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Abstract

This thesis defines a multi-objective optimization model that seeks to
find road profiles that would be optimal for the manufacturers in terms of
the road construction cost and at the same time for the users in terms of
the vehicle operating costs, specifically in terms of the fuel consumption
cost. The research implements and validates the formula for the fuel con-
sumption cost. It further presents and examines a variety of well-known
methods: three classical scalarization techniques (the ε-constraint method,
weighted sum method, and weighted metric methods) and two widely-used
evolutionary methods (NSGA-II and FP-NSGA-II). Moreover, to acceler-
ate the performance of the chosen scalarization approaches, a warm start
strategy is proposed.

Numerical experiments are performed on 30 road samples for Caterpillar
793D off-highway trucks to determine the most robust approach for the pro-
posed multi-objective optimization problem. The results are analyzed using
the commonly-used performance indicators, namely, hypervolume (to assess
the convergence of solutions), spacing (to assess the diversity of solutions),
and CPU time (to assess the speed).

The research determines that the most promising and recommended
method for the proposed problem is the ε-constraint method (successfully
solved approximately 75% of test problems) followed by the weighted sum
method (successfully solved approximately 50% of test problems). Moreover,
the research shows that the warm start strategy improves the performance
of the scalarization techniques.
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Lay Summary

A high-quality road infrastructure is important in ensuring the economic
growth of the country. But the expenses for designing new roads are not
cheap. Along with large capital investments for road construction, roads also
incur future user costs. In this thesis, we present an optimization framework,
that takes into account the cost of building the road and the cost of using
the road, as well as strategies for solving it. Our experiments determine that
the most recommended method for our problem is the ε-constraint method
with a warm start.
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Chapter 1

Introduction

1.1 Motivation and objective

The era of road design began about 2000 years ago when the Romans
initiated the development of techniques for building durable roads to ease
the mobility of armies within their empire [Abr13]. Since then, the road
design process has been influenced by the idea that better roads result in
lower road user costs. Well-designed roads increased the probability that the
Roman armies would reach their destinations with lower fuel (analogously,
food and water supplies), lower equipment repair costs, fewer accidents, as
well as in less time. Today, the goal of road design is still analogous.

Even though we attempt to serve several objectives while constructing a
new road, we often consider only the minimization of the road construction
cost and neglect the basic importance of user costs affecting the country’s
economy. This is similar to how people often choose what to eat and drink
without considering the simple nutritional benefits of food options. There-
fore, we should increase consideration of the road user costs while planning
a road.

According to the most recent report for the Canadian Automobile Asso-
ciation (CAA), the poor roads for Canada results in higher vehicle operating
costs of about $3 billion per year [CPC21]. The statistics by the provinces
are given in Figure 1.1. These expenses encompass several cost components
such as fuel consumption, tire usage, depreciation, repair, and maintenance
of the vehicle. Among all these costs, the fuel consumption cost is the major
component that is sensitive to road slope, rolling resistance, and air drag.
This cost is very significant for heavy trucks that are used in forestry or
mining, which is our main consideration in this research.

This thesis defines a multi-objective optimization model for designing
a road that would be optimal for the manufacturers in terms of the road
construction cost and at the same time for the users in terms of the vehicle
operating costs, specifically in terms of the fuel consumption cost. It further
presents and examines a variety of methods for solving this multi-objective
optimization problem.

1



1.2. Research approach
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Figure 1.1: Statistics showing the annual vehicle operating cost due to poor
roads, by Canadian provinces and territories ($ millions per year) [CPC21].
Note that these costs are not normalized by the population.

One may wonder why we focus on the multi-objective optimization model
instead of defining a single-objective optimization problem that aggregates
both objective functions into one scalar function. Firstly, as the fuel price
varies from region to region and varies over the lifetime of the mine, we decide
to focus on the fuel amount used in mL, whereas the road construction cost
is estimated in dollars because it is a short-term event. Secondly, the total
fuel consumption cost also depends on the lifetime usage of the road which
is information that may not be available, for example, in a new mine where
the exact amount of minerals are unknown. Therefore, for our problem,
these two cost functions cannot be added together into a single-objective
problem.

1.2 Research approach

Generally, the road design procedure can be considered as finding an
optimal road geometry for a given ground profile. Due to computational
barriers, many studies split this process into horizontal alignment and verti-
cal alignment [MR12, BHLH17]. In this thesis, we assume that the horizon-
tal alignment is predetermined, and we consider only the vertical alignment
design that follows this fixed horizontal alignment. We optimize the verti-
cal alignment by performing optimal earthwork operations to construct an
optimal road under some design requirements.

In our research, we examine how road vertical alignment affects the road

2



1.3. Thesis outline

user costs, particularly the fuel consumption cost, and we model a multi-
objective approach that takes in both the cost of road construction and the
cost of road usage.

In any optimization problem, a decision-maker first needs to identify the
core decision variables that will impact the overall quality of decisions. The
objective functions represent this quality and are then used to make the
most suitable decision. Thus, we first present the functional form of the
road construction cost and road user cost in the context of road vertical
alignment design.

Then, we review and examine several well-known multi-objective opti-
mization methods. We also present an approach (called warm start strategy)
for our problem that can improve the performance of some chosen methods.
We test the performance of these selected methods on 30 road samples and
attempt to determine the most promising approach for our model.

1.3 Thesis outline

Chapter 2 serves as a brief introduction to the road vertical alignment
design followed by the key concepts of multi-objective optimization necessary
for this research.

Chapter 3 formulates the functional forms of the road construction cost
and road user costs for our multi-objective optimization model in the context
of road vertical alignment design.

Chapter 4 reviews several approaches for solving the proposed multi-
objective problem. It provides brief descriptions of the algorithms along
with their pseudocodes.

Chapter 5 describes the experimental framework performed to assess
the performance of the selected methods and presents an analysis of the
numerical results. It examines the most promising and appropriate method
for our proposed model.

The final chapter, Chapter 6, summarizes all the main points of the
study and highlights some suggestions for possible future work.

3



Chapter 2

Preliminaries

In this chapter, we review some essential preliminary material to set the
foundation of this research.

In Section 2.1, we present a brief introduction to the road vertical align-
ment design, and in Section 2.2, we summarize the basic concepts of multi-
objective optimization.

2.1 Vertical alignment design

Definition 2.1 (Ground profile and road profile [MR12]). The ground pro-
file is the vertical profile of the ground prior to the construction of the road.
The road profile is the vertical profile of the ground after the construction
of the road.

Whereas the horizontal alignment design examines the projection of the
three-dimensional ground profile on a horizontal plane, in the vertical align-
ment design we focus on the projection on a vertical plane. In other words,
the vertical alignment is a longitudinal cross-section of the horizontal align-
ment. It is used to determine the pavement elevation, road grade, and other
road characteristics.

To model the vertical alignment, we split a road into smaller units known
as sections. We index them by the set S = {1, 2, . . . ,m}. We represent the
road with a spline which is defined as a piecewise quadratic function given
in the following form

Pi(x) = ai,1 + ai,2x+ ai,3x
2, (2.1)

where ai,1, ai,2, ai,3 are the coefficients of the quadratic polynomial spanning
along the section i ∈ S. Each polynomial piece is referred as a segment (also
known as a spline segment).

For instance, Figure 2.1 illustrates a graphical example of the vertical
alignment in profile view. The y-axis shows the ground elevation (or height
of the ground), while the x-axis represents the horizontal distance of the
road in meters. In this example, the road is divided into 5 sections and is

4



2.2. Multi-objective optimization
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Figure 2.1: Graphical illustration of vertical alignment.

approximated using 4 (spline) segments. The ground profile and road profile
are given with the blue and orange lines, respectively. The road profile is
constructed by changing the height of the ground elevation at different points
and by moving the earth between sections.

In other words, the input of the vertical alignment design is the ground
profile, and the output is the road profile provided as a quadratic spline.
Note that the vertical alignment is determined for the fixed horizontal align-
ment.

For further details on the vertical alignment design, we refer to [MR12,
BHLH17].

2.2 Multi-objective optimization

Many real-life optimization problems in the agricultural, construction,
and manufacturing sectors involve multiple objectives. These objectives are
often conflicting in nature in a way that a solution that minimizes one of
the objectives might worsen another one. Therefore, all objectives need
to be handled at the same time. This creates the field of Multi-Objective
Optimization (MOO).

5



2.2. Multi-objective optimization

2.2.1 Problem formulation

We consider a MOO problem given in the form

minimize {f1(x), f2(x), . . . , fk(x)}

subject to x ∈ X ,
(2.2)

where x ∈ Rn is a decision variable, fj : Rn → R for j ∈ J = {1, ..., k}
with k ≥ 2 are objective functions, and X ⊂ Rn is called a feasible set.
The image of the feasible set is called the objective function space.

2.2.2 Pareto optimality

In MOO, we need to select the ‘best’ solutions from the domain of feasible
solutions. Thus, we need the concept of Pareto dominance to say which
solution is better than others.

Definition 2.2 (Pareto dominance [JMC09]). Consider the problem (2.2).
Suppose that x,y ∈ X . Then we say that x Pareto dominates y, denoted
by x ≺ y, if

1. fj(x) ≤ fj(y) for all j ∈ J , and

2. fj(x) < fj(y) for at least one j ∈ J .

Example 2.3. Suppose that we have f = [f1, f2] where f1 and f2 are the
objective functions that are being minimized. And suppose that we have
four solutions a, b, c, and d, as illustrated in Figure 2.2. Here, c minimizes

Figure 2.2: Pareto dominance example with four solutions a, b, c, and d,
where a is a non-dominated solution (red point) and a, b, and d are domi-
nated solutions (blue points).

6



2.2. Multi-objective optimization

both f1 and f2 better than b. Thus, both cases in Definition 2.2 hold, and
c ≺ b. Also, c ≺ a, since c minimizes f2 better than a and minimizes f1
as good as a. In similar way, c ≺ d, a ≺ b, and d ≺ b, while a and d are
incomparable according to the definition. Among all these four solutions,
there is no solution that Pareto dominates the solution c. Therefore, we
refer to c as a non-dominated solution, whereas a, b, and d are dominated
ones.

We can now define the concept of solution in the multi-objective opti-
mization context using the Pareto dominance relation.

Definition 2.4 (Pareto optimal set [JMC09, ABC+20]). For a set of solu-
tions P ⊂ X of the problem (2.2), Pareto optimal set P∗ is a set of solutions
that are not Pareto dominated by any other solution of P, that is,

P∗ = {x ∈ P | 6 ∃y ∈ P : y ≺ x}.

Definition 2.5 (Pareto front [JMC09, ABC+20]). For the Pareto optimal
set P∗ of the problem (2.2), Pareto front PF∗ is the image of the solutions
of the set P∗, that is,

PF∗ =
{(
f1(x), f2(x), ..., fk(x)

)
| x ∈ P∗

}
.

Instead of finding a single optimal solution as in a single-objective case,
the aim of MOO is to estimate a Pareto optimal set that makes all the
objectives have as good outcomes as possible. It attempts to converge closer
to the true Pareto optimal set and to discover a diverse set of solutions that
are well-distributed among themselves.

In the next definition, we define some bounds of the Pareto front PF∗.

