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Abstract

The axion quark nugget (AQN) model was initially proposed with the moti-
vation to explain the observed similarity between the visible and dark matter
abundances in the Universe. AQNs are dense objects made of standard model
quarks in color superconducting (CS) phase. AQNs can be made of matter
as well as antimatter. Matter AQNs and antimatter AQNs together form
the dark matter, while the disparity between them will lead to the observed
matter-antimatter asymmetry. Thus, the similarity between visible and dark
matter abundances can be naturally explained since they have the same ori-
gin in the AQN framework.

This thesis focuses on recent developments in model building and some
potential observational evidence of AQNs. First, we show how the coher-
ent nonzero axion field in the early Universe generates the disparity between
matter and antimatter AQNs. Then, we calculate the real-time evolution
of an AQN from its initial state as a closed axion domain wall with baryon
charge trapped inside to its final CS state. Next, we show that for the most
part of axion parameter space, AQNs are the dominant part of dark mat-
ter compared to the contribution of the free axions from the misalignment
mechanism. After that, we calculate the size distribution of AQNs based on
percolation theory. We also demonstrate that after formation, the size distri-
bution can survive the subsequent evolution in the early Universe. Finally,
we study potential observational evidence of the AQN model, focusing on the
following two phenomena: the impulsive radio events in quiet solar corona
recorded by the Murchison Widefield Array and the seasonal variation of the
near-Earth X-ray background observed by the XMM-Newton observatory.
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Lay Summary

More than 80 percent of the matter in the Universe is hidden in the form of
dark matter. What is the nature of dark matter? This remains unknown.
This thesis is about a dark matter model known as the axion quark nugget
(AQN) model. This model can not only explain dark matter but also solve
another fundamental problem: Why is there more matter than antimatter in
the Universe? In this thesis, we present the recent developments in building
the AQN model, including the formation, evolution, and size distribution of
AQNs. Also, we discuss some observed astrophysical phenomena that could
be induced by AQNs.
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List of Figures

2.1 This diagram incorporates many important ingredients of the AQN
framework with the QCD phase diagram. The solid oscillating line
represents the misalignment mechanism with the initial misalign-
ment angle θ0 staring at Tosc when the axion mass effectively turns
on. The three dashed lines represent possible paths of the AQN
formation. The phase diagram is actually much more complicated
as it depends on the third essential parameter, θ, which is nonzero
in the early Universe. The phase at nonzero θ is not shown because
it is largely unknown. This figure is taken from Refs. [1–3, 7]. . . . 10

3.1 This plot shows that ωR/ωθ is always much larger than unity in the
temperature range that we are interested in. It essentially shows
that an AQN makes a large number of oscillations while the axion
field θ(t) slowly varies. This figure is taken from Ref. [1]. . . . . . 35

3.2 Numerical solutions of a matter/antimatter AQN evolving in the
coherent θ(t) background. The blue and orange lines represent
R−(t) and R+(t) respectively. All four subfigures are calculated
with ma = 10−4 eV, and R0 is chosen as m−1

a . The numerical values
of ac that we use in calculating each subfigure can be seen in the
upper edge of the graph. In panel (a), we choose tc/R0 = 10−2,
which represents a relatively fast increase of a(t) from 0 to ac,
based on eq. (3.34). Fig. 3.2a is adapted from Ref. [1]. As a
comparison, in panel (b), we choose tc/R0 = 100 which represents
a relatively slow increase of a(t) from 0 to ac. . . . . . . . . . . . . 37

3.3 The fist few oscillation of R+ in one subfigure (tc/R0 = 10−2,ac =
0.5) of Fig. 3.2. We choose this as an example to show that there
is no cuspy problem. This figure is taken from Ref. [1]. . . . . . . 38
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3.4 Dependence on viscosity η. Amplitudes of R−(blue) and R+ (or-
ange) are plotted. The solid lines correspond to η = 8.4m3

π(×109)
and the dashed lines correspond to η = m3

π(×109). Here, the pa-
rameter ma = 10−4 eV and tc/R0 = 10−5 are chosen. This figure
is taken from Ref. [1]. . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 An AQN’s real-time evolution. The two solid blue lines represents
respectively the upper envelope and the lower envelope of R os-
cillations. The shaded light blue region represents the numerous
oscillations. The solid orange line represents the lower envelope
of µ oscillations (we did not show the upper envelope and shaded
region for µ oscillations for legibility purpose). The dashed blue
line and dashed orange line represents respectively Rform and µform
which are derived by simple analytical arguments; see eqs. (3.42)
and (3.43). We see that they match the numerical result of AQN
evolution pretty well. This figure is taken from Ref. [3]. . . . . . . 44

4.1 Contour plots of c as a function of ma and B for θ0 = 10−3 and
100 respectively with the fixed values HI/2π = 5.7×108 GeV and
κ= 10−4. The color bar shows values of the parameter c∼ 1. This
is plotted with dark matter assumed to be saturated by AQNs and
free axions and ΩDM ' 5Ωvisible (same for Figs. 4.2 and 4.3). Here,
B is for antimatter AQNs (same for other figures in this chapter).
This figure is taken from Ref. [2]. . . . . . . . . . . . . . . . . . . 65

4.2 Contour plots of c as a function of ma and B for HI/2π = 1010

GeV and 1011 GeV respectively with the fixed value θ0 = 10−1 and
κ= 10−4. The color bar shows values of the parameter c∼ 1. This
figure is taken from Ref. [2]. . . . . . . . . . . . . . . . . . . . . . 66

4.3 Model 2: contour plots of c as a function of ma and B for specific
values of HI , θ0, and κ = 10−4. (a): (Mq,µ) = (200,400) MeV.
(b): (Mq,µ) = (160,500) MeV. The color bar shows values of the
parameter c∼ 1. This figure is taken from Ref. [2]. . . . . . . . . . 67

4.4 Contour plots of Ωa/ΩDM as a function of ma and φ (see the
definition of φ in the first paragraph of chapter 4.3.3). The color
bar shows values of Ωa/ΩDM. This figure is taken from Ref. [2]. . . 68
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6.1 Left: the impact rate of AQNs with the size above B̄ where B̄
varies from Bmin to Bmax for different groups of AQNs. The hor-
izontal black dashed line is the observed rate of radio events,
eq. (6.9). Right: the result from the second-round simulation
where we focus on large AQNs only. Again, the horizontal black
dashed line is eq. (6.9). The vertical dashed lines are the corre-
sponding B̄ for different groups. More details about the numerical
simulations that lead to these two subfigures can be found in Ap-
pendix B. This figure is taken from Ref. [4]. . . . . . . . . . . . . . 100

6.2 Left: the luminosity generated by the annihilation of AQNs with
the size above B̄ where B̄ varies from Bmin to Bmax for different
groups of AQNs. Right: the result from the second-round simula-
tion where we focus on large AQNs only. The vertical dashed lines
correspond to the B̄ determined by eq. (6.9) in Fig. 6.1. More
details about the numerical simulations that lead to these two
subfigures can be found in Appendix B. This figure is taken from
Ref. [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 Suppression factor f(h) defined by eq. (6.25). This factor describes
the remaining portion of the non-thermal electrons at altitude h.
The blue line corresponds to the initial kinetic energy ∆E≈ 2×102

eV which has been used in all our estimates through the text. For
illustrative purposes, we also presented the same suppression fac-
tor f(h) for other values of parameter ∆E. Suppression factor be-
comes essential for h& 4×104 km corresponding to low frequency
emission as one can see from Fig. 6.4. In computing eq. (6.25), we
have used np(h)≈ ne(h) above h0 where the profile of ne(h) is from
Ref. [8] (the solar profiles needed in the numerical computations
in this chapter are all from [8]). This figure is taken from Ref. [4]. 108

6.4 Frequency of the emission, ν = ω/2π ≈ ωp/2π (i.e., eq. (6.7)) as a
function of height. Radio emission occurs at the altitudes above
104 km while the dominant portion of the AQN annihilation events
occur at lower altitudes h < 2150 km as shown in Fig. 6.5. This
figure is taken from Ref. [4]. . . . . . . . . . . . . . . . . . . . . . 109
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6.5 Left: mass fraction 1−∆B/B being annihilated as a function of
the altitude. This is plotted by taking the average of the mass loss
profiles of the AQNs above B̄ (i.e., the AQNs that will generate
radio emissions) where B̄ has been determined by eq. (6.9). We
see that AQNs start to annihilate at about 2150 km. Right: lu-
minosity per unit length as a function of the altitude where the
energy is converted from the mass loss according to eq. (6.3). This
is also plotted by taking the average of the AQNs above B̄, then
multiplied by the impact rate of these large AQNs. This figure is
taken from Ref. [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.6 The blue points are extracted from Fig. 7 in Ref. [9] (132 MHz).
Dividing the blue points by the corresponding bin width, we get
the red points (i.e., the values of P (∆ti) in eq. (6.47)). The red
line is fitted by eq. (6.48) with A= 0.56s−1,n' 1.5,λ' 0.0049s−1.
This figure is taken from Ref. [4]. . . . . . . . . . . . . . . . . . . 118

6.7 The red points are the same as those in Fig. 6.6 (i.e., the values
of P (∆ti) in eq. (6.47)). The solid lines are fitted by the full
expression of P (∆t) given by eq. (6.41). The solid red line gives
β = −0.9, t0 = 4000 s, λ0 = 0.5 s−1. Other choices around this
group of parameters can also give similar result. For example,
the solid black line corresponds to β = −0.6, t0 = 3000 s, λ0 =
0.2 s−1. In comparison, the dashed lines are the simplified P (∆t)
given by eq. (6.45), with the same group of parameters chosen
correspondingly. This figure is taken from Ref. [4]. . . . . . . . . . 119

7.1 2-6 keV X-ray background spectra detected by the EPIC pn cam-
era carried by XMM-Newton (the data are integrated from 2000
to 2012) for each of the four spacecraft seasons: Winter (black),
Summer (green), Spring (red), and Fall (blue). This figure is taken
from Ref. [5] where it was adapted from Figure 14(a) in Ref. [10]. . 126

7.2 The spectral surface emissivity of an AQN with all of the ef-
fects discussed in this chapter 7.2.1 included, see eq. (C.8) in Ap-
pendix C. κ = 10−2.5 in the top subfigure and κ = 10−3.5 in the
bottom subfigure. The two subfigures are plotted with T = 100
keV as an example. This figure is taken from Ref. [5]. . . . . . . . 132

xiii



7.3 T vs. t for different values of κ and T0. T = T0 at t = 0. An
important feature here is that the behavior T (t) at t& 100 s (when
XMM-Newton becomes operational) is not sensitive to the initial
value of T0 for a given κ; see text for explanations. This figure is
taken from Ref. [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.4 The relative stored energy [1−E(t)/E0] vs. t, for different values
of κ and T0. An important feature here is that a smaller κ= 10−3.5

corresponding to a reduced emission leads to a much slower decay
rate. In this case, the AQN keeps its initial energy value up to
t. 102 s. This figure is taken from Ref. [5]. . . . . . . . . . . . . . 138

7.5 The XMM-Newton observatory is assumed to be located at the
position (−L,−L,0). The cone is the field of view of the EPIC
pn camera carried by XMM-Newton. In our present work, we
focus on this camera (see footnote 57 for details). The cone points
in the direction +y. dV is the volume of the thin disk, and the
number of AQNs contained inside is nAQNdV . rmid is the radius
of the thin disk. Since the opening angle of the cone is very small,
αc = 0.25deg, it is a good approximation that all AQNs inside dV
are located at the same point (−L,ymid,0). ymid could be negative,
so they have the same distance, smid, to the Earth’s surface. The
range of θ is apparently [π/2,5π/4]. This figure is taken from Ref. [5].140

7.6 The relation f vs. ω, eq. (7.27), for (κ,T0) = (10−2.5,200 keV),
(10−2.5,500 keV), and (10−3.5,200 keV) respectively. The x-axis
represents frequency. The y-axis represents the values of f (theory),
given by eq. (7.27), which is the number of photons received by
the XMM-Newton observatory (camera EPIC pn) per unit time,
per unit area, per unit frequency, and per unit solid angle in the
AQN framework, shown by solid lines. In comparison, we also plot
f (obs), given by eq. (7.28), representing the data observed by the
EPIC pn camera for four seasons, shown by the four dashed lines
respectively. This figure is taken from Ref. [5]. . . . . . . . . . . . 143

7.7 The contour plot of L(κ,T0). The numbers labelled on the contour
lines are the values of L. The three points marked on the plot are
the three sets of (κ,T0) that we have chosen in all of our previous
plots: (10−2.5,200 keV), (10−2.5,500 keV), and (10−3.5,200 keV).
This figure is taken from Ref. [5]. . . . . . . . . . . . . . . . . . . 145
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7.8 Motion of dark matter relative to the Solar System, which is taken
as the fixed reference frame. The Earth moves in a nearly circular
orbit, with a velocity, ~vE, relative to the Sun. The location of the
seasons relative to the orientation of the ecliptic plane and dark
matter wind, vDMG , is important for the effect discussed in chapter
7.4. This figure is taken from Ref. [5]. . . . . . . . . . . . . . . . . 147

7.9 The ratio r as a function of γ for different groups of κ and T0.
The solutions from the right branch from Fig. 7.7 (red and black
lines) will always produce r ≈ 20% irrespective of the value of γ,
while the solution from the left branch from Fig. 7.7 (blue line)
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Chapter 1

Introduction

Dark matter accounts for about a quarter of the total mass-energy in the
Universe. The existence of dark matter is supported by evidence from the ob-
servations of galaxy rotation curves, gravitational lensing, cosmic microwave
background (CMB), etc. [11, 12]. However, the nature of dark matter remains
unknown. There are many dark matter candidates arising in different mod-
els and theories, including weakly interacting massive particles (WIMPs),
QCD axions, sterile neutrinos, primordial black holes, to name a few. In
this thesis, we focus on the axion quark nugget (AQN) dark matter model.
The AQN model was initially proposed in Ref. [13], and has been developed
subsequently in model building and in the identification of potential obser-
vational signatures. Before moving on to the AQN model, it is worth briefly
reviewing the related term, QCD axion.

QCD axion was proposed to solve the strong CP problem through the
known Peccei-Quinn mechanism [14, 15]. In the QCD Lagrangian, there is a
topological term,

Lθ = θ
g2
s

32π2 G̃
aµνGaµν , (1.1)

where Gaµν is the gluon field strength, and G̃aµν = 1
2ε
µνστGaστ is its dual. θ

is called theta vacuum. Eq. (1.1) arises due to the non-trivial topological
configuration of QCD vacuum.1 This term violates parity (P) symmetry

1Besides, another source can affect θ, which is from the quark sector. The complex
quark mass matrix M can be transformed to a real diagonal matrix by chiral rotation of
quark fields. The induced chiral anomaly changes θ by arg DetM . In fact, the sum of the
two sources for θ (rather than the two components individually) is an observable. See e.g.,
Refs. [16, 17] for more details.
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and time reversal (T) symmetry, thus CP symmetry, with the strength pro-
portional to θ. θ is an angular parameter, which in general can be a value
between 0 and 2π. The CP-violating effects generated by this term include
the neutron electric dipole moment, dn ≈ 2.4× 10−16θ e cm. The measure-
ment of dn puts a strong constraint on the value of θ: the measurement
result |dn| < 3× 10−26 e cm implies that 〈θ〉 . 10−10; see e.g., a recent re-
view, Ref. [17]. Why is θ so small instead of being a natural O(1) value? This
is coined as the strong CP problem. The PQ mechanism is an elegant solu-
tion to the strong CP problem, with θ settling down at θ= 0 dynamically and
thus becoming a boson field, the axion. The original proposal of the axion
in the Peccei-Quinn-Weinberg-Wilczek (PQWW) model [14, 15, 18, 19] has
been ruled out by experiments. But there are other possibilities, known
as the invisible axion models. The two available benchmark models are
the Kim-Shifman-Vainshtein-Zakharov (KSVZ) axion model [20, 21] and the
Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) axion model [22, 23]. We refer
the readers to Refs. [16, 17, 24] for a review of these axion models.

In addition to solving the strong CP problem, the extra benefit of the
axion is that it may explain dark matter. Note that the terminology axion in
this thesis means QCD axion only, not the axion-like particles. The couplings
of axion with the standard model are suppressed by the decay constant fa
which is very large with a typical value fa ∼ 1010 GeV. This makes axions
behave as dark matter and evade detection of various experiments so far.
Axion dark matter can be generated from the misalignment mechanism and
the decay of topological defects (axion strings and axion domain walls) in
the early Universe. The present-day axion abundance Ωa of the Universe is
sensitive to the axion mass ma. The misalignment mechanism predicts Ωa ∼
m
−7/6
a (see e.g., Ref. [24] or eq. (4.12) below in chapter 4 for more details).

In addition, there are many uncertainties in computing the axion abundance
from the decay of topological objects, and the result is also sensitive to the
axion mass. We refer the readers to Refs. [17, 24, 25] for a review of axion
cosmology and also Ref. [26] for a review of axion detection methods.

AQNs are formed from the dynamics of the axion topological defects in the
early Universe. To be more specific, the collapse of closed axion domain walls
with standard model quarks trapped inside leads to the formation of AQNs.
Squeezed by closed axion domain walls, quarks (and gluons) inside will finally
become stable in a color superconducting (CS) phase in nuclear density [13].
An AQN is macroscopically large with the typical parameters: R∼ 10−5 cm
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and B ∼ 1025, where R is the AQN radius and B is the baryon charge car-
ried by an AQN. AQNs are good dark matter candidates due to their small
cross-section-to-mass ratio σ/M ∼ ρ−2/3

AQNm
−1/3
p ·B−1/3 ∼ 10−10 cm2/g where

ρAQN is the AQN mass density (∼ nuclear density) and mp is the proton
mass. A distinctive feature of the AQN model is that AQNs can be made
of matter (quarks) as well as antimatter (antiquarks) [13, 27]. This fea-
ture makes the AQN model able to resolve the problem of matter-antimatter
asymmetry observed in the Universe. Matter AQNs and antimatter AQNs
together constitute dark matter, while the disparity between them leads to
the matter-antimatter asymmetry. The disparity between matter and anti-
matter AQNs is of order one (specifically, the coherent nonzero axion field
θ(t) in the early Universe results in this disparity, which gives that more
antiquarks are trapped inside antimatter AQNs than quarks trapped inside
matter AQNs [1]).2 This scenario thus naturally explains the similarity be-
tween the abundances of dark matter and visible matter, i.e.,

ΩDM ∼ Ωvisible, (1.2)

since now dark matter and visible matter have the same origin in the AQN
model. This is also the original motivation of proposing this model [13,
27]. We will review more details of the AQN features in a separate chapter
(chapter 2).

Although AQNs behave as dark matter, they will inevitably generate
some observational signals due to their interactions with visible matter. Such
signals will be relatively more evident in regions/epochs where matter density
is large, such as the early Universe and the Galactic Center or when AQNs
hit the Sun or the Earth. As we will review in chapter 2, the AQN-induced
effects do not violate various current observations. Instead, such effects could
potentially explain a number of cosmological and astrophysical puzzles, which
we list in chapter 2.

This thesis mainly discusses the recent developments in model building
2One comment is that the formation and survival efficiency of closed axion domain walls

could actually be very small (it only requires that the closed walls that will finally become
AQNs account for & 10−8 of the total wall area [7]). This is because the closed walls are
initially formed at a higher temperature (above QCD transition temperature∼ 170 MeV)
when the baryons/antibaryons abundance is much higher than later at Tform ≈ 40 MeV
when the AQN formation is completed. Therefore, a small efficiency at initial temperature
could be able to lead to an disparity of order one at the end of AQN formation.
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and some potential observational evidence of AQNs. The thesis structure
goes as follows. In chapter 2, we review the basic features, observational
signatures and constraints of the AQN model, and also the crucial ingredients
of the AQN formation. The details of the AQN formation will be presented
in chapter 3. In chapter 3, we first review the AQN formation that has been
studied in Ref. [7]. Then, we study the AQN formation in the background
of the coherent nonzero axion field θ(t). The CP-violating effects generated
by the coherent nonzero θ(t) will finally lead to an order-of-one disparity
between matter AQNs and antimatter AQNs [1]. Furthermore, we resolve
a multi-scale problem that arises in numerical computations of the AQN
formation due to the presence of drastically different scales (QCD scale ΛQCD
and the axion scale ma) in the system. We finally get the real-time evolution
of AQNs from the initial state as closed axion domain walls (with baryon
charge induced on the wall) to the final CS state [3].

In chapter 4, we study the contribution of the AQNs to dark matter in the
background of axion cosmology, where we take into account the contribution
of axions from misalignment mechanism [2]. We find that for the most part
of the axion parameter space, AQNs are the dominant contribution to dark
matter.

In chapter 5, we study the size distribution and the survival pattern of
AQNs [3]. Using percolation theory, we find that the size distribution of
AQNs follows a power-law. Furthermore, the size distribution can survive
the subsequent evolution in the early Universe. The size distribution of
AQNs is consistent with the energy distribution of solar nanoflares, which
also follows a power-law. This supports the proposal [6, 28, 29] that the
AQN model could explain the “solar corona heating mystery” with the solar
nanoflare events identified as the annihilation events of AQNs that impact
the Sun.

Finally, in chapter 6 and chapter 7, we discuss two phenomena that could
be potentially explained by the AQN model [4, 5]. In chapter 6, we show
that the impulsive radio events recorded by Murchison Widefield Array [9]
from quiet solar corona could be induced by the annihilation events of AQNs
impacting the Sun. In chapter 7, we show that the seasonal variation of
the near-Earth X-ray background in 2-6 keV energy range recorded by the
XMM-Newton observatory [10] could be explained by the AQN interactions
with the Earth. We conclude the thesis in chapter 8.
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Chapter 2

Review of the Axion Quark
Nugget (AQN) Model

We review the AQN model in this chapter, including the original motivation,
basic features, observational signatures, and observational constraints of the
model, and also the crucial ingredients related to the AQN formation. This
chapter is mainly based on the introductory part of Refs. [1–5]. (AQN papers
in recent years, e.g., Refs. [1–7, 28–42], usually incorporate a similar review
as the introductory part.)

2.1 Original motivation and basic features
As we have mentioned in the Introduction, the axion quark nuggets (AQNs)
are dense objects made of standard model quarks and gluons in CS phase in
nuclear density [13]. AQNs carry a large number of baryon charge, B. There
are several constraints on the parameter B, which will be reviewed later in
chapter 2.2. The typical baryon charge carried by an AQN is B ∼ 1025, and
the typical mass of an AQN can be estimated as M ∼mpB ∼ 10 g where mp

is the proton mass. Using the typical nuclear density, the typical radius of an
AQN is thus R ∼ 10−5 cm, which indicates that AQNs are macroscopically
large objects.

The idea that dark matter is in the form of composite objects consisting of
standard model quarks in a novel phase dates back to the models of strange
quark matter with different names: quark nuggets [43], strangelets [44] and
nuclearities [45]; see also Ref. [46] for a review. The AQN model which was
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originally proposed in Ref. [13] distinguishes itself from the old well-studied
models [43–46] in the following aspects:

1. AQNs are formed from the collapse of the closed axion domain walls
which are copiously produced during the epoch of QCD transition in
the early Universe. The closed axion domain wall is the shell of an
AQN, acting as an additional stabilization factor that makes the AQN
stable. This will be discussed in chapter 2.3 and chapter 3 in detail.
This fact solves several problems arising in the older models. The
formation of nuggets in old models [43–46] requires the QCD phase
transition to be first-order. However, QCD transition is known by
now to be a crossover rather than the first-order phase transition. In
comparison, the AQN model does not require the first-order QCD phase
transition because the closed axion domain wall works as the squeezer.
In addition, even if the nuggets in old models can be formed, it is likely
that they eventually evaporate in a Hubble timescale. AQNs do not
suffer from the fast evaporation because they are in CS phase that is
drastically different from the hadronic phase, which is realized with
the external pressure from the axion domain-wall shell. In comparison,
nuggets in older models are stable with zero external pressure.

2. AQNs can be made of not only matter but also antimatter (anti-
quarks) [13, 27]. This feature is important in the AQN framework
because it provides a solution to the problem of the matter-antimatter
asymmetry observed in the Universe, in addition to explaining dark
matter. It naturally answers why the visible and dark matter abun-
dances are at the same order of magnitude, ΩDM ∼ Ωvisible. These
important points are elaborated below.

The original motivation of the AQN dark matter model is to explain the
observed similarity between visible and dark matter abundances, eq. (1.2)
(i.e., ΩDM ∼ Ωvisible). We argue below that this similarity is a very generic
feature in the AQN framework.

In the AQN framework, dark matter consists of matter AQNs and anti-
matter AQNs. They are formed as a consequence of the dynamics of closed
axion domain walls in the early Universe which can trap either quarks or
antiquarks inside. However, due to the global CP-violating effects induced
by the misalignment angle of the coherent axion field θ 6= 0 in the early
Universe, there will be a disparity between matter and antimatter AQNs,
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i.e., they trap different amounts of quarks and antiquarks. This is dubbed
as the CP-violating charge separation process. The disparity between mat-
ter and antimatter AQNs is always an order-of-one effect and insensitive to
the model parameters, which will be demonstrated analytically and numer-
ically in chapter 3 and chapter 4. The charge separation process should be
contrasted with the conventional “baryogenesis” process which normally as-
sumes that the Universe starts in a neutral phase with the net baryon charge
being zero and then evolves into a state with a net positive baryon charge
through the so-called “baryogenesis” process. The baryogenesis is replaced
by the charge separation process in the AQN framework where the Universe
remains neutral in baryon charge at all times.

The result of the CP-violating charge separation process is that there are
more antibaryons stored in antimatter AQNs than baryons stored in matter
AQNs, so there are fewer free antibaryons than free baryons in the cosmic
plasma. Then, after the annihilation of these free particles and anti-particles
in the plasma, only the extra baryons survive and comprise the visible matter
today. In other words, the unobserved antibaryons are stored in the extra
antimatter AQNs. These words can be expressed as the following simple
relations:

ΩDM = Ω−+ Ω+,

Ωvisible = Ω−−Ω+.
(2.1)

where + and − represents matter AQNs and antimatter AQNs respectively.
Therefore, the dark matter problem and the matter-antimatter asymmetry
problem turn out to be two sides of the same coin, which can be simultane-
ously resolved in the AQN framework. Furthermore, since visible and dark
mater have the same origin in the AQN framework, it is natural to expect
that they have similar abundances, ΩDM ∼Ωvisible, which is clearly indicated
by eq. (2.1). Of course, this pattern will be destroyed if the two components,
Ω+ and Ω− are very close to each other, which implies that ΩDM� Ωvisible.
However, as we will show in chapter 3, the disparity between matter and an-
timatter AQNs is an O(1) value, naturally generated by the coherent nonzero
axion field θ(t), which means Ω− ∼ Ω+ ∼ Ω−−Ω+. Therefore, the relation
ΩDM ∼ Ωvisible holds as a consequence of eq. (2.1).

To be more specific, the observed ΩDM' 5Ωvisible implies the disparity be-
tween matter and antimatter AQNs is Ω+/Ω− ' 2/3. This O(1) disparity is
not sensitive to many model parameters, as we will demonstrate in chapter 3
and chapter 4. In comparison, the conventional axion contribution to dark
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matter from misalignment mechanism [47–49] scales as Ωa ∼m−7/6
a which is

sensitive to the axion mass; see eq. (4.12) in chapter 4 for more details. This
implies that Ωa quickly drops if ma deviates (towards a larger value) from
the value at which Ωa saturates dark matter. The AQN framework does not
reject Ωa as part of dark matter. For most of the axion parameter space,
the AQN part Ω± is the dominant contribution to dark matter. The relation
between Ωa and Ω± as a function of ma will be studied in detail in chapter 4.

Another important parameter is the baryon-to-photon ratio observed in
the present Universe

ηb/γ ≡
nb−nb̄
nγ

' nb
nγ
≈ 6×10−10. (2.2)

For a baryon symmetric Universe, baryons and antibaryons will annihilate
until T ' 22 MeV when they freeze out with the relic abundance, nb/nγ =
nb̄/nγ ' 10−19, which is about nine orders of magnitude smaller than the
observed nb/nγ . In order to avoid this annihilation catastrophe, there should
be a mechanism operating in an earlier stage. The conventional mechanism,
baryogenesis, requires the generation of net baryon charge. In comparison,
the AQN solution is that different amounts of baryons and antibaryons are
hidden in form of AQNs as mentioned above. The plasma of free baryon-
s/antibaryons can continue to interact with the AQN baryons/antibaryons
until the AQN formation is completed at Tform as the CS phase is built.
Thus, AQNs decouple from the plasma and the asymmetry between mat-
ter and antimatter AQNs, and therefore, the asymmetry between baryons
and antibaryons outside in the plasma, become concrete since Tform.3 The
asymmetry is preserved until today and becomes the observed ηb/γ whose
value is determined by the temperature at which the asymmetry is formed,

3Although the asymmetry between matter AQNs (Ω+) and antimatter AQNs (Ω−)
only becomes concrete after Tform, it is actually generated in an earlier stage when the
coherent axion field θ(t) is nonzero. θ(t) decreases to nearly zero soon after the QCD
transition Tc ' 170 MeV, but AQNs continue to evolve until Tform, independently of the
earlier stage when the nonzero θ is present as the source of asymmetry. The observed
baryon-to-photon ratio requires that Tform ≈ 40 MeV, that is, the previous accumulated
asymmetry becomes much more apparent at this temperature, as all antibaryons outside
are annihilated away while baryons still remain in the cosmic plasma. There will be no
much annihilation between visible baryons and antimatter AQNs after this temperature,
as we have discussed in Ref. [3] (see also chapter 5.2). For T > Tform, the annihilation
between baryons and antibaryons is very efficient.
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ηb/γ ∼ (mp/Tform)3/2 ·exp(−mp/Tform) where mp is the proton mass; see e.g.,
Ref. [27, 50]. Using the observed value of ηb/γ , eq. (2.2), we can derive that
Tform ≈ 40 MeV. However, a small change of Tform will result in a very large
change of ηb/γ because of the exponential dependence, which means that we
cannot theoretically calculate the value of ηb/γ with any precision in the AQN
framework.

We emphasize that Tform ≈ 40 MeV is not theoretically derived from the
side of AQN model. Instead, it is an observation value, precisely determined
by the baryon-to-photon ratio, eq. (2.2). In fact, in order to compare the
theoretical prediction with the observation eq. (2.2), Tform has to be the-
oretically calculated with high precision (such a theoretical calculation in
AQN model is impracticable). Otherwise, a small deviation will result in a
large fluctuation of ηb/γ because of the exponential dependence. Neverthe-
less, Tform ≈ 40 MeV is a very reasonable value in the AQN model, because
it has a typical QCD scale, and it is close to the critical temperature of
the formation of CS phase, TCS ' 0.6∆' 60 MeV (see e.g., Ref. [51]) where
∆∼ 100 MeV is the energy gap of the CS phase.

Unlike conventional dark matter candidates, e.g., WIMPs, the presence
of the antimatter in the antimatter AQNs makes them strongly interacting
with the baryonic matter. Intuitively, such a model would strongly contradict
observations. However, detailed studies show that the model does not violate
any known observational constraints on dark matter or antimatter. Below,
we list the main features of AQNs that make them good candidates for cold
dark matter [52]:

1. The typical baryon charge carried by an AQN is huge, B∼ 1025,4 which
implies that the number density of AQNs is extremely low.

2. AQNs have nuclear densities, so the ratio of the AQN’s cross-section to
its mass is low, σ/M ∼ 10−10 cm2/g, which is far below the astrophys-
ical and cosmological limits that σ/M < 1 cm2/g. This makes AQNs
qualify as dark matter candidates.

3. AQNs are stable objects over the cosmological timescale. They can
survive the unfriendly environment of the early Universe, pre-and post-
BBN (Big Bang Nucleosynthesis) epochs, and most of them can also

4B here is in the average sense based on the observational constraints which will be
discussed in chapter 2.2. The entire B distribution (and thus the average B) can be fixed
if we identify the solar nanoflares as AQN-annihilation events in the Sun.
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Figure 2.1: This diagram incorporates many important ingredients of the
AQN framework with the QCD phase diagram. The solid oscillating line
represents the misalignment mechanism with the initial misalignment angle
θ0 staring at Tosc when the axion mass effectively turns on. The three dashed
lines represent possible paths of the AQN formation. The phase diagram is
actually much more complicated as it depends on the third essential param-
eter, θ, which is nonzero in the early Universe. The phase at nonzero θ is not
shown because it is largely unknown. This figure is taken from Refs. [1–3, 7].

survive the violent environment during structure formation and star
formation epochs; the survival pattern of AQNs will be discussed in
detail in chapter 5.

4. AQNs have considerable binding energy due to the large gap (∆ ∼
100 MeV) in CS phase, so the baryons or antibaryons locked inside
AQNs cannot participate in BBN that happens around T ∼ 1 MeV.
Thus, the conventional BBN scenario holds with possible tiny correc-
tions at the order of 10−10, which could provide a solution to the “Pri-
mordial Lithium Puzzle”[35].
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5. In the AQN framework, AQNs do not affect the conventional scenario
of structure formation because they completely decouple from photons
due to the small ratio σ/M .

6. Also, AQNs do not change the conventional analysis of CMB. Instead,
the small corrections to radiations provided by the presence of AQNs
may solve the tension of the stronger than anticipated 21 cm absorption
features observed by EDGES, as discussed in Ref. [31].

In summary, different from conventional dark matter candidates which are
“dark” because they (usually assumed to be new fundamental fields) couple
weakly to standard model particles, AQNs are “dark” because of their small
cross-section-to-mass ratio, σ/M ∼B−1/3. Nevertheless, the interactions be-
tween AQNs and visible matter will inevitably generate some observational
signatures, especially in the regions/epochs where matter is dense such as
the early Universe and the Galactic Center, or when AQNs hit the Sun or
the Earth. The induced phenomena do not violate any current observational
constraints but instead may account for some unexplained astrophysical puz-
zles and mysteries. In the following text, we list the astrophysical puzzles
and mysteries that could possibly be explained within the AQN framework.
We also overview the observational constraints put on the parameter space
of AQN mass.

2.2 Observational signatures and constraints
An antimatter AQN will emit radiation when it collides with a baryon if
they can successfully annihilate. Such events are actually very infrequent
because the number density of AQNs is very low. Incoming baryons can
only excite the surface of an AQN to emit radiation, while most of the mass
remains dark, hidden inside the AQN. This implies that the AQN model with
a larger average baryon charge, 〈B〉, will actually generate weaker emissions.
Obviously, the strength of emissions also depends on the environment. There
will be more emissions in dense regions such as the center of the Milky Way.
The interactions between antimatter AQNs and the visible baryonic matter
in the center of the Milky Way lead to electromagnetic signatures, which may
explain various emission excesses in different frequency bands from radio to
γ-ray wavelengths, including the well-known 511 keV line, if AQNs carry a
baryon charge 〈B〉 ∼ 1025. We refer the readers to Refs. [53–58] for further
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details.
In addition, the AQN model may explain some other naively unrelated

phenomena. We list them here with the corresponding AQN papers that
contain more details: the “primordial lithium puzzle” [35]; the “solar corona
heating mystery” [6, 28, 29]; the recent EDGES observations [31]; the an-
nual modulation of the near-Earth X-ray background in 2-6 keV observed by
XMM-Newton observatory [5]; the annual modulation observed by DAMA/LI-
BRA experiment [30]; the fast radio bursts [33]; the infrasound and seis-
mic acoustic waves generated by AQN annihilation events in the Earth’s
atmosphere [39]; the mysterious bursts observed by Telescope Array experi-
ment [40, 42].

Next, we overview the observational constraints on the AQN model. The
IceCube Observatory’s non-detection of a non-relativistic magnetic monopole
[59] can be used to constrain the AQN model. This is likely to be the strongest
constraint. Although AQNs and magnetic monopoles interact with matter
in very different ways, they both can generate electromagnetic and hadronic
cascades along their path impacting the Earth. Such cascades can be detected
by the detector, the non-detection of which thus puts a constraint on the
AQN flux, ΦAQN . 1/(km2yr). With the local dark matter density, ρDM ∼
0.3 GeV/cm3, assumed to be saturated by AQNs, this constraint on flux
can be translated into the constraint on the baryon charge averaged over all
AQNs:

〈B〉& 3×1024 (constraint from direct (non)observation of IceCube).
(2.3)

More details can be found in Appendix A of Ref. [36]. A constraint similar
to eq. (2.3) is given in Ref. [60] based on the Antarctic Impulsive Transient
Antenna, despite that it depends on details of the AQN emissivity. The same
paper also gives a constraint from the total geothermal energy budget of the
Earth, which sets 〈B〉> 2.6×1024.5

In Ref. [62], the authors use the Apollo data (collected by seismometers
implanted on the Moon) to constrain strange quark nuggets. When macro

5In addition, there is a constraint on the mass of macro dark matter (e.g., AQNs),
M & 55 g (which corresponds to B ∼ 1025), derived in Ref. [61] from the non-detection
of etching tracks in ancient mica. It is slightly above the lower bound (2.3), but it will
not strongly constrain the allowed window (2.5), because AQNs actually have a mass
distribution (as we will discuss below; see eq. (2.6)) and large AQNs as the dominant
portion of the total dark matter mass are well above the lower bound (2.3).
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dark matter candidates pass through the Moon, they could generate seismic
waves that could be detected by the Apollo seismometers. The Apollo data
(∼ 2500 seismic events per year and ∼ 1017 ergs total seismic energy per
year) could be used to constrain the mass and abundance of strange quark
nuggets [62]. The result is that the strange quark nuggets’ abundance in the
mass range of 10 kg to 1 ton must be at least one order of magnitude smaller
than would fully account for local dark matter [62]. The same result can be
applied to AQNs, which implies that the majority (at least 90%) of AQNs
much be lighter than 10 kg, so we have

〈B〉. 1028 (constraint from Apollo data). (2.4)

In comparison, the authors Ref [63] did another analysis about whether such
macro dark matter can generate detectable seismic waves. They showed that
Apollo data cannot be used to constrain macro dark matter with a density
roughly equal to or higher than the nuclear density, such as AQNs. This is
mainly because the size of such dense dark matter candidates is small and
cannot generate long-wavelength seismic waves strong enough (much weaker
than the assumption made by the previous paper, Ref. [62]) to be detected
by the Apollo seismometers. Thus, there is no constraint on 〈B〉 as eq. (2.4)
based on Ref. [63].

Combining together eq. (2.3) and the analyses related to Apollo data, we
get the window of AQNs that can saturate dark matter:

3×1024 . 〈B〉.

1028, based on Ref. [62],
(no upper limit), based on Ref. [63].

(2.5)

In addition, the authors of Ref. [64] have discussed various constraints
on the macro dark matter made of antimatter. The AQN model with the
window (2.5) is consistent with many constraints presented in their paper,
including the CMB and BBN constraints but in tension with the constraint
from “human detector”.6 The explanation for this tension is given in Ref. [4]

6When a macro dark matter “particle” passes through a human body, it could result
in death or serious injury similar to a gunshot injury [65]. Furthermore, an antimatter
macro could generate additional injury through radiation when it passes through a human
body [64]. The null observation of such events in a large population can be used to
constrain macro dark matter, as discussed in Ref. [64, 65]. However, these constraints
have been criticized in Ref. [4]; see also the text below.
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(see footnote 3 in Ref. [4] for details) with the basic points as follows: due to
the internal structure of (antimatter) AQNs, their annihilation with baryons
is not similar to pp̄ process that was assumed in Ref. [64]; the typical X-ray
energy assumed to be ∼1 keV in Ref. [64] is lower than that in the AQN
model [39], and higher energy X-rays have a longer mean-free path so the
majority of emissions will be deposited in the air outside the human body;
the typical AQN radius is 10−5 cm which is not likely to make a gunshot
injury, with the majority of energy deposited in the form of X-rays over the
centimeter scale [39]. It may result in death after a long time delay, so the
cause of death would be hard to be identified, in contrast with the assumption
in Ref. [64].

As we mentioned above, the AQN model may explain various emission
excesses in different frequency bands in the galactic spectrum if AQNs carry
a baryon charge 〈B〉 ∼ 1025 [53–58]. This value of 〈B〉 is consistent with the
window eq. (2.5). Another self-consistency check can be found in the proposal
that the AQN model may solve the “solar corona heating mystery” [6, 28, 29],
as we will discuss below.

When antimatter AQNs hit the Sun, they will get completely annihilated
in the transition region of the Sun. The total annihilation energy is not
sensitive to the details of the AQN model but can be estimated based on
the local dark matter density ρDM ∼ 0.3 GeV/cm3. The result of the total
annihilation energy is very close to the observed EUV (extreme ultraviolet)
luminosity ∼ 1027 erg/s [28]. It is believed that the EUV emission is pow-
ered by the impulsive heating events known as nanoflares, but the physical
origin of the nanoflares is not known yet. The similarity between the total
annihilation energy and the observed EUV emission motivated the identifi-
cation of solar nanoflares as AQN annihilation events [28]. The energy of
nanoflares W is connected to the AQN baryon charge through the simple
relation W = 2mpc

2B. The energy distribution of nanoflares, dN/dW , has
been modeled as a power-law distribution by people in the community of so-
lar physics (see e.g., Refs. [66, 67]). The baryon charge distribution of AQNs,
dN/dB, should follow the same distribution, so we have [28]

dN ∝W−αdW ∝B−αdB (2.6)

where dN is the number of nanoflare events (per unit time) with the energy
between W and W +dW . The slope α varies for different models. Analysis
in Ref. [66] favors α ≈ 2.5, while Ref. [67] considered a broken power-law

14



with α = 1.2 for small energies and α = 2.5 for large energies. The energy
range of nanoflares is usually characterized by 1021 erg.W . 1026 erg, which
corresponds to 3× 1023 . B . 3× 1028 based on the relation W = 2mpc

2B.
This largely overlaps with the window eq. (2.5), which should be considered
as a highly non-trivial self-consistency check of the AQN framework.

