded the project. The panel

of antibody–mass-tag conjugates for the mass cytometry (CyTOF) experiments in Chapter 4 was designed

entirely by me. The experiments to analyze single-cell clones from the cell lines Karpas-422 and HBL-1

by CyTOF were suggested by Dr. Gold. Isolation and clonal expansion of single Karpas-422 and HBL-1

cells were planned and carried out by Kate Choi and May Dang-Lawson. All other CyTOF experiments

were conceived by me. I was fully responsible for the planning of all CyTOF experiments, including the

many CyTOF experiments that are not reported in this dissertation but were performed during the course

of antibody testing and panel development and optimization. The protocols for CyTOF experiments were

optimized by Dr. Abraham and Kate Choi with significant input from me. I decided on all antibody con-

centrations and made executive decisions about other aspects of the protocols, such as antibody incubation

times. Sample preparation for most CyTOF experiments, including all CyTOF experiments reported in

Chapter 4, was performed by Kate Choi. Sample preparation for some of the CyTOF experiments that were

performed during the course of antibody testing and panel development was performed by Dr. Abraham.

Running samples on the CyTOF instrument for data acquisition was primarily performed by Kate Choi for

most CyTOF experiments or Dr. Abraham for some CyTOF experiments, though I usually oversaw and

assisted with this. Setup, tuning, and troubleshooting of the CyTOF instrument were performed by Mark

Hamer or, in the earliest phases of the project, by William Kennedy. All other experiments performed
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for Chapter 4 (STR profiling of cells, sequencing of CARD11, flow cytometry, western blots, etc.) were

planned jointly by Kate Choi and me and were performed by Kate Choi. The Experimental methods section

of Chapter 4 was written by Kate Choi and edited by me. The computational methods and all data analysis

in Chapter 4 were conceived and performed solely by me.

The combined experimental and computational method presented in Chapter 5 for compensation of

CyTOF data for signal spillover between mass channels was developed entirely by me. The CyTOF data

used in Chapter 5 is from one of the CyTOF experiments in Chapter 4. In addition to the physical work

performed by Kate Choi and Dr. Abraham for Chapters 4–5, both also provided valuable input in discussions

throughout the project.

Listed here are the relevant certificate numbers for the research presented in this dissertation:

• Animal Care Certificate A19-0177

• Biosafety Certificates B15-0132 and B20-0167.
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Chapter 1

Introduction

1.1 The ubiquity of clusters
Most of us intuitively understand what is meant by a “cluster”, even though a concrete, formal definition is

lacking. Informally, a cluster is a collection of objects in some larger set of objects that are more similar or

closer to each other than they are to other objects in the set [6]. Spatial clusters are easy to visualize, with

ubiquitous examples all around us. A global map of building locations would show that buildings cluster

into cities. Even though people move around, they also spatially cluster in cities, where the population

density is greater than surrounding rural areas. On an astronomical scale, stars cluster into galaxies. On a

microscopic scale, spatial clustering of proteins plays important roles in cell biology. The same concept of

clusters also extends to higher dimensions and other data types that are harder to visualize. People form

clusters of friends in social networks. In phylogenetics, closely related species cluster together based on

similarity of their genomic DNA sequences. Cancer patients form clusters of patients with distinct cancer

subtypes. Cells in the human body belong to distinct cell types with unique characteristics and functions;

that is, they form phenotypic clusters. In many research areas, especially biomedicine, methods for inferring

and analyzing clusters have enormous value. This dissertation is dedicated to methods for cluster analysis

applicable to spatial or high-dimensional (HD) data in cell biology and biomedicine. Spatial clustering of

proteins and phenotypic heterogeneity of cancer cells are used as motivating problems, and B cells are a

focus throughout.

1.2 A primer on B-cell biology and cell signalling
B cells are white blood cells, or immune cells, that play an important role in fighting infection [7]. They

are responsible for producing antibodies, which help to neutralize foreign pathogens, or germs, that invade

the human body. An antibody, also called an immunoglobulin (Ig), is a ‘Y’-shaped protein that binds to

a specific molecule, referred to as an antigen, present on a pathogen. This either flags the pathogen for

destruction by other cells of the immune system or directly inhibits its ability to cause disease. Antibodies

are secreted by B cells that have matured to become plasma cells, but they can also be found in the form of
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transmembrane Ig that is integrated into the cell-surface membrane (the plasma membrane) of B cells. In

the transmembrane form, Ig forms the antigen-binding subunit of an important molecule called the B-cell

antigen receptor (BCR), which plays a fundamental role in B-cell function.

The binding of BCRs to antigens triggers B-cell activation [8], which leads to proliferation (i.e. rapid

cell population growth by cell division) and differentiation (i.e. evolutionary change in cell type, behaviour,

and function) of B cells so that they can mount an immune response. In order for this to happen, information

about the antigen-BCR binding must be transmitted to the nucleus of the cell, where changes need to occur

in the expression of various genes. This transmission of information is achieved through a cascade of

biochemical reactions in a process called signal transduction [9]. Prior to engagement by antigens, the

BCRs on the membranes of resting (i.e. non-active) B cells are thought to exist in nanoscopic clusters, or

simply nanoclusters [10, 11]. The first stage of signal transduction following binding of antigens to the

BCRs is a structural change in the spatial organization of the BCRs. The exact nature and mechanism

of this change remains a controversial topic [8], but the most popular theory is that binding to antigens

causes BCRs to increasingly aggregate into larger clusters [10, 12], perhaps through coalescence of the

preexisting nanoclusters. An alternative theory is that the antigen binding causes spreading out of the BCRs

within existing clusters through a conformational change in the BCR molecules, resulting in spatially larger

but less-dense clusters [11]. In either case, the altered BCR organization causes molecules inside the cell

(i.e. intracellular molecules) that participate in signal transduction to be recruited to the intracellular domain

of the BCRs.

The initial molecules recruited to the intracellular domain of the BCRs include enzymes called kinases

[8, 12]. Kinases phosphorylate other molecules, including other kinases and sometimes themselves. Phos-

phorylation is the addition of a phosphoryl group, an ion composed of phosphorus and oxygen, to a protein

at a specific amino acid, known as a residue, in the protein. Phosphatases are the enzymes responsible for

removing the phosphoryl group in the reverse process, dephosphorylation. Phosphorylation is an essential

process in cell biology because it is a primary mechanism for controlling the localization, function, and

enzymatic activity of intracellular molecules. Most often, phosphorylation of a molecule causes it to switch

from an inactive state to an active state. Following the recruitment of kinases to the intracellular domain of

the BCRs, a series of phosphorylation events and other biochemical changes eventually result in physical

alterations to the morphology, behaviour, and function of the cell. These events include activation of tran-

scription factors, molecules that bind to DNA to promote, or sometimes inhibit, transcription of genes in

the nucleus to increase, or respectively decrease, their expression and consequently alter the state of the cell.

Understanding the mechanisms behind B-cell behaviour and function can provide important insights

about various diseases and potential new or improved treatments. BCR signalling has been discovered to

play a key role in a subset of diffuse large B-cell lymphoma (DLBCL), a common cancer of B cells. DLBCL

has two major subtypes: an activated-B-cell-like (ABC) subtype and a germinal-centre-B-cell-like (GCB)

subtype. ABC DLBCL cells are characterized by chronic signalling and activation of the nuclear factor

kappa-light-chain-enhancer of activated B cells (NF-κB) transcription factor and therefore resemble acti-

vated B cells. In up to 90% of cases, this is thought to be the result of chronic, probably antigen-independent
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signalling from BCRs [13]. This has led to investigation of whether ibrutinib, a drug that inhibits Bruton’s

tyrosine kinase (BTK), an essential proximal component of the BCR signalling pathway, could improve

treatment for ABC-DLBCL patients [14]. Meanwhile, GCB DLBCL has different mechanisms of action

that do not involve NF-κB signalling. Historically, these two DLBCL subtypes have received identical treat-

ments, but understanding their differing mechanisms of action could lead to subtype-specific treatments, as

demonstrated by the testing of ibrutinib in clinical trials for treatment of ABC DLBCL.

1.3 How to study proteins in single cells
This dissertation deals with two technologies that can help us investigate biological mechanisms in cell

biology. The first is microscopy, specifically a category of super-resolution microscopy techniques called

single molecule localization microscopy (SMLM) [15–17], and the second is mass cytometry [18], also

known as cytometry by time of flight or simply CyTOF for short. Central to both techniques is antibody

labelling, also known as immunolabelling, of target molecules. The importance of antibodies binding to

antigens on pathogens has already been mentioned in the context of fighting infections, but antibodies can

in fact be raised (typically in mice or rabbits) or created by other means to target specific molecules of our

own choosing. The principle of antibody labelling is to conjugate antibodies, or monovalent fragments of

antibodies (antigen-binding fragments; Fabs), that bind to specific target molecules of interest to particles

that we can physically detect. The conjugated antibodies or Fabs are subsequently used to make indirect

observations or measurements of the target molecules of interest.

For microscopy, antibodies or Fabs are conjugated to fluorescent particles called fluorophores. Fluo-

rophores undergo excitation to an elevated energy state by absorbing light energy of a specific wavelength.

They then emit light of a longer wavelength (i.e. lower energy) during their return transition to a lower en-

ergy state. Molecules of interest in a biological sample, such as cells cultured in vitro, are labelled using

appropriate fluorophore-conjugated antibodies or Fabs. The sample is then placed under a microscope in a

dark room, where lasers directed at the sample excite the fluorophores. Subsequently, the microscope gen-

erates a magnified image from the light emitted by the fluorophores. Aside from possibly a small amount

of autofluorescence from the sample itself, only the fluorophores are visible in the resulting image. Because

only the molecules of interest are labelled by the fluorophores, this image is effectively a spatial map of the

molecules of interest in the imaged sample. Furthermore, differently coloured fluorophores can be used to

label different molecules of interest in the same sample so that they can be imaged simultaneously.

A conceptually similar use of fluorophore-conjugated antibodies is for flow cytometry (FC). In FC,

molecules of interest are labelled in, or on the surface of, cells in the same manner as for microscopy.

However, instead of being imaged under a microscope, the cells are individually passed, using microfluidic

technology, in front of one or more lasers to excite the fluorophores, and the total amount of light emitted is

measured for various wavelengths. This gives an indirect measure of the quantity of each labelled molecule

in individual cells. Unlike microscopy, this provides no spatial information, but it allows the fluorescence

from many cells to be quantified at much higher throughput (thousands of cells per second) than could be
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accomplished by microscopy. Like microscopy, though, fluorophores of different colours can be used to

label different molecules simultaneously.

CyTOF was developed for similar purposes to FC but to increase the number of molecules that can be

labelled simultaneously. In FC, the number of fluorophores that can be used simultaneously is limited by the

number of colours that can fit into the spectrum of visible light and still be resolved from each other given

that the emission spectrum of any fluorophore covers a finite range of wavelengths. State-of-the-art flow

cytometers can handle between 20 and 30 colours simultaneously, but less than 20 is more commonplace.

CyTOF is analogous to FC but the antibodies are conjugated to specific isotopes of rare-earth heavy metals

instead of to fluorophores. Antibodies targeting different molecules of interest are conjugated to elements

of distinct atomic masses, analogous to using fluorophores of different colours in FC. The cells labelled

with metal-conjugated antibodies are passed one at a time into a mass cytometer, which ionizes them and

then uses time-of-flight mass spectrometry to count the number of ions of each atomic mass present in each

cell. Once again, this gives an indirect measure of the quantity of each labelled molecule of interest in

every analyzed cell. Theoretically, the number of distinct molecules that can be measured simultaneously

is limited by the range of atomic masses that can be detected by a mass cytometer, which currently stands

at over 100. In practice, however, the limit is determined by the number of metal isotopes available for

conjugating to antibodies. Thus, currently, 30 to 40 molecules can be labelled simultaneously for CyTOF.

Despite having similar fundamental principles (indirect measurements of molecules of interest in sam-

ple cells via antibody-based labelling), microscopy and CyTOF ultimately serve very different purposes and

yield very different data. FC and CyTOF are HD technologies for measuring many parameters simultane-

ously in single cells. Each cell constitutes one observation (i.e. one row of a data matrix) and the distinctly

labelled molecules form the dimensions of the data (i.e. the columns of a data matrix). FC and CyTOF

are used to analyze populations of cells, for example to identify distinct cell types within heterogeneous

populations of cells such as tumour samples. On the other hand, although microscopy has the propensity

to simultaneously image different molecules in different colours, the output data is spatial and therefore

low-dimensional, with different colours forming separate data. The observations in microscopy are the

fluorophores labelling the molecules of interest and the dimensions are the spatial dimensions x, y, and

sometimes z. Whereas FC and CyTOF are used to investigate the total quantities of molecules per cell with

high throughput, and although microscopy can be used to assess total quantities of molecules per cell with

low throughput, the primary purpose of microscopy is to study spatial distributions of molecules (or cells).

1.4 Microscope images: Pixels or points?
Conventional microscopes generate two-dimensional digital images in the standard form of pixel arrays.

Pixels on a photodetector convert photons of light emitted by the sample into electrical signals that measure

the intensity of light emitted from discrete areas of the imaged sample. The diffraction limit of visible light

imposes a fundamental limit on the achievable resolution of the final image. Due to diffraction, a point

source of light forms an Airy pattern at the detector. An Airy pattern resembles a set of concentric circular
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ripples after dropping a pebble into still water. The bright, central spot is called an Airy disk and has a profile

well approximated by a bivariate Gaussian distribution. The theoretical resolution limit of a conventional

microscope is the shortest distance between two point sources of light for which their Airy disks can still be

resolved as having separate sources. This depends on the wavelength of the emitted light and the numerical

aperture of the microscope, but it is usually between 200 and 250 nm [19]. Fluorophores separated by

smaller distances than this will appear as a single object in the image. Because this limiting distance is large

relative to protein sizes, this is a significant limitation for cell biology research.

The development of super-resolution microscopy techniques, which overcome the diffraction limit of

conventional microscopy, culminated in the 2014 Nobel Prize in Chemistry [20]. SMLM forms an im-

portant category of super-resolution microscopy techniques and provides the best possible resolution for

light-based microscopy. SMLM techniques differ in their specifics, but they all rely on a basic principle: the

position of a light source can be precisely determined if there are no other light sources nearby. In conven-

tional fluorescence microscopy, every fluorophore emits light at the same time and many will have spatially

unresolvable Airy disks. However, SMLM harnesses physical properties of certain fluorophores to achieve

temporal resolution of overlapping Airy disks by ensuring that only a few fluorophores emit photons, or

‘blink’, at the same time. At any time, the activated fluorophores are likely to be spatially well separated

and therefore easy to resolve. The position of each one can then be precisely determined by fitting a point

spread function (PSF) to the fluorescence intensity profile of its Airy pattern. To produce a complete im-

age, SMLM takes many snapshots of the sample over a prolonged period of time so that every fluorophore

eventually has chance to blink. Each snapshot contains a different visible subset of the fluorophores, but,

ideally, every fluorophore should be visible in at least one snapshot. Finally, a complete list of fluorophore

positions is compiled from the collection of snapshots. Hence, the ‘images’ generated by SMLM are not

really images at all, but rather lists of spatial coordinates, otherwise known as point clouds, for the positions

of the individual localized fluorophores.

SMLM does not have unlimited resolution, but it is generally below 50 nm. The resolution is deter-

mined by uncertainty in the calculated position of every fluorophore blink event, which mostly arises from

the limited number of photons available for fitting the PSF [21]. Independent of the physical limitations

of the imaging system, other experimental sources of error can affect biological interpretation of SMLM

data. For instance, SMLM detects and localizes blinking events of fluorophores, but the fluorophores serve

only as proxies for locating the actual molecules of interest. This distinction is relatively unimportant in

diffraction-limited microscopy, but it is an important consideration in SMLM. Using antibody-based la-

belling, the fluorophore will be separated from the actual molecule by the size of the antibody or Fab, which

is greater than 5 nm, a potentially significant distance compared to the localization precision. Further-

more, fluorophores stochastically blink multiple times over the duration of imaging, which can cause single

molecules to be counted more than once and therefore, due to localization uncertainty and thermal effects,

appear as small clusters in the resulting SMLM data. In order to draw reliable biological conclusions from

SMLM data, uncertainties in the data should be addressed during analysis.
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Because diffraction-limited microscopy and SMLM generate very different data formats — traditional

images composed of pixels versus lists of uncertain localization coordinates — they obviously require dif-

ferent tools for analysis. Traditional methods for image analysis, such as spot detection [22] and simple

quantification of fluorescence intensity, can be readily applied to conventional microscopy images but not to

SMLM data. A possible strategy for analyzing SMLM data is to first reconstruct a traditional image from the

localization list either by binning localizations into pixels or by using a superposition of discretized Gaus-

sian intensity profiles centred on the localizations. The widths of the Gaussians would be determined by the

localization uncertainties rather than widths of the original PSFs of the fluorophores so that the reconstructed

image remains ‘super-resolved’ beyond the diffraction limit. Nevertheless, the reconstructed image would

depend on the choice of a universal pixel size and on the positioning of the pixels. This approach seems

somewhat counterproductive when one can work directly with the localization data, which contains more

information than a reconstructed image and is free from artifacts introduced by the arbitrary reconstruction

process. This dissertation presents a method for the identification and quantification of clusters directly from

the localization data (see Chapter 2).

1.5 Dissertation roadmap navigating cluster analysis in cell biology
Fluorescence microscopy, either diffraction-limited or super-resolution, is commonly used to investigate

spatial distributions of proteins in or on cells. For example, diffraction-limited total internal reflection

fluorescence microscopy (TIRFM) [23] revealed the presence of large BCR clusters (BCR microclusters)

on ABC-DLBCL cells that depend on BCR signalling [13]. This suggests that cancerous signalling in these

cells could be caused by spontaneous, antigen-independent formation of BCR microclusters. For another

example, SMLM experiments showed that disruption of the cytoskeleton in B cells did not alter preexisting

organization of BCRs into nanoclusters even though it caused an increase in BCR signalling [10]. Instead,

more subtle factors involving two other cell-surface proteins were found to be responsible for the increased

BCR signalling. A deep understanding of the biology observed through microscopes requires quantitative

analyses, not just qualitative observations. How can we quantify observations made by microscopy to test

for biological and statistical significance? To this end, cluster analysis, in one guise or another, is a popular

approach.

The key to cluster analysis is unsupervised partitioning, or segmentation, of the data into distinct clusters.

Once clusters have been identified in the data, their properties, such as size and shape, can be quantified.

In microscopy, this subsequently enables detailed comparisons between spatial distributions of proteins on

different samples to, for example, provide mechanistic insights about the effects of a drug or infectious agent.

In traditional, diffraction-limited microscopy, a cluster of fluorescently labelled molecules will manifest as

a diffuse, bright ‘blob’ in the image. The first step of partitioning the data is referred to in this context as

image segmentation, blob detection, or spot detection, which amounts to identifying groups of neighbouring

bright pixels that define distinct clusters in an image. The terminology “cluster analysis” or “clustering” is

generally not used in image analysis. For SMLM data, the first step of partitioning the data falls under the
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conventional definition of “clustering”, whereby each data point is assigned to a specific cluster, or possibly

to a “noise” or “unclustered” class. Owing to the differences between pixel data and point cloud data,

methods for spot detection and conventional clustering differ greatly.

The body of this dissertation is concerned with clustering in the conventional sense, that is, clustering

of data points rather than pixels. Chapter 2 describes a method called StormGraph that I developed for

the analysis of clustering from spatial data generated by SMLM. The chapter begins with an introduction

that reviews current methods for cluster analysis in SMLM and documents their various limitations, mo-

tivating the need for StormGraph. I originally developed StormGraph to facilitate research conducted by

Dr. L. Abraham in the lab of Dr. M. R. Gold at the University of British Columbia (UBC). Dr. Abraham

found existing SMLM cluster analysis methods to be unsuitable for analyzing the large numbers of hetero-

geneous SMLM ‘images’ that he was generating. Even though notable limitations of one existing method

were generally addressed by another existing method, none of these methods addressed all of the various

limitations simultaneously. I developed StormGraph to fill this void.

In addition to describing StormGraph, Chapter 2 includes results of testing StormGraph and comparing

it to alternative methods on simulated ground-truth data. For this purpose, I simulated SMLM data that

I believe to be more realistic, more heterogeneous, and in greater quantity than any previously published

simulated data used to evaluate SMLM cluster analysis methods. In its own right, independent from Storm-

Graph, this is an important contribution to the SMLM field because it could instigate more thorough testing

and evaluation of future SMLM cluster analysis methods on simulated ground-truth data before they gain

acceptance by the community. Furthermore, Chapter 2 also presents results of applying StormGraph to

analyze BCR clusters on B cells, including ABC-DLBCL cells, from SMLM data.

Moving far beyond three dimensions, Chapter 3 defines a novel quantity that I propose for measur-

ing similarity between clusters of HD data points. My inter-cluster similarity measure is based on local

dimensionality reduction (DR), alpha shapes, and triangulation. It is computed by a method that I call

ASTRICS, or Alpha Shape TRIangulation in loCal Subspaces to give it its full name. Chapter 3 describes

how ASTRICS can be used to facilitate visualization and clustering of HD data and furthermore describes

a full computational pipeline to this end. ASTRICS was motivated by a need for new methods to analyze

CyTOF data. Specifically, it was developed for use in the project presented in Chapter 4. Nevertheless,

ASTRICS is a general method not restricted to CyTOF data or even to biological data. Hence, Chapter 3

demonstrates application of ASTRICS to three very different datasets. The first is a publicly available, 39-

dimensional CyTOF dataset. The second is the MNIST dataset of 400-pixel, digital images of handwritten

numerals. The third is a corpus of text documents from the 20 Newsgroups dataset. An introduction to the

challenges that motivated ASTRICS and a review of relevant literature are given in Chapter 3 and are thus

omitted here.

Chapter 4 presents application of ASTRICS to novel CyTOF data for 12 DLBCL and two Burkitt’s

lymphoma (BL) cell lines. Numerous clustering algorithms have previously been applied to, or even specif-

ically developed for, CyTOF data. They are usually used to assist identification of known cell populations

in CyTOF data based on expression of cell-type-specific proteins. This is usually accomplished manually
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from series of 2D scatter plots through an expert-driven process called manual gating. For performance

evaluation, the gold standard used to test such clustering algorithms has always been data with manually

gated cell populations. In other words, algorithms are evaluated based on how accurately the clusters that

they return match known cell populations in manually gated data. However, clinically relevant heterogeneity

within cancer cell populations, such as the B cells in a DLBCL tumour, could manifest at finer resolution

than manual gating would reveal. For example, a single population of B-lymphoma cells identified by man-

ual gating of CyTOF data might actually consist of multiple phenotypes that would respond differently to

targeted therapies. Revealing such fine-resolution phenotypes could potentially inform design of suitable

cancer treatments and therefore have clinical impact. This motivated the development of ASTRICS and a

new computational clustering pipeline based on ASTRICS. However, the current gold standard of manually

gated data would not have been suitable for evaluating the ability of a clustering algorithm to reveal distinct

B-cell subpopulations within a heterogeneous population composed exclusively of DLBCL cells. Hence, I

designed novel CyTOF experiments to generate new benchmark CyTOF data as an alternative to manually

gated CyTOF data for this evaluation. Chapter 4 presents these CyTOF experiments and the results of testing

ASTRICS on the new benchmark CyTOF data.

Because activation of alternate intracellular signalling pathways is a crucial mechanism by which cancer

cells can become resistant to drugs that target a specific pathway, I designed the CyTOF experiments to

include detection of many phosphorylated (i.e. active) intracellular molecules in addition to important cell-

surface molecules. To create heterogeneous populations of B cells that might simulate heterogeneity within

clinical DLBCL samples while having well-defined constituent subpopulations, I used mixtures of DLBCL

cell lines under resting conditions and conditions that activated specific signalling pathways. Before being

mixed, the different experimental samples were uniquely labelled using a technique called “barcoding” so

that they could be objectively identified from the CyTOF data. Each barcode therefore represented one

‘ground-truth’ cluster of B cells in the composite DLBCL population. The barcodes therefore serve as

a reference to which clusters output by a clustering algorithm can be compared in order to evaluate the

algorithm, eliminating the need for subjective manual gates to define the ‘ground-truth’ clusters. This new

CyTOF data could become an invaluable resource for researchers in the bioinformatics community who

wish to test new algorithms.

Furthermore, also in Chapter 4, I thoroughly characterize the 14 B-lymphoma cell lines and investigate

differences between the ABC and GCB subtypes of DLBCL based on the new CyTOF data. Given the

richness of the data and the cost of the experiments, it would have been unthinkable to only use the data as

a standard for testing computational algorithms and not tap its potential to reveal new biology. My results

provide new insights into DLBCL biology and provide useful information about the cell lines that can benefit

other researchers studying B cells and DLBCL. Interestingly, I observed substantial transient and persistent

heterogeneity within individual cell lines. Some of this heterogeneity was due to the cell cycle, which was

expected. The CyTOF experiments included a marker of cell proliferation and a marker to distinguish cells in

the S phase of the cell cycle (the phase during which DNA replication occurs) from non-S-phase cells but did

not include specific markers of other cell-cycle phases. Nevertheless, by manual inspection of the CyTOF
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data, I identified a distinct population of cells in every one of the B-cell lines that, based on their features and

a review of relevant literature, I presumed to be cells in M phase (mitosis, the cell-cycle phase during which

cells divide). Subsequently, I used a combination of spectral clustering, nearest-neighbour classification,

and manual merging of clusters to assign each cell to one of four different clusters based on cell-cycle

phases. This was an unanticipated application of clustering to the data that was needed in order to interpret

the data in the context of variations caused by the cell cycle. It was not appropriate to use the new clustering

methodology based on ASTRICS here as this would have led to circular reasoning when evaluating and

interpreting the ASTRICS-based clustering results. Analysis of cells in the four different cell-cycle based

clusters then yielded one of the most interesting results of the DLBCL CyTOF study: that dramatic but

heterogeneous loss of IκBα, a protein that negatively regulates activation of NF-κB, specifically occurs in

the presumed M-phase cluster of multiple ABC-DLBCL cell lines.

The final research chapter of this dissertation, Chapter 5, detours away from cluster analysis to address

an inherent problem with CyTOF data: signal spillover between detection channels. Briefly, CyTOF has

three sources of signal spillover that cause a small percentage of the signal for one antibody-labelled protein

to be falsely detected in the mass channels of other antibody-labelled proteins. Failure to address signal

spillover in CyTOF data can hinder analysis and interpretation of the data. Chapter 5 presents a new method

that I developed to correct for signal spillover in CyTOF data, which I applied to the CyTOF experiments

in Chapter 4 prior to analysis. Finally, Chapter 6 provides a summary and overall discussion of the work in

this dissertation and offers suggestions for future research directions.

Chapters 2, 4, and 5 were collaborative projects carried out with researchers in applied fields, primar-

ily experimental biologists, whereas Chapter 3 was entirely my own work. I especially thank Dr. Libin

Abraham, who performed all experiments presented in Chapter 2 and assisted with experiments presented

in Chapters 4 and 5, and Kate Choi, who carried out most of the experiments for Chapters 4 and 5. Nev-

ertheless, I emphasise here that the concept behind and design of the CyTOF experiments in Chapters 4

and 5 were primarily my own work, and I was involved in the actual running of CyTOF. All four origi-

nal research chapters in this dissertation are written in the style of manuscripts suitable for publication in

scientific journals. At the time of writing, preprints of manuscripts resulting from Chapters 2 and 3 have

been posted to bioRxiv (doi: https://doi.org/10.1101/515627) and arXiv (arXiv:2107.07603) respectively.

The work in Chapter 2 has also been submitted to a scientific journal. Each of the four research chapters

is divided into separate sections for the chapter-specific Introduction, Results, Methods (in most cases sub-

divided into Mathematical/Computational methods and Experimental methods), and Discussion. Chapter 2

and Chapter 4 are written for audiences in the biological sciences and therefore, in these two chapters, the

full technical details of the methods are described after the Discussion, as is common in the field. Chapter 3

and Chapter 5 are written for more technical audiences and therefore the full methodological details are

described before the Results in these two chapters. Overall, this dissertation can be divided into two major

projects: Chapter 2 was a single self-contained project while Chapters 3, 4, and 5 were parallel works that

together formed a single major project. Nevertheless, each chapter is written in a self-contained manner

such that the reader can read each chapter independently and in any order.
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Chapter 2

StormGraph: A graph-based algorithm for cluster
analysis of diverse single-molecule localization
microscopy data.

2.1 Introduction
Single-molecule localization microscopy (SMLM) is commonly used to investigate nanoscale clustering of

cell-membrane and intracellular proteins in selected cellular regions of interest (ROIs) [10, 24–32]. SMLM

techniques, such as direct stochastic optical reconstruction microscopy (dSTORM) [33, 34] and photoacti-

vated localization microscopy (PALM) [35], overcome the diffraction limit of conventional microscopy by

acquiring many sequential images, each containing very few fluorescing labels. Individual labels can then

be computationally super-resolved and precisely localized to generate localization coordinates, often with

estimated positional uncertainties [21, 36, 37]. This is possible in both two and three dimensions [38–41].

SMLM data usually exhibits ROI-to-ROI and within-ROI heterogeneity due to biological and techni-

cal variability between imaged cells and to the spatial heterogeneity of the plasma membrane, intracellular

compartments, and cytoplasm. Nevertheless, clustering is frequently analyzed using spatial summary statis-

tics that fail to capture the heterogeneity of clusters within ROIs, for example Ripley’s functions [42, 43].

Over the last several years, we have regularly applied such methods ourselves to dSTORM data as part of

investigations of the spatial distributions of cell-surface molecules on B cells in relation to B-cell antigen

receptor (BCR) signalling. For more informative analysis, clusters can be individually quantified by using

a clustering algorithm to assign localizations to specific clusters [5, 44–51]. However, challenged by large

numbers and diversity of ROIs, we had difficulty using existing algorithms to achieve consistent analysis of

nanoscale BCR clustering on tens or hundreds of B cells imaged by dSTORM. We consequently developed

our own method, which we call StormGraph.

Herein, we describe and demonstrate the use of StormGraph, a comprehensive graph-based clustering

algorithm inspired by PhenoGraph [1] from the single-cell cytometry field. StormGraph converts SMLM

data into a graph using localization coordinates and their uncertainties to specify nodes and weighted edges.
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It then utilizes graph theory and community detection [52] to assign nodes to clusters. StormGraph makes

no assumptions about the shapes of clusters, has both 2D and 3D implementations, and can quantify cluster

overlap for two-colour SMLM data. Using Monte Carlo simulations, StormGraph automatically adapts key

thresholds to each ROI independently. This allows users to keep input parameters fixed across all ROIs in an

experiment without introducing systematic bias to the analysis. Additionally, StormGraph generates a multi-

level (i.e. hierarchical) clustering whereby clusters are recursively composed of smaller clusters. Examples

of multi-level clustering possible in SMLM data include multiscale organization of RNA polymerase in

Escherichia coli [53] and clustering of receptor oligomers, themselves clusters of molecules, into lipid

rafts. By outputting a multi-level clustering, StormGraph simplifies multiscale cluster analysis compared

to repeatedly changing parameters for existing methods. Notwithstanding, StormGraph also generates an

appropriate single-level clustering to facilitate easy-to-interpret analysis. To streamline analysis of ROIs

from many samples, we developed software to manually crop ROIs from one or two SMLM colour channels

and subsequently batch analyze them with StormGraph. We believe that StormGraph has certain advantages

over other clustering algorithms in the SMLM literature.

The most widely used clustering algorithms in SMLM literature, including Density-Based Spatial Clus-

tering of Applications with Noise (DBSCAN) [44], identify clusters based on a user-specified minimum

number of points within a user-specified radius. The optimal values of their parameters depend on the

density of the data, but the localization density typically varies between ROIs. Consequently, the common

practice of fixing these parameters while analyzing multiple ROIs can systematically bias cluster analyses

because the parameter choice may be inappropriate for many of the ROIs. The alternative approach of

choosing different parameter values for each ROI would introduce an enormous amount of subjective bias,

especially because parameter selection is usually challenging even for a single ROI. Alternative algorithms

based on Voronoi diagrams have been developed for 2D [5, 45] and 3D SMLM data [46] and address these

problems in different ways.

A Voronoi diagram divides an ROI into tessellated “Voronoi cells” (polygons in 2D or polyhedra in 3D)

whereby each Voronoi cell encloses one localization and all regions of space that are closer to it than to

any other localization. Both SR-Tesseler [45] and ClusterViSu [5] construct Voronoi diagrams, then apply

thresholds to the Voronoi cells, and finally group adjacent Voronoi cells into clusters. However, they differ

in how they determine thresholds. SR-Tesseler provides users with several options for setting thresholds,

but the leading option sets a single threshold on density (defined as reciprocal of Voronoi polygon area)

equal to a user-specified constant multiplicative factor, α, of the average density of localizations in the ROI.

This automatically adapts the density threshold to the average localization density in each ROI but neglects

the variance that would be expected for uniformly randomly distributed localizations. ClusterViSu similarly

applies a single threshold to Voronoi polygon areas, but it uses Monte Carlo simulations to automatically

set the density threshold equal to the cutoff at which Voronoi polygon areas appear more frequently in the

actual data than in uniformly random data. This is in contrast to the spatially uniform (i.e. evenly spaced)

null reference distribution of localizations that SR-Tesseler uses. Although the approach of ClusterViSu

adds computational expense, it eliminates user influence from calculation of the threshold, and the authors
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of ClusterViSu demonstrated that it is more robust than SR-Tesseler over a large range of background local-

ization densities [5]. Inspired by ClusterViSu, StormGraph overcomes the parameter selection problem of

density-based clustering algorithms (e.g. DBSCAN) by using density-independent input parameters, which

users can keep fixed, and then automatically adapting density-dependent thresholds to each ROI using Monte

Carlo simulations.

Although ClusterViSu is an attractive method for analyzing datasets with ROI-to-ROI heterogeneity,

none of the methods described so far account for positional uncertainties in SMLM localizations. These are

often output from the initial processing of raw data, alongside the most probable localization positions, and

provide additional information that can be exploited to improve clustering results. Two methods based on

DBSCAN use this information to some extent. One is a pixelated method specifically for 2D data [47], and

the other corrects cluster-size distributions, but not actual clusters, determined using regular DBSCAN [48].

Most appealing, a Bayesian, model-based clustering algorithm applicable to 2D or 3D data [49, 50] builds

the positional uncertainty of each localization into the cluster detection process. However, it assumes that

all clusters in an ROI have circular or spherical Gaussian profiles of similar size. This potentially limits its

suitability for data with clusters of elongated or unusual shapes or heterogeneous sizes. Furthermore, among

existing SMLM cluster analysis methods, the Bayesian method has the most user-adjustable settings, which

can be non-intuitive (e.g. Dirichlet concentration parameter) or difficult to determine (e.g. Bayesian priors).

Also, slow computation times limit its practicality, with the method typically requiring ∼30 minutes on a

standard desktop computer to analyze one ROI containing 1,000 localizations [50], which is less than one

tenth of the number of localizations that we routinely acquire per ROI. In contrast, StormGraph makes use

of all available positional uncertainties for 2D or 3D localization data without imposing assumptions about

cluster shapes or sizes or requiring excessive computation times.

Herein, we describe StormGraph and its capabilities, and we use simulated data to compare its perfor-

mance to that of DBSCAN, ClusterViSu, and the Bayesian method. We then apply StormGraph to char-

acterize nanoscale BCR clustering from heterogeneous 2D SMLM data, which delivers novel insights into

BCR organization in resting and activated B cells. We also demonstrate StormGraph’s ability to quantify

3D clusters of the lysosomal protein LAMP-1 and to quantify cluster overlap for two-colour SMLM data.
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2.2 Results

2.2.1 The StormGraph algorithm

As input to the clustering algorithm, StormGraph takes ROIs that have been selected manually from field-of-

view SMLM images, for example using our software. The ROIs should be completely enclosed within the

boundaries of imaged cells because StormGraph, like other cluster analysis methods including ClusterViSu

and Ripley’s functions, compares the data to a completely uniformly random ‘null’ distribution of points.

This choice of null distribution is not appropriate for any ROI that contains unoccupied coverslip space as

such spaces should remain empty in the null distribution. Besides, keeping ROIs within cell boundaries

is generally necessary for 2D data to avoid artifacts of projecting 3D cell-membrane curvature onto two

dimensions.

To identify clusters in an ROI, dense localization neighbourhoods must be identified. To this end, Storm-

Graph first determines an ROI-specific length scale r0 from the data using either of two methods (see Meth-

ods and Figure 2.15). The preferred method uses an input parameter k, which specifies a number of nearest

neighbours of each localization. The computation of r0 then resembles the automatic threshold computation

in ClusterViSu but using distance to kth nearest neighbour (kNN) in lieu of Voronoi polygon area. To reduce

user input, StormGraph alternatively offers a fully automatic but heuristic method to compute r0 by seek-

ing a balance between inter-localization and inter-cluster distances without requiring any user-adjustable

parameters. This heuristic method is intended for visually well clustered data with very few dispersed local-

izations between clusters, but we nonetheless found that it produces comparable StormGraph results to the

universally applicable kNN method even for unintended use cases.

Next, using the localizations as nodes (Figure 2.1a), StormGraph essentially constructs a weighted r0-

neighbourhood graph (Figure 2.1b) as follows. Define the similarity, sij , of two nodes, i and j, to be

sij =

1− rij/r0 if rij ≤ r0,

0 if rij > r0,

where rij is the Euclidean distance between nodes i and j. If localization coordinate uncertainties are

unknown, then StormGraph assigns to each node pair {i, j} an edge of weight Wij = sij . Otherwise,

StormGraph uses the uncertainties to estimate 〈sij〉, the expectation of the similarity sij , from Monte Carlo

simulations (Methods) and assigns Wij = 〈sij〉.
At this stage, unclustered localizations are identified and removed by applying a threshold to the weighted

node degree,

deg(i) =
∑
j 6=i

Wij ,
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Figure 2.1: Schematic illustration of StormGraph’s workflow. (a–d) SMLM localizations are used as
nodes (a) and converted into a weighted graph (b). This graph is based on r0-neighbourhood graphs, where
edges connect each node to all other nodes within a distance r0. Two nodes i and j are connected by an
edge of weight Wij , which describes their similarity based on the distance between them and, if known,
their positional uncertainties. Nodes are classified as either clustered (green) or unclustered (blue) based on
their node degree, i.e. sum of adjacent edge weights, (c). A new graph is constructed from only the clustered
nodes, which are then assigned to specific clusters using a community detection algorithm (d). Cluster
properties (e.g. area) can then be quantified. The bottom panels in (a), (c), and (d) illustrate each step for an
actual SMLM region of interest (scale bar = 500 nm). (e) StormGraph identifies a hierarchy of clusters at
multiple scales and then additionally generates a single-level clustering from the hierarchy. Shown are three
different levels from the cluster hierarchy for the region in the white box in the lower panel of (c), along
with the single-level clustering for this region. Colours distinguish different clusters.
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a proxy for local density. In principle, nodes can be classified as unclustered and removed (reported as

‘cluster 0’ in StormGraph’s output) if their degree falls below a data-dependent threshold (Figure 2.1c).

StormGraph automatically determines this threshold from uniformly random point clouds using the user-

defined parameter α (Methods), which is a per-localization significance level for the null hypothesis that

localizations are uniformly randomly distributed. In other words, the value of α is the maximum fraction

of points that could be expected to be classified as clustered in a completely uniformly random distribution

of points. StormGraph’s default value of α is 0.05, but users may alter this within the range 0 ≤ α ≤ 1.

Figure 2.2 illustrates the effects of varying the parameters α and k for an SMLM ROI with ambiguous

clusters.

The graph is then regenerated using a new r0 value determined completely automatically, using the

heuristic method, from only the retained nodes. If localization coordinate uncertainties are available, edges

are subsequently pruned from the graph to ensure that all retained pairs of edges have at least an estimated

50% probability of co-occurring in the r0-neighbourhood graph for the unknown true localization positions

(Methods). Without edge pruning, the average graph contains all edges that occur in at least one Monte

Carlo simulation. Consequently, the average graph can contain combinations of edges that rarely or never

co-occur in the simulations and therefore its connectivity will not necessarily reflect the true cluster structure

of the data. The edge pruning addresses this by ensuring that any pair of retained edges co-occur at least as

often as not. StormGraph then finds a hierarchy of node clusters (Figure 2.1e) using the multi-level Infomap

community detection algorithm [4], followed by additional cluster merging when warranted (Methods).

To obtain a single-level clustering from the hierarchy, we developed a novel, fast method motivated by

the idea of consensus clustering [54, 55]. Briefly, starting at the top of the cluster hierarchy, clusters are

recursively divided into their coarsest constituent subclusters until they no longer bear similarity to con-

nected components of an alternative neighbourhood graph based on mutual nearest neighbours (Methods).

Optionally, the user may specify a desired minimum number of localizations per cluster (MinCluSize). This

will impose a limit on how far clusters can be subdivided if the stopping criterion is not already met and it

will exclude clusters containing fewer than MinCluSize localizations from downstream analyses. As out-

put, StormGraph provides the single-level and multi-level cluster assignments of every localization. Com-

bined with localization coordinates, this provides the information necessary to quantify individual cluster

properties, such as area (Figure 2.1d) and number of localizations per cluster. Our software automatically

quantifies the single-level and coarsest-level clusterings.

A common caveat of SMLM is multiple counting of single molecules, often causing single molecules

to spuriously appear as clusters. This can be due to multiple labelling of single molecules or to repeated

photoblinking of individual fluorophores. Therefore, StormGraph includes optional functionality, using a

statistical approach based on localization uncertainties, to reclassify as unclustered localizations any puta-

tive clusters that cannot be confidently distinguished from multiply counted single molecules (Methods).

However, like other clustering algorithms, StormGraph does not attempt to infer the number or positions

of actual molecules. Hence, we caution that reporting localization numbers, instead of cluster areas for

example, can mislead biological interpretation of real SMLM data.
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Figure 2.2: Effect of varying StormGraph’s parameters k and α for an example SMLM ROI. Caption
continues . . .
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Figure 2.2: (a) An ROI containing localizations of Alexa Fluor 647-labelled cell-surface B-cell antigen
receptors of IgM isotype on a TMD8 diffuse large B-cell lymphoma cell imaged by dSTORM. Scale bar
= 500 nm, colour bar = density (nm−2). (b) Clusters identified by StormGraph using different values of
the parameters k and α. In all cases, StormGraph was implemented in 2D, using localization uncertainties,
and with a minimum cluster size of 5 localizations. Clusters are coloured according to their areas (nm2)
calculated by StormGraph. A cluster area of 0 (dark blue) indicates that a localization was classified as
unclustered (i.e. not assigned to any cluster).

We note one potential limitation of StormGraph. Infomap, like other leading community detection

algorithms, is not guaranteed to produce identical results from repeat runs. Monte Carlo simulations also

introduce stochastic variability between repeat runs of StormGraph. However, discrepancies between the

clusters output by identical repeat runs of StormGraph indicate that clusters have ambiguous boundaries and

therefore that there are multiple ways in which the localizations can be rationally partitioned into clusters.

Nonetheless, we tested the reproducibility of StormGraph and found that the clusters generated by identical

repeat runs of StormGraph for a heterogeneous dSTORM ROI containing visually ill-defined clusters were

highly similar according to their normalized mutual information (all NMI> 0.94; Figure 2.3; see Methods).

2.2.2 Validation using simulated data and comparison to other algorithms

To compare StormGraph with DBSCAN and ClusterViSu, we simulated 64 diverse 2 µm× 2 µm ROIs con-

taining isolated and heterogeneously aggregated circular nanoclusters (e.g. Figure 2.4a–c; Methods). Out-

side the clusters we added uniformly randomly distributed molecules. Individual simulated molecules were

allowed to yield multiple localizations, each with a positional uncertainty sampled from a real dSTORM

experiment. We tested both the automatic and kNN (k = 10, 15 or 20) methods for determining r0 while

maintaining α = 0.05. Although the MinCluSize parameter is not required by StormGraph, we found that

ClusterViSu would often detect many small, spurious ‘clusters’, even as small as just one localization, if

we did not set a minimum number of localizations needed for a cluster to be retained. We therefore set a

minimum cluster size of 5 localizations in ClusterViSu, and since MinCluSize functions similarly in Storm-

Graph, we set it equally in order to make a fair comparison between the two algorithms. For DBSCAN, we

tested 16 different parameter choices based on the underlying parameters used for data simulation, although

such knowledge is generally unavailable for real data. To assess cluster assignments by each algorithm, we

used normalized mutual information (NMI) [56] and mean F-measure [57]. Higher values indicate supe-

rior performance. We also evaluated resulting errors in cluster quantification. For each simulated ROI, we

calculated the resultant errors in the mean (µ) and standard deviation (σ) of the number of localizations per

cluster and in the overall percentage of localizations assigned to clusters. We report these errors as fractions

of (i.e. relative to) the ground-truth quantification values. Thus, errors lie between −1 (i.e. −100% error)

and +∞ with 0 indicating zero error.

According to NMI and mean F-measure, StormGraph consistently outperformed ClusterViSu and gener-

ally performed better than DBSCAN regardless of parameter choice (Figure 2.4d and Figure A.1). DBSCAN’s
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Figure 2.3: Identical repeat runs of StormGraph yield highly similar results. (a) 2D projection of
a 3D ROI containing heterogeneous localizations of AF647-labelled cell-surface IgM-BCRs on a TMD8
B cell imaged by dSTORM. Scale bar = 500 nm, colour bar = density (nm−2). (b) Normalized mutual
information (NMI) measuring the similarity between single-level cluster assignments of localizations by
multiple identical runs of StormGraph. For each of the indicated StormGraph settings, StormGraph was
run identically 11 times on the data in (a). The NMI values in the figure score the similarity of the cluster
assignments of localizations by the first run of StormGraph to the cluster assignments of localizations by
each of the 10 subsequent identical runs of StormGraph. StormGraph was implemented in 2D or 3D either
not using (-) or using (+) localization uncertainties. The value of r0 was determined using either the heuristic
method (auto.) or the kNN method with k = 15. NMI values can range from 0 to 1, with NMI = 1
corresponding to perfect similarity. Boxes show medians and interguartile ranges. (c–d) Single-level clusters
(distinguished by colours) identified by one run of StormGraph (left) and the least similar results of 10
subsequent identical runs of StormGraph using the indicated settings.
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Figure 2.4: StormGraph consistently outperforms ClusterViSu and DBSCAN on simulated data. Cap-
tion continues . . .
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Figure 2.4: (a–c) (i) Examples of simulated data (colour bar = density, scale bar = 500 nm), (ii) their ground-
truth clusters, and cluster assignment results with corresponding absolute normalized mutual information
(NMI) values (1 = perfect) for (iii) ClusterViSu and (iv) StormGraph (+ uncertainties; k = 15; single-level).
Colours distinguish distinct clusters. Also shown are four levels (Levels 1–4) of the multi-level cluster
hierarchy output by StormGraph for (c)(i). In this particular example, the single-level clustering (c)(iv)
generated by StormGraph and the coarsest level (Level 1) of the cluster hierarchy were identical, but this is
not the case in general. (d) Ratios of the performances of StormGraph and DBSCAN to the performances
of ClusterViSu when performance was evaluated by NMI of cluster assignments compared to ground truth.
Ratios > 1 (respectively < 1) indicate that StormGraph or DBSCAN performed better (respectively worse)
than ClusterViSu. A total of 64 simulated ROIs were analyzed, including the ones shown in (a–c). We
terminated ClusterViSu if it took longer than 2 hr to analyze an ROI, which resulted in the exclusion of
15 out of 64 ROIs. StormGraph was run either with (+) or without (-) localization uncertainties and using
either the heuristic method (auto.) or the kNN method with k = 10, 15, or 20 to set r0. DBSCAN was
implemented using 16 different selections of its two parameters, MinPts and ε, of which the two best-
performing are shown. Cluster assignment results were scored using NMI and the scores for StormGraph
and DBSCAN were divided by the scores for ClusterViSu. Each dot in the figure shows the NMI ratio for
one of the 49 simulated ROIs analyzed by all three algorithms. Boxes show medians and interquartile ranges.
(e–f) Cluster quantification errors by StormGraph, ClusterViSu, and DBSCAN relative to ground truth. The
fractional error in the percentage of localizations assigned to clusters (e) and the fractional error, ∆σ/σ, in
the standard deviation, σ, of number of localizations per cluster (f) are plotted versus the fractional error,
∆µ/µ, in the mean number of localizations per cluster, µ, for each of the 64 simulated ROIs for StormGraph
and DBSCAN. For ClusterViSu, the errors are plotted for the 49 ROIs for which analysis was completed in
under 2 hr. N.b. ±1 means ±100% error, and errors greater than 100% are shown in the shaded regions,
which have different axis scales. The colours in (e–f) correspond to the algorithm and parameters used and
match the colours in (d): +uncertainties, k = 15 for StormGraph; MinPts = 20, ε = 28.2 nm for DBSCAN.
These DBSCAN parameters achieved the highest median absolute NMI.

performance was very sensitive to the choice of parameters and no single choice was suitable for all of the

data (Figure A.2), demonstrating its unsuitability for analyzing multiple diverse ROIs. In terms of clus-

ter quantification, the errors associated with StormGraph grouped closer to zero than the errors for either

ClusterViSu or DBSCAN (Figure 2.4e–f). For visual appreciation, specific quantification errors and NMI

values for the three example simulations in Figure 2.4a–c are shown in Figure A.1. ClusterViSu tended to

substantially underestimate the mean and variance of the number of localizations per cluster, presumably be-

cause it detected too many small spurious clusters. Quantification errors by DBSCAN were close to zero for

many of the ROIs, but the occurrence of some large errors reinforces its unsuitability for analyzing multiple

diverse ROIs. Meanwhile, StormGraph was very robust for values of k ranging from 10 to 20 when using

the kNN method to set r0, and it was similarly robust when the automated heuristic method was used to set

r0 (Figure 2.4d and Figure A.1). Inspection of the quantification errors reveals that cluster quantification

by StormGraph was generally more accurate when localization uncertainties were utilized (Figure A.1).

Even so, NMI and mean F-measure showed that StormGraph outperformed both ClusterViSu and DBSCAN

whether localization uncertainties were utilized or not (Figure 2.4d and Figure A.1).
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Nonetheless, clustering algorithms cannot be expected to achieve perfect results. Despite the existence of

a ground truth in each of our simulated ROIs, three contributions to their realism posed hurdles to algorithms

identifying the true clusters. Firstly, distinct ground-truth clusters could appear very close together by chance

and therefore be almost indistinguishable as separate clusters. This is apparent in Figure 2.4a–c. Secondly,

molecules were distributed uniformly randomly among the nanoclusters, therefore some ground-truth nano-

clusters might have molecular densities too sparse to discern as clusters. Thirdly, multiple localization of

single molecules, which our simulations included, causes individual molecules to manifest as small clusters

of localizations. This increases spurious detection of small clusters among uniformly randomly distributed

molecules. Although StormGraph tests for and subsequently excludes clusters that cannot be confidently

distinguished from multiply localized individual molecules, as described in the Methods, chance instances

of two such molecules occurring close together would not be excluded. ClusterViSu and DBSCAN perform

no such tests at all, and Figure 2.4 and Figure A.2b show that, for the same minimum cluster size of 5

localizations, StormGraph detects fewer spurious clusters than either ClusterViSu or DBSCAN. This is not

the only reason for StormGraph having the best test results, however, as StormGraph still outperformed

ClusterViSu and DBSCAN for simulated data in which every molecule yields exactly one localization (Fig-
ure A.3). Overall, although clustering results from all algorithms inevitably deviated from ground-truth,

StormGraph generally deviated the least.

Notably, StormGraph’s single-level clustering results, to which our reported performance statistics re-

late, sometimes displayed merging or fragmentation of ambiguous ground-truth clusters. In such instances,

clusters closer to ground truth were usually still visually evident in some level of the cluster hierarchy.

An example of this is demonstrated in Figure 2.4c (Levels 1–4). Furthermore, for simulated data with

nanoclusters of 50 nm radius, we were able to manually identify a level of clustering from StormGraph’s

multi-level output that accurately recovered the ground-truth nanoclusters that composed larger ground-truth

aggregations (Figure 2.5). Thus, StormGraph is able to identify meaningful clusters at multiple scales.

We also compared StormGraph to the Bayesian method of Rubin-Delanchy et al. [49], the only existing

algorithm that fully utilizes localization uncertainties. However, we could not test the Bayesian method on

the ROIs used in Figure 2.4, which typically contained between 104 and 105 localizations, due to excessive

memory demands. Therefore, we simulated 30 new ROIs of size 1 µm × 1 µm containing fewer than

104 localizations (see Figure 2.6b for two examples). The Bayesian method requires several user inputs,

which are fully described by Rubin-Delanchy et al. We used the default prior distribution of cluster radii

because this covered the expected range of possible cluster sizes in our simulations. For the generation

of cluster proposals, we used the default range and increment of values of the threshold T (5 to 500 in

increments of 5) and values from 5 nm to 210 nm in increments of 5 nm for the radius R. For the Dirichlet

concentration parameter α and the prior probability, p, of localizations being non-clustered, we started with

the default values (20 and 0.5 respectively) and then adjusted them in an attempt to achieve better clustering

results. For StormGraph, we again tested both the heuristic method and the kNN method, for which we

varied k from 10 to 20, to automatically determine r0. We also tested different values of StormGraph’s per-

localization significance parameter α. Because the Bayesian method does not require a minimum cluster
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Figure 2.5: StormGraph’s cluster hierarchy recovers clusters at different scales in simulated data.
(a) An example simulated SMLM dataset containing isolated and aggregated nanoclusters of radius 50 nm
and uniformly randomly distributed molecules outside of clusters. This was one of the 64 simulated datasets
used for Figure 2. Colour bar = density (nm-2), scale bar = 500 nm. For realism, simulated data included
multiple localization of single molecules, which can lead to the appearance of small clusters of localizations
among the non-clustered molecules. (b) Ground-truth clusters at the two levels of clustering in the simulated
data from (a). Colours distinguish different clusters. Top: Large-scale clustering. Some nanoclusters are
aggregated into larger clusters. Bottom: Individual nanoclusters (50 nm radius) at the small scale. (c) Clus-
ters from the cluster hierarchy found by StormGraph (α = 0.05, minimum cluster size = 5 localizations)
using either the heuristic (auto.) method or the kNN method with k = 15 to set r0 and using localization
uncertainties. Top: Colours show distinct clusters at the top (coarsest) level of the cluster hierarchy. Bottom:
Colours show distinct clusters at a manually identified level of the cluster hierarchy.

size, we discarded the MinCluSize parameter from StormGraph, in which case it defaults to 3, the smallest

number of points that can physically constitute a “cluster”. Thus, we operated StormGraph with just one or

two input parameters.

By evaluating NMI, mean F-measure, and cluster quantification errors, we found that StormGraph was

more robust than the Bayesian method (Figure 2.6a and Figure A.4). Importantly, the Bayesian method pa-

rameter values that produced the best results on average also produced extremely poor results for some ROIs

that contained greater proportions of non-clustered molecules (Figure 2.6 and Figure A.4). The third col-

umn of Figure 2.6b(ii) shows a clear example of this. We were able to improve the results of the Bayesian

method for those ROIs by adjusting parameters, but this decreased the quality of results for other ROIs.
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Figure 2.6: StormGraph is much faster and more suitable for diverse ROIs than the Bayesian method.
(a) Normalized mutual information (NMI) values measuring the performances of StormGraph and the
Bayesian method at assigning localizations to clusters compared to ground truth (NMI = 1 =⇒ 100%
match) for 30 simulated 1 µm × 1 µm ROIs. StormGraph was implemented using (+) localization un-
certainties and using either the heuristic method (auto.) or the kNN method (k = 10, 15, or 20) to set
r0. Three values of the per-localization significance parameter α were tested: 0.01, 0.05, and 0.1. For the
Bayesian method, the prior p and the Dirichlet concentration parameter α were varied. See the main text
for full details of inputs to the Bayesian method. (b) Two examples from the 30 simulated ROIs (left-most
panels, colour bar = density, scale bar = 500 nm), their ground-truth clusters, and clusters detected by the
Bayesian method and StormGraph, each using two different parameter selections. Corresponding NMI val-
ues are shown. Top: an ROI with close-to-average NMI values for all clustering results. Bottom: an ROI
with relatively poor NMI values for all clustering results. For the Bayesian method, clusters are shown for
the tested parameters with the overall best mean performance measured by NMI (magenta) or best lowest
NMI (green). For StormGraph, clusters are shown for the parameters that we recommend (red) and for the
tested parameters with the worst lowest NMI (blue). N.B. for the bottom ROI, the figure shows the worst
StormGraph results (blue parameters) and the best Bayesian method results (green parameters). Caption
continues . . .
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Figure 2.6: (c–d) Cluster quantification errors by StormGraph and the Bayesian method relative to ground
truth. The fractional error in the percentage of localizations assigned to clusters (c) and the fractional error
in the standard deviation, σ, of number of localizations per cluster (d) are plotted versus the fractional error
in the mean number of localizations per cluster, µ, for each of the 30 simulated ROIs. N.b. ±1 means
±100% error, and errors greater than 100% are shown in the shaded regions, which have different axis
scales. The parameter selections correspond to the highlighted parameters in (a–b). The blue dots in the
bottom left of the plots represent the worst StormGraph results achieved by any of the tested parameters,
whereas only the best Bayesian method results are shown. (e) Computation time taken by StormGraph
(+ uncertainties; α = 0.05) and the Bayesian method (default parameters but reduced number of cluster
proposals) to analyze simulated ROIs versus number of localizations. Computations were performed on a
standard desktop computer with 16 GB RAM and running Ubuntu 16.04 on a solid-state drive.

None of the tested parameter values enabled the Bayesian method to perform as well as StormGraph overall

for the entire set of 30 ROIs. Even for the overall best choices of parameter values, the Bayesian method

always yielded substantial quantification errors for some ROIs, whereas the parameter values that we gen-

erally recommend for StormGraph (α = 0.05, k = 15) always produced relatively reliable quantification

(Figure 2.6c–d). The worst results returned by StormGraph occurred when analyzing ROIs with relatively

high densities of non-clustered molecules using the heuristic method for setting r0 coupled with a stringent

per-localization significance value (α = 0.01). This is unsurprising because the heuristic method is not in-

tended for situations with large numbers of non-clustered molecules and a stringent value of α, by definition,

increases the probability of false negatives. Even so, these settings still gave results that were comparable to

the best results of the Bayesian method for most ROIs. Together, our tests indicate that StormGraph is more

suitable for analyzing multiple diverse ROIs than the Bayesian method.

Furthermore, we found that StormGraph was 100 to 1,000 times faster than the Bayesian method at

clustering each of the 30 simulated 1 µm × 1 µm ROIs (Figure 2.6e). Extrapolation of the computation

times suggests that the Bayesian method could take ∼12 hours (ignoring memory constraints) to analyze a

single ROI containing ∼30,000 localizations on a standard desktop computer, whereas StormGraph could

analyze an entire experiment consisting of 30 such ROIs from each of two conditions or cell types (60

ROIs in total) in under 2 hours. For reference, in our lab, a typical dSTORM analysis of BCR clustering

involves analyzing one ROI per B cell from> 20 cells per condition, and each ROI usually contains between

104 and 105 (average ∼30,000) localizations. Significantly, the long computation time of the Bayesian

method prevents adequate tuning of its various parameters. All things considered, StormGraph may be

more practical than the Bayesian method for analyzing SMLM data.

Finally, using simulated circular clusters, we compared StormGraph to the H-function, which is derived

from Ripley’s K-function [43] and often used to summarize clustering in SMLM data (e.g. [10]). Ripley’s

K(r) function measures the average number of points, normalized by global density, within a disk of radius

r centred on a point in the data. The L-function square-root normalizes K(r) so that its expected value is r

for a uniformly random distribution of points, and H(r) further subtracts r so that its expected value is zero.

Significant deviation of H(r) above zero indicates clustering, and the value of r at which H(r) achieves its
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peak is often taken to indicate the size of clusters. In our tests, the H-function was biased towards the clusters

containing the most points, as is mathematically expected, and, unlike StormGraph, it did not provide an

accurate measure of cluster radius (Figure 2.7).

2.2.3 StormGraph is robust to changes in global density of SMLM localizations

Because the global density of SMLM localizations can vary between ROIs, batch processing cluster analysis

of multiple ROIs, and comparison of results across samples, is only appropriate if the algorithm results are

not influenced by the global localization density. This represents a fundamental limitation of the commonly

used DBSCAN algorithm, whose user input parameters explicitly define a threshold density that does not

adapt to the data. Our tests in Figure 2.4, Figure A.1, Figure A.2, and Figure A.3 using simulated ROIs

spanning a range of localization densities highlighted this and conversely showed that StormGraph is ro-

bust to heterogeneity between ROIs. We further showed that StormGraph is robust specifically to global

localization density by applying it to a dSTORM ROI, which contained heterogeneous clusters of immuno-

globulin M (IgM)-isotype BCRs on the surface of an HBL-1 B cell (see later for details of experiment), after

uniformly randomly removing 0%, 25%, 50% or 75% of the localizations (Figure 2.8a). Although small,

low-density clusters were eventually lost, the identification and area quantification of large, unambiguous

clusters was robust, and the overall distribution of cluster areas was not significantly impacted (p > 0.05;

Figure 2.8b).

We also tested StormGraph’s sensitivity to random noise by artificially adding uniformly random local-

izations (with uncertainties) to the unadulterated dSTORM ROI in Figure 2.8 (Figure 2.9). StormGraph’s

ability to detect all but small, low-density clusters was again robust, and its overall sensitivity to random

noise was minimized by including localization uncertainties and using the kNN method to determine r0.

This implementation with k = 15 resulted in no statistically significant (p < 0.05) change in the distribu-

tion of cluster areas until the ratio of true localizations to artificial localizations was < 2.

2.2.4 Quantification of heterogeneous B-cell receptor clustering from 2D dSTORM data
using StormGraph

To test StormGraph on real SMLM data, we used it to analyze the clustering of IgM-BCRs on the cell

membranes of B lymphocytes. Previous studies found that IgM-BCRs on resting B cells exist in preformed

nanoclusters [10, 11]. Treatment of resting B cells with anti-Ig antibodies, which are widely used as surro-

gates for antigens to trigger B-cell activation, alters the spatial arrangement of BCRs, but the exact nature

of the alterations remains controversial [10–12]. Formation of larger BCR clusters has been observed upon

anti-Ig treatment of resting B cells [10], suggesting a role for increased BCR clustering in the activation of B

cells by antigens. Conversely, Reth and colleagues have proposed a model in which the initial step in BCR

activation is the dissociation of autoinhibited BCR oligomers, and they observe a decrease in BCR nano-

cluster size after exposing B cells to antigens or to anti-Ig antibodies [11]. Here, we provide new insights

revealed by dSTORM and StormGraph, which suggest that the two models might not be mutually exclusive.
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Figure 2.7: The H-function derived from Ripley’s K-function is unsuitable for quantifying SMLM
data containing heterogeneous clusters. Caption continues . . .
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Figure 2.7: Left panels: Six simulated circular clusters of various radii and densities, and approximately
1,000 uniformly randomly distributed points. Simulated data contained no uncertainties. Colour bar =
density (nm−2), scale bar = 500 nm. Middle panels: Ripley’s H-function vs length scale (r) for the simulated
data. Deviation above 0 indicates clustering. The position (r value) of the peak of H(r) is often used to
estimate a single value for cluster radius. Right panels: Clusters found by StormGraph and coloured by
their radii estimated from the StormGraph-quantified cluster areas (radius =

√
area/π). StormGraph was

implemented using k = 10, α = 0.05, and a minimum cluster size of 5 points. (a) All clusters contain
approximately 200 points and have radius 100 nm. (b) Clusters all have radius 100 nm but contain different
numbers of points (100, 200, 300, 400, 500, and 600). (c) Clusters all have the same density but have
different radii (20 nm, 30 nm, 40 nm, 50 nm, 100 nm, and 200 nm). (d) Clusters all contain approximately
300 points but have different radii (20 nm, 30 nm, 40 nm, 50 nm, 100 nm, and 200 nm). (e) Smallest cluster
(20 nm radius) contains approximately 1,000 points. All other clusters (radii 30 nm, 40 nm, 50 nm, 100 nm,
and 200 nm) contain approximately 300 points.

Using dSTORM, we imaged fluorescently labelled IgM-BCRs on ex-vivo murine splenic B cells that

were either resting or treated with bivalent antibodies against the BCR’s Igκ light chain. Localization coor-

dinates and their associated uncertainties were computationally determined from the fluorescence data. We

then used StormGraph (α = 0.05, MinCluSize = 5 localizations) to batch process the analysis of IgM-

BCR clustering in ≥ 24 rectangular ROIs > 1 µm2 from separate cells and entirely within cell boundaries

(Figure 2.10a). StormGraph automatically discounted any clusters of localizations that could not be con-

fidently distinguished from overcounted single molecules. Using k = 15, StormGraph’s single-level clus-

tering results showed that the mean area of IgM-BCR clusters was significantly larger on anti-Igκ-treated

B cells than on resting B cells (Figure 2.10b(i) p < 10−5), consistent with the “increased BCR clustering”

model of BCR activation. However, we did not observe a uniform increase in the distribution of cluster

areas. Instead, the difference was mainly due to a distributional shift towards larger areas of the clusters that

were already > 6 × 103 nm2, which accounted for approximately the 20% largest clusters in both resting

and anti-Igκ-treated cells (Figure 2.10b(ii)). The majority of clusters present on anti-Igκ-treated cells were,

in fact, small multimers that were comparable to, or even smaller than, the IgM-BCR clusters on resting

cells, a prediction of Reth’s dissociation-activation model of BCR activation. The automatic (no k value)

implementation of StormGraph yielded similar conclusions (Figure A.5). Our observations here, powered

by StormGraph’s ability to analyze heterogeneous clustering in many ROIs, suggest that the two different

models of antigen-induced BCR rearrangement coexist in the same cells. Antigen-induced BCR activation

might be associated with both the dissociation of small oligomers and the aggregation of larger nanoclusters.

We next used StormGraph to analyze the aberrant spatial arrangement of IgM-BCRs on B-lymphoma

cells with an activated-B-cell-like (ABC) phenotype. Davis et al. showed that chronic BCR signalling is

a feature of many ABC-subtype diffuse large B-cell lymphomas (DLBCLs) and, using diffraction-limited

microscopy, they observed large IgM-BCR clusters in the absence of any stimulus on the ABC-DLBCL

cell lines HBL-1 and TMD8 but not on the Burkitt’s lymphoma cell line BJAB [13]. To better characterize

aberrant IgM-BCR clustering in some ABC DLBCLs, we used dSTORM and StormGraph to assess IgM-

BCR cluster areas from ≥ 33 ROIs > 1 µm2 on HBL-1, TMD8, and BJAB cells (Figure 2.10c). ROIs
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Figure 2.8: StormGraph results are not sensitive to the global average density of localizations. (a) 0%,
25%, 50% or 75% of the localizations were uniformly randomly removed from an ROI from real dSTORM
data of IgM-BCRs (immunolabelled using Alexa Fluor 647) on an HBL-1 cell (left panels; colour bar =
density (nm-2)). StormGraph was then applied to detect clusters and calculate their areas (remaining panels;
colour bar = cluster area (nm2)). Localization uncertainties were either used (+) or not used (-) during cluster
detection and the value of r0 was set using either the kNN method with k = 15 or the heuristic method
(auto.). Scale bar = 500 nm. (b) Cluster areas quantified by each implementation of StormGraph for each of
the four datasets, showing that the distribution of quantified cluster areas was not significantly affected by the
uniformly random removal of localizations (p > 0.05 as determined by two-sample Kolmogorov-Smirnov
tests). Boxes show medians and interquartile ranges.
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Figure 2.9: Effect of increasing uniformly random noise on StormGraph analysis results. (a) IgM-
BCR dSTORM localizations in an ROI from an HBL-1 cell (top-left panel) with increasing numbers of
additional uniformly randomly distributed points (left panels; colour bars = density (nm-2)). The number
of random points added is specified as a percentage of the original number of localizations: 0% (top), 75%
(middle) and 150% (bottom). For each case, distinct clusters were identified by StormGraph either using (+)
or not using (-) localization uncertainties and using either the heuristic method (auto.) or k-nearest neighbour
(k = 15) method to set r0. Localization clusters possibly arising from overcounted single molecules were
not removed. Colour bars = cluster area (nm2)). Scale bar = 500 nm. (b) Areas of all distinct clusters
identified by StormGraph in the ROI when different numbers of randomly distributed points were added (up
to 200% of the original number of localizations). Results are for the four implementations of StormGraph
in the corresponding columns of panel (a).

29



Figure 2.10: StormGraph analysis of IgM-isotype B-cell antigen receptors (IgM-BCRs) on ex-vivo
murine splenic B cells and human B-lymphoma cell lines imaged using dSTORM. (a) IgM-BCRs,
immunolabelled using Alexa Fluor 647, on ex-vivo murine splenic B cells that were either untreated (rest-
ing; left panels) or treated with bivalent anti-Igκ antibodies (anti-Igκ-treated; right panels). Cells were
imaged first by total internal reflection fluorescence (TIRF) microscopy (top row) and then by dSTORM
(second row; images reconstructed from dSTORM localizations). Scale bar = 1 µm. Third row: IgM-BCR
dSTORM localizations in the ROIs (dashed white boxes) in the second row. Scale bar = 500 nm, colour
bar = localization density (nm-2). Bottom row: Clusters identified by StormGraph, coloured by their areas
(nm2). (b) Cumulative distribution functions (CDFs) for cluster areas in ROIs from 28 resting (blue) and
24 anti-Igκ-treated (red) ex-vivo murine splenic B cells from the same mouse. Panel (i) shows the mean
cluster area in each ROI (p < 10−5). Panel (ii) shows all cluster areas from all ROIs. (c) StormGraph anal-
ysis of IgM-BCRs imaged by dSTORM on resting BJAB, HBL-1 and TMD8 cells. Top: ROIs containing
IgM-BCR dSTORM localizations from a representative BJAB Burkitt’s lymphoma cell or from HBL-1 and
TMD8 ABC-DLBCL cells. Scale bars = 500 nm, colour bar = density (nm-2). Bottom: Clusters identified
by StormGraph, coloured by their areas (nm2). (d) CDFs for cluster areas in ROIs from 81 BJAB (blue), 39
HBL-1 (red), and 33 TMD8 (green) cells, aggregated from four independent experiments for BJAB and two
each for HBL-1 and TMD8. Caption continues . . .
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Figure 2.10: (d) continued. Panel (i) shows the mean cluster area in each ROI (HBL-1 vs BJAB: p < 10−4;
TMD8 vs BJAB: p < 10−14). Panel (ii) shows the areas of all clusters in all ROIs. All StormGraph results
in this figure were generated using localization uncertainties, k = 15, α = 0.05, and MinCluSize = 5.

contained between 5×103 and 3×105 localizations. Using k = 15, StormGraph revealed that the mean areas

of IgM-BCR clusters on HBL-1 and TMD8 cells were significantly larger than on BJAB cells (p < 10−4

and p < 10−14 respectively; Figure 2.10d(i)). The difference between the distributions of IgM-BCR cluster

areas on BJAB and HBL-1 cells resembled the difference between resting and anti-Igκ-treated B cells.

Although HBL-1 and BJAB cells both had many small IgM-BCR clusters, the HBL-1 ABC-DLBCL cells

displayed greater size and/or frequency of large clusters > 104 nm2. In contrast, the other ABC-DLBCL

cell line, TMD8, displayed an overall upward shift in the distribution of cluster areas compared to BJAB,

though > 80% of IgM-BCR clusters on the TMD8 cells still had areas < 104 nm2 (Figure 2.10d(ii)). The

automatic implementation of StormGraph yielded similar results (Figure A.5). Also, although it reduced the

magnitude and statistical significance of some of the differences in cluster areas reported by the automatic

implementation of StormGraph, ignoring localization uncertainties during StormGraph analysis of our anti-

Igκ and B-lymphoma dSTORM experiments did not qualitatively alter results (Figure A.5). All together, our

observations reveal that IgM-BCRs exist in a heterogeneous combination of small and large clusters in two

ABC-DLBCL cell lines and that their increased frequencies of large IgM-BCR clusters mimic observations

for B cells activated by anti-Ig antibodies. This is consistent with the findings by Davis et al. [13] that those

ABC-DLBCL cell lines exhibit chronic BCR signalling.

2.2.5 Computation time

To investigate the time complexity of StormGraph, we timed StormGraph clustering for each of the dSTORM

ROIs that we analyzed in Figure 2.10 and plotted the computation times against the total number of local-

izations per ROI (Figure 2.11a). Neither the choice of method (kNN or automatic) to determine r0 nor

the utilization of localization uncertainties substantially influenced the computation time. For StormGraph

utilizing uncertainties with k = 15 and α = 0.05, we empirically determined that the computation time, T ,

taken by StormGraph for one ROI containing N localizations from our IgM-BCR dSTORM data could be

estimated by T = 1.3 × 10−4 ×N1.32 seconds (Figure 2.11b). The theoretical time complexity of Storm-

Graph is difficult to determine because it depends on many factors, but this empirical relationship indicates

a time complexity of approximately O(N1.32). The empirical relationship between N and T translates to

computation times per ROI of < 1 minute for 104 localizations, ∼10 minutes for 105 localizations, and

∼3 hours for 106 localizations. The cumulative time taken by any of the four tested implementations of

StormGraph to analyze all 167 ROIs from our two IgM-BCR dSTORM experiments was under 12 hours.

Hence, StormGraph is particularly well suited for analyzing receptor clustering on B and T cells, where an

SMLM ROI that occupies a large fraction of the area of a cell would typically contain on the order of 104 or

105 localizations.
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Figure 2.11: Relationship between computation time for StormGraph and number of localizations
in an ROI. (a) Scatter plot on logarithmic axes of computation times versus number of localization for
different implementations of StormGraph. Computations were for the actual dSTORM data analyzed and
presented in Figure 2.10 and were performed on a standard desktop computer with 16 GB of RAM and
running Ubuntu 16.04 on a solid-state drive (SSD). (b) A linear relationship fitted to the logarithm of com-
putation time versus the logarithm of the number of localizations N in an ROI shows that StormGraph
with our recommended settings (using localization uncertainties, k = 15, α = 0.05) has an empirical time
complexity of approximately O(N1.32).

2.2.6 Two-colour analysis of cluster overlap

Co-aggregation and segregation of different molecules are important cellular mechanisms for regulating

signal transduction and can be studied via multi-colour SMLM. To quantify colocalization of clusters of

molecules labelled by two different colours (e.g. red and blue), the StormGraph software quantifies the total

area of overlap divided by each of the following: (1) total red cluster area; (2) total blue cluster area; and (3)

total area covered by clusters of either colour, yielding the Jaccard index [58] (Figure 2.12). The software

also reports analogous quantities using numbers of localizations instead of areas (not shown). To estimate

the maximal experimentally observable colocalization, colocalization analysis should first be applied to

the same molecular species labelled with two different probes. This rarely yields 100% colocalization for

several reasons, including differing affinities of antibody-fluorophore conjugates, differing photophysical

properties of fluorophores, and the inability of two probes to occupy the same binding site.

To demonstrate cluster overlap analysis by StormGraph, we performed such a positive control exper-

iment by simultaneously labelling cell-surface IgG-BCRs on murine A20 B cells with anti-IgG antibod-

ies conjugated to either Alexa Fluor 647 (AF647) or Cy3B fluorophores. These antibodies were bivalent,

thus inducing formation of large clusters prior to cell fixation. Both colour channels were imaged using

32



Figure 2.12: Two-colour cluster overlap analysis using StormGraph. (a) IgG-isotype B-cell antigen
receptors (IgG-BCRs) on A20 B cells were labelled simultaneously with bivalent anti-IgG antibodies that
were conjugated to either AF647 (top panel; red) or Cy3B (bottom panel; pseudo-coloured blue) and then
imaged using dSTORM. Bivalent antibodies were used to induce clustering, since each antibody can bind
up to two IgG-BCRs. The IgG-BCR dSTORM localizations in an ROI from one representative cell were
analyzed using StormGraph. Scale bar = 500 nm, colour bars = density (nm-2). (b) Binary images of the
AF647 (top) and Cy3B (bottom) clusters identified by StormGraph in the ROI shown in (a). (c) Merged
image of the outlines of the AF647 clusters (red) and Cy3B clusters (blue) identified by StormGraph, with
the overlapping areas coloured in magenta. (d) Pictorial description of the three area-based cluster overlap
scores calculated by StormGraph, in the same order as the columns in panel (e). (e) Cluster overlap scores
calculated using the formulae in panel (d) for 31 StormGraph-analyzed ROIs from multiple A20 cells and
aggregated from two independent experiments. Each ROI contributes one dot to each column. Boxes show
medians and interquartile ranges. These scores determine the maximum observable overlap that could be
expected for clusters of IgG-BCRs and a different molecule labelled using these same two fluorophores on
A20 cells, imaged using the same imaging setup and analyzed by StormGraph.
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dSTORM and aligned using custom MATLAB code to correct for chromatic aberrations. We then analyzed

multiple ROIs using StormGraph (Figure 2.12). On average, we found 79% overlap of the IgG-AF647

clusters with the IgG-Cy3B clusters and 66% overlap of the IgG-Cy3B clusters with the IgG-AF647 clus-

ters (Figure 2.12e). This difference is likely due to differing qualities of the AF647- and Cy3B-conjugated

antibodies. The Jaccard index cannot exceed either one-sided overlap score, and we obtained an average

Jaccard index of 0.5. In a similar experiment staining tubulin, Andronov et al. obtained ∼40% overlap of

each probe with the other using ClusterViSu [5]. This shows that StormGraph performs well as part of a

pipeline for analyzing cluster colocalization by SMLM.

