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Abstract  

Pertussis disease is most severe among young infants, leading to high morbidity and 

mortality. To reduce the burden of pertussis disease among young infants, immunization 

against pertussis during pregnancy has been implemented in an increasing number of 

countries over the past decade. My research goals have focused on addressing important 

knowledge gaps in the field of pertussis immunization during pregnancy to inform an 

evidence-based immunization program.  

 

Using data on hospitalized pertussis cases admitted to pediatric tertiary care centers in 

Canada, I report that the highest morbidity and mortality from pertussis is among infants 

<2 months of age with an incidence rate of 116.4/100,000/year, 38% intensive-care unit 

admission rate, and 2.3% case fatality rate. Age <16 weeks, encephalopathy and 

prematurity were independently associated with a 5-fold, 21-fold and 6-fold increased 

risk for intensive-care unit admission, respectively. I also developed a novel approach 

that enables comprehensive characterization of anti-pertussis immunoglobulin G (IgG) 

avidity using a range of bond-breaking agent concentrations combined with high-

dimensional biology statistical tools. I applied this approach on cord blood samples, and 

found that vaccination against pertussis during pregnancy was associated with high levels 

of high-avidity antibodies. I also found that maternal pertussis vaccination at 28–32 

weeks gestation was associated with higher cord blood anti-pertussis IgG avidity that 

vaccination at 33–36 weeks gestation. Furthermore, I compared antibody responses after 

primary and/or booster immunization in infants born to women with and without 

pertussis immunization during pregnancy. I found lower vaccine-induced antibody 



	 iv	

responses to pertussis, diphtheria and some Streptococcus pneumoniae serotypes in 

infants born to women vaccinated against pertussis during pregnancy compared with 

infants of unvaccinated women.  

The body of work presented here assists public health policy makers to reach evidence-

based recommendations across countries. Supporting earlier immunization in the 3rd 

trimester will be of particular clinical relevance for preterm infants who would 

completely miss out on protection via maternal antibodies if immunization only occurred 

in late pregnancy. These data from the meta-analysis supports enhanced surveillance of 

pertussis, diphtheria and invasive pneumococcal disease in infants to determine the 

clinical significance of this effect.  
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Lay Summary  

Young babies are at high risk of severe whooping cough disease. Whooping cough 

vaccine has been increasingly recommended for pregnant women, to prevent disease in 

their babies. I have shown that infants under 2 months are at highest risk of ending up in 

an intensive care unit in the hospital or die from whooping cough. We don't know when 

is best to give the whooping cough vaccine in pregnancy. I also found that vaccination 

early in the third trimester is associated with higher levels of more potent antibodies as 

compared to vaccination later in the third trimester. I found that antibody levels to 

pertussis are lower in infants born to women vaccinated against pertussis during 

pregnancy compared to unvaccinated women after primary and booster immunization. 

Altogether, my PhD work helps understand how whooping cough vaccine works in 

pregnancy, and how to best use it to prevent whooping cough in babies. 
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1. Introduction  

 

1.1 Susceptibility of pregnant women and newborns to infection and underlying 
immunology  

	

1.1.1 Susceptibility of pregnant women, fetus and newborn to infections 

	
Increased risks for certain infections during pregnancy suggest significant changes during 

gestation1. Some infections are more common (e.g. urinary tract infections) or more 

severe (e.g. pneumonia) due to physiological and physical changes occurring during 

pregnancy2,3. Pregnant women are at increased susceptibility for particular infections and 

some infections are more severe in pregnant women, probably due to immunological 

adaptations associated with pregnancy. Furthermore, certain infections might have 

minimal impact on pregnant women themselves but can severely affect the fetus and lead 

to long-term health consequences for the neonate and infant (Table 1.1). Altogether, these 

data point towards clinically important and unique interactions between physiological, 

hormonal and immunological elements occurring during pregnancy. 
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Table 1. 1: Infections associated with increased maternal susceptibility or severity 
during pregnancy, or severe adverse fetal outcomes. 