Definition 2.6 (Ideal point and nadir point [JMC09]). For the Pareto op-
timal set P∗ of the problem (2.2), the ideal point z∗ = (z∗1 , . . . , z

∗
k)T of the

Pareto front PF∗ is defined as

z∗i = min
x∈P∗

fi(x)

for i = {1, 2, . . . , k}. Similarly, the nadir point znad = (znad1 , . . . , znadk )T of
the Pareto front PF∗ is defined as

znadi = max
x∈P∗

fi(x)

for i = {1, 2, . . . , k}.

7



2.2. Multi-objective optimization

For instance, Figure 2.3 illustrates the Pareto front for the case of two
objectives f1 and f2. The ideal point and nadir point are given with blue
and red dots, respectively. The ideal point represents the simplest point that
Pareto dominates the entire Pareto front, whereas the nadir point represents
the simplest point that is Pareto dominated by the entire Pareto front. These
two points give a rectangular region that contains the entire Pareto front.

𝑧∗

𝑧!"#

Pareto front

𝑚𝑖𝑛

𝑚
𝑖𝑛

𝑚𝑎𝑥

𝑚
𝑎𝑥

Figure 2.3: Graphical illustration of the ideal and nadir points of the Pareto
front for bi-objective problem.

The notion of the ideal point is used in the descriptions of some se-
lected MOO methods in Chapter 4, whereas the nadir point is used when
computing the hypervolume indicator in Chapter 5.

2.2.3 Pareto front filtering

Algorithm 2.1 outlines the pseudocode for identifying the Pareto optimal
solutions for the given solution set P.

The main idea of the algorithm is to classify the solutions into two cat-
egories, namely, dominated and non-dominated. The set I saves the labels
for each solution of the set P in a way that it labels the dominated solutions
with 0 and the non-dominated ones with 1.

At the beginning of the algorithm, we assume that all the elements of the
set P are non-dominated. It starts with the first element of the set P, and
at Steps 5-6 it identifies the solutions that are dominated by the selected
element and marks them with a label 0. Then, at Step 7, it moves to the next
element of the set P that has a label 1 and repeats the process. In other
words, the algorithm selects the next element which is a ‘potential’ non-
dominated solution and identifies the solutions that it Pareto dominates. In
this way, in each iteration, we ignore the already found dominated solutions

8



2.2. Multi-objective optimization

Algorithm 2.1: Pareto optimal set filtering

Input : Set of solutions P = {p1, p2, . . . , pn}
Output: Pareto optimal set P∗

1) Declare a set I of size n
2) I = 1
3) i = 1
4) while i ≤ n do
5) for j such that I(j) = 1 do
6) if j 6= i and pi ≺ pj then I(j) = 0

end
7) Increment i until I(i) 6= 0

end
8) P∗ = P(I)

and perform comparisons among the ‘potential’ non-dominated solutions.
The algorithm stops when it reaches the last element of the set P, and it
returns the set of non-dominated solutions, that is, Pareto optimal set P∗.

By applying Algorithm 2.1 on the set P, we find the Pareto optimal set
composing the so-called Front 1. By removing the solutions of Front 1 from
the set P and applying Algorithm 2.1 on the new set, we identify Front 2,
and so on. This strategy is called a non-dominated sorting and is illustrated
in Figure 2.4(a) [DPAM02]. Figure 2.4(b) shows an example of fronts for

Dominated

Dominated

Non-
dominated

Non-
dominated

Non-
dominated

Non-
dominated

Non-
dominated

Non-
dominated

Front 1

Front 2

Front N

Fronts

(a) Graphical illustration of non-
dominated sorting.

Front 1 (Pareto front)

Front 3

Front 4

Front 2

(b) Graphical illustration of
the fronts.

Figure 2.4: Graphical illustration of non-dominated sorting and fronts.
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2.2. Multi-objective optimization

bi-objective problem.
The concept of the non-dominated sorting is used later in Chapter 4

while describing the genetic algorithms selected for this thesis.

10



Chapter 3

Model

In this chapter, we present the objective functions of our MOO model,
namely, road construction cost in Section 3.1 and vehicle operating cost in
Section 3.2.

3.1 Road construction cost

In the road vertical alignment design, the aim of the road construction
process is to transform the given ground profile into a road profile using
earthwork operations. Thus, the effect of earthwork cost on the road con-
struction cost is significant [Fwa89]. The earthwork cost consists of the
following three components.

1. Excavation cost, denoted by Ccut, is the cost of cutting earth from a
section;

2. Hauling cost, denoted by Chaul, is the cost of transporting earth be-
tween sections;

3. Embankment cost, denoted by Cfill, is the cost of filling a section with
earth.

In this thesis, the road construction cost is retrieved from the Mixed-
Integer Linear Programming (MILP) model with a single material pavement
proposed by [MR12, BHLH17]. This cost function is considered as a black-
box, that is, the internal structure and code implementation of the cost
function is not known. Below we present the general functional form for the
road construction cost.

3.1.1 Variables and parameters

Decision variables

A decision variable is a variable whose optimal value is determined dur-
ing the optimization process. The decision variables in the road construction
problem that are relevant to this research are listed below.
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− ai,1, ai,2, ai,3 ∈ R: the coefficients of the quadratic polynomial defining
the spline spanning along section i ∈ S.

Design parameters

A design parameter is a predefined parameter used as an input for the
optimization problem. The design parameters are listed below.

− pi ∈ R+: the cost per cubic unit of earth that is excavated from
section i ∈ S.

− cij ∈ R+: the cost per cubic unit of earth that is hauled from
section i ∈ S to section j ∈ S (j 6= i).

− qi ∈ R+: the cost per cubic unit of earth that is embanked to
section i ∈ S.

3.1.2 Formula

The road construction cost, denoted by Cconstruct, includes the total cost
of excavation, hauling, and embankment, as follows.

Cconstruct = Ccut + Chaul + Cfill, (3.1)

It estimates the total earthwork cost performed to construct a new road.
For more details on the road construction cost, we refer to [MR12, BHLH17].

3.2 Vehicle operating cost

Vehicle operating costs consist of the daily costs spent by the users while
operating vehicles on a given road profile. Fuel consumption, oil usage, tire
wear, repairs, and maintenance of the vehicle are all examples of vehicle
operating costs that differ with vehicle use [TV03]. Among them, fuel con-
sumption is the component that is most impacted by the vertical alignment
of the road, thus, is chosen as the second objective function of the model
[JSJ06, TV03].

3.2.1 Literature review

Our goal is to derive an equation to quantify the fuel consumption cost
based on road alignment. However, there is no clear relationship between

12



3.2. Vehicle operating cost

fuel consumption and road alignment. A number of studies have been con-
ducted to identify the effect of various parameters on fuel consumption. We
begin by discussing some of the previous methods to estimate fuel consump-
tion.

In 1987, it was proposed to estimate fuel consumption using only one
variable, namely, vehicle running speed [JSJ06]. After conducting several
experiments, Jha [JSJ06] advanced the equation by including the road grade
in calculations. Moreover, the author introduced a model for predicting fuel
usage for the entire year taking into account the interest rate affecting the
fuel price.

Akçelik et. al. [ASB12] proposed the model for estimating the amount
of fuel consumed by taking into consideration the physics laws. It relies on
the engine-generated tractive force, which is required to drive the vehicle,
and considers the main external resistance forces affecting the vehicle. The
model is analyzed using the software called SIDRA INTERSECTION and is
calibrated for different vehicle parameters [ASB12]. The user can estimate
the fuel consumption cost for any vehicle type by providing the model with
the needed vehicle parameters.

In 2013, Swedish National Road and Transport Research Institute pro-
posed a model for estimating the fuel consumption cost generated with a
help of simulation software called VETO [CHE13]. Carlson et. al. [CHE13]
simulated the traffic flow of different vehicle types for a systematic variation
of roads and speed conditions. By generating a dataset, the influence of
road variables on fuel usage was analyzed to produce the regression model
for the fuel consumption cost. This model has a high degree of explanation,
with R2 = 0.99. However, this model is overly complex and is only valid for
specific vehicle categories [CHE13].

Another model created based on the collected data is introduced by
Kubler [Kub15]. Kubler [Kub15] collected the data for fuel usage in various
environmental settings for Caterpillar 785D off-highway trucks. The unique-
ness of this model is that it depends only on one variable, namely on road
grade. Thus, the model is very simple with the high coefficient of determi-
nation of R2 = 0.89, and it considers the fuel usage for loaded trucks and
unloaded trucks separately. Nevertheless, as the authors mentioned, this
regression model is valid only for the Caterpillar 785D off-highway trucks
[Kub15].

Soofastaei et. al. [SAKK16] outlines the model to evaluate an approx-
imate amount of fuel burnt by a haul truck to move one tonne of mined
material in an hour. According to their model, the fuel consumption cost
depends on the vehicle rimpull, which is defined as an amount of force ex-
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erted by tires to the road surface. As the authors mentioned, the vehicle
rimpull can be estimated using the so-called Rimpull Table which is unique
for all vehicle types [SAKK16].

Another regression model with a coefficient of determination R2 = 0.84
is outlined by Svenson and Fjeld [SF16]. They conducted an experiment
with a test truck to collect data for a different road grade, road curvature,
surface roughness, and vehicle payloads in dry summer and wet fall weath-
ers [SF16]. Then, the regression analysis was performed on the dataset to
identify the relationship between the fuel consumption cost and road param-
eters. Nevertheless, the model is highly dependent on the surface roughness
which is not easily accessed in real life.

Based on the investigations of different approaches to estimate fuel con-
sumption cost, this thesis uses the model proposed by [ASB12] that can be
adjusted for different environmental settings and can be applied for differ-
ent vehicle types. Using this model, the user can estimate the fuel usage by
providing all the needed vehicle parameters with the environmental factors
affecting the vehicle.

3.2.2 Variables and parameters

Decision variables

The decision variables defining the fuel consumption cost are listed be-
low.

− ai ∈ R: the engine-induced acceleration (m/s2) for section i ∈ S.

− si ∈ R: the road grade or slope (m/100 m) of the spline segment
spanning along section i ∈ S.

− vi ∈ R+: the vehicle running speed (m/s) for section i ∈ S.

Design parameters

The design parameters required for the vehicle operating cost can be
classified into two categories: vehicle parameters and environment parame-
ters.

Vehicle parameters are the predefined characteristics of the vehicle, such
as vehicle mass, horsepower, idle fuel rate, and others. The vehicle param-
eters are listed below.

− A ∈ R+: the projected frontal area (m2) of the vehicle.
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3.2. Vehicle operating cost

− M ∈ R+: the vehicle total mass (kg).

− Pe ∈ R+: the vehicle engine power (kW).

− ptract ∈ R+: the percent mass acting on tractive axle (%) of the vehicle.

− α ∈ R+: the constant idle fuel rate (mL/s) of the vehicle.

− β1 ∈ R+: the fuel usage per unit of energy (mL/kJ) (also called as the
energy efficiency parameter).

− β2 ∈ R+: the fuel usage per unit of energy-acceleration (also called as
the energy-acceleration efficiency parameter) (mL/(kJ.m/s2)).

− η ∈ R+: the power transmission efficiency (%) of the vehicle.

Environment parameters refer to the road resistance, gravity, air density,
and other environmental factors affecting the vehicle motion. The environ-
ment parameters are listed below.

− cair ∈ R+: the air drag coefficient.

− croll ∈ R+: the rolling coefficient depending on the road surface type.