2.2.7 Clustering in three dimensions

To extend a clustering algorithm to 3D SMLM data, two challenges must be addressed. First, most 3D

SMLM techniques achieve lower axial resolution than lateral resolution. However, StormGraph implicitly

assumes that all dimensions should be weighted equally during graph construction. Therefore, StormGraph

pre-processes 3D data for cluster identification, but not subsequent quantification, by rescaling the axial (z)

dimension so that average axial and lateral positional uncertainties, when known, become equal. Second,

3D SMLM localizations are often concentrated around a focal plane, causing their axial distribution to be

nonuniform. To account for this, StormGraph now uses the parameter α to obtain a z-dependent node-degree

threshold from random point clouds with normally distributed z-coordinates (Methods). For situations with

localizations distributed uniformly in z, StormGraph still retains the option to use a constant threshold

instead. On the other hand, DBSCAN is unable to adapt to axial variation in localization density.

We compared the performances of StormGraph and DBSCAN in 3D (“StormGraph-3D” and “DBSCAN-

3D”) using simulated 3D data. As in 2D, we found that, overall, the output clusters were closer to ground

truth for StormGraph than DBSCAN regardless of parameter choices (Figure 2.13). We also performed 2D

clustering (“StormGraph-2D” and “DBSCAN-2D”) of the xy-projections of our simulated 3D data. Includ-

ing the z-component of 3D data generally improves clustering accuracy because localizations and clusters

that are separated only in z are inseparable in the xy-projection. StormGraph-3D produced the best overall

clustering results, but even StormGraph-2D produced better results than both DBSCAN-3D and DBSCAN-

2D. Moreover, these results were obtained using the same parameter values for both StormGraph-3D and

StormGraph-2D, whereas DBSCAN-3D and DBSCAN-2D necessitated different parameter values, as ex-

pected. Hence, it is easy to switch between 2D and 3D analyses with StormGraph.

To illustrate StormGraph’s application to real 3D SMLM data, we used dSTORM to image intracellular

lysosomal-associated membrane protein 1 (LAMP-1). We simultaneously immunostained LAMP-1 in B16

melanoma cells with two different labels, AF647 and Cy3B, and applied StormGraph (k = 15, α = 0.1,

MinCluSize = 5 localizations) to a 3D ROI with axial variation in localization density and known localiza-

tion uncertainties (Figure 2.14a–b). StormGraph detected 363 LAMP-1 AF647 clusters and 129 LAMP-1

Cy3B clusters (Figure 2.14c–d). The AF647 clusters had volumes ranging from 1.5× 103 nm3 to 7.1× 107

nm3 with a median of 3.5 × 105 nm3, and Cy3B clusters had volumes ranging from 3.1 × 103 nm3 to
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Figure 2.13: StormGraph identifies clusters in 3D simulated data more accurately than DBSCAN.
(a) (i) Simulated 3D SMLM data example. Colour bar = 3D density. In this example, the density of
molecules outside of clusters was 5% of the within-cluster density of molecules, which still resulted in
∼85% of localizations not belonging to any true cluster. We also tested examples with up to four times
this relative density of unclustered molecules. (ii) Ground-truth clusters in the simulated example. Colours
distinguish distinct clusters. (iii) Clusters identified by StormGraph implemented in 3D with localization
uncertainties used during clustering, r0 determined heuristically (auto.), α = 0.05, and MinCluSize = 5
localizations. Colours distinguish distinct clusters. (iv) Clusters identified by DBSCAN implemented in 3D
using MinPts = 15 and ε = 35.5 nm. These were the DBSCAN parameter values that had the best average
NMI scores for 3D clustering of 130 simulated datasets. (b) (i–ii) 2D projections of (a)(i)–(ii) respectively
onto the xy-plane. (iii–iv) Clusters identified, in the 2D projection of the 3D simulated example, by 2D
implementations of (iii) StormGraph, and (iv) DBSCAN. StormGraph was implemented in 2D using the
same settings as the 3D implementation in (a)(iii). DBSCAN was implemented in 2D using MinPts = 20
and ε = 22.6 nm. These were the DBSCAN parameter values that had the best average NMI scores for 2D
clustering of 130 simulated datasets. Colour bar = 2D density; scale bar = 500 nm. Caption continues . . .
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Figure 2.13: (c) Accuracy of cluster assignments by 3D and 2D implementations (applied, respectively, to
the full 3D data or to the 2D xy projections) of StormGraph and DBSCAN for 130 simulated 3D datasets,
as assessed by (i) normalized mutual information (NMI; 1 = perfect) and (ii) mean F-measure (1 = per-
fect). Boxes show medians and interquartile ranges. StormGraph was implemented using α = 0.05 and
MinCluSize = 5 localizations. Localization uncertainties were either used (+) or not used (-) during cluster-
ing, and r0 was determined using the heuristic method (auto.) or using the indicated values of k. DBSCAN
was implemented using the indicated parameters. The first set of DBSCAN parameters (MinPts = 15,
ε = 35.5 nm) was optimized for 3D clustering and the second set (MinPts = 20, ε = 22.6 nm) was
optimized for 2D clustering.

3.7 × 107 nm3 with a median of 9.0 × 105 nm3 (Figure 2.14e). The discrepancy in cluster volumes was

likely caused by variance in labelling or probe detection. Indeed, we detected almost four times as many

AF647 localizations as Cy3B localizations (9.0×104 versus 2.5×104) and it is evident from Figure 2.14a–b

that Cy3B was inadequate for some of the features observed using AF647. This shows that probe choice is

an important consideration for SMLM. Nevertheless, StormGraph detected similar larger-volume clusters in

both colour channels provided that they were sufficiently labelled by both probes.

Additionally, we computed volumetric 3D overlap between AF647 clusters and Cy3B clusters (Figure
2.14f–g). Though only 31% of the total AF647 cluster volume overlapped with Cy3B clusters, we found

that 50% of the total Cy3B cluster volume overlapped with AF647 clusters. The Jaccard index (which

cannot exceed the smaller overlap score, i.e. 0.31) was 0.24. These observations were probably explained

by weaker labelling or detection with Cy3B than AF647 such that some clusters lacked Cy3B signal. To

our knowledge, our software is the first to compute volumetric overlap for two-colour, 3D SMLM data.

StormGraph thus offers an alternative to Coloc-Tesseler [59], an extension of SR-Tesseler, for analysis of co-

clustering of molecules. Our results for LAMP-1 show that StormGraph can identify and quantify clusters

of localizations in 3D SMLM ROIs and, furthermore, that it can detect and quantify overlap between 3D

clusters in two-colour data.
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Figure 2.14: Analysis of 3D SMLM data using StormGraph. (a) Localizations of intracellular LAMP-
1 labelled simultaneously by two different fluorophores in a B16 murine melanoma cell imaged by two-
colour 3D dSTORM. LAMP-1 molecules were stained using anti-LAMP-1 primary antibodies and a 1:1
mixture of the same secondary antibody conjugated to either (i) AF647 (red) or (ii) Cy3B (pseudo-coloured
blue). A 5 µm × 5 µm × 700 nm ROI from one cell was selected for analysis. Colour bars = density
(nm−3). (iii) Merge. (b) 2D projections of the (i) AF647 and (ii) Cy3B localization data onto the xy-
plane. Colour bars = density (nm−2). Scale bar = 1 µm. (c) (i) AF647 and (ii) Cy3B clusters found by
StormGraph using localization uncertainties, k = 15, α = 0.1, and MinCluSize = 5 localizations. Clusters
of localizations that could not be confidently distinguished from a single, multiply counted fluorescent probe
were automatically removed by StormGraph. Colours distinguish different clusters. (d) 2D projections of
the clusters shown in panel (c) coloured according to their 3D volumes (nm3). (e) All volumes, as coloured in
(d), of individual AF647 and Cy3B clusters detected by StormGraph. Boxes show medians and interquartile
ranges. (f) Overlapping volumes (magenta) of the AF647 and Cy3B clusters in panel (c). (g) Enlarged region
showing overlap (magenta) between one AF647 cluster (red) and two Cy3B clusters (pseudo-coloured blue).
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2.3 Discussion
By converting 2D or 3D SMLM data into a neighbourhood graph, StormGraph leverages concepts from

graph theory, especially community detection, to assign localizations to clusters at multiple scales. Storm-

Graph is run in MATLAB using either a script or a simple graphical user interface (GUI). The software

automatically quantifies clusters at an automatically selected scale, quantifies cluster overlap for two-colour

SMLM data, and includes MATLAB functions for data visualization in 2D or 3D. The User Guide for run-

ning StormGraph in MATLAB can be found in Appendix C. Through extensive testing using simulated

data, we showed that StormGraph is generally more accurate than existing cluster analysis methods. Fur-

thermore, unlike the popular DBSCAN [44] and methods based on Voronoi diagrams [5, 45], StormGraph

can utilize the uncertainties in individual localization positions to enhance clustering accuracy. Previously,

only a Bayesian method [49, 50] had this capability, but StormGraph requires fewer user inputs, makes fewer

assumptions, and is between 100 and 1,000 times faster. As summarized in Table 2.1, StormGraph combines

several features that are not all available simultaneously in any other SMLM cluster analysis method.

A crucial feature of StormGraph is its automatic determination of scale-dependent thresholds from scale-

independent input parameters, whose selection we provide guidelines for in the Methods. Firstly, Storm-

Graph determines a neighbourhood radius either based on a user-specified number of neighbours, k, that

neighbourhoods of clustered localizations should exceed (recommended method) or heuristically without

user input (suitable for data in which at least two thirds of the localizations clearly belong to clusters). Sec-

ondly, StormGraph decides which localizations are sufficiently dense to be clustered via a user-specified

per-localization significance level α. Hence, StormGraph’s input parameters — k (optional) and α (re-

quired) — do not require any a priori knowledge about quantities that often vary between ROIs in SMLM

experiments, such as the localization density, which affects DBSCAN, or the fraction of localizations that

do not belong to clusters, which affects the Bayesian method. Consequently and importantly, StormGraph

enables unbiased analysis of disparate datasets using identical parameter values, whereas DBSCAN and the

Bayesian method do not. Therefore, StormGraph is more suitable than either DBSCAN or the Bayesian

method for analyzing SMLM datasets consisting of multiple ROIs and for making comparisons between

different conditions, molecules, or cell types.

By applying StormGraph to actual dSTORM data, we simultaneously detected both very small and very

large IgM-BCR clusters on the cell membranes of activated B cells. Two opposing models of antigen-

induced BCR activation have been proposed by others: one model involves increased aggregation of BCRs

[10] and the other involves a decrease in BCR clustering via dissociation [11]. Our observations, quantified

by StormGraph, permit a new hypothesis that both models occur together. Perhaps large clusters form from

BCRs that must first dissociate from pre-existing small clusters. This would unite the two opposing models

for the first time and warrants further investigation. By providing improved quantitative characterization

of heterogeneous receptor clustering, StormGraph should enable new insights into the relationship between

receptor clustering and receptor signalling.

38



Algorithm: SR-
Tesseler

Cluster-
ViSu DBSCAN OPTICS FOCAL Bayesian

method
Storm-
Graph

References [45] [5, 46] [44] [60] [47] [49, 50] N/A

Mathematical
approach

Voronoi
tessellations

Voronoi
tessellations

Density-
based

Density-
based

Pixel-
based

Bayesian,
model-
based

Graph-
based

Robust to
ROI-to-ROI
heterogeneity

yes yes no no* yes no yes

3D capability # yes yes yes no yes yes
Adapts to axial
variation in 3D
SMLM data

N/A yes no yes N/A yes** yes

Suitable for
arbitrary cluster
shapes and sizes

yes yes yes yes yes*** no yes

Accounts for
localization
errors

no no no no ## yes yes

Includes
colocalization
analysis

# yes no no no no yes

Hierarchical
clustering no no no yes no no yes

Automatically
generates
single-level
clustering

yes yes yes no yes yes yes

Results are
deterministic yes no**** yes yes yes yes no

Number of inputs
controlled by user ≥ 1 0–1**** 2 2 0–1 5 1–3

Table 2.1: Comparison of features of StormGraph and other clustering algorithms.
# The authors of SR-Tesseler have published a related method called Coloc-Tesseler [59] that is designed
specifically for colocalization analysis of 2D and 3D SMLM data.
## Uses a single global estimate of localization uncertainty to define a pixel size, but does not account for
each individual localization’s specific positional uncertainty.
* Requires user-specification of the same two density-based parameters as DBSCAN, but theoretically the
search radius ε can be made arbitrarily large, unlike for DBSCAN. This means that, theoretically, OPTICS
can be implemented with parameters that do not depend on the density. However, this would result in all
localizations being grouped together in a single cluster at the most coarse level of the cluster hierarchy and
would be computationally inefficient. Therefore, in practice, the parameter ε should be set.
** Technically possible by modifying the mathematical model used by the algorithm, but this is non-trivial.
*** Yes, except that clusters will be composed of square pixels.
**** Assumes that ClusterViSu is operated, as intended, using Monte Carlo simulations to automatically
determine its threshold Voronoi cell area (or volume) needed to define clusters.
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Note that we deliberately avoided making any statements about numbers of molecules during our anal-

ysis of experimental dSTORM data. In SMLM, the ratio of localizations to molecules is not one-to-one.

Repeated blinking of fluorophores and labelling of individual molecules by multiple fluorophores cause

overcounting of molecules. Spatially unresolvable fluorophores that blink simultaneously cannot be local-

ized and therefore cause undercounting of molecules, which is especially an issue for dense clusters. Under-

counting also arises from other experimental sources of error, such as incomplete labelling of molecules or

incomplete detection of fluorophores. For well controlled PALM experiments with minimal undercounting,

the number of molecules can be estimated [61, 62], but for general SMLM experiments, especially dSTORM

using fluorescent immunolabelling of molecules as we performed, accurate determination of the number of

molecules per cluster remains a challenge. Therefore, to avoid false biological interpretation of the data, we

chose to report only cluster areas or volumes.

During the development of StormGraph, Khater et al. also presented a method to analyze SMLM data

using graphs [51]. We note important differences between their approach and StormGraph. Both methods

filter out non-clustered data points using a node-degree threshold obtained from random data, but whereas

StormGraph obtains this threshold using a per-localization significance level α, Khater et al. use a parameter

equivalent to the α parameter in SR-Tesseler. For clustering, StormGraph uses graph-based community

detection whereas Khater et al. use the mean shift algorithm [63], an unrelated density estimation method,

which is sensitive to a difficult-to-select user-specified bandwidth parameter [64]. Khater et al. then use

multi-threshold network analysis to identify modular structures within the clusters, whereas StormGraph

identifies clusters and their multiple levels of constituent subclusters simultaneously using automated multi-

level clustering. Finally, unlike StormGraph, the method of Khater et al. does not account for uncertainties

in localization positions.

It should be noted that the uncertainties in localization positions, which result from the finite resolution

of SMLM, cause the localization clusters to be larger than the true underlying molecular clusters. Storm-

Graph does not correct for this, nor do any of the other clustering algorithms. Users should therefore be

aware that the cluster areas or volumes reported by StormGraph will be slight overestimates of the actual

sizes of the molecular clusters. The quantified overlap of localization clusters will also differ slightly from

the true overlap of molecular clusters. If the clusters output by StormGraph happen to be approximately

Gaussian, then mathematical correction methods [65] could be applied in order to improve estimates of

cluster size and overlap. Without any such correction, it is important to perform all imaging at the same

resolution in order to keep errors consistent and enable fair comparisons. Nonetheless, StormGraph will

advance cluster analysis in the SMLM field. Parameter selection is simple (we recommend k = 15 and

values of α between 0.01 and 0.1 for most data), and a simple MATLAB GUI and script make StormGraph

accessible to a wide range of users. With its unique combination of features — including utilization of

localization uncertainties and generation of nested clusters across multiple scales — and greater robustness

and accuracy than existing algorithms, we believe that StormGraph will be a very useful tool for SMLM

cluster analysis.
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2.4 Mathematical and computational methods

2.4.1 Calculation of the length scale r0

(1) The fully automatic, heuristic method

To automatically determine a length scale r0 without user input, we implement a variation of the elbow

method heuristic. For values of ε ranging from 0 to a sufficiently large value based on the optimal affinity

scale stated by Arias-Castro [66], we construct the ε-neighbourhood graph for the data. We then plot the

number of connected components (including singletons) against ε. This must be monotonically decreasing

and typically bears resemblance to a decaying exponential or logistic function. As ε increases, an “elbow”

region occurs as rapid linking of nodes within clusters at small values of ε transitions to slower linking of

distinct clusters and dispersed nodes at larger values of ε. Eventually all nodes would belong to a single

connected component.

Sometimes, a ‘natural’ number of clusters will be evident as a horizontal (i.e. constant) plateau occurring

at > 1 connected component in this plot. In such cases, we find the plateau corresponding to the largest fold

increase in the area or volume of the ε-neighbourhood. Let ε1 be the value of ε at the start of this plateau,

and let ε2 = 21/dε1, where d is the dimensionality of the data, be chosen such that the ε2-neighbourhood is

twice the area or volume of the ε1-neighbourhood. If the ε1- and ε2-neighbourhood graphs have the same

number of connected components, then we set r0 = ε2 (Figure 2.15a).

Otherwise, we fit a curve f(ε) to the number of connected components versus ε (Figure 2.15b). We

choose f(ε) to be the sum of a constant b and either one or two generalized logistic functions of the form

L(ε) =
a

(1 + exp(s(ε− ε0)))1/ν
,

where b ≥ 0, a ≥ 0, s ≥ 0, ν > 0, and ε0 are coefficients to be fit. To avoid overfitting, we only include

the second logistic function if it yields a substantial improvement in the goodness of fit and we restrict its

allowable values of ν. The elbow of this curve is not mathematically well defined, but intuitively it is related

to the concavity: the curve achieves maximum (positive) concavity as it approaches the elbow region, and

then its concavity decreases as it traverses the elbow region. StormGraph chooses the length scale r0 to be

towards the end of the elbow region as follows. Let εmax be the value of ε at which f ′′(ε), the concavity of

f(ε), is maximized. StormGraph sets r0 to be the value of ε > εmax where f ′′(ε) first falls below 2% of its

maximum value (Figure 2.15b). We chose this 2% threshold empirically after experimenting with different

values. Since StormGraph generates a multi-level clustering, and since we have developed and implemented

a method to return a single-level clustering based on the hierarchy of clusters, it is safer to overestimate than

underestimate a suitable value for r0. Erroneous merging of clusters can generally be resolved by moving

to a finer level of the cluster hierarchy, but erroneous failure to merge clusters cannot be retroactively fixed

41



using the hierarchy. Through experimentation, we found that a 2% threshold worked well while being a

generally safe choice.

When localization uncertainties are available in the data, they are initially excluded when utilizing the

elbow method to set the initial length scale r0, which is used for classifying localizations as either clustered

or unclustered. The uncertainties are subsequently taken into account during the final use of the elbow

method, which sets the value of r0 that is used for construction of the final graph following elimination of

unclustered localizations. Specifically, the graph in which we count the number of connected components

for a given ε is constructed from Monte Carlo simulated realizations of the data with two nodes connected

to each other by an edge if and only if they are within a distance ε of each other in at least 75% of the Monte

Carlo simulations (see later in the Methods for details of Monte Carlo simulations and edge pruning). Note

that edge weights are not relevant here because they do not affect the number of connected components.

(2) The kNN method

To determine the length scale r0 for a selected ROI using a k-nearest neighbours (kNN) approach, Storm-

Graph first finds the distance of every point in the ROI to its kth nearest neighbour. If localization un-

certainties are available in the data, this is performed for 100 Monte Carlo simulated realizations of the

data, and the 95% confidence level for the kth nearest neighbour distance is obtained for every localiza-

tion. The distribution of kth nearest neighbour distances is also obtained for Monte Carlo simulations of

random data with the same global average point density as the ROI. A histogram of kth nearest neighbour

distances should initially increase more rapidly for clustered data than for random data, but the histograms

for clustered and random data will eventually intersect each other (Figure 2.15c). Inspired by the automated

version of ClusterViSu [5], StormGraph defines r0 as the distance at which these histograms of kth nearest

neighbour distances first intersect. Points closer than r0 to their kth nearest neighbour are more likely to

exist in clustered data, while points farther than r0 from their kth nearest neighbour are more likely to exist

in random data. Moreover, points in clusters will tend to have more than k neighbours within a distance r0,

while randomly distributed points will tend to have fewer than k neighbours within a distance r0. However,

if this first histogram intersection occurs after the median of the random data’s histogram, this indicates

that, on average, the real data is actually more dispersed than the random data, and in this case StormGraph

defines r0 simply as the median of the random data’s kth nearest neighbour distances.

2.4.2 Simulating multiple data realizations and calculation of graph edge weights

StormGraph uses Monte Carlo simulations to simulate multiple realizations of the data by resampling each

localization’s coordinates. The new x, y and, if applicable, z coordinates for a particular localization are

drawn independently from normal distributions centred at the original observed localization position. The

standard deviations are equal to the corresponding uncertainties recorded in the data. StormGraph then

determines the graph edge weights Wij = 〈sij〉 from 60 Monte Carlo simulations by calculating 〈sij〉 to be

the mean of the 60 simulated values of sij for each specific node pair {i, j}.
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Figure 2.15: The two available methods for setting the search radius r0 in StormGraph. Caption
continues . . .
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Figure 2.15: (a) The heuristic elbow method for setting r0 when there is an innate number of clusters in the
data. (i) Example SMLM localizations (adapted from real dSTORM data of IgG-BCRs on an A20 murine B
cell) with well defined clusters and minimal dispersed localizations between clusters. Colour bar = density
(nm−2), scale bar = 500 nm. (ii) Number of connected components in the ε-neighbourhood graph vs ε for
the data in (i). StormGraph sets r0 = ε2, where an ε2-neighbourhood has twice the area/volume of an
ε1-neighbourhood, if the number of connected components remains constant for ε1 ≤ ε ≤ ε2. Inset: en-
larged region of plot. (b) (i) Example SMLM localizations with poorly defined clusters and many dispersed
localizations between clusters. Colour bar = density (nm−2), scale bar = 500 nm. (ii) The heuristic elbow
method for setting r0 for the data in (i). A function f(ε) is fit to number of connected components vs ε
for the ε-neighbourhood graph (top). The concavity f ′′(ε) of this curve is then computed (bottom), and the
value of r0 (vertical dashed line) is set as the value of ε at which f ′′(ε) returns to 2% (horizontal dashed
line) of its maximum value. (c) The k-nearest neighbour (kNN) method for setting r0 (illustrated for the
data in panel (b)). A histogram of distances from nodes to their kth nearest neighbours is obtained for both
the clustered SMLM data (red) and a random distribution of points with the same average density (blue),
where k is a user-specified parameter. For data with known localization uncertainties, the 95% confidence
level from Monte Carlo simulations is used for the kth nearest neighbour distance for each localization. The
value of r0 (vertical white dashed line) is set as the distance at which the two histograms first intersect.

2.4.3 Thresholding of node degrees to eliminate unclustered nodes

Setting α = 1 skips the thresholding step altogether, allowing all nodes to be considered for clustering.

Otherwise, to set the node-degree threshold, StormGraph first constructs r0-neighbourhood graphs with

edge weights sij for simulated random point clouds with the same global average point density as the

SMLM data. For 2D data (and for 3D data with uniform axial acquisition), the random points are uniformly

distributed in x and y (and z). Then StormGraph sets the degree threshold as the ((1−α)×100)th percentile

of the aggregated degree distribution of the random simulations. For 3D data with localizations concentrated

around a focal plane, StormGraph simulates random data with z-coordinates that are distributed normally

with the same interquartile range as the data. StormGraph then obtains a z-dependent node-degree threshold

by fitting a Gaussian curve to node degree versus z for the simulated random points and finding the (1 −
α)× 100% confidence upper bound curve. Thus, for both 2D and 3D data, an expected α× 100% of nodes

in any of the random simulations would have degrees exceeding the threshold.

For actual data, because the edge weights are calculated by averaging sij over Monte Carlo simulations,

the number of localizations that would be classified as clustered in random data would usually be less than

α × 100%. Hence, this averaging using localization uncertainties reduces the detection of spurious, small

clusters arising from random spatial fluctuations in density.

If localization uncertainties are not known, then we take a different approach to reduce detection of

spurious clusters. Preliminary clusters are defined using a community detection algorithm. A node is then

classified as unclustered if it meets any of the following four criteria: (1) it belongs to a preliminary cluster

whose mean degree is below the threshold; (2) its own degree is below the threshold and is also a lower

outlier (< lower quartile (LQ)− 1.5× interquartile range (IQR)) for its preliminary cluster; (3) its own

degree passes the threshold but is a strong lower outlier (< LQ−3× IQR) for its preliminary cluster; (4) its
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own degree is less than half of the threshold. The first criterion provides robustness by spatially averaging

node degrees over small areas. This prevents the inclusion of spurious, small clusters. The other three

criteria prevent the inclusion of nodes that are visually separate from a cluster but still within a distance r0

of one.

To avoid biases arising from the choice of algorithm used for the preliminary clustering, StormGraph

performs this twice, independently, using two different community detection algorithms, and it then clas-

sifies nodes as unclustered if either method does. The two algorithms used are the two-level version of

Infomap [3] and the Louvain method [2], which are two of the top performing community detection algo-

rithms [52]. Infomap is an information theoretic algorithm based on flow on the graph, while the Louvain

method is one of several algorithms that aims to maximize a property of the graph called “modularity”.

Note that the Louvain method is subject to a resolution limit [67], whereby the minimum size of de-

tected clusters increases as the size of the graph increases. However, each implementation of the Louvain

method generates a hierarchical clustering, with the resolution limit applying to the highest (most coarse)

level. To minimize the effect of the resolution limit on the preliminary clustering performed by StormGraph

during node degree thresholding when localization uncertainties are unknown, the lowest (finest) level of

the hierarchy is used (matching the approach taken by Emmons et al. in their comparison of community

detection algorithms [68]). The two-level Infomap algorithm is also subject to a resolution limit, but it is

orders of magnitude smaller than that of the Louvain method [69] and therefore not a major concern. For

best results, the lowest level of a hierarchical clustering optimized by the multi-level Infomap method, which

is not subject to a resolution limit [69], could be used instead, but for computational efficiency we use the

faster two-level method during the preliminary clustering step.

2.4.4 Edge pruning

When localization uncertainties are used in the StormGraph algorithm, we prune edges from the final graph

that is constructed from only the nodes that are retained after thresholding node degrees. To do this, we

delete every edge that has nonzero sij in fewer than 75% of the Monte Carlo simulations that were used

to calculate the edge weights. This guarantees that any pair of retained edges have at least an estimated

50% probability of co-occurring in the r0-neighbourhood graph for any realization of the data, and the

unknown true localization positions is one possible realization. This prevents the linking of clusters that

are disconnected in most realizations of the r0-neighbourhood graph but connected in the average graph,

since linking of two clusters requires at least one node to be connected by edges to nodes in both clusters

simultaneously. After pruning, two clusters can only be linked if they are connected in at least half of the

Monte Carlo simulations.

2.4.5 Merging clusters at the top of the multi-level Infomap hierarchy

To facilitate the identification and quantification of particularly large clusters, StormGraph creates an ad-

ditional level at the top of the multi-level Infomap cluster hierarchy, if possible, by merging sufficiently
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interconnected clusters. It is natural to consider the connected components of a graph to be the clusters at

the coarsest level of a cluster hierarchy. We therefore use this concept to define the top level of StormGraph’s

cluster hierarchy by merging Infomap clusters that form connected components. However, due to the un-

certainties in SMLM data, StormGraph only merges clusters if they form stable connected components,

which we define as connected components that would remain connected following the random removal or

displacement of any one node. Oftentimes, this step results in no merging of clusters and so no additional

level of clustering is created.

2.4.6 Algorithm to obtain single-level clustering from cluster hierarchy

Although various methods exist to select one level from a cluster hierarchy, for example silhouette scores

[70] and the gap statistic [71], existing methods are either very computationally intensive or otherwise

incompatible with StormGraph. We therefore developed our own fast algorithm to obtain a single-level

clustering from the cluster hierarchy output by StormGraph, which we describe here.

The multi-level clustering output by StormGraph is generated from an r0-neighbourhood graph. An al-

ternative type of graph commonly used for clustering problems is the symmetric k-nearest neighbour (kNN)

graph, in which two nodes are connected by an edge if either of them is among the k nearest neighbours of

the other. A related graph is the mutual kNN graph, a subgraph of the symmetric kNN graph, in which two

nodes are connected by an edge if and only if each node is among the k nearest neighbours of the other. One

simple clustering algorithm would be to identify the connected components in a symmetric kNN graph or in

a mutual kNN graph, where k is an adjustable parameter.

In a symmetric kNN graph, it is guaranteed that every node has at least k edges. However, as k increases,

nodes in low-density regions between two distinct clusters quickly become connected to both clusters, while

the high-density regions inside the clusters may remain fragmented into multiple connected components

until higher values of k. A mutual kNN graph, in which every node is guaranteed to have at most k edges,

more faithfully represents such clusters by preventing nodes in low-density regions from making too many

connections. However, mutual kNN graphs often suffer from having singletons and small connected com-

ponents due to the weak connectivity. We therefore chose to combine the concepts of both the symmetric

kNN and mutual kNN graphs.

For a set of points V and positive integers M and K > M , we define GM,K(V ) to be the union of the

symmetric MNN graph and the mutual KNN graph for vertices V . This is still a subgraph of the symmetric

KNN graph, but it has stronger connectivity than the mutual KNN graph by guaranteeing that every node

has at least M edges, which in turn ensures that GM,K(V ) contains no connected components with fewer

than (M + 1) nodes.

For each cluster at the top level of the cluster hierarchy, StormGraph decides whether to split the cluster

into its subclusters at the next level down in the hierarchy according to the algorithm described below. If the

split is rejected, then StormGraph keeps the current cluster and does not examine any of the finer levels of

the hierarchy within that cluster. If the split is accepted, then this process is repeated recursively for each of
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the newly accepted subclusters. A split is automatically rejected if more than 1% of the points in the cluster

belong to subclusters with fewer than the minimum number of points, specified by the user, that constitute a

cluster.

Let V be the set of nodes in a cluster C, letA = {C1, C2, . . . , Cn} be the set of n subclusters of C at the

next finest level of the cluster hierarchy, and let B(M,K) = {C ′1, C ′2, . . . , C ′n′} be the set of n′ connected

components of the graph GM,K(V ). StormGraph decides whether to split cluster C into its constituent

subclusters A using the following algorithm:

1. Construct G2,K(V ) for all integers K ∈ {6, . . . ,K1}, where K1 is the smallest integer such that

G2,K1(V ) is connected. We empirically chose the minimum value of K to be 6 because this usually

results in uniformly randomly distributed points forming a single connected component.

2. Find the value of K for which B(2,K) is most similar to A according to some measure of similarity.

Denote this value of K by K∗.

3. Split cluster C into subclusters A if the similarity between A and B(2,K∗) is greater than both a

threshold similarity and the similarity between C and B(2,K∗).

The most obvious choices for a similarity measure to score the similarity between two clusterings of the

nodes V are normalized mutual information (NMI) [56] and mean F-measure [57]. We require a similarity

measure that is defined even if one of the clusterings being compared consists of only a single cluster. This

eliminates NMI as a suitable choice, so we use mean F-measure.

Let F (A,B) denote the similarity of clustering A to clustering B as measured by the mean F-measure.

The F-measure or F1 score for a binary classification problem in which a cluster Ci is compared to a

reference cluster C ′i (usually the ground-truth cluster that the cluster Ci, found by a clustering algorithm, is

supposed to recover) is defined as the harmonic mean of precision (P ) and recall (R):

F1(Ci, C
′
i) =

2 · P (Ci, C
′
i) ·R(Ci, C

′
i)

P (Ci, C ′i) +R(Ci, C ′i)
.

The precision P (Ci, C
′
i) is the fraction of Ci that belongs to C ′i, and the recall R(Ci, C

′
i) is the fraction of

C ′i that belongs to Ci. The mean F-measure F (A,B) is then defined as the weighted arithmetic mean of the

maximum F-measures for each of the clusters C ′i in B:

F (A,B) =

∑n′

i=1 |C ′i|max1≤j≤n{F1(Cj , C
′
i)}∑n′

i=1 |C ′i|
,

where |C ′i| denotes the number of points in C ′i.

The mean F-measure is not symmetric, i.e. F (A,B) 6= F (B,A), which is not desirable in our situation

where we wish to compare two clusterings, neither of which is necessarily ground-truth. To avoid having

to choose one of the clusterings A and B to be the reference, we define a symmetric similarity measure,
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F (A,B), as the arithmetic mean of F (A,B) and F (B,A):

F (A,B) =
1

2
(F (A,B) + F (B,A)) .

This is the similarity measure that we use in our algorithm for obtaining a single-level clustering from the

hierarchy. It ranges from 0 to 1, and F (A,B) = 1 if and only if A and B are identical. We impose a

minimum similarity score of Fmin = 0.8 for a cluster split to be considered. Thus, we split cluster C into

its highest level of subclusters, A, if A is at least 80% similar to B(M,K∗) and is also a closer match to

B(M,K∗) than the single, unified cluster C is. The 80% similarity threshold prevents the fragmentation of

a cluster if there is not substantial consensus between the two independent subclusterings. This threshold

could be tuned to make it more or less difficult to split a cluster into finer levels of subclusters. In particular,

a threshold of Fmin = 1 would demand perfect agreement between the subclusters of C and the alternative,

independent clustering B(M,K∗) for the subclusters to be accepted as a better clustering of V than a single

cluster. We chose a threshold of 0.8 to allow some leniency.

2.4.7 Identifying clusters that can be confidently distinguished from multiply counted
single molecules

Localizations arising from multiply counted single molecules may be falsely identified as clusters. As an

optional step during StormGraph analysis, clusters of localizations that cannot be distinguished with high

confidence, due to their positional uncertainties, from multiply counted single molecules can be identified

and subsequently reclassified as unclustered (cluster label 0). To do this, StormGraph checks each cluster

systematically as follows.

First, for each pair of localizations, Xi = (xi, yi, zi) and Xj = (xj , yj , zj), in the cluster, let Yij =

Xi − Xj be their vector difference, and let Σij be the covariance matrix for the coordinates of Yij. The

off-diagonal elements of Σij are assumed to all be 0 (i.e. the uncertainty in each coordinate of a localization

is assumed to be independent of its other coordinates). Assuming each molecule to be approximated by a

point particle of zero size, the mth diagonal element of Σij is V ij
m = σim

2
+ σjm

2
, where σim denotes the

standard deviation for the uncertainty in the mth coordinate of localization i, as given by the input data.

This assumes that the true position is identical for all localizations originating from the same molecule.

In practice, the fluorophore positions may be different from the actual molecule positions. For example,

when molecules are detected using antibodies, the fluorophore conjugated to the antibody may be located

as much as 10 nm away from the antibody’s binding site. In addition, if each molecule can be labelled by

more than one fluorophore, then the true positions of localizations originating from a single molecule will

not only be different from the actual molecule but also from each other. If the sizes of the molecule and

fluorescent label are not negligible, they can be approximately taken into account in the following way. For

mathematical simplicity, we approximate the uncertainty due to the molecule and label size as an isotropic

Gaussian distribution with variance (r/3)2, where r is the effective radius of the molecule and fluorescent

label combined, which is specified by the user based on underlying biophysical knowledge. We then add
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this variance term twice (once each for localizations Xi and Xj) to each of the diagonal elements in Σij.

For our simulated data, this was not necessary as the true position of every localization was at the centre of

a simulated molecule. For our BCR dSTORM data, we used r = 8 nm.

Next, we construct the statistic Zij =
∑d

m=1 Y
ij
m

2
/V ij

m for each pair of localizations, where d is the

number of dimensions (2 or 3) and Y ij
m denotes the mth coordinate of the vector Yij. If two localizations

Xi and Xj have the same true position, then Zij is chi-squared distributed with d degrees of freedom. We

then look for pairs of localizations for which Zij exceeds a desired quantile of the appropriate chi-squared

distribution, indicating confidence that they originated from different molecules. Because we are testing

multiple pairs of localizations for significance, we correct for multiple hypothesis testing using the S̆idák

correction. If we desire a significance level of 1 − q, then we look for pairs of localizations for which

Zij exceeds the
(
q1/N

)th
quantile of the chi-squared distribution with d degrees of freedom. Here, N is

the number of localizations in the cluster. Even though there are N(N − 1)/2 pairs of localizations, the

null hypotheses are that each localization originated from the same molecule as all other localizations in

the cluster, and so there are only N hypotheses to test. By default, StormGraph uses a significance level

of 0.05, so it uses the
(
0.951/N

)th
quantile. Finally, since a cluster must always contain at least three

localizations (we do not consider pairs of localizations to be clusters), StormGraph increases confidence

further by demanding that at least two localizations are each, probabilistically, sufficiently far from at least

two other localizations. This way, a single outlying localization within a cluster is not sufficient on its own

to qualify the cluster as containing multiple molecules with high confidence.

2.4.8 Guidelines for StormGraph parameter selection

StormGraph has three user-controllable parameters. The optional parameter k specifies the number of near-

est neighbours to use when calculating the graph neighbourhood radius r0. The value of k, if set, is the

minimum (respectively maximum) number of neighbours that most clustered (respectively unclustered) lo-

calizations should have. It should be smaller than the number of localizations in a typical cluster, but

preferably larger than the estimated number of times that a typical single molecule might blink. These val-

ues can be estimated by visual inspection of localization clusters within cell boundaries and on the coverslip

outside of cells. Increasing k, and consequently r0, can influence the exact placement of cluster boundaries,

and hence cluster quantification, by allowing more low-density localizations on the periphery of clusters

to be included in the clusters. This highlights the inherent ambiguity in clustering problems, which results

from the lack of a clear definition of a cluster. We recommend values of k between 10 and 20 for most data.

Alternatively, StormGraph can determine r0 heuristically without any user input (i.e. without k), but this

approach is designed for data with very few localizations dispersed in between clusters. Set k = 0 in the

software to use this mode of StormGraph. We advise that this mode should only be used if it is clear a priori

that at least two thirds of localizations in each ROI belong to clusters.

The parameter α controls the node-degree threshold used to identify and remove unclustered nodes prior

to clustering. For data that does not suffer from overcounting of molecules, or for which overcounting has
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already been corrected, α is effectively the maximum false positive rate (FPR) for classifying localizations

as clustered if all localizations in a uniformly random distribution should be classified as unclustered. It

can be regarded as a per-localization significance level. When overcounting is present in the data, the

FPR may be greater than α. Nevertheless, for any given α < 1, StormGraph takes steps to minimize the

FPR as far as possible. Hence, we suggest setting α as the maximum fraction of localizations that the

user would accept as being clustered if they were completely randomly distributed. For most applications,

we recommend α = 0.05, the default value. Larger values of α might be suitable if the user is already

confident that the localizations are strongly clustered but there is large variation in the density of clusters.

For example, α = 0.5 would simply demand that clusters are at least as dense as the average density of

a random distribution, but this could result in as many as 50% of localizations in a random distribution

qualifying as clustered. Alternatively, the user can choose to skip the thresholding step and instead allow all

localizations to be possibly assigned to clusters by setting α = 1, which ultimately removes all use of α and

k from the StormGraph algorithm.

Finally, the user can optionally set the minimum number of localizations that a cluster must contain,

MinCluSize. One possible strategy for setting its value is to investigate clusters of localizations in back-

ground regions outside of cells, which are likely to be due to individual fluorescent labels stuck to the cover-

slip, and assess how many localizations are typical of these apparent clusters. However, because StormGraph

provides an option to use localization uncertainties to identify and reclassify localization clusters that could

have arisen just from overcounting of single molecules, clusters that could be due to single molecules can

be automatically removed from analysis without the need for a minimum cluster size parameter. Note that

StormGraph requires all clusters to contain at least three localizations, even if MinCluSize is not set.

2.4.9 Computational approximations in StormGraph

In order to improve computational efficiency, StormGraph includes some computational approximations.

Firstly, neighbourhood searches about each node are performed using the MATLAB function “rangesearch”,

which uses a k-d tree, as this is faster than computing distances between all pairs of nodes. Without uncer-

tainties in localization positions, rangesearch is implemented with a search radius of r0. However, when

Monte Carlo simulations are used to perturb localization positions using their uncertainties, it is inefficient

to perform rangesearch for every simulation. Instead, StormGraph performs rangesearch just once, using an

expanded search radius, to identify candidate edges for the graph. It then calculates expected edge weights

only for the candidate edges. Since the computational time for rangesearch increases as the search radius

increases, we chose (r0 + 6 × mean localization uncertainty) as the expanded search radius because

most pairs of nodes separated by distances greater than this would have only negligible or zero edge weights

anyway. Increasing the search radius further would not only make rangesearch slower, but it could also add

more edges to the graph and consequently increase the computational cost of community detection, even

though the additional edges would be mostly negligible.
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Secondly, StormGraph limits nodes to having no more than 500 neighbours in the graph. This is to

prevent extremely dense, large clusters from dramatically slowing down community detection, since the

computational time required by Infomap scales with the number of edges in the graph. In practice, for

reasonably chosen values of k, e.g. in the range from 10 to 20, and for r0 values determined heuristically,

very few nodes, if any, in most datasets should have this many neighbours.

Lastly, we note that StormGraph is not deterministic, meaning that it can give slightly different results

each time that it is run. This is for two reasons. The first reason is because StormGraph uses Infomap or

the Louvain method to perform community detection. Infomap seeks to optimize the map equation and

the Louvain method seeks to optimize modularity. In both cases, the full optimization problem is NP-

hard. Therefore, both methods take a greedy approach to the optimization, which generally finds a local,

but not necessarily global, optimum. They then select the best optimum from multiple iterations started

from random initiations. In StormGraph, the default number of iterations used for finding the final cluster

hierarchy is 50. Results can be improved at the expense of increasing computational time by increasing the

number of iterations. Conversely, computational time can be reduced at the expense of cluster accuracy by

decreasing the number of iterations. The second reason for slight variability in results is the use of Monte

Carlo simulations by StormGraph. This variability can be decreased, again at the expense of increasing

computational cost, by increasing the number of Monte Carlo simulations.

The non-deterministic nature of StormGraph is only a minor drawback, as variability in clustering results

for a single dataset is small. To demonstrate this, we repeatedly applied StormGraph using identical settings

to a heterogeneous dSTORM ROI containing visually ambiguous clusters. We did this in both 2D and 3D

and for both the automatic and kNN methods for determining r0, each time generating 11 StormGraph

repeats. We then assessed the similarity of cluster assignments from each of the last 10 repeats to the first

one using NMI, which can range from 0 to 1. We always achieved NMI > 0.94, indicating very high

similarity (Figure 2.3).

2.4.10 Simulating SMLM data in 2D and 3D

In both 2D and 3D, except for the simulations used to test the Bayesian clustering method [49], we dis-

tributed 3,000 molecules into circular nanoclusters with a fixed radius, r. These molecules were assigned

to nanoclusters uniformly at random with a fixed average molecular density, ρ. Each molecule was as-

signed uncertainties, which were sampled randomly from a real dSTORM dataset, in its x-, y- and (for

3D) z-coordinates and a number of blinks, which was drawn from a geometric distribution [72] supported

on {1, 2, 3, ...} with success probability parameter λ. Within each nanocluster, molecules were distributed

uniformly at random, and for each molecule the observed localizations (blinks) were drawn from a normal

distribution with mean equal to the molecule’s position and standard deviations equal to the uncertainties

assigned to the molecule. Every observed localization was assigned the same uncertainties as its associated

molecule. The total number of nanoclusters, Nnano, was determined by the total number of molecules in

clusters (3,000) and the average density, ρ, of molecules within clusters.
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The nanoclusters were positioned inside a 2 µm × 2 µm ROI in 2D or a 2 µm × 2 µm × 1 µm ROI in

3D such that some existed as isolated nanoclusters and others were randomly aggregated into larger clusters

according to the following process, which was adapted from a Dirichlet process: for i from 1 toNnano, draw

a random number from the uniform distribution on [0,1]; if it is less than or equal to ((p+ 10)/(p+ i− 1))q

for positive integers p and q, then place the ith nanocluster away from existing clusters; otherwise, add the

ith nanocluster to a randomly selected existing cluster, excluding the first 10 nanoclusters that were placed.

If a nanocluster was added to an existing cluster, it was placed such that its centre was exactly a distance

2r from the centre of another nanocluster in the same aggregate cluster, and without overlapping with any

other existing nanoclusters in the aggregate cluster.

This process ensures that there are at least 10 isolated nanoclusters and a variable number of larger

aggregate clusters of variable size, thus creating heterogeneous clusters. The heterogeneity is controlled by

the parameters p and q. In our simulations, we fixed p = 5 and varied q from 1 to 5, with larger values of q

resulting in larger (and fewer) cluster aggregates. Outside of the clusters, we added molecules uniformly at

random at a specified average density, and the number and positions of observed localizations corresponding

to each of these background molecules were drawn from geometric and normal distributions respectively, as

described for the in-cluster localizations.

If the simulations were performed in 3D, points were then randomly removed such that the probability

of a localization being observed in the final simulated data decayed according to a Gaussian profile as the

axial distance from a central focal plane increased. This was to imitate the realistic scenario for most 3D

SMLM techniques in which fluorescent blink events are more likely to be collected and localized the closer

they are to the focal plane.

We generated 64 2D datasets with multiple blinking of molecules (e.g. Figure 2.4a–c and Figure 2.5)

by varying the following parameters: (1) the radius of the nanoclusters (20 nm, 30 nm or 50 nm), (2) the

density of clustered molecules (0.01 nm−2 or 0.02 nm−2), (3) the density of the random molecules (1%, 5%,

10%, 20% or 40% of the within-cluster molecular density), (4) the average number of blinks per molecule

(4/3, 2 or 4; these values provide examples ranging from cases in which most molecules blink only once to

cases where the molecules could be bivalent and labelled by fluorophores that blink on average twice, which

is typical for the photoactivatable fluorophore mEos2 [21, 73]), and (5) the propensity for nanoclusters to

coalesce into larger aggregate clusters (parameter q).

We generated 130 3D datasets analogously but using within-cluster molecular densities of 1×10−4 nm−3

and 2× 10−4 nm−3. In 3D, we used nanoclusters of radii 30 nm and 50 nm, and we used densities of ran-

dom, unclustered molecules equal to 1%, 5%, 10% or 20% of the within-cluster molecular density. At 20%,

clusters were barely visible in 2D projections of the simulated 3D data onto the xy-plane.

Simulations of 1 µm × 1 µm ROIs for comparison of StormGraph to the Bayesian method of Rubin-

Delanchy et al. [49] followed the above methods for simulating 2D ROIs but with the following modifica-

tions. The total number of molecules belonging to clusters was reduced from 3,000 to 1,000. The minimum

number of isolated nanoclusters guaranteed to not form larger aggregates was reduced from 10 to 3. Circu-

lar nanoclusters had radius r = 30 nm and average molecular density ρ = 0.01 nm−2 in all simulations.
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The values used for the average number of blinks per molecule were 4/3 and 2, and the values used for the

parameter q were 1, 3, and 5. We simulated a total of 30 ROIs that were 1 µm × 1 µm.

2.4.11 Running ClusterViSu on simulated data

The ClusterViSu algorithm consists of running a series of two functions provided as part of its source code,

specifically the functions “VoronoiMonteCarlo” and “VoronoiSegmentation”. However, the authors did not

provide a script for running ClusterViSu. Hence, for users with zero programming expertise, it can only be

run using a graphical user interface that requires each file to be loaded and analyzed separately. Also, Clus-

terViSu outputs the bounding polygon for each detected cluster but not the actual cluster assignments of the

localizations, which we needed to compute NMI and mean F-measure scores for assessing the performance

of cluster assignment. Therefore, we wrote our own custom MATLAB script (available upon request) to run

and batch process ClusterViSu from its source code and subsequently determine the cluster assignments of

the localizations. In addition, ClusterViSu prefers input ROIs to be at least 18 µm × 18 µm, so we rescaled

our 2 µm × 2 µm simulated data by a factor of 9, which drastically improved ClusterViSu’s performance,

at least in terms of computational time.

Furthermore, we only included ClusterViSu results for simulated datasets on which ClusterViSu analysis

completed in under 2 hours. This resulted in 15 out of 64 simulated datasets being excluded from our

summary of test results for ClusterViSu, but these 15 datasets were still included for assessing StormGraph

and DBSCAN. However, these 15 datasets were excluded in Figure 2.4d and Figure A.1a(iii), where NMI or

mean F-measure results for StormGraph and DBSCAN are shown as a ratio to the NMI or mean F-measure

results for ClusterViSu.

2.4.12 Statistical tests

All p values were computed by two-sample Kolmogorov-Smirnov tests. Two-tailed tests were performed

for data in Figure 2.8. One-tailed tests were performed for all comparisons made in Figure 2.10.
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2.5 Experimental methods

2.5.1 Functionalization of glass coverslips for cell adherence

Glass coverslips were cleaned and functionalized as previously described [74]. Briefly, acid-cleaned glass

coverslips (Marienfeld #1.5H, 18 mm × 18 mm; catalogue #0107032, Lauda-Königshofen, Germany)

were incubated with 0.01% poly-L-lysine (Sigma-Aldrich; catalogue #P4707) or 0.25 µg/cm3 of the non-

stimulatory M5/114 anti-MHCII monoclonal antibody (Millipore; catalogue #MABF33) or 2 µg/cm2 fi-

bronectin (Sigma Aldrich; catalogue #F4759) for at least 3 hr at 37 ◦C. The slides were then washed with

phosphate-buffered saline (PBS) prior to being used for experiments.

2.5.2 Monovalent Fab fragments and antibodies

The anti-mouse-Igκ antibody for clustering BCRs was purchased from Southern Biotech (Birmingham,

AL; catalogue #1050-01). AF647-conjugated anti-mouse-IgM Fab fragments (catalogue #115-607-020)

and AF647-conjugated anti-human-IgM Fab fragments (catalogue #109-607-043) were from Jackson Im-

munoResearch Laboratories (West Grove, PA). All Fab fragments were routinely tested for aggregation us-

ing dynamic light scattering (Zetasizer Nano) and unimodal size distributions were observed. Anti-LAMP-1

antibody was purchased from Abcam (catalogue #ab24170). AF647-conjugated goat anti-mouse-IgG (cat-

alogue #A21236) and AF647-conjugated goat anti-rabbit-IgG (catalogue #A21244) were purchased from

ThermoFisher Scientific. Goat anti-mouse-IgG (Jackson ImmunoResearch Laboratories; catalogue #115-

005-008) and goat anti-rabbit-IgG (Jackson ImmunoResearch Laboratories; catalogue #111-001-008) were

conjugated to Cy3B using a Pierce antibody conjugation kit (catalogue #44985).

2.5.3 Cell labelling for dSTORM

(1) Murine splenic B cells

Animal protocols were approved by the University of British Columbia and all animal experiments were

carried out in accordance with institutional regulations. Splenic B cells were obtained from 6- to 10-week

old C57BL/6 mice (Jackson Laboratory) of either sex using a B-cell isolation kit (Stemcell Technologies;

catalogue #19854) to deplete non-B cells. To induce IgM-BCR clustering, 5×106 ex-vivo splenic B cells/ml

were stimulated with 20 µg/ml anti-Igκ in PBS for 10 min at 37 ◦C. A similar volume of PBS was added

to control samples (resting B cells). All subsequent procedures were performed at 4 ◦C. Cells were washed

three times with ice-cold PBS, and IgM-BCRs on the cell surface were labelled using AF647-conjugated

monovalent anti-mouse-IgM Fab fragments for 15 min. These Fab fragments bind to the constant region of

the µ heavy chain of IgM-BCRs, which is distinct from sites on the IgM-BCR that the anti-Igκ treatment

antibody binds to. Following multiple PBS washes, the cells were settled onto pre-cooled anti-MHCII-

functionalized coverslips for 10 min and subsequently fixed with PBS containing 4% paraformaldehyde and

0.2% glutaraldehyde for 90 min. The coverslips were washed thoroughly with PBS and fiducial markers
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(fluorescent beads, 100 nm in diameter; ThermoFisher Scientific, catalogue #F8799) were allowed to settle

onto the coverslip overnight at 4 ◦C. Unbound fiducial markers were removed by PBS washes and the stuck

particles were used for real-time drift stabilization [75].

(2) Human and murine B-lymphoma cell lines

A20 and BJAB B-lymphoma cells were obtained from American Type Culture Collection (ATCC). HBL-1

cells were obtained from Dr. Izidore S. Lossos, Sylvester Comprehensive Cancer Center, University of Mi-

ami (Miami, FL). TMD8 cells were a gift from Dr. Neetu Gupta, Lerner Research Institute, Cleveland Clinic

(Cleveland, OH). All B-cell lines were cultured in RPMI-1640 (Life Technologies; catalogue #21870-076),

supplemented with 10% heat-inactivated fetal bovine serum, 2 mM L-glutamine, 50 µM β-mercaptoethanol,

1 mM sodium pyruvate, 50 U/ml penicillin, and 50 µg/ml streptomycin (complete medium). All cell lines

were authenticated by STR DNA profile analysis.

All staining procedures were performed at 4 ◦C. Cell-surface IgM-BCRs on BJAB, HBL-1 and TMD8

cells were labelled using AF647-conjugated anti-human-IgM Fab fragments for 15 min. Cell-surface IgG-

BCRs on A20 cells (ATCC) were labelled using both AF647-conjugated anti-mouse-IgG and Cy3B-conjugated

anti-mouse-IgG at 1:1 stoichiometry for 15 min. Fc receptors on A20 cells were blocked prior to staining

using the 2.4G2 rat anti-Fcγ receptor monoclonal antibody. Cells were washed in PBS and subsequently

fixed with ice-cold PBS containing 4% paraformaldehyde and 0.2% glutaraldehyde for 60 min. Following

multiple PBS washes, the cells were settled onto pre-cooled poly-L-lysine-coated coverslips for 15 min and

subsequently fixed again for 30 min. The coverslips were washed thoroughly with PBS and fiducial markers

were added and incubated overnight at 4 ◦C.

(3) B16 melanoma cell lines

B16F1 melanoma cells (ATCC) were grown in RPMI-1640 complete medium. Approximately 3×104 cells

were seeded on fibronectin-coated coverslips for 1 hr and fixed with PBS containing 4% paraformaldehyde

for 30 min. Cells were permeabilized with 0.1% Triton X-100 for 10 min, washed with PBS, and incubated

for 30 min at room temperature (RT) with Image-IT FX Signal Enhancer (Life Technologies, catalogue

#I36933) to neutralize surface charge. Cells were washed briefly in PBS and then incubated with BlockAid

blocking solution (Life Technologies; catalogue #B10710) for 1 hr at RT. The cells were incubated with

anti-LAMP-1 antibody (diluted in BlockAid) for 4 hr at RT. Following PBS washes, cells were incubated

with both AF647-conjugated anti-rabbit-IgG and Cy3B-conjugated anti-rabbit-IgG at 1:1 stoichiometry for

90 min. Cells were washed in PBS and subsequently fixed again with 4% paraformaldehyde for 10 min.

The coverslips were washed thoroughly with PBS and fiducial markers were added and incubated overnight

at 4 ◦C.
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2.5.4 dSTORM

Imaging was performed using a custom-built microscope with a sample drift-stabilization system that has

been described previously [75, 76]. Briefly, three lasers were used in the excitation path. These were a

639 nm laser (Genesis MX639, Coherent) for exciting the AF647, a 532 nm laser (Laser quantum, Opus)

for exciting the photo-switchable Cy3B, and a 405 nm laser (LRD 0405, Laserglow Technologies) for re-

activating the AF647 and Cy3B. All three lasers were coupled into an inverted microscope equipped with

an apochromatic TIRF oil-immersion objective lens (60x; NA 1.49; Nikon). The emission fluorescence

was separated using appropriate dichroic mirrors and filters (Semrock) [75, 76], and detected by EM-CCD

cameras (Ixon, Andor). A feedback loop was employed to lock the position of the sample during image

acquisition using immobile fiducial markers. Sample drift was controlled to be less than 1 nm laterally and

2.5 nm axially.

2.5.5 dSTORM image acquisition and reconstruction

Imaging was performed in an oxygen-scavenging GLOX-thiol buffer consisting of 50 mM Tris-HCl, pH

8.0, 10 mM NaCl, 0.5 mg/ml glucose oxidase, 40 µg/ml catalase, 10% (w/v) glucose and 140 mM 2-

mercaptoethanol [77]. The coverslip with attached cells was mounted onto a depression slide filled with

imaging buffer and sealed with Twinsil two-component silicone-glue (Picodent; catalogue #13001000).

For SMLM imaging, a laser power density of 1 kW/cm2 for the 639 nm and 532 nm lasers was used

to activate the AF647 and Cy3B, respectively. For each sample, 4 × 104 images were acquired for each

colour channel at 50 Hz. Localization coordinates and their associated uncertainties were computationally

determined simultaneously by fitting a function to the intensity profile of each fluorescence event using

MATLAB (Figure A.6), as described previously [76]. Expressed as standard deviations, lateral uncertainties

were typically < 10 nm while axial uncertainties were typically < 40 nm (Figure A.6).

For two-colour SMLM, image acquisition was performed sequentially for each colour with AF647 im-

aged first to prevent photobleaching by the Cy3B excitation laser. Two-colour SMLM images were acquired

using a beam splitter with appropriate filters to direct each signal to one of two independent cameras. Align-

ment of these two colours was carried out using ∼ 4 × 104 images of fluorescent beads simultaneously

recorded at various positions to find an optimal geometric transformation. The resulting colour-alignment

error is ∼10 nm root mean squared.
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Chapter 3

Measuring inter-cluster similarities with Alpha
Shape TRIangulation in loCal Subspaces (ASTRICS)
facilitates visualization and clustering of
high-dimensional data.

3.1 Introduction
Identifying meaningful clusters of similar objects in high-dimensional (HD) data is an important but chal-

lenging problem in a variety of research fields including computational biology, text processing, and image

analysis. In molecular biology, for example, flow cytometry (FC) [78] and mass cytometry (CyTOF) [18]

are high-throughput single-cell technologies that can quantify the abundance of tens of proteins simulta-

neously in single cells. They are commonly used to investigate phenotypic heterogeneity among cells in

tumours [79–85], but this demands identification of biologically meaningful clusters of cells in the data.

Furthermore, effective presentation of the data requires visualization in three or fewer dimensions.

HD data poses computational challenges collectively referred to as the “curse of dimensionality” [86–

88], which cause many clustering algorithms to often perform poorly in HD space. However, their biggest

hindrance is not necessarily the actual dimensionality but rather the number of dimensions that are not

intrinsically relevant to the data [89]. Reducing dimensions to a set of relevant dimensions is therefore a

general strategy to combat the curse of dimensionality. Feature selection is the process of identifying a

relevant subset of the original variables (i.e. features, or dimensions) and discarding potentially irrelevant

or unhelpful variables. Unfortunately, this can be challenging or subjective. Other dimensionality reduction

(DR) methods involve linear or nonlinear transformation of the data space.

Feature extraction is a general term for linear DR methods that construct a reduced number of new

features (i.e. new axes) by forming linear combinations of existing variables. A widely known linear method

for DR is principal component analysis (PCA) [90]. For given data, PCA finds new orthogonal basis vectors

(i.e. axes), called principle components (PCs). The first PC is the direction of maximum variance and each
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successive PC explains as much of the remaining variance as possible. To reduce the dimensionality of

d-dimensional data, the data is projected onto the first r PCs for some user-determined choice of r < d.

Usually, DR is applied as a fixed pre-processing step before clustering. Alternatively, Ding et al. [91]

propose integrating adaptive DR into the clustering process by alternating between DR, using PCA, and

clustering, which can be performed using, for example, the K-means algorithm [92]. Their initial DR step

applies PCA to all of the data and then all subsequent DR steps use only the centroids of the K clusters in

the original d-dimensional space. The number of clusters, K, and the reduced number of dimensions, r,

are chosen by the user, though r = K − 1 is recommended. A drawback shared by the fixed and adaptive

linear DR approaches is the assumption that a single r-dimensional subspace is suitable for all of the data.

In reality, different dimensions (original or transformed) could be relevant to different subsets of the data.

All of the dimensions could ultimately be relevant, even if all clusters are inherently low-dimensional (LD).

Subspace clustering algorithms address this by identifying clusters in different subspaces of HD data [93].

But with infinitely many possible subspaces and even 2d axes-parallel subspaces of a d-dimensional space,

subspace clustering algorithms use heuristics or random projections to remain computationally tractable.

Nonlinear DR methods allow more complex LD embeddings than linear projections. They are pre-

ferred for visualizing HD data because of their superior ability to separate clusters in as few as two or three

dimensions. A leading nonlinear DR method frequently used for visualizing CyTOF data is t-distributed

stochastic neighbour embedding (t-SNE) [94]. The LD t-SNE map roughly preserves local neighbourhoods

of data points from the HD space but allows distant points to appear further apart in the map. Uniform man-

ifold approximation and projection (UMAP) [95] is a newer method competitive with t-SNE that similarly

preserves local structure in an LD embedding of the data and has also been adopted for visualization of

single-cell data [96]. Nonetheless, most nonlinear DR methods, including t-SNE, are founded on distances

in the HD space, which can be highly sensitive to noise, and are therefore themselves susceptible to the

curse of dimensionality. Consequently, linear DR is often still required. Another limitation of t-SNE is its

dependence on an input perplexity parameter, which controls the size of the local neighbourhoods that the

map tries to preserve, in addition to other hyperparameters. The t-SNE map can artificially fragment clus-

ters if the perplexity is too small, or it can fail to separate clusters if the perplexity is too large. Moreover,

a single choice of perplexity might not be suitable for all of the data if the number of points varies widely

between true clusters. The same is true for UMAP, which also requires a neighbourhood size parameter to

be input. Although some clustering algorithms for CyTOF data function on a 2D t-SNE map of the data

instead of in the original HD space [97–99], in practice this only introduces more parameters, sensitivity,

and variability into the clustering process without any tangible benefit except for a satisfying agreement

between the visualization and clustering results. Of course, if the visualization is incorrect, then so too will

be the clustering results.

Another approach to clustering HD data is to convert the data to a graph and then use a graph-based

clustering algorithm. In the graph, nodes typically represent data points and edges represent relationships

between nodes. The edges may be unweighted or they may be weighted by some measure of similarity

between their adjoining nodes. PhenoGraph [1], which was originally developed for CyTOF data, is an
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example of a clustering algorithm that follows this approach. Given a user-specified value of its input

parameter k, PhenoGraph starts by constructing a k-nearest neighbour (kNN) graph from the data, whereby

each node (data point) is connected to its k nearest neighbouring nodes according to some measure of

distance (e.g. Euclidean distance, which is the default in PhenoGraph). It then refines the graph by weighting

the edges based on the proportions of neighbours that are shared between nodes. Specifically, each existing

edge between two nodes in the kNN graph is weighted by the Jaccard similarity coefficient [58] of their

neighbourhoods. The authors call the weighted graph the “Jaccard graph”. PhenoGraph finally identifies

clusters by applying the Louvain method [2], a modularity-based community detection algorithm [52], to

the Jaccard graph. Although less susceptible than clustering algorithms that operate directly on HD data

points, methods based on kNN graphs are not immune to the curse of dimensionality because kNN searches

depend on measurements of distances between the data points. Therefore, DR may still be beneficial.

Furthermore, setting input parameters presents a challenge for users of most clustering algorithms. Of-

ten, the number of clustersK must be specified by the user, which can be difficult because the true number of

clusters is usually unknown. In PhenoGraph, the number of clusters in the Jaccard graph is determined auto-

matically by the Louvain method. However, the user-specified parameter k indirectly controls the number of

clusters output by PhenoGraph because it controls the connectivity and topology of the graph. Setting input

parameters that control the number of clusters becomes especially challenging when the goal of clustering

is to discover novel groups of data points that have unknown existence prior to analysis, such as new cell

types in CyTOF data. This challenge could potentially be eliminated if a graph could be constructed from

the data in a fully automated manner without user-specified parameters. As in PhenoGraph, clustering of the

graph nodes could subsequently be performed using an algorithm that automatically determines the number

of output clusters (e.g. the Louvain method). Because a similarity matrix, which encodes the pairwise simi-

larities between objects, can be interpreted as the adjacency matrix of a weighted graph, any parameter-free

measure of similarity between nodes would enable parameter-free graph construction. However, to be use-

ful, it would require two important properties. First, in order for clustering to be computationally practical,

the similarity of any two distant nodes would have to be 0 (which equates to no edge between them) such

that the graph would be sparse. Second, the similarity measure must be suitable for HD data.

Unfortunately, given two data points represented by position vectors in continuous HD space, I am not

aware of any measure of similarity between them that would satisfy the two properties above in addition

to being parameter-free, and neither could I conceive one. There are various possibilities for a measure

of similarity between two data points in continuous space, including the following examples: any decreas-

ing function of the distance between them measured by an `p norm (e.g. 1/xij or e−xij , where xij is the

Euclidean distance between data points i and j); the cosine of the angle between their position vectors;

and the correlation between their position vectors when the vectors are treated as series of values for one-

dimensional random variables. However, without the introduction of an arbitrary parameter or cutoff value,

none of these would yield a sparse graph. Additionally, some of these similarity measures can be unsuitable

for HD data. On the other hand, if each graph node were to represent a group of data points instead of an

individual data point, then more information, including the distribution of data points within each group,
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would become available to use for defining the similarity between two graph nodes. In turn, this would

increase the potential for defining a parameter-free similarity measure that satisfies the required properties.

For a similarity measure between groups of data points rather than between individual data points to

be useful for a graph-based clustering approach, an initial grouping of the data points to form the graph

nodes would be necessary. Some form of fine-grained clustering would therefore have to be performed

before parameter-free graph construction could proceed, which seems counterproductive. However, the

notion that clustering is difficult due to the curse of dimensionality and due to the challenge of setting input

parameters assumes that we seek an optimal partition of the data in the sense of matching some ground

truth as closely as possible. Obtaining a suboptimal partition with high purity is much easier (the purity

of a cluster is the largest proportion of its constituent data points that belong to the same true cluster; in

terms more familiar to biologists, it can be equated to specificity). A high-purity partition can be achieved

by many clustering algorithms if the number of clusters K is chosen to be much larger than the expected

true number of clusters. Indeed, after comparing 18 clustering algorithms for FC and CyTOF data, Weber

and Robinson recommend setting input parameters conservatively (i.e. K too large or k too small) so as

to generate too many clusters and then manually merging clusters where appropriate during interactive

downstream analysis [100]. When following their own recommendation, Weber and Robinson found that

FlowSOM [101] performed well and was the overall best clustering algorithm for FC and CyTOF data,

even though it and other algorithms performed poorly when operated in a mode that selected the number

of clusters K completely automatically. Thus, an initial fine-grained clustering could be obtained using

an existing clustering algorithm with the number of clusters chosen to be relatively large. Although this

would still require a user-specified input parameter, it would convert the problem of essentially choosing the

final number of clusters to the less-critical task of choosing a resolution at which to represent the data by a

graph. Crucially, the exact choice made by the user would become less important because the parameter-free

similarity measure would automatically adapt the graph to the chosen resolution.

Motivated by the ideas above, I propose a novel measure of similarity between groups of HD data

points based on geometry of alpha shapes [102] in locally determined 2D and 3D subspaces. Alpha shapes

generalize the convex hull to allow non-convex boundaries to be defined for point sets, and they can have

multiple disjoint regions. This makes them appealing for defining cluster boundaries and testing whether

a set of points can be rationally segregated into disjoint clusters. My new similarity measure is computed

using a method that I call Alpha Shape TRIangulation in loCal Subspaces (ASTRICS). ASTRICS has a

single parameter, α, but geometric considerations are used to automate selection of its value for any pair of

clusters. Importantly, my ASTRICS similarity measure satisfies the three key requirements: it does not have

any user-controlled parameters, it has value 0 for well-separated clusters, and it is suitable for HD data.

In addition, I describe a three-stage pipeline built around ASTRICS to cluster and visualize HD data. In

the first stage of my pipeline, N data points are partitioned into K seed clusters using an existing clustering

algorithm, where K is determined by the user and chosen to be considerably larger than the expected true

or desired number of clusters. This step leverages the ability of many conventional clustering algorithms

to generate high-purity clusters when intentionally used to over-cluster HD data, even if they would be
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unsuitable for finding the true clusters. At this fine-grained level, clustering algorithms that make otherwise

questionable assumptions such as convexity of clusters are still applicable. Also, careful optimization of

input parameters or the clustering procedure is not necessary at this stage. K-means [92] is a simple and

popular clustering algorithm, but it assumes that clusters are convex and is generally unsuited to clustering

HD data. Nevertheless, it can still be a suitable choice of algorithm for the first stage of my pipeline, and its

implementation is usually very fast. The self-organizing map (SOM) [103] utilized by FlowSOM is another

fast approach potentially suitable for the task. The second stage of my pipeline uses ASTRICS to compute a

K ×K similarity matrix for the K seed clusters, which defines a weighted graph with K nodes. ASTRICS

combats the curse of dimensionality here without assuming that any dimensions are universally irrelevant to

all of the data by performing DR locally on pairs of seed clusters. In the third and final stage of my pipeline,

a community detection algorithm is applied to the ASTRICS similarity matrix/graph to obtain the final set

of clusters and the graph is visualized in two or three dimensions using force-directed layout [104].

This three-stage strategy for clustering HD data bears resemblance to the SWIFT clustering algorithm

[105]. SWIFT performs an initial over-clustering step using a mixture of Gaussians and then uses Fisher’s

linear discriminant analysis (LDA) [106] to locally project pairs of clusters (i.e. Gaussian components in the

mixture) onto one dimension that best discriminates them. It also projects them onto each of the original

data axes and the PCs. The algorithm successively merges clusters if their combined 1D kernel density

estimate is unimodal in every one of those projections and if another threshold criterion is met. In contrast,

ASTRICS computes an explicit similarity measure that could, for example, be computed for pairs of clusters

at the intermediate step of the SWIFT algorithm. This is more versatile than the hard criteria for merging

clusters in SWIFT.

Herein, I detail ASTRICS and provide concrete examples of my associated three-stage pipeline for

clustering and visualizing HD data. I show that ASTRICS is suitable for measuring similarities between

clusters in real-world HD data by applying my pipeline to three very different datasets: publicly available

CyTOF data [107], images of handwritten digits from the MNIST database [108], and text data from the

20 Newsgroups corpus [109]. Quantitatively, my pipeline yields excellent clustering results. Qualitatively,

it produces visualizations of HD data that are comparable to those generated by applying t-SNE, a state-

of-the-art method, to the centroids of the seed clusters from the first stage of my pipeline. Moreover, my

visualization approach may better preserve global relationships than t-SNE. The representation of data in

my pipeline by a graph, albeit at a coarser resolution than the original data, that is used for both clustering

and visualization is somewhat novel as it moves away from the traditional paradigm of using completely

separate algorithms for these tasks. Overall, ASTRICS can enable effective clustering and visualization of

HD data using existing algorithms that would otherwise be either unsuitable for or not directly applicable

to HD data. Used in the way that I describe, ASTRICS dilutes the challenge of setting input parameters for

clustering by requiring the user to only choose a resolution at which to view the data and allowing everything

else to be automated. Alternatively, the visualization afforded by ASTRICS could be used to guide selection

of the final number of clusters or to select an appropriate resolution from a hierarchical clustering (HC; i.e.

nested clusters). In sum, I believe that ASTRICS can become a useful tool for analyzing HD data.
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3.2 Methods

3.2.1 Computing inter-cluster similarities using local DR and alpha shapes

I developed ASTRICS as a fully automated method to measure the pairwise similarities between clusters

in partitioned HD data. The full ASTRICS algorithm starts with two preliminary steps, one to detect out-

liers and one to reduce the overall computational complexity. These steps are described later. Otherwise,

ASTRICS consists of the following two fundamental steps:

1. The “CS” step (referring to the “CS” in “ASTRICS”): Local DR by projecting individual pairs of

clusters onto 2D and 3D subspaces specific to each pair.

2. The “ASTRI” step: Computation of the similarity between two clusters via triangulation of alpha

shapes in the 2D and 3D subspaces.

These two fundamental steps are described in detail below for any pair of clusters.

The CS step

The CS step reduces dimensionality in order to combat potential problems associated with the curse of

dimensionality while retaining important information about the data. Because different dimensions could

be relevant to different clusters, DR is performed locally on pairs of clusters instead of using a common

lower-dimensional subspace for all of the data. This ensures that computation of the similarity between any

two clusters uses only dimensions that are specifically relevant to those clusters. Also, the consideration of

just two clusters at a time makes two or three dimensions sufficient to adequately represent them. In turn,

this allows their similarity to be computed and easily visualized using computational geometry.

For the CS step in ASTRICS, three alternative methods were included for performing DR locally on

a pair of clusters (Figure 3.1a). In the order that they are described below, the three possible methods

have increasing ability to resolve the two clusters in a pair of clusters but also increasing susceptibility to

overfitting. They also have different computational costs. The choice of method for local DR is optional

and may be made based on the user’s tolerance for potential overfitting balanced against their tolerance for

suboptimal resolution of clusters, as well as on considerations of computational costs. In all three methods,

for a given pair of clusters, we start by eliminating any dimensions (columns of the data matrix) that have

fewer than two nonzero elements, since these will be uninformative yet could slow down computations. The

first method then simply proceeds to apply PCA to the pair of clusters and project them onto the subspace

spanned by the first two or three PCs (Figure 3.1b). To ensure that both clusters always contribute equally

to PCA, the contributions of the data points should be weighted based on the number of points in each

cluster. Local PCA has previously been proposed in clustering and other contexts [110–114]. Although this

is generally quite effective, it does not guarantee that the clusters will be separated in the LD subspace even

if they are separated in the HD space. This is because the directions of greatest variance (i.e. the leading PCs)

are not necessarily the ones relevant to the separation of the clusters. PCA would be ineffective at separating
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two clusters if their separation is very small in relation to their variances along multiple directions. Ideally,

the LD projection of two clusters should retain any separation present in the HD space. This motivates the

remaining two methods for local DR that are implemented as options in ASTRICS.

Figure 3.1: Three possibilities for the first subspace dimension in local DR. (a) Directions of the first
principal component (PC1), the difference of centroids (∆µ), and Fisher’s linear discriminant (FLD) illus-
trated for a pair of 2D clusters. (b–d) Histograms of the projections of the two clusters onto the 1D subspaces
spanned by PC1 (b), ∆µ (c), and FLD (d), which illustrate the increasing resolution of the projected clusters
achieved by the three choices in that order for the first subspace dimension in local DR.

I refer to the second local DR method as “Centroids+PCA”. In this method, the first subspace dimension

is chosen to be the direction #»v of the straight line through both cluster centroids (Figure 3.1c). This is the
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same dimension that the adaptive DR method of Ding et al. [91] would select for K = 2 clusters. This

choice of dimension maximizes the projected separation of the cluster centroids. PCA (again weighted)

is then used to find second and third dimensions for the LD subspace. Specifically, the pair of clusters is

projected onto the orthogonal complement of #»v (i.e. the #»v component is subtracted from the data) and then

PCA is applied to this orthogonal projection. The resulting first and second PCs become the second and

third subspace dimensions, respectively. Subtraction of the #»v component is necessary to ensure that the PCs

obtained by PCA are orthogonal to the already determined first subspace dimension. Subsequently, the pair

of clusters are projected onto the subspace spanned by #»v and the first one or two PCs that were computed.

Although the Centroids+PCA method maximizes the separation of the cluster centroids in the LD projec-

tion, this does not necessarily yield the best separation of the clusters when also considering their variances.

Thus, the third method for local DR in ASTRICS, “LDA+PCA”, uses LDA to determine the first subspace

dimension. LDA finds the direction #»u that maximizes the separation of the cluster centroids relative to

within-cluster variance in the 1D projection of the clusters onto #»u (Figure 3.1d). The remainder of the

LDA+PCA method proceeds in the same way as the Centroids+PCA method (with #»v replaced by #»u ).

However, LDA is known to have problems in high dimensions [115–117], especially if the number of

dimensions is greater than the number of data points. For instance, LDA usually involves inversion of a

pooled within-cluster covariance matrix, but this could be singular and therefore not invertible. Another

severe problem arises from ‘small’ sample sizes, our notion of which must be adjusted in high dimensions.

Because hypervolume increases exponentially with the number of dimensions, sample size needs to be

exponentially larger than the number of dimensions in order to avoid ‘small sample’ effects. Otherwise,

LDA can overfit the noise in the data. To a lesser but still substantial degree, this can also occur when

projecting two such sets of HD points onto the direction #»v through both of their centroids. Thus, the

Centroids+PCA method is also afflicted by this ‘small sample size’ problem.

Since ASTRICS performs DR locally on pairs of clusters, the ‘small sample size’ problem could be

prevalent. To address the problem, both the Centroids+PCA and LDA+PCA methods are modified by in-

troducing two additional steps at the start for every pair of clusters. First, if the number of data points in

a cluster pair is less than 2d, we locally apply just PCA or, for sparse data, singular value decomposition

(SVD, using the function svds in MATLAB, MathWorks) to initially reduce the number of dimensions

from d to the largest integer r such that the number of data points in the cluster pair is at least 2r. Second,

Hotelling’s T-squared test for two multivariate samples is performed to test whether the cluster means are

significantly different at the 5% level. If they are, then we proceed with the Centroids+PCA or LDA+PCA

method as already described. Otherwise, we revert to using the PCA-only method instead because it would

be inappropriate to optimize separation of the cluster means when this is not statistically significant.

