Subgroup-Specific Regression Models
by
Marjan Yaghoubi

B.Sc., University of Science and Culture, 2010
M.Sc., Iran University of Science and Technology, 2014

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in
THE COLLEGE OF GRADUATE STUDIES

(Mathematics)

THE UNIVERSITY OF BRITISH COLUMBIA

(Okanagan)
May 2021

(© Marjan Yaghoubi, 2021

The following individuals certify that they have read, and recommend
to the College of Graduate Studies for acceptance, a thesis/dissertation en-
titled:

SUBGROUP-SPECIFIC REGRESSION MODELS

submitted by MARJAN YAGHOUBI in partial fulfilment of the requirements
of the degree of Master of Science

Dr. Javad Tavakoli, Irving K. Barber Faculty of Science
Supervisor

Dr. Paramjit Gill, Irving K. Barber Faculty of Science
Supervisory Committee Member

Dr. Jeffrey Andrews, Irving K. Barber Faculty of Science
Supervisory Committee Member

Dr. Robert Lalonde, Irving K. Barber Faculty of Science
University Examiner

ii

Abstract

Data sets are becoming massive with ever increasing advances in data col-
lection technologies and are altering the nature of biomedical research. With
many techniques, these huge data sets can be challenging, or even impossi-
ble, to accurately analyse. In biomedical settings, data sets are frequently
heterogeneous, with samples representing various subtypes of diseases that
are thought to have variations with respect to underlying biology. A mo-
tivating example is the study of progressive diseases such as Alzheimer’s
disease (AD). While there is a significant increase in the number of studies
that concentrate on regression modeling of the disease progression, they ig-
nore the fact that the pattern change are profoundly different for patients
with various initial profiles. Estimating separate models for each subgroup
is extremely difficult due to small sample sizes in the high-dimensional set-
ting, but may obtain results that are more accurate and reliable. Moreover,
recognizing homogeneous subgroups of predictors can be cumbersome in
high-dimensional regression analysis over subgroups of samples. This thesis
attempts to improve upon an established method of regularized regression
for group-structured datasets by using a linear combination of two penalty
functions to select predictive clusters of correlated variables, and to allow
for subgroup-specific parameter estimates. In order to showcase the perfor-
mance of the suggested methodology, we conducted a series of experiments
on Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset including
three groups of Cognitively Normal Controls (CN), Late Mild Cognitive Im-
pairment (LMCI), and Alzheimer’s disease (AD) subjects to estimate Mini-
Mental State Examination (MMSE) scores in multiple future time points.
Results reveal the effectiveness of the suggested method in terms of Root
Mean Square Error (RMSE) over several available well-known statistical
methods in two subgroups, AD and LMCI. However, in CN group, our pro-
posed method performed better than other methods at two time points. We
also investigated the prediction performance of our proposed method with
multiple multi-task learning regression methods.

iii

Lay Summary

The great progress in data acquisition has resulted in major changes
in scientific fields. Biomedical areas are especially fascinating to look at,
as data sets in this field are becoming increasingly heterogenous, with sam-
ples spanning multiple subgroups that may be expected to have variations in
patterns of association between observed measurements and a response of in-
terest. As a motivating example, we consider a study of Alzheimer’s disease
(AD). Regression is a method of analysis that is ubiquitous in biomedical
studies. With regression methods being so prevalent, it is crucial that it is
being done efficiently and with enhanced accuracy. Along with the rise in
the number of group-structured datasets, it is necessary to develop efficient
regression methods to attain subgroup-specific parameters and structure.
We begin our work by reviewing several previously presented supervised re-
gression frameworks. Then, we modify a current regression method, which
consider high-dimensional regression in the group-structured setting. Fi-
nally, we compare the performance of the model with multiple available
well-known models in terms of root mean square error and correlation coef-
ficients for Alzheimer’s disease dataset.

iv

Table of Contents

Abstract i e e e e e iii
Lay Summary ¢ v v i v i i e e e e e e e e e e e iv
Tableof Contents A
List of Tables i i ittt it i i e, vii
Listof Figures i ittt it i v i v ix
Acknowledgements 0 0. X
Dedication i e e e xi
Chapter 1: Introduction 1
1.1 Optimization 1
1.1.1 Basic Concepts 2

1.1.2 Gradient-based Optimization 3

1.2 Subdifferential Calculus 3
1.3 Proximal Gradient Methods 4
1.3.1 FISTA 5

1.4 Machine Learningo L. 6
1.4.1 Bias and Variance 8
Chapter 2: Literature Review 10
2.1 Linear regression and least squares 10
2.2 Regularized Least Squares 11
2.2.1 Least absolute shrinkage and selection operator 11

2.2.2 Ridge Regression, 13

223 ElasticNet 13

2.3 Emnsemble Learning 14

TABLE OF CONTENTS

2.3.1 Decision Tree 14

2.3.2 Random Forest 14

2.3.3 Gradient Boosting Algorithm 15
Chapter 3: Structured Linear Regression 17
3.1 Fused Lasso and its generalization 17
3.2 Joint Lasso 19
3.3 Generalized Joint Lasso (Our Model) 19
3.4 Multi-Task Learning 22
3.5 Chapter Summary 25
Chapter 4: Data Analysis Results 26
4.1 Current Statistics of Alzheimer’s Disease 26
4.1.1 Stagesof ADo 27

4.1.2 Data 27

4.2 Problem Description L. 29
4.3 Results and Discussion 30
4.4 Chapter Summary 36
Chapter 5: Conclusions 38
Bibliography e e e e e e 39
Appendix. o i e e e e e e e e e e e e e e e e e 44
Appendix A: Proximity Operator 45
Appendix B: R Source Code 46
Appendix C: List of Variables 60
Appendix D: Degrees of freedom 63

vi

List of Tables

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 4.6

Table 4.7

Table 4.8

Table 4.9

Table 4.10

Table 4.11

Table 4.12

Table 4.13

Table C.1
Table C.2
Table C.3

Summary of subjects demographics considered for this
study
Performance comparison of various methods in terms
of RMSE for ADclass
Performance comparison of various methods in terms
of RMSE for CN class
Performance comparison of various methods in terms
of RMSE for LMCIclass
Performance comparison of various methods in terms
of CCfor ADclass
Performance comparison of various methods in terms
of CCfor CNclass
Performance comparison of various methods in terms
of CC for LMCIclass.
Performance comparison of various methods in terms
of RMSE for ADclass
Performance comparison of various methods in terms
of RMSE for CN class
Performance comparison of various methods in terms
of RMSE for LMCIclass
Performance comparison of various methods in terms
of CCfor ADclass
Performance comparison of various methods in terms
of CCfor CNclass
Performance comparison of various methods in terms

of CCfor LMCIclass. o ..

List of variables
List of variables
List of variables

vii

LIST OF TABLES

Table D.1 Degrees of freedom for LMCI class 63
Table D.2 Degrees of freedom for AD class 63
Table D.3 Degrees of freedom for CN class 63

viii

List of Figures

Figure 1.1 Machine Learning Cycle.

Figure 4.1 The change patterns of MMSE score for different study
groups of AD.

ix

Acknowledgements

I would like to express my sincere gratefulness to my supervisor Dr.
Javad Tavakoli for his expert advice, guidance, and support throughout my
studies. I will be forever grateful for the opportunity of being his student
and work under his supervision. I would also express my gratitude to Dr.
Paramjit Gill, Dr. Jeffrey Andrews, and Dr. Robert G. Lalonde for taking
time to evaluate my work.

Dedication

I would like to thank my husband and family for their support, patience,
and motivation.

X1

Chapter 1

Introduction

In this chapter, an overview of two main concepts in mathematics and
statistics is given. The first one is the concept of mathematical optimization,
as many recent applied statistics problems can be presented in the context
of convex optimization. The second one is the field of machine learning,
which is closely related to the optimization problem.

1.1 Optimization

Optimization is so prevalent in real-world application as many of the
strategies adopted by humans seek to minimize a certain cost, or maximize a
certain profit for a specific task. An optimization problem involves searching
for the best element of a certain space (X) with respect to some constraints.
The standard form of an optimization problem defined as:

miriiergize{f(x)} subject to x € C, (1.1)
where x are the optimization variables, the objective function f : X —
RU{oo} denotes the cost of selecting x € X, and C' C X is the feasible region,
where every acceptable solution must lie in C. The solution of Problem 1.1
is the element x,, € C such that for every x € C, f(xqp) < f(x) is satisfied.

Problem 1.1 is a general formulation of a constrained problem, that is
the solution must satisfy a specific criterion. However, it can be relaxed to
the unconstrained problem

minimize{ f(x)}. (1.2)
xeX

In general, every constrained problem can be converted into an uncon-
strained problem by making proper adjustments to its objective function
[Becl7].

In optimization setting, two major concerns are: 1) the problem should
be properly defined in terms of the variables, the objective function, and the
feasible region. 2) the optimization problem should be manageable. This

1.1. OPTIMIZATION

actively demonstrates that, a balance between the problem’s complexity and
the cost of solving it needs to be found.

The space over which the optimization problems discussed in this thesis
is a Buclidean space E with inner product, denoted by (., .) and norm |[.[[. [[.||,
denotes the ¢, norm of its argument. In addition, the objective functions are
restricted to functions on E which can take any real value and oo (extended
real-valued functions).

1.1.1 Basic Concepts

In this section some general concepts associated with convex optimiza-
tion are presented. Most of these concepts are included in [Becl7, BV04].

Definition 1.1. (Distance Function). The distance function d¢ : E —
[0,00) to a nonempty set C' C E is defined by:

do(x) = inf[lx — | (1.3)

Definition 1.2. (Projection). The projection of x € E onto a closed,
nonempty set C' C E is the point z = Po(x) € C such that da(x) =||x — z||.

Definition 1.3. (Indicator Function). The indicator function of a closed
set C' C E is defined as:

w0, 1256

As stated above, every constained optimization problem can also be ex-
pressed as an unconstrained optimization problem using the indicator func-
tion:

min{f(x)} st. xeC= rglelg{f(x) +dc(x)}. (1.5)

x€Rk

Definition 1.4. (Lower Semi-Continuous Function). f:E — R U {0} is
lower semi-contininuous or lsc at x € E if the following inequality is hold for
every sequence {x,} — x:

£(x) < lim inf f(xy,). (1.6)

n—oo

Definition 1.5. (Convex Function). A function f : E — RU{oo} is convex
if for all A € [0, 1], the following inequality is satisfied:

(Vo,y € domf) f((1 =Nz +Ay) < (1=XN)f(z)+Af(y). (1.7)

2

1.2. SUBDIFFERENTIAL CALCULUS

The objective functions of the minimization problems tackled in this
thesis are all convex, since a local minimum is also a global minimum in this
type of functions.

Definition 1.6. (Strictly Convex Function). A function f : E — RU{oco}
is strictly convex if for all A € (0, 1), the following inequality is satisfied:

(Vx,y € domf) f((1—=Nz+Ay) < (1 =XN)f(x)+ A\f(y). (1.8)

1.1.2 Gradient-based Optimization

In many optimization problems, the assumption is that the objective
functions are convex and smooth (continuous and differentiable). This allows
to solve problems in the form of (1.2) by methods which are based on the
gradient. In this case, a necessary and sufficient optimality condition is

V' (xop) = 0. (1.9)
Thus, a solution of Equation 1.9 is equivalent to solving the minimization
problem in (1.2). In many cases, Equation 1.9 has to be solved numerically
by using iterative algorithms, such as Gradient Descent Methods (GDMs).
According to [BV04], the outline of a GDM is given in Algorithm 1. This
algorithm alternates between two steps: finding a descent direction, and
the choice of a step size. A natural choice for the descent direction is the
negative gradient d = —V f(x). The GDM algorithm runs until a stopping
condition, usually of the form HVf(x)H2 < v, where v > 0, is satisfied.

Algorithm 1: Gradient Descent Method
Result: x,, ~ argmingex{f(x)}
Input: a convex and smooth function f ;

Initialization: a starting point x[¥ € X;
for i =0,1,--- do
set a descent direction dll € X ;
choose a step size ¢l > 0;
update x[1 .= xld 4 ¢l glil.
end

1.2 Subdifferential Calculus

Many optimization problems of interest are non-differentiable. In such
cases, classical gradient-based techniques cannot be implemented and other

3

1.3. PROXIMAL GRADIENT METHODS

methods such as Proximal Gradient Methods (PGMs) [Becl17] will need to
be utilized. In particular, PGMs generalize the concept of gradient by those
of subgradient.

