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Abstract 

Forested canopies buffer seedlings from extreme climate conditions, but whether burned forests 

maintain this buffering capacity is not well understood. Previously, modeling the impact of a 

forest canopy on microclimate conditions was difficult because microclimate dynamics occur 

over fine-spatial scales. Inputs for microclimate modeling thus require high-resolution data. New 

technology like remotely piloted aircraft (RPAs) and low-cost microclimate sensors allow for a 

rapid expansion in microclimate modeling. My research capitalized on technological 

advancements to produce accurate and high spatial resolution descriptions of forest canopies to 

explain microclimate variation in a sub-boreal forest impacted by variable fire severity. To 

address a need for standardized microclimate modeling methods, I compare correlations of 

microclimate metrics to canopy height summarized at different scales of spatial buffers. Results 

demonstrate that the optimum scale for summarizing canopy height is dependent on the variable 

of interest – soil moisture is better explained by smaller buffers and temperature by moderately 

sized spatial buffers. I use these buffers to model the relationship between canopy height and 

microclimate. I found that growing season near-surface, surface, and soil temperatures increased 

linearly with decreasing canopy height and cover. Of near-ground temperatures, soil temperature 

showed the strongest correlation with canopy height, where a reduction of 10 m in canopy height 

was associated with a 1.5 °C increase in mean growing-season soil temperature. There was a 

weak negative relationship between canopy height and soil moisture, which I attribute to 

confounding effects of high evaporation in burned canopies and high transpiration in unburned 

canopies. My findings underline the importance of including canopy in post-disturbance 

microclimate models, as differences in soil temperature can impact the distribution of seedlings 

and other species.   
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Lay summary 

Forest canopies protect near-ground environments from climate extremes by cooling in extreme 

hot and warming in extreme cold; however, after forest fires, near-ground environments may 

lose protection from the canopy. Globally, accurate models of near-ground environments are not 

widely available. Production of these models requires knowing the relationship between burned 

forest canopies and near-ground environments. This thesis combines high-quality remotely 

piloted aircraft (RPAs) canopy height data and near-ground temperature and moisture 

measurements to model the relationship between the ground and a burned forest canopy. Results 

indicate that taller canopies decrease temperatures, but the degree of cooling varies throughout 

the season. Using high-quality remote sensing data, I found soils beneath tall canopies were drier 

than those with shorter canopies, but differences in moisture content between tall and short 

canopies were generally small. Thus, climate modelers should consider the relatively weak 

influence of burned canopies on soil moisture and a dynamic relationship between tree canopy 

and temperature throughout the growing season.  
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Chapter 1: Introduction 

Forest canopies influence local or microclimate conditions, which in turn alter ecosystem 

processes, including species interactions, disturbance dynamics, and successional trajectories post-

disturbance (Costafreda-Aumedes et al., 2018; North et al., 2019; Zellweger et al., 2020). In the fire-

disturbed forest of western North America, research supports that modern-day climate is not conducive 

for seeds of currently dominant forest species to establish (Davis et al., 2019b; Hansen and Turner, 

2019). If microclimate conditions continue to surpass the growth thresholds for these seedlings, forest 

regeneration rates and future species composition will change (Stevens‐Rumann et al., 2018). Given the 

globally increasing frequency and severity of fire (Westerling et al., 2006), we must accurately measure 

the microclimate conditions that influence ecosystem responses (De Frenne et al., 2021; Seidl et al., 

2017). In fire disturbed environments, seedling success is mediated in part by the surrounding 

microclimate, dry and hot soils dramatically decrease successful seedling establishment (Hansen and 

Turner, 2019). However, there is a global lack of accurate microclimate models, particularly in these 

disturbed environments and given the compounding effects of a changing climate (De Frenne et al., 

2021).  

Developing accurate and spatially continuous models of microclimate temperatures and soil 

moisture – crucial variables of seedling success – is challenging because there is both a lack of field-

based, in-situ forest climate measurements and a lack of accuracy in adjusting regional gridded climate 

models to microclimate scales (Lembrechts et al., 2019). In forests, temperature, soil moisture, and light 

availability vary dramatically at meter scales due to variations in microclimate drivers including forest 

structure, micro-topography, and other environmental factors (Chen et al., 2011). As discussed in more 

detail in Chapter 2, microclimate dynamics are driven by (1) topographic factors which modify the 

amount of available solar radiation, (2) soil composition, which determines both moisture retention and 
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thermal capacity, and (3) forest structure which intercepts solar radiation and can alter water budgeting 

(Oke, 2002). The accuracy of regional climate models, which have kilometer-scale resolutions, 

decreases in complex environments (Daly et al., 2008). These models fail to include high-resolution data 

and correction factors for forest canopies or topography (Lenoir et al., 2017). Models predicting future 

forest composition that rely on regional climate models may be inaccurate, because they rarely 

incorporate correction factors for forest structure and other microclimate drivers (Lenoir et al., 2017).  

Forest canopies influence microclimate dynamics but quantifying the impact of a forest canopy is 

difficult because forest structures are complex. The presence of a forest canopy offers shade, alters near-

surface airflow, and introduces energy interactions between trees and their abiotic environment (Geiger, 

1950). Plant responses to globally warming temperatures are slower beneath forest canopies because 

canopies buffer warming regional climates (Zellweger et al., 2020). Further, forest canopies influence 

fine-scale moisture dynamics by blocking solar radiation and actively transpiring (Davis et al., 2019b). 

Forest canopies have a critical role in adjusting regional climate, and as a result, microclimate is 

impacted by canopy-altering disturbances, like fire, insect infestation, or windthrow (Dietz et al., 2020).  

We generally assume forests offer a buffering capacity, sheltering near-ground or tree seedling 

environments from extreme temperatures (De Frenne et al., 2019). We cannot expect the same buffering 

in disturbed forests because the tree canopy is dramatically altered. A recent review of gaps in 

microclimate research by De Frenne et al. (2021) notes an overall lack of knowledge on how 

microclimates are buffered, offset, or potentially decoupled from open-air environments within "altered" 

forests landscapes. These altered landscapes include forested ecosystems subject to anthropogenic or 

natural disturbances (De Frenne et al., 2021).  

 Across disturbed and non-disturbed environments, we lack open-access gridded forest 

microclimate datasets necessary for predictive species distribution modeling (De Frenne et al., 2021). To 
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create these gridded microclimate datasets, we must develop methods to incorporate forest structure 

measurements in microclimate models (De Frenne et al., 2021). Historically, measuring forest structure 

at the meter-scale resolutions necessary for microclimate modeling was challenging (Maltamo et al., 

2014). Forest structure data relied on costly and time-consuming field campaigns (Maltamo et al., 2014).  

New remote sensing techniques, like remotely piloted aircraft (RPAs), allow for spatially detailed and 

precise forest canopy structure measurements at spatial resolutions that align with microclimate 

dynamics (Goodbody et al., 2019; Zellweger et al., 2019). Specialized software can spatially overlap 

imagery collected from RPAs to create 3D models of forests (Colomina and Molina, 2014; Graham et 

al., 2019). RPA produced 3D models are particularly well-suited for modeling canopy height (Goodbody 

et al., 2019). However, their use to accurately estimate canopy cover or stand density is less established 

(Dietmaier et al., 2019). Research connecting remotely-sensed metrics of forest structure to 

microclimates is imperative for developing a practical standardized methodology for downscaling 

gridded climate datasets to near-ground environments (De Frenne et al., 2021). 

Previously, measuring microclimate across a wide variety of altered landscapes was cost-

prohibitive because of the high costs associated with microclimate recording equipment, including 

thermistors and moisture sensors (Lembrechts et al., 2021a). However, new inexpensive microclimate 

dataloggers that measure temperature and soil moisture allow for easy and comprehensive forest floor 

climate measurements (Wild et al., 2019). As a result, global datasets on key microclimate variables like 

soil temperature are increasingly available, although data are generally concentrated in the northern 

hemisphere, mainly Europe (Lembrechts et al., 2021b, 2021a). However, these global microclimate 

datasets can validate mechanistic (Maclean, 2020) or downscaled microclimate models (Dingman et al., 

2013). Microclimate models are built from known relationships between microclimate and microclimate 

drivers like topography, soil composition, and forest structure. I argue that the current knowledge on the 
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impact and interaction of microclimate drivers is insufficient for modeling microclimate dynamics given 

increasing disturbance and climate change (De Frenne et al., 2021). To address this need for more 

research, my study leverages new remote sensing and sensor technology to investigate the relationship 

between a burned tree canopy and microclimate dynamics in interior British Columbia, Canada.  

1.1 Research objectives 

 To increase our understanding of the tree canopy's role moderating the mean and range of 

microclimate values, I investigated the following research question: In a heterogenous post-disturbance 

landscape, what is the relationship between tree canopy and microclimate?  

 To answer this question, I posed two sub-questions:  

Microclimate models lack standardized methodology for incorporating the impact of microclimate 

drivers (De Frenne et al., 2021). Importantly, we lack knowledge of the necessary spatial resolution to 

measure microclimate drivers (Maclean et al., 2021). In response to this research gap, I first asked what 

scale of spatial buffer to summarize canopy height data produces the strongest correlation between mean 

growing season microclimate and canopy height? After determining the best scale of spatial buffer to 

incorporate canopy in microclimate modeling, my second question was: What is the impact of 

differences in canopy height on the mean and range of microclimate variables known to influence forest 

regeneration? I assess this question at both growing season and monthly timesteps, which are timesteps 

known to influence tree seedling regeneration. 

To answer these questions and provide relevant background, this thesis starts with a literature 

review, which includes a discussion of microclimate literature that emphasizes the importance of a forest 

canopy in microclimate dynamics and the value of novel remote sensing for microclimate modeling. The 

literature review is followed by a field-based study of post-burn forests that models how remaining 

forest structure, specifically canopy height, impacts microclimate dynamics. This thesis is focused on the 



 

 

5 

impact of a forest tree canopy on microclimate dynamics. The impact of understory vegetation is 

discussed in the literature review but was not the focus of this study. In the analysis chapter, in-situ 

measurements of soil moisture, near-surface, surface, and soil temperatures are modeled in relation to 

RPA-acquired canopy height and previously collected LiDAR topography data. The final chapter 

discusses the research outcomes, including the significance, limitations, and future work. 
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Chapter 2: Literature review of variables known to influence microclimate 

Elements known to influence microclimate – henceforth microclimate drivers– include the 

surrounding topography, soil composition, understory structure, and tree canopy (Oke, 2002). This 

literature review begins by discussing each driver, followed by a review of our new approaches to 

measure these drivers with emerging technologies like RPAs (Fuka et al., 2016). Research gaps 

identified from this review include a need for microclimate research comparing the accuracy of high and 

medium-resolution spatial data in microclimate modeling (Table 2.1) and studies in naturally disturbed 

forests with minimal elevation changes (Table 2.2).  

2.1 Major microclimate drivers  

2.1.1 Topography 

Topography influences the amount of solar radiation received at a surface, which governs heat 

exchange dynamics  and impacts local temperature and soil moisture regimes (Oke, 2002). Site-level 

inclination, orientation, location, and elevation affect total surface solar radiation (Oke, 2002). Variation 

in site-level topography characteristics can produce temperature differences as high as 6 °C over several 

meters (Chen et al., 2011).  

Topographic characteristics like aspect, slope, and terrain complexity impact temperature and 

moisture because these characteristics alter solar radiation and heat flow (Oke, 2002). In northern 

latitudes, a southwest-facing aspect on a moderate slope will have approximately 20% more solar 

radiation than a flat slope (Geiger, 2017). A 20% difference in solar radiation would produce 

temperature differences of about 6 °C over the day (Oke, 2002). Topography can also alter the water 

flow rate through a system (Dingman, 2015).  

Site-specific soil moisture depends mainly on the flow rate of water through the system and the 

time since the last rainfall (Dingman, 2015; Halama et al., 2018). Water flow rates through a system are 
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influenced by soil porosity, soil depth, and previous precipitation, but soil moisture estimates improve 

when they consider surrounding topography (Fuka et al., 2016). Figure 2.1 illustrates the role of 

topography in moderating water flow rate, thereby impacting soil moisture. Rates of water flow are 

divided into three distinct zones, including the surface and below-ground unsaturated and saturated 

zones. Following a rain event, water moves from the surface to the unsaturated zone via a process called 

infiltration. Water continues to move into the saturated zone via a process called percolation (Dingman, 

2015). Below-surface flow, including infiltration, percolation, and horizontal flow, is determined 

principally by the grain size of soil but is also impacted by the source area and subsurface topography 

(Dingman, 2015; Fuka et al., 2016). Surface topography affects the rate of overland flow (Dingman, 

2015). Figure 2.1 does not discuss the impact of aspect and topographic complexity on evaporation and 

water flow, which can increase evaporation rates because they alter radiative heating and soil 

temperature (Halama et al., 2018).  