At face value, the PCA-only method certainly has the lowest computational cost of the three methods.

On the other hand, the Centroids+PCA and LDA+PCA methods, unlike PCA, guarantee that separation

of the clusters is factored into the choice of subspace. Moreover, the superior ability of Centroids+PCA

and LDA+PCA to separate clusters in the projection can surprisingly reduce the overall time complexity of

ASTRICS by reducing the number of computations required in the ASTRI step. Below, I introduce some
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notation and then outline the step-by-step algorithms for the three possible local DR methods for any pair

of clusters. Later, I compare their results for real CyTOF data, MNIST images of handwritten digits, and

newsgroups text documents. Overall, all three local DR methods provide good results, but I recommend

LDA+PCA.

Notation

Let Xi and Xj denote the sets of data points x ∈ Rd belonging to the clusters with labels Ci and Cj

respectively, and let Xij = Xi ∪ Xj . Denote the cardinality (i.e. size) of a set X by |X |. Without loss of

generality, always choose the cluster indices i and j such that |Xi| ≥ |Xj |, i.e. cluster Cj is always the one

with the fewest data points in a given pair of clusters. Also, let PW (X ) denote the orthogonal projection of

a set of data points X onto a subspace W ⊂ Rd and let W⊥ denote the orthogonal complement of W . I

use Wij to denote the final LD subspace, determined by local DR, onto which the data points Xij will be

projected in order to subsequently measure the similarity of clusters Ci and Cj . With this notation, also now

define Yij = PWij (Xij) and Y ijβ = PWij (Xβ) (β ∈ {i, j}). In words, Y iji and Y ijj are the projections of

the data points belonging to, respectively, cluster Ci and cluster Cj onto the LD subspace Wij determined

by performing local DR on that pair of clusters. The set Yij is the projection onto Wij of the set of all

data points belonging to either cluster Ci or cluster Cj . Note that Yij = Y iji ∪ Y
ij
j . Furthermore, I assume

that vectors are column vectors, and #»v t will be used to denote the transpose of any vector #»v . Thus, by

assumption, #»v is a column vector and #»v t is a row vector. The Euclidean (`2) norm of any vector #»v will be

denoted by ‖ #»v ‖2. The notation bac denotes the largest integer that is not greater than the scalar a.

PCA-only algorithm for local DR

For a given pair of clusters, Ci and Cj , do the following:

1. Set r to be the desired reduced number of dimensions (r ∈ {2, 3}).

2. Assign a weight of 1 to each data point in Xi. Assign a weight of |Xi|/|Xj | to each data point in Xj .

3. Compute the first r PCs of Xij using PCA with observation weights as specified in step 2. Denote the

set of these r PCs by PCr(Xij).

4. Define the basis BrWij
= PCr(Xij) and the subspace Wij = span(BrWij

).

5. Compute Y iji = PWij (Xi) and Y ijj = PWij (Xj), both expressed in the basis BrWij
.

6. Output Y iji and Y ijj .

Centroids+PCA and LDA+PCA algorithms for local DR

For a given pair of clusters, Ci and Cj , do the following:
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1. Set r to be the desired reduced number of dimensions (r ∈ {2, 3}).

2. Assign a weight of 1 to each data point in Xi. Assign a weight of |Xi|/|Xj | to each data point in Xj .

3. If |Xij | ≥ 2d, define Zi = Xi and Zj = Xj and go to step 5. Else, set δ = blog2 (|Xij |)c and compute

the first δ PCs or, for sparse data, right-singular vectors of Xij using PCA or SVD with observation

weights as specified in step 2. Denote the set of these δ PCs or right-singular vectors by Vδ(Xij).

4. Define the subspace Ω = span(Vδ(Xij)). Compute Zi = PΩ(Xi) and Zj = PΩ(Xj), both expressed

in the basis Vδ(Xij) for Ω.

5. Compute #»v = #»µi − # »µj , where
# »µβ =

1

|Xβ|
∑
z∈Zβ

z

is the centroid (mean) of Zβ (β ∈ {i, j}).

6. Compute the ρ × ρ within-cluster covariance matrices Σi = cov(Zi) and Σj = cov(Zj), where

ρ = min{d, δ}.

7. Compute the pooled within-cluster covariance matrix

Σpooled =
(|Xi| − 1)Σi + (|Xj | − 1)Σj

|Xi|+ |Xj | − 2
.

8. Assuming that Σpooled is invertible, compute #»ω = Σpooled
−1 #»v .

9. Compute Hotelling’s T-squared statistic

T 2 =
|Xi| |Xj |
|Xi|+ |Xj |

#»v t #»ω.

10. Convert T 2 into the F -statistic

F =
(|Xi|+ |Xj | − ρ− 1)

(|Xi|+ |Xj | − 2)ρ
T 2.

11. Set F∗ equal to the 95% confidence level of the F -distribution with first parameter ρ and second

parameter (|Xi|+ |Xj | − ρ).

12. If F < F∗, stop here and revert to the PCA-only algorithm (note that the PCs do not need to be

recomputed if they were already computed in step 3). Else, determine the direction #»u = #»v / ‖ #»v ‖2 if

using Centroids+PCA or #»u = #»ω/ ‖ #»ω‖2 if using LDA+PCA.

13. Define U = span{ #»u} and compute Φ = PU⊥(Zi ∪ Zj).
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14. Compute the first (r−1) PCs of Φ using PCA with the observation weights specified in step 2. Denote

the set of these (r − 1) PCs by PCr−1(Φ).

15. Define the basis BrWij
= { #»u} ∪ PCr−1(Φ) and the subspace Wij = span(BrWij

).

16. Compute Y iji = PWij (Zi) and Y ijj = PWij (Zj), both expressed in the basis BrWij
.

17. Output Y iji and Y ijj .

The ASTRI step

The ASTRI step measures the similarity between two clusters after the CS step has reduced their dimen-

sionality. To this end, I sought a suitable measure of similarity between two sets of r-dimensional points

Y iji and Y ijj .

Intuitively, similarity should be inversely related to distance. Thus, inter-cluster similarity could be

defined using a decreasing function of some measure of distance between clusters. Agglomerative HC al-

gorithms provide several possible distance measures: single-linkage [118] measures the shortest distance

between two points in different clusters; complete-linkage [119] measures the greatest distance; average-

linkage, which has weighted and unweighted variants [120], measures the the average of all pairwise dis-

tances between points in different clusters; centroid-linkage [121] measures the distance between cluster

centroids. However, these distance measures behave in undesirable ways when cluster size is varied, and

they lack suitability when clusters are overlapping. Those that require computation of pairwise distances

between many points can also be computationally intensive. Moreover, the choice of function to map dis-

tance to similarity is arbitrary, and, without the further introduction of an arbitrary threshold, any reasonable

choice of function would lead to a full similarity matrix in which all pairs of clusters have nonzero similar-

ity. This is undesirable because a sparse similarity matrix would greatly benefit the computational cost of

algorithms that use it as input and also benefit our interpretation of it as a graph.

Alternatively, I considered using the Bhattacharyya coefficient to measure inter-cluster similarity. This is

a statistical measure of similarity, or overlap, between two distributions, and it has previously been applied

in data mining [122–124]. Unlike the popular Kullback-Leibler divergence [125] measure of dissimilar-

ity between two distributions, the Bhattacharyya coefficient is symmetric, a desirable property. However,

despite being an appealing measure of similarity between two distributions of points and having a simple

geometric interpretation [122, 123], it has a major limitation that prevents it from being used to measure

inter-cluster similarity: the domain of the clusters needs to be discretized and the Bhattacharyya coefficient

is sensitive to the grid element sizes. Unfortunately, there is no obvious method to automatically choose a

suitable discretization, especially in > 1 dimension, so the Bhattacharyya coefficient would be sensitive to

arbitrary parameters that define the grid.

Instead, I propose a new measure of similarity based on alpha shapes and triangulation. Alpha shapes

provide a one-parameter generalization of the convex hull that enables non-convex boundaries to be defined

for point sets (Figure 3.2a). Triangulation allows the domain of a set of points to be discretized without the
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need for any arbitrary parameters. Note, however, that a triangulation is not a suitable discretization to use

for the Bhattacharyya coefficient because it would be unclear how to bin the points, which form the vertices

of the mesh elements. For two sets of points in two or three dimensions, an alpha shape is computed for their

union. As I discuss later, an appropriate critical value is used to automate selection of the one parameter, α,

needed to define the alpha shape. This removes any need for parameters to be specified by the user. Next,

triangulation of the points generates a discrete mesh that fills the alpha shape. Finally, the similarity of the

two point sets is defined to be the fraction of triangulation mesh elements that have at least one vertex from

both point sets (Figure 3.2b). I call these mesh elements “multicolour” elements.

My similarity measure has attractive properties. Firstly, it is bounded between 0 and 1. It has a value

of 0 only when the alpha shape has disjoint regions that each exclusively enclose points belonging to just

one point set. Thus, for suitably chosen α, two point sets have a similarity of 0 only if they appear to be

geometrically distinct from each other. My similarity measure achieves its maximum value of 1 only if every

triangulation mesh element has vertices from both point sets, which is only possible if the two sets of points

are well mixed.

Another attractive property of my similarity measure is the full automation of its computation, including

selection of its only parameter, α. On the other hand, the parameter α provides flexibility for users who

choose not to automate its selection. Furthermore, despite the continuum of possible values for α, there

exist only finitely many unique alpha shapes, corresponding to disjoint intervals of α values, for any finite

set of points. Thus, similarity could be computed as a piecewise constant function of α instead of as a single

value. However, this would be computationally intensive, and it would not be clear how to use this piecewise

function for visualization or clustering.

Finally, my similarity measure is, in fact, a Jaccard similarity coefficient [58] when viewed in the follow-

ing way. For the point sets Y iji and Y ijj , let T iji and T ijj be the sets of triangulation mesh elements with at

least one vertex belonging to Y iji and Y ijj respectively. Then my similarity measure is the Jaccard similarity

coefficient of the sets T iji and T ijj , which is defined to be the ratio of the size of their intersection to the size

of their union.

Below, I outline the full algorithm for the ASTRI step of ASTRICS to compute inter-cluster similarities.

My similarity measure, which I call the ASTRICS similarity, could be computed in two (r = 2) or three

(r = 3) dimensions. However, for HD data to which ASTRICS is applied, it is difficult to justify a choice

of r = 2 or r = 3 a priori. I argue that the number of dimensions, r, that makes it easier to geometrically

discriminate two clusters should be chosen. Hence, ASTRICS is performed for r = 2 and r = 3 and, for

each pair of clusters, the minimum of the two computed similarity scores is taken.

ASTRI algorithm for measuring inter-cluster similarity

For a given pair of clusters, Ci and Cj , do the following:
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Figure 3.2: Computing inter-cluster similarity by triangulating an automated choice of alpha shape.
(a) Construction of an alpha shape. (b) Graphical illustration of the ASTRICS similarity for a pair of clusters
(blue points and red points) that have been projected onto a 2D subspace by local DR. The colours and points
bear no relation to the colours or points in any other figure panels. (c) Convex hull of the union of two sets
of points (blue and red clusters). (d) Smallest alpha shape enclosing all points in the union of the two point
sets. (e) Smallest alpha shape enclosing all points from at least one of the two point sets. In this example,
the inter-cluster similarity measured by ASTRICS is 0 for the blue and red clusters of points.
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1. For an automatically selected value of α and a number of dimensions r ∈ {2, 3}, compute the α-

shape for the r-dimensional projection Yij = Y iji ∪Y
ij
j of the data points Xij belonging to the pair of

clusters. The automatic selection of α will be discussed later.

2. Generate a triangulation T ij of the points in Yij that exactly defines the domain of the α-shape. The

specific choice of triangulation will be discussed later. The elements of the set T ij are (r + 1)-tuples

specifying the vertices (which are elements of Yij) of triangles in 2D or tetrahedra in 3D.

3. For β ∈ {i, j}, identify the set T ijβ of elements in the triangulation T ij that have at least one vertex

from the LD projection Y ijβ of the data points Xβ from cluster Cβ .

4. Identify the setMCij = T iji ∩ T
ij
j of “multicolour” triangulation elements.

5. Determine |T ij |, the total number of elements in the triangulation T ij .

6. Determine |MCij |, the number of multicolour elements in the triangulation T ij .

7. Compute

Arα(Ci, Cj) =
|MCij |
|T ij |

,

the fraction of triangulation elements that are multicolour. I call this the (r, α)-similarity of clusters

Ci and Cj for reduced number of dimensions r ∈ {2, 3} and an alpha shape specified by α. Let the

notation α = ∗ indicate that the value of α was determined automatically for a given pair of clusters.

8. Compute Ar∗(Ci, Cj) for both r = 2 and r = 3.

9. Set AS(Ci, Cj) to be the minimum of the two (r, ∗)-similarity scores computed above for the pair of

clusters, i.e.

AS(Ci, Cj) = min{Ar∗(Ci, Cj) : r ∈ {2, 3}}.

10. OutputAS(Ci, Cj). This is the new inter-cluster similarity measure that I propose for HD data, which

I call the ASTRICS similarity.

3.2.2 Automated selection of α

The parameter α ∈ R determines the alpha shape for a set of points Yij ∈ Rr (r ∈ {2, 3}). I automate its

selection by considering critical alpha shapes. Here, I discuss three possible critical alpha shapes for this

purpose. I then explain my choice of critical alpha shape for ASTRICS.

1. The convex hull (Figure 3.2c). This corresponds to α values in a disjoint interval containing∞. The

convex hull is the most well known example of an alpha shape. A triangulation that fills the convex

hull of a set of points is their Delaunay triangulation, another well known concept. Nonetheless,

this is a poor choice for ASTRICS. No matter how greatly separated Y iji and Y ijj are from each
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other, the Delaunay triangulation of their union Yij must necessarily include multicolour elements.

Hence, the ASTRICS similarity matrix would be full because all pairs of clusters would have nonzero

similarity regardless of how well separated they are, which is undesirable. Another problem with

using the convex hull is that AS(Ci, Cj) would not necessarily decrease as the separation of Y iji and

Y ijj increases.

2. The smallest alpha shape enclosing all points from Yij (Figure 3.2d). Importantly, the alpha shape

can be fragmented into disjoint regions. If there exists an alpha shape that encloses all of the points in

Yij while completely segregating members of Y iji and Y ijj from each other in disjoint regions, then the

separation between Y iji and Y ijj must be greater than the separation between points in the most sparse

region of either Y iji or Y ijj . This would indicate that Y iji and Y ijj are well separated and therefore have

zero similarity. Conversely, two point sets would have some nonzero similarity if their separation is

not greater than the separation of the most sparsely distributed points.

3. The smallest alpha shape enclosing all points from either Yij
i or Yij

j (Figure 3.2e). In this case,

we allow points from one of the two point sets to become isolated as long as we enclose all of the

points from the other set. Whereas the previous choice of alpha shape is determined by the most

sparse region of points in either Y iji or Y ijj , this choice is determined by the most sparse region of

just one of the two point sets, specifically the one whose most sparse region is more dense than the

other’s. The similarity of two sets of points will be zero if it is possible to enclose all of the members

of one set within one or more regions of an alpha shape without enclosing any members of the other

set in those same regions.

Options 2 and 3 are both justifiable choices. As long as one or the other is used consistently, I suggest

that either can be used in ASTRICS depending on a user’s preference. Alternatively, any analysis using

ASTRICS could be repeated using both options for the automated selection of α. This could serve as a

means to validate results. Nevertheless, for the following reasons, I prefer Option 3 and therefore use this in

ASTRICS.

Firstly, Option 3 has the greatest chance of yielding zero similarity for a pair of clusters and therefore

produces the most sparse similarity matrix, which is desirable. Concurrently, this choice of alpha shape

may strengthen the similarity of substantially overlapping clusters. For two overlapping sets of points, each

of roughly uniform density, the overall local density of points will be greatest in the overlapping region.

Consequently, we would expect shrinking the alpha shape to isolate points in a non-overlapping region at a

faster rate than it would isolate points in the overlapping region. This would likely result in the overlapping

region contributing a greater amount to the triangulation for Option 3 than Option 2. Finally, I argue that,

if asked to decide whether two sets of points in fact belong to the same cluster, our intuition would be to

base our decision on the more dense points as in Option 3, rather than the most sparse points as in Option 2.

After all, our intuition is to identify clusters by searching for increases in density.
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3.2.3 The choice of triangulation

Note that the triangulation that defines the domain of an alpha shape is generally not unique for any set of

> (r + 1) points in r dimensions. To make the triangulation unique in most cases, we can simply demand

that it is a subset of the Delaunay triangulation, which is almost surely unique for continuous data. There

are exceptions where the Delaunay triangulation is not unique. These occur when a circle can be drawn that

exactly passes through four or more data points in 2D, or when a sphere can be drawn that exactly passes

through five or more points in 3D. For real, continuous data with independent data points, however, these

exceptions have zero probability of occurring. Similarly, exceptions where no triangulation exists occur

when all points lie on a straight line in 2D or a plane in 3D.

In my own implementation of ASTRICS in MATLAB, I use the default triangulation provided by the

function alphaTriangulation. Unfortunately, the code for this function is proprietary and the descrip-

tion of the function does not provide any details about how the triangulation is computed. Nevertheless, I

believe that this function always uses the triangulation that is a subset of the Delaunay triangulation.

3.2.4 Preliminary step One: Detection and exclusion of outliers

As noted earlier, ASTRICS is preceded by two preliminary steps, which are now described. A drawback of

using critical alpha shapes in the fully automated ASTRICS algorithm is their sensitivity to outliers. The

presence of an outlier in a set of points can have a large effect on the smallest alpha shape that encloses

all of the points in the set. Therefore, as a preliminary step, outliers are identified and excluded from all

subsequent ASTRICS computations. To do this, we search for outliers within each seed cluster locally using

the following algorithm. Note that outlier detection is only performed on seed clusters containing at least 8

points.

For each seed cluster Ci in isolation, do the following:

1. Perform PCA and project the data onto the subspace spanned by the first three PCs to reduce the

dimensionality. I chose three dimensions because ASTRICS will be performed in no more than three

dimensions; points that are outliers in higher dimensions but not in three dimensions are of no concern.

2. Standardize the data along each of the three new dimensions using robust estimates of average and

scale. Specifically, for each dimension independently, subtract the midmean (i.e. the mean of the

middle 50%) of the data and divide by the median absolute deviation.

3. Compute the distance of every point from the origin, which is now the estimated centroid of the seed

cluster. Let Di0 denote the distribution of these distances for seed cluster Ci.

4. Also compute the distance of every point from its nearest neighbouring point in the same seed cluster.

Let Dinn denote the distribution of these distances for seed cluster Ci.

5. Square-root transform all of the computed distances to make the distributions Di0 and Dinn become

more normal.
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6. Finally, classify points as outliers if they satisfy

√
D > Q3 +

3

2
× IQR

in both square-root transformed distributions, where
√
D is the square-root transformed distance and

Q3 and IQR are, respectively, the upper quartile and interquartile range of the appropriate square-root

transformed distribution.

This search for and subsequent exclusion of outliers prevents ASTRICS from selecting unsuitably large

values of α in order to enclose anomalous, distant points in clusters. In turn, this prevents ASTRICS from

yielding nonzero similarity for pairs of seemingly well separated clusters on the basis of distant outliers in

the clusters.

3.2.5 Preliminary step Two: Fast, approximate search for zero-similarity pairs of clusters

For a dataset partitioned into K seed clusters, there are (K − 1)K/2 pairs of clusters. Due to the compu-

tations of PCs and alpha shapes, using ASTRICS to compute the similarity of every pair of clusters could

be computationally intensive for large datasets. Usually, however, some seed clusters will clearly be very

distant from other seed clusters in a partitioned dataset with large K. Such distant pairs of clusters are likely

to have an ASTRICS similarity of 0 when using the automated choice of alpha shape. Hence, when K � 2,

a fast preliminary search is performed to find pairs of clusters that can reasonably be assigned a similarity

of 0 without applying ASTRICS.

First, PCA is applied to the K seed cluster centroids to change basis from the original d dimensions to

a basis composed of all min{d,K − 1} PCs so that the seed clusters are spread out as much as possible

along each of the new basis dimensions. All of the data are then projected onto each of the PCs, generating

min{d,K−1} 1D projections. Subsequently, a similarity of 0 is assigned to any pair of seed clusters whose

ranges are disjoint in any of the 1D projections onto the PCs. We then only proceed to apply ASTRICS to

pairs of seed clusters that have overlapping ranges in all of the min{d,K − 1} 1D projections.

My rationale for this approach is as follows. If a pair of seed clusters can be completely separated in

a 1D projection using a set of globally determined, and therefore unlikely to be locally optimal, axes, then

those clusters are likely to be even more greatly separated in a subspace determined locally as per the CS

step of ASTRICS. As such, I suggest that it would be computationally wasteful to apply ASTRICS to that

pair of clusters since their ASTRICS similarity is likely to be 0 or approximately 0. By choosing to assign

a similarity of 0 to such pairs of clusters, we lower the number of pairs of clusters to which ASTRICS will

be applied, thereby reducing the overall computational cost.

3.2.6 A pipeline for visualizing and clustering HD data using ASTRICS

To test and demonstrate the utility of ASTRICS, I built it into a pipeline for visualizing or clustering HD

data. The full pipeline is depicted in general terms in Figure 3.3. This pipeline starts by partitioning the
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data into K seed clusters (Figure 3.3a) by any method, where K is chosen to be much larger than the

expected or desired number of clusters. The exact value of K is not important and therefore does not

require optimization. Nonetheless, seed clusters should contain at least four points so that they intrinsically

occupy at least three dimensions, but should ideally contain at least 23 = 8 points to prevent small sample

size artifacts. In the second step of the pipeline, ASTRICS is used to compute similarities between seed

clusters (Figure 3.3b–d) to yield a K ×K similarity matrix, which can be interpreted as a weighted graph

(Figure 3.3e). In the third and final step of the pipeline, the similarity matrix/graph generated by ASTRICS

is used as input to other methods for visualization and further clustering (Figure 3.3f). For convenience and

brevity, a general pipeline of this form will henceforth be referred to as a seed–ASTRICS–clu/vis pipeline.

Here, “seed” refers to any clustering algorithm (e.g. K-means) used to perform the initial seed clustering of

data points, “clu” refers to any clustering algorithm that can operate on the similarity matrix/graph induced

by applying ASTRICS to the seed clusters (e.g. a community detection or spectral clustering algorithm),

and “vis” refers to any method for visualizing a weighted graph (e.g. force-directed layout).

For the seed clustering step, I employed either K-means or the SOM step from FlowSOM. To ensure

that each seed cluster contained at least a specified minimum number of points, chosen to be 8, clusters were

merged, when necessary, in a manner similar to centroid linkage. Centroid linkage sequentially merges the

two clusters with the shortest distance between their centroids, updating cluster centroids after each merge.

My approach computes all of the seed cluster centroids and finds all seed clusters containing the fewest data

points. It then merges each one with the seed cluster whose centroid is nearest to its own, before updating

the centroids all together after completing all merges. This process repeats iteratively until all seed clusters

contain at least the specified minimum number of points. Throughout the seed clustering step, one of the `2

(Euclidean) norm, `1 (Manhattan, or city block) norm, or correlation distance (i.e. one minus the Pearson

correlation between two vectors) was maintained as the distance measure. I then applied ASTRICS to the

seed clusters using the LDA+PCA method for local DR.

Subsequently, the ASTRICS similarity matrix for the seed clusters was treated as a weighted graph and

force-directed layout [104] was used to view the graph. Each node in the graph represents a seed cluster and

the weight of the edge between two nodes is the ASTRICS similarity of the corresponding seed clusters. The

force-directed layout attempts to make edge lengths inversely proportional to the (nonzero) edge weights in

the graph so that the greater the similarity of two seed clusters, the closer together their nodes will be in the

visualization. Thus, distances in the visualization are, in fact, meaningful, which is generally not the case in

a t-SNE map. I found that the force-directed layout algorithm implemented in MATLAB for viewing graphs

is sensitive to scaling of the edge weights. For this reason, all of the edge weights were rescaled before

visualizing the graph such that the mean nonzero edge weight was 1 after rescaling. This generally resulted

in effective visualization where nodes did not concentrate together to the point of being unrecognizable from

each other.

To demonstrate clustering of the nodes, I used the Louvain method [2], a modularity-based community

detection algorithm, to assign each node (i.e. seed cluster, and by extension its constituent data points)

to a final set of nested clusters. The Louvain method outputs a hierarchy of nested clusters at different
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Figure 3.3: A pipeline for visualizing and clustering HD data using ASTRICS. Caption continues . . .
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Figure 3.3: (a) Partition the HD data into K ‘seed clusters’ using any clustering algorithm, e.g. K-means.
K should be large. (b–d) Compute the ASTRICS similarity of each pair of clusters: project each pair of
clusters onto a low-dimensional subspace using local DR (b–c), then compute the inter-cluster similarity of
each pair of clusters using alpha shape triangulation in the subspace (d). (e) Construct a weighted graph
with K nodes representing the K seed clusters and edge weights equal to the inter-cluster similarity scores
measured by ASTRICS. (f) Visualize the graph using force-directed layout and cluster the nodes using
community detection or spectral clustering.

resolutions, the lowest (i.e. coarsest) resolution of which locally maximizes modularity [126]. Although I

used the Louvain method for demonstration, other algorithms, such as Infomap [3, 4] or spectral clustering

[127], could also be applied to the ASTRICS similarity matrix/graph.
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3.3 Results

3.3.1 ASTRICS facilitates visualization and clustering of CyTOF data

To demonstrate the potential for ASTRICS to facilitate and improve analysis of HD FC or CyTOF data

in molecular biology, I applied a seed–ASTRICS–clu/vis pipeline (with “seed” = either K-means or the

SOM step from FlowSOM, “clu” = the Louvain method, and “vis” = force-driected layout, all as described

above) to Sample 01 from the publicly available CyTOF data published by Samusik et al. [107]. Henceforth,

this Sample 01 data is referred to as “Samusik01”. Weber and Robinson also used this exact data in their

comparison of clustering algorithms for FC and CyTOF data [100]. In their study, FlowSOM was the best

performing clustering algorithm for this data.

Samusik01 consists of measurements of the expression levels of 39 proteins on the surfaces of 86, 864

bone marrow cells from a C57BL/6J mouse (i.e. 86, 864 observations with 39 dimensions or variables).

The cells had been manually assigned to 24 known, immunologically distinct populations (clusters) by the

original authors via manual gating according to known characteristics of the 24 cell types. Manual gating

is an expert-driven process of scatter plotting single-cell cytometry data for two proteins (variables) at a

time and drawing boundaries (“gates”) around cells (data points) to group them by cell type based on prior

knowledge. It is the standard practice for classifying cells from FC or CyTOF data. Hence, the 24 manually

gated populations can be regarded as ground-truth cluster labels against which computationally derived

clusters can be compared in order to test computational methods for clustering. Of the 86, 864 cells, 53, 173

(61%) were classified by manual gating; the remaining 33, 691 (39%) were left unassigned. Nevertheless, I

applied the seed–ASTRICS–clu/vis pipeline to all 86, 864 cells in the full 39-dimensional space.

Before applying the pipeline, I preprocessed the data by applying the arsinh transform with a cofactor

of 5 (i.e. X 7→ sinh-1(X/5)), as is standard for CyTOF data [128]. This transformation makes the data

more akin to a normal distribution in each dimension. I then normalized the data in each dimension by

the width of the smallest interval containing 50% of the positive-valued data, a robust estimate of scale

[129]. For the seed clustering step, I used K = 144 (prior to any merging of seed clusters by my variant of

centroid linkage) because 144 is a square number with nice factorization properties, which allowed different

rectangular grid shapes to be used for the SOM without changing the total number of SOM nodes (for

the SOM from FlowSOM, the height and width of a rectangular grid must be specified rather than K, so

K = height × width). I tested both the `2 and `1 norms as the distance measure used for seed clustering,

but the figures show results using the `2 norm, which is the default for both K-means and FlowSOM. I also

tested the correlation distance measure in K-means seed clustering, but it consistently yielded inferior seed

cluster purity and overall results for Samusik01 (results not shown).

For K-means seed clustering, I performed 10 clustering repeats using random initialization by the K-

means++ algorithm [130] and then selected the clustering with the smallest value of its objective function

(e.g. the sum of squared Euclidean distances from each point to its cluster centroid if using the `2 norm as

the distance measure). For SOM seed clustering, I repeated the SOM step of FlowSOM six times using
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grids of size 24× 6, 16× 9, 12× 12 (twice), 9× 12, and 6× 24. I then computed the mutual information

for all possible pairs of SOMs and the Shannon entropy of each individual SOM (note that the entropy of a

SOM is equal to its mutual information with itself). I subsequently selected as the seed clustering the SOM

with the greatest sum of entropy and mutual information over all relevant pairs of SOMs. I did this as a fast,

rudimentary form of ensemble clustering. Each SOM generated by FlowSOM is usually different (like the

independent repeat runs of K-means), and any individual SOM could be anomalous. However, the SOM

with the highest entropy and shared information content among all generated SOMs is conceptually like the

median SOM and is therefore unlikely to be anomalous.

To qualitatively assess the visualization generated by force-directed layout of the ASTRICS similarity

graph, I plotted it with nodes coloured according to their ground-truth assignments to one of the 24 cell types

(Figure 3.4a(i)). The seed clusters represented by the nodes in the figures were obtained using K-means,

and their ground-truth assignments were determined by simple majority voting of the manually gated cells

(the cells left unassigned by manual gating did not contribute to the voting). Shown alongside the force-

directed layout for comparison is a t-SNE map of the seed cluster centroids generated using the Barnes-Hut

t-SNE algorithm [131] with the perplexity parameter set equal to 20 (Figure 3.4a(ii)). We can see that force-

directed layout of the ASTRICS similarity graph and t-SNE applied to the seed cluster centroids produced

qualitatively similar layouts of the nodes. Both layouts have pro-B cells and all T cells (CD4+ T cells,

CD8+ T cells, NKT cells, and γδ T cells) grouped closely together in one arm and another arm with IgD+

IgM+ B cells, basophils, plasma cells, and IgD− IgM− B cells. Also in both layouts, plasmacytoid dendritic

cells (pDCs) form another distinguishable population while the remaining cell types are grouped together in

a larger central cloud of nodes. Since t-SNE is a leading method to visualize CyTOF data, we can conclude

that force-directed visualization based on ASTRICS is a very effective method to visualize CyTOF data

at the resolution of seed clusters. Moreover, except for choosing the resolution for the seed clusters, my

method has the advantage of not requiring the user to tune any parameters such as the perplexity in t-SNE.

In the shown figures, the three monocyte populations, especially the classical and intermediate mono-

cytes, are largely mixed together and difficult to distinguish from each other. However, they were almost

completely distinguishable from each other in both the force-directed and t-SNE layouts when I used the

`1 instead of `2 norm as the distance measure in the seed clustering by K-means (not shown). In fact, this

resulted in better separation of distinct cell types in general in both force-directed and t-SNE visualizations,

likely due to higher purity seed clusters (see Figure 3.4d). Unfortunately, it also resulted in the rare pro-B

cell population being completely lost among other populations in the seed clustering (i.e. pro-B cells did not

form the most abundant manually gated cell type within any seed cluster). That said, I note that the single

pro-B cell node resulting from the use of `2 in the K-means seed clustering already had the second lowest

purity (33%) of all seed clusters. Furthermore, I found that the K-means seed clustering was less likely to

converge within 200 iterations when using `1 instead of `2. The results suggest that, for K-means, using `1

instead of `2 produces higher quality seed clusters overall (even if it does not always converge), but possibly

at the cost of losing rare populations. Consideration should therefore be given to the distance measure used

during seed clustering in a seed–ASTRICS–clu/vis pipeline. I suggest that, before applying such a pipeline
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Figure 3.4: Visualization and clustering results using ASTRICS for 39-dimensional Samusik01
CyTOF data. (a) ASTRICS similarity graph for ‘seed clusters’ of cells (one seed cluster = one node in
graph) visualized using force-directed layout (i) or Barnes-Hut t-SNE map of seed cluster centroids using
perplexity = 20 (ii). Dataset contained 86, 864 cells, each with CyTOF measurements of the expression lev-
els of 39 proteins on the cell surfaces. Seed clusters were determined by K-means using K = 144 and the
Euclidean (L2) distance measure. Nodes are coloured according to the most common cell type within the
seed clusters they represent. Cell type abbreviations: pDCs = plasmacytoid dendritic cells, CMP = common
myeloid progenitor, NK = natural killer, MPP = multipotent progenitors, MEP = megakaryocyte–erythroid
progenitor, HSC = hematopoietic stem cells, GMP = granulocyte-monocyte progenitor, mDCs = myeloid
dendritic cells, CLP = common lymphoid progenitor. (b–c) Two resolutions of clusters found by applying
the Louvain method to the ASTRICS similarity graph. Colours distinguish clusters. (d) Assessment of
results from different clustering methods by mean F-measure (uw = unweighted) and normalized mutual
information (NMI) compared to manually gated populations. 1 = 100% match; 0 = 0% match. Where
applicable, the table relates to the finest resolution of clusters output by the Louvain method, which was
Level 2, shown in (b), for the clustering in the figure. The second column states the distance metric used in
clustering: L2 = `2 (Euclidean distance) or L1 = `1.
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to new data, potential algorithms and distance measures for the seed clustering first be tested on similar data

with known classifications of observations, as I have done here.

The visualizations presented here effectively validate ASTRICS as a suitable method to measure simi-

larity between clusters of cells in CyTOF data. This validation arises from not only the qualitative similarity

between the ASTRICS-based visualization and t-SNE but also the agreement of the visualization with ra-

tional expectations: biologically similar cell types are visually clustered together. For instance, the T cell

subsets are all close together in the visualization, as are the monocyte subsets. Nonetheless, I also tested the

suitability of the ASTRICS similarity matrix as input to a clustering algorithm as per the description of the

general seed–ASTRICS–clu/vis pipeline using the Louvain method as an example.

Applying the Louvain method to the ASTRICS similarity graph shown in Figure 3.4a yielded nested

clusters over two resolutions (Figure 3.4b–c). The seed clusters (the nodes of the graph) themselves form

another resolution. I quantified the quality of the finest resolution of clusters returned by the Louvain method

compared to the ground-truth clusters (i.e. the manually gated cell populations) using the mean F-measure

[57] and normalized mutual information (NMI) [56]. These quantities range from 0 to 1 with a value of 1

indicating perfect agreement between the algorithmically derived and ground-truth cluster assignments of

observations. I computed both the usual mean F-measure, in which the contribution of each ground-truth

cluster is weighted proportionally to its size, and an unweighted version to which all ground-truth clusters

contribute equally regardless of their size. I computed the unweighted version to give rare cell populations

equal importance to large cell populations, similar to the assessment approach taken by Weber and Robinson

[100]. All quantities were computed using only the manually gated cells; cells not assigned to any manually

gated population were completely discounted from all computations of mean F-measure, NMI, and purity.

This clustering assessment was performed for different algorithms. I tested all combinations of `2 or `1 as

the distance measure with K-means or the SOM step from FlowSOM as the algorithm for seed clustering.

For comparison, I also tested clustering using just FlowSOM, with both automatic and user selection of

K, or just K-means. Selected results of this analysis are summarized in Figure 3.4d. In a similar vein to

the visualizations, I found that the overall best clustering results, as assessed by NMI and the regular mean

F-measure, were generated by the K-means–ASTRICS–Louvain pipeline using the `1 distance measure in

K-means. This particular pipeline returned 19 clusters. The same pipeline using `2 had lower NMI and

regular mean F-measure scores, but it returned one additional cluster and a higher unweighted mean F-

measure. Supporting my earlier observations, this suggests that `2 is the better choice of distance measure

forK-means seed clustering if finding rare cell populations is important, though `1 is better for most clusters.

Nonetheless, for both the `1 and `2 distance measures, K-means–ASTRICS–Louvain yielded much

better clustering results than using just FlowSOM with automated selection of the final number of clusters.

By manually tuning the final number of clusters in FlowSOM, I was able to obtain results comparable

to those generated by K-means–ASTRICS–Louvain, but K-means–ASTRICS–Louvain was generally still

better overall. Surprisingly, the use of the SOM from FlowSOM as the seed clustering step in the seed–

ASTRICS–Louvain pipeline produced worse final clustering results than usingK-means for seed clustering,

despite the seed clusters being of similar purity in both cases. I point out, notwithstanding, that this was
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still slightly better overall than FlowSOM with automated selection of the number of clusters. Recall that

FlowSOM was previously found by Weber and Robinson [100] to be the best available clustering algorithm

for Samusik01. Unquestionably, using just K-means on its own for clustering produced worse results than

seed–ASTRICS–Louvain and also worse results than FlowSOM. The results of the assessment here clearly

show that ASTRICS is capable of not only facilitating but also improving clustering analysis of CyTOF

data.

3.3.2 Application to MNIST digital images demonstrates versatility of ASTRICS

To demonstrate that ASRTICS is suitable for a broad variety of data, I also applied theK-means–ASTRICS–

Louvain/force pipeline, where “force” refers to the use of force-directed layout for visualization, to digital

images from the MNIST database [108]. This is a collection of grayscale digital images, 20 pixels ×
20 pixels in size, of handwritten single-digit numbers (Figure 3.5a). The 10 unique numbers 0–9 were

regarded as being ground-truth cluster labels. Again, I compared the visualization produced by K-means–

ASTRICS–force to a Barnes-Hut t-SNE map of the seed cluster centroids, and I quantified the quality of

clustering results from K-means–ASTRICS–Louvain compared to ground truth using the mean F-measure

and NMI.

To apply the methods to the MNIST images, the images were reshaped into 400-dimensional row vec-

tors. They were not preprocessed in any other way. For seed clustering, I used K = 200. I tested the `1,

`2, and correlation distance measures on a development dataset of 20, 000 images and found that the corre-

lation distance measure produced the best results for the MNIST data. This contrasts my observations for

the CyTOF data and suggests that the best choice of distance measure will depend on the dataset. I there-

fore reiterate my earlier recommendation to test different distance measures on similar data with known

ground-truth cluster labels before applying clustering methods to new data.

After determining the best distance measure, I applied K-means–ASTRICS–Louvain/force to a com-

pletely different set of 20, 000 MNIST images in order to evaluate the pipeline. Figure 3.5b shows (i) a

force-directed layout of the resulting ASTRICS similarity graph alongside (ii) a Barnes-Hut t-SNE map of

the seed cluster centroids. Just as for the CyTOF data, we see substantial qualitative similarity between

the two layouts. Many of the ground-truth clusters representing distinct digits are visually distinct from

each other. Even the digits that are less discernible from each other in the layouts cluster together logically

based on typographical similarities: the numbers “3”, “5” and “8” cluster together, as do “4” and “9”. Ty-

pographical similarities also explain the closeness of the digits “0” and “6”, and the digits “1” and “2” in

both layouts. Furthermore, force-directed layout of the ASTRICS similarity graph conveys a sense of global

relationships between digits: the two most distant digits in the force-directed layout are “0” and “1”, the

two most typographically dissimilar digits. This is not apparent in the t-SNE map, which is not surprising

because t-SNE preserves only local relationships and cannot be used to infer global relationships. This il-

lustrates an advantage of K-means–ASTRICS–force over t-SNE when visualizing HD data at the resolution

of fine-grained clusters instead of the original data points is acceptable. The effectiveness of the ASTRICS-
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based visualization approach for the MNIST data in addition to CyTOF data demonstrates that ASTRICS is

a practical measure of inter-cluster similarity not limited to one type of data.

The Louvain method clustering step of theK-means–ASTRICS–Louvain pipeline generated a hierarchy

of clusters over three resolutions, in addition to the initial seed cluster resolution. The middle resolution

(Figure 3.5c) consisted of 9 clusters, the closest to the true number of distinct digits (i.e. 10). It achieved a

mean F-measure of 0.78 and an NMI of 0.74. For comparison, applying just K-means using the correlation

distance measure and the correct number of clusters K = 10 to the same 20, 000 images achieved a mean

F-measure of 0.57 and an NMI of 0.50. The lowest resolution of clusters returned by the Louvain method

had 8 clusters: the clusters most closely matching the digits “5” and “9” in the 9-cluster resolution (clusters

1 and 8 in Figure 3.5c) were merged together, but otherwise the two lowest-resolution clusterings were

the same. It is noteworthy that almost the correct number of clusters could be obtained without having to

specify the final number of clusters using K-means–ASTRICS–Louvain, and that this approach yielded far

superior results to performing just K-means with the true number of clusters. Moreover, the comparatively

poor performance ofK-means on its own cannot be attributed to variability in the number of images of each

digit in the dataset because all 10 digits were present in very similar proportions. Thus, the dimensionality

is likely to be a key factor. These results clearly show that a seed–ASTRICS–clu pipeline can expand the

utility of generic clustering algorithms to higher dimensions by using ASTRICS to mitigate the curse of

dimensionality between a fine-grained initial clustering step and a graph-based final clustering step.

At the finest resolution output by the Louvain method, there were 22 clusters (Figure 3.5d). To visually

assess the cluster hierarchy, I computed the mean image for each of these 22 clusters (i.e. their centroids) and

grouped them according to the next level of clustering (Figure 3.5e). In general, the 22 clusters corresponded

to different writing styles, especially italic and upright, for the distinct digits in the MNIST dataset. There

were three notable exceptions in which images of different digits were clustered together. First, the sole

subcluster of Cluster 4 in Figure 3.5e contained images of both “4” and “9”. However, it is visually apparent

that these were upright writing styles. The italic images of “4” and “9” formed separate subclusters of

Cluster 7. Second, the first subcluster of Cluster 6 in Figure 3.5e contained images of “3”, “5”, and “8”.

Both of these exceptions can be explained by obvious visual similarities between some written styles of

the distinct digits. Last, none of the 22 clusters appear to represent “7” written with a horizontal crossbar,

as in the bottom row of Figure 3.5a. Only one of the 200 seed clusters strongly represented this style of

writing “7”, but the Louvain method is very unlikely to return any single-node clusters except for zero-

degree nodes. This ‘crossbar-7’ seed cluster had nonzero similarity with seed clusters of other digits and

subsequently clustered with images of “2” in the second subcluster of Cluster 9 in Figure 3.5e. It can be

deduced from these observations that variability in writing styles for specific digits is significant compared

to the differences between distinct digits. Indeed, some of the handwritten digits among the MNIST images

are ambiguous even to the human eye.

At the next, coarser level of clusters, the 22 finer-resolution clusters mostly clustered together by actual

digit. For example, italic and upright styles of “5” and “8” formed separate fine-resolution clusters, which

in turn formed a “5” cluster and an “8” cluster (Clusters 1 and 8 respectively in Figure 3.5e). The obvious
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Figure 3.5: Visualization and clustering results using ASTRICS for 400-dimensional MNIST images
of handwritten digits. (a) Example images from the MNIST dataset. (b) Visualization by force-directed
layout of the ASTRICS similarity graph (i) or Barnes-Hut t-SNE (perplexity = 20) of seed cluster centroids
(ii) for K = 200 seed clusters of images from a set of 20, 000 MNIST images of handwritten digits. Seed
clusters were determined byK-means using the correlation distance measure. Each node is coloured accord-
ing to the most common ground-truth digit (0 to 9) within the seed cluster it represents. (c–d) The second
(c) and third (d) coarsest resolutions of clusters found by applying the Louvain method to the ASTRICS
similarity graph in panel (b). Colours distinguish distinct clusters. Cluster numbers have no correspondence
to the true digits because the clustering is unsupervised. (e) Means of the 22 clusters in panel (d) grouped
according to the clusters in panel (c). Cluster numbers correspond to the cluster numbers in panel (c).
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exception to this is Cluster 7 in Figure 3.5e, in which subclusters whose means are recognizably the digits

“4”, “9” and “7” were clustered together. However, despite being recognizable as three distinct digits, it is

easy to see why these three clusters were clustered together at coarser cluster resolutions: their constituent

images share a long slanted line at the rightmost side of the digit. By applying my pipeline combining K-

means, ASTRICS, and the Louvain method to MNIST data and subsequently viewing the cluster centroids as

in Figure 3.5e, it was possible to visually explore variability and similarities between handwriting styles of

numerals. Furthermore, apparent inaccuracies in the results could be rationally explained. From the strong

and rational performance of the K-means–ASTRICS–Louvain/force clustering and visualization pipeline

on MNIST image data in addition to CyTOF data, I conclude that ASTRICS is a versatile measure of inter-

cluster similarity, suitable for multiple types of HD data and a range of dimensionalities.

3.3.3 Global feature extraction is still helpful in very high dimensions

To test whether ASTRICS is suitable for very HD data with thousands of dimensions, I next applied a

seed–ASTRICS–clu/vis pipeline to text documents from the 20 Newsgroups dataset [109, 132], a corpus

of 18, 846 newsgroup documents spread roughly evenly across 20 different topics. The documents are

separated into a training set of 11, 314 documents and a test set of 7, 532 documents. The 20 topics constitute

ground-truth cluster labels for the documents. All headers were removed from the documents because these

included the exact ground-truth topic for each document. In order to apply my methods, or any clustering

algorithm, to text documents, the documents had to first be converted to numerical vectors, a process known

as vectorization. This was achieved using a ‘bag of words’ approach, which encodes the frequency of

different ‘words’ in the documents. Here, ‘word’ means any sequence of characters (i.e. string) without

spaces or breaks. Subsequently, I applied a seed–ASTRICS–clu/vis pipeline to the vectorized documents.

Using only the training subset of the 20 Newsgroups data at first, I trialled various combinations of

parameters and options for the vectorization of documents and for my pipeline. I eventually settled on the

following approach. First, I tokenized documents (i.e. converted them to lists of tokens, or strings) in Python

by applying the word tokenize function from Natural Language Toolkit (NLTK) [133], removing words

shorter than three characters, and stemming words using the Snowball stemmer from NLTK. Stemming

reduces words to their stems so that, for example, different tenses of a verb, or singular and plural forms of a

noun, reduce to the same token. I also removed ubiquitous words such as “and” and “the”, called stop words,

which are generally considered to be uninformative for clustering and machine learning. Finally, to convert

the tokenized documents into numerical vectors, I used the term frequency–inverse document frequency

(TF-IDF) vectorizer (TfidfVectorizer) from scikit-learn [134], removing any tokens that appeared

in fewer than three documents during the process. For each tokenized document, TfidfVectorizer

creates a row vector in which each column records a weighted frequency of occurrence of a particular token.

The “TF” part normalizes token counts by document length (number of tokens). The “IDF” part inversely

weights tokens by the logarithm of the fraction of documents in which they appear, which reduces the

importance of words that appear in many documents. The dimensionality of the vectorized text data is the
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total number of tokens recorded in the corpus. Note that this is not fixed because it depends on the documents

in the corpus. Using the vectorization approach described, the training subset, test subset, and complete set

of documents had 29, 737 dimensions, 21, 683 dimensions, and 42, 823 dimensions respectively.

Seed clustering was performed using K-means (this time using 20 repeats) with K = 200 and the `1

distance measure followed by my variant of centroid-linkage with a minimum cluster size of 8 data points.

Prior to running K-means, 50 features were extracted by SVD, often called latent semantic analysis in

the context of text data, to reduce the dimensionality globally. I then either applied ASTRICS to the seed

clusters back in the original very HD space or performed global feature extraction by SVD before applying

ASTRICS. As usual, I used force-directed layout to visualize the ASTRICS similarity graph and the Louvain

method for the final clustering step.

For the training set of vectorized text documents, reducing the dimensionality of the data to 20, 50, 100,

150, 200, 500, or 1, 000 features by SVD before applying ASTRICS consistently yielded better clustering

results, in terms of the mean F-measure and NMI, than applying ASTRICS in the full 29, 737 dimensions.

The actual choice of the reduced number of features had relatively little impact on the final results measured

by the mean F-measure or NMI. Performing feature extraction before ASTRICS resulted in mean F-measure

scores between 0.44 and 0.50 and NMI scores mostly between 0.46 and 0.48 for the level of clusters from

the Louvain hierarchy that achieved the closest match to the ground-truth clusters. Three replicates of

clustering without the feature-extraction step before ASTRICS resulted in mean F-measure scores from

0.38 to 0.43 and NMI scores from 0.43 to 0.44. Notably, the seed clusters themselves had an NMI value

of 0.45 in all three replicates. It should also be noted that the seed clusters had a weighted mean purity

between 60% and 61% and an unweighted mean purity between 66% and 68%, which indicates that there

was already considerable mixing of different newsgroups within the seed clusters. Based on the results

for the training dataset and the increasing computational cost of performing SVD as the desired number of

features increases, 100 was chosen as the number of features to proceed with for the test dataset.

Figure 3.6a shows a force-directed layout and Louvain clustering results for seed clusters in the test

set when ASTRICS was applied after reduction of the dimensionality to 100 features. The finest resolution

(level 3) of the Louvain clustering scored 0.45 for the mean F-measure and 0.47 for the NMI. Two additional

Louvain clustering replicates (not shown) scored 0.45 and 0.43 for the mean F-measure and 0.47 and 0.46 for

the NMI. Figure 3.6b shows analogous results when ASTRICS was instead applied to the same seed clusters

in the full 21, 683 dimensions. In this case, the finest resolution (level 2) of the Louvain clustering scored

0.43 for the mean F-measure and 0.44 for the NMI. Two additional Louvain clustering replicates each scored

0.43 for the mean F-measure and 0.45 for the NMI. The seed clusters had a weighted mean purity of 61% and

an unweighted mean purity of 66%. For reference, their mean F-measure was 0.26 and their NMI score was

0.46. Where Louvain clusters in either graph overlapped more than one of the 20 newsgroup topics, which

was detrimental to the NMI and mean F-measure scores, nodes that clustered together were often rationally

related, such as nodes representing different topics about computers. Furthermore, the force-directed layouts

of the two graphs were qualitatively similar in that both had a star-like structure with crowding of nodes in

the centre and nodes representing the same or similar newsgroup topics generally organized close together.
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Nevertheless, the layout had clearer visual organization of nodes into clusters along ‘arms’ of the graph

when ASTRICS was preceded by global feature extraction (Figure 3.6a) than when all 21, 683 dimensions

were used (Figure 3.6b). The graph also had fewer zero-degree nodes when ASTRICS was preceded by

global feature extraction (18 zero-degree nodes in Figure 3.6a versus 39 in Figure 3.6b). This shows that

ASTRICS more often discovered feature subspaces that discriminated between seed clusters of documents

discussing the same topic when it was allowed to use all of the data dimensions. This perhaps reflected

different writing styles or lexicons between authors of documents about the same topic. However, one

could argue that ASTRICS overfitted to noise if the goal was to cluster documents more broadly by topic.

Thus, global feature extraction helped ASTRICS by removing some of the irrelevant intra-topic noise in the

vectorized text data that would otherwise be detected by local DR.

A Barnes-Hut t-SNE map of the seed cluster centroids, which involved an initial linear reduction to 20

dimensions to prevent overfitting, did not exhibit central crowding of nodes and therefore made it easier to

see more of the individual nodes (Figure 3.6c). Indeed, crowding is a common problem of DR methods

that t-SNE explicitly addresses [94]. However, it made some of the true clusters appear more fragmented

or scattered. For example, five nodes representing primarily documents from the “rec.autos” newsgroup

topic were clustered together in both the force-directed layout and Louvain clustering of the ASTRICS

similarity graph but were separated into two distant regions of the t-SNE map. On the other hand, nodes

that had degree zero and therefore formed singletons in the ASTRICS similarity graph were often located

near nodes representing the same or similar topics in the t-SNE map. Hence, force-directed layout of the

ASTRICS similarity graph for the seed clusters and t-SNE applied to the centroids of the seed clusters

yielded complementary visualizations. Overlaying the edges of the ASTRICS similarity graph on the t-SNE

map (Figure 3.6c) added information about the inter-relatedness of nodes that were distant or scattered in

the t-SNE map.

Unfortunately, however, the K-means–ASTRICS–Louvain clustering pipeline was not able to improve

on the clustering results that could be achieved using just K-means for the test subset of the vectorized 20

Newsgroups data. Clustering by K-means using K = 20 and the `1 distance measure in a 50-dimensional

feature subspace obtained by SVD achieved a mean F-measure of 0.49 and an NMI of 0.45. Nevertheless, it

is noteworthy that K-means–ASTRICS–Louvain achieved comparable clustering results to K-means with-

out having to specify the final number of clusters. Also, the K-means–ASTRICS–Louvain/force approach

has the advantage of providing a visualization alongside the clustering results.

To investigate whether the seed clustering was the limiting step in the K-means–ASTRICS–Louvain

pipeline, I used the ground-truth topic label for each document to generate seed clusters all of 100% purity.

Similarities between pure seed clusters were then computed as usual using ASTRICS, either with or without

prior global reduction of the dimensionality to 100 features by SVD, and clusters were obtained from the

resulting ASTRICS similarity graph using the Louvain method. The mean F-measure and the NMI were

calculated for the lowest resolution of Louvain clusters. This test was performed using two different methods

to generate pure seed clusters.

86



Figure 3.6: Visualization and clustering results using ASTRICS with and without global feature ex-
traction for very HD newsgroups text documents. Caption continues . . .
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Figure 3.6: For the 21, 683-dimensional test set (a–c) and 42, 823-dimensional complete set (d–f) of vec-
torized text documents from the 20 Newsgroups dataset, seed clusters were defined by performing K-means
clustering using the `1 distance measure and K = 200 in a 50-dimensional feature space. If any K-means
clusters contained fewer than 8 data points, the smallest cluster was merged to its nearest neighbouring clus-
ter based on distances between centroids in the 50-dimensional feature space and this process was repeated
until all clusters contained at least 8 data points. This resulted in 191 seed clusters for the test set and 199
for the complete set. Each node in any panel of this figure represents one seed cluster. (a) Force-directed
layout of the graph generated by applying ASTRICS to the seed clusters in the test set in a 100-dimensional
feature space obtained by global SVD. Nodes are coloured to show the most common ground-truth topic of
the documents within each seed cluster (i) and the coarsest (ii) and finest (iii) levels of clusters obtained by
applying the Louvain method to the graph. (b) Same as (a) except that ASTRICS was performed in the full
21, 683-dimensional space for the test set. Note the larger number of zero-degree nodes in (b) than in (a). (c)
Barnes-Hut t-SNE map of the centroids of the seed clusters in the test dataset using perplexity = 20. Nodes
are coloured as in a(i) and b(i). The edges are the same as the edges in the graph in (a). (d–f) Repeat of
(a–c) respectively for the 42, 823-dimensional complete set of vectorized newsgroups documents (training
and test sets combined), except that the finest level of Louvain clusters is omitted from panel (e).

First, the vectorized text documents within each topic category in the 20 Newsgroups test set were

randomly assigned to 10 clusters per topic. When ASTRICS was applied to these seed clusters in the full-

dimensional space, three replicates of Louvain clustering (each of which returned the best of 100 runs)

yielded identical results for two of the replicates, scoring 0.70 for the mean F-measure and 0.87 for the

NMI, and the third replicate scored 0.60 for the mean F-measure and 0.81 for the NMI. Either seven or six

of the 20 topics were recovered with 100% accuracy and others clustered together rationally: political topics

clustered together, “religion” and “atheism” clustered together, and topics related to computers or electronics

clustered together. The graph had a single connected component and there were many edges between very

different topics. When the dimensionality was reduced to 100 extracted features before applying ASTRICS,

three replicates of Louvain clustering produced mean F-measure scores from 0.60 to 0.75 and NMI scores

from 0.80 to 0.90. Seven to nine topics were recovered with 100% accuracy and other topics again clustered

together rationally. This test using randomly generated seed clusters of 100% purity validated ASTRICS as

a useful similarity measure and showed that it is very effective for clusters that can overlap.

Second, pure seed clusters were generated by applying K-means clustering with K = 10 in a 20-

dimensional feature space to each of the 20 topics independently. The 20-dimensional feature space was

also computed independently for each topic using SVD. Note that 28 of the 200 seed clusters defined this

way contained fewer than 8 data points and the smallest one contained just three. Applying ASTRICS

to these pure seed clusters in the full-dimensional space resulted in 121 zero-degree nodes (plus six addi-

tional clusters identified by the Louvain method), which suggests that the data were overfitted. When the

dimensionality was globally reduced to 100 features by SVD before applying ASTRICS, the number of

zero-degree nodes was reduced to 25, the mean F-measure scores for three replicates of Louvain clustering

were between 0.42 and 0.44, and the NMI scores were between 0.59 and 0.60. Hence, global feature extrac-

tion prevented overfitting, but clustering results were not improved by increasing the purity of seed clusters
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defined by a hard-clustering algorithm, which typically results in non-overlapping clusters by construction.

Overall, the K-means–ASTRICS–Louvain results for artificially constructed seed clusters of 100% purity

show that the 20 Newsgroups data are noisy and have topics that overlap in an HD feature space. This reality,

and not the purity of the seed clusters, was the limiting factor for obtaining good clustering results in terms

of matching the known topic labels.

To test theK-means–ASTRICS–Louvain/force clustering and visualization approach on a larger, higher-

dimensional data set, I repeated it for the 42, 823-dimensional set of all 18, 846 documents in the entire

20 Newsgroups dataset (even though this included the training set of documents on which I optimized

my approach). The resulting visualizations and Louvain clusters with and without global extraction of

100 features by SVD before ASTRICS are shown in Figures 3.6d and 3.6e respectively. A Barnes-Hut

t-SNE map (which again involved initial linear DR to 20 dimensions) of the centroids of the same seed

clusters is shown in Figure 3.6f for comparison. The seed clusters had weighted and unweighted mean

purities of 58% and 63% respectively. The lowest resolution of Louvain clusters for the entire dataset was a

marginally better match to the actual newsgroups when global DR to 100 dimensions was performed before

ASTRICS (for each of three Louvain clustering replicates, mean F-measure = 0.45 and NMI = 0.45)

than when ASTRICS was allowed to use all 42, 823 dimensions (for three Louvain clustering replicates:

mean F-measure = 0.41, 0.40, 0.41; NMI = 0.43, 0.42, 0.43), though there was only a small difference

in the number of zero-degree nodes this time (10 and 12 respectively). Also, the force-directed layouts of

the ASTRICS similarity graphs were qualitatively similar to each other and to the layouts of the graphs for

the test dataset. The smaller numbers of zero-degree nodes in the graphs for the entire dataset compared

to the graphs for just the test set were probably due to using the same value of K for the seed clustering

for both. This would have resulted in a greater average number of points per seed cluster in the larger

complete dataset than the smaller test subset, which in turn would have reduced the extent of overfitting.

In conclusion, ASTRICS is a suitable measure of inter-cluster similarity for very HD data such as text

documents, but it benefits from prior global feature extraction to prevent overfitting. Without global feature

extraction, the local DR step of ASTRICS could identify subspaces that convincingly separate seed clusters,

but those subspaces might be constructed from features that are ultimately not relevant for the problem being

addressed. Hence, the power of global feature extraction should not be neglected even when utilizing local

DR such as in ASTRICS.

3.3.4 Comparison of local DR methods

So far, results have only been presented for the LDA+PCA algorithm for local DR in ASTRICS. To illustrate

that the Centroids+PCA algorithm and even PCA-only can be valid alternatives to LDA+PCA for the local

DR step of ASTRICS, Figure 3.7 presents visualizations resulting from the use of each of the three local DR

methods in a K-means–ASTRICS–force visualization pipeline. Figure 3.7a shows a force-directed layout

of the ASTRICS similarity graph generated using (i) LDA+PCA, (ii) Centroids+PCA, or (iii) PCA-only

as the local DR method in ASTRICS for the Samusik01 CyTOF data. Figures 3.7b and 3.7c make the
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same comparison of visualizations for the MNIST images of handwritten digits and for the test set of the

20 Newsgroups text documents respectively. For all three datasets, the three visualizations are qualitatively

very similar (possibly with some rotations and/or reflections, which can be caused by different random

initializations of the force-directed layout computation).

Despite the comparable results of using the three local DR methods in ASTRICS in my pipeline for

the three datasets used in this work, I would still favour LDA+PCA or Centroids+PCA over PCA-only

from a theoretical standpoint. I believe that the use of PCA to initially reduce the dimensionality for a pair

of clusters to prevent overfitting is a major reason for the similarity between the results of the three local

DR methods. Even so, the PCA-only method never explicitly takes into account any separation between

seed clusters, which means that it could, in theory, lead to overestimation of the similarity between seed

clusters that are actually well resolved in a low-variance dimension. On the other hand, LDA+PCA and

Centroids+PCA account for separation of clusters after the initial DR by PCA. Thus, LDA+PCA and Cen-

troids+PCA should always theoretically yield results that are at least as good as PCA-only, although they

retain more risk of overfitting. In addition, as noted earlier, LDA+PCA and Centroids+PCA can actually

reduce the overall computation time required by ASTRICS compared to PCA-only, even though PCA-only

certainly has the lowest computational complexity of the three local DR methods. Nonetheless, the results

shown in Figure 3.7 show that all three of the local DR methods that I propose are valid and the specific

choice is not of critical importance.
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Figure 3.7: Comparison of force-directed layouts of ASTRICS similarity graphs generated using dif-
ferent local DR methods. (a) Force-directed layouts of ASTRICS similarity graphs generated using the
LDA+PCA (i), Centroids+PCA (ii), or PCA-only (iii) local DR algorithm for the Samusik01 CyTOF data
seed clusters presented in Figure 3.4. (b) Force-directed layouts of ASTRICS similarity graphs generated
using the LDA+PCA (i), Centroids+PCA (ii), or PCA-only (iii) local DR algorithm for the seed clusters of
MNIST images of digits presented in Figure 3.5. (c) Force-directed layouts of ASTRICS similarity graphs
generated using the LDA+PCA (i), Centroids+PCA (ii), or PCA-only (iii) local DR algorithm for the seed
clusters of vectorized text documents from the 20 Newsgroups test dataset presented in Figure 3.6a. For
the newsgroups text document data, ASTRICS was performed in a 100-dimensional feature space obtained
from global feature extraction by SVD. In all figure panels, nodes are coloured according to their ground-
truth cluster assignments determined by majority voting of the data points within the corresponding seed
clusters. For panels (a) and (c), refer to Figures 3.4 and 3.6 respectively for the ground-truth cluster labels.
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3.4 Discussion
In this work, I have introduced a novel measure of similarity between clusters of HD data points and pre-

sented a fully automated method for its computation. I call this method Alpha Shape TRIangulation in

loCal Subspaces (ASTRICS). ASTRICS consists of two fundamental steps. The first is local DR using one

of three methods that I have described and discussed: LDA+PCA, Centroids+PCA, or PCA-only, of which

I favour LDA+PCA. The second step is computation of inter-cluster similarity based on triangulation of

alpha shapes in locally determined 2- and 3-dimensional subspaces. I have primarily positioned ASTRICS

as a tool that can be utilized as an intermediate step in a pipeline for visualizing and clustering HD data. I

have described such a pipeline (a seed–ASTRICS–clu/vis pipeline), which proceeds in three stages: first,

an initial “seed clustering” is performed using a clustering algorithm such as K-means; second, ASTRICS

generates a weighted graph from the clusters output by that clustering algorithm; third, force-directed layout

and community detection are used to visualize and further cluster the nodes of the graph. Applying this

pipeline to 39-dimensional CyTOF data, 400-dimensional images from the MNIST dataset, and newsgroups

text document data with thousands of dimensions, I have demonstrated that ASTRICS is a suitable measure

of inter-cluster similarity for a broad variety of HD data. Used as described in a seed–ASTRICS–clu/vis

pipeline, ASTRICS facilitates analysis of HD data by enabling, in parallel, clustering and coarse-grained

visualization that circumvent the “curse of dimensionality”.

Although ASTRICS involves a parameter α to define alpha shapes, its value is determined automati-

cally by considering critical alpha shapes. ASTRICS therefore does not require any user-defined parame-

ters, though it can be generalized to allow similarities to be measured as a function of α, if desired. Also,

importantly, my ASTRICS similarity measure can have value zero for two clusters that have finite sepa-

ration. This means that, for an input set of seed clusters, ASTRICS can generate a sparse graph without

the need for any user-defined parameters or thresholds, which was its ultimate purpose. The motivation

behind ASTRICS was to enable a graph-based clustering approach that reduces the challenge of setting a

neighbourhood-defining parameter for the graph, such as the number of nearest neighbours, k, for a kNN

graph or a threshold distance, ε, for an ε-neighbourhood graph. However, there is no apparent way to

achieve this in general when each node represents a single, potentially continuous-valued, data point. This

prompted my proposed strategy to let nodes represent clusters at a fine-grained resolution instead of repre-

senting individual data points, which in turn sparked my invention of ASTRICS. Many measures of distance

or dissimilarity between two distributions or point sets exist, such as the Kullback-Leibler divergence [125]

and the Hausdorff distance [135], but defining similarity between nodes in terms of any of these would not

yield any advantage over using distances between data points. The only potentially useful existing measure

of similarity between two distributions or point sets that I found in literature was the Bhattacharyya coeffi-

cient [122–124]. However, for point sets, this requires discretization of their domain in order to bin the data

points, which is far from trivial for multidimensional data and amounts to parameterization. Therefore, as

far as I am aware, ASTRICS is the first measure of similarity (not distance), between two finite point sets,

that can have value zero without the need for any user-defined parameters or arbitrary thresholds. Since
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ASTRICS requires clusters as input, my seed–ASTRICS–clu pipeline does not completely eliminate user-

defined input parameters from clustering, but it essentially trades the critical yet challenging task of choosing

a graph neighbourhood-defining parameter for the task of choosing a resolution at which to represent the

data by a graph.

In spite of its demonstrated success, for example in improving clustering results for CyTOF data, I expect

that my seed–ASTRICS–clu/vis pipeline could be improved by replacing the seed and final clustering steps

with better or specialist algorithms for a given clustering task. I choseK-means and the Louvain method for

these two steps respectively to demonstrate the potential utility of ASTRICS because they are very simple,

fast, popular algorithms. However, I note, for example, that very rare populations of interest in CyTOF

data could be lost during seed clustering with K-means, which tends to return clusters of similar ‘spatial’

size (in the sense of HD space). To prevent the loss of rare populations during K-means seed clustering,

K must be chosen large enough that (a) the returned clusters are not spatially larger than any of the rare

populations and (b) there is a good probability that at least one data point in each rare population is selected

during the initialization of cluster centroids. Alternatively, it might be preferable to replace K-means for

the seed clustering by an algorithm tailored more towards identifying heterogeneous clusters, thus allowing

smaller values of K to be used for seed clustering. For example, a method such as PhenoGraph [1], which

does not make any assumptions about the shapes or sizes of clusters, could be used to determine the seed

clusters. The trade-off for using more advanced methods for the seed clustering will generally be increased

computational time, however.

Similarly, for the final clustering step, the Louvain method could be substituted. The Louvain method

is subject to a resolution limit [67] that practically restricts the size and number of clusters that can be

detected in a dataset. It also does not permit the final number of clusters to be specified, but in some

cases this could be desirable. Multi-level Infomap [4] is an alternative hierarchical community detection

algorithm that is not subject to a resolution limit. Spectral clustering is another possibility, which includes

a heuristic for selecting the best number of clusters. Nevertheless, as I have shown, the Louvain method

still performed well. The performance of my pipeline even when pairing ASTRICS with very simple and

efficient clustering algorithms provides a very strong baseline for the potential benefits of using ASTRICS.

Even as the development of new clustering algorithms continues, ASTRICS can be paired with them to

further enhance clustering.

Although I have demonstrated application of ASTRICS within a pipeline for visualizing and clustering

a single set of HD data, I point out that ASTRICS has other utilities. Firstly, there is no requirement that

the seed clusters all belong to the same dataset; the seed clusters could originate from multiple datasets as

long as they share a common set of dimensions (i.e. features) from which ASTRICS can proceed. Hence,

ASTRICS followed by a similarity- or graph-based clustering algorithm could be used to aggregate existing

clusters from multiple sources. Along similar lines, ASTRICS in isolation could be used simply as a method

to score the similarities between clusters from one or multiple datasets. For example, if clinical biomedical

data from multiple patients or from multiple time points of a longitudinal study of a single patient has already

been clustered for each patient or time point individually, ASTRICS could be used to identify the most
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similar clusters between different patients or time points. Furthermore, ASTRI, the inter-cluster similarity

computation component of ASTRICS without the local DR step, is a novel similarity measure in its own

right. ASTRI can serve as an alternative to measures such as the discrete Bhattacharyya coefficient for

quantifying the similarity between spatial point clouds. The development of ASTRICS was motivated by my

own research project (which is described in Chapter 4 of this dissertation) involving CyTOF and demanding

improved methods for analyzing HD CyTOF data, but ASTRI could equally be applied to clusters from 2D

or 3D spatial data. Indeed, the general seed–ASTRICS–clu pipeline that I have described here, but without

the local DR step of ASTRICS (so a seed–ASTRI–clu pipeline), could be used to cluster spatial data.

Finally, I discuss the time complexity of ASTRICS. For a pair of clusters, this depends on computations

in each of the following steps: preliminary outlier detection (preliminary step One), local DR (the CS

step), and similarity computation using computational geometry (the ASTRI step). The time complexities

of both the preliminary outlier detection and local DR steps are dominated by PCA or SVD. The outlier

detection step potentially also requires nearest neighbour searches, but these have a lesser time complexity.

Computation of alpha shapes determines the time complexity of the ASTRI step. For n data points with

d dimensions, PCA or SVD can be implemented with a time complexity of O(min{n2d, nd2}). Alpha

shapes can be computed in O(n log n) time. Hence, the overall time complexity for ASTRICS to compute

the similarity of two clusters is O(nt), where n is the number of data points in the cluster pair and t =

min{nd, d2}+ log n.

However, the actual time complexity for applying ASTRICS to a set of K > 2 clusters, as in a seed–

ASTRICS–clu/vis pipeline, is difficult to ascertain because it depends on the specific partitioning of the

data. Preliminary step Two, which has a time complexity ofO(min{K2d, Kd2}) dominated by application

of PCA to the K cluster centroids, restricts the number of pairs of clusters to which ASTRICS must be

applied. In the worst-case scenario the core ASTRICS algorithm would be performed O(K2) times. The

number of data points in each cluster depends on K and the structure of the data, but on average each

cluster would contain N/K data points, where N is the total number of points in the dataset. Therefore,

we can estimate the time complexity of ASTRICS for an average pair of clusters by substituting n =

2N/K above. Multiplying the resulting average estimate by the worst-case number of cluster pairs and

adding the complexity of preliminary step Two yields an estimated worst-case overall time complexity of

O(KNt + Kds) where now t = min{2Nd/K, d2} + logN − logK + log 2 and s = min{K, d}. Over

the range of suitable values for K, this is an increasing function of K. The computation times of the seed

and final clustering steps of a complete seed–ASTRICS–clu pipeline also increase withK. As a result, there

is a trade-off between speed and accuracy of my two-tiered pipeline built around ASTRICS for clustering

and visualization. Larger values of K will yield higher-purity seed clusters in the first tier and consequently

better quality visualization and clustering results in the second tier, as long as the seed clusters are large

enough for the local DR and computational geometry methods to be reliable and to avoid overfitting, but this

comes at the cost of greater computation time. I emphasize, however, that ASTRICS is easy to parallelize for

K > 2 clusters because computations for different cluster pairs are independent. Therefore, the potentially

high computational cost of ASTRICS can be mitigated by parallel computing.
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A function for implementing ASTRICS in MATLAB (MathWorks) with parallel computing is freely

available from https://bitbucket.org/jscurll/astrics/src/master/. As a fully automated method for computing

inter-cluster similarities, it is free from subjective user bias. This includes freedom from subjective dis-

cretization of the data space, which would be required for existing statistical measures of similarity between

two finite sets of points. Used in the ways that I have discussed, I believe that ASTRICS can become an

effective tool to facilitate analyses of HD data, especially in the biomedical sciences.
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Chapter 4

A dissection of phenotypic heterogeneity between
and within diffuse large B-cell lymphoma cell lines
using phospho mass cytometry.

4.1 Introduction
Diffuse large B-cell lymphoma (DLBCL) is a clinically heterogeneous cancer of B cells and is the most com-

mon non-Hodgkin lymphoma [136, 137]. It has at least three molecular subtypes [137–141]. The two major

subtypes are germinal-centre (GC)-B-cell-like (GCB) DLBCL and activated-B-cell-like (ABC) DLBCL.

Primary mediastinal B-cell lymphoma (PMBL) is a third, less prevalent subtype. Based on gene expression,

the GCB subtype appears to be derived from normal B cells found in germinal centres (GCs) [142], which

are sites within secondary lymphoid organs where mature B cells that have encountered foreign antigens

proliferate, undergo somatic hypermutation of their immunoglobulin (Ig) genes, and differentiate into either

memory B cells or antibody-secreting cells (plasmablasts and then plasma cells). Ig forms both the B-cell

antigen receptors (BCRs) on the surface of B cells and the antibodies that get secreted by plasmablasts and

plasma cells. In contrast to GCB DLBCL, ABC DLBCL is thought to originate from antigen-activated B

cells that have prematurely stopped differentiating at a later (plasmablast) stage in their development toward

becoming plasma cells [142–146]. Standard of care for DLBCL, regardless of subtype, is R-CHOP, a com-

bination of chemotherapy and the anti-CD20 monoclonal antibody rituximab. CD20 is a cell-surface protein

expressed specifically by B cells, and rituximab depletes B cells by marking all CD20-expressing (CD20+)

cells for destruction by other immune cells, possibly in addition to B-cell intrinsic mechanisms of action

[147]. However, distinct DLBCL subtypes respond differently to treatment, with the ABC subtype being

particularly aggressive and having inferior clinical outcomes. Moreover, malignant B cells can become re-

sistant to rituximab by downregulating expression of CD20 [147, 148]. Precision medicine could improve

clinical outcomes for DLBCL patients by tailoring treatment to their specific diseases.

There are two main types of precision medicine that target specific molecules. The first type, of which

rituximab is an example, uses monoclonal antibodies that bind to the target molecule. This either inter-
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feres with the normal function of the molecule or marks cells that express the molecule on their surface for

destruction by immune cells. The second type uses small-molecule inhibitors to target specific signalling

molecules in dysregulated signalling pathways to which cancer cells are addicted. New therapeutic targets

for treatment of a cancer can be proposed by identifying cell-surface molecules that are expressed highly

and specifically by, or signalling pathways that are constitutively active in, cancer cells. In the case of

DLBCL, different subtypes depend on different signalling pathways, and there is additional heterogeneity

within subtypes. A hallmark of ABC DLBCL is constitutive activation of the nuclear factor κ-light-chain-

enhancer of activated B cells (NF-κB) transcription factor [149], and this often stems from chronic active

BCR signalling [13]. Signalling molecules in the BCR–NF-κB signalling cascade, for example Bruton’s

tyrosine kinase (Btk), are therefore being investigated for targeted therapeutic inhibition in ABC DLBCL

[14, 150], and a phase I/II study showed that ABC DLBCL has a much better response rate to ibruti-

nib, which inhibits Btk, than GCB DLBCL (37% versus 5%) [151]. However, an activating mutation in

CARD11, a scaffold protein downstream of Btk in the BCR–NF-κB cascade, can sustain NF-κB activation

without BCR involvement and can thus confer resistance to therapies that target chronic BCR signalling

[13, 152]. CARD11-mutant DLBCLs might instead respond favourably to therapies targeted further down-

stream, such as IκB-kinase (IKK) inhibitors or proteasome inhibitors. Involvement of other mutations and

signalling pathways have been observed in ABC DLBCL [140, 146, 153–156] and could also affect re-

sponses to targeted therapies. On the other hand, GCB DLBCL but not ABC DLBCL commonly displays,

for example, dysregulated phosphatidylinositol 3-kinase (PI3K) signalling [157]. Further characterization

of protein quantities and signalling levels in DLBCL subtypes can add to the existing body of literature,

which will inform the development of improved therapeutic strategies for DLBCL.

Furthermore, different cells in the same tumour (of any cancer) can have different mutations, antigen

quantities, or signalling pathway dependency. This intratumoural heterogeneity is problematic for targeted

therapies because some of the tumour cells may be resistant to a given therapy even if most are sensitive.

Darwinian evolution then results in outgrowth of the resistant cells, leading to growth of a drug-resistant

tumour. An optimal treatment regimen for a DLBCL patient would likely require a combination of targeted

therapies in order to effectively attack the heterogeneous population of tumour cells and prevent any sub-

populations from escaping treatment. Hence, characterization of heterogeneity within individual DLBCL

tumours, and not just of distinct DLBCL subtypes, is needed in order to reveal the possible intratumour

landscape of cell phenotypes that may be sensitive or resistant to specific therapies.

Theoretically, mass cytometry, also called cytometry by time of flight (CyTOF), might be the most suit-

able existing technological method for performing the kinds of characterizations called for above. Although

genomic alterations and gene expression are important and have been well studied in DLBCL [140, 142], the

associated methods cannot inform about protein quantities or about the activity levels of specific signalling

molecules other than transcription factors. Quantities of proteins often correlate poorly with quantities of

the messenger RNA (mRNA) from which they are translated (i.e. gene expression levels), while the activ-

ity of signalling molecules usually depends on post-translational modifications, such as phosphorylation,

of the molecules. Therefore, since monoclonal antibodies and small-molecule inhibitors bind to proteins,
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the actual proteins need to be assayed directly in order to provide more complete information to guide the

development of therapeutic strategies. CyTOF is an appropriate assay to achieve this.