In chapter 5, we will study the baryon charge distribution of AQNs,
dN/dB, from the theoretical side. The result shows that dN/dB follows
a power-law distribution, which supports the proposal of identifying solar
nanoflares as AQN annihilation events. In addition, the annihilation of AQNs
in the Sun will be studied in chapter 6 where we show that AQN annihilation
events will generate impulsive radio signals that can explain the observations
by MWA [9].

2.3 Crucial ingredients of the AQN
formation

We have reviewed the motivation, basic features, observational signatures,
and observational constraints of the AQN model. Now, we are in a position
to discuss how AQNs are formed in the early Universe. In the following text,
we review the crucial ingredients related to the AQN formation while leaving
the details of analyses and simulations of AQN formation in chapter 3.

2.3.1 NDW = 1 axion domain walls
The first important ingredient of the AQN formation is the existence of ax-
ion domain walls that are formed in the early Universe. The general case of
the formation of axionic topological defects will be briefly reviewed in chap-
ter 2.3.3, while in this part, we focus on the possibility of the formation of
NDW = 1 axion domain walls in the pre-inflationary scenario.

If the Peccei-Quinn (PQ) phase transition occurs before inflation, the
axion field θ will get homogenized by the inflation. As a consequence, θ is
uniform everywhere, and there is only a single physical vacuum. Therefore,
it is normally assumed that the prerequisite for the formation of domain
walls is that the PQ phase transition occurs after inflation (post-inflationary
scenario). This argument holds for the domain walls of the types NDW > 1
whose formation requires the presence of physically different vacua. However,
NDW = 1 domain walls are special in the sense that θ interpolates between one
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and the same physical vacuum. This special characteristic makes it possible
that NDW = 1 domain walls can form even if the PQ phase transition occurs
before inflation (pre-inflationary scenario) [1, 7].7 This can be argued from
the following aspects.

First, we start with the expression of the vacuum energy, which is known
as [68, 69]8

Evac = mink(θ+ 2πk)2 +O(1/Nc). (2.7)
θ in this context stands for the axion field; k represents different branches of
the unique physical vacuum. In order to satisfy the required 2π periodicity,
Evac(θ) =Evac(θ+2π), the k different branches must be present at each point
in space and cannot be removed away by the inflation. Therefore, NDW = 1
domain walls can form as θ interpolates between different branches, k= 0 and
k= 1. Second, the interpolation between one and the same physical vacuum is
identical to the creation of solitons in 1+1 dimensional sine-Gordon model.9
Due to bosonization, the sine-Gordon soliton can be identified with the ψ
fermion of the Thirring Model [70, 71]. The production of ψ fermions at
nonzero temperature is permitted obviously, which implies the existence of
the sine-Gordon solitons in the dual picture, and this is irrelevant to whether
the PQ symmetry breaking occurs before the inflation or not. The second
argument is based on an exactly solvable model when a soliton interpolating
between different sectors can be presented as the local field which knows
nothing about the topological sectors. Nevertheless, the results should be
the same, which implies that the interpolation between different branches
must be present everywhere in space irrespective of inflation. Otherwise,

7We emphasize that pre- (post-) inflationary scenario corresponds to PQ phase transi-
tion occurring before (after) inflation. PQ phase transition corresponds to the spontaneous
symmetry breaking of the PQ symmetry and it leads to the formation of axion strings.
In comparison, the symmetry breaking leading to the formation of axion domain walls
happens much later, which is always after the inflation. In the pre-inflationary scenario,
domain walls are not accompanied by strings because strings have been blown away by
inflation. This should be contrasted with the conventional picture of string-wall network
considered in the literature for the post-inflationary scenario. More discussions can be
found in chapter 2.3.3.

8Though this expression is derived in the large-Nc limit where Nc is the number of
colors, it still holds for finite Nc, as explained in Ref. [7].

9The Lagrangian for the sine-Gordon model is LsG(x,t) = 1
2 (∂µφ)2 +m2

af
2
a cos(φ/fa).

The time-independent soliton solution has the configuration φ(x) = 4fa tan−1[exp(max)].
Extending the soliton solution trivially in the other two spatial dimensions, we get a
domain wall.
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some fundamental features of QFT will be broken.
In summary, both the arguments of the vacuum structure and the soliton-

ψ duality supports the formation of NDW = 1 axion domain walls even in the
pre-inflationary scenario.

The final comment is that we can also check the formation of such walls
from the perspective of energy. The energy barrier in the sine-Gordon po-
tential is ∼ΛQCD. The temperature of cosmic plasma at this moment is also
at the same order of magnitude, so the temperature fluctuation can over-
come the barrier and make the axion field interpolate between θ = 0 and 2π
which are separated by the barrier ∼ ΛQCD. This should be contrasted with
the formation of axion strings which can only be formed at a much higher
temperature at PQ phase transition.

2.3.2 Local spontaneous symmetry breaking of
baryon charge

Many years after the idea of axion domain walls were proposed [72, 73], it
was realized that they generally demonstrate a sandwich substructure on the
QCD scale Λ−1

QCD ' fm. This is supported by the large-Nc analysis of QCD
with the inclusion of the η′ (eta’ meson) field [74], which showed the existence
of the axion-η′ wall: the axion domain wall with the scale ∼m−1

a has a much
smaller η′ structure ∼ Λ−1

QCD sandwiched inside. This substructure plays an
important role in the AQN model, because quarks are actually squeezed by
the η′ field (rather than the axion field). The axion field and η′ field are linked
with each other so they are very stable an cannot untwist themselves. Similar
structures are also supported by the analysis of supersymmetric models with
a similar θ vacuum [75], and the explicit construction of domain walls in CS
phase [76]. In addition to these known substructures, another substructure
with a similar QCD scale that carries baryon charge has been studied in
Ref. [7]. Due to this additional substructure, quarks or antiquarks will be
trapped in the core of a domain wall. This will be discussed in detail in
chapter 3.1 based on Ref. [7], from which we will see that the baryon charge
trapped in the vicinity of the domain wall is

Bwall =Ng
∫ d2x⊥d

2k⊥
(2π)2

1
exp

(
ε−µ
T

)
+ 1

. (2.8)
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N is the baryon number induced on the domain wall per degree of freedom,
and it can be any positive or negative integers. g 'NcNf is the degeneracy
factor in the CS phase. µ is the chemical potential of baryon charge in the
vicinity of the wall.

The QCD substructure with N 6= 0 only slightly lifts the axion domain-
wall tension with a correction factor ∼ ΛQCD/fa � 1, so carrying nonzero
baryon charge can be a generic feature of the axion domain walls. Further-
more, as we will see in chapter 3.1, the QCD substructure is formed topologi-
cally, so the trapped baryon charge is protected by topology and thus cannot
easily leave the system.

The sign of N (i.e., quarks or antiquarks) is chosen randomly. As a
result, baryon and antibaryon charges are separated on the scale of the wall’s
correlation length, ξ(T ) ∼m−1

a (T ). This is coined as the local spontaneous
breaking of C symmetry. If the external environment is CP even (as in
the case θ = 0), the sign of baryon charge will be chosen randomly with
equal probability, and the evolution of matter AQNs and antimatter AQNs
will be symmetric with each other, which results in an equal number of
baryons/antibaryons carried by matter/antimatter AQNs.

2.3.3 Kibble-Zurek mechanism
Topological defects will form during a cosmological phase transition induced
by a symmetry breakdown, which is known as the Kibble-Zurek mecha-
nism [77, 78]. Due to this mechanism, symmetry breakdowns of the axion
field in the early Universe will generate various types of topological defects
known as strings and domain walls [72, 73]. When the Universe cools down to
the temperature Ts ∼ fa, the PQ symmetry, U(1)PQ, spontaneously breaks,
and the axion strings form. Later, when the temperature further drops to
the scale Tosc ∼ 1 GeV, the axion mass effective turns on induced by non-
perturbative QCD effects (see Refs. [24, 25] for a review). The nonzero axion
mass explicitly breaks U(1)PQ with NDW degenerate vacua, which leads to
the formation of axion domain walls. With the axion mass increasing rapidly
with the cosmological temperature dropping down, the symmetry breaking
becomes more pronounced, and therefore, the domain wall formation be-
comes more efficient. Finally, the axion mass acquires its asymptotic value
at the QCD transition temperature, Tc ∼ 170 MeV, when the chiral conden-
sate forms (see e.g., Ref. [79]); see also Fig. 2.1. In general, we should expect
that the axion domain walls can form at any time between Tc and Tosc. The
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temperature-dependence of axion domain-wall formation will be discussed in
detail in chapter 5.

In our case, the axion domain walls are the type NDW = 1 which are
formed in the pre-inflationary scenario, as we have discussed in chapter 2.3.1.
In this scenario, the pre-existing strings that are formed at Ts ∼ fa will
be “blown” away by the inflation, so they are not in the system when the
domain walls form. The domain wall network is dominated by a very large,
highly folded wall with a very complicated topology. In addition to this
main wall, there are some walls in the closed form [80] (see also Ref. [81]
where closed domain walls have been observed in simulation with the strings
present). Normally, these closed walls are considered to collapse with the
energy released in the form of free axions and gravitational waves [25], and
they play no important role due to their small wall area in comparison with
the large main wall. However, as we have discussed in chapter 2.3.2, the
axion domain walls carry quarks. The collapse of a closed domain wall will
be balanced by the Fermi pressure exerted by the quarks trapped inside. This
will be discussed in detail in chapter 3. We will see that the closed walls with
quarks/antiquarks trapped inside will finally evolve into matter/antimatter
AQNs.

2.3.4 Color superconductivity
The existence of the CS phase in QCD is crucial for the stability of AQNs. In
astrophysics, a CS phase could be realized in the interiors of neutron stars,
in the collapse of massive stars, and in the collision of neutron stars, etc.
See Refs. [51, 82] for a review. Similarly, a CS state could form inside an
AQN when the Fermi pressure inside balances the domain wall tension, as
we will see in chapter 3. The domain wall tension here plays the role of the
gravitational collapse in the case of neutron stars.

The superconducting phases have a large binding energy ∆ ∼ 100 MeV,
so the quarks inside AQNs can hardly participate in processes like BBN in
the early Universe at T ∼ 1 MeV long after the AQN formation, as we have
reviewed in chapter 2.1.

2.3.5 Coherent CP-odd axion field
As we discussed in chapter 2.3.2, baryon charge and antibaryon charge will
be separated as a result of axion domain walls trapping (anti)quarks with
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the sign chosen randomly. If the external environment is CP-even as in the
case θ = 0, matter/antimatter AQNs will finally carry an equal number of
baryons/antibaryons. However, the axion field can be nonzero in the early
Universe, with the initial value θ0 being any value between 0 and 2π known
as the misalignment angle. In the pre-inflationary scenario, the misalignment
angle gets homogenized by inflation and thus is coherent at the scale of the
whole Universe. At Tosc, the axion field starts to oscillate as a response to
the effectively turning on of the axion mass. The oscillation of the coherent
axion field is (see e.g., the review paper [25])

θ(t)' C

fa
√
ma(t)

1
t3/4

cos
(∫ t

dt′ωθ(t′)
)
, ω2

θ(t) =m2
a(t) + 3

16t2 (2.9)

where C is a constant. The nonzero θ will generate CP-odd effects, so
the charge separation process discussed in chapter 2.3.2 will be asymmet-
ric. Moreover, θ(t) is uniform in the entire Universe so that the asymmetry
will be coherent over this large scale. Instead, if θ(t) is space-dependent and
assumes arbitrary values in the Universe as in the post-inflationary scenario,
the asymmetric effects can be totally canceled out over a large scale of space.
This is the exact reason why we require the pre-inflationary scenario.

The coherent θ(t) will finally lead to an asymmetry between matter and
antimatter AQNs, that is, more antiquarks are trapped inside antimatter
AQNs than quarks trapped inside matter AQNs. The magnitude of the
asymmetry is O(1). This will be discussed in detail in chapter 3.2. Also,
the AQN model assumes that the Universe is neutral in baryon charge at
all times. As a consequence, in the cosmic plasma outside AQNs, there are
fewer free antiquarks than free quarks. After the annihilation in the cosmic
plasma, only the excess of quarks survives as the visible matter today. Thus,
the AQN model can explain not only the dark matter problem but also the
observed matter-antimatter asymmetry with the conventional baryogenesis
mechanism replaced by the CP-asymmetric baryon charge separation process,
as we have reviewed in chapter 2.1. In summary, matter and antimatter
AQNs together account for dark matter, and the difference between them
results in visible matter. The AQN model naturally explains the similarity
between abundances of visible matter and dark matter, Ωvisible ∼ΩDM, since
the asymmetry between matter AQNs and antimatter AQNs is order-of-one
in magnitude, which will be demonstrated in chapter 3.2.
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Chapter 3

AQN Formation

In this chapter, we are going to discuss the dynamics of closed axion domain
walls with the initial nonzero baryon charge induced in the vicinity of the
wall, which, as we will see, leads to the formation of AQNs. Also, we will
study the effect of the coherent CP-odd axion field on the AQN formation,
which turns out to generate an asymmetry between matter and antimatter
AQNs.

3.1 Review of the AQN formation
In this part, we review the AQN formation based on Ref. [7] which has studied
how baryon charge is initially induced in the vicinity of axion domain walls
and how the system (a closed axion domain wall with the induced baryon
charge) evolves.

As we have briefly mentioned in chapter 2.3.2, the QCD substructure
of baryon charge is induced in the vicinity of axion domain walls in a way
similar to that of the η′ field [74]. In both cases, the substructures arise
as a result of nontrivial boundary conditions that the vacuum states are
physically the same but topologically distinct at the two sides of a wall. This
can be described more quantitatively (see below) with the technique used
in Refs. [83, 84] which studied the generation of the magnetic field in the
domain wall background. The interaction between pseudo-scalar fields and
fermions can be described by

L4 = Ψ(i/∂−meffei(θ−φη′)γ5−µγ0)Ψ. (3.1)
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φη′ represents the eta’ meson, which is a pseudo-scalar. It enters the La-
grangian in the combination θ−φη′ as required by the low-energy effective
potential (see e.g., Refs. [74, 76, 84]). θ is the QCD topological angle and
can be understood as the dynamical axion field. The interaction between it
and Ψ in eq. (3.1) is generated through a chiral rotation to cancel the QCD
topological term.

For simplicity, in eq. (3.1), we omitted the color and flavor indices of Ψ.
meff should be treated as an effective mass that describes the interaction of
Ψ in all phases during evolution, including the initial quark-gluon plasma
(QGP) phase, the hadronic phase, and the final CS phase. For the purpose
of this chapter, the exact history of meff(T ) is not needed. Instead, it can be
assumed to be the QCD energy scale, meff ∼ ΛQCD, to simplify the analysis.
µ is the chemical potential of Ψ trapped by the wall.

Same as Refs. [83, 84], “thin-wall” approximation can be adopted here
(∂x = ∂y = 0), which simplifies eq. (3.1) to a Lagrangian of a 1+1 dimensional
fermionic system. Such a system can be further transformed into a bosonic
system using the well-known bosonization procedure [70, 71],10 which gives

L2 = 1
2(∂µθ1)2 + 1

2(∂µθ1)2 +U(θ1, θ2) + µ√
π
∂z(θ1 + θ2). (3.2)

with the effective potential

U(θ1, θ2) =−meffm0[cos(2
√
πθ1−φη′+ θ)]−meffm0[cos(2

√
πθ2 +φη′− θ)]

(3.3)
θ1, θ2 are the bosonic fields. m0 is at the same order of magnitude as meff ,
i.e., m0 ∼meff ∼ ΛQCD. The potential is minimized when the terms inside
the cosine functions take the values that are integer times of 2π. The two
sides of a domain wall can pick up different integers, just like the formation
of the axion domain wall itself. U(θ1, θ2) can be minimized for the following

10A well-known example of bosonization is the equivalence between the sin-Gordon
model and Thirring model in 1+1 dimension [70, 71], as mentioned in chapter 2.3.1. The
bosonization dictionary is known to be

Ψ(j)iγ̂
µ∂µΨ(j)→

1
2(∂µθj)2, Ψ(j)γ̂µΨ(j)→

1√
π
εµν∂

νθj ,

Ψ(j)Ψ(j)→−m0 cos(2
√
πθj), Ψ(j)iγ̂5Ψ(j)→−m0 sin(2

√
πθj).
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boundary conditions11

2
√
πθ1(z = +∞)−2

√
πθ1(z =−∞) = 2πn1,

2
√
πθ2(z = +∞)−2

√
πθ2(z =−∞) = 2πn2,

(3.4)

where n1 and n2 are integers. Such boundary conditions imply that the
domain wall carries the baryon charge N ,

N =
∫
d3xΨγ0Ψ =

∫
dz
[
Ψ(1)γ̂0Ψ(1) + Ψ(2)γ̂0Ψ(2)

]
=−(n1 +n2), (3.5)

which is calculated for the one-particle Dirac equation. The baryon charge
N is nonzero as long as n1 +n2 is nonzero. This is generally true as the
integers n1 and n2 are randomly picked up, so it is a generic phenomenon
that axion domain walls carry a certain amount of baryon charge. We em-
phasize that there is no preferences for the boundary conditions (3.4); they
are determined randomly by uncorrelated patches picking up different values.
These boundary conditions correspond to the vacuum states with the lowest
energy at large distances. The result is that a wall could carry zero baryon
charge, but more generally it will carry nonzero baryon charge. This is also
physically allowed since this QCD substructure with nonzero baryon charge
only lifts the wall tension very slightly due to the fact that ΛQCD� fa, which
therefore does not suppress the formation rate of such walls.

Furthermore, the baryon charge Bwall carried by a domain wall in three
dimensions can be recovered by multiplying N by an appropriate statistical
factor in the vicinity of the wall,

Bwall =Ng
∫ d2x⊥d

2k⊥
(2π)2

1
exp

(
ε−µ
T

)
+ 1

, (3.6)

where g 'NcNf is the degeneracy factor, ε is the energy, and µ is the chem-
ical potential of the baryon charge. T is the temperature when the axion
walls are initially formed, T ∼ 200 MeV. But it evolves with time, keep-
ing thermal equilibrium with the cosmological temperature (see below) until
Tform ∼ 40 MeV when the AQN formation is completed.

The evolution of a closed axion domain wall that initial carries the baryon
11These boundary conditions are not complete because the role of θ and φη′ are ne-

glected. However, they are good enough for the purpose of showing the possibility that
axion domain walls can carry baryon charge.
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charge Bwall, eq. (3.6), is dominated by the effective Lagrangian:

L= 1
2 ·4πR

2(t)σa · Ṙ2(t)−4πσaR2(t) + 4πR3(t)
3 [Pin(µ)−Pout(t)]. (3.7)

The closed wall is assumed to be spherically symmetric with the radius, R(t),
evolving with time. σa = 8fam2

a is the well-known axion domain wall tension.
µ(t) implicitly depends on time. The expressions of pressure terms are:

Pout '
π2gout

90 T 4
out, gout ' 7

84NcNf + 2(N2
c −1), (3.8)

Pin(µ) = P
(Fermi)
in (µ) +P

(bag constant)
in (µ), (3.9)

P
(Fermi)
in (µ) = gin

6π2

∫ ∞
0

k3dk

exp
(
ε(k)−µ
T

)
+ 1

, gin ' 2NcNf , (3.10)

P
(bag constant)
in (µ)'−EB ·Θ(µ−µ1)(1−µ2

1/µ
2). (3.11)

We take the outside pressure Pout as the pressure exerted by QGP outside
the closed wall for simplicity. P (Fermi)

in is the Fermi pressure exerted by the
trapped quarks. The pressure comes from the quarks in the bulk inside
the closed wall. These quarks are accumulated as a consequence of keeping
chemical equilibrium with the baryon charge initially induced in the vicinity
of the wall, Bwall. Such chemical equilibrium will be built very quickly,
which will be discussed below (see also eq. (3.18)). P (bag constant)

in (µ) is the
pressure due to the famous bag constant from the MIT bag model, where
EB ∼ (150 MeV)4 and µ1 ∼ 330 MeV [13]. Θ is the unit step function.
gout and gout are the degeneracy factors. It is assumed that the inside and
outside of the closed wall are in thermal equilibrium with each other at all
times, Tout ' Tin ≡ T . This assumption will be justified as a posteriori. The
flux exchange between the inside and outside regions is so efficient that the
baryon charge inside the closed wall will be refreshed very quickly, so the
thermal equilibrium is easily maintained, which will be seen later. The same
argument goes for the chemical potential µ as well. The chemical equilibrium
is maintained in the entire volume of the closed wall, i.e., µ in the bulk always
keeps the same as that in the vicinity of the wall. But unlike T , µ evolves
independently from the chemical potential outside (QGP or hadronic phase).
µ increases rapidly due to the contraction of the closed wall and could finally
settle down in CS phase, which will be seen later.
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The equation of motion from eq. (3.7) is

σaR̈(t) =− 2σa
R(t) −

σaṘ
2(t)

R(t) + ∆P (µ)−4η Ṙ(t)
R(t) (3.12)

where ∆P = Pin−Pout. The additional term, 4η Ṙ(t)
R(t) , is added to account for

the friction from the surroundings, where the shear viscosity η∼m3
π (π is the

pion mass) has the conventional QCD scale [85]. This term is dissipative, so
it cannot be directly incorporated into the Lagrangian, eq. (3.7). Eq. (3.12)
is analogous to the classical Rayleigh–Plesset equation in fluid mechanics.
The coefficient of 4η Ṙ(t)

R(t) is chosen the same as that in the Rayleigh–Plesset
equation when the viscosity, the tension term 2σa

R(t) and the pressure difference
∆P enter the equation of motion in the combination as shown in eq. (3.12).

The form of eq. (3.12) implies that the closed wall oscillates with time,
with the oscillation amplitude gradually decreasing due to the viscous term.
Assuming the stable radius is Rform, the oscillation amplitude δR ≡ R(t)−
Rform tends to vanish as t approaches tform. Taylor expanding eq. (3.12) at
R =Rform to get12

d2δR

dt2
+ 2
τR

dδR

dt
+ω2

R · δR = 0,

τR = σa
2ηRform, ω2

R = − 1
σa

d∆P
dR

∣∣∣∣∣
Rform

− 2
R2

form
∼ 1
R2

form
.

(3.13)

This differential equation represents a damped oscillator where ωR and τR
are identified as the frequency and damping time respectively, and

ωRτR ∼
σa
2η ∼

mπ

ma
∼

ΛQCD
ma

∼ 1010, (3.14)

where the expressions η ∼ m3
π, σa ' m4

π/ma and ma ∼ 10−4 eV were used.
ωRτR� 1 means the oscillation is under-damped and the system will become

12Besides, the relation 2σa/Rform = ∆P (Rform) is used, which is inferred from eq. (3.12)
with Ṙ= R̈= 0 at R=Rform. Here, ∆P (which also occurs in eq.(3.13)) depends on µ(t)
and thus implicitly depends on R. More details can be found in the original paper, Ref. [7].
Near the formation point, the closed wall oscillates at a speed close to the speed of light,
so approximately ωR ∼ 1/Rform. This is also confirmed by analyzing the implicit ∆P (R)
in Ref. [7].
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stable after #∼ 1010 oscillations. Eq. (3.13) has the solution,

R(t) =Rform + (R0−Rform)e−t/τR cos(
√

1−1/(ωRτR)2 ·ωRt)
'Rform + (R0−Rform)e−t/τR cos(ωRt).

(3.15)

To get a more precise result of the system’s evolution, eq. (3.12) needs
to be solved directly, which can only be accomplished numerically. To nu-
merically solve the evolution of eq. (3.12), we need an extra equation that
relates µ(t) to R(t). Such an equation is the conservation of the baryon
charge accumulated in the vicinity of the wall,

Ḃwall(t) = 0. (3.16)

Note that
∫
d2x⊥ = 4πR2(t) in the expression of Bwall(t). Bwall is conserved

because this part of charge is well protected by topology. Although Bwall
is conserved, baryon charge in the bulk can accumulate with µ increasing.
The source of the baryon charge accumulated in the bulk is due to the net
flux, ∆Φ≡ Φ⇒−Φ⇐, where Φ⇒ and Φ⇐ are respectively the incoming and
outgoing flux of quarks.13 ∆Φ is tiny for a small µ (∆Φ = 0 at µ = 0). On
the contrary, the average flux 〈Φ〉 ≡ Φ⇒+ Φ⇐ is always large, which can be
estimated as

〈Φ〉 ∼ gin

(2π)3

∫ vzd
3k

exp
(
k−µ
T

)
+ 1
∼ fm−3 (3.17)

A large 〈Φ〉 implies that the particle exchange is very efficient between inside
and outside of the system. The total number of particles exchanged per
oscillation period of the system can be estimated as follows,

2π
ωR
·4πR2

form · 〈Φ〉 ∼R3
formfm−3. (3.18)

This implies the particles can be entirely refreshed within ∼one cycle of the
system’s oscillation. This is the reason why the system is always in thermal

13The fluxes in both directions are not zero. The quarks inside are not absolutely
trapped but they can exchange with the outside plasma. The key point is that the thermal
equilibrium and chemical equilibrium are maintained over the scale of the entire AQN
volume, so the net baryon charge will gradually accumulate inside the nugget with a
preference depending on the sign of chemical potential. We refer the readers to Appendix
A of Ref. [7] for more details.
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equilibrium and chemical potential equilibrium.
By numerically solving the differential equations (3.12) and (3.16), one

can get how a closed axion domain wall with baryon charge trapped in-
side evolves. The numerical computation in Ref. [7] has shown that when
the closed wall finally becomes stable, the chemical potential could be large,
locating in a CS phase. However, the numerical solution suffers from a multi-
scale problem represented by eq. (3.14). The differential equations have to be
solved for # ∼ 1010 oscillations to reach the final stable state, which makes
the numerical solution extremely time-consuming and thus impractical for
traditional numerical methods. Ref. [7] made a compromise by artificially
increasing the viscosity η by 108 times to relieve the discrepancy between
scales, and assumed that this would make the system’s evolution 108 times
faster. This multi-scale problem is finally resolved by a novel numerical
method named the envelope-following method, and the details will be pre-
sented in chapter 3.3. As we will see, our result in chapter 3.3 confirms the
feature mentioned above that a formed AQN could be in a CS phase.

3.2 AQN formation: asymmetry between
matter and antimatter AQNs

The section (chapter 3.2) is adapted from Ref. [1]. As we have briefly re-
viewed in chapter 2.3, the nonzero axion field, which is coherent in the entire
Universe, eq. (2.9), is one of the crucial ingredients for the AQN model. It
produces CP-violating processes which will finally lead to a large disparity
of order one between matter and antimatter AQNs. This will be studied in
detail in this part. In chapter 3.2.1, we present some qualitative explanations
of how a relatively small θ(t) may produce a large disparity between matter
and antimatter AQNs. In chapter 3.2.2, we develop some equations to ana-
lyze the disparity quantitatively. In chapter 3.2.3, we numerically solve the
formation of matter and antimatter AQNs with the θ effects included to see
the generation of the disparity.

3.2.1 CP-violating effects
In this part, we present the generic qualitative analysis that does not depend
on detailed dynamical computations of the model. When we studied the
evolution of AQNs in chapter 3.1, we did not distinguish one species of AQNs
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(i.e., matter AQNs or antimatter AQNs) from the other. Indeed, the same
arguments hold for the other species of AQNs by flipping the sign of µ in
the Lagrangian (3.2), µ→ −µ, which is equivalent to flipping the sign of
θ1,2. One can restore the original form of the Lagrangian by flipping the sign
of the axion field, θ (and also the η′ field, φη′) [7]. This argument based on
symmetry indicates that as long as the pseudoscalar field θ fluctuates around
zero, i.e., 〈θ〉= 0, like conventional pseudoscalar fields (π and η′ mesons, for
example), the system will be CP invariant, and the matter and antimatter
AQNs will be equal in size and number density.

However, an important feature of the axion field, eq. (2.9), is that its os-
cillating amplitude decreases with time, so we have 〈θ〉 6= 0, and the system
violates CP-symmetry. Many strong processes, such as annihilation, evapo-
ration, scattering, transmission and reflection coefficients, and viscosity, etc.,
taking place inside and outside the closed wall, which are slightly different for
matter and antimatter AQNs. In particular, a slight difference between the
ground states represented by the θ-dependent condensate

〈
detΨ̄f

LΨf
R

〉
, which

can generate differences in the processes mentioned above. As a consequence,
when θ is positive, the accumulation of one species of quarks (i.e., quarks or
antiquarks) inside closed axion domain walls will be favored; when θ is nega-
tive, the accumulation of the other species of quarks will be favored, instead.
This is the generation of the disparity between matter and antimatter AQNs.

It is hard to calculate these CP-violating QCD effects explicitly as they
require the ability to solve the many-body effects in an unfriendly configu-
ration where θ,µ, and T are nonzero when even the phase diagram is still
not available; see Fig. 2.1. However, we expect the final disparity between
matter and antimatter AQNs to be proportional to θ(t), the axion field value
at the moment of the formation of axion domain walls. This is because θ(t)
finally decreases to nearly zero after many oscillations and the average of
axion field during this time interval is 〈θ〉 ∼ θ(t)/2. The time when domain
walls form could be very close to the QCD transition point, Tc. Thus, nu-
merically θ(t) could be very small, |θ(t)/θ0| ∼ 10−2-10−3. θ0 is the initial
misalignment angle and is naturally an O(1) value. Naively, we may think
that this small factor can only lead to a minor disparity . 10−2. However,
while this coupling is indeed small in the QCD scale, it is nevertheless ef-
fectively long-range and long-lasting, in contrast with conventional random
QCD processes. As a result, we expect these coherent CP-violating effects
will produce a large O(1) disparity between matter and antimatter AQNs.
These coherent CP-violating effects occur in the entire volume of a closed
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wall so that the disparity can be expressed as

∆B ∼ θ(t)V, |θ(t)/θ0| ∼ 10−2−10−3, (3.19)

where ∆B is the difference of baryon charge accumulated by matter and
antimatter AQNs. This expression should be compared with the scale of the
local spontaneous symmetry of baryon charge as discussed in chapter 2.3.2,
where Bwall ∼ S.

The axion field is coherent in the entire Universe (i.e., θ is uniform in the
entire Universe for a given time), so the disparity between matter and anti-
matter AQNs will not be washed out by the spatial variation of θ. This is the
reason why we require the pre-inflationary scenario in the AQN framework.

Next, we develop the method to quantitatively analyze the disparity be-
tween matter and antimatter AQNs in the background of the coherent axion
field.

3.2.2 Quantitative analysis
We can quantify the relation (3.19) as

B±θ =±ginAV
∫ d3k

(2π)3
1

exp
(
ε−µ
T

) (3.20)

where B+
θ and B−θ are respectively the baryon charge correction to a matter

AQN and an antimatter AQN induced by the coherent axion field, eq. (2.9),
so we have ∆B =

∣∣∣B+
θ −B

−
θ

∣∣∣. The quantity A is parameterized as A ∼ ∆θ
where ∆θ can be understood as the change of the coherent axion field am-
plitude after each axion field oscillation.14 Thus, eq. (3.20) should be under-
stood as the baryon charge correction per axion field oscillation, and ∆B here
is the disparity between matter and antimatter AQNs generated per axion
field oscillation. The disparity for each oscillation will be accumulated, so
the total disparity gradually increases with time. This can be described by
an effective A, which increases with time, representing the accumulation of
all corrections generated in the past oscillations. From now on, to discuss the
final disparity between matter and antimatter AQNs, the parameter A and

14∆θ is defined as a positive value which is the amount of the axion amplitude reduction
after each oscillation.
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thus eq. (3.20) should be understood in the sense of accumulation. Later, we
will see in chapter 3.2.3 where numerical results are presented, A is explicitly
parameterized as a specific function that increases with time.

Many other factors can affect A. In writing down eq. (3.20), we assumed
that most quarks in volume V move coherently during evolution. The quark
coherence may not be so perfect, and only a portion of the quarks inside can
move coherently as a macroscopic system. It is challenging to calculate the
resulting suppression factor because the system is now formulated in terms
of a single macroscopic variable, R(t). We assume that the uncertainties of
this suppression factor and other correction factors mentioned previously in
chapter 3.2.1 can be effectively absorbed into the numerical coefficient of A.
As we will see below, the disparity between matter and antimatter AQNs is
of order one, and it is robust as long as A is not exceedingly small.

Next, we discuss the backreaction of the coherent quark fields on the
background axion field. Eq. (3.20) was derived by considering the coher-
ently moving quarks inside a closed wall in the background of the axion field.
This approximation is only justified when the effect induced by the back-
ground field is sufficiently small. Formally, the effect eq. (3.20) should be
much smaller than the baryon charge eq. (3.6) that is initially induced in the
vicinity of the walls due to the local spontaneous symmetry breaking of the
baryon charge. Such a condition must be imposed on our system to avoid
any complications related to the backreaction of the coherent quark field on
the background axion field. This condition can be expressed as∣∣∣∣∣ B

±
θ

Bwall

∣∣∣∣∣= ART

3π
I3(µ̃)
I2(µ̃) . 1 (3.21)

where the symbols In are the Fermi integrals defined as follows,

In(µ̃) =
∫ ∞

0
dx

xn−1

ex−µ̃+ 1 . (3.22)

In writing down eq. (3.21), we have re-expressed Bwall and B±θ as15

Bwall = ginST 2

2π I2(µ̃), B±θ = ginAV T 3

2π2 I3(µ̃). (3.23)

15The induced baryon number N in the expression of Bwall eq. (2.8) can be taken as
2 [7] which means that a unit baryon charge is induced for each spin state in addition to
the principal degenerate factor, so we have Ng = gin. This will simplify our analysis.
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where µ̃≡ µ/T .
We can also understand the condition (3.21) in the way that B±θ should

be small enough so it will not violate the original boundary conditions that
determine the sign of Bwall. The expression of B±θ /Bwall is exact in eq. (3.21),
but it is not technically useful for us to carry out further analysis because it
depends on R, µ, and T . To make it technically handleable, we can simplify
eq. (3.21) as∣∣∣∣∣ B

±
θ

Bwall

∣∣∣∣∣= a(t) ·
(
RT

R0T0
· 23
I3(µ̃)
I2(µ̃)

)
∼ a(t), a(t)≡ AR0T0

2π . (3.24)

In approximating B±θ /Bwall as a, we used the relation that the oscillating R
is at the same order of magnitude of R0 on average, which is confirmed later
in numerical simulations in chapter 3.2.3 and also chapter 3.3. T = T0 is due
to the simplification adopted in this section that T is constant during the
formation of nuggets. Also, the ratio of the two Fermi integral can be well
approximated as I3(µ̃)/I2(µ̃)∼ 3/2+2/3

√
I2(µ̃) for small µ̃ (µ̃. 10), so the

combination 2/3 · I3(µ̃)/I2(µ̃)∼ 1 if we neglect the second term.
The dimensionless parameter a(t) does not depend on R, µ and T . The

condition (3.21) now becomes a(t) . 1. a(t) captures the feature of A,
which is monotonically increasing with time, representing the accumulation
of baryon charge corrections generated by the background axion field. By
monitoring the value of a(t), we know whether the expression of B±θ and thus
our analysis is valid or not. Our analysis breaks down when a(t) becomes
close to 1.

The equation of motion of AQN is still eq. (3.12), which is assumed to be
unaltered by the inclusion of the background axion field. We need an extra
constraint on the relation between R(t) and µ(t) to solve the AQN formation.
Analogous to eq. (3.16), we have

d

dt
(Bwall +B±θ ) = 0 (3.25)

Bwall is the topologically trapped baryon charge due to nontrivial boundary
conditions as discussed in chapter 3.1. B±θ can be regarded as an effective
modification to the boundary conditions (3.5) to change the value of Bwall,
but we require it not to flip the sign of Bwall, which is guaranteed by the
condition (3.21). Although Bwall +B±θ is conserved, baryon charge will ac-
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cumulate in the in the bulk of an AQN (note that B±θ is only the correction
to the bulk charge, but not represents the bulk charge itself). The source of
the charge accumulation is the net flux ∆Φ ≡ Φ⇒−Φ⇐ as we discussed in
chapter 3.1.

Bwall +B±θ is conserved, which is always equal to the initial value, so we
have

Bwall +B±θ =Bwall

[
1±a · RT

R0T0
· 23
I3(µ̃)
I2(µ̃)

]
= ginS0T 2

0
2π I2(0), (3.26)

Note that we used the condition that a is initially zero since it represents an
accumulative effect. From eq. (3.26) we get

(
R±

R0

)2
T 2

T 2
0

I2(µ̃)
I2(0)

[
1±a · R

±T

R0T0
· 23
I3(µ̃)
I2(µ̃)

]
= 1 (3.27)

where we have added the subscript ‘±’ to R to indicate the difference between
matter and antimatter AQNs explicitly. Since we are only interested in a
sufficiently small a, we Taylor expand this equation in terms of a and keep
the terms up to the first order, then we get

R±

R0
= T0
T

√√√√ I2(0)
I2(µ̃) ∓

T0
T

√√√√ I2(0)
I2(µ̃)

2

· 13a
T

T0

I3(µ̃)
I2(µ̃)

' 〈R〉
R0
∓
(
〈R〉
R0

)2
· 13a

T

T0

I3(µ̃)
I2(µ̃)

(3.28)

where 〈R〉 is the radius averaged between matter and antimatter AQNs,16

〈R〉
R0
≡ 1
R0
· 12(R+ +R−)' T0

T

√√√√ I2(0)
I2(µ̃) . (3.29)

16We have neglected the difference between µ̃+ and µ̃−. Indeed, the difference is small,
∆µ̃� 〈µ̃〉, as the chemical potential 〈µ̃〉 ≡ 〈µ〉/T becomes larger and larger with time. In
comparison, ∆R and R are at the same order of magnitude, which is the main source of
the disparity between matter and antimatter AQNs.
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The difference between the radii of matter and antimatter AQNs is

∆R = |R+−R−| 'R0 ·
(
〈R〉
R0

)2
· 23a

T

T0

I3(µ̃)
I2(µ̃) , (3.30)

so we get
∆R
〈R〉
' 〈R〉

R0
· 23a

T

T0

I3(µ̃)
I2(µ̃) '

2
3a ·
〈R〉
R0

I3(µ̃)
I2(µ̃) (3.31)

where we used the constant-temperature simplification, T = T0. As we will
see from numerical result in chapter 3.2.3, we have 〈Rform〉/R0 ' 0.6 for
T0 = 200 MeV. Substituting it back to eq. (3.29), we can get the value of
I2(µ̃form) and further I3(µ̃form)/I2(µ̃form)' 2.5, so we get

∆Rform
〈Rform〉

' ac. (3.32)

where the critical parameter ac should be regarded as the final value of a when
the coherent axion field decreases to nearly zero soon after the QCD tran-
sition temperature and the disparity between matter and antimatter AQNs
stops increasing. If we assume ac . 1, then the condition (3.21) is always
satisfied during the AQN evolution, which validates our analysis.

Next, the baryon charge difference between matter and antimatter AQNs
can be estimated as

∆Bform
〈Bform〉

' 3∆Rform
〈Rform〉

' 3ac. (3.33)

We see that even for ac as small as 0.1-0.2, the final disparity between matter
and antimatter AQNs represented by eq. (3.33) is relatively large, which is
of order one. The above analysis does not depend on the axion mass ma,
which implies that the final disparity represented by eq. (3.33) is insensitive
to ma.

Next, we are going to solve the evolution of the disparity numerically with
a(t) modeled as a specific function that increases from 0 to ac. We will see
that the numerical result supports our quantitative analysis here about the
disparity between matter and antimatter AQNs, eq. (3.32).
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3.2.3 Numerical results
In the background of the coherent axion field, the form of the Lagrangian
(3.7) that dominates the evolution of AQN in chapter 3.1 remains unchanged,
so the corresponding equation of motion (3.12) is the same for both matter
and antimatter AQNs. The modification, B±θ , brought by the coherent axion
field, is included in the equation of the baryon charge conservation, eq. (3.25).
The main goal of this section is to solve the equations (3.12) and (3.25)
numerically to obtain the evolution of the disparity between matter and
antimatter AQNs as a support to the analysis result (3.32).

In this section, we choose the initial temperature T0 = 200 MeV (which
is above the QCD transition temperature Tc) as an example to demonstrate
the disparity between matter and antimatter AQNs. The coherent axion field
θ(t) (2.9) is nonzero at T0 and quickly drops to nearly zero after Tc, so we
expect the disparity is mainly accumulated during the evolution stage from
T0 to Tc.

Before ∼ Tc, it is known that the axion mass ma(T ) experiences very
sharp changes with the temperature, ma(T ) ∼ T−β with β ' 4 (see e.g.,
Ref. [25] for a review). Nevertheless, the axion mass does not vary much
during a single axion oscillation. For the numerical computations in this
section, similar to the constant-temperature simplification T = T0, we assume
that the axion mass is a constant. These assumptions are justified only if the
typical time scale of the relevant processes such as the AQN oscillation period
is much shorter than the time scale of the external parameters (ma(T ), T ,
etc.) varying. We first compare the oscillation periods of an AQN and the
coherent axion field by computing ωR(t)/ωθ(t).