 
Figure 2.1 Schematic water flow rates in a system at different slopes with consistent soil composition. System water 

flow rates determine site-level soil moisture. Lateral flows are shown in the red-box subset. The size of the arrows on 

horizontal flows denotes relative flow rates. Note: There is no consideration of evapotranspiration. 

Need for fine-scale topography in microclimate datasets – Topographic metrics are essential to 

include when downscaling climate models. Downscaling is a method used to predict gridded climate 
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datasets at higher spatial resolutions (Ashcroft and Gollan, 2012). Models of soil moisture and soil 

temperature are more accurate when they include high-resolution topography as a determinant of water 

flow and thermal heating (Fuka et al., 2016; Halama et al., 2018). Regional climate models generally 

explain climate at much larger kilometer scales; their accuracy decreases exponentially with finer spatial 

resolutions (Lembrechts et al., 2019). For example, PRISM (Parameter-elevation Regressions on 

Independent Slopes Model) model outputs are typically reported at 800 m2(Daly et al., 2008). When 

temperature estimates from PRISM are downscaled from 800 to 100 m2, estimates capture only 20% of 

the observed temperature variance (Daly et al., 2008). PRISM uses topographic indices like location, 

elevation, coastal proximity, aspect, and surrounding topography to calculate the expected climate but 

relies on an elevation model with an 80-meter spatial resolution (Daly et al., 2008). Interpolated climate 

models, like PRISM, fail at these higher resolutions for two reasons (1) topographic variation, including 

aspect and elevation influence temperatures at resolutions finer than 80 m (Maclean, 2020), and (2) 

microclimate temperature dynamics are poorly explained by topographic indices alone (Jucker et al., 

2018b). 

2.1.2 Soil  

Soil composition also influences microsite temperature, water availability and flow, and is thus 

an important variable to consider when modeling microclimate (von Arx et al., 2013). The thermal 

diffusivity – which is the rate that soil temperature changes with a temperature gradient and heat 

capacity – defined as total heat a soil can store, determines the rate and extent that heat from the surface 

transfers into the ground (Zhu et al., 2019). In dry periods, soil loses thermal regulating capacity because 

soil particles have a lower heat capacity than water molecules (Oke, 2002). Soil moisture content is 

controlled in part by soil particle size, which determines soil matric potential, the ability of soil particles 

to retain water via capillary action. A soil with a high matric potential, like clay or silt, generally has 
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lower temperatures and retains moisture for an extended period (Rodriguez-Iturbe et al., 1999). Soil 

moisture content is also heavily impacted by the depth of the soil itself. Deeper soils can accumulate 

more water during a rain event, so they also stay moist longer (Rodriguez-Iturbe et al., 1999). The water 

flow rate from the soil via evaporation or below-surface flow decreases logarithmically as the soil dries 

because of the adhesive properties of water (Dingman, 2015). Soil composition is then a determinant of 

hyperlocal temperature and moisture regimes because it influences heat and water flux in near-ground 

locations. However, preliminary research at field sites with relatively homogenous soil composition 

supports high-resolution topography better explains soil moisture dynamics than soil type (Kemppinen et 

al., 2018). Thus, acquiring high-resolution soil type data for microclimate modeling is likely a lower 

priority than high-resolution topography and forest structure data (Kemppinen et al., 2018). 

2.1.3 Understory structure   

Models of forest microclimate support that understory vegetation is a significant predictor of 

microclimate dynamics, particularly for maximum temperatures and vapor pressure deficit (Haughian 

and Burton, 2018; Kovács et al., 2017; Prévosto et al., 2020). At small scales, vertical differences in 

vegetation structure are the most important factor for altering energy budgets (Oke, 2002). Vegetation 

alters the energy budget by (1) preventing solar radiation from reaching the forest floor, (2) introducing 

vapor near the surface via transpiration, and (3) altering the formation of the boundary layer, which 

impacts both latent and sensible heat flux (Oke, 2002). Generally, the impact of vegetation on buffering 

capacity is greatest when the understory vegetation is tall or structurally complex (Prévosto et al., 2020), 

when overstory structure is minimal (Eskelson et al., 2011; Prévosto et al., 2020), or in summer months 

(von Arx et al., 2013). Studies have also shown that the impact of the understory vegetation is dependent 

on vegetation type (Haughian and Burton, 2018). A study of the microclimates in British Columbia 

found that lichen dominant forest plots were drier than plots with moss or other vegetation. They suggest 
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that lichen were both more likely to grow in dry environments and that their presence contributed to 

overall site dryness (Haughian and Burton, 2018). In disturbed forests, the influence of understory 

vegetation can be large because understory cover, height, and diversity generally dramatically increase 

post-disturbance while overstory structure decreases (Owen et al., 2020). 

Understory vegetation plays a vital role in moderating microclimate environments, but 

quantifying the impact of vegetation is difficult because temporal and spatially continuous 

measurements of vegetation structure are hard to acquire (Blonder et al., 2018). Vegetation structure in 

disturbed environments is dynamic both seasonally and in the years after a disturbance (Andrade et al., 

2021; Owen et al., 2020). While the role of understory vegetation dynamics on microclimate is clear 

(Prévosto et al., 2020), measuring and incorporating the impact of understory vegetation on 

microclimate is difficult (Blonder et al., 2018). Understory measurements made via remote sensing 

generally underperform compared to field-based measurements (Talucci et al., 2020).  

2.1.4 Tree canopy  

The ability of solar radiation to reach a near-ground location is a function of slope, aspect, and 

canopy interference (Geiger, 1950). Canopy interference can be defined as anything that prevents light 

from reaching the forest floor, including understory vegetation. However, the focus of this literature 

review section is on the impact of a tree canopy. Generally, decreasing tree cover increases solar 

radiation, which warms the soil and the air temperature of that area (Vanwalleghem and Meentemeyer, 

2009; von Arx et al., 2013). The degree of warming is highly variable in different canopy conditions. 

Light infiltration ignoring the impact of topography is mainly determined by the leaf area index (LAI), a 

measurement of the photosynthetically active area. LAI is greatest in forests with high canopy cover, but 

LAI varies based on the stand age and type. Young and old forests have more light than mid-aged 

forests, which have higher tree densities and canopy cover (Geiger, 1950).  
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Site-level temperature changes with tree density and canopy cover, but the relationships vary 

across forest types (De Frenne et al., 2019). A study across a gradient of harvesting densities, which in 

turn reduced tree canopy cover, found that the site temperatures were not statistically different across the 

remaining tree densities (Chen et al., 1999). Conversely, a study of temperature in a selectively logged 

Bornean forest found canopy height and density were a strong driver of air temperature and vapor 

pressure deficit (Jucker et al., 2018b). Other studies have shown that the influence of tree canopy on 

microclimate is dependent on the type of forest (broadleaf vs. conifer) and season. In a study comparing 

broadleaf to pine tree canopies, temperatures beneath a pine canopy differed less from regional climate 

models compared to temperatures beneath broadleaf forests (von Arx et al., 2012). These differences are 

important to quantify because they determine the degree of warming experienced at a site, which is often 

but not universally buffered from the warming of the macroclimate (Zellweger et al., 2020).  

Tree canopies can also influence soil moisture in three key ways: canopy (1) decreases the water 

a site receives, canopy interception, (2) withdraws water via the process of transpiration, and (3) 

increases the height and thickness of the boundary layer, which decreases latent heat flux (Dingman, 

2015). Ecohydrological processes can then increase and decrease water flux, making the relationship 

between tree canopy and soil moisture harder to predict than temperature. Figure 2.2 shows a simple 

schematic of water flow with vegetation. Starting at the source, the total amount of precipitation an area 

receives decreases through canopy interception. Tree canopy interception can play a substantial role in 

total moisture input into the system. A study of post-burn forests in New Mexico found that areas with 

open tree canopies had seasonal snow depths 20 cm greater than those in unburned closed canopies 

(Harpold et al., 2014). Increasing tree canopy cover and density increase both interception and 

vegetation water demands via transpiration. Tree removal can increase soil moisture and ground-water 

percolation at the hyperlocal and catchment-wide scale (Beudert et al., 2015; Clark et al., 2014). As the 
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canopy influences the amount of solar radiation and winds that sites experience, the presence of a 

canopy can decrease the rate of evaporation from the soil surface (Oke, 2002). The degree of tree canopy 

interception is dependent on forest type, density, and total coverage immediately surrounding a site, 

resulting in highly site-specific soil moisture dynamics (Goeking and Tarboton, 2020; Rutter et al., 

1971). 

 
Figure 2.2 Schematic of water flow on a vegetated surface. Arrows show the approximate scale of relationships. 

2.2 Differences in microclimate dynamics following tree canopy disturbance 

There is strong support for tree canopy buffering of temperatures, protecting surface 

environments from climate change (Zellweger et al., 2020). However, the inclusion of tree canopy 

information in microclimate models is lacking: in a review of studies to enhance microclimate modeling, 

only half of the studies incorporate any metric of forest biota (Lenoir et al., 2017). Further, research 

suggests that the deviance between open-air environments and forested environments may be greater 

with higher average temperatures (i.e. climate change enhances the importance of a tree canopy) (Thom 
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et al., 2017). In this case, forested environments do not only buffer from regional climates, they 

completely decouple with their own unique climate dynamics (De Frenne et al., 2021). The theorized 

increased influence of a tree canopy with climate change raises important questions on how 

microclimate dynamics observed in disturbed forest canopies may change in combination with a 

changing climate (De Frenne et al., 2021). Table 2.1 outlines research studies on tree canopy impacts of 

microclimate in disturbed environments. These studies support that decreases in tree canopy – like 

canopy height, cover, and basal area, increase near-surface temperatures. However, this relationship 

varies from linear (Heithecker and Halpern, 2007) to non-linear (Jucker et al., 2018b; von Haden et al., 

2019). Similarly, the relationship between soil moisture and forest structure may not be significant 

(Heithecker and Halpern, 2007) or may be negatively correlated (Ma et al., 2010). Decreases in a forest 

canopy associated with disturbance also increase the influence of topography (Kermavnar et al., 2020) or 

edge effects (Latimer and Zuckerberg, 2017) on temperature and humidity dynamics. Notably, relatively 

few studies investigate the role of a natural disturbance on microclimate dynamics (Table 2.1). Natural 

disturbances may present different successional trajectories because they produce extremely 

heterogenous overstory structures (Breshears et al., 1997; Thom et al., 2017). 

In a high severity fire, where tree canopy cover decreases, the impact of the remaining overstory 

structure on temperature and moisture dynamics is not well defined. A detailed review of the effect of 

tree canopy disturbance, like fire or bark beetles, on soil moisture, found that of the 18 papers included 

in the review, approximately equal numbers found soil moisture (1) did not change, (2) decreased, or (3) 

increased after removal of the tree canopy (Goeking and Tarboton, 2020). These results suggest that 

differences across sites and ecosystems produce different moisture regimes after a forest disturbance. 

While this seems obvious, variable soil moisture responses could be explained by spatial and temporal 

differences in post-disturbance under and overstory structure, including canopy height and closure 
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(Andrade et al., 2021). Research on the interaction of canopy and microclimate is necessary as many 

papers on microclimate dynamics do not include measures of moisture or humidity (De Frenne et al., 

2021; Lenoir et al., 2017). In a review of microclimate research to inform climate modeling, three of 14 

papers included measurements of moisture (Lenoir et al., 2017). In my own review of the impact of 

canopy disturbance on microclimate, four of ten papers include some measure of moisture (Table 2.1). 

In many studies modeling microclimate dynamics post-disturbance, overstory structures have 

less of an influence on microclimate than topographic characteristics (Dietz et al., 2020; Latimer and 

Zuckerberg, 2017; Ma et al., 2010). However, most of the studies in my review crossed large elevation 

gradients (Dietz et al., 2020; Heithecker and Halpern, 2007) and few focused on particular study sites 

(Anderson et al., 2007; Kermavnar et al., 2020; Ma et al., 2010). Studies that focus on microclimate 

dynamics at one field site find that elevation plays a minor role in microclimate (Kermavnar et al., 

2020) or that elevation has the largest impact on observed microclimate (Ma et al., 2010). Thus, 

research in areas that limit the influence of other microclimate drivers, like elevation and aspect, is 

needed to clarify the impact of overstory forest structure on microclimate (De Frenne et al., 2021). 