Definition 1.7. (Subgradient). If f : E — (—o0,0o0] is a proper (dom
f # 0) function, then a subgradient of f at x € E is a vector g € E such
that

(Vy € E) f(x)+(g,y—x) < f(y). (1.10)

Definition 1.8. (Subdifferential). If f : E — (—o0, 00] is a proper function,
then the subdifferntial is defined as:

Of(x) ={g€El (W eE) fx)+ {9,y —x) <f(y)} (1.11)
According to [Roc96], several properties of the subdifferential are:
1. 0f(x) is either empty or a closed convex set, for x € E.
2. for x € E, f is differentiable at x < 9f(x) = {V f(x)}.
3. O(Af)(x) = A0f(x), YA >0.

Theorem 1.9. [Roc96, Fermat’s Rule] The pointx € E is a global minimizer
of a proper convex function f :E — (—oo, 0] if and only if 0 € Of (x).

Proof. Indeed,

0€df(x) = (VyeE) f(x)+(0,y—x)<f(y)
& (Wyek) f(x)<fy)
< x is a global minimizer of f.

1.3 Proximal Gradient Methods

In the following, the concept of the prox(imity) operator [Mor65] is de-
scribed, which is the fundamental concept in the PGM [BT09].

Definition 1.10. (Prox Operator). The proximal mapping or prox operator
of a function f : E — (—o0,00] at point x € E is given by

proz f(x) —argmin{;uu—xHQ—i—f(u)}. (1.12)
u€k

An altenative definition of the prox operator is

prozp(x) = (Id +0f) ! (x). (1.13)

4

1.3. PROXIMAL GRADIENT METHODS

It is worth noting that, the zeros of the subdifferntial of a proper convex
function are the fixed points of its prox operators. Therefore, by Fermat’s
rule, we have:

x = argminf(u) < 0 € 0f(x) © x = prozxs(x). (1.14)
u€lk

In the following the PGMs are introduced. Consider the following general
composite problem

min{F(x) i= /() + 9(x)}, (1.15)
where f : E — (—o00,00] is a proper closed convex and L-smooth function,
and g : E — (—o00,00] is just proper closed and convex function. PGM is
described in Algorithm 2.

Algorithm 2: Proximal Gradient Method
Result: x[*1 ~ arg minger{F(x)}
initialization: pick a starting point 0 e E;
fori=0,1,--- do
choose a step size t =

xl — 1V f(x17));

=

update xl T := prox .
79

end

PGM consists of a gradient step followed by a prox operator, and the
update step can be compactly written as

<[] — Tg7g(x[i]),

where T is a prox-grad operator defined by
TH9(x) = prozs, (x — ~V/(x))
L =p %g L .

1.3.1 FISTA

Fast Iterative Shrinkage- Thresholding Algorithm (FISTA) [BT09] is also
used to minimize the sum of a smooth and a non-smooth functions. In
particular, the objective function is /' = f; + fo, where the smooth term f;
is a convex extended real-valued function on E, with Lipschitz gradient V f;
and Lipschitz constant L. The non -smooth term fs is a convex, proper and
Isc function. Therefore, the optimization problem is:

min{ F(x)} = min{f1(x) + fo()}. (1.16)

1.4. MACHINE LEARNING

t

By Fermat’s rule, x°P* is a minimizer of F' if and only if

0 € OF(x) = 0 (f1 + f2) (x°7")
= VA (x"") + 0 f2(x7)
& x°PY € xOPY L 5V f1(x°PY) + 60 f2(x°PF), V8 > 0
& xPY — SV f1(x°PY) € 2Pt 4 50 fo(x°PY)
& x°P ¢ (Id + 50f2) 1 (x°P' — 5V f1(x°PY))
& xP" = prox;;, (x% — 6V f1 (x°PY).

FISTA summarized in Algorithm 3.

Algorithm 3: Fast Iterative Shrinkage- Thresholding Algorithm

Result: x[+1 ~ arg mingep{F(x)}
Input: f; with V f; and a Lipschitz constant L , fo;
Initialization: x¥ € E;
yl0l = [0
tl0) = 1;
for i =0,1,--- do
xlH1] = proxip, (Y — 1V f1(y1));
(i) — 1+ 14;4(15“])2.

)

y[i+1] — xli+1] 4 %(X[i—&-l] _ X[i])

)

end

Beck and Teboulle in [BT09] showed that the sequence x['t1) converges

to the minimum of Problem 1.16.

1.4 Machine Learning

In statistical and mathematical communities, machine learning (ML)
concerns the development and study of systems that can learn from data.
According to [DHSO01], the design of a ML framework involves several tasks.
Figure 1.1 represents the general ML lifecycle, which includes the following

steps:

1.4. MACHINE LEARNING

Data Acquisition |[——

UOND3|3S B[QELIEA

Model

Evaluation

Suuiea) |=po

= Model Selection

Figure 1.1: Machine Learning Cycle.

Data Acquisition. The data is collected, cleaned, and preprocessed
in this step. An instance of this stage is feature normalization.

Variable Selection. The selection of significant features for the prob-
lem at hand is included in this step. In particular, this step is intended for
high-dimensional data with a relatively limited number of samples.

Model Selection. Model selection is an important step when creating
any sort of statistical model after data collection and feature selection, as
the complexity of the model should be sufficient to learn the undelying data
structure. If the model is too basic, then the relationship between the input
and the output can not be learned. On the other hand, if the model is
too complex, then the model will also learn noisy observation, and for new
and unknown observations it will generalize very poorly. These effects are
referred to under-fitting and over-fititing, respectively.

Model training. The model that learns from the data is developed
through a process called training. This step is usually formulated as an
optimization problem.

Model Evaluation. In this step, the quality of the model is evaluated
based on some metrics.

In particular, the focus of this thesis is on supervised learning (where a
response variable is measured), in which a function/process has to be deter-
mined from a set of input-output pairs, also known as a training set, that
map a specific input data to the output . Afterwards, it can be applied to
estimate the output for unobserved data. The building blocks of supervised
learning are model, parameters, and objective function.

Model. The model refers to the mathematical framework in which the
output (prediction) is made from the input. The linear regression model,

1.4. MACHINE LEARNING

where the prediction is given as a linear combination of weighted input
features, is a common example.

Parameters. The parameters are those that should be learnt from
the data. For instance, in linear regression, the parameters are regression
coefficients.

Objective Function. In order to train the model, we need to define
the objective function to measure how well the model fits to the data. The
objective functions are usually separated into two terms, a loss function (L),
and a penalty (regularization) term (R):

Obj(.) = L(.) + vR(.),

L measures how predictive our model is with respect to the training data,
such as Mean Squared Error (MSE) for regression problems. R measures
and controls the complexity of the model, include additional information
about the ground truth of the problem. « is a regularization parameter and
the performance of the model depends on this value. It is responsible for the
balance between the complexity and the accuracy of the model. Therefore,
a good choice of v is important and usually determined by cross validation
procedure.

1.4.1 Bias and Variance

Bias and variance are the fundamental concepts in the field of ML. High
variance related to over-fitting, and large bias related to under-fitting. These
terms, bias and variance or “bias-variance tradeoff” [GBD92|, are used to
describe the performance of a model. The inability for an ML method to
capture the true structure that exists in the training data is called bias, and
the difference in fits between datasets is called variance. In practice, the
ideal algorithm has low bias and low variability. This is done by finding a
balance between a simple model and a complex model. Three widely used
methods for achieving this are regularization, boosting and bagging (they
are further detailed in Chapter 2).

The remainder of the thesis is organized as follows:

- Chapter 2 provides a literature review for linear regession models, where
regularized learning models play a pivotal role, indicating also how to solve
them under a common approach based on PGMs. Furthermore, there is a
focus on ensemble learning models.

- Chapter 3 presents details on the structured linear regression models.
Moreover, a new regularized approach, called the generalized joint lasso, is

1.4. MACHINE LEARNING

proposed. Also, multiple multi-task learning methods present in this chap-
ter, which later in chapter 4, we show how these models are successfully
applied to the real-world, health-related problem, where they can give ac-
curate predictions.

- Chapter 4 provides results from the proposed method to Alzheimer’s
Disease Neuroimaging Initiative (ADNI) data set.

- Chapter 5 provides a summary and ideas for future work.

Chapter 2

Literature Review

In statistical and machine learning communities, linear regression, also
known as least squares, is commonly used to predict a numerical response/output
variable from a set of predictors/features. The output is estimated as a
weighted linear combination of the predictors. A line is fit to the data using
least squares, or in other words, a line that results in the minimum sum of
squared residuals is found.

Notation

Suppose a sample of n cases, each represented by a p-dimensional input
vector and a 1-dimensional output vector. Let X = (x1,---,x,) € R"*P
represent the input matrix (matrix of predictors), and let Y € R™*! denote
the output vector (response vector). The vector of coefficients of a linear
model is denoted by B € RP*!. For the sake of brevity, all the models
discussed in the following section are considered without intercept term.
More precisely, the predictors are standardized via removal of the mean
and scaling to unit variance and the respose variable is centered such that

Sy =0,>" %;=0,and > 1", x?j =1forj=1,---,p.
2.1 Linear regression and least squares

The least squares approach is commonly used in linear regression prob-
lem in order to fit a line to the data. In linear regression problem, we seek
to find a coefficient vector 8* € RP*! such that

B € argmin{luy—mug}. (2.1)
8 2

To solve this minimization problem we can take the derivative of (2.1) with
respect to 5 and set it equal to zero to obtain the normal equations

XTxp=X"Ty. (2.2)

10

2.2. REGULARIZED LEAST SQUARES

Solving Equation 2.2 for 8* is equivalent to solving the minimization problem
in (2.1). Many methods, both direct and iterative, exist to solve Equation
2.2 [Bjo96].

Since least squares approach has no control on model complexity, its
performance will depend on the relation between the dimensionality of the
data (the number of features p) and the sample size n. If the sample size is
insufficient with respect to number of features to estimate these coefficients,
then the model cannot be fit naively.

In many fields, such as biomedical studies, the problem is often of large
dimension (p > n), so direct solvers will not suffice and iterative methods
with regularization will need to be utilized. Regularization is when addi-
tional information is included about the desired solution. One option for
regularization is to add a penalty term to the function being minimized
where the penalty term has a specific structure in order to enforce a de-
sired outcome. For example, the /1 norm can be used if sparse solutions are
desired. If a penalty was added to (2.1), we would obtain

" = axgmin {31 - x1 + 2r) (23

for some penalty term R(f). A common method for solving Equation 2.3 is
the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA).

2.2 Regularized Least Squares

Regularizations are the set of techniques that attempts to reduce the
variance of the model by fitting a function appropriately on the given train-
ing set [Fri89]. Common regularized regression techniques include Lasso
[Tib96], Ridge [HK70], and Elastic Net [ZHO05].

2.2.1 Least absolute shrinkage and selection operator

Least absolute shrinkage and selection operator (Lasso) is a popular type
of regularized regression analysis method, which uses #; penalty function in
order to alleviate the overfitting problem of least squares and impose spar-
sity structure on the vector of regression coefficients. Lasso model enhances
the prediction accuracy of the resulting statistical model by shrinking the
regression coefficients toward zero and set the regression coefficients of irrel-
evant variables to zero [HTF09]. Lasso, however, has a tendency to select
only one variable from a group of highly correlated variables, so it is unable

11

2.2. REGULARIZED LEAST SQUARES

to discover grouping information [ZHO05]. The Lasso model is defined as the
solution of the optimization problem

~ . 1
Brasso = argﬁmm{zHY — Xﬁug}, st 1Bl <t (2.4)

where t > 0 is a tuning parameter that controls the amount of shrinkage,
and .||, denotes the ¢; norm of the coefficients (i.e., ||, = >>5_, |8;]). The
smaller value of ¢ will make more of the coefficients to be exactly zero and
will shrink coefficients toward the origin. Equation 2.4 can be written in the
Lagrangian form as

R (1
Pusso = axgmin{ 31V = X515+ A8l . (2.5)

where A > 0 is a tuning parameter which controls the strength of the con-
straint (sparsity level). The greater amount of shrinkage, more coefficients
with zero value, can be obtained by setting A to a large value, and therefore
a simpler model can be achieved. On the other hand, when) is small, Lasso
would produce similar parameter estimates as least squares approach. The
value for A is determined using cross-validation procedure.

For Equation 2.5, the objective function is non-differentiable, hence it fits
nicely in the framework of PGMs; in particular FISTA. In order to apply
FISTA, Equation 2.5 is divided into a smooth termjf; and a non-smooth
term fo:

. 1
win{ J1¥ - X813+ 151, } 26)
1) 12

The gradient of f1(8) is Vf1(8) = (XTy — XTXB). The Lipschitz constant
L is given by the largest eigenvalue of X7 X. Thus, FISTA can be applied
once the prox operator of fo is obtained. Prox operator of the 1 norm is
soft- thresholding (see Appendix A) applied element-wise:

sgn(B1)[|B1] — Al+
softy(8) = 39”(52)[\&\ I

sgn(B,)18s] — N+

The operator [y];+ := max(y, 0) represents the nonnegative part of y.