From eq. (2.9), we know ωθ(t) ' ma(t) which is a good approximation
near Tc with ma(t)t� 1 long after the axion mass effectively turning on at
Tosc ∼ 1 GeV. The exact relation between ma with T or t can be found in
the literature, see e.g. Refs. [25, 79, 86, 87]. The AQN oscillation frequency
ωR(t) can be computed based on the numerical solution of eq. (3.12) for a
few consecutive oscillations of R(t) for different values of the temperature.17

The corresponding ωR(T )/ωθ(T ) as a function of temperature is shown in
Fig. 3.1 where we choose the temperature range as 170 MeV≤ T ≤ 500 MeV,
with ma ' 10−4 eV. We see that this ratio is always much larger than unity,

17Note that ωR(t) is different from ωR calculated in eq. (3.13) with assuming the small-
ness of the oscillations which is correct at the final stage of the evolution. However, here
we care about the oscillation frequencies in the initial stage above Tc when θ(t) is relevant.
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Figure 3.1: This plot shows that ωR/ωθ is always much larger than unity in
the temperature range that we are interested in. It essentially shows that an
AQN makes a large number of oscillations while the axion field θ(t) slowly
varies. This figure is taken from Ref. [1].

even in the vicinity of the QCD transition at Tc ∼ 170 MeV. ωR(T )� ωθ(T )
means that for an AQN making a large number of oscillations, the coherent
axion field varies only slightly.

The cosmological temperature-time relation is T ∼ t−1/2. During a single
axion oscillation period, δt ∼ ωθ ∼ m−1

a (t), the corresponding temperature
variation is very tiny, δT/T ∼ δt/t ∼ [ma(t)t]−1 � 1. The corresponding
axion mass variation is also very tiny, δma/ma ∼ β · (δT/T )� 1. During a
single AQN oscillation period, which is much shorter than an axion oscillation
period, the temperature and axion mass variations are even smaller. These
arguments unambiguously show that our adiabatic approximation that treats
ma(T ) and T as constants is justified.

Next, we come back to numerically solve the evolution of the disparity
between matter and antimatter AQNs. As we have discussed in chapter 3.2.2,
a(t) monotonically increases with time from 0 at T0 to its final value ac soon
after Tc when the coherent axion field almost vanishes. Also, as we have ar-
gued in chapter 3.2.2, it is hard to calculate a(t) from first principles because
it requires the ability to solve the many-body effects in the background of
nonzero µ, T and θ but even the QCD phase diagram is not clearly known
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yet. Instead, we model a(t) as a function which captures the essential features
a(t). Such a function can be

a(t) = ac tanh
(
t

tc

)
. (3.34)

ac and tc are two free parameters. We impose ac . 1 so that the expression
B±θ (3.20) is valid. tc controls the rate of a(t) changing with time.

Now, with eq. (3.34) implemented into the equation of baryon charge
conservation, eq. (3.25), we can solve it together with the equation of motion
eq. (3.12). The numerical result is presented in Fig. 3.2 where we choose
ma = 10−4 for illustrative purposes. In Fig. 3.2a, we plotted two subfigures
for ac = (0.1,0.5) respectively. The parameter tc is rescaled by R0 and we set
it to be tc/R0 = 10−2, which represents a relatively fast increase of a(t) from
the initial value 0 to the final value ac, based eq. (3.34). Fig. 3.2b is the same
as Fig. 3.2a but with a different parameter tc/R0 = 100 which is chosen to
represent a relatively slow increase of a(t), as a comparison with Fig. 3.2a.
In each subfigure, the blue and orange lines represent the evolution of R−(t)
(antimatter AQN) and R+(t) (matter AQN) respectively. The difference
between the two lines represent the accumulated disparity.

Comparing Fig. 3.2a with Fig. 3.2b, we see that changing tc does not affect
the final disparity, i.e., the rate at which a(t) increases does not affect the
final disparity. This is consistent with our analysis result in chapter 3.2.2 that
the disparity only depends on ac, but not depends on how a(t) increases, fast
or slow. From all plots in Fig. 3.2, we see that the disparity is determined
by ac rather than other parameters. For ac = 0.1, we see that ∆Rform =∣∣∣R+

form−R
−
form

∣∣∣≈ 0.06 and 〈Rform〉= 1/2 · (R+
form +R−form)≈ 0.6; for ac = 0.5,

we see that ∆Rform ≈ 0.3 and 〈Rform〉 ≈ 0.6. These results verify the analysis
result eq. (3.33), that is, ∆Rform/〈Rform〉 ≈ ac.

We also notice that the oscillations shown in Fig. 3.2 are very sharp.
However, this seemingly cuspy behavior is in fact quite smooth in comparison
the QCD scale. To see this, we zoom in the first few oscillations of R+ in one
subfigure (tc/R0 = 10−2,ac = 0.5) of Fig. 3.2 as an example and show it in
Fig. 3.3. We see that the duration of the cusp is δtcusp ∼ 10−3R0 ∼ 10−3m−1

a ,
which is much longer than the QCD scale δtcusp� Λ−1

QCD.
In the numerical computations in Ref. [7], the viscosity term that enters

the equation of motion (3.12) was set as η = 1 ·m3
π. Such η has been com-

puted in different models under different conditions [85, 88]. It is known
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Figure 3.2: Numerical solutions of a matter/antimatter AQN evolving in the
coherent θ(t) background. The blue and orange lines represent R−(t) and
R+(t) respectively. All four subfigures are calculated with ma = 10−4 eV, and
R0 is chosen as m−1

a . The numerical values of ac that we use in calculating
each subfigure can be seen in the upper edge of the graph. In panel (a),
we choose tc/R0 = 10−2, which represents a relatively fast increase of a(t)
from 0 to ac, based on eq. (3.34). Fig. 3.2a is adapted from Ref. [1]. As a
comparison, in panel (b), we choose tc/R0 = 100 which represents a relatively
slow increase of a(t) from 0 to ac.
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Figure 3.4: Dependence on viscosity η. Amplitudes of R−(blue) and R+

(orange) are plotted. The solid lines correspond to η = 8.4m3
π(×109) and the

dashed lines correspond to η=m3
π(×109). Here, the parameter ma = 10−4 eV

and tc/R0 = 10−5 are chosen. This figure is taken from Ref. [1].
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that the viscosity is in fact somewhat larger in the region of sufficiently high
temperature. The holographic arguments [89] suggest that η could be one
order of magnitude larger than conventional perturbative QCD predictions
(we use the factor 8.4 in our numerical computations). To see how the value
of η affects our result, in Fig. 3.4 we plot our numerical result with η = m3

π

and 8.4m3
π respectively. We see that the final disparity is insensitive to η.

We conclude chapter 3.2 as follows. The presence of a global coherent
axion field θ will generate a significant disparity, eq. (3.33), between matter
and antimatter AQNs. The disparity is the accumulation of all the CP-
violating effects generated by θ(t) during a large number of oscillations with
the amplitude gradually decreasing, as shown in eq. (2.9). The magnitude of
the final disparity is order one, supported by both quantitative analysis and
numerical computations under the condition (3.21) that the backreaction
effects are small. This is even true for a small θ, because the asymmetry
effects are generated over the scale of the entire volume of a closed wall,
∼ θV (see eq. (3.19)). It can easily grow to a large value in comparison with
the original baryon charge Bwall which is only proportional to the surface area
of the closed wall. The O(1) disparity is not sensitive to many parameters of
the system but only depend on ac, which effectively models the change of the
coherent axion field from its initial value when axion domain walls form and
closed walls start to evolve to its final nearly zero value soon after Tc. The
robust O(1) disparity between matter and antimatter AQNs unambiguously
supports the basic claim that the relation ΩDM ∼ Ωvisible is a very natural
outcome of the AQN framework.

3.3 AQN formation: real-time evolution
This section (chapter 3.3) is adapted from Ref. [3]. The main goal of this
section is to resolve the multi-scale problem that arises in numerically sim-
ulating the AQN evolution that has been briefly mentioned at the end of
chapter 3.1.18 We will eventually present the full evolution of an AQN from
initial temperature T0 to its formation temperature Tform without artificially

18In numerical computations in chapter 3.2.3, η has also been artificially rescaled to a
large number (109 times larger) [1]. This does not affect any important results we care
about in chapter 3.2.3, such as the final disparity and formation radius. The rescaling just
changes the time scale [1]. It is the goal of present section (chapter 3.3) to study the real
time scale of AQN formation.
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increasing the viscosity η by 108 times. This is coined as the “real-time evo-
lution” in contrast with the case that the artificially enlarged η makes the
evolution ∼ 108 times faster in Ref. [7]. The real-time evolution of an AQN is
accomplished with a novel numerical method named the envelope-following
method, which will be discussed in detail later in this section. Other improve-
ments compared to Ref. [7] include the cosmological time-dependent temper-
ature T (t) instead of a constant temperature and a temperature-dependent
axion mass ma(t) instead of a constant axion mass, etc.

We first review the multi-scale problem and introduce some new elements
meanwhile. Because now we adopt ma(T ) as a function of cosmological
temperature (time), the equation of motion (3.12) should be modified as

σeffR̈(t) =−2σeff
R(t) −

σeffṘ
2(t)

R(t) + ∆P (µ)−4η Ṙ(t)
R(t) − σ̇effṘ(t). (3.35)

The difference is that there we have an extra term σ̇effṘ(t). This term occurs
because the tension σeff itself is a function of time, σeff(t) = κ ·8f2

ama(t) (see
eq. (3.37) below for the explicit expression of ma(t)). Note that the domain
wall tension σa used in previous sections is replaced by the effective wall
tension σeff = κ · σa. The phenomenological parameter κ accounts for the
difference between the wall tension of an AQN σeff and that of a planar
domain wall σa [2]. In general, the σeff is smaller than σa with 0 < κ < 1,
which will be discussed in detail in chapter 4.19

Using the approximation of small-amplitude oscillation that has been
discussed in chapter 3.1, the equation of motion can be analytically solved,

19There are two main reasons for the difference between σeff and σa. We briefly summa-
rize the two reasons here. The first reason is that AQNs with baryon charge accumulated
inside will finally become stable in CS phase. Thus, in our case, the axion domain wall
solution interpolates between topologically distinct vacuum states in hadronic (outside
the AQN) and CS (inside) phases, in contrast to a conventional axion domain wall which
interpolates between distinct hadronic vacuum states. The chiral condensate may or may
not be formed in CS phase, which could strongly make the topological susceptibility in
the CS phase much smaller than in the conventional hadronic phase. The second reason
is that σa = 8f2

ama is derived using the thin-wall approximation, which could be badly
violated in the case of the closed domain wall when the radius and the width of the wall
are at the same order of magnitude. This effect is expected to reduce the domain wall
tension drastically.
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which gives

ωR ∼
1

Rform
, τR ∼

σeff
2η Rform, ωRτR ∼

σeff
2η ∼

ΛQCD
ma

(3.36)

where ωR is the oscillation frequency and τR is the damping time that rep-
resents the time scale when the formation is completed. This is a highly
nontrivial parameter as it represents a combination of very different scales.
Indeed, the viscosity η along any path in the QCD phase diagram always
assumes ΛQCD scale, η ∼ m3

π (of course, it is not known exactly in differ-
ent phases). The axion scale enters through σeff = κ · 8f2

a/ma ∼ κ ·m4
π/ma.

Finally, the cosmological scale enters as the formation effectively starts at
T ' Tc ' 170 MeV and ends at T ' Tform which represents a very long cos-
mological journey with typical time scale t∼ T−2 ∼ 10−4 seconds.

It is a highly nontrivial observation that all these drastically different
scales nevertheless lead to a consistent picture. Indeed, a typical time for a
single oscillation is ω−1

R ∼ 10−14 s for the axion mass ma∼ 10−4 eV, while the
number of oscillations is very large which is of order ωRτR ∼ 1010. Therefore,
a complete formation of the AQN occurs on a time scale 10−4 s corresponding
to the cosmological scale when the temperature drops to ∼ 40 MeV. This
scale is known from completely different arguments related to the estimate
of the baryon-to-photon ratio, eq. (2.2); see e.g., Ref. [50].

Unfortunately, we could not directly numerically test this amazing “con-
spiracy of scales” in Refs. [1, 7]. ωRτR is very large due to the drastically
different scales, ΛQCD and ma. The AQN formation will be complete after
# ∼ ωRτR oscillations, which makes it extremely time-consuming and thus
impractical to be solved using traditional numerical methods.20 This is why
the numerical analyses in Ref. [7] adopted a technical trick that the viscos-
ity η was artificially rescaled to ∼ 108 times larger to make the equation of
motion solvable.

The main goal of this section is to overcome this technical difficulty by
adopting a new numerical method—coined as the envelope-following method—
which can solve our system successfully while allowing the viscosity term to
keep its real physical magnitude, η ∼m3

π, when the parameter ωRτR ∼ 1010

20Of course, our case is by no means special in this respect: it is a common problem in
any numerical study when some parameters assume extremely large/small values. This is
obviously the case in any numerical studies related to axion physics because of the drastic
separation of scales; see, e.g., Refs. [90–92].
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assumes its very large physical value. The motivation of using the envelope-
following method and how it works are briefly explained as follows.

We notice that although an AQN is oscillating very fast during evolution,
the amplitude of oscillation is decreasing very slowly for each given cycle.
The peaks of oscillations in fact form a “smooth” line which we call an enve-
lope. We realize that if we can find a way to solve the envelope numerically,
it is unnecessary to know the full details of all oscillations. The envelope-
following method turns out to be very beneficial for our study of the AQN
oscillations. The method is efficient in solving highly oscillatory ordinary dif-
ferential equations, which was illustrated in Ref. [93]. We briefly summarize
the basic idea here.

We start with the initial conditions R=R0, Ṙ= 0 (and µ= µ0 ' 0) which
correspond to the first peak of R oscillations and we label this peak as point a.
Then we numerically solve the equation of motion (3.35) (with the constraint
from the conservation of the wall baryon charge, eq. (3.16) or eq. (3.25)) un-
til we get the next peak b of R oscillations, which should be slightly smaller
than the first peak. This step is very fast since we solve the equations just for
one oscillation. Joining points a and b, we get a secant line. This secant line
is then used to project the solution to point a′, which is many oscillations
away. Starting with a′ as the new peak, we solve the differential equations
until we get the next peak b′, etc. We repeat the above procedure of drawing
the secant line, projecting the solution, and finding the next peak. After
several projections, we get the upper envelope of R oscillations. Using the
same method, we can find the lower envelope of R oscillations and also the
envelopes of µ oscillations. We should point out that, although the details of
oscillations are not important for us, we can recover them locally if we sub-
stitute the corresponding envelope information into the differential equations
as the initial conditions.

To numerically solve the equation of motion (3.35), we also need to know
how the effective domain wall tension σeff = κ ·8f2

ama(t) evolves as a function
of time. One of the most updated results for the axion massma(T ) is based on
high-temperature lattice QCD [79]. The topological susceptibility of QCD,
χ(T ), is plotted in Figure 2 in Ref. [79] as a function of the cosmological
temperature T . The data points of the figure is also provided in Table 9 in
the Supplementary Information of the same paper, by fitting which we get
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the expression of χ(T ) as

χ(T )
MeV4 = 3.27×107Θ[T −150MeV] + Θ[150MeV−T ] 3.94×1024

(T/MeV)7.85 , (3.37)

where Θ is the unit step function. Then we can get the axion mass using the
relation

ma(T ) = χ1/2(T )
fa

. (3.38)

Eqs. (3.37) and (3.38) explicitly show that before the QCD transition, the
axion mass increase rapidly with the exponent β = 7.85/2 = 3.925 as the
cosmological temperature decreases (see e.g., Refs. [25, 86, 87] for similar re-
sults). Then the axion acquires its asymptotic mass near the QCD transition
and remains constant after that.

The cosmological time-temperature relationship is also useful in our nu-
merical calculations, which in the radiation-dominated era is well known as

T (t)
1MeV ' 1.56g−1/4

? (T )
(1sec

t

)1/2
, (3.39)

where g?(T ) is the effective degrees of freedom of all relativistic particles at
temperature T . Since the major part of the AQN evolution is after the QCD
transition, we treat g?(T ) as a constant for simplicity with g? = 17.25 (see
e.g. [94]) as in the hadronic phase.

Now we are ready to solve the equation of motion (3.35) numerically.
The numerical result is shown in Fig. 3.5.21 As we can see from Fig. 3.5, the
basic results of the real-time evolution confirm the main features of the AQN
model, which can be summarized as follows:

1. The AQN completes its evolution by oscillating a large number of times,
ωRτR ∼ 1010, before it assumes its final configuration with size Rform

21We have ignored the effect of the background coherent axion field on the AQN evo-
lution. This means that we used the conservation of the wall baryon charge (3.16),
Ḃwall(t) = 0, instead of eq. (3.25) in solving the equation of motion. This simplification is
good enough for our purpose in this section to show the validity of the envelope-following
method and verify the final CS state of AQNs. In addition, we assign a group of reasonable
values to the parameters of the system with κ= 0.04, fa = 1010 GeV, T0 = 200 MeV and
R0 = 6× 10−4 cm. Of course, these parameters can vary within a certain range, but it
is not the subject of the present work to numerically study how these parameters taking
different values will affect the AQN evolution.
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Figure 3.5: An AQN’s real-time evolution. The two solid blue lines represents
respectively the upper envelope and the lower envelope of R oscillations.
The shaded light blue region represents the numerous oscillations. The solid
orange line represents the lower envelope of µ oscillations (we did not show
the upper envelope and shaded region for µ oscillations for legibility purpose).
The dashed blue line and dashed orange line represents respectively Rform
and µform which are derived by simple analytical arguments; see eqs. (3.42)
and (3.43). We see that they match the numerical result of AQN evolution
pretty well. This figure is taken from Ref. [3].

at Tform around 40 MeV.22 Therefore, the “conspiracy of scales” phe-
nomenon mentioned above has been explicitly tested.

2. The chemical potential inside the AQN indeed assumes a sufficiently
large value µform & 450 MeV during this long evolution. This magnitude

22This does not mean we can obtain Tform with high precision from the side of AQN
model. As we have discussed in chapter 2 (see the text below eq. (2.2)), to compare the
theoretical prediction with the observed baryon-to-photon ratio, ηb/γ , Tform has to be
determined with high precision because ηb/γ depends on Tform very sensitively. To get
Tform high precisely, we have to take all the ingredients (including the omitted ones such
as the effects of annihilation events during AQN formation) into simulation with high
precision, which is an extremely difficult task. Nevertheless, the simulation here shows
that Tform is indeed in the appropriate range, ∼ 40 MeV.
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is consistent with the formation of a CS phase. Therefore, the original
assumption about the CS phase used in the construction of the AQN
is justified as a posteriori.

Note that in Fig. 3.5, we also present the value of Rform and µform, which
are derived by the following simple analytical arguments. We start with the
baryon charge in the vicinity of the wall of an AQN, eq. (3.6). The AQN
starts evolution at T0 with the initial chemical potential of the baryon charge
being approximately zero, µ0 ' 0. Eq. (3.6) with a zero chemical potential
can be calculated as

Bwall(T = T0)' π2

6 g
inR2

0T
2
0 . (3.40)

Then the AQN completes its formation at Tform as it stops oscillating with
Ṙ(t) ' 0, R̈(t) ' 0, µ̇(t) ' 0. All features of the AQN (radius, chemical
potential, etc.) should remain almost constant after the formation point
T = Tform until the very end t→∞ (T → 0). Thus, with Rform ' R(T = 0)
and µform ' µ(T = 0) we get

Bwall(T = 0)' gin ·4πR2
form ·

∫ µform

0

d2k⊥
(2π)2 ' g

inR2
formµ

2
form. (3.41)

According to eq. (3.16), Bwall is conserved during evolution. Therefore, by
equating (3.40) with (3.41) we arrives at

R2
form
R2

0
= π2

6 ·
T 2

0
µ2

form
. (3.42)

Also, with all the derivative terms vanishing after Tform, the equation of
motion (3.35) can be simplified as

Rform 'R(T = 0)' 2σeff(T = 0)
∆P (T = 0) , (3.43)

where the pressure difference ∆P (T = 0) is determined by the inside pressure
eq. (3.9) and the outside pressure eq. (3.8),

∆P (T = 0)' ginµ4
form

24π2 −EB
(

1− µ2
1

µ2
form

)
. (3.44)
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The above analysis implies that we can get Rform and µform directly by
solving eqs. (3.42) and (3.43) without even numerically computing the AQN
evolution, and they are completely determined by the initial parameters,
R0 and T0. In Fig. 3.5, we plotted the analytical result of Rform and µform
corresponding to the same R0 and T0 as shown in footnote 21. We see that
they match the numerical result pretty well and thus verify the validity of
the envelope-following method.

In summary, we used an approach coined as the envelope-following method
to overcome a common numerical problem with the drastic separation of
scales in the system. In our case, the scales are the QCD scale ΛQCD, the
axion scale ma, and the cosmological time scale t∼ 10−4 s. The results sup-
port our original assumptions that the chemical potential inside the AQN
indeed assumes a sufficiently large value µform & 450 MeV after this long cos-
mological evolution. This magnitude is consistent with the formation of a CS
phase, as shown in the QCD phase diagram. Also, the AQNs complete their
formation precisely in the region of Tform ≈ 40 MeV, which determines the
present value of the baryon-to-photon ratio, eq. (2.2). These results represent
a highly nontrivial consistency check of the AQN framework when the three
drastically different scales “conspire” to produce a self-consistent picture.

3.4 Conclusion
We conclude this chapter as follows. We first reviewed the AQN formation
based on Ref. [7]. Axion domain walls are initially formed during the QCD
epoch with some baryon charge induced in the vicinity of walls. Closed walls
could evolve into stable objects called AQNs after numerous oscillations,
dominated by the equation of motion (3.12). We also demonstrated that the
CP-violating effects due to the coherent CP-odd axion field will generate an
O(1) disparity between matter and antimatter AQNs, which is not sensitive
to many parameters of the model. Finally, we resolved the multi-scale prob-
lem that arose in numerical simulations of the AQN formation with the novel
numerical method, envelope-following method, the result of which confirms
the basic features of the AQN formation temperature and chemical potential,
Tform ∼ 40 MeV and µform & 450 MeV, which is consistent with the formation
of a CS phase. This result shows that the drastically different scales in the
system nevertheless lead to a consistent picture in the AQN framework.

In this chapter, we focused on the formation of a single AQN. However,
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AQNs can have different masses, which are determined by different initial
conditions of closed axion domain walls. We will study the size distribution
of AQNs in chapter 5. In addition, after formation at Tform ∼ 40 MeV,
antimatter AQNs are subject to the annihilation events with baryons from
the surrounding cosmic plasma. We will study the AQN evolution after Tform
in the same chapter.

In chapter 4 below, we are going to study the disparity between matter
and antimatter AQNs (represented by the parameter c) from the observa-
tional side, in the context of axion cosmology where free axions from mis-
alignment mechanism also contribute to dark matter.
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Chapter 4

AQNs and Free Axions as Dark
Matter

The AQN model does not reject the conventional source of dark matter from
the axions generated by the misalignment mechanism. In fact, the oscillating
coherent axion field, eq. (2.9), plays a dual role: in addition to generating the
asymmetry between matter AQNs and antimatter AQNs as we have discussed
in chapter 3.2, it also produces non-thermal axions, which is known as the
misalignment mechanism [47–49]. We call these axions the “free axions” in
comparison with the axion field in the form of domain wall as the shell of
an AQN. In this chapter, we are going to study the relation between AQNs
and free axions as two sources of dark matter in the AQN framework. This
chapter is adapted from Ref. [2].

4.1 Abundances of AQNs and free axions
We first start with the simple case that dark matter is fully saturated by
AQNs. From eq. (2.1), we get

ΩDM '
(1 + c

1− c

)
Ωvisible, c≡

∣∣∣∣∣ Bnuggets
Bantinuggets

∣∣∣∣∣ . (4.1)

The relation between ΩDM and Ωvisible is now expressed in terms of the
parameter c which describes the disparity between matter and antimatter
AQNs. Bnuggets and Bantinuggets can be understood as the baryon charge
stored in all matter AQNs and antimatter AQNs respectively. Some effects
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have been ignored in deriving this relation. First, the contribution from free
axions to dark matter was ignored. Second, the mass of closed axion domain
wall as the shell of an AQN was ignored when calculating the AQN mass,
so the ratio c is defined in the way that only the baryon part of an AQN
accounts for the total AQN mass. Third, energy per baryon charge for CS
phase (AQNs) and hadronic phase (visible matter) was assumed to be the
same, but in fact there are corrections to the AQN energy due to the CS
energy gap and the bag-constant term which will be discussed in chapter 4.2.
In spite of these simplifications, this relation (4.1) represents a very generic
consequence of the framework that ΩDM ∼ Ωvisible as long as the asymmetry
between matter AQNs and antimatter AQNs (i.e., c) is of order one which
has been verified in chapter 3.2. As defined in eq. (4.1), the range of c is
0< c < 1.

Now we want to generalize the relation (4.1) by accounting for all these
(previously neglected) effects. The corresponding modifications do not affect
the basic qualitative claim ΩDM ∼ Ωvisible, but may change some numerical
factors (e.g., c, as we will see in chapter 4.3), which is precisely the main
objective of the studies in this chapter.

Traditionally, the axion is regarded as one of the leading candidates for
dark matter; see e.g., Ref [24] for a review. It is normally assumed that free
axions are generated through the misalignment mechanism or as a result of
the decay of topological defects. However, in the AQN framework, AQNs
generated in the same QCD epoch as free axions enter the game and can
be the dominant part of dark matter as we will see. We now proceed with
our definitions and notations of these contributions: the contribution from
the conventional axion production reviewed in Ref. [24] and the contribution
from AQNs. As usual, we use the ratio of different component densities to
critical density today to mark their proportions:

Ωi = ρi/ρcr, i= b,±,a, (4.2)

where label i stands for different species: b for baryon (i.e., visible matter);
+ for matter AQN and − for antimatter AQN; a for free axions. ρcr is the
critical density of the Universe today. Then we have

ΩDM : Ωb = (Ω+ + Ω−+ Ωa) : Ωb ≈ 5 : 1, (4.3)

where ΩDM is represented by two parts, the axion contribution, ΩDM(axion)≡
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Ωa, and the AQN’s contribution ΩDM(nugget)≡ (Ω+ + Ω−).
Next, to describe the difference between matter AQNs and antimatter

AQNs, we define the following parameters:

cΩ ≡
Ω+
Ω−

= N+E+
N−E−

= N+ε+B+
N−ε−B−

= N+
N−

cε · c, (4.4)

where
cε ≡

ε+
ε−
, c≡ B+

B−
, 0< c < 1, (4.5)

and N± is the number density of matter/antimatter AQNs in the Universe
today; E±, B± and ε± =E±/B± are respectively the energy, baryon number
and energy density per baryon charge for a single matter/antimatter AQN.
In these relations, both baryon charges B+ and B− are defined to be positive
numbers. The definition of c in eq. (4.5) thus coincides with the definition
given in eq. (4.1).

As we have already mentioned, a number of important numerical factors
were neglected in deriving eq. (4.1). We can now formalize these effects in a
very precise way using our definitions, eqs. (4.4) and (4.5). In particular, ε± is
the energy per baryon charge in CS phase which is not the same as in hadronic
phase, i.e., ε± 6=mp/3. Furthermore, E±, which was previously estimated as
E+ = E− = B ·mp (see eq. (4.15)), now includes the contribution from the
surrounding axion domain wall, and obviously has a much more complicated
structure. In addition, we previously ignored the contribution of free axions
by assuming Ωa = 0. This will be recovered with an explicit expression for
the contribution of free axions.

To simplify our analysis, we want to make a technical assumption that
N+ 'N− in eq. (4.4). It does not affect any of our conclusions as we argue
below. The basic justification for this assumption is as follows: the initial
distributions of the matter AQNs and antimatter AQNs (i.e., closed axion
domain walls) are the same. It is just their evolution in the background of
the coherent CP-odd axion field that generates the asymmetry between them
as argued in chapter 3.2. The result in chapter 3.2 shows that matter/anti-
matter AQNs are only different in B± carried by a single AQN, but their
number densities N+ and N− remain the same. This information is coded in
equations (4.4) and (4.5) by the relation B+ 6=B−.
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Substituting N+ =N− into eq. (4.4), we arrive at the desired expression

cΩ = cε · c. (4.6)

This equation has obvious physical meaning and essentially states that the
relative contribution of the matter/antimatter AQNs to ΩDM is proportional
to the difference of the corresponding baryon charges parameterized by c, and
it is also proportional to the difference of their energy densities parameterized
by cε.

Now we want to derive an equation, similar to eq. (4.1), which accounts
for a number of the effects which were previously ignored. With this purpose,
we express the baryon number conservation in the following form

B−−B+ '
1
N±

3ρb
mp

, (4.7)

where mp is the mass of a single baryon charge and can be approximated
by the proton mass. The coefficient 3 in eq. (4.7) corresponds to our nor-
malization of the baryon charge in the present work. This normalization is
consistent with our definition of µ corresponding to the quark (rather than
baryon) chemical potential, which implies that B± count for the number of
quarks in the system, rather than the baryon charges.

With these comments in mind and using eqs. (4.2), (4.4) and (4.7), we
arrive at the following relation

Ω+
ε+

(1
c
−1) = Ω−

ε−
(1− c) = 3Ωb

mp
. (4.8)

The coefficient c ∈ (0,1) in these relations satisfies the same constraint as in
our simplified treatment of the problem presented in eq. (4.1). Therefore,

0< c < 1. (4.9)

Our next step is to rewrite the eqs. (4.3) and (4.4) in the following convenient
form:

Ω+ = cΩ ·
ΩDM−Ωa

1 + cΩ
, Ω− = ΩDM−Ωa

1 + cΩ
. (4.10)

The last step to achieve our goal is to use eqs. (4.8) and (4.6) to arrive at the
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final expressions which will be used in our numerical studies in chapter 4.3:

1− c
1 + cεc

= 3ε−
mp
· Ωb

ΩDM−Ωa
, (4.11a)

cε ·
1− c

1 + cεc
= 3ε+
mp
· Ωb

ΩDM−Ωa
. (4.11b)

Eq. (4.11) is a generalization of our previous simplified expression (4.1). It
accounts for a number of numerical effects mentioned previously. Eq. (4.11)
obviously reduces to our previous expression, eq. (4.1), in the limit when
Ωa = 0 and matter and antimatter AQNs have the same energies, i.e., ε+ =
ε− =mp/3 such that cε = 1.

While the numerical estimates for parameters ε± entering eq. (4.11) will
be discussed in detail in next chapter 4.2, the rest of this section is devoted
to a short overview of known estimates of the parameter Ωa which also enters
eq.(4.11).

The corresponding computations of Ωa have been carried out in a number
of papers. In what follows we limit ourselves by reviewing the estimates of
Ωa resulted from the misalignment mechanism [47–49], while leaving out the
contribution related to the decay of the topological defects.23 We emphasize
that we do not exclude the corresponding contribution related to the topo-
logical defects because they are unimportant. Rather, we omit them because
their role is largely unknown under present circumstances when the PQ sym-
metry is broken before inflation in the AQN framework. In addition, even
in a different scenario when the PQ symmetry is broken after inflation, the
question of whether it saturates the observed dark matter density remains
controversial as mentioned in footnote 23. Thus, we leave out this contribu-
tion to simplify our notations and our analysis as the focus of this chapter
is the AQN contribution to ΩDM rather than the direct axion production
represented by Ωa. In other words, Ωa contribution is kept in our formulas

23There is a number of uncertainties and remaining discrepancies in the corresponding
estimates. We shall not comment on these subtleties by referring to the original papers [81,
90, 91, 95, 96]. According to the computations presented in Ref. [91], the axion contribution
to ΩDM as a result of the decay of the topological objects can saturate the observed dark
matter density today if the axion mass is in the range ma = (2.62± 0.34)× 10−5 eV (a
more recent simulation gives ma = (2.52±1.10)×10−5 eV [97]), while the earlier estimates
suggest that the saturation occurs at a larger axion mass. One should also emphasize that
the computations in Refs. [81, 90, 91, 95–97] have been performed with the assumption
that PQ symmetry is broken after inflation.
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for normalization purposes to illustrate the significance (or insignificance) of
the AQN contribution to ΩDM as a function of parameters. The contribution
to Ωa due to the decay of the topological objects can always be incorpo-
rated into our formulas once the uncertainties of this contribution are better
understood.

For the misalignment production of free axions, we adopt the general
formula as presented in Ref. [24],24

Ωah
2 ≈ 2×104

(
fa

1016 GeV

)7/6(
θ2

0 + H2
I

(2πfa)2

)
Fanh


√√√√θ2

0 + H2
I

(2πfa)2

 ,
(4.12)

with

Fanh(x) =
[
ln
(

e

1−x2/π2

)]7/6
, (4.13)

where HI is the inflationary Hubble scale and Fanh(x) is the correction factor
due to the anharmonic cosine part in the axion potential [24, 98]. The param-
eter θ0 is the initial misalignment angle and HI/(2πfa) is the backreaction
contribution to this homogeneous field displacement due to the isocurvature
perturbations. The parameter fa and the axion mass ma are not indepen-
dent parameters, as their product is fixed by the topological susceptibility of
QCD, χ = f2

am
2
a. Using the recent value χ' 0.0216 fm−4 ' 3.2×107 MeV4

(see eq. (3.37) for details) at zero temperature [79], we have the present-day
value of axion mass:

ma ' 5.7×10−4 eV
(

1010 GeV
fa

)
. (4.14)

This completes our short overview of Ωa contribution entering our basic for-
mula (4.11).

Chapter 4.2 is mainly devoted to the estimates of ε± which, along with Ωa,
also enter our basic formula (4.11). Then in chapter 4.3, using the results of

24One comment on the power 7/6. The number density of misalignment axions is
na = 1/2 ·ma(tosc) · (faθ0)2 which is determined by the initial (dimensional) amplitude,
faθ0, of axion oscillations at tosc (tosc is determined by ma(tosc) ·tosc = 1 ). na is conserved
per co-moving volume (see e.g., Ref. [25]), so the present-day abundance is ρa ∼ ma ·
ma(tosc)(faθ0)2 · (Tnow/Tosc)3. Using the relations ma(T ) ∼ f−1

a T−β where β ≈ 4 (see
eq. (3.38)) and T ∼ t−1/2, we then get ρa ∝ fβ

′
a with the exponent β′ ≈ 7/6.
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chapter 4.1 and chapter 4.2, we do a numerical analysis to study the allowed
window and constraints related to the phenomenological parameters of the
AQN framework.

We conclude this section with the following generic comment. The AQN
contribution given by Ω± and the direct axion production represented by Ωa

always accompany each other during relaxation of the dynamical axion field
during the QCD epoch. These contributions to ΩDM represent complemen-
tary mechanisms and cannot be formally separated (e.g., by variation of a
free parameter of the system such as fa), as the closed NDW = 1 axion do-
main walls, which are responsible for the AQN formation, can be produced
irrespective of whether the PQ scale is above or below the inflationary scale
HI , as reviewed in chapter 2.

4.2 Internal structure of an AQN
For a stable AQN that has already been formed and settles down in CS
phase after Tform, the energy per baryon charge of the AQN ε± can be simply
estimated as follows:

M ∼B ·mp, ε± ∼
M

B
∼mp. (4.15)

However, as we have mentioned, in writing this expression, we have neglected
the difference of the CS energy density from the hadronic energy density.
Also, we have neglected the contribution from the closed axion domain wall as
the shell. The main goal of this section is to give a more precise description of
eq. (4.15) through studying the internal structure of an AQN, with the above
effects included. But as will see below, these effects will not significantly
change the basic relation (4.15), and eq. (4.15) is a very good approximation.

To accomplish the goal of incorporating the above effects, we consider two
drastically different models. Considering two different models can help us to
test the sensitivity (or non-sensitivity) of our framework to different phe-
nomenological parameters effectively describing the strongly coupled QCD.
For simplicity and without loss of generality, we assume that the CS phase
assumes the simplest possible structure in the form of the color flavor locked
(CFL) phase without any additional complications such as the possible meson
condensation.

The first model largely follows the original work, Ref. [13]. However,
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the difference with the previous analysis is that, as the first paper on the
subject, Ref. [13] was mostly dealing with fundamental and basic questions
on principle possibility to stabilize the AQNs by the axion domain walls.
The goal of the present studies is quite different as we want to produce some
quantitative results on the parameters entering the basic eq. (4.11).

The model [13] considers the equilibrium between the Fermi pressure, the
domain wall surface tension, the “bag constant” pressure ∼ EB, and finally,
the quark-quark interaction related to the CS gap. The energy of a stabilized
AQN can be represented in the following form

E(1) = 4πσeffR
2 + gµ4

6π R
3− 3∆2µ2

π2 V +EBΘ(µ−µ1)
(

1− µ
2
1
µ2

)
V, (4.16)

while the AQN’s baryon number can be estimated as follows

B = gV
∫ µ

0

d3p

(2π)3 = 2g
9πµ

3R3, (4.17)

where our normalization corresponds to B = 1 per single quark degree of
freedom in order to remain consistent with notations of chapter 4.1. Since
we are describing a stable AQN, the chemical potential µ and the radius R
are in fact µform and Rform of chapter 3. The entire AQN is in chemical
equilibrium so that we can calculate the total baryon charge carried by an
AQN in such a way, eq. (4.17); see also eq. (5.2) in chapter 5.

The domain wall tension σeff entering (4.16) requires some additional
comments. First of all, the effective domain wall tension σeff should not be
confused with the conventional surface tension σa ' 8f2

ama, which normally
enters the computations [81, 90, 91, 95, 96] of the axion production due to
the decay of the topological defects.

There are two main reasons for this important difference. First of all, the
axion domain wall solution in our case interpolates between topologically
distinct vacuum states in hadronic and CS phases, in contrast to a conven-
tional axion domain wall which interpolates between topologically distinct
hadronic vacuum states. The chiral condensate may or may not be formed
in CS phase. It strongly affects the topological susceptibility in CS phase
which could be much smaller than in the conventional hadronic phase. The
well-known manifestation of this difference is the expected smallness of the
η′ mass in CS phase in comparison with the hadronic phase. One should
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emphasize that the 2π periodicity of the axion θ and the Nambu-Goldstone
fields η′ still holds in the presence of the chemical potential µ in dense matter
CS phases [76]. Therefore, the topological reason for the mere existence of
the axion domain wall still persists, while the numerical value of the tension
σeff will deviate from its conventional expression σa computed in the hadronic
phase.

The second reason for strong deviation of the σeff from conventional ex-
pression for σa is that formula σa ' 8f2

ama was derived assuming the thin-
wall approximation when the domain wall is assumed to be almost flat, i.e.,
a typical curvature of the domain wall structure is much smaller than its
width. This approximation is obviously badly violated because the axion do-
main wall width is of order m−1

a , while the typical curvature is comparable
with the width of the domain wall as these two parameters are related in
our framework, R ∼m−1

a . The physical consequence of this relation is that
the axion field strongly overlaps within the AQN’s volume. This effect is
expected to drastically reduce the domain wall tension.25

To account for these complicated QCD effects, we define σeff ≡ κ · σa,
with an unknown phenomenological parameter, 0 < κ < 1, which accounts
for the physics mentioned above. In particular, the violation of the thin-wall
approximation was modeled in Ref. [7] by introducing a suppression factor
exp(−R0/Rform). The corresponding suppression could be quite strong and
can be as small as 10−5 assuming a typical formation radius Rform ∼ 0.1R0
as studied in Ref. [7]. In what follows we treat κ as a free phenomenological
parameter.

Our goal now is to minimize the expression (4.16). To achieve this goal
we introduce two dimensionless variables x and σ0 as

x≡RE
1/4
B

B1/3 = E
1/4
B

µ

(
8π
2g

) 1
3
, σ0 ≡

σeff

B1/3E
3/4
B

= 8χ
E

3/4
B

1
κ−1B1/3ma

, (4.18)

where we express σ0 in terms of the topological susceptibility, χ = f2
am

2
a.

25The corresponding large modifications can be understood from a simple model when
the domain wall is bent, allowing a strong overlap between opposite sides of the wall.
The effective domain wall tension obviously receives the modifications as a result of this
bending geometry when the axion field configuration deviates from a simple well-known
1D solution.
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Then, the energy per baryon charge is

ε
(1)
tot(x)≡ E(1)

B
= εDW + ε

(1)
QCD(x), εDW(x) = 32πχ

E
1/2
B

x2

κ−1B1/3ma
,

ε
(1)
QCD(x) = 3

4

(
9π
2g

) 1
3 E

1
4
B

x
− 18∆2

gE
1
4
B

(2g
9π

) 1
3
x+ 4π

3 E
1
4
Bθ(x1−x)

(
1− x

2

x2
1

)
x3.

(4.19)
The equilibrium point can be found using the condition ∂εtot/∂x= 0 at x=
xeq, and the solution can be well approximated from numerical computation
as

ε
(1)
tot '−0.57mπ + 3.51mπ

(κ−1B
1
3 ma
mπ

)0.310
, within 0.2 . κ−1B

1
3
±ma/mπ . 0.95.

(4.20)
In this expression, ε± are distinguished from each other implicitly by replac-
ing B with B± characterized by the parameter c.

This solution eq. (4.20) has accuracy up to 0.6% comparing to the exact
numerical solution within the range specified. Within this range, the contri-
bution of the closed domain wall as the shell accounts for only ∼ 1/3 of the
total energy, εDW ' 1/3 ·εtot; see the Appendix of Ref. [2] for more numerical
details. This means the contribution of the domain-wall shell is subdomi-
nant. Besides, the CS energy gap ∆' 100 MeV and E

1/4
B ' 1501/4 MeV are

considerably smaller than µ& 450 MeV (see chapter 3.3). Thus, we conclude
that the second term in eq. (4.16), which represents the contribution of the
baryon part, is dominant in comparison with other terms, i.e., the first term
(contribution of the domain-wall shell contribution) and the latter two terms
(contributions of the CS gap and the bag constant terms). This verifies that
the simple relation eq. (4.15) is a good approximation which only differs from
the precise expression (4.16) by a few subdominant numerical factors.

In addition to the first model eq. (4.16) from Ref. [13], we introduce the
second model based on the ideas of the old constituent quark model being
applied to the dense matter systems [99],

E(2) =BMq + 4πσeffR
2. (4.21)

Mq is the effective constituent quark mass in CS phase with a typical QCD
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scale. The energy per baryon charge, E(2)/B, is

ε
(2)
tot 'Mq +

(
376MeV

µ

)2
mπ

κ−1B
1
3 ma
mπ

, (4.22)

Mq and µ are not completely free parameters according to various phe-
nomenological models for dense phases. Similar to the previous studies of
this model in neutron star physics, we adopt the following numerical values
[99]: (Mq, µ)' (200,400) and (160,500) MeV respectively.