There is also an additional gap in the literature on the impact of disturbed forest overstory on 

microclimate moisture dynamics (Table 2.1, Lenoir et al., 2017). Shifts in microclimate dynamics that 

occur in tandem with disturbance changes in the overstory and climate change threaten western North 

American forest resiliency and ecosystem services by impacting seed establishment (Hansen and 

Turner, 2019; McDowell et al., 2020)
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Table 2.1 Selection of microclimate studies in disturbed forests. Studies quantify the impact of an overstory (canopy height, density, cover) gradient on 

microclimate dynamics. Studies that consider natural disturbances are colored in grey. 

Study Forest 

Type  

Disturbance 

Type 

Overstory 

Metric  

Temperature Soil 

Moisture or 

VPD 

Findings 

Kermavnar 

et al. 

(2020) 

Fir-beech 

forest 

Harvest Canopy 

density  

X  With decreased canopy density temperatures and 

temperature ranges increased, 

Relative humidity decreased,  

Vapor pressure deficit increased 

Dietz et al. 

(2020) 

Temperate 

forest  

Windthrow  Canopy 

closure  

X  Temperatures not significantly impacted by gap size 

Temperatures in forest gaps not different to areas with 

high canopy closure 

Elevation was the strongest driver of temperature 

differences  

Davis et al. 

(2019) 

Coniferous 

forest 

(across a 

climate 

gradient) 

Large 

canopy gaps 

(disturbance 

type 

variable) 

Canopy 

cover 

X X Maximum growing season temperature decreased with 

increasing canopy cover (buffering capacity increased). 

This effect was most substantial in forests with high rates 

of ET.  

Maximum VPD decreased with increasing canopy cover; 

effect most substantial in forests with high ET rates  

Jucker et 

al. (2018) 

Tropical 

old-growth 

dry forests 

to oil palm 

plantations 

Harvest Canopy 

height and 

LAI 

X X Canopy (height and leaf area index) explained 40% and 

21% of the variation in maximum temperature and mean 

temperature, respectively 

Vapor pressure deficit, mean and maximum temperature 

decrease nonlinearly with canopy height. Effects are 

minimal when measured canopy surpasses 20 m.  

Greiser et 

al. (2018) 

Boreal 

coniferous 

forest 

Harvest  Basal area 

and canopy 

cover  

X  Impact of forest structure on temperature varies 

seasonally, canopy has the largest impact peak summer.  

Elevation determines fall season dynamics, but plays a 

smaller role in the rest of the year 
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Study Forest 

Type  

Disturbance 

Type 

Overstory 

Metric  

Temperature Soil 

Moisture or 

VPD 

Findings 

Latimer 

and 

Zuckerberg 

(2017) 

Temperate 

forest  

Harvest and 

agriculture 

Tree density 

and basal 

area  

X  Tree density was a strong descriptor of winter maximum 

temperature, but elevation was the best descriptor of 

mean and minimum winter temperatures  

There was an interaction between the tree density and 

edge-effects, where lower tree densities had greater edge 

effects.  

Frey et al. 

(2016) 

Conifer 

forest 

Harvest 

(studied a 

forest-

mosaic) 

Forest 

structural  

Complexity 

X  Combined the impact of forest vegetation variables in 

modeling (study cannot delineate between overstory and 

understory impact) 

Impact of forest structure on microclimate varies 

seasonally  

Elevation had the most impact on temperature  

Forest structural complexity influenced temperature 

variability  

More complex and thereby were cooler 

Ma et al. 

(2010) 

Mixed 

conifer  

Cross of 

harvest and 

fire  

Canopy 

cover and 

basal area  

X X Elevation had the most impact on temperatures 

High canopy cover influenced soil temperature and 

moisture, where soil temperatures were lower, and 

moisture was greater   

Anderson 

et al. 

(2007) 

Conifer 

forest 

Harvest Basal area 

and canopy  

cover 

X  Large patches increased air temperatures by 

approximately 3 °C 

Thinning had a less extreme impact on temperature 

compared to patch dynamics  

Heithecker 

and 

Halpern 

(2007) 

Conifer 

forest  

Harvest  Canopy 

cover  

X X Temperatures decreased linearly with increasing canopy 

cover 

Soil moisture shows no apparent relationship to changing 

canopy 



 

 

17 

Motivations for improving post-disturbance microclimate modeling – To briefly underscore the 

importance of accurate modeling of post-disturbance microclimate conditions, many components 

of forest succession are influenced by microclimate dynamics. Microclimate impacts understory 

vegetation structure (Haughian and Burton, 2018), distributions of various vertebrate species  

(Varner and Dearing, 2014), and of particular importance to forest managers – seedling 

establishment (Hoecker et al., 2020).  Successful seedling establishment is strongly impacted by 

proximal climate conditions, including light, water availability, and temperature thresholds 

(North et al., 2019). Most sub-alpine tree species have relatively small seeds with a large number 

of stock reserves (Lazarus et al., 2018). After germination, and once initial seed stocks are 

utilized, there is a heavy reliance on microclimate conditions for survival. Early growth stages 

without rootstock and ample water are at high risk of losing turgor pressure in the xylem, causing 

the seedling to "dry out" (Lazarus et al., 2018). As a result, relatively small changes in minimum 

soil moisture (~ 2 % - Kermavnar et al., 2020) or growing season surface temperatures (2 °C - 

Hansen and Turner, 2019) can have large implications on successful seedling establishment. 

Incorporating small-scale variation of forest structure and microtopography that ultimately 

determine microclimate is important for planting forests that successfully regenerate and are 

resilient to future disturbance (North et al., 2019). 

2.3 The use of remote sensing to enhance microclimate understanding 

New remote sensing technology offers the ability to map forest canopies at the high 

spatial resolution necessary for measuring major microclimate drivers, particularly after a 

disturbance (Goodbody et al., 2019). Historically, our ability to measure topography and canopy 

at sub-meter scales was limited. Developments in remote sensing in the 1990s, namely the 

integration of global positioning technology (GPS) with inertial measurement units (IMU) in 

aircraft, increased accuracy of aerial-based remote sensing from multi-meter resolution to sub-
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meter resolution (Maltamo et al., 2014). A review of the application of remote sensing to 

microclimate modeling argues these remote sensing developments allow for more spatially 

complete and accurate models of microclimate in many different locations (Zellweger et al., 

2019).  

Generally, studies of microclimate dynamics support improved model fit when higher 

resolution data is included (Table 2.2). However, my review of the literature did not find a paper 

that compared the accuracy between high-resolution and medium-resolution spatial data for 

explaining microclimate dynamics (Table 2.2). Instead, most compare in-situ measurements to 

regional climate models (Table 2.2). Further, few studies look at the importance of spatial 

resolution for soil moisture dynamics. Research exploring the spatial resolution necessary for 

microclimate modeling is essential in light of the predictive study by Maclean (2019), which 

found that measurement accuracy increased at the 100 m resolution compared to the 1-meter 

resolution. Defining the relevant scale of spatial buffer to measure and incorporate the impact of 

forest structure and microtopography on site microclimate remains an open and necessary 

research area for producing gridded microclimate maps (De Frenne et al., 2021).   
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Table 2.2 Studies comparing spatial resolution used to build either predictive or explanatory microclimate 

models. Studies limited to those that either downscaled regional climate models or compared regional climate 

models to in-situ measurements. 

Study Microclimate 

Variables Measured 

Spatial Resolutions 

Considered   

Findings  

Maclean 

(2020) 

 

Free-air temperature, 

soil moisture  

 

1 m, 100 m  Temperature data had a 

lower error at 100 m. Soil 

moisture data were not 

compared.  

Lembrechts et 

al. (2019) 

Free-air temperature, 

Surface Temperature, 

Soil Temperature  

30" to 1" (arc-

seconds) compared 

to in-situ 

measurements 

In-situ data improved overall 

model fit, compared to 30m 

resolution data. This trend 

was strongest, particularly 

for wintertime soil 

temperatures.  

Lenoir et al. 

(2017) 

Free-air temperature  25 m and 50 cm 50 cm data improved 

accuracy of free-air 

temperature monitoring  

Ashcroft et al. 

(2012) 

Free-air temperature 1, 5, 25 km 

compared to in-situ 

measurements 

1 km grid produced the 

slightest offset from 

temperature measurements 

Dingman et al. 

(2013) 

Free-air temperature  30 m and 2m 

downscaled with 

lapse-rate equations 

compared to in-situ 

Accuracy improved with 2m 

downscaling, particularly for 

maximum temperatures and 

less for minimum 

temperatures 

 

2.3.1 Remotely piloted aircraft for high-resolution measurements of forest structure  

Novel technologies like remotely piloted aircraft (RPAs) are helpful because they can 

compare between high (meter) to medium (tens of meters) spatial resolution forest-canopy 

measurements as they measure forest structure at high resolution with lower costs than 

conventional piloted aircraft (Goodbody et al., 2019). RPA-measured metrics have been well 

correlated to vegetation metrics for both silvicultural purposes and general land assessment 

(Tompalski et al., 2019). In areas where canopy cover is open, RPAs have been used to create 

highly detailed maps of burn severity or seedling presence (Arkin et al., 2019; Feduck et al., 



 

 

20 

2018) and RPAs have been used to model canopy height over forest stands in topographically 

diverse areas (Salamí et al., 2014). 

High spatial resolution aerial imagery from RPAs can be used to create 3D models of 

surface structure. By spatially overlapping aerial photos, specialized software can identify 

common points. Angles between common points can then be collated via a process called digital 

aerial photogrammetry (DAP). Collated points and images are used to create point clouds and 

orthorectified images (Colomina and Molina, 2014; Graham et al., 2019). Studies demonstrate 

the capacity of RPA collected imagery to map canopy height, tree crown condition, and canopy 

density across a gradient of landscapes with high accuracy (Chisholm et al., 2013; Salamí et al., 

2014; Tomaštík et al., 2017; Wallace et al., 2016). Orthorectified images and DAP-generated 

point clouds can be used to create a 3D model of structural and spectral elements for high 

accuracy remote sensing (Colomina and Molina, 2014).  

DAP models can be used to create accurate and low-cost estimates of canopy height 

(Goodbody et al., 2019). However, because DAP relies on 3D structures captured from vertical 

imagery, the technology is limited for estimating specific forest structural metrics and 

topography. Forest structure metrics that give estimates of below-crown structure, like LAI are 

not well modeled with DAP (White et al., 2018). Fortunately, LAI is generally correlated to 

canopy height (Hardwick et al., 2015) – where RPA measurements are highly accurate (Wallace 

et al., 2016). However, the correlation of LAI and canopy height likely differs in disturbed 

environments because these environments have highly heterogeneous canopy structure and forest 

gaps (Tomaštík et al., 2017). The accuracy of DAP topography models, namely digital elevation 

models (DEMs), decreases in areas of high-canopy cover (Graham et al., 2019), so research often 

combines DAP with LiDAR-derived digital elevation models (DEMs) (Wallace et al., 2016). 

Light detection and ranging (LiDAR) uses a laser that can penetrate forest canopy to produce 
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high-resolution topography models (Frolking et al., 2009). The standard practice for creating 

canopy height models from DAP is to normalize DAP models to LiDAR-derived DEMs 

(Goodbody, 2019). 

LiDAR data for topography is necessary for DAP modeling, but multiple acquisitions of 

LiDAR to gather current forest structure data can be cost-prohibitive (Wallace et al., 2016). 

LiDAR is particularly useful for remote sensing because it can characterize the forest structure 

and topography when spectral imagery cannot (Wallace et al., 2016). LiDAR metrics of canopy 

cover, density, and leaf area index have high accuracy (Dietmaier et al., 2019). However, the 

cost of LiDAR acquisitions forces researchers to balance cost-efficiency with increasing the 

spatial and temporal accuracy of forest structural models (de Almeida et al., 2020).  