12

2.2. REGULARIZED LEAST SQUARES

2.2.2 Ridge Regression

Ridge regression model is similar to Lasso where the ¢; penalty function
(Z?Zl |8;]) is replaced by the ¢ penalty (?:1 [5’]2) Ridge regression tends
to shrink the correlated predictors toward each other. The corresponding
optimization problem is:

Bridge = arg min {1 = X515+ NI} (27)

where ||.||5 denotes the Euclidean (£5) norm of the coefficients (i.c., || 5|3 =
?:1 ﬁjz), and A > 0 is a regularization parameter.
This problem has a closed-form solution as

Bm’dge = (XTX + AI)ilXTY, (28)

where I € RP*P ig the identity matrix. As A — 0, the solution of Equation
2.8 tends to the least squares one . Practically, the 2 norm shrinks the
coefficients towards zero. In particular, when X7 X = I, we have

1

1+AB'

/Bridge =
Both Lasso and Ridge regression are ideally suited for high-dimensional data
[ZHO8] wherein some kind of penalties have been applied to restrict the
number of predictors entering the model. The principal difference between
these two is the geometric shape of the constraint, ¢ norm is square and £
norm is circular [Fu98].

2.2.3 Elastic Net

Elastic net (ElNet) combines ¢; and /¢ penalty functions for group pre-
dictor selection, based on the fact that ridge regression tends to shrink
the correlated predictors toward each other. The Elastic net estimate of
B = (Bl,"' ,Bp) is equivalent to the following constrained optimization
problem

p
Binet = argﬁmin{HY - X5||§}, stoa) |Bl+(1—a)) B <t (29)
j=1 j=1

The function aZ?Zl 18| + (1 — «) ?:1 532 is called the elastic net
penalty, which is a convex combination of the Lasso and Ridge penalty.
t and « € [0, 1] are tuning parameters.

13

2.3. ENSEMBLE LEARNING

Equation 2.9 can be written in the Lagrangian form
Bt = argﬁmin{uy - X8I+ 2 (allgl, + A1 - lBIE) }. (210)

This optimization problem is also non-differentiable due to the ¢; norm.
Since £ norm is differentiable, it can be included ino the smooth term f1,
and thus we have

win{ |V~ X5 + 2l + A0 -)3} ()
f1(8) f2(B)

Subsequently, the gradient of f;(3) can be found easily, and the prox oper-
ator of fo(f) can be found following the same philosophy discussed in the
Lasso problem. Therefore, FISTA can be applied.

2.3 Ensemble Learning

Ensemble learning is an ML paradigm in which an optimal predictive
model is generated by combining the predictions of multiple weak learn-
ers (or base models), resulting in predictions that are more reliable than
any single model. There are two types of Ensemble learning, Boosting and
Bootstrap Aggregation (or Bagging).

2.3.1 Decision Tree

Decision trees (DTs) [Bel59] are very popular weak learners for ensemble
methods. Every individual tree has several branches, nodes, and leaves. It
begins at the very top with the root node that represents entire sample. This
node then splits into a left and right nodes (sub-nodes or decision nodes or
internal nodes), and how far this splitting goes is known as the tree depth.
The last node in each branch (sub-tree) is called the leaf or terminal node.
At the end of the leaf node, the average of the value of the dependent variable
is the final prediction.

2.3.2 Random Forest

Random Forests (RF) [Bre01] are built from DTs that combine the sim-
plicity of decision trees with flexibility which results in substantial improve-
ment in prediction accuracy. RF uses straightforward algorithm as follows:

14

2.3. ENSEMBLE LEARNING

1. A bootstrapped dataset of the same size as the training set is created
from the training dataset.

2. A decision tree is formed using the bootstapped dataset. However, a
random subset of features is used when building the tree.

3. Repeat step 1 and 2, say 100 times. At this step a wide variety of trees
are created, which makes RF more effective and robust than individual
decision trees.

4. Estimate the accuracy of the Random Forest.

2.3.3 Gradient Boosting Algorithm

One of the most effective and powerful boosting techniques for building
predictive models is Gradient Boosting (GB) [Fri00]. GB for regression
proceeds in the following fashion:

1. Input: training set {(x;,y;)}’;, and a differentiable Loss Function
L(yi, F(x))

2. Initialize model with a constant value:

n
Fy(z) = argmin Z L(yi,)
v i=1

3. form=1to M:
(A) Compute the pseudo- residuals:

i = - [2200 o)
OF (x;) F(2)=Fp_1(x)

(B) Fit a regression tree to the pseudo-residuals and create terminal
nodes Rjy,, for j =1,---,Jy

for i=1,---,n.

(C) For j=1,---,Jy compute:

Yjm = argmin Y~ L(y;, Frn1(2:) +7)
ol

:Dq;ERij
(D) Update the model:
J’"L
F(x) = Fn1(2) + v Y ymI (2 € Rjm)
j=1

15

2.3. ENSEMBLE LEARNING

4. Output Fis(x).

The z;’s refer to each row of measurements that is used to predict the
response variable and the y;’s refer to the response variable measured for
each subject in the dataset. n is the number of subjects in the dataset. Loss
function L(y;, F'(x)) evaluates how well the response variable is predicted,
where F'(z) is a function that gives the predicted values. In step 3 of GB
algorithm, M trees are built, then the derivative of the loss function with
respect to the predicted value is calculated. In r;,, ¢ is the sample number
and m is the index for the tree that is built. In part (B) of step 3, terminal
nodes R;,, are refered to the leaves in our regression tree, where j is the
index for each leaf in the tree. In part (C) of step 3, the output values
vjm for each leaf is determined by solving the minimization problem where
the previous prediction is taken into account. x; € R;; means all elements
in that particular leaf node. In practice, the output values are always the
average of the residuals that end up in the same leaf. In part (D), a new
predictions for each sample is made. These new predictions are based on
the previous predictions, the learning rate v € [0, 1], and the output values
from the newest tree. A small v reduces the effect each tree has on the final
prediction, and this improves accuracy in the long run.

16

Chapter 3

Structured Linear Regression

This chapter introduces the Fused Lasso model under the same paradigm
of regularized learning techniques. Furthermore, a modification of a cur-
rent regularized regression model, the so-called joint lasso, is developed.
This model is based on the Generalized Fused Lasso but for heterogenous
datasets. The corresponding solver algorithm for this model is also included.
Finally, this chapter provides details on multi-task learning method.

3.1 Fused Lasso and its generalization

Tibshirani et al. [TSR*05] introduced Fused Lasso (FL) that imposes
sparsity in the coefficients, and also accounts for spatial association of pre-
dictors. In order to reflect this structure in the model, in addition to the
f1 norm, another regularizer is added to the final model, which encourages
similarity between coefficients corresponding to adjacent features. FL yields
estimates using the following optimization problem

p p—1
BrL = argmin%\\Y —XBl5, st D I8l <t and Y| — Bl < s,
B j=1 j=1
(3.1)
where ¢ and s are tuning parameters. The second constraint (fusion penalty)
encourages sparsity in the differences of coefficients. The fusion penalty can
be written as follows:

p—1

IHBI, = 1Bi+1 = Bil, (3.2)
j=1
where H € R®~D*P denotes the differencing matrix defined as:
-1 ifi=j
hij =<1 ifj =43+1

0 otherwise.

17

3.1. FUSED LASSO AND ITS GENERALIZATION

A natural extension of the FL is to remove the ordering restriction on fea-
tures. She in [Shel0] presented a generalization of the FL, called the Clus-
tered Lasso (Classo), to reflect this behaviour. Classo solves the following
optimization problem

P P
Belasso = argmin%HY — XB|3, st Z |Bj| <t and Z 1B — Bl < s.
B j=1 j<k
(3.3)
FL and Classo methods can be unified in the framework of the generalized
lasso (genlasso) [TT11]:

. 1
Byentasso = argﬁmlniHY — XBI3, st |HB|, <t (3.4)

where H € R™*P is a specified penalty matrix.

Authors in [JLL'15] present a variant of the genlasso, called Hexagonal
Operator for Regression with Shrinkage and Equality Selection (HORSES),
that selects positively correlated predictors in high dimensional setting. In
fact, HORSES finds a homogeneous subgroup structure within the feature
space. In contrast to the Elnet that puts negatively correlated predictors into
the same group, the regularization term formulation in HORSES encour-
ages grouping of positively correlated variables. The shape of the constraint
region for HORSES is hexagonal, which encourages similarity between co-
efficients only in y = x direction. The corresponding optimization problem
is:

D
BHORSES = argmin%HY — XBIl5, stoa) [Bil+(1—a) Y 188l <t
B j=1 j<k
(3.5)
where pil/ 2<a <. Equation 3.5 can be written in the Lagrangian form
as follows:

R | P
ﬂHORSES:arg,Bmm §||Y—X5H§+>‘ QZ|5J|+(1—Q)Z|@'_BI@|
j=1 j<k

(3.6)
HORSES is superior to other current methods in a variety of ways:

1. It selects groups of predictors, rather than randomly select one to
represent the entire collinear group as the Lasso does.

2. Positively correlated variables are grouped together rather than both
positively and negatively correlated variables.

18

3.2. JOINT LASSO

3.2 Joint Lasso

In many applied fields, samples are divided into subgroups that may not
be similar in terms of the underlying regression models. Such concerns can
be seen in biomedical fields, where observations represent disease subtypes
in terms of underlying biology, and hence do not have similar patterns of
association between predictors and a response variable. If such a structure
exists, the model should reflect it. Therefore, Dondelinger et al. in [DM18]
proposed joint lasso (JL), which is used to jointly estimate subgroup-specific
regression coefficients whilst producing a sparse solution and encouraging
similarity between subgroup-specific regression coefficients. Joint lasso fits
nicely in heterogenous datasets (group-structured datastes), as it provides
subgroup-specific sparsity patterns.

Each subgroup k € {1,--- , K'} considers the same set of p features, with
different subgroup sample size ng. Joint lasso yields estimates using

K
B= argmin 38 g — XeBulZ + Mkl +7 S 78— Bl p
B=[B1Bk] ,—1 Uk k' >k
(3.7)
and a variant with an /o penalty in the last term. A, v and 7 as tuning
parameters and the role of 7 is to control the extent of fusion across specific
subgroups. By default, all 7’s are set to unity.

The sum over k in joint lasso is necessary to account for different sample
sizes in different groups. Total sample size is n = Zé{:l ng. In the above
formulation, X; € R™*P is the feature matrix for subgroup k and the
corresponding vector of responses, y, € R™*!. B = [3;---fk]isapx K
matrix that collects all coefficients together. (i € RP denote subgroup-
specific coeflicients.

3.3 Generalized Joint Lasso (Our Model)

Grouping positively correlated variables during variable selection pro-
cedure when analysing a system is beneficial. The particular reason for
this is that the variables within each category behave similarly, implying
that they determine features that affect the system through the same path-
ways [JLLT15]. In this thesis, we therefore propose “generalized joint lasso”
(GJL) as a modified version of the method outlined in the previous section.
In order to simultaneously identify homogeneous subgroups of variables and

19

3.3. GENERALIZED JOINT LASSO (OUR MODEL)

jointly estimate the regression coeficients in group-structured data, we in-
troduce generalized joint lasso as

K
B = Biﬂ%f?ii] ; ﬁ”yk — XiBill5 + A <Oé||ﬁk||1 +(1-a) %Tk,k’ﬂﬂk - 5k'|1) ;
(3.8)
where p < a < 1. Problem 3.8 is non-differentiable due to having a
non-smooth penalty function. [CKL™10] described a proximal relaxation
of this kind of problems in multi-task regression setting that introduces
additional smoothing to transform the non-smooth objective function into
a continuously differentiable function. Motivated by their work in [DM18,
CKL™10], it is straightforward to adapt their optimization method for the
GJL model.
First, an undirected graph G = (V, E) with vertex set V = {1,..., K}
corresponding to the subgroup and edges between all vertices is created.
The Problem 3.8 can then be formulated as

B =3 {Q;kuyk _ Xkﬁku%} By, (3.9)

k

-1/2

where C' = (M1, 2H) is a K x (K + |E|) matrix, with A\ = Ao, A2 =
M1 — a), and I € REXK the identity matrix . The last term in (3.9)
includes both ¢; and fusion penalties. The matrix H defined as

Tmy ife=(m,l)and k =m
Hye=1q —Tm; ife=(m,l)and k=1
0 otherwise.