ε± in both models depends on the same parameter κ−1B1/3ma, which is
a highly nontrivial feature. Despite that the two models are built based on
fundamentally different principles, we will see in the following section that
they produce similar results.

4.3 Confronting the model with
observations

In previous sections, we introduced a number of phenomenological parame-
ters describing the AQN model and the related axion physics. Eq. (4.20) or
eq. (4.22) is used to fit the parameters ε± and further cε. Eq. (4.12) is used to
fit the abundance of free axions, Ωa. With these equations substituted into
the basic formula (4.11), we can express the key parameter c as a function
of the physically observable parameters, B, θ0, ma and HI . The main goal
of this section is to study the value of c with the above parameters varying
within the allowed parameter space that is consistent with all known obser-
vations. c, defined in eq. (4.5), which describes the disparity between matter
and antimatter AQNs, is a key parameter in our model. As we argued in
chapter 3.2, the magnitude of the disparity is O(1) as a result of interaction
with the coherent CP-odd axion field. This coefficient, in principle, is calcu-
lable from the first principles along with other parameters of the model as all
fields, coupling constants and interactions are represented by the standard
model physics accompanied by the axion field θ(x) with a single additional
fundamental parameter fa. However, such computations presently are not
feasible as even the QCD phase diagram at θ 6= 0 is not yet understood; see
Fig. 2.1.

However, the value of c can be studied from the observational side repre-
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sented by eq. (4.11). We represent our numerical results about c and related
physics in chapters 4.3.2 and 4.3.3. However, first of all, in chapter 4.3.1, we
overview the known constraints on relevant parameters.

4.3.1 Constraints on the parameter space
We start with eq. (4.9). This should not be considered as a constraint on c
as it essentially represents our convention that we define the visible matter
as the baryons with positive baryon charge. Therefore, the absolute value
of the baryon charge hidden in the antimatter AQNs B− must be greater
than the baryon charge B+ hidden in the matter AQNs (as a result of the
global conservation of the baryon charge which is assumed to be zero at all
times). This leads to the formal relation c < 1 which reflects our convention.
The parameter c is obviously a positively defined parameter as B± are both
defined positive here, which is explicitly represented by eq. (4.5).

Another constraint in our model arises in computing the energy per
baryon charge of an AQN, which is 0.2 . κ−1B1/3ma/mπ . 0.95 following
from eq. (4.20). This constraint is related to our studies of the stability of
the AQNs in CS phase; see more details in chapter 4.2.26 In addition, there
are some constraints on B as we reviewed in chapter 2; see eq. (2.5).27

We next consider the classical window28 for axion mass, see e.g., the
26To be more specific, the chemical potential decreases with the parameter κ−1B1/3ma

increasing. This can be seen from the AQN properties at the equilibrium point x = xeq
where ∂εtot/∂x = 0. Numerically, κ−1B1/3ma/mπ & 0.95 corresponds to µ . 330 MeV
where the AQNs are not in CS phase. Besides, κ−1B1/3ma cannot be too small, required
by the condition of AQN stability that 3εQCD/mp . 1 which numerically gives a lower
limit ∼ 0.2. We refer the readers to the Appendix of Ref. [2] for more technical details.
So we take 0.2 . κ−1B1/3ma/mπ . 0.95 for both the conditions of CS phase and stability
are satisfied. In comparison, the two conditions are always satisfied in model 2, since the
parameters Mq and µ are fixed at appropriate values.

27The baryon charge B that enters the basic formula (4.11) is in fact the average baryon
number 〈B〉, which can be seen from our definition of Ω± =N±B±. This means that we
have assumed that all AQNs are identical, which can greatly simplify our analysis. The
size distribution of AQNs will be discussed in chapter 5.

28For the main purposes of this paper, we will only consider “the classical axion window”,
where the initial misalignment angle θ0 is not fine-tuned. Note that while the upper
bound is a very solid constraint as it is given by stellar physics (e.g., see review [100]), the
lower bound on the axion mass in eq. (4.23) should be treated as an order of magnitude
estimate provided that θ0 is not fine-tuned. If the fine tuning is allowed, θ0 may assume
an arbitrarily small value, in which case the corresponding lower bound on ma is shifted.
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review paper [102]:
10−6 eV .ma . 10−2 eV. (4.23)

By using the relation (4.14), this window for ma can be expressed in terms
of the corresponding classical window for fa:

5.7×108 GeV . fa . 5.7×1012 GeV. (4.24)

One should emphasize that the constraint (4.23) or equivalently (4.24) is the
commonly accepted axion window, and it is not, by any means, originated
from our analysis of the AQN model. Nevertheless, all our constraints depend
on ma as it explicitly enters the eq. (4.20).

From these discussions it is clear that the axion mass ma plays a dual
role in our analysis because it enters the formulas related to the physics of
the AQNs as eq. (4.20) states. It also enters the expression (4.12) for Ωa.
This unambiguously implies that the remaining portion of the dark matter
represented by the AQN contribution (4.10) also becomes (implicitly) highly
sensitive to ma through the dependence of the axion portion of the dark
matter represented by Ωa.

As we argue below, for values of κ in the range 10−4 . κ . 10−2, the
constraints (4.20), (4.23) and (2.5) become mutually compatible, which we
consider as a highly nontrivial consistency check as all the parameters enter-
ing these relations have been constrained by very different physics related to
independent observations, experiments and analysis.

The next constraint to consider is related to the analysis of the inflation-
ary scale HI and the related constraints on the tensor-to-scalar ratio and the
isocurvature perturbations. The basic assumption of the AQN model is that
PQ symmetry breaking occurs before inflation, in which case

fa >HI/2π, (4.25)

see e.g. Ref [24] for a review. This assumption plays a crucial role in our
analysis in chapter 3 because the CP-odd axion field must be coherent on
enormous scale of the entire Universe to separate the baryon charges on
this gigantic scale with the same sign of θ. Precisely this coherent axion
field generates the disparity between the matter and antimatter AQNs which

The only exclusion interval in this case 6×10−13eV<ma < 2×10−11eV is obtained from
the black hole superradiance effects [101].
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eventually leads to the generic and fundamental prediction ΩDM ∼Ωvisible of
this entire framework.

It is known that the inflationary Hubble scale is tied to the value of the
tensor-to-scalar ratio rT which measures HI . Assuming the simplest single
field inflationary model, the non-observation of the tensor modes (rT < 0.12)
imposes the upper limit for the inflation scale, see Refs. [24, 103]:

HI/2π . 1.4×1013 GeV. (4.26)

An important comment here is that (4.26) is a highly model-dependent result
and varies from one inflationary model to another. It is presented here ex-
clusively for illustrative purposes to provide some orientation for the relevant
scales of the problem.

The isocurvature perturbations related to the axion field provide another
independent constraint on HI . We recall that the amplitude for the isocur-
vature power spectrum is determined by the following expression (see the
original papers [104–108] and the review article [24]):

AI =
(

Ωa

ΩDM

)2
·
(
HI

πφi

)2
, φi ≡ faθ0. (4.27)

The corresponding isocurvature amplitude is strongly constrained by a CMB
analysis, AI/As< 0.038, where As is the conventional amplitude for the scalar
power. It is normally assumed that the non-observation of the isocurvature
perturbation provides a strong constraint on axion properties in a scenario
where the PQ symmetry is broken before inflation. Our original comment
here is that the axion contribution represented by Ωa in eq. (4.27) to the
dark matter density ΩDM could be numerically quite small in the AQN model
as the AQNs in most cases play the dominant role by saturating the dark
matter density. Such a scenario drastically alleviates some severe constraints
on parameters in a conventional analysis where one normally assumes that
the axions saturate the dark matter density.

We conclude this part with the following remark. The conventional anal-
ysis on the relation between dark matter axions, inflationary scale, isocur-
vature perturbations very often assumes that the axions saturate the dark
matter density. It should be contrasted with our AQN model where the
axions themselves with the same fa may contribute very little to ΩDM, as
the dominant contribution may come from the AQNs which always satisfy

61



the relation ΩDM ∼ Ωvisible irrespective of many parameters in axion physics
which have been demonstrated in chapter 3. It may alleviate some severe
constraints on the parameters (such as HI ,fa, rT , θ0) which other models
normally face.

4.3.2 Numerical plots
The goal of this part is to analyze the dependence of the internal (with respect
to the AQN model) parameter c from external parameters of the system such
as B,θ0,ma,HI which are well-defined observables irrespective of the specific
features of the AQN model. As the parameter c cannot be negative or larger
than one, the corresponding plots provide us with information on the typical
values of the external parameters B,θ0,ma,HI when the AQN model is self-
consistent with all presently available constraints.

We start our analysis by plotting in Fig. 4.1a the parameter c as a func-
tion of ma and B, where we fix specific values for parameters κ = 10−4 and
HI/2π = 5.7× 108 GeV and θ0 = 10−3 to simplify the arguments and anal-
ysis. We also plotted the fa = HI/2π with a red solid line to localize the
physical parameter space and remove unphysical (within the AQN model)
solutions. We also plotted (in green and blue dashed lines) the region in pa-
rameter space where the condition (4.20) is satisfied and our computations
in the CS phase are justified. For this specific choice of the parameters one
can explicitly see that parameter c is constrained in a parallelogram with the
range 0.4 . c. 0.6. This region of the parameter space satisfies all internal
and external constraints listed chapter 4.3.1.

From the same plot one can also identify the allowed region of the baryon
charge B for a given axion mass ma. One should emphasize that the dark
matter density in Fig. 4.1a for θ0 = 10−3 is entirely saturated by the AQNs,
as the direct axion production is strongly suppressed by the small initial
misalignment angle, θ0 = 10−3. To see the role of the free axions, one can
choose θ0 = 100, as shown in Fig. 4.1b. In this case, free axions saturate
the dark matter density, ΩDM = Ωa, at small axion masses ma ' 10−5 eV, as
shown by the solid yellow line. When the choice of θ0 changes from 10−3 to
1, the corresponding allowed region for the AQN parameter space (B,ma)
will be modified accordingly as the allowed region for the AQNs obviously
shrinks when the contribution of free axions starts to play an essential role.

The key observation here is that there will always be a region (B,ma)
when the total dark matter density assumes its observational value through
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the parameter c which determines the AQN contribution to ΩDM. The corre-
sponding contribution varies to accommodate the related free axion portion
Ωa as the total dark matter density ΩDM in Fig. 4.1 is fixed and assumes its
observational value.

In Fig. 4.2, we wish to demonstrate the sensitivity of the allowed region
(B,ma) with respect to the parameter HI/2π constrained by eq. (4.26), so
we choose different values of HI/2π.

We want to demonstrate the corresponding sensitivity to HI/2π by show-
ing that there is not any dependence on HI for a sufficiently small HI/2π '
1010 GeV as shown in Fig. 4.2a. In all respects, the plot is very much the
same as the one shown in Fig. 4.1a. In both cases, the dark matter density
is dominated by the AQNs, and the allowed region (B,ma) is not sensitive
to the HI/2π as long as the Hubble parameter is sufficiently small. However,
when HI/2π becomes close to fa ∼ 1011 GeV, the window for c is shifted a
little bit (but still largely overlaps with the region 0.4 . c. 0.6) as shown in
Fig. 4.2b to accommodate the conventional contribution of the free axions.
The main point is that there will always be a region (B,ma) when the total
dark matter density assumes its observational value.

Our next task is to analyze the sensitivity of our results to the QCD
parameters related to CS properties of the AQNs. To accomplish this goal
we plot the parameter c in Fig. 4.3 as a function of ma and B using ε(2)

tot for
model 2, eq. (4.22). The corresponding plot for (Mq,µ) = (200,400) MeV is
shown in Fig. 4.3a, while the plot for (160,500) MeV is shown in Fig. 4.3b.

The main conclusion is that the model 2 (which is based on fundamentally
different building principles than model 1) with various parameters produces
nevertheless quantitatively similar results as model 1 analyzed above and
shown in Fig. 4.1a. This conclusion essentially implies that our phenomeno-
logical results are not very sensitive to the specifics of the QCD parameter-
ization of the system describing the dense CS phase of matter in a strongly
coupled regime. Therefore, we treat our results as the solid consequences of
the AQN framework.

As an additional note, the parameter cΩ as defined by eqs.(4.4) and (4.6),
which describes the mass difference between matter and antimatter AQNs
(in contrast to parameter c, which describes the baryon charge difference)
is numerically very close to parameter c studied above. Specifically, one
can show that for model 1 that is represented by eq. (4.20), the parame-
ter cΩ ' 1.17c is within 15% accuracy for the region 0.4 . c . 0.6 which
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dominates the parametrically allowed region as discussed in the preceding
paragraphs. Therefore, we do not show the plots for cΩ as a function of ex-
ternal parameters because they are very similar to the plots for c presented
and discussed above.

4.3.3 No fine-tuning problem
As we mentioned in chapter 4.1, the free axions themselves may not sat-
urate the total dark matter. In contrast, the AQN formation always gen-
erates a large contribution ΩDM ∼ Ωvisible, which always accompanies the
conventional production of free axions. This property of the AQN model is
demonstrated in Fig. 4.4, where we plot Ωa/ΩDM as a function of ma and
the combined parameter φ ≡

√
θ2

0 + (HI/(2πfa))2. The function φ(θ0,HI)
enters formula (4.12) for Ωa and counts together the initial homogeneous
displacement contribution and the backreaction contribution to the free ax-
ions. Fig. 4.4 explicitly shows that ma and φ have to be highly fine-tuned to
make Ωa saturate ΩDM exactly, shown as a bright green solid line. In other
words, for a specific magnitude of ma, there is a single value of φ when the
total dark matter density assumes its observable value. Once these two pa-
rameters, ma and φ, slightly deviate from the appropriate values, Ωa strongly
deviates from ΩDM.

This conventional fine-tuning scenario should be contrasted with the re-
sults of the AQN framework when Ωa may contribute very little to ΩDM.
Nevertheless, the ΩDM assumes its observation value as a result of an addi-
tional contribution from AQNs which always accompanies the production of
free axions and is always at the magnitude of order one, as we have already
emphasized. In other words, the AQNs play the role of the “remaining” DM
density which, in fact, could be the dominant portion of ΩDM. As we have
seen in chapter 4.3.2, for a specific magnitude of ma, there is a large window
of φ corresponding to different values of the parameter c ∈ (0,1) when the
dark matter density assumes its observable value constituted of free axions
as well as AQNs. Therefore, the fine-tuning problem does not even occur in
the AQN scenario, as the insufficient part on the left from the green solid
curve in Fig. 4.4 will be fulfilled by the contribution of AQNs. The white
region in Fig. 4.4 is excluded because the requirement Ωa ≤ΩDM is violated.

As the final technical remark, we also notice from Fig. 4.4 that for the
most part of the parameter space, we have Ωa . 0.2ΩDM. To make the above
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Figure 4.1: Contour plots of c as a function of ma and B for θ0 = 10−3 and
100 respectively with the fixed values HI/2π = 5.7×108 GeV and κ= 10−4.
The color bar shows values of the parameter c∼ 1. This is plotted with dark
matter assumed to be saturated by AQNs and free axions and ΩDM' 5Ωvisible
(same for Figs. 4.2 and 4.3). Here, B is for antimatter AQNs (same for other
figures in this chapter). This figure is taken from Ref. [2].
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Figure 4.2: Contour plots of c as a function of ma and B for HI/2π = 1010

GeV and 1011 GeV respectively with the fixed value θ0 = 10−1 and κ= 10−4.
The color bar shows values of the parameter c∼ 1. This figure is taken from
Ref. [2].
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Figure 4.3: Model 2: contour plots of c as a function of ma and B for
specific values of HI , θ0, and κ = 10−4. (a): (Mq,µ) = (200,400) MeV. (b):
(Mq,µ) = (160,500) MeV. The color bar shows values of the parameter c∼ 1.
This figure is taken from Ref. [2].
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Figure 4.4: Contour plots of Ωa/ΩDM as a function of ma and φ (see the
definition of φ in the first paragraph of chapter 4.3.3). The color bar shows
values of Ωa/ΩDM. This figure is taken from Ref. [2].

statement more precise, we plot in Fig. 4.5 the ratio Ωa/ΩDM as a function of
c and the parameter κ−1B1/3ma/mπ determined by the QCD physics as given
by eq. (4.20). The white region in Fig. 4.5 stands for the excluded region of
parameters (c, κ−1B1/3ma). This plot shows that the parameter c cannot
be very close to ∼1 for the allowed QCD window 0.2 . κ−1B1/3ma/mπ .
0.95. This property, in fact, can be understood analytically from eq. (4.1)
or its generalized version eq. (4.11) where c → 1 implies ΩDM � Ωvisible,
which violates the observable relation ΩDM ' 5Ωvisible. The main conclusion
drawn from this plot is that the allowed parameter space where ΩDM assumes
its observable value is very large and perfectly consistent with the QCD
constraints related to parameters c and κ−1B1/3ma/mπ.

This result is another manifestation of the basic consequence of the AQN
framework when the relation ΩDM ∼ Ωvisible is not sensitive to the details of
the system but rather represents a direct outcome of this proposal. This fun-
damental result is essentially incorporated into the initial building principle
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Figure 4.5: Contour plots of Ωa/ΩDM as a function of c and κ−1B1/3ma.
The color bar shows values of Ωa/ΩDM. This figure is taken from Ref. [2].

of the entire framework, and cannot disappear as a result of some additional
technical details and modifications.

4.4 Conclusion
In this chapter, we have extracted the key element of the AQN framework,
the coefficient c, which describes the disparity between matter and antimat-
ter AQNs, as defined by eq. (4.1) or its generalized version eq. (4.11), from
the observational constraints in a quantitative way. Precisely this asymmetry
eventually determines the dark matter density (within this framework) we
observe today as a result of the charge separation mechanism replacing the
conventional baryogenesis scenario as discussed in chapter 2. For most of the
parameter space of the axion mass ma, the initial misalignment angle θ0, and
the inflationary scale HI (pre-inflationary scenario), the contribution of free
axions Ωa is only a small portion of the observed dark matter density, as the
remaining dominant portion of dark matter is contributed by AQNs. There-
fore, the fundamental relation (1.2), i.e., ΩDM ∼ Ωvisible, is always satisfied
in the AQN framework with c roughly in the range (0.4,0.6). The reason
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why c≡B+/B− is not exactly 2/3 is due to the small contribution of Ωa to
ΩDM and the corrections to the AQN mass as shown in eq. (4.16) beyond the
simple relation M ∼mpB.

We should point out that all AQNs are assumed to have a single mass in
this chapter, which greatly simplifies the analysis. Including a size distribu-
tion of AQNs may change some numerical factors but will not affect the main
conclusion of this chapter. However, the size distribution of AQNs itself is
very important, because it is crucial for understanding many AQN-related
observational signatures as we have reviewed in chapter 2; see also chapter 6.
Moreover, the solar nanoflares are identified as the AQN annihilation events
in the Sun. It is thus crucial to theoretically derive the size distribution of
AQNs and check if it is consistent with the energy distribution of nanoflares.
This is the content of next chapter.
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Chapter 5

Size Distribution of AQNs and
Survival Pattern

In this chapter, we study the AQN size distribution from the theoretical
side.29 In the AQN framework, solar nanoflares are identified as the AQN
annihilation events in the Sun to explain the solar corona heating mystery, as
we have reviewed in chapter 2. Based on the simple relation, W = 2mpc

2B
(W is the nanoflare energy), the AQN size and nanoflare energy should follow
the same distribution (i.e., eq. (2.6)):

dN ∼W−αdW ∼B−αdB. (5.1)

The main motivation of this chapter is to check if the AQN size distribution
is consistent with the energy distribution of solar nanoflares. Furthermore,
we will discuss the survival pattern of the AQN size distribution during the
long evolution after the formation temperature T ∼ 40 MeV. This chapter is
adapted from Ref. [3].

29Since the size is connected to mass and baryon charge through the simple relation
M = mpB = ρV (we neglect the corrections (e.g., the axion domain-wall shell) to AQN
mass which are less important compared to the mass of baryon part as we have discussed
in chapter 4), the terms “size/mass/baryon charge distributions” have the same physical
meaning.
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5.1 Size distribution of AQNs

5.1.1 Basic idea
As we have demonstrated in chapter 3.3, the final properties of an AQN,
Rform and µform, are determined by the initial conditions R0 and T0 via the
relations (3.42) and (3.43). The entire volume of an AQN is in chemical
equilibrium, i.e., the bulk of the AQN keeps the same chemical potential as
the vicinity of the wall. Thus, the total baryon charge carried by a stable
AQN can be calculated as

B ' gin · 4π3 R3
form ·

∫ µform

0

d3k

(2π)3 '
2

9πg
inR3

formµ
3
form. (5.2)

This is calculated in the T → 0 limit, which is justified as the AQN remains
almost unchanged after formation, i.e., Rform 'R(T = 0) and µform ' µ(T =
0). Then, using eq. (3.42), we further have

B 'K ·R3
0T

3
0 , K ≡ π2

27
√

6
gin (5.3)

where the constant K is introduced for convenience. This relation implies
that the final baryon charge B of a stable AQN is completely determined by
the initial size R0 and the initial temperature T0 of the closed domain wall
such that B ∝ (R0T0)3.

As we will see later, the initial conditions of closed walls, R0 and T0,
are not fixed. Instead, they have distributions that follow certain probabil-
ity densities. Closed walls with different R0 and T0 will finally evolve into
AQNs carrying different amounts of baryon charge. By mapping the initial
distributions of R0 and T0 onto B via eq. (5.3), we can get the baryon charge
distribution of AQNs, dN/dB. We start with the following equation

dN =N0 ·P ·f(R0,T0) ·dR0dT0, (5.4)

where dN is the number of closed domain walls with the initial radius in
the range (R0,R0 + dR0) and the initial temperature in the range (T0,T0 +
dT0); f(R0,T0) is a two-parameter distribution function which represents
the probability density of a closed domain wall with R0 and T0 in the above
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ranges. The factor N0 is the total number of closed walls that form in the
early Universe, while P is a normalization factor to make the probability
density f(R0,T0) normalized to one, i.e.,∫∫

P ·f(R0,T0) ·dR0dT0 = 1. (5.5)

To simplify our analysis we assume that all initial closed walls will eventually
become the stable AQNs. We clarify this assumption later in the text when
we compare the prediction of our construction with observational constraints.
As the next step, we use the eqs. (5.3) and (5.4) to represent the number of
stable AQNs with the baryon charge less than B as follows:

N(B) =
∫∫
K·R3

0T
3
0≤B

N0 ·P ·f(R0,T0) ·dR0dT0, (5.6)

where K ·R3
0T

3
0 ≤B constraints the parameter space of the integration.

From eq. (5.6), we can further calculate the baryon charge distribution,
dN/dB, which is the main topic of this section. Obviously, the distribution
f(R0,T0) which depends on T0 and R0 in a very nontrivial way plays a
crucial rule in our calculations of the dN(B)/dB distribution. The study
of the function f(R0,T0) can be approximately separated into two distinct
pieces: one part describes the R0 dependence, while the T0 distribution can
be incorporated separately. These will be studied in detail in the following
text.

5.1.2 Initial size distribution
As discussed in chapter 2, in the AQN model, we require the pre-inflationary
scenario that the PQ symmetry breaking occurs before inflation. NDW = 1
axion domain walls can still form in this scenario with the axion field θ
interpolating between k = 0 (θ = 0) and k = 1 (θ = 2π) branches. Although
k = 0 and k = 1 branches correspond to the same unique physical vacuum,
they effectively act as two different vacua with the same energy. The domain
walls can interpolate between these (physically identical but topologically
distinct) vacua, similar to a model with V (θ) ∼ cosθ potential, when θ = 0
and θ = 2π correspond to one and the same physical vacuum. Therefore, the
NDW = 1 axion domain walls in this scenario can be treated as Z2 domain
walls which greatly simplifies the analysis.
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The closed Z2 domain walls have been observed in the simulations of
Z2-wall system [80]. In our case, this means that closed NDW = 1 axion
domain walls can form, and they are the sources of AQNs. Furthermore,
this analogy will provide us with more useful information about the initial
size distribution of these closed bubbles. The Ref. [80] pointed out that the
probability of forming a closed Z2 domain wall with the initial radius R0� ξ
(where ξ is the correlation length of the topological defects) is exponentially
suppressed, ∼ exp(−R2

0/ξ
2). The procedure in Ref. [80] to derive this relation

is briefly reiterated as follows.
To simulate the Z2 system in three dimensions, we first divide a big cubic

volume into many small cubic cells, each of which has length ξ. Then, to each
cell a number +1 or −1 is assigned at random with equal probability p= 0.5.
This is the simulation of the phenomenon that different patches (with volume
∼ ξ3) of the space during the phase transition will settle randomly with equal
probability in one of the two vacua (θ = 0 and θ = 2π in the case of NDW = 1
axion domain walls). The domain walls lie on the boundaries between cells
of opposite sign. Two neighboring cells are connected if they have the same
sign. Many connected cells can form a cluster with the same sign. The size s
of a cluster is defined as the number of cells in the cluster. We then can look
for the size distribution of +1-clusters (Of course, the size of −1-clusters will
follow the same distribution). It turns out that this is a typical problem of
percolation theory, which deals with the statistics of the clusters at different
values of p. See Refs. [109, 110] for a review of the percolation theory.30

In our case where p= 0.5 in three dimensions, the size distribution of the
finite clusters is known from percolation theory [109]:

ns ∝ s−τ exp(−λs2/3), (5.7)

where ns is the number density of finite clusters as a function of the cluster
size s (the number of the cells inside a cluster). Although the distribu-

30In percolation theory, there is a percolation threshold pc, at which an infinite cluster
first appears on an infinite lattice. pc = 0.31 in three dimensions for a cubic lattice. In our
case where the probability of a cell picking +1 is p= 0.5, we have one infinite +1-cluster
(p > pc) and one infinite −1-cluster (1−p > pc). In the language of domain walls, it can
be interpreted as the system being dominated by one infinite wall of very complicated
topology [80]. In addition to this infinite domain wall, there are some closed domain walls
(finite clusters) and they satisfy the size distribution (5.7). The structure and dynamics
of the infinite domain wall are less important for our present work which focuses on the
closed domain walls.
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tion (5.7) is derived for large clusters s� 1 [109], it turns out that this rela-
tion can be extrapolated down to s= 1 as a very good approximation [111].
As a consequence, we adopt eq. (5.7) for the whole spectrum s≥ 1 for further
calculations. The two coefficients τ and λ are p-dependent. According to the
Ref. [111], λ has a typical value ∼ 10 and τ ranges from 1.5 to 2.2 based on
the three dimensional lattice simulations. Discussing the exact values of τ
and λ at p= 0.5 is beyond the scope of this work. Instead, we simply adopt
λ = 10 and τ = 2 for further calculations.31 However, as we will see, the
shape of the baryon charge distribution dN(B)/dB for AQNs is not sensitive
to the precise numerical values of τ and λ.

The result (5.7) can be translated into the language of domain walls
straightforwardly: The probability of forming a closed bubble with radius R0
decreases exponentially when R0 increases, which can be formally expressed
as

dN

dR0
∝ ξ−1

(
R0
ξ

)2−3τ
· exp

−λ(R0
ξ

)2. (5.8)

To derive this distribution as a function of R0 from eq. (5.7), we used the
relations s'R3

0/ξ
3 and ns = 1/V ·dN/ds (we get rid of the simulation volume

V which is a constant in eq. (5.8)). The parameter ξ is the correlation length
of topological defects as mentioned above, which is also set as the length of
a single cell. The smallest cluster is a cell (s ≥ 1) implying that the lowest
bound of the radius of closed bubbles is R0 & ξ. Since the relation (5.7) is
applicable for all finite clusters s≥ 1 as mentioned above, we adopt eq. (5.8)
as the size distribution of all closed bubbles R0 & ξ.

It is very instructive to consider an oversimplified case where there is
no initial temperature distribution. It can be realized if all the closed bub-
bles form at the same moment (at the same temperature). In this case the
distribution f(R0,T0) does not depend on T0 and, according to eq. (5.8),
can be written as f(R0) = dN/dR0 ∝ ξ−1(R0/ξ)2−3τ exp[−λ(R0/ξ)2]. Using

31λ can also be calculated using the relation λ−1 ' |p−pc|−1/σp where λ−1 is the
crossover size (see e.g. Refs. [109, 112, 113]). This relation is valid for |p−pc| � 1.
The parameter σp = 0.45 in 3D [110]. We then get λ≈ 0.025 for |p−pc| � 1 satisfied. In
addition, τ =−1/9 for p > pc is obtained in a field theoretical formulation of percolation
problem [114]. However, the exact values of λ and τ are not important for us, since they
do not affect the slope of the distribution dN(B)/dB as we will see in chapter 5.1.4.
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eq. (5.3), this R0 dependence can be translated into dN/dB distribution:

dN

dB
= dN

dR0

dR0
dB
∝ 1
Bmin

(
B

Bmin

)−τ
exp

−λ( B

Bmin

) 2
3
, (5.9)

where Bmin ≡K · ξ3T 3
0 .32 In this oversimplified model where there is no T0

distribution, we find that dN/dB is greatly suppressed by the exponential
factor ∼ exp[−λ(B/Bmin)2/3]. This essentially implies that the distribution
strongly peaks at B ≈Bmin, while larger bubbles are strongly suppressed.

As we will discuss in next part, the T0 dependence drastically and qual-
itatively changes this simplified picture. The key element is that the closed
bubbles initially form at different temperatures between Tc and Tosc. The
correlation length ξ ∼m−1

a , which is inversely proportional to the axion mass
ma, drastically changes during this evolution because of the dramatic changes
of the axion mass in this interval.

These profound changes completely modify the basic features of the dis-
tribution function f(R0,T0), which is the subject of the following subsection.
As we shall see below, the baryon charge distribution satisfies a power-law
dN/dB ∝ B−α when T0 dependence is properly incorporated, rather than
following the exponential behavior eq. (5.9). This power law is consistent
with the parameterization eq. (5.1) which has been postulated to fit the ob-
servations. Furthermore, the power-law behavior dN/dB ∝ B−α is not very
sensitive to the parameters of coefficients τ and λ, and therefore, represents
a very robust consequence of the framework.

32We want to emphasize that although our discussions in this chapter can give the
shape of the AQN size distribution, it cannot predict precisely the value of Bmin. This is
because there are other uncertainties, especially the uncertainty of the phenomenological
parameter κ in chapter 4.2 which was introduced to account for the suppression of closed-
wall tension compared to the flat-wall tension, that can strongly affect the final stable
AQN size and further the stable B (see eq. (4.20)). But we expect that the effect of
κ will shift the sizes of all AQNs proportionally and thus will not affect the shape of
AQN size distribution. Instead, the best prediction for the value of Bmin comes from the
observational constraints (especially via matching the energy window of solar nanoflares
with the AQN size distribution), which implies Bmin ∼ 3× 1024; see the discussions in
chapter 2.2 and also chapter 6.1 below.
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5.1.3 Initial temperature distribution and the
correlation length ξ(T )

As we discussed in chapter 2, the closed axion domain walls could form
anywhere between Tosc and Tc where Tosc ∼ 1 GeV is the temperature when
the axion mass effectively turns on and Tc ∼ 170 MeV is the QCD transition
temperature. At Tosc, as the axion mass effectively turns on, the potential
term Va∼ma(T )2f2

a ·(1−cosθ) comes to play a role of explicitly breaking the
PQ symmetry, which leads to the formation of axion domain walls. But the
walls are very “shallow” at Tosc (recall that the wall tension is σa' 8f2

ama(T ))
because ma(T ) is small. ma(T ) increases abruptly with time and acquires its
asymptotic maximum value around Tc (see e.g., Ref. [79] for the evolution of
axion mass), so the walls become much more profound at this temperature.
We do not have much information about when the closed walls are stable
enough to start their evolution to form AQNs, but without losing generality
we can study this by assigning a probability distribution to it. It is hard
to calculate this T0 distribution exactly. It is known, though, that normally
the temperature dependence enters implicitly through the correlation length
ξ(T ) which is highly sensitive to the temperature.

To account for the corresponding modifications, we adopt the conven-
tional assumption that the correlation length is a few times the domain wall
width, ξ(T ) ∼ m−1

a (T ). The axion mass is known to be a temperature-
dependent function before it reaches its asymptotic value near Tc because it
is proportional to the topological susceptibility; see eq. (3.37). At sufficiently
high temperature T � Tc, one can use the instanton liquid model [86, 87]
to estimate the power-law ma(T )∝ T−β. When the temperature is close to
T ' Tc, one should use the lattice results to account for a proper tempera-
ture scaling of the axion mass. See eq. (3.37) for the full expression of ma(T )
where β = 3.925. We then can approximate the correlation length in the
entire interval as

ξ(T0) = ξmin ·
(
T0
Tc

)β
, Tc . T0 . Tosc (5.10)

where ξmin ≡ ξ(T0 = Tc) is the minimal correlation length. The same ξmin
also serves as the minimal radius that closed bubbles could have because
R& ξ.

In what follows we also assume the following simple model to account for
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the temperature variation of the dN/dT0 distribution:33

dN

dT0
∝ 1
Tc

[
ξ(T0)
ξ(Tc)

]δ
∝ 1
Tc

[
T0
Tc

]βδ
, Tc . T0 . Tosc (5.11)

where δ is a free parameter adjustable to shape different T0 distributions.
This parameterization has the advantage of producing a simple final expres-
sion for the baryon number distribution while still capturing the essentials
of the temperature dependence. The constant 1/Tc has no special physi-
cal meaning but is introduced to balance the units of the right-hand side
and the left-hand side of the relation. Perhaps the simplest case is δ = 0,
in which case T0 is a uniformly distributed, i.e., the probability of forming
closed walls is uniform between Tosc and Tc. One should emphasize that δ= 0
case is still not reduced to the oversimplified example mentioned at the end
of the previous subsection. This is because the temperature dependence not
only explicitly enters through (5.11), but it also enters implicitly through the
temperature dependence of the correlation length ξ(T ) in eq. (5.8).

For positive δ > 0, the AQNs tend to form close to the point Tosc, while
for negative δ < 0, AQNs tend to form when the tilt becomes much more
pronounced close to the QCD transition temperature Tc. A sufficiently large
numerical value of |δ|> 1 with any sign corresponds to a very sharp (almost
explosive for |δ| � 1) increase of the probability for the axion bubble for-
mation at T ' Tosc or at T ' Tc depending on the sign of δ. On the other
hand, |δ| ∼ 0 corresponds to a very smooth behavior in the entire temperature
interval (5.11). We, of course, do not know any properties of the distribu-
tion (5.11) in strongly coupled QCD when θ 6= 0. Therefore, we proceed
with our computations with arbitrary δ and make comments on the obtained
properties of the baryon distribution dN/dB as a function of the unknown
parameter δ in the following chapter 5.1.4.

Combining the T0 distribution (5.11) with the R0 distribution (5.8), and
substituting eq. (5.10) into eq. (5.8), we arrive at the following two-parameter

33One subtlety is that the effect of the expansion of the Universe between Tosc and Tc
is also included in the model (5.11), since N is defined as the number of closed domain
walls rather than the number density.
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distribution function,

f(R0,T0) = 1
ξminTc

·
(
T0
Tc

)3β(τ−1)+βδ
·
(
R0
ξmin

)2−3τ

× exp
−λ( R0

ξmin

)2(
Tc
T0

)2β
, Tc . T0 . Tosc, R0 & ξ(T0).

(5.12)
Notice that here we use “=” rather than “∝”. This is because we have an
extra factor P in eq. (5.4) which serves as the normalization factor, and the
constant multipliers in f(R0,T0) can be collected and included in P .

With this expression for f(R0,T0) and the basic eq. (5.6), we can now
proceed with our calculation of the baryon charge distribution dN/dB. The
corresponding results will be discussed in the next subsection.

5.1.4 The dN/dB distribution: results
Substituting eq. (5.12) into eq. (5.6), one can explicitly compute the function
N(B) and the distribution dN/dB. In what follows it is convenient to in-
troduce the following dimensionless variables: the baryon charge b=B/Bmin
of an AQN measured from its minimum value Bmin = Kξ3

minT
3
c ; the rela-

tive size r = R0/ξmin of an AQN measured from its minimum size ξmin; the
relative temperature u = T0/Tc measured in unit of Tc. In terms of these
dimensionless variables, the desired distribution dN/dB can be represented
as follows

dN

dB
= N0P

3Bmin
·
(1
b

)τ
·
∫ b

1
3(β+1)

1
du

[
u3(β+1)(τ−1)+βδe−λb

2/3u−2(β+1)
]
, (5.13)

See Appendix A with all technical details.
One can easily estimate the integral (5.13) by observing that it is satu-

rated for very large b� 1 by usat of order

usat ∼
[
λb2/3

] 1
2(β+1) ∼ b

1
3(β+1) , b� 1 (5.14)

when the exponential factor in eq. (5.13) assumes a value of order one. Sub-
stituting the expression back into eq. (5.13), one arrives at the following
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asymptotic behavior for the distribution:

dN

dB
∝B−α, B�Bmin, (5.15)

where the final result is expressed in terms of the physical baryon charge B
rather than the dimensionless parameter b. The parameter α here is defined
precisely in the same way as it was defined in the observational fitting formula
(5.1). As we can see from the plots in Appendix A, the power-law distribution
is exact as long as B is not very close to Bmin (within ∼ 1.5Bmin). In other
words, the condition B�Bmin is easily satisfied for B & 1.5Bmin.

The exponent α entering (5.15) can be approximated in the limit B �
Bmin as follows

α≈ 1− βδ+ 1
3(β+ 1) ∼ 1− δ3 , (5.16)

where in the last step we ignored the factors of order one in comparison
with the known (and very large) value of β ' 4 to simplify the qualitative
discussions below. The approximate analytical formula (5.15) at very large
B� Bmin is in perfect agreement with the numerical analysis presented in
Appendix A.

The behavior (5.15) is an amazingly simple and profoundly important
result. Indeed, it shows that the exponential suppression is replaced by
the algebraic decay (5.15) which is consistent with the observational fitting
formula (5.1). The “technical” explanation of why this happens is that the
integral (5.13) is saturated by usat when the exponential factor in eq. (5.13)
assumes a value of order one. In terms of the physical parameters, it is
related to the fact that exponential suppression (5.12) due to the large size
R0 is effectively removed by a strong temperature dependence with a very
large β. Integration over the entire temperature interval eventually leads to
the algebraic decay (5.15).

Another important property of eq. (5.15) is that the final result of the
slope α is not very sensitive to the parameters λ and τ . Of course, the
total normalization factor is very sensitive to these parameters, as discussed
in Appendix A. The slope α is also not very sensitive to the well-known
parameter β ≈ 4 as long as it is relatively large. α is mostly determined
by δ which may have any sign and effectively describes the temperature
interval where the bubbles are produced with the highest efficiency. The
fitting models (5.1) based on observations can be reproduced with a negative
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δ < 0. As we previously mentioned, a negative δ corresponds to a preference
for bubble formation close to Tc where the axion potential tilt becomes much
more pronounced. Specifically, a model with α ' 2 corresponds to δ ' −3
(strongly peaks at T ' Tc), while another model with α' 1.2 corresponds to
a more smooth distribution of dN/dB over the entire temperature interval
with δ '−1 which is a mild preference for the bubble formation at T ' Tc.

The last comment we want to make is about the largest possible size of
AQNs. According to percolation theory, there is no upper limit on the size
of finite clusters (closed domain walls). However, the shape of large clusters
may not be perfectly spherical while our computations are based on the
assumption of exact spherical symmetry of the formed bubbles. Furthermore,
the radius for non-symmetric bubbles is defined in an average sense for large
closed clusters; see e.g., Ref. [110] for more details. The deviation from the
ideal spherical shape makes the large collapsing closed domain walls fragment
into smaller pieces with high probability, and thus could significantly suppress
the possibility of forming large AQNs.34 The detailed calculation of the
suppression effect from the irregular shape for large clusters is hard to carry
out and also well beyond the scope of the present work. However, we may
introduce a cutoff Bcut to roughly account for this extra suppression. Above
Bcut, no AQNs can form from the collapse of closed axion domain walls. This
parameter turns out to be useful when we later calculate the total number
of AQNs.

We see that it is actually difficult to theoretically calculate the max-
imum size of AQN. Instead, the best prediction for this maximum value
comes from the observational constraints, especially via matching the en-
ergy window of solar nanoflares with the AQN size distribution, as we have
mentioned in footnote 32 for the case of Bmin. Based on our review of the
observational constraints in chapter 2.2 (see also chapter 6.1 below), we have
roughly Bmax ∼ 1028.

We conclude this section with the following remark. The main result of
our analysis is expressed as eq. (5.15) with the slope (5.16). This formula
represents the baryon charge distribution of AQNs immediately after the
formation period is complete, Tform ≈ 40 MeV, when the baryon-to-photon
ratio, eq. (2.2), assumes its present value. This “primordial” distribution
of AQNs is subject to modifications from the long evolution in hot cosmic

34Ref. [115] presents a similar argument when the author discussed the possibility of
domain wall membranes (e.g., closed domain walls) collapsing into black holes.
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plasma after Tform. This problem of the “survival” of the primordial AQNs
is the subject of the next section.