2.4 Conclusions from review  

Microclimates are influenced by topography, soil, understory vegetation, and the 

presence of a tree canopy. However, research suggests that topography and overstory structure 

best explain microclimate dynamics, even when high-resolution soil data are available 

(Kemppinen et al., 2018). In disturbed environments, the relationship between a tree canopy and 

near-ground temperature and moisture is variable (Table 2.1). Further, a limited number of 

microclimate studies assess the importance of forest canopies on soil moisture dynamics (Table 

2.1). Novel technology in remote sensing and microclimate measurements assists in a current 

rapid expansion of microclimate research (De Frenne et al., 2021). However, technology to 

measure understory vegetation remains an active area of research (Blonder et al., 2018; Talucci 

et al., 2020). Importantly, research that assesses the influence of the spatial resolution of canopy 

metrics, including high-resolution RPA data for accurate microclimate modeling, is lacking 

(Table 2.2).  
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Chapter 3: Canopy height effects on the growing season and monthly 

microclimate in a burned forest of British Columbia, Canada 

3.1 Introduction 

Forests play a large role in microclimate temperatures and moisture regimes. Forests 

buffer from regional temperature extremes, but the relative effect of a forest canopy varies from 

ecosystem to ecosystem (De Frenne et al., 2019). For example, conifer canopies in Europe have 

a lower buffering capacity than broadleaf forests – conifer forests are warmer in warm months 

and cooler in cool months than broadleaf forests (von Arx et al., 2012). Further, recent work 

suggests that disturbance events that impact the canopy also alter the relative impact of 

topography on microclimate (Kermavnar et al., 2020). In harvest-disturbed forests of Europe, as 

tree canopy density decreases, the influence of topography on temperature buffering increases 

(Kermavnar et al., 2020; Lenoir et al., 2017). Loss of forest canopies could increase the 

temperature differences among aspects, where southern aspects would be warmer (Geiger, 1950; 

Kermavnar et al., 2020).  

  The impact of a forest canopy on water availability, like site-level soil moisture, is not as 

straightforward as temperature (Goeking and Tarboton, 2020). In fire-disturbed forests of 

western North America, some studies suggest that canopy loss increases evapotranspiration and 

decreases soil moisture (Beudert et al., 2015; Biederman et al., 2017). Other studies have found 

that tree canopy removal reduces transpiration rates and increases soil moisture (Reed et al., 

2018). Building our understanding of the impact of a canopy on soil moisture is a crucial 

component of modeling regenerative success, as values of annual minimum soil moisture, and 

particularly early-season soil moisture, influence regeneration (Davis et al., 2019a). 
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Advances in microclimate modeling are facilitated by the decreasing cost of small, 

compact, and robust dataloggers – able to acquire the in-situ microclimate data at a high spatial 

and temporal resolution to then align to high-quality 3D forest structure models (Lenoir et al., 

2017; Wild et al., 2019). Specifically, relatively inexpensive and easily installed microclimate 

dataloggers can measure the soil, surface, and near-surface temperature and soil moisture at a 

high temporal frequency and measurement accuracy (Wild et al., 2019). Using this new 

technology, microclimate fluctuations at the meter or sub-meter scales can be directly related to 

differences in forest canopy metrics like gap-fraction (Kermavnar et al., 2020), LAI, and canopy 

height (Jucker et al., 2018b). Canopy height is a particularly useful forest metric, because it is 

well estimated with new and inexpensive remotely piloted aircraft (RPA) technology (Goodbody 

et al., 2019) and is generally correlated with other canopy metrics like LAI (Hardwick et al., 

2015).  

Until recently, investigations in microclimate were limited because the acquisition of 

high spatial resolution data of variables known to impact microclimates, or microclimate drivers, 

like topography (aspect, elevation, and terrain) and tree canopy (height and cover) was difficult 

(Zellweger et al., 2019). Many studies instead used coarsely downscaled climate data to define 

climate differences among sites while simultaneously acknowledging the known inaccuracies of 

downscaling (Talucci et al., 2019). Further, approaches for incorporating microclimate drivers in 

microclimate modeling are not consistent, particularly in disturbed landscapes (De Frenne et al., 

2021). A review of the application of remote-sensing data to microclimate dynamics argues that 

meter-or sub-meter-scale metrics are necessary to model microclimate variability (Zellweger et 

al., 2019). Advancements in remote-sensing technology, including RPAs and light detection and 

ranging (LiDAR) systems, allow cost-efficient acquisition of such high-resolution data, able to 

quantify overstory structure, like canopy height, with high spatial resolution – in some cases, at a 
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centimeter resolution (Goodbody et al., 2019). Combining in-situ data with remote sensing, prior 

work has defined the relationship between increasing canopy height on decreasing seasonal near-

surface temperature in Indonesia (Jucker et al., 2018b) or decreased diurnal temperature variation 

in managed European forests as canopy density increases (Kermavnar et al., 2020).  

Here, I capitalized on RPA technology and inexpensive microclimate sensors to 

investigate how forest canopy height, measured by RPAs, influences post-disturbance 

microclimate in a recently burned sub-boreal forest. I first investigated the degree to which 

higher spatial resolution improves the fit of microclimate models by asking: (1) What scale of 

spatial buffer does canopy height best predict microclimate? Given prior research (Lenoir et al., 

2017), I expected the strength of the relationship between canopy height and microclimate to 

increase as buffer size decreased. Once I established the most relevant spatial buffer to 

summarize tree canopy metrics for modeling, I asked: (2) How do fire-induced changes in tree 

canopy impact the mean and range of soil, surface, and near-surface temperatures and soil 

moisture at timesteps known to influence seedling establishment – (2a) the growing season and 

(2b) month-to-month. Over the growing season, I hypothesized that shorter canopies would lead 

to warmer and drier landscapes and increase the daily range in microclimate values. As 

coniferous forests do not have major seasonal changes in overstory structure, I assumed that the 

effect size of canopy height would remain constant across months of the growing season. As my 

field measurements cross a gradient of fire severity, our microclimate findings are discussed in 

the context of fire disturbance events. My results examine if we should expect burned forests to 

have differing microclimates from their non-burned counterparts (Davis et al., 2019b). My work 

additionally exposes an opportunity to model microclimate dynamics in a diversity of locales and 

in different environments by capitalizing on advancements in microclimate measurement and 

remote sensing technology. 
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3.2 Methods 

3.2.1 Study area and forest plots 

My study was located at the Alex Fraser Research Forest Gavin Lake Block (AFRF) 60 

km north of Williams Lake, British Columbia, Canada (Figure 3.1). Elevation ranged from 600 – 

1250 m. AFRF is located within the Prouton lakes fire boundary (C30870), which burned 

approximately 1000 ha of the 6000 ha AFRF forest in 2017. The AFRF field site on a south-

facing slope, dominated by dry areas with shallow and coarse soils and some bedrock protrusions 

(Klinka et al., 2004). The study plots were in the sub-boreal spruce ecosystem zone where 

Douglas-fir (Pseudotsuga menziesii var. glauca) was the dominant overstory species, and sub-

dominant species included hybrid spruce (Picea glauca x engelmanii), lodgepole pine (Pinus 

contorta), red cedar (Thuja plicata), and trembling aspen (Populus tremuloides; Klinka et al., 

2004). 

In 2020, I established 10 one-hectare forest plots along elevation and fire severity 

gradients to capture a range of canopy height and its impact on microclimate. I calculated forest 

plot level burn severity using summer 2017 Landsat derived normalized burn ratio (dNBR) 

acquired after the fire (Miller and Thode, 2007). Fire severity was variable throughout the AFRF 

field site, ranging from low-severity ground fire to high-severity canopy fire. Forest plots were 

numbered from 1 to 10, where 1 had the lowest plot average of fire severity, and 10 had the 

highest. 

3.2.2 Datalogger locations and data compilation 

Microclimate measurements – I measured microclimate from early May 2020 to mid-

October 2020 (the AFRF growing season). A total of 90 microclimate dataloggers were deployed 

across the 10 forest plots, which resulted in 9 dataloggers per plot. Dataloggers were spaced 

approximately 30 meters from each other, but actual distances varied from 15 to 35 m to avoid 
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edge effects associated with cut blocks and difficulties deploying loggers in rocky forest soils 

(see locations in orange on Figure 3.1). All global positioning system (GPS) locations and 

elevations in this study, including datalogger locations, were recorded with a Leica GS 14 system 

(Leica Geosystems). At each datalogger, I collected soil cores using a push soil sample probe. 

The volume of soil samples was variable because of large clasts. I classified samples using 

standard soil classification of percent silt, clay, and sand (ASTM Committee D-18 on Soil and 

Rock, 2017).  

I used high-accuracy and durable TOMST TMS-4 dataloggers to record temperature and 

soil moisture at 15-minute increments (Wild et al., 2019). These 30 cm dataloggers defined our 

later microclimate variables of interest, including three temperature sensors at -8 cm (soil), 0 cm 

(surface), and 15 cm (near-surface) relative to the ground surface. Thermistors had an accuracy 

of 0.5 °C between 0° and 70°C. Soil moisture was calculated over a 15 cm depth, where sensor 

accuracy was high ( ~ 0.1 %) but variable among soil types (Wild et al., 2019). I converted raw 

logger output to volumetric soil moisture (vol %) using calibration curves for each soil type from 

the manufacturer-provided "TMS3_Calibr User Soil Properties" software and soil type as 

classified from field samples (Wild et al., 2019).  

Removing erroneous microclimate data – Some microclimate dataloggers were disturbed 

or dislodged throughout the study, likely by grazing wildlife. Microclimate data were checked 

for incorrect or inaccurate measurements using field notes and data visualization. Data issues 

when dataloggers were dislodged or occasionally malfunctioned generally resulted in very high 

or low soil moisture counts or rapid changes in soil moisture. I removed these points by 

calculating the 7-day rolling means of soil moisture standard deviation (see Figure S1 for an 

example). Large changes in standard deviation between two days suggested errors in the 
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measurements, which I confirmed with visual data assessment. All microclimate measurements 

determined to be erroneous were removed from further analysis: 56,000 (4.3%) of the 1,283,819 

measurements were removed from later analyses (Figures S2 and S3). 

Means and mean daily ranges of microclimate variables – To align with past research on 

the importance of mean growing season climate on regeneration (Hansen and Turner, 2019; 

Hoecker et al., 2020), I took a simple mean of the microclimate variable over the growing season 

(May – October). To expand on prior research of the impact of forest canopy on the daily range 

of microclimate variables (Kermavnar et al., 2020), I took the mean of the daily range 

(maximum-minimum) over the growing season (May – October). I also calculated monthly 

means of the variables of interest for months with complete data (May – September) to address 

the impact of canopy on early and late season microclimates, periods within the growing season 

that influence regeneration (Davis et al., 2019; Carlson et al., 2020)  

3.2.3 LiDAR-derived aspect data  

The AFRF field site was flown in 2009 with a moderate density LiDAR coverage (for 

more details see Coops et al., 2009). From this LiDAR data, I derived a 1 m digital elevation 

model (DEM). Aspect () was extracted from the 2009 LiDAR DEM using the terrain raster 

function (Hijmans et al., 2015). Aspect was extracted from a 10 m radius around dataloggers 

(Table 1), based on prior findings of the most accurate measure of site-level aspect (Laamrani et 

al., 2014; Luo et al., 2019). I converted aspect to a metric of potential relative radiation using the 

following formula (Pierce et al., 2005):  

𝐴𝑠𝑝𝑒𝑐𝑡𝑐 =  − cos(45 − 𝐴)  𝑬𝒒. (𝟏) 

Where Aspectc  is converted from aspect (A), the DEM extracted aspect in degrees (). In 

this equation northeast facing slopes scale to -1 and southwest facing slopes scale to 1.  
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3.2.4 Remotely piloted aircraft data and canopy height modeling 

RPA data – I flew four RPA flights between June 28th and July 4th, 2020 to cover all 

datalogger locations, using a DJI Phantom 4 RTK (real-time kinetic) RPA. I used DJI Pro GS 

RTK software (DJI GS RTK App, 2020) to plan flights that covered the study area and followed 

LiDAR DEM-derived elevations. Flight height depended on a field assessment of safe distance 

from treetops and ranged from 70 - 80 m above ground. Details of the RPA, camera, and flight 

planning are included in Table S1. In each flight area, I established and geolocated a minimum of 

5 and a maximum of 12 ground control points.  