Conceptually similar to flow cytometry (FC), CyTOF is a high-throughput method to detect antigens

in single cells. Antigens are labelled by specific antibodies conjugated to “mass tags” (isotopes of heavy

metal elements) that get detected by time-of-flight mass spectrometry. By conjugating different antibodies

to different unique mass tags, over 30 antigens can be detected simultaneously by CyTOF, and by using

“phospho-specific” antibodies, which only recognize specific phosphorylated forms of proteins (phospho-

proteins), it is possible to specifically detect only active signalling molecules. Previously, FC has been used

to reveal distinct patterns of BCR signalling in a variety of non-Hodgkin lymphomas including DLBCL

[158], but the number of antigens that were profiled was limited compared to the capabilities of CyTOF.

CyTOF has been used before to investigate phenotypic heterogeneity in DLBCL [159], but phospho-proteins

were not profiled. We hence embarked on a project with the following two aims:

1. To investigate whether CyTOF, coupled with unsupervised computational clustering, has the potential

to reveal B-cell subpopulations that have different patterns of signalling pathway activity, or different

quantities of relevant proteins, within a heterogeneous DLBCL sample.

2. To better characterize signalling and protein expression in a variety of DLBCL cell lines.

Aim 1 was the driving force behind the project, and the methodological design for pursuing Aim 1 enabled

Aim 2. The original idea was to develop a panel of mass-tag–conjugated antibodies for CyTOF (a “CyTOF

panel”) and an unsupervised analysis pipeline that would be able to identify possible therapeutic vulnera-

bilities in the different B-cell subpopulations of a heterogeneous DLBCL. The overall approach could have

diagnostic utility in the future, similar to FC in the present day, if the cost of CyTOF comes down sufficiently.

Meanwhile, it would rationally propose combination therapies for pre-clinical studies.

To achieve these aims, we built a panel of 33 mass-tag–conjugated antibodies to simultaneously detect

cell-surface quantities of eight proteins, total cellular quantities of six proteins regardless of phosphorylation

status, and 19 phospho-proteins. In parallel, and specifically for Aim 1, we developed a new computational

methodology, which is described separately (see Chapter 3), for clustering and visualizing high-dimensional

data such as CyTOF data. The new computational clustering methodology was developed to alleviate diffi-

culties of choosing user-input parameters for existing clustering algorithms. User-input parameters directly

or indirectly control the number of output clusters, but the ‘correct’ number of clusters is typically un-

known. Current advice for clustering CyTOF (or FC) data is to choose input parameters conservatively so

as to ‘over-cluster’ the data (i.e. generate too many clusters) and then merge clusters based on manual in-

spection [100]. The clustering methodology that we devised starts with an initial over-clustering step using

any existing algorithm, then it applies a fully automated method, which we called ASTRICS, to compute

inter-cluster similarities based on local dimensionality reduction and computational geometry. The inter-

cluster similarity scores are then used to generate a weighted graph with the initial clusters as its nodes

and the similarity scores as edge weights. The graph can subsequently be used for further clustering (by
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“community detection” [52]) and visualization (by force-directed layout [104]) without the need for addi-

tional user-input parameters. We have tested an ASTRICS-based clustering pipeline on publicly available

39-dimensional immunophenotyping CyTOF data, and we showed that it was able to recover known cell

populations more accurately than FlowSOM [101] (see Chapter 3), the currently recommended clustering

algorithm for general CyTOF data [100].

Before a new CyTOF panel and cluster analysis method can be applied to investigate heterogeneity

within clinical DLBCL samples, however, they must first be validated in a controlled setting where under-

lying heterogeneity is already known. The suitability of clustering algorithms for CyTOF data is usually

evaluated by comparing their results to cell populations defined by manual gating (a process of sequentially

drawing boundaries around regions in series of biaxial scatter plots that show the per-cell measurements

of two antigens, usually lineage markers, at a time). However, clinically important subpopulations of B

cells in a heterogeneous DLBCL might be phenotypically distinct in high-dimensional space but impossible

to identify and delineate using only biaxial scatter plots. Therefore, this project sought to conduct well-

controlled in-vitro CyTOF experiments to simulate heterogeneous B-lymphoma cell populations composed

of known cellular subpopulations that were objectively defined and would likely overlap in biaxial scatter

plots. Barcoded mixtures of DLBCL and Burkitt’s lymphoma (BL) cell lines in resting and various stim-

ulated conditions were used for this purpose. The generated data provide a new, alternative standard for

testing clustering algorithms on CyTOF data. The CyTOF experiments concurrently enabled rich charac-

terization of the 14 B-lymphoma cell lines used for the project. Altogether, the quantities of select antigens

(proteins and phospho-proteins) were investigated in 12 DLBCL (5×GCB, 6×ABC, 1×PMBL) and two

BL cell lines using phospho-specific CyTOF (phospho-CyTOF).

Herein, results of applying the ASTRICS-based clustering method to the B-cell CyTOF data are pre-

sented. They show that our phospho-CyTOF panel and clustering methodology can accurately separate dif-

ferent cell lines in mixed datasets. Before that, observations about the B-lymphoma cell lines are thoroughly

presented and differences between and heterogeneity within the ABC and GCB subtypes of DLBCL are de-

scribed, albeit based on small numbers of cell lines. The CyTOF data also revealed a surprising amount of

heterogeneity within cell lines. A number of observations recapitulated or supported previously published

findings from western blots, which are mentioned and discussed in the relevant places of the Results section

herein.

The following observations were highlights of this study:

• NU-DUL-1 is an ABC-DLBCL cell line that shares many characteristics with GCB-DLBCL cell lines;

• Five out of six ABC-DLBCL cell lines (NU-DUL-1 being the exception) had lower cell-surface ex-

pression of CD19, an important regulator of BCR signalling, compared to the other six DLBCL and

two BL cell lines;

• Steady-state phosphorylation of Akt was not greater in GCB-DLBCL cell lines than ABC-DLBCL

cell lines despite the believed involvement of Akt-dependent tonic BCR signalling specifically in the

survival of cells of the GCB DLBCL subtype;
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• MKK4 phosphorylation was elevated at baseline in the ABC-DLBCL cell lines HBL-1, OCI-Ly3, and

OCI-Ly10 and might therefore mediate constitutive JNK pathway activation in those three cell lines;

• Low and high signalling states were present together simultaneously in cell lines, with the ABC-

DLBCL cell lines HBL-1 and OCI-Ly10 having particularly heterogeneous MAPK and Akt sig-

nalling;

• Cell-cycle–dependent dynamics of ribosomal protein S6 phosphorylation and of turnover of IκBα

protein, a negative regulator of NF-κB, differed between the GCB and ABC subtypes of DLBCL.

This project concluded with phospho-CyTOF analysis of 14 monoclonal cultures derived from single cells

and kept in identical conditions for 8 months for the GCB-DLBCL cell line Karpas-422 and the ABC-

DLBCL cell line HBL-1. Notable findings from this analysis were that cell-surface expression of CD20 and

CD19 varied widely between the clonal cultures of, respectively, Karpas-422 and HBL-1. This included

almost complete loss of cell-surface expression of CD20 in one Karpas-422 clonal culture and of CD19 in

one HBL-1 clonal culture. These findings suggest that cells that could be resistant to therapy targeting CD20

or CD19 may be present in DLBCL tumours prior to treatment.
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4.2 Results I: CyTOF panel and design of CyTOF experiments

4.2.1 A phospho-CyTOF panel to investigate intracellular signalling in DLBCL

We used known B-cell and DLBCL biology to guide our selection of epitopes for a panel of mass-tag–

antibody conjugates in order to study heterogeneity and intracellular signalling in DLBCL using CyTOF.

Because intracellular signalling was central to our aims, we focused heavily on phosphorylated intracellular

epitopes. We selected phospho-epitopes that are involved in BCR signalling, especially the BCR–NF-κB

axis, which is important in ABC DLBCL, and tonic BCR signalling through Akt (also known as protein

kinase B), which is involved in GCB DLBCL [160]. We included phosphorylated signal transducer and

activator of transcription 3 (p-STAT3; we hereafter use the notation p-XYZ to denote a phosphorylated

form of a molecule XYZ) for our CyTOF panel because STAT3 activation has been observed at baseline in

cases of ABC DLBCL [153, 161]. We also included several phospho-epitopes involved in mitogen-activated

protein kinase (MAPK) signalling, such as p-JNK and p-ERK. In total, we selected 19 phospho-epitopes,

including pan–phospho-tyrosine (p-Tyr), for our CyTOF panel. Separate antibodies for detection of both

total and phosphorylated CD79a, which forms part of the signalling subunit of the BCR, were included in

our panel. We also used antibodies to detect total abundance of the following five intracellular proteins:

IκBα, which sequesters NF-κB in the cytosplasm and must be degraded for NF-κB to be released and

translocate to the nucleus where it promotes the transcription of pro-survival genes; Bcl-2 and Bcl-6, which

are frequently involved in DLBCL [140, 146, 162]; Bcl-xL, which, like Bcl-2, is a pro-survival factor whose

expression is promoted by NF-κB; and Ki-67, which is an important marker of proliferating cells. All of

the antigens alluded to above were immunolabelled after fixation and permeabilization of cells. In addition,

we selected eight cell-surface antigens to be labelled for detection prior to cell permeabilization. These

were mostly molecules that are involved in BCR signalling, including the two most relevant isotypes of

BCRs (IgM and IgG), but we also included CD20 due to its clinical relevance as the target of rituximab.

Figure 4.1 shows antigens detected by our CyTOF panel in the context of signalling pathways in B cells.

Furthermore, we included 5-iodo-2’-deoxyuridine (IdU) in our CyTOF protocol as a marker of cells in

S phase, the synthesis phase of the cell cycle during which DNA replication occurs. IdU integrates into

DNA during replication and is detectable by CyTOF [163]. In sum, our CyTOF panel was designed to

detect expression of clinically relevant antigens and activity of signalling molecules involved in oncogenic

pathways in DLBCL while providing some cell-cycle information that might account for some phenotypic

heterogeneity within samples.

4.2.2 Design of CyTOF experiments to characterize DLBCL cell lines and test the
accuracy of unsupervised clustering of heterogeneous DLBCL samples

We devised CyTOF experiments using DLBCL cell lines to serve two concurrent purposes:
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Figure 4.1: Overview of CyTOF experimental design. Caption continues . . .
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Figure 4.1: Schematic (top) of the general design of CyTOF experiments and a simplified network illustra-
tion (bottom) of intracellular signalling in B cells, highlighting antigens for the CyTOF panel. The CyTOF
panel included separate antibodies for two different phospho-specific Akt epitopes and also included anti-
bodies for total CD79a and general phospho-tyrosine residues, which are not shown in the figure.

1. To test how accurately phospho-CyTOF and a computational clustering pipeline utilizing ASTRICS

might together be able to recover meaningful constituent B-cell phenotypes in heterogeneous DLB-

CLs;

2. To characterize (phospho-)antigen expression in a selection of DLBCL cell lines and investigate dif-

ferences between, and heterogeneity within, the ABC and GCB DLBCL subtypes.

To achieve the first purpose, we needed to create heterogeneous mixtures of DLBCL cells in which well-

defined component populations (i.e. ‘ground-truth’ clusters) could be identified objectively from the data.

This would enable the accuracy of any clustering algorithm to be evaluated by comparing its output clus-

ters to the ‘ground-truth’ clusters. Believing (presumptuously, as it turns out) that most cell lines would be

relatively homogeneous, we used 12 DLBCL and two BL cell lines as the ‘ground-truth’ component pop-

ulations for heterogeneous mixtures. The 12 DLBCL cell lines included six assigned to the ABC subtype

(HBL-1, NU-DUL-1, OCI-Ly3, OCI-Ly10, TMD8, and U2932), five assigned to the GCB subtype (Karpas-

422, Pfeiffer, SU-DHL-8, SU-DHL-10, and Toledo), and one assigned to the PMBL subtype (U2940). The

two BL cell lines were BJAB, which is often incorrectly classified as GCB DLBCL, and Ramos. Ad-

ditionally, to generate phenotypic differences exclusively due to signalling activity, we treated cell lines

with either a cocktail of anti-Igκ and anti-Igλ (henceforth anti-Igκ/λ) to stimulate BCR signalling, phorbol

12-myristate 13-acetate (PMA) to activate protein kinase C (PKC), or IL-10 to stimulate IL-10 receptor

(IL-10R)–dependent activation of STAT3. The various stimulated cell lines provided another set of ‘ground-

truth’ component populations and furthermore allowed us to characterize the responses of some DLBCL

cell lines to extrinsic stimuli.

We uniquely labelled cells in different ‘ground-truth’ component populations using palladium-based

barcodes [164] and then mixed them together, stained the mixture with our panel of mass-tag–antibody

conjugates, and performed CyTOF (Figure 4.1). The barcodes enabled the ‘ground-truth’ cellular clusters

to be objectively identified from the data. Although we could have performed CyTOF on the component

samples separately and mixed them in silico to simulate heterogeneity, this might have introduced batch

effects, which our strategy avoided. The use of barcodes eliminated subjective decisions, such as manual

gate boundaries, from the definition of ‘ground-truth’ clusters and allowed clusters to potentially overlap in

phenotype space. Moreover, different cell lines belonging to the same lymphoma subtype could potentially

be more similar to each other phenotypically than are different manually gated cell populations. Data gen-

erated by our strategy thus offer a new standard for testing unsupervised clustering algorithms on CyTOF

data and may present a greater challenge to algorithms than the current gold standard of manually gated cell

populations.
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Using the available palladium-based barcoding reagents, up to 20 samples could be labelled with unique

barcodes and subsequently pooled for concurrent staining and processing. Three of the 20 possible barcodes

were always reserved for “mass-minus-multiple” (MMM) control samples in order to compensate for signal

spillover between CyTOF mass channels, as described in Chapter 5. Consequently, we could pool up to

17 ‘ground-truth’ component samples in any one experiment. Given this constraint, we performed the

following three CyTOF experiments. In Experiment 1, we pooled all 14 cell lines (12× DLBCL, 2× BL)

in non-stimulated conditions. To those we added three samples of stimulated BJAB cells: one stimulated

by anti-Igκ/λ, one stimulated by PMA, and one stimulated by IL-10. In Experiments “4x4-GCB” and “4x4-

ABC”, we pooled non-stimulated and separate anti-Igκ/λ–, PMA-, and IL-10–stimulated samples from four

different cell lines for a total of 16 pooled samples per experiment. The BL cell line BJAB accounted for

one of the cell lines in each of these two experiments. The remaining three cell lines were either the GCB-

DLBCL cell lines Karpas-422, SU-DHL-10, and Toledo (4x4-GCB) or the ABC-DLBCL cell lines HBL-1,

OCI-Ly3, and TMD8 (4x4-ABC). The BJAB samples provided consistent internal controls across all three

experiments. After pooling, samples were stained with our CyTOF panel of mass-tag–antibody conjugates.

Cell-surface and intracellular epitopes were stained, respectively, before and after permeabilization of cells.

During both staining steps, we additionally stained our samples with two mass-tag–conjugated antibodies

that bind specifically to murine CD117 (mCD117; murine c-Kit) and murine CD115 (mCD115). Human

CD117 and CD115 are not present on B cells. We included antibodies against mCD117 and mCD115 to

serve as universally negative control stains in our samples in order to identify and exclude from analysis cells

that displayed high non-specific staining and to identify any variability in non-specific staining between cell

lines, which could otherwise lead to false interpretation of the data.

Altogether, our CyTOF experiments allowed us to test whether analysis of DLBCLs using our phospho-

CyTOF panel and unsupervised clustering based on ASTRICS has the potential to reveal clinically relevant

clusters of cells. They also allowed us to characterize baseline signalling in 12 DLBCL cell lines and the

signalling responses to stimuli in three ABC-type and three GCB-type DLBCL cell lines.
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4.3 Results II: Sequencing of CARD11

4.3.1 Sequencing confirms a missense CARD11 mutation in OCI-Ly3 and reveals a
recurring synonymous CARD11 mutation in three ABC-DLBCL cell lines

Downstream of BCR signalling, CARD11 (also known as CARMA1) is a scaffold protein that assembles

with Bcl-10 and MALT1 to form one of four “CBM” signalosome complexes (the other three being formed

when Bcl-10 and MALT1 assemble with one of CARD9, CARD10, and CARD14, three homologues of

CARD11) [165, 166]. The assembled CARD11 CBM complex activates the NF-κB signalling pathway

[165, 166] (see Figure 4.1), which is central to ABC DLBCL. Missense mutations that cause CARD11 to

always adopt an active state are present in, or immediately adjacent to, the coiled-coil domain of CARD11 in

approximately 10% of ABC-DLBCL biopsies but only around 4% of GCB-DLBCL biopsies [152] and can

negate the need for chronic BCR signalling in ABC DLBCL. OCI-Ly3, one of the ABC-DLBCL cell lines

used in our project, was known to have a missense L251P CARD11 mutation (note that two CARD11 ref-

erence sequences misaligned by seven amino acid residues appear to be in use, with L251P alternatively re-

ported as L244P; herein, we use the reference that adds seven residues to positions in the other) [152] and to

be insensitive to knockdown or inhibition of Btk [13, 167, 168], a signalling molecule in the BCR signalling

pathway upstream of the CBM complex (see Figure 4.1). An aim of our project was to develop a method-

ology based on CyTOF to identify elevated baseline quantities of specific phospho-proteins in DLBCL cells

with the view that these might indicate therapeutic vulnerabilities. Therefore, since CARD11 mutation is

a known mechanism of NF-κB pathway activation in ABC DLBCL that can render ABC-DLBCL cells in-

sensitive to inhibition of BCR-pathway molecules upstream of the CBM complex, it would be important to

interpret the phospho-CyTOF data in the context of the CARD11 mutation status of cells. In particular, it

would be important to evaluate whether phospho-protein levels alone would falsely indicate BCR-pathway

molecules upstream of the CBM complex as being potential therapeutic targets in CARD11-mutant ABC-

DLBCL cells and whether NF-κB pathway activation can be detected in ABC-DLBCL cells by CyTOF

regardless of CARD11 status. We consequently characterized the mutation status of the coiled-coil domain

of CARD11 in our 14 B-lymphoma cell lines.

Besides OCI-Ly3 harbouring the L251P CARD11 mutation, several other cell lines used in our project

were already known to have no missense mutations in the coiled-coil domain of CARD11. However, several

cell lines used in our project had unknown CARD11 mutation status. To either confirm or discover the

mutation status of the coiled-coil domain of CARD11 in all 14 B-lymphoma cell lines used in our project,

we sequenced exons 4–10 of CARD11 in every cell line. All missense and synonymous CARD11 coiled-

coil mutations that were detected in any cell lines are summarized in Figure 4.2a. This confirmed that the

OCI-Ly3 cell line in our hands had the L251P mutation in exon 4 of CARD11. No missense mutations

were detected in any of the other 13 cell lines. Based on these results and prior knowledge about DLBCL

subtypes, we would expect to observe signatures of both chronic active BCR signalling and NF-κB pathway

activation in the CyTOF data for the five ABC-DLBCL cell lines besides OCI-Ly3 in our project, while we
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would expect to detect NF-κB pathway activation but possibly not chronic BCR signalling in OCI-Ly3 cells.

Similarly, we would not expect to observe NF-κB pathway activation in any of the GCB-DLBCL cell lines.

An interesting incidental finding from the CARD11 sequencing was the presence of a synonymous

D415D (GAC>GAT) mutation (sometimes reported as D408D, depending on the reference sequence) in

three out of six ABC-DLBCL cell lines: NU-DUL-1, OCI-Ly3, and OCI-Ly10. This mutation was not

present in any of the five GCB-DLBCL cell lines nor in the PMBL or BL cell lines, although a synonymous

D533D CARD11 mutation was detected in the BL cell line Ramos. Given three observations of D415D

among 14 cell lines of which 6 were categorized as ABC DLBCL, the probability of all three D415D obser-

vations occurring in ABC-DLBCL cell lines was 5.5% (i.e. p = 0.055) as calculated by Fisher’s one-tailed

exact test. Cases of the synonymous D415D CARD11 mutation have previously been reported in primary

cutaneous large B-cell lymphoma, leg type (PCLBCL-LT) patients [169] and in common variable immunod-

eficiency (CVID) patients [170] but received little attention. Tampella et al. [170] also found, in some CVID

patients, the D533D synonymous mutation (reported as D526D) that we found in Ramos. They found this

mutation, but not D415D, to be significantly more common in CVID patients than controls. The D415D mu-

tation has been described as a benign germline mutation (ClinVar accession RCV000456072.1), but our data

suggests that there may be an association between D415D and ABC DLBCL. Given the asserted germline

origin of D415D, it might be that this genomic variant causes predisposition to ABC DLBCL, perhaps by

altering transcription or protein folding of CARD11 despite the synonymous nature of the mutation. How-

ever, the OCI-Ly10 cell line, which has the D415D mutation, is known from literature to be sensitive to

knockdown or inhibition of Btk [13, 171, 172]. Because Btk functions upstream of CARD11 in the NF-

κB pathway, OCI-Ly10 cells are more likely to depend on chronic BCR signalling than any alterations in

NF-κB activation that might arise from this synonymous CARD11 mutation. Possible effects of D415D

on signalling, if any, are therefore unclear and unlikely to be detectable by our CyTOF panel, especially in

the absence of antibodies to detect activity (not just abundance) of CARD11, Bcl-10, or MALT1, the three

members of the CBM complex, by CyTOF. Further investigation of the D415D mutation in CARD11 in

ABC DLBCL is needed, but it is beyond the aims of our CyTOF-focused study.
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4.4 Results III: Overview of antigen expression levels in DLBCL cell lines

4.4.1 Comparison of antigen expression in ABC-DLBCL and GCB-DLBCL cell lines by
CyTOF

To investigate non-stimulated (i.e. baseline) levels of phospho and non-phospho antigens in our 14 B-

lymphoma cell lines, we used CyTOF Experiment 1, the results of which are shown in Figure 4.2. The

parameters measured by CyTOF (heatmap columns) were normalized to their respective 99th percentiles

in order to accentuate differences in low-intensity antigen stains between samples. Non-specific staining,

as revealed by detection of mCD115 and mCD117 antibodies, was generally low, though some variability

existed between cell lines. The GCB-DLBCL cell line Toledo exhibited substantially lower non-specific

staining than all other cell lines. Non-specific staining was reasonably similar for all other cell lines, but the

variability between samples was nonetheless on a par with the variability of some phospho-antigen stains

with low dynamic range. Antigen detection differences between samples should therefore always be viewed

in relation to the inter-sample variability of non-specific staining. We additionally note that, in all experi-

ments, stimulation of cells with anti-Igκ/λ resulted in apparently decreased cell-surface expression of IgG

and IgM. We suspect that this was caused by the stimulating anti-Igκ/λ antibodies blocking access of the

anti-IgG and anti-IgM detection antibodies to their target epitopes for binding, either directly by occupying

a similar space or indirectly through crosslinking of the receptors thereby reducing the accessible space

between receptors. Thus, data for IgG and IgM should be disregarded for anti-Igκ/λ–stimulated samples.

To compare levels of antigen abundance in cell lines between the ABC and GCB subtypes of DLBCL,

we computed the average baseline expression level of each antigen per cell line (Figure 4.2b). No antigens

(including phospho antigens) had statistically significantly differential levels between the two subtypes when

the family-wise error rate (FWER) or the false discovery rate (FDR) is controlled at the 5% level (by any

standard method, e.g. the Benjamini-Hochberg procedure to control the FDR) during multiple hypothesis

testing (i.e. all antigens had an adjusted p value > 0.05; adjusted p values not shown). However, adjusted p

values are almost certainly too conservative in this situation because many of the antigen levels are likely to

be biologically or biochemically correlated, which breaks the independence assumption made by methods

to control the FWER or FDR. Furthermore, we point out that, despite analyzing large numbers of cells by

CyTOF (> 106 in total per experiment and > 105 per sample), each cell line represented only a single

biological replicate for its lymphoma subtype and therefore sample sizes were very small for comparing

lymphoma subtypes (sample sizes n = 5 for GCB DLBCL and n = 6 for ABC DLBCL). Individual

cells can be considered as biological replicates only for their specific cell line in a specific condition. The

large numbers of analyzed cells thus yield high confidence in the computed per–cell-line averages, but

treatment of individual cells as replicates for lymphoma subtypes would falsely inflate statistical significance

of differential antigen expression between subtypes. Despite the statistical limitations, we observed some

noteworthy trends, which, importantly, were more statistically significant than differences in non-specific

staining.
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Over the following subsections, we provide an overview of antigen levels in the 12 DLBCL and two

BL cell lines that we profiled by CyTOF. We point out the most interesting observations and the strongest

differences between ABC- and GCB-DLBCL cell lines. The levels of numerous antigens varied in cells

based on the cell cycle phases; results related to the cell cycle will be presented following the general

overview of antigen levels. Following the results related to the cell cycle, a thorough analysis of additional

heterogeneity within cell lines is presented. The 4x4-GCB and 4x4-ABC CyTOF experiments are then used

to evaluate the responses of different signalling pathways in ABC-DLBCL and GCB-DLBCL cell lines

to three different acute stimuli. We briefly summarize the main points from our analyses below before

proceeding to the detailed overview of antigen expression levels.

Summary of main points

• Bcl-6, a marker of normal GC B cells, was expressed at low levels in ABC-DLBCL cell lines and was

more prevalent but not ubiquitous in GCB-DLBCL cell lines.

• The anti-apoptotic protein Bcl-2 was expressed highly by most ABC-DLBCL cell lines and variably

by GCB-DLBCL cell lines. Expression of Bcl-2 was linked to the cell cycle in all cell lines, including

Bcl-2− cell lines, increasing presumably during mitosis.

• Expression of Bcl-xL, another pro-survival member of the Bcl-2 family of proteins whose expression

is promoted by NF-κB, was variable in DLBCL cell lines of both the ABC and GCB subtypes.

• CD19, a cell-surface protein and positive regulator of BCR signalling, was expressed at lower levels on

the cell surface in ABC-DLBCL cell lines than GCB-DLBCL cell lines. CD81, which associates with

CD19 to amplify BCR signalling, tended to also have lower expression on cells from ABC-DLBCL

cell lines than GCB-DLBCL cell lines.

• CD79a, a signalling subunit of the BCR, tended to have greater total cellular expression in ABC-

DLBCL cell lines than GCB-DLBCL cell lines, consistent with the need for CD79a for chronic BCR

signalling in ABC DLBCL.

• Baseline phosphorylation of multiple signalling molecules in the BCR signalling pathway was ele-

vated in ABC-DLBCL cell lines compared to GCB-DLBCL cell lines, consistent with chronic BCR

signalling in ABC DLBCL. However, phosphorylation levels associated with chronic BCR signalling

were generally very low compared to the levels induced by acute BCR stimulation, suggesting that

chronic BCR signalling is usually maintained at a low level in ABC-DLBCL cell lines.

• OCI-Ly3, a CARD11-mutant ABC-DLBCL cell line that does not require BCR signalling for cell

survival, had much stronger baseline phosphorylation of multiple signalling molecules in the BCR

signalling pathway than any other ABC-DLBCL cell line. This raises questions about the function of

BCR signalling in OCI-Ly3 cells and the order of acquisition of abnormalities in ABC DLBCL.
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• NF-κB p65 is phosphorylated at serine 536 in ABC-DLBCL cell lines (shown by western blot), con-

sistent with constitutive NF-κB activation in ABC DLBCL, but CyTOF was not able to robustly detect

this. Overall, CyTOF was not suitable for detecting constitutive NF-κB activation based on phospho-

rylation of either NF-κB p65 or its upstream regulator IKK.

• A marked net loss of IκBα, which sequesters NF-κB in the cytoplasm to keep it inactive, occurred re-

producibly during presumptive M phase in a number of ABC-DLBCL cell lines but no GCB-DLBCL,

PMBL, or BL cell lines. This suggests that constitutive NF-κB activation in ABC-DLBCL cell lines

is linked to the cell cycle and peaks during mitosis.

• Phosphorylation of STAT3 was elevated at baseline in three ABC-DLBCL cell lines and one GCB-

DLBCL cell line, though elevated baseline levels of p-STAT3 in ABC-DLBCL cell lines were low

compared to the levels of p-STAT3 induced by acute stimulation of ABC-DLBCL cell lines by IL-10.

• p-Akt and p-rpS6 levels were highly variable in DLBCL cell lines and were not associated with either

the GCB or ABC subtype, despite the known importance of PI3K/Akt signalling in GCB DLBCL.

• The two primary phospho-sites of Akt, T308 and S473, had different dynamics linked to the cell

cycle in DLBCL cell lines, with phosphorylation at T308 increasing much more than phosphorylation

at S473 during presumptive M phase.

• The dynamics of rpS6 phosphorylation linked to the cell cycle differed between ABC-DLBCL and

GCB-DLBCL cell lines, with p-rpS6 levels increasing from S phase to presumptive M phase more

strongly in GCB-DLBCL than ABC-DLBCL cell lines. In two ABC-DLBCL cell lines (OCI-Ly10

and TMD8), p-rpS6 levels in presumed M-phase cells appeared to be correlated with IκBα quantities.

• Three ABC-DLBCL cell lines known to have constitutive JNK activation had elevated baseline levels

of p-MKK4, one of the upstream kinases for JNK, suggesting activation of the MKK4–JNK pathway

in a subset of ABC-DLBCL cell lines.

• The ABC-DLBCL cell line NU-DUL-1 was unusual in that it was more similar in many respects to

GCB-DLBCL cell lines than to other ABC-DLBCL cell lines.

• Two known subclones of the ABC-DLBCL cell line U2932, which can be identified based on their

differential expression of CD20 and Bcl-6, had different levels of signalling via Akt, rpS6, and CREB.

• Baseline MAPK and Akt signalling were very heterogeneous within the ABC-DLBCL cell lines HBL-

1 and OCI-Ly10, with both of these cell lines having a large population of cells in a low-signalling

state and a small population of cells in a distinct high-signalling state.
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4.4.2 Bcl-6 expression was variable in GCB-DLBCL cell lines and low in ABC-DLBCL cell
lines

Bcl-6 is a repressor of gene transcription whose expression in normal B cells is restricted to the GC stage

of development. In normal B-cell development, Bcl-6 is essential for the proliferation and survival of GC B

cells, and downregulation of Bcl-6 may be required for B cells to exit GCs [173–175]. In line with the GC-

restricted function of Bcl-6, expression of its encoding gene, BCL6, has been reported to be preferentially

associated with the GCB subtype of DLBCL [142]. On the other hand, chromosomal translocations that

cause rearrangements of the BCL6 gene that prevent its normal physiological downregulation in post-GC B

cells [175] are especially common in ABC DLBCL, which is believed to originate from post-GC B cells,

and in PMBL [176]. Moreover, a published western blot [177] showed expression of Bcl-6 protein in the

ABC-DLBCL cell lines HBL-1, OCI-Ly3, OCI-Ly10, TMD8, and U2932 (all of which we characterized

by CyTOF). Another published western blot [178] showed expression of Bcl-6 in the ABC-DLBCL cell

lines RI-1, U2932, and U2946, and in the PMBL cell line U2940 (which we also characterized by CyTOF).

Nevertheless, that second western blot [178] showed that the GCB-DLBCL cell lines SU-DHL-10 (which

we also characterized by CyTOF) and OCI-Ly1 had much more Bcl-6 protein than the PMBL cell line

U2940, which in turn had much more than the ABC-DLBCL cell lines RI-1, U2932, and U2946. By

including six ABC-DLBCL cell lines, five GCB-DLBCL cell lines, and one PMBL cell line in the same

CyTOF experiment, our CyTOF data clarifies the situation regarding the levels of Bcl-6 protein in DLBCL

cell lines of different subtypes.

Our CyTOF data in Figure 4.2a–b show that Bcl-6 protein levels were relatively low in four of six

ABC-DLBCL cell lines (HBL-1, TMD8, OCI-Ly10, and OCI-Ly3) and even lower or zero in the other two

ABC lines (U2932 and NU-DUL-1). The PMBL cell line, U2940, had more Bcl-6 than every ABC-DLBCL

cell line. High levels of Bcl-6 protein, at least comparable to the Bcl-6 levels in U2940, were detected

in three of five GCB-DLBCL cell lines (Karpas-422, SU-DHL-10, and Pfeiffer). However, the other two

GCB-DLBCL cell lines (Toledo and SU-DHL-8) had little or zero Bcl-6 protein. These data are consistent

with the published western blots and with the notion that high levels of Bcl-6 are more likely in GCB-type

than ABC-type DLBCL. They suggest that the mechanisms of Bcl-6 expression in ABC-DLBCL cells do

not result in the high levels that are common in GC-derived B cells. However, the CyTOF data show that

Bcl-6 protein is not ubiquitous in GCB-DLBCL cells, despite their GC origin, and that Bcl-6 instead has

heterogeneous abundance in GCB DLBCL.

4.4.3 The pro-survival Bcl-2 family proteins Bcl-2 and Bcl-xL have heterogeneous
expression in DLBCL cell lines

Bcl-2 and Bcl-xL are anti-apoptotic (pro-survival) members of the Bcl-2 family of proteins. Their encoding

genes (BCL2 and BCL2L1 respectively) both have their expression promoted by NF-κB [179, 180], which

is constitutively active in ABC DLBCL. High expression of BCL2 mRNA is associated with the ABC phe-

notype and is less common in GCB DLBCL [142]. In normal GC B cells, BCL2 is a direct target of Bcl-6,
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which suppresses BCL2 expression [181]. Genomic translocation of BCL2, which causes BCL2 overexpres-

sion, and somatic mutations of BCL2 are common in GCB DLBCL [182]. Also, aberrant hypermutation of

the BCL2 promoter in DLBCL may prevent suppression of BCL2 expression by Bcl-6 [181]. Furthermore,

Bcl-2 is a prognostic marker for worse overall survival of ABC-DLBCL patients [180] and strong expres-

sion of Bcl-2 is prognostic of inferior DLBCL response to R-CHOP [183]. Meanwhile, high expression of

Bcl-xL has been associated with worse survival specifically in GCB DLBCL [184], and expression of Bcl-2

or Bcl-xL in DLBCL may be associated with resistance to chemotherapy [185]. Bcl-2 family proteins are

therefore of great significance in DLBCL and are especially important because they are druggable.

Adams et al. [185] provide a review of the Bcl-2 family and efforts to target Bcl-2 family members in

B-cell lymphomas. Smith et al. [186] tested inhibitors of specific anti-apoptotic Bcl-2 family members on

a variety of DLBCL cell lines, including nine that we analyzed by CyTOF, and published western blots

showing the Bcl-2 and Bcl-xL protein levels in those cell lines. Their results showed that DLBCL cell lines

with a very strong dichotomy between the protein levels of Bcl-2 and Bcl-xL (U2932 and SU-DHL-8) were

selectively sensitive to inhibition of whichever of these two Bcl-2 family members was highly expressed.

Otherwise, cell lines were variably resistant to inhibition of either. Hence, the protein levels of multiple

Bcl-2 family members likely impact the sensitivity of DLBCL to inhibitors of specific members.

In our CyTOF data in Figure 4.2a–b, Bcl-2 levels were heterogeneous, ranging from zero to high,

among GCB-DLBCL cell lines. On the other hand, five of six ABC-DLBCL cell lines strongly expressed

Bcl-2. The exception was NU-DUL-1, which had quite low Bcl-2 expression and interestingly shared a

number of characteristics (which will be pointed out later in the relevant places) more with GCB- than

other ABC-type cell lines in our study. The PMBL cell line U2940 expressed Bcl-2 at a similarly low

level. An unexpected observation from our CyTOF data was that Bcl-2 expression appeared to consistently

depend on the cell-cycle phase of cells in all 14 B-lymphoma cell lines in our experiment, including the

cell lines conventionally considered to be Bcl-2−. These observations related to the cell cycle, and other

consequent findings, are presented in detail in later sections (see Figure 4.4 onward). Expression of Bcl-xL

was heterogeneous with no distinction between the ABC and GCB DLBCL subtypes (Figure 4.2a–b). Our

Bcl-2 and Bcl-xL CyTOF data, including the ordering of cell lines by protein levels, were entirely consistent

with the western blots published by Smith et al. [186] for the nine DLBCL cell lines that were common to

both studies. For example, Smith et al. found that U2932 (ABC DLBCL) cells strongly expressed Bcl-2 but

not Bcl-xL and were primarily sensitive to a Bcl-2 inhibitor [186]; in our CyTOF data, the U2932 cell line

had the most Bcl-2 and the least Bcl-xL. Conversely, Smith et al. found that SU-DHL-8 (GCB DLBCL) cells

were primarily sensitive to a Bcl-xL inhibitor [186], and our CyTOF data agrees with their western blots

showing that SU-DHL-8 cells highly expressed Bcl-xL but not Bcl-2. Hence, our CyTOF data reinforces

the data and therefore conclusions presented by Smith et al. Additionally, the data suggest that Bcl-2 protein

expression is more variable among GCB- than ABC-DLBCL cell lines and more likely to be high in ABC-

DLBCL cell lines, which is consistent with literature showing high expression of BCL2 mRNA in ABC

DLBCL compared to GCB DLBCL [142]. On the other hand, the data show that Bcl-xL protein expression

is variable among both ABC- and GCB-DLBCL cell lines and no more likely to be highly expressed in ABC-
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than GCB-DLBCL cell lines despite being promoted by NF-κB. In a future study, it would be interesting

to investigate the response of DLBCL cell lines to combinations of inhibitors of anti-apoptotic Bcl-2 family

members in order to test for potentially synergistic effects, which Smith et al. did not do.

4.4.4 ABC-DLBCL cell lines had lower expression of CD19, a co-receptor for the BCR, on
their cell surface than GCB-DLBCL cell lines

Most of the cell-surface proteins included for detection by our CyTOF panel have direct involvement in

BCR signalling, which is critical to DLBCL. IgM and IgG are two isotypes of Ig that form different BCRs

on the surface of B cells, with expression of IgG only occurring after Ig class switching in GCs. Previous

literature indicates that ABC DLBCLs predominantly express the IgM isotype whereas GCB-DLBCL cells

have usually switched to the IgG isotype [187, 188]. This is not because ABC-DLBCL cells have not yet

experienced the GC reaction that triggers Ig class switching but rather because abnormalities prevent Ig class

switching in ABC DLBCL [188]. IgM-BCRs and IgG-BCRs have different physiological functions: IgM-

BCR signalling is more strongly associated with cell survival, especially via NF-κB activation, a hallmark of

ABC DLBCL, whereas IgG-BCR signalling is more likely to lead to differentiation to the plasma-cell phe-

notype [188]. Hence, IgM-BCRs may be integral to the usual presentation of chronic active BCR signalling

in ABC DLBCL. CD19 and CD81, along with CD21, form the CD19-CD21-CD81 complex, which func-

tions to amplify BCR signalling [189]. CD22 is a negative regulator of BCR signalling [190–192]. CD45

is a cell-surface tyrosine phosphatase expressed by all leukocytes. On B cells, it positively regulates BCR

signalling by dephosphorylating inhibitory phosphorylated tyrosine residues of src family kinases [193].

CD40 is a co-stimulatory receptor that, upon binding to its ligand CD40L on a T cell, initiates a signalling

cascade that starts parallel to the BCR pathway and is required in addition to BCR signalling for full B

cell activation [194]. CD20 is the target of the monoclonal antibody rituximab used in R-CHOP, which is

the standard of care for DLBCL. Given all of these facts, the surface expression of all of these proteins is

relevant to DLBCL.

Figure 4.2a–b shows our CyTOF data for the cell-surface expression of the proteins described above.

All five GCB-DLBCL cell lines plus U2940, the one PMBL cell line, were IgM−, whereas a majority (4/6)

of ABC-DLBCL cell lines and both BL cell lines (BJAB and Ramos) were IgM+. This is consistent with

the prevalence of IgM in ABC DLBCL and IgG in GCB DLBCL. CD20, CD22, and CD45 were variably

expressed by both ABC- and GCB-DLBCL cell lines, though heterogeneity was generally greater among

the GCB-type cell lines. CD40 was also variably expressed by DLBCL cell lines but tended overall to

have slightly higher expression in ABC-DLBCL than GCB-DLBCL cell lines. CD81 was abundant in all

cell lines but had a weak tendency to be expressed more highly by GCB-DLBCL than ABC-DLBCL cell

lines. Statistically, CD19 was the most differentially expressed of the cell-surface proteins between the

GCB-DLBCL and ABC-DLBCL cell lines, with cell-surface CD19 expression greater in GCB cell lines.

Notably, two of the six ABC-DLBCL cell lines, specifically NU-DUL-1 and OCI-Ly3, had IgM− IgG+

phenotypes. Since OCI-Ly3 cells have the activating L251P CARD11 mutation, rendering their survival

independent of chronic BCR signalling, it may be that the BCR isotype is not important to the phenotype of
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Figure 4.2: CyTOF data and CARD11 coiled-coil mutations for 12 DLBCL and two Burkitt’s lym-
phoma (BL) cell lines. Cell-line abbreviations: K422 = Karpas-422; NUDUL1 = NU-DUL-1; Ly3 =
OCI-Ly3; Ly10 = OCI-Ly10. (a) Heatmap of data from CyTOF Experiment 1. Rows correspond to single
cells grouped by cell line. Columns correspond to antigens (or IdU) detected by CyTOF. Colour shows
the normalized CyTOF signal for each antigen (or IdU) in each cell. Missense and synonymous CARD11
coiled-coil mutations are displayed next to cell lines. The heatmap shows data after compensation and trans-
formation by X 7→ sinh-1(X/10). Each column was normalized to its own 99th percentile, the exact value
of which is shown above the column. Within the block of rows for each cell line, rows were ordered first by
cell-cycle group (Group 1, then S-phase, then Group 3, then presumptive M phase; see later for details) and
then in order of increasing Ki-67 (second column) within each cell-cycle group. IdU (first column) marks S
phase. Caption continues . . .
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Figure 4.2: (a) continued. The last two columns (mCD115 and mCD117) correspond to anti-mouse anti-
bodies for two markers that are absent from B cells and therefore exclusively show non-specific staining. For
the sake of visualizing the heatmap, 20, 000 cells were randomly sampled from the data (without replace-
ment) for each unique biological sample. (b) Average normalized antigen-expression values for individual
ABC- and GCB-DLBCL cell lines and the unadjusted statistical significance of their differences between the
ABC and GCB DLBCL subtypes. Each trace represents one ABC-DLBCL cell line (blue except for OCI-
Ly3, which is red) or one GCB-DLBCL cell line (yellow) and, for each antigen, shows the 50%-trimmed
mean expression of all cells after data processing and normalization to the 99th percentile as for the heatmap.
OCI-Ly3 was included in the ABC subtype for statistical tests. Raw (unadjusted) p values were computed
using a two-tailed t test. The two markers of non-specific staining are highlighted in pink. (c) A western blot
(top) for phospho-NF-κB p65 in four ABC-DLBCL, one GCB-DLBCL, and one BL cell line and a bar rep-
resentation (bottom) of the means of the compensated (but not arsinh-transformed) CyTOF measurements
for phospho-NF-κB p65 in the same cell lines (bar heights are relative only).

OCI-Ly3 cells due to their activating CARD11 mutation downstream of BCR signalling. This reasoning is

unlikely to apply to NU-DUL-1 cells, however, which have only the synonymous D415D CARD11 muta-

tion. Interestingly, though, the IgM− IgG+ phenotype of NU-DUL-1 was one of several characteristics that

it shared mostly with GCB-type cell lines. Expression levels of CD19 and CD81 on NU-DUL-1 cells were

generally also more similar to GCB-type than other ABC-type cells. NU-DUL-1 expressed one of the high-

est levels of CD19, whereas CD19 expression was lower in all of the other five ABC-DLBCL cell lines than

in every GCB-DLBCL, PMBL, and BL cell line in our experiment. Similarly, NU-DUL-1 cells had very

high cell-surface expression of CD81, greater than CD81 expression on cells in the other five ABC-DLBCL

cell lines yet similar to its expression on cells in three of the five GCB-DLBCL cell lines. These data sug-

gest that NU-DUL-1 exists either between the usual GCB and ABC phenotypes on a continuous spectrum

of disease states or as a hybrid of both phenotypes. Either way, assuming the classification of NU-DUL-1

as an ABC-DLBCL cell line to be correct, the data imply that features of ABC DLBCL (e.g. constitutive

activation of NF-κB) are possible without either cell-surface expression of IgM-BCRs or a missense mu-

tation in CARD11. The ABC features of NU-DUL-1 cells must therefore arise from IgG-BCR signalling

and/or other alterations. Additionally, the reduced cell-surface expression of CD19 in ABC-DLBCL cell

lines, except for the unusual NU-DUL-1, compared to GCB-DLBCL cell lines might point to altered inter-

actions between BCRs and CD19 on ABC-DLBCL cells. Perhaps downregulation of cell-surface expression

of CD19 reduces CD19-mediated enhancement of BCR signalling in order to keep chronic BCR signalling

at a sufficiently low level to not induce cell death or rapid BCR internalization. This hypothesis would

require further investigation. Alternatively, lower expression of CD19 on ABC-DLBCL cells could be due

to their presumed origin as post-GC B cells that were blocked from differentiating to plasma cells, as CD19

expression is normally lost during this terminal differentiation.
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4.4.5 Constitutive NF-κB signalling in ABC-DLBCL cell lines was difficult to detect by
CyTOF

ABC DLBCL is defined by constitutive activation of NF-κB. Downstream of active CARD11, phosphoryla-

tion of the IKK catalytic subunit IKKβ activates IKK. Once activated, IKK phosphorylates IκBα, which then

gets degraded to release NF-κB for translocation to the nucleus, where it regulates transcription of genes.

Phosphorylation of the NF-κB p65 subunit at numerous residues including S536, which can be mediated

by numerous kinases including IKK, additionally regulates p65 activity and degradation. See Figure 4.1

for an illustration of the signalling pathway. The gene encoding IκBα is a transcriptional target of NF-κB,

which creates a negative feedback loop, and therefore steady-state quantities of IκBα do not necessarily re-

flect NF-κB activity [149]. We investigated whether constitutive activation of the NF-κB pathway could be

detected in ABC-DLBCL cell lines based on detection of phospho-IKKα/β (p-IKK), phospho-S536 NF-κB

p65 (hereafter p-NF-κB p65 or simply p-p65), and/or total IκBα by CyTOF.

By western blot, we found that the ABC-DLBCL cell lines HBL-1, TMD8, OCI-Ly10, and OCI-Ly3

had greater abundance of p-p65 than both the GCB-DLBCL cell line Karpas-422 and the BL cell line BJAB,

with HBL-1 having the most and TMD8 the least of those four ABC-DLBCL cell lines (Figure 4.2c). De-

tection of p-p65 by CyTOF was very weak in comparison, perhaps because p-p65 molecular interactions,

DNA binding, or modifications (e.g. ubiquitination) hindered its binding by the anti–p-p65 CyTOF anti-

body. Notwithstanding, p-p65 was the second most statistically significantly differentially detected antigen

between ABC- and GCB-type DLBCL cell lines in our CyTOF data, with abundance elevated in the ABC

subtype (Figure 4.2b). Our CyTOF data also showed a very slight tendency for p-IKK levels to be higher in

ABC-type than GCB-type DLBCL cell lines (Figure 4.2b). Effect sizes considering the single-cell distri-

butions of antigen detection by CyTOF were small for both p-IKK and p-p65, however, and CyTOF lacked

the sensitivity to accurately order cell lines by phospho-epitope abundance. Although these data are con-

sistent with the known constitutive activation of NF-κB in ABC DLBCL, CyTOF measurements of NF-κB

pathway phosphorylation lacked sensitivity and likely underestimated the magnitude of upregulation.

IκBα had more diverse CyTOF measurements than p-IKK and p-p65. IκBα was most abundant by

far in the GCB-DLBCL cell line Pfeiffer, followed by the BL cell line Ramos, the GCB-DLBCL cell line

Toledo, and the PMBL cell line U2940 (Figure 4.2a). The ABC-DLBCL cell lines OCI-Ly10 and U2932

had the lowest quantities of IκBα. Nonetheless, ABC-DLBCL cell lines did not have significantly less IκBα

than GCB-DLBCL cell lines on average (Figure 4.2b). Strikingly, the widths of the distributions of IκBα

quantities varied greatly between cell lines (Figure 4.3a). Five of six ABC-DLBCL cell lines (OCI-Ly10,

U2932, TMD8, HBL-1, and OCI-Ly3) together accounted for 71.9% of all resting (i.e. non-stimulated) cells

in the experiment (including the BL and PMBL cell lines) that had quantified IκBα abundance < 10 (or <

0.881 after transformation byX 7→ sinh-1(X/10) as on figure axes) despite only accounting for 33.4% of all

resting cells. However, TMD8 and especially HBL-1 and OCI-Ly3 had particularly wide IκBα distributions

that extended beyond the distributions for the sixth ABC-DLBCL cell line NU-DUL-1, the GCB-DLBCL

cell lines Karpas-422, SU-DHL-10, and SU-DHL-8, and the BL cell line BJAB. Although average quantities
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of IκBα were not necessarily lower in ABC- than GCB-DLBCL cell lines, the greater proportions of cells

with very low quantities of IκBα in ABC-DLBCL cell lines could be linked to constitutive NF-κB activity.

For example, viewing constitutive NF-κB activation as a dynamic process that may not be in a perpetual

state of equilibrium, the cells with very little IκBα could be at a stage when there is increased degradation

of IκBα relative to its production. In fact, as will be seen later (see Figure 4.6a), IκBα levels were linked

to the cell cycle in a majority of the ABC-DLBCL cell lines in a manner that was not observed in any of

the other cell lines and would support this theory. Overall, CyTOF is not an ideal method to assess NF-

κB activity based on phosphorylation of NF-κB p65 at residue S536 and western blot should be preferred.

Nevertheless, taking the cell cycle into consideration, evaluation of IκBα and p-IKK levels by CyTOF

yielded interesting results, which are shown later.

Figure 4.3: Distributions of IκBα and p-rpS6 were heterogeneous, and p-MKK4 was elevated in some
ABC-DLBCL cell lines. Abbreviations: K422 = Karpas-422; NUDUL1 = NU-DUL-1; Ly3 = OCI-Ly3;
Ly10 = OCI-Ly10; DHL8 = SU-DHL-8; DHL10 = SU-DHL-10; PM = PMBL. Horizontal axes show the
abundance of an antigen in single cells quantified by CyTOF. (a–b) Baseline distributions of expression of
(a) IκBα and (b) p-rpS6 in all 14 cell lines as per the compensated and arsinh-transformed data from CyTOF
Experiment 1. (c) Distributions of p-MKK4 expression in DLBCL cell lines compared to distributions of
p-MKK4 expression in BJAB cells that were resting or treated with anti-Igκ/λ or PMA.

4.4.6 The CARD11-mutant ABC-DLBCL cell line OCI-Ly3 had higher baseline
BCR-pathway signalling than BCR-dependent ABC-DLBCL cell lines

Most ABC DLBCLs are believed to depend on chronic BCR signalling for their constitutive activation of

NF-κB and consequently for their survival [13]. ABC-DLBCL cells that have an activating CARD11 muta-
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tion, which sustains NF-κB activation independently of upstream BCR signalling, are the main exceptions

to this [13]. To test whether chronic BCR signalling could be robustly detected by phospho-CyTOF, and

to quantify differences in BCR signalling between ABC-DLBCL and GCB-DLBCL cell lines based on

phosphorylation, we included several key phospho-proteins that are involved early in BCR signalling for

detection by our CyTOF panel. These included p-Btk and phospho spleen tyrosine kinase (p-Syk), both of

which can be inhibited by drugs that have been trialled in DLBCL patients, as well as p-CD79a. CD79a (also

called Igα) is one of two signalling subunits of the BCR (the other being CD79b, or Igβ, which dimerizes

with CD79a), and phosphorylation of CD79a is one of the first steps in BCR signalling. Refer to Figure 4.1

for an illustration of the BCR signalling pathway.

To first assess the potential for BCR signalling in each cell line, we additionally included total cellular

CD79a for detection by our CyTOF panel. We predicted that ABC-DLBCL cell lines would express more

CD79a than GCB-DLBCL cell lines because overexpression of CD79a/b would be a simple means for ABC-

DLBCL cells to promote increased BCR signalling. It is already known that some ABC-DLBCL cells have

CD79a/b mutations that prevent BCR internalization and thereby promote increased quantities of CD79a/b

at the cell membrane [13, 188]. However, a distinction should be made between quantities of CD79a/b at

the cell membrane, which are affected by rates of trafficking of CD79a/b to and from the membrane, and

overall cellular quantities of CD79a/b. Like mechanistic aberrations, such as CD79a/b mutations, that affect

CD79a/b trafficking, a simple increase in the overall expression of CD79a/b would also promote increased

quantities of CD79a/b at the cell membrane. Indeed, BL, which depends on tonic BCR signalling, frequently

has mutations that directly cause overexpression of Ig genes [188]. In our CyTOF experiments, CD79a was

labelled along with phospho-proteins after cell permeabilization. Thus, our CyTOF data in Figure 4.2a–b

quantifies the overall cellular expression of CD79a by 12 DLBCL and two BL cell lines. CyTOF showed

that expression of CD79a was very heterogeneous among DLBCL cell lines, but ABC-DLBCL cell lines

generally expressed CD79a at higher levels than the GCB-DLBCL and PMBL cell lines. SU-DHL-10 was

the only non-ABC-type DLBCL cell line with substantial expression of CD79a. Moreover, among the

ABC-DLBCL cell lines, we detected the lowest expression of CD79a in OCI-Ly3, which does not depend

on chronic BCR signalling. Thus, total CD79a expression seemed to be positively associated with chronic

BCR signalling in DLBCL cell lines, as predicted. Also, both of the BL cell lines (BJAB and Ramos)

expressed CD79a at levels similar to the highest seen in ABC-DLBCL lines, which is consistent with the

addiction of BL to tonic BCR signalling and with upregulation of Ig expression in BL.

We now shift focus to phospho-proteins upstream of CARD11 in the BCR signalling pathway in order

to quantify actual BCR signalling in DLBCL cell lines. Besides comparing quantities of BCR-pathway

phospho-proteins between ABC- and GCB-DLBCL cell lines, we were also interested in the level of BCR

signalling in OCI-Ly3 cells compared to other ABC-DLBCL cell lines. OCI-Ly3 cells have the L251P

CARD11 mutation, which we confirmed, and have previously been shown to be insensitive to inhibition of

either Btk [13, 167, 168, 195] or Syk [196]. It is thus clear that OCI-Ly3 cells do not require BCR signalling

in order to survive. Since one of the motivations behind our project was to evaluate whether phospho-protein

signatures detected by CyTOF could potentially hint at therapeutic vulnerabilities in specific subpopulations

117



of cells, it would be important to determine whether chronic BCR signalling in BCR-dependent ABC-

DLBCL cells, which is a therapeutic vulnerability, has a phosphorylation signature that is distinct from any

BCR-pathway activation in BCR-independent, CARD11-mutant ABC-DLBCL cells (e.g. OCI-Ly3 cells),

which would not be a therapeutic vulnerability. From a basic science perspective, it would also be interesting

to see whether BCR-independent, CARD11-mutant ABC-DLBCL cells display BCR-pathway signalling

even though it is not essential for their survival. Previously, OCI-Ly3 cells have been shown to have baseline

Btk phosphorylation that is lost following selective inhibition of Btk by tirabrutinib [195], even though they

are insensitive to inhibition of Btk. Furthermore, even though they are also insensitive to inhibition of Syk,

Munshi et al. [197] found that OCI-Ly3 cells had the highest levels of p-Syk among several B-lymphoma

cell lines, including the CARD11–wild-type (CARD11-WT) ABC-DLBCL cell lines HBL-1 and TMD8 and

the BL cell line Ramos, all three of which were included in our CyTOF Experiment 1. According to Munshi

et al., Syk was endogenously activated in OCI-Ly3 cells by the L265P MyD88 mutation (MyD88L265P). The

previously published data therefore show that baseline abundance of a single phospho-protein in cells is not

sufficient to predict their response to inhibition of that protein. However, the current picture of the BCR

pathway in OCI-Ly3 cells is fragmented and incomplete. As well as allowing us to compare BCR signalling

between ABC- and GCB-DLBCL cell lines, our CyTOF data provide a wider picture to complement the

existing data for the phospho-status of the BCR pathway in OCI-Ly3 cells.

Among all antigens detected by our CyTOF panel, p-CD79a was the antigen most strongly associated

with the ABC DLBCL subtype over the GCB subtype (Figure 4.2b). Other phospho-epitopes involved

early in BCR signalling, especially p-BLNK, also tended to be more abundant in ABC-DLBCL cell lines

than GCB-DLBCL cell lines (Figure 4.2b). Hence, CyTOF detected elevated baseline BCR signalling in

ABC-DLBCL cell lines compared to GCB-DLBCL cell lines, as anticipated. In addition, overall abundance

of phosphorylated tyrosine residues (p-Tyr) was typically greater in ABC-DLBCL cell lines than in GCB-

DLBCL cell lines (Figure 4.2a–b), which likely reflected increased tyrosine-dependent receptor signalling

in ABC-DLBCL cells compared to GCB-DLBCL cells. Intriguingly, however, OCI-Ly3 cells had by far the

greatest abundances of all phosphorylated BCR-proximal signalling molecules that we probed for except

p-CD79a (specifically p-Syk, p-Btk, p-PLCγ2, and p-BLNK; Figure 4.2a–b). They also had the highest

level of p-Tyr (Figure 4.2a–b). These results are consistent with the previous reports of baseline p-Syk and

p-Btk in OCI-Ly3 cells and show that the BCR signalling pathway is very active in OCI-Ly3 cells despite

them not depending on BCR signalling for their survival. This means that identification of an overactive sig-

nalling pathway does not necessarily predict the response of cells to therapeutic targeting of that pathway. It

also raises questions about the order in which abnormalities are acquired in the lymphomagenesis of ABC

DLBCL and whether this order is important. Our data clearly show that OCI-Ly3 cells have both active

BCR signalling and a CARD11 mutation. Considering that these cells can survive and proliferate without

BCR signalling, it is likely that the ancestors of OCI-Ly3 cells acquired alterations causing chronic BCR sig-

nalling and then later acquired the CARD11 mutation, which eliminated their dependence on chronic BCR

signalling. To follow up on these results, BCR signalling should be investigated in other BCR-independent,
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CARD11-mutant ABC-DLBCL cell lines to determine how often, if ever, oncogenic CARD11 mutations

occur in the absence of active BCR signalling.

4.4.7 CyTOF detected elevated abundance of p-STAT3 in three ABC-DLBCL cell lines
and one GCB-DLBCL cell line

STAT3 is a molecule that transduces signals from extracellular stimuli, such as cytokines, through the cyto-

plasm and acts as a transcription factor to promote expression of various genes [198]. It plays an important

role in immune modulation and inflammation and is intertwined with NF-κB signalling [198]. STAT3 ac-

tivation has previously been associated with ABC DLBCL [153, 161] and with poor clinical response to

R-CHOP [199]. Considering the clinical relevance of STAT3 to DLBCL, we regarded p-STAT3 as an im-

portant phospho-protein to include for detection by our DLBCL-focused CyTOF panel.

Constitutive STAT3 activation has already been reported in at least three of the DLBCL cell lines that we

profiled by CyTOF. In the same study that we cited earlier for previous evidence of highly phosphorylated

Syk at baseline in OCI-Ly3 cells, Munshi et al. showed that an endogenous MyD88 mutation activates Syk

in the ABC-DLBCL cell lines HBL-1 and TMD8 and that inhibition of Syk in these two cell lines led

to decreased phosphorylation of STAT3 and Akt [197]. Another likely mechanism of constitutive STAT3

activation in ABC DLBCL is autocrine signalling via secretion of IL-10, which is promoted by NF-κB, and

subsequent stimulation of the IL-10R–JAK–STAT3 pathway [200, 201] (see Figure 4.1 for an illustration

of the pathway). In the studies that elucidated the significance of IL-10 for constitutive STAT3 activation

in ABC DLBCL, treatment of OCI-Ly3 cells with a JAK inhibitor or an anti–IL-10R antibody was shown

to reduce phosphorylation of STAT3 at residue Y705 and suppress cell growth [200, 201]. Furthermore,

inhibition of STAT3 has been shown to reduce proliferation of OCI-Ly3 cells [153, 202]. Although OCI-Ly3

cells have the same MyD88 mutation as HBL-1 and TMD8 cells and have high baseline levels of p-Syk, the

studies cited here combined with the knowledge that OCI-Ly3 cells are insensitive to Syk inhibition imply

that IL-10, rather than MyD88/Syk, is the likely cause of constitutive STAT3 activation in OCI-Ly3 cells.

To complement and add to the existing studies of STAT3 in DLBCL, we used our CyTOF data from

CyTOF Experiment 1 to quantify baseline levels of phospho-Y705 STAT3 (p-STAT3) in 12 DLBCL cell

lines, including HBL-1, TMD8, and OCI-Ly3, as well as two BL cell lines. Our CyTOF data showed that

the ABC-DLBCL cell lines TMD8, OCI-Ly10, and OCI-Ly3, plus the GCB-DLBCL cell line Pfeiffer, all

had elevated baseline levels of p-STAT3 (Figure 4.2a). These results are consistent with STAT3 being pref-

erentially activated in ABC-DLBCL cells as compared with GCB-DLBCL cells. They are also consistent

with the studies cited immediately above relating to STAT3 in the ABC-DLBCL cell lines HBL-1, TMD8,

and OCI-Ly3. Considering that IL-10 autocrine signalling and not MyD88/Syk is the likely cause of ele-

vated baseline STAT3 phosphorylation in the CARD11-mutant cell line OCI-Ly3, a lingering question is

whether the high levels of phosphorylation that our CyTOF data show in the BCR pathway in OCI-Ly3 cells

have any functional importance. It would be interesting to investigate whether combined inhibition of Syk

and IL-10R/JAK/STAT3 is synergistically lethal to OCI-Ly3 cells.
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4.4.8 Akt and rpS6 phosphorylation were varied in DLBCL cell lines and were not
associated with the GCB or ABC subtype

Akt is a critically important kinase in molecular cell biology that serves a plethora of functions. It is activated

in response to signals from cell-surface receptor proteins via PI3K. See references [203, 204] for reviews of

PI3K–Akt signalling, and see Figure 4.1 for a simplified illustration of how Akt fits into BCR signalling.

Like ABC DLBCL, BL usually depends on BCR signalling for cell survival, but, unlike ABC DLBCL, it

does not require constitutive CARD11/NF-κB signalling [188]. Instead, BL is thought to utilize tonic BCR

signalling through PI3K [188, 205]. Additionally, PI3K–Akt signalling, possibly again instigated by tonic

BCR signalling, is important to GCB DLBCL [157, 160, 188]. Despite this, a previously published analy-

sis by immunohistochemistry found no significant difference between tissue from GCB- and ABC-DLBCL

patients in the quantities of Akt phosphorylated at residue S473 (p-Akt[S473]) that were localized to the

nucleus [206]. Nonetheless, overabundance of nuclear p-Akt[S473] was found to be associated with worse

progression-free survival in DLBCL patients treated with R-CHOP [206]. It should be noted that activity of

Akt is primarily determined by the phospho-status of two distinct and separately regulated residues: serine

473 (S473) and threonine 308 (T308). The authors of the study that found no significant difference in nuclear

p-Akt[S473] between GCB- and ABC-DLBCL patients did not analyze phospho-T308 Akt (p-Akt[T308]),

and they acknowledged that this might have confounded their analysis [206]. Given the biological signifi-

cance of Akt signalling in B-cell lymphomas and beyond, we designed our CyTOF panel to simultaneously

profile both p-Akt[T308] and p-Akt[S473] in DLBCL cells. Henceforth, “p-Akt” without specification of a

residue refers to either of the two Akt phospho-epitopes when the distinction is not important.

A relevant reference for our characterization of p-Akt levels in B-lymphoma cell lines is the data from

Munshi et al. showing that basally active Syk sustains phosphorylation of Akt[S473] in the MyD88-mutant

ABC-DLBCL cell lines HBL-1 and TMD8 [197]. According to our CyTOF data, baseline Akt phospho-

rylation was very heterogeneous among all 14 B-lymphoma cell lines that we profiled with no distinction

between B-lymphoma subtypes (Figure 4.2a–b). The greatest baseline quantities of p-Akt were found

in BJAB (BL) cells, but Ramos (BL) cells had very little p-Akt. Two of five GCB-DLBCL cell lines

(Toledo and SU-DHL-8) also had very little p-Akt. Consistent with the data of Munshi et al. [197], we

detected elevated p-Akt in TMD8 (CARD11-WT, MyD88-mutant ABC DLBCL) and, to a lesser extent,

HBL-1 (CARD11-WT, MyD88-mutant ABC DLBCL). OCI-Ly3 (CARD11-mutant, MyD88-mutant ABC

DLBCL) had among the lowest quantities of p-Akt. Despite having the same MyD88 mutation and a high

baseline level of p-Syk, OCI-Ly3 cells clearly deviated from HBL-1 and TMD8 cells in terms of p-Akt.

Hence, unlike p-Syk in HBL-1 and TMD8 cells, the high levels of p-Syk and other phospho-proteins in

the BCR signalling pathway in OCI-Ly3 cells are unlikely to cause phosphorylation of Akt. A function, if

one exists, for BCR-pathway activation in OCI-Ly3 cells therefore remains elusive. Altogether, our p-Akt

CyTOF data are consistent with the lack of association of nuclear p-Akt[S473] levels with either the GCB

or ABC DLBCL subtype that was previously reported based on immunohistochemistry [206]. Yet, the fact
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that p-Akt levels do not appear to be higher in GCB DLBCL than ABC DLBCL on average is still surprising

considering the importance of PI3K–Akt signalling in GCB DLBCL.

To make another layer of information related to Akt signalling available from our CyTOF data, we in-

cluded a phosphorylated form of ribosomal protein S6 (rpS6, sometimes referred to as just S6) for profiling

by our CyTOF panel. Ribosomal protein S6, a component of the eukaryotic small ribosomal subunit 40S,

is one of the many downstream effectors of Akt signalling and regulates translation of mRNA whose prod-

ucts have roles in translation and cell growth and proliferation [207–209]. Hagner et al. found that total

rpS6 is highly expressed in DLBCL and knockdown of rpS6 in two DLBCL cell lines, including OCI-Ly3,

decreased cellular proliferation [209]. For CyTOF, we used an antibody that specifically recognized rpS6

phosphorylated at serines 235 and 236 (p-rpS6), though it should be noted that Peters et al. documented high

baseline levels of rpS6 phosphorylated at serines 240 and 244 (p-rpS6[S240/244]) by western blot in four

of the ABC-DLBCL cell lines that we profiled by CyTOF (HBL-1, TMD8, OCI-Ly10, and OCI-Ly3) [210].

Our CyTOF data revealed heterogeneous quantities of p-rpS6 both among and within cell lines, and high av-

erage quantities of p-rpS6 were not significantly associated with either the GCB or ABC subtype of DLBCL

(Figure 4.2a–b). All cell lines had a wide distribution of single-cell quantities of p-rpS6 with substantial

populations at zero and high expression levels (Figure 4.3b). It is important to note here that the p-rpS6

CyTOF antibody had to be titrated down to a very low concentration to avoid saturation of the CyTOF de-

tector, so zero CyTOF signal for p-rpS6 in a cell did not necessarily mean that the cell had no p-rpS6 at

all. Overall, OCI-Ly3 cells had the least p-rpS6, which is consistent with their lack of p-Akt. However, this

may be an overly simplified view because it overlooks p-rpS6[S240/244], which was seen to have a high

baseline level in OCI-Ly3 cells by Peters et al. [210]. Among the 14 cell lines that we profiled by CyTOF,

the BL cell line BJAB had the greatest overall abundance of p-rpS6 as well as the highest levels of p-Akt.

However, the ranks of cell lines by p-rpS6 abundance did not correspond to their ranks by p-Akt abundance

in general. The other BL cell line in our study, Ramos, also had relatively high abundance of p-rpS6 despite

having little p-Akt. Similarly, the ABC-DLBCL cell line HBL-1 had the second highest abundance of p-S6,

and the highest among DLBCL cell lines, despite having only slightly elevated levels of p-Akt that were

surpassed in other DLBCL cell lines of both the ABC and GCB subtypes. Hence, rpS6 activity is likely to

be regulated by multiple complex mechanisms in B-cell lymphomas and is heterogeneous in DLBCL.

4.4.9 MAPK signalling through the MKK4–JNK pathway may be upregulated in some
ABC-DLBCL cell lines

MAPKs play pivotal roles in the transduction of signals that regulate cell proliferation, differentiation, and

apoptosis in response to extracellular cues. See reference [211] for a review. Our CyTOF panel included

antibodies detecting phospho-epitopes in signalling pathways associated with three MAPKs: ERK1/2 (here-

after referred to only as ERK), JNK, and p38. The ERK pathway is primarily responsible for promoting cell

growth and differentiation in response to mitogens (small molecules that induce mitosis) and growth fac-

tors [211]. The JNK and p38 pathways also respond to growth factors but additionally respond to stress

and inflammatory cytokines [211]. See Figure 4.1 for a simple illustration of the three MAPK pathways
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in B cells. MEK1/2 (hereafter collectively referred to only as MEK) are the upstream kinases responsible

for phosphorylating ERK1/2 [211, 212]. The MAPK kinases (MKKs) MKK4 and MKK7 activate JNK

[211–213]. MKK3, MKK4, and MKK6 activate p38 [211–213]. Unlike the other MKKs, MKK4 is notable

for its ability to activate both JNK and p38 [213]. Downstream of the MAPKs, c-Jun is directly phospho-

rylated by JNK (which stands for c-Jun N-terminal kinase) and p38 activity induces phosphorylation of

CREB [214, 215]. Our CyTOF panel included specific antibodies that recognize p-MEK, p-ERK, p-MKK4,

p-JNK, p-c-Jun, p-p38, and p-CREB. Note that phosphorylation of rpS6, data for which were presented in

the previous subsection alongside p-Akt, can also be triggered by MAPK signalling. Figure 4.2a shows

the antigen abundance levels quantified by CyTOF in 14 B-lymphoma cell lines, and Figure 4.2b shows

differences between their average levels in ABC-DLBCL and GCB-DLBCL cell lines. The detected abun-

dances of p-ERK, p-MEK, p-p38, and p-CREB all had no association with cell lines of either the GCB or

ABC subtype of DLBCL (Figure 4.2b). The most interesting phospho-CyTOF results relating to MAPK

signalling were for p-MKK4 and can be found at the end of this subsection. First, we describe our results

for the MEK/ERK, p38/CREB, and JNK/c-Jun pathways in turn.

Overall levels of p-MEK and p-ERK were variable between cell lines, but variability was greater be-

tween GCB-type than ABC-type DLBCL cell lines. Karpas-422 (GCB-DLBCL), NU-DUL-1, OCI-Ly10,

and TMD8 (all ABC-DLBCL) had the greatest staining of baseline p-MEK, which matched p-MEK staining

in BJAB cells stimulated by PMA, a positive control. Baseline p-ERK was greatest in SU-DHL-8 (GCB-

DLBCL) followed by U2940 (PMBL), but the baseline p-ERK levels in all cell lines were far exceeded by

the abundance of p-ERK in PMA-treated BJAB cells. Although active MEK phosphorylates ERK, it is clear

that p-MEK and p-ERK signals lacked concordance. This could be due to tight regulation of MEK activity

and differences in total-protein quantities between cell lines.

Quantities of p-CREB were especially heterogeneous among all DLBCL cell lines. The ABC-DLBCL

cell line HBL-1 had the greatest baseline abundance of p-CREB, which even surpassed the strongly induced

levels observed in stimulated BJAB cells. Second to HBL-1 was the GCB-DLBCL cell line Pfeiffer. The

lowest baseline quantities of p-CREB were detected in the GCB-DLBCL cell lines Toledo and SU-DHL-8

and the BL cell line BJAB. We were not able to detect any meaningful differences between the distributions

of p-p38 for individual cell lines when taking non-specific staining into consideration. Unfortunately, this

might have been due to low staining quality, possibly combined with a low dynamic range of true biological

quantities of p-p38. Across multiple prior experiments in which we multiplexed fewer antigen stains and

used fewer cell lines, the dynamic range for p-p38 staining was consistently low, but we were nonetheless

able to detect small increases in the p-p38 signal following stimulation of BCR signalling in BJAB cells and

we were able to titrate the antibody. However, the results of CyTOF Experiment 1 presented in Figure 4.2

showed relative staining intensities of baseline p-p38 in BJAB and HBL-1 cells that were inconsistent with

prior experiments and showed no increase in p-p38 staining upon BCR stimulation of BJAB cells. Since

activation of CREB is not a specific response to p38 MAPK signalling, we were therefore unable to charac-

terize p38-specific MAPK signalling in our cell lines and can only conclude that baseline CREB activity is

heterogeneous in DLBCL.
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A study by Knies et al. [216] reported constitutive activation of JNK, believed to be mediated by

CARD11, in primary biopsy specimens from 26 of 47 ABC-DLBCL patients but 0 of 20 GCB-DLBCL

patients and in three of the ABC-DLBCL cell lines that we profiled by CyTOF (HBL-1, OCI-Ly3, and

OCI-Ly10). Similarly, a published western blot showed much greater abundance of p-JNK in OCI-Ly10 and

OCI-Ly3 (both ABC-DLBCL) than SU-DHL-8 (GCB-DLBCL) [217]. Consistent with these published data,

we observed that OCI-Ly10 and OCI-Ly3 were the cell lines with the two strongest p-JNK CyTOF signals

while SU-DHL-8 had a weaker p-JNK CyTOF signal than five of the six ABC-DLBCL cell lines. Overall,

quantities of p-JNK trended towards being greater in ABC-DLBCL cell lines than GCB-DLBCL cell lines

(Figure 4.2b), but the intensity and dynamic range of p-JNK staining were low and HBL-1 cells appeared

to have p-JNK levels that were typical of GCB-DLBCL cell lines, contradicting expectations. Note that,

in smaller CyTOF experiments performed earlier to test and titrate antibodies, p-JNK signal was strongly

induced by treatment of BJAB or HBL-1 cells with a combination of anti-IgG, anti-IgM, and anti-CD40 as

a positive control, therefore the p-JNK detection antibody had worked well previously. Meanwhile, like for

p-p38, we could not come to meaningful conclusions about p-c-Jun in our cell lines. In a prior CyTOF exper-

iment performed on 2017-09-19, the only GCB-DLBCL cell line included in that experiment, Karpas-422,

had lower staining intensity of baseline p-JNK than all four ABC-DLBCL cell lines included in the exper-

iment (HBL-1, TMD8, OCI-Ly10, and OCI-Ly3; Figure B.1). Karpas-422 also had the lowest staining

intensity of p-c-Jun in that prior experiment (Figure B.1). In an even earlier CyTOF experiment performed

on 2017-04-20 as part of antibody testing and panel development, the staining intensity of baseline p-JNK

in Karpas-422 (GCB-DLBCL) was again lower than in HBL-1 (ABC-DLBCL) but that time greater than in

TMD8 (ABC-DLBCL; Figure B.1). As this demonstrates, relative staining intensities of baseline p-JNK

in different DLBCL cell lines were not entirely consistent across multiple experiments. As such, we can-

not confidently claim that the JNK MAPK signalling pathway is more active in ABC-type than GCB-type

DLBCL cell lines, but our phospho-CyTOF data lean in that direction.

Upstream of the JNK and p38 MAPKs, we found that ABC-DLBCL cell lines tended to have greater

abundance of p-MKK4 than GCB-DLBCL cell lines (Figure 4.2b). We found that all six non-ABC-type

DLBCL cell lines had baseline quantities of p-MKK4 that were similar to or less than were found in non-

stimulated BJAB cells, while three of six ABC-DLBCL cell lines (OCI-Ly10, HBL-1, and OCI-Ly3) had

quantities that were similar to or greater than were found in BJAB cells in which BCR signalling had been

stimulated by anti-Igκ/λ, though less than the quantities found in PMA-treated BJAB cells (Figure 4.3c).

Notably, these three ABC-DLBCL cell lines were the same three cell lines in which Knies et al. saw con-

stitutive JNK activation [216], suggesting that these three ABC-DLBCL cell lines have upregulated MAPK

signalling through the MKK4–JNK pathway. MKK4 may therefore have an important function in consti-

tutive JNK activation in some ABC DLBCLs. Since MKK4 can activate both JNK and p38 and we were

unable to obtain informative data about p38-specific MAPK signalling, it is not clear whether p-MKK4 in

ABC DLBCL may activate p38 in parallel to JNK. Also, since we did not investigate any other MKKs, we

cannot say whether MKK7 may also be involved in constitutive JNK activation in ABC DLBCL, nor can
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we say anything about the activity of specific upstream kinases for p38. Nevertheless, we have identified

MKK4 as a potentially important signalling node in some ABC DLBCLs.
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4.5 Results IV: Observations related to the cell cycle

4.5.1 Bcl-2 expression and signalling via MKK4, CREB, and IKK increase in 14
B-lymphoma cell lines likely during G2/M phase

In addition to the trends that we have described above, we found that individual cell lines were heterogeneous

and consisted of more than one phenotypically congruous population. We predicted that heterogeneity

within cell lines would be due to the cell cycle. In all 14 B-lymphoma cell lines that we analyzed, we

observed a small population of cells that were exclusively not in S phase and expressed high levels of Bcl-2

and Ki-67 (Figure 4.4). Furthermore, these populations always had very high abundance of p-MKK4 and

p-CREB, and we additionally detected slightly greater overall staining of p-p38 in them compared to the rest

of the cells despite the low dynamic range or quality of p-p38 staining (Figure 4.4). These cells also had a

high level of p-IKK in all cell lines (Figure 4.4). This strongly suggests that all 14 B-lymphoma cell lines

increased p38 MAPK signalling and signalling via IKK at a particular stage of the cell cycle. By weighing

a variety of published data, we determined that the cells in question were most likely mitotic, though they

might have also included cells in G2 phase.