− ctire1, ctire2 ∈ R+: the rolling coefficient depending on vehicle’s tire
type such as bias ply or radial.

− g ∈ R+: the acceleration due to gravity (m/s2).

− r ∈ R+: the road resistance (%).

− ∆di ∈ R+: the distance or length (m) of section i ∈ S.

− µ ∈ R+: the coefficient of friction between tires and pavement.

− ρair ∈ R+: the air density (kg/m3).

3.2.3 Formula

The paper by [ASB12] proposed the model for estimating the value of
fuel consumed (mL) for a simulation distance ∆di for section i ∈ S. The
model has the following three components.

1. Fuel consumption due to idling, denoted by Cidle,i, is an estimated fuel
amount used to maintain engine operation at constant idle fuel rate α
for section i ∈ S;
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3.2. Vehicle operating cost

2. Fuel consumption due to tractive force, denoted by Ctract,i, is an es-
timated fuel usage to increase tractive force Rtract,i that moves the
vehicle along section i ∈ S;

3. Fuel consumption due to engine-induced acceleration, denoted by
Caccel,i, is an estimated fuel amount used by the engine to acceler-
ate the vehicle along section i ∈ S. Note that the engine-induced
acceleration refers to the acceleration produced while pushing the gas
pedal of the vehicle, and it ignores the acceleration produced by the
environmental factors such as gravitational force.

For each section i ∈ S, the cost function Cfuel,i is defined as

Cfuel,i =

{
Cidle,i + Ctract,i + Caccel,i for ai > 0

Cidle,i + Ctract,i for ai ≤ 0
(3.2)

where
Cidle,i = α∆di/vi, (3.3)

Ctract,i = β1 ∆diRtract,i/1000, (3.4)

Caccel,i = β2M ∆di a
2
i /1000. (3.5)

Note that the vehicle parameters α, β1, and β2 can be retrieved from
[AB03, ASB12]. We provide sample values in Table A.1 and A.2 (in Ap-
pendix A).

For each section i ∈ S, we first need to estimate four parameters, namely,
vehicle running speed vi, vehicle tractive force Rtract,i, engine-induced ac-
celeration ai, and road grade si.

Vehicle running speed

The vehicle running speed vi is a rate at which the vehicle travels the
section i ∈ S. With the purpose of simplicity of the model, we assume that
the vehicle running speed is constant and predefined by the user.

Vehicle tractive force

The vehicle tractive force Rtract,i (N) is an amount of force required to
drive the vehicle along the section i ∈ S. It is directly proportional to the
engine power Pe generated by the vehicle and is inversely proportional to
the vehicle running speed vi, as follows.

Rtract,i = min
( 3600 η Pe

vi
, R

max

tract

)
, (3.6)
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where R
max

tract
is the constant maximum tractive force (N) which can be pro-

duced with no harm to the vehicle. Note that we include R
max

tract
in Equation

(3.6) to ensure that the vehicle tractive force does not approach infinity at
low vehicle speeds [RLD+01]. Moreover, it can be quantified as

R
max

tract
= M g µptract.

According to Equation (3.6), the vehicle tractive force is always posi-
tive. This implies that the vehicle is moving without any stops. So, this
model does not consider the case when the vehicle is parked with the engine
running. We ignore this case because it indeed does not affect the road
geometry.

Engine-induced acceleration

To estimate the engine-induced acceleration, we assume that the vehicle
tractive force Rtract,i (N) is the sum of inertia force (N), air drag force Rair,i

(N), grade resistance force Rgrade,i (N), and rolling resistance Rroll,i (N), as

follows [RLD+01]

Rtract,i = M ai +Rair,i +Rgrade,i +Rroll,i, (3.7)

where Rair,i = cair Aρair v
2
i /2,

Rgrade,i = M g si,

Rroll,i = M g croll (ctire1 + 3.6 ctire2 vi)/1000.

For more details on the external resistance forces Rair,i, Rgrade,i and

Rroll,i, see [RLD+01].

By rearranging Equation (3.7), the engine-induced acceleration ai is de-
fined as

ai =
Rtract,i −Rair,i −Rgrade,i −Rroll,i

M
.

The engine-induced acceleration ai is positive when the vehicle tractive
force Rtract,i is more than the external resistance forces. In other words,
we increase the tractive force to overcome all external resistance forces ex-
posed by nature to accelerate the vehicle. As a result, the engine induces
an acceleration and uses more fuel. However, when the produced tractive
force by the vehicle is less than the external resistance forces, the vehicle is
decelerating, and so, no extra fuel is consumed by the engine. This process
is visualized in Figure 3.1.
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3.2. Vehicle operating cost

Figure 3.1: Graphical illustration of tractive force and external resistance
forces.

Road grade

The road grade si is a slope of the spline segment spanning along the
section i ∈ S. Using Equation (2.1), the road grade si is

si(x) =
dPi(x)

dx
= ai,2 + ai,3x. (3.8)

Total vehicle operating cost

Along the given vertical alignment, the vehicle can move in two directions
as follows.

1. Left-to-right traffic flow is the vehicle motion from left to right along
the given vertical alignment;

2. Right-to-left traffic flow is the vehicle motion from right to left along
the given vertical alignment.

The road vertical alignment, which is optimal for one of the directions
of the traffic flows, might be inefficient for the other direction of the traffic
flow by consuming significantly more fuel. With this in mind, we need to
consider both directions of the traffic flow at the same time while optimizing
the total vehicle operating cost.

Suppose that for the given vertical alignment, we label the left-to-right
traffic flow with sections S = {1, 2, . . . , n}, while for the right-to-left traffic
flow we use its reverse order S ′ = {n, n − 1, . . . , 1}. In addition, suppose

18



3.2. Vehicle operating cost

that the road grade is si for section i ∈ S in the left-to-right traffic flow.
Then, in the right-to-left traffic flow, the road grade will be −si for section
i ∈ S.

For instance, in Figure 3.2, we present a road profile with 5 sections and
illustrate the road grades si for each section i ∈ {1, 2, . . . , 5} in two traffic
flow directions.

𝒔𝟏 𝒔𝟐
𝒔𝟑

𝒔𝟒 𝒔𝟓

Left-to-right traffic flow (Loaded vehicle)
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Figure 3.2: Graphical illustration of traffic flows for the road with 5 sections
and grades s1, s2, s3, s4, s5.

In this model, we assume that the leftmost endpoint of the vertical align-
ment (corresponding to Station 0) is a mining site or a forestry loading site.
Thus, we force the ground profile and road profile to have the same ground
elevations at the point associated with Station 0. With this in mind, we
also assume that the vehicle is loaded when moving from left to right, but
is unloaded while moving from right to left.

Ultimately, the total vehicle operating cost spent for traveling the whole
alignment in both directions of the traffic flow is

Cfuel =
∑
i∈S

Cfuel,i +
∑
i∈S′

Cfuel,i. (3.9)

19



3.2. Vehicle operating cost

Unit testing

In order to ensure that the code for our model was high-quality, the unit
testing was done along the way. The unit testing included the following
small roads:

1. Linear flat ground with 5 sections;

2. Linear inclined ground with 5 sections;

3. Linear declined ground with 5 sections;

4. Quadratic ground with a sag with 5 sections;

5. Quadratic ground with a crest with 5 sections;

6. Quadratic ground with a sag and crest with 5 sections;

7. Quadratic ground with a crest and sag with 5 sections.

Validation

The current model is validated on the dataset found in [SAKK16]. The
dataset was collected from a surface coal mine with Caterpillar 793D off-
highway trucks (CAT 793D). In the validation test, the vehicle parameters
for CAT 793D are retrieved from the official website of Caterpillar manufac-
turer. As a result, the coefficient of determination for the proposed model
is R2 = 0.93 for this dataset.
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Chapter 4

Methods

In this chapter, we discuss the MOO methods used in this thesis.
In Section 4.1, we give a brief survey on some MOO techniques. In

Sections 4.2-4.5, we present the algorithm descriptions of the selected MOO
methods followed by the warm start strategy in Section 4.6 that can improve
the performance of some MOO methods.

4.1 Literature review

In the literature, there are plenty of MOO techniques, and we start by
discussing some of the well-known approaches for solving MOO problems.

One of the widely used approaches is scalarization. Therein, the objec-
tive functions are merged (or reformulated as constraints) to form a single-
objective optimization problem which is then solved by known methods.
Below we first discuss some of the classical and commonly used scalariza-
tion techniques.

The weighted sum method is one of the well-known and classical scalar-
ization approaches. The method combines all the objectives into a scalar
single objective by pre-multiplying each objective function with predefined
weights. A positive fact for this technique, which was first proposed by Gass
and Satty [GS55], is its simplicity and easiness of implementation. However,
the main limitation of the weighted sum method is the incapability of finding
solutions in nonconvex regions of the Pareto front.

Goal programming is also one of the classical scalarization approaches,
which was extended from linear programming and was firstly invented by
Charnes and Cooper [CCF55, CC61]. The method does not attempt to
optimize the objectives directly, instead, it declares the objective functions
as the problem constraints restricted with the specific goals, and then it
optimizes deviations from these goals. Even though the method is very
simple and easy to implement, it highly relies on the choice of the goals which
are predefined by the user. Similar approaches that use this idea are the
goal attainment method, interactive goal programming, and lexicographical
goal programming [JMC09].
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The weighted metric method is another scalarization approach that is
similar to the weighted sum method but uses another means of aggregation of
the objective functions [Asg98, Deb01]. It seeks the nearest possible solution
to a user-defined reference point, which is generally chosen as the ideal point,
using either Manhattan, Euclidean, or Chebyshev metric. Depending on the
metric type, the method can succeed in finding solutions in nonconvex parts
of the Pareto front.

Benson’s method is another example of a scalarization approach. It is
similar to the weighted metric method but it chooses a reference point to be
a feasible non-Pareto optimal solution instead of the ideal point, and then it
aims to find the farthest solution from the selected reference point [Deb01].
This method can also uncover the nonconvex portion of the Pareto front. In
addition, the method does not require the users to choose the reference point.
Instead, it searches and selects the reference point on its own by defining
some extra constraints that restrict the search region. Nevertheless, those
extra constraints may complicate the optimization process [Deb01].

The ε-constraint method is also one of the commonly used scalarization
techniques. This method was firstly proposed by Chankong and Haimes
[CH83]. In this approach, one of the objectives is optimized while the others
are converted into the constraints which are restricted by some allowable
thresholds ε. The main advantage of this method is that it works for both
convex and nonconvex Pareto fronts, and it can better approximate the
Pareto front by varying ε values. On the other hand, in practice, it may be
difficult to specify the values of ε. We purpose one method to select ε values
in Subsection 4.2.2 herein.

The key benefit of all scalarization techniques is that once the given MOO
problem has been reformulated as a single-objective optimization problem,
we can apply all known theoretical results and existing numerical algorithms
dedicated to this single-objective case. On the other hand, the scalarization
approaches generally tend to find a single solution for each scalarization,
thus, the quality of approximation of the Pareto front relies on the number
of scalarizations performed.