3D Point clouds and terrain-corrected orthophotos for each flight area were created from 

image tie-points and RTK GPS locations recorded by the RPA via Digital Aerial 

Photogrammetry (DAP, Goodbody et al., 2019). DAP uses image overlap and knowledge of 

camera locations to align images and then model the geometric relationships of objects. Before 

image alignment, I removed poor quality images (< 0.7 in image quality as estimated by blur in 

images) or images with high root mean square error (RMSE) in GPS locations (RMSE > 2.0 m). 

I aligned images using the RTK GPS positions from the aircraft (RTK photo alignment, Table 

S2). I then loaded ground control points and marked their locations on images within Agisoft 

Metashape software (Agisoft, 2018), realigning images with these additional locations (Ground 

Control Point photo alignment, Table S2). I removed ground control points with an RMSE > 

2.0 m. The final accuracy of alignment ranged from 0.001 to 0.21 m (Table S2). To produce 

point clouds, I set parameters for a "high" point density with "mild" depth filtering. For each 

flight area, I used point clouds to produce a final georectified orthophoto (Figure 3.1). Point 

cloud density of all flight areas was reduced to 3500 points/m2 for enhanced processing speed. 

Canopy height modeling—Before building any digital surface models from point clouds, I 

aligned DAP point clouds to LiDAR point clouds using iterative closest point alignment (ICP) 
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from CloudCompare 2.6.3 open-source software (CloudCompare, 2020). ICP LiDAR-DAP 

alignment ranged from 0.9 to 1.86 m (Table S2). We normalized the heights of DAP point clouds 

to the 2009 LiDAR DEM with the lidR lasnormalize function (Roussel et al., 2021). Normalized 

DAP point clouds were then processed to create canopy height models in raster format with a 0.1 

m spatial resolution (Figure S4). I verified canopy heights with field measurements from fifteen 

6.5 m radius canopy verification plots randomly distributed in the study area (Figure 3.1, see 

Appendix C for a full description of the process and results). For microclimate modeling, I 

extracted the mean canopy height at five different radii (2, 5, 10, 15, 20) from the canopy height 

raster using the R raster extract function (Hijmans et al., 2015). Canopy height models were built 

using lidR (Roussel et al., 2020). 
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Figure 3.1 Orthophotos for four flight areas. Datalogger locations are noted in orange, and forest canopy 

verification plots in blue. Numbers correspond to forest plots. There are 9 dataloggers per forest plot. The 

inset map shows the 2009 LiDAR DEM and the 2017 fire boundary.   
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3.2.5 Analyses  

3.2.5.1 Research question 1: Linear models to assess the scale of spatial buffer for 

canopy influence 

 To address the question of what scale of spatial buffer produces the strongest linear 

correlation between canopy height and the microclimate variables of interest, I fit simple linear 

models of the growing season mean microclimate variables as a function of canopy height, 

extracted at each canopy height radius (2, 5, 10, 15, or 20 m). I compared the coefficient of 

determination for each microclimate variable among the five radii. For each model, I checked 

assumptions of normality and equal variance using model residuals. Soil moisture models 

violated modeling assumptions, and thus I log-transformed soil moisture data. All subsequent 

analyses used the radius of canopy height that resulted in the highest model R
2
.  

3.2.5.2 Research question 2: Mixed linear models to determine the impact of canopy 

height on microclimate variables of interest 

 Growing season means and mean daily ranges – I fit models to the growing season 

means and the mean daily ranges of the growing season for each microclimate variable of 

interest as a function of canopy height, elevation, and aspect (see Table 3.1). I included aspect 

and elevation in the models to control for their known influence on microclimate (Hoecker et al., 

2020; Jucker et al., 2018a). I used the Pearson correlation coefficient to check for correlation in 

explanatory variables before building models. All Pearson correlation coefficients were below 

0.50 (Table S3), an accepted thresholds for correlation in linear modeling (Dormann et al., 

2013). I included forest plot as a random effect in the models to account for the lack of spatial 

independence among dataloggers within the same forest plot. I ensured all models met the linear 

model assumptions of normality and equal variance. For mean growing season soil moisture, and 
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mean daily range temperature models, values were log-transformed to achieve normally 

distributed errors. I first fit a full model:  

𝑣𝑖𝑗 =  𝛽0 + 𝛽1 × 𝐷𝐴𝑃 𝐶𝑎𝑛𝑜𝑝𝑦 𝐻𝑒𝑖𝑔ℎ𝑡𝑖𝑗 + 𝛽2 × 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑖𝑗 + 𝛽3 × 𝐴𝑠𝑝𝑒𝑐𝑡𝑖𝑗 +  𝛾𝑗  

+  𝜀𝑖𝑗 𝑬𝒒. (𝟐)  

where vij is the microclimate variable of interest (see Table 3.1 for list) at the datalogger i in plot 

j. 1-3 are the slope parameters associated with the explanatory variables, including canopy 

height for the radius with the highest correlation coefficient, LiDAR-derived aspect, and field-

measured elevation. 𝛾 was random forest plot effect (j = 1-10 for each plot). I used likelihood 

ratio tests to identify optimal models.  

Canopy height as a robust overstory structure metric – As microclimate dynamics are 

impacted by both canopy cover (Ashcroft and Gollan, 2012) and canopy height (Jucker et al., 

2018b) I compared models built using DAP measurements of canopy cover and canopy height. 

Canopy cover and height were strongly correlated (spearman correlation > 0.8 for all radii of 

canopy height, Figure S8), and fitting models with canopy cover produced no differences in 

model effects nor parsimony. RPA measurements of canopy height are generally more accurate 

than canopy cover estimates (Dietmaier et al., 2019). Thus, I presented models built using 

canopy height data. However, based on the correlation between cover and height estimates, I 

argue canopy height was a robust metric of overstory structure for the field site’s fire-disturbed 

environment.   

 Monthly means – To understand how the relationships between canopy and microclimate 

may vary across months, I built separate models for each monthly mean of soil, surface, and 

near-surface temperature and soil moisture. To allow for comparison across models of different 

months, I fit the full model (Eq 2.) and did not reduce further. I compared the direction and 
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magnitude of the slope parameter estimate associated with canopy height in each month. When 

95% confidence intervals of the estimated parameters do not overlap, I consider the parameters 

to be statistically different across months (Dai et al., 2021; Di Stefano, 2004; Scheiner and 

Gurevitch, 2001). I also reported the adjusted conditional R2 (Nakagawa and Schielzeth, 2013) 

for mixed effects models calculated with the MuMin package (Barton and Barton, 2015) to show 

differences in models’ goodness of fit month-to-month. I fit the mixed-linear models using the 

lme4 package (Bates et al., 2015). All processing was completed in R (R Core Team, 2019).   
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3.3 Results  

3.3.1.1 Means (growing season and monthly) and mean daily ranges of microclimate 

variables  

Growing season means and mean daily ranges – soil temperatures showed less daily 

variability and were, on average, cooler than surface and near-surface temperatures (Table 3.1). 

Surface temperatures were the warmest for the growing season, but soil temperatures had the 

highest maximum growing season temperatures (Table 3.1). Soil moisture had a high mean vol 

% content of 51 % and small-scale daily variability ( 0 - 1 vol %). There was a strong drying 

trend in soil over the course of the growing season (Figure 3.2 D).  

Monthly means – Microclimate variables followed expected seasonal trends with peak 

temperatures in mid-summer and seasonal soil drying (Figure 3.2). Soil temperatures were cooler 

than near-surface and surface temperatures early in the growing season, which is also when soil 

moisture was high (Figure 3.2). Soil temperatures were the most variable across dataloggers, but 

variability decreased later in the growing season. Mean surface and near-surface temperatures 

were about the same in both July and August. Soils were driest in August, and soil moisture 

increased in both September and October (Figure 3.2).   
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Table 3.1 Summary statistics of growing season microclimate data and explanatory variables: canopy height, 

elevation, and aspect. Mean growing season values are the mean for the growing season. The mean growing 

season range is the mean of the daily range in microclimate variables. Aspect is presented in degrees, but 

models used a converted aspect (Eq 1). 

   Minimum Mean Maximum 

Microclimate 

variables of 

interest  – 

Growing 

Season  

 

Mean  
Soil (C) 8.7  12.4 15.4 

Surface (C) 9.7  12.8 15.1 

Near-Surface (C) 10.0  12.6 15.0 

Soil Moisture (vol %) 30 50 80 

Mean 

Daily 

Range  

Soil (C) 1.2 3.19 7.56 

Surface (C) 5.1 11.3 19.1 

Near-Surface (C) 8.2 13.3 19.9 

 

Soil Moisture (vol %) 0 0 

 

1 

Explanatory 

Variables  

 DAP Canopy Height (m) 2.0 12.9 42.7 

Elevation (m) 921 1029 1157 

Aspect (degree) 38 219 314 
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Figure 3.2 (A-C) Mean monthly temperatures and (D) weekly means of soil moisture for dataloggers. The 

dark line is the mean soil moisture for the AFRF field site, and the grey band is the standard deviation. Note: 

the high value in mean soil moisture is a datalogger in a wet location where equipment was removed early in 

the season. The equipment was replaced in July.  
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3.3.2 Research question (1): Linear correlation between canopy height and mean 

temperature and soil moisture differs as a function of spatial buffer 

  The coefficient of determination (R2) between mean growing season temperature, soil 

moisture, and canopy height changed as a function of the spatial buffer used to summarize 

canopy height (Figure 3.3). As the area used to summarize canopy height increased, models 

explained more variability in mean growing season temperature, but less variability in mean 

growing season soil moisture. Canopy height summarized at 15 m best explained soil and near-

surface temperatures and canopy height summarized at 20 m best explained surface 

temperatures. Differences in coefficient of variation between 15 and 20 m were small (difference 

between 15 and 20 m R2 for surface temperature = 0.002); to stay consistent, all subsequent 

analyses of temperature used canopy height summarized by a 15 m radius. 

The coefficient of variation between canopy height and mean growing season soil 

moisture was much lower than for mean growing season soil and surface temperatures (Figure 

3.3, all R
2
 ≤ 0.3). The 2 m radius had the highest model R2 between growing season soil 

moisture and canopy height – thus, I used a 2 m radius for all models of soil moisture (R2 = 

0.07).  
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Figure 3.3 Model R2 for microclimate growing season means with canopy height summarized with buffers of 

2, 5, 10, 15, and 20 m radii. Points are colored by model type: soil – dark red, surface – red, near-surface – 

light red, Soil Moisture – blue. Note: these models do not include aspect and elevation included in later 

modeling  
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3.3.3 Question 2a: Canopy height consistently explains growing season microclimate  

The best models for all growing season microclimate models (mean and daily range) 

include canopy height as an explanatory variable (Table 3.2). Mean growing season temperatures 

in the soil, at the surface, and near the surface decreased as a linear function of canopy height 

(Figure 3.4). Canopy height had the largest effect size in mean growing season soil temperature 

(Table 3.2). According to the model results, for every 10 m decrease in canopy height, mean 

growing season soil temperature increased 1.7 °C, compared to 1.4 ° and 0.9 °C for surface and 

near-surface temperatures, respectively.  

There was an overall weak negative relationship between mean growing season soil 

moisture and canopy height, which was not as strong as the temperature relationships (Figure 3.4 

and Table 3.2). In this study, a 10 m increase in canopy height was associated with a 9% decrease 

in mean growing season soil moisture. Some particularly tall canopies (> 15 m) had very low 

growing season soil moisture values (Figure 3.4). The two dataloggers with mean growing season 

soil temperatures less than ~10 °C were in wet locations (growing season soil moisture > 70 vol 

%) located in bogs or sphagnum moss.  

Models of daily ranges showed similar trends to mean growing season models, where the 

mean daily range in temperature decreased with increasing canopy height. In these models, except 

for near-surface temperatures, including aspect and elevation as explanatory variables did not 

improve model fit and instead, canopy height alone produced the optimal model (Table 3.2). The 

near-surface temperature was the only variable for which aspect was significant – temperatures 

increased for southerly aspects (Table 3.2). Mean daily ranges of soil temperature, like the results 

of mean growing season models, were most influenced by canopy height differences (Figure 3.3). 

A difference of 10 m in canopy height was associated with a 1.5 °C change in the range of daily 

soil temperature. I observed daily oscillations in soil moisture across dataloggers (Table 3.1). 
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However, these daily ranges were not explained by full or reduced models using microclimate 

drivers (Table 3.2, Figure 3.4). 