The anti-apoptotic protein Bcl-2 has been shown to affect progression through G2/M phase but primarily

in the form of cell cycle arrest [218, 219]. Activation of p38 MAPK signalling in response to DNA damage

induces a cell cycle checkpoint to prevent the transition of cells from G2 to M phase [220, 221]. Therefore,

the high levels of Bcl-2 expression and p38 signalling might have been signs of stressed or arrested cells. On

the other hand, a functional role has been demonstrated for p38 activation in the normal progression through

G2/M phase in the absence of stress [222], and IKK is involved in the regulation of mitosis [223, 224]. Also,

in a study of colon adenocarcinoma cells, olive oil polyphenols induced a cell cycle block in G2/M phase

that was associated with decreased phosphorylation of p38 at Threonine 180/Tyrosine 182 (T180/Y182) and

CREB at serine 133 (S133) [225]. This suggests that progression through G2/M phase, at least in some

cancer cells, involves p-p38[T180/Y182] and p-CREB[S133], the same p38 and CREB phospho-epitopes

that we detected by CyTOF. The anti–p-CREB[S133] antibody that we used for CyTOF also detects the

CREB-related protein ATF-1 when phosphorylated at serine 63 (S63). ATF-1[S63] can be phosphorylated

by cyclin-dependent kinase 3 [226], whose activity increases in the transition from G1 to S phase [227].

Cell-cycle–dependent phosphorylation of both CREB and ATF-1 can also occur at other residues [228–

230]. We did not find any other documented evidence of roles for either p-CREB[S133] or p-ATF-1[S63]

in cell cycle progression. Finally, and crucially, Ki-67 expression is known to continually increase from

the start of S phase until peaking sharply during mitosis [231, 232]. Weighing all possibilities, the cells that

displayed high levels of Ki-67, Bcl-2, p-MKK4, p-p38, p-CREB, and p-IKK were probably just mitotic cells.

The Ki-67/Bcl-2/p-MKK4/p-p38/p-CREB/p-IKK phenotype of these cells could be common to all mitotic

mature B cells or it might be specific to mitotic B-lymphoma cells. If the latter is true, high expression of

Bcl-2 in G2/M phase might be a mechanism for B-lymphoma cells to avoid apoptosis.
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Figure 4.4: Identification of a cluster of cells presumed to be the M-phase fraction. Scatter plots
show staining intensities of Bcl-2, p-MKK4, p-CREB, p-p38, p-IKK, or non-specific markers versus Ki-67
in single BJAB (first and second rows), HBL-1 (third row), and Karpas-422 (last row) cells. IdU (orange;
abundance given by colour bar) marks S-phase cells. Red arrows point to the clusters of cells, seen as distinct
clouds of black (i.e. IdU−) data points in the scatter plots, presumed to be in M phase. A corresponding
cluster of cells could be identified similarly in all 14 cell lines.
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4.5.2 Different cell-cycle phase distributions were not the cause of antigen expression
differences between cell lines.

To address the possibility that cell-cycle effects might have confounded our comparative analyses of cell

lines, we partitioned each uniquely barcoded sample into four groups of cells (Groups 1, 2(S), 3, and 4(M))

based on their measured quantities of IdU (which marks S phase), Ki-67, Bcl-2, p-MKK4, p-p38, and p-

CREB (Figure 4.5a) (see Computational methods for details). Group 1 (dark blue in Figure 4.5a) contained

cells in phases G0 and G1 (and possibly some cells in the late stages of mitosis, since Ki-67 degrades after

anaphase). Group 2(S) (light blue in Figure 4.5a) consisted of all S-phase cells, including those that entered

or exited S phase during incubation with IdU. Cells in Group 3 (green in Figure 4.5a) had intermediate to

high quantities of Ki-67 compared to S-phase cells and were perhaps mostly in G2 phase but possibly also

included some G1-phase cells. Cells in Group 4(M) (yellow in Figure 4.5a) were presumably in M phase but

might have also included some cells in G2 phase. The four groups are depicted for the cell lines BJAB and

OCI-Ly10 in Figure 4.5a. The cell-cycle–dependent grouping of cells enabled us to subsequently investigate

signalling in particular stages of the cell cycle and compare corresponding groups of cells between cell lines

and between DLBCL subtypes.

The CyTOF data for just the S-phase cells (Figure 4.5b) were very similar to the data presented in

Figure 4.2 for all cells and yielded similar differences between cell lines (Figure 4.5b,d; cf. Figure 4.2a–b),

indicating that our findings thus far were not due to cell-cycle phase composition differences between cell

lines. The proportion of cells in S phase was variable between cell lines (see the IdU column in Figure 4.2a),

but this proportion did not significantly differ between the ABC and GCB DLBCL subtypes. However, NU-

DUL-1 was anomalous among ABC-DLBCL cell lines by having a very high proportion of cells in S phase

(73% versus 31–48%), which was the greatest among all 14 cell lines and more similar to the two BL cell

lines and three of the five GCB-DLBCL cell lines than to any other ABC-DLBCL cell line. This indicates

that NU-DUL-1 cells spend a much greater fraction of their time replicating DNA than other ABC-DLBCL

cells. Furthermore, there was a tendency for ABC-DLBCL cell lines to have smaller proportions of cells

in Group 4(M) than GCB-DLBCL cell lines (mean 0.78%, range 0.20–1.67% versus mean 1.78%, range

0.66–3.01%; p = 0.07), suggesting that ABC-DLBCL cells typically spend a smaller fraction of their time

transitioning through mitosis than GCB-DLBCL cells. NU-DUL-1 had the greatest proportion of cells in

Group 4(M) among ABC-DLBCL cell lines, though U2932 had a similar proportion. The proportions of

cells in different cell-cycle groups add to the growing list of properties that distinguish NU-DUL-1 from

other ABC-DLBCL cell lines and impart similarity to GCB DLBCL.

4.5.3 Cell-cycle–dependent dynamics of IκBα expression and rpS6 phosphorylation are
heterogeneous in DLBCL and differ between subtypes

Comparing cell-cycle groups illuminated consistently increased signalling activity in Group 4(M) compared

to S phase (Figure 4.5b–d), besides the increased quantities of Bcl-2, Ki-67, p-MKK4, p-p38, and p-CREB

that were used to define Group 4(M). Quantities of p-IKK (as noted earlier) and p-p65 were always greater
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Figure 4.5: Comparison of antigen expression between S phase and presumptive M phase. (a) 3D
scatter plots showing the assignment of single cells to four different cell-cycle groups (represented by four
different colours) based on their quantities of IdU, Ki-67, Bcl-2, p-MKK4, p-CREB, and p-p38. Scatter plots
are shown for a Bcl-2–low cell line (BJAB) and a Bcl-2–high cell line (OCI-Ly10). Group 2(S) corresponds
to S-phase cells and Group 4(M) is presumed to be the M-phase fraction of cells. (b–c) Heatmaps showing
normalized antigen expression (columns) in single cells that were categorized as being in (b) S phase or (c)
presumptive M phase. CyTOF data were compensated and transformed by X 7→ sinh-1(X/10). Heatmap
columns were normalized to the same scales used in Figure 4.2. Rows are grouped into blocks by unique
biological sample and then ordered within blocks by Ki-67 expression. Caption continues . . .
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Figure 4.5: (b–c) continued. For the sake of visualization, each heatmap shows 10, 000 cells per unique bi-
ological sample, which were randomly sampled with replacement. * OCI-Ly10, NU-DUL-1, and OCI-Ly3
have a synonymous D415D CARD11 mutation. ** OCI-Ly3 additionally has the L251P CARD11 muta-
tion. (d) Average normalized antigen-expression values specifically in S phase or presumptive M phase for
individual ABC- and GCB-DLBCL cell lines and the unadjusted statistical significance of their differences
between the ABC and GCB DLBCL subtypes. Each trace represents one ABC-DLBCL cell line (blue ex-
cept for OCI-Ly3, which is red) or one GCB-DLBCL cell line (yellow) and, for each antigen, shows the
50%-trimmed mean expression of the S-phase or presumed M-phase cells after. After processing, data were
normalized to the same scales as in Figure 4.2. Raw (unadjusted) p values were computed using a two-tailed
t test. The two markers of non-specific staining are highlighted in pink.

in Group 4(M) than Group 2(S) (Figure 4.5b–d). Interestingly, although ABC-DLBCL cell lines tended to

have more p-p65 than GCB-DLBCL cell lines in Group 4(M) as well as during S phase, the slight trend

for them to have more p-IKK than GCB-DLBCL cell lines was diminished in Group 4(M) (Figure 4.5d).

Conversely, we observed a slight trend for ABC-DLBCL cell lines to have less IκBα than GCB-DLBCL

cell lines in Group 4(M) but not during S phase (Figure 4.5d). In all BL and non-ABC-DLBCL cell lines,

and the ABC-DLBCL cell lines NU-DUL-1 and U2932, quantities of IκBα in Group 4(M) were slightly

greater than during S phase and almost identical to quantities in cell-cycle Group 3 (Figure 4.6a), perhaps

reflecting an increase in cell size. However, in each of the remaining four ABC-DLBCL cell lines (HBL-

1, TMD8, OCI-Ly10, and OCI-Ly3), a subset (∼ 60% for HBL-1, ∼ 80% for OCI-Ly3, and ∼ 30% for

TMD8 and OCI-Ly10) of cells in Group 4(M), but not Group 3, had dramatically reduced (almost zero)

abundance of IκBα. The remaining Group-4(M) cells had at least similar quantities of IκBα to S-phase and

Group-3 cells, and the overall distributions of IκBα in Group 4(M) were bimodal in these four cell lines

(Figure 4.6a). Cell-cycle Group 1 had lower quantities of IκBα than Group 2(S) in all 14 cell lines and

IκBα had largely recovered to normal levels in Group 1 in the four exceptional ABC-DLBCL cell lines.

Nevertheless, slightly greater proportions of their Group-1 cells had barely detectable quantities of IκBα

compared to the other 10 cell lines. With this in mind, the bimodal IκBα distributions in Group 4(M) of

HBL-1, TMD8, OCI-Ly10, and OCI-Ly3 possibly represented cells in different phases of mitosis, with rapid

degradation of IκBα occurring in these cell lines at an intermediate stage of mitosis (e.g. during metaphase or

anaphase). Alternatively, they might have simply arisen from heterogeneous signalling dynamics or bistable

systems within cell lines. All together, these data suggest that the dynamics of the NF-κB pathway are

intricately tied to cell-cycle progression in BL and DLBCL, and possibly normal B cells, and that disruption

of these dynamics involves rapid degradation of IκBα during mitosis in some, but not all, ABC DLBCLs.

Quantities of p-MEK and p-ERK, like p-IKK and p-p65, were much greater in Group 4(M) than during S

phase in all 14 B-lymphoma cell lines (Figure 4.5b–d) and generally increased from Group 1 (predominantly

G0/G1 phases) to Group 2(S) (S phase) to Group 3 to Group 4(M). This likely reflects a role for active

MAPK signalling through the MEK–ERK pathway, in addition to via MKK4, during mitotic division of

B-lymphoma cells. Akt phosphorylation also increased from S phase to Group 4(M) in every cell line

(Figure 4.5b–d), which was unsurprising because it has an important role in cell cycle progression [233].
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Figure 4.6: Dynamics of intracellular signalling related to the cell cycle differ between cell lines and
between DLBCL subtypes. (a) Distributions of single-cell IκBα abundance in each of the four cell-
cycle groups in eight cell lines. (b) Distributions of single-cell abundance of p-Akt[T308] (top row) and
p-Akt[S473] (bottom row) in each of the four cell-cycle groups in two GCB-DLBCL (SU-DHL-8 and SU-
DHL-10) and two ABC-DLBCL (HBL-1 and TMD8) cell lines. (c) Same as (b) but for p-rpS6. Caption
continues . . .
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Figure 4.6: (d) Scatter plots of the abundance of p-rpS6 versus IκBα in single presumed M-phase cells
in the ABC-DLBCL cell lines OCI-Ly10 (left) and TMD8 (right). Lighter coloured data points indicate a
higher local density of data points in the scatter plot. (e) Distributions of single-cell surface expression of
IgM in each of the four cell-cycle groups in the ABC-DLBCL cell lines HBL-1 and TMD8.

Although it varied widely between cell lines, phosphorylation of Akt at T308 always reached its highest

level in Group 4(M) (shown for four cell lines in Figure 4.6b), suggesting that this phosphosite is generally

important for progression through mitosis in BL and DLBCL cells. On the other hand, in the BL cell line

BJAB, the ABC-DLBCL cell lines TMD8, OCI-Ly10, and NU-DUL-1, and the GCB-DLBCL cell line SU-

DHL-10, quantities of Akt phosphorylated at S473 were similar in Groups 3 and 4(M), whereas they were

at their greatest in Group 4(M) in the other cell lines (two examples of each case are shown in Figure 4.6b).

This implies that phosphorylation of Akt often occurs at S473 before T308, at least in B-lymphoma cells.

Although ERK and Akt activity varied throughout the cell cycle and between cell lines, they had no specific

association with either the GCB or ABC subtype of DLBCL (Figure 4.5d).

Downstream of Akt and ERK, phosphorylation of ribosomal protein S6 also generally increased from

Group 1 to Group 2(S) to Group 3 to Group 4(M) (Figure 4.6c). However, abundance of p-rpS6 increased

from S phase to Group 4(M) more significantly in GCB- than ABC-DLBCL cell lines (Figure 4.5b–d;

p < 0.05 based on differences in p-rpS6 abundance between Groups 4(M) and 2(S); p < 0.06 based on

fold changes instead of differences). Abundance of p-rpS6 even decreased from S phase to Group 4(M)

in the ABC-DLBCL cell line TMD8 (Figure 4.6c). A one-tailed t-test of whether ABC-DLBCL cell lines

had greater abundance of p-rpS6 than GCB-DLBCL cell lines returned a p value of 0.10 for S-phase cells

versus 0.76 for Group-4(M) cells. The CARD11L251P-mutant cell line OCI-Ly3 had by far the least p-rpS6

of all ABC-DLBCL cell lines, and exclusion of OCI-Ly3 changed the p values to 0.02 and 0.71 respectively.

Hence, abundance of p-rpS6 during S phase seems to be associated with ABC-DLBCL cell lines that depend

on chronic BCR signalling, which suggests that phosphorylation of rpS6 increases earlier during the cell cy-

cle in BCR-dependent ABC DLBCL than in GCB DLBCL. The PMBL-type DLBCL cell line U2940 had a

cell-cycle–dependent pattern of p-rpS6 expression that was somewhat intermediate between the phenotypes

of the GCB and BCR-dependent-ABC subtypes. Meanwhile, the BL cell line BJAB had very high levels of

p-rpS6 throughout the cell cycle and displayed only a modest increase from S phase to Group 4(M), whereas

the Ramos BL cell line exhibited a large increase in p-rpS6 quantities from S phase to Group 4(M) despite

having a relatively high level of p-rpS6 during S phase. All together, our p-rpS6 CyTOF data show that the

dynamics of rpS6 activity differ between B-lymphoma subtypes and that chronic BCR signalling in ABC

DLBCL might lead to early or prolonged activation of ribosomal protein S6.

Interestingly, quantities of p-rpS6 and IκBα were highly positively correlated in Group-4(M) OCI-Ly10

ABC-DLBCL cells (Spearman’s ρ = 0.58, p < machine precision), with the IκBα-low subset of cells

predominantly having very low quantities of p-rpS6 and the IκBα-high subset predominantly having much

greater quantities of p-rpS6 (Figure 4.6d). Similarly, in the TMD8 ABC-DLBCL cell line, the IκBα-low

subset of Group-4(M) cells had low quantities of p-rpS6 compared to quantities typically observed in the
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IκBα-high subset (Figure 4.6d), though a notable portion of the IκBα-high subset also had low abundance

of p-rpS6. These observations insinuate that phosphorylation of rpS6 and expression of IκBα protein are

linked, either by co-regulation or by influence of one on the other, in OCI-Ly10 and TMD8 cells. Perhaps

dephosphorylation or degradation of rpS6 and degradation of IκBα are triggered at an intermediate stage

of mitosis by a co-regulating process in these two cell lines. Alternatively, given its ribosomal function,

perhaps p-rpS6 is directly involved in synthesis of IκBα protein in OCI-Ly10 and TMD8 cells. Ordinarily,

IκBα might be continually degraded and replenished during M phase to regulate NF-κB activity, which

could explain the observation that IκBα quantities did not decrease from S phase to Group 4(M) in most

cell lines despite the increase in p-IKK. If p-rpS6 contributes to synthesis of IκBα in OCI-Ly10 and TMD8

cells, then a loss of rpS6 ribosomal activity during an intermediate phase of mitosis in these cells could

result in insufficient synthesis of IκBα to replace the degraded protein. This could consequently explain

the observation of an IκBα-low subset of Group-4(M) cells in the OCI-Ly10 and TMD8 ABC-DLBCL

cell lines. However, this is unlikely to explain the IκBα-low subset of Group-4(M) cells in the HBL-1

or OCI-Ly3 ABC-DLBCL cell lines. We therefore speculate that the activity of ribosomal protein S6 is

commonly dysregulated in ABC DLBCL and that it may be linked to constitutive NF-κB activity in some

ABC DLBCLs. More surely, the regulation and dynamics of rpS6 activity are complex and heterogeneous

in DLBCL, even within molecular subtypes.

In contrast to activities of NF-κB, MAPK, and Akt signalling pathways, quantities of phosphorylated

BCR-pathway components (p-CD79a, p-Syk, p-Btk, p-BLNK, and p-PLCγ2) did not vary appreciably over

the course of the cell cycle, though they were generally most abundant in Group-3 cells. In spite of this

lack of variation, the trend for ABC-DLBCL cell lines to have greater quantities of p-CD79a, p-Btk, and

p-BLNK than GCB-DLBCL cell lines was stronger in S phase than in Group 4(M) (Figure 4.5d). In the

ABC-DLBCL cell line HBL-1, BCR-pathway signalling appeared to increase substantially from S phase

to Group 4(M). Although this might point to aberrant involvement of BCR signalling during mitosis, it

could also have been explained by a concurrent increase in non-specific staining that was pronounced for

HBL-1. Thus, we did not find any evidence for strong cell-cycle–phase dependence of BCR signalling

in DLBCL, even in BCR-dependent ABC-DLBCL cell lines. However, it is plausible that small changes

in phosphorylation of upstream components of the BCR signalling pathway have amplified downstream

effects.

Meanwhile, staining of cell-surface markers and of CD79a, Bcl-6, and Bcl-xL, and even non-specific

staining to a lesser extent, usually increased at least slightly from Group 1 to Group 2(S) to Group 3 and

peaked in either Group 3 or Group 4(M). This probably reflected cell growth. The change in staining

intensity from Group 3 to Group 4(M) varied from antigen to antigen and from cell line to cell line. Most

often, there was little change in the expression of an antigen from Group 3 to Group 4(M), and increases

were uncommon. Decreases were more common, which we assume were caused by internalization of cell-

surface molecules and transient degradation of proteins. Most interestingly, cell-surface expression of IgM

decreased from Group 3 to Group 4(M) in HBL-1, TMD8 and OCI-Ly10 (shown for HBL-1 and TMD8

in Figure 4.6e), the three BCR-dependent ABC-DLBCL cell lines that, along with BCR-independent OCI-
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Ly3, had dramatically decreased quantities of IκBα in some Group-4(M) cells. The decrease in surface

IgM expression was more pronounced than the concomitant decrease in total cellular CD79a in these three

cell lines. Because IgM is the dominant BCR isotype in HBL-1, TMD8, and OCI-Ly10 and CD79a is

a component of BCR molecules that was labelled after cell permeabilization, this implies that receptor

internalization without degradation is the main reason for the decreased surface IgM expression in Group

4(M) in these three cell lines. We theorize that aberrant IgM-BCR internalization is a feature of chronic

BCR signalling in HBL-1, TMD8, and OCI-Ly10 cells and that this drives proliferation of these cells by

triggering IκBα degradation and consequently NF-κB activation during mitosis.
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4.6 Results V: Heterogeneity within cell lines

4.6.1 Heterogeneity not defined by cell-cycle phases was common within B-lymphoma cell
lines

Heterogeneity within DLBCL cell lines is not uncommon [234]. Three of the DLBCL cell lines in our study,

TMD8, U2932 (both ABC-type), and U2940 (PMBL), have previously been found to consist of 3, 2, and

2 subclones respectively [234, 235] and a further two, Pfeiffer and Toledo (both GCB-type), have potential

subclonality [236]. Unfortunately, we had no prior information about the phenotypes of the subclones in any

cell line besides U2932 that could be used to potentially identify them from our CyTOF data. However, one

of the U2932 subclones was reported to have higher expression of Bcl-6, CD20, and CD22 than the other

[234, 235, 237], and our CyTOF data for U2932 were consistent with that (Figure 4.7a). We newly report

that the CD20-high, Bcl-6–high subpopulation of U2932 cells also had higher expression of CD40 and

greater phosphorylation of Akt[S473], rpS6, and CREB than the Bcl-6–low subpopulation (Figure 4.7a).

The increased phosphorylation of Akt[S473] in this subpopulation was particularly pronounced in Group 3

(Figure 4.7a), suggesting that the Bcl-6–high U2932 subclone has stronger cell-cycle–dependent transient

Akt activity than the Bcl-6–low subclone.

The studies cited above also reported cases of B-cell lines having bimodal expression of cell-surface

markers that was believed to be caused by transient activation or differentiation of a subset of cells in

vitro [234, 235]. Our CyTOF Experiment 1 revealed a small but noteworthy subpopulation of cells that

had increased cell-surface IgG expression (Figure 4.7b and Figure B.2a) throughout the cell cycle in both

of the BL cell lines (BJAB and Ramos), four of five GCB-DLBCL cell lines (Karpas-422, SU-DHL-8,

SU-DHL-10, and Pfeiffer), the one PMBL cell line (U2940), and two of six ABC-DLBCL cell lines (HBL-

1 and OCI-Ly3). The IgG-high subpopulation was largely lost by SU-DHL-10 and Karpas-422 in our

subsequent 4x4-GCB CyTOF experiment (Figure 4.7b and Figure B.2a), which was conducted just two

days after Experiment 1, and was gained by TMD8 in our 4x4-ABC CyTOF experiment (Figure 4.7b and

Figure B.2a), which was conducted over two months later. With three of the affected cell lines (HBL-

1, Karpas-422, and SU-DHL-8) having previously been determined to consist of a single clone [234], we

attribute this heterogeneous IgG expression to transient differentiation states.

Curiously, all four cell lines that were included in the 4x4-GCB CyTOF experiment (BJAB, Karpas-

422, SU-DHL-10, and Toledo) acquired heterogeneity in their expression of CD20, CD81, and CD79a that

was not present two days earlier in Experiment 1. Cells were newly divided into two large subpopula-

tions (plus a small but surprising number of almost completely unstained IdU− cells in BJAB) with one

having higher expression of CD20 and CD81 and lower expression of CD79a than the other (Figure 4.7c

and Figure B.2b). The subpopulation that expressed more CD20 and CD81 had lower expression of Ki-67

(Figure 4.7c and Figure B.2b), potentially indicating that this subset of cells had temporarily exited the cell

cycle. Furthermore, this subpopulation also had smaller quantities of p-p38, p-CREB, p-MEK, p-Akt[S473],

p-rpS6, p-IKK, and general p-Tyr (Figure 4.7c and Figure B.2b), suggesting that this subpopulation had
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Figure 4.7: Heterogeneity within cell lines. Caption continues . . .
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Figure 4.7: (a) Scatter plots show expression of CD22, CD40, p-CREB, p-rpS6, or p-Akt[S473] versus
CD20 in single U2932 (ABC-DLBCL) cells. Colour indicates Bcl-6 expression. The Bcl-6+, CD20-high
subpopulation is a distinct U2932 subclone. The last scatter plot shows only the cell-cycle Group-3 cells
from the previous scatter plot. (b) The first two plots show the distributions of single-cell surface expression
of IgG in the 14 cell lines in CyTOF Experiment 1; arrows point to cell lines in which a distinct IgG-high
subpopulation could be identified. The first two scatter plots show surface expression of CD20 versus IgG
in Karpas-422 cells from the same culture in experiments performed two days apart (Experiment 1 on 2019-
10-02 and Experiment 4x4-GCB on 2019-10-04). The third scatter plot shows CD20 versus IgG surface
expression in OCI-Ly3 cells in the 4x4-ABC experiment performed on 2019-10-11. The same continuous
culture of OCI-Ly3 cells was used for the experiments on 2019-10-02 and 2019-12-11. In all three scatter
plots, lighter colours of data points indicate higher local density of data points in the scatter plot. (c) Scatter
plots of the expression of various antigens versus CD20 in BJAB and SU-DHL-10 cells in the 4x4-GCB
experiment performed on 2019-10-04 revealed extensive heterogeneity within the cell lines that was not
present in the experiment performed two days earlier. Light colours indicate high local density of data
points in the scatter plot. (d) First row shows scatter plots of the abundance of p-Akt[S474], p-MKK4, or
p-CREB versus p-ERK in single S-phase cells in the ABC-DLBCL cell lines HBL-1 (first three scatter plots)
and OCI-Ly10 (last three scatter plots). Light colours indicate high local density of data points in the scatter
plot. Data are from CyTOF Experiment 1 performed on 2019-10-02. Second row shows the single-cell
expression distributions for CD79a, p-BLNK, p-rpS6, and IκBα in the S-phase HBL-1 and OCI-Ly10 cells
from the first row, gated by p-ERK expression. A simple linear gate was applied to separate S-phase cells
into two subpopulations such that cells had p-ERK expression values (after arsinh transformation) ≤ 1.4
in one subpopulation and > 1.4 in the other. (e) Scatter plots show abundance of p-Akt[S473] versus p-
ERK, Bcl-6, or p-CREB in single S-phase OCI-Ly3 cells (data from CyTOF Experiment 1 on 2019-10-02).
The colour represents abundance of p-rpS6, IκBα, or p-Akt[T308] in each cell. The grey box highlights a
distinct population of cells that had high abundance of p-Akt[T308], p-Akt[S473], p-CREB, p-MKK4, and
p-IKK and low abundance of Bcl-6, IκBα, and p-rpS6. (f) Scatter plots show expression of Bcl-2 (left)
or Bcl-6 (right) versus Ki-67 in single SU-DHL-8 cells, excluding presumed M-phase cells. Colour shows
expression of Bcl-6 (left) or Bcl-2 (right).

lower intracellular signalling activity than the subpopulation that expressed less CD20 and CD81. Some-

what paradoxically, though, the subpopulation that had less p-IKK also had less IκBα (Figure 4.7c and

Figure B.2b), perhaps a result of reduced protein synthesis. The apparent trend of different signalling

intensities between the two subpopulations remained even after stimulating BCR or PKC signalling (Fig-
ure B.2b). The appearance of the same bifurcation in all four cell lines that were included in the 4x4-GCB

experiment suggests that it was induced by conditions that were common to all four cell lines (i.e. culture

conditions or handling of the cells), such as the decrease in cell density following the removal of cells for

Experiment 1. The newly acquired CD20/CD81/CD79a heterogeneity was subsequently lost again by BJAB

by the time of the 4x4-ABC CyTOF experiment. Meanwhile, OCI-Ly3 cells gained some heterogeneity in

their expression of CD20, which appeared to be linked to their heterogeneous IgG expression (Figure 4.7b).

These observations show that transient heterogeneity is common in B-lymphoma cell lines and that it can

be unintentionally induced or lost in short time frames.
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The ABC-DLBCL cell lines HBL-1 and OCI-Ly10 were notable for having very heterogeneous MAPK

and Akt signalling throughout the cell cycle, clearly embodying at least two states. A sizeable minor sub-

population in both HBL-1 and OCI-Ly10 had relatively high phosphorylation of ERK in particular but

also MEK, MKK4, CREB, Akt, rpS6, and IKK compared to the major subpopulation of the same cell

line (Figure 4.7d and Figure B.3a). In fact, similar p-ERK–high cells existed in most if not all of the 14 B-

lymphoma cell lines, including both subclones of U2932 (Figure B.3a). In contrast to HBL-1 and OCI-Ly10,

however, other cell lines had relatively few p-ERK–high cells (e.g. ABC-DLBCL cell lines OCI-Ly3 and

U2932 and GCB-DLBCL cell line Pfeiffer) and/or had a more diffuse or less polarized distribution of cells

along the MAPK/Akt signalling axis (e.g. ABC-DLBCL cell line TMD8 — see Figure B.3a; GCB-DLBCL

cell lines Karpas-422, SU-DHL-8, and SU-DHL-10; and PMBL cell line U2940). Using [p-ERK] > 1.4 to

approximately delineate the p-ERK–high state, where [p-ERK] denotes the quantification of p-ERK content

in a single cell after data processing and arsinh transformation, the percentages of S-phase cells that were

considered to be p-ERK–high were as follows: 16.8% for HBL-1, 20.6% for OCI-Ly10, 10.8% for TMD8,

1.5% for U2932, 3.5% for NU-DUL-1, 2.6% for OCI-Ly3 (all ABC-DLBCL); 15.3% for Karpas-422, 1.3%

for Pfeiffer, 26.8% for SU-DHL-8, 11.9% for SU-DHL-10, 0.9% for Toledo (all GCB-DLBCL); 21.3% for

U2940 (PMBL); 3.0% for BJAB, and 0.5% for Ramos (both BL). In some cell lines including U2932 (also

BJAB, NU-DUL-1, and Toledo), staining of most antigens and non-specific staining were higher in the p-

ERK–high cells than the p-ERK–low cells. This might have indicated that those cells were larger or had

higher overall protein contents, which could explain their ostensibly higher level of signalling. It would be

unlikely, though, to fully explain the much higher staining of p-rpS6 in the p-ERK–high subset of U2932

cells than the p-ERK–low subset, an increase that was much greater for the Bcl-6–low subclone than the

Bcl-6–high subclone (which already had more abundant p-rpS6). The data probably signified a continuum

of signalling states that is qualitatively common to most DLBCL cell lines, with the distribution of cells in

that continuum being an important characteristic that differs between cell lines. The MAPK/Akt signalling

heterogeneity described here was fairly consistent across experiments, indicating that it is more stable and

biologically intrinsic to the cell lines than surface-marker heterogeneity induced by transient differentia-

tion. Thus, polarization of the distribution of cells between low- and high-signalling states, perhaps due to

bistable signalling dynamics leading to distinct ‘off’ and ‘on’ states, may be a more common feature in ABC

DLBCL than GCB DLBCL.

HBL-1, which had the most visibly polarized distribution of cells between low- and high-signalling

states, displayed perhaps the strongest differences between the p-ERK–high and p-ERK–low subsets of cells.

Compared to the p-ERK–low HBL-1 subpopulation, the p-ERK–high HBL-1 subpopulation had increased

expression of CD79a and appeared to have slightly more active BCR signalling, though surprisingly not

involving increased phosphorylation of Syk (Figure 4.7d and Figure B.3a). It also displayed a reduction

in IκBα quantities (Figure 4.7d) in addition to increased p-IKK. U2932 followed similar trends to HBL-1

regarding the differences between the p-ERK–high and p-ERK–low states. Although some of these trends

might have been explained by non-specific effects of cell size or overall protein content in U2932, the

increase in CD79a staining was quite prominent and the IκBα distribution transitioned from being unimodal
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in the p-ERK–low subpopulation to bimodal in the p-ERK–high subpopulation, with some cells (from both

subclones but moreso the Bcl-6–high subclone) having increased and others (mostly from the Bcl-6–low

subclone) decreased IκBα staining (Figure B.3a). Crucially, the decreased IκBα staining in some p-ERK–

high U2932 cells cannot be explained by increased non-specific staining. These data hint at roles for BCR

and NF-κB signalling in the high-signalling state in HBL-1 and U2932. Hence, the high-signalling state

might be linked to chronic BCR signalling and constitutive NF-κB activation in ABC DLBCL. Intriguingly,

however, CD79a and IκBα expression and BCR signalling did not differ between the p-ERK–low and

p-ERK–high subpopulations in OCI-Ly10 or TMD8. Increases in p-rpS6 quantities from the p-ERK–low

subpopulation to the p-ERK–high subpopulation were also much weaker in OCI-ly10 and TMD8 than HBL-

1 and U2932. Thus, despite the qualitative similarities of the signalling states in HBL-1, OCI-Ly10, TMD8,

and U2932, all four of which are CARD11-WT ABC-DLBCL cell lines, there were subtle differences

between HBL-1 and U2932 on one hand and OCI-Ly10 and TMD8 on the other hand. Collectively, these

data suggest that chronic BCR signalling and constitutive NF-κB activation are strongest in HBL-1 among

the ABC-DLBCL cell lines in this study and that polarization of the distribution of HBL-1 cells between low-

and high-signalling states may stem from chronic BCR signalling. Furthermore, the qualitative similarities

of the range of signalling states in different DLBCL subtypes suggest that DLBCL is actually a continuum

of disease states in which the distribution of cells along a common signalling continuum, encompassing both

tonic and chronic BCR signalling, ultimately determines the disease subtype.

The ABC-DLBCL cell line OCI-Ly3 had another small but very distinguishable subpopulation, which

was characterized by very strong phosphorylation of Akt at both the S473 and T308 residues; very low

quantities of IκBα, Bcl-6, and p-rpS6; and elevated phosphorylation of MKK4, CREB, ERK, and IKK

(Figure 4.7e and Figure B.3b). The BL cell line Ramos had a notable subpopulation with a similar but

weaker phenotype (Figure B.3b). Small numbers of cells with essentially this same phenotype could also

be found in most of the other B-lymphoma cell lines but were less prominent and/or numerous than in

OCI-Ly3 and Ramos. However, this subpopulation was almost completely absent from Group 4(M). We

believe that this phenotype was a response to stress. Indeed, Bcl-6 gets degraded in GC B cells in response

to genotoxic stress [238]. The general absence of cells displaying this phenotype from Group 4(M) could

then be explained by a cell cycle block preventing the stressed cells from entering M phase. Hence, these

data suggest that OCI-Ly3 and Ramos cells suffer more stress than the other cell lines in culture or during

experimental procedures up to cell fixation and probably do not reflect any fundamental heterogeneity.

We additionally found heterogeneous Bcl-2 expression especially during S phase in several Bcl-2–low

cell lines. Both BL cell lines (BJAB and Ramos), the ABC-DLBCL cell line NU-DUL-1, and the GCB-

DLBCL cell lines SU-DHL-8 and SU-DHL-10 all contained two separate small subpopulations of Group-

2(S) cells that expressed increased quantities of Bcl-2 (Figure 4.7f and Figure B.3c). The smaller of these

two Bcl-2–high subpopulations had relatively high expression of Ki-67 and was similar to Group 4(M),

suggesting that these cells had exited S phase and progressed to mitosis during incubation with IdU. The

larger Bcl-2–high Group-2(S) subpopulation, on the other hand, had mostly intermediate expression of Ki-

67 and displayed no obvious signs of elevated signalling. This subpopulation was also evident, albeit much
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smaller, in the GCB-DLBCL cell line Pfeiffer and extended to the IdU− cells in all six of these cell lines.

Moreover, we observed almost identical heterogeneity in the expression of Bcl-6 in three Bcl-6–low cell

lines: NU-DUL-1 (ABC-DLBCL), SU-DHL-8, and Toledo (both GCB-DLBCL). These three cell lines all

had a Bcl-6–high, Ki-67–intermediate subpopulation that mirrored the Bcl-2–high, Ki-67–intermediate sub-

population described above (Figure 4.7f and Figure B.3c). Intriguingly, the Bcl-6–high and Bcl-2–high

Ki-67–intermediate subpopulations were partly overlapping but mostly separate from each other in NU-

DUL-1 and SU-DHL-8 (Figure 4.7f and Figure B.3c), the two cell lines in which both subpopulations were

present, which suggests that upregulation of Bcl-2 and Bcl-6 occur independently and not mutually exclu-

sively. Although upregulation of Bcl-2 and/or Bcl-6 midway through the cell cycle might be consequences

of stress or regular cell cycle checkpoints, the co-existence and partial overlap of Bcl-2–high and Bcl-6–high

phenotypes in two cell lines, and the lack of any obvious change in signalling associated with mid-cycle up-

regulation of Bcl-2 or Bcl-6, suggest otherwise. Instead, they may arise from genuinely heterogeneous,

dysregulated transient expression of Bcl-2 and/or Bcl-6 linked to the malignant phenotypes of the cell lines.

In sum, heterogeneity is surprisingly common within B-lymphoma cell lines. Although multiple subclones

have been discovered in some DLBCL cell lines, most of the heterogeneity probably arises from transient

states of differentiation or signalling activation, as suggested by others, while we have also documented

transiently heterogeneous expression of Bcl-2 and Bcl-6 linked to the cell cycle in some DLBCL cell lines.
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4.7 Results VI: Acute stimulation of signalling pathways in DLBCL cells

4.7.1 Acute signalling responses of DLBCL cell lines to extrinsic stimuli varied between
cell lines and by cell-cycle phase

To supplement our characterization of baseline signalling in 12 DLBCL cell lines, we used the 4x4-GCB

and 4x4-ABC CyTOF experiments to characterize acute signalling responses to three extrinsic stimuli in

three GCB-DLBCL and three ABC-DLBCL cell lines. We used the GCB-DLBCL cell lines Karpas-422,

SU-DHL-10, and Toledo and the ABC-DLBCL cell lines HBL-1, TMD8, and OCI-Ly3. We included the

BL cell line BJAB as a common reference in each experiment. Cells were either left unstimulated or treated

with one of the following stimulants: a cocktail of 10 µg/ml anti-Igκ and 10 µg/ml anti-Igλ (anti-Igκ/λ) for

15 minutes, 250 nM PMA for 15 minutes, or 100 ng/ml IL-10 for 20 minutes. The results of each stimulation

are described below.

Response of STAT3 to IL-10

The first observation was that none of the three GCB-DLBCL cell lines responded to IL-10 (Figure 4.8a)

whereas all three ABC-DLBCL cell lines increased phosphorylation of STAT3 (Figure 4.8b). The response

was especially strong in HBL-1 and OCI-Ly3. Consistent with data from Experiment 1, TMD8 and OCI-

Ly3 had some p-STAT3 at baseline whereas HBL-1, BJAB, and all three of the GCB-DLBCL cell lines

showed no evidence of baseline STAT3 activity. Thus, strong activation of STAT3 in response to IL-10 was

not restricted to the cell lines that had elevated baseline phosphorylation of STAT3. The differential STAT3

response to IL-10 between the three ABC-DLBCL and three GCB-DLBCL cell lines might reflect differen-

tial expression of IL-10R irrespective of baseline STAT3 activity. However, BJAB showed weak induction

of STAT3 phosphorylation in response to IL-10 in Experiments 1 and 4x4-ABC but had no response in Ex-

periment 4x4-GCB, so we cannot rule out the possibility that there was a problem with the IL-10 stimulation

or p-STAT3 staining in the 4x4-GCB experiment.

BCR stimulation by anti-Igκ/λ

The GCB-DLBCL cell line Toledo also did not respond to BCR stimulation by anti-Igκ/λ treatment, which

was not surprising because the American Type Culture Collection (ATCC) comments that Toledo cells do

not express surface or cytoplasmic immunoglobulin (ATCC CRL-2631). This is consistent with their lack of

surface IgM or IgG in our experiments (Figures 4.2a and 4.8a). Strikingly, Karpas-422 (GCB-DLBCL) only

very weakly increased phosphorylation of BCR-proximal signalling molecules following BCR stimulation

by anti-Igκ/λ but, notwithstanding, this led to strongly increased phosphorylation of Akt, though not rpS6

(Figure 4.8a). SU-DHL-10 (also GCB-DLBCL) increased phosphorylation of BCR-proximal signalling

molecules more strongly than Karpas-422, though much less so than BJAB (BL). Downstream, this led

to stronger induction of ERK phosphorylation than was observed in Karpas-422 and strong increases in the

phosphorylation of rpS6 and CREB, which were not observed at all in Karpas-422 (Figure 4.8a). BJAB (BL)
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Figure 4.8: Acute signalling responses of cells to stimulants varied between cell lines and between
cell-cycle phases. (a) CyTOF data from the 4x4-GCB experiment in which the BL cell line BJAB and the
GCB-DLBCL cell lines Karpas-422, SU-DHL-10, and Toledo were either resting (no stimulation) or treated
with 10 µg/ml anti-Igκ + 10 µg/ml anti-Igλ (anti-Igκ/λ) for 15 minutes, 250 nM PMA for 15 minutes, or
100 ng/ml IL-10 for 20 minutes. Data were compensated and transformed by X 7→ sinh-1(X/10). Caption
continues . . .
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Figure 4.8: (a) continued. Heatmap shows normalized abundance of IdU and antigens (columns) in single
cells (rows) for 20, 000 randomly sampled cells per unique biological sample. Each heatmap column was
normalized to its own 99th percentile in the pooled data from the 4x4-GCB and 4x4-ABC experiments. The
value to which each column was scaled is written above the column. IdU (first column) marks S phase, and
mCD115 and mCD117 (last two columns) were markers of non-specific staining. Each block of heatmap
rows corresponds to a unique biological sample. Scatter plots show abundance of IκBα versus CD81 (top),
IdU (middle), and Ki-67 (bottom) in single Toledo cells that were resting (no stimulation; left) or treated
with PMA (right). Note the different axis scales between the left and right scatter plots. In general, Ki-67
increases continually throughout the active cell cycle until peaking in M phase. (b) CyTOF data from the
4x4-ABC experiment in which the BL cell line BJAB and the ABC-DLBCL cell lines HBL-1, TMD8, and
OCI-Ly3 were resting (no stimulation) or treated as described in (a). The main heatmap is as described in (a).
Within each block of rows corresponding to one unique biological sample, rows were arranged in order of
cell-cycle group and in increasing order of Ki-67 within each cell-cycle group. The smaller heatmaps show
10, 000 randomly sampled S-phase cells per biological sample (top) or 1, 000 randomly sampled presumed
M-phase cells per biological sample (bottom) from the same data and normalized to the same column scales.
The plots below the heatmaps show distributions of IκBα expression in S-phase cells (Group 2(S); blue and
yellow lines) and presumed M-phase cells (Group 4(M); red and purple lines) that were either at rest (solid
lines) or treated with PMA (dashed lines). IκBα distributions are shown for the three ABC-DLBCL cell
lines: HBL-1 (left), TMD8 (middle), and OCI-Ly3 (right).

and the BCR-dependent, IgM+ ABC-DLBCL cell lines HBL-1 and TMD8 all showed substantial increases

in phosphorylation of BCR-proximal and downstream signalling molecules following BCR stimulation by

anti-Igκ/λ (Figure 4.8b), which shows that the strength of chronic BCR signalling in ABC DLBCL is

negligible compared to acutely stimulated BCR signalling. In the CARD11-mutant, IgG+ ABC-DLBCL cell

line OCI-Ly3, anti-Igκ/λ only weakly increased phosphorylation of BCR-proximal signalling molecules,

although their baseline phosphorylation levels in OCI-Ly3 were already comparable to their stimulated

levels in TMD8. Nevertheless, anti-Igκ/λ caused very strong induction of downstream signalling in multiple

pathways in OCI-Ly3 (Figure 4.8b). The data for Karpas-422, SU-DHL-10, and OCI-Ly3 together suggest

that IgM− IgG+ DLBCL cells can amplify weak induction of BCR signalling into stronger downstream

signalling. On the other hand, BCR-dependent ABC-DLBCL cells might be hyper-responsive to BCR

engagement, which could be a feature of chronic BCR signalling.

Interestingly, responses to BCR stimulation by anti-Igκ/λ varied subtly by cell-cycle phase. This was

particularly evident for BCR-proximal signalling molecules. For example, after treating cells with anti-Igκ/λ

for 15 minutes, phosphorylation of Syk was consistently greater in cells presumed to be in M phase than in

S-phase cells, whereas phosphorylation of CD79a, Btk, BLNK, and PLCγ2 was often lower or otherwise

no greater in presumed M-phase cells than in S-phase cells (Figure 4.8b). Also, the response of TMD8

cells to anti-Igκ/λ was barely noticeable in presumed M-phase cells despite being very apparent in S-phase

cells (Figure 4.8b). In contrast, OCI-Ly3 cells increased phosphorylation of BCR-pathway molecules more

strongly during presumed M phase than during S phase in response to anti-Igκ/λ (Figure 4.8b). These data

show that the intensity and dynamics of BCR-pathway signalling in response to engagement of BCRs, here
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by anti-Igκ/λ antibodies but potentially also by antigens, vary enormously between DLBCL cell lines and

depend on the cell-cycle phase of a cell at the time of stimulation.

Stimulation of PKC by PMA

PMA did not induce any increase in the phosphorylation of BCR-proximal signalling molecules in any cell

line (Figure 4.8), as expected since it activates PKC downstream. In general, PMA elicited stronger sig-

nalling activity in MAPK and NF-κB pathways than anti-Igκ/λ did (Figure 4.8). OCI-Ly3 was an exception

to this in that anti-Igκ/λ, surprisingly, elicited phosphorylation in MAPK pathways that was just as strong

as was elicited by PMA (Figure 4.8b). In most cell lines, treatment with PMA reduced phosphorylation

of Akt, unless there was none present at baseline (Figure 4.8). HBL-1 was a curious exception to this as

PMA increased the quantities of p-Akt[S473] (Figure 4.8b). This suggests that the signalling network that

links PKC to Akt is ‘abnormal’ in HBL-1 compared to other B-lymphoma cell lines. Phosphorylation of

rpS6, which can be induced by either Akt or MAPK signalling [239], increased in all cell lines following

PMA treatment (Figure 4.8). Collectively, these data show that acute activation of PKC in DLBCL cell

lines usually causes downregulation of Akt signalling and upregulation of MAPK signalling. Additionally,

since PMA shifted p-rpS6 levels in the same direction as MAPK signalling in all cell lines but the opposite

direction to p-Akt levels in most cell lines, the data suggest that phosphorylation of rpS6 at serines 235 and

236 is linked more strongly to MAPK signalling than Akt signalling in DLBCL cell lines, at least in the

context of PKC activation.

For the four cell lines in the 4x4-GCB experiment, we wondered whether the two subpopulations dis-

tinguished from each other by their expression of CD20 and CD81 displayed divergent responses to any

of the acute stimuli. The only clearly heterogeneous response of any of these cell lines to any stimulus

was the degradation of IκBα in Toledo (GCB-DLBCL) following treatment with PMA, whereby an initially

unimodal distribution of IκBα became bimodal with one subset of cells decreasing IκBα substantially more

than the other. However, this heterogeneous response was not related to the heterogeneous expression of

CD20 and CD81, as both subpopulations distinguished by CD20 and CD81 exhibited a bimodal distribution

of IκBα following treatment with PMA (Figure 4.8a). The two modes of the bimodal IκBα distribution

also did not represent cells in different cell-cycle phases as the IκBα distribution was heterogeneous for

both S-phase and non-S-phase cells (Figure 4.8a). Nevertheless, PMA-induced IκBα degradation in Toledo

cells appeared to have some dependence on the cell cycle. Toledo cells that had very high expression of

Ki-67, and were therefore presumably in M phase, mostly retained their high quantities of IκBα following

PMA treatment, while PMA-treated Toledo cells in S phase were quite evenly split between distinct modes

of low and intermediate IκBα quantities (Figure 4.8a). It is plausible that the heterogeneous degradation of

IκBα induced by PMA in Toledo was caused by the presence of different subclones responding differently

to PKC activation. However, given the potential dependence on cell-cycle phase of the shape of the IκBα

distribution in Toledo, the heterogeneity probably had a non-genomic basis. For example, it might have

arisen from natural biological variation in an inherently bistable dynamical system.

143



Furthermore, the PMA-induced bimodality of IκBα quantities in Toledo was reminiscent of the bimodal

IκBα distributions observed in the presumed M-phase cells in some ABC-DLBCL cell lines at baseline. The

decreases in IκBα quantities that were observed in the presumed M-phase cells of the ABC-DLBCL cell

lines HBL-1, OCI-Ly3, and TMD8 in Experiment 1 also occurred in the 4x4-ABC experiment, but this time

almost all of the presumed M-phase HBL-1 and OCI-Ly3 cells had very little IκBα and their presumptive

M-phase IκBα distributions were no longer bimodal (Figure 4.8b). The sharp drop in IκBα quantities that

occurred presumably during M phase in HBL-1 and OCI-Ly3 cells was much greater than the decrease

induced by PMA, which had only a weak effect on IκBα quantities in these two cell lines (Figure 4.8b).

On the other hand, PMA induced a large decrease in IκBα quantities in S-phase TMD8 cells but only a very

small decrease in presumed M-phase TMD8 cells, which had IκBα quantities that were generally between

the post-PMA-treatment and baseline S-phase IκBα quantities (Figure 4.8b). This suggests either that

baseline NF-κB activity is closer to its maximum capacity in HBL-1 and OCI-Ly3 cells than it is in TMD8

cells or simply that the NF-κB pathway is more responsive to acute activation of PKC in TMD8 cells. Either

way, these data provide more evidence that the dynamics of IκBα degradation are strongly coupled to the cell

cycle and specifically involved during mitosis in some ABC-DLBCL cell lines. We earlier speculated that

bimodal IκBα distributions during M phase in some ABC-DLBCL cell lines could be the result of capturing

cells at different stages of mitosis before and after precisely timed degradation of IκBα. However, on the

basis of all the data here, heterogeneous or bistable signalling are more compelling reasons. Moreover, the

cells used for the 4x4-ABC experiment were from the same cultures used for Experiment 1 but had been in

culture for over two months longer, which shows that the degradation of IκBα presumably during M phase

is a stable phenotype in the ABC-DLBCL cell lines HBL-1, OCI-Ly3, and TMD8.
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4.8 Results VII: Clustering

4.8.1 ASTRICS and unsupervised multi-level clustering accurately segregate cell lines and
reveal likeness between DLBCL cell lines

Returning to the data from Experiment 1, we applied an unsupervised multi-level clustering pipeline utilizing

ASTRICS for two purposes:

1. To test whether an unsupervised clustering strategy consisting of an initial fine-grained clustering step

using a conventional algorithm (in this case FlowSOM [101]) followed by application of community

detection to cluster a similarity graph generated by ASTRICS could accurately resolve cell lines from

each other based on their phospho-CyTOF data;

2. To further characterize B-lymphoma cell lines by assessing which are most alike, and whether cell

lines of different DLBCL subtypes cluster separately or together, based on a cluster hierarchy obtained

from unsupervised clustering.

After compensating the CyTOF data for signal spillover (see Computational methods) and subsequently

applying the arsinh transformation with a cofactor of 10 (i.e. X 7→ sinh-1(X/10)), we performed an initial

‘seed’ clustering using FlowSOM with a grid for the self-organizing map (SOM) of size 20 × 20, thereby

partitioning the data (N = 1, 038, 616 cells from Experiment 1) into 400 ‘seed’ clusters. The seed-clustering

process included merging FlowSOM clusters if warranted to ensure that all seed clusters contained at least

16 cells (see Computational methods for details), but no merges were required. We did not standardize the

data at any stage because the arsinh transformation already put the CyTOF data for different dimensions onto

comparable scales and we did not want to inflate the importance of weakly stained epitopes. We then used

ASTRICS (using the LDA+PCA method for local dimensionality reduction) to generate a similarity graph in

which the nodes represent the seed clusters and edges are defined and weighted by the ASTRICS similarities

between seed clusters. IdU data were excluded throughout clustering and ASTRICS as this served only as

an artificial marker of S phase and did not measure anything relevant to the intrinsic phenotypes of cells.

The data for the two markers of non-specific staining were also excluded. Data were visualized at the

resolution of seed clusters in two dimensions using force-directed layout of the ASTRICS similarity graph

after initializing the node positions using the first two principal components of the seed-cluster centroids

(Figure 4.9a). Defining the purity of a cluster to be the greatest percentage of cells in the cluster having

the same sample barcode (i.e. belonging to the same cell line and experimental condition), the 400 seed

clusters obtained using FlowSOM achieved weighted and unweighted mean purities of 92.0% and 90.6%

respectively, indicating that there was very little mixing of different cell lines in seed clusters at this fine

resolution. Labelling each seed cluster with the most common sample identity among its member cells,

it was clear that most cell lines formed separate resolved islands in the 2D visualization of the ASTRICS

similarity graph (Figure 4.9a).
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A multi-level (i.e. hierarchical) clustering of the nodes (i.e. seed clusters) was obtained by applying the

multi-level Infomap community detection algorithm [4] to the ASTRICS similarity graph (Figure 4.9a).

The finest level (level 3) of the Infomap cluster hierarchy had 28 clusters with weighted and unweighted

mean purities of 88.8% and 85.8% respectively, down only slightly from the weighted and unweighted

mean purities of the 400 seed clusters despite a 14-fold reduction in the number of clusters. The mean

F-measure (0 = worst, 1 = best), which measures how well clusters balance purity with not separating cells

having the same barcode into multiple clusters, of the level-3 clusters was 0.764. The unweighted version

of the mean F-measure, calculated in the same way but without weighting the F-measure for each cluster

by the cluster size, was 0.794. The normalized mutual information (NMI; 0 = worst, 1 = best), which

uses information theory to measure the similarity between the clusters and the ground-truth grouping of

cells by sample barcode, was 0.821 for the level-3 clusters. These scores are on a par with or better than

the clustering scores that were previously achieved when clustering the Samusik01 immunophenotyping

CyTOF dataset [107] using a similar multi-stage clustering method utilizing ASTRICS or exclusively using

FlowSOM (see Chapter 3). The clustering results and visual separation of cell lines show that, preceded

by an initial fine-grained clustering by, for example, FlowSOM and followed by graph-based visualization

and community detection, ASTRICS generates a similarity graph that can effectively separate different B-

lymphoma cell lines of the same subtype based on CyTOF data obtained using our phospho-CyTOF panel.

Because the different samples in the experiment were pooled for CyTOF and defined in the data only by their

palladium barcodes (which were ignored during the unsupervised analysis), and not by any prior knowledge

or subjective manual gating, these results give us confidence that ASTRICS is a reliable tool for unsupervised

analysis of heterogeneous CyTOF data focused exclusively on B-lymphoma cells.

Given the success of the above analysis pipeline at resolving the different cell lines in our Experiment-1

CyTOF data, we now use the results to further characterize the 14 B-lymphoma cell lines in Experiment

1 in terms of their likeness to each other. At the top (most coarse) level of the cluster hierarchy, samples

were divided into four clusters (Figure 4.9a). Five of the six ABC-DLBCL cell lines (HBL-1, TMD8,

OCI-Ly3, OCI-Ly10, and U2932) exclusively clustered together in Cluster 1. The other ABC-DLBCL cell

line, NU-DUL-1, clustered instead with three GCB-DLBCL cell lines, specifically SU-DHL-8, Toledo, and

Karpas-422. NU-DUL-1 was most similar to SU-DHL-8, as revealed by their lack of separation in the 2D

visualization of seed clusters and by their formation of a single cluster separate from other cell lines in

the second level of the Infomap cluster hierarchy (Figure 4.9a). The GCB-DLBCL cell line SU-DHL-10

clustered with the two BL cell lines (BJAB and Ramos) in Cluster 2 at the top of the cluster hierarchy,

while the remaining GCB-DLBCL cell line Pfeiffer and the PMBL cell line U2940 together constituted

Cluster 4. These observations support our earlier observations that the ABC-DLBCL cell line NU-DUL-1

was exceptional in that it shared several features more with GCB-DLBCL cell lines than with other ABC-

DLBCL cell lines. They also agree with the notion that the BL cell line BJAB is more similar to the GCB

subtype than ABC subtype of DLBCL, as per its common mislabelling in the literature as a GCB-DLBCL

cell line. Yet, in spite of frequently being mislabelled as GCB-DLBCL, our analysis shows that BJAB

clusters with another BL cell line (Ramos). Furthermore, the results here show that the PMBL (a minor

146



Figure 4.9: Caption continues . . .
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Figure 4.9: Visualization and clustering of CyTOF data for 14 B-lymphoma cell lines using Flow-
SOM, ASTRICS, and Infomap. (a) Force-directed layout and clustering of the ASTRICS similarity graph
for seed clusters, which were computed using FlowSOM, in the phospho-CyTOF data from CyTOF Exper-
iment 1 for 12 DLBCL (names of cell lines are coloured by subtype: blue for ABC, yellow for GCB, red
for PMBL) and two BL (BJAB and Ramos) cell lines. Each node in the graph represents one seed cluster
of cells and the edges between nodes are shaded based on their ASTRICS similarity scores (darker edge
= greater similarity). IdU, mCD115, and mCD117 were not used during the analysis. Nodes in the main
plot (top left) are coloured according to the most common identity of cells in the seed cluster. The one
node corresponding to the Bcl-6+ U2932 subclone is indicated. The seed clusters had a weighted mean
purity of 92.0% and an unweighted mean purity of 90.6%. Small graphs to the right show the most common
cell-cycle group classification of cells in each seed cluster or the mean abundance of p-ERK, p-rpS6, or
general p-Tyr in each seed cluster. Colour bars for antigen expression are normalized to the maximum node
value. Small graphs below show the three levels of clusters computed by applying Multi-level Infomap to
the ASTRICS similarity graph. Scatter plot of U2932 cells (bottom right) shows that a single seed cluster
(red) captures the Bcl-6+, CD20-high subclone of U2932. (b–c) Similar to (a) but the analysis was applied
to only S-phase (b) or presumed M-phase (c) cells. The seed clusters in (b) had a weighted mean purity of
92.0% and an unweighted mean purity of 90.8%. The seed clusters in (c) had a weighted mean purity of
87.9% and an unweighted mean purity of 84.4%.

subtype of DLBCL) cell line U2940 has a phenotype that is closer to the GCB subtype than the ABC

subtype of DLBCL.

Labelling seed clusters with the most common cell-cycle group assignment of their member cells re-

vealed that cells presumed to be in M phase often clustered away from the rest of the cells in the same

cell line (Figure 4.9a), which was not surprising. For example, presumed M-phase cells from the two BL

cell lines (BJAB and Ramos) and the GCB-DLBCL cell line SU-DHL-10 together formed their own cluster

that was very distinct from the rest of the cells in these three cell lines (Figure 4.9a, level-2 Cluster 7).

In fact, this small cluster of presumed M-phase cells from BJAB, Ramos, and SU-DHL-10 clustered with

ABC-DLBCL cell lines in Cluster 1 at the top (level 1) of the cluster hierarchy instead of with the majority

of BJAB, Ramos, and SU-DHL-10 cells in Cluster 2. Presumed M-phase cells from the GCB-DLBCL cell

lines Toledo and SU-DHL-8 and the ABC-DLBCL cell line NU-DUL-1 also clustered together away from

most of the other cells in these three cell lines in levels 2 (Cluster 14) and 3 (Cluster 24) of the cluster

hierarchy (Figure 4.9a). Note that some samples do not have any seed clusters labelled as presumptive

M-phase in Figure 4.9a. This means that the presumed M-phase cells from some samples already clustered

with either non-M-phase cells or cells from other samples, or both, at the resolution of the 400 seed clusters.

These observations emphasize the importance of taking cell-cycle phases into consideration when analyzing

intracellular CyTOF data in order to avoid misinterpretation of clustering results and apparent phenotypes.

Besides the effect of the cell cycle on cell clustering, several cell lines were further fragmented into

more than one cluster in level 3 and sometimes level 2 of the cluster hierarchy. It was visibly apparent that

heterogeneous quantities of p-rpS6 were a key factor in this as these clusters generally divided cell lines

into p-rpS6–low and p-rpS6–high clusters (Figure 4.9a). However, clustering of the ASTRICS similarity

graph by Infomap did not yield separate clusters within cell lines based on the MAPK/Akt signalling het-
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erogeneity that we described earlier. This was in spite of some nodes having comparatively high levels of

p-ERK within the ABC-DLBCL cell lines HBL-1, OCI-Ly10, and TMD8 (Figure 4.9a) and indeed mostly

separating p-ERK–high cells from p-ERK–low cells in the respective cell line (Figure B.4). A probable

explanation would be that the variability of quantities of p-rpS6, and possibly other antigens such as widely

expressed surface markers, outweighed the effects of the seemingly bimodal MAPK/Akt signalling in these

three cell lines on ASTRICS computations. Similarly, Infomap did not separate the two subclones of U2932

into different clusters. Guided by our prior knowledge of the phenotypes of the two subclones, we identified

one U2932 node that had high expression of both CD20 and Bcl-6 (Figure B.4), which was located near the

nodes representing presumed M-phase U2932 cells in the visualized graph. The corresponding seed cluster,

which accounted for 0.15% (1, 554 of 1, 038, 616 cells) of the entire dataset, was 99.5% composed of U2932

cells and plotting Bcl-6 expression versus CD20 expression confirmed that this seed cluster exclusively cap-

tured most of the CD20-high, Bcl-6–high subpopulation of U2932 cells (Figure 4.9a). However, although

FlowSOM was able to identify this subpopulation by one out of 400 SOM nodes, it had nonzero ASTRICS

similarity to other nodes and therefore a single node was insufficient to remain separate from other nodes

after further clustering by our pipeline. Unexpectedly, some CD20-high, Bcl-6–high U2932 cells clustered

with TMD8 cells or with the presumed M-phase cluster of SU-DHL-10, BJAB, and Ramos cells even at the

resolution of the seed clusters, possibly pointing towards heterogeneity within one or both U2932 subclones.

We additionally discovered one particularly anomalous node, which represented a seed cluster of 244

cells, in the bottom-right corner of the visualized graph in Figure 4.9a. Because it was a single node in

the graph but not disconnected, Infomap always clustered it with other seed clusters (Cluster 13 in level

3). Nevertheless, this peripheral node was clearly distinct. The most prevalent cell identity in this seed

cluster was U2940 but the seed cluster had a purity of only 17.6% and contained cells from every uniquely

barcoded sample except Karpas-422. At least 165 (67.6%) of the 244 cells in this cluster were in either

G0 or G1 phase of the cell cycle, 72/244 (29.5%) were in S phase, and zero were presumed to be in M

phase. The cells were characterized by very high phosphorylation of tyrosine residues (Figure 4.9a) and of

BCR-proximal signalling molecules (Figure B.4), especially BLNK, Btk, and PLCγ2, plus low abundance

of IκBα (Figure B.4), which together imply highly active signalling along the BCR–NF-κB axis. Phospho-

rylation of molecules in other signalling pathways was low in these cells. In addition, quantities of Bcl-2,

Bcl-xL, and Bcl-6 were very low (Figure B.4). Intriguingly, the cells in this seed cluster also frequently had

reduced expression of cell-surface markers (e.g. CD22) and CD79a. Because CD79a was stained after cell

permeabilization, this observation cannot be explained entirely by the possibility of receptor internalization.

Considering all of its characteristics, this seed cluster likely represented cells in a transient state of BCR

activation that might, for example, be specifically associated with cellular differentiation or cell-cycle exit

or re-entry.

To assess clustering in the absence of variability caused by differences between cell-cycle phases, we

separately applied our clustering and visualization pipeline to just the S-phase cells or just the presumed

M-phase cells (Figure 4.9b–c). We used a FlowSOM grid of size 16 × 16 for the seed clustering of these

more refined data. This resulted in 256 seed clusters, with weighted and unweighted mean purities of 92.0%
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and 90.8% respectively, for the S-phase cells. In general, the 2D layout of cell lines by force-directed layout

of the ASTRICS similarity graph for the S-phase cells (Figure 4.9b) was quite similar to the layout shown

in Figure 4.9a for all cells. The top level (level 1) of the cluster hierarchy partitioned S-phase cells into

two clusters (Figure 4.9b), which clearly separated the cell lines expressing high levels of Bcl-2 (the ABC-

DLBCL cell lines U2932, OCI-Ly3, OCI-Ly10, HBL-1, and TMD8 and the GCB-DLBCL cell lines Toledo

and Karpas-422) into Cluster 2 and the rest into Cluster 1 (including Pfeiffer, which had intermediate Bcl-2

expression compared to the two clusters overall). This contrasted with the four clusters at level 1 of the

cluster hierarchy that was obtained when all cells were included. In particular, the GCB-DLBCL cell lines

Toledo, Karpas-422, and SU-DHL-8 and the ABC-DLBCL cell line NU-DUL-1 were no longer united in the

same cluster when only the S-phase cells were included. The presence or absence of the presumed M-phase

cells might have been an important factor in this difference. Because of their universal elevation of Bcl-2

expression, presumed M-phase cells probably formed key links between Bcl-2–high cell lines (e.g. Toledo

and Karpas-422) and Bcl-2–low cell lines (e.g. NU-DUL-1 and SU-DHL-10). Their exclusion was therefore

surely an enabling factor for the subsequent clustering of cell lines by Bcl-2 expression.

Level 2 of the cluster hierarchy for S-phase cells, which had 20 clusters, achieved weighted and un-

weighted mean F-measure scores of 0.882 and 0.887 respectively and an NMI of 0.892. The level-3 cluster-

ing for just S-phase cells had 24 clusters and scored 0.846, 0.871, and 0.862 for the weighted and unweighted

mean F-measures and the NMI respectively. It was qualitatively much like the level-3 clustering for all cells

but without the fragmentation of the U2932 and OCI-Ly10 clusters (Figure 4.9b, cf. Figure 4.9a). Where

individual cell lines did fragment into smaller clusters, they once again generally aligned with p-rpS6 quan-

tities (Figure 4.9b). Nodes that collectively captured the p-ERK–high subpopulations in HBL-1, OCI-Ly10,

and TMD8 were evident but again Infomap did not cluster them separately from the p-ERK–low nodes of

the respective cell lines (Figure 4.9b). Also as before, the CD20-high, Bcl-6–high U2932 subclone appeared

as a single node, which clustered with the rest of the U2932 nodes in the ASTRICS similarity graph but was

relatively distant from other U2932 nodes in the 2D layout (Figure 4.9b). These results show that the pres-

ence of cells in different cell-cycle phases can influence the hierarchical clustering of intracellular CyTOF

data and that restricting clustering to only S-phase cells, which can be easily identified by IdU, can improve

separation and clustering of cells by genuine phenotype. Nevertheless, the overall 2D layout of the data was

not substantially altered and the co-clustering of NU-DUL-1 and SU-DHL-8 was especially consistent.

On the other hand, the ASTRICS similarity graph for only the presumed M-phase cells, which were

partitioned into 239 seed clusters having weighted and unweighted mean purities of 87.9% and 84.4%

respectively, had a more noticeably altered layout and yielded a slightly different clustering to either of

those obtained previously (Figure 4.9c). Karpas-422 (GCB-DLBCL) appeared to be most similar to Toledo

(also GCB-DLBCL) during S phase (Figure 4.9b) but, when focusing solely on the presumed M-phase

cells, Karpas-422 was very dissimilar from Toledo and instead clustered with the BL cell lines BJAB and

Ramos and the GCB-DLBCL cell line SU-DHL-10 (Figure 4.9c). OCI-Ly3 was most similar to fellow

ABC-DLBCL cell lines HBL-1 and OCI-Ly10 during S phase (Figure 4.9b) but its presumed M-phase

cells clustered with those of U2940 (PMBL) and Pfeiffer (GCB-DLBCL), though they were ultimately very
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dissimilar from the other presumed M-phase cells of all cell lines (Figure 4.9c). The different clustering

and visual layout of cell lines based on presumed M-phase cells compared to S-phase cells reiterates that the

cell-cycle dynamics vary between cell lines and shows that cell lines that appear to be similar (or different)

in early phases of the cell cycle can have behaviour that diverges (or, respectively, converges) during mitosis.

Besides the above differences, the level-1 clustering of cell lines when including only presumed M-phase

cells was much the same as their level-1 clustering when all cell-cycle phases were included. However, NU-

DUL-1 and SU-DHL-8, whose S-phase cells clustered together compactly, were much more easily separated

when only the presumed M-phase cells were analyzed by our pipeline (Figure 4.9c). Also, p-rpS6 had a

more profound effect on the global 2D layout of nodes for only the presumed M-phase cells than for all cells

or only S-phase cells, with the p-rpS6–low nodes for all cell lines being organized closer to the centre of the

layout and often being very distant from the p-rpS6–high nodes of their respective cell lines (Figure 4.9c).

This was probably because the presumed M-phase cells had less variability in the quantities of Bcl-2, Ki-67,

and several phospho-epitopes between cell lines than S-phase cells, thereby resulting in p-rpS6 contributing

a greater proportion of the overall heterogeneity. Many of the cells that had low quantities of both p-rpS6 and

IκBα in the ABC-DLBCL cell lines HBL-1, OCI-Ly3, OCI-Ly10, and, most numerously, TMD8 clustered

together in level-3 Cluster 18, equivalently level-2 Cluster 5, of the cluster hierarchy for presumed M-phase

cells (see clusters in Figure 4.9c), suggesting that the phenotype of this subset of cells was common to

multiple ABC-DLBCL cell lines. Despite the bimodality of IκBα expression during presumptive M phase

in these four ABC-DLBCL cell lines, HBL-1 and OCI-Ly3 cells that had low expression of IκBα but not

p-rpS6 were mixed with their respective IκBα-high subset of cells at all levels of clustering, including the

seed clustering. Furthermore, the CD20-high, Bcl-6–high U2932 subclone was not identified at any level of

the cluster hierarchy, including the seed clustering, this time. The level-3 clustering of only presumed M-

phase cells, which comprised 22 clusters, scored 0.776, 0.669, and 0.790 for the weighted mean F-measure,

unweighted mean F-measure, and NMI respectively. All together, these results show that, relative to intra–

cell-line heterogeneity, inter–cell-line heterogeneity is reduced during presumptive M phase compared to S

phase and that phosphorylation of rpS6 dominates signalling heterogeneity throughout the cell cycle.

4.8.2 Multi-level clustering using FlowSOM, ASTRICS, and Infomap can reasonably
separate ABC-DLBCL cells by acute pathway activity

To quantitatively test whether our FlowSOM–ASTRICS–Infomap clustering pipeline could theoretically

detect different signalling states within cell lines from phospho-CyTOF data, we applied it to the 4x4-

ABC CyTOF dataset. We excluded data for IgG and IgM during application of our pipeline to the 4x4-

ABC CyTOF data because we suspected that their measured expression was artifactually and not genuinely

reduced by the stimulating anti-Igκ/λ antibodies. It would therefore have given an unfair advantage to

our pipeline with regard to separating the anti-Igκ/λ-treated cells from unstimulated cells. In spite of this

exclusion, we found that cells clustered together by cell line rather than by stimulation condition (Figure
4.10), indicating that the variability of expression of, for example, cell-surface markers between cell lines

was greater than the variability of intracellular signalling within cell lines induced by different stimulants.
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Nodes representing presumed M-phase cells were again visually separated from the rest of the nodes for

their respective cell lines in the 2D layout and presumed M-phase cells of the same cell line from different

conditions tended to cluster together (Figure 4.10a). When cells in all cell-cycle phases were included in the

clustering, cells clustered by B-lymphoma subtype into two clusters at the top of the cluster hierarchy: BJAB

BL cells from all four different conditions belonged to level-1 Cluster 2 while cells from the three different

ABC-DLBCL cell lines in the experiment (HBL-1, TMD8, and OCI-Ly3) under the four different conditions

clustered together in level-1 Cluster 1 (Figure 4.10a). Level 3 of the cluster hierarchy, the finest level except

for the seed clustering, had 22 clusters and was the closest to matching the 16 ground-truth sample identities

defined by the sample barcodes and scored 0.636 and 0.646 for the weighted and unweighted mean F-

measure respectively and 0.694 for the NMI. The 400 seed clusters, which were generated using a FlowSOM

grid of size 20× 20, had weighted and unweighted mean purities of 74.6% and 73.7% respectively.

Applying our pipeline to only the S-phase cells resulted in a qualitatively similar visual 2D layout of the

16 samples, but the top level of the cluster hierarchy had an additional cluster as OCI-Ly3 separated from

the other two ABC-DLBCL cell lines despite their proximity in the 2D layout (Figure 4.10b). Level 3 of

the hierarchy, again the finest level of clusters output by Infomap, had 19 clusters (Figure 4.10b) and scored

0.737 and 0.719 for the weighted and unweighted mean F-measure respectively and 0.766 for the NMI.

The 400 seed clusters, which were again obtained using a FlowSOM grid of size 20 × 20, had weighted

and unweighted mean purities of 78.5% and 76.9% respectively. Hence, focusing only on S-phase cells

improved the accuracy with which the true samples were separated by clustering. For just the presumed

M-phase cells, our pipeline using a 20×20 FlowSOM grid generated 369 seed clusters having weighted and

unweighted mean purities of 68.4% and 68.0% respectively. As when all cells were included, the coarsest

level of clustering of the presumed M-phase cells had two clusters with BJAB BL cells under any condition

in Cluster 2 and cells from the three ABC-DLBCL cell lines under any condition in Cluster 1. Interestingly,

the nodes representing HBL-1 and TMD8 cells stimulated by PMA formed their own much more distinct

islands in the 2D layout when only the presumed M-phase cells were included and they clustered with OCI-

Ly3 cells under all conditions in cluster level 2 despite their apparent visual separation (Figure 4.10c). Level

4, the finest level except for seed clusters, of the cluster hierarchy for presumed M-phase cells had 22 clusters

(Figure 4.10c) and scored 0.588, 0.609, and 0.654 for the weighted and unweighted mean F-measures and

the NMI respectively. All together, the results of applying our pipeline to the 4x4-ABC CyTOF experiment

show that it can reasonably separate cells based on signalling pathway activity measured by phospho-CyTOF

but that this is more difficult than identifying different cell lines classified as the same B-lymphoma subtype

and that clustering differs slightly between S phase and M phase.

4.8.3 A FlowSOM–ASTRICS–Infomap clustering pipeline can uncover the subclones
within U2932 and the signalling heterogeneity within HBL-1

We next asked whether a FlowSOM–ASTRICS–Infomap clustering pipeline could reveal heterogeneity,

such as the different subclones in U2932 or the intracellular signalling heterogeneity in HBL-1, from

phospho-CyTOF data that might be more representative of the B cells in a clinical DLBCL sample. CyTOF
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Figure 4.10: Visualization and clustering of CyTOF data for three ABC-DLBCL cell lines and BJAB
under resting and stimulated conditions. (a) Force-directed layout and clustering of the ASTRICS sim-
ilarity graph for seed clusters, which were computed using FlowSOM, in the phospho-CyTOF data from
the 4x4-ABC experiment. The ABC-DLBCL cell lines HBL-1, OCI-Ly3, and TMD8 and the BL cell line
BJAB were resting (no stimulation) or treated with 10 µg/ml anti-Igκ + 10 µg/ml anti-Igλ (αIgκ/λ) for 15
minutes, 250 nM PMA for 15 minutes, or 100 ng/ml IL-10 for 20 minutes. Caption continues . . .
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Figure 4.10: (a) continued. Each node in the graph represents one seed cluster of cells and the edges
represent ASTRICS similarity scores (darker edge = greater similarity between nodes). IgG, IgM, IdU,
mCD115, and mCD117 were not used during the analysis. Nodes in the main plot (top left) are coloured
according to the most common identity of cells in the seed cluster. Seed clusters had a weighted mean purity
of 74.6% and an unweighted mean purity of 73.7%. Small graphs show the following: the most common
cell-cycle group classification of cells in each seed cluster; the mean abundance of p-PLCγ2, p-ERK, or
p-STAT3 in each seed cluster (colour bars normalized to maximum node value); and the three levels of
Infomap clusters computed from the ASTRICS similarity graph. The 3D scatter plot (top right) with IdU,
Ki-67, and p-MKK4 along the axes shows the cell-cycle group classification of OCI-Ly3 cells that were
stimulated by anti-Igκ/λ. This illustrates that the four cell-cycle groups could still be identified in stimulated
cells despite overall increased quantities of phospho-specific markers that were used for the grouping of
cells. (b–c) Similar analysis to (a) was applied to only the S-phase (b) or the presumed M-phase (c) cells in
the data. Nodes are coloured by either the most common true biological sample identity of cells in each seed
cluster (first plot; colours are the same as in the top left of (a)) or by Infomap clusters at different levels of the
clustering. In (b), the three levels of Infomap clusters are shown. In (c), the second, third, and fourth levels
of a four-level Infomap clustering are shown; the first level (not shown) had two clusters, which separated
the three ABC-DLBCL cell lines from the BJAB cell line regardless of condition. The seed clusters in (b)
had a weighted mean purity of 78.5% and an unweighted mean purity of 76.9%. The seed clusters in (c) had
a weighted mean purity of 68.4% and an unweighted mean purity of 68.0%.

data from a single DLBCL patient would typically contain< 105 B cells and would not be as heterogeneous

as our entire CyTOF Experiment 1 dataset, which included three different DLBCL subtypes plus BL. More-

over, we suspected that ASTRICS followed by Infomap would resolve the Bcl-6–high U2932 subclone and

the p-ERK–high HBL-1 subpopulation if the seed clustering was of high enough resolution to cover each

of these subpopulations by multiple nodes. Hence, we randomly sampled 20, 000 U2932 cells and 10, 000

HBL-1 cells from CyTOF Experiment 1 and applied the FlowSOM–ASTRICS–Infomap clustering pipeline

to this set of 30, 000 cells. Seed clusters were generated by using a FlowSOM grid of size 20 × 20 and

merging FlowSOM clusters where warranted until all seed clusters contained at least 8 cells. This yielded

394 seed clusters, which were visualized in two dimensions using force-directed layout of the ASTRICS

similarity graph (Figure 4.11). HBL-1 and U2932 were visually well separated in this plot and the layout

of nodes for each cell line was heavily influenced by p-rpS6 staining (Figure 4.11).