Infection 	 Reference 	
Increased maternal susceptibility	
Listeriosis	 4-10	
Tuberculosis (during the puerperium) 	 11, 12	
Malaria 	 13-16	
Increased maternal severity	
Influenza 	 17-22	
Varicella Zoster Virus infection 	 23-27	
Hepatitis E virus infection 	 28-31	
Malaria 	 14, 32-35 
Invasive Haemophilus influenzae infection 	 36-38	
Invasive pneumococcal disease 	 39 
Invasive group A streptococcal disease 	 39 
Dengue fever 	 40 
Lassa Fever 	 41, 42 
Ebola virus 	 41 
Primary Herpes Simplex Virus infection 	 43-45 
Coccidiomycosis†	 46-50 
Measles 	 51, 52	
Severe adverse fetal outcomes	
Toxoplasmosis 	 53, 54	
Influenza 	 17, 19, 21, 55-58	
Primary varicella zoster virus infection 	 24, 59	
Malaria 	 33	
Rubella 	 60-62 
Parvovirus B19 	 63	
Listeriosis  	 4, 9, 64, 65	
Tuberculosis 	 66, 67 
Zika virus 	 68, 69 
Measles 	 52, 61, 70, 71	
Mumps 	 70 
Cytomegalovirus 	 72 
	
†: Some data suggest increased maternal severity while other data do not suggest this 
association.  
 

1.1.2 Immunological changes during pregnancy  

	
During pregnancy, major adaptations and fine balance occur in the maternal systemic 

immune system to protect the mother and her future baby from pathogens while avoiding 
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detrimental immune responses against the allogeneic fetus. A better understanding of 

immunological changes during pregnancy may also be important in considering optimal 

strategies for use of pertussis vaccines, to protect both the pregnant woman and infant73. 

The dynamic changes occurring in the peripheral maternal immune system during normal 

pregnancy are described below.  

INNATE IMMUNITY 
	

Complement system 

	
Studies suggest increased complement activity during pregnancy (Table 1.2). Plasma 

levels of C3a, C4a, C5a, C4d, C3a, C3, C9, and the Serum Complement Membrane 

Attack Complex SC5b9 are elevated during pregnancy74.75,76. The balance in complement 

system is maintained through high levels of regulatory proteins such as factor H which 

blocks the alternative C3 convertase77. Complement hemolytic activity (CH50) reflects 

activity of the classical complement pathway and increases as pregnancy progresses78,79.  

Granulocytes  

	
Eosinophil and basophil counts are not affected by pregnancy (Table 1.2)80, 81. However, 

urinary eosinophil-derived neurotoxin secretion is elevated during the second and third 

trimester, suggesting increased eosinophil degranulation. In contrast, urinary N-

methylhistamine concentrations are lower in the third trimester, suggesting reduced mast 

cell degranulation82. There is a gradual, marked increase in neutrophils from the first 

trimester onwards80, 83.  
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Granulocyte colony-stimulating factor and Granulocyte monocyte colony-stimulating 

factor, two cytokines mediating bone marrow neutrophil production, are also elevated 

during pregnancy80, 84. The function of neutrophils may be altered during pregnancy, as 

suggested by reduced phagocytosis of zymosan molecule85. Elastase and lactoferrin are 

secreted from primary and secondary neutrophil granules, respectively, and are elevated 

in the first trimester 80.  

Monocytes  

	
Three main subsets of monocytes have been characterized in humans. Classical 

monocytes (CD14highCD16-) are the main subset in the peripheral blood of healthy adults 

(~80% of all monocytes) and have phagocytic functions. Non-classical monocytes 

(CD14lowCD16high) are inflammatory86. Intermediate monocytes (CD14highCD16intermediate) 

may represent a transitional state, displaying both inflammatory and phagocytic 

capacity86. Monocytes also present antigens to T cells, hence modulating adaptive 

immune responses. Monocytes increase during pregnancy, beginning in the first 

trimester87, 88. The impact of pregnancy on maternal monocyte function has been 

reviewed elsewhere and is summarized (Table 1.2)89, 90.  
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Table 1. 2: Changes in complement, granulocytes and monocytes during normal 
pregnancy. 
Component  Main findings  References  
Complement  
Levels  Elevated C3a, C4a and C5a in the second and third trimester in 

comparison to non-pregnant women.  
74 

 Elevated C4d, C3a, C3, C9, the Serum Complement Membrane 
Attack Complex SC5b9 during pregnancy.  

75 

Regulatory 
proteins  

High levels of regulatory proteins (e.g. Factor H).  77 

 Increased levels of the C3 inhibitor pregnancy-associated plasma 
protein A during the second and third trimesters.  

91, 92 

CH50 Increase in CH50 levels in healthy pregnancy as compared to non-
pregnant women and increases as pregnancy progressed.  