Table 3.2 Optimal models for mean growing season microclimate variables. The full model included canopy 

height, elevation, aspect, and plot as a random effect (Eq. 2). *Notes that the microclimate variable was log-

transformed to meet model assumptions. Std. Dev is the standard deviation  

 
  Canopy Height 

(m) 

Elevation (m)  Aspect 

(converted) 

Random plot effect 

(units match response 

variable) 

Adjusted 

R2 

 
Model   β 1 Std. 

Dev 
β 2 Std. 

Dev 
β  3 Std. 

Dev 

Range of 𝛾 Std. 

Dev 

 

Mean Soil  -0.202 0.029 -0.007 0.002   -0.163 0.319 0.150 0.42 

Surface -0.133 0.024 -0.006 0.002   -0.176 0.423 0.193 0.38 

Near-

Surface 

-0.096 0.026 -0.005 0.002   -0.700 0.913 0.451 0.42 

*Soil 

Moisture 

-0.009 0.003         -0.031 0.034 0.019 0.12 

Daily 

Range 

*Soil -0.047 0.009 
    

-0.052  0.035 0.029 0.27 

*Surface -0.029 0.006 
    

-0.090 0.078 0.062 0.35 

*Near-

Surface 

-0.020 0.005 
  

0.009 0.023 -0.166 0.080 0.072 0.42 

Soil 

Moisture  

0.000 0.000     -0.002 0.003 0.003 0.11 
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Figure 3.4 Mean growing season temperature and mean daily range as a function of canopy height. 

Temperatures for soil, surface, and near-surface are shown in different panels. Points are colored by forest 

plot. Lines show predictions of mixed effects models. *Notes that the microclimate variable was log-

transformed to meet model assumptions (including mean growing season soil moisture).    

* 

* 

* 

* 
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3.3.4 Question 2b: The impact of canopy height on monthly mean microclimate differs 

throughout the season 

Models indicated differences in the relationship between canopy height and temperature 

response over the course of the growing season. Overall, explanatory power, based on the 

adjusted conditional R2 of the monthly model (Eq 2. both fixed and random effects), was highest 

in the early growing season and decreased mid-summer (July, August - Figure 3.5e). The 

negative relationship between canopy height and mean monthly temperatures differed in 

magnitude across months and was greatest in July (Figure 3.5). However, the confidence interval 

for the effect size of canopy height was also greatest in this month (Figure 3.5 a - c). The impact 

of canopy height was weaker at the end of the growing season compared to the beginning (Figure 

3.5).  

Models of mean monthly soil moisture support canopy height did not influence soil 

moisture in the early season, but there was a negative correlation between canopy height and soil 

moisture in July, August, and September (Figure 3.5). The explanatory power of mean monthly 

soil moisture models was lower than temperature models; all adjusted R2 for soil moisture were 

below 0.15, and adjusted R2 
was largest in the late summer (Figure 3.5).  



 

 

43 

 
Figure 3.5 (A-D) Confidence interval and model estimate for canopy height to mean monthly microclimate 

variables (Near-Surface, Soil, Surface, and Soil Moisture). Points show model estimates for models fit to data 

by month. Bars are the 95% confidence intervals for the parameter estimate. Note: vertical scales differ by 

the panel. (E) Adjusted model R2 for each monthly model. Color and shape align with microclimate variable.  

3.4 Discussion 

This study outlines a simple approach for remote-sensing-based microclimate modeling 

in fire-disturbed environments. Across a gradient of post-burn forest RPA based measurements 

of forest canopy height, which were strongly correlated to canopy cover, significantly explained 

temperature and soil moisture dynamics at the field site. Models explaining monthly 

microclimate and the importance of tree canopy have similar explanatory power to prior research 

studies using remote sensing (Greiser et al., 2018; Thom et al., 2020). Important for 

microclimate modelers – I found that the scale of spatial buffer necessary for microclimate 

modeling depends on the microclimate variable measured. Further, I found that the impact of 
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) 

C D 
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canopy height on temperature changed throughout the growing season. However, my high spatial 

resolution dataset poorly explained soil moisture, suggesting that control of soil moisture is 

influenced by variables difficult to capture with the remote sensing tools I utilized. Variables that 

could improve moisture modeling include understory vegetation, sub-surface topography, and 

litter dynamics, to name a few (Ma et al., 2010). In contrast to prior research, canopy height was 

more influential on mean growing season soil temperature than surface and near-surface 

temperatures (Ashcroft and Gollan, 2013). My study highlights the importance of including tree 

canopy in post-disturbance microclimate modeling – as differences in post-burn tree canopy 

were associated with microclimate differences known to impact regeneration (Hansen and 

Turner, 2019) 

3.4.1 Tree canopy height explains microclimate temperatures over other known 

microclimate drivers  

Canopy height significantly explained temperature over other known microclimate 

drivers like aspect and elevation. This finding is in contrast to past research where elevation is 

the most significant explanatory variable of microclimate temperatures (Dietz et al., 2020). 

However, the explanatory power of microclimate drivers is seasonally variable. The influence of 

elevation can be less in the growing season compared to winter (Greiser et al., 2018). Similarly, 

the impact of forest structure on microclimate is known to vary seasonally (Frey et al., 2016). 

Continuous microclimate measurements across seasons and years are needed to clarify the 

seasonally variable impacts of microclimate drivers like topography and tree canopy 

(Lembrechts et al., 2021a). 

I observed that the effect size of tree canopy height was nearly double in magnitude in 

July, which is consistent with other studies that support canopy buffering is greatest mid-summer 

(Greiser et al., 2018; Kovács et al., 2017). A proposed hypothesis for mid-summer buffering is 
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that vegetation filters the same proportion, but an overall larger amount of solar radiation in high 

summer (Greiser et al., 2018). Ignoring the influence of topography and vegetation, summer 

insolation is greatest at these high latitudes (Geiger, 1950). Fire in boreal ecosystems is predicted 

to rapidly increase in frequency and area with global climate change (Hope et al., 2016). In 

response to this, I argue further research on mid-summer buffering within disturbed canopies at 

high latitudes is necessary as they may have unique microclimate dynamics due to strong 

summer insolation near the solstice.  

Canopy height was more important for explaining soil temperatures than both near-

surface and surface temperatures. Prior research has shown that near-surface temperatures are 

more sensitive to canopy cover than soil temperatures (Ashcroft and Gollan, 2013). Models built 

to improve soil temperature estimates should consider my study's differing results (Fuka et al., 

2016; Lembrechts et al., 2020). The differing response between my findings and prior work 

could be due to the depth of soil temperature measurements. TMS-4 soil temperature sensors are 

at - 8 cm, where many soil temperature datasets are less than 5 cm below the surface (Ashcroft 

and Gollan, 2013; Lembrechts et al., 2019). In this case, the presence of a tree canopy may 

consistently moderate temperatures with increased depth. Soil temperatures near the surface 

could have different thermal dynamics due to increased soil organic content or exposure to near-

surface air circulation (Oke, 2002). Expansion of research on the potential differences in the 

effect of tree canopy on soil temperature at different soil depths is essential for accurate 

microclimate modeling (Lembrechts et al., 2020).  

Overall, my soil moisture findings add to the existing literature on the extensive 

variability in soil moisture response to a disturbed tree canopy (Goeking and Tarboton, 2020). I 

found a negative relationship between tree canopy height and soil moisture, but many studies in 

disturbed landscapes suggest there is a positive relationship (Goeking and Tarboton, 2020). This 
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finding underscores the importance of in-situ measurements, specifically in the context of 

disturbance in British Columbia (Talucci et al., 2019). In British Columbia, research suggests the 

soil moisture content is a better predictor of forest succession than regional climate conditions 

(Gendreau‐Berthiaume et al., 2018). However, moisture conditions in fire-affected British 

Columbia forests are highly variable and poorly explained by the downscaled estimates of 

moisture (Talucci et al., 2019). I echo the calls of previous researchers for increased soil 

moisture monitoring in recently and non-recently disturbed forests across British Columbia 

(Haughian and Burton, 2018). These measurements will improve our capacity to build gridded 

microclimate maps accurate to the condition and type of forest (Maclean, 2020). 

3.4.2 The impact of tree canopy on microclimate variables in the context of successful 

regeneration  

The observed differences in soil and near-surface temperatures that correlated with 

canopy height have important implications for plant succession and regeneration success 

(Pincebourde and Salle, 2020). In particular, soil temperature, which I found to be the most 

impacted by changes in canopy height, is known to influence regeneration in the sub-alpine 

forests that encompass much of western North America's burned area (Hansen and Turner, 

2019). In the context of my study, a 1.5 °C increase in soil temperature corresponded to a 10 m 

decrease in canopy height, which is approximately the mean difference in canopy heights of the 

high burn severity forest (10 and 9) and lower burn severity (1 and 2) plots. Prior to the fire, 

most forest plots had mean canopy heights within 4 m of each other, so I assume canopy height 

differences are predominantly a result of the fire. In Yellowstone's sub-alpine forests, as little as 

a 1 °C difference in growing season soil temperature resulted in a 60% decrease in P. 

menziezii (douglas-fir) and a 24% decrease in P. contorta (lodgepole pine) survival (Hansen and 

Turner, 2019) 
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I found that soils were drier under taller canopies, and this relationship was stronger in 

the late growing season. The overall change was small, but slight shifts in soil moisture (> 2 % 

vol) can determine successful forest regeneration (Davis et al., 2019a). Successful regeneration is 

related to spring soil moisture and the driest conditions the site experiences (Lazarus et al., 

2018). Sites beneath tall canopies with high canopy cover were drier in the late summer, 

suggesting that seedling regeneration under tall and less fire impacted forest canopies could be 

both moisture and light-limited (Legendre-Fixx et al., 2018).  

Soil moisture in part moderates soil temperature as moisture content determines latent 

heat flux (Ashcroft and Gollan, 2013; Oke, 2002). Theoretically, locations with greater soil 

moisture should also be cooler because of the heat capacity of water (Geiger, 1950). However, 

my study found that drier and cooler locations were beneath tall canopies. This generally 

contradicts studies in other disturbed environments, where areas without forest canopies are 

generally both warmer and drier in the growing season (Braziunas et al., 2018; Davis et al., 

2019a). However, my models generally poorly described soil moisture, supporting the need for 

continued in-situ measurements of soil moisture to clarify soil moisture characteristics in 

disturbed canopies (Goeking and Tarbonton, 2020; Zellweger et al. 2019). 

3.4.3 Scale of spatial buffer necessary for microclimate modeling differs by microclimate 

variable, temperature, or soil moisture  

My study found high resolution forest structure data predicted soil moisture better when 

summarized at finer scales. These results confirm the importance of the immediately surrounding 

tree canopy available solar radiation and ecohydrological dynamics (Oke, 2002). Results further 

suggest that soil moisture modeling requires metrics not easily measured with accessible and 

inexpensive remote-sensing technology. My findings are important given the overall lack of 

research connecting soil moisture dynamics to microclimate drivers at different spatial 
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resolutions (Lenoir et al., 2017). The overall lack of fit in soil moisture models confirms that soil 

moisture dynamics are complex, and the accessible and affordable remote sensing metrics I use 

in the present study do not capture important metrics like understory vegetation, litter, and sub-

surface topography (Haughian and Burton, 2018; Kovács et al., 2017).  

Contrary to prior research, my results suggest multi-meter spatial resolutions of tree 

canopy may better explain microclimate temperatures (Lenoir et al., 2017; Zellweger et al., 

2019). Mechanistically, temperatures in a forest canopy may be better-modeled by metrics 

summarized at multi-meter scales because the temperature at microclimate level is controlled 

mainly by total incoming solar radiation, which is altered by leaf area index, a correlate of 

canopy height, complexity, and distance (Hardwick et al., 2015), slope and aspect (Geiger, 

1950). Most studies on climate modeling accuracy use climate datasets interpolated to smaller 

scales and compare to in-situ measurements (Lembrechts et al., 2019; Talucci et al., 2019). My 

approach instead defines how the explanatory power of canopy changes as a function of 

increasing spatial buffer. Future research should capitalize on low-cost RPA measurements, and 

gridded climate estimates to clarify what spatial resolution of tree canopy efficiently improves 

microclimate modeling. 

3.4.4 Improving microclimate modeling in disturbed environments using remote sensing  

Importantly, the temperature models of this study built purely from remote sensing 

metrics had similar goodness-of-fit metrics to monthly microclimate models built using a 

combination of field and remote-sensing data (Greiser et al., 2018). Further, the observed 

coefficients of determination between canopy height and mean growing season temperatures 

align with prior work, where tree canopy explains about 20 % of the difference between open-air 

and below tree canopy temperatures (Thom et al., 2020). In the context of this prior research, my 
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findings suggest that remote-sensing metrics can be utilized to improve our microclimate 

modeling capacity (Zellweger et al., 2019).  