Although the coarsest level (level 1) of the Infomap cluster hierarchy had four clusters in total, it al-

most perfectly segmented U2932 cells into cluster 1 and HBL-1 cells into cluster 2 (Figure 4.11; weighted

mean F-measure = 0.9965, unweighted mean F-measure = 0.9963, NMI = 0.9593). Cluster 4 was a single

disconnected node representing mostly unstained cells. Cluster 3 was an intriguing small cluster of pre-

dominantly S-phase cells from both HBL-1 and U2932. It did not stand out for having especially high or

low expression of any antigen, so it might represent some kind of cell state that would only be apparent

in a high-dimensional space. Without any clear way to define this cluster biologically, its significance is

unknown. The Bcl-6–high U2932 subclone was resolved in level 2 of the Infomap cluster hierarchy, which

contained 17 clusters, by cluster 8 and was visually distinct in the 2D layout (Figure 4.11). Cluster 8 con-

tained 394 cells, accounting for 1.31% of all cells in the analyzed data or 1.97% of the U2932 cells. Thus,
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Figure 4.11: Clustering by the FlowSOM–ASTRICS–Infomap pipeline can distinguish the Bcl-6+

U2932 subclone and the high-signalling state in HBL-1. To simulate CyTOF data that might be more
representative of data from a single clinical DLBCL sample, 20, 000 U2932 cells and 10, 000 HBL-1 cells
were sampled at random from the phospho-CyTOF data from CyTOF Experiment 1. Seed clusters were
computed using FlowSOM. The figure shows the force-directed layout of the ASTRICS similarity graph in
which each node represents one seed cluster. In the first row, nodes are coloured to show, from left to right,
the most common cell-line identity (U2932 or HBL-1) and cell-cycle group label of cells within each seed
cluster and the only two levels of clusters that were output by applying Infomap to the graph. The second
and third rows show the mean abundance of the indicated antigens in each seed cluster (colour bars are
normalized to the maximum node value for each antigen). Caption continues . . .

155



Figure 4.11: The pink arrows point to the Bcl-6+, CD20-high U2932 subclone (Infomap level-2 cluster
8). The bottom-left scatter plot of Bcl-6 versus CD20 abundance for the 20, 000 U2932 cells shows that
Infomap level-2 cluster 8 corresponded to the Bcl-6+, CD20-high U2932 subclone. The bottom-right scatter
plot of p-CREB versus p-ERK abundance for the 10, 000 HBL-1 cells shows that Infomap level-2 cluster 13
corresponded to the p-ERK–high subpopulation of HBL-1 cells.

approximately just 2% of U2932 cells were derived from the Bcl-6–high, CD20-high subclone at the time

of analysis.

Notwithstanding that the p-ERK–high subpopulation of HBL-1 cells was not so obvious in the 2D

layout, it was mostly resolved by cluster 13 in level 2 of the Infomap cluster hierarchy (Figure 4.11). Cluster

13 contained 1, 099 cells, accounting for 3.66% of all cells in the analyzed data or 11.0% of the HBL-1 cells.

However, the seed clustering generally did not separate the IgG-high HBL-1 cells from the IgG-low HBL-1

cells nor the p-ERK–high U2932 cells from the p-ERK–low U2932 cells, despite spreading each of the

subpopulations across multiple seed clusters. This might have been because the IgG–high HBL-1 and p-

ERK–high U2932 subpopulations were too small and sparse in the high-dimensional space for FlowSOM to

identify. It was therefore impossible for the subsequent application of ASTRICS then Infomap to uncover

the IgG–high HBL-1 subpopulation or the p-ERK–high U2932 subpopulation. In conclusion, phospho-

CyTOF and a clustering pipeline that combines FlowSOM, ASTRICS, and Infomap can reveal meaningful

heterogeneity within cell lines when the variability in the dataset is not dominated by differences between

many different cell lines and the seed clustering is of high enough resolution to exclusively cover each

meaningful subpopulation by multiple nodes. Therefore, our phospho-CyTOF panel and clustering pipeline

may be useful for exploring heterogeneity in B cells from clinical DLBCL samples.

156



4.9 Results VIII: Clonal expansion of single DLBCL cells in culture

4.9.1 Expression of clinically relevant antigens varied widely between DLBCL populations
derived from single cells from the same culture

As a final application of our phospho-CyTOF panel and our data visualization and clustering pipeline based

on ASTRICS, we used them to investigate how much heterogeneity, whether preexisting or emergent, could

be maintained between parallel cultures derived from single cells of the same DLBCL cell line. We isolated

single cells, randomly selected without sorting by expression of any antigen, from the GCB-DLBCL cell

line Karpas-422 and the ABC-DLBCL cell line HBL-1 and cultured them in parallel in identical conditions

for 8 months. Separately for Karpas-422 and HBL-1, we then performed CyTOF using our phospho-CyTOF

panel for 14 of the parallel clonal cultures plus a sample of the parental population, which were barcoded

and pooled for simultaneous profiling as described for our other CyTOF experiments. The parental samples

were frozen prior to the isolation of single cells and therefore represented the parental populations before

the generation of the clonal cultures. We henceforth refer to the 14 parallel cultures derived from single cells

from each cell line as clones 1–14. As internal controls, we included in both the Karpas-422 experiment

and the HBL-1 experiment BJAB cells that were either rested on ice in order to lower signalling activity

or treated with a combination of anti-Igκ/λ and anti-CD40 antibodies and IL-10 for 20 minutes in order to

stimulate various signalling pathways.

Karpas-422 (GCB DLBCL)

Heat maps of the complete CyTOF data and only the S-phase or presumed M-phase cells for the 14 Karpas-

422 clones and their parental population are shown in Figure 4.12. Visualization and clustering of the

complete data (including data for IgG and IgM) by our pipeline, using FlowSOM with a grid of size 20×20 to

generate the seed clusters (nodes), did not reveal any obvious clustering of Karpas-422 cells by clone identity

but rather more by cell-cycle phase and p-rpS6 quantities (Figure 4.12). The two BJAB control samples were

easily separated from each other and from the Karpas-422 samples (although presumed M-phase cells from

both cell lines clustered together), confirming that our CyTOF antibodies and our visualization and clustering

pipeline worked and therefore that the Karpas-422 clones had strongly overlapping phenotypes. Applying

the pipeline to only the S-phase cells produced a similar clustering and 2D layout of nodes (Figure 4.12).

Nonetheless, we observed notable heterogeneity between the 14 clones, which was most obvious for the cell-

surface antigens CD20 and CD22 (Figure 4.12). For example, clones 3 and 2 had, respectively, very low and

high expression of CD20 compared to the parental population and other clones, and CD20 expression was

highly variable between clones in general (Figure 4.12). This has clinically relevant implications. CD20

and CD22 are unique to B cells and are consequently attractive targets for targeted therapies for B-cell

lymphomas, with rituximab, a monoclonal antibody targeting CD20, being the most important example.

Because we did not sort Karpas-422 cells before isolating single cells, it is impossible to know whether,

for example, the extremely low expression of CD20 in clone 3 was simply sustained while propagating a
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Figure 4.12: Caption continues . . .
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Figure 4.12: CyTOF reveals heterogeneity between clonal cultures of Karpas-422 cells expanded
from single cells. Single Karpas-422 (GCB-DLBCL) cells were isolated, clonally expanded in culture for
8 months, then analyzed by phospho-CyTOF. The parental population was frozen after isolation of single
cells and was analyzed in the same CyTOF experiment. BJAB cells that were either rested on ice or stim-
ulated by treatment with anti-Igκ/λ + anti-CD40 + IL-10 for 20 minutes were included in the experiment
as internal controls. Data were compensated then transformed by X 7→ sinh-1(X/10). The large heatmap
shows expression of IdU and antigens (columns) in single cells (rows). 20, 000 cells per unique biological
sample were randomly sampled from the data for inclusion in the heatmap. Heatmap columns were nor-
malized to their own 99th percentiles in the pooled CyTOF data from this experiment and the corresponding
experiment for HBL-1 clones. The values to which the columns were scaled are stated above the columns.
The smaller heatmaps separately show just S-phase cells (top; 10, 000 cells per sample) and just the pre-
sumed M-phase cells (bottom; 1, 000 cells per sample). FlowSOM was applied to either the complete data or
just the S-phase cells to define seed clusters, and ASTRICS was used to compute similarities between seed
clusters. The figure shows the force-directed layouts of the ASTRICS similarity graphs for all of the cells
(first row below heatmaps) and for just the S-phase cells (lower right). Each node represents one seed clus-
ter. The node colours show the following, as indicated in the figure: the most common sample identity and
cell-cycle group label of cells in each seed cluster, the second level of clusters output by applying Infomap
to the graph, and the mean abundance of various antigens in each seed cluster (colour bars normalized to
the maximum node value for each antigen). Shown in the lower left are the full distributions of single-cell
expression of six antigens (CD20, CD22, Bcl-2, p-Akt[S473], Ki-67, and IgG) in selections of Karpas-422
clones and the parental population. The arrow highlights the presence of an IgG-high subpopulation within
individual clonal populations.

single isolated Karpas-422 cell that already had low expression of CD20 or emerged during culture as a new

phenotype that downregulated CD20 expression. In either case, however, the important conclusion is that

low expression of CD20 was stably sustained in culture without any external pressure. It would therefore

not be surprising to see a CD20-low phenotype resistant to rituximab emerge under the selection pressure of

rituximab therapy.

Additionally, total intracellular quantities of Bcl-2 and Ki-67 were quite variable between clones (Figure
4.12), which might have been due to differences in cycling rates or differentiation. As in many cell lines in

our other CyTOF experiments, most of the Karpas-422 clones had a small subpopulation that had increased

cell-surface expression of IgG (Figure 4.12), which we earlier presumptively attributed to transient differ-

entiation. This subpopulation was largest in clones 1, 11, and 13 and was essentially absent from clone 4,

which had the greatest expression of Ki-67, and, interestingly, from the parental Karpas-422 sample. The

IgG and Ki-67 data for clone 4 would be consistent with this clone spending more time actively cycling and

less time transiently differentiating than other clones.

Furthermore, quantities of intracellular phospho-proteins were variable between Karpas-422 clones, sug-

gesting interclonal signalling heterogeneity. This heterogeneity involved a number of pathways, but Akt

signalling was the most strongly implicated as quantities of both p-Akt[S473] (Figure 4.12) and, despite

its lower dynamic range, p-Akt[T308] (Figure 4.12 and Figure B.5) varied widely between clones. Clone

8 had by far the highest levels of both p-Akt epitopes among the Karpas-422 clones and parental sample,
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reaching levels that were close to those observed in stimulated BJAB cells, while clone 12 had by far the

lowest levels, which were much lower than those observed in BJAB cells that were rested on ice. Among the

Karpas-422 clones and parental sample, clone 8 and clone 12 also had, respectively, the greatest and lowest

measured abundance, or otherwise close to the greatest and lowest abundance, of p-Syk, p-Btk, p-BLNK,

p-PLCg2, and p-Tyr (Figure 4.12 and Figure B.5). Hence, the variable Akt signalling between clones may

be connected to differences in BCR-pathway activity, perhaps tonic signalling. This possibility is reinforced

by the observations that clone 8 had the greatest surface expression of IgG-BCRs, greater staining of CD79a

than most clones, and the lowest surface expression of CD22 (Figure 4.12), a negative regulator of BCR sig-

nalling. Surprisingly, though, clones 8 and 12 had very similar expression of Ki-67 (Figure 4.12). The clone

that had the greatest expression of Ki-67, clone 4, had low to average Akt phosphorylation (Figure 4.12)

but had greater quantities of p-CREB and p-p38 than other clones (Figure 4.12 and Figure B.5). There-

fore, clone 4 likely had greater dependence than other clones on CREB and p38, as opposed to Akt, for

proliferation. In sum, the CyTOF data for intracellular signalling in Karpas-422 clones show that the bal-

ance between different signalling pathways can be heterogeneous between different GCB-DLBCL cellular

populations derived from the same parent population and grown in the absence of any external selection

pressures. Just as our CD20 data for Karpas-422 clones has potential implications for rituximab therapy, the

variable intracellular signalling that we observed between Karpas-422 clones raises the possibility that small

molecule inhibitors designed to target specific pathways in GCB DLBCL may simply select for preexisting,

stable phenotypes that use different pathways without acquiring genomic alterations.

HBL-1 (ABC DLBCL)

Heat maps, visualization, and clustering results for the CyTOF data from the HBL-1 clones can be seen

in Figure 4.13. Curiously, the parental HBL-1 sample stood out from the 14 HBL-1 clones by having

the smallest quantities of Bcl-xL, CD81, p-MKK4, p-CREB, p-IKK, p-p65, and p-rpS6 and the greatest

quantities of CD79a and surface IgM (Figure 4.13 and Figure B.6). Because the 14 single cells from which

the clones were derived were selected randomly without sorting, the parental sample would be expected to

appear fairly average compared to the clones, and this was the case for Karpas-422. The peculiar observation

that this was not the case for HBL-1 has three possible explanations. One possibility is that the phenotypes

of the 14 clones began to drift away from the average phenotype of the parental population once cultured

in isolation, and in particular they all drifted in the direction of greater activity of the NF-κB signalling

pathway, of MAPK signalling via MKK4, and of ribosomal protein S6. An alternative explanation would

be that the freezing and thawing of the parental HBL-1 sample altered the phenotypes, or distribution of

phenotypes, present in the sample. The third and least likely explanation would be that all 14 HBL-1 clones

were, by chance, drawn from the same tail of the parental distribution of phenotypes. Despite its distinction

from its descendant clones, the parental HBL-1 sample did not cluster separately from the clones (Figure
4.13) and its distributions of antigen expression still strongly overlapped with the clones.
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Figure 4.13: CyTOF reveals heterogeneity between clonal cultures of HBL-1 cells expanded from
single cells. Caption continues . . .
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Figure 4.13: Single HBL-1 (ABC-DLBCL) cells were isolated, clonally expanded in culture for 8 months,
then analyzed by phospho-CyTOF. The parental population was frozen after isolation of single cells and
was analyzed in the same CyTOF experiment. BJAB cells that were either rested on ice or stimulated by
treatment with anti-Igκ/λ + anti-CD40 + IL-10 for 20 minutes were included in the experiment as internal
controls. Data were compensated then transformed by X 7→ sinh-1(X/10). The large heatmap shows
expression of IdU and antigens (columns) in single cells (rows). 20, 000 cells per unique biological sample
were randomly sampled from the data for inclusion in the heatmap. Heatmap columns were normalized to
their own 99th percentiles in the pooled CyTOF data from this experiment and the corresponding experiment
for Karpas-422 clones. The values to which the columns were scaled are stated above the columns. The
smaller heatmaps separately show just S-phase cells (top; 10, 000 cells per sample) and just the presumed M-
phase cells (bottom; 1, 000 cells per sample). FlowSOM was applied to either the complete data or just the
S-phase cells to define seed clusters, and ASTRICS was used to compute similarities between seed clusters.
The figure shows the force-directed layouts of the ASTRICS similarity graphs for all of the cells (first row
below heatmaps) and for just the S-phase cells (bottom two rows). Each node represents one seed cluster.
The node colours show the following, as indicated in the figure: the most common sample identity and
cell-cycle group label of cells in each seed cluster, the second level of clusters output by applying Infomap
to the graph, and the mean abundance of various antigens in each seed cluster (colour bars normalized to
the maximum node value for each antigen). Shown in the middle are the full distributions of single-cell
expression of four antigens (IgG, p-ERK, CD19, and p-Btk) in a selection of HBL-1 clones and the parental
population.

Furthermore, similar to the Karpas-422 data, HBL-1 cells did not obviously cluster by clone identity,

the clustering and 2D layout of nodes were similar whether all cells were included in the analysis or just the

S-phase cells, and the two BJAB control samples were again easily separated from each other and from the

HBL-1 cells (Figure 4.13). However, the 2D layout and the clustering of nodes representing seed clusters

obtained from FlowSOM clearly revealed a population of IgG+ HBL-1 cells (Figure 4.13), which came

from multiple clones and the parental HBL-1 sample and were consistent with our prior observations of an

IgG-high subpopulation that we presumptively attributed to transient differentiation. Whereas this subpopu-

lation, if present, was quite small in all of the Karpas-422 clones and did not drastically vary in size between

them, HBL-1 clone 5 had a much larger IgG+ subpopulation than any other clone or the parental sample

(Figure 4.13). Although not clear from the clustering results, HBL-1 clones also displayed intraclonal p-

ERK heterogeneity similar to our prior observations for the HBL-1 cell line, where we presumed that the

p-ERK–high subpopulation was due to a transient activation state. This intraclonal p-ERK heterogeneity

was not equal between clones and clones 14 and 13 had the most substantial p-ERK–high subpopulations

(Figure 4.13). The interclonal variability of intraclonal heterogeneity for IgG and p-ERK imply that differ-

ent clonal populations derived from the same parent population of HBL-1 ABC-DLBCL cells can experience

different degrees of transient differentiation and transient activation even under identical culture conditions

lacking external selection pressures.

Moreover, HBL-1 clones exhibited quite extensive interclonal heterogeneity regarding intracellular sig-

nalling and expression of Bcl-2, Bcl-xL, CD79a, and cell-surface antigens. CD19 was the most notable

cell-surface antigen for being expressed variably between clones, with clone 2 being prominent for having
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mostly lost CD19 expression (Figure 4.13). CD19 is a key target of chimeric antigen receptors (CARs)

that are engineered for T-cell–based immunotherapy for B-cell diseases. The stable long-term survival of an

HBL-1 clone expressing very low levels of CD19 in the absence of any external selection pressures therefore

has negative implications for the potential treatment of DLBCL by anti-CD19 CAR T-cell immunotherapy.

Such a clone may evade killing, and consequently be evolutionarily selected for, by the CAR T cells, which

would ultimately lead to resistance to the immunotherapy.

Expression of CD79a, an intracellular signalling unit of the BCR, also had substantial interclonal vari-

ability and was clearly greater in clone 10 than in any other clone, though all clones expressed at least

medium quantities of CD79a (Figure 4.13 and Figure B.6). Meanwhile, cell-surface expression of IgM,

which associates with CD79a to form complete signalling-capable IgM-BCRs on the plasma membrane,

was very similar in all clones except clones 6 and 5, which had notably less cell-surface IgM (Figure 4.13

and Figure B.6). The different HBL-1 clones therefore expressed CD79a and cell-surface IgM in differ-

ent ratios, which probably resulted in different rates of IgM-BCR turnover at the cell membrane. In turn,

this might have caused the intensity of chronic BCR signalling to vary between clones. Indeed, with re-

spect to intracellular signalling intensity, the BCR signalling pathway had the most noteworthy interclonal

heterogeneity, highlighted most by p-Btk and p-BLNK (Figure 4.13 and Figure B.6).

Clones 6, 5, 14, and 13 had greater quantities of phosphorylated BCR-pathway molecules than other

clones and the parental HBL-1 sample (Figure 4.13 and Figure B.6). Remarkably, this was not associated

with increased expression of either CD79a or cell-surface IgM. In fact, clone 10, which had the greatest

expression of CD79a, had among the lowest levels of phosphorylation in most signalling pathways includ-

ing the BCR pathway, and clone 6, which had the least cell-surface IgM, had the greatest quantities of

phosphorylated BCR signalling molecules except p-CD79a (Figure 4.13 and Figure B.6). Despite having

the greatest quantities of p-BLNK, p-Btk, p-PLCγ2, and p-Syk, the staining intensities of other phospho-

molecules were unremarkable in clone 6 compared to other clones, though differences between the clones’

single-cell distributions of phospho-molecular staining intensities were usually very slight. However, clone

6 had distinctly higher Bcl-2 expression than all other clones and the parental sample (Figure 4.13 and

Figure B.6), which could have been coincidental or related to its elevated BCR-pathway activity. Clone

5, in contrast, had one of the highest levels of staining for both p-CD79a and p-Akt and it had the great-

est overall staining of p-Tyr (Figure 4.13 and Figure B.6). The elevated signalling in clone 5 might have

been responsible for the relatively large size of its more-differentiated IgG+ subpopulation. Clones 14 and

13 were distinct in that they appeared to have increased signalling via MKK4 (including the downstream

molecules JNK, p38, and CREB), NF-κB, rpS6, and STAT3 compared to all other clones (Figure 4.13 and

Figure B.6). Recall also that they had the most prominent p-ERK–high subpopulations, implying increased

MAPK signalling via ERK as well as MKK4. Clone 14 additionally had the greatest abundance of p-Akt

(Figure 4.13 and Figure B.6). Furthermore, clones 14, 13, 6, and 5 had the four highest levels of expression

of Bcl-xL,(Figure 4.13 and Figure B.6), whose gene, like that encoding Bcl-2, is a transcriptional target of

NF-κB. Collectively, these data suggest that clones 5, 6, 13, and 14 had higher levels of chronic BCR sig-

nalling and constitutive NF-κB signalling than the rest of the HBL-1 clones but that there were differences

163



between all of these clones, such as different activation levels of MAPK pathways, Akt, and STAT3 and

different degrees of transient differentiation.

Like clones 13 and 14, clone 2 had elevated abundance of p-STAT3 (Figure 4.13 and Figure B.6).

However, quantities of other phospho-molecules in clone 2, unlike in clones 13 and 14, were typical of most

HBL-1 clones, and overall p-Tyr staining in clone 2 was at the lower end of the range for HBL-1 clones

(Figure 4.13 and Figure B.6). The only other standout quality of clone 2 was its very low expression of

CD19. Whether or not this was connected to its increased activation of STAT3 is unknown. In sum, clone 2

seemed to have specifically upregulated STAT3 activation whereas clones 13 and 14 appeared to have upreg-

ulated STAT3 activation in tandem with multiple other signalling pathways. Hence, the relative importance

of different signalling pathways potentially differed between HBL-1 clones. For example, relative to MAPK

or Akt signalling, clone 2 likely placed greater importance on STAT3 signalling than other clones, whereas

Akt signalling might have been more important to clone 5 than to most other clones.

Conclusion

It is of note that, for both Karpas-422 and HBL-1, signalling pathways known to be essential to or com-

monly involved in the DLBCL subtype of the cell line displayed strong phospho-molecular heterogeneity

between clones. The GCB subtype utilizes tonic BCR signalling via Akt [160], and Akt phosphorylation was

very heterogeneous among clones of the GCB-DLBCL cell line Karpas-422. Similarly, most ABC-DLBCL

cell lines, including HBL-1, depend on chronic BCR signalling, and phosphorylated quantities of Btk and

BLNK, two key mediators of BCR signalling, were particularly heterogeneous among HBL-1 clones. Fur-

thermore, STAT3 activation is commonly upregulated in ABC DLBCL, and we detected increased STAT3

phosphorylation in three of 14 HBL-1 clones but zero of 14 Karpas-422 clones. This is especially notable

because we did not conclude from the overall detection of p-STAT3 in our earlier CyTOF experiments that

HBL-1 had upregulated baseline STAT3 activity, in contrast to three other ABC-DLBCL cell lines. Never-

theless, knockdown of STAT3 has been claimed to cause pronounced cell-cycle inhibition in HBL-1 [153].

Thus, interclonal heterogeneity in the abundance of specific phospho-molecules could, independently of

their overall abundance, indicate potential for a signalling pathway to contribute to malignancy. Altogether,

our phospho-CyTOF data bring to light the possibility that interclonal heterogeneity exists de novo in the

phospho-proteome and in cell-surface expression of clinically targetable antigens such as CD19 and CD20.

This is an important consideration for treatment because treatment applies selection pressure that favours

resistant clones, which may be preexisting on the basis of the de-novo interclonal heterogeneity.
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4.10 Discussion
For this project, a phospho-CyTOF panel was successfully developed and used to analyze expression of

select antigens and phosphorylated signalling molecules in 12 DLBCL and two BL cell lines. The panel

focused primarily on proteins involved in BCR signalling because of its importance in DLBCL. The project

was initiated by asking whether phospho-CyTOF and a new unsupervised clustering pipeline developed in

parallel to the experimental work could together have the potential to reveal distinct phenotypes, which could

have differential sensitivity to targeted therapies, within the tumour B-cell populations of individual DLBCL

patients. The ultimate goal would be to identify tumour cells whose phospho-CyTOF data suggest resistance

or sensitivity to certain targeted therapies, which would contribute significantly to the advancement of per-

sonalized therapy for DLBCL. A central aim of the project was to perform a first step towards that goal by

validating that, when combined, the proposed phospho-CyTOF panel and computational clustering method

could accurately resolve distinct B-cell subpopulations in a mixed population of DLBCL cells. Palladium-

based barcoding followed by mixing of a variety of DLBCL cell lines created a mixed B-cell population

in which the constituent ‘ground-truth’ subpopulations (the cell lines) could be readily identified from the

CyTOF data without manual gating. The clustering of cells output by an algorithm could thus be compared

to their grouping by true identity as provided by the barcodes. The phospho-CyTOF data from this project

will be made publicly available and will therefore provide a resource for the bioinformatics community to

use as an alternative standard to manually gated CyTOF data for testing new clustering algorithms.

Application of a FlowSOM–ASTRICS–Infomap computational clustering pipeline to the mixed CyTOF

data accurately separated the different constituent samples. It was also able to resolve the Bcl-6+, CD20-

high U2932 subclone from a population of U2932 cells and determined that this subclone accounted for 2%

of U2932 cells at the time of analysis. Hence, in-vitro/in-silico proof of principle was achieved for the above

aim. Furthermore, this project resulted in rich data for characterizing 14 B-lymphoma cell lines based on 34

parameters (33 antigens plus IdU, which marks S-phase cells) measured by CyTOF. Table 4.1 summarizes

the main features, as determined by CyTOF or by sequencing exons 4–10 of CARD11, of each of the 12

DLBCL and two BL cell lines used in this study.

Some results reproduced and extended observations from published western blots. One such result, that

the ABC-DLBCL cell line OCI-Ly3 had very high baseline quantities of four phosphorylated BCR-pathway

signalling molecules (BLNK, Btk, PLCγ2, and Syk), has unfortunate negative implications for the idea that

sparked this project: that identification by phospho-CyTOF of active signalling pathways in different clusters

of cells in an individual DLBCL could potentially guide selection of targeted therapies. OCI-Ly3 is not

sensitive to inhibition of Btk [13, 167, 168, 195] or Syk [196] despite appearing to have high BCR-pathway

activity. Therefore, identification that a signalling pathway is highly active, based on phosphorylation of key

molecules, does not necessarily imply that the pathway would be a suitable therapeutic target. The resistance

of OCI-Ly3 to BCR-pathway inhibition is due at least in part to an activating mutation in CARD11 [13],

so functional knowledge of genomic mutations may be more valuable than knowledge of phospho-protein

abundance. On the other hand, it would be interesting to investigate whether inclusion of BCR-pathway
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inhibition in a combination targeted therapy could have synergistic effects in OCI-Ly3. If true, identification

of abundant phospho-proteins could still play a valuable role alongside genome or exome sequencing in

therapy selection.

Our phospho-CyTOF results for p-MKK4, which can activate JNK, were consistent with published

literature on JNK activation in DLBCL and deserve further attention. Phospho-CyTOF detected particularly

elevated p-MKK4 abundance in three ABC-DLBCL cell lines that have been reported to have constitutive

JNK activation [216]. Moreover, the CyTOF signals for p-MKK4 and p-JNK tended to be stronger for ABC-

DLBCL cell lines than GCB-DLBCL cell lines, consistent with a report that constitutive JNK activation

occurs selectively in ABC DLBCL [216]. One study found MKK4 to be extensively activated in a selection

of DLBCL cell lines and a western blot for p-JNK reflected a western blot for p-MKK4 [217]. However,

to our knowledge, p-MKK4 levels have not previously been compared between the ABC and GCB DLBCL

subtypes. A potential role for MKK4 specifically in ABC DLBCL should therefore be explored as it might

present an opportunity for targeted therapy.

One source of frustration throughout this project was difficulty detecting signals of NF-κB activity by

CyTOF. Because of the fundamental contribution of NF-κB to ABC DLBCL, significant time was devoted

to testing and optimizing detection of key markers of NF-κB activity, possibly to the detriment of other

metal-conjugated antibodies (e.g. anti-IgG [La139] and anti–p-JNK [Dy161]), which probably lost some

affinity over time. Other antibodies that were particularly difficult to validate or optimize (anti–IL-10R,

anti–p-IRAK4, and anti–p-JAK2) were considered more dispensable and were replaced in the CyTOF panel.

Staining of p-IKK was robust and was consistently increased in BJAB cells (the internal experimental con-

trols) slightly by anti-Igκ/λ treatment, more so by PMA treatment or by co-stimulation of BCRs and CD40,

and not by IL-10 single-agent treatment, all as expected based on known biology and preliminary FC and

CyTOF experiments. However, although p-IKK staining tended to be greater in ABC-DLBCL cell lines than

GCB-DLBCL cell lines, variability was generally greater within cell lines than between cell lines and p-IKK

was probably a better marker of presumptive M phase than of constitutive NF-κB activation. Detection of p-

p65 was even more challenging. It was reassuring that p-p65 was the second most statistically differentially

CyTOF-detected antigen in ABC-DLBCL cell lines compared to GCB-DLBCL cell lines and that there was

a detectable increase in p-p65 staining in HBL-1 and TMD8 cells following treatment with PMA. However,

the p-p65 CyTOF signal was very weak, had low dynamic range, and did not reflect a p-p65 western blot

using the same antibody clone. Based on a variety of FC and CyTOF experiments and discussions with the

antibody vendor, the difficulty of detecting p-p65 in single cells is primarily believed to be caused by the

complex biochemical dynamics and regulation of NF-κB p65 activity, which involve nuclear translocation

and degradation of the protein, rather than problems with the anti–p-p65 antibody per se. An antibody for

IκBα was a late addition to the CyTOF panel to add another layer of information about the NF-κB pathway,

but the situation of IκBα as both a product and an inhibitor of NF-κB transcriptional activity limits the

utility of this information. Altogether, CyTOF may not be an ideal method to detect steady-state constitutive

NF-κB activation in B cells.
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Notwithstanding, IκBα yielded one of the most interesting results of this study. CyTOF revealed a subset

of cells in all 14 cell lines that had maximal quantities of Ki-67 and Bcl-2 and had high abundance of various

phospho-proteins, including p-IKK. This subpopulation was presumed to be the M-phase fraction of cells,

although this presumption needs to be tested by dedicated experiments. A striking discovery was that four

of six ABC-DLBCL cell lines, but none of the eight non-ABC-type cell lines, exhibited almost complete

loss of IκBα in at least a subset of presumed M-phase cells. This was reproducible, and it was especially

dramatic for HBL-1 and OCI-Ly3. Degradation of IκBα occurs rapidly following its phosphorylation by

p-IKK [240, 241]. Abundance of p-IKK rose steeply in the presumed mitotic cells of all 14 cell lines, but

IκBα levels nevertheless remained stable in most cell lines despite the rise in p-IKK levels. Therefore, rapid

degradation of IκBα might occur upon entry to or during mitosis in those four ABC-DLBCL cell lines as an

overreaction to a rise in phosphorylation of IKK. Alternatively, the net loss of IκBα in those cell lines could

be caused by impaired function of transcriptional or translational machinery. Even if the rate of degradation

of IκBα during presumptive M phase is not unusually high in those four ABC-DLBCL cell lines compared

to the other cell lines, a relative drop in the production of IκBα protein could have a similar effect. In

line with this possibility, the abundance of phosphorylated ribosomal protein S6 increased from S phase

to presumptive M phase much more significantly in GCB-DLBCL cell lines than ABC-DLBCL cell lines,

and p-rpS6 quantities were somewhat correlated with IκBα in the presumed M-phase fractions of the ABC-

DLBCL cell lines OCI-Ly10 and TMD8. Hence, rates of translation might not increase sufficiently from

S phase to M phase in some ABC-DLBCL cells to keep up with increased degradation of IκBα resulting

from the rise in p-IKK levels. Whatever the cause, net loss of IκBα specifically in presumed M-phase cells

must surely be associated with constitutive NF-κB activation in ABC DLBCL. Further investigation should

be conducted to determine the actual causes and effects of this dynamic cell-cycle–linked loss of IκBα and

thus to ascertain whether it directly contributes to constitutive NF-κB activation in ABC DLBCL.

The results discussed above highlight the importance of viewing intracellular signalling and antigen

expression in the context of cell-cycle progression. Effects related to the cell cycle are often ignored in

analyses of single-cell data, but, as our clustering results and the results of Rapsomaniki et al. [242] em-

phasize, this could lead to false interpretation of the data because different cell-cycle phases can appear as

different phenotypes. M-phase cells in particular may cluster separately from otherwise identical cells in

earlier cell-cycle phases. CellCycleTRACER [242] is a supervised method that can classify cells into the

different cell-cycle phases based on CyTOF data for four cell-cycle markers that must be included in the

CyTOF panel. Our CyTOF panel was designed before the publication of CellCycleTRACER and therefore

did not include three of the required four cell-cycle markers, though it did include IdU to mark S-phase cells.

Nevertheless, a cluster of cells from each B-lymphoma cell line were presumed to be in M phase based on

their expression of various markers and on published literature about variation of those markers during the

cell cycle. CellCycleTRACER can additionally ‘correct’ or normalize CyTOF data for variation related to

the cell cycle, which allows similar cells to cluster together regardless of their cell-cycle phase. Analogous

methods are often used to remove cell-cycle effects from single-cell RNA-seq data [243, 244]. However, we

think that it is important to actually analyze the dynamics of specific-antigen (or gene) expression related to
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the cell cycle because this could reveal important features of cells that would otherwise be overlooked. It

was this approach that resulted in our discovery that IκBα was lost in four ABC-DLBCL cell lines during a

specific phase of the cell cycle, presumed to be M phase. By using additional specific reagents, CellCycle-

TRACER can also normalize CyTOF data for differences in cell volume, and in hindsight this would have

been beneficial. We included two anti-mouse antibodies in our CyTOF panel, though, to provide quantitative

data about non-specific staining in our CyTOF experiments. This provided valuable information when inter-

preting the data for specific antigens. For example, this allowed us to recognize that relatively low staining

of some antigens in Toledo cells could be explained by lower non-specific staining compared to other cell

lines. In sum, based on our own experience, we recommend that future CyTOF experiments be designed to

include cell-cycle markers and at least one marker of non-specific staining.

Finally, by providing new details about 12 DLBCL and two BL cell lines, our phospho-CyTOF data and

analysis results should be valuable to researchers studying DLBCL and also to general B-cell immunologists.

Our characterizations of the cell lines could help researchers select cell lines that have desired characteristics

for their own studies. For example, HBL-1 had the strongest ABC-DLBCL phenotype with chronic active

BCR signalling while NU-DUL-1 was a peculiar ABC-DLBCL cell line that was in many ways similar to

GCB-DLBCL cell lines, suggesting that it could have originated from an intermediate differentiation state

between the two conventional DLBCL subtypes. Furthermore, we draw attention to heterogeneity that was

observed within cell lines, most of which was believed to be non-genomic in basis. The observation that all

four cell lines analyzed in the 4x4-GCB CyTOF experiment had divided into two distinct subpopulations

despite being unimodal just a couple of days earlier was especially curious. We could only speculate that this

was the result of transient differentiation induced by culture conditions or handling. Heterogeneous quan-

tities of phosphorylated MAPK and Akt signalling molecules particularly in the ABC-DLBCL cell lines

HBL-1 and OCI-Ly10 were also remarkable: most cells resided in a state of low MAPK/Akt phosphoryla-

tion but a small population existed in a high-phosphorylation state, which likely represented a transient state

of elevated MAPK/Akt signalling. This phenotype was robust and reemerged in clonal populations derived

from single HBL-1 cells, though the proportions of cells in the two states varied. The persistent appearance

of the phenotype indicates that it is intrinsic to the biology of the cells and therefore it could be a natural

outcome of bistable switch-like MAPK/Akt signalling dynamics in HBL-1 and OCI-Ly10 cells. CyTOF

analysis of clonal populations derived from single Karpas-422 and HBL-1 cells also revealed that very low

expression of CD19 or CD20 can emerge or persist under normal culture conditions without selection pres-

sure in DLBCL clones from CD19+, CD20+ populations. This is concerning because these clones would

likely be resistant to therapy targeting CD19 (e.g. CAR T-cell therapy) or CD20 (i.e. rituximab) respec-

tively and would therefore become dominant clones under the selection pressure of targeted therapy. Hence,

DLBCL tumours may have preexisting intratumoural heterogeneity that allows resistance to rituximab, an

important component of current standard of care for DLBCL, to readily develop.
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ABC-DLBCL cell lines

HBL-1

Very high IgM. High CD79a, Bcl-2, and Bcl-xL. Low Bcl-6. Highest baseline abun-

dance of phosphorylated BCR signalling molecules in the 14 cell lines here except

for OCI-Ly3, and highest baseline p-CREB. Elevated baseline p-MKK4. High base-

line p-rpS6. Heterogeneous baseline phosphorylation in MAPK and Akt signalling

pathways. Abundance of IκBα and surface IgM reduced in presumed M-phase cells.

BCR pathway responded very strongly to anti-Igκ/λ. IL-10 strongly induced STAT3

phosphorylation.

NU-DUL-1

Synonymous D415D CARD11 mutation. IgM−, IgG+. Very low Bcl-2. Zero or

very low Bcl-6. Elevated baseline p-Akt. Shares several features with GCB-DLBCL

cell lines and clustered with the GCB-DLBCL cell line SU-DHL-8 in 33-dimensional

space.

OCI-Ly3

Missense L251P and synonymous D415D CARD11 mutations. IgM−, IgG+. High

to very high Bcl-2 and CD40. Medium Bcl-6. Low CD19. Very high baseline abun-

dance of phosphorylated BCR-pathway signalling molecules except CD79a. Elevated

baseline p-STAT3 and p-MKK4. Low baseline p-rpS6. IκBα lost by most presumed

M-phase cells. Anti-Igκ/λ only weakly increased phosphorylation of BCR-proximal

signalling molecules but strongly induced Akt and ERK signalling. IL-10 strongly

induced STAT3 phosphorylation.

OCI-Ly10

Synonymous D415D CARD11 mutation. IgM+. High Bcl-2. Low Bcl-6. Elevated

baseline p-STAT3 and p-MKK4. Heterogeneous baseline phosphorylation in MAPK

and Akt signalling pathways. IκBα and surface IgM lost by some presumed M-phase

cells.

TMD8

IgM+. Medium Bcl-2. Low Bcl-6. High CD20. Elevated baseline p-Akt and p-

STAT3. Abundance of IκBα and surface IgM reduced in presumed M-phase cells.

IL-10 induced STAT3 phosphorylation.

U2932

IgM+. Very high Bcl-2. Low CD19 and CD22. Very low CD40. Two subclones:

major subclone had zero or very low Bcl-6 and low to medium CD20; minor subclone

had low to medium Bcl-6 and high CD20. Bcl-6+ subclone had more CD22, CD40,

p-CREB, p-Akt, and p-rpS6 than Bcl-6− subclone.

GCB-DLBCL cell lines

Karpas-422

IgM−, IgG+. Medium Bcl-2. High Bcl-6. Zero or very low CD40. Elevated baseline

p-Akt. Anti-Igκ/λ induced only very slight increases in phosphorylation of BCR-

proximal signalling molecules and did not increase p-CREB, but strongly induced

phosphorylation of Akt.

Pfeiffer
IgM−, IgG+. Zero or very low CD79a. Low Bcl-2. Medium Bcl-6. Very high Bcl-xL

and IκBα. High baseline p-STAT3. Low baseline p-rpS6.
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GCB-DLBCL cell lines (continued)

SU-DHL-8
IgM−, IgG+. Very low Bcl-2. Zero or very low Bcl-6. High Bcl-xL. Low CD20 and

CD45. Elevated baseline p-ERK.

SU-DHL-10
IgM−, IgG+. Zero to very low Bcl-2. Medium Bcl-6. Very high CD20. Elevated

baseline p-Akt. Responded moderately to anti-Igκ/λ.

Toledo

IgM−, IgG−. High Bcl-2. Very low Bcl-6. Low CD20 and CD22. Zero or very

low CD40. Did not respond to anti-Igκ/λ, consistent with not expressing Ig. Had

noticeably less non-specific staining than other cell lines.

PMBL cell lines

U2940

IgM−. Very low Bcl-2. Medium Bcl-6. Had the most CD45 of the 14 cell lines here.

Elevated baseline p-ERK. Clustered with GCB-DLBCL cell lines, especially Pfeiffer,

in 33-dimensional space.

BL cell lines

BJAB

IgM+. Zero to very low Bcl-2. High Bcl-6 and CD79a. Very high baseline p-rpS6.

BCR pathway responded very strongly to anti-Igκ/λ. IL-10 only very weakly induced

STAT3 phosphorylation.

Ramos
Synonymous D533D CARD11 mutation. High IgM. Zero to very low Bcl-2. Medium

to high Bcl-6. High baseline p-rpS6.

Table 4.1: Summarized characterizations of 12 DLBCL and two BL cell lines based on sequenc-

ing of the coiled-coil domain of CARD11 and on 33-dimensional phospho-CyTOF analysis. Re-

garding features analyzed by CyTOF, a lack of reference to a particular feature for a particular

cell line does not imply that the feature was actually absent from the cell line, only that the feature

was either relatively unremarkable or uncertain. For example, CD19 was expressed by all 14 cell

lines but its expression level was only remarkable if it was particularly low.
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4.11 Experimental methods

4.11.1 Cell lines

OCI-Ly3, SU-DHL-8, SU-DHL-10, NU-DUL-1, Pfeiffer, Karpas-422, and Toledo cell lines were gener-

ously provided by Dr. Andrew Weng (Terry Fox Laboratory, BC Cancer Agency, British Columbia, Canada).

U2932 and U2940 were obtained from the DSMZ (Braunschweig, Germany). HBL-1 and OCI-Ly10 cell

lines were received as a gift from Dr. Izidore S. Lossos (Miller School of Medicine, University of Miami,

Florida, USA). TMD8 cells were by kindly gifted by Dr. Neetu Gupta (Cleveland Clinic Lerner Research

Institute, Ohio, USA). BJAB and Ramos cells were purchased from ATCC (Virginia, USA).

4.11.2 Cell culture

All cell lines were maintained in RPMI-1640 medium (Gibco, #21870076) supplemented with 10% heat-

inactivated FBS (Gibco, #12483020), 2 mM L-glutamine (Sigma-Aldrich, #G8540), 1 mM sodium pyruvate

(Sigma-Aldrich, #P5280), 50 units/ml penicillin, 50 µg/ml streptomycin (Gibco, #15140122), and 50 µM

β-mercaptoethanol (Sigma-Aldrich, #M7154). Cells were grown at 37 °C in a 5% CO2 atmosphere.

4.11.3 Mycoplasma detection

Cell lines were cultured without antibiotics for one week. The media from confluent cell cultures were

spun at 20, 000 × g for 10 min. All but 50 µl of supernatant was discarded, and the remaining media were

resuspended. Using the Mycoplasma Detection Kit (Applied Biological Materials, #G238), samples were

generated for all cell lines used. PCR was performed with cycling conditions according to the kit. Compared

to the positive control, all cell lines were mycoplasma negative.

4.11.4 Genomic DNA extraction from cells

For each cell line between 1× 106 and 3× 106 cells were spun at 525× g for 5 min and resuspended with

380 µl of TNS Buffer (10 mM Tris-HCl pH 8.0, 50 mM NaCl, 25 mM EDTA pH 8.0, 0.5% SDS) and 20 µl

of 10 mg/ml proteinase K. Cells were incubated at 55 °C until digested and then with the addition of 1 µl of

2 µg/µl RNAse, further incubated at 37 °C for 30 min. This solution had 200 µl of 6 M NaCl (made fresh

or on the previous day) added to it, was mixed by shaking, and spun at 13, 000× g for 20 min. Supernatants

were transferred to a new tube and 1 ml of 100% EtOH was added. After several gentle inversions of the

tube, precipitates were spun at 13, 000×g for 10 min. Supernatants were discarded and pellets were washed

with 1 ml 70% EtOH, vortexed for 10 s, and spun at 20 × g for 5 min. Again, supernatants were discarded

and pellets were spun at 20× g for 1 min, and residual EtOH was aspirated. DNA pellets were air dried for

5 min and then dissolved in 50–100 µl Nuclease-Free Water at 4 °C overnight. DNA solution was gently

mixed and the concentration of DNA was analyzed.
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4.11.5 STR profiling of cells

Genomic DNA extracted from cell lines was prepared according to sample submission guidelines from Ge-

netica (North Carolina, USA). Each STR allele call (peak values) of a genetic locus from the electrophero-

gram was compared to reference databases (ATCC, Virginia, USA, or DSMZ, Braunschweig, Germany).

No STR Profiles existed for HBL-1 or TMD8. All other cells lines were 100% matches.

4.11.6 CARD11 sequencing

CARD11 exons were amplified from genomic DNA using primers to exons 4–10 [152]. PCR was performed

using AmpliTaq Gold DNA Polymerase (Applied Biosystems, #4317742) with cycling conditions as in Lenz

et al. [152]. Both forward and reverse sequences were compared to confirm mutations.

4.11.7 Cell stimulation and sample preparation for western blotting

Cells were resuspended in modified Hepes-buffered saline (25 mM sodium Hepes pH 7.4, 125 mM NaCl,

5 mM KCl, 1 mM CaCl2, 1 mM Na2HPO4, 0.5 mM MgSO4, 1 g/L glucose, 2 mM L-glutamine, 1 mM

sodium pyruvate, 50 µM β-mercaptoethanol), incubated on ice for 15 min, at 37 °C for 30 min, and then

stimulated with the appropriate stimuli (Table 4.2) for the required times. For samples at time 0, no stimuli

were added. Reactions were stopped with 500 µl cold PBS with 1 mM sodium orthovanadate and spun at

525× g for 4 min at 4 °C. For basal level comparisons, cells were spun from culture at 525× g for 5 min.

Supernatants were removed and cells were lysed with cold RIPA lysis buffer (30 mM Tris-HCl pH

7.4, 150 mM NaCl, 1% Igepal, 0.5% sodium deoxycholate, 0.1% SDS, 2 mM EDTA) supplemented with

protease and phosphatase inhibitors (1 mM pepstatin A, 1 µg/ml aprotinin, 10 µg/ml leupeptin, 1 mM

phenylmethylsulfonyl fluoride, 1 mM sodium orthovanadate, 25 mM β-glycerophosphate, 1 mM sodium

molybdate) on ice for 10 min. Samples were spun at 13, 000× g for 15 min and the pellets were discarded.

Protein concentration of lysates was determined using the BCA assay kit (Thermo Scientific, #23227) ac-

cording to the manufacturer’s instructions. Lysates were diluted 1:5 with 5x SDS-PAGE reducing sample

buffer (62.5 mM Tris-HCl pH 6.8, 4% glycerol, 2.5% SDS, 0.02% bromophenol blue, 100 mM dithiothre-

itol), boiled for 5 min and used for SDS-PAGE immediately or were stored at −20 °C for later use.

4.11.8 SDS-PAGE and western blotting

Samples were loaded at 15–20 µg/lane into 10% polyacrylamide gels (made from 40% Acrylamide/Bis

according to standard protocols; Bio-Rad, #1610148), which were run with running buffer (50 mM Tris,

0.4 M glycine, 0.1% SDS) at a constant voltage of 135 V for 1.5 hr. Separated proteins were transferred

onto nitrocellulose membranes (Bio-Rad, #162-0115) using transfer buffer (20 mM Tris-HC1, 150 mM

glycine, 20% MeOH) at a constant voltage of 100 V for 1–1.5 hr with a cooling pack. Membranes were

blocked with TBS with 5% BSA (VWR, #97061) for 30 min while shaking. Blocking solution was removed

and a solution of TBS with 5% BSA and 0.1% Tween-20, along with the appropriate antibodies, was added

and incubated while shaking overnight at 4 °C (Table 4.3). Membranes were washed with three 10 min
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Stimuli Final
concentration Company, Catalogue

CpG ODN2395 Class C 500 nM InvivoGen, #tlrl-2395
Goat Anti-Human IgG + IgM (H+L) 40 µg/ml Jackson Laboratory, #109-005-044
Goat Anti-Human Kappa 10 µg/ml SouthernBiotech, #2060-01
Goat Anti-Human Lambda 10 µg/ml SouthernBiotech, #2070-01
Human CD40 Monoclonal Antibody (G28-5) 5 µg/ml Caprico Biotechnologies, #106701
IFN Universal Type 1 10 U/ml R&D Systems, #11200-1
IL-10 100 ng/ml BioLegend, #573202
Imiquimod 10 µg/ml Invivogen, #TLRL-IMQ
Ionomycin 1 µg/ml Invitrogen, #I24222
LPS 5 µg/ml Sigma-Aldrich, #L2630
PMA 250 nM Sigma-Aldrich, #P1585

Table 4.2: List of stimuli and their concentrations for treating cells. The table includes stimuli that were
used during the course of antibody testing and CyTOF panel development even if they were not used for
any of the experiments presented in the Results section (e.g. Imiquimod was used to stimulate signalling by
toll-like receptor 7 in order to test an antibody for p-IRAK4, which we were ultimately unable to validate
and therefore omitted from our final CyTOF panel).

washes with TBS with 0.1% Tween-20 prior to incubation with the appropriate HRP-conjugated secondary

antibody in TBS with 5% skim milk powder while shaking for 1 hr. After another set of similar washes,

membranes were incubated with Radiance Q chemiluminescent substrate (Azure Biosystems, #AC2101)

and imaged on the C-DiGit Blot Scanner (LI-COR, Nebraska, USA).

4.11.9 Cell stimulation and sample preparation for flow cytometry

Cells were spun at 500 × g for 5 min, resuspended in serum-free medium, incubated on ice for 15 min,

at 37 °C for 30 min, and then stimulated with the appropriate stimuli (Table 4.2) for the required times.

For samples at time 0, no stimuli were added. Reactions were stopped with 500 µl of 3.2% PFA in empty

RPMI-1640 and incubated for 10 min at room temperature. After fixing, all spins were at 900× g for 5 min

at 4 °C, and all reagents and cells were kept on ice. Cells were resuspended in FACS buffer (PBS, 2% heat-

inactivated FBS). To block Fc receptors, cells were incubated with 0.5 µg/106 cells of Human Fc Block

(BD, #564220) on ice for 15 min. Cells were resuspended quickly with 1 ml −20 °C 90%–100% MeOH

and were incubated on ice for 15 min. Samples were washed twice with FACS buffer and divided into a 96-

well round-bottom plate (BD Biosciences, #353917). An equal volume of the appropriate primary antibody

(Table 4.3) twice the concentration in FACS buffer was added and cells were incubated on ice for 1 hr.

Samples were washed with FACS buffer thrice prior to resuspension. An equal volume of the appropriate

secondary antibody (Table 4.3) twice the concentration in FACS buffer was added and cells were incubated

on ice for 1 hr, protected from light. Cells were washed with FACS buffer thrice and samples were kept

in round bottom polystyrene tubes (BD Biosciences, #352054) on ice, protected from light, and run on the

same day.
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Antibody target WB
dilution

FC
dilution Host, Clone Company,

Catalog
Rabbit IgG,
Alexa Fluor 647 conjugate

1:200 Goat polyclonal
Invitrogen,
#A21244

Phospho-c-Jun (S73) 1:1000 1:200
Rabbit monoclonal,
D47G9

CST, #3270

Phospho-Erk1/2 (Thr202/Tyr204) 1:1000 1:800 Rabbit polyclonal CST, #9101

Phospho-IKKα/β(S176/180) 1:1000 1:3200
Rabbit monoclonal,
16A6

CST, #2697

Phospho-IRAK4 (T345/S346) 1:1000 1:400
Rabbit monoclonal,
D6D7

CST, #11927

Phospho-NF-κB p65 (S536) 1:1000 1:1000
Rabbit monoclonal,
93H1

CST, #3033

β-Actin 1:5000
Mouse monoclonal,
C4

Santa Cruz
Biotechnology,
#sc-47778

Phospho-MEK1/2 (Ser221),
PE conjugate

1:50
Rabbit monoclonal,
166F8

CST, #16211

IκBα, Alexa Fluor 488 conjugate 1:50
Mouse monoclonal,
L35A5

CST, #5743

IκBα, Alexa Fluor 647 conjugate 1:50
Mouse monoclonal,
L35A5

CST, #8993

Phospho-NF-κB p65 (Ser536),
Alexa Fluor 488 conjugate

1:50
Rabbit monoclonal,
93H1

CST, #4886

Phospho-NF-κB p65 (Ser536),
Alexa Fluor 647 conjugate

1:50
Rabbit monoclonal,
93H1

CST, #4887

TLR7, PE conjugate 1:50
Mouse monoclonal,
4G6

Invitrogen,
#MA5-16249

Table 4.3: Antibodies and their usage dilutions for western blots (WB) and flow cytometry (FC). The table
relates to WB and FC experiments that were performed during the course of antibody testing and CyTOF
panel development. Data from these experiments are not presented in the Results section except for a WB
for p–NF-κB p65. For example, we tested but were unable to adequately validate an antibody for p-IRAK4,
so this antibody was eventually omitted from the CyTOF panel, and no p-IRAK4 data is presented.

4.11.10 Flow cytometry and analysis

Samples were acquired on the BD LSR II System (BD Biosciences, California, USA) using FACSDiva

acquisition software (BD Biosciences, California, USA). Data analyses were performed using FlowJo flow

cytometry analysis software (Tree Star Inc., Oregon, USA). Cells were gated on forward scatter/side scatter

(FSC/SSC) to exclude dead cells, debris and doublets, and the mean fluorescence intensity was measured

with geometric mean.
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4.11.11 Single-cell isolation and clonal expansion

Karpas-422 and HBL-1 cells were resuspended to 8 cells/ml in serum-containing medium and 100 µl was

added to each well of a 96-well tissue culture plate. Cells were monitored daily until there were cell divi-

sion/colonies. Wells with only one colony were marked and once expanded, cells were moved to a 12-well

tissue culture plate to continue culturing. We generated 23 Karpas-422 clones, of which 14 were eventually

used for CyTOF, and 24 HBL-1 clones, of which 14 were eventually used for CyTOF. Clones were cultured

for 8 months prior to use for CyTOF.

4.11.12 Main CyTOF staining panel and subpanels for signal compensation

The complete panel of antigens (as per Figure 4.1) and corresponding mass tags that was used for all main

CyTOF experiments is shown in Table 4.4. The clone, vendor, and catalog number for every antibody used

in the main CyTOF staining panel can be found in Table 4.5. Antibodies from Fluidigm were already con-

jugated to the specified mass tag. Antibodies from all other vendors were purchased unconjugated and then

conjugated in-house by the UBC Antibody Lab (https://ablab.ca/). For all of the main CyTOF experiments

using the main panel, three barcodes (specifically, the palladium barcodes numbered 18–20) were used for

three samples that were created by pooling, then dividing by three, a portion of cells from each of the actual

experimental samples and each stained by a different one of three CyTOF staining subpanels. The three

subpanels are shown in Table 4.4 and were used to estimate, and subsequently subtract (i.e. compensate

for), background signal and spillover signal from other mass channels in every relevant mass channel for

every individual cell.

4.11.13 Cell stimulation and preparation for CyTOF

Each sample was 1.5 × 106 cells and the same cell lines were treated together prior to stimulation and/or

barcoding to avoid variation. For experiments with subpanel pools, we increased each sample to 2 × 106

cells and adjusted everything accordingly. Live cells were spun at 500 × g for 5 min, and fixed cells were

spun at 900× g for 5 min at 4 °C. The list of used reagents specific for CyTOF is listed in Table 4.6.

Cells were spun and washed with warm serum-free RPMI. Cells were resuspended to 1 × 107 cells/ml

with a 1:1000 dilution of Cisplatin made in the same medium and incubated at 37 °C for 5 min. A 5x volume

of serum-containing RPMI was used and cells were spun and resuspended to 3×106/ml in serum-containing

RPMI. For samples stated to have been rested on ice (the BJAB control samples in the Karpas-422 and HBL-

1 clones CyTOF experiments), cells were rested on ice for 15 min. This rest-on-ice step was skipped for

all other samples. Cells were then incubated at 37 °C for 30 min. IdU was added to the samples at 1:2000

and the samples were then immediately divided into basal and stimulation conditions and incubated with

the IdU for a total of 30 min including any duration of stimulation. The appropriate stimuli (Table 4.2) were

prepared in serum-containing RPMI and added to the cell samples at the appropriate times (as determined

by the relevant duration of stimulation stated in the main text). For samples at time 0 or basal conditions, no
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Subpanels for signal compensation
Mass
tag Main panel Subpanel 1 Subpanel 2 Subpanel 3 Key

89Y CD45 - - - S
115In IgM - - - S
139La IgG - IgG IgG S
141Pr p-STAT3 (Y705) p-STAT3 (Y705) - p-STAT3 (Y705) I
143Nd p-Syk (Y352) - p-Syk (Y352) p-Syk (Y352) I
144Nd p-PLCγ2 (Y759) p-PLCγ2 (Y759) - p-PLCγ2 (Y759) I
145Nd mouse CD117 - mouse CD117 mouse CD117 S+I
146Nd p-CREB (S133) p-CREB (S133) p-CREB (S133) - I
147Sm mouse CD115 mouse CD115 - mouse CD115 S+I
148Nd p-p38 (T180/Y182) - p-p38 (T180/Y182) p-p38 (T180/Y182) I
149Sm p-MKK4 (S257) p-MKK4 (S257) p-MKK4 (S257) - I
150Nd p–c-Jun (S73) p–c-Jun (S73) - p–c-Jun (S73) I
151Eu Bcl-2 - Bcl-2 Bcl-2 I
152Sm Bcl-6 Bcl-6 - Bcl-6 I
153Eu Bcl-xL Bcl-xL Bcl-xL - I
154Sm Ki-67 - Ki-67 Ki-67 I
155Gd CD40 CD40 CD40 - S

156Gd
p-BLNK
(p–SLP-76 Y128)

p-BLNK
(p–SLP-76 Y128)

-
p-BLNK
(p–SLP-76 Y128)

I

158Gd p-CD79a (Y182) p-CD79a (Y182) p-CD79a (Y182) - I
159Tb p-Akt (S473) p-Akt (S473) - p-Akt (S473) I
160Gd p-Btk (Y551/511) - p-Btk (Y551/511) p-Btk (Y551/511) I

161Dy
p-JNK
(T183/Y185)

p-JNK
(T183/Y185)

p-JNK
(T183/Y185)

- I

163Dy
p–NF-κB p65
(S536)

-
p–NF-κB p65
(S536)

p–NF-κB p65
(S536)

I

164Dy
p-IKKα/β
(S176/180)

p-IKKα/β
(S176/180)

-
p-IKKα/β
(S176/180)

I

165Ho IκBα - IκBα IκBα I
166Er p-Tyr p-Tyr p-Tyr - I*

168Er
p-ERK1/2
(T202/Y204)

-
p-ERK1/2
(T202/Y204)

p-ERK1/2
(T202/Y204)

I

169Tm p-MEK1/2 (S221) p-MEK1/2 (S221) p-MEK1/2 (S221) - I
170Er p-Akt (T308) p-Akt (T308) - p-Akt (T308) I
171Yb CD19 - CD19 CD19 S
172Yb CD20 CD20 CD20 - S
173Yb CD81 - CD81 CD81 S
174Yb CD22 CD22 - CD22 S
175Lu p-rpS6 (S235/236) - p-rpS6 (S235/236) p-rpS6 (S235/236) I
176Yb CD79a CD79a CD79a - I

Table 4.4: Main CyTOF staining panel and subpanels for compensation. Caption continues . . .
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Table 4.4: Table shows the target antigens and conjugated mass tags for CyTOF antibodies. The three sub-
panels were for compensation for background and spillover signal between CyTOF mass channels. “Key”
indicates whether an antibody was in the cell-surface (S) or intracellular (I) staining cocktail; I* denotes that
the p-Tyr antibody was kept separate and added later during the staining of intracellular antigens.

stimuli were added. Stimulations were stopped with an equal volume of 3.2% PFA and incubated for 10 min

at room temperature. Time 0 and basal conditions were treated the same.

After fixing, all spins were at 900× g for 5 min at 4 °C, and all reagents were kept on ice. Each sample

was resuspended in 1 ml of 1x Fix1 barcode buffer and incubated for 10 min at room temperature. Cells

were then spun and washed twice with 1 ml of 1x Barcode Perm Buffer. For experiments with subpanel

pools, after the first wash, each sample was resuspended in 100 µl of 1x Barcode Perm Buffer and 25 µl

were taken from each and pooled together. Then, this pool was split into three for the three subpanels and

1 ml of 1x Barcode Perm Buffer was added to each sample prior to spinning. Samples were resuspended in

800 µl of 1x Barcode Perm Buffer and the appropriate barcodes were added to the corresponding samples.

Barcodes were incubated in the samples for 30 min at room temperature. Samples were washed twice with

MCSB. All experimental samples were pooled to become the main sample and the three subpanels were left

separate.

Each panel was resuspended to 60 × 106 cells/ml including the volume of blocking reagents. Human

Fc Block (BD, #564220) was added at 5 µg/106 cells and 5% mouse and rabbit sera were used. The final

volume was critical to consistent staining. Cells were blocked on ice for 15 min. Surface antibody cocktails

were prepared in excess volume and twice concentrated using antibody dilutions according to Table 4.5,

with the subpanels having 1.125x increase in concentration. Excess volume allowed for the use of spin

filters to filter out antibody aggregates. The 1.125x increased staining for the subpanels was to increase

coverage of signal intensities at the top of the intensity range for each CyTOF channel in order to better

estimate, and thereby compensate for, signal spillover due to the most intense mass-channel signals in the

actual experimental data. Antibody cocktails were added in equal volume to the samples and were incubated

on a shaker for 40 min at room temperature, protected from light, and vortexed every 10 min. Samples were

washed twice with MCSB and kept with minimal volume on ice for 10 min.

Cells were resuspended quickly with 1 ml −20 °C 100% MeOH, incubated on ice for 15 min, and

washed twice with MCSB. For each panel/subpanel, the sample was resuspended to 60 × 106 cells/ml

including the volume of blocking reagents. Human FcR Block and sera were used as above and cells

were blocked on ice for 15 min. Intracellular antibody cocktails were prepared as above, added in equal

volume, and incubated as above. For experiments that included the phospho-tyrosine (p-Tyr) antibody,

antibody cocktails were made without this antibody and incubated with samples as above for 35 min. Anti–

p-Tyr was added and samples were further incubated as above for 15 min. This was done to prevent p-Tyr

antibodies from binding to, and thereby blocking, the target epitopes of the molecule-specific phospho-

tyrosine antibodies (e.g. anti–p-Syk[Y352]) in our CyTOF panel. Samples were washed twice with MCSB

and resuspended in 1 ml of Cell-ID-intercalator-Ir in Fix and Perm Buffer and incubated overnight at 4 °C.
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Intercalator was used at 1:4000 for the main panel, and 1:16000 for the subpanels, which resulted in similar

iridium staining intensities for all samples.

Cells were washed once with MCSB and twice with Maxpar water and then counted. Cells were kept

at 5 × 105/ml, allocated into round bottom polystyrene tubes (Falcon, #352054), and pelleted. Pelleting

preserves integrity of the cells and the antibodies. The main sample and the three subpanel samples were

kept separate to avoid antibodies mixing between panels.

4.11.14 Running CyTOF

Samples were run on a CyTOF 2 Mass Cytometer (Fluidigm, California, USA) at the UBC Biomedical

Research Centre. The CyTOF 2 instrument was set up according to the manufacturer’s recommendations.

Up to 4 ml of sample were run at a time using a Super Sampler. Immediately before each run of up to

4 ml, a portion of the main sample was mixed with a smaller portion of each subpanel sample along with

1:50 of 4EQ beads (for normalization) and 250 nM EDTA (to reduce clumping of cells). The CyTOF

and Super Sampler tubing were periodically rinsed with a mixture of pure water and 2.5 mM EDTA, and

occasionally with CyTOF Washing Solution, between runs of 2–4 ml of sample in order to remove debris,

prevent clogging, and generally keep the CyTOF instrument relatively clean throughout CyTOF runs that

usually took several hours.

4.12 Computational methods

4.12.1 CyTOF data processing and compensation

First, separate raw FCS files that were acquired in succession (though generally separated by rinses) on the

same day for the same experiment were concatenated to form a single FCS file. Second, data were normal-

ized for signal variation over time using the EQ Four Element Calibration Beads and the MATLAB bead-

normalization software from the Nolan Lab (https://github.com/nolanlab/bead-normalization/wiki). Third,

events were manually gated based on their intensities or values of iridium-191 and -193 (191Ir and 193Ir)

to identify nucleated cells, cisplatin (195Pt) to identify intact cells (cisplatin marks non-intact cells), “Event

length” (to remove long events that also had high iridium signal intensity as these might have been dou-

blet events), the mass channels 140Nd and 142Nd (which were not used for antibody stains) to remove any

remaining events corresponding to calibration beads and to remove events that were likely due only to instru-

ment noise, mass channels in a range that is not usable for any CyTOF mass tags or barcodes (specifically

93Nb and 98Mo, though any two such channels could have been chosen) to further remove events caused

only by instrument noise, and finally staining by the antibodies that specifically target mouse CD115 and

mouse CD117 (neither of which would have been expressed in any of the human B cells in our experiments)

in order to remove cells showing high non-specific staining.

Fourth, to determine the original sample identity of each cell, we computationally debarcoded the cells

using the updated MATLAB debarcoding software from the Zunder Lab [245]. After an initial debarcoding
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Antibody target Mass
tag

Usage
dilution

Host
species Clone Company, Catalog

Bcl-2 151Eu 1:200 Mouse 124 CST, #15071
Bcl-6 152Sm 1:400 Rabbit D4I2V CST, #14895
Bcl-xL 153Eu 1:200 Rabbit 54H6 CST, #2764
CD19 171Yb 1:100 Mouse HIB19 BioLegend, #302247
CD20 172Yb 1:200 Mouse 2H7 BioLegend, #302343
CD22 174Yb 1:100 Mouse HIB22 BioLegend, #302511
CD40 155Gd 1:200 Mouse 5C3 BioLegend, #334325
CD45 89Y 1:200 Mouse HI30 Fluidigm, #3089003B
CD79A 176Yb 1:200 Mouse HM47 BioLegend, #333502
CD81 173Yb 1:400 Mouse 5A6 BioLegend, #349502
IgG 139La 1:200 Mouse G18-145 BD, #555784
IgM 115In 1:1000 Mouse MHM-88 BioLegend, #314527
IκBα 165Ho 1:200 Mouse L35A5 CST, #4814
Ki-67 154Sm 1:200 Mouse Ki-67 BioLegend, #350523
Mouse CD115 147Sm 1:150 Rat AFS98 BioLegend, #135521
Mouse CD117 145Nd 1:150 Rat 2B8 BioLegend, #105801
Phospho-Akt (S473) 159Tb 1:100 Rabbit D9E CST, #4060
Phospho-Akt (T308) 170Er 1:200 Rabbit D25E6 CST, #13038

Phospho-Btk/Itk (Y551/511) 160Gd 1:800 Mouse M4G3LN
eBioscience,
#14-9015-82

Phospho–c-Jun (S73) 150Nd 1:100 Rabbit D47G9 CST, #3270
Phospho-CD79A (Y182) 158Gd 1:100 Rabbit Polyclonal CST, #5173
Phospho-CREB (S133) 146Nd 1:100 Rabbit 87G3 CST, #9198
Phospho-ERK1/2
(T202/Y204)

168Er 1:100 Rabbit D13.14.4E CST, #4370

Phospho-IKKα/β (S176/180) 164Dy 1:100 Rabbit 16A6 CST, #2697
Phospho-MEK1/2 (S221) 169Tm 1:100 Rabbit 166F8 CST, #2338
Phospho–NF-κB p65 (S536) 163Dy 1:150 Rabbit 93H1 CST, #3033
Phospho-p38 (T180/Y182) 148Nd 1:100 Rabbit D3F9 CST, #4511
Phospho-PLCγ2 (Y759) 144Nd 1:100 Mouse K86-689.37 Fluidigm, #3144015A
Phospho-rpS6 (S235/236) 175Lu 1:2000 Rabbit D57.2.2E CST, #4858
Phospho-SAPK/JNK
(T183/Y185)

161Dy 1:50 Mouse G9 CST, #9255

Phospho-SEK1/MKK4 (S257) 149Sm 1:100 Rabbit C36C11 CST, #4514
Phospho–SLP-76 (Y128)
(binds to phospho-BLNK)

156Gd 1:100 Mouse
J141-
668.36.58

Fluidigm, #3156003A

Phospho-STAT3 (Y705) 141Pr 1:75 Rabbit D3A7 CST, #9145
Phospho-Tyrosine 166Er 1:2000 Mouse p-Tyr-100 CST, #9411
Phospho–Zap-70
(Y319)/Syk (Y352)

143Nd 1:100 Rabbit 65E4 CST, #2717

Table 4.5: CyTOF antibodies and their usage dilutions.
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Reagent Usage Dilution Company, Catalog
Cell-ID™ 20-Plex Pd Barcoding Kit Fluidigm, #201060
Cell-ID™ Cisplatin 1:1000 Fluidigm, #201064
Cell-ID™ IdU 1:2000 Fluidigm, #201127

Cell-ID™ Intercalator-Ir
1:4000 for samples above 15× 106

cells and 1:16000 for samples below.
Fluidigm, #201192A

EDTA 250 nM Millipore, #324503
EQ™ Four Element Calibration Beads 1:50 Fluidigm, #201078
Maxpar® Barcode Perm Buffer (10X) Dilute to 1x in Maxpar® PBS Fluidigm, #201057
Maxpar® Cell Staining Buffer (MCSB) Fluidigm, #201068
Maxpar® Fix Perm Buffer Fluidigm, #201067
Maxpar® Fix I Buffer (5X) Dilute to 1x in Maxpar® PBS Fluidigm, #201065
Maxpar® PBS Fluidigm, #201058
Maxpar® Water Fluidigm, #201069
Tuning Solution Fluidigm, #201072
Washing Solution, E-Pure Fluidigm, #201071

Table 4.6: CyTOF reagents and their usage dilutions.

by the software, we manually gated each of the debarcoded samples based on the barcode separation and

Mahalanobis distance parameters output by the debarcoding software in order to refine the debarcoding and

improve confidence in the sample identity of each cell retained in the data. To further improve the purity of

the debarcoded subpanel samples, which was important for reliable compensation, additional manual gating

was performed for the three debarcoded subpanel samples using combinations of stained and unstained mass

channels that could uniquely identify each subpanel. In doing this, care was taken to not gate out events

representing signal spillover.

Next, the FCS files for the debarcoded samples were concatenated into a single FCS file with a new

column added for the sample identity. Finally, compensation for background signal and signal spillover

between mass channels was performed using the signals measured in unstained mass channels in the three

subpanels and a computational method that was developed in-house and is described in Chapter 5. In re-

lation to that method, parameters were set to the following values: k = 20, a = 3, h = 1. The presence

of unstained mass channels (e.g. Dy162 and Er167), for which the measured signal must be entirely due

to signal spillover or instrument noise, in all of our experiments allowed for internal verification that the

CyTOF data were correctly compensated (Figure B.7 and Figure B.8). Prior to any analysis (e.g. clus-

tering), the compensated data were transformed by applying the arsinh transformation with a cofactor of

10: X 7→ sinh-1(X/10). Additionally, any cells that had compensated signal values < 5 (before arsinh

transformation) for all antigens, which would mean that they were essentially completely unstained, were

excluded from clustering.
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4.12.2 Grouping cells based on cell-cycle phases

Our CyTOF panel was developed before the publication of CellCycleTRACER [242], a combined experi-

mental and computational method to account for the effects of the cell cycle and cell volume on CyTOF data.

Our panel thus did not include the cell-cycle phase markers required to implement CellCycleTRACER for

our data. We therefore attempted to use diffusion pseudotime [246] to generate a pseudotemporal ordering

of cells that would approximate the progression of cells through the cell cycle, but this failed to generate

useful results. Subsequently, we turned to unsupervised spectral clustering [127] and manual grouping of

clusters.

To partition a single-barcode sample into four groups of cells dependent on cell-cycle phases, we first

projected the data onto the subspace spanned by only the markers IdU, Ki-67, Bcl-2, p-MKK4, p-p38,

and p-CREB. We then non-randomly subsampled 10,000 cells from the sample. In order to subsample

cells that would be representative of other cells in the single-barcode population and exclude outliers, we

preferentially selected the most hub-like cells in terms of their similarities to other cells. To do this, we

subsampled the 10,000 cells that were most frequently among the five nearest neighbours of cells in the

population (i.e. the 10,000 cells that had the greatest in-degrees in a directed k-nearest-neighbours (kNN)

graph for k = 5). For the 10,000 subsampled cells, we constructed a weighted undirected kNN graph with

k =
⌈
log(104)

⌉
= 10. The value of k was chosen according to the heuristic that it should be O(log(N))

for a graph with N nodes, which is based on asymptotic results for the connectivity of kNN graphs [127].

To strengthen intra-cluster connectivity relative to inter-cluster connectivity, we assigned integer weights

to the graph edges based on the ranking of nearest neighbours of each cell and whether neighbourhood

relationships were reciprocated. Specifically, the weighted graph was the sum of all unweighted kNN graphs

and mutual kNN graphs for k = 1, 2, . . . , 10. Thus, edges between mutual nearest neighbours would have

the greatest weight (a weight of 20) whereas a non-reciprocated edge between a cell and its 10th nearest

neighbour would have the smallest nonzero weight (a weight of 1). We then performed spectral clustering,

using the normalized graph Laplacian, to divide the nodes (i.e. cells) into clusters. Initially, we specified

an acceptable range for the number of clusters from five to ten and used the eigengap heuristic [127] to

automatically select a number of clusters within this range: we found the largest gap between the nth and

(n + 1)th eigenvalues of the normalized graph Laplacian, for n ranging from five to ten and eigenvalues

sorted in ascending order, and set the number of clusters equal to the corresponding value of n. To propagate

cluster labels from the subsample of 10,000 cells to the remaining cells in the single-barcode population, we

applied nearest-neighbour classification, which assigns to each cell not belonging to the subsample the same

cluster label as its nearest neighbour in the subsample. We used Euclidean distance for all nearest-neighbour

calculations throughout our subsampling, spectral clustering, and nearest-neighbour classification processes.

We manually inspected the computed clusters of cells in a variety of 3D subspaces generated by plotting

CyTOF measurements of IdU, Ki-67, Bcl-2, p-MKK4, p-p38, or p-CREB along the axes. We checked

whether the S-phase (IdU+) and presumed M-phase (Ki-67–high, Bcl-2–high, p-MKK4–high, p-p38–high,

p-CREB–high) populations of cells were at least resolved as separate clusters (and possibly fragmented
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into smaller clusters that could be merged retroactively) and additionally that the remaining IdU− cells

were divided into at least two clusters that possibly separated G2-phase cells from G0/G1-phase cells. If a

clustering failed any of these conditions, we re-clustered the sample using a modified range for the allowable

number of clusters without exceeding ten clusters. Finally, based on our inspection of the clustered data, we

manually merged clusters to always form exactly four groups of cells: Group 1 (dark blue in Figure 4.5a)

was IdU− and had zero to intermediate levels of Ki-67 and p-MKK4; Group 2(S) (light blue in Figure 4.5a)

was IdU+; Group 3 (green in Figure 4.5a) was IdU− and had intermediate to high levels of Ki-67 and

p-MKK4; and Group 4(M) (yellow in Figure 4.5a) was IdU− and had high levels of Ki-67, Bcl-2, p-

MKK4, and p-CREB. Hence, Group 1 included cells in phases G0 and G1 (and possibly telophase, since

Ki-67 abundance typically decreases rapidly after anaphase), Group 2(S) represented S phase (and would

have included cells that entered or exited S phase during their incubation with IdU), Group 3 might have

represented G2 phase but possibly also included some G1-phase cells, and Group 4(M) was presumed to be

the mitotic cells but might have also included G2-phase cells.

4.12.3 Spectral clustering

This subsection provides the mathematical details of the actual spectral clustering algorithm applied to the

weighted undirected kNN graph in the grouping of cells based on cell-cycle phases. Given the weighted and

undirected graph, which in this case had n = 10, 000 nodes representing the 10,000 subsampled cells, the

weighted adjacency matrix W is the matrix in which any element Wij is the weight of the edge connecting

nodes i and j, or 0 if no edge exists between the two nodes. In the case of no self-links, as was the case in

the work described herein, the diagonal elements of W are all 0. The degree matrix D is the n×n diagonal

matrix in which the jth diagonal element is the degree (i.e. sum of adjacent edge weights) of node j. The

inverse D−1 of the degree matrix D is also diagonal and its jth diagonal element is the reciprocal of the jth

diagonal element of D, i.e. D−1
jj = 1/Djj . The normalized graph Laplacian Lrw [247] used for spectral

clustering in this work is defined as

Lrw = I −D−1W,

where I is the n × n identity matrix. To partition the graph into K clusters, spectral clustering starts by

computing the smallest K eigenvalues and corresponding eigenvectors of the normalized graph Laplacian

Lrw. For grouping cells based on cell-cycle phases, this was accomplished using the MATLAB function

eigs with its SIGMA argument set equal to −1 such that eigs would find the K eigenvalues closest

to SIGMA = −1. This was guaranteed to return the smallest K eigenvalues because eigenvalues of the

normalized graph Laplacian are always certain to be non-negative. Note that setting SIGMA = 0 would not

work because 0 is an eigenvalue of the normalized graph Laplacian, and eigs is unable to accurately solve

the eigenproblem when the set value of SIGMA is also an eigenvalue.