The MOO approaches that can handle this drawback of scalarization
are multi-objective evolutionary approaches. For instance, NSGA-II uses a
genetic algorithm for producing a set of solutions in each iteration, instead of
finding a single solution. In this way, the method attempts to approximate
the entire Pareto front in a single run. There are a number of MOO methods
integrated with evolutionary strategies, such as Vector Evaluated Genetic
Algorithm (VEGA) [Sch85], Strength Pareto Evolutionary Algorithm 2nd

version (SPEA-II) [EML01], Non-Dominated Sorting Genetic Algorithm 2nd
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version (NSGA-II) [DPAM02], Non-Dominated Sorting Genetic Algorithm
3rd version (NSGA-III) [DJ13], and Front Prediction based Non-Dominated
Sorting Genetic Algorithm 2nd version (FP-NSGA-II) [FTG15].

Another drawback of the scalarization approaches is related to the het-
erogeneous structure of the optimization problem. Consider the case when
one of the objectives is a computationally expensive function that requires a
lot of time to evaluate, while the other objectives are given analytically and
are easy to assess. Then it would be beneficial to use this heterogeneous
structure of the optimization problem. However, scalarization techniques
may break the heterogeneous structure of the given problem, leaving us
with a high computational effort that is mainly exposed by one expensive
objective function.

To take advantage of the heterogeneity, Thomann and Eichfelder [TE19]
introduced a trust-region algorithm for a multi-objective setting. The method
employs a basic trust-region approach by defining a local region within which
the model can be trusted and the objectives can be approximated with suit-
able models. In each iteration, the search direction is determined with a
help of local ideal points [TE19]. Nevertheless, as the authors stated, this
approach is developed for smooth MOO problems. Thus, it is not applica-
ble for our proposed problem since the vehicle operating cost presented in
Chapter 3 is nonsmooth. A similar approach for the case when all of the
objectives are expensive functions is presented in [RK14], and another one
for non-expensive objectives with Taylor models is proposed in [VOS14].

To handle the nonsmooth MOO problems, one can employ the multi-
objective proximal bundle method introduced by Mäkelä et. al. [MKO14].
The main idea is to transform all the objectives and constraints into one
objective using a so-called improvement function. Then, it solves a nons-
mooth unconstrained single-objective optimization problem using the prox-
imal bundle method [MKO14]. It finds a descent direction that improves
all the objectives of the original problem at each iteration, and it gath-
ers subgradients from the previous iterations into a bundle. In that way,
it approximates the whole subdifferential instead of using only one arbi-
trary subgradient at each point. Recently, Mäkelä and Montonen [MM20]
advanced the multi-objective proximal bundle method with a new version
of the improvement function that can improve the algorithm performance.
Nevertheless, as the authors stated, more numerical testing is needed.

In this thesis, as a starting point of the MOO for vertical alignment de-
sign, we focus on three classical scalarization methods (ε-constraint method,
weighted sum method, and weighted metric method) and two multi-objective
evolutionary methods (NSGA-II and FP-NSGA-II).
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4.2 ε-constraint method

In the ε-constraint method, we optimize one of the objectives while we
use the others as constraints that are bounded by some threshold ε. For
simplicity, we consider a bi-objective case of the problem (2.2). We refor-
mulate the given MOO problem to a single-objective optimization problem
of the form

minimize f2(x)

subject to f1(x) ≤ ε,
x ∈ X .

(4.1)

In the above formulation, the value of ε needs to be in the range between
some user-defined lower bound f and upper bound f̄ of the objective f1, that
is, ε ∈ [f, f̄ ]. Since we aim to approximate the whole Pareto front, we choose
f = min

x∈X
f1(x) and f̄ = f1(x

∗) where x∗ = argmin
x∈X

f2(x).

In order to find a set of Pareto optimal solutions, we need to solve the
problem (4.1) for different values of ε ∈ [f, f̄ ]. While the idea is straight-
forward, it raises a complex query. What values of ε should we consider to
succeed in approximating the entire Pareto front? In the following subsec-
tions, we address this question.

4.2.1 Algorithm

Algorithm 4.1, inspired by [JMC09], outlines the pseudocode of the ε-
constraint method for bi-objective optimization problem.

Algorithm 4.1: Bi-objective ε-constraint method

Input : Objectives f1, f2 : Rn → R, objective bounds f, f̄ ∈ R,

and increment δ ∈ R+

Output: Set of solutions P
1) Declare a matrix D with 4 columns
2) ε = f

3) while ε ≤ f̄ do
4) Approximately solve the problem (4.1) with ε to find xε ∈ Rn

5) D(i, : ) = [ ε, xε, f1(xε), f2(xε) ]
6) ε = ε+ δ

end
7) P = D( : , 2)
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The general idea of the method is to solve the problem (4.1) for various
values of ε which are iteratively increased by a predefined δ. Note that the
choice of δ highly affects the performance of the algorithm. For instance,
if δ is too small, the algorithm may converge to the same optimal solution
multiple times, and thus, it may lead to a computational burden. On the
other hand, if δ is too large, the algorithm may miss some Pareto-optimal
solutions. The algorithm presented in the next subsection seeks to address
this drawback.

4.2.2 Dynamic ε selection

In Algorithm 4.2, we provide the pseudocode for the bi-objective
ε-constraint method with dynamic ε selection. The main idea of the dynamic
ε selection is to update the ε value by analyzing the obtained solutions. This
is done in the following way.

We create a matrix D to save all results found during the algorithm

Algorithm 4.2: Bi-objective ε-constraint method with dynamic ε
selection

Input : Objectives f1, f2 : Rn → R, objective bounds f, f̄ ∈ R,

and tolerance tolε ∈ R+

Output: Set of solutions P
1) Declare a matrix D with 4 columns
2) Approximately solve the problem (4.1) with ε = f to find xε ∈ Rn

3) D(1, : ) = [ ε, xε, f1(xε), f2(xε) ]
4) Approximately solve the problem (4.1) with ε = f̄ to find xε ∈ Rn

5) D(2, : ) = [ ε, xε, f1(xε), f2(xε) ]
6) i = 1
7) while not stopping criteria do
8) ε = (D(i, 1) +D(i+ 1, 1))/2
9) Approximately solve the problem (4.1) with ε to find xε ∈ Rn

10) D(end+ 1, : ) = [ ε, xε, f1(xε), f2(xε) ]
11) Sort D in ascending order of D( : , 1)
12) Find i such that norm(D(i, 3 : 4)−D(i+ 1, 3 : 4)) is maximum

and D(i, 1)−D(i+ 1, 1) > tolε
13) if i = ∅ then stop

end
14) P = D( : , 2)
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process: ε values and the corresponding solutions xε with the objective
function values f1(xε) and f2(xε).

First, we need to determine the region where the true Pareto front lies
using the objective bounds f and f̄ . We solve the problem (4.1) with the
value of ε set to these user-defined objective bounds and record the results
into the matrix D. We set i = 1 and define our search region to be the space
between D(i, 1) and D(i+ 1, 1).

At each iteration, we select ε in the middle of the search region. Then,
we optimize the problem (4.1) with the selected ε and record the output
into D. By performing these steps, in each iteration, we divide one search
region into two ‘potential’ search regions from which we select the next ε.

To identify the next search region, we sort the matrix D in ascending or-
der of its column that stores the values of ε. Then, we find the biggest region
i where no solution is found yet and which is greater than the predefined
tolerance tolε. If no such region is found, then the algorithm terminates. For
our research, we choose the tolerance tolε to be 5% of the region between
the objective bounds f and f̄ .

We repeat this process until some stopping criteria are met. These stop-
ping criteria are defined by the user. For example, it might be the maximum
number of found solutions or some other tolerance restrictions.

To show the effect of the dynamic selection approach, we present an
example in Figure 4.1 that illustrates the approximated Pareto fronts for the
TNK test problem that is presented in [TWFT95]. It visualizes the results
found at each iteration by the ε-constraint method (Figure 4.1(a)) and the
ε-constraint method with dynamic ε selection (Figure 4.1(b)). The light
green dots are the solutions of the true Pareto front, the red dot represents
the value of ε from the current iteration, and the blue dots correspond to
the values of ε from the previous iterations.

Watching Figure 4.1, the ε-constraint method spends several number
of iterations searching in the region where no solutions of the true Pareto
front exist. To put it in another way, the dynamic ε selection approach
helps the algorithm to identify the regions where predominantly to search
for solutions.

In this thesis, we use the ε-constraint method with the dynamic ε se-
lection approach due to its effectiveness in the ε selection. In the coming
chapters, for simplicity, we refer to this method as the ε-constraint method.
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Figure 4.1: TNK problem solved by ε-constraint method and ε-constraint
method with dynamic ε selection.

4.3 Weighted sum method

We consider the problem given in (2.2) with k objectives. In the weighted
sum approach, we aggregate all the objectives by pre-multiplying each ob-
jective fi by user-defined weights wi and form the following problem

minimize
k∑

i=1

wi fi(x)

subject to x ∈ X ,

(4.2)

where wi ≥ 0 for all i = {1, . . . , k} and
∑k

i=1wi = 1.
As the ε-constraint method, this approach is very simple. To show how

the weighted sum method performs to find a solution on the Pareto front,
we consider a bi-objective case of the problem (2.2). Then, the weighted
sum method aims to minimize

y = w1 f1(x) + w2 f2(x)

subject to some given constraints. As y is a linear combination of the ob-
jectives f1 and f2, we can represent it in the objective function space as
a straight line which has the slope defined by the weights w1 and w2 as
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4.3. Weighted sum method

(a) Convex case. (b) Nonconvex case.

Figure 4.2: Graphical illustration of the weighted sum method for convex
and nonconvex Pareto fronts.

shown in Figure 4.2(a). By varying the weight combinations, we can repre-
sent different y lines that touch the Pareto front, and for the convex Pareto
front, we have enough room to quantify such points with different weights.
However, for the nonconvex case presented in Figure 4.2(b), we can see that
there are points of the nonconvex region of the Pareto front that cannot be
reached for any combinations of the weight.

4.3.1 Algorithm

Algorithm 4.3 presents the pseudocode for the weighted metric method
for the bi-objective optimization problem.

The algorithm idea is similar to the ε-constraint method. It finds a
set of Pareto optimal solutions by iteratively updating the weights by a
fixed increment δ. As before, this approach of choosing the weights may
increase the computational time. To alleviate this drawback as in Subsection
4.2.2, we introduce the dynamic weight selection which assists the algorithm
with the choice of weights. We discuss the proposed approach in the next
subsection below.

4.3.2 Dynamic weight selection

Algorithm 4.4 outlines the pseudocode of the weighted sum method in-
tegrated with the dynamic weight selection approach. The main idea of the
algorithm is the same as in Subsection 4.2.2.
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Algorithm 4.3: Bi-objective weighted sum method

Input : Objectives f1, f2 : Rn → R and increment δ ∈ (0, 1)
Output: Set of solutions P

1) Declare a matrix D with 4 columns
2) w1 = 0 and w2 = 1− w1

3) w = (w1, w2)
T

4) while w1 ≤ 1 do
5) Approximately solve the problem (4.2) with w to find xw ∈ Rn

6) D(i, : ) = [ w, xw, f1(xw), f2(xw) ]
7) w1 = w1 + δ and w2 = 1− w1

8) w = (w1, w2)
T

end
9) P = D( : , 2)

The procedure determines which weight combinations should be con-
sidered in order to cover a representative portion of the Pareto front. As
previously, this is accomplished by archiving and analyzing all of the results
obtained during the algorithm’s execution. We record the weight vector w,
the corresponding solutions xw, and the objective function values f1(xw)
and f2(xw).