I observed variability in model explanatory power across months of the growing season. 

Early and late season monthly models of temperature had higher explanatory power compared to 

growing season models. The lower explanatory power for growing season models and models of 

July and August could be a result of differences in the near-surface environment in these months 

– particularly increased dominance of understory cover (Prévosto et al., 2020). From mid-June to 

late August fireweed (Epilobium angustifolium), a tall (0.5 – 1.5 m) perennial plant, dominates 

burned environments at AFRF. Canopy height models did not incorporate any vegetation below 

2 m, thus the impact of fireweed or any other understory cover would not be captured. Mid-

summer understory dominance could explain the decreased goodness-of-fit mid-summer and the 

overall lower model fit for growing season models.  

I found differences in canopy structure (a difference of ~ 5 m in canopy height) resulting 

from a fire disturbance are associated with large changes in microclimate conditions. These 

relatively small differences in canopy height that correspond to large changes in microclimate 

are a globally consistent trend (Baker et al., 2014; Davis et al., 2019b; Kermavnar et al., 2020) 

and such canopy changes can impair successful post-burn establishment in western North 

American forests. Forest managers should consider the impact of a minor disturbance or small 

differences in canopy height when modeling ecosystem processes that are influenced by 

microclimate conditions (McDowell et al., 2020; Park Williams et al., 2013).  
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Chapter 4: Conclusions 

4.1 Overarching goal of research: relationship between disturbed canopy and 

microclimate 

 The overarching goal of this research study was to investigate the relationship between 

tree canopy and microclimate in a burned forest. A literature review defined the need and the 

scope for this work by outlining microclimate dynamics, with a focus on the impact of forest 

canopy on microclimate and the importance of spatial resolution for improving microclimate 

modeling.  

The literature review identified a need to clarify what scale of spatial buffer is necessary 

for incorporating microclimate drivers. I considered defining this scale of buffer a precursor to 

later modeling. Following this identification, the first analysis in Chapter 3 determined the buffer 

of canopy height with the strongest correlation to microclimate measurements for use in later 

models. Soil moisture models improved accuracy when summarizing canopy height at fine 

scales, but coefficients of determination were overall low for these models. Conversely, canopy 

height summarized with buffer at a larger scale (15m) had a higher correlation with mean 

growing season temperature. The use of larger scales for temperature modeling is a key outcome 

of this work as lower resolution data decreases the processing times and cost associated with 

deriving metrics used for microclimate modeling (Zellweger et al., 2019). 

 After identifying the scale of spatial buffer to describe the influence of canopy height, the 

second analysis in Chapter 3 characterized the relationship between canopy height and 

microclimate during the whole growing season and across months. Growing season and monthly 

models used canopy height summarized with a larger buffer for temperatures and a smaller 

buffer for soil moisture. There was strong support for the impact of canopy height on growing 

season and monthly mean temperatures. Taller canopies, which also had more canopy cover, 
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were associated with cooler and less variable microclimate temperatures than short canopies. The 

estimate of the slope coefficient associated with canopy height for soil temperatures was double 

in magnitude compared to surface measurements, supporting that the presence of a healthy tree 

canopy strongly cooled soil temperatures. Additionally, the impact of canopy height differed 

throughout the months of the growing season, suggesting that adjusted gridded climate models 

should integrate microclimate correction factors that fluctuate throughout seasons. Soil moisture 

models suggested a weak negative relationship between taller canopies and drier locations.  

 Overall, my study shows that small differences in disturbed forest canopies result in large 

changes in microclimate variables, particularly soil temperatures, at both growing season and 

monthly scales. In particular, in contrast to past research, I found soil temperature is strongly 

affected by differences in the canopy (Ashcroft and Gollan, 2013) – which is known to impact 

seedling regeneration (Hansen and Turner, 2019). I argue that climate conditions differ in a post-

disturbance forest mainly due to relatively small differences (~ 5 m ) in canopy height, which is 

correlated to canopy cover in this environment. To expedite future microclimate research, I 

define the spatial buffer necessary for incorporating the impact of canopy on soil moisture and 

temperature variables. Canopy height better explained soil moisture with small or fine buffers 

and temperature with larger buffers. Importantly, I found microclimate conditions varied widely 

in a relatively small area with similar pre-fire habitats and that microclimate conditions were 

correlated to metrics of canopy structure. Thus, a fire disturbance can result in changes in the 

overall climate and buffering capacity of near-ground environments that tree seedlings inhabit. 

4.2 Importance of research and key findings  

This research project was possible due to a rapid expansion of new technology to 

measure canopy and topography and collect in-situ measurements of microclimate. Such 

technological development allows us to accurately model microclimate dynamics in many 
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different environments at successional stages. Models of microclimate dynamics can assist the 

development of correction factors for known microclimate drivers, including topography and 

canopy, that are then input into gridded microclimate models (Zellweger et al., 2019). Prior work 

argues that sub-meter resolution data are necessary for developing correction factors for known 

microclimate drivers (Lenoir et al., 2017). However, these sub-meter datasets have a high time 

and cost intensity (Zellweger et al., 2019).  

A key finding of the current work is that the impact of a forest canopy on microclimate 

temperature may be better modeled with moderate spatial resolution (> 15 m) forest structure 

metrics. This has relevance for addressing a need for global maps of microclimate conditions (De 

Frenne et al., 2021). The spatial resolutions with the strongest correlation to growing season 

temperature –15 meters – suggest microclimate modelers could rely on space-based sensors for 

measurements of global forest structure, as these instruments can have resolutions as fine as 25 

m (Qi et al., 2019). In particular, the Global Ecosystem Dynamics Investigation (GEDI) is an 

openly available space-based LiDAR product that produces forest structure metrics including 

canopy height and LAI at a 25 m resolution. Given differences in correlation between 15 and 20 

m in the present study were small, space-based metrics of canopy could be integrated with work 

to produce accurate gridded microclimate datasets (Qi et al., 2019). 

Another key outcome of this work is soil moisture measurements were not strongly 

impacted by differences in canopy height nor well explained by high-resolution metrics of 

elevation, aspect, and tree canopy. Mixed effect models, that included elevation and aspect, 

supported that the variation in soil moisture as explained by all remote-sensing-based metrics 

was small. This finding contrasts past work in Tundra regions, where an elevation range as small 

as 200 m was a strong determinant of soil moisture, but these Tundra regions are less influenced 

by transpiration and canopy interception (Kemppinen et al., 2018). In the fire disturbed forests of 
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western North America, research supports soil moisture dynamics are not well described by 

canopy loss (Goeking and Tarboton, 2020), suggesting a need for further research on the drivers 

of soil moisture across different ecosystems. Differences among locations like canopy species 

composition, shrub-layers, and bedrock topography influence temporal and spatial soil moisture 

measurements, because they impact evapotranspiration and rates of water flow (Dingman, 2015). 

 Expanding our capacity to build microclimate maps across broad spatial scales includes 

differentiating between disturbed and non-disturbed forests. This study showed that areas with 

lower canopy heights, which correlated to overall canopy condition, had different microclimates 

compared to taller canopies, particularly for soil temperature. A recent meta-analysis on the 

difference between soil and air temperatures supports a significant deviance between air and soil 

temperature, but the direction of deviance is variable by biome type, where cool and wet biomes 

have warmer soils, and hot and dry biomes are opposite with slightly cooler soils (Lembrechts et 

al., 2021b). In the present study, differences in canopy height were one of the strongest 

determinants of soil temperatures. Thus, differences in canopy height that are a result of a fire 

could change the buffering capacity of these disturbed forests. At this northern latitude, this 

would switch the direction of soil temperature buffering from warmer mean annual soil 

temperature to cooler annual soil temperatures (Greiser et al., 2018).  

4.3 Limitations of research  

4.3.1 Assumptions of the study design 

This project sampled within the growing season at AFRF, but many studies support that 

the patterns of canopy buffering differs as a function of season, where locations beneath forest 

canopies are generally cooler in summer and warmer in winter (Ashcroft and Gollan, 2013; 

Greiser et al., 2018; von Arx et al., 2012). The study is limited in that it can only make inferences 

on microclimate dynamics relevant to the AFRF growing season. However, studies of 
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regeneration support that the growing season microclimates influence successful regeneration 

(Hansen and Turner, 2019; North et al., 2019; Stevens‐Rumann et al., 2018). Thus, my findings 

of growing season microclimate are applicable when considering forest regeneration.  

The study design is also limited because it assumes differences in microclimate explained 

by canopy height are not a result of harvest history or forest type. In my site selection, I placed 

forest plots in wildlife tree patches, which are areas preserved from logging, and similar pre-fire 

environments as defined by the site descriptions of AFRF (Klinka et al., 2004). However, the 

realities of working in harvested forests resulted in likely edge-effects, which some research 

suggests extend as far as 100 m into the forest (Klinka et al., 2004). Further, while plots were 

limited to similar pre-fire environments, I did not measure pre-fire stand development. Prior 

estimates of pre-fire tree height was similar for most plots, with the exception of one plot in an 

older forest (Klinka et al., 2004). Importantly, I acknowledge that the observed differences in 

microclimate could also promote forest growth, exacerbating the observed differences in canopy 

height. My study is a snapshot of the impact of forest structure that supports canopy height is 

correlated with differences in microclimate.  

 I acknowledge that the focus on tree canopy height limits the conclusions drawn from this 

work. However, I found no difference in the overall model fit using canopy cover as an 

explanatory variable. This is likely because my measurements of canopy height were strongly 

correlated with metrics of canopy cover (Figure S8). I argue canopy height can improve 

microclimate modeling because prior research has also found that it a strong predictor of 

microclimate (Jucker et al., 2018), and across the gradient of burned forest plots, canopy height 

correlates to measurements of canopy cover, another microclimate drivers (Figure S8). 

Importantly, this study does not address the impact of understory vegetation cover or structure, 

which is important to consider for microclimate modeling (Prévosto et al., 2020) 
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4.3.2 Measurement error  

 The structure of TMS-4 sensors may have introduced inaccuracies in my research. 

Although field-based studies support that the TMS-4 sensors are accurate within 0.5 °C (Wild et 

al., 2019), ground surface reflectance onto the solar shields can increase temperature 

measurements (Ashcroft and Gollan, 2012). Ground reflectance would increase temperatures 

recorded for the near-surface and surface sensors in areas that receive intense solar radiation. It 

could also result in raised soil temperatures and increased evapotranspiration (Oke, 2002). Errors 

in these measurements are a broader problem of microclimate measurements (Maclean et al., 

2021), and consideration of these errors, while important, is generally out-of-scope for the 

current work. Additionally, as these errors are present across all global studies (De Frenne et al., 

2019), our results can be considered consistent with this broader global context.  

I must also acknowledge inaccuracies in my remote-sensing metrics, namely that the 

canopy height model overestimated low canopy height values (Appendix C). Overestimation is 

likely due to the inclusion of dead and sub-canopy trees that are difficult to capture in DAP 

models (Graham, 2019). The DAP model captured the tallest tree height, but as canopy height 

was averaged over a 6.5 radius, the lack of a tree crown in burned areas skewed the DAP model 

to overpredict tree height. Many DAP pixels had low height values because burned trees had no 

crown. When both locations in severely burnt crowns and the one location with a dominance of 

sub-canopy trees were removed, the model fit was improved (R2 = 0.82) and fit a one-to-one line 

(slope = 1.0 p << 0.05, intercept = 0.1 p > 0.5). In this case, discrepancies between the DAP and 

field heights are mostly a result of the tree form (Vauhkonen et al., 2012, Figure S7). While this 

is an inaccuracy, my DAP-derived heights may better represent the ultimate impact on 

microclimate, because they better describe the form of tree crowns and are strongly correlated 

with estimates of cover (Vauhkonen et al., 2012, Figure S8).   
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4.4 Future work  

4.4.1 Analyses utilizing the thesis dataset 

The dataset produced in companion to this thesis provides a high density of temperature 

and moisture measurements per unit area. In the global “soil temperature database,” there are 

currently ten other locations with similar densities of soil temperature measurements per unit 

area (Lembrechts et al., 2021b). As a result, this dataset offers many future research possibilities. 