5.2 Survival of the primordial distribution
After AQNs have formed at Tform ≈ 40 MeV, the process of “charge separa-
tion” is essentially complete. AQNs are surrounded by the cosmic plasma
consisting of exclusively protons, neutrons, electrons and positrons. A mat-
ter AQN will attract electrons from the plasma.35 As the consequence, an
electrosphere forms as the surface layer of the AQN. Similarly, an antimat-
ter AQN has an electrosphere consisting of positrons rather than electrons.
We refer the reader to the original papers [53–58] for the properties of elec-
trosphere and the induced astronomical phenomena. The electrosphere con-
tributes negligibly to the total mass, so the mass distribution of AQNs re-
mains essentially identical to the above primordial distribution, eq. (5.15).
Since the cosmic plasma already possesses the required baryon asymmetry,
only antimatter AQNs are subject to annihilation from free protons in plasma
soon after Tform, while matter AQNs experience only elastic scattering and
thus remain almost unchanged. Thus, AQNs in the following text actually
refer to antimatter AQNs for the study of the subsequent evolution.

We divide the subsequent evolution after Tform into several stages de-
pending on the densities of electrons, positrons and protons in the cosmic
plasma, which will be discussed in the following subsections. In all stages,
we expect the scattering rate of protons on an AQN and thus the annihilation
rate scale with the cross section of the AQN, so any change of the primordial
mass distribution should behave as ∆M/M ∼ σ/M ∼B−1/3.

5.2.1 Pre-BBN evolution
This stage corresponds to T > 1 MeV. The plasma is dominated by electrons
and positrons which are as abundant as photons, ne ' ne+ ' nγ ∼ T 3. As
long as electrons and positrons are relativistic and this relation holds, all
long-range interactions are effectively screened, and we should rigidly take
the AQN size as the cross section entering the calculation of collision rate.

35This is because an AQN in CS state, say, the most symmetric color-flavor-locking
phase, is not charge neutral due to finite volume effects; see Ref. [53] and the references
therein.
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The collision rate between an AQN and baryons (protons) in the surrounding
plasma is

Γcol = 4πR2nbvb = 4πR2 2ζ(3)
π2 ηb/γT

3

√√√√2T
mp

(5.17)

where the baryon number density in plasma, nb, is approximated as nb ∼
ηb/γT

3 with ηb/γ as the baryon-to-photon ratio. The total number of collisions
is saturated by the highest temperature Tform ≈ 40 MeV when the collision
rate is largest, and can be estimated as

Ncol '
∫ Tform

0
Γcol ≈ 3×1025

(
Tform

40 MeV

)1.5( R

10−5cm

)2
(5.18)

R ∼ 10−5 cm is the typical radius of a formed AQN. While the number of
collisions is comparable with the typical total baryon charge B ∼ 1025 of
a baryon charge, only a small portion κann � 1 of collisions will result in
annihilation, as we argue below.

The first suppression factor of annihilation comes from the sharp bound-
ary between the CS phase inside and the hadronic phase outside, κanni,1 ∼
(T/ΛQCD)3, where ΛQCD is the typical strength of the sharp boundary “po-
tential” and the temperature T is the typical energy of the incoming three
quarks in a proton. This suppression factor is a generic quantum-mechanical
feature in the scattering of a particle on a sharp potential. Another suppres-
sion factor comes from the strong mismatch between the wave functions of
the hadronic quarks and CS antiquarks, κanni,2 ∼ 1/N ! where N = 3 for a
proton. It also depends on the overlapping features of the wave functions
from the two phases. We refer the readers to Appendix C in Ref. [3] for more
details. We have κanni(T ) = κanni,1 · κanni,2 . 10−3 for T = 40 MeV. This
order-or-magnitude analysis of κanni shows that the pre-BBN environment
does not change the AQN’s primordial distribution eq.(5.15), due to the tiny
number of annihilation events, κanni ·Ncol/B� 1.

5.2.2 Post-BBN evolution
When T drops below 1 MeV, ne and ne+ in the plasma decreases exponen-
tially. The electrosphere can no longer capture positrons from the plasma
sufficiently fast to balance its loss. Instead, the electrosphere starts to cap-
ture protons from the plasma for the requirement of screening. This effect
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becomes more pronounced as T drops to T∗ ≈ 20 keV when ne and ne+ be-
come equal to the proton density in the plasma, nb.36 In this section, we are
going to study how this new feature affects the annihilation of AQNs with
protons.

We start with the basic features of the AQN’s electrosphere. The number
density of positrons, n, in electrosphere distributes as follows [57],37

n(z) = T

2πα
1

(z+ z̄)2 , z̄−1 =
√

2πα ·me ·
(
T

me

)1/4
(5.19)

where z is the distance from the AQN’s quark surface. In T 6= 0 environment,
the electrosphere will be ionized with the loosely bound positrons stripped
off, resulting in a net negative charge [28],38

Q' 4πR2
∫ ∞
z1

n(z)dz ∼ 4πR2

2πα ·
(
T
√

2meT
)

(5.20)

Consequently, protons in plasma will be collected by electrosphere at T∗ to
screen the charge Q. The proton density distribution in electrosphere, np,
can be calculated using the same Thomas-Fermi method in Ref. [58] for
positrons. We have [35]:

np(z) = T

2πα
1

(z+ z̄p)2 , z̄−1
p =

√
2meT (5.21)

which is similar to eq. (5.19) but with a different constant, z̄p, obtained by
matching the charge, Q =

∫∞
0 np(z)dz. The density distributions eq. (5.19)

and eq. (5.21) are 1D approximations only valid for z � R. However, we
36AQNs at T∗ ≈ 20 keV has been discussed in Ref. [35] for their effects on BBN nuclei,

which can solve the “primordial lithium puzzle”.
37The structure of electrosphere will also be discussed in chapter 7 but in a totally differ-

ent context of AQNs impacting and crossing the Earth. The temperature of electrosphere
in the context of chapter 7 is much higher, T ∼ 200-500 keV, so the positron distribution in
the electrosphere will be modified by a few factors there. In comparison, the temperature
we are discussing here is below 20 keV, so we can use the positron distribution, eq. (5.19)
(which was derived in Ref. [57] in the context of T ∼ eV) as a good approximation for our
purpose here.

38We assume that positrons with the energy p2/(2me) < T will be stripped off by the
nonzero temperature. The positions of these positrons are mostly at the outer region of
the electrosphere, z & z1 ' (2meT )−1/2 [28].
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expect the results of Q and further z̄p will not be significantly altered by
3D corrections, because the main contribution to Q comes from the region
z�R.

At large distances, r&R, we assume a simple power-law scaling of np(r) [35]:

np(r) = n0

(
R

r

)p
, n0 ≡ np(z = 0) = T

2πα ·2meT. (5.22)

This assumption is consistent with the numerical studies in Ref. [58] with
p' 6 for positrons. It is also consistent with the conventional T = 0 Thomas-
Fermi model (see Ref. [35] and references therein). Then, the effective radius
of an AQN capturing protons, Rcap, can be obtained by matching eq. (5.22)
with the proton density in plasma, i.e., np(Rcap) = nb. This gives39

Rcap ∼
(

n0
ηb/γnγ

)1/p
R∼ 1012/p ·

(
20 keV
T

) 1
p

R. (5.23)

We see that Rcap ∼ 102R at T = T∗ for the typical value of the exponent,
p= 6.

To calculate the collision rate in this stage, we replace 4πR2 in eq. (5.17)
with the effective cross section 4πR2

cap. Then, similar to eq. (5.18), we get
the total number of collisions:

Ncol(T )'
∫ T∗

0
dT

dt

dT
Γcol(T )∼ 1024

(
T

20 keV

)( 3
2−

2
p )( R

10−5cm

)2
. (5.24)

where we used p= 6 in calculating the first factor 1024. While the number of
collisions in the T . T∗ regime is slightly smaller than that in the pre-BBN
period, eq. (5.18), the annihilation probability of these low-energy protons is
much larger. This is because these protons are electromagnetically bounded
by the AQN and they spend an extended amount of time near the AQN
quark surface. They have a larger opportunity to overlap with the CS quark
modes and thus annihilate.

39This equation breaks down when Rcap is sufficiently large. The power-law scaling
is replaced by an exponential scaling due to Debye screening which numerically becomes
operational at ∼ 10Rcap for T ∼ 20 keV [35]. The distribution of proton cloud may signif-
icantly deviate from the power-law. But for our purpose to simply determine the scale of
Rcap, the simple expression eq. (5.22) should be good enough.
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Even if the total 1024 collisions all result in annihilation, it is still small
compared with the typical baryon charge carried by an AQN, B ∼ 1025.
Thus, we conclude that the majority of AQNs will survive the post-BBN
evolution and the primordial baryon charge distribution, eq. (5.15), will not
be significantly affected.

A thoughtful reader may put forward the following question: on the one
hand, AQNs with B > 1024 can survive the pre- and post-BBN evolution in
the hot and dense plasma. On the other hand, all AQNs will get completely
annihilated when they hit the Sun to account for the “solar corona mys-
tery” [6, 28, 29]. How can these two claims be consistent? The main reason of
the drastic enhancement of the annihilation rate in solar corona is that AQNs
propagates with supersonic speeds (v > v�

√
2GM�/R� ∼ 600 km/s due to

the strong gravitational force from a mass M� localized over a relatively
small distance R�) in the ionized plasma with a very large Mach number,
Mmach = v/cs ' 10, where cs '

√
T/mp is the speed of sound in the solar at-

mosphere. It is well known that such a body will inevitably generate a shock
wave and an accompanying temperature discontinuity with turbulence in the
vicinity of the moving body. As a result of this complicated non-equilibrium
dynamics, the effective cross section and the subsequent annihilation could be
drastically enhanced in the course of the shock-wave propagation as a huge
number of ions are captured from the solar plasma due to the long-range
Coulomb interaction. We also refer the readers to chapter 6 for more details
about the AQN evolution in solar plasma which is drastically different from
its evolution in the early Universe discussed here.

5.2.3 Post-recombination evolution
When the temperature drops to the recombination scale, T ' 0.3 eV. The
universe becomes neutral and the AQN cross section no longer receives the
boost from electromagnetic effects as eq. (5.23). This implies the collision
rate is much lower after recombination and thus the AQN mass distribution
remains unchanged. In this stage, the rare annihilation events of AQNs
with the surrounding baryons are negligible compared with the dominant
CMB radiation. Nevertheless, they will leave some imprints that can be
observed today [31], due to the specific features of the spectrum of the AQN
annihilation events that the low-energy tail has a spectrum ∼ ν in contrast
with the CMB black-body spectrum ∼ ν2 at ν� T .
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Because AQNs of all sizes can get completely annihilated in the Sun, one
may wonder whether the structure formation and star formation epochs will
deplete all AQNs. The analysis of AQN evolution in the structure formation
epoch is simple, because the typical particle velocity in the gas in this stage
is at the same order of magnitude as the speed of sound, vb ∼ cs ∼ 102 km/s
and thus the AQN annihilation does not receive any enhancement from Mach
number. Basically, we should use the same formula, eq. (5.17), to compute
the collision rate but with a much smaller nb ∼ 1 cm3 and vb, so we get
a much smaller collision rate and the total number of collisions is much
smaller compared with B ∼ 1025. Thus, the structure formation epoch will
not change the primordial mass distribution of AQNs.

Next, we analyze the AQN evolution in the star formation epoch which
can be divided into two stages: the initial stage of star formation character-
ized by density ranging from np ∼ 1015 to 1 cm3 depending on the size of
the infall cloud; the final stage when the stars assume their final form as the
Sun. We start with the final stage. In this stage, AQNs captured by a star
will get completely annihilated, the same as what happens in the Sun. The
capture impact parameter, bcap, is

bcap 'R?
√

1 +γ?, γ? ≡
2GM?

R?v
. (5.25)

where v∼ 10−3c is the typical AQN (dark matter) velocity far away from the
star. Then, the rate of a star consuming AQNs can be estimated as

dMann
dt

∼ 4πb2capvρDM ' 3 ·1030
(

v

10−3c

)
mp

s , (5.26)

where solar parameters were used and ρDM is assumed to be saturated by
AQNs. Then, the total mass consumed by a star during its lifetime (approx-
imated as the Hubble time, H−1) is

Mann ≤
dMann
dt

·H−1 ∼ 1048mp ∼ 1021kg (5.27)

which is tiny compared with the star mass M? ∼M� ∼ 1030 kg. Given that
dark matter is 5 times larger than visible matter in abundance, we conclude
that all stars consume only a tiny portion of all AQNs.

For the initial stage of star formation, AQNs experience annihilation
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events as they pass through the infall cloud, which can be estimated as

Ncol ∼ πR2nbLinfall ∼ 109 ·
(

nb
1 cm3

)
·
(
Linfall

106 AU

)
(5.28)

where AQNs enter the large region Linfall ∼ 106 AU where nb ∼ 1 cm3 [116].
Eq. (5.28) is tiny compared with B∼ 1025. Even in the case that AQNs enters
a small region Linfall ∼ 10−1 AU with much high density nb ∼ 1015 cm3, the
total number of collisions is still tiny, Ncol ∼ 1017, let alone this is only
possible for a small portion of AQNs flux.

We conclude this section that the violent environments of structure for-
mation and star formation after the recombination epoch will not change the
primordial mass distribution of AQNs.

5.2.4 Present-day mass distribution
Based on our discussions in previous sections, we conclude that AQN evolu-
tion after Tform will not change the primordial mass distribution of AQNs.
Thus, the present-day mass distribution of AQNs is the same as eq. (5.15),
which we rewrite here as

dN

dB
=N0

(
Bmin
B

)α
. (5.29)

As we have discussed in chapter 5.1.4 and Appendix A, the power-law relation
is exact as long as B is not very close to Bmin. We assume that dark matter
is saturated by AQNs, then the normalization factor N0 can be fixed by40

ρDM =
∫ Bcut

Bmin
mpB

dN

dB
dB. (5.30)

Bcut is the upper cutoff of AQN mass, due to the constraint on the largest
closed axion walls that can eventually evolve into AQNs as we discussed at
the end of chapter 5.1.4. Parameters Bmin, Bcut and α are not theoreti-
cally well constrained, as we have discussed in chapter 5.1. Indeed, while
the theoretical analysis predicts the generic power-law behavior of AQN size
distribution, the value for the exponent α is expressed in terms of the un-

40Note that the definitions of N and N0 here are slightly different from that defined in
chapter 5.1 where N and N0 are the total numbers there rather than number densities.
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known parameter δ according to eq. (5.11) which itself describes the features
of bubble’s formation between Tosc and Tc.

On the other hand, the observational constraints are less trivial and can
be used to constrain the unknown parameters in the AQN size distribution.
Analysis of nanoflare energy distribution in Ref. [66] shows that the best fit
to data is achieved with the exponent α ' 2.5 and numerous attempts to
reproduce the data fails with α < 2. Another option advocated in Ref. [67]
show that nanoflare energy distribution consists of two exponents: α' 1.2 for
low energy, W ≤ 1024 erg, and α' 2.5 for W ≥ 1024 erg. Based on the simple
relation between nanoflare energy and AQN size in the AQN framework,
W = 2mpc

2B, W = 1024 erg corresponds to B ' 3× 1026. Models of AQN
size distribution with different α will be studied in detail in chapter 6 in the
context of numerically simulating their annihilation pattern in the Sun.

From eq. (5.30), the average AQN baryon number can be estimated as

〈B〉 ≈ α−1
α−2Bmin, α > 2. (5.31)

Given that eq. (5.24) suggests a lower bound of survival AQNs, ∼ 1024, we
should require Bmin & 1024 if we want AQNs to contribute significantly to
dark matter. However, there is a large uncertainty on this lower bound,
since eq. (5.24) is the number of collisions rather than the number of an-
nihilation events. Interestingly, independent of the theoretical constraint
from eq. (5.24), the observational constraints as reviewed in chapter 2 (see
eq. (2.5)) put a similar constraint on 〈B〉, which indicates 〈B〉 & 3× 1024.
Many nanoflare models in Refs. [66, 67] that satisfy this condition (via the
relation W = 2mpc

2B) can simultaneously saturate the energy budget for
explaining the solar corona mystery; see Refs. [6, 28, 29]. We consider this
phenomenon a nontrivial self-consistency check of the AQN framework that
the allowed window for baryon charge B overlaps the nanoflare energy spec-
trum fitted to explain the corona heating.

5.3 Conclusion
We conclude this chapter as follows. The theoretical calculations based on
percolation theory showed that the size distribution of AQNs has a power-law
behavior, eq. (5.15). On the other hand, the energy distribution of nanoflares
also follows a power law. The AQN size distribution will not be altered by
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the subsequent evolution of AQNs after their formation Tform ∼ 40 MeV, as
long as Bmin > 1024 is satisfied. This constraint is consistent with the obser-
vational constraint eq. (2.5). Furthermore, the allowed window is compatible
with the energy window of nanoflares that has been studied independently in
Refs. [66, 67], which should be regarded as one self-consistency check of the
AQN model. These arguments strongly support the proposal that the AQN
model can explain the solar corona mystery with the annihilation events of
AQNs hitting the Sun identified as the nanoflares [6, 28, 29]. The exponent α
of the AQN size distribution cannot be predicted theoretically, as it depends
on another unknown parameter δ sensitive to the pattern of axion domain
wall formation during the QCD epoch. But α can be well constrained by
the studies of nanoflares [66, 67]. In the following chapter 6, we are going
to study the annihilation pattern of AQNs in the Sun in detail using models
with different α, to explore the signals induced by the AQN model.
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Chapter 6

Observation I: Impulsive Radio
Events in Quiet Solar Corona

The Murchison Widefield Array (MWA) recorded impulsive radio events in
the quiet solar corona at frequencies 98, 120, 132, and 160 MHz [9]. In this
chapter, we are going to demonstrate that these radio events are the direct
manifestation of annihilation events of antimatter AQNs that enter the Sun.
As we have reviewed in chapter 2, the solar corona heating problem can be
resolved in the AQN framework with the solar nanoflares identified as the
AQN annihilation events. We further support this claim by demonstrating
that observed impulsive radio events, including their rate of appearance,
their temporal and spatial distributions, and their energetics are matching
the generic consequences of AQN annihilations in quiet corona. This chapter
is adapted from Ref. [4].

6.1 The AQN model: application to the
solar corona heating

In this part, we overview the basic characteristics of nanoflares, from the AQN
viewpoint. The corresponding results will play a vital role in our studies in
chapter 6.2, where we interpret the radio events analyzed by Ref. [9] in terms
of the AQN annihilation events [6, 28].
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6.1.1 The nanoflares: observations and modeling
We start with a few historical remarks. The solar corona is a very peculiar
environment. Starting at an altitude of 1000 km above of the photosphere,
the highly ionized iron lines show that the plasma temperature exceeds a
few 106 K. The total energy radiated away by the corona is of the order of
Lcorona ∼ 1027 erg s−1, which is about 10−6-10−7 of the total energy radiated
by the photosphere. Most of this energy is radiated at the extreme ultraviolet
(EUV) and soft X-ray wavelengths. There is a very sharp transition region,
located in the upper chromosphere, where the temperature suddenly jumps
from a few thousand degrees to 106 K. This transition layer is relatively thin,
200 km at most. This transition happens uniformly over the Sun, even in
the quiet Sun, where the magnetic field is small (∼ 1 G), away from active
spots and coronal holes. The reason for this uniform heating of the corona
is not understood.

A possible solution to the heating problem in the quiet Sun corona was
proposed in 1983 by Parker [117], who postulated that a continuous and uni-
form sequence of miniature flares, which he called “nanoflares”, could happen
in the corona. This became the conventional view. The term “nanoflare” has
been used in a series of papers by Benz and coauthors [118–122], and many
others, to advocate the idea that these small “micro-events” might be re-
sponsible for the heating of the quiet solar corona. We want to mention a
few relatively recent studies [66, 67, 123–128] and reviews [129, 130] which
support the basic claim of earlier works, i.e., nanoflares play the dominant
role in the heating of the solar corona.

In what follows, we adopt the definition suggested in [122] and refer to
nanoflares as “micro-events” in quiet regions of the corona, to be contrasted
with “microflares”, which are significantly larger in scale and observed in
active regions. The term “micro-events” refers to a short enhancement of
coronal emission in the energy range of about (1024− 1028)erg. One should
emphasize that the lower limit gives the instrumental threshold for observing
quiet regions, while the upper limit refers to the smallest events observable
in active regions. The list below shows the most important constraints on
nanoflares from the observations of the EUV iron lines with Extreme ultravio-
let Imaging Telescope (EIT) on board the Solar and Heliospheric Observatory
(SoHO):

1. The EUV emission is highly isotropic [119, 121], therefore the nanoflares
have to be distributed very “uniformly in quiet regions”, in contrast
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with microflares and flares which are much more energetic and occur
exclusively in active areas [122]. For instance, flares have a highly
non-isotropic spatial distribution because they are associated with the
active regions.

2. According to Ref. [120], in order to reproduce the measured EUV ex-
cess, the observed range of nanoflares needs to be extrapolated from
the observed events interpolating between (3.1×1024-1.3×1026) erg to
sub-resolution events with much smaller energies; see item 3 below.

3. In order to reproduce the measured radiation loss, the observed range
of nanoflares (having a lower limit at about 3× 1024 erg due to the
instrumental threshold) needs to be extrapolated to energies as low as
1022 erg and in some models, even to 1020 erg (see Table 1 in Ref. [120]).

4. The nanoflares and microflares appear in a different range of temper-
ature and emission measure (see Fig. 3 in Ref. [122]). While the in-
strumental limits prohibit observations at intermediate temperatures,
nevertheless the authors of Ref. [122] argue that “the occurrence rates
of nanoflares and microflares are so different that they cannot originate
from the same population”. We emphasize this difference to argue that
the flares originate at sunspot areas, with locally large magnetic fields
B ∼ (102−103) G, while the EUV emission (which is observed even in
very quiet regions where B ∼ 1 G) is isotropic and covers the entire
solar surface

5. Time measurements of many nanoflares demonstrate a Doppler shift
with typical velocities of (250-310) km/s (see Fig. 5 in Ref. [118]). The
observed line width in OV of ±140 km/s far exceeds the thermal ion
velocity, which is around 11 km/s [118].

6. The temporal evolution of flares and nanoflares also appears different.
The typical ratio between the maximum and minimum EUV irradiance
during the solar cycle does not exceed a factor of 3 between its max-
imum in 2000 and its minimum in 2009 (see Fig. 1 from Ref. [131]),
while the same ratio for flares and sunspots is much larger, of the or-
der of 102. If the magnetic reconnection was fully responsible for both
the flares and nanoflares, then the variation during the solar cycles
should be similar for these two phenomena. It is not what is observed;
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the modest variation of the EUV with the solar cycles in comparison to
the flare fluctuations suggests that the EUV radiation does not directly
follow the magnetic field activity, and that the EUV fluctuation is a
secondary, not a primary effect of the magnetic activity.

The nanoflares are usually characterised by the following distribution:

dN ∝W−αdW, 1021 erg .W . 1026 erg (6.1)

where dN is the number of nanoflare events per unit time, with energy be-
tween W and W +dW . In formula (6.1), we display the approximate energy
window for W as expressed by items 2 and 3, including the sub-resolution
events extrapolated to very low energies. The distribution dN/dW has been
modeled via magnetohydrodynamics (MHD) simulations [66, 67] in such a
way that the Solar observations match the simulations. The parameter α was
fixed to fit observations [66, 67] (see the description of the different models
below).

6.1.2 The nanoflares as AQN annihilation events
It has been conjectured in Ref. [28] that the nanoflares can be identified with
AQN annihilation events. This conjecture was essentially motivated by the
fact that the amount of energy available from the dark matter falling on the
Sun per second, in the form of mass (mc2) , is similar to the amount of energy
needed to maintain the corona at its observed temperature (∼ 1027 erg s−1).
The dark matter density in the solar system is estimated to be of the order of
ρDM ' 0.3 GeVcm−3, within a factor ∼ 2. From this identification, it follows
that the baryon charge distribution (within the AQN framework) and the
nanoflare energy distribution (6.1) must be one and the same function [28]:

dN ∝B−αdB ∝W−αdW (6.2)

where dN is the number of nanoflare events with energy between W and W +
dW , which occur as a result of the complete annihilation of the antimatter
AQN carrying baryon charge between B and B+dB.

An immediate self-consistency check of this conjecture is the observation
that the allowed window (2.5) for the AQN’s baryon charge largely overlaps
with the approximate energy window for nanoflares W expressed by eq. (6.1).
This is because the annihilation of a single baryon charge produces an energy
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of about 2mpc
2' 2 GeV, which can be expressed in terms of the conventional

units as follows,

1 GeV = 1.6×10−10J = 1.6×10−3erg, (6.3)

such that the nanoflare energy W for the antimatter AQN with baryon charge
B can be approximated as W ' 2 GeV·B. One should emphasize that this is a
highly nontrivial self-consistency check of the proposal [28], as the acceptable
windows (2.5) and (6.1) for the AQNs and nanoflares have been constrained
from drastically different physical systems.

Encouraged by this self-consistency check and the highly nontrivial ener-
getic consideration, Ref. [6] used the power-law index α entering eq. (6.1) to
describe the baryon number distribution dN/dB for the antimatter AQNs,
which represents the direct consequence41 of the conjecture (6.2). More
specifically, in the Monte Carlo (MC) simulations performed in Ref. [6] ,
the baryon charge distribution of AQNs, as given by eq. (6.6) , is assumed
to directly follow the nanoflare distribution dN/dW , with the same index α
as the conjecture (6.2) states.

The nanoflare distribution models proposed in [66, 67] have been adapted
by [6]. Three different choices for the power-law index α have been considered
in [66, 67]:

α = 2.5, 2.0, or
1.2 W . 1024erg↔B . 3×1026

2.5 W & 1024erg↔B & 3×1026 . (6.4)

In addition to the power-law index α, different models are also characterized
by different choices of Bmin: 1023 and 3×1024. Therefore, a total of 6 different
models have been discussed in Refs. [66, 67] which we expressed in terms of
the baryon charge B rather than in terms of the nanoflare energy W . There
is an up cutoff of B due to the properties of initial closed domain walls, which
is hard to calculate theoretically, as we have discussed in chapter 5 (where
we used the label Bcut there). Here, we fix the maximum B as Bmax = 1028,

41As we have argued in chapter 5, the algebraic scaling (6.2) is a generic feature of
the AQN formation mechanism based on percolation theory; see eq. (5.15). The phe-
nomenological parameter α is determined by the properties of the domain wall formation
during the QCD transition in the early Universe, but it cannot be theoretically computed
in strongly coupled QCD. Instead, it will be constrained based on the observations as
discussed in the text.
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which is consistent with both eq. (2.5) and eq. (6.1).
In this work, we will only use simulations with 〈B〉 & 1025 in order to

be consistent with eq. (2.5). This means that we are excluding two models
considered in Ref. [66, 67]: the models with Bmin ∼ 1023 for α = 2.5 and
α = 2. We also exclude the model with Bmin ∼ 1023 for α = (1.2,2.5) to
simplify things as it produces results very similar to another model. The
remaining three models are labeled as follows:

Group 1 : Bmin = 3×1024,α = 2.5
Group 2 : Bmin = 3×1024,α = 2.0

Group 3 : Bmin = 3×1024,α =
1.2, B . 3×1026

2.5, B & 3×1026

(6.5)

while Bmax = 1028 for all the models. The average baryon number of the
distribution is defined as

〈B〉=
∫ Bmax

Bmin
dB [B f(B)], dN

dB
∝ f(B)∝B−α (6.6)

where f(B) is normalized and the power-law is taken to hold in the range
from Bmin to Bmax. This has also been discussed in chapter 5.2.4.

The above estimate reveals an astonishing coincidence between the ener-
gy/mass windows (2.5) and (6.1) for AQNs and nanoflares respectively. This
coincidence is a strong support of our proposal [6, 28] that the nanoflares
and the AQN annihilation events are the same phenomena (see items 2 and
3 of chapter 6.1.1).

We are now in a position to present several additional arguments in favor
of our proposal: item 1 is also naturally explained in the AQN framework
as dark matter is expected to be distributed very uniformly over the Sun,
making no distinction between quiet and active regions, in contrast with
large flares. A similar argument applies to item 4, as the strength of the
magnetic field and its localization is absolutely irrelevant for the nanoflare
events in the form of the AQNs, in contrast with the conventional paradigm
where nanoflares are thought to be scaled down configurations of their larger
cousins, which are much more energetic and occur exclusively in active areas
and cannot be uniformly distributed.

The existence of a large Doppler shift, with typical velocities (250-310)
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km/s, mentioned in item 5, can be understood within the AQN interpretation
as the following: the typical velocities of an antimatter AQN entering the
solar corona is very high v & 600 km/s. The Mach number Mmach = v/cs is
thus very large. A shock wave will be formed and will push the surrounding
material to velocities which are much higher than would normally be present
at thermal equilibrium.

Finally, as stated in item 6, the temporal modulation of the EUV irra-
diance over a solar cycle is very small and does not exceed a factor ∼ 3, as
opposed to the much dramatic changes in Solar activity, with modulations
on the level of 102 over the same time scale. This suggests that the energy
injection from the nanoflares is weakly related to solar activity, which is in
contradiction with the picture where magnetic reconnection modulated by
the Sun activity plays an essential role in the formation and dynamics of
nanoflares. This is, however, consistent with our interpretation of nanoflares
being associated with AQN annihilation events, as an external cause of the
main source of the EUV irradiance.

6.2 Confronting the model with the radio
observations

We start this part by describing the basic mechanism of the radio emission
due to AQN annihilation events in the solar corona. We estimate the event
rate in chapter 6.2.2. The role of non-thermal electrons in the generation of
the radio signal events is discussed in chapter 6.2.3. Finally, in chapter 6.2.4
we estimate the intensity of the radio signal events.

6.2.1 Mechanism of the radio emission in solar corona
It is generally accepted that the radio emission from the corona results from
the interaction of plasma oscillations (also known as Langmuir waves) with
the non-thermal electrons which must be injected into the plasma [132]. An
important element for the successful emission of radio waves is that a plasma
instability must develop. It occurs when the injected electrons have a non-
thermal high energy component, with a momentum distribution function
characterized by a positive derivative42 with respect to the electron velocity.

42If the derivative has a negative sign, it will lead to the so-called Landau damping.
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In this case, a plasma instability develops and radio waves can be emitted.
The frequency of emission ν is mostly determined by the plasma frequency

ωp in a given environment, i.e.,

ω2 = ω2
p +k2 3T

me
, ω2

p = 4παne
me

, ν = ω

2π , (6.7)

where ne is the electron number density in the corona, while T is the tem-
perature at the same altitude and k is the wavenumber. For example,
the frequency ν = 160 MHz considered in [9] will be emitted when ne '
3.4×108cm−3. One should emphasize that the emission of radio waves gener-
ically occurs at an altitude which is distinct from the altitude where the AQN
annihilation events occur, and where the energy is injected into the plasma.
This is because the mean-free path λ of the non-thermal electrons being in-
jected into the plasma is very long λ ∼ 104 km. Therefore, these electrons
can travel a very long distance before they transfer their energy to the radio
wave, as we will discuss in chapter 6.2.3.

We propose that non-thermal electrons are produced by antimatter AQNs
entering the solar corona, when the annihilation processes start. It is known
that the number density of the non-thermal (suprathermal in terminology
[132]) electrons ns must be sufficiently large ns/ne & 10−7 for the plasma
instability to develop, in which case the radio waves will be generated [132].
As the density ns/ne approaches the threshold values at some specific fre-
quencies, the intensity increases sharply, which we identify with the observed
impulsive radio events. These threshold conditions may be satisfied randomly
in space and time, depending on properties of the injected electrons [132]. All
these plasma properties are well beyond the scope of this thesis. However,
we shall demonstrate that the number density of the non-thermal electrons
ns generated by AQNs can easily be in proper range ns/ne & 10−7 for the
plasma instability to develop. To be more specific, in chapter 6.2.3 we shall
argue that the ratio ns/ne ∼ 10−7 is always sufficiently large for the plasma
instability to develop, which eventually generate the radio waves.

Therefore, our proposal is that the AQN annihilation events (identified
with nanoflares as explained in chapter 6.1.2) produce a large number of
non-thermal electrons, which, in turn, generate the observed impulsive radio
events [9] as a result of plasma instability. In the following text, we will
support our proposal by estimating a number of observables analyzed in
Ref. [9] and show that our proposal is consistent with all observed data,
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including the frequency of appearance, the intensity of radiation, duration,
spatial and wait time distributions.

6.2.2 The event rate
We are now in a position to interpret the radio emission data from Ref. [9]
in terms of AQN annihilation events. Antimatter AQNs start to lose their
baryon charge, due to the annihilation, in close vicinity of the transition
region, at an altitude of 2150 km (see Fig. 5 in Ref. [6] and also Fig. 6.5
below). However, the radio emission happens at much higher altitudes, as
we will explain in chapter 6.2.3.

In this part, we want to compare the maximum radio event rate (33481
events observed in the 132 MHz frequency band, during 70 minutes) to the ex-
pected rate of AQN annihilation events which are identified with nanoflares,
and must be much more numerous (according to conventional solar physics
modeling). Specific nanoflare models [66, 67] (expressed by eq. (6.5) in terms
of the baryon charge B) correspond to an event rate which is at least a few
orders of magnitude higher than the observed radio event rate, see Fig. 8 in
Ref. [6]. There is no contradiction here because it is likely that the dominant
portion of the nanoflare events are too small to be resolved. This point has
been mentioned in items 2 and 3 in chapter 6.1.1 with a comment that all
models must include small but frequent events which had been extrapolated
to sub-resolution region. Therefore, we interpret the low event rate at radio
frequencies as the manifestation that only the strongest and the most ener-
getic, but relatively rare, AQN annihilation events can be resolved in radio
bands. We define B̄ as the minimum baryonic charge an AQN must have in
order to generate a resolved radio impulse.

We can compute (in terms of B̄) the event rate for the energetic AQNs
which are powerful enough to generate the resolved radio impulses as recorded
in Ref. [9]. The corresponding impact rate can be computed in the same way
as Fig. 8 from Ref. [6], the only difference being that the lower bound is
determined by B̄ instead of Bmin,(

dN

dt

)
B̄

∝
∫ Bmax

B̄
dB f(B). (6.8)

Since the maximum number of detected radio events in [9] is 33481 at the
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Figure 6.1: Left: the impact rate of AQNs with the size above B̄ where B̄
varies from Bmin to Bmax for different groups of AQNs. The horizontal black
dashed line is the observed rate of radio events, eq. (6.9). Right: the result
from the second-round simulation where we focus on large AQNs only. Again,
the horizontal black dashed line is eq. (6.9). The vertical dashed lines are
the corresponding B̄ for different groups. More details about the numerical
simulations that lead to these two subfigures can be found in Appendix B.
This figure is taken from Ref. [4].

132 MHZ band in 70 minutes, the event rate is

dNobs.
dt

∼ 33481
70 minutes×1/2 ∼ 16 s−1. (6.9)

The factor 1/2 accounts for the fact that only half of the Sun’s whole surface
is visible.

By equalizing eqs. (6.9) and (6.8) we can estimate the parameter B̄ when
sufficiently large radio events originate from large AQNs with B & B̄.43

The results are presented in Fig. 6.1. It is the intersection of the black
dashed line eq. (6.9) and the simulated line of each group given by eq. (6.5).
The intersections are shown in the right subfigure, and the corresponding B̄
are respectively 5.65×1026, 2.21×1027, and 1.95×1027 for the three groups.
We expect that only AQNs with masses greater than B̄ are sufficiently ener-
getic to generate the observable impulsive radio events.

The parameter B̄ obviously depends on the size distribution models listed
43This estimate does not include the possibility of “clustering” events with very short

time scale discussed in chapter 6.3.2.
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Figure 6.2: Left: the luminosity generated by the annihilation of AQNs with
the size above B̄ where B̄ varies from Bmin to Bmax for different groups of
AQNs. Right: the result from the second-round simulation where we focus on
large AQNs only. The vertical dashed lines correspond to the B̄ determined
by eq. (6.9) in Fig. 6.1. More details about the numerical simulations that
lead to these two subfigures can be found in Appendix B. This figure is taken
from Ref. [4].

in eq. (6.5), it corresponds to a detection limit and should not be treated
as a fundamental parameter of the theory. An instrument with different
resolution and/or sensitivity will affect the radio events selection criteria
and therefore change the value of B̄, in which case some events from the
continuum spectrum would be considered as impulsive events.44

Our next task is to estimate the total luminosity L�
B̄

released as a result of
the complete annihilation of the large AQNs with B & B̄ . The calculation is
similar to the estimation done for Fig. 10 of Ref. [6], with the only difference
that the lower bound is determined by B̄ rather than Bmin,

L�
B̄
∝
∫ Bmax

B̄
dB B

2
3f(B). (6.10)

The results for the models listed in (6.5) are presented in Fig. 6.2. The
corresponding L�

B̄
assume the following values: 6.17× 1025 erg · s−1, 2.05×

44It is known that the continuum contribution in the radio emissions is similar in mag-
nitude to the impulses events as we will discuss in chapter 6.2.4. Some of the events from
continuum could be treated in future as impulsive events if a better resolution instrument
is available. However, this does not drastically modify our estimate for B̄.
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1026 erg · s−1 and 1.70× 1026 erg · s−1, which are approximately an order of
magnitude smaller than the luminosity released by all AQNs annihilation.
This implies that only about 10% of the total AQN-induced luminosity comes
from the large AQNs with B & B̄, which are the same AQNs assumed to
produce the resolved radio events in [9]. Our estimates show that while the
strong events with B & B̄ are very rare with an impact rate approximately 3
orders of magnitude smaller than all AQNs annihilation, their contribution
to the luminosity is suppressed only by one order of magnitude. This is, of
course, due to the factor B 2

3 in the expression for the luminosity, eq. (6.10).
The energy flux Φ�

B̄
, observed on Earth, coming from these large AQNs

with B & B̄ is estimated as

Φ�
B̄
'

L�
B̄

4π(AU)2 ' (1.8−6) ·10−2 erg
cm2 s , (6.11)

where we used the range of numerical values for L�
B̄

estimated above. In the
following we will establish the physical connection between the energy flux
(6.11) generated by large AQNs with B & B̄ and the flux observed in radio
frequency bands observed in Ref. [9]. In order to make this connection, we
have to estimate what fraction of the huge amount of energy due to the AQN
annihilation is transferred to the tiny portion in the form of radio waves. To
compute this efficiency, we need to estimate the relative density of the non-
thermal electrons which will be produced as a result of the AQN annihilation.
The estimation of this efficiency is the topic of the next subsection.

6.2.3 Non-thermal electrons
The starting point for our analysis is the number of annihilation events per
unit length while the AQN propagates through the ionized corona environ-
ment:

dN

dl
' πR2

effnp, (6.12)

where np is the baryon number density of the corona (mostly protons) and
the effective radius Reff of the AQNs can be interpreted as the effective size
of the AQNs due to the ionization characterized by the AQN’s charge Q as
explained in Ref. [6]. The enhancement of the interaction range Reff due to
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the long range Coulomb force is given by [6]:

(
Reff
R

)
= ε1ε2, ε1 ≡

√
8(meTP )R2

π
, ε2 ≡

(
TI
TP

) 3
2
, (6.13)

where TI is the internal temperature of AQN and TP is the plasma tempera-
ture in the corona. The estimation of the internal thermal temperature TI is
a highly nontrivial and complicated problem which requires an understand-
ing of how the heat, due to the friction and the annihilation events, will be
transferred to the surrounding plasma from a body moving with supersonic
speed with Mach number Mmach ≡ v/cs > 1.

It is known that the supersonic motion will generate shock waves and
turbulence. It is also known that a shock wave leads to a discontinuity in
velocity, density, and temperature due to the large Mach numbersMmach� 1.
It has been argued in Refs. [6, 29] that, for a normal shock, the jump in
temperature is given by the Rankine–Hugoniot condition:

TI
TP
'M2 · 2γ(γ−1)

(γ+ 1)2 � 1, γ ' 5/3, (6.14)

and, as a result, all the electrons from the plasma which are on the AQN
path within distance Reff will be affected. To be more precise, these electrons
will experience elastic scattering by receiving the extra kinetic energy ∆E
which lies in the window ∆E ∈ (TP ,TI). It is precisely these non-thermal
electrons that will subsequently interact with the plasma and be the source of
the plasma instability. These non-thermal electrons will transfer their energy
to the emission of radio waves with frequency ν as explained at the end of
chapter 6.2.1.

We are now in a position to estimate the parameter ηenergy defined as the
ratio between the energy transferred (per unit length l) to the radio waves
and the total energy produced by a single AQN (per unit length l) as a result
of the annihilation:

ηenergy ≈
(∆E) · [πR2

effne]
(2mpc2) · [πR2

effnp]
≈ ∆E

2mpc2
∼ 10−7, (6.15)

where the denominator accounts for the total energy due to the annihilation
events with rate (6.12) and the numerator accounts for the kinetic energy
received by affected electrons. In our estimate of eq. (6.15), we assume an
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approximate local neutrality such that ne ≈ np. Furthermore, to be on the
conservative side, we also assume that ∆E ≈ 2×102 eV, such that ∆E only
slightly exceeds the plasma temperature ≈ TP at high altitudes of order
104 km, where radio emission occurs. Finally, we also assume that the domi-
nant portion of the ∆E will be eventually released in the form of radio waves.
It is very likely that there are few missing numerical factors of order one on
the right-hand side in eq. (6.15) as our assumptions formulated above are
only approximations. However, we believe that eq. (6.15) gives a correct or-
der of magnitude estimate for the energy efficiency transfer ratio ηenergy. We
provide a few numerical estimates in chapter 6.2.4 suggesting that eq. (6.15)
is very reasonable and consistent with observed intensities in radio bands [9].