Because of duality between ¢; and /., the overall penalty in Equa-
tion 3.9 can be written as ||BC||; = max”A”OOSl(A,BC), where A € Q =
{A|]A]l, < 1,A € RPXEHEDY §5 an auxiliary matrix, and |.||,, is the
matrix £, norm, defined as the maximum absolute value of all entries. Fol-
lowing Chen et al. in [CKL"10], a smooth approximation of | BC||; can be
written as

fu(B) = max (A, BC) — ud(A), (3.10)
Al <1
where p > 0, and d(A) = %HAH%, with ||.|| z the Frobenius norm. Theorem
1 in [CKL*10] shows that f,(B) is smooth with gradient V f,(B) = A*CT,
where A* is the optimal solution of Problem 3.10, and the closed-form ex-
pressions of it are introduced in the following lemma.

20

3.3. GENERALIZED JOINT LASSO (OUR MODEL)

Lemma 3.1. Let A* be the optimal solution of Equation 3.10:
A = 5(BC/p),

where
T if—l<zx<1
S(x)=1<1 ifex>1
-1 ifx<-—1.

Substituting || BC||; with f,(B) in Equation 3.9, we have

A =Y {;lkuyk _ Xkﬁku%} T fu(B), (3.11)
k
which is smooth with
ViLE) = ¥ { o XE X -) |+ A7CT, (3.12)
k

Moreover, V fL(B) is Lipschitz continuous with an upper bound of the Lip-
schitz constant

T /\% + 2 %)\% maXgecy dk
7

where Amax(X{ X}) is the largest eigenvalue of (X} Xj) and dj, = Zﬁ Th k! -

The result of the aforementioned procedure is that a smooth lower bound

of fr.(B), namely fr,(B), is derived. Finally, the Nesterov’s method [Nes05]

can be applied for optimizing (3.11) as shown in Algorithm 4. For more
details on this optimization approach see [CKL™10].

LU = Amax()(g)(k) y (313)

Algorithm 4: Proximal gradient method for the generalized joint
lasso
Result: B = Bli
Input: X, Y, A1, Ao, G, ;
Initialization: buid C' = (A1, \oH); find Ly according to (3.13);
Wl =0 e RPxK;
for i =0,1,--- until covergence of Bl do
Compute V f (WM) according to Equation 3.12;
Compute the gradient descent step: Bl = Wil — ﬁv fowtdy
Set 211 = L 37!y =Y FW)
Set Wl = & Blil 4 2 711
end

21

3.4. MULTI-TASK LEARNING

3.4 Multi-Task Learning

A standard methodology in ML is learning one task at a time (single-task
analysis). However, multi-task learning (MTL) [Car98] has gained growing
degree of attention to solve multiple learning tasks simultaneously. The
goal of MTL is to learn the shared information among related tasks in order
to enhance prediction accuracy [LJY09]. This section will discuss multiple
multi-task learning techniques for predicting multiple related outcomes from
a common set of predictors.

Consider a multi-task learning setting with ¢ response variables (tasks).
Suppose that p is the number of predictors, which is shared across all the
tasks, and n is the number of samples. Let X € R™*P indicate the matrix
of predictors, Y € R™*! represent a matrix of ¢ responses over the same
set of observations. B € RPX! denote the parameter matrix, with column
B € RP corresponds to task i, i = 1,--- ,t, row B; € R* corresponds to
feature j = 1,--- ,p, and y; denotes the k-th column of Y.

The representative multitask learning methods used for comparison in
Chapter 4 include the following models:

1. Multi-task feature learning with f5; norm: [LJY09] introduced an
MTL framework using a regularization based on the f5 1 norm

P
HB”2,1 = ZHBJ~H2)
j=1

where £9 encourages grouping (refers to the grouping effect of £2 norm)
of the weights corresponding to the j-th feature across several tasks.
Thus, the complete MTL model via the ¢ ;-norm regularization is:

1
mén{iHy_XB“%+/\“B||2,1}' (3.14)

The formulation of the f51 norm encourages multiple input features
from different tasks to share similar sparsity patterns for parameters,
and the selection of predictors is based on the joint strength of all
tasks jointly.

2. Multi-task ElasticNet [PVGT11]: The objective function for this model
is

o1
min{3 Y = XBI} +apl Bl +all = p)/2IBlF}, (3.15)

where 0 < p < 1. The penalty function of Multi-task ElasticNet is a
combination of ¢ 1 and £5.

22

3.4. MULTI-TASK LEARNING

3. Trace-Norm Regularized Multi-Task Learning: [JY09] proposed a for-
mulation of MTL based on trace norm in order to discover the low-
rank common subspace among different tasks. Hence, the optimization
problem becomes

1
mén{g\lY—XBllvar)\llBH*}, (3.16)

where |||, = denotes the trace norm defined as the sum of all the
singular values of B. The effect of trace norm regularization is to
force B to have a low rank [PTJY09]. The low-rank regularization is a
useful technique for obtaining the common low-dimensional subspace
for several tasks [HSH16].

4. Multi-task learning with network incorporation: [EMPO05] introduced
the regularization function

T
TB) =5 O Aullfs— Bl

s,t=1

where T is the number of tasks and A is the graph adjacency matrix to
capture the task similarities. Thus, the optimization problem becomes

min Y~ XBI% +AJ(5)} (3.17)

5. Graph-Guided Fused Lasso (GFLasso) [KSX09]: One potential struc-
ture on the response variables that would be useful to capture is some
correlation structure that relates correlated responses. The behaviour
of the coefficients should reflect this structure, in the sense that the
coefficients corresponding to highly correlated responses should be sim-
ilar. The large limitation of techniques like Lasso is that they must
be repeated over every single response variable. In other words, Lasso
for multiple correlated responses is equivalent to solving multiple in-
dependent regressions for each response. Thus, the information across
multiple responses is not integerated into the model such that the es-
timates reflect the possible relatedeness in the regression coefficients
for those correlated responses [KSX09]. In the GFLasso, the correla-
tion structure of tasks is represented as a graph, with each task as a
node, and the relationship between two tasks as an edge. This method
links several response variables in a single regularized linear regression
framework, and jointly analyze them.

23

3.4. MULTI-TASK LEARNING

The correlation structure over the set of ¢ tasks is presented by an
undirected graph G = (V, E), where V represents the set of nodes,
each representing one of the t tasks, and E refers to the set of edges.
Each edge ey 1» € E corresponds to an edge from the k-th task to the
K'-th task, and |ry x| encodes the strength of the correlation between
these two nodes. The pairwise Pearson correlation coefficients for each
pair of tasks is computed, and then two nodes are linked with an
edge only if their correlation coefficient is above a given threshold .
The authors introduced two variants of the GFLasso: G.FLasso and
GFLasso. The first version uses unweighted graph and the second
one takes into account the edge weights information in G.

If two tasks are connected with an edge in the graph G, their variation
across observations might be explained by the same set of features
with similar strength. In G.FLasso, two regression coefficients 5 and
B for each feature m are fused if tasks & and k' are connected in G.
The G .FLasso solves

N 1 .
B —arg];mn{QHYXB||§;+)\1|B||1 +X2 > |8k = sign(riw) B 1}7
(kk")eE

(3.18)
where A\; and Ay are regularization parameters, and the last term (the
summation term) is called a fusion penalty. A natural extension of
G.FLasso is G, FLasso wherein the edge weights is taken into account.
Also, in G, FLasso, the amount of correlation controls the amount of
fusion. Thus, the complete optimization problem for G, FLasso is:

A~

. 1
B = angmin{ 311V - XBI + M|,
B

+X2 Y flrew)

(kK)EE

|81 — sign(rip)Bal],

}‘ (3.19)

Possible choices for f(ryx) could be |ry 4| and r,%’k,. For comparison
results in Chapter 4, we used |ry z/|.

For implementation of Multi-task ElasticNet model, we use Scikit-learn
[PVGT11]. For other aformentioned multi-task methods, we make use of the
RMTL package [CZS18] available for use in the R programming language.

24

3.5. CHAPTER SUMMARY

3.5 Chapter Summary

This chapter has introduced Generalized Joint Lasso (GJL) for high-
dimensional regression in the group-structured setting that simultaneously
selects positively correlated variables and provides subgroup-specific coef-
ficient estimates. The corresponding optimization procedure for solving
this model was also introduced. Finally, this chapter has reviewed several
multi-task models, which are later used to show the usefulness of multi-task
learnign methods in biomedical problems.

25

Chapter 4

Data Analysis Results

This chapter will discuss a real-world application of the regularized linear
regression models, ensemble models, and multi-task regression models in
the field of Alzheimer’s disease research. It is shown how these previously
presented models can be used to predict the progression of the disease. In
this setting, these models fit nicely, since 1) the dimensionality of the feature
space can be very large relative to the number of observations; and 2) the
sparse models might be preferred, since they are more interpretable than
other more complicated models. For implementation of these models, we
make use of the R programming language [Tea20] and Scikit-learn machine
learning library in Python [PVG*11]. The source code for all models is
provided in Appendix B.

4.1 Current Statistics of Alzheimer’s Disease

The most prevalent type of dementia in adults aged 65 and above is
Alzheimer’s disease (AD), which predominantly affects memory and cogni-
tive functions. In the United States, it is ranked the fifth leading cause of
death for those age 65 and older [Ass17]. AD has brought a major burden to
the health care system and economy. According to Alzheimer’s Disease In-
ternational (ADI) Report [Int19], the global prevalence of AD is expected to
increase to 152 million by 2050. Moreover, dementia including Alzheimer’s
disease, is expected to cost more than 1.1 trillion by 2050 for the United
States alone [Ass17]. These statistics may seem surprising, but as the pop-
ulation of seniors is increasingly growing, they are projected to increase as
time goes on.

AD was first discovered by a German clinical psychiatrist and neu-
roanatomist, Dr. Alois Alzheimer, in the early 20" century [HN03]. AD
is characterized by gradual loss of cognitive functioning, namely thinking,
remembering, and reasoning, which impeded the ability of an individual to
perform activities of daily living [0A20]. AD is known to progress over time
by destroying memory cells in the brain, resulting in loss of memory. Today
more than ever it is crucial to understand the stages of the AD in order to

26

4.1. CURRENT STATISTICS OF ALZHEIMER’S DISEASE

improve the lives of those affected by the disease and establish a clear plan
on how its prevelance can be predicted and detected.

4.1.1 Stages of AD

Human brains start shrinking and losing weight as they begin to age.
The brain not only shrinks in Alzheimer’s patients, but also starts to form
knots. These knots are chemical-releasing twisted protein fibers that destroy
the nerve cells in the brain. Such changes affect the ability of a person to
learn and recall [Naz11]. The disease advances from mild to moderate to se-
vere cognitive impairment and the speed of symptoms vary from individual
to individual [Ass17]. While several factors such age, genetics, and diet have
been hypothetically linked to the onset of AD, so far, there are no reliable
biomarkers used to diagnose the early stages of AD [Arm13]. Scientists sys-
tematically seek to validate these hypotheses by testing disease progression,
with the goal of improving cognitive function of those affected by the disease
and developing successful medications and treatments, at least, to delay the
progression of the disease [Ass17, Int19)].

Conducting brain scans, such as magnetic resonance imaging (MRI) and
positron emission tomography (PET) have already been demonstrated to
provide support in the direct observation and inspection of brain abnor-
malities such as cerebral atrophy [CRS10]. A convenient clinical diagnos-
tic technique is to perform neuropsychological examinations, such as the
Mini-Mental State Examination (MMSE), and the Alzheimer’s Disease As-
sessment Scale cognitive total score (ADAS) that can be used to recognize
disease-related abnormalities. The reliable link between these clinical scores
and AD prognosis has been shown in several studies [DCGT09]. Predicting
cognitive performance of patients from neuroimaging feautures is important
focuse of the study of AD and is recieving a growing degree of attention
recently.

4.1.2 Data

Alzheimer’s Disease Neuroimaging Initiative (ADNI)! database is a lon-
gitudinal study designed to collect demographic, imaging, clinical assess-
ment, and genetic data from participants who are tracked and reassessed
over time to follow the pathology of the progression of the disease. Sev-
eral researchers carried out studies [LCW*19, LGC*17] using the ADNI
database to identify regions of interest (ROI) in the brain that should be

"http://adni.loni.usc.edu/

27

4.1. CURRENT STATISTICS OF ALZHEIMER’S DISEASE

revelant to the detection of AD. The first phase of ADNI (ADNI1) started
in 2004 with a follow-up period of five years, ADNI-GO phase began in
2009 and followed participants for two years, in 2011 ADNI2 started. Re-
cently, ADNI3, the fourth phase, began in 2016 and includes scientists at
59 research clinics in the United States and Canada [ADN20]. Progression
and prediction of AD at multiple time points are more important than ever
before. Techniques to describe AD progression can allow clinicians to cre-
ate new treatments and track their effectiveness. In ADNI, all participants
received 1.5-T structural MRI. This dataset encourages scientists to design
new strategies for reliably predicting patients’ future status. At baseline, pa-
tients were classified as either cognitively normal (CN), early mild cognitive
impairment (EMCI), late mild cognitive impairment (LMCI), and severe
cognitive impairment (dementia or AD). The MMSE score range of [0, 30]
is commonly used as a disease progression indicator, where lower scores in-
dicate greater cognitive disability [FFM75]. During the MMSE, a medical
expert asks a patient a series of questions and tests designed to assess a
variety of daily mental abilities, such as time and place orientation, focus
and calculation, immediate and delayed recall of words, and language func-
tions [LCW19]. The MMSE scores of patients are measured repeatedly at
multiple time points. A MMSE score of 20 to 24 suggests EMCI, 13 to 20
suggests LMCI, and less than 12 indicates AD [Ass17]. Table 4.1 summa-
rizes the demographic characteristics of all subjects, including age, gender,
and education at baseline.