79 

Granulocytes    
 Eosinophil and basophil counts were not affected by pregnancy. 80, 81 
 Increased eosinophil degranulation during the second and third 

trimester compared to non-pregnant women. 
82 

 Increase in neutrophil counts from the first trimester onwards. 80, 83. 
 In vitro activated neutrophils from pregnant women show reduced 

respiratory burst activity and are refractory to priming with IFN-γ.  
93-95 

 Reduced phagocytosis of neutrophils during pregnancy. 85 
 Increased levels of TLR4 co-receptor CD14 and the Fc receptor 

CD64 on granulocytes in the second and third trimesters compared to 
non-pregnant women. Reduced expression of the neutrophil maturity 
marker CD16 and the MHC II molecule HLA-DR on granulocytes in 
pregnant women. 

96 

Monocytes  
 Granulocytic but not monocytic MDSCs are elevated in pregnancy.  97 
 Increases in monocyte numbers during pregnancy, mainly due to a 

higher number of “intermediate” monocytes, where classical 
monocytes decrease, with no change in the proportion of non-
classical monocytes. 

87, 88 98, 99 

 Elevated stimulation-induced IL-12 and TNFα production by 
monocytes from pregnant women throughout all three trimesters.  

100, 101 

 Increased levels of activation markers CD11a, CD11b, CD14 and 
CD64, and ROS production by monocytes from pregnant women. 

83, 96 

 Reduced LPS-induced IL-12 and TNFα production by monocytes of 
third trimester pregnant women as compared to non-pregnant women.  

88 

 Reduction in non-classical monocytes and an increase in classical 
monocytes in the third trimester compared to healthy controls.   

102 

 
Abbreviations: CH50: 50% haemolytic complement; IFN-γ: Interferon- γ; ROS: Reactive 
oxygen species; TLR: Toll-like receptors; MHC: major histocompatibility complex; 
HLA-DR: Human Leukocyte Antigen –DR; MDSC: myeloid-derived suppressor cell; 
TNFα:  tumor necrosis factor α; LPS: Lipopolysaccharides. 
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Innate Lymphoid Cells  

 

Innate lymphoid cells (ILCs) lack CD3 and antigen-specific receptors 103. Natural killer 

(NK) cells are the best characterized ILCs104. In blood, most NK cells express low levels 

of the adhesion molecule CD56 and the Ig receptor CD16. Most studies report no change 

in NK subsets (CD56dim, CD56bright), invariant NK T cells (iNKT) and type II non-

classical NK T cells in peripheral blood between pregnant and non-pregnant women105-107 

despite a reduction in NK cell numbers108, 109 (Table 1.3). Maternal NK cells and 

monocytes have increased expression of the immune checkpoint protein TIM-3 in 

pregnancy107, 110, potentially induced by high IL-4 and low IFN-γ levels111. TIM-3 is 

important for NK cell-mediated IFN-γ production and may contribute to increased 

phagocytosis in pregnancy111. High surface levels of TIM-3, a characteristic of 

lymphocyte exhaustion112, potentially indicate that pregnancy NK cells are anergic. The 

augmented inflammatory NK cell capacity during pregnancy is further supported by 

studies showing increased expression of the activation marker CD69 on CD4neg iNKT 

cells as pregnancy progresses106. Together, this indicates elevated baseline activity and 

heightened potential to upregulate pro-inflammatory responses, underlining increased 

innate immunity during pregnancy. This might serve as an important defense mechanism 

against infections in pregnancy. In contrast, IFN-γ production is reduced and IL-10 

production upon ex vivo stimulation with PMA-ionomycin is increased by NK cells from 

the first trimester, compared to non-pregnant women113. This anti-inflammatory capacity 

could contribute to the dampening of the adaptive immune system which could help in 
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protection of fetus from rejection by the mother and thus optimize immunity without 

collateral damage to the fetus.  
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Table 1. 3: Changes in systemic innate lymphoid cells during normal pregnancy.  

Component  Main findings  References  
NK cells  
 No change in total numbers or frequency of NK subsets 

(CD56dim, CD56bright), iNKT and NKT cells in peripheral blood 
between non-pregnant and pregnant women, regardless of the 
trimester of pregnancy.   

105-107 

 Reduction in NK cell numbers in pregnant vs. non-pregnant 
women  

108, 109 
 

 Decreased ratio of type 1 NK cells (defined as expressing 
IL18R1) to type 2 NK cells (defined as expressing IL1RL1) in 
the third trimester compared to healthy controls suggesting 
reduced inflammatory responses.  

114 

 Increased expression of surface-marker immune checkpoint 
protein TIM-3 on NK cells and monocytes in pregnancy.  