The next step is the estimation of ns/ne, which must be sufficiently large
ns/ne & 10−7 for the plasma instability to develop [132] (see chapter 6.2.1).
As we shall see now, the proposed mechanism indeed satisfies this require-
ment. We start with the expression of the total number of electrons ∆Ne to
be affected while the AQN travels over a distance l:

∆Ne ∼ (πR2
eff l) ·ne(h), l ' v ·∆t, (6.16)

where ne(h) is the electron number density at the altitude h' 2000 km where
annihilation events become efficient [6]. These affected electrons will receive
extra energy ∆E and extra momentum mev⊥ with the very large velocity
component v⊥ perpendicular to the AQN path as the shock front due to
M � 1 has a form of a cylinder along the AQN path. A large portion of an
AQN trajectory can be viewed as an almost horizontal path with relatively
small incident angles toward the Sun (skim trajectories). These non-thermal
electrons will have a component v⊥ perpendicular to the AQN path and travel
unperturbed up to a distance of the order of the mean-free path λ∼ 104 km
(to be estimated below).

After a time ∆t, the same non-thermal electrons ∆Ne will have spread
over a distance r from the AQN path, estimated as follows:

∆Ne ∼ (2πr∆rl) ·ns(r), (6.17)

where ∆r is the width of the shock front measured at distance r. For a
non-thermal electron traveling away from the AQN path with perpendicular
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velocity v⊥, the distance r is given by:

r ∼ v⊥∆t, v⊥ '
√

2∆E
me
' 104

√
∆E

2×102 eV
km
s . (6.18)

Equalizing eqs. (6.16) and (6.17), we arrive at the following estimate for the
ratio ns/ne: [

ns(r)
ne(h)

]
'
(
R2

eff
r∆r

)
, r . λ. (6.19)

Eq. (6.19) holds as long as r . λ. For larger distances r & λ, the non-
thermal electrons will eventually thermalize and loose their ability to generate
a plasma instability. One should emphasize that ns(r) entering eq. (6.19) is
taken at the distance r from the AQN path, while ne(h) is taken in the
vicinity of the path, i.e., at r ≈ 0.

We are interested in this ratio when both components are computed at
the same location and we now have to check if it is larger than 10−7, the
requirement to generate the plasma instability. The relevant configuration
for our study corresponds to non-thermal electrons moving upward.45 In this
case the relation (6.19) assumes the form[

ns(r)
ne(r)

]
' 1

2

[
ne(h)

ne(r+h)

]
·
(
R2

eff
r∆r

)
, r . λ, (6.20)

where the factor 1/2 accounts for upward moving electrons and ne(r) ≡
ne(r+h) is the electron density computed at distance ∼ r above the AQN
path (h∼ 2000 km).

Eq. (6.20) has a conventional form for a cylindrical geometry with the
expected suppression factor r−1 at large distances and constant value for
∆r. However, it is known that the width of the shock ∆r also growths with
time46 as ∆r ∝

√
t∝
√
rReff . Therefore, we expect that a proper scaling at

45The radio waves emitted at altitudes below h will have much higher frequencies than
considered in the present work, and shall not be discussed here.

46Such scaling is known to occur, for example, when the meteoroids propagate in Earth’s
atmosphere where the cylindrical symmetry is also realized. We refer to Ref. [39] (with
large list of references on the original literature devoted to this topic) where this scaling
specific for the cylindrical geometry has been used in the context of the AQN propagation
in Earth’s atmosphere.
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large r assumes the form:
[
ns(r)
ne(r)

]
∼ 1

2

[
ne(h)

ne(r+h)

]
·
(
Reff
r

) 3
2
, r . λ, (6.21)

We will calculate this ratio for large AQNs with B & B̄ which are capable
of generating the resolved radio signals. Using our previous estimates for ε1
and ε2 from Section IV.C of Ref. [6] and using the electron number density
in Table 26 of Ref. [8], we arrive at the estimate[

ns(r)
ne(r)

]
& 10−7 for r ∼ 104 km. (6.22)

The condition (6.22) implies that ns/ne is indeed sufficiently large for the
plasma instability to develop [132] on distances of order r ∼ 104 km from
the AQN path. This implies that the non-thermal electrons can propagate
upward to very large distances before they transfer their energy to the radio
waves at much higher altitudes, of order (h+ r). The scale r ∼ 104 km
assumes the same order of magnitude value as the mean-free path λ, which
at altitude h' 104 km can be estimated as follows:

λ−1 ' σnp, σ ' α2

(∆E)2 , λ∼ 104 km, (6.23)

where ∆E ≈ 2×102 eV is the typical kinetic energy of the non-thermal elec-
trons at the moment of emission.

One should emphasize that the estimation given above assumes a constant
density np along the electron path. This is clearly not the case for the upward-
moving non-thermal electrons. One can define an effective mean-free path
λ−1

eff (h) as follows47

λ−1
eff (h)≡

∫ h

h0

dh′σnp(h′)
(h−h0) , h0 ' 2150km, (6.24)

which accounts for the density variation with altitude. It reduces to the
canonical definition (6.23) when np is a constant along the electron’s path.

47We use h0 ' 2150 km precisely because AQNs start to annihilate at this altitude
(shown in Fig. 6.5) which is the start of the transition region as the density drastically
increases (see Table 26 or Fig. 8 of Ref. [8]).
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This definition of the effective mean-free path in the context of the present
proposal is very convenient as it explicitly shows at what altitude most of the
energy will be thermalized, and what portion of the energy can be released
in the form of the radio waves.

To be more precise, the portion f(h) of the non-thermal electrons which
survive at altitude h can be estimated as follows

f(h) = exp
(
−
∫ h

h0

dh′

λeff(h′)

)
, (6.25)

where the mean-free path λeff(h) at altitude h is defined by eq. (6.24). The
behavior for f(h) as a function of the altitude h is shown in Fig. 6.3 by
the blue line for initial kinetic energy of the non-thermal electrons ∆E ≈
2×102 eV. This value for ∆E has been used in all our estimates through the
text.

The most important remark here is that the suppression factor f(h)
is very modest for altitudes where high frequency waves are emitted, see
Fig. 6.4. We emphasize that, in this parameter range, the density of the non-
thermal electrons remains sufficiently large to satisfy the crucial condition
(6.22) for the plasma instability to develop [132]. Therefore, the dominant
portion of the non-thermal electron energy will be released in the form of the
radio waves. At the same time, the suppression becomes essential for higher
altitudes where low frequency waves are emitted. At higher altitudes the sup-
pression factor f(h) plays the dominant role and non-thermal electrons lose
their energy to thermalization. The density of the non-thermal electrons is
insufficient to satisfy the crucial condition (6.22) for the plasma instability to
develop [132]. At this point, the radio emission stops completely. One should
emphasize that such a sharp cutoff for the radio emission at lower frequencies
is a very unique and specific prediction of the proposed mechanism.

One should also mention that the density np drastically increases at
slightly lower altitudes h . 2000 km (in comparison with h ' 2150 km),
such that the mean-free path λeff decreases correspondingly, and the con-
dition (6.22) breaks down. Therefore, the non-thermal electrons emitted at
h. 2000 km cannot propagate to very high altitudes ∼ 104 km where radio
emission occurs.
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Figure 6.3: Suppression factor f(h) defined by eq. (6.25). This factor de-
scribes the remaining portion of the non-thermal electrons at altitude h. The
blue line corresponds to the initial kinetic energy ∆E ≈ 2×102 eV which has
been used in all our estimates through the text. For illustrative purposes, we
also presented the same suppression factor f(h) for other values of parameter
∆E. Suppression factor becomes essential for h & 4× 104 km correspond-
ing to low frequency emission as one can see from Fig. 6.4. In computing
eq. (6.25), we have used np(h)≈ ne(h) above h0 where the profile of ne(h) is
from Ref. [8] (the solar profiles needed in the numerical computations in this
chapter are all from [8]). This figure is taken from Ref. [4].

6.2.4 Radio flux intensity
In this part, we estimate the portion of the AQN-induced energy flux which
is transferred to the radio waves Φradio. We express Φradio in terms of the
energy flux emitted by the AQNs as radio waves:

Φradio'Φ�
B̄
·ηenergy

(
∆B
B

)
' (0.6−6)×10−10 erg

cm2 s , (theoretical prediction)

(6.26)
where the first factor Φ�

B̄
, given by eq. (6.11), reflects the contribution of

the large AQNs with B & B̄ to the total AQN-induced luminosity. The fac-
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Figure 6.4: Frequency of the emission, ν = ω/2π ≈ ωp/2π (i.e., eq. (6.7)) as
a function of height. Radio emission occurs at the altitudes above 104 km
while the dominant portion of the AQN annihilation events occur at lower
altitudes h< 2150 km as shown in Fig. 6.5. This figure is taken from Ref. [4].

tor ηenergy is given by eq. (6.15) and represents the portion of the energy
transferred to the radio frequency bands through the non-thermal electrons
leading to the plasma instability. Finally, the factor ∆B/B ∼ (0.3-1)×10−1

describes a typical portion of the baryon charge annihilated in the altitude
range (2000-2150) km. This is precisely the region where the AQN annihi-
lation events effectively start and where the interactions of AQNs with the
surrounding plasma produce the non-thermal electrons which eventually gen-
erate the radio waves. The Monte-Carlo simulations for ∆B/B are presented
in Fig. 6.5. One can see that the dominant portion of the annihilation events
occur at the lower altitudes h. 2000 km. However, the mean-free path λ at
lower altitudes of the affected electrons is too short as our estimations (6.23)
suggest. Therefore, the affected electrons from altitudes h. 2000 km cannot
reach higher altitudes where the radio waves are generated. This is precisely
the source of the suppression expressed in the ratio ∆B/B� 1.

We can now compare our estimate (6.26) to the observed intensities mea-
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Figure 6.5: Left: mass fraction 1−∆B/B being annihilated as a function of
the altitude. This is plotted by taking the average of the mass loss profiles
of the AQNs above B̄ (i.e., the AQNs that will generate radio emissions)
where B̄ has been determined by eq. (6.9). We see that AQNs start to
annihilate at about 2150 km. Right: luminosity per unit length as a function
of the altitude where the energy is converted from the mass loss according to
eq. (6.3). This is also plotted by taking the average of the AQNs above B̄,
then multiplied by the impact rate of these large AQNs. This figure is taken
from Ref. [4].

sured in radio frequency bands by Ref. [9]:

dΦradio

dω
(160 MHz)' 6 SFU, ∆ω = 2.56 MHz

dΦradio

dω
(120 MHz)' 3 SFU, ∆ω = 2.56 MHz

(6.27)

where
SFU≡ 104Jy = 10−19 erg

Hz cm2 s . (6.28)

The observations [9] were done in twelve frequency bands from 80 MHz to
240 MHz with ∆ω = 2.56 MHz bandwidth each. It is known [133, 134]
that the radio emission occurs in the entire energy band ∼ (0-200) MHz,
and not specifically in one of the 12 frequency narrow bands. It is also
known [133, 134] that the contributions from continuum and impulsive fluxes
are approximately the same in all frequency bands. Therefore we estimate
the total intensity in radio bands by multiplying eq. (6.27) with ∼ 200 MHz to
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account for the entire radio emission associated with short impulsive events
as well as the continuum:

Φradio
total ' (0.6−1.2)×10−10 erg

cm2 s , (observation). (6.29)

Despite the fact that our calculation involves various steps and approxima-
tions, the total measured flux, eq. (6.29), is consistent with our order-of-
magnitude estimate, eq. (6.26). We consider this as a highly non-trivial
consistency check for our proposal as it includes a number of very different
elements which were studied previously for a completely different purpose in
a different context.

We conclude this section with few important remarks. The occurrence
probability shown in Fig. 4 in Ref. [9] suggests that the power-law index α
is always large, with α > 2. As explained in chapter 5, we cannot predict
this index theoretically, but all the nanoflare models used in our studies as
expressed by eq. (6.5) are consistent with the observed power-law index α
because the AQNs generating the resolved radio impulses must be sufficiently
large with B > B̄, in which case the index α is always large (index α = 1.2
for one of the models from eq. (6.5) describes the distribution of small AQNs
with B < B̄ which do not produce the resolved radio signals).

The basic picture for the radio emission advocated here is that one and the
same AQN may generate the emissions in different frequency bands because
the non-thermal electrons produced by the AQN and moving in an upward
direction can emit the radio waves at different altitudes with different plasma
frequencies as long as non-thermal electron density is sufficiently high and
satisfies the condition, eq. (6.22). As an illustration, we show the frequency
of emission, eq. (6.7), as a function of height on Fig. 6.4. In this example,
all the radio emissions must be correlated within time over seconds, which is
considerably shorter than the typical mass-loss timescale which is about 10-
20 seconds, see Figs. 5 and 6 in Ref. [6].

This generic picture also suggests that the emission at higher frequencies
ν must be more intense due to a number of reasons. First, the upward mov-
ing non-thermal electrons are much more numerous at lower altitude (cor-
responding to higher ν) in comparison with higher altitudes (corresponding
to lower ν) because ns/ne ratio scales as r−3/2. When this scaling reaches a
ratio below the required rate (6.22), the radio wave emission cannot occur as
the density of the non-thermal electrons is not sufficient for the plasma insta-
bility to develop [132]. Furthermore, the effective mean-free path determined
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by eq. (6.24) essentially determines the highest altitudes where non-thermal
electrons may reach; see Fig. 6.3. After this height the non-thermal electrons
will thermalize and cannot be the source of the radio waves.

Second, according to eq. (6.26), the lower the altitude, the higher the an-
nihilation rate. This is because the portion of the annihilated baryon charge
∆B/B drastically increases when altitude decreases; see Fig. 6.5. When the
frequency of the radio emission becomes too high, the radiation becomes a
subject of absorption too strong to be detectable above the quiet Sun back-
ground. Such suppression with higher frequency radiation has indeed been
observed for frequencies ν & 240 MHz; see Ref. [134].

The same line of arguments may also explain the observed huge difference
between the number of observed events (4748) at the smallest frequency
band (98 MHz) in comparison to the rate at larger frequency bands where
the recorded number of events is almost one order of magnitude higher [9].
These arguments suggest that counting rate at even lower frequencies (such
as 80 and 89 MHz bands recorded by MWA) should be even lower than 4748
events recorded at 98 MHz [9].

6.3 Wait time distribution
The goal here is to understand the wait time distribution reported by Ref. [9].
The main observation was that the impulsive events are non-Poissonian in
nature. This non-Poissonian feature is shown in Fig. 7 of Ref. [9] where
the occurrence probability at small wait times (below 10 seconds) is linearly
growing instead of approaching a constant, which is what is expected for a
Poissonian distribution.

We shall argue below that, in the AQN model, such behavior could be
explained by the presence of “effective” clustering of events when one and the
same AQN in flight may generate a cascade of seemingly independent events
in short time scales. These events, however, are not truly independent, as
they result, in fact, from one and the same AQN when the typical mass loss
time is measured in 10-20 seconds; see Fig. 6 in Ref. [6]. Few short radio
pulses on scales of few seconds could be easily generated during this long
flight time. Such “clustering” will violate the assumption of the Poissonian
distribution of independent events.

In what follows we develop an approach which can incorporate such “clus-
tering” at small time scales, while the distribution remains Poissonian at
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larger time scales, i.e., the time scale of distinct AQNs entering the Corona.
The corresponding approach is known as a non-stationary Poissonian process
which results in Bayesian statistics.

6.3.1 Overview of the non-Poissonian processes
We start with an overview of the non-Poissonian processes and outline the
conventional technique to describe them, as given in [135–137]. In the case
of a conventional random stationary Poissonian process, the waiting time
distribution P (∆t) is expressed as an exponential distribution:

P (∆t) = λe−λ∆t,
∫
P (∆t)d∆t= 1, (6.30)

where λ in this section (chapter 6.3) is the mean event occurrence rate.
For a constant λ, this distribution describes a stationary Poissonian process.
When λ(t) depends on time, one can generalize eq. (6.30) and introduce the
probability function of waiting times which becomes itself a function of time
[135]:

P (t,∆t) = λ(t+ ∆t)exp
[
−
∫ t+∆t

t
λ(t′)dt′

]
. (6.31)

If observations of a non-stationary Poisson process are made during a time
interval [0,T ], then the distribution of waiting times P (∆t) will be, weighted
by the number of events λ(t)dt in each time interval (t, t+dt), given by:

P (∆t) = 1
N

∫ T

0
λ(t)P (t,∆t)dt, N =

∫ T

0
λ(t)dt. (6.32)

If λ varies adiabatically, one can subdivide non-stationary Poisson processes
into piecewise stationary Poisson processes (Bayesian blocks), take the con-
tinuum limit, and represent the distribution of waiting times as follows [135–
137]:

P (∆t) =
∫ T
0 λ2(t)e−[λ(t)∆t]dt∫ T

0 λ(t)dt
. (6.33)

One can check that eq. (6.33) reduces to its original Poissonian expression,
eq. (6.30), when λ is time independent. It is convenient to introduce f(λ)
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which describes the adiabatic changes of λ as follows:

f(λ)≡ 1
T

dt(λ)
dλ

, f(λ)dλ= dt

T
,

∫
dλf(λ) = 1. (6.34)

In terms of f(λ), eq. (6.33) assumes the form

P (∆t) =
∫∞
0 λ2f(λ)e−[λ∆t]dλ∫∞

0 λf(λ)dλ . (6.35)

The stationary Poissonian distribution corresponds to f(λ) = δ(λ−λ0) such
that eq. (6.35) reduces to the original expression, eq. (6.30), with constant
λ0 as it should.

6.3.2 Clustering events
We are now in a position to describe the physics of “effective” clustering
events using non-stationary Poisson distribution framework, eq. (6.35), as
outlined above. As previously mentioned several, short radio pulses on scales
of few seconds could be easily generated during a single AQN “relatively” long
flight time of the order of 10-20 seconds (see Fig. 6 in Ref. [6]).

With this picture in mind, we introduce the following λ(t) dependence
to describe non-stationary Poisson processes. At long time scales t > t0, we
keep the constant λ0 corresponding to the stationary Poisson distribution:

λ= λ0, f(λ)∼ δ(λ−λ0) for t > t0, (6.36)

while for shorter time scales t < t0, we parameterize f(λ) as follows:

f(λ) = cλβ, λ= λ0

[
t

t0

] 1
β+1

for t < t0, (6.37)

where the parameters β,λ0 and t0 should be fitted to match the observa-
tional signal distribution. The parameterization for non-stationary Poisson
processes (6.37) is a generic power law behavior which satisfies the condi-
tion λ(t→ 0)→ 0 when t→ 0. It has been used previously [135–137] for
many different systems, including the solar flares.48 In comparison with pre-

48In particular, a more general expression for f(λ) = cλβ exp(−γλ) was considered which
also includes the exponential tail exp(−γλ) [137]. We do not include this exponential factor
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vious studies, we consider the superposition of two terms, eqs. (6.36) and
(6.37), which allows us to quantitatively characterize (by taking an appro-
priate limit) the level of non-stationary Poisson processes and the extent of
deviation from the stationary Poisson distribution. As we shall argue below,
the non-stationary Poisson processes play the dominant role in our studies,
which is the main claim of the present section.

We start by explaining the physical meaning of the parameters entering
eqs. (6.36) and (6.37). As we discuss below, t0 will enter the observables
in the form of the dimensionless parameter (t0/T ). The physical meaning
of this parameter is clear: it determines the time-portion of the clustering
events. In case when (t0/T )� 1 the clustering events play a very minor
role, while for (t0/T )∼ 1 the clustering events become essential. In the limit
t0/T → 0, the physical mean value 〈λ〉 approaches its unperturbed magni-
tude λ0 corresponding to the stationary Poisson distribution. However, in
case when (t0/T ) ∼ 1 (which will be the case as we discuss below), the di-
mensionless parameter (〈λ〉/λ0) must be smaller than one as it accounts for
non-stationary Poisson processes. The parameter (〈λ〉/λ0)→ 1 approaches
identity if non-stationary Poisson processes play the minor role. The devia-
tion of this parameter from (〈λ〉/λ0) 6= 1 is a precise quantitative character-
istic of the non-stationary Poisson processes in the dynamics of the system.

From the basic features of the AQN model one should expect (t0/T ) to
be large, of order one. This is because a single AQN event could produce a
number of radio emission events which should correspond to the clustering
events, since they are not independent. Furthermore, we also expect that
(〈λ〉/λ0) strongly deviates from the identity, which represents a quantitative
characteristic of a contribution due to the clustering events as the Poissonian
distribution is characterized by a single parameter λ0 with 〈λ〉= λ0.

With this preliminary remarks on physical meaning of the parameters we
can now proceed with computations with the main goal to analyze the role
of non-stationary Poisson processes in the radio wave emission as a result
of the AQN annihilation events. One can combine eqs. (6.36) and (6.37) to
represent f(λ) as follows:

f(λ) =
[(
T − t0
T

)
δ(λ−λ0)

]
+
β+ 1
λ0

t0
T

(
λ

λ0

)β
θ(λ0−λ)

 , (6.38)

as it simply shifts the definition for ∆t→ (∆t+γ) as one can see from eq. (6.35).
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where factor (T − t0)/T is inserted in front of the delta function δ(λ−λ0) to
preserve the normalization, Ref. (6.34). One should emphasize that λ0 is not
the mean event occurrence rate 〈λ〉 anymore. Instead, the proper value for
〈λ〉 reads:

〈λ〉 ≡
∫
λf(λ)dλ= λ0

[
1− 1

β+ 2

(
t0
T

)]
. (6.39)

Now we are in a position to compute P (∆t) as defined by (6.35):

P (∆t) = 1
〈λ〉

∫ ∞
0

λ2f(λ)e−[λ∆t]dλ, (6.40)

with f(λ) as given by eq. (6.38). The result can be represented as follows:

P (∆t) = λ2
0
〈λ〉

e−[λ0∆t] ·
(
T − t0
T

)
+ (β+ 1)λ2

0
〈λ〉

·
(
t0
T

)∫ λ0

0

dλ

λ0

(
λ

λ0

)β+2
e−[λ∆t]

 ,
(6.41)

where the first term describes the stationary Poisson distribution while the
second term describes the deviation from Poisson distribution at small time
scales. The second term in distribution (6.41) can be expressed in terms of
the lower incomplete γ(s,x) function defined as follows:

γ(s,x)≡
∫ x

0
us−1e−udu, γ(s,x) = Γ(s)−Γ(s,x), (6.42)

where Γ(s) is the gamma function and Γ(s,x) is the upper incomplete gamma
function. We identify the parameters from the integrand entering eq. (6.41)
as follows:

u= λ∆t, x≡ λ0∆t, s= β+ 3 (6.43)
to arrive at the following expression for P (∆t) in terms of the lower incom-
plete γ(s,x) function:

P (∆t) = λ2
0
〈λ〉

e−[λ0∆t] ·
(
T − t0
T

)
+ λ2

0(β+ 1)
〈λ〉

·
(
t0
T

)
·
( 1
λ0∆t

)β+3
·γ [β+ 3,λ0∆t] .

(6.44)
This expression is correct for any value of t0/T . However, it is very instructive
to see explicit dependence on ∆t when t0/T � 1 is small, and the Poisson
distribution is restored.

With this purpose in mind, we simplify eq. (6.44) by expanding the in-
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complete gamma function, which can be simplified as follows:

P (∆t)≈ λ2
0
〈λ〉

e−[λ0∆t]
(
T − t0
T

)
+ λ2

0(β+ 1)Γ(β+ 3)
〈λ〉

·
(
t0
T

)
·
( 1
λ0∆t

)β+3
,

(6.45)
where we use the identity (6.42) and ignored the exponentially small contri-
bution coming from incomplete upper gamma function:

Γ(s,x→∞)→ xs−1 exp(−x). (6.46)

In the limit (t0/T )→ 0, we recover the conventional Poisson distribution,
while (t0/T ) 6= 0 describes the deviation from Poisson statistics in this sim-
plified setting.

We are now ready to analyze the non-Poisson distribution given by eq. (6.45).
The important point here is that this distribution is a superposition of two
parts: the first term describes the Poisson distribution with small correction
in normalization. The most important part for us is the second term which
is parametrically small at (t0/T )� 1. However, it could become the dom-
inant part of the distribution P (∆t) at small ∆t→ 0 due to a high power
(∆t)−(β+3) in the denominator (6.45).

It is interesting to note that Ref. [9] noticed that their data can be fitted
as a superposition of two terms which have precisely the form of two terms
entering eq. (6.45). However, Ref. [9] fitted the observed signal to an expres-
sion that represents the product of two terms rather than in the form of sum
of two terms entering eq. (6.45) with a well-defined physical meaning of the
relevant parameters such as (t0/T ). Next, we fit that data from Ref. [9] using
exact eq. (6.41) and simplified eq. (6.45) for P (∆t). Our main conclusion of
this fit is that the clustering events play the dominant role in the distribution
P (∆t).

6.3.3 Wait time distribution: theory confronts the
observations

The occurrence probability is presented in Fig. 7 in Ref. [9]. First, we have
to comment that the occurrence probability plotted in Fig. 7 in Ref. [9] is
different from the wait time distribution P (∆t) defined here. It is convenient
to explain the difference using the description in terms of the discrete bins
[∆ti,∆ti+1]. In these terms, Fig. 7 of Ref. [9] is a histogram, where the
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Figure 6.6: The blue points are extracted from Fig. 7 in Ref. [9] (132 MHz).
Dividing the blue points by the corresponding bin width, we get the red
points (i.e., the values of P (∆ti) in eq. (6.47)). The red line is fitted by
eq. (6.48) with A= 0.56s−1,n' 1.5,λ' 0.0049s−1. This figure is taken from
Ref. [4].

blue points represent the values of ni/N where ni is the number of events
with wait-time located in the bin [∆ti,∆ti+1] and N is the total number of
events. However, by definition, the wait time distribution P (∆ti) is obtained
by dividing ni/N by the bin width [∆ti+1−∆ti] for proper normalization of
P (∆ti). Indeed,

P (∆ti)≡
ni
N

1
[∆ti+1−∆ti]

,∑
i

P (∆ti)[∆ti+1−∆ti] =
∑
i

ni
N

= 1.
(6.47)

As noticed by Ref. [9], the data can be nicely fitted using the following
function

P (∆t) = A(∆t)−n exp(−λ∆t), (6.48)
where the continuum limit is already assumed. We confirm that the good
match can indeed be achieved, and the corresponding fit is shown by the red
line in Fig. 6.6.
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Figure 6.7: The red points are the same as those in Fig. 6.6 (i.e., the values
of P (∆ti) in eq. (6.47)). The solid lines are fitted by the full expression of
P (∆t) given by eq. (6.41). The solid red line gives β =−0.9, t0 = 4000 s, λ0 =
0.5 s−1. Other choices around this group of parameters can also give similar
result. For example, the solid black line corresponds to β =−0.6, t0 = 3000 s,
λ0 = 0.2 s−1. In comparison, the dashed lines are the simplified P (∆t) given
by eq. (6.45), with the same group of parameters chosen correspondingly.
This figure is taken from Ref. [4].

We are now ready to interpret the results obtained above in terms of the
two dimensionless parameters (t0/T ) and (〈λ〉/λ0) introduced in eq. (6.37)
as the generic way to parameterize non-stationary Poisson processes. First of
all, the acceptable fit shown in Fig. 6.7 always produces the relatively large
value for (t0/T ). Indeed, the first solution corresponds to (t0/T ) ' 0.95,
while the second solution assumes the value (t0/T )' 0.71. We remind that
this parameter (t0/T ) describes the portion of time when clustering events
occur. In case of stationary Poisson processes, (t0/T ) = 0. Fit in both cases
suggests that non-stationary Poisson processes occur for most of the time,
which unambiguously implies that non-stationary Poisson processes play the
dominant role in radio wave emission. This is consistent with the proposed
AQN mechanism when the non-stationary Poisson distribution is expected
and anticipated.

Another quantitative characteristic which describes the deviation from
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conventional Poisson distribution is the dimensionless parameter (〈λ〉/λ0).
The acceptable fit shown in Fig. 6.7 always produces a strong deviation of
the parameter (〈λ〉/λ0) from identity. Indeed, (〈λ〉/λ0) ≈ 0.14 for the first
solution while (〈λ〉/λ0)≈ 0.5 for the second solution. This represents another
strong evidence supporting our claim that non-stationary Poisson processes
play the dominant role in radio wave emission.

One should note that the quantitative estimates of the parameters from
the first principles within the AQN framework are hard to carry out. We
could only anticipate a large deviation from conventional Poisson distribu-
tion as explained above, while any quantitative estimates of these parame-
ters are not feasible at the moment. The problem is that the radio emission
by non-thermal electrons is a random process, which strongly depends on
surrounding plasma features. Furthermore, the emission spectrum of the
non-thermal electrons also represents a challenging theoretical problem, as
emission occurs in the system which is moving with a very large Mach num-
ber when the turbulence, shock waves and other non-equilibrium processes
dominate the dynamics of the non-thermal electron emission.

Our first quantitative prediction is that the parameters (t0/T ) and (〈λ〉/λ0)
must be very similar for different frequency bands. Our second quantitative
prediction, is that the emission between radio events observed at different
frequencies must be correlated with time delays measured in seconds. This
correlation is very specific to the AQN mechanism.

It is interesting to note that the data from Ref. [9] can be nicely fitted
using the function (6.48), which exhibits structures similar to our formula
(6.45). The important difference here is that our formula was derived with
well-defined parameters (t0/T ) and (〈λ〉/λ0) , which quantitatively charac-
terize the non-stationary Poisson processes, while the extraction of A,λ,n
from the fitting (6.48) represented on Fig. 6.6 does not allow to arrive at any
quantitative conclusion.

As clustering events play a major role, one may wonder if our estimate
of B̄ in chapter 6.2.2 may be modified as a result of these events. We think
that the corresponding variation is numerically mild, and does not modify
the picture advocated in this work.49 Therefore, we ignore the corresponding

49Indeed, even if each AQN event generates a cluster consisting on average, let us say,
three radio events, it would change the event rate (6.9) by the same factor three. We note,
that a much larger number of events within the same cluster would be inconsistent with
total energy estimate eq. (6.26) which agrees with observations eq. (6.29). The scaling
parameter α' 2.5 defined by eq. (6.5) implies that the corresponding variation in B̄ does
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modifications in B̄ in the present study.
We have discussed at length that the presence of clustering events is a

generic feature of the mechanism for impulsive radio events. We interpret the
fit shown in Fig. 6.7 of the data from Ref. [9] with our expression eq. (6.41)
as an additional strong support for our proposal when radio emissions always
accompany nanoflare events.

One should emphasize that nanoflares are introduced as generic events,
producing an impulsive energy release at small scale ( see the review papers
Refs. [129, 130]). The fact that nanoflares are the consequence of AQN an-
nihilation events accompanied by the clustering of radio events is a highly
nontrivial consistency check of the entire framework . Such clustering events
supported by data in Ref. [9] are clearly related to a non-Poissonian charac-
ter of distribution, and the AQN model provides a natural solution for this
feature.

6.4 Conclusion
We demonstrated that AQN annihilation events in the Sun could be ac-
companied by radio events. This proposal is consistent with the observations
reported by Ref. [9], including the frequency of appearance, the temporal and
spatial distributions, their intensity, and other related observables. There are
several direct consequences of this proposal which future observations will be
able to support or refute:

1. The proposed mechanism suggests that a considerable portion of radio
events recorded at different frequencies, might be emitted by a sin-
gle AQN continuously generating radio signals, as a result of different
plasma frequencies at different altitudes. This picture suggests that
there must be a spatial correlation between radio events in a given
local patch (within size 10 km), in different frequency bands. Observa-
tions of correlated clustering events as discussed in chapter 6.3.2 and
chapter 6.3.3, are the direct manifestation of correlations observed in
the same frequency band. We advocate the idea that similar spatial
correlations, from different frequency bands, can also exist. There can
also be similar temporal correlations; see item 4 below.

not exceed a factor 2.5√3≈ 1.5. These changes are much smaller than the difference in B̄
between distinct acceptable models (6.5) , as one can see from Fig. 6.1.
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2. Lower frequencies waves could be emitted from higher altitudes. The
intensity of emission depends on the altitude highly non-trivially. First,
the upward-moving non-thermal electrons are much more numerous
at lower altitude (corresponding to higher ν) because ns/ne scales as
r−3/2. The radio emission cannot occur when the ratio becomes below
the required rate (6.22). Second, the mean-free path defines the highest
altitudes the non-thermal electrons may reach. Above this altitude, the
non-thermal electrons will thermalize and cannot be a source of radio
waves. As a result of these suppression factors, we expect that the
low frequency emissions should be in general suppressed. Of course,
the radio emission is related to random processes, highly sensitive to
some specific local features of the plasma and non-thermal electrons,
as discussed in chapter 6.2.1. Therefore, our prediction of suppression
is subject to possible fluctuations within small frequency bands.
This tendency has been indeed observed for the 98 MHz band, where
the recorded number of resolved events is at least one order of mag-
nitude smaller than for the three other higher frequencies bands. We
predict that the emission rate at 80 MHz and 89 MHz, which have been
recorded, but are not yet published by Ref. [9], should be even lower
(even in comparison with 98 MHz emission).

3. In contrast with the low frequency bands, the event rate for higher
frequency bands should be higher than the rate recorded for the 160
MHz band. This prediction can be directly tested in future analysis by
studying emissions with ν & 160 MHz, since some of their observations
were done in the 179, 196, 217 and 240 MHz bands [9]. One should
comment here that at higher frequencies ( ν & 240 MHz), radio emission
is subject to a strong absorption, and that the observed intensity will
experience suppression [134], limiting our perspectives to study higher
frequency emissions.

4. The proposed AQN mechanism of radio emission predicts the pres-
ence of correlations between the emissions in different frequency bands.
These correlations emerge due to the upward motion of the non-thermal
electrons, with typical velocities v⊥ ' 104km/s according to eq. (6.18).
The delay in arrival time at different heights is measured in seconds,
when the height varies at the scale of 104 km, according to Fig. 6.4.
As a result of upward motion, the low frequency emissions should be
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delayed in comparison to the high frequency emissions.

5. Solar Orbiter recently observed so-called “campfires” in the extreme
UV frequency bands. It is tempting to identify such events with the
annihilation of large AQNs, as they are capable of generating radio
signals sufficiently strong to be resolved. We therefore suggest to search
for a cross-correlation between MWA radio signals and recordings of the
extreme UV photons by Solar Orbiter.
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Chapter 7

Observation II: X-ray Annual
Modulation Observed by
XMM-Newton

The XMM-Newton observatory show evidence with an 11σ confidence level
for seasonal variation of the X-ray background in the near-Earth environment
in the 2-6 keV energy range [10]. The observed seasonal variation suggests
that the signal could have a dark matter origin, since it is very difficult to
explain with conventional astrophysical sources. In this chapter, we are going
to show that the observed seasonal variation can be explained by the AQN
model. This chapter is adapted from Ref. [5].

7.1 Motivation
The main motivation of this chapter is to explore the seasonal variation of the
near-Earth X-ray background found in the XMM-Newton data by Ref. [10].
A seasonal variation with a confidence level of 11σ was detected in the 2-6
keV energy range (see Fig. 7.1 which is adapted from Ref. [10]). The authors
argue that conventional astrophysical sources have been ruled out, so they
propose an explanation based on the assumption that keV axions are emitted
by the Sun and convert to X-rays in the Earth’s magnetosphere. These X-
rays would be subsequently elastically scattered, on average, through a right
angle to reach the telescope. This interpretation should be contrasted with
the original idea proposed by Ref. [138–140] which views the axion-emitting

124



solar core through the solid Earth with an X-ray telescope. The original
idea by Ref. [138] does not work as an explanation of the effect found by
Ref. [10] because the XMM-Newton’s operations exclude pointing at the
Sun and at the Earth directly. Some of the major criticism of the Ref. [10]
interpretation include the following (see Ref. [141]): a) Due to conservation
of momentum, in conventional cases, the X-ray photons generated in the
magnetic field should be collinear with the parent axions. Therefore, since
XMM-Newton never directly points towards the Sun, it should not see any
solar axions; b) Only in the case of a highly inhomogeneous component of
the magnetic field with a fluctuation in the keV scale would the photons be
non-collinear with the parent axions. Such a fast fluctuating component is
very unlikely to be a dominant portion of a geomagnetic field. Even if non-
collinear effects are generated in the geomagnetic field and we assume that the
photon flux converted from axions would be totally isotropic, the geometric
factor ξ = ΩXMM/4π (where ΩXMM is the aperture of XMM-Newton) is very
small, ξ ' 10−5. This is in strong disagreement with the requirement of
ξ ' 1 for the interpretation of the observed seasonal variation as proposed
by Ref. [10]. Other issues with this interpretation were also discussed in
Ref. [141].

Although the explanation given by Ref. [10] turns out to be untenable,
the phenomenon of a seasonally varying X-ray background around the Earth
detected with an 11σ confidence level remains a mystery (see Fig. 7.1). The
seasonal variation pattern is clearly related to the Earth’s revolution around
the Sun, which strongly indicates that dark matter galactic wind could play
a central role. The motivation of this chapter is to interpret the seasonally
varying X-ray background as a natural result of the annually modulating dark
matter wind50 in the context of the AQN framework. In our framework, the
AQNs emit X-rays isotropically and can propagate in any direction. The
radiated X-rays are automatically subject to seasonal variation, since the
AQNs are the dominant contributor to dark matter. Our proposal is therefore

50There are subtle points here related to XMM-Newton’s position and its view angle
as it orbits the Earth. This complication does not allow an immediate interpretation of
the data in terms of the conventional annual modulation, which is normally attributed
to dark matter wind with its maximum on June 1 and minimum on December 1 (see the
original paper Ref. [142] and the review Ref. [143] for more information). The maximum
and minimum values will obviously get shifted as a function of the satellite’s position with
respect to the Earth’s surface. We will make a few comments on these complications later
in the text.
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Figure 7.1: 2-6 keV X-ray background spectra detected by the EPIC pn
camera carried by XMM-Newton (the data are integrated from 2000 to 2012)
for each of the four spacecraft seasons: Winter (black), Summer (green),
Spring (red), and Fall (blue). This figure is taken from Ref. [5] where it was
adapted from Figure 14(a) in Ref. [10].

very different from Refs. [10, 138–140] which consider axions as the dominant
source of dark matter.

The basic idea in our proposal follows from the fact that antimatter AQNs
will hit the Earth at a low rate. These AQNs will lose some of their mass
from annihilation, and they will also lose some momentum [36]. The AQNs
are not completely destroyed. At the moment of their exit, they are very hot
objects as a result of friction and annihilation events occurring in the Earth’s
deep underground layers. At the exit point, their temperature can be as high
as T0 ∼ 200-500 keV (this is discussed in chapter 7.2). The AQNs slowly cool
down while they continue their trajectory away from the Earth’s surface and
emit radiation. At this stage, the AQNs continue to lose their accumulated
heat and slowly decrease their internal temperature. On average, when AQNs
reach distances of the order r & 8R⊕, their temperature remains very high,
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T � 10 keV. The XMM-Newton operates precisely at such distance and can
easily observe these X-rays emitted by AQNs. AQNs represent the dominant
form of dark matter in this model, and the velocities of AQNs hitting the
Earth are different for different seasons. We call this the annual modulation of
the dark matter wind (see footnote 50 for a comment on this terminology). As
a result, the flux of AQNs that leave the Earth also depends on seasons, which
consequently leads to a seasonal varying X-ray background. The objective of
this chapter is to calculate if the model is consistent with the observations by
Ref. [10]. We will show that the amplitude of the seasonal variations, which
is on the level of 20-25%, and the energy spectrum are both consistent with
Ref. [10].

Note that it is not the goal of this chapter to match the observed seasonal
variation presented in Fig. 7.1 with our proposed mechanism. Our goal is
limited to the generic computation of the energy spectrum (which is almost
the same for all seasons) and the demonstration that the seasonal variation
could potentially be very large. The reproduction of Fig. 7.1 can only be at-
tempted with the precise knowledge of the satellite position and orientation,
which is well beyond the scope of this work.

As we have reviewed in chapter 2, there are several excesses of emissions
in different frequency bands contained in the galactic spectrum of the Milky
Way, which seem to be consistent with the moderate emission processes in-
herent to the AQN model [53–58]. The best-known example is the strong
galactic 511 keV line. Several of these diffuse emissions could be explained
within the AQN framework if the AQNs carry a baryon charge of order
〈B〉 ∼ 1025; see Refs. [53–58] for further details with explicit computations
in different frequency bands. In all of these cases, the emitted photons are
generated in the electrosphere which is the outer layer of AQNs; see also
chapter 5.2 for a brief discussion about the formation of the electrosphere
which is an outer layer of an AQN, consisting of electrons in case of matter
AQNs (positrons in case of antimatter AQNs).

The X-ray emission in the near-Earth environment, which is the subject
of this chapter, also originates from the electrosphere. Therefore the ther-
mal properties of the electrosphere play a crucial role. The relevant ther-
mal features of the electrosphere have been analyzed previously in Ref. [57]
in the context of galactic emission, where the AQN’s internal temperature
turns out to be very low, being around T ∼ eV. This temperature is deter-
mined by the requirement that the rate of the energy emission is equal to
the rate of energy deposition due to the annihilation processes between the
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baryons from the surrounding material with the antiquarks from the AQN’s
core. As the density of the material in the center of a galaxy is quite low,
nb∼ 102 cm−3, the corresponding rate of collisions of baryons with the AQNs
is also very low. This eventually determines an AQN’s low internal tempera-
ture, around T ∼ eV. Note that the heat exchange inside the AQN, between
the electrosphere and the AQN core, is extremely efficient. Consequently,
the temperature of both are the same, T .

In this chapter, we are interested in the AQNs crossing the Earth’s interior
with a very high density of the surrounding material, nb ∼ 1024 cm−3, and
even higher in the Earth’s core. As a result, the AQNs crossing the Earth’s
interior will acquire very high temperatures, reaching up to T ' 200-500 keV,
as argued in chapter 7.2. For such high temperatures, several new phenomena
related to ionization, plasma frequency, and other many-body effects, which
had been previously neglected in Ref. [57], become very important and have
to be explicitly incorporated into the computational framework. The corre-
sponding modifications of the dynamics of the electrosphere accounting for
all of these effects will be the subject of the following chapter 7.2. We use
these results in chapter 7.3 to calculate the spectrum accumulated by XMM-
Newton from the hot AQNs based on the observatory’s configuration and
orbit information, and compare it with the observations.