In this thesis we use the baseline MRI features (see Appendix C for de-
tailed list of predictors) processed by a team from UCSF using FreeSurfer im-
age analysis suite (https://surfer.nmr.mgh.harvard.edu/) and baseline MMSE
as inputs and MMSE scores at multiple time points as output variables. The
dataset that we use in this work includes CN, LMCI and AD subgroups. For
CN and LMCI groups, data is availabe for all time points, but for AD group,
no data is available for M36.

Table 4.1: Summary of subjects demographics considered for this study

Subjects CN LMCI AD
Number (F/M) 110/119 141/257 91/100
Age(y, mean =+ sd) 75.87 £5.01 74.73 £ 7.38 75.26 £+ 7.46

Education (y, mean £+ sd) 16.06 + 2.85 15.63 £ 3.03 14.69 + 3.15

28

4.2. PROBLEM DESCRIPTION

4.2 Problem Description

The main goal of this thesis is to accurately predict the progression
of Alzheimer’s disease at the different stages of the disease. Inferring the
trajectories of AD progression over time is important than ever before and
is the basis for the implementation of appropriate and prompt therapeutic
strategies that may be subject-specific. However, the majority of studies on
AD have focused on the prediction of disease progression at a single point
in time. These studies ignore the dependency structure that exists between
subsequent time points [TAS'18]. Since the patterns of AD progression
rely heavily on the time of diagnosis, the demographic information of the
patients, and several other features, a single regression model imposed on
all of the patients with wide ranges of baseline data may be mis-specified.
Fig 4.1 illustrates the change patterns of MMSE scores for several patients
in three different study groups (CN, LMCI , and AD) over the three-year
time period. As one can see from the figure below, it is obvious that the
progression of the disease does not follow a steady pattern, making it difficult
to develop an effective model.

BD_L- --------------- o e e r's
__________________ I
l“\-.
H“‘mkh s S u
N S o
% 20- Category
O P
2 —— AD
) b N
73] “m
% el -& LN
10-
o]
0- '
0 B 12 24 6

Duration (Month)
AD categories fromthe AD NI dataset

Figure 4.1: The change patterns of MMSE score for different study groups
of AD.

Additionally, to handle missing data, we calculate the Euclidean distance

29

4.3. RESULTS AND DISCUSSION

between the observations with missing values and all other observations and
then select the first five closest subjects to those with missing values and
replace the missing value with the average measurements of those subjects.

4.3 Results and Discussion

In this work, we investigate whether baseline MRI features can be used
to predict AD progression measured by MMSE scores. Specifically, we use
the baseline MRI features and baseline MMSE score to predict MMSE scores
in the next 3 years. We further performed the following preprocessing steps:

— exclude features with more than 15 percent missing entries;
— remove patients without baseline MRI data;

— exclude patients with missing value of MMSE scores;

complete the missing entries using the technique we discussed in Sec-
tion 4.2.

Since neurodegeneration in AD occurs years before symptoms appear and
clinical intervention is more successful in the early stages of the disease, it is
necessary to accurately predict cognitive scores, such as MMSE [ZYLY11].
So, our objective is to predict the MMSE scores at different time points with
our method, and compare the relative performance of various approaches.
The speed of the progression of AD have a strong dependence on the initial
stages of a patient. If so, establishing a single regression model on all of
the subjects with different initial patterns may be mis-specified. To address
this issue, we adopted a framework which models each subgroup of the
AD separately. We evaluate the performance of our proposed method with
other regression techniques, including Lasso, Ridge, Elastic net, RF, GB,
and JL. The results are presented in Tables 4.2 to 4.7. We indicate each
time point in the tables by the duration starting from the baseline. For
example, M06 denotes 6 months after the baseline, M12 indicates 12 months
after the baseline, and so on. We use MRI at baseline to predict MMSE
scores at four time points: MO06, M12, M24, M36. 10-fold cross validation
is used to evaluate the performance of the models. The data were z-scored
before applying the regression methods. For the quantitative performance
evaluation, we employed the metric of Root Mean Squared Error (RMSE)
and Correlation Coefficient (CC) between the predicted MMSE scores and
the target MMSE scores for each regression task. Smaller values of RMSE

30

4.3. RESULTS AND DISCUSSION

and larger values of CC indicate better regression performance. From the
experimental results in Tables 4.2, 4.3, and 4.4, we observe the following:

1.

For AD group, GJL and JL both demonstrated an improved perfor-
mance over the other methods, such as Lasso, Ridge, EINet, RF, GB,
in terms of RMSE , while GJL performed the best among all compet-
ing methods for M12 and M24. JL performed better than GJL for
MO06. Overall, The GJL offers substantial gains compared with other
methods for this subgroup. The biggest gain with GJL method is for
the AD subgroup at M12 and M24.

For LMCI group, GJL method outperformed JL methods in all time
points. Moreover, GJL demonstrated an improved performance over
Lasso, Ridge, ElNet, RF, and GB methods in M12, M24, and M36
time points; however, Lasso and ElNet performed better for MO06.

It can be seen that a notable difference between JL and GJL is in the
LMCIT and AD subgroups, or in other words, the largest improvement
in prediction performance is in AD and LMCI subgroups.

. For CN group, GJL performed better than JL in M24 and M36. It

can be seen that Lasso, Ridge, ElNet, RF, and GB were best suited
to predict CN status than the JL and GJL models for M06, M12.

Overall, the GJL approach seems to perform slightly better than the
JL approach for M24 and M36 in CN group.

There is a decrease in performance compared to the Lasso, Ridge,
ElNet, RF, and GB methods for JL. and GJL methods in CN subgroup.

Table 4.2: Performance comparison of various methods in terms of RMSE
for AD class

Method MO06 M12 M24

Lasso 3.38 4.09 4.68
Ridge 3.68 4.29 4.96
ElNet 3.38 4.11 4.67

RF 3.71 442 5.46
GB 3.63 432 5.28
JL 242 3.01 4.87

GJL 2.59 284 3.20

31

4.3. RESULTS AND DISCUSSION

Table 4.3: Performance comparison of various methods in terms of RMSE
for CN class

Method MO06 M12 M24 M36

Lasso 1.00 091 1.12 1.30
Ridge 1.00 0.90 1.16 1.29
ElNet 0.99 090 1.11 1.29

RF 1.00 090 1.15 1.31
GB 1.00 0.90 1.14 1.32
JL 1.04 1.29 1.11 1.55

GJL 1.08 1.30 1.09 1.31

Table 4.4: Performance comparison of various methods in terms of RMSE
for LMCI class

Method MO06 M12 M24 M36

Lasso 2.10 252 339 3.82
Ridge 221 257 3.58 4.01
ElNet 210 245 3.39 3.87

RF 2.26 258 3.62 4.02
GB 214 248 353 3.64
JL 241 248 3.36 347

GJL 221 236 280 3.10

The correlation coeflicients between the actual outcomes and the predic-
tions are shown in Tables 4.5, 4.6, and 4.7. For AD class, both JL and GJL
demonstrated an improved performance over the other competing methods
for M12, while EINet performed the best among all competing methods for
M24. For LMCI group, all other methods performed better than JL. and
GJL methods for M12, M24, and M36. For M06, both JL and GJL have
better CC. For CN group, GJL demonstrated an improved performance over
the other competing methods for M06 and M12, while EINet and Ridge per-
formed better than other methods for M24 and M36, respectively.

32

4.3. RESULTS AND DISCUSSION

Table 4.5: Performance comparison of various methods in terms of CC for

AD class
Method MO06 M12 M24
Lasso 0.58 0.55 0.67
Ridge 0.43 048 0.65
ElNet 0.57 0.52 0.69
RF 0.44 047 0.58
GB 0.44 0.49 0.56
JL 0.52 0.62 0.51
GJL 0.54 0.61 0.60

Table 4.6: Performance comparison of various methods in terms of CC for

CN class
Method MO06 M12 M24 M36
Lasso 0.14 0.06 0.21 0.12
Ridge 0.09 0.06 0.02 0.15
ElNet 0.14 0.058 0.26 0.14
RF 0.08 0.12 0.09 0.04
GB 0.09 0.05 0.16 0.00
JL 0.09 0.01 0.26 0.04
GJL 0.16 0.11 0.19 0.03

Table 4.7: Performance comparison of various methods in terms of CC for

LMCI class
Method MO06 M12 M24 M36
Lasso 0.52 0.56 0.63 0.64
Ridge 0.44 054 0.57 0.62
ElNet 0.52 0.58 0.63 0.63
RF 0.40 0.54 0.55 0.62
GB 0.50 0.55 0.59 0.70
JL 0.59 042 0.39 0.44
GJL 0.52 0.50 0.47 0.42

Tables 4.8, 4.9, and 4.10 show the Root Mean Squared Error (RMSE)
between the predicted MMSE scores and the actual RMSE scores for each
multi-task regression models discussed in chapter 3. We consider the pre-

33

4.3. RESULTS AND DISCUSSION

diction of the MMSE score at each time point as a task. We emphasize
that the purpose of the following is to illustrate the usefulness of multi-task
learning methods for data analysis and prediction in AD.

Table 4.8: Performance comparison of various methods in terms of RMSE

for AD class

Method MO6 M12 M24
MultiEINet 2.99 4.04 4.57
Loy 3.64 446 5.50
low rank 3.71 4.64 5.47
network structure 4.00 4.85 6.14
GFLasso 1.23 1.12 0.94

Table 4.9: Performance comparison of various methods in terms of RMSE

for CN class

Method MO6 M12 M24 M36
MultiEINet 1.03 1.18 1.17 1.26
Loy 0.80 1.05 0.96 1.52
low rank 0.79 1.07 099 1.52
network structure 0.78 1.06 0.96 1.52
GFLasso 1.29 136 1.29 1.51

Table 4.10: Performance comparison of various methods in terms of RMSE

for LMCI class

Method MO6 M12 M24 M36
MultiEINet 2.40 2,79 3.77 4.38
Loy 2.32 231 3.09 3.86
low rank 2.28 232 311 3.76
network structure 2.75 2.77 3.87 4.46
GFLasso 1.09 1.03 1.04 0.98

From the exprimental results in Tables 4.2, 4.3, 4.4, 4.8, 4.9, and 4.10,

we observe the following:

1. In AD subgroup, the GFLasso largely outperformed all other com-
peting multi-task learning analyses. Moreover, GFLasso method im-

34

4.3. RESULTS AND DISCUSSION

proved predictive performance over the independent regression meth-
ods (Lasso, Ridge, ElNet, RF, GB, JL, and GJL) in this subgroup.

2. Our method (GJL) outperformed MultiEINet, Lo 1, low rank, and net-
work structure models in AD class for all time points.

3. There is a decrease in performance compared to all other mutli-task
learning methods for GFLasso in CN subgroup.

4. GJL outperformed GFLasso in CN group at all time points, however, it
seems that MultiEINet, Ls 1, low rank, and network structure models
performed better than GJL in CN group.

5. In LMCI subgroup, the GFLasso outperformed all other competing
multi-task learning analyses. Furthermore, GFLasso method improved
predictive performance over the all independent regression methods in
this subgroup.

6. GJL method performed better than MultiEINet, Lo 1, low rank, and
network structure models at M06, M24, and M36 time points in LMCI
subgroup.

Tables 4.11, 4.12, and 4.13 show the corrleation coefficient (CC) between
the predicted MMSE scores and the actual RMSE scores.