Firstly, the method determines the bounds where each of the objectives
is optimal using the weights w = (0, 1)T and w = (1, 0)T . In this way, we
identify the region where the true Pareto front lies. Then, it follows the same
procedure presented in Subsection 4.2.2. It chooses the weights depending
on the region where no solution is found yet.

The algorithm stops either when it completes the search for solutions or
when it satisfies some stopping condition defined by the user. Note that for
this thesis, we select the tolerance tolw to be 5% of the allowable range for
the weight w, which are 0 and 1. In other words, we choose tolw to be equal
to 0.05.

Similar to the dynamic ε selection approach presented in Subsection
4.2.2, the proposed method can also perform better than the weighted sum
method outlined in Algorithm 4.3. Thus, as before, we choose to use the
weighted sum method with the dynamic weight selection due to its effec-
tiveness in weight adjustments. In the coming chapters, we simply refer to
this method as the weighted sum method.
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Algorithm 4.4: Bi-objective weighted sum method with dynamic
weight selection

Input : Objectives f1, f2 : Rn → R and tolerance tolw ∈ (0, 1)
Output: Set of solutions P

1) Declare a matrix D with 4 columns

2) Approximately solve the problem (4.2) with w = (0, 1)T to find
xw ∈ Rn

3) D(1, : ) = [ w, xw, f1(xw), f2(xw) ]

4) Approximately solve the problem (4.2) with w = (1, 0)T to find
xw ∈ Rn

5) D(2, : ) = [ w, xw, f1(xw), f2(xw) ]
6) i = 1
7) while not stopping criteria do
8) w = (D(i, 1) +D(i+ 1, 1))/2
9) Approximately solve the problem (4.2) with w to find xw ∈ Rn

10) D(end+ 1, : ) = [ w, xw, f1(xw), f2(xw) ]
11) Sort D in ascending order of D( : , 1)
12) Find i such that norm(D(i, 3 : 4)−D(i+ 1, 3 : 4)) is maximum

and D(i, 1)−D(i+ 1, 1) > tolw
13) if i = ∅ then stop

end
14) P = D( : , 2)

4.4 Weighted metric method

We consider the problem (2.2) with k objectives. In the weighted metric
method, we aim to find the closest feasible solution to an ideal point z∗

using the lp-metric for p ∈ [ 1, ∞ ]. For p ∈ [ 1, ∞ ), this is done by solving
a single-objective optimization problem of the form

minimize

( k∑
i=1

wi |fi(x)− z∗i |p
)1/p

subject to x ∈ X ,

(4.3)

and for p =∞, by solving the problem of the form

minimize max
i={1,...,k}

{wi |fi(x)− z∗i |}

subject to x ∈ X ,
(4.4)
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4.4. Weighted metric method

where wi ≥ 0 for all i = {1, . . . , k} and
∑k

i=1wi = 1.
The method can perform differently depending on the lp-metric. The

well-known metric types are Manhattan metric (p = 1), Euclidean metric
(p = 2), and Chebyshev metric (p =∞).

To show how the metric types differ from each other and how they affect
the performance of the weighted metric method, we consider the bi-objective
optimization problem. Figure 4.3 visualizes how the weighted metric method
with different metric types works.

(a) Manhattan metric. (b) Euclidean metric. (c) Chebyshev metric.

Figure 4.3: Graphical illustration of the weighted metric method with dif-
ferent metric types

As can be seen from Figure 4.3(a), the weighted metric method with
p = 1 is similar to the weighted sum method discussed in Section 4.3, and
thus, it also cannot approximate the points of the nonconvex region of the
Pareto front [JMC09]. With p = 2, the method can perform better compared
to p = 1 as presented in Figure 4.3(b). On the other hand, it increases the
degree of the polynomial that is being optimized in the problem (4.3), and
this may complicate the optimization process. Lastly, the weighted metric
method with p =∞ can reach the solutions lying on the nonconvex portion
of the Pareto front as illustrated in Figure 4.3(c). However, note that the
reformulated problem given in (4.4) is nonsmooth.

4.4.1 Algorithm

Algorithm 4.5 presents the pseudocode of the weighted metric method
with the lp-metric. The procedure is very similar to the weighted sum
method outlined in Algorithm 4.3. The only difference is that the user
needs to input the metric type with which the method approximates the
Pareto front.
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Algorithm 4.5: Bi-objective weighted metric method

Input : Objectives f1, f2 : Rn → R, increment δ ∈ (0, 1), and
metric type p ∈ [ 1, ∞ ]

Output: Set of solutions P
1) Declare a matrix D with 4 columns
2) w1 = 0 and w2 = 1− w1

3) w = (w1, w2)
T

4) while w1 ≤ 1 do
5) Approximately solve the problem (4.3) with w and lp-metric to

find xw ∈ Rn

6) D(i, : ) = [ w, xw, f1(xw), f2(xw) ]
7) w1 = w1 + δ and w2 = 1− w1

8) w = (w1, w2)
T

end
9) P = D( : , 2)

4.4.2 Dynamic weight selection

Like other scalarization techniques, in order to find several solutions of
the Pareto optimal set, we need to run the weighted metric method with
different weight combinations. Unfortunately, this can produce some compu-
tational effort. Therefore, as before, we apply the dynamic weight selection
approach to the weighted metric method. This approach follows the same
logic discussed in Subsection 4.3.2, and thus, we skip the pseudocode for
this method.

In this thesis, we use the weighted metric method with dynamic weight
selection to which in the coming chapters we simply refer as the weighted
metric method.

4.5 Genetic algorithms

The genetic algorithm (GA) is an optimization method based on the
concepts of natural selection and genetics. The main idea is to imitate
an evolutionary process on a set of feasible solutions. It removes the poor
solutions and generates a set of better solutions. The pseudocode is retrieved
from [AH17] and is presented in Algorithm 4.6.

In GA, solutions are referred as individuals, while we call a set of solu-
tions as a population. Moreover, we call new individuals created during the
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4.5. Genetic algorithms

Algorithm 4.6: GA

Input : Objective f : Rn → R, a feasible region X ∈ Rn, an initial
population P 0 = {x1,x2, . . . ,xN}, and mutation
probability γ ∈ (0, 1)

Output: Final population P final

1) t = 0
2) while not stopping criteria do

3) Evaluate the fitness of all x ∈ P t using f(x) . Fitness

4) Select 2 parents from P t and go to 5) . Selection

or select 1 survivor from P t and go to 7)
5) Generate a new offspring xnew from 2 parents . Crossover

6) Mutate xnew with the probability γ . Mutation

7) if xnew 6∈ X then
Return to 4)

else

Add xnew to P t+1

if |P t+1| < N then return to 4)

end

8) t = t+ 1

end

9) P final = P t

evolutionary process as offspring.
Given an initial population P 0, GA begins by assigning each individual

a fitness score that is used to select survivors and parents. The fitness
determines how strong an individual x is based on the function value f(x).
The likelihood that an individual will be selected to reproduce the next
population depends on the individual’s fitness score.

The randomly selected parents create offspring using the crossover. As
the offspring in nature are never exact copies of their parents, they go under
the mutation step to create more variation. Then, the feasible offspring are
added to the next population P t+1, while the infeasible ones are rejected and
we go back to the selection step. Note that the child population P t+1 must
have as many individuals as its parent population P t. This evolutionary
process stops when some stopping condition is satisfied, and the algorithm
returns the final population with better solutions. A common stopping
criterion is to set the maximum number of generations or to set the maximum
function evaluations [AH17].
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The GA is very flexible so that the user can choose crossover and muta-
tion techniques. Some of them can be found in [AH17]. In this thesis, the
version of GA that we used was NSGA-II taken from [DPAM02], and all
parameters were left at their default values. The details of the parameter
configurations are given in Section 5.2.

In the GA, the definition of fitness is indeed very flexible. For a single-
objective optimization problem, the fitness of the given population can be
represented by the function values evaluated for this population. In the
multi-objective case, we seek to quantify the fitness score in a way that
for the given population it shows the goodness of an individual for all the
objectives at the same time. Therefore, in the coming GA methods, we use
the non-dominated sorting approach presented in Chapter 2 for quantifying
the fitness score of the individuals.

4.5.1 NSGA-II

One of the well-known benchmark GA methods developed for the multi-
objective setting is NSGA-II which has succeeded in achieving the uniformly
distributed and well-approximated Pareto front for bi-objective problems
[FTG15]. The main goal of NSGA-II is to find a set of Pareto-optimal
solutions using the GA and non-dominated sorting. In Algorithm 4.7, we

Algorithm 4.7: NSGA-II

Input : Objectives f = {f1, f2, . . . , fk}, a feasible region X ∈ Rn,
an initial population P 0 := {x1,x2, . . . ,xN}, and
mutation probability γ ∈ (0, 1)

Output: Final population P final of non-dominated solutions
1) t = 0
2) while not stopping criteria do

3) Generate a new population Qt using GA(f,X , P t, γ)

4) Rt = P t ∪Qt

5) Apply non-dominated sorting on Rt

6) Calculate crowding distances for all x ∈ Rt

7) Generate P t+1 by choosing N solutions of Rt based on the
fitness and crowding distance

8) t = t+ 1

end

9) P final = P t
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provide the pseudocode for NSGA-II [DPAM02].
To better understand the algorithm, we discuss Steps 3-7 in more detail

below.
At Step 3, we create a child population Qt from the parent population

P t using the GA. Then, at Step 4, the parent population P t and child
population Qt are combined to produce a population Rt of size 2N . In this
way, we preserve the best solutions of the current population in the next
generation.

At Step 5, we evaluate the fitness of all individuals of the population Rt

by ranking them based on the Pareto dominance as stated above. Then, at
Step 6, the crowding distance is calculated for each individual of the pop-
ulation Rt. As shown in Figure 4.4, the crowding distance of an individual
pi is a perimeter of the rectangle formed by two closest neighbors pi−1 and
pi+1 in the objective function space. It shows how close an individual is to
its neighbors in the objective function space. Note that for the less crowded
solutions, the crowding distance is higher. Therefore, in order to reach a
better diversity in solution, the solutions with higher crowding distances are
preferable.

𝑝!"#

𝑝!
𝑝!$#

Figure 4.4: Graphical illustration of the crowding distance.

Lastly, at Step 7, we generate the next population P t+1 by selecting only
the best N solutions of Rt based on the rank and highest crowding distances.
NSGA-II terminates when some stopping condition is satisfied and returns
the final population of non-dominated solutions.

4.5.2 FP-NSGA-II

The paper by [PF03] showed that the performance of NSGA-II decreases
for the optimization problems with higher dimensions and more variables.
Thus, Fettaka et. al. [FTG15] proposed a new hybrid algorithm that applies
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NSGA-II with the prediction algorithm FP-NSGA-II to improve convergence
to the true Pareto optimal set. The pseudocode is given in Algorithm 4.8
[FTG15].

The method is similar to NSGA-II, except it has an additional step for
the predictive operator to produce better offspring. This step is called front
prediction. The general idea of the front prediction is to identify the direc-
tion in the decision variable space toward the true Pareto optimal solutions
[FTG15]. This is done in the following way.

Given the population P t, we apply the Pareto front filtering, which was
discussed in Chapter 2, on P t and find the Pareto optimal set, which forms
the solutions of the first front F t

1. In the same way, by applying the Pareto
front filtering once again on P t \F t

1, we identify the solutions on the second
front F t

2.