Perhaps most of interest to microclimate modelers is how my field site's microclimate dynamics 

compare to downscaled climate models. In this case, gridded climate datasets could be 

downscaled using spatial data (canopy and topography metrics) and compared to in-situ 

measurements. Lembrechts et al. (2019) completed a similar study that compared in-situ to four 

gridded climate models in northern Scandinavia. They found in-situ measurements consistently 

outperformed downscaled gridded climate models, but there was variable measurement accuracy 

gained by downscaling a dataset from 1 km to 30 m (Lembrechts et al., 2019).  

A recent review on microclimate supports a need to create accurate correction factors for 

canopy and topography to downscaled gridded climate models and improve alignment to in-situ 

measurements (De Frenne et al., 2021). Satellite-based remote sensing products like ICESat and 

GEDI can enhance the current dataset and expand future directions (Qi et al., 2019). For 

example, a comparison of model accuracy using RPA and space-borne estimates of canopy 

height or canopy cover would be a valuable investigation for methods to advance global 

microclimate modeling and downscaling climate measurements (De Frenne et al., 2021).  

In addition to the remote-sensing metrics, field data could also be investigated to model 

AFRF microclimate dynamics. This thesis worked principally with remote-sensing metrics, but 

this dataset also includes soil type, litter depth, understory vegetation data, and leaf area index 

data (Appendix D). In open landscapes, like those in high burn severity, understory vegetation 
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plays a large role in buffering from extreme temperatures and decreasing vapor pressure deficit 

(Prévosto et al., 2020). Expanding on the current work at monthly and growing-season timesteps, 

diurnal microclimate models could be built using a combination of field and remote-sensing data. 

Diurnal models could investigate the relative impact of different vegetation types, including the 

understory structure, litter depth, and tree canopy. Diurnal climate models are important for 

modeling fire ignition risk, and knowledge of the impact of vegetation could help inform 

successful fire risk mitigation (Costafreda-Aumedes et al., 2018). 

4.4.2 Expansion of microclimate research at a global scale  

To expand on the research on microclimate in disturbed forests globally, future work 

should measure microclimate in relation to forest canopy in all seasons and across years. This 

project is a snapshot of the impact of canopy height on microclimate during the growing season, 

but further research in different ecosystems is necessary to clarify the impact of canopy height. 

Studies in the southwestern United States support that tree canopy influences rates of snow-

deposition, which produces differing spring soil moisture (Harpold et al., 2014). Further, snow 

deposition is known to decouple or create entirely different surface and soil temperature 

dynamics (Oke, 2002). To accurately adjust gridded climate datasets, calibration and correction 

factors must be accurate to the system and the season, which requires research to expand beyond 

the growing season alone. It additionally requires the expansion of microclimate studies in 

diverse locales, particularly in disturbed environments, as these represent the locations most 

likely to have dramatic ecosystem shifts (McDowell et al., 2020). 
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Appendices 

Appendix A  RPA flights and 3D point cloud development 

Table S1 Details of equipment and flight planning for RPA image acquisition.  

Aircraft  

Max Flight Time  Approximately 30 mins 

Navigation RTK  

GPS Positional Accuracy Vert. +/0.1; Horizontal, +/- 

0.1 m 

Transmission Range 7 km  

Camera  

Sensor 1" CMOS 

ISO Range 100-3200 

Electronic Shutter Speed 1/8000 s 

FOV 84  

Aperture f/2.8 

Image Size  4864 x 3648  

Acquisition Parameters  

Altitude 70 m (AGL) 

Terrain Following 15 m (ALS) 

Image Overlap 90 % forward, 80% lateral 
 

Table S2 Point cloud accuracy for photo-alignment (RTK photo alignment), LiDAR ICP alignment and 

orthophoto rectification 

Flight Area  High  Middle  Low  Old Growth 

RTK Photo 

Alignment (m) 

0.21 0.19 0.0082 0.14 

# of Tie-Points 1,150,051 509,158 1,589,590 1,129,400 

LiDAR-Point 

Cloud ICP 

Alignment (m)  

1.83 1.86 1.58 0.90 

Canopy Height – 

Orthophoto 

Alignment (m) 

0.28 

 

2.26 0.97 0.70 
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Appendix B   Microclimate data cleaning  

B.1 Rolling mean standard deviation in soil temperature  

 
Figure S1 Example from datalogger 66 of the 7-day mean of soil temperature daily standard deviation used to 

clip data. A large increase in the 7-day mean supports the datalogger 66 was removed on day 204.  
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B.2 Microclimate data included in analyses  

 

Figure S2 Soil Moisture, soil and surface temperatures included in analyses. Plot ID is noted on the vertical 

axis, and lines are colored by forest plot. Data were removed based on known issues with the data (the logger 

was pulled out of the ground) or erroneous data (unusually high or low values).    
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Figure S3 Near-Surface temperatures included in analyses. Plot ID is noted on the vertical axis, and lines are 

colored by forest plot. Data were removed based on known issues with the data (the solar shield was 

removed) or the data were erroneous (unusually high or low values).  
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Appendix C  Canopy height models and verification  

C.1 Canopy height models 

 
Figure S4 Canopy height models for the field site. Each raster has a 10cm resolution, and the color scale is the 

same for all plots. Datalogger locations are noted in orange. Numbers are the plot locations.  
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C.2 Canopy verification plots 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure S5 Verification plots for canopy height models. Plots are labeled according to randomly assigned 

labels. Points are the distance from plot center. Tree height (m) is a gray scale of white to black and point size 

corresponds to diameter-at-breast-height (cm). 
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C.3 Accuracy of DAP model compared to field measured sites  

To verify my canopy height model, I randomly selected 15 6.5 m radius verification plots 

from the Alex Fraser Research Forest Field Site (Figure 3.1). Across all canopy verification 

plots, a total of 295 stems (live and dead) were measured with a range of 2 to 27 and an average 

of 18 stems per verification plot. We recorded tree height (m), diameter at breast height (cm), 

tree status (alive vs. dead), and crown class (dominant, co-dominant, intermediate, and 

suppressed). Tree height was recorded using a Nikon Forester 550 Hypsometer. To ensure 

accurate heights, we took the mean of three measurements of tree height from different positions. 

I used simple linear models to compare the mean verification plot height measured in the field to 

those produced by the RPA imagery. Models comparing DAP derived and field-measured 

canopy heights had strong alignment for both mean (R2 = 0.7) and max (R2 = 0.46) canopy 

height (Figure S11). DAP height measurements were significant predictors of field height 

measurements (p < 0.05 for maximum and mean height). DAP did not overestimate maximum 

height (p > 0.05 for model intercepts). However, DAP measurements overpredicted mean canopy 

height (p < 0.05, intercept = 6.61 m). I removed one verification plot from the model, which was 

dominated by sub-canopy trees. This decreased the overprediction of DAP heights by 1.3 m (p < 

0.05, intercept = 5.34).  

I acknowledge that the canopy height model overestimated low canopy height values. 

This is likely due to the inclusion of dead and sub-canopy trees that are difficult to capture in 

DAP modeling. Additionally, because we compare a raster of canopy height to field 

measurements of trees, the accuracy of the model varies as a function of tree form. In Figure 

S11, three plots with the lowest estimated DAP mean height were in areas that experienced a 

crown fire. The DAP raster captured the tallest tree height, but as we averaged over a 6.5 radius, 
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the lack of a tree crown skewed the DAP model to overpredicted tree height (many of the pixels 

had low height values because trees had no crown). When points in crown fire and the point with 

a dominance of sub-canopy trees were removed, the model fit was improved (R2 = 0.82) and fit a 

one-to-one line (model not depicted, slope = 1.0 p << 0.05, intercept = 0.1 p > 0.5). Thus, my 

DAP-derived heights may better represent the ultimate impact on microclimate because they 

better describe the form of tree crowns.  

 
Figure S6 Comparison of DAP derived and field measured maximum and mean verification plot heights. The 

dotted line in S11B is the model result including the outlier data point (the triangle).   

Outlier 

Model Type 

No Outliers 
W/ Outliers 

1:1 Line 
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Figure S7 Description of error introduced comparing high burn severity canopy height data to low burn 

severity canopy height data. Circles denote the plot area. Stem plot circles depict diameter-at-breast-

height (cm) of measured stems. Height values are arbitrarily chosen to show differences in high and low burn 

severity canopy height rasters and field plot data.   
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Appendix D  Correlation coefficients for canopy attributes and model predictors  

D.1 Correlation between canopy height and canopy cover 

 
Figure S8 Correlation between canopy cover and canopy height for radii used in microclimate modeling. 

Rho (ρ) is the spearman correlation of the two variables  

D.2 Correlation between model fixed effects 

Table S3 Pearson's correlation coefficient for fixed effects used in mixed linear models. Correlation 

coefficients are included for canopy calculated at the 2 m (used to model soil moisture) and 15 m (used to 

model soil temperature) radius.  

 

Fixed Effects  Pearson's Correlation Coefficient 

Canopy Height (15m radius) ~ Aspect  -0.094 

Canopy Height (2 m radius) ~ Elevation -0.10 

Canopy Height (15m radius) ~ Elevation -0.50 

Canopy Height (2 m radius) ~ Aspect  -0.35 

Elevation ~Aspect  0.12 
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Appendix E  Estimated parameters of monthly models for all explanatory variables 

Figure S9 Estimated parameter for fixed effects on mean microclimate variables averaged by month (Near-

Surface, Soil, Surface, and Soil Moisture vol %). Points show estimated parameters, and surrounding lines 

are the 95% confidence intervals for parameters. Printed text values are the adjusted model R2. Note: vertical 

scales differ among panels.  
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Appendix F  Field collected data 

F.1 Vegetation and leaf litter data  

Five measurements of vegetation height and litter depth were randomly collected and 

values averaged for each site-location. Dominant cover was estimated based on percentages 

between 0-5, 5-10, 10-25, 25-50, 50-75, and 75-100 %. Cover classes included: shrub, herbs, 

forbs, graminoids, moss, or bare. Litter and vegetation heights are noted in Figure S4. 

We also collected seedling data. At points 2, 4,5,6, and 8 within each logger set up we 

took one seedling plot. We recorded total number according to three morphologies (A, B, C). A 

is a Douglas-fir seedling, B is a lodgepole pine, and C is spruce. These are recorded under 

"morpho" of the vegetation data.  
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Figure S10 Variability in litter depth and vegetation height. Points are average values for each datalogger. 

Distribution is based on all points (5 per datalogger). 

F.2 Soil data  

For each datalogger 3-5 soil cores were collected using a standard push soil sample probe 

at depths of 15 to 30 cm. An example of a soil core is shown in Figure S5. The volume, depth 

and number of soil samples varied from location-to-location based on the presence of large clasts 

(see Figure S6 for examples). Soil samples were dried over a one-week period at 45 °C in a 

standard drying oven. I calculated soil bulk density based on the volume of soil collected and the 

final dry weight. Variation in soil bulk density is noted in Figure S7. Soil type was classified 

using the standard soil classification based on percent silt, clay, and sand. Samples with high 

organic content were noted, but organic material was not digested. Soil composition was used to 
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convert soil moisture counts into volumetric soil moisture (% vol) using the "TMS3_Calibr User 

Soil Properties" function. The function applies a conversion factor with three different 

coefficients, a, b, and c, and equation S1 where X is the soil moisture count.  

𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐                        S1 

 
Figure S11 Example soil core from plot six datalogger number four. Soil cores generally showed these three 

distinct layers, organic dominant (top), silty sand matrix (middle), and a silt matrix (base).  
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Figure S12 Soil samples from plot 4. Samples are combined cores from each datalogger.  
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Figure S13 Plot-level variability in bulk density (g/cm3). Points show values derived for each plot  

F.3 Leaf area index data  

LAI was measured using a Licor 2200 Plant Canopy Analyzer. The Licor 2220 is a 

passive sensor of leaf area index that combines measurements of solar radiation taken at five 

concentric circles with angles centered at 7 , 23, 38 , 53 , 68 relative to vertical. Values of 

LAI are calculated from the difference of measured radiation below canopy and measurements 

from nearby non-canopy locations (also known as the above measurement). At each datalogger, 

four measurements were taken at a 2 m distance from the logger in ordinal directions. These 

measurements were averaged to produce an LAI for each location. In some cases, the references 

non-canopy location failed to record; the associated below measurements have been removed 

from the data.  
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Figure S14 Leaf area index measurements for each datalogger. Points and boxes are colored by plot number.  
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