Table 4.11: Performance comparison of various methods in terms of CC for
AD class

Method M0O6 M12 M24
MultiEINet 0.49 0.52 0.60
Loy 0.33 0.31 0.50
low rank 0.30 0.28 0.51
network structure -0.28 -0.36 0.43
GFLasso 0.18 0.14 0.50

35

4.4. CHAPTER SUMMARY

Table 4.12: Performance comparison of various methods in terms of CC for
CN class

Method M0O6 M12 M24 M36
MultiEINet 0.04 -0.03 0.02 0.08
Loy -0.02 0.13 0.14 0.03
low rank 0.02 -0.01 0.05 0.07
network structure 0.16 0.02 -0.00 -0.04
GFLasso 0.03 0.01 0.09 0.07

Table 4.13: Performance comparison of various methods in terms of CC for
LMCIT class

Method MO6 M12 M24 M36
MultiEINet 0.54 0.53 0.61 0.56
Loy 0.55 0.52 0.60 0.55
low rank 0.56 0.52 0.60 0.60
network structure -0.36 -0.28 0.11 0.47
GFLasso 046 048 0.49 0.52

It can be seen that MultiEINet method performed the best among all
competing multi-task methods in terms of CC in AD subgroup for all time
points. For LMCI group, MultiEINet method performed better than all
competing methods at M12 and M24. From Tables 4.11 and 4.5 , we observe
that all single-task learning methods such as Lasso, Ridge, ElNet, RF, GB,
JL, and GJL, peformed better than all multi-task learning methods in terms
of CC in AD class .

4.4 Chapter Summary

In this chapter, subjects who underwent MRI, and neuropsychological
tests such as MMSE have been selected from ADNI dataset. The MMSE
score is the target variable to be predicted with our method. In order to
show the impact of GJL, we compared the predictive performance of our
proposed model with multiple state-of-the-art regression models. We also
include several available well-known multi-task learning methods to show
the usefulness of these learning techniques in health-related problem such
as predicting the cognitive scores of patients with Alzheimer’s disease at
multiple future time points. Overall, the results show that there is not one

36

4.4. CHAPTER SUMMARY

single method outperforming the others, but instead a group of three top
methods including JL, GJL, and GFlasso that would all be a suitable choice.

37

Chapter 5

Conclusions

Large datasets can be broken into smaller datasets, that may have simil-
larities but not necessarily identically distributed. This thesis proposed
and investigated a high-dimensional regression learning framework over sub-
groups of observations to support predicting MMSE cognitive scores for
subjects with Alzheimer’s disease at multiple future time points. For each
Alzheimer’s disease stages, separate sets of regression models are trained
to increase the prediction accuracy. More specifically, We modified sev-
eral calculations from a previously published approach called ”joint lasso”
by Dondelinger and Mukherjee [DM18]. We provided a ”generalized” ver-
sion of joint lasso which groups positively correlated variables together and
produces a sparse solution for group-structured datasets, and also provides
subgroup-specific regression coefficient estimates.

We studied the prediction performance of our proposed method with
other linear and nonlinear single-task learning methods such as Ridge, Lasso,
Elastic net, Random Forest, Gradient boosting, and joint lasso regression
techniques. We also investigated the prediction performance of our proposed
method with several multi-task learning models.

It is further noteworthy that the joint lasso and generalzed joint lasso
have the advantage of allowing for subgroup-specific sparsity patterns and
parameter estimates, which can be of scientific interest. We further note that
if groups in dataset only slightly different, establishing one single regression
model may be more effective, or in other words, the choice of pooling or not
pooling analysis wil be data-dependent.

This work is based on linear models, but methods with nonlinear kernel
function can be used to model the output scores as nonlinear functions
of input measurements, which can provide additional insights to interpret
data. Moreover, future work should provide details about why GJL appears
to perform better than the other single-task learning methods in later time
points.

38

Bibliography

[ADN20]

[Arm13]

[Ass17]

[Becl7]

[Bel59]

[Bjo96]

[Bre01]

[BTOY]

[BVO04]

[Car9g|

[CKL*+10]

ADNI. Alzheimer’s disease neuroimaging initiative
(http://adni.loni.usc.edu/) [online]. 2020. — pages 28

Richard A. Armstrong. What causes alzheimer’s disease? Folia
Neuropathol, 51(3):169-188, 2013. — pages 27

Alzheimer’s Association. Alzheimer’s disease facts and figures.
Alzheimer’s & Dementia, 13(4):325-373, 2017. — pages 26, 27,
28

Amir Beck. First-order methods in optimization. Society for
Industrial and Applied Mathematics, 2017. — pages 1, 2, 4

William A. Belson. Matching and prediction on the principle of
biological classification. Journal of the Royal Statistical Society.
Series C (Applied Statistics), 8(2):65-75, 1959. — pages 14

Ake Bjorck. Numerical methods for least squares problems. So-
ciety for Industrial and Applied Mathematics, 1996. — pages
11

Leo Breiman. Random forests. Machine Learning, 45(1):5-32,
2001. — pages 14

Amir Beck and Marc Teboulle. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM Jour-
nal on Imaging Sciences, 2(1):183-202, 2009. — pages 4, 5, 6

Stephen Boyd and Lieven Vandenberghe. Conver Optimization.
Cambridge University Press, 2004. — pages 2, 3

Rich Caruana. Multitask learning. In Learning to Learn.
Springer, pages 95-133, 1998. — pages 22

Xi Chen, Seyoung Kim, Qihang Lin, Jaime G. Carbonell, and
Eric p. Xing. Graph-structured multi-task regression and an

39

Bibliography

[CRS10]

[CZS18]

[DCGT09]

[DHS01]

[DM18]

[EMPO5]

[FFM75]

[Frigg]

[Fri00]

[Fu9g|

efficient optimization method for general fused lasso. arXiv,
1005.3579, 2010. — pages 20, 21

Rudy J. Castellani, Raj K. Rolston, and Mark A. Smith.
Alzheimer’s disease? Disease-a-Month, 56(9):484-546, 2010. —

pages 27

Han Cao, Jiayu Zhou, and Emanuel Schwarz. Rmtl: An r library
for multi-task learning. Bioinformatics, 35(10):1797-1798, 2018.
— pages 24

Simon Duchesne, Anna Caroli, Cristina Geroldi, D. Louis
Collins, and Giovanni. B. Frisoni. Relating one-year cognitive
change in mild cognitive impairment to baseline mri features.
Neuroimage, 47(4):1363-1370, 2009. — pages 27

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern
Classification. Wiley, 2001. — pages 6

Frank Dondelinger and Sach Mukherjee. The joint lasso: high-
dimensional regression for group structured data. Biostatistics,
21(2):219-235, 2018. — pages 19, 20, 38

Theodoros Evgeniou, Charles A. Micchelli, and Massimiliano
Pontil. Learning multiple tasks with kernel methods. Journal of
Machine Learning Research, 6(1):615-637, 2005. — pages 23

M. F. Folstein, S. E. Folstein, and P.R. McHugh. “mini-mental
state” a practical method for grading the cognitive state of

patients for the clinician. Journal of Psychiatric Research,
12(3):189-198, 1975. — pages 28

Jerome H. Friedman. Regularized discriminant analysis. Journal
of the American Statistical Association, 84(405):165-175, 1989.
— pages 11

Jerome H. Friedman. Greedy function approximation: A gradi-
ent boosting machine. Annals of Statistics, 29:1189-1232, 2000.
— pages 15

Wenjiang J. Fu. Penalized regressions: The bridge versus
the lasso. Journal of Computational and Graphical Statistics,
7(3):397-416, 1998. — pages 13

40

Bibliography

[GBD92]

[HK70]

[HNO3]

[HSH16]

[HTF09)

[Int19]

[JLL*15]

[TY09]

[KSX09]

[LCW19]

Stuart Geman, Elie Bienenstock, and Rene Doursat. Neural
networks and the bias/variance dilemma. Neural Computation,
4(1):1-58, 1992. — pages 8

Arthur E. Hoerl and Robert W. Kannard. Ridge regression:
biased estimation for nonorthogonal problems. Technometrics,
12(1):55-67, 1970. — pages 11

Hanns Hippius and Gabriele Neundorfer. The discovery
of alzheimer’s disease. Dialogues in Clinical Neuroscience,
5(1):101-108, 2003. — pages 26

Zhouyuan Huo, Dinggang Shen, and Heng Huang. New multi-
task learning model to predict alzheimer’s disease cognitive as-
sessment. Medical Image Computing and Computer-Assisted In-
tervention, pages 317-325, 2016. — pages 23

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The
elements of statistical learning- data mining, inference and pre-
diction. Springer Series in Statistics. Springer, New York, NY,
USA, 2009. — pages 11

Alzheimer’s Disease International. World alzheimer report 2019:
Attitudes to dementia. Alzheimer’s Disease International (ADI),
2019. — pages 26, 27

Woncheol Jang, Johan Lim, Nicole A. Lazar, Ji Meng Loh, and
Donghyeon Yu. Some properties of generalized fused lasso and
its applications to high dimensional data. Journal of the Korean
Statistical Society, 44(3):352-365, 2015. — pages 18, 19

Shuiwang Ji and Jieping Ye. An accelerated gradient method
for trace norm minimization. In Proceedings of the 26th annual
international conference on machine learning. ACM, pages 457—
464, 2009. — pages 23

Seyoung Kim, Kyung-Ah Sohn, and Eric P. Xing. A multivariate
regression approach to association analysis of a quantitative trait
network. Bioinformatics, 25(12):204-212, 2009. — pages 23

Xiaoli Liu, Peng Cao, Jianzhong Wang, Jun Kong, and Dazhe
Zhao. Fused group lasso regularized multi-task feature learning
and its application to the cognitive performance prediction of

41

http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://www-stat.stanford.edu/~tibs/ElemStatLearn/

Bibliography

[LGC*17]

[LIY09]

[Mor65]

[Nazl11]

[Nes05]

[0A20]

[PTJY09]

[PVGTt11]

[Roc96]

alzheimer’s disease. Neuroinformatics, 17(4):271-294, 2019. —
pages 27, 28, 60

Xiaoli Liu, Andre R. Goncalves, Peng Cao, Dazhe Zhao, and
Arindam Banerjee. Modeling alzheimer’s disease cognitive scores
using multi-task sparse group lasso. Computerized Medical Imag-
ing and ics, 66:100-114, 2017. — pages 27

Jun Liu, Shiwang Ji, and Jieping Ye. Multi-task feature learning
via efficient £ 1-norm minimization. In Proceedings of the 25th
conference on uncertainty in artificial intelligence, pages 339—
348, 2009. — pages 22

J.J. Moreau. Proximité et dualité dans un espace hilbertien.
Bulletin de la S. M. F., 93(2):273-299, 1965. — pages 4

Linda Nazarko. Understanding dementia: diagnosis and devel-
opment. British Journal of Healthcare Assistants, 5(5):216-220,
2011. — pages 27

Yurii Nesterov. Smooth minimization of non-smooth functions.
Mathematical Programming, 103(1):127-152, 2005. — pages 21

National Institute of Aging. Alzheimer’s disease fact sheet. Re-
trieved from Alzheimer’s Disease Education and Referral Center
(ADEAR) website, 2020. — pages 26

Ting Kei Pong, Paul Tseng, Shuiwang Ji, and Jieping Ye. Trace
norm regularization: Reformulations, algorithms, and multi-
task learning. SIAM Journal on Optimization, 20(6):3465-3489,
2009. — pages 23

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011. — pages 22, 24, 26

R. Tyrrell Rockafellar. Convex analysis. Princeton University
Press (Princeton Landmarks in Mathematics and Physics), 1996.
— pages 4

42

https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet

Bibliography

[Shel0]

[TAST18]

[Tea20]

[Tib96]

[TSR*05]

[TT11]

[ZHO5]

[ZHOS)

[ZYLY11]

Yiyuan She. Sparse regression with exact clustering. Electronic
Journal of Statistics, 4:1055-1096, 2010. — pages 18

Solale Tabarestani, Maryamossadat Aghili, Mehdi Shojaie,
Christian Freytes, and Malek Adjouadi. Profile-specific regres-
sion model for progression prediction of alzheimer’s disease using
longitudinal data. 2018 17th IEEFE International Conference on
Machine Learning and Applications (ICMLA), pages 1353-1357,
2018. — pages 29

R Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna,
Austria, 2020. — pages 26

R. Tibshirani. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society. Series B (Methodolog-
ical), 58(1):267-288, 1996. — pages 11

Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu,
and Keith Knight. Sparsity and smoothness via the fused lasso.
Journal of the Royal Statistical Society Series B (Statistical
Methodology), 67(1):91-108, 2005. — pages 17

Ryan J. Tibshirani and Jonathan Taylor. The solution path
of the generalized lasso. Annals of Statistics, 39(3):1335-1371,
2011. — pages 18

Hui Zou and Trevor Hastie. Regularization and variable selection
via the elastic net. Journal of the Royal Statistical Society, Series
B, 67:301-320, 2005. — pages 11, 12

Cun-Hui Zhang and Jian Huang. The sparsity and bias of the
lasso selection in high-dimensional linear regression. Annals of
Statistics, 36(4):1567-1594, 2008. — pages 13

Jiayu Zhou, Lei Yuan, Jun Liu, and Jieping Ye. A multi-task
learning formulation for predicting disease progression. in Pro-
ceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 814-822, 2011. —
pages 30

43

Appendix

44

Appendix A

Proximity Operator

Prox operator of the ¢; norm has a closed-form expression.
If f(x) = A|lz| where A > 0 on R, then

—A ifx<0
of(x) =< [-\A] ifx=0
A ifx>0

y— X ify >\
prozy(y) = sgn(y) max{|y| — A,0} = <0 if |y| < A,
y+ A ify < —\

This function is called the soft thresholding.
From defintion, we know

. 1
prozy(y) = argmin {2||X —yl* + f(X)} ;
x€E

and
x=proxs(y) <y —x€df(x) ().
There are three cases:
Case 1: |y <X — y—0¢€ [\ A = 9f(0) and so (x) holds.
Case 2: y > A, then y — (y — A) =), therefore (%) holds with x =y — A.
Case 3: y < —A, similar to case2.