Algorithm 4.8: FP-NSGA-II

Input : Objectives f = {f1, f2, . . . , fk}, a feasible region X ∈ Rn,
an initial population P 0 := {x1,x2, . . . ,xN}, and
mutation probability γ ∈ (0, 1)

Output: Final population P final of non-dominated solutions
1) t = 0
2) while not stopping criteria do

3) Determine Front in P t. Label this F t
1

4) Create P̃ t = P t \ F t
1

5) Determine Front in P̃ t. Label this F t
2. (Note, if P̃ t = ∅, then

F t
2 = ∅)

6) if F t
2 6= ∅ then

7) foreach x ∈ F t
1 do

8) Determine y∗ = argminy∈F t
2
norm(f(x)− f(y))

9) Calculate step = x− y∗

10) xpred = x + step

11) Add xpred to P t

end

end

12) P t+1 = NSGA-II(f ,X , P t, γ)
13) t = t+ 1

end

14) P final = P t
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If the second front F t
2 is not empty, then at Step 8, for each solution

x in F t
1, we determine the solution y∗ in F t

2 which is the nearest to x
in the objective function space. Then, at Steps 9-10, we calculate a vector
difference between x and y∗ and refer to it as a step direction with which we
extrapolate the predicted solutions xpred. At Step 11, we add the predicted
solution xpred to the population P t.

Then, we continue with the NSGA-II applied to the population P t.
Note that, Steps 6-12 of the algorithm increase the population size of P t.
In other words, suppose that for each t, we generate N t

pred number of the

new predicted points. Then, the size of the population P t that is passed
to NSGA-II is N + N t

pred. This implies that FP-NSGA-II has N t
pred more

f-calls than NSGA-II in each iteration.
Lastly, Algorithm 4.8 terminates when some predefined stopping condi-

tion is satisfied and returns the final population of non-dominated solutions.
To give some idea of how NSGA-II and FP-NSGA-II are performing, we

imitate one simulation from the paper by [FTG15] and present in Figure
4.5 that illustrates the Pareto fronts found by the methods for the TNK
problem. The light green dots are the true Pareto front, while the results
for NSGA-II and FP-NSGA-II are given by a red cross symbol and blue
circles, respectively.

Watching Figure 4.5, we can see that FP-NSGA-II performs better than
NSGA-II in every generation. This example supports the results presented
in the paper by [FTG15] that compares both methods for a fixed number of
generations.

Figure 4.5: TNK problem solved by NSGA-II and FP-NSGA-II.
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4.6. Warm start strategy

4.6 Warm start strategy

Referring to the scalarization techniques discussed in Sections 4.2-4.4,
we notice that all of them solve a new single-objective optimization problem
in each iteration. Depending on the original problem, these single-objective
problems can be classified as smooth/nonsmooth, convex/nonconvex, lin-
ear/quadratic/nonlinear, differentiable/nondifferentiable, etc. Based on this
information, the user can use any appropriate optimization solver.

Generally, before the optimization solver starts an optimization process,
the user can set a starting point that indicates the initial values for the
decision variables. This starting point represents the best guess where we
expect to find an optimal point. If no starting point is provided by the user,
then the optimization solver takes a default starting point.

For most optimization methods, the better the starting point, the faster
the convergence. With this in mind, we implement the warm start strategy.

The main idea of the warm start strategy is to provide the optimization
solver with ‘good’ starting points so that it can converge to the optimal
solution faster. Figure 4.6 visualizes the warm start strategy for the vertical
alignment setting.

Consider the bi-objective optimization problem with objectives Cconstruct

and Cfuel proposed in Chapter 3. Recall that in the vertical alignment
design we input a ground profile to construct the road profile as an output.
Moreover, as mentioned in the previous sections, the first step of all of the
selected scalarization techniques is to identify the region where the true
Pareto front lies by optimizing each objective separately. So, as shown
in Figure 4.6, we start by minimizing one of the objectives, Cconstruct, for
a given ground profile and some default starting point that is set by the

Ground profile

Road profile
Default starting point

Road profile

YES NOStopping 
criteria?

ARCHIVE
of 

starting points

Retrieve 
a starting point

Output:

ARCHIVE 
of 

starting points

min 𝐶!"#$%&'!% min {𝐶!"#$%&'!%, 𝐶(')*}

Starting 
point

Ground 
profile

Figure 4.6: Graphical illustration of the warm start strategy.
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optimization solver. Then, we save the resulting road profile to use it later
as a starting point for the next optimization problem.

We record all road profiles found during the algorithm process into an
archive of starting points. If the stopping criteria defined by the user are
not met, then we retrieve one starting point from this archive in order to use
it as a warm start in the next optimization procedure. In particular, for the
ε-constraint method, our choice of the starting point depends on the value
of the current ε. We select the road profile that was obtained for the ε value
that is closest to the current ε. Similarly, for the weighted sum method
and weighted metric methods, we use the weight values to determine the
potential starting point.

With the selected starting point and the given ground profile, we move
to the next optimization problem and save the resulting road profile into the
archive. In this way, we use a warm start in each iteration of the scalarization
techniques to select the potentially ‘good’ starting points that can accelerate
the convergence process.
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Chapter 5

Numerical results

In this chapter, we describe the numerical experiments that were per-
formed to analyze the efficiency of the chosen MOO methods for solving the
proposed bi-objective optimization problem.

In Section 5.1, we discuss the well-known performance indicators that are
used to compare the results found by the MOO methods. Then, in Section
5.2, we outline how the experiment is conducted and give some overview on
the experimental setup and test problems. In Section 5.3, we present all the
numerical results analyzed by the selected performance indicators.

5.1 Performance indicators

To identify the most promising technique for solving the proposed MOO
problem, we want to compare the performance of the selected methods in a
quantitative manner. In the single-objective minimization problem, we say
that the method with the smaller objective function value is better. In the
multi-objective case, it is not straightforward what the appropriate qual-
ity measures are for the approximated Pareto fronts. In order to compare
several sets of the solutions found by different MOO methods, we use perfor-
mance indicators that attempt to quantify the quality of the found solution
set using a scalar value. In the coming subsections, we review several perfor-
mance indicators found in the literature and then discuss the selected ones
more closely.

5.1.1 Literature review

There are numerous studies conducted to develop the performance in-
dicators that aim to assess the quality of Pareto front estimates. They
attempt to examine how close the approximation of the Pareto front is to
the true Pareto front and how diverse the found solutions are. As the au-
thors [ZTL+03, CSQ12] mentioned, there is no performance indicator that
surpasses other indicators and is universal for all the MOO problems. Below
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we discuss some of the well-known and widely-used performance indicators
along with their strengths and weaknesses.

Hypervolume is the most well-known performance indicator introduced
by Zitzler [Zit99]. It measures the volume of space covered by the points of
the obtained Pareto front and bounded by some predefined reference point
in the objective function space. A positive fact for the hypervolume is that
it can capture the information about the convergence and diversity of the
found solution set without knowing the true Pareto optimal set. On the
other hand, the measure is sensitive to the choice of the reference point
[CSQ12]. We attempt to address this for our problem in Subsection 5.1.2.

Generational distance [VV99] is another commonly used performance
indicator that evaluates how close the found Pareto optimal solutions are to
the true Pareto optimal set. It calculates the average Euclidean distance in
the objective function space from each obtained solution to the closest point
on the true Pareto front which must be known beforehand [ABC+20]. A
weakness of this indicator becomes apparent by considering the case when
the method finds only one solution and this solution lies on the true Pareto
front. Then, the generational distance will be 0 implying that the found
result is an ideal Pareto front approximation, which is clearly not correct.

Inverted generational distance [CC05], averaged Hausdorff distance
[SELC12], and modified inverted generational distance [IMTN15] are similar
variations of the generational distance that can handle its drawback but still
require the true Pareto front to be known.

Spread, also known as the ∆-metric [DPAM02], is also a common per-
formance indicator. It is a measure showing the diversity and uniformity
of the solutions along the true Pareto front. However, the spread’s equa-
tion proposed by [DPAM02] is applicable only for bi-objective problems. In
[ZJZ+06], the spread indicator is advanced for problems with more than two
objectives. The main disadvantage of this performance indicator is that it
needs the true Pareto optimal set to be predetermined before the assessment.

Similar to the spread, one can use another performance indicator called
spacing [Sch95, DPAM02]. Spacing also analyzes the diversity and unifor-
mity of the found Pareto optimal set in the objective function space but
does not need any information about the true Pareto front. Nevertheless,
as it only considers the distance between a point and its neighbor, it does
not assess the convergence aspect, that is, it does not examine how close the
found solutions are to the true Pareto optimal set.

Another common performance indicator is the final number of non-
dominated solutions. As its name suggests, it counts the number of non-
dominated solutions of the found solution set and does not need the infor-
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mation about the true Pareto optimal set. However, this indicator might
be inapplicable in general [ABC+20]. For instance, suppose that we have
method A that determines an approximated Pareto optimal set with the
hundred non-dominated solutions, whereas another method B finds only
one solution that can Pareto dominate all the solutions found by A. Then,
according to the final number of non-dominated solutions, we reach an in-
correct conclusion that method A is better than B.

Error ratio is another performance indicator that deals with the car-
dinality of the found Pareto optimal solutions [VV99]. It identifies what
portion of the found solutions belongs to the true Pareto optimal set. This
indicator may suffer from rounding errors during the classification process.
Moreover, the true Pareto front must be available in advance.

Lastly, the CPU time plays a crucial role while comparing the perfor-
mance of the optimization methods. It records the time required to find the
approximation of the Pareto optimal set with appropriate quality. Note that
the quality of the solutions can be defined by the above-stated performance
indicators.

More information on other performance indicators can be found in the
existing surveys [ZTL+03, CSQ12, ABC+20].

In this thesis, we employ the performance indicators that can be evalu-
ated for unknown true Pareto front: hypervolume, spacing, and CPU time.
The reason why we choose these indicators is that using the CPU time we
can identify the fastest MOO method, and using the other two indicators
we can define the conditions for good quality results. While the spacing
indicator can purely examine the diversity and uniformity of the obtained
solutions, the hypervolume indicator can assess both convergence and diver-
sity of the results. In this way, we attempt to determine the most promising
MOO method that can find relatively good results for the proposed MOO
problem in road vertical alignment design.

In the next subsections, we discuss the selected performance indicators
in more detail.

5.1.2 Hypervolume

Hypervolume is a measure of the region in the objective function space
dominated by the Pareto optimal solutions pi and bounded from top by
a reference point as shown in Figure 5.1 [FTG15, ABC+20]. We choose
the reference point to be the point slightly worse than the nadir point of
the obtained Pareto front. For consistency in calculations and fairness in
comparisons, the reference point must be the same for all the compared
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Figure 5.1: Graphical illustration of the hypervolume indicator for bi-
objective problem. Hypervolume is the area of the shaded region.

MOO methods. Also, note that the reference point is not the nadir point
itself, but is related to it. If we choose the nadir point as the reference
point for all the compared methods, then the space covered by the found
edge points would be 0, that is the hypervolume value for those edge points
would be 0. This implies that the method could not find those solutions
at the edges of the Pareto front, which is actually not true. This is the
main reason why we do not choose the nadir point as the reference point for
calculating the hypervolume indicator.