Upon solving the eigenproblem, an n × K matrix V is constructed whereby the jth column of V is a

unit eigenvector corresponding to the jth smallest eigenvalue of Lrw. The n nodes of the graph are then
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partitioned into K clusters by clustering the n rows of the matrix V into K clusters, usually by standard

K-means clustering. This was done for the grouping of cells based on cell-cycle phases using the MATLAB

function kmeans with the best of 10 replicates of K-means clustering used as the final output of each

application of spectral clustering.

4.12.4 Visualization and multi-level clustering of CyTOF data based on ASTRICS

In parallel to the experiments conducted for this work investigating DLBCL cell lines by CyTOF, we de-

veloped a computational method called ASTRICS (Alpha-Shape TRIangulation in loCal Subspaces) for

computing inter-cluster similarities. ASTRICS is described in Chapter 3, so its technical details are omit-

ted here. Also described in Chapter 3 is a general pipeline for visualizing and clustering high-dimensional

data, such as CyTOF data, whereby ASTRICS is applied between a fine-grained clustering step and either

a force-directed layout step (for visualization) or a community detection step (for coarser clustering). We

applied a version of that pipeline for all unsupervised multi-level clustering and visualization that involved

ASTRICS (such as presented in Figures 4.9 and 4.10).

For the initial fine-grained clustering step, the SOM step of FlowSOM [101] was used with a square

grid (size specified in the relevant places in the main text). If any FlowSOM clusters contained fewer than a

desired minimum number of cells, the smallest clusters were merged to their nearest neighbouring clusters

according to the distances between cluster centroids until all seed clusters contained at least the specified

minimum number of cells, as described for our original multi-step clustering pipeline based on ASTRICS

(see Chapter 3). ASTRICS was then applied, using its default LDA+PCA method for local dimensionality

reduction, to compute similarities between the FlowSOM clusters. A graph was then constructed in which

the nodes represented the FlowSOM clusters and edges between nodes were weighted by the ASTRICS

cluster-cluster similarity scores. The graph was visualized in 2D using force-directed layout in MATLAB,

with the starting positions of the nodes for the force-directed layout algorithm initialized by taking the

coordinates of the FlowSOM cluster centroids along their first two principal components. Finally, the multi-

level Infomap community detection algorithm [4] was used with default settings to compute a multi-level

clustering of the nodes.
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Chapter 5

Compensation of signal spillover in mass cytometry
by direct cell-by-cell estimation of channel-wise
cumulative spillover signal.

5.1 Introduction
One supposed advantage of mass cytometry (CyTOF) over flow cytometry (FC) is the lack of signal spillover

between channels detecting different antibody stains when samples are stained with highly multiplexed

panels of antibody-probe conjugates. In FC, fluorophores have broad emission spectra that overlap with

the emission wavelengths of other fluorophores. For samples stained with many fluorophores, the signal

observed in one wavelength channel is therefore the sum of the true signal in that channel and spillover

signal from other fluorophores. To interpret FC data correctly, the spillover signal must be compensated

for. On the other hand, CyTOF uses antibodies conjugated to isotopically pure heavy metals as probes.

The different metal isotopes are then detected by time-of-flight (TOF) mass spectrometry. In contrast to

the broad fluorescence spectrum of a fluorophore, the mass spectrum of one metal probe has a sharp peak

corresponding to the atomic mass of the relevant isotope. However, sources of signal spillover still exist in

CyTOF and should therefore be addressed in order to correctly interpret data.

Signal spillover arises from three main sources in CyTOF. First, TOF measurement errors can cause an

ion of atomic mass M to sometimes be detected in the M + 1 or M − 1 channel (“abundance sensitivity”).

Second, the metal probes used for CyTOF are not quite 100% isotopically pure. Consequently, the mass

spectrum of a metal probe of mass M will have small peaks at masses corresponding to other isotopes

of the same metal that were present in small quantities. For example, the mass spectrum of the Nd148

metal probe (M = 148) will have small peaks at the masses of other isotopes of Nd, such as Nd144 and

Nd146. Third, the presence of metal oxides causes peaks in the M + 16 mass channels (atomic mass of

oxygen = 16). Although the sources of signal spillover originating from mass M usually represent only

small percentages of the mass-M signal, they can still confound interpretation of the data. This is generally

an issue whenever a strong-signal channel spills into a low-signal channel, but it is especially true when
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investigating correlative relationships between stained proteins because spillover signal is highly correlated

between channels. Compensation for signal spillover would therefore be crucial for analyzing intracellular

signalling relationships by phospho CyTOF.

Chevrier et al. [248] published a compensation method for CyTOF that is analogous to the traditional

compensation method for FC [249]. Their method involves performing CyTOF on polystyrene antibody-

capture beads stained with antibody-probe conjugates of just a single mass tag in order to measure signal

spillover from each mass channel. For beads single-stained with massMi, linear relationships are fit between

the signal observed in mass channel Mi and the signals observed in the unstained mass channels {Mj}
predicted to receive signal spillover due to the three above-mentioned sources. The gradient of each fitted

line indicates the spillover signal in channel Mj as a fraction of the signal in the single-stained channel Mi.

A spillover matrix S is generated in which the value Sij in position (i, j) is the gradient of the line fitted

for the pair of channels Mi and Mj when only channel Mi was stained. The row vector of observed signals
#»

I observed is the product of the row vector of real signals
#»

I real with the spillover matrix S:
#»

I observed =
#»

I real S. The real signals can thus be classically recovered by applying the inverse, S−1, of the spillover

matrix to the observed signals. This can result in negative values, however, which are not present in raw

CyTOF data. Therefore, Chevrier et al. use non-negative least squares to estimate the real signals under the

constraint of all being non-negative.

Herein, we introduce an alternative method to compensate for signal spillover in CyTOF by directly

estimating the cumulative spillover signal in each channel. Instead of generating a spillover matrix from

single-mass-tag stains, we use control samples in which a mass channel Mj is left unstained while the set of

channels {Mi} predicted to contribute the most spillover signal into channel Mj are all stained concurrently

in order to estimate the cumulative spillover and background signal in channel Mj . These controls, which

we term “mass minus multiple” (MMM) controls for reasons that will become clear later, are analogous to

“fluorescence minus one” (FMO) controls in FC. However, we go further than the conventional use of FMO

controls by using our MMM control samples to estimate, and subsequently subtract, the fictitious signal in

each mass channel for each cell.

Contrasted with the bead-based approach of Chevrier et al., our method involves staining the same

or otherwise similar cells to the actual samples for the MMM controls as opposed to using beads. The

use of actual cells is likely to give truer estimates of the fictitious signals than beads because they more

closely resemble the true sample. That said, we note that cells could presumably be substituted for beads

in the method of Chevrier et al. Nonetheless, our method has some practical advantages over the traditional

method of Chevrier et al.

The traditional compensation method requires as many single-stained samples (beads or cells) as unique

mass tags used in the actual experiment that have spillover signal in other mass channels present in the

experiment. Due to the fact that some mass tags far apart in the CyTOF mass spectrum do not have any

coincident spillover signals (for example, none of the Nd-mass-tag channels have spillover signals coinci-

dent with spillover signals from any of the Yb-mass-tag channels), the number of control samples needed

could be reduced by performing some of the single stains simultaneously. Even so, at least several such
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control samples would be needed to ensure mutually exclusive mass spectra of any simultaneous stains for

a highly multiplexed CyTOF panel. On the other hand, our approach requires only that no simultaneously

unstained channels are significant sources of spillover signal in each other when stained. For example, in our

approach, the Sm147 and Nd150 channels can simultaneously remain unstained because neither contributes

spillover signal to the other. However, in the traditional approach of Chevrier et al., Sm147 and Nd150

cannot be simultaneously stained because they are both sources of spillover signal in the Sm149 channel.

Consequently, our compensation method requires fewer control samples. In fact, by neglecting minor con-

tributions to spillover signal in some channels and by careful panel design, compensation by our method can

be achieved using just three MMM control samples.

A beneficial consequence of this is that the MMM samples for our compensation method can be labelled

with the standard commercially available palladium barcodes, of which 20 unique barcodes are available,

that allow samples to be pooled prior to running CyTOF [164]. Using three of the 20 barcodes to uniquely

identify each of the MMM samples still leaves enough barcodes available for pooling up to 17 actual sam-

ples. The MMM samples can thus be pooled with actual samples just prior to running CyTOF so that data

acquisition is consistent across both the actual samples and the MMM samples. A single debarcoding step

will then be sufficient to simultaneously deconvolve the MMM samples and actual samples in silico.

CATALYST, the CyTOF compensation software developed by Chevrier et al., allows single-stained

samples to be pooled and run together through CyTOF by using the stained mass channels to identify and

deconvolve the single-stained samples via an adapted version of the debarcoding algorithm of Zunder et

al. [164]. However, the use of the antibody stains to assign sample identities to single-stained beads pre-

cludes the possibility of pooling the beads with the actual experimental samples unless at least one mass

channel is dedicated to a marker for distinguishing the beads from the true samples. We note that the anti-

body stains in our method could also be used to identify the different MMM control samples, in which case

only one barcode, as opposed to three, would be needed to distinguish the MMM samples from the actual

samples. The debarcoding would then have to be performed in two steps: a first step to deconvolve the

palladium barcodes, which would separate the pooled MMM samples from the actual samples, and a second

step to separate the MMM samples from each other. Nevertheless, using palladium barcodes instead of the

antibody staining to uniquely identify each of the MMM samples is elegant in its simplicity and the fact that

it keeps the process of MMM sample identification completely independent of the antibody stains used to

estimate signal spillover. Using the antibody stains to deconvolve pooled MMM samples could potentially

introduce systematic bias into the signal spillover estimation by excluding MMM cells that have low relative

separation of the stained and unstained mass-channel signal intensities. Using the conventional palladium

barcodes to uniquely label the MMM samples eliminates this possibility.

Furthermore, theoretical advantages of directly estimating fictitious signal in each mass channel for ev-

ery cell, as per our approach, over traditional compensation are that it should still be valid at ion abundances

outside the linear range (but before saturation) of the CyTOF instrument and that it can also account for any

generic background signal from the CyTOF instrument. Chevrier et al. observed that the linear relationship

between the main signal for a mass tag and its spillover signals in other mass channels is progressively lost
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above 5,000 dual counts [248]. Nonlinear effects of the CyTOF instrument are therefore an issue when

working with samples that exhibit very heterogeneous or unknown expression of markers such that it may

be difficult to determine antibody titers that keep all positive populations within the linear range of the in-

strument. In theory, our approach is still valid in the nonlinear ranges of the CyTOF instrument, though we

acknowledge that technical noise and variability restrict the utility of this theoretical advantage in practice.

Another theoretical advantage of our method arises from the effects of total ion load on the CyTOF

instrument. Chevrier et al. found that signal spillover between mass channels decreases as the total ion load

(i.e. the sum of all ions in all mass channels) increases [248]. In our method, the only major differences

between the MMM control cells and the actual sample cells are the unstained mass channels, which account

for roughly one third of the available antibody-stain channels, in the MMM cells. All other staining, includ-

ing with iridium intercalator (which marks nucleated cells) and palladium barcodes, is performed similarly

for the MMM cells and the actual sample cells. As a result, the total ion load of the MMM cells is likely to

be closer to the total ion load of the actual sample cells than is the total ion load of single-stained beads or

cells. Theoretically, then, our method should provide more accurate estimates of signal spillover than using

single-stained beads, though once again we acknowledge that technical variability probably limits the extent

of this advantage in practice.

In this work, we describe our method to compensate for signal spillover and background signal in

CyTOF experiments, and we demonstrate its efficacy. Although our method has some theoretical advan-

tages over the conventional compensation method published by Chevrier et al., the extent of which may be

limited by current practical limitations, the biggest advantage of our method is perhaps its requirement for

only three MMM control samples to be stained instead of many single stains. From a practical perspective,

the much smaller number of sample tubes to be handled reduces the labour and the probability of mistakes

during the experimental protocol. Additionally, the ability to barcode the MMM samples using standard

palladium mass-tag barcodes allows the CyTOF pipeline to be streamlined by pooling the MMM and ac-

tual samples together for concurrent running through CyTOF and keeps the estimation of cumulative signal

spillover and background completely independent of the deconvolution of pooled MMM samples, thereby

eliminating a potential source of systematic bias.
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5.2 Methods
This section is divided into two parts. In the first part, we describe the experimental methods for acquiring

the data required for compensation by our method. In the second part, we describe the computational method

to perform compensation by our method following data acquisition.

5.2.1 Experimental methods

To estimate cumulative background and spillover signal in each channel by our approach for one experiment,

one must, in essence, generate the equivalents of FMO controls from FC for every channel that is stained

with an antibody-probe conjugate in the full CyTOF panel. For a 35-marker panel, there would be 35 such

FMO equivalents in which one of the 35 markers is left unstained and the other 34 are all stained as usual.

However, performing 35 FMO-equivalent controls would demand large quantities of antibodies and other

reagents. Plus, running so many control samples would dramatically increase the actual time needed on the

CyTOF instrument. Running true FMO-equivalent controls would, therefore, be hugely expensive for any

highly multiplexed antibody-probe panels. Also, with the commercially available palladium barcoding kit,

which enables up to 20 samples to be pooled together for concurrent running through the CyTOF instrument,

it would be impossible to barcode so many FMO-equivalent control samples. Not only would there be too

many controls to barcode and pool with the actual experimental samples, there would even be too many to

barcode and pool just the controls together. Thus, the controls would have to be run in separate batches.

To greatly reduce the number of control samples, and hence the quantity of reagents and CyTOF in-

strument time, required, we leverage the fact that many mass channels are not expected to receive signal

spillover from each other. This allows many FMO-type controls to be collapsed into the same staining panel

in which a subset of markers are left unstained while the markers that are expected to contribute spillover

signal to the unstained channels are stained as usual. We further reduce the number of these “mass-minus-

multiple” (MMM) staining sub-panels by neglecting minor sources of signal spillover for many of the mass

channels while being sure to include the main sources. The largest sources of spillover signal in any mass

channel M are generally the adjacent M ± 1 mass channels. This signal spillover results from abundance

sensitivity of the CyTOF instrument, often in combination with isotopic impurity of mass tags because many

adjacent mass channels correspond to different isotopes of the same element. We therefore fully account for

all sources of “M ± 1” signal spillover in our design of MMM sub-panels.

Signal spillover from atomic massM to channelM+16 due to metal oxidation is another notable source

of spillover signal in mass channels with atomic mass M ≥ 155. Oxidation is not an expected source of

signal spillover for channels M < 155 because there are no currently commercially available mass tags that

could cause oxidation-related signal spillover into those channels. As such, we designed MMM sub-panels

that address all possible instances of signal spillover due to oxidation except for spillover from Eu153 to

Tb169. Although Europium (Eu) is highly reactive and readily oxidizes, it forms weak bonds with oxygen

that rarely survive in the high temperatures of the plasma during the ionization stage of CyTOF. Compared

to other CyTOF mass tags, isotopes of Eu have extremely low oxide abundance following ionization and
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therefore Eu oxides are a negligible source of signal spillover in CyTOF. The only other sources of signal

spillover that we neglect in our design of MMM sub-panels are isotopic impurities that occur at very low

percentages; we still account for most isotopic impurities.

Finally, to alleviate some accumulation of signal spillover, we recommend always leaving a small num-

ber of mass channels unstained when designing a CyTOF panel. In particular, we suggest omitting the mass

tags Nd142, Dy162 and Er167 in addition to Gd157, which is already omitted from most CyTOF exper-

iments due to a lack of commercial availability at sufficiently high isotopic purity. We also recommend

omitting Nd145 if possible. These recommendations are especially prudent for experiments where all mark-

ers could be either present or absent, or simply unknown, in any of the cell populations to be analyzed. With

these recommendations in mind, and considering the various sources of signal spillover, we designed the

three MMM sub-panels in Table 5.1. Note that our designed MMM sub-panels still permit Nd145, Dy162,

and Er167 to be included in the full staining panel if need be, though signal spillover due to certain iso-

topic impurities, such as between Dy162 and Dy164, would be neglected. Some signal spillover due to

isotopic impurities, such as between Nd143 and Nd148, is already neglected in our MMM sub-panels, but

the spillover between Dy162 and Dy164 in particular is typically larger than situations that we currently

neglect. The exclusion of Nd142 and Gd157 allowed us to design MMM sub-panels that do not need to

account for M + 16 signal spillover from the M = 142 or M = 157 channels due to metal oxidation. To

account for signal spillover due to oxides of Nd142 or Gd157 if either of those mass tags were included, the

MMM sub-panels would have to be redesigned. A redesign using four instead of three sub-panels would

allow the vast majority of even small sources of signal spillover to be accounted for, but this would consume

more reagents and cells and ultimately increase financial expense.

To generate the data required for compensation using the MMM controls, cells should be divided into

three equal aliquots and each aliquot should be subjected to the same CyTOF sample preparation protocol as

the actual samples of interest with only the following differences. Firstly, if barcoding is being performed,

which we recommend, then the three MMM control aliquots should be barcoded with unique barcodes

different from the barcodes used for the main samples, but, unlike the main samples, they should not be

pooled together. Secondly, each of the three MMM control aliquots should be stained with a different

one of the three MMM sub-panels (MMM1, MMM2, or MMM3) instead of being stained with the full

CyTOF panel used to stain the main samples. Note that surface and intracellular stains should still be

performed in separate steps (surface staining before membrane permeabilization, and intracellular staining

after permeabilization). Also note that all staining cocktails should be prepared ahead of time. For each

staining step (e.g. surface staining), the following four staining cocktails will need to be prepared: one

complete cocktail for the main samples plus three MMM sub-panel cocktails. To ensure sufficient coverage

of high-intensity signals in the controls for compensation, the antibody concentrations in the MMM sub-

panel cocktails can be made slightly higher (e.g. 12.5% higher) than the concentrations used for the complete

staining panel, assuming the same concentration of cells.

The best cells to use for staining with MMM sub-panels would be taken from the actual samples; for

instance, if 17 samples were being barcoded and run in parallel, then a fraction of each of the 17 samples
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Mass tag MMM1 MMM2 MMM3 Mass tag MMM1 MMM2 MMM3
89Y O O O 158Gd X X O
115In O O O 159Tb X O X
139La O X X 160Gd O X X
141Pr X O X 161Dy X X O
142Nd - - O 162Dy - O -
143Nd O X X 163Dy O X X
144Nd X O X 164Dy X O X
145Nd O X X 165Ho O X X
146Nd X X O 166Er X X O
147Sm X O X 167Er - O -
148Nd O X X 168Er O X X
149Sm X X O 169Tm X X O
150Nd X O X 170Er X O X
151Eu O X X 171Yb O X X
152Sm X O X 172Yb X X O
153Eu X X O 173Yb O X X
154Sm O X X 174Yb X O X
155Gd X X O 175Lu O X X
156Gd X O X 176Yb X X O
157Gd O - -

Table 5.1: Three “mass-minus-multiple” (MMM) staining sub-panels to estimate cumulative background
and spillover signal in CyTOF. Orange-shaded mass tags indicate mass tags present in the full CyTOF
staining panel. Shaded box with an “X” denotes that a mass tag is included (i.e. should be stained) in an
MMM sub-panel. A box with an “O” denotes that a mass tag should be excluded (i.e. left unstained) in an
MMM sub-panel and that that sub-panel can be used to estimate the cumulative background and spillover
signal in that mass channel. For the mass tags not included in the full CyTOF panel, although these are left
unstained in all MMM sub-panels, an “O” indicates which sub-panel to use in order to estimate background
and spillover signal in these channels for the purpose of internally validating the compensation.

could be mixed together and used for staining with the MMM sub-panels. Alternatively, if the samples are

too small or precious to spare cells for MMM-sub-panel staining, then the MMM control cells could be

taken from other sources, such as cell lines or peripheral blood mononuclear cells (PBMCs) from a mix of

donors. Importantly, whatever their source, the cells stained with the MMM sub-panels must have protein

expression profiles that span the possible expression level ranges of the true samples. That is, the MMM

sub-panel staining should cover the landscape of marker staining patterns of the actual samples. Thus, using

some of the actual sample cells for the MMM controls is the obvious way to achieve this. However, this

might not be sufficient if some markers are expected to be highly expressed only in rare populations in the

actual samples. In this case, positive control populations should be included in the mix of cells used for
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MMM controls to ensure sufficient coverage of high-intensity signals in the MMM controls. The number

of cells stained with each MMM sub-panel also needs to be sufficient to adequately cover the staining

landscape of the true samples in order to estimate background and spillover signal at all signal intensities

observed in the true samples. As a guideline, we suggest starting with enough cells to acquire at least

100,000 viable nucleated cell events (i.e. positive for Iridium intercalator and negative for cisplatin if using

standard CyTOF protocols) for each of the three MMM controls, but the more cells, the better, especially

for very heterogeneous samples. The actual starting number of cells needed will depend on the protocol and

efficiency of the overall sample preparation and data acquisition pipeline.

When the time comes to physically run the samples through CyTOF, barcoded cells from each of the

MMM-stained tubes can be added to the pool of barcoded main samples immediately prior to running

CyTOF. To prevent transferal of mass tags or the formation of doublets between cells stained with different

panels, we recommend only pooling enough MMM-stained and fully stained cells together to run a total

volume of up to 2 mL at a time through CyTOF. Otherwise, CyTOF should be performed as normal.

5.2.2 Computational methods

In this section, we describe the computational method to compensate background and spillover signal in the

fully stained samples using the data from the MMM-stained cells. If data were acquired in parallel with

normalization beads, then data can be normalized as the first step in the analysis pipeline. If the MMM-

stained cells were barcoded and pooled with the fully stained samples, then the data will need debarcoding

using the algorithm of Fread et al. [245] or otherwise to identify the cells that were stained with each of

the three MMM sub-panels. The data should also be gated on nucleated (intercalator-positive), and ideally

viable (cisplatin-negative), cells, which can be performed before or after debarcoding. Note that using

viable nucleated cells would ensure that the MMM-stained cells used for compensation are as similar as

possible to the actual sample cells, but for the purpose of estimating signal spillover, non-viable cells could

also be used if the number of viable cells is too low to provide adequate coverage of the full landscape of

staining patterns. This should be acceptable because Pt195, the isotope in cisplatin that CyTOF detects,

is far beyond the range of atomic masses of mass tags used for staining and should therefore not interfere

with the signals that are to be compensated. However, we have occasionally observed unexplained events

that show highly-correlated positive signal across all mass channels in the range 89 ≤ M ≤ 199 and the

occurrence of these events correlated strongly with the presence of positive cisplatin staining. Prior to any

analysis, unusual events such as these should be removed to clean up the data, in which case they should

not impact compensation. Nevertheless, the fact that they predominantly occurred in tandem with high

levels of cisplatin suggests that cisplatin-positive events might not be the most reliable for compensating for

background and spillover signal.

Once the (viable) nucleated cells stained with the different MMM sub-panels have been identified, our

compensation algorithm compensates signals for each mass channel and for each cell independently. Thus,

for simplicity, we describe our algorithm in general terms for compensating the signal in a single mass
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channel Mj for a single cell xc. Our compensation algorithm is described in full mathematical detail below,

but here is a summary of the algorithm in words: First, identify the relevant MMM sub-panel for estimating

total background and spillover signal in mass channel Mj . Second, identify the mass channels stained in

that sub-panel that are predicted to spill signal into unstained channel Mj . Next, for an integer value of k

chosen by the user (we suggest k = 20), identify the k cells in the MMM control that look most similar

in those mass channels to the cell being compensated. Then, subtract the average of the corresponding k

signals in unstained channel Mj from the uncompensated signal in channel Mj for the fully stained cell.

Lastly (and optionally), reduce, in a signal-dependent manner, the apparent spread that occurs in negative

populations, in the biological sense, following compensation.

CyTOF compensation algorithm in mathematical detail

Let X denote the data matrix containing all cells xc that were stained with the full staining panel and let

Y (p) denote the data matrix containing all cells y(p)
c that were stained with MMM sub-panel p, which we

will denote by MMMp. We will assume that all data matrices have mass channels as columns and cells as

rows. We will use Z to denote the compensated data matrix and zc to refer to the row of Z corresponding

to cell xc post compensation. The notation xcj or y(p)
cj will denote the signal in mass channel Mj for cell xc

or y(p)
c respectively. Similarly, zcj will denote the compensated signal in mass channel Mj for cell xc. To

compensate the signal in mass channel Mj for cell xc, do the following:

1. Identify the MMM sub-panel MMMp in which channel Mj was unstained;

2. Using the panel design software provided by Fluidigm or otherwise, identify the set of mass channels

{Mi}(pj) that were stained in MMMp and are predicted to spill signal into channel Mj ;

3. Denote by sij the predicted signal spillover from channel Mi to channel Mj as a fraction of the

signal measured in channel Mi based on the estimated spillover values provided by Fluidigm (or an

instrument-specific signal spillover matrix, if available);

4. Form the matrix V (pj) by taking only the columns of Y (p) that correspond to mass channels {Mi}(pj)

(i.e. V (pj) is the projection of Y (p) onto the subspace spanned by the mass channels {Mi}(pj));

5. Compute U (pj) = V (pj) · diag
(

[sij ]Mi∈{Mi}(pj)
)

, where diag
(

[sij ]Mi∈{Mi}(pj)
)

is the diagonal ma-

trix with the values sij of predicted spillover from mass channels {Mi}(pj) to channel Mj on its

diagonal (i.e. U (pj) is the matrix formed by rescaling each column of V (pj) by its predicted contribu-

tion to spillover signal in mass channel Mj);

6. Obtain ξ(pj)
c by performing the last two steps also for xc – that is,

ξ(pj)
c = projspan({Mi}(pj))(xc) · diag

(
[sij ]Mi∈{Mi}(pj)

)
,
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which, physically, is just a row vector of rescaled signal intensities in mass channels {Mi}(pj) for the

cell xc for which we wish to compensate channel Mj ;

7. For a positive integer k specified by the user (we suggest k = 20), find the k nearest neighbours of

ξ
(pj)
c in U (pj), excluding any rows of U (pj) for which the corresponding value in

(
Y (p)

)
col j

exceeds

10 + 10×
∑

Mi∈{Mi}(pj) sijxci, according to the `1 norm and determine their row indices

Rkcj =
{
r :
(
U (pj)

)
row r

∈ knn`1
(
ξ(pj)
c |U (pj)

)}
,

where subscript “col j” or “row r” denotes a column or row of a matrix and knn`1
(
ξ

(pj)
c |U (pj)

)
denotes the set of the k nearest neighbours of ξ(pj)

c among the rows of U (pj) according to the `1

distance metric;

8. Compute the following generalized trimmed mean, µkcj , of the k background/spillover signals y(p)
rj

(r ∈ Rkcj) in channel Mj :

µkcj =

(
trimmean

({√
y

(p)
rj : r ∈ Rkcj

}
, 20%

))2

,

where trimmean(A, P%) denotes the trimmed mean of values in the set A calculated by discarding

the top and bottom P/2 % (rounded to the nearest integer) of values in A and calculating the mean of

the remaining values;

9. Also compute an estimate of the spread, ρkcj , of the square-root-transformed values
√
y

(p)
rj of the

k background/spillover signal intensities y(p)
rj (r ∈ Rkcj) in channel Mj using the average absolute

deviation from the average with both averages computed using the same trimmed mean as above, i.e.

ρkcj = trimmean

({ ∣∣∣∣√y(p)
rj −

√
µkcj

∣∣∣∣ : r ∈ Rkcj
}
, 20%

)

10. Subtract µkcj , the estimated background/spillover signal in channel Mj for cell xc, from the uncom-

pensated signal value xcj :

zcj = xcj − µkcj .

11. Optionally, to reduce the apparent increased signal spread that occurs following compensation of

high-spillover signal values, update zcj according to the following pseudocode, where a and h are
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fixed input parameters whose values are to be chosen by the user:

input a, h

b ←
(√

µkcj + aρkcj

)2

− µkcj

zcj ← zcj − b tanh (zcj / hb)

return zcj .

The parameter a is analogous to a desired threshold z-score in the space of square-root-transformed

signal intensities, but with the mean replaced by the trimmed mean
√
µkcj and the standard deviation

replaced by the trimmed mean absolute deviation ρkcj . The parameter h controls the “bandwidth” of

the tanh function and must satisfy h ≥ 1. Suggested parameter values are a = 3 and h = 4/3 or

h = 1.

The above algorithm describes compensation of the signal in a single mass channel Mj for a single cell

xc. This is performed for all cells (rows) in X and all stained mass channels to be compensated. Com-

putationally, the mass channels (columns) are looped over and compensated independently while, for each

mass channel, the cells are compensated simultaneously in the body of the loop using matrix computations.

Hence, our algorithm requires one k-nearest neighbours (knn) search per mass channel to compensate. The

following paragraphs explain decisions that were made in various steps of our compensation algorithm.

Rationale for Steps 5 and 6

Steps 5 and 6 weight mass channels by their relative importance for determining the k most similar cells in an

MMM control to the focal cell being compensated. Similarity in expected major sources of spillover signal

is more important than similarity in channels expected to have little effect on the channel of interest. The

best rescaling factors would be determined from an experiment-specific signal spillover matrix. However,

that would be sufficient to perform compensation using the existing method of Chevrier et al. [248]. One

purpose of our work is to avoid the need to generate such a signal spillover matrix from many single-stain

controls. Thus, theoretical channel-to-channel spillover estimates provided by Fluidigm are adequate for our

algorithm. Even better would be a once-generated instrument-specific signal spillover matrix. In practice,

with sufficient MMM control data, these steps could probably even be skipped without too much detriment

to the results.

Rationale for exclusion of some cells in Step 7 and for use of trimmed means

In Step 7, we exclude MMM control cells with unusually large spillover signal in the channel being com-

pensated from the knn search. Specifically, we exclude cells in the MMM control whose measured signal in

the relevant unstained channel is an order of magnitude greater than expected based on theoretical spillover

values, plus a baseline noise level of 10 counts, which is reasonable for CyTOF experiments. This exclusion
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of cells is not essential. However, anomalous events can occur, most notably due to imperfect debarcod-

ing of the data, whereby one barcode population might be contaminated by small numbers of cells from

other populations. The exclusion of cells with anomalously high signal in the unstained channel of interest

partially guards against the inclusion of events that represent barcode contamination, or that are otherwise

inexplicable, during calculation of the average spillover signal. On a similar note, we use a trimmed mean

for calculations of averages throughout our algorithm because it is more robust against outliers than the mean

while being less sensitive to individual values than the median, which matters especially for small sample

sizes. More precisely, a trimmed mean is more efficient than the median because it uses more information

(i.e. more data points) in its calculation. A trimmed mean is also more appropriate than the mean for skewed

distributions, which occur commonly in the contexts where our algorithm computes averages.

Rationale for square-root transformations in Steps 8 and 9

In Steps 8 and 9, we square-root transform the data before computing averages and estimating its spread

for two reasons: to reduce data skew and to partially stabilize data variance. The k signal intensities in

unstained mass channel Mj corresponding to the k MMM control cells identified in Step 7 often have a

positively skewed distribution. This is especially true at low signal intensities as the raw signal values in

CyTOF, which are related to physical ion counts, cannot be negative. The square-root transformation reduces

positive skew. At higher signal intensities, the k signal values are more symmetrically distributed. Although

the square-root transformation induces negative skew in distributions that were already symmetrical, positive

skew is more prevalent than symmetry in the distribution of the k spillover signal values, so the benefits of

square-root transforming the data outweigh the small amounts of negative skew that it occasionally induces.

Furthermore, the variance of the k signal intensities used in the calculations in Steps 8 and 9 increases as

their intensities increase. In other words, the noise is an increasing function of signal intensity. The square-

root transformation partially stabilizes the variance of this noise so that it varies less with signal intensity.

Indeed, the square-root transformation is sometimes used as a variance-stabilizing transformation in image

processing, where camera noise is also an increasing function of the signal.

Our use of the square-root transformation, and its eventual inversion, in Step 8 results in a generalized

trimmed mean for the estimated average spillover signal in a particular mass channel for a particular cell.

A generalized mean is calculated by transforming the data values, then computing their arithmetic mean

in the transformed space, and finally applying the inverse transformation to the calculated mean. A well

known generalized mean is the geometric mean, which uses a logarithmic transformation. We tested a

logarithmic transformation (with an offset of 1 to handle values of zero) as an alternative to the square-root

transformation, but we found that it was too strong: it too often induced substantial negative skew and,

instead of stabilizing noise variance, it pushed the variance towards zero at large signal intensities. Thus,

the square-root transformation was preferable. Having used a generalized measure of central tendency of

the distribution of k spillover signal values in Step 8, we subsequently used an appropriate corresponding

generalized measure of its spread in Step 9 for statistical consistency and correctness. We used a generalized
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trimmed mean absolute deviation instead of a generalized standard deviation for its robustness and more

intuitive interpretation, which is especially useful in the context of non-normal distributions. Note that the

spread of spillover signal values computed in Step 9 is only used in Step 11, the ‘signal spread reduction’

step, which is explained below.

Rationale for allowing negative values after compensation

Following the subtraction of the estimated spillover signal in channel Mj from the uncompensated data in

Step 10, the data for channel Mj can be regarded as compensated. Cells that were unstained, or biologically

negative, for a particular marker should be distributed around zero in the corresponding mass channel.

Unlike Chevrier et al. [248], who constrain compensated signal values to be non-negative, we do not consider

the negative values to be problematic. Negative values do not generally pose a problem for computational

methods of analysis. Moreover, we argue that allowing negative values can actually be advantageous. Due

to symmetry, the spread of negative values can be informative of which positive values are not meaningfully

different from zero. Hence, the negative values could sometimes help to guide determination of boundaries

between biologically negative and positive populations. This is especially helpful because, just as with

compensation of FC data, compensation of CyTOF data results in an apparent increase in signal spread of

populations that are heavily compensated.

Rationale for optional Step 11

The apparent increased spread after compensation is an artifact of two factors, and it is actually not caused

by compensation per se. The two factors are noise that was already present in the data and, critically,

the transformation used to visualize the data. Cytometry data is positively skewed and heavy tailed like

a log-normal distribution. In order to bring cytometry data closer in shape to a normal distribution, it

is usually transformed using the transformation X 7→ sinh-1(X/L) prior to visualization and analysis,

where L is a constant, called the “cofactor”, specified by the user. For CyTOF data, the default cofactor

is L = 5. For X � L the arsinh transformation behaves approximately linearly, whereas for X � L it

has approximately logarithmic behaviour. It therefore compresses large values of X much more than small

values. Consequently, values close to zero become more spread out relative to large values. This can have

a drastic effect on the distribution of data: unimodal data peaked at zero can become bimodal, with distinct

peaks either side of zero, after arsinh transformation. The cofactor L is fundamental to this effect.

Before compensation, CyTOF data is distributed mostly in the domain of log-like behaviour of the arsinh

transformation. Data spread due to technical noise, which gradually increases with the signal, is therefore

mostly hidden by the log-like compression of the data. However, after compensation, cell populations un-

stained for a marker become distributed mostly near zero in the corresponding mass channel, within the

domain of linear-like behaviour of the arsinh transformation. This causes those populations to become more

spread out relative to the rest of the data following transformation, even though the untransformed com-

pensated data would not look unusual when viewed on linear-scale axes. Smaller values of the cofactor L
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increase the probability of creating fictitious bimodal populations around zero by decreasing the size of the

domain of linear-like behaviour of the transformation, thereby forcing more of the data into the domains

of log-like behaviour and creating a void between positive and negative values. Hence, an obvious way to

reduce the spread and fix any bimodality of biologically negative populations would be to choose channel-

specific values for the cofactor L instead of using the default value of 5 for all dimensions of the data.

Channel-specific cofactor values could be determined by finding values of L that give appropriate visual-

izations of the unstained channels in the compensated MMM controls (i.e. unimodal populations without

excessive spread). This might be sufficient and would render Step 11 of our method unnecessary. Step 11 is

therefore optional.

The channel-specific cofactor approach treats all channels independently. However, the noise in an

unstained channel is not independent of the other channels. Consider an unstained channel (e.g. Yb174) in

an MMM control and a stained channel (e.g. Yb173) that is a major source of spillover signal in the unstained

channel. The noise in the unstained channel increases as the signal in the source channel increases. This can

be seen in a scatter plot of signals measured in the unstained channel (the ordinate) versus the signals in the

spillover source channel (the abscissa), whereby the scatter points gradually increase their vertical spread as

the abscissa increases. The increasing spread is exacerbated by arsinh transformation of compensated data.

Setting an appropriate cofactor in the arsinh transformation can control general spread in the ordinate, but

we decided to leverage the k nearest neighbours found in Step 7 to estimate the specific noise for individual

cells as in Step 9 and subsequently use this to reduce spread in a signal-dependent manner in Step 11.

The general idea behind Step 11 was to subtract not just the average of the k-nearest-neighbour MMM

control signals from the data but the average plus a number of noise-dependent deviations. This would

be analogous to transforming the data such that zero corresponds to a particular z-score estimated from

the local noise for each measured signal, except that we used robust generalized measures of average and

spread instead of the mean and standard deviation. This would bring a nice interpretation to the value zero

in compensated data. However, cell populations unstained for a marker would be centred below zero in that

channel. Due to the lack of meaningful symmetry about zero, it would subsequently be difficult to choose

an appropriate cofactor in the arsinh transformation for visualization and downstream analysis. In addition,

this would only move the data spread to below the axes rather than reducing it.

Our solution was to first subtract the average of the k local spillover signal values and then use a

tanh function to ‘subtract’ noise-dependent deviation in a symmetric manner about zero by subtracting it

from positive values and adding it to negative values. This squeezes values symmetrically towards zero.

Asymptotically (i.e. for signal values very significantly above spillover signal noise), the ‘subtracted’ noise-

dependent deviation is just the compensated signal value corresponding to our generalized equivalent of

a desired z-score, determined by the parameter a. As the magnitude of the pre-subtraction signal value

decreases, so too does the noise-dependent value subtracted from it, as per the tanh function, in order to

maintain the signs of the compensated signals and to smoothly reduce the spread. The parameter h controls

how aggressively values within the range of noise are squeezed towards zero; h = 1 is most aggressive and

larger values are less aggressive. In our experience, parameter values of a = 3 and h = 4/3 gave good
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results, which are presented in the next section, for which the default cofactor L = 5 for CyTOF data was

suitable for arsinh transformation of all axes. Hence, despite requiring two input parameters, our approach

potentially eliminates the need for channel-specific cofactors, which ultimately means that fewer parameters

need to be determined.
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5.3 Results
In this section, we present results of using our compensation method to compensate for signal spillover in a

CyTOF experiment that is described in full in Chapter 4 of this dissertation. The full details of the experiment

are not relevant here and are therefore not repeated; readers should refer to Chapter 4 if they wish to know

full experimental details. Briefly, we took cells from 14 human B-lymphoma cell lines. Cells from one of

the cell lines, BJAB, were divided into four conditions: no treatment, treatment with a cocktail of anti-Igκ

and anti-Igλ antibodies to stimulate B-cell receptor (BCR) signalling, treatment with IL-10 to stimulate IL-

10 receptor signalling, and treatment with phorbol 12-myristate 13-acetate (PMA) to stimulate signalling by

protein kinase C. Cells were barcoded using commercially available palladium mass-tag barcodes, pooled

together, then stained using a panel of 33 metal tags conjugated to antibodies against 8 cell-surface and 25

intracellular, including 19 phosphorylated, proteins. In addition, we used two antibodies against universally

negative markers (specifically murine antigens) in order to detect and remove any CyTOF events exhibiting

non-specific binding of antibodies; mass tags Nd145 and Sm147 were used for these two antibodies. Mass

tags Nd142, Gd157, Dy162, and Er167 were not used for staining. All other distinct mass tags in the range

from Pr141 to Yb176 as well as Y89, In115, and La139 were used for staining.

To demonstrate compensation for signal spillover using the experimental and computational methods

above, including reduction of signal spread as per Step 11 of our computational method, we applied them

to the CyTOF data using a = 3 and h = 4/3. For the eventual full analysis of the data we opted to use

h = 1; figures illustrating the compensation results for h = 1 can be found in our separate work describing

the full analysis (Chapter 4). To generate the MMM controls, we used a mixture of cells from the same

14 cell lines and treatments of BJAB cells as used in the actual experiment. In total, our MMM controls

used for compensation consisted of 246,892 cells stained with sub-panel MMM1, 246,892 cells stained with

sub-panel MMM2, and 388,672 cells stained with sub-panel MMM3. The actual experiment resulted in data

for 1,019,265 cells stained with the full panel of antibodies.

The scatter plots in Figure 5.1a–b show examples of signal spillover in CyTOF data. Specifically, they

show the signal intensities in the Yb173 and Yb174 mass channels (Figure 5.1a) and in the Gd155 and

Gd156 mass channels (Figure 5.1b) for a sample of 100,000 cells from the MMM control cells that were

stained with sub-panel MMM2, in which both Gd155 and Yb173 but neither Gd156 nor Yb174 were stained.

The spillover signals in the Yb174 and Gd156 mass channels are due to multiple sources, which are mostly

not shown in the figure, but in both cases the previous mass channel (i.e. Yb173 and Gd155 respectively) is

the largest source. Figure 5.1a–b also show how the arsinh transformation and the choice of cofactor affect

visualization of the data. In our experiments, signal spillover from Yb173 to Yb174 was consistently the

most severe. The first scatter plots in Figure 5.1c–d show that the spread of the k signals in an unstained

mass channel corresponding to the k nearest MMM-control neighbours found in Step 7 of our computational

method increases as their average increases. As shown in the second and third scatter plots in Figure 5.1c–

d, square-root transformation of the signals in the unstained channel (after finding the k nearest neighbours

before any transformation of the data) partially stabilizes this spread, whereas logarithmic transformation
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Figure 5.1: Intensity and spread of spillover signals in CyTOF. (a–b) Scatter plots of spillover signal
in unstained mass channels Yb174 (a) and Gd156 (b) versus signal in mass channels Yb173 and Gd155
respectively, which were both stained with antibodies, for cells that were stained only with antibodies con-
jugated to isotopes in sub-panel MMM2 (see Table 5.1). The same data is displayed three different ways:
(i) untransformed on linear scales, (ii) arsinh transformed using the default cofactor of 5 for CyTOF data,
and (iii) arsinh transformed using a cofactor of 50. Continued on next page.
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Figure 5.1: (c–d) Scatter plots of spread versus average of signals in the unstained mass channels Yb174
(c) and Gd156 (d) of the k = 20 nearest neighbours found in Step 7 of our compensation algorithm for cells
that were stained with antibodies conjugated to isotopes in MMM2. Three things are plotted: (i) spread of
the k signals in the unstained mass channel versus their average, where the spread was calculated as the 20%
trimmed mean absolute deviation from their average and their average was calculated as their 20% trimmed
mean, without any transformation of the signals; (ii) spread versus average of the k square-root-transformed
signals, calculated as in (i) but after square-root transformation of the k signals; (iii) spread versus average of
the k log-transformed signals, calculated after applying the transformation y 7→ log(y + 1) to the k signals.

with an offset of 1 transforms the data too strongly. In our computational method, we chose to calculate a

generalized average and generalized measure of spread of the k signals using the square-root transformation.

To validate our approach to compensate signal spillover in CyTOF, we first used it to compensate the

MMM control data. That is, after generating MMM controls to compensate for signal spillover in our

full-panel CyTOF experiment, we first applied our compensation method using those MMM controls to a

total of 100,000 cells sampled from the data for the same MMM controls. Visual inspection of compensated

signals in the unstained mass channels reveals that our compensation method works effectively (Figure 5.2).

Viewed without any post-compensation transformation of the data (i.e. on linear scales), and compared to the

corresponding uncompensated data, it can be seen that signal spillover was effectively compensated by the

end of Step 10 of our computational method (Figure 5.2a(i),c(i)). Signals in unstained mass channels that

were clearly positively correlated with signals in stained mass channels before compensation (Figure 5.1a–

b) are closer to zero and have no obvious correlation after compensation (Figure 5.2).

However, arsinh transformation of the compensated data emphasizes increasing spread of signals in

the unstained channels as the amount of spillover signal subtracted increases (Figure 5.2a(ii),c(ii)). This

type of spreading is commonly seen in compensated FC data and also appeared when Chevrier et al. com-

pensated CyTOF data without applying a non-negative constraint [248], so it is not unique to our com-

pensation method. Using a cofactor of 5, which is the default for CyTOF data, the arsinh transformation

artificially created the false impression of separate cell populations either side of zero in the Yb174 chan-

nel (Figure 5.2a(ii)). This was easily resolved by choosing a larger cofactor in the arsinh transformation

(Figure 5.2a(iii)). However, different cofactors would likely have to be chosen for different mass channels.

These could be determined by finding cofactor values that give appropriate visualizations with unimodal

distributions in the unstained mass channels of the compensated MMM control data. Step 11 (the spread

reduction step) of our computational method was effective at reducing, although not completely eliminat-

ing, the signal spread in the unstained mass channels (Figure 5.2b,d). Note that the spread could be more

aggressively reduced by choosing a smaller value of h, the most aggressive choice being h = 1, but this

increases the density of points very close to zero. Although channel-specific cofactors could still improve

visualization and downstream analysis, arsinh transformation of the compensated data using a cofactor of 5

was, crucially, still appropriate after reducing the signal spread as per Step 11 of our method. Therefore, our

noise-dependent, tanh-based reduction of signal spread potentially eliminates the complication of choosing

channel-specific cofactors.
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Figure 5.2: Compensation of signals and reduction of spread in unstained mass channels. (a,c) Scatter
plots of signal in unstained mass channels Yb174 (a) and Gd156 (b) versus signal in stained mass channels
Yb173 and Gd155 respectively after Step 10 of compensation (i.e. compensation with a = 0) for cells
stained with antibodies conjugated to metals in sub-panel MMM2. (b,d) Same as (a,c) respectively but
after reducing spread as per Step 11 of compensation with a = 3 and h = 4/3. In each of (a-d), the
same data is visualized three different ways: (i) on linear-scale axes with no transformation of the data, (ii)
after arsinh transformation of the data using the default cofactor of 5 for CyTOF data, and (iii) after arsinh
transformation of the data using a cofactor of 50. The uncompensated data corresponding to this figure is
shown in Figure 5.1.

202



After validating that our compensation method worked effectively for the MMM control data, we then

applied it to the data for the cells stained with the full panel of antibodies. The purpose, details, and conclu-

sions of the actual experiment will not be described here as they are described elsewhere (see Chapter 4),

but, for illustration, Figure 5.3a–b show scatter plots of the signal intensities measured for CD22 (Yb174)

versus CD81 (Yb173) and phospho-BLNK (Gd156) versus CD40 (Gd155) before and after compensation

using our method, including reduction of signal spread using a = 3 and h = 4/3. We knew from other

experiments, or otherwise expected, that the surface markers CD22, CD81, and CD40 were expressed by

many or all of the cell lines in our experiment. Similarly, BJAB cells treated with anti-Igκ and anti-Igλ

antibodies served as a positive control for phospho-BLNK expression. Importantly, compensation did not

compromise our ability to detect positive staining with any of our antibodies. On the contrary, compensation

revealed a population of cells with high expression of CD81 but low expression of CD22 (Figure 5.3a); this

population was visible before compensation, but the uncompensated data gives the incorrect impression that

all of the cells had high expression of CD22. Similarly, a portion of the positive-control cells for phospho-

BLNK are clearly visible (with medium CD40 expression) both before and after compensation. However,

the uncompensated data gives the impression that there was a population of cells in which phospho-BLNK

expression is positively correlated with expression of CD40 and that CD40-high cells had a similar level

of phospho-BLNK to the positive-control cells. In fact, this was only an artifact of signal spillover, and

compensation corrected this.

Lastly, notice that we left a few mass channels unstained in our full-panel CyTOF experiments. This was

primarily to alleviate some of the signal spillover between channels stained with different antibodies and to

enable us to account for all of the most important sources of signal spillover using just three, as opposed to

needing more, MMM controls. However, although our MMM sub-panels were not optimized to compensate

for spillover signal in the unstained channels in our full-panel experiment (since spillover in the unstained

channels would not affect any of the biological data), we could still reasonably compensate these channels.

Consequently, the unstained mass channels can be regarded as internal controls to validate compensation of

the full-panel experimental data. Figure 5.3c shows that our method adequately compensated one of those

unstained channels: Er167.
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Figure 5.3: Compensation for signal spillover in CyTOF data for B cells stained with a complete
panel of antibody-metal probes. (a-c) Scatter plots, before and after compensation, of CD22 stained
by Yb174 versus CD81 stained by Yb173 (a), phospho-BLNK stained by Gd156 versus CD40 stained by
Gd155 (b), and signal in the Er167 mass channel, which was unstained, versus phospho-tyrosine stained
by Er166. A mixed population of B cells from a variety of B-lymphoma cell lines were stained with a
panel of 35 antibodies conjugated to different elemental isotopes. Mass channels Nd142, Gd157, Dy162,
and Er167 were left unstained, and channels Nd145 and Sm147 were used for universally negative markers.
Compensation was performed in full including reduction of signal spread using a = 3 and h = 4/3. The
same data are visualized in two ways in the figure: on linear scales without any transformation (first and
third columns) and after arsinh transformation using the default cofactor of 5 for CyTOF data (second and
last columns).
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5.4 Discussion
In this work, we have presented a novel method to compensate for signal spillover in CyTOF data by directly

estimating the cumulative background and spillover signal in each mass channel for each cell. The traditional

method of compensation involves the generation of a signal spillover matrix by systematically performing

all of the “single-stain” controls in which staining is performed for only one of the mass channels and all of

the other channels are left unstained. For highly multiplexed CyTOF panels, this requires many single-stain

control samples, for which Chevrier et al. [248] used beads rather than cells. Our approach is effectively the

converse of the traditional approach: it is based on CyTOF equivalents of FMO controls in FC, in which all

but one of the channels are stained in order to determine the signal intensity profile of the unstained channel

due exclusively to background and spillover signal. By leveraging complete independence of signals in

many CyTOF mass channels, neglecting some minor sources of spillover signal that likely contribute less

than noise, and always leaving a few mass channels unstained, were were able to collapse the CyTOF

equivalents of FMO controls into just three “mass minus multiple” (MMM) control staining sub-panels.

These can easily be barcoded to allow the MMM control data to be acquired concurrently with the main

experimental data.

Our results indicate that our compensation method is effective, although, unlike Chevrier et al., we allow

negative values in the compensated data. Negative values are not generally problematic for subsequent

analyses, even though raw CyTOF data is non-negative. A common occurrence in both compensated FC

data and compensated CyTOF data is increasing spread of populations that are unstained, or biologically

negative, for a marker as the staining intensity increases in a source of spillover signal. This spread is

an indication that noise increases as the signal increases. It it is inherently present in the raw data but it

is usually hidden by typical visualization of cytometry data because it occurs in the domain of log-like

behaviour of the arsinh transformation used for visualization. Compensation moves this signal spread into

the linear-like domain of the arsinh transformation and therefore makes it much more apparent. Although

this spreading effect is difficult to completely eliminate from arsinh-transformed compensated CyTOF data,

our compensation method, unlike the traditional method, includes a strategy to reduce the signal spread in

a signal-dependent manner. We showed that, at least for our experiment, reduction of the spread using our

method enabled suitable visualization of the data using the arsinh transformation with a cofactor of 5, which

is the default value used for CyTOF data. Without reducing the signal spread near zero in the compensated

intensities, a larger cofactor was required for at least one mass channel. Our method could therefore reduce

the need to define channel-specific cofactors for suitable arsinh transformation of the compensated data.

Finally, just as FMO controls are used in FC, the MMM controls in our method can be compensated and

the unstained channels subsequently viewed alongside their compensated fully stained counterparts in order

to assist proper determination of gate boundaries between biologically negative and positive populations and

to validate that the compensation was effective. In multiplexed FC experiments, with or without compen-

sation, FMO controls are considered essential for accurate interpretation of the data. The same should be

true for CyTOF, but equivalent controls have so far been completely neglected. The compensation method
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that we have described here combines compensation and CyTOF equivalents of FMO controls into a single

set of just three staining controls. Consequently, our method minimizes the work required to perform all of

the controls for CyTOF that are already deemed essential for reliable analysis of FC data. Our work should

therefore lead to higher standards of data analysis for CyTOF.
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Chapter 6

Conclusion

This dissertation has introduced new methods that can be useful for analyzing clusters of physical objects

in space and clusters of similar data points in high-dimensional (HD) data. In addition, aided by these new

methods, this dissertation has contributed new knowledge about the molecular biology of diffuse large B-

cell lymphoma (DLBCL), a common cancer of B cells. In this concluding chapter, I summarize the work

presented in the research chapters and provide further discussion beyond the scopes of the chapter-specific

Discussion sections. The individual research chapters included only discussion points that were, or are,

intended for inclusion in the resulting scientific manuscripts for publication and were thus tailored for the

intended manuscript audiences. I now provide more extensive discussion for the broader audience of this

dissertation. For example, the discussion in Chapter 2 was focused on the application of my StormGraph al-

gorithm and software as a whole in the specific context of analyzing protein clustering from super-resolution

single-molecule localization microscopy (SMLM) data and was written primarily for an audience compris-

ing potential users of StormGraph in the biological sciences. However, many of the theoretical and technical

aspects of StormGraph deserve more discussion in general terms of clustering point patterns, especially for

readers in the mathematical and computational sciences. Such additional discussion is now provided here.

Furthermore, this concluding chapter provides discussion that spans multiple research chapters, putting my

work into an overall perspective, and it offers thoughts about possible future applications of my methods

and potential avenues for future research to improve upon my methods.

6.1 Contributions of Chapter 2 to research in clustering point data
In Chapter 2, I proposed a new graph-based method called StormGraph for analyzing clusters of cellu-

lar molecules imaged by super-resolution single-molecule localization microscopy (SMLM). In SMLM,

cellular molecules of interest are labelled by fluorophores and the microscopy technique subsequently out-

puts two- or three-dimensional coordinates of localized fluorophore blinking events (“localizations”), which

serve as proxies for the labelled molecules. StormGraph detects clusters of localizations in this data based

on two iterations of converting the list of localization coordinates to a weighted r0-neighbourhood graph

followed by community detection. The idea of using graph-based methods to cluster data points is not new

in general, but it is new to the field of SMLM. StormGraph and a method developed concurrently by Khater
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et al. [51] are, to my knowledge, the first methods to utilize graphs and community detection to detect clus-

ters in SMLM data. Moreover, StormGraph is the first to rely exclusively on graph-based methods to extract

clusters from SMLM data, since Khater et al. use the mean shift algorithm to perform the main segmentation

of data points into clusters.

StormGraph can facilitate basic cell-biology research by helping researchers to quantify spatial distribu-

tions of cell-surface or intracellular molecules investigated via SMLM. This in turn can lead to advances in

our scientific understanding of the biology of various cell types, especially immune cells where clustering

of cell-surface receptors often plays a critical role in activating the normal immune function of a cell in re-

sponse to immunogenic stimuli. StormGraph is not the only clustering algorithm developed for analysis of

SMLM data, rather it adds to a collection of such algorithms, but through extensive testing on realistic sim-

ulated data I demonstrated some important advantages of StormGraph over existing methods. Moreover, as

detailed in Chapter 2, StormGraph brings together a unique combination of attributes (no prior assumptions

about clusters, incorporation of localization uncertainties, ability to analyze 2D or 3D data, suitability of a

fixed choice of input parameters for diverse datasets, two-colour cluster overlap analysis, and multi-scale

output clusters), which may be available in smaller combinations but not all together in other methods. Al-

though StormGraph was developed for application to SMLM data, it could easily be applied to any spatial

point pattern data because it does not rely on any assumptions specific to SMLM. Therefore, StormGraph

can be viewed more generally as a new graph-based method for clustering spatial points that may have

uncertain coordinates. While StormGraph as a whole is a new clustering method that contributes to the

research field of SMLM data analysis and more generally to the field of spatial point patter analysis, some

component facets of StormGraph individually represent contributions to the broad fields of data clustering

and graph theory.

One such facet revolves around parameter setting. A consideration throughout the development of

StormGraph was the need to make setting input parameters as simple as possible for the end user. Choosing

input parameter values is commonly a difficult problem for clustering algorithms and general graph-based

data-analysis methods in any field of research. For an r0-neighbourhood graph (more commonly called an

ε-neighbourhood graph), in which each node is connected to all other nodes within a distance r0 (or ε), the

input parameter r0 (or ε) is required. For a k-nearest neighbour (kNN) graph, in which each node is con-

nected to its k nearest neighbours, the parameter k is required. There are currently no definitive methods for

optimal selection of either r0 or k for the purpose of using r0-neighbourhood or kNN graphs for clustering

tasks. Hence, the parameter is typically set using some heuristic approach, and StormGraph, for which the

parameter r0 is critical, is no exception. Additionally, for data in which some data points are believed to

not belong to clusters, as is typical of SMLM data, a threshold on the local density or a related property of

data points is usually required to determine which data points belong to clusters and which do not. Suitable

choices for the value of r0 and the density threshold depend on the density of the data points: low-density

data would require a larger value of r0 for adequate graph connectivity and a lower density threshold for

data points to be considered ‘clustered’ than high-density data. Unfortunately, the density of data points in

SMLM data depends on a variety of complex factors. These include factors related to the underlying biology
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being studied, such as the number and distribution of the molecules of interest on or in the imaged cells,

and factors related to the microscopy technique, such as the number of fluorophores labelling each molecule

and the duration of imaging (imaging for longer duration will result in the acquisition of more fluorophore

blink events). These factors make it practically impossible for a researcher to know in advance what would

be good choices for the values of r0 and the density threshold. Furthermore, since some of these factors will

vary from one cell to another, single fixed choices of values for r0 and the density threshold will rarely be

suitable for every imaged cell. I demonstrated this point for the popular DBSCAN clustering algorithm [44],

which has analogous input parameters, using simulated data in Chapter 2. Clustering data in other fields of

research is no doubt plagued by similar problems. To attenuate the challenge of setting input parameters in

StormGraph, I proposed methods for the user to set them automatically or indirectly using input parameters

that do not require prior knowledge about the density of data points.

To set r0 in StormGraph, I proposed two methods. The first method, which took inspiration from Clus-

terViSu [5], requires the user to instead input a parameter k akin to setting k for a kNN graph. Given k,

StormGraph automatically chooses a value for r0 based on the distribution of distances from data points

to their kth nearest neighbours compared to the corresponding distribution of distances for randomly dis-

tributed points. Although this method still requires the user to choose a value for the input parameter k, that

choice can always be made independently of the scale of the data, whereas selecting a value for r0 obviously

always depends on scale. The second method for setting r0 in StormGraph is based on the “elbow method”

heuristic whereby the number of connected components in the r0-neighbourhood graph is plotted against the

value of r0 and the “elbow” region of this plot is identified. Sometimes a relatively large jump can be seen in

the change in the value of r0 needed to cause a change in the number of connected components, which leads

to an obvious range of suitable r0 values and StormGraph automatically selects r0 in this range. When this is

not the case, StormGraph fits a curve to the plot and selects the value of r0 where the concavity of this curve

falls to 2% of its maximum concavity. The 2% threshold was chosen empirically through experimentation of

the method and erred on the side of being slightly conservative because it is generally better to overestimate

than underestimate the number of edges in the graph representation of the data. Although this threshold is

fixed in StormGraph and therefore frees the user from one input parameter, it is nevertheless a parameter

that could be tuned to influence the clustering results. This can be viewed as a limitation of the method, but

it reflects that, despite its popularity, the elbow method heuristic does not yield a concrete choice for r0.

In StormGraph, the first method for setting r0 is only offered as an option for the first iteration of graph

construction, which is used for binary classification of nodes as either clustered or unclustered but not for the

actual clustering. The second iteration of graph construction, which generates the graph that is actually used

for clustering, always uses the second method for setting r0 because there is no reason to assume that both

iterations should use the same value of k and I wanted to avoid having separate user-input parameters for the

two iterations. I also felt that the second method for setting r0 was the more ideal method for well-clustered

data in which unclustered points had already been removed. The binary classification step between the two

iterations of graph construction is another step in the StormGraph algorithm where a critical parameter, this

time a threshold applied to node degrees, is not explicitly set by the user. It is controlled by means of a user-
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specified per-node significance level α and comparison of the real data to a random geometric graph, once

again simplifying parameter selection for the user. Ultimately, I would have liked to completely eliminate

the need for any user-input parameters from StormGraph, but this proved to be an unrealistic target. Indeed,

parameter selection will continue to be a challenge for most clustering algorithms because no universal

formal definition of a cluster exists.

My proposed methods for setting r0 in StormGraph are not restricted to StormGraph and therefore offer

strategies to semi-automatically set the value of r0 for r0-neighbourhood graphs in other contexts. They also

have potential utility beyond their use for converting data to graphs. The first method provides a strategy

to convert the problem of choosing a suitable parameter value for an r0-neighbourhood graph from a scale-

dependent problem to a scale-invariant one. That approach could also potentially be used to automatically set

the search-radius parameter ε in the popular DBSCAN clustering algorithm [44]. By choosing k to be equal

to the MinPts parameter required by DBSCAN, the two input parameters for DBSCAN could be reduced

to a single user-specified parameter. In theory, this would also permit application of DBSCAN to varied

datasets, such as SMLM data from multiple cells, using a fixed input parameter choice and thereby overcome

one of its main limitations compared to StormGraph. I have not tested this approach for automatically

setting ε in DBSCAN, but it would be worth investigating. The second method that I proposed for setting

r0 provides one possible interpretation and computational implementation of the elbow method heuristic.

It potentially has broad utility because the same heuristic is often used to choose, for example, the output

number of clusters for a clustering of, or the number of features to extract from, some data based on the

amount of variance explained.

Another facet of StormGraph that represents a new contribution to cluster analysis is the novel algorithm

that I devised to automatically obtain a single level of clusters from a multi-level clustering, such as the

output of Multi-level Infomap [4]. The reasons for developing a new algorithm to obtain a single-level

clustering from a multi-level clustering were outlined in Chapter 2; briefly, no existing method was suitable

for application in StormGraph. The algorithm that I developed takes a local top-down approach of deciding

whether to split a cluster into its constituent subclusters at the next level down its branch of the hierarchical

cluster tree. It does this based on the similarity of the subclusters to the connected components of kNN

graphs for different values of k. The method requires a single input parameter (a similarity threshold between

0 and 1), which controls how easy or difficult it is to split a cluster, though the value of this parameter was

hard-coded in StormGraph. Like my methods for semi-automatically setting r0 in StormGraph, this cluster

selection method is not specific to the workings of StormGraph. It therefore provides a simple and relatively

fast method to choose clusters from multiple levels of a hierarchical clustering in any area of research where

multi-level clustering may be useful but perhaps difficult to interpret.

One might question the wisdom of performing multi-level clustering in the first place if a single-level

clustering is desired. Why not just choose an algorithm that specifically optimizes one level of clusters? In-

deed, the original two-level Infomap algorithm [3] (“two-level” refers to there being one level of data points

and one level of clusters) is an obvious alternative to the multi-level Infomap algorithm, and I have even

included Two-level Infomap as an option in StormGraph. The wisdom of performing multi-level clustering
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is that it is better able to detect large-scale clusters. In data that inherently has multi-scale organization, al-

gorithms that only search for one level of clusters, such as Two-level Infomap, tend to only identify clusters

at intermediate or small scales and they suffer from resolution limits. Overall, they are not well-suited for

data that have heterogeneous cluster-size distributions. Applying StormGraph to SMLM data using Two-

level Infomap in lieu of Multi-level Infomap resulted in large, biologically meaningful clusters frequently

being divided into many smaller clusters. The only apparent way to rectify this without proper multi-level

clustering was to consider the connected components of the StormGraph graph as a coarse level of clusters

and the Two-level Infomap clusters as a fine level of clusters. In reality, though, a human eye would often

choose clusters that are somewhere between those two options. Multi-level clustering combined with my

algorithm for choosing clusters from the cluster hierarchy addressed this problem.

Nevertheless, the algorithm has two potential limitations. First, by using a top-down approach that

only considers two adjacent levels of clusters in a branch of the hierarchical cluster tree and terminates

searching deeper levels of the branch as soon as a cluster split is rejected, the algorithm favours coarse-

grained clusters over fine-grained clusters. A bottom-up approach would likely yield different results that

favour fine-grained clusters over coarse-grained clusters. In SMLM, if any clusters exist at a relatively large

scale then it is usually desirable to detect them at their largest scale because large aggregations of molecules

are usually of biological interest. Even though a large molecular aggregation could be formed from smaller

biologically relevant clusters of molecules (e.g. oligomers), usually it is the large aggregation that is of most

interest to detect. Hence, the top-down approach for choosing clusters from multiple levels is appropriate in

StormGraph. Nonetheless, the algorithm could be adapted to use a bottom-up approach for situations where

the finer levels of clusters are of more interest than the coarse levels, although in this case it may be more

appropriate to just use a single-level clustering algorithm such as Two-level Infomap.

The second potential limitation is the local nature of the algorithm, which completely ignores the sur-

roundings of a cluster when deciding whether to split the cluster. This assumes that, once a cluster has been

accepted as the result of a split, none of its surrounding clusters, including those that resulted from the same

split, matter when deciding whether to further split the new cluster. This assumption is not necessarily true,

though, because a cluster might be connected to some of its surrounding clusters, were they not ignored, in

some of the kNN graphs used during the decision making process. This limitation would probably be more

problematic for a bottom-up approach to my cluster selection algorithm because cluster surroundings are

arguably more relevant for cluster agglomeration than for cluster division. An unbiased alternative approach

that would effectively solve both of the limitations above would be to search the full depth of every branch

for the ‘best’ clusters in terms of their similarity to connected components of kNN graphs. This obviously

solves the first limitation. It solves the second limitation because an approach that considers the full depth

of every branch would have to simultaneously consider all possible clusters within a given branch, thereby

making it impossible to use local approximations at every level of the branch. This unbiased approach

would come at greater computational cost, however. Despite the two potential limitations described here,

my top-down algorithm for choosing clusters from a multi-level clustering may be useful for researchers

who perform data clustering tasks in any field of research. It should also be noted that the multi-level clus-
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tering does not have to be generated by a graph-based method. The only restriction is that the multi-level

clustering should not be derived from a kNN graph. This is because my cluster-selection algorithm is based

on comparing clusters derived by two different processes, the first of which is the multi-level clustering

method of choice and the second of which is already based on kNN graphs.

6.2 Clustering uncertain point data using graphs
The aspect of StormGraph that deserves the longest discussion in this concluding chapter of this dissertation

is the manner in which it incorporates known uncertainties associated with the localization positions into

the clustering process. In SMLM, localizations are not 100% precise and the uncertainties in the positions

can be reported alongside the localization coordinates. StormGraph uses this information, when available,

during the computation of graph edge weights. In the limiting case of zero uncertainty, I chose to define the

similarity of two nodes separated by a distance rij to be 1−rij/r0 for rij ≤ r0 and zero for rij > r0 for two

reasons: first, this makes the similarity of two nodes a continuous function of the distance between them,

as opposed to having a discontinuity at rij = r0 as would be the case for an unweighted r0-neighbourhood

graph; second, the normalized distance between two points in Euclidean space is an intuitive measure of

their dissimilarity, which is usually defined to be 1 minus the similarity. Then, given known uncertainties

in the node positions, I decided in principle to weight the edge between two nodes by the expected value of

their similarity. In StormGraph, I approximate this using Monte Carlo simulations. A possible avenue for

future research would be to derive an expression for the expectation of the similarity of two nodes that can

be directly evaluated analytically or numerically.

Kettani and Ostrouchov [250] derived a general expression for the characteristic function of the distribu-

tion of squared Euclidean distances between two points drawn randomly from different multivariate normal

distributions in an arbitrary number of dimensions d ∈ {1, 2, 3, . . . }. They simplified the expression for

some special cases including when the covariance matrix for the vector difference between the two random

points is diagonal, as would be relevant for SMLM data. However, they did not provide the correspond-

ing probability density function (PDF) for this special case except for instances where either d = 1 or the

covariance matrix is a scalar multiple of the d-dimensional identity matrix. To my knowledge, no other

authors have tackled this problem. Theoretically, the PDF for the similarity, as defined above, of two un-

certain SMLM localizations can be derived from the results of Kettani and Ostrouchov. However, I would

be surprised if even the simplest possible expression for the expected similarity can be evaluated analyt-

ically unless the model for uncertain localization positions is simplified to enforce equal variance for all

coordinates of a localization. Instead, calculation of the expected similarity would likely require numeri-

cal integration. An obvious question would then be whether pairwise numerical calculations of expected

node similarities provide any overall benefit compared to Monte Carlo simulations in terms of the trade-off

between accuracy and computational cost.

In theory, with uncertain node positions modelled by multivariate Gaussian distributions, every pair

of uncertain nodes would have strictly positive, even if negligible, expected similarity. In practice, this
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will never be realized by Monte Carlo simulations when the positional uncertainties are small relative to the

overall scale of the data, as is the case for SMLM data. In any case, in order to reduce the computational cost

of similarity computations in StormGraph, I imposed an upper limit on the distance between the observed

positions of two localizations that can have an edge between them regardless of their individual uncertainties.

This would also be appropriate if expected similarities are calculated directly by numerical evaluation of an

expression. Thus, StormGraph actually constructs a weighted graph that is a sparse approximation of the

expected graph. Recall that, to generate the final graph used for clustering, StormGraph then deletes any

edges that have an estimated probability of existence below 75% for the selected value of r0. Like the

expected similarity, the probability of existence of an edge is estimated from the Monte Carlo simulations,

but it could be determined exactly by the cumulative distribution function for the distance between two

uncertain points, which can be derived from the characteristic function provided by Kettani and Ostrouchov.

The estimations of expected node similarities and probabilities of edge existence by Monte Carlo simulations

is a minor detail, however, and a more pertinent discussion point is the overall approach that StormGraph

takes to incorporating uncertainties in node positions.

Clustering of uncertain or probabilistic graphs, which are graphs that have probabilities of existence

associated with their edges, has been addressed by several research groups in the past. For examples,

see references [251–255]. In relation to prior work on the subject, StormGraph adopts two traditional

approaches: first, casting the probabilities of existence of edges as weights, and second, deleting edges

that have a probability of existence below some threshold. Because the edges in StormGraph are already

associated with weights based on distances between nodes, the casting of edge existence probabilities as

weights is encapsulated in the estimations of expected node similarities. As noted by Kollios et al. [252],

the only obvious way to interpret edge existence probabilities as edge weights for an already weighted

graph is to multiply the existing weights by the probabilities. Kollios et al. argued that this is a disadvantage

of treating edge existence probabilities as edge weights because the resulting composite weights have no

interpretation. I dispute that claim because the composite weights do have a clear interpretation: they are

the expected values of the existing edge weights over all possible realizations of the graph (i.e. over all

possible worlds, to use the lexicon from the literature). In StormGraph, I have in essence generalized this

approach to the case where the existing weights are not fixed but rather depend on a particular realization

of the underlying data for the graph. The additional deletion of edges that have an estimated probability of

existence < 0.75 is performed to prune the final graph in StormGraph to fix some graph connectivity issues

that could have unexpected consequences. I describe a hypothetical example to justify this below. The

literature cited above introduced more sophisticated methods tailored specifically to clustering uncertain

graphs, usually by using a generative possible worlds model. However, there is an important distinction

between StormGraph and the current literature on uncertain graphs.

In the literature on clustering uncertain graphs, the edge-existence probabilities are usually assumed to

be independent. This is not a valid assumption for StormGraph because the edge existence probabilities

in StormGraph depend on the pairwise distances between multiple points, which are constrained by the

triangle inequality. Most methods for clustering uncertain graphs are therefore not applicable to the type of
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uncertain graph that StormGraph works with. Gu et al. [253] developed an algorithm to cluster uncertain

graphs where the edge existence probabilities are conditionally dependent, but the joint probabilities of edge

existence must be known. Significant further work would be needed to derive the joint probabilities of edge

existence in StormGraph, which are determined by the distances between nodes and the multivariate PDFs

for the node positions. Hence, at the time of writing, StormGraph would not be able to leverage current

state-of-the-art clustering methods for uncertain graphs.

Furthermore, the fact that the edge existence probabilities are dependent influenced my decision to use

0.75 as the existence probability threshold for edge pruning in StormGraph. In a classical ‘possible worlds’

framework in which edge existence probabilities are independent, the most obvious choice for an edge

existence probability threshold would be 0.5 because this would yield the most probable world of edges

in the pruned graph. This logic cannot be applied in the case of dependent edges. Instead, consider the

connectivity in the following hypothetical scenario. Imagine two separate clusters, A and B, that contain

only nodes whose positions are known precisely so that their uncertainties are all zero. Imagine also that

the two clusters are situated such that the shortest distance between any node in cluster A and any node

in cluster B is parallel to the x axis and is equal to 2(r0 + δ) for an infinitesimal quantity δ > 0. Now

suppose that at the midpoint of the corresponding shortest straight line between clusters A and B, a distance

r0 +δ from each cluster, is a node that has some small uncertainty in its x coordinate and zero uncertainty in

all other coordinates. In any instance of the r0-neighbourhood graph for this hypothetical data, the middle

node has a 50% chance of being connected to cluster A and a 50% chance of being connected to cluster

B, but it can never be connected to both clusters simultaneously (the two events are mutually exclusive).

Hence, this node would be connected to both clusters with roughly equal strength in the expected graph even

though clustersA andB have zero probability of ever being connected to each other. A clustering algorithm

might then merge clusters A and B into a single cluster even though they always belong to two separate

connected components. Deleting edges that have existence probability < 0.5 would not remove either of

the problematic edges (though deleting edges that have existence probability ≤ 0.5 would remove both of

the problematic edges in this theoretical example).

Setting the threshold existence probability equal to 0.75, as I did in StormGraph, guarantees that any

pair of edges that are retained in the graph have a probability of coexistence of at least 0.5 regardless of

the dependence structure of edge existence. In other words, any pair of edges retained in the uncertain

graph would exist as a pair in a majority of realizations of the graph. This clearly fixes the problem in the

hypothetical scenario above. Moreover, if the hypothetical scenario is modified by changing δ to satisfy

−r0/2 < δ < 0, then clusters A and B would only stand a chance of being merged by a clustering

algorithm if they are at least as probable to be connected via the middle node as they are to be disconnected.

My heuristic justification for pruning the graph using an edge existence probability threshold of 0.75 is

conceptually (but not formally) related to the idea of reliable clusters, which are clusters that are unlikely

to be disconnected in different realizations of an uncertain graph [251]. An open question that remains is

whether the edge existence probabilities should still be factored into the edge weights after edges that do

not meet the existence probability threshold have been deleted. Instead of continuing to use the estimated
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expected values of node similarities over all realizations of the graph in the Monte Carlo simulations, as I

did in StormGraph, perhaps it would be better to condition the expectation on existence of the edge. This

would be an interesting question to explore further.

Lastly in this discussion of graph uncertainty, note that the determination of the value of r0 to use for

construction of the final graph in StormGraph is coupled to the edge existence probabilities. It is determined

automatically using my implementation of the elbow method, which in this instance is based on the connec-

tivity of the graph after edge pruning. More to the point, that value of r0 is chosen based on the connectivity

of the graph that will actually be used for clustering. If clustering were instead performed using a ‘possible

worlds’ model for the uncertain graph, then the logic for using the same heuristic to set r0 would be debat-

able. An alteration to the elbow method for choosing r0 that could be more appropriate for clustering using

a ‘possible worlds’ model would be to consider the expected number of components in a random realization

of the graph instead of considering the number of components in the average graph after pruning edges.

This would be more computationally demanding, though. How to theoretically choose the value of r0 when

using r0-neighbourhood graphs for data clustering is an open problem even for deterministic data, and the

addition of uncertainty to the data brings more complexity to this problem. Thus, more research is needed

to identify the best methods for setting r0 to construct r0-neighbourhood graphs from uncertain data. I have

suggested some methods herein, but the problem will likely remain unsolved for a long time.

6.3 Final thoughts on StormGraph
Although some decisions made during the development of StormGraph were based on heuristics, and al-

though there is scope for theoretical improvements to the treatment of uncertainties in StormGraph, what

matters most is whether StormGraph works well for its intended tasks. Hence, the most important results

in Chapter 2 are that StormGraph produced better results for realistic simulated uncertain SMLM data than

three of the leading clustering algorithms for SMLM data. Nevertheless, StormGraph could be improved

from a practical perspective. The current implementation of StormGraph only enables rectangular regions

of interest (ROIs) to be defined for analysis. The requirement for ROIs to be contained entirely within the

boundary of an imaged cell makes rectangular ROIs somewhat restrictive for small cells such as B cells and

T cells because a significant portion of the imaged cell area will not be enclosed by a single ROI. In partic-

ular, the peripheral areas of an imaged cell will be difficult to enclose by a rectangular ROI. As suggested

by a reviewer of the StormGraph manuscript submitted to a scientific journal, StormGraph could be updated

to enable ROIs to be defined more flexibly, for example using freely drawn polygonal ROIs or ellipses.

This is a planned future update for the StormGraph software for an undergraduate student research assistant

(USRA) to work on.