45

Appendix B

R Source Code

The following is the code used for filling NA values.

EuC = function(v , X }{
D =c()
for(w in 1:dim(x)[1]13{
Dlw] = sqrr(sum((y - X[w,])42))
h
return(D)
for(j in 1:length(y)){

¥s = ¥[,j]
Na = which(is.na(¥s))

for(i in 1:Tength(na)){

D_euc = Euc(x[Na[i]l,] , x[-Na[i],])

Y[Na[il,j] = round(mean({ Ys[order(D_euc) J[1:3] , na.rm = TRUE)

print(c(j,i))
}

h

sum{ is.ma(¥))

46

Appendix B. R Source Code

The following code is used for implementing Ridge regression.

#Ridge Regression

ridge <- train(MMSE_m0& ~ .,
train,
method= "glmnet"”,
tuneGrid=expand. grid(alpha=0,
lambda=10rseq(-3, 2, by = .1}),
trcontrol=custom)
#Prediction
pl =- predict(ridge,train)
sqri(mean((trainiMMsSE_mO6-pl)A2))

p2 <- predict(ridge,test)
sqri(mean((testiMMSE_mO6-p2)42))

ridgefbestTuneilambda

best_ridge <- which(ridgefresultsilambda == ridgeibestTuneilambda)
ridgeiresultsirMSE [best_ridge]

ridgeiresultsirRMSESD [best_ridge]

47

Appendix B. R Source Code

The following code is used for implementing Lasso regression.

#Lasso Regression

lasso <- train(MMseE_moe ~ .,
train,
method= "glmnet",
tuneGrid=expand.grid{alpha=1,
lambda=10rseq(-3, 2, by = .1)),
trControl=custon)

#Prediction
p3 =- predict(lasso,train)
sgqri(mean((trainiMMSE_mO&-p3)423)

pd =- predict(lasso,test)
sgrtimean((testiMMSE_mOG-pd) A2})

TassofhestTuneilambda

best_Tlasso <- which{lassofresultsilambda == lassofhestTuneilambda)
lassofresultsirMsE [best_Tlasso]

lassofresultsiRMSESD[best_Tlasso]

48

Appendix B. R Source Code

The following code is used for implementing Elastic Net regression.

#ENetRegression

ElMet =- train(MMSE_m06 ~ .,
train,
method= "gimnet"”,
tuneGrid=expand. grid(alpha=seq(0,1,length=10},
lambda=10+seq(-3, 2, by = .1},
trcontrol=custom)

#Prediction
p5 <- predict(ElNetl,train)
sgri(mean((trainiMMsSE_mD& -p5)A2))

p6 <- predict(ETNetl,test)
sqro(mean((TesTiMMSE_mMO& —p&)~A2))

ElNetlfbestTunedTambda

best_ETNetl <- which(ETNetliresultsilambda == ETNetlfbestTunefTambda)
ElMetliresultsirRMSE [best_ETNetl]

ElMetliresultsiRMSESD [best_ElNetl]

49

Appendix B. R Source Code

The following code is used for implementing Random Forest for regres-
sion.

#Grid search

control <- trainControl(method = "cv",
number = 10,
search = "grid")

tunegrid <- expand.grid(.mtry=c(1:15))
rf_grid <- train(data.m06.MMSCORE ~ .,
train,
method= "rf",
tuneGrid=tunegrid,
trcontrol=control)

print(rf_grid)
rf_gridiresults

summary (rf_grid)
plot(rf_grid)

#Prediction
pl <- predict(rf_grid,train)
sgrr(mean((trainidata.m06.MMSCORE -pl)A2))

p2 <- predict(rf_grid,test)
sgrr(mean((testidata.md6.MMSCORE -p2)A2))
cor(p2,testidata.md6. MMSCORE)

50

Appendix B. R Source Code

The following code is used for implementing Gradient Boost for regres-
sion.
#ustom Control Parameters

control =- trainControl(method
number

"ov”,
10)

tunegrid <- expand.grid(interaction.depth=c(1, 3, 5), n.trees = ¢(500,1000,1500,2000),
shrinkage=c(0.001,0.01,0.1,1},
n. minobsinnode=10)
gb_grid =- train(data.ml2.MMSCORE ~ .,
train,
method= "gbm",
tunecrid=tunegrid,
trControl=control)

print(gb_grid)
gb_gridiresults
gb_gridibesttune

#pPrediction

library(Metrics)

pl <- predict(gb_grid,train)
sqri(mean{(trainidata.ml2.MMSCORE -pl)~2))
RMSE(traintdata.ml2.MMSCORE,pl)

p2 <- predict(gb_grid,test)
sqrr(meani(testidata.ml2.MMSCORE -p2)A2))
RMSE (testidata.ml2.MMSCORE,p2)
cor(p2,testidata.ml2.MMSCORE)

51

Appendix B. R Source Code

The following code is used for implementing JL. and GJL models.

RMSE_TEST = function{ ¥.scale.Tr, Y.scale.Tr, Y.non.scale.Tr , DX.BL.Tr , DATA_TEST, Y.TEST,
lambda.vals , gamma.vals }{

NOT_NA = which(is.na(Y.scale.Tr | == FALSE)
¥s = as.matrix(X.scale. Trf NOT_NA , 1)
¥s= Y.scale.Tr[NOT_NA]
groups = as.factor(DX.BLTr[NOT_NAT])
p = dim(Xs)[2]
k =length{ unique(DX.BLTr)}
RESULT = fusedLassoProximal(
¥s, Ys, groups = groups , lambda = lambda.vals , gamma = gamma.vals ,
tol=1e-06, G =matrix(1, k k), intercept = FALSE , scaling = TRUE,
num.it = 1000, c.flag= FALSE, conserve.memaory =p >= 10000)
MEAM_Y_non.scale = tapply(Y.non.scale. Tr[NOT_NA] , groups , mean)
5D_Y_non.scale = tapply(Y.non.scale. Tr[NOT_NA] , groups, sd)
BETA_ESTIMATE = c()
for(iin 1:length{ DATA_TESTSD¥_hl))
BETA_ESTIMATE = rbind(BETA_ESTIMATE , RESULT[, DATA_TESTSDX_bI[i]+1])
}
PRED_MATRIX = chind(DATA_TEST[,3:322] , BETA_ESTIMATE,

SD_Y_non.scale[DATA_TESTSDX_bl + 1], MEAN_Y_non.scale[DATA_TESTSDX_bl + 1])

Appendix B. R Source Code

PREDICT = rowSums(PRED_MATRIX[, 1:320] * PRED_MATRIX[, 321:640]) *
PRED_MATRIX[, 641] + PRED_MATRIX[, 642]
RMSE = sqrt{ mean((PREDICT - Y.TEST }*2, na.rm =TRUE))

RMSE_g0 = sqrt(mean({ PREDICT[DATA_TESTSDX_bl==0] - Y.TEST[DATA_TEST$DX_bl==0] }*2, na.rm=
TRUE)}

RMSE_g1 = sqrt(mean({ PREDICT[DATA_TESTSDX_bl==1] - Y.TEST[DATA_TEST$DX_bl==1] }*2, na.rm=
TRUE))

RMSE_g2 = sqrt(mean((PREDICT[DATA_TEST$DX_bl==2] - Y.TEST[DATA_TEST$DX_bl==2] }*2, na.rm =
TRUE))

COR = CORR({ PREDICT, Y.TEST)

COR_g0 = CORR{ PREDICT[DATA_TESTSDX_bl==0], Y.TEST[DATA_TESTSDX_bl==0])
COR_gl = CORR{ PREDICT[DATA_TESTSDX_bl==1], Y.TEST[DATA_TESTSDX_bl==1])
COR_g2 = CORR{ PREDICT[DATA_TESTSDX_bl==2], Y.TEST[DATA_TESTSDX_bl==2])

return(list{ RMSE = ¢ RMSE = RMSE , RMSE_group0 = RMSE_g0, RMSE_groupl = RMSE_g1,
RMSE_group2 = RMSE_g2),

Correlation = ¢{ Correlation = COR, Cor_group0 = COR_g0, Cor_groupl = COR_g1, Cor_group2
=COR_g2),

y=Y.TEST , yh = PREDICT) }

h
CORR = function{ x , y }{
COV = sum ((x - mean(x,na.rm=TRUE)) * (y - mean(y ,na.rm=TRUE) } , na.rm = TRUE }

VARS = sgrt(sum (| x - mean(x,na.rm=TRUE) }*2 , na.rm =TRUE) * sum ({ y - mean(y,na.rm=TRUE)
A2, na.rm =
) na.rm=TRUE })

if(COV == 0){ return(0) }else{ return{ COV/VARS) }
h
DATA_GROUP_SCALE = DATA
GO = scale{ DATA[DATASDX _bl==0,3:326])
G1 = scale{ DATA[DATASDX bl ==1,3:326])

G2 = scale(DATA[DATASDX bl == 2, 3:326])

53

Appendix B. R Source Code

DATA_GROUP_SCALE[DATASDX_bl==0,3:326] =G0
DATA_GROUP_SCALE[DATASDX_hl==1,3:326]=G1

DATA_GROUP_SCALE[DATASDX bl==2,3:326]=G2

TEST ID = sample(dim(DATA_GROUP_SCALE}[1], .3*dim(DATA_GROUP SCALE][1])
DATA_TRAIN_SCALE = DATA_GROUP_SCALE[-TEST_ID , |
DATA TEST SCALE = DATA GROUP SCALE[TEST ID,]
DATA_TRAIN_NON_SCALE = DATA[-TEST_ID,]
DATA TEST NON_SCALE = DATA[TEST ID, |
VRIABLE = i
RESULT RMSE_TEST =
RMSE_TEST(X.scale.Tr = DATA_TRAIN_SCALE[,3:322] ,
Y.scale.Tr = DATA_TRAIN_SCALE[,322+VRIABLE]
Y.non.scale.Tr = DATA_TRAIN_NON_SCALE[,322+VRIABLE] ,
DX.BL.Tr = DATA_TRAIN SCALESDX bl,
DATA_TEST = DATA_TEST_SCALE ,
Y.TEST = DATA TEST NON_SCALE[,322+VRIABLE],

lambda.vals = ..., gamma.vals =)

54

Appendix B. R Source Code

The following code is used for implementing multi-task elastic net re-
gression.

from sklearn import linear_meodel
import pandas as pd

import numpy as np

import random

DATA_LMCI = pd.read_csv("C:\\Users\\marjan02\\Desktop\\Marjan\\ADNI\\Thesis\\Final Final "}

type(DATA_LMCI)
scale

X_scale = (DATA_LMCl.iloc[0:282,0:320] - DATA_LMCl.iloc[0:282,0:320].mean(} } /
DATA_LMCLiloc[0:282,0:320].std()

Y = DATA_LMCLiloc[0:282,320:324]
from sklearn.model_selection import train_test_split

X_scale_Train, X_scale_Test ,¥_Train, Y_Test = train_test_split(X_scale, ¥, test_size=0.30,
random_state=88)

RATIO = np.arange(.01,.99,.05)
ALPHA = np.arange(.5,5,.1)

MODEL_LMCI_CV=linear_model.MultiTaskElasticNetCV{cv=10 fit_intercept=True, normalize=False ,
random_state= 123,11_ratio=RATIO, eps=0.001, n_alphas=100, alphas=ALPHA)

MODEL_LMCI_CV.fit(¥_scale_Train,¥Y_Train)
best |1_ratio obtained by cross-validation.
MODEL_LMCI_CV.I1_ratio_

BEST_RATIO = MODEL_LMCI_CV.I1_ratio_
BEST_ALPHA = MODEL_LMCI_CV.alpha_

MODEL_LMCI = linear_model.MultiTaskElasticNet(fit_intercept=True, normalize=False , random_state=
123 ,11_ratio=BEST_RATIO , alpha=BEST_ALPHA)

MODEL_LMCLfit(¥_scale_Train,¥_Train)

MODEL_LMCl.score(X_scale_Train,Y_Train)
PRED = MODEL_LMCl.predict(X_scale_Test)
MSE = { { PRED - Y_Test }**2).mean(axis=0)

RMSE = MSE**.3

55

Appendix B. R Source Code

The following code is used for implementing Graph-Guided Fused Lasso
with the gflasso R package.

cvz <- cv_gflasso(x= x.train,y= y.train,R=corr,
additionalopts = 1ist(delta_conv=1le-5,iter_max=1e5),
k=10)

cvzioptimal

cvzimean

CV25SE
cv_plot_gflasso(cvz)

gfmodl <- gflasso(x= x.train,
Y= y.train,
R= corr,
opts = lTist(lambda=cvZ2$optimalilambda,gamma=Cv2Soptimalsgamma,delta_conv=1le-5,iter_max=1e5))

predyl <- predict_gflasso({gfmodl,x.train)
predy? <- predict_gflasso({gfmodl,x.test)

Tlibrary(caret)

RMSE (y.train[1],predy1[1])
RMSE (y.train[2],predy1[2])
RMSE (y.train[3],predy1[3])

RMSE (y.test[1],predy2[1])
RMSE (y.test[2],predy2[2])
RMSE (y.test[3],predy2[3])

colnames (gfmod1$8) <- colnames(y.train)
pheatmap(gfmodl$s, annotation_row = data.frame("MRI" = colnames(x.train),
row.names = rownames(gfmod1$s)), show_rownames = F)

56

Appendix B. R Source Code

The following code is used for implementing multi-task learning with £5 1
norm with the RMTL R package.