107, 110 

 Increase in expression of the activation marker CD69 on CD4neg 
iNKT cells from the first to the third trimester, although the 
levels are not significantly different to age-matched non-pregnant 
controls. 

106 

 Increased expression of the degranulation marker LAMP-1 
(CD107a) on CD56dim cells after PMA-ionomycin stimulation 
(reflects NK cell activity) and baseline levels of the natural 
cytotoxicity receptor NKp46 CD335 (regulator of NK cells 
function) in the third trimester as compared to non-pregnant 
women. These changes highlight the increased activity of NK 
cells which could contribute to protection from infections.  

99, 107 

 Reduced IFN-γ production and increased IL-10 production upon 
ex vivo stimulation with PMA-ionomycin by NK cells from the 
first trimester compared to non-pregnant women. 

113 

Abbreviations: NK: Natural killer; iNKT: Invariant natural killer T; NKT: natural killer 
T; TIM-3: T-cell immunoglobulin- and mucin domain-containing-3; LAMP-1: lysosome-
associated membrane protein-1; PMA: phorbol-12-myristate-13-acetate; IFN-γ: 
Interferon – γ. 

 

ADAPTIVE IMMUNITY 
	

T cells   

	
The absolute lymphocyte count and the percentage of total T cells does not differ 

significantly during the first, second, and third trimesters of pregnancy115, 116, while the 
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numbers of T cells during pregnancy are lower than before pregnancy (Table 1.4)117. 

Pregnancy has also been associated with changes in T cell subsets, although the data are 

conflicting and the significance is unclear117,118,115, 116. The percentage of CD4+ and CD8+ 

T cells of women at various stages of gestation does not differ significantly115, 116. In 

another study, no significant changes were found in the percentage of CD4+ cells, CD8+ 

cells, nor of CD4+/CD8+ ratio at any stage of pregnancy118. However, compared to pre-

pregnancy, the number of T helper cells and cytotoxic T cells was lower in third and first 

trimesters of pregnancy, respectively, while the number of suppressor T cells was higher 

in the first trimester of pregnancy117.  

 

Studies have investigated the ratio of Th2 to Th1 cells as measured by the circulatory 

levels of secreted Th1 or Th2 serum cytokines, or levels of CD4+ cells producing Th1 or 

Th2 cytokines, or expression of chemokine receptors CXCR3 (associated with Th1 cells) 

and CCR4 (associated with Th2 cells) on CD4+ T cells. The view of pregnancy as a Th2 

state is supported by numerous studies119-123, but also rejected by others124. Viewing 

pregnancy as a Th2 state is supported by a rise in anti-inflammatory cytokines, and by 

studies showing that Th1 and Th17 -type autoimmune disorders are improved125-127 while 

Th2-type autoimmune disorders worsen in pregnancy128. A progressive shift from cell-

mediated, pro-inflammatory, Th1 cell responses to humoral, anti-inflammatory, Th2 cell 

responses is initiated early in pregnancy1, 129. The ratio of Th17 cells (important against 

extracellular bacteria or fungal pathogens) to CD4+ T cells is similar to healthy non-

pregnant women during all stages of pregnancy130,131, 132 (Table 1.4).  
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B cells 

	
Maternal antibodies are the main maternal immune component that protect the neonate 

immediately after birth133. Peripheral blood B cell counts vary during normal pregnancy 

and the post-partum period, also compared to healthy non-pregnant women (Table 1.4)117, 

118, 134-142,143. A reduction in circulating B cells is particularly prominent during the third 

trimester, revealing a “physiological” B cell lymphopenia144 due to the effect of elevated 

estrogens on lymphopoiesis145,146. This B cell lymphopenia has also been attributed to 

cellular migration into tissues, including the placental decidua, and suggests that B cells 

play a particularly important role maintaining tolerance at the maternal-fetal interface147.  

In a mouse model, fetal trophoblasts converted B cells into IL-10-producing B cells 

which are thought to be important in regulating feto-maternal tolerance 148.  

 

In a mouse model, treatment of mice with estrogen upregulated expression of CD22 

receptor and the intracellular tyrosine phosphatase SHP-1 genes in B cells. 

Overexpression of these genes led to diminished calcium response in B cells after 

activation of BCR, thus supporting a role of these molecules in reduction in B cell 

receptor signaling149.  B cells can also induce tolerance of immune system. In a mice 

model, a population of B cells promoted the proliferation of T-regulatory cells (Tregs). 

However, whether this happens in humans and in pregnancy has not been investigated150.    