7.2 AQN-induced X-rays
In order to theoretically calculate the spectrum received by XMM-Newton
from the radiation of hot AQNs that have crossed the Earth’s interior, the
first step is to know the radiation spectrum from the electrosphere of an AQN
characterized by a high temperature T ∼ 200-500 keV, which represents the
topic of chapter 7.2.1. In chapter 7.2.2, we examine the cooling process
of AQNs in space after they leave the Earth. Since the AQN’s radiation
features change as its temperature drops, we need to know the temperature,
intensity, and spectrum of AQNs when they reach the region r∼ 10R⊕, where
the XMM-Newton is operational.

7.2.1 AQN emissivity
The properties of thermal emission from the electrosphere of an AQN have
been discussed in Ref. [57]. First, we will briefly summarize the previous
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results here. After that, we will discuss a number of complications which
are relevant for our present work (when the temperature is very high T ∼
200-500 keV). These were ignored in previous studies with T ∼ eV in the
context of galactic emission.

The spectral surface emissivity is denoted as dF/dω= dE/dtdAdω, repre-
senting the energy emitted by a single AQN per unit time, per unit area of the
AQN’s surface, and per unit frequency. It has the following expression [57]:
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dω
(ω) = 1

2
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dz
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n(z) is the local density of positrons at distance z from the AQN’s surface,
which has the following expression:

n(z) = T

2πα
1

(z+ z̄)2 , (7.3)

with
z̄−1 =

√
2πα ·me ·

(
T

me

)1/4
, n(z = 0)' (meT )3/2 , (7.4)

where n(z = 0) reproduces an approximate formula for the plasma density in
the Boltzmann regime at temperature, T . The function h(x) in eq. (7.2) is
a dimensionless function computed in Ref. [57] (see Appendix C for details).
The important features of the spectrum will be discussed in detail later, but
we would like to emphasize that the spectrum is qualitatively different from
conventional black body radiation, despite of the fact that the electrosphere
is characterized by a specific temperature, T . The reason is that the size
of the system is much smaller than the photon’s mean free path and, as a
result, the photons cannot thermalize in this system.

The thermal properties presented above were applied to the study of the
emission from AQNs from the galactic centre, where an AQN’s internal tem-
perature is very low, T ∼ eV, as already mentioned in chapter 7.1. When an
AQN propagates in the Earth’s atmosphere, its internal temperature starts
to rise to ∼ 40 keV or so [39]. When the AQN enters the Earth’s surface, it
is further heated to ∼ 200 keV, due to the much higher density of the Earth’s
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interior (see the Appendix of Ref. [39] for more details). These processes and
the corresponding emission spectrum are very complicated to compute be-
cause in this high temperature regime, a number of many-body effects in the
electrosphere that were previously ignored become important. In what fol-
lows, we explain the physics of these effects, while all of the technical details
are developed in Appendix C.

1. The modification of the positron density n(z) in the electrosphere. The
most important modification due to high temperature occurs as a result of
the ionization of the system. Loosely bound positrons leave the system, and
strongly bound positrons change their positions and momenta to adjust to
the corresponding modifications of the system. Indeed, the neutrality of the
AQN will be lost due to the ionization at T 6= 0, in which case the antimatter
AQNs will acquire a negative electric charge due to the ionized positrons.
The corresponding charge, Q, can be estimated as follows [28]:

Q' 4πR2
∫ ∞
z1

n(z)dz ∼ 4πR2

2πα ·
(
T
√

2meT
)
, (7.5)

where n(z) is the density of the positrons eq. (7.3), in the electrosphere. In
this estimate, it is assumed that the weakly bound positrons, with binding
energy ε . T , will be stripped off of the electrosphere as a result of high
temperature, T . These loosely bound positrons are localized mostly at the
outer region of the electrosphere, at distances z > z1(T )≈ (2meT )−1/2, which
motivates the cutoff in our estimate (7.5).

Since the temperature of the AQN’s core becomes very high due to the
large number of annihilation events in the Earth’s interior, a large number
of weakly bound positrons will be stripped off of the AQN, and the number
density of remaining positrons will drastically decrease. The corresponding
changes in the electrosphere are determined by nontrivial non-equilibrium
dynamics, which shall not be discussed in the present work. Instead, we in-
troduce a phenomenological suppression factor, κ, which effectively accounts
for the relevant physics:51

n(z) = κ · T2πα
1

(z+ z̄)2 . (7.6)

51Note that the meaning of κ here is completely different from the same symbol κ defined
in chapter 4 which accounts for completely different physics.
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Although the computations of the coefficient κ from first principles are very
difficult and saved for a future study, it is expected that it depends on tem-
perature, T , and z, since different z-shells will be affected by the annihi-
lation processes differently. However, we ignore these complications in the
remainder of the paper and will treat κ as a constant parameter in the range
0< κ < 1.

2. Ionization of loosely bound positrons. Eq. (7.6) is a simplification
which does not take into account the fact that loosely bound positrons will
be completely stripped off by high temperature, while more strongly bound
positrons will be less affected and stay bound. One can easily add this feature
to our simplified analysis by describing κ as a step function:

κ(z,T ) =
0 if z ≥ z1

κ(T ) if z < z1
, (7.7)

where z1(T ) is defined as

z1(T )' 1√
2meT

. (7.8)

In this way, we preserve the crucial feature of the system that loosely bound
positrons from the outer region of the electrosphere are stripped from the
AQN and do not participate in the cooling of the system.

3. The role of the plasma frequency. The plasma frequency ωp charac-
terizes the propagation of photons in a plasma. It can be thought of as an
effective mass for the photons: only photons with an energy larger than this
mass can propagate outside of the system, while photons with ω < ωp can
only propagate for a short time and distance ∼ ω−1

p before being absorbed
back. For our estimates, we will use a conventional non-relativistic expression
for ωp:

ω2
p(z) = 4παn(z)

me
; ωp(z)'

√
2T
me

√
κ

(z+ z̄) , (7.9)

where we substituted eq. (7.6). The important implication of the plasma
frequency ωp(z) is that the densest regions of the electrosphere stop emitting
photons because the plasma frequency is too high, since ω2

p ∼ n according to
eq. (7.9). This implies that the emissivity, eq. (7.2), from the dense regions
will be exponentially suppressed at the plasma frequency [57]:
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Figure 7.2: The spectral surface emissivity of an AQN with all of the effects
discussed in this chapter 7.2.1 included, see eq. (C.8) in Appendix C. κ =
10−2.5 in the top subfigure and κ= 10−3.5 in the bottom subfigure. The two
subfigures are plotted with T = 100 keV as an example. This figure is taken
from Ref. [5].

dQ̃

dω
(ω,z)∼ e−ωp(z)/T · dQ

dω
(ω,z). (7.10)

With all of these effects taken into account, the spectral surface emissivity
(7.1) can now be numerically computed. We refer the reader to Appendix C
for technical details of the computations. Two examples are shown in Fig. 7.2
for T = 100 keV and κ(T ) = 10−2.5,10−3.5. Fig. 7.2 reveals some important
features. First of all, the spectrum is almost flat in the region ω . T . This
is a direct manifestation of a very generic property of emission by charged
particles when the energy of the emitted photon is much smaller than all of
the other scales of the problem, the so-called “soft Bremsstrahlung” emission
or “soft photon theorem.” In this case, the emission is known to show a dω/ω
behavior for the probability to emit a soft photon with frequency ω. This
property implies that the intensity of radiation, dF/dω ∼ constant, must be
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flat for soft photons. As we will discuss in chapter 7.3, this unique property
of the spectrum will play a key role in our interpretation of the spectrum
observed by XMM-Newton. On the other hand, for large ω� T , the expo-
nential suppression, exp(−ω/T ), becomes the most important feature of the
spectrum. The complete suppression of the emission at very small ω� T is
an artifact of our simplification of the density, n(z)∼ κ(z), in the form of a
step function (7.7). There is another cusp behavior also at ω� T (the peak
in Fig. 7.2). This results from our simplified treatment of the plasma fre-
quency, ωp, when dF/dω is approximated by a piecewise function (when the
emission with ω ≥ ωp from a high density region occurs with no suppression,
while emission with ω ≤ ωp from the same region is completely dropped). In
reality, both of these effects leading to the cusps should be described by a
smooth function. However, this part of the spectrum with ω� T will not
play any role in our analysis which follows.52

The next step is the computation of the cooling rate, done in chapter
7.2.2. For this purpose, we need the total surface emissivity Ftot(T,κ) which
is a function of T and κ. This is done by integrating dF/dω over ω. The
technical details of the calculations can be found in Appendix C, eq. (C.13).
We parameterize the final formula for the emissivity, which will be used in
chapter 7.2.2, as follows:

Ftot(T )' α

15π5/2
T 5

me
· c1(κ)

(
T

10 keV

)c2(κ)
(7.11)

with
c1(κ) = 4κ2, c2(κ) =−0.89. (7.12)

7.2.2 AQN cooling
While passing through the Earth, an AQN will be heated up by friction
and annihilation events. Its temperature when exiting the Earth’s surface is
denoted by T0. The AQN will be heated up in a fraction of a second because

52An important consequence of the strong suppression at small ω� T is that the in-
tensity of the visible light emission with ω ∼ 1 eV is strongly suppressed in comparison
to the X-ray emission. It could play a dramatic role in the identification of AQN annihi-
lation events in the atmosphere with the so-called skyquakes. They occur when a sonic
boom is not accompanied by any visible light which would normally be expected for any
meteors-like events; see Ref. [39] for details.
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of the very efficient energy transfer between the AQN and its surrounding
dense material. However, it is expected that T0 cannot become much higher
than ∼ 500 keV because of different processes. These include e+e− pair
production and black body radiation, which start to dominate the AQN’s
emission deep underground, and become much more important than the
Bremsstrahlung radiation, eq. (7.2). The lower bound on T0 is at the order
of ∼ 200 keV, as shown by Ref. [39]. Calculating T0 precisely from first
principles remains very difficult because the energy transfer in the Earth’s
interior includes complicated processes, and it is not part of the present work.
For this reason, we will treat T0 as a phenomenological parameter.

Fortunately, these complications do not affect our analysis once the AQNs
exit the surface and start to travel in empty space. After exiting Earth, the
energy loss from the AQN into space is entirely determined by eq. (7.11). In
this case, the initial condition for the cooling is simply characterized by T0.
One can completely ignore any new annihilation events at this point because
the density of the material in Earth’s atmosphere drops very quickly with
height. Therefore, the AQNs are assumed to be travelling in empty space
immediately after they exit the Earth’s surface, with initial temperature
T (r =R⊕) = T0.

Our goal now is to calculate the energy loss rate of the heated AQN while
it travels through space, away from Earth, with a typical dark matter speed
of ∼ 220 km/s. The total initial energy accumulated by the AQN is deter-
mined by its exit temperature, T0, and specific heat, cV . The corresponding
expression for unpaired quark matter is known [51] and it is given by:

cV = NcNf
3 µ2T, (7.13)

where µ is the chemical potential, and Nc,Nf are the number of colors and
flavors in the system. There are many different CS phases with drastically
different expressions for cV . In particular, in 2SC (two flavor superconducting
phase), the expression for the specific heat [51] assumes the form :

cV '
1
3T (µ2

d+µ2
u), (7.14)

where chemical potentials in CS phases are in the range µu ' µd ' 500 MeV.
This numerical value is perfectly consistent with our studies of the typical
value of the AQN’s chemical potential at the moment of its formation as we
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have studied in chapter 3.3. For our numerical analysis in what follows, we
use expression (7.14).

The energy of the AQN decreases when its temperature decreases, ac-
cording to the conventional formula

dE = cV ·V ·dT, (7.15)

where V is the AQN volume. The energy emitted by an AQN per unit time
has been computed in the previous section and it is given by eq. (7.11):

−dE/dt= Ftot(T ) ·4πR2, (7.16)

where sign minus implies that the energy of the AQN is decreasing with time
as a result of emission. Combining eqs. (7.15) and (7.16), we arrive at the
desired equation describing the change of the temperature, T , with time, t,
while the AQN is moving away from the Earth and emitting photons:

dT

dt
=−4πR2

V

1
cV (T )Ftot(T ). (7.17)

The solution of this differential equation, with initial condition T (t= 0) = T0,
is given by:(

t

1 sec

)
' 0.34
c1(κ)[c2(κ) + 3]

(
R

10−5 cm

)(
µu,d

500 MeV

)2

×

( T

10 keV

)−[c2(κ)+3]
−
(

T0
10 keV

)−[c2(κ)+3]
 , (7.18)

where T (t) = T0 at t= 0, when the AQN exits the Earth’s surface. We refer
the readers to Appendix D for the details on the derivation.

Fig. 7.3 shows T as a function of time, t, for different values of κ and
T0. We choose R= 2.25×10−5 cm, which has been previously used in axion
emission studies [36]. Fig. 7.3 illustrates a very important result: after t≈ 100
seconds, when the AQN is at distance r ≥ 3R⊕, the temperature T (t) is not
very sensitive to the initial temperature T0 for a given coefficient κ. This is
because AQNs with higher initial temperature T0 emit more radiation and
cool down more quickly. As a result, T (t) is much more sensitive to κ than
T0, as shown by the blue and black lines in Fig. 7.3. This is because a smaller
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value of κ leads to a drastic reduction of the emission. As a consequence of
this suppressed emission for a sufficiently small κ, the temperature remains
close to its initial value, T0, for a long period of time, t∼ 103 seconds. Ref. [10]
selected observations such that XMM-Newton would always point away from
the Earth and Sun. Therefore, we expect that their signal will be weakly
sensitive to T0 and strongly sensitive to κ.

Another important quantity is the AQN energy loss rate. It can be com-
puted as follows: the total energy stored in an AQN at the moment of exit
is

E0 =
∫ T0

0
cV (T )V dT. (7.19)

The energy lost due to thermal emission to space is given by

E(t) = 4πR2
∫ t

0
dtFtot[T (t)], (7.20)

where Ftot[T ] is determined by eq. (7.11) and T (t) by eq. (7.18). The stored
energy [1−E(t)/E0] as function of time for different values of κ and T0 is
shown in Fig. 7.4. This function describes the fraction of energy remaining
in the AQN core at time t, which vanishes when t→∞. Fig. 7.4 shows that
a smaller κ corresponds to a reduced emission and therefore a much slower
energy loss rate. For instance, for κ= 10−3.5, the stored energy in the AQN
core is almost unaltered up to t' 102 seconds.

We conclude this part with a few comments on our choice of the parame-
ters T0 and κ, which appear in the computations and provide a benchmark for
our numerical estimates. As we shall see in the following text, the spectrum
of the emission depends on these parameters in a very nontrivial way. Our
goal here is to give a few simple order-of-magnitude estimates supporting our
choice of T0 and κ being used in the present work.

As already mentioned at the beginning of this section, the exit tempera-
ture is expected to be in the range T0 ∼ 200-500 keV. This results from the
very high rate of annihilation events in the dense environment,53 and that
the heat loss from e+e− pair production and black body radiation prevents
T0 from going beyond ∼ 500 keV.

53Indeed, according to eq. (7.19), the energy, E0 ' 1
2cV V T

2
0 with T0 ' 500 keV, is

achieved when the AQN travels a distance of order L∼ 0.5 km, at which the accumulated
annihilation energy, (2 GeV)nbπR2L with nb ∼ 1024cm−3, becomes the same order of
magnitude as E0.
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Figure 7.3: T vs. t for different values of κ and T0. T = T0 at t = 0. An
important feature here is that the behavior T (t) at t & 100 s (when XMM-
Newton becomes operational) is not sensitive to the initial value of T0 for a
given κ; see text for explanations. This figure is taken from Ref. [5].

The other parameter which enters our computations is the suppression
factor, κ, defined by eq. (7.6). This was introduced to account for the dras-
tic decrease of the positron number density from the electrosphere, which
can emit photons. This strong suppression is a direct consequence of high
internal temperature, T0, when a large number of weakly bound positrons
are expanded over much larger distances order of R rather than distributed
over much shorter distances of order z̄ defined by eq. (7.4). This leads to the
following estimate for suppression factor54

κ∼
(
z̄

R

) 1
2
∼ 1√

mR

1
4√2πα

∼ 2×10−3. (7.21)

54A simplified procedure for the estimate of κ, as mentioned in the text is not a proper
way of computation. This is because the positron’s density will be adjusting when T0
varies. The consistent procedure would be a mean-field computation of the positron density
by imposing the proper boundary conditions relevant to nonzero temperature and nonzero
charge, similar to the T ≈ 0 computations carried out in Ref. [57, 58]. The corresponding
computations have not been done yet, and we keep parameter κ as a phenomenological
free parameter.
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Figure 7.4: The relative stored energy [1−E(t)/E0] vs. t, for different values
of κ and T0. An important feature here is that a smaller κ = 10−3.5 corre-
sponding to a reduced emission leads to a much slower decay rate. In this
case, the AQN keeps its initial energy value up to t . 102 s. This figure is
taken from Ref. [5].

This is only an order-of-magnitude estimate, and as emphasized in foot-
note 54, κ will be treated as a free phenomenological parameter in the rest
of this chapter.

7.3 Computation of the spectrum and
comparison with XMM-Newton data

This is the central part of this chapter, as we are in a position to compute the
spectrum and intensity received by XMM-Newton from the thermal emission
of AQNs computed above. The obtained results can be directly compared
with the observations from Ref. [10].

We start with the simplified assumption that the AQNs are uniformly
distributed around the Earth. We will also assume that the AQNs exit the
Earth radially. As we shall see below, we are able to reproduce the spectrum
observed by XMM-Newton with the AQN framework. The spectrum shape
(but not the intensity) is insensitive to the free parameters of the model,
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as our result represents a very generic consequence of the system when the
spectrum is essentially determined by the “soft photon theorem” which we
already mentioned at the end of chapter 7.2.1.

With these simplifications in mind, the number density of AQNs that
have passed through the Earth is

nAQN(s) = 1
4π(R⊕+ s)2 ·

F
vout

, (7.22)

where Fig. 7.5 shows the geometry of the configuration. In eq. (7.22), s
denotes the distance from the Earth’s surface. vout is the AQN velocity
leaving the Earth’s surface, which is assumed to be the same for all AQNs
and independent of s. For simplicity, we approximate vout ' vin where vin is
the AQN velocity when it hits the Earth, although the AQN may be slowed
down by the interactions with their surroundings inside the Earth. This
approximation is good enough for our analytical treatment here. The effect
of the velocity difference between vout and vin will be discussed in chapter 7.4.
We denote F as the total AQN flux (number per unit time) that hits the
Earth. It has been estimated as follows [36]:

F ' 0.67 s−1
(

ρDM
0.3 GeV/cm3

)(
vin

220 km/s

)(
1025

〈B〉

)
. (7.23)

We adopt the following values for our numerical estimates: vout ' vin '
220 km/s; average baryon charge, 〈B〉 = 1025 (which corresponds to an av-
erage size of the AQN, 〈R〉 = 2.25× 10−5 cm). This corresponds to a total
flux of F ' 0.67 s−1 [36].

Fig. 7.5 shows the positions of the Earth and the XMM-Newton obser-
vatory. It also shows how the XMM-Newton observatory receives the radia-
tion from a large number of AQNs, with number density nAQN, surrounding
the Earth. Various configuration parameters are defined in the caption of
Fig. 7.5. The following geometric relations are useful:

smid(θ) = L

−cosθ −R⊕, ymid(θ) =−Ltanθ,

rmid(θ) = (ymid +L)tanαc.
(7.24)

139



x

z

y

L

L

y

sn     dVAQN

mid

mid

θ

earth

⊕R

XMM-Newton

αc

midr

Figure 7.5: The XMM-Newton observatory is assumed to be located at the
position (−L,−L,0). The cone is the field of view of the EPIC pn camera
carried by XMM-Newton. In our present work, we focus on this camera
(see footnote 57 for details). The cone points in the direction +y. dV is
the volume of the thin disk, and the number of AQNs contained inside is
nAQNdV . rmid is the radius of the thin disk. Since the opening angle of the
cone is very small, αc = 0.25deg, it is a good approximation that all AQNs
inside dV are located at the same point (−L,ymid,0). ymid could be negative,
so they have the same distance, smid, to the Earth’s surface. The range of θ
is apparently [π/2,5π/4]. This figure is taken from Ref. [5].

The number of AQNs inside the thin disk of the cone (shown in Fig. 7.5) is

dN(θ) = nAQNdV = nAQN[smid(θ)] ·πr2
mid(θ)dymid(θ). (7.25)

The distance, smid, and the time, t, are connected by the AQN velocity, vout
that smid = voutt. The spectrum received by the XMM-Newton observatory
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can be calculated as:

dFr
dω

=
∫

cone

dF

dω
(Tmid,ω) R2

[ym(θ) +L]2 dN(θ)

=
∫ 5π

4

π
2

dθ

{
dF

dω
(Tmid,ω) R2

[ym(θ) +L]2

·nAQN[smid(θ)] ·πr2
mid(θ) L

cos2 θ

}
,

(7.26)

where dF/dω (Tmid,ω) is the spectral surface emissivity computed at the
moment tmid = smid(θ)/vout with the corresponding temperature Tmid. The
computations of dF/dω(T,ω) for arbitrary T have been carried out in chapter
7.2.1; see Fig. 7.2 for dF/dω(T,ω) computed at T = 100 keV as an example.
R in eq. (7.26) is the AQN radius, R ' 2.25× 10−5cm, corresponding to
〈B〉 = 1025. For numerical estimates, we choose L = 7R⊕, where R⊕ is the
Earth’s radius.55

The radiation spectrum dFr/dω given by eq. (7.26) is the energy received
by the observatory per unit time, per unit area, and per unit frequency.
In order to make a precise comparison between our calculations and the
observations [10], we convert dFr/dω to f (theory), the number of photons
received by the observatory per unit time, per unit area, per unit frequency,
and per unit solid angle, which is defined as follows:

f (theory) ≡ 1
Ωc

1
ω

dFr
dω

, (7.27)

where Ωc = 2π(1− cosαc)≈ 5.98×10−5 sr≈ 0.196 deg2 is the solid angle of
the cone. The corresponding theoretical prediction is plotted in Fig. 7.6, for
several typical values of the parameters of the system, κ,T0, as discussed in
chapter 7.2.

In order to compare with observations from XMM-Newton in the 2-6 keV
energy band, we use the power-law fit of the observations (see eq. (11) from

55The orbit of XMM-Newton is highly elliptical, with an apogee altitude of ∼ 115000
km and a perigee altitude of ∼ 6000 km. The orbit period is ∼ 48 hr. The orbit changes
with time, due to several perturbations. We refer the readers to the XMM-Newton Users
Handbook [144] for details. The observatory only works at altitudes above the Earth’s
radiation belts ∼ 46000 km; see e.g., Refs. [144, 145]. Therefore, in this section, we choose
L= 7R⊕, which implies that the altitude of the observatory is

√
2L−R⊕ ≈ 57000 km.
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Ref. [10]):56

f (obs) =N0

(
ω

keV

)−Γ 1
cm2 · s ·keV · sr . (7.28)

The normalization factor N0 is dimensionless, while f is measured in the unit
of [cm−2s−1keV−1sr−1]. For the EPIC pn camera carried by XMM-Newton,57

the values of the numerical parameters (N0,Γ) are:

Winter(N0,Γ) = (6.66,0.97);
Spring(N0,Γ) = (9.08,0.98);

Summer(N0,Γ) = (9.60,1.06);
Fall(N0,Γ) = (12.09,0.97),

(7.29)

see Table 3 in Ref. [10]. These numbers are obtained by fitting the data ob-
served by the EPIC pn camera (from Fig. 7.1) showing the seasonal variation
of the X-ray background with 11σ significance. The maximum amplitude of
the seasonal variation from these data occurs between Winter and Fall, rather
than between Winter and Summer. It has been discussed in Ref. [10] and
will be discussed in the context of the AQN model in chapter 7.4.2.

Fig. 7.6 shows our theoretical prediction (the solid lines from Eq. (7.27))
against the observed spectra (the dotted lines from Eq. (7.28)) for four sea-
sons. The similarity between the observations and theoretical computations
is impressive, considering that the shape of the predicted radiation spectrum
is only slightly sensitive to the parameters κ and T0. This result is a direct
consequence of the AQN framework.58 The basic reason for the robustness
of our prediction is that the spectrum shape is essentially determined by the
very fundamental “soft photon theorem,” with a specific behavior, dω/ω, for

56The symbols in eq. (11) of Ref. [10] conflict with ours, so we rewrite eq. (11) as
eq. (7.28), using our own symbols to avoid confusion.

57XMM-Newton carries three cameras that are relevant to us: EPIC pn, EPIC MOS1,
and EPIC MOS2. The three cameras all clearly show the seasonal variation of the X-ray
background with similar values of (N0,Γ) listed in the main text, which can be seen in
Table 3 of Ref. [10]. Therefore, we only need to focus on one camera, which is enough for
our purpose to compare the AQN-based calculations with the observations. We choose
the EPIC pn camera because it has the largest photon grasp (effective area × aperture),
which is a key parameter in studying the background of X-ray radiation, and because it
has better counting statistics than the two EPIC MOS cameras [10].

58A cusp behavior in the region ω = 1-2 keV in Fig. 7.6 has no physical significance.
Rather, it is a reflection of our simplified treatment of the regions with small ω, which
results in such a cusp singularity, see comments on this cusp behavior in chapter 7.2.1.
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Figure 7.6: The relation f vs. ω, eq. (7.27), for (κ,T0) = (10−2.5,200 keV),
(10−2.5,500 keV), and (10−3.5,200 keV) respectively. The x-axis represents
frequency. The y-axis represents the values of f (theory), given by eq. (7.27),
which is the number of photons received by the XMM-Newton observatory
(camera EPIC pn) per unit time, per unit area, per unit frequency, and per
unit solid angle in the AQN framework, shown by solid lines. In comparison,
we also plot f (obs), given by eq. (7.28), representing the data observed by the
EPIC pn camera for four seasons, shown by the four dashed lines respectively.
This figure is taken from Ref. [5].

ω� T , as we already emphasized earlier at the end of chapter 7.2.1. The
slope, Γ, as seen in eq. (7.28), is indeed very close to Γ ' 1 for all seasons.
This shows very strong support for our AQN framework.

The amplitude of the spectrum, on the other hand, is sensitive to the
parameters (κ,T0). It is also sensitive to the dark matter distribution, AQN
size distribution, velocity distribution, etc., as one can see from eq. (7.23) for
the AQN flux. The distance and orientation of the XMM-Newton will also
play a role in the seasonal variation. Some of these effects will be discussed
in chapter 7.4. We can use our analytical predictions to explore the (κ, T0)
parameter range that is consistent with the observations shown in Fig. 7.1.

For this purpose, we calculate the maximum likelihood L(κ,T0) defined
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as:

L(κ,T0) = exp
−1

2

(
d−f(κ,T0)

σ

)2 , (7.30)

where the data, d, and the model, f(κ,T0), are estimated at one particular
frequency, ω. We choose ω = 3 keV, but any frequency would work, since
the model and the observations show a very similar frequency dependence.
The value of d in eq. (7.30) is chosen as the middle of the four observed
spectra, which is defined as the average of the top spectrum (Fall) and bottom
spectrum (Winter), i.e., d≡ 1

2 [f (obs,F) +f (obs,W)]. The variance, σ, is chosen
as σ ≡ 1

2 [f (obs,F)−f (obs,W)], which represents the maximum signal variation
between the four seasons. Note that we are not in a position to calculate a full
likelihood function over all frequencies, since we do not know the correlation
for different ω, and the resulting likelihood would be difficult to interpret.
Nevertheless, our approach should provide a reasonable order-of-magnitude
estimate of the region of the parameter space, (κ,T0), consistent with the
observations. We are not trying to interpret L(κ,T0) in a probabilistic way
because our error estimate is only approximate. However, the maximum of
L(κ,T0) at 1 is still a valid indicator of where the (κ,T0) degeneracies lie.
Fig. 7.7 shows the iso-contours of L(κ,T0), where a lighter color represents a
better match. The allowed parameter space is represented by two branches
in Fig. 7.7. The right vertical branch is essentially independent of T0, and
it matches the observations for κ ∼ 10−2.5. This “insensitivity” to T0 is
consistent with the red and black lines in Fig. 7.3, which illustrates the fact
that AQN cooling is independent of T0 when κ is high enough. On the other
hand, the left branch is strongly dependent on both κ and T0. The next step
is to investigate the seasonal variation in the context of our model. From the
qualitative arguments given in chapter 7.2.2, the physically preferred values
for κ and T0 are in the right branch. However, for completeness, we will
also calculate the seasonal variations for a lower value of κ. In the following
chapter 7.4, the calculations will be restricted to the three sets of parameter
values represented by the big solid dots in Fig. 7.7.

We conclude this part with the following comment. Our computation
of the spectrum and intensity is robust and can be used to plan future ex-
periments to perform the annual modulation studies in the near-Earth en-
vironment. However, a signal modulation is usually expected for any dark
matter detection experiment. In the following text, we discuss the impact of
the Earth position (chapter 7.4.1) and the possible complications due to the
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Figure 7.7: The contour plot of L(κ,T0). The numbers labelled on the con-
tour lines are the values of L. The three points marked on the plot are
the three sets of (κ,T0) that we have chosen in all of our previous plots:
(10−2.5,200 keV), (10−2.5,500 keV), and (10−3.5,200 keV). This figure is
taken from Ref. [5].

telescope altitude and orientation (chapter 7.4.2).

7.4 Seasonal variation
Up to this part, our focus was on the calculation of the average intensity of
the AQN radiation spectrum, ignoring the seasonal variations. However, the
seasonal variation was the most important feature discovered by Ref. [10].
The authors claimed an 11σ confidence level detection of the seasonal vari-
ation in the 2-6 keV energy band, after removing all possible instrumental
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contamination and known astrophysical sources. They argued that known
conventional astrophysical sources had been ruled out as a possible expla-
nation of their signal. The main goal of this section is to explain how the
seasonal variation might occur in the AQN framework. We will find that
an annual amplitude modulation at the order of 20-25% is expected. Inter-
estingly, with conventional dark matter models (e.g., WIMPs), any seasonal
variation is expected to be at a much lower level, at the order of 1-10% (see,
e.g., Refs. [142, 143]).

7.4.1 Effect of the Earth’s position on its orbit
In chapter 7.3, we introduced vin, the speed of an AQN hitting the Earth.
However, the Earth’s motion around the Sun leads to a seasonal variation of
vin, which will affect the AQN signal represented by eq. (7.26). In this part,
we will calculate the amplitude of the seasonal effect, using the analytical
prediction, eq. (7.26), and a realistic model of an AQN’s incoming speed, vin,
which is different in the Winter and Summer.

The Sun is moving in the galactic plane, on a nearly circular orbit with
velocity, vDMG , with respect to the galactic center. The rotation of the dark
matter halo is negligible compared to the rotation of the Sun. Therefore,
the entire solar system is facing a dark matter wind with an average velocity
of approximately vDMG . The tilt of the ecliptic plane relative to the dark
matter wind is approximately 60◦. This configuration is shown in Figure 7.8,
along with the positions of the four seasons on the Earth’s orbit.

We proceed as follows. The dark matter velocity with respect to the Sun
is ~vDMG , with vDMG ' 220 km/s. The velocity of the Earth around the Sun is
~vE, with vE = 30 km/s. Consequently, the dark matter velocity with respect
to the Earth is given by

~vin = ~vDMG−~vE, (7.31)
and the magnitude is

vin =
√
v2

DMG
+v2

E−2vDMG ·vE · cosθ, (7.32)

where θ is the angle between ~vE and ~vDMG . θ is 60◦ in the Winter, 120◦
in the Summer, and 90◦ in the Spring and Fall. Noting that ~vDMG � ~vE,
eq. (7.32) can be simplified via Taylor expansion as

vin ' vDMG−vE cosθ. (7.33)
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Figure 7.8: Motion of dark matter relative to the Solar System, which is
taken as the fixed reference frame. The Earth moves in a nearly circular
orbit, with a velocity, ~vE, relative to the Sun. The location of the seasons
relative to the orientation of the ecliptic plane and dark matter wind, vDMG ,
is important for the effect discussed in chapter 7.4. This figure is taken from
Ref. [5].

Using this approximation, the magnitudes of the dark matter velocities (with
respect to the Earth) in the four seasons are:

v
(Sp)
in = v

(F)
in ' vDMG ,

v
(W)
in ' vDMG−∆v,

v
(S)
in ' vDMG + ∆v,

(7.34)

where ∆v = cos(60◦) · vE = 15 km/s. ∆v is the deviation from 220 km/s,
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caused by the Earth’s revolution around the Sun. The result is that the dark
matter velocity is different for different seasons, which is apparent in Eq.
(7.34), and this leads to the seasonal variation of the X-ray background.

There are two specific features which are not shared by conventional
WIMP models. The first one is related to the fact that the vin and vout
velocities are different in the AQN model, but not in conventional dark mat-
ter. The second one is related to the fact that the intensity of the radiation
explicitly depends on the number of AQNs which can be seen by the detector
at each given moment, as shown in Fig. 7.5 and computed in eq. (7.26). As
we will see below, this leads to a feature unique to the AQN framework that
is not shared by conventional dark matter.

The first effect, related to vout 6= vin, can be explained as follows. The
passage of the AQN through the Earth is accompanied by friction and an-
nihilation events with the surroundings, leading to vout < vin. We used
vout = vin = 220 km/s in chapter 7.3, a simplification that was sufficient to
estimate the average of the AQN-induced spectrum. However, in this section,
the fact that vout is smaller than vin may have an important impact on the
seasonal variation. The reason is that as vout gets closer to ∆v, the seasonal
variation becomes relatively more important. Different AQNs have different
paths through the Earth, which results in different vout even for the same
vin. The precise distribution of vout can only be obtained by numerical sim-
ulations, which is left for future studies. The speed change can be quantified
by a parameter γ:

γ = vout
vin

. (7.35)

Combining eq. (7.34) with eq. (7.35), we obtain the following expressions for
vout in the four seasons:

v
(Sp)
out = v

(F)
out ' γvDMG ,

v
(W)
out ' γ(vDMG−∆v),

v
(S)
out ' γ(vDMG + ∆v).

(7.36)

The second effect is that the intensity measured by XMM-Newton de-
pends on the number of AQNs passing through the detection cone of the
detector which further depends on vout. Using eq. (7.26), the average dFr/dω
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measured by the detector is given by:

dFr
dω
' nAQN(s̄)V · dF

dω
[T (s̄)], (7.37)

where s̄ denotes the average distance of the AQNs inside the cone, as viewed
from the Earth’s surface. The quantity nAQN(s̄) is the number density of
AQNs at distance s̄, while dF/dω[T (s̄)] is the spectrum emitted by a single
AQN at distance s̄, determined by the temperature T (s̄). The volume, V , is
the effective volume of the cone, which is a constant, inside which the AQNs
contribute to the total spectrum received by XMM-Newton. This means
that we do not consider AQNs that are too far away from the detector. The
detailed calculation of eq. (7.37) is shown in Appendix E, where we obtain
an expression of dFr/dω as a function of vout:

dFr
dω
∝
(
K1
vout

+K2

)− 3.22
c2(κ)+3

, (7.38)

where K1 and K2 are functions of κ and T0 (see Appendix E for details).
The maximum seasonal difference is expected between Summer and Win-

ter, because they have the maximum velocity difference, 2γ∆v, as seen from
eq. (7.36). We define the ratio

r ≡

(
dFr
dω

(S)
)

(
dFr
dω

(W)
) (7.39)

as the difference between the Summer and Winter spectra. Using eqs. (7.36)
and (7.38), we get

r '
[
γ−1K1/(vDMG + ∆v) +K2
γ−1K1/(vDMG−∆v) +K2

]− 3.22
c2(κ)+3

, (7.40)

where vDMG = 220 km/s and ∆v = 15 km/s, as discussed above.
The functions K1 and K2 play a very important role in our study. If the

temperature T , strongly deviates from its initial value T0, such that T � T0
at the moment of observation, then the second term with T0 in the brackets
in eq. (D.1) can be ignored, which drastically simplifies all equations. In

149



κ=10-2.5, T0=200keV

κ=10-2.5, T0=500keV

κ=10-3.5, T0=200keV

0.2 0.4 0.6 0.8 1.0

1.00

1.05

1.10

1.15

1.20

γ

r

Figure 7.9: The ratio r as a function of γ for different groups of κ and T0.
The solutions from the right branch from Fig. 7.7 (red and black lines) will
always produce r≈ 20% irrespective of the value of γ, while the solution from
the left branch from Fig. 7.7 (blue line) will generate a small value of r. This
figure is taken from Ref. [5].

particular, the term K2 ∼ T−[c2(κ)+3]
0 in eq. (E.6) and further in eq. (7.38)

can be ignored. Thus, eq. (7.40) can be simplified to

r '
(
vDMG + ∆v
vDMG−∆v

) 3.22
c2(κ)+3

≈ 1.23, (7.41)

which does not depend on γ, nor any other features of the system, such as
the absolute values of the temperature, T0, or value of κ, as long as condition
T � T0 is satisfied. This is a very solid and robust consequence of the AQN
model. One should also emphasize that the condition T � T0 is always
satisfied for all solutions on the right branch shown in Fig 7.7. Indeed, the
temperature, T , drastically drops for any value of T0 with κ ' 10−2.5, as
shown in Fig. 7.3.

Eq. (7.41) is a very important result. It shows that for solutions from
the right branch of Fig. 7.7, the seasonal variation could be large, up to ∼
20-25%, relatively insensitive to the exact value of κ, T0, and γ. Fig. 7.9
shows the results of the exact computation from eq. (7.40) supporting this
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Figure 7.10: Demonstration of the seasonal variation with specific parame-
ters (κ,T0,γ) = (10−2.5,200 keV,0.5) as an example. A small portion of the
spectrum, ω ∈ 2-3 keV, is zoomed in to demonstrate a large seasonal variation
on the level of ≈ 20%. This figure is taken from Ref. [5].

claim, where the red and black lines remain relatively flat at r ≈ 1.23 for
all values of γ. The solutions from the left branch lead to a considerably
smaller amplitude of the seasonal variation for any values of γ, as illustrated
by the blue line in Fig. 7.9. In the context of the AQN framework, the
result (7.41) provides a strong argument in favour of a solution in the right
branch of Fig. 7.7, because only the right one is capable of leading to seasonal
variations in agreement with Ref. [10].

As an example of seasonal variation, Fig. 7.10 shows the spectrum f (theory),
which is defined as eq. (7.27) with dFr/dω given by eq. (7.26), for four sea-
sons. For this plot, we choose κ= 10−2.5,T0 = 200 keV, and γ= 1/2. However,
as we have shown previously, the radiation spectrum is not very sensitive to
parameters T0 and γ, as long as we choose a solution from the right branch of
Fig. 7.7. A sample of the spectrum with ω ∈ 2-3 keV shows a large seasonal
variation at the level of ∼ 20-25%.

The maximal seasonal variation observed by Ref. [10] can be estimated
from the normalization factors N0 (which are given in eq. (7.29) for different
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seasons) as follows:

N0(Fall)−N0(Winter)
N0(Fall) +N0(Winter) ≈ 0.29, (7.42)

which is a very large effect. One should emphasize that the seasonal vari-
ation (7.42) cannot be directly compared with our estimate of parameter r
which was computed for Summer-Winter modulation (7.41). This is due to
the satellite’s positions and the orientations of the detector, which will be
discussed in chapter 7.4.2. The main lesson of our computations is that the
annual modulation effect is very large, much larger than conventional WIMP
models can predict [142, 143] which is normally on the level of 1-10%.

7.4.2 Effect of the satellite’s position and orientation
on its orbit

The previous calculations show that we should expect a seasonal modulation
of the signal, which should be strongest in Summer, weakest in Winter, and
equally half-way for Fall and Spring. This effect is entirely driven by the
strength of the local dark matter wind speed. Compared to Fig. 7.1, one
can see that this does not quite agree with the seasonal modulation mea-
sured by Ref. [10], as given by eq. (7.29). In their measurement, the Fall
amplitude is the highest, and Summer and Spring are equal. However, as
noted by Ref. [10], there are two additional factors which can change the
seasonal modulation of the X-ray background significantly: the altitude of
the telescope and the direction of the field-of-view (or beam). These factors
are particularly important in the context of our model. Firstly, the altitude
plays a role because, as shown by Eq. (7.37), an AQN’s temperature upon
exiting Earth decreases quickly with altitude. Therefore, if the telescope ob-
serves from a high altitude out, the X-ray background should be lower than
if observed from a lower altitude. Secondly, the orientation of the telescope
beam is also important. The X-ray background will indeed be stronger in
the direction opposite to the incoming dark matter wind. This is caused by
the fact that, on average, more heated AQNs will emerge from the side of
the Earth opposite to the side where they preferentially entered from. Con-
sequently, depending on the telescope position and orientation, the seasonal
variation of the X-ray background can be altered. Fortunately, these are
effects which can be completely accounted for, as long as the telescope’s or-
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bital parameters are known exactly. This is what Ref. [10] have done in their
study for their specific solar-axion model. While their model has a number
of fundamental major problems, as mentioned in chapter 7.1, the main point
is that the seasonal variations as observed by XMM-Newton do not follow
the standard annual modulation with a simple cos(Ωt+φ0) form, as is nor-
mally expected [142, 143]. In particular, Fig. 5 from Ref. [10] shows that the
seasonal variation predictions differ for different observing epochs, because
of the particular telescope positions and orientations at those epochs. The
resulting effect can significantly change the phase of the seasonal variation
and the amplitude by approximately a factor of two.