Hypervolume indicator can tell the user about the closeness of the found
solutions to the true Pareto front and, at the same time, about the diversity
of the solutions [FTG15, ABC+20]. Moreover, there is no need to know the
true Pareto front to calculate this metric. The MOO method with a higher
hypervolume is considered to be better than the others.

Suppose that we optimize a small road with 22 sections using the
ε-constraint method and weighted sum method. As a result, we obtain
the Pareto fronts shown in Figure 5.2(a). Choosing the reference point as
the point that is 5% worse than the nadir point, the hypervolume indicators
are 3.33 × 105 for the ε-constraint method and 3.16 × 105 for the weighted
sum method. Visually and numerically, we can conclude which method per-
forms better. Nonetheless, these values for hypervolume are quite large.
This indeed may complicate the analysis process later.

To alleviate these issues, we normalize the obtained solutions into
1-to-1 box as shown in Figure 5.2(b). Then, by selecting the reference point
at a point (1, 1)T , we find that the hypervolume indicators are 0.80 for the
ε-constraint method and 0.75 for the weighted sum method. Note that the
hypervolume for an ideal case will be 1. In this way, we can easily identify
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(a) Original objective function space. (b) Normalized objective function
space.

Figure 5.2: Example of the found Pareto fronts for the road with 22 sections.

what portion of the 1-to-1 box is covered without visualizing the results,
and we can come to the same conclusion on which method performs better
for the given test problem.

Note that while normalizing the results into the 1-to-1 box, we do not put
the solutions located at the edges at the points (1, 0)T and (0, 1)T , instead,
we keep 5% of space farther from the edges of the plot. This is done in order
to track whether the MOO method could identify those solutions or not.
If we put them at the corners and the method indeed finds them, then the
space covered by those solutions would be still 0.

There are several approaches to estimate the hypervolume indicator for
the given Pareto front. In this thesis, we calculate the hypervolume indicator
using the algorithm proposed by [Fle03] and coded by [Kru11].

5.1.3 Spacing

Spacing is a measure showing how evenly and uniformly the resulting
Pareto optimal solutions are distributed among themselves. For the approx-
imated Pareto front PF∗, the spacing indicator ∆′ is calculated as follows
[JOZF14, ABC+20].
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∆′ =

|PF∗|−1∑
i=1

|di − d̄|
|PF∗| − 1

, (5.1)

where di are the Euclidean distances between consecutive solutions in the
objective function space as shown in Figure 5.3, and d̄ is the average of all
di for i ∈ [ 1, |PF∗| − 1 ]. Equation (5.1) is applicable only for bi-objective
optimization problems. For more than two objectives, refer to [ZJZ+06].

𝑑!

𝑑"

𝑑#

𝑑$

Figure 5.3: Graphical illustration of the spacing indicator for bi-objective
problem. d1, d2, d3, and d4 are the Euclidean distances between consecutive
solutions.

Note that the spread indicator for the ideally distributed dataset is 0,
while for the clustered distribution the value increases. Moreover, this indi-
cator does not give any information about how good the found results are
compared to the true Pareto front. It just assesses how well the obtained
results are distributed among themselves.

5.1.4 CPU time

CPU time (sec.) is a measure indicating an approximate performance
time required to obtain an estimate for the Pareto optimal set with some
good quality under some timeout limit. We define good quality results with
some successful test condition(s). In this way, we aim to know whether
the chosen MOO method works well for the proposed MOO model. In
this thesis, the successful test conditions are defined using the hypervolume
and/or spacing indicators.

Using the CPU time, we implement the so-called performance profiles
developed by Dolan and Moré [DM02] to identify which method performs
better and finds good quality results. The performance profile considers the
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number of problems resolved by the method for the given successful test
condition(s), as well as the CPU time required to solve them.

5.2 Experiment description

The experiment is performed on 30 test problems, that is, on 30 road
samples with distinct ground profiles. The road samples vary in length (num-
ber of stations). The data are provided by our industrial partner Softree
Technical Systems Inc. For each problem, we test the following 10 methods.

1. ε-constraint method;

2. ε-constraint method with warm start;

3. Weighted sum method;

4. Weighted sum method with warm start;

5. Weighted metric method (p = 1);

6. Weighted metric method (p = 1) with warm start;

7. Weighted metric method (p =∞);

8. Weighted metric method (p =∞) with warm start;

9. NSGA-II;

10. FP-NSGA-II.

Each method is run until either the problem is solved, or the allocated
timeout limit is hit. The timeout limit is presented in Table 5.1.

The visualizations of the found Pareto fronts for all 30 test problems
appear in Appendix B.

Table 5.1: Timeout limits that are set for the experiment.

Stations Roads Time (sec.)

10-20 stations 8 300
20-30 stations 7 300
30-50 stations 4 1800
50-80 stations 4 3600
80-100 stations 7 10800
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Note that for the proposed MOO problem we skip the weighted metric
method with p = 2 since the reformulated problem given in (4.3) with the
Euclidean metric becomes Mixed-Integer Polynomial Program (MIPP) of
degree higher than 2 that is also nonsmooth and nonconvex. For our MOO
model, this MIPP problem was not solved by the tested solvers (SCIP,
BARON, and BMIBNB) in the given timeout limits.

Before conducting the main experiment on the 30 test problems, we im-
plemented all the chosen scalarization approaches with/without the warm
start strategy as described in the pseudocodes provided in Chapter 4. For
the NSGA-II method, we used the free-accessed code written in MATLAB
by [Abr19], while for the FP-NSGA-II method, we have accordingly modi-
fied the code for NSGA-II using the pseudocode given in [FTG15]. All the
selected MOO algorithms were unit tested on the 14 benchmark test prob-
lems with two objectives (ZDT1-ZDT6, SRN, TNK, and other test problems
given in [iJ15]).

Even though all the selected scalarization methods are deterministic, we
run each of them 3 times on all 30 test problems to record the minimum CPU
time spent. In this way, we aim to determine the best CPU time recorded
for the least number of external operations performed in the background by
the computer.

The methods such as NSGA-II and FP-NSGA-II are stochastic, and
therefore, they tend to find a different set of solutions in each run. With this
in mind, we run these methods 5 times each and record all the results found.
The parameter settings used for NSGA-II and FP-NSGA-II are similar to
those used by [DPAM02, FTG15] and are summarized in Tables 5.2-5.3.

Table 5.2: Parameter configurations for NSGA-II and FP-NSGA-II similar
to those used by [DPAM02, FTG15]. Any other parameters were left at
their default values.

Setting Value

Selection Binary tournament selection
Crossover method Simulated binary crossover
Crossover rate 0.9
Distribution index for crossover 20
Mutation method Polynomial mutation
Mutation rate 1/Number of decision variables
Distribution index for mutation 20
Constraint handling strategy Constrained tournament method
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Table 5.3: Population size used for NSGA-II and FP-NSGA-II.

Stations Population size

10-20 stations 100
20-30 stations 100
30-50 stations 200
50-80 stations 500
80-100 stations 1000

We perform the experiment using the vehicle characteristics for the
CAT 793D off-highway truck (as in Subsection 3.2.3) that can be retrieved
from the official website of Caterpillar manufacturer. Note that the model is
applicable for any heavy truck type. Moreover, we assume that the vehicle
running speed is constant and is 10 m/s.

In this thesis, the optimization process is carried out using the well-
known CPLEX solver retrieved from the academic edition of the IBM ILOG
CPLEX Optimizer 12.10.0 [Cpl09]. This solver is accessed through a free
toolbox YALMIP [Löf04] used for modeling and optimization in the pro-
gramming platform MATLAB. For this thesis, we use the R2019b version
of the MATLAB [MAT19]. The technical characteristics of the computer
on which the experiment was performed are a Dell workstation with an In-
tel(R) Core(TM) i7 2.8GHz processor, a 16 GB of Random Access Memory
(RAM), and a 64-bit Windows 10 operating system.

5.3 Experimental results

We first focus on the effect of the warm start strategy on the convergence
speed of the selected scalarization techniques. Then, we aim to determine
which is the most promising MOO method for solving the proposed opti-
mization problem in the vertical alignment design.

5.3.1 Effect of warm start strategy on speed

As mentioned in Section 4.6, the main idea of implementing the warm
start strategy on the scalarization techniques is to speed up the optimization
process by converging to the optimal solution faster.

Table 5.4 presents the approximate percentage value by which the warm
start strategy accelerates the convergence speed of the chosen scalarization
techniques. In the brackets, we state the standard deviations of the results.
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Table 5.4: Average speed improvement (stdev) due to the warm start strat-
egy.

Stations ε-constraint
method

Weighted
sum

method

Weighted
metric
method
(p = 1)

Weighted
metric
method
(p =∞)

10-20 stations 15.1% (2.0) 6.8% (2.2) 15.2% (1.6) 6.8% (0.1)
20-30 stations 17.3% (1.5) 18.9% (0.7) 21.7% (0.8) 6.2% (0.5)
30-50 stations 18.0% (0.4) 14.0% (2.8) 11.3% (3.6) *
50-80 stations 13.9% (0.1) 7.6% (0.2) * *
80-100 stations 13.9% (0.5) 7.6% (0.3) 8.2% (0.8) *

Average 15.7% (0.9) 11.0% (1.2) 14.1% (1.7) 6.5% (0.3)

* Terminated due to the timeout limit.

Moreover, we ignore the test problems that terminated with the timeout
limit. If every problem belonging to the same entry terminated due to the
timeout limit, then we mark such entries with a star symbol. As a result,
we can see that the warm start strategy indeed improves the CPU time of
the selected MOO methods by approximately 5-15%.

In the next subsection, we present results for the other performance
indicators and discuss how the warm start strategy has affected the quality
of the results.

5.3.2 Examination of performance indicators

To present the results obtained for the hypervolume and spacing indica-
tors for all 30 test problems and all 10 MOO methods, we use the box-and-
whisker plots given in Figures 5.4-5.5.

Each box-and-whisker plot shows the distribution of numerical results for
each MOO method by visualizing the minimum, lower quartile, median, up-
per quartile, and maximum of the selected indicator. The box-and-whisker
plots label the mean values with a cross symbol and the outliers with the
dots outside the box. The ends of the box are the upper and lower quar-
tiles, whereas a line inside the box is the median. The whiskers are the two
vertical lines that extend outside the box to the maximum and minimum
observations.

For Figure 5.4, the higher hypervolume values are preferable, and the
ideal result would be 1. For Figure 5.5, the lower spacing values are desired,
and the ideal result would be 0.
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Figure 5.4: Results for hypervolume indicator (higher is better). In a box-
and-whisker plot: the ends of the box are the upper and lower quartiles; a
line inside the box is the median; a cross is the mean; the whiskers are the
two lines that extend outside the box to the highest and lowest observations.

First of all, we focus on scalarization techniques. As we can see from both
plots, the scalarization techniques with the warm start strategy perform as
well as (or slightly better in some cases) the versions without the warm start.
Combining this information with the timing results in Subsection 5.3.1, it
is clear that using the warm start is a good choice.

The cases where the warm start strategy slightly improves the perfor-
mance of some of the MOO methods can be explained as follows. Among 30
test problems, the scalarization techniques solved the bulk of them within a
time range that is less than the timeout limit. Nonetheless, there were still
several test problems that required the entire timeout limit to terminate. So,
the warm start strategy showed the improvement only in those instances by
accelerating the optimization process and performing more iterations to find
more solutions before reaching the given timeout limit.