#perform the cross validation
library(RMTL)
cvfitr <- cwMTL(X,Y, type="Regression”, Regularization="121",
Lam1_seq=10"seq|2,-3, -0.1),
Lam2=0,
opts=list{init=0, tol=10"-6, maxIter=1500),
nfolds=10 ,stratify=FALSE, parallel=FALSE)
#the output lam1 value with minimum CV error
print (paste0("estimated lam1: ", cvfitrSLam1.min))
#plot CV errors across lam1 sequence in the log space
plot{cvfitr)
#train a MTL model
model<-MTL(X, Y, type="Regression", Regularization="121",
Lam1=cvfitrSLam1.min,Lam2 =0,
opts=list{init=0, tol=10~-6,maxIter=1500),
Laml_seg=cvfitrsLaml_seq)
predict
str{predict{model, X1)) # for regression
PRED <- predict{model, X1)
sgri{mean({as.vector{PRED[[1]])- as.vector(Y1[[1]]))"2))
sgrt(meani(as.vector(PRED[[2]])- as.vector(Y1[[2]])}"2))
sgrt{mean({as.vector{PRED[[3]]}- as.vector(Y1[[3]]))"2))
sgrt{mean({as.vector{PRED[[4]])- as.vector(Y1[[4]])}"2
cor(PRED[[1]],Y1[[1]]) #
cor(as.vector(PRED[[1]]},as.vector(Y1[[1]]))
cor(PRED[[2]],Y1[[2]]) #
cor{as.vector(PRED[[2]]),as.vector(Y1[[2]]})
cor(PRED[[3]],Y1[[3]]) #

cor(as.vector(PRED[[2]]),as.vector(Y1[[3]]))

57

Appendix B. R Source Code

The following code is used for implementing low rank multi-task learning
with the RMTL R package.

MTL with low-rank structure
cvfit3<-cvMTL(X, Y, type="Regression", Regularization="Trace",
Laml_seq=10"seq(2,-3, -0.1),
Lam2=0,
opts=list(init=0, tol=10"-6, maxlter=1500),
nfolds=10 stratify=FALSE, parallel=FALSE}
#Train
m3=MTL(X, Y, type="Regression", Regularization="Trace",
Laml=cvfit3SLam1l.min,
Laml_seg=cvfit35Laml_seq,Lam2=0,
opts=list{init=0, tol=10"-6maxlter=1500])
predict
stripredict{m3, X1)) # for regression
PRED3 <- predict(m3, X1)
sqrt{mean({as.vector(PRED3[[1]])- as.vector{Y1[[1]]))"2]))
sgrt{mean(({as.vector(PRED3[[2]])- as.vector(Y1[[2]]))"2])
sqrt{mean({as.vector(PRED3[[3]])- as.vector(Y1[[3]]))"2))
sqrt{mean({as.vector(PRED3[[4]])- as.vector(Y1[[4]]))"2]))
cor{PRED3[[1]],Y1[[1]])
cor{as.vector(PRED3[[1]]},as.vector(Y1[[1]]))
cor(PRED3[[2]],v1[[2]])
cor{as.vector(PRED3[[2]]},as.vector(Y1[[2]]})
cor{PRED3[[3]],¥1[[3]])
cor{as.vector(PRED3[[3]]},as.vector(Y1[[3]]))
cor{PRED3[[4]],¥1[[4]]) #

cor{as.vector(PRED3[[4]]},as.vector(Y1[[4]]))

58

Appendix B. R Source Code

The following code is used for implementing multi-task learning with
network structure with the RMTL R package.

#MTL with network structure
library({corrplot)
corrplot{cor(x.train[,1:20]))
cr <- cor(y.train)
cor.test(CN_RMTLSmO6.MMSCORE,CN_RMTLSmM12.MMSCORE)
corrplot{cr)
corrplot{cr,method = "pie")
corrplot{cr,method = "color")
corrplot{cr,method = "number")
corrploticr,type = "lower")
cvfitd<-cuMTL(X, Y, type="Regression", Regularization="Graph", G=cr,
Laml_seg=10"seq(2,-3, -0.1),
Lam2=0,
opts=list{init=0, tol=10%-6, maxlter=1500),
nfolds=10 ,stratify=FALSE, parallel=FALSE)
#Train
md=MTL(X, Y, type="Regression", Regularization="Graph",
Lam1=cvfit4SLaml1.min, Lam1_seq=cvfit4SLaml_seq, G=cr,
Lam2=0,
opts=list(init=0, tol=10"-6,maxlter=1500))
predict
str(predict{md, X1)) # for regression
PRED4 <- predict{md, ¥1)
sqrt(mean({as.vector(PRED4[[1]])- as.vector(Y1[[1]]})"2))
sgrt(mean({as.vector(PRED4[[2]])- as.vector(Y1[[2]]})"2])
sqrt(mean({as.vector(PRED4[[3]])- as.vector(Y1[[3]]))"2))
sgrt(mean({as.vector(PRED4[[4]])- as.vector(Y1[[4]]})"2))
cor(PRED4[[1]],Y1[[1]]} #

cor{as.vector(PRED4[[1]]),as.vector(Y1[[1]]))

59

Appendix C

List of Variables

The names of predictors are listed in Tables C.1, C.2, and C.3. TA, TS,
SA, and CV stand for thickness average, standard deviation of thickness,
surface area, and volume of the cortical and subcortical regions of the brain,
respectively. Laterality denotes the various types of features measured for L
(left hemisphere), R (right hemisphere), and Bilateral (whole hemisphere)
[LCW*19]. For more details on how the FreeSurfer is being used to extarct
features of MRI scans see [LCW'19]. The MMSE score at baseline, the
cortical thickness average (TA) of left Isthmus Cingulate, and the volume of
right Inferior Parietal play important roles in predicting MMSE at all time
points.

Table C.1: List of variables

Name Type Laterality
Banks superior temporal sulcus CV, SA, TA, TS L, R
Caudal anterior cingulate cortex CV, SA, TA, TS L, R
Caudal middle frontal gyrus CV,SA, TA,TS L, R
Cuneus cortex CV,SA, TA, TS L, R
Entorhinal cortex CV,SA, TA, TS L, R
Frontal pole CV,SA, TA, TS L, R
Fusiform gyrus CV,SA, TA, TS L, R
Inferior parietal cortex CV,SA, TA, TS L,R
Inferior temporal gyrus CV,SA, TA, TS L, R
Insula CV,SA, TA, TS L, R
IsthmusCingulate CV,SA, TA, TS L, R
Lateral occipital cortex CV,SA, TA,TS L, R
Lateral orbital frontal cortex CV,SA, TA, TS L, R
Lingual gyrus CV,SA, TA, TS L,R
Medial orbital frontal cortex CV,SA, TA, TS L, R
Middle temporal gyru CV,SA, TA, TS L, R
Paracentral lobule CV,SA, TA, TS L, R

60

Appendix C. List of Variables

Table C.2: List of variables

Name Type Laterality
Parahippocampal gyrus CV,SA, TA, TS L, R
Pars opercularis CV,SA, TA, TS L,R
Pars orbitalis CV,SA, TA, TS L, R
Pars triangularis CV,SA, TA, TS L,R
Pericalcarine cortex CV,SA, TA, TS L,R
Postcentral gyrus CV,SA, TA, TS L,R
Posterior cingulate cortex CV,SA, TA, TS L,R
Precentral gyrus CV,SA, TA, TS L, R
Precuneus cortex CV,SA, TA, TS L, R
Rostral anterior cingulate cortex CV, SA, TA, TS L, R
Rostral middle frontal gyrus CV,SA, TA,TS L, R
Superior frontal gyrus CV,SA, TA, TS L, R
Superior parietal cortex CV,SA, TA,TS L, R
Superior temporal gyrus CV,SA, TA, TS L, R
Supramarginal gyrus CV,SA, TA, TS L,R
Temporal pole CV,SA, TA, TS L,R
Transverse temporal cortex CV,SA, TA, TS L,R
Hemisphere SA L,
Total intracranial volume CcvV Bilateral
Accumbens area SV L, R
Amygdala SV L, R
Caudate SV L, R
Cerebellum cortex SV L, R
Cerebellum white matter SV L, R
Cerebral cortex SV L, R
Cerebral white matter SV L, R
Choroid plexus SV L, R
Hippocampus SV L, R
Inferior lateral ventricle SV L, R
Lateral ventricle SV L, R
Pallidum SV L, R
Putamen SV LR
Thalamus SV L, R
Ventricle diencephalon SV L, R
Vessel SV L, R

61

Appendix C. List of Variables

Table C.3: List of variables

Name Type Laterality
Brain stem SV Bilateral
Corpus callosum anterior SV Bilateral
Corpus callosum central SV Bilateral
Corpus callosum middle anterior SV Bilateral
Corpus callosum middle posterior SV Bilateral
Corpus callosum posterior SV Bilateral
Cerebrospinal fluid SV Bilateral
Fourth ventricle SV Bilateral
Non white matter hypointensities SV Bilateral
Optic chiasm SV Bilateral
Third ventricle SV Bilateral
White matter hypointensities SV Bilateral

62

Appendix D

Degrees of freedom

Tables D.1, D.2, and D.3 present the number of variables retained for
each sparse method in LMCI, AD, and CN subgroups.

Table D.1: Degrees of freedom for LMCI class
Method Lasso EINet JL GJL

df MO6 7 19 24 167
df M12 11 11 22 168
df M24 9 11 44 44

df M36 19 21 39 43

Table D.2: Degrees of freedom for AD class
Method Lasso EINet JL GJL

df MO6 16 117 26 166
df M12 16 111 29 168
df M24 18 150 44 50

Table D.3: Degrees of freedom for CN class
Method Lasso EINet JL GJL

df MO6 1 149 13 167
df M12 2 1 21 168
df M24 11 8 44 54

df M36 17 34 39 69

63

	Abstract
	Lay Summary
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	1 Introduction
	1.1 Optimization
	1.1.1 Basic Concepts
	1.1.2 Gradient-based Optimization

	1.2 Subdifferential Calculus
	1.3 Proximal Gradient Methods
	1.3.1 FISTA

	1.4 Machine Learning
	1.4.1 Bias and Variance

	2 Literature Review
	2.1 Linear regression and least squares
	2.2 Regularized Least Squares
	2.2.1 Least absolute shrinkage and selection operator
	2.2.2 Ridge Regression
	2.2.3 Elastic Net

	2.3 Ensemble Learning
	2.3.1 Decision Tree
	2.3.2 Random Forest
	2.3.3 Gradient Boosting Algorithm

	3 Structured Linear Regression
	3.1 Fused Lasso and its generalization
	3.2 Joint Lasso
	3.3 Generalized Joint Lasso (Our Model)
	3.4 Multi-Task Learning
	3.5 Chapter Summary

	4 Data Analysis Results
	4.1 Current Statistics of Alzheimer's Disease
	4.1.1 Stages of AD
	4.1.2 Data

	4.2 Problem Description
	4.3 Results and Discussion
	4.4 Chapter Summary

	5 Conclusions
	Bibliography
	Appendix
	A Proximity Operator
	B R Source Code
	C List of Variables
	D Degrees of freedom