The reason that this effect can be so strong is that the XMM-Newton is
placed on a Highly-elliptical Earth Orbit (HEO), with an inclination of 40◦
relative to the ecliptic plane, a southern apogee altitude of ∼ 115000 km, and
a perigee of ∼ 6000 km, with an orbital period of 48 hours. At apogee, it
points towards the Sun in Summer and away from it in Winter. The exact
prediction of the X-ray background becomes a highly non-trivial task, which
requires precise knowledge of the telescope position and orientation for every
data point being taken, which is beyond the scope of the present work.

At the same time, the obtained spectrum represents a very solid and ro-
bust result, which is not sensitive to the telescope’s position and orientation.
Furthermore, a strong seasonal variation (difference between maximum and
minimum intensity) represented by eq. (7.41) is also a very solid and robust
property of the AQN framework, not sensitive to any specific details of the
model. The comparison of our prediction in X-ray to the signal measured
by Ref. [10] strongly constrains the parameter κ, and very mildly constrains
the initial temperature, T0 ∈ 200-500 keV. This is because AQNs with very
different temperatures behave in a very similar way after the long journey
of t ≥ 102s, where XMM-Newton is operational at distances of r & 8R⊕, as
one can see from Fig. 7.3. The most important message here is that the
intensity, spectrum, and magnitude of the seasonal variation on the level of
20-25%, measured by Ref. [10], can be naturally accommodated within the
AQN framework, as argued in this chapter.

7.5 Conclusion
In this chapter, we computed the emission spectrum and intensity of AQNs
after they leave the Earth in the region where XMM-Newton is operational.
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The obtained results are consistent with the observations by [10]. The impor-
tant point is that the shape of the spectrum is not sensitive to any details of
the model, and this represents very solid and robust predictions of the AQN
framework. In addition, we also computed the parameter r which represents
the maximal range of seasonal variation. We found that r ≈ 20-25%, and
it is not sensitive to the model parameters. However, r cannot be literally
compared with observations by Ref. [10], due to the reasons explained in
chapter 7.4.2.

In this chapter, we did not explore all of the possible sizes that AQNs
can have. In contrast to the uniform size R and the uniform velocity vDMG
of AQNs used in this chapter, the more realistic case is that the AQN size
follows a distribution based on percolation theory (as we have studied in
chapter 5), and the AQN velocity follows a Gaussian distribution [36] (see
also Appendix B). These two distributions can be taken into consideration in
future studies with the help of Monte Carlo simulations, similar to what we
have done in chapter 6. The main points of the present work are expected
to be further confirmed by the detailed numerical simulations at that time.

Another very important aspect of the work presented in this chapter is
to open the possibility to make a robust prediction for near-Earth seasonal
variations at higher energies. Such a prediction could provide a decisive test
of the AQN model. As shown in this paper, the radiation spectrum extends
well beyond 6 keV, and we are in a position to make a prediction in the γ-
ray range. The Gamma-ray Burst Monitor (GBM) instrument on the Fermi
Telescope has multi-year archival data of γ-ray background measurements
in the near-Earth environment [146]. This would constitute the ideal data
set to test our model because we are able to predict uniquely the X-ray
background, as seen by XMM-Newton, and the γ-ray background, as seen
by GBM. According to the AQN model, the two backgrounds, separated by
two orders of magnitude in frequency, should share very similar properties,
once the instrumental and astrophysical sources are removed. This exciting
project is left for future work.
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Chapter 8

Conclusions

In this thesis, we have discussed the recent developments in AQN model
building and some potential observational evidence of AQNs based on the
papers, Refs. [1–5]. In chapter 3, we focused on the AQN formation. We
have studied the AQN formation in the background of the nonzero oscillating
axion field. It is assumed that the PQ phase transition occurs before inflation
(pre-inflationary scenario), so the axion field is coherent over the scale of the
entire Universe. The coherent nonzero oscillating axion field can generate
many CP-violating effects, which will finally lead to a disparity between
matter and antimatter AQNs. We have analytically and numerically shown
that the magnitude of the disparity is of order one, and it is insensitive to
many model parameters. This result is important because it verifies that
the basic relation ΩDM ∼Ωvisible is a natural result in the AQN model where
the conventional baryogenesis process is replaced by the CP-violating charge
separation process. In addition, we have obtained the real-time evolution
of an AQN from its initial state (a closed axion domain wall with baryon
charge induced on the wall) to its final stable CS state. To achieve this,
we have overcome the so-called multi-scale problem (ωRτR ∼ ΛQCD/ma ∼
1010) that arises in numerically computing the AQN formation, with the
help of envelope-following method. With an example, the result of real-time
evolution has verified the basic features of the AQN model with Tform ∼
40 MeV and µform & 450 MeV. Such a large µform is consistent with the
formation of CS phase. The temperature scale ∼ 40 MeV is related to the
formation of the baryon-to-photon ratio observed today, eq. (2.2), based on
completely different arguments (see e.g., Ref. [50]).

Next, in chapter 4, we have discussed the abundances of different com-
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ponents of dark matter in the AQN framework. In particular, we have taken
into consideration the contribution of free axion abundance from the mis-
alignment mechanism along with the contribution of the AQN abundance.
In addition, to describe the AQN abundance more precisely, we have incor-
porated several corrections to the AQN mass: the energy of the closed axion
domain wall as the shell and the correction from the energy difference be-
tween CS and hadronic phases. As a consequence, we have obtained a quan-
titative expression of the parameter c that describes the disparity between
matter and antimatter AQNs, based on the relations of different components
of dark matter. Within the most region of available constraints on model
parameters, c ≡ B+/B− is an order-of-one quantity (roughly 0.4-0.6). This
is consistent with chapter 3 which has studied the disparity from a different
point of view, focusing on how the disparity builds during the process of
AQN formation. For the most part of parameter space of ma, θ0, and HI , we
have found that the free axion abundance only accounts for a small portion
of dark matter, while the AQN abundance dominates dark matter with an
order-of-one c insensitive to model parameters, ma, θ0, and HI . Again, this
supposes the natural realization of the relation ΩDM ∼ Ωvisible in the AQN
model.

In chapter 5, we have studied the size distribution of AQNs. The AQN size
at Tform depends on its initial conditions, R0 and T0. Based on percolation
theory, we have found that the size distribution of AQNs follows of power-law,
dN/dB ∼ B−α. Furthermore, we have demonstrated that the size distribu-
tion can survive the subsequent evolution during pre-BBN, post-BBN, and
post-recombination epochs after Tform ∼ 40 MeV, as long as Bmin & 1024.
The exponent α can be expressed in terms of the parameter δ which is sensi-
tive to the pattern of the formation of axion domain walls between Tosc and
Ta, and cannot be predicted theoretically. On the other hand, the energy
distribution of solar nanoflares also follows a power-law distribution. The
match between the AQN size distribution and nanoflare energy distribution
supports the claim that the “solar corona mystery” could be resolved by the
AQN model with the nanoflares identified as the annihilation events of AQNs
hitting the Sun [6, 28, 29].

In chapter 6, we have simulated AQNs impacting the Sun and the cor-
responding annihilation events using the Monte Carlo method. We have
demonstrated that the impulsive radio events in quiet solar corona recorded
by MWA [9] can be induced by the annihilation events of AQNs that enter
the Sun. The frequency of appearance, the temporal and spatial distribu-
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tions, the intensity, clustering events, etc., of the recorded impulsive radio
events are consistent with the generic predictions of the AQN model. Fur-
thermore, the AQN model predicts several features of the recorded impulsive
radio events that could be tested in future studies. The clustering events dis-
cussed in chapter 6 have demonstrated the existence of correlation of radio
events in the same frequency band. We predict that similar spatial corre-
lations between radio events in different frequency bands also exist. The
AQN model also predicts that in general the event rate is higher (lower) for
emissions in higher (lower) frequency bands (but no higher than ∼ 240 MHz
because such emissions will be strongly absorbed [135]), but this prediction
is subject to possible fluctuations due to specific local features of plasma and
non-thermal electrons.

In chapter 7, we have calculated the emissivity of the AQN electrosphere
in the high temperature range 200-500 keV acquired by AQNs due to the
friction and annihilation events when they cross the Earth. When the hot
AQNs leave the Earth, they emit photons in the space that can be detected
by space telescopes such as XMM-Newton. We have shown that the corre-
sponding spectrum generated by AQNs matches the observations by XMM-
Newton [10]. Furthermore, the annual modulation of the speed of AQNs with
respect to the Earth will finally lead to a seasonal variation of the near-Earth
X-ray background. We have shown that the magnitude of the AQN-induced
seasonal variation is large, on the level of 20-25%, which could potentially ex-
plain the observed seasonal variation of the near-Earth X-ray background in
energy range 2-6 keV by XMM-Newton [10]. However, we have also demon-
strated that our result of seasonal variation cannot be literally compared with
the observations in Ref. [10]. This is because in our calculations we have fixed
the position and orientation of XMM-Newton for simplicity, but in reality
both the satellite’s position and orientation vary on its orbit, which could
greatly change the phase of seasonal variation. Nevertheless, the shape (not
the magnitude) of the AQN-induced spectrum is robust, insensitive to the
details of the satellite’s position and orientation. The consistency between
it and the observed spectra by XMM-Newton [10] indicates that the AQN
model might be able to resolve the observed seasonal variation completely.

The AQN model was initially proposed to resolve the two basic problems:
the nature of dark matter and the observed matter-antimatter asymmetry in
the Universe, which could naturally answer why the dark matter and visible
matter have similar abundances, ΩDM∼Ωvisible. In addition, the AQN model
could potentially explain many puzzles and mysteries observed in astronomy
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and cosmology, as we have listed in chapter 2, including the two cases that
we have discussed in detail in chapter 6 and chapter 7. Finally, we want to
emphasize that the AQN model could be tested by future observations or
even current available data. In addition to the four frequency bands (98,
120, 132 and 160 MHz) of impulsive radio events that have been analyzed
in Ref. [9], there are higher and lower frequency bands recorded by MWA
at the same time, which could be used to test the feature of event rate
predicted by the AQN model. The correlations of radio events in different
frequency bands predicted by the AQN model could also be tested by current
data or future observations. In addition, the AQN model could be tested by
analyzing whether and how the MWA observations in radio frequency bands
and Solar Orbiter observations in EUV frequency bands (“campfires”, which
might be explained as the annihilation events of large AQNs) correlate with
each other. A different test is from our discussions in chapter 7. Our AQN-
based calculations have shown that the seasonal-variation signal could extend
up to ∼ 100 keV of photon frequency, which could be tested by the archival
data recorded by space telescopes such as the GBM on the Fermi telescope,
NuSTAR, INTEGRAL, etc.
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Appendix A

Calculation of the baryon
charge distribution dN/dB

This appendix is adapted from Ref. [3]. In this appendix, we will show
the details of calculating eq. (5.6) and eq. (5.12), to support the results in
chapter 5.1.4. We first rewrite eq. (5.6) as

N(B) =N0P
∫ Tc·[B/(Kξ3

minT
3
c )]1/[3(β+1)]

Tc
dT0

∫ [B/(KT 3
0 )]1/3

ξ(T0)
dR0 f (A.1)

with the limits of integration written explicitly, which can be explained as
follows. The integral (A.1) is performed over the region KR3

0T
3
0 ≤ B with

the constraints Tc . T0 . Tosc and R0 & ξ(T0) from the model of T0 and
R0 distributions. We show the region of integration in Fig. A.1, where the
parameter space enclosed by Tc . T0 . Tosc and R0 & ξ(T0) is represented by
the colored region. The green lines are the contour lines of B with KR3

0T
3
0 =

B for different values of B. The region of integration is the area enclosed
by the solid black lines and one of the green lines (to the left of the green
line), from which we can obtain the limits of integration. The lower limit
of R0 is Rlower = ξ(T0); the upper limit of R0 is on the green line, Rupper =
[B/(KT 3

0 )]1/3; the lower limit of T0 is Tc. The upper limit of T0 is a little
complicated: it could either be the intersection of the line ξ(T0) and the green
line, Tupper = Tc · [B/(Kξ3

minT
3
c )]1/3(β+1), or simply Tupper = Tosc, depending

on different values of B. However, we are not likely to have the chance to use
the latter case that Tupper = Tosc as the upper limit of T0, which is explained
as follows.
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cross

ξ(T0) = ξmin(T0 / Tc)β

R0

T0

Tc

B

ξmin Rcross

Ta

Figure A.1: Parameter space of R0 and T0. The colored region represents the
initially allowed (R0,T0) for the formation of closed domain walls. Different
colors represent different magnitudes of f(R0,T0) which decreases from the
light yellow part to the deep blue part (gradually away from the correlation
length ξ(T0)). The green lines are the contour lines of B, i.e., each line
corresponds to the same value of B, with B increasing from left to the right.
Ta ≡ Tosc. This figure is taken from Ref. [3].
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Figure A.2: The relation between dN/dB and b≡B/Bmin. We choose τ = 2,
λ = 10 and β = 3.925 for both panels. The difference between (a) and (b)
is the values of δ. In panel (a), δ ≈ −1 and thus α = 1.2; in panel (b), we
choose δ≈−4 to make α= 2. The solid black dashed green lines in each panel
represent eq. (A.5) and eq. (A.8) respectively (the prefactor N0P/Bmin in the
two equations is rescaled to completely show dN/dB in the range from 0 to
1 for illustrative purposes). This figure is taken from Ref. [3].

175



If we want the upper limit of T0 in the integration to be Tosc, B has to
be larger than Bcross =Kξ3(Tosc)T 3

osc which is the value of B at the crossing
point where the line ξ(T0) intersects the horizontal line T0 = Tosc. We should
compare Bcross with the minimal baryon charge Bmin =Kξ3

minT
3
c which cor-

responds to the closed domain wall formed at T0 = Tc with R0 = ξmin. We
get

Bcross =
(
Tosc
Tc

)3(β+1)
Bmin ' 1015Bmin (A.2)

where we approximate it using Tosc/Tc ' 10 and β ' 3.925. We see that the
range is 15 orders of magnitude wide, which is large enough for us to match
the baryon charge distribution of AQNs with the energy distribution of solar
nanoflares. Therefore, we choose T0 as Tupper = Tc · [B/(Kξ3

minT
3
c )]1/[3(β+1)]

for the upper limit in eq. (A.1).
Next, we are going to calculate eq. (A.1). Using the definitions r =

R0/ξmin and u= T0/Tc, we rewrite eq. (5.12) in a more concise way

f(r,u) = 1
ξminTc

·u3β(τ−1)+βδ · r2−3τ · e−λr
2u−2β

. (A.3)

Substituting f(r,u) into eq. (A.1) and using the definition b = B/Bmin, we
arrive at

N(b) =N0P ·Tcξmin

∫ b
1

3(β+1)

1
du
∫ u−1b

1
3

uβ
dr f(r,u)

=N0P
∫ b

1
3(β+1)

1
du
∫ u−1b

1
3

uβ
dr

[
u3β(τ−1)+βδ · r2−3τ · e−λr

2u−2β
]
,

(A.4)

from which we further get

dN

dB
= 1
Bmin

dN

db
= N0P

3Bmin
· b−τ

∫ b
1

3(β+1)

1
du u3(β+1)(τ−1)+βδ · e−λb

2
3 u−2(β+1)

.

(A.5)
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This can be further simplified using the relation

∫ b
1

3(β+1)

1
dt ume−λb

2/3u−n = 1
n

(λb2/3)
1+m
n · Γ(−1 +m

n
,λb

2
3u−n)

∣∣∣∣u=b
1

3(β+1)

u=1

' 1
n

(λb2/3)
1+m
n ·Γ(−1 +m

n
,λ), for b� 1,

(A.6)
where m ≡ 3(β+ 1)(τ − 1) +βδ and n ≡ 2(β+ 1); Γ(s,x) =

∫∞
x ts−1e−tdt is

the incomplete gamma function. To obtain the last approximate equality,
we neglect the term Γ(−1+m

n ,λb2/3) since it is far smaller than the term
Γ(−1+m

n ,λ) for b� 1. The condition b� 1 is satisfied in a wide range of
B values, which are generally several orders larger than Bmin. Substituting
(A.6) into (A.5), we arrive at

dN

dB
= N0P

3Bmin

1
n
λ

1+m
n Γ(−1 +m

n
,λ) · b−1+ βδ+1

3(β+1) , b� 1. (A.7)

We see that dN/dB follows a power-law distribution,

dN

dB
∝ b−α, with α = 1− βδ+ 1

3(β+ 1) , b� 1 (A.8)

which verifies the relation (5.15). The finite-cluster parameters τ (contained
in m) and λ that we have discussed in chapter 5.1.2 only affect the relative
magnitude of dN/dB, but not the slope of the power-law distribution −α.

The parameter β describing the relation between axion mass and cosmo-
logical temperature is well calculated; see eq.(3.37). The other parameter δ
from the model of T0 distribution eq. (5.11) is relatively adjustable, which
can result in different slopes of the power-law distribution dN/dB. This pa-
rameter (which may have any sign) describes the distribution of the bubble
formation. As we explained in the main text, the positive sign of δ corre-
sponds to the preference of the bubble formation close to Tosc, while the
negative δ corresponds to the preference for bubble formation close to Tc
with a much stronger tilt of the axion potential.

We plot the baryon charge distribution of AQNs in Fig. A.2. We choose
τ = 2, λ = 10 and β = 3.925 for both panels. The difference between them
is the value of δ which is highly underdetermined. In Fig. A.2a, we choose
δ ≈−1 to make α = 1.2. The solid black line is the plot of eq. (A.5), which

177



represents the exact result of the distribution. As a comparison, we also plot
the approximate relation (A.8) represented by the dashed green line, which
is straight in the log-log scale. We see that the approximate relation (A.8)
matches the exact result eq. (A.5) pretty well after the turning point where
the condition b� 1 becomes valid. In Fig. A.2b, we consider the case δ ≈−4
which corresponds to α = 2. All other ingredients are the same as the first
panel.
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Appendix B

Simulation of AQNs in the
Solar Atmosphere

This appendix is adapted from Ref. [4]. The appendix shows the details of
the MC simulation for AQNs (to be specific, antimatter AQNs) hitting the
Sun and their evolution in the solar atmosphere before getting completely
annihilated, which aims to support the discussions in chapter 6.

B.1 Simulation setup
The setup of the simulation in the present work follows that in Ref. [6], which
can be divided into three steps. The first step is to use the MC method to
generate a large number of dark matter particles in the solar neighborhood
and collect the ones that will eventually impact the Sun. The second step
is to assign AQN masses to the particles. We will use different models of
the AQN mass distributions (as shown in (6.5)). The third step is to solve
the multiple differential equations that dominate the annihilation process of
AQNs in the solar atmosphere.

Step 1. In this step, we simulate the positions and velocities of dark mat-
ter particles in the solar neighborhood. The velocity distribution of the dark
matter particles, with respect to the solar system frame, follows a Maxwellian
distribution:

f~v(~v)d3~v = d3~v

(2πσ2)3/2 exp
[
−
v2
x+v2

y + (vz−v�)2

2σ2

]
(B.1)
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where the velocity dispersion is σ ' 110 km/s, and the velocity shift v� '
220 km/s is due to the relative motion between the Sun and the dark matter
halo.

The positions of particles are generated in such a way that they initially
uniformly populate in a spherical shell around the Sun. The inner and outer
boundaries of the spherical shell are respectively Rmin = 1 AU and Rmax = 10
AU. Note that our choice of Rmin is different from Ref. [6] where Rmin =R�
there. Choosing a larger Rmin is to reduce the effect of the Sun’s gravity on
the initial velocity distribution (B.1). The solar escape velocity at 1 AU is
ve≈ 42 km/s, so when a particle moves from infinity with the typical velocity
v0 = 220 km/s to this distance, the velocity increment due to the Sun’s gravity
is ∆v=

√
v2

0 +v2
e−v0≈ 4 km/s which is very small compared with v0. Similar

to Ref. [6], we generated Nsample = 2×1010 such particles. The particles then
move following Newton’s gravity, attracted by the Sun, using the classical
two-body orbit dynamics. The criteria to determine whether or not a particle
will impact the Sun are also the same as in [6]. For a given particle, if the
perihelion of the hyperbolic trajectory is smaller than R� (and also if the
velocity direction is inward), then it will impact the Sun. It turns out that
from the initial sample of 2×1010, the number of particles that will impact
the Sun is Nimp = 30457.59 The trajectory and impact properties of these
impacting particles are shown in Fig. B.1.

The expression of the impact parameter b is

b= rp

√√√√1 + 2GM�
rpv2

0
(B.2)

where rp is the perihelion distance. v0 is the particle velocity at infinity
that can be extrapolated from the initial velocity and position simulated,
i.e., v0 =

√
v2
i −2GM�/ri. The impacting requires 0 ≤ rp ≤ R�. If we take

rp = R�, we get the maximum impact parameter bmax. The distribution of
the impact parameter (in the form of b/bmax) is shown in the subplot (b) of

59In comparison, the number obtained in Ref. [6] is 36123. The difference is beyond
the statistical fluctuation. This difference occurs not only due to our choice of a larger
Rmin, the inner boundary of the initially simulated region, but also a technical detail that
a different method (more appropriate) is chosen in determining the perihelion. However,
all of these changes have no significant effects on the results as we can see in Fig. B.1 by
comparing it with Ref. [6].
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Figure B.1: Probability density distributions of the trajectory and impact
properties for the Nimp = 30457 impacting particles. The plots represent (a)
the initial distance distribution of these impacting particles, (b) the impact
parameter distribution, (c) the impact time distribution and (d) the velocity
distribution when they impact the Sun. This figure is taken from Ref. [4].

Fig. B.1.
From the distribution of impact time as shown in the subplot (c) of

Fig. B.1, we can calculate the impact rate. Following the logic in Ref. [6], we
should only use the time window where the rate is constant. We choose it as
timp ∈ [0.5,1.5] months where the boundaries are denoted as two vertical lines
in the plot. The rate in the time window is constant because the dominant
part of particles impacting the Sun are the particles from the spherical shell
between Rmin and Rmax. Outside the time window, we see the rate drops
because we did not simulate the particles outside the spherical shell. The
impact rate is N(∆timp)/∆timp where N(∆timp) is the number of particles
impacting the Sun in the time window chosen above. Note that this impact
rate is not the true impact rate because the number of AQNs simulated,
Nsample = 2×1010, is not the true number of AQNs inside the spherical shell.
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To convert the impact rate to the true impact rate, we need to multiply
it by the scaling factor fS which is the ratio of the true number of AQNs in
the spherical shell to Nsample:

fS =
4
3π(R2

max−R2
min) ·nnugget

Nsample
(B.3)

where nnugget is the number density of antimatter AQNs in the solar system:

nnugget =
(2

3 ·
3
5 ·ρDM

)
· 1
mP 〈B〉

. (B.4)

and ρDM ' 0.3 GeV cm−3 is the dark matter density in the solar system.
3/5 of the dark matter is in the form of antimatter AQNs; ∼ 2/3 mass of an
AQN is in the form of baryons (the remaining ∼ 1/3 is in the form of axion
domain wall as the AQN shell; see Ref. [6] or chapter 4 for more details). mP

is the proton mass. 〈B〉 is the average baryon number carried by an AQN. It
depends on different models of AQN mass distribution that will be discussed
in Step 2. Thus, the true rate of (antimatter) AQNs impacting the sun is

dN

dt
= N(∆timp)

∆timp
·fS , timp ∈ [0.5,1.5] months. (B.5)

Step 2. We are now assigning masses (baryon numbers) to all the AQNs
collected in Step 1 that will impact the Sun. For each AQN, its mass is
assigned randomly with the probability following one of the three models of
power-law distribution, (6.5). Thus, we have three copies of all the impacting
AQNs with different mass distributions.

Step 3. The evolution of an AQN in the solar atmosphere is described
by a system of differential equations, including the kinetic energy loss due to
friction and the mass loss due to the annihilation events of the antibaryons
carried by AQN with the baryons in the atmosphere. We refer the reader
to Ref. [6] for a complete list of the differential equations needed here, and
their derivation. In order to solve these equations numerically, the density
and temperature profiles of the solar atmosphere above the photosphere are
also needed. In this work, we adopt the profiles presented in Ref. [8] which
are more accurate than those used in Ref. [6].

The mass loss varying with time (or equivalently, height above the solar
photosphere) for the Nimp AQNs is then computed numerically.
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B.2 Results
The results obtained from the numerical simulations are presented in the
main text. Additional details are given here.

Fig. 6.1 shows the rate of AQNs in the mass range [B̄,Bmax] impacting
the Sun. The rate is calculated as eq. (B.5) but with only large AQNs B ≥ B̄
taken into account. By varying the value of the cutoff B̄ from Bmin to Bmax,
we quantify how the impact rate depends on B̄, as shown in the figure. The
rate at B̄ = Bmin is the total impact rate. For the three groups, the total
impact rates are respectively 4.17×104 s−1, 1.52×104 s−1 and 3.52×103 s−1

which match well Ref. [6] (see Fig. 8 there).
In addition, the luminosity L� can be calculated as L�= 2〈∆m〉c2 ·dN/dt

where ∆m is an AQN’s mass loss along its trajectory through the solar
atmosphere before entering the dense region, the photosphere. Similarly,
we can compute the luminosity L�

B̄
by counting large AQNs (B ≥ B̄) only,

and the result is shown in Fig. 6.2 for different groups of mass distribution.
The total luminosity is obtained at B̄ = Bmin. For the three groups, the
total luminosity are respectively 1.05×1027 erg · s−1, 1.07×1027 erg · s−1 and
1.06×1027 erg · s−1 which match well Ref. [6] (see Fig. 10 there).

One may notice that in the two left subfigures of Figs. 6.1 and 6.2, the
simulated lines become zigzag at large baryon numbers. This is because the
proportion of large AQNs is actually very small. Despite the number of all
the impacting AQNs is as large as 30457, the power-law index α ∼ (2−2.5)
makes the hit rate with large B very tiny when assigning masses to AQNs
randomly in Step 2. For example, our statistical result shows that in Group
1, the number of AQNs with B ≥ 5× 1026 is only 12, and the number of
AQNs with B ≥ 1027 is only 3. Such tiny numbers cause large statistical
fluctuation, so we see the zigzags in the two left subfigures. We have to
generate enough large AQNs to remove the large statistical fluctuation.

We resolve this technical problem as follows. We simulate another 1010

AQNs by redoing the three steps in the setup as described above. We call
this procedure the second-round simulation. We get 15019 AQNs that will
finally impact the Sun out of the total 1010 AQNs. The masses (baryon
numbers) assigned to these 15019 impacting AQNs are constrained in the
range B ∈ [BL,Bmax]. BL for each group should be chosen well above Bmin
to ensure that enough large AQNs can be generated, but BL should not
exceed the start of the zigzags. Although we did not simulate all AQNs in
this second-round simulation, we can extrapolate the “number” of impacting
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AQNs in the full mass range by looking at the proportion of large AQNs
(B ∈ [BL,Bmax]) in the full mass range.60 Furthermore, we can calculate
the extrapolated Nsample and the extrapolated scaling factor fS . Finally,
we obtain the true impact rate of these large AQNs simulated in the second-
round simulation. Similarly, we obtain the luminosity. The results are shown
in the two right subfigures of Figs. 6.1 and 6.2, where we see that the large
statistical fluctuation disappears.

60The advantage of assigning AQNs masses only in the range of [BL,Bmax] is that we
do not repeat generating a huge amount of small AQNs which are far more than needed
and only to make the simulations extremely time-consuming.
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Appendix C

Calculation of dF/dω and Ftot

This appendix is adapted from Ref. [5]. This Appendix shows the details
of how we derive the expression of the spectral surface emissivity, eq. (C.8),
which is shown in Fig. 7.2, and the expression of the total surface emissivity,
eq. (7.11), presented in chapter 7.

We start with the spectral surface emissivity, eq. (7.1), with all of the
extra effects discussed in chapter 7.2.1 included. Only photons with an energy
larger than the plasma frequency, ωp(z), can propagate outside of the system.
The largest plasma frequency, ωp(z = 0), occurs in the deepest region of the
electrosphere, where the positron density is the largest. Therefore, photons
with an energy, ω >ωp(z = 0), created anywhere in the electrosphere, (z≥ 0),
can propagate outside of the system. For ω < ωp(z = 0), there is a cutoff
determined by eq. (7.9):

z0(ω) = 1
ω

√
κ

√
2T
me
− z̄. (C.1)

Photons with an energy, ω < ωp(z = 0), can propagate outside of the system
only if they are created in the regime, z > z0(ω). Therefore, eq. (7.1) becomes
a piecewise function with ωp(z = 0) as the turning point.

We should also notice that when ω is small enough, the lower cutoff, z0(ω)
in eq. (C.1), could be larger than the upper cutoff, z1 in eq. (7.8), defined
by the ionization effect. We can then get a critical frequency by equating
z0 = z1:

ωz0=z1(T ) =
√
κ

√
2T
me

[z1(T ) + z̄(T )]−1. (C.2)
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We see that z0 < z1 for ω > ωz0=z1 , while z0 > z1 for ω < ωz0=z1 . Only
photons with ω > ωz0=z1 can be generated. The low frequency photons with
ω < ωz0=z1 cannot be generated because the region of the electrosphere that
could generate them is ionized (see eq. (7.7)). Therefore, dF/dω should be
written as:

dF

dω
(ω) =


1
2
∫ z1
z0(ω) dz

dQ̃
dω (ω,z), if ωz0=z1 < ω < ωp(z = 0);

1
2
∫ z1
0 dz dQ̃

dω (ω,z), if ω > ωp(z = 0).
(C.3)

Integrating dQ̃/dω (7.10) over z gives:
∫
dz
dQ̃

dω
(ω,z) =

∫
dz n2(z)e−ωp(z)/TG(ω)

= κ2
(
T

2πα

)2
G(ω)

∫
dz

e−
√
κ
√

2
meT

1
z+z̄

(z+ z̄)4

= κ2
(
T

2πα

)2
G(ω)H(z),

(C.4)

with

H(z) = e−
√

2κ
meT

1
z+z̄

 1√
2κ
meT

1
(z+ z̄)2 + 2(√

2κ
meT

)2
1

(z+ z̄) + 2(√
2κ
meT

)3

 .
(C.5)

G(ω) in eq. (C.4) is a function defined for convenience to collect the terms
that do not depend on z:

G(ω)≡ 4α
15

(
α

me

)2
2
√

2T
meπ

(
1 + ω

T

)
e−ω/Th

(
ω

T

)
. (C.6)

The expression for h(x) is:

h(x) = 17 + 12
[
ln2 +

(
1 + ex

∫ ∞
1

e−xy
y

dy

)
(1 +x)−1

]
, (C.7)

which is a function derived in Ref. [57] (we refer the readers to Appendix A2
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of Ref. [57] for further details). Plugging eq. (C.4) into eq. (C.3), we get:

dF

dω
(ω) =



1
2κ

2
(
T

2πα

)2
·G(ω) · [H(z1)−H(z0(ω))] ,

if ωz0=z1 < ω < ωp(z = 0);

1
2κ

2
(
T

2πα

)2
·G(ω) · [H(z1)−H(0)] ,

if ω > ωp(z = 0).

(C.8)

We plot dF/dω vs. ω in Fig. 7.2 in chapter 7, with T = 100 keV as an
example, and κ= 10−2.5,10−3.5 respectively.

Now, we are ready to calculate the total surface emissivity, Ftot(T ), by
integrating dF/dω over ω:

Ftot(T ) =
∫ ∞
ωz0=z1(T )

dω
dF

dω
(ω)

=
[∫ ωp(z=0)

ωz0=z1(T )
dω

1
2

∫ z1

z0(ω)
dz
dQ

dω
(ω,z)

]

+
[∫ ∞
ωp(z=0)

dω
1
2

∫ z1

0
dz
dQ

dω
(ω,z)

]

= α

15π5/2
T 5

me
κ2 [I1(T ) + I2(T )] ,

(C.9)

with

I1(T ) = 1
T

√
2(meT )−3/2

×
∫ ωp(z=0)

ωz0=z1(T )
dω

(
1 + ω

T

)
e−

ω
T h
(
ω

T

)
· [H(z1)−H(z0(ω))] ,

I2(T ) = 1
T

√
2(meT )−3/2

×
∫ ∞
ωp(z=0)

dω
(

1 + ω

T

)
e−

ω
T h
(
ω

T

)
· [H(z1)−H(0)] .

(C.10)

The two dimensionless functions I1(T ) and I2(T ) can be solved numerically.
In Fig. C.1, we plot [I1(T ) + I2(T )] vs. T in the range 1 keV ≤ T ≤

1000 keV, for κ = 10−2.5,10−3.5 respectively. We see that the two lines of
[I1(T ) + I2(T )], with κ = 10−2.5 and 10−3.5, almost overlap with each other,
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Figure C.1: [I1(T )+ I2(T )] as a function of T , for κ= 10−2.5,10−3.5. We see
that the two lines almost overlap with each other, and that they are fitted
to the red dashed line. This figure is taken from Ref. [5].

and that they are nearly a linear function of T in the log-log scale. Then, we
fit [I1(T ) + I2(T )] to a simple function (the red dashed line in Fig. C.1):

[I1(T ) + I2(T )] = c′1

(
T

10 keV

)c′2
, (C.11)

with the two fitting parameters

c′1 = 4, c′2 =−0.89. (C.12)

This is a good approximation for κ= 10−2.5,10−3.5. Then, plugging eqs. (C.11)
and (C.12) into eq. (C.9), we get:

Ftot,fit(T ) = α

15π5/2
T 5

me
κ2 · c′1

(
T

10 keV

)c′2
. (C.13)

To see how good the fitted result (C.13) is, we plot it together with the
exact Ftot, eq. (C.9), in the top subfigure of Fig. C.2 for κ = 10−2.5,10−3.5.
In the bottom subfigure of Fig. C.2, we also plot the relative error (Ftot−
Ftot,fit)/Ftot. We see that the relative error is within 10% for T & 10 keV.
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Figure C.2: Top subfigure: the relation Ftot vs. T , for κ = 10−2.5,10−3.5

(top and bottom respectively). The blue lines are the exact Ftot, eq. (C.9);
the yellow lines are the fitted result, eq. (C.13). We see that for each given
κ, the blue line almost overlaps with the corresponding yellow line. Bottom
subfigure: the relative error. This figure is taken from Ref. [5].
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Appendix D

Calculation of AQN cooling

This appendix is adapted from Ref. [5]. This appendix shows more details of
an AQN cooling process in the space, T vs. t, when it exits the earth after
hitting, which aims to support the discussions in chapter 7.2.2.

Solving the differential equation (7.17) gives:

t

1 sec '
RAQN
1 sec

5π5/2

3αc1(κ)[c2(κ) + 3]
me(µ2

u+µ2
d)

(10 keV)3

·

( T

10 keV

)−[c2(κ)+3]
−
(

T0
10 keV

)−[c2(κ)+3]


' 0.34
c1(κ)[c2(κ) + 3]

(
RAQN

10−5 cm

)(
µu,d

500 MeV

)2

·

( T

10 keV

)−[c2(κ)+3]
−
(

T0
10 keV

)−[c2(κ)+3]
 ,

(D.1)

or equivalently:

T (t)' 10 keV ·
 t

1 sec

(
RAQN

10−5 cm

)−1(
µu,d

500 MeV

)−2

·
(

0.34
c1(κ)[c2(κ) + 3]

)−1
+
(

T0
10 keV

)−[c2(κ)+3]
−

1
c2(κ)+3

.

(D.2)
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Appendix E

Calculation of dFr/dω as a
function of vout

This appendix is adapted from Ref. [5]. This appendix shows the details of
how we derive eq. (7.38) that is presented in chapter 7.

We are going to calculate eq. (7.37) to find out the relation between
dFr/dω and vout. First, we analyze the factor dF/dω that occurs in eq. (7.37).
The expression of dF/dω is given in (C.8). We focus the second branch
(ω > ωp(z = 0)) of the piecewise function (C.8), which is the location of the
frequencies that we are interested in.

As we can see from Fig. 7.3, the AQNs are still very hot when they
enter the XMM-Newton’s cone. We have T � ω, where ω ∼ 2-6 keV is the
frequency range that we are interested in. This results in the pattern of the
“soft photon theorem”, as explained in chapter 7.3. We can drop the terms
suppressed by ω/T , so the second branch of eq. (C.8) is approximated as:

dF

dω
∝ T 5/2 ·P (ω,T ), (E.1)

where
P (ω,T )≡ h

(
ω

T

)
[H(z1(T ),T )−H(0,T )] . (E.2)

In Fig. E.1, we plot the relation P (ω,T ) vs. T , for κ= 10−2.5,10−3.5. We see
that P (ω,T ) can be well fitted to the red dashed line, which represents the
function [constant×T 0.72]. So we have:

P (ω,T )∝ T 0.72. (E.3)
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Figure E.1: The relation between the normalized P (ω,T ) and T , for κ =
10−2.5, 10−3.5. The two lines almost overlap with each other. We use the
function [constant×T 0.72] (red dashed line) to fit the two lines. The two lines
are plotted at ω = 3 keV. Changing the value of ω only slightly affects the
relation between P (ω,T ) and T . Since we do not care about the magnitude of
P (ω,T ), it is actually plotted in the normalized form, P (ω,T )/P (ω,50 keV).
This figure is taken from Ref. [5].

Note that P (ω,T ) is also a function of ω which is only contained in h(ω/T ).
In plotting Fig. E.1, ω is chosen to be 3 keV. Since ω/T � 1, changing the
value of ω only slightly affects the value of P (ω,T ). Thus, to study the
relation between P (ω,T ) and T , we can fix ω at a certain value. This is good
enough for our approximate analysis in this appendix. Combining eqs. (E.1)
and (E.3), we get:

dF

dω
∝ T 3.22. (E.4)

The relation between T and vout is given in eq. (D.2). We can rewrite
eq. (D.2) as:

T ' 10 keV ·
[
K1(κ)
vout

+K2(κ,T0)
]− 1

c2(κ)+3
, (E.5)
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where

K1(κ)≡ s

1 sec ·
(

0.34
c1(κ)[c2(κ) + 3]

)−1(
RAQN

10−5 cm

)−1(
µu,d

500 MeV

)−2
,

K2(κ,T0)≡
(

T0
10 keV

)−[c2(κ)+3]
.

(E.6)

Next, we check on possible variations of the factor, nAQN, that occurs in
eq. (7.37). From eq. (7.22), we know that:

nAQN ∝
F
vout
∝ F
vin

vin
vout
∝ vin
vout

= γ−1, (E.7)

where we have used the relation that F/vin is a constant (see eq. (7.23)). γ is
the ratio between vout and vin, which is defined in chapter 7.4. For simplicity,
we assume that the loss of AQN velocity inside the Earth is proportional to
the magnitude of the entry velocity, vin, so γ and thus nAQN are seasonally
invariant, despite the fact that vin changes with seasons.

Plugging eqs. (E.4) and (E.5) into eq. (7.37), we finally arrive at:

dFr
dω
∝
(
K1
vout

+K2

)− 3.22
c2(κ)+3

. (E.8)

193


	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Figures
	Acknowledgements
	Dedication
	1 Introduction
	2 Review of the Axion Quark Nugget (AQN) Model
	2.1 Original motivation and basic features
	2.2 Observational signatures and constraints
	2.3 Crucial ingredients of the AQN formation
	2.3.1 NDW=1 axion domain walls
	2.3.2 Local spontaneous symmetry breaking of baryon charge
	2.3.3 Kibble-Zurek mechanism
	2.3.4 Color superconductivity
	2.3.5 Coherent CP-odd axion field


	3 AQN Formation
	3.1 Review of the AQN formation
	3.2 AQN formation: asymmetry between matter and antimatter AQNs
	3.2.1 CP-violating effects
	3.2.2 Quantitative analysis
	3.2.3 Numerical results

	3.3 AQN formation: real-time evolution
	3.4 Conclusion

	4 AQNs and Free Axions as Dark Matter
	4.1 Abundances of AQNs and free axions
	4.2 Internal structure of an AQN
	4.3 Confronting the model with observations
	4.3.1 Constraints on the parameter space
	4.3.2 Numerical plots
	4.3.3 No fine-tuning problem

	4.4 Conclusion

	5 Size Distribution of AQNs and Survival Pattern
	5.1 Size distribution of AQNs
	5.1.1 Basic idea
	5.1.2 Initial size distribution
	5.1.3 Initial temperature distribution and the correlation length (T)
	5.1.4 The dN/dB distribution: results

	5.2 Survival of the primordial distribution
	5.2.1 Pre-BBN evolution
	5.2.2 Post-BBN evolution
	5.2.3 Post-recombination evolution
	5.2.4 Present-day mass distribution

	5.3 Conclusion

	6 Observation I: Impulsive Radio Events in Quiet Solar Corona
	6.1 The AQN model: application to the solar corona heating
	6.1.1 The nanoflares: observations and modeling
	6.1.2 The nanoflares as AQN annihilation events

	6.2 Confronting the model with the radio observations
	6.2.1 Mechanism of the radio emission in solar corona
	6.2.2 The event rate
	6.2.3 Non-thermal electrons
	6.2.4 Radio flux intensity

	6.3 Wait time distribution
	6.3.1 Overview of the non-Poissonian processes
	6.3.2 Clustering events
	6.3.3 Wait time distribution: theory confronts the observations

	6.4 Conclusion

	7 Observation II: X-ray Annual Modulation Observed by XMM-Newton
	7.1 Motivation
	7.2 AQN-induced X-rays
	7.2.1 AQN emissivity
	7.2.2 AQN cooling

	7.3 Computation of the spectrum and comparison with XMM-Newton data
	7.4 Seasonal variation
	7.4.1 Effect of the Earth's position on its orbit
	7.4.2 Effect of the satellite's position and orientation on its orbit

	7.5 Conclusion

	8 Conclusions
	Bibliography
	A Calculation of the baryon charge distribution dN/dB
	B Simulation of AQNs in the Solar Atmosphere
	B.1 Simulation setup
	B.2 Results

	C Calculation of dF/d and Ftot
	D Calculation of AQN cooling
	E Calculation of dFr/d as a function of vout