Another limitation of StormGraph as described in Chapter 2 is that it uses a uniformly random distri-

bution of points in x and y as the null distribution, from which the node-degree threshold that distinguishes

clustered nodes from unclustered nodes is determined. In real SMLM data, however, the background den-

sity of localizations can be spatially inhomogeneous. A uniformly random distribution of points in x and
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y may therefore not always be suitable for the null distribution. To address this limitation, I have already

developed an updated version of StormGraph that allows the null distribution in two dimensions to alter-

natively be generated by blurring the original data by randomly redrawing each data point from a uniform

distribution on a disk centred on the original observed localization position. The radius of the disk must

be specified by the user, and the edges of the data are handled using reflecting boundary conditions. This

blurring is analogous to blurring a conventional grey-scale image composed of pixels by convolving it with

a uniform circular kernel filter. By this method, StormGraph generates the null distribution of localizations

locally, where the radius of the blurring disk sets the scale that defines locality. A completely uniformly

random null distribution in two dimensions is the limit of the distribution generated by the blurring method

as the radius of the blurring disk approaches infinity. There is a slight distinction between this theoretical

limit and the uniformly random null distribution used in the first version of StormGraph: the limit of the

blurring process results in a Poisson distribution of points in the ROI, whereas the original uniform null

distribution employed by StormGraph is actually a binomial distribution because the number of points is

fixed. The updated version of StormGraph has not yet been rigorously tested, however. Comprehensive

testing and further development of the updated version of StormGraph are planned work for a future USRA.

One problem of a uniformly random null distribution that the updated version of StormGraph does not

address, however, is that even a completely uniformly random distribution of molecules does not actually

yield a completely uniformly random distribution of localizations in SMLM. This is due to the phenomenon

of single biological molecules individually corresponding to multiple SMLM localizations, which was dis-

cussed in Chapter 2. Unfortunately, this is a problem that will be difficult to address computationally with-

out prior information about the distribution of the number of localizations per molecule. This information

is available for some modes of SMLM but not dSTORM, the mode of SMLM that was used in Chapter 2.

For now, StormGraph only tests for the probability that a cluster of localizations originated from the same

molecule using a chi-squared statistic and offers to remove low-confidence clusters from downstream anal-

yses. This is another component of StormGraph that could easily be translated to other SMLM clustering

algorithms. For example, this approach could be applied to clusters output by ClusterViSu or DBSCAN. I

once presented StormGraph to Nobel Laureate Dr. Eric Betzig, who shared the 2014 Nobel Prize in Chem-

istry for the development of super-resolution fluorescence microscopy, and he expressed agreement with

this simple approach that I adopted in StormGraph to deal with the possibility that some localization clus-

ters only represent individual molecules. In contrast, Dr. Betzig was opposed to approaches that attempt to

actually correct the number and positions of SMLM localizations. More experimental wet-lab research is

needed to better understand the relationship between molecules and localizations in SMLM.

6.4 Towards a combined experimental and computational analysis pipeline
to inform personalized medicine for heterogeneous tumours

The rest of this dissertation (Chapters 3–5) constituted a separate project, which focused on HD data. The

work presented in Chapters 3–5 all revolved around the mass cytometry (CyTOF) experiments of DLBCL
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cell lines presented in Chapter 4. While the primary application of StormGraph is rooted in basic cell-

biology science research, the consequences of which may eventually have clinical impacts, my DLBCL

CyTOF project was clinically motivated from the start. Tumours of any cancer type are usually hetero-

geneous. Even overlooking the heterogeneity of cell types — tumours contain various cell types such as

stromal and normal immune cells in addition to the cancer cells — not all of the cancer cells in a tumour

look the same. Some can have different mutations to others, and cells that are genomically identical can still

express different quantities of important proteins or have different patterns of signalling pathway activity.

Heterogeneity like this within a tumour (i.e. intratumoural heterogeneity) is a main cause of tumours becom-

ing resistant to therapy because the therapy applies an evolutionary pressure that selects for cells that are

resistant by way of their mutations, protein expression levels, or patterns of signalling activity. If the various

cancer-cell phenotypes present within a biopsy sample from a tumour can be identified by some form of

quantitative analysis, then a personalized combination therapy could be intelligently designed to minimize

the likelihood that any of the cancer cells have resistance to the therapy.

Based on the above rationale, I had the idea to attempt to develop a combined experimental and compu-

tational pipeline that would first use CyTOF to analyze protein expression and signalling pathway activity

in single cancer cells from a tumour sample, then use unsupervised computational clustering to identify the

various cancer-cell phenotypes present in the sample, and then perform deeper analysis of each cluster to

identify key proteins that could be targeted therapeutically to kill, or at least prevent growth of, each cluster

of cancer cells. The deeper analysis of a cluster would include network inference in order to infer the likely

wiring of its intracellular signalling network and graph-theoretic analysis to identify central signalling nodes

in the network that could represent good therapeutic targets. Because the CyTOF experiments would have

to be designed for a specific cancer based on prior knowledge about its molecular biology, I chose to use

DLBCL as a model to test the feasibility of my idea. Before embarking on such a project, I presented my

idea to Dr. Randy Gascoyne and Dr. Andrew Weng, two leading clinical DLBCL researchers based at the

British Columbia Cancer Research Centre, in order to determine whether it would have merit from a clinical

perspective, and they indicated that it would. In the end, however, a project to develop and establish such a

pipeline from conception all the way through to completion and application to clinical biopsy samples was

too ambitious for one dissertation (especially in addition to the development of StormGraph in Chapter 2,

which started as a summer project for a USRA who I supervised but grew into something much more).

Nevertheless, this dissertation tackled the key first steps on both the experimental and computational sides

of the project.

On the experimental side, the necessary first step was to design, develop, and test a suitable panel of

mass-tag–antibody conjugates for analysis of protein expression and signalling pathway activity in DLBCL

cells by CyTOF. The successful development of a CyTOF panel that can assess the activity, based on

phospho-proteins, of key molecular signalling pathways and the total expression levels of some impor-

tant cell-surface and intracellular proteins in B cells was a major outcome of the work undertaken for this

dissertation. The work conducted in establishing this CyTOF panel provides essential groundwork for other

researchers who may wish to use some or all of the same antibodies in their own CyTOF experiments. The
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experimental side of the project also involved designing and performing CyTOF experiments that could

serve as models to objectively test the ability of the CyTOF panel and computational methods in combina-

tion to segregate heterogeneous populations of DLBCL cells into biologically meaningful clusters. To this

end, I designed CyTOF experiments that mixed palladium-barcoded cells from DLBCL cell lines in resting

or stimulating conditions to create heterogeneous cell mixtures. Each barcode represented one ‘ground-

truth’ cluster of cells, so the barcodes provide an objective reference that can be used to quantitatively assess

the performance of any computational clustering algorithm. Hence, the data generated by these experiments

should provide a valuable resource for future developers of clustering algorithms to quantitatively test their

methods. Furthermore, the CyTOF experiments enabled me to characterize an array of DLBCL cell lines

in Chapter 4 based on their protein expression levels and signalling pathway activity. This characterization

will be valuable for other B-cell and DLBCL researchers performing in-vitro studies, as it can help them

choose cell lines for their own studies based on desired characteristics.

On the computational side of the project, the necessary first step was to decide on a methodology for

the clustering of the eventual CyTOF data. I did not necessarily set out to develop a new clustering method

for CyTOF data; I was prepared to use existing clustering methods such as FlowSOM [101] or PhenoGraph

[1], the two leading methods for CyTOF data. FlowSOM is the recommended method for clustering CyTOF

data, but users are advised to choose the number of clusters, a user-defined input parameter, conservatively

and then interrogate the FlowSOM results manually to identify different cell types [100]. FlowSOM offers

visualization of its results for interrogation using force-directed layout of a minimum spanning tree (a graph

that connects all nodes in one connected component using the minimum possible total sum of all edge

lengths) with each cluster represented by one node and edge lengths presumably based on the distances

between cluster centroids. However, this discards a lot of information about the locality of each cluster, and

its weak connectivity is generally not a good representation of clusters: a single cluster can appear as one

long chain of nodes, and the deletion of any edge in a minimum spanning tree will necessarily disconnect

one part of the graph from another even if the edge is deleted from within a cluster. The minimum spanning

tree is therefore a useful tool for visual exploration of CyTOF data, especially when the cell types present in

the data are known as is typical of immunophenotyping studies, but it may be of limited use for any further

unsupervised clustering intended to reveal novel cell types.

PhenoGraph was the original inspiration behind all uses of graph-based clustering in this dissertation. It

uses a kNN graph, which is refined using the Jaccard similarity coefficient [58] of the neighbourhoods of

two cells to weight the edge between them, and community detection by the Louvain method [2] to perform

clustering. In contrast to FlowSOM, the number of clusters output by PhenoGraph cannot be specified by the

user but depends heavily on the user-specified value of k and on the resolution limit of the Louvain method.

PhenoGraph does not offer its own visualization of the data, so its clustering results are visualized using

other dimensionality reduction methods such as t-SNE [1, 94, 131]. Overall, PhenoGraph combined with

visualization by t-SNE is good for exploratory analysis of CyTOF data, but the dependence of PhenoGraph

on k and of the t-SNE map on hyperparameters, most notably the perplexity parameter, make this approach

highly subjective and, added to the resolution limit of the Louvain method, hinder its utility for identifying
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novel cell phenotypes that may not be obvious in heterogeneous data. I therefore adopted PhenoGraph as a

starting point for the clustering methodology in this dissertation and sought to improve upon it.

My first move to improve upon PhenoGraph was to replace its use of the Louvain method with the

multi-level Infomap algorithm [4], which traded the problematic resolution limit of the Louvain method for

a hierarchical clustering. This preceded even my conception of StormGraph, and the improvement was such

that the use of Multi-level Infomap permeated the methods of this dissertation, as the reader is by now surely

aware. However, having a hierarchical clustering brings even more subjectivity to the clustering results in the

context of identifying novel clusters of cells in heterogeneous CyTOF data: a user of PhenoGraph+Infomap

would now have to choose a level from the output cluster hierarchy in addition to choosing a value for the

input parameter k. The algorithm that I proposed to choose clusters from a cluster hierarchy in StormGraph

would not be applicable here (recall the only restriction to its general use outside of StormGraph) because

the cluster hierarchy is derived from a kNN graph. However, if the graph used to represent the data and a

suitable visualization of the data could be generated side-by-side without parameter input by the user, then

the visualization could be used to guide manual selection of relevant clusters from the limited number of

levels of the cluster hierarchy, and the user would have no other subjective decisions to make. I was therefore

motivated to formulate a parameter-free method to construct a graph from the data, and the method would

have to yield sparse graphs in order to be useful for subsequent clustering and visualization.

Parameter-free construction of a graph from data points requires a parameter-free measure of similar-

ity between nodes of the graph. However, if the nodes are to represent individual data points, and some

continuous measure of distance between two nodes is the only information available with which to define

their similarity, then some form of parameter or arbitrary threshold is obligatory for construction of a sparse

graph. At best, this could be set automatically from the data using heuristics based on graph connectivity,

similarly to the setting of r0 in StormGraph using the elbow method, but there will always be some degree

of inherent arbitrariness. Moreover, because the heuristics for setting r0 for an r0-neighbourhood graph or

k for a kNN graph are based on a global view of the data, the addition of new data points far from existing

data points can change the similarities of existing data points. This is not necessarily a bad thing; what

constitutes a cluster often depends on perspective: a cluster no longer looks like a cluster if you zoom in so

far that it fills your entire field of view. However, it is not necessarily desirable either. In fact, this could be

seen as a limitation of my heuristic methods for semi-automatically setting parameters in StormGraph. In

StormGraph, clusters depend on the entire ROI, so changing the boundary of an ROI can alter the clustering

results. It is therefore assumed that the distribution of localizations in an ROI is representative also of the re-

gions outside the ROI so that the exact placement of the ROI boundary is not too important. For CyTOF data

consisting only of the cancer cells from a single tumour biopsy (i.e. not including non-cancerous immune

cells, stromal cells, etc. that were also present in the tumour), we do not know in advance how homogeneous

or heterogeneous the data will be. It would therefore be appealing to have a node-similarity measure that

does not depend on the global distribution of the data. This would prevent artificial creation of clusters in

homogeneous data, which would probably occur using heuristics to construct a neighbourhood graph.
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The above challenges led me to adopt the idea of graph nodes representing clusters of data points, as they

do in the minimum spanning tree used for visualization by FlowSOM, instead of representing individual data

points. Having nodes represent bounded distributions of data points affords much more information than

just a distance between two points for defining a measure of similarity between nodes. This paved the way

for my invention of Alpha Shape TRIangulation in loCal Subspaces (ASTRICS) in Chapter 3 as a measure

of similarity between two finite point sets based on their geometry in two- and three-dimensional subspaces,

which are computed locally based on variances within and between the two point sets. Because ASTRICS is

based on geometry in two or three dimensions, it can be easily visualized and is therefore easy to understand.

More importantly, it achieved my goal of formulating a parameter-free method to construct a graph from

data, as long as the data can first be summarized by a set of fine-grained clusters.

Building upon ASTRICS, in Chapter 3, I proposed a general multi-stage clustering strategy whereby

fine-grained “seed clusters” are obtained from a conventional clustering algorithm such as K-means or a

self-organizing map and then ASTRICS is used to generate a graph in which each node represents one of

the seed clusters. A final clustering can then be obtained by applying a community detection algorithm,

which was either the Louvain method or Multi-level Infomap in this dissertation, to the ASTRICS similarity

graph. Like the minimum spanning tree generated by FlowSOM, the ASTRICS similarity graph can also be

visualized using force-directed layout. However, compared to the minimum spanning tree, the ASTRICS

similarity graph discards less information about the clusters represented by graph nodes and it has stronger

connectivity, which enables a better representation of intra- and inter-cluster connectivity.

The multi-stage clustering strategy built around ASTRICS does not completely eliminate user-defined

parameters from conversion of the data to a graph, as had been the original goal, because at least one

parameter is needed for the initial seed clustering. For example, the number of clusters, K, would have to be

specified by the user in order to obtain the fine-grained seed clusters using K-means. However, the strategy

using ASTRICS reduces the importance of choosing input parameter values, lessening the burden on the

user. Instead of choosing the final number of clusters, or setting an input parameter that directly controls

the topology of a graph and thus significantly affects the output clusters, the user only has to choose the

resolution at which the data will be represented by a graph and visualized. Whatever choice the user makes

at this stage, ASTRICS then automatically determines the topology of the graph representation of the data

at the chosen resolution. Further clustering can then be performed without the need for other parameters

to be specified by the user (although community detection algorithms, including Infomap, usually have

hyperparameters that can be adjusted if the user demands fine control of the algorithm instead of using

default settings). Furthermore, the ASTRICS similarity of a pair of clusters is independent of all other data

points not belonging to the cluster pair and therefore does not depend on a global view of the data. This

overcomes the limitation of using heuristics based on global connectivity to set parameters that determine

the topology of the graph.

In Chapter 3, I demonstrated that a multi-stage clustering strategy utilizing ASTRICS works well for

publicly available CyTOF data from an immunophenotyping experiment. Nevertheless, my proposed gen-

eral strategy should not be regarded as a competitor to FlowSOM but rather a complementary approach.
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Indeed, FlowSOM can be used for the fine-grained clustering step in my proposed strategy. The specific

multi-stage clustering pipeline that I demonstrated in Chapter 3 used either K-means or FlowSOM for the

initial fine-grained “seed clustering” and the Louvain method to obtain clusters from the ASTRICS simi-

larity graph. In Chapter 4, I proceeded to apply my clustering and visualization strategy, specifically using

FlowSOM for the seed clustering followed by ASTRICS and then Multi-level Infomap for the final cluster-

ing, to my CyTOF data for mixtures of DLBCL cell lines. This approach was able to accurately separate

different DLBCL cell lines in the mixture data. Furthermore, when applied to the CyTOF data for a mix-

ture of two DLBCL cell lines (HBL-1 and U2932) that individually displayed heterogeneity, the clustering

approach was not only able to separate the two cell lines but was also able to detect a known subclone in

one of the cell lines (U2932) and an elevated signalling state in the other (HBL-1). The results in Chapter 4

therefore provide proof of principle that, when combined, my CyTOF panel and clustering methodology do

have the potential to detect biologically meaningful clusters of cells in heterogeneous populations of B cells.

Nevertheless, it should be noted that the CyTOF panel in Chapter 4 was developed, tested, and optimized

using cell lines only. Clinical samples are much more difficult to work with, and their quality can degrade

during the course of handling and processing to store and prepare them for use in CyTOF experiments. Sam-

ple degradation can particularly affect the ability to detect phosphorylated forms of proteins by methods such

as CyTOF. This is a particular concern for the CyTOF panel detailed in Chapter 4 because 19 of the antibod-

ies in the panel were specific for phospho-proteins. The CyTOF panel will therefore need to be validated

and optimized for clinical DLBCL samples before its full potential to analyze clinical DLBCL samples can

be realized. It is quite likely that some mass-tag–antibody conjugates in the panel will not work in clinical

samples and may need to be substituted. In such cases, swapping mass tags conjugated to some antibodies or

using different antibody clones targeting the same epitopes may yield improvements. However, it is possible

that some target antigens will simply not be amenable to being detected in clinical samples. In this event,

the corresponding antibodies in the panel should be dropped from the panel completely to free CyTOF mass

channels for other antigens to be detected instead. After all, many other (phospho-)proteins that were not

targeted for detection by my CyTOF panel would still be interesting to investigate in DLBCL. Some of the

antibodies in the panel, such as anti–phosph-c-Jun and anti–phospho-NF-κB p65, already did not work well

or were otherwise not very informative for cell lines. These antibodies have even less chance of providing

useful information for clinical samples. Inadequate detection of phospho-NF-κB p65 by CyTOF was a par-

ticular frustration throughout the project because constitutive activation of NF-κB is central to the activated

B-cell like (ABC) subtype of DLBCL. With this in mind, application of my CyTOF panel to investigate

intracellular signalling in clinical DLBCL samples should be performed alongside complementary biolog-

ical assays to measure NF-κB activity. Nonetheless, with some modifications, my CyTOF panel has the

potential to be useful for analyzing intracellular signalling and related heterogeneity in B-cell samples from

DLBCL patients. This could in turn assist the quest to improve therapeutic options for DLBCL patients.

Looking to the downstream computational aspects of the original project idea that were not completed

as part of this dissertation, the plan was to leverage network inference methods and graph theory to identify

central signalling molecules in each cluster of DLBCL cells identified by the clustering step in the analysis
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pipeline. In theory, one or more network inference methods could be applied to the single-cell phospho-

CyTOF data for each cluster of cells in order to infer and quantify the likely signalling links between the

signalling molecules detected by CyTOF. Measures of node centrality from graph theory could then be used

to identify central signalling molecules in the network. The hypothesis would be that the identified cen-

tral signalling nodes would be good candidates for therapeutic targeting. Following on from the CyTOF

experiments using DLBCL cell lines in Chapter 4, functional studies using the same cell lines could be per-

formed in vitro to test this hypothesis. Specifically, proliferation assays could be performed in which central

signalling molecules identified from the data presented in Chapter 4 for each cell line could be targeted,

where possible, using small molecule inhibitors and the effect on cell proliferation measured. Even if the

signalling-node centrality analysis approach does not prove to be successful, other analyses of the cell clus-

ters, including more simplistic approaches, could still provide candidate therapeutic targets. For example,

my CyTOF analysis in Chapter 4 revealed that the two distinct subclones of the DLBCL cell line U2932 had

different patterns of Akt signalling activity. This suggests that targeted inhibition of Akt signalling could

be an effective strategy to kill or slow proliferation of one of the U2932 subclones, a hypothesis that could

be easily tested in vitro. However, CyTOF revealed that the ABC-DLBCL cell line OCI-Ly3 had greater

phosphorylation of molecules in the B-cell antigen receptor (BCR) signalling pathway than any other cell

line in the study, which is consistent with published western blots, but this cell line is known to be in-

sensitive to inhibition of at least two of those molecules. Thus, identification of a highly active signalling

molecule is not sufficient to predict that cells will be sensitive to targeted inhibition of that molecule. A

network-based approach that takes output signals of different pathways into consideration may therefore be

more effective. Regardless of the specific approach, if some of the hypotheses are confirmed by functional

studies and the CyTOF panel can be validated for application to clinical DLBCL samples, then my proposed

CyTOF analysis pipeline could have potential to inform the design of personalized combination therapies for

DLBCL patients. Nevertheless, an integrated approach that combines CyTOF with other modalities, such

as genome/exome sequencing to identify mutations, would likely yield better prediction of optimal targeted

therapies.

The network-based approach described above to identify candidate signalling molecules for therapeutic

targeting relies on an ability to reliably infer the underlying signalling network from the phospho-CyTOF

data. Just as the accuracy of my clustering methodology needed to be tested on a model system for intratu-

moural heterogeneity that contained objectively defined ground-truth clusters of cells, any network inference

method would need to be validated on a model system in which the underlying ground-truth signalling net-

work is known. Simulated data would provide the best option for a first model on which to test network

inference methods. Du et al. [256] constructed a detailed kinetic mathematical model of chronic BCR sig-

nalling in ABC DLBCL. Their model included numerous molecules that can be detected by CyTOF as well

as molecules that would not be possible to detect by CyTOF using currently available antibodies. Building

on work that I had already started and under my supervision and direction, an undergraduate student (Yiwen

Xu) voluntarily worked with me to simulate CyTOF data using the model of chronic BCR signalling in ABC

DLBCL with added noise. She then began using the simulated data to test whether MIDER [257], a network
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inference method based on mutual information and entropy, could reconstruct the underlying signalling net-

work for the signalling nodes that could be observed by CyTOF. Importantly, the simulated CyTOF data

had hidden signalling nodes to reflect the fact that not all of the signalling molecules in the model could be

observed by CyTOF. I was interested in assessing how accurately the simplified signalling network for only

the observable signalling molecules could be inferred despite the hidden information. This work was not

completed and remains undocumented, but continuation of this work offers an exciting direction for future

research. Network inference methods are commonly used to infer biological networks, for example gene

regulatory networks as well as protein signalling networks, so it would be important to objectively assess

their performance using well-defined but realistic models of biological networks in the manner of the work

that I started.

6.5 Remarks on signal spillover in CyTOF and the need for compensation
Chapter 5 of this dissertation addressed an unavoidable property of CyTOF that would otherwise cause prob-

lems for interpretation of the data presented in Chapter 4. In CyTOF, the signals from mass-tag–antibody

conjugates in a CyTOF panel are recorded in mass channels corresponding to the atomic masses of the mass

tags. However, some of the signal from each mass tag spills into other mass channels. The three sources

of this signal spillover are described in Chapter 5. If spillover signal in a mass channel is significant rel-

ative to the true signal in that channel and is not corrected, then this can result in overestimation of the

abundance of an antigen and therefore lead to false interpretation of the data. Signal spillover would be

especially problematic for any attempt to infer signalling networks from phospho-CyTOF data because any

spillover signal is highly correlated with its source signal. Consequently, the quantities of two uncorrelated

phospho-proteins could falsely appear to be positively correlated, which would likely cause incorrect infer-

ence of an edge between them in the inferred signalling network. Hence, compensation (i.e. correction) for

signal spillover is essential for CyTOF experiments designed to study signalling in cells, such as the CyTOF

experiments in Chapter 4.

Many published CyTOF studies did not correct for the artifacts of signal spillover. Instead, they relied

on carefully designing a CyTOF panel so that the spillover signal in any mass channel would always be

negligible compared to the true signal whenever the signal in that mass channel mattered for analysis. In

immunophenotyping CyTOF experiments, the CyTOF panel usually detects many antigens that are mutually

exclusive in terms of being expressed by particular cell types. For example, a CyTOF panel could include

antibodies to detect antigens that are only expressed by B cells as well as antigens that are only expressed

by T cells. In such CyTOF experiments, the panel of mass-tag–antibody conjugates can be designed so that

signal spillover predominantly occurs between channels detecting mutually exclusive antigens. It typically

does not matter if signal from an antigen restricted to B cells spills into a channel measuring signal from

an antigen restricted to T cells or vice versa. This is because the researcher will only ever be interested

in one of the two antigens in any single cell. Once a cell has been identified as being a B cell, any signal

appearing to come from the T-cell–restricted antigen can be assumed to be caused by signal spillover and
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ignored. I carefully designed my CyTOF panel to minimize the consequences of signal spillover. For

example, I designed my CyTOF panel so that signal from cell-surface proteins that were likely to be highly

expressed by many cells would primarily spill into the mass channels of other cell-surface proteins rather

than phospho-proteins, which could have very low true signal. I did not have the luxury of mutually exclusive

antigens, however, as all antigens were of interest in every cell. Without correction for signal spillover, the

CyTOF data from my experiments could result in incorrect conclusions, especially about signalling activity.

I therefore developed the combined experimental and computational compensation method described in

Chapter 5 to correct for CyTOF signal spillover.

Another CyTOF compensation method has now been published [248], but this was not available when

I first developed my method. As described in Chapter 5, my method has both practical advantages and

disadvantages compared to the published method. Either method would have been suitable to compensate for

signal spillover in the CyTOF experiments in Chapter 4. It would not have been practical or cost effective to

acquire the CyTOF data needed for both compensation methods, so one of the two methods had to be chosen

for my experiments. In discussion with my project supervisors, my compensation method was chosen

for the experiments in Chapter 4. One particular practical advantage of my method that influenced this

decision is that my method requires just three CyTOF samples dedicated to compensation, which is fewer

than the dedicated number of samples required for the published method. Although my method required

more cells and more reagents overall for the samples dedicated to compensation, the three samples could

be barcoded then pooled with the actual experimental samples and analyzed concurrently when running

CyTOF. This ensured that any technical variability over the course of a CyTOF run would be the same for

the samples dedicated to compensation as for the actual experimental samples. In contrast, the published

method would have required too many dedicated samples to be able to barcode and pool them all with

the actual experimental samples. With my compensation method and the published compensation method,

researchers performing CyTOF experiments in the future will have two methods available to choose from

to compensate for CyTOF signal spillover. Researchers will be able to choose a compensation method that

best suits their needs by weighing up the advantages and disadvantages of both methods.

6.6 Potential future applications of ASTRICS
The concluding chapter of this dissertation would not be complete without discussion of the biological

results presented within, but let us first momentarily return to discussion about ASTRICS. Like Storm-

Graph and its component methods, ASTRICS and my proposed multi-stage clustering methodology using

ASTRICS to generate a graph at an intermediate stage can have applications in other fields besides the ap-

plication that motivated their development. Although their development was motivated by a goal to reduce

subjective user influence on unsupervised clustering and visualization of heterogeneous CyTOF data, they

did not involve any assumptions about the data that would restrict them to CyTOF data. They are there-

fore applicable to HD data more generally. To demonstrate this fact, in Chapter 3, I applied a multi-stage

clustering strategy using ASTRICS to automatically generate a graph, which was then used as input to the

224



Louvain method, from an initial fine-grained clustering by K-means to digital images of handwritten digits

from the MNIST database [108] and to vectorized text documents from the 20 Newsgroups dataset [109],

which represent two datasets commonly used to test clustering and dimensionality reduction algorithms.

Altogether, such a clustering strategy could potentially be useful for any task that involves clustering HD

data that can be represented by numeric vectors.

A data type that is especially relevant in biomedical sciences and would be interesting to test ASTRICS

on would be gene expression data. This could be from bulk RNA-seq or microarray experiments, where

each data vector represents, for example, one cancer patient, or from single-cell RNA-seq experiments,

where each data vector represents mRNA content from a single cell similarly to how CyTOF data represents

protein content from single cells. Conceptually, gene expression data is more like CyTOF data than any

other data type in this dissertation, but it has thousands of dimensions, making it closer in dimensionality

to the vectorized 20 Newsgroups data. It would therefore be interesting to determine whether my proposed

multi-stage clustering methodology utilizing ASTRICS performs similarly well for gene expression data

as for CyTOF data or whether it is more challenged by the dimensionality as for the 20 Newsgroups data.

Like CyTOF, single-cell RNA-seq is frequently combined with clustering to analyze heterogeneity within

tumours. ASTRICS could potentially, therefore, be as useful for analyzing single-cell RNA-seq data as it

is for analyzing CyTOF data. Meanwhile, clustering of bulk gene expression data is used to identify and

define molecular subtypes of cancers, but it can be challenging to choose the best number of subtypes.

Classification of the molecular subtype of a cancer patient by gene expression profiling often determines

their course of therapy, therefore definition of subtypes is clinically important. Hence, ASTRICS could

be of great clinical value for clustering tasks to identify cancer subtypes by alleviating the challenge of

determining the number of subtypes.

It is worth noting that, as a similarity measure, ASTRICS has utility beyond clustering. In this disser-

tation, ASTRICS was only used as an intermediate step to generate a graph between two clustering steps.

Nevertheless, ASTRICS could be used in isolation to compute similarities between groups of data points

(e.g. between groups of cancer patients that have undergone gene expression profiling). For example, if

molecular subtypes have been defined for different cancers independently based on gene expression data,

ASTRICS could be used to compute similarities between subtypes of different cancers. This could be useful

to understand the biology and clinical relevance of a novel subtype that has not been clinically character-

ized for a particular cancer type by associating it with clinically understood subtypes of other cancers. If a

novel cancer subtype has no precision therapies approved for its treatment, then its similarity to subtypes in

other cancers that do have approved precision therapies could be used to prioritize precision therapies for

pre-clinical and clinical trials. In fact, I anticipate that ASTRICS will be an even better measure of simi-

larity between sets of data points that have overlapping distributions than it is for non-overlapping clusters.

Furthermore, ASTRI, the alpha shape triangulation similarity scoring component of ASTRICS without the

local dimensionality reduction step, can be applied to two- or three-dimensional spatial point pattern data

such as SMLM data. Therefore, among many possibilities, ASTRI could be useful for spatial clustering

problems and for pattern recognition problems in computer vision. However, there is no obvious way to in-
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corporate uncertainties into ASTRI other than to perform Monte Carlo resampling and repeated computation

of the ASTRI similarity, which would be computationally expensive. Nonetheless, ASTRI and ASTRICS

could have applicability for similarity scoring problems and clustering problems in a wide variety of fields

involving low- or high-dimensional data.

6.7 Comments on new biological findings
Finally, this dissertation has contributed new findings to biology about B cells and DLBCL. In Chapter 2,

SMLM and StormGraph applied in combination to BCRs on the surface of B cells yielded new insights

into their spatial distribution on resting and stimulated normal B cells and on ABC-DLBCL cells, which

are cancer cells that resemble activated B cells. BCRs were found to form larger clusters after treatment

(i.e. stimulation) of resting normal B cells from mice with an antibody that can bind to two BCRs simulta-

neously, which was expected, but the distribution of cluster areas was very heterogeneous with many BCRs

still residing in small clusters. This finding adds to our understanding of how antigens alter the distribution

of BCRs on the surface of B cells, an important first step in their immunological activation. BCRs on the

surface of ABC-DLBCL cells from two human cell lines were found to reside in clusters of various sizes,

with large numbers of small clusters and small numbers of very large clusters. The distribution of BCR

cluster areas on ABC-DLBCL cells resembled the heterogeneous distribution observed for stimulated nor-

mal murine B cells. ABC-DLBCL cells were previously known to display large clusters of B cells, which

may play a crucial role in the lymphomagenesis of ABC DLBCL, but the overall distribution of BCRs on

ABC-DLBCL cells was not known. The results in Chapter 2 thus show for the first time that many BCRs

on ABC-DLBCL cells reside in small clusters and that this may also be a feature of activated normal B

cells. An important caveat of the SMLM data in Chapter 2 to bear in mind is that it provided only static

information; nothing can be inferred from the data about the dynamics of BCR movement on the cell sur-

face. Future studies should be conducted to investigate whether the large BCR clusters on ABC-DLBCL

cells and on activated normal B cells have a relatively static composition of BCRs or whether they are in a

perpetual state of flux with BCRs coming and going. A better understanding of the dynamics underpinning

the formation of large BCR clusters on ABC-DLBCL cells could provide valuable insights that could be

used to investigate ways to therapeutically block spontaneous BCR clustering and potentially reverse the

cancerous phenotype of ABC-DLBCL cells.

Chapter 4 presented results of a much more in-depth in-vitro study of the biology of DLBCL cell lines.

Whereas the results pertaining to B cells in Chapter 2 were focused exclusively on the biophysics of BCRs,

Chapter 4 presented results of investigating the quantities of tens of proteins involved in BCR signalling

in DLBCL cells using CyTOF. A valuable outcome of the study was thorough characterization of a variety

of DLBCL cell lines of different subtypes in terms of protein expression and signalling activity measured

by CyTOF, plus mutation status of CARD11, a central adaptor molecule in the NF-κB signalling pathway.

This characterization can be used by other B-cell and DLBCL researchers to choose B-lymphoma cell lines

that have desired characteristics for their own in-vitro studies. A cell line that had particularly interesting
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characteristics was NU-DUL-1. NU-DUL-1 belongs to the ABC DLBCL subtype, but CyTOF revealed that

it is in many ways more similar to cell lines belonging to the germinal-centre B-cell like (GCB) DLBCL

subtype than to other ABC-DLBCL cell lines. Clustering using a combination of FlowSOM, ASTRICS, and

Multi-level Infomap positioned NU-DUL-1 as being most similar to the GCB-DLBCL cell line SU-DHL-8

among all cell lines included in the study. NU-DUL-1 could therefore be a cell-line model for a DLBCL

phenotype that is either intermediate between the ABC and GCB subtypes or a hybrid of both subtypes.

Furthermore, the CyTOF study revealed a surprising amount of heterogeneity within cell lines. Het-

erogeneity within the ABC-DLBCL cell line U2932 had been reported in literature previously due to the

presence of two distinct subclones, and both subclones could be distinguished from the CyTOF data. Anal-

ysis of the CyTOF data then yielded new information about the phenotypes of the two U2932 subclones. Of

particular note, the Bcl-6–expressing subclone had higher levels of signalling involving Akt and ribosomal

protein S6, a downstream effector of Akt signalling. Functional studies would be worth performing in the

future to investigate the importance of Akt signalling in U2932 cells and whether the two subclones depend

on different signalling pathways for survival. CyTOF also revealed noteworthy signalling heterogeneity

in other cell lines. A distinct state of elevated intracellular signalling, especially involving the signalling

molecules ERK and Akt, was consistently observed as a minority subpopulation in some ABC-DLBCL cell

lines, particularly HBL-1 and OCI-Ly10. This was transient and not due to different subclones, at least in

HBL-1, so it might indicate bistable signalling dynamics in those cell lines. To what extent the elevated

signalling state contributes to the overall phenotype and proliferation of the cells is unknown. Therefore,

further studies should be performed to investigate the causes and consequences of bimodal ERK and Akt

signalling in ABC-DLBCL cells. Overall, heterogeneity due to transient signalling activation, transient dif-

ferentiation, or subclones was widespread in DLBCL cell lines. Other researchers should be aware of this

when working with the same cell lines.

Additionally, isolation followed by clonal expansion of single cells from one ABC-DLBCL cell line

(HBL-1) and one GCB-DLBCL cell line (Karpas-422) revealed that some clones can maintain very low

expression of CD19 or CD20, two clinically targetable antigens, without any selection pressure to down-

regulate expression. CD20 is the target of rituximab, a component of the standard chemotherapy treatment

for DLBCL, while CD19 is a target of some immunotherapies. Hence, evolutionary selection for preex-

isting cells having low expression of CD19 or CD20 is an obvious route to resistance against, respectively,

CD19- or CD20-targeting therapies for DLBCL tumours. Phosphorylation of molecules in certain signalling

pathways was also variable between clones, which could have similar implications for resistance to preci-

sion therapies targeting specific pathways. This emphasizes the need to understand heterogeneity within a

DLBCL patient in order to determine the best therapeutic regimen for the patient, which was, after all, the

original motivation for Chapter 4.

An expected source of heterogeneity within cell lines was the cell cycle. This came to fruition in the

CyTOF data and resulted in some of the most interesting findings of the study. I had designed the CyTOF

panel to be capable of distinguishing S-phase cells from cells in other cell-cycle phases and to be capable

of distinguishing actively proliferating cells from non-proliferating (G0) cells. The CyTOF panel did not
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include any specific marker for mitotic (M-phase) cells, but the CyTOF data nevertheless revealed a con-

sistent subpopulation of cells in every cell line that could be presumed to be the M-phase fraction of cells,

although this presumption needs to be tested by follow-up experiments. One of the strongest features of the

presumed M-phase cells was robust expression of the anti-apoptotic protein Bcl-2, even in cell lines that are

considered to be Bcl-2–negative (Bcl-2−). To my knowledge, no existing literature has reported that Bcl-2

expression increases in M phase in B cells. Since only DLBCL and Burkitt’s lymphoma (BL) cell lines were

included in the CyTOF study, increased Bcl-2 expression in M phase could be a feature only of these two

types of B-cell lymphoma, or it could be a feature of B-cell lymphomas in general but not normal B cells, or

it could be a feature of all B cells. Given the anti-apoptotic function of Bcl-2 and its clinically important role

in B-cell lymphomas (Bcl-2 is an abbreviation of B-cell lymphoma 2 and derives its name from the discovery

of its encoding gene due to a genetic translocation in B-cell follicular lymphoma), this observation should

be investigated further to ascertain the role that Bcl-2 plays in the progression of normal and malignant B

cells through the cell cycle. Aberrant expression or behaviour of Bcl-2 during mitosis might contribute to

the proliferation of B-lymphoma cells, in which case the responsible mechanisms should be sought as they

could offer therapeutic vulnerabilities.

Another interesting discovery that was linked to the cell cycle was substantial net loss of IκBα, a critical

negative regulator of NF-κB as well as a product NF-κB activity, in the presumed M-phase cell fraction in a

number of ABC-DLBCL cell lines but not other DLBCL or BL cell lines. Constitutive activation of NF-κB,

a transcription factor, is a hallmark of the ABC DLBCL subtype. Failure to detect a robust elevated steady-

state signal of NF-κB activity in ABC-DLBCL cell lines by CyTOF was a source of frustration throughout

the CyTOF study. However, the specificity of loss of IκBα in M phase to ABC-DLBCL cell lines suggests

that it is connected to constitutive NF-κB activity, which in turn suggests that constitutive activation of NF-

κB in ABC DLBCL is dynamic and coupled to the cell cycle. This should be investigated further as it could

lead to new discoveries about the mechanisms behind constitutive NF-κB activation in ABC DLBCL, which

could then yield new leads to pursue for improved therapeutic strategies.

6.8 Final summary
In sum, this dissertation has presented some new computational methods that can be useful for clustering

low- or high-dimensional numeric data in any field of research. These methods were motivated by clustering

problems in biology, specifically analysis of protein distributions on the surface of cells and clustering of

phenotypically similar cells from multidimensional protein expression data of cancer cells, and were applied

as such in this dissertation. Aided by these methods, the studies presented here yielded new biological

insights into B-cell biology in DLBCL and provide important information about a selection of DLBCL cell

lines that other DLBCL researchers can benefit from. Some of the results provide new directions for future

studies of DLBCL, while the methods can be translated to other research problems. This is true also for

my CyTOF panel, which can be used to study intracellular signalling in B cells more generally than just

focusing on DLBCL.
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Appendix A

Supplementary figures for Chapter 2

Figure A.1: StormGraph is robust and more accurate than ClusterViSu and DBSCAN when analyzing
simulated data with known ground-truth clusters. Caption continues . . .
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Figure A.1: (a) Accuracy of assigning data points to clusters as assessed by (i) normalized mutual informa-
tion (NMI) and (ii) mean F-measure (F1); 1 = 100% agreement with ground-truth. A total of 64 simulated
datasets were analyzed using StormGraph, ClusterViSu, and DBSCAN. StormGraph was run either with
(+) or without (-) localization uncertainties, always with α = 0.05 and MinCluSize = 5. The value of r0

used by StormGraph was determined using the heuristic method (auto.) or the kNN method with k = 10,
15 or 20. DBSCAN was implemented using 16 different selections of its two parameters, MinPts and ε, of
which the two best-performing are shown here. ClusterViSu results are only shown for the 49 datasets on
which the analysis was completed in under 2 h. Boxes show medians and interquartile ranges. The mean
F-measure results in panel (b) were additionally normalized to ClusterViSu’s performance for each of the
49 simulated datasets for which analysis by ClusterViSu was completed in under 2 h (iii). StormGraph was
consistently more accurate than ClusterViSu at assigning points to clusters, as indicated by ratios > 1. The
colours used in (a) match the colours used in Figure 2.4d–f for reference only. (b–g) Cluster quantification
errors relative to ground truth. The fractional error in the percentage of localizations assigned to clusters
(b, d, f) and the fractional error in the standard deviation, σ, of number of localizations per cluster (c, e, g)
are plotted versus the fractional error in the mean number of localizations per cluster, µ, for each of the 64
simulated ROIs for StormGraph and DBSCAN. For ClusterViSu, the errors are plotted for the 49 ROIs for
which analysis was completed in under 2 h. N.b. ±1 means ±100% error. Panels (b–c) compare quantifi-
cation errors by StormGraph using different values of k or the heuristic (auto.) method for determination
of r0. Panels (d–e) compare ClusterViSu and StormGraph with and without using localization uncertainties
for k = 15. Panels (f–g) show quantification errors by StormGraph, ClusterViSu, and DBSCAN for the
specific example simulated ROIs shown in Figure 2.4a–c. The shaded boxes show axes values for scatter
points that lie outside the displayed axes ranges. (h) Normalized mutual information (NMI) values for the
specific example simulated ROIs shown in Figure 2.4a–c.
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Figure A.2: DBSCAN is sensitive to the choice of parameters, and no single choice of parameters is
suitable for batch processing cluster analysis when localization density is variable between datasets.
Caption continues . . .
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Figure A.2: (a) Accuracy of cluster assignments by DBSCAN, using different values of the parameters
MinPts and ε, of localizations in the 64 simulated datasets used for Figure 2b. Accuracy was measured
by (i) mean F-measure and (ii) normalized mutual information (NMI). A total of 16 parameter pairs cor-
responding to four different threshold densities (0.020, 0.013, 0.010 and 0.008 nm-2) were tested. Boxes
show medians and interquartile ranges. (b) A visual demonstration that two different DBSCAN parameter
choices corresponding to the same threshold density produce very different clustering results. Top left: the
simulated dataset example used in Figure 2a; colour bar = density (nm-2); scale bar = 500 nm. Bottom left:
ground-truth clusters present in the example simulated dataset; colours distinguish distinct clusters. Right
panels: clusters identified by DBSCAN using two different parameter pairs, both of which correspond to a
threshold density of 0.013 nm-2.
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Figure A.3: StormGraph is more accurate than ClusterViSu and DBSCAN at assigning localizations
to clusters in simulated data with no overcounting of single molecules. We simulated 2D SMLM data
as described for Figure 2 in the Methods but with every molecule having exactly one localization (i.e. no
overcounting). We then performed the same algorithm testing that we performed in Figure 2. (a) Accuracy
of cluster assignments by StormGraph, DBSCAN, and ClusterViSu, measured by (i) Normalized Mutual
Information (NMI) and (ii) mean F-measure, for 38 simulated datasets in which every molecule is localized
exactly once. StormGraph was implemented either using (+) or not using (-) localization uncertainties during
clustering and with r0 set either using the heuristic method (auto.) or using k = 10, 15 or 20. For all runs
of StormGraph, α = 0.05 and MinCluSize = 5 were fixed. DBSCAN was tested using 24 different pairs of
its two user-specified parameters MinPts and ε. Shown here are the two choices of DBSCAN parameters
that yielded the best results. A minimum cluster size of 5 points was used for ClusterViSu. ClusterViSu
results are not shown for one of the 38 datasets because it failed to complete analysis in under 2 h. Boxes
show medians and interquartile ranges. (b) Same as (a), but with StormGraph’s or DBSCAN’s accuracy,
measured by (i) NMI and (ii) mean F-measure, divided by ClusterViSu’s NMI or mean F-measure for each
of the 37 simulated datasets for which ClusterViSu analysis completed in under 2 h. Ratios > 1 indicate
that StormGraph or DBSCAN was more accurate than ClusterViSu for the corresponding datasets.

250



Figure A.4: Further comparison of StormGraph to the Bayesian clustering method. Caption contin-
ues . . .
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Figure A.4: (a) Mean F-measure values measuring the performances of StormGraph and the Bayesian
method at assigning localizations to clusters compared to ground truth (mean F-measure = 1 =⇒ 100%
match). For a variety of input parameter values, StormGraph and the Bayesian method were applied to 30
simulated 1 µm × 1 µm ROIs. Each dot in the figure corresponds to one ROI. For StormGraph, localization
uncertainties were always used (+ uncertainties), r0 was set using either the kNN method or the heuristic
(auto.) method, MinCluSize was not set, and the parameters α and k were varied. The Bayesian method
was always implemented using suitable fixed ranges of R and T values and the default prior distribution
of cluster radii, which we expected to be suitable for our simulated data based on our simulation parame-
ters, and the parameters α and p were varied. (b–c) Cluster quantification errors by StormGraph and the
Bayesian method relative to ground truth for the two example simulated ROIs shown in Figure 2.6b. The
fractional error in the percentage of localizations assigned to clusters (b) and the fractional error in the stan-
dard deviation, σ, of number of localizations per cluster (c) are plotted versus the fractional error in the mean
number of localizations per cluster, µ, for each of the 30 simulated ROIs. N.b. ±1 means ±100% error, and
errors greater than 100% are shown in the shaded regions, which have different axis scales. The parameter
selections correspond to the highlighted parameters in (a–b).
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Figure A.5: Assessment of how different StormGraph settings impact cluster analysis results for
dSTORM data. Caption continues . . .
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Figure A.5: The dSTORM data for IgM-BCRs shown in Figure 2.10 was analyzed by StormGraph using
either the heuristic method (auto.) or the kNN method with k = 15 to determine the value of r0. Positional
uncertainties in dSTORM localizations were either used (+) or not used (-) during analysis by StormGraph.
(a–b) Cumulative distribution function (CDF) for (a) the mean area and (b) all areas of IgM-BCR clusters
detected by StormGraph, using different settings, in dSTORM ROIs from resting (blue) and anti-Igκ-treated
(red) ex vivo murine splenic B cells. (c–d) CDF for (c) the mean area and (d) all areas of IgM-BCR clusters
detected by StormGraph, using different settings, in dSTORM ROIs from BJAB (blue), HBL-1 (red) and
TMD8 (green) cells.

Figure A.6: Computational localization and positional uncertainty estimation of dSTORM fluores-
cence emission events. (a) A point spread function (PSF) is fit to the fluorescence intensity profile of each
SMLM blink. (b) The localization coordinates of each fluorescence emission event and their associated
uncertainties (i.e. estimated measurement errors) are determined simultaneously from the computational fit
of the PSF. (c) Distributions of the x, y and z positional uncertainties, expressed as standard deviations, in
dSTORM localizations in a representative dataset.
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Appendix B

Supplementary figures for Chapter 4

Figure B.1: Results for p-JNK and p-c-Jun from preliminary CyTOF experiments. The plot on the
left shows the baseline (solid lines) and stimulated (dashed lines) distributions of single-cell p-JNK staining
measured in BJAB (BL), Karpas-422 (GCB-DLBCL), HBL-1, and TMD8 (both ABC-DLBCL) cells using
PMA treatment for the stimulation. This experiment used only a small panel of CyTOF antibodies so that
compensation was not required. The two plots to the right show the baseline distributions of single-cell
p-JNK and p-c-Jun staining in the BL cell line BJAB, the GCB-DLBCL cell line Karpas-422, and the ABC-
DLBCL cell lines HBL-1, OCI-Ly3, OCI-Ly10, and TMD8. In this experiment, a large panel of CyTOF
antibodies was used, so the data were compensated as described for the main CyTOF experiments. Note
that both of these preliminary experiments were performed using an earlier version of the CyTOF panel in
which some antibody-metal pairings were different from the final CyTOF panel. In particular, anti–p-JNK
was conjugated to Nd148 and anti–p-c-Jun to Dy161 in these two preliminary experiments.

255



Figure B.2: Heterogeneity within cell lines: supplementary part 1. Caption continues . . .
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Figure B.2: (a) The first two plots show the distributions of single-cell surface expression of IgG in BJAB
and the GCB-DLBCL cell lines Karpas-422, Toledo, and SU-DHL-10 in the 4x4-GCB CyTOF experiment
on 2019-10-04 and in BJAB and the ABC-DLBCL cell lines HBL-1, OCI-Ly3, and TMD8 in the 4X4-ABC
CyTOF experiment on 2019-12-11. Black arrows point to cell lines that had a small but distinct IgG-high
subpopulation in both CyTOF Experiment 1 (2019-10-02) and the subsequent 4x4-GCB (2019-10-04) or
4x4-ABC (2019-12-11) CyTOF experiment. Light grey arrows point to cell lines (Karpas-422 and SU-
DHL-10) that lost their IgG-high subpopulation since the 2019-10-02 experiment. Dark grey arrow denotes
that TMD8 gained an IgG-high subpopulation by the 2019-12-11 experiment that was not detectable in the
2019-10-02 experiment. The scatter plots to the right show surface expression of CD20 versus IgG on SU-
DHL-10 in the 2019-10-02 and 2019-10-04 experiments and on TMD8 cells in the 2019-12-11 experiment.
Cells were kept in culture between experiments and the same cultures were used for all experiments. Red
ellipses highlight IgG-high subpopulations. (b) Scatter plots of the expression of various antigens versus
CD20 in Karpas-422, Toledo, BJAB, and SU-DHL-10 cells in the 4x4-GCB experiment performed on 2019-
10-04 revealed extensive heterogeneity within the cell lines that was not present in the experiment performed
two days earlier. Light colours indicate high local density of data points in a scatter plot.
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Figure B.3: Caption continues . . .
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Figure B.3: Heterogeneity within cell lines: supplementary part 2. All data in this figure are from
CyTOF Experiment 1 performed on 2019-10-02, and all data in (a) and (b) are for S-phase cells only.
(a) First row from left to right: scatter plots of the abundance of p-Akt[S473], p-MKK4, and p-CREB versus
p-ERK in TMD8 cells and p-Akt[S473] versus p-ERK, p-CREB versus p-ERK, and p-ERK versus Bcl-6
in U2932 cells (which shows that p-ERK–high cells were present in both the Bcl-6− and Bcl-6+ subsets
of U2932 cells). Light colours indicate high local density of data points in the scatter plot. Subsequent
rows show the single-cell expression distributions for various antigens in S-phase TMD8, U2932, HBL-1,
and OCI-Ly10 cells, gated by p-ERK expression. A simple linear gate was applied to separate cells into
two subpopulations such that cells had p-ERK expression values (after arsinh transformation) ≤ 1.4 in one
subpopulation and > 1.4 in the other. (b) From left to right, scatter plots show abundance of p-Akt[S473]
versus p-IKK in S-phase OCI-Ly3 cells (colour = p-MKK4) and versus p-ERK (colour = p-Akt[T308]), Bcl-
6 (colour = IκBα), p-CREB (colour = p-S6), and p-IKK (colour = p-MKK4) in S-phase Ramos cells. The
grey boxes highlight a distinct population of cells that had high abundance of p-Akt[T308], p-Akt[S473],
p-CREB, p-MKK4, and p-IKK and low abundance of Bcl-6, IκBα, and p-S6. (c) The first two scatter plots
show expression of Bcl-2 (left) or Bcl-6 (right) versus Ki-67 in NU-DUL-1 cells, excluding presumed M-
phase cells. Colour shows expression of Bcl-6 (left) or Bcl-2 (right). The last four scatter plots show, from
left to right, expression of Bcl-6 versus Bcl-2 in NU-DUL-1 and SU-DHL-8 cells, Bcl-2 versus Ki-67 in
BJAB cells, and Bcl-6 versus Ki-67 in Toledo cells. The colour shows the cell-cycle group assignments of
each cell.

259



Figure B.4: Overlays of antigen expression on a 2D visualization of 33-dimensional phospho-CyTOF
data for 14 B-lymphoma cell lines. Cells from CyTOF Experiment 1 were partitioned into seed clusters
using FlowSOM and similarities between seed clusters were computed using ASTRICS. Data were visual-
ized in 2D by representing each seed cluster by one node in a graph and using force-directed layout of the
ASTRICS similarity graph. Caption continues . . .
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Figure B.4: In this figure, the nodes are coloured to show the mean abundances of 28 specific antigens in
each seed cluster. Colour bars for the node colours are normalized to the maximum node value for each
antigen. The single node that represented the Bcl-6+, CD20-high U2932 subclone is indicated in the first
two plots, which show expression of CD20 and Bcl-6. The small dark blue arrows point to an unusual seed
cluster (node), which had particularly high levels of p-BLNK, p-Btk, p-PLCγ2, and general p-Tyr and low
IκBα. The two scatter plots in the bottom left show the abundance of p-S6 versus p-ERK in HBL-1 (left)
and OCI-Ly10 (right) cells with the colour of each cell showing the label of the seed (i.e. FlowSOM) cluster
to which it belongs. For clarity, only cells belonging to the largest 20 seed clusters in each cell line are
shown. Note that cluster colours are not ordered by cluster size.
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Figure B.5: Distributions of single-cell antigen expression and non-specific staining in a selection of
Karpas-422 clones and the parental population. Data are from the phospho-CyTOF experiment for clonal
populations of Karpas-422 cells that were expanded from single cells. Data were already shown as a heatmap
in the corresponding main figure.
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Figure B.6: Distributions of single-cell antigen expression and non-specific staining in a selection of
HBL-1 clones and the parental population. Data are from the phospho-CyTOF experiment for clonal
populations of HBL-1 cells that were expanded from single cells. Data were already shown as a heatmap
in the corresponding main figure. The bottom row shows the mean expression levels of five specific anti-
gens (IgM, p-IKK, p-p65, p-JNK, and p-STAT3) in each seed cluster of S-phase cells, visualized in two
dimensions by force-directed layout of their ASTRICS similarity graph. Caption continues . . .
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Figure B.6: Seed clusters were computed by applying FlowSOM to only the S-phase cells in the CyTOF
data. Each node in the graph represents one seed cluster and its mean expression of an antigen is shown
by the colour. Colour bars are normalized to the maximum node value for each antigen. The identities and
Infomap cluster labels of the nodes are shown in the corresponding main figure.
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Figure B.7: Internal validation of compensation of CyTOF data: part 1. Caption continues . . .
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Figure B.7: Scatter plots show the CyTOF signal in the unstained mass channels Gd157, Er167, and Dy162
versus the signal in channels that detect stained antigens before and after compensation for the CyTOF
experiments that were performed on the indicated dates. There are three main sources of signal spillover
from one CyTOF mass channel to another: abundance sensitivity, whereby some of the signal for a specific
isotope of atomic mass M is detected in the adjacent M ± 1 mass channels; ion oxides, which cause signal
in the M + 16 mass channel (e.g. oxide of Nd146 causes signal in the Dy162 mass channel); and isotopic
impurities of the mass tags (e.g. isotopic impurity of Dy mass tags will cause one Dy mass tag to create
some signal in the mass channels of other Dy isotopes).
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Figure B.8: Internal validation of compensation of CyTOF data: part 2. Scatter plots show the CyTOF
signal in the unstained mass channels Gd157, Er167, and Dy162 versus the signal in channels that detect
stained antigens before and after compensation for the CyTOF experiments that were performed on the
indicated dates. There are three main sources of signal spillover from one CyTOF mass channel to another:
abundance sensitivity, whereby some of the signal for a specific isotope of atomic mass M is detected in
the adjacent M ± 1 mass channels; ion oxides, which cause signal in the M + 16 mass channel (e.g. oxide
of Nd146 causes signal in the Dy162 mass channel); and isotopic impurities of the mass tags (e.g. isotopic
impurity of Dy mass tags will cause one Dy mass tag to create some signal in the mass channels of other Dy
isotopes).
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Appendix C

StormGraph User Guide for MATLAB

On the following pages, you will find the User Guide document for running StormGraph (see Chapter 2) in

MATLAB.
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StormGraph User Guide 

 

1. StormGraph requirements 

 

● StormGraph requires MATLAB (MathWorks). It is compatible with MATLAB 

R2016a and later versions. 

● When setting k = 0 in StormGraph (to use the fully automatic, heuristic method 

for determining the graph neighbourhood radius r0 -- see information about 

StormGraph parameters below, or see our original manuscript for further 

details) the MATLAB Curve Fitting and Signal Processing toolboxes are 

required. When setting k > 0 (to use the kNN method to set r0), these two 

toolboxes are not required. 

● For data with two colour channels, the MATLAB Mapping toolbox is required.  

 

2. Running StormGraph 

 

 First steps 

 

 Before running StormGraph on Mac or Linux for the first time after downloading, 

you should first compile the C++ code for Infomap and the Louvain method, two 

third-party community detection algorithms used by StormGraph (both provided 

with the StormGraph download). To do this on UNIX-like operating systems (i.e. 

Mac and Linux), simply run the script INSTALL_for_Unix.m, either by opening 

the file in MATLAB and clicking “Run”, or by typing “INSTALL_for_Unix” in the 

MATLAB command line and hitting the Return/Enter key. Note that GCC will be 

required in order to compile the code for Infomap and the Louvain method.  

 

On Windows, a fresh download of StormGraph should work out of the box as we 

have supplied pre-compiled Windows executables for Infomap and the Louvain 

method. We tested a fresh download of StormGraph on MATLAB 2019b on 

Windows 10 and confirmed that it worked out of the box. At this stage, we do not 

have an installation script that we could supply for Windows if it does not work 

out of the box, unfortunately. 

 

To run StormGraph, open MATLAB and first add StormGraph to MATLAB’s path. 

To do this, navigate to the StormGraph folder that you downloaded in the 

“Current Folder” window inside MATLAB, usually on the left-hand side, then right 

click on the folder and select “Add to Path → Selected Folders and Subfolders”. 
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 Opening the StormGraph graphical user interface (GUI) 

 

 To start the StormGraph GUI, type “runStormGraphGUI” in the MATLAB 

command line and hit the Return/Enter key. Alternatively, open the file 

runStormGraphGUI.m in MATLAB and click “Run”. 

 

 

 

Loading data 

 

 To load data to analyze with StormGraph, first open the StormGraph GUI. You 

will have two options: (1) load raw data and, if desired, crop regions of interest 

(ROIs) to analyze; or (2) load data (ROIs) that have previously been saved in the 

correct format for StormGraph. 

 

1. Loading raw data: 

a. Raw data file format. Raw SMLM data must be saved in a delimited 

text-based format (e.g. formats .txt, .ascii, or .3dlp) in which rows 

correspond to individual SMLM localizations and columns correspond to 

the properties of each localization, such as its coordinates and 

positional uncertainties. You will need to know exactly which columns of 

your data correspond to each coordinate and, if available, the positional 
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uncertainties, so be sure to learn exactly how your data is saved before 

loading it with StormGraph. 

b. Viewing density-coloured scatter plots of cropped ROIs. When you 

load raw data with StormGraph, you will be given the choice to either 

crop rectangular ROIs within the data or to load the entire dataset 

without cropping ROIs. If cropping ROIs, select the checkbox “Display 

density plots of ROIs after selection?” before loading data if you want to 

view a scatter plot of the localizations in each cropped ROI coloured by 

their local densities. Note that this can be slow if the ROIs contain many 

localizations. To skip viewing a scatter plot of each cropped ROI, leave 

the checkbox unchecked. 

c. Loading data and cropping ROIs. To load raw data, click “Load raw 

data” in the StormGraph GUI. Then simply follow the instructions and 

prompts and select your desired options each time that you are 

presented with multiple options. For batch processing, you can load 

multiple datasets at once. The data to be analyzed (cropped ROIs or 

full datasets) will be saved all together in a new MAT-file (i.e. a file 

format specific to MATLAB with the .mat extension). You will be 

prompted to specify a filename and location for this MAT-file to be 

saved to. Once saved, this MAT-file can be loaded and analyzed with 

StormGraph at any later time, as described below in (2). 

d. Two-colour data. If loading two-colour data, the two colour channels 

must be loaded separately, and the datasets for the second colour 

channel must be loaded in the exact same order as the datasets for the 

first colour channel. When selecting multiple datasets at the same time, 

this means that datasets for each of the two colour channels must be 

named in the exact same order (alphabetically and/or numerically) as 

each other so that they will be loaded in the same order as each other. 

2. Loading previously saved data/ROIs: 

a. Simply click “Load ROIs from .mat file” and select a previously saved 

.mat file containing data that was previously loaded using the 

StormGraph GUI. 

 

 

 

 

 Running StormGraph cluster analysis 

 

 Once data/ROIs have been loaded and saved in the correct format as a MAT-file 

using the StormGraph GUI, there are two options for running StormGraph cluster 

analysis: (1) using the GUI; or (2) using the script runStormGraphSCRIPT.m. 

The script provides more options and greater flexibility. 
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1. Using the GUI.  

a. Simply set the desired settings, including parameter values, in the 

StormGraph GUI, then click “Run StormGraph”. Refer to our 

original manuscript “StormGraph: An automated graph-based 

algorithm for quantitative clustering analysis of single-molecule 

localization microscopy data” for a detailed description of the 

StormGraph algorithm and each of its parameters. We briefly 

describe the role of each parameter below. 

b. You’ll then be prompted to enter the correct column numbers in 

your data for the localization coordinates and, if being used, their 

uncertainties. If your data only has a single number for the 

positional uncertainty in each localization, as opposed to an 

uncertainty in each of the x, y, and z coordinates, then just repeat 

that column number for each coordinate’s uncertainty. 

c. Finally, you’ll be asked to specify the base of the filenames to 

which the StormGraph results should be saved. Do not include the 

filename extension. For each analyzed ROI/dataset, the 

ROI/dataset number and the .mat extension will be appended to 

the filename that you specify. 

2. Using the script runStormGraphSCRIPT.m. This provides more 

flexibility and more options than running StormGraph from the GUI but is 

still very straightforward. Once data/ROIs have been loaded and 

subsequently saved in .mat format using the StormGraph GUI, the GUI 

can be closed and the saved data/ROIs can be analyzed using a script.  

a. Open the file runStormGraphSCRIPT.m in MATLAB. 

b. Set filepath to be the full path of the folder containing the MAT-

file to be analyzed. This should be specified as a string (i.e. 

contained within single inverted commas). 

c. Set filename to be the name (including the .mat extension) of the 

MAT-file to be analyzed. Again, this should be specified as a string 

(i.e. contained within single inverted commas). 

d. Set the desired parameters and settings (everything above “%% 

DO NOT MODIFY >>>>”). Do not modify any of the code below 

“%% DO NOT MODIFY >>>>”. The code is well commented, so it 

should be clear what each variable means and how to set it.  

e. Be sure to specify which columns of your data correspond to the 

localization coordinates and, if available, which columns 

correspond to the uncertainties in the localizations’ positions. If 

your data only has a single number for the positional uncertainty in 

each localization, as opposed to an uncertainty in each of the x, y, 

and z coordinates, then just repeat that column number for each 

coordinate. For example, if you are performing a 2D cluster 

analysis and column #1 specifies the x-coordinates of localizations, 
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column #2 specifies the y-coordinates, and column #3 specifies the 

uncertainty in each localization irrespective of direction, then set: 

i. coord_columns = [1,2]; 

ii. error_columns = [3,3]; 

f. If you specify that your data includes multiple blinking of single 

molecules, then StormGraph will automatically test whether each 

identified cluster of localizations can be confidently distinguished 

from a single multiply localized molecule. Clusters that fail this 

confidence test will be reclassified as non-clustered localizations 

and removed from subsequent quantification of clusters. This 

confidence test will use the value of 

effective_molecule_radius that you set, so be sure to set 

this appropriately instead of leaving it as its default value. If this is 

set to a value of 0, StormGraph will test for clusters that can 

confidently be distinguished from a single multiply localized 

fluorescent probe. However, if the imaged molecules are 

multivalent, such that a single molecule could be labelled by 

multiple fluorescent probes, then in order to test clusters for 

confidence that they could not be due to multiply labelled single 

molecules (rather than just single probes) you should set 

effective_molecule_radius to be the estimated distance 

from the centre of the molecule to the end of the fluorescent probe. 

g. Both the script and the GUI allow you to batch process StormGraph 

analysis of multiple datasets/ROIs using a single choice of 

StormGraph settings and parameter values. However, the script 

allows you to also batch process different settings and parameter 

values (e.g. you can perform StormGraph analysis of multiple 

datasets/ROIs using multiple values of k in a single batch process 

using the script). This is not possible with the GUI. To run e.g. 

multiple values of k using the GUI, you would have to manually 

start the analysis from the GUI for each k value separately. 

 

 StormGraph parameters: 

 

k:  Used to determine the graph neighbourhood radius (i.e. a length scale) r0 

that is used to convert the localization data into a graph as described in 

our manuscript. This radius is used to determine the connectivity of the 

initial graph, which is used to identify localizations that are sufficiently 

dense (compared to randomly distributed points) to be classified as 

“clustered”. StormGraph automatically determines the value of the radius 

r0 by one of two methods, based on the user-specified value of k. Set k = 0 

(or any value < 0) to instruct StormGraph to use a heuristic method (based 

on the elbow method) to determine a suitable value for r0 without any user 

input. Set k to be an integer > 0 (values between 10 and 20 are best) to 
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instead instruct StormGraph to calculate the radius r0 from k-nearest 

neighbour (kNN) distances. In this case, think of k as a critical number of 

neighbours that local localization densities will be based on: the local 

density at each clustered localization will generally be based on more than 

its k nearest neighbouring localizations, whereas the local density at each 

non-clustered localization will generally be based on fewer than its k 

nearest neighbouring localizations. These calculated densities (technically 

node degrees, used as proxies for densities) will in turn determine which 

localizations are sufficiently dense to be classified as clustered. Therefore, 

choose k to be a number smaller than the number of localizations in a 

typical cluster but larger than the number of neighbours near each non-

clustered localization. 

 

Min. cluster size (MinCluSize):  Minimum allowable number of points in a 

cluster. During one of the final steps in the StormGraph algorithm, when 

StormGraph decides which clusters in the full cluster hierarchy to split into 

their subclusters, cluster splits will automatically be rejected if more than 

1% of the points in the cluster belong to subclusters containing fewer than 

MinCluSize points. Also, any clusters in the final cluster results that 

contain fewer than MinCluSize points will be reclassified as non-clustered 

points and excluded from cluster quantification. Minimum possible value of 

MinCluSize is 3. 

 

α (alpha): A value between 0 and 1 used to set a data-adaptive threshold on 

node degree (a proxy for local localization density). Similar to a 

significance value. Points that pass the threshold will be considered as 

being sufficiently dense to be classified as “clustered”. Points that fail to 

pass the threshold will be classified as “non-clustered” (i.e. not sufficiently 

dense to be classified as “clustered”). Specifically, α is the maximum 

probability of a point in a completely random distribution being classified 

as “clustered”. Localizations in the data will only be assigned to clusters if 

they are expected (based either on Monte Carlo simulations using their 

uncertainties or on spatial averaging over preliminary clusters in the 

absence of uncertainty information) to be at least as dense as the ((1-

α)⨉100)th percentile of localization densities in a completely random 

distribution of points with the same global average density as the data. 

Lower values of α impose a stricter threshold on node degree (i.e. 

localization density). Larger values of α impose a more relaxed threshold 

on node degree. The default value is 0.05. Set α = 1 to completely skip the 

thresholding of node degree in comparison to a random distribution. 

Setting α = 1 allows all localizations to potentially be assigned to clusters, 

but this is only appropriate if, by visual inspection, the vast majority (> 

approx. 90%) of localizations belong to clear, well separated clusters. 
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3. StormGraph output 

 

 For each analyzed dataset/ROI, StormGraph saves all of its results to a separate 

MAT-file. These results MAT-files will be saved in a folder that is created in the 

same place as the MAT-file containing the data that was analyzed. The results 

MAT-file for each analyzed dataset/ROI will contain the following variables: 

 

StormGraph_settings A structure containing the StormGraph settings that 
were used to analyze the data. 

ROI_src ● A 1x3 cell array.  
● The first cell, ROI_src{1}, contains the path and 

filename of the colour channel 1 data from which 
the ROI originated. 

● The second cell, ROI_src{2}, is the same as 
ROI_src{1} but for the second colour channel, if 
applicable. This will be empty if there is only one 
colour channel. 

● The third cell, ROI_src{3}, is the identifying number 
of the ROI. 

ROIdata1 The full input data matrix for colour channel 1. 

XYdata1 The (x,y) coordinates of localizations from ROIdata1. 

C1 ● A 1x2 cell array.  
● The first cell, C{1}, is a matrix containing the 

hierarchical cluster assignments of every 
localization in ROIdata1. Each row in C{1} 
corresponds to the same row in ROIdata1. Each 
column contains unique cluster labels for the 
localizations at a particular level of the hierarchy. 
The first column corresponds to the top (most 
coarse) level of the cluster hierarchy, and each 
subsequent column corresponds to the next finest 
level of the hierarchy. A cluster label of 0 indicates 
that a localization was not assigned to any cluster. 

● The second cell, C{2}, indicates the number of 
unique hierarchy cluster levels for each localization 
(i.e. the number of unique clusters at different 
spatial scales to which each localization belongs). 

labels1 Cluster assignment labels for each localization in the 
single-level clustering generated by StormGraph for 
ROIdata1. A cluster label of 0 indicates that a 
localization was not assigned to any cluster. If the user 
specified that the data included multiply localized 
single molecules, then localizations belonging to 
clusters that could not be confidently distinguished 

275



from multiply localized single molecules will have been 
reassigned a label of 0 in labels1. 

labels_incl_SMs_1 Same as labels1 but prior to the reassignment of 
clusters of localizations that could not be confidently 
distinguished from multiply localized single molecules 
(i.e. this list of cluster labels will still include nonzero 
cluster labels for clusters of localizations that could 
have arisen just from overcounting of single 
molecules). 

area1 A vector containing the areas of all clusters defined by 
labels1, ordered by increasing cluster label. 

count1 A vector containing the number of localizations in each 
cluster defined by labels1, ordered by increasing 
cluster label. 

clu1 A cell array containing the (x,y) coordinates of the 
boundary localizations of each cluster defined by 
labels1, ordered by cluster labels. 

cen1 The (x,y) coordinates of the centre of area of each 
cluster in clu1, defined by labels1. 

sa1 Ignore this for now. 

labels_top1 Cluster assignment labels for each localization at the 
top (most coarse) level of the hierarchical clustering 
generated by StormGraph for ROIdata1. A cluster label 
of 0 indicates that a localization was not assigned to 
any cluster. 

toplvl_area1 A vector containing the areas of all clusters defined by 
labels_top1, ordered by increasing cluster label. 

toplvl_count1 A vector containing the number of localizations in each 
cluster defined by labels_top1, ordered by increasing 
cluster label. 

toplvl_clu1 A cell array containing the (x,y) coordinates of the 
boundary localizations of each cluster defined by 
labels_top1, ordered by cluster labels. 

toplvl_cen1 The (x,y) coordinates of the centre of area of each 
cluster in toplvl_clu1, defined by labels_top1. 

toplvl_sa1 Ignore this for now. 

r0_1 ● A vector containing the two r0 values used by 
StormGraph during clustering of ROIdata1.  
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● The first value is the initial value of r0 used by 
StormGraph when deciding which localizations 
(graph nodes) are sufficiently dense to retain for 
clustering and which should be assigned to the 
non-clustered class (cluster label 0). StormGraph 
determines this value either using k-nearest 
neighbour distances for the user-specified value of 
k or using a heuristic method with no user input. 
See info about parameter k for more details. 

● The second value is the neighbourhood radius r0 
used by StormGraph to construct the final graph (in 
which non-clustered nodes have been removed) 
used to generate the hierarchical clustering that 
StormGraph outputs. This value is always 
determined heuristically. 

runtime1 The time in seconds taken by StormGraph to cluster 
ROIdata1. 

pval1 As an advanced setting in StormGraph when the kNN 
method is used to set the graph neighbourhood radius 
r0, users may instruct StormGraph to perform a KS test 
on the distribution of kNN distances, for the user-
specified value of k, in the data compared to a random 
distribution as the null distribution. The p-value for this 
KS test will be saved as pval1. If the KS test is 
performed and indicates no significance, then 
StormGraph will not proceed to analyze the data and 
all localizations will be assigned a cluster label of 0 
(non-clustered). 

 

  

 For two-colour data, all of the variables in the list above whose names end with 

“1” will also be provided for the second colour channel. These variables will have 

the same names but ending with “2” instead of “1”. In addition, the following 

variables will be saved: 

 

Jaccard A vector containing 6 values computed for StormGraph’s 
single-level clustering results defined by labels1 and 
labels2. These are described in order here: 
1. Jaccard(1) is the total fraction of colour channel 1 

cluster area that overlaps with colour channel 2 
clusters; 

2. Jaccard(2) is the total fraction of colour channel 2 
cluster area that overlaps with colour channel 1 
clusters; 

3. Jaccard(3) is the Jaccard index for overlapping cluster 
areas, which is defined as the total area of overlap 
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divided by the total area of the union of colour channel 1 
clusters and colour channel 2 clusters. 

4. Jaccard(4) is the total fraction of colour channel 1 
localizations that are inside areas of overlap between 
channel 1 clusters and channel 2 clusters. 

5. Jaccard(5) is the total fraction of colour channel 2 
localizations that are inside areas of overlap between 
channel 1 clusters and channel 2 clusters. 

6. Jaccard(6) is the Jaccard index for cluster overlap 
based on numbers of localizations instead of areas. It is 
the total fraction of all localizations from both colour 
channels combined that are within areas of overlap 
between channel 1 and channel 2 clusters. 

toplvl_Jaccard The same as Jaccard but computed for the clusters at the 
top (most coarse) level of StormGraph’s hierachical 
clusterings for the two colour channels (defined by 
labels_top1 and labels_top2). 

PM A vector containing the following three colocalization values 
for the two-colour data after binning into pixels of a size that 
can be defined by the user when running StormGraph from 
the script (default value is 10 nm when running StormGraph 
from the GUI): 
1. PM(1) is Pearson’s correlation coefficient (PCC); 
2. PM(2) is Manders’ M1; 
3. PM(3) is Manders’ M2. 

 

 

All of the cluster quantities automatically output by StormGraph (listed above) for 

both single- and two-colour data are computed only in 2D. For 3D data, these 2D 

quantities listed above (e.g. area1, cen1, Jaccard) are computed by first 

projecting the 3D clusters onto the 2D xy-plane. To obtain 3D quantities such as 

cluster volumes, use the function ProcessClusters3D provided in the folder 

“stormgraph2018i” → “src” → “Analysis”. This function also computes volumetric 

overlap between 3D clusters for two-colour data. Note that computing volumetric 

overlap between 3D clusters can be slow. For this reason, 

ProcessClusters3D is not implemented automatically by StormGraph and is 

instead left for the user to run manually if they wish to quantify clusters in 3D. 

 

 

 

Concatenating cluster statistics from multiple analyzed ROIs/datasets 

 

StormGraph results from multiple individual MAT-files can be concatenated into a 

single file using the script ConcatResults.m provided in the “User_Analysis” 

folder. 
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4. Visualizing data and cluster results 

 

MATLAB functions and scripts for visualizing data and clustering results are 

provided in the folder “Visualization”. To get more details about running a 

particular function, type help followed by the name of the function in the 

MATLAB command line and hit Enter/Return (e.g. help density2colour). 

Below is a description of the most useful visualization functions and scripts. 

 

density2colour Creates a scatter plot of single- or two-colour data 
in 2D or 3D with localizations coloured according 
to their local density (computed as the reciprocal 
of their Voronoi cell areas or volumes). Run the 
command  

help density2colour  

in the MATLAB command line for detailed 
instructions on how to use this function. 

plotClusters Visualize clusters. This function plots data with 
clustered points coloured by their cluster identity 
and non-clustered points (cluster label 0) 
excluded from the figure. 
 
To plot StormGraph cluster results, first load a 
StormGraph results MAT-file. Then run the 
command 

plotClusters(XYdata1,labels1); 

to plot StormGraph’s single-level cluster results 
for colour channel 1. To plot the clusters from the 
top level of the cluster hierarchy, use 
labels_top1 instead of labels1. To plot 

results for the second colour channel, replace all 
instance of “1” in the variable names with “2”. E.g. 

plotClusters(XYdata2,labels2); 

 
To plot results in 3D instead of 2D, replace 
XYdata1 and/or XYdata2 by the 3D data. E.g. 

run the commands 
data1 = ROIdata1( : , [x,y,z]); 

plotClusters(data1,labels1); 

or 
data2 = ROIdata2( : , [x,y,z]); 

plotClusters(data2,labels2); 

but replace x, y and z by the correct column 

numbers for the x, y and z coordinates for your 
data. 

plotClustersColourQuantity Plot clusters coloured by a specific property, e.g. 
area (i.e. the colour bar will correspond to a 

279



particular property, such as area, of the clusters). 
 
E.g. To plot clusters coloured according to their 
areas using the parula colour map, load a 
StormGraph results MAT-file then run the 
command 
 
plotClustersColourQuantity( XYdata1, 

labels1, area1, ‘parula’ ); 

 

Non-clustered points will be assigned a property 
(e.g. area) value of 0 in this figure. To exclude 
non-clustered points from the figure, instead run 
the commands 
 
idx = labels1 > 0; 

plotClustersColourQuantity( 

XYdata1(idx,:), labels1(idx), area1, 

‘parula’ ); 

 
To e.g. colour clusters according to the logarithm 
of their areas instead of their actual areas, 
replace area1 by log10(area1). 

viewOverlap.m A script (not a function) for visualizing the overlap 
between clusters identified by StormGraph in two-
colour data. Simply load the StormGraph results 
MAT-file for the two-colour data then run this 
script. 

plotClusterSurf3D.m A script (not a function) for plotting the surfaces of 
3D clusters and visualizing the overlap between 
3D clusters for two-colour data. This script 
requires the user to first use the function 
ProcessClusters3D (in the folder “src” → 

“Analysis”) to perform 3D quantification of clusters 
identified by StormGraph. 
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