Now, we focus our attention on the numerical results found by the
NSGA-II and FP-NSGA-II methods given in Figures 5.4-5.5. For each of
them, we illustrate the results for all 5 runs. In all runs, both methods obtain
a wide spread of results for the hypervolume and spacing indicators. This
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Figure 5.5: Results for spacing indicator (lower is better). In a box-and-
whisker plot: the ends of the box are the upper and lower quartiles; a line
inside the box is the median; a cross is the mean; the whiskers are the two
lines that extend outside the box to the highest and lowest observations.

implies that these selected GA methods are unstable for the proposed MOO
problem. A possible reason for their non-stable performance can be the
vast amount of equality constraints required to define the objective func-
tion for the road construction cost. These constraints are retrieved from
the blackbox model described in [MR12, BHLH17]. Generally, the equality
constraints reduce the feasible search space which, in turn, complicates the
selection of feasible solutions for the chosen GA methods.

Overall, based on the results shown in Figures 5.4-5.5, the ε-constraint
method with the warm start is a candidate for the promising MOO method
for our proposed problem followed by the weighted metric method (p =∞)
with the warm start.

5.3.3 Comparison of time

Now, we analyze the CPU time performance of the chosen MOO meth-
ods by visualizing the performance profiles for different successful test con-
dition(s).

Before discussing the results, we briefly present an interpretation of the
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performance profiles. On its y-axis, we have the percentage of test problems
that passed the specified successful test condition(s), whereas, on its x-axis,
we have the performance ratio showing the ratio of time cost. For example,
an (x, y) point of (5, 0.3) for an examined solver means that given 5 times
as long as the fastest solver, the examined solver successfully solved 30% of
problems. As such, the method with the highest speed of convergence would
be found at τ = 0 with the highest value of the y-axis, while the method
solving the most number of test problems with good quality would be found
close to the top part of the plot. So, to determine the fastest and efficient
method, we need to look for the graph closest to the top-left region of the
performance profile.

Moving on to the discussion of the results, we make the following impor-
tant notes. For the scalarization techniques, we focus only on their warm
start versions, because, as discussed before, they obtain as good (or slightly
better) results as their original versions within a shorter amount of time.
For the GA methods, we consider only the best run out of 5 runs for each
test problem.

Based on the box-and-whisker plots presented in Figures 5.4-5.5, we
first choose to examine the performance of the methods for some non-strict
successful test conditions: hypervolume ≥ 0.75 and spacing ≤ 0.25 (both
of them implied at the same time). In this way, we aim to identify the
most suitable and promising method for our MOO problem that determines
average quality results for most of the test problems.

Figure 5.6 shows the performance profile for the selected successful test
conditions. As can be seen from Figure 5.6, the ε-constraint method with
the warm start successfully solves the most number of test problems (23
problems out of 30) with relatively good time performance. Nonetheless,
the fastest method is the weighted sum method with the warm start, as it
solves half of the test problems the fastest. Moreover, we did an additional
test by removing the ‘best’ method (that is, ε-constraint method with the
warm start) from the performance profile to verify that the weighted sum
method is the second ‘best’ method. This was done to check that there is
no switching phenomenon (see [GS16]). Lastly, for Figure 5.6, note that
even the best runs of the GA methods show poor results for the proposed
optimization model since they use the entire timeout limit to stop.

In Figure 5.7, we examine the CPU time performance for other different
successful test conditions.

For the hypervolume ≥ 0.75 (Figure 5.7(a)), we obtain almost similar
results as in Figure 5.6, while for the spacing ≤ 0.25 (Figure 5.7(b)), we
reveal the similar pattern as in Figure 5.6 but with more number of the
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Figure 5.6: Performance profile with the successful test conditions of hyper-
volume ≥ 0.75 and spacing ≤ 0.25.

successfully solved test problems. This implies that the compared MOO
methods can reach diversity easier than convergence. For the hypervolume
≥ 0.90 (Figure 5.7(c)), only a small portion of the test problems passed this
strict condition, and most of the methods could not reach the high level
of convergence. For the spacing ≤ 0.1 (Figure 5.7(d)), we reveal that the
ε-constraint method with the warm start performs best by solving almost
half of the problems with a high level of diversity. Moreover, we can notice
that the GA methods obtain better results for diversity than the weighted
sum method with the warm start and the weighed metric method (p = 1)
with the warm start. From these two plots, we can again conclude that for
the given MOO model the diversity and uniformity of the solutions can be
obtained easier than the convergence.

Overall, Figure 5.7 supports the conclusions of Figure 5.6 that the ε-
constraint method with the warm start provides the most robust conver-
gence.
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(a) Hypervolume ≥ 0.75.
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(b) Spacing ≤ 0.25.
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(c) Hypervolume ≥ 0.90.
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Figure 5.7: Performance profiles with different successful test conditions.
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5.3.4 Summary of results

We tested 10 MOO methods on 30 road samples and analyzed the ob-
tained results using the performance indicators. We find the following re-
sults.

− The warm start strategy accelerates the performance of the scalariza-
tion techniques by approximately 5% to 15%.

− The warm start versions of the scalarization methods obtain similar
(or slightly better) results as their original versions.

− The most promising and recommended MOO method for the proposed
optimization model is the ε-constraint method with the warm start
strategy.

− The second best MOO method is the weighted sum method with the
warm start strategy. It shows the best performance in time but has a
notably lower success rate than the ε-constraint method.

− The GA methods perform unstably and poorly for our MOO problem.

− The diversity and uniformity of the solutions can be reached easier
than the convergence.
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Chapter 6

Conclusion

6.1 Conclusion

The cost of road design is significant as it needs large capital investments
for building new roads and incurs future user costs as well. This thesis
proposes a multi-objective approach that seeks to find road profiles that are
optimal for the manufacturers in terms of the road construction cost and at
the same time for the users in terms of the vehicle operating costs.

In our model, we use the road construction cost defined by the MILP
model given in [MR12, BHLH17]. As the vehicle operating cost, we employ
the fuel consumption cost proposed by [ASB12]. It estimates fuel usage
based on the vehicle parameters and environmental factors that affect vehicle
motion. Moreover, the fuel consumption model was validated on the dataset
given in [SAKK16] with the coefficient of determination R2 = 0.93.

In this thesis, we examine and test several well-known MOO methods
on 30 road samples to determine the most promising approach for optimiz-
ing our model. We focus on three classical scalarization techniques (the
ε-constraint method, weighted sum method, and weighted metric methods)
and two commonly-used GA methods (NSGA-II and FP-NSGA-II). More-
over, we propose the warm start strategy to accelerate the performance of
the chosen scalarization techniques. The results were assessed with hyper-
volume indicator (to test the convergence of solutions), spacing indicator (to
test the diversity of solutions), and CPU time (to test the speed).

As a result, we determine that the warm start versions of the scalariza-
tion techniques obtain similar (or slightly better) results as their original
versions, as well as in less time. Moreover, the most robust and recom-
mended MOO method for our proposed problem is the ε-constraint method
with the warm start strategy. We also identify that the compared GA meth-
ods perform poorly and unstably for our problem.
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6.2 Future work

Below we outline several suggestions for future work as an improve-
ment/extension of this research.

6.2.1 Model extension

− Our model considers only bi-objective optimization problem. One
could include more objectives such as tire wear, travel time, etc.

− Our model assumes that the vehicle running speed is constant and
user-defined. One could advance the model by introducing a new de-
cision variable that can control the vehicle running speed.

− Our model focuses only on the vertical alignment design. One could
extend the existing model to the horizontal alignment design and could
optimize the horizontal and vertical alignments at the same time.

6.2.2 Methods extension

− Our dynamic ε/weight selection approach for the scalarization tech-
niques uses Euclidean distance to calculate the range of search regions.
One could improve this approach by implementing different distance
metrics so that it would select the search regions more efficiently.

− Our tested GA methods suffer from the vast amount of equality con-
straints that significantly reduce the feasible search space. One could
advance them by introducing an efficient way of handling the equality
constraints or could implement some other GA methods.

− Our experiment tests only several commonly-used MOO methods. One
could choose to employ other MOO methods such as the derivative-free
MOO methods, heterogeneous MOO methods, or some other MOO
methods that can address nonsmooth/nonconvex/nonlinear problems.
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[MKO14] M. Mäkelä, N. Karmitsa, and W. Outi. Multiobjective proximal
bundle method for nonsmooth optimization. Technical report,
TUCS, 2014. → pages 23

61

http://www.jmetal.sourceforge.net/problems.html
https://www.mathworks.com/matlabcentral/fileexchange/30785-hypervolume-computation.html
https://www.mathworks.com/matlabcentral/fileexchange/30785-hypervolume-computation.html
https://www.mathworks.com/matlabcentral/fileexchange/30785-hypervolume-computation.html


Bibliography
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Appendices

Appendix A

Tables

Table A.1: Parameters α, β1 and β2 retrieved from [AB03].

Parameter Symbol Unit Light
vehicle

Heavy
vehicle

Idle fuel rate α mL/s 0.375 0.556
Energy efficiency parameter β1 mL/kJ 0.009 0.008
Energy-acceleration efficiency
parameter

β2 mL/(kJ.m/s2) 0.003 0.002

Table A.2: Idle fuel rates for various vehicle types. Source: Argonne Na-
tional Laboratory, www.anl.gov, 2014.

Vehicle type Class Fuel type
Idle fuel rate (gal/hr)
No load With load

Medium heavy truck 6 Gasoline 0.84 -
Delivery truck 5 Diesel 0.84 1.10
Tow truck 6 Diesel 0.59 1.14
Medium heavy truck 6-7 Diesel 0.44 -
Transit bus 7 Diesel 0.97 -
Combination truck 7 Diesel 0.49 -
Bucket truck 8 Diesel 0.90 1.50
Tractor-semitrailer 8 Diesel 0.64 1.15
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Appendix B

Figures

In this appendix, we illustrate the Pareto fronts for all 30 test problems.
In each problem, we plot only the non-dominated solutions found by the
scalarization methods with the warm start and the best run of GA methods.

(a) Test problem 1. (b) Test problem 2. (c) Test problem 3.

(d) Test problem 4. (e) Test problem 5. (f) Test problem 6.

Figure B.1: Resulting Pareto fronts for 30 test problems.
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(g) Test problem 7. (h) Test problem 8. (i) Test problem 9.

(j) Test problem 10. (k) Test problem 11. (l) Test problem 12.

Figure B.2: Resulting Pareto fronts for 30 test problems (cont.).
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(m) Test problem 13. (n) Test problem 14. (o) Test problem 15.

(p) Test problem 16. (q) Test problem 17. (r) Test problem 18.

Figure B.3: Resulting Pareto fronts for 30 test problems (cont.).
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(s) Test problem 19. (t) Test problem 20. (u) Test problem 21.

(v) Test problem 22. (w) Test problem 23. (x) Test problem 24.

Figure B.4: Resulting Pareto fronts for 30 test problems (cont.).
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(y) Test problem 25. (z) Test problem 26. (aa) Test problem 27.

(ab) Test problem 28. (ac) Test problem 29. (ad) Test problem 30.

Figure B.5: Resulting Pareto fronts for 30 test problems (cont.).
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