Pregnancy is also associated with lower frequency or total levels of CD5+ B cells during 

pregnancy, at delivery or early in the postpartum period117, 134, 138, 142.  These are innate B-

1 cells that produce natural IgM antibodies that are important in early protection 

following infection.    
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The function of B cells decreases as pregnancy advances. Loss of responsiveness to 

mitogens and infectious agents, which may increase the risk of infection, has been 

reported (Table 1.4)151.  

Immunoglobulins  

	
Studies from the 1960s-70s reported conflicting results regarding immunoglobulin (Ig) 

levels during pregnancy (Table 1.4). Some studies suggest that total IgG levels remain 

stable during pregnancy152-154, while other studies show a decrease in late pregnancy155-

161. IgG1 levels were higher in pregnancy compared to non-pregnant women, while IgG3 

levels were higher in pregnant women in their second trimester, compared to non-

pregnant women162. IgG1 and IgG3 are important contributors to different functions of 

IgG including neutralization and opsonization of pathogens or antigens, activation of 

complement system, and sensitization of killing by NK cells (through antibody-

dependent-cellular toxicity). IgG2 and IgG4 levels remain stable during pregnancy and 

levels are comparable to non-pregnant women162.  

 

IgGs are glycoproteins and contain N-glycans at both the Fc and Fab portion of IgGs. 

These N-glycans consist of a constant heptasaccharide core, fucose, N acetylglucosamine 

(GlcNAc), galactose(s), and sialic acid(s)163, 164. Pregnancy has been shown to be 

associated with changes in IgG Fc domain glycosylation, with an increase of 

galactosylation and sialylation of the Fc portion of IgG163, 165, 166, whereas Fc fucosylation 

was shown to remain at high and very similar levels during pregnancy163, 166. IgG Fc 

domain glycosylation can have immune regulatory functions and modulate IgG effector 

functions as Fc-linked glycans alter the three-dimensional structure of the protein, thus 
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influencing the binding to Fc-receptors167, 168. Glycan–glycan interactions occur between 

IgG and Fc Receptor IIIa169, with core fucose decreasing the affinity of this interaction170. 

Thus, high fucosylation of the Fc portion of the IgG, that is reported to occur during 

pregnancy, has the potential to inhibit the binding with Fc Receptor IIIa expressed on NK 

cells, and thus decreasing antibody-dependent cellular cytotoxicity, suggesting that this 

post-translational modification might be associated with an increased risk for infections 

in pregnancy.   
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Table 1. 4:  Changes in T cells, B cells and immunoglobulins during normal 
pregnancy. 
 
Component  Main findings  References  
T cells  
Total levels  Lower levels of T cells during pregnancy than before pregnancy.  117 
 No differences in the total lymphocyte count and the percentage of 

total T cells during the first, second, and third trimesters.  
115, 116 

Subsets  No difference in the percentages of T helper [CD4+] and T 
suppressor [CD8+] cells during the first, second, and third 
trimesters. 

115, 116. 

 No significant changes in the percentage of CD4+ cells, CD8+ cells, 
nor CD4+/CD8+ ratio at any stage of pregnancy. 

118 

 Pregnancy is associated with a Th-2 or anti-inflammatory state. 119-123 
 A progressive shift from Th1 cell responses to Th2 cell responses 

initiated early in pregnancy. 
1, 129 

 Lower plasma IL-2 levels (indicative of CD4+ Th1 cells) in the post-
partum period when compared to all trimesters.   

171. 

 Lower percentage of Th1 cells (CD4+ cells producing IFN-γ) in the 
third trimester compared to the first trimester and no changes in the 
percentage of Th2 (CD4+ cells producing IL-4) was observed. 

172 

 No change in the proportion of Th1 or Th2 cells during pregnancy.  
No differences in the percentage of CD3+CD8−IFN-γ+ cells (Th1) 
across gestation. No change in the percentage of resting CD4+ T-
cells expressing CXCR3 (associated with Th1 cells) and CCR4 
(associated with Th2 cells) during different stages of pregnancy.  

173 

 Increase in the numbers of IFN-γ and IL-4 secreting cells as 
pregnancy progressed compared with postpartum  

174 

 No change in the Th17/CD4+ T cells ratio during all stages of 
pregnancy compared to that of healthy non-pregnant women. 

131 

Function  Reduced PHA-Stimulated T lymphocytes proliferation in pregnant 
women at various times throughout gestation compared with those 
from non-pregnant controls.  

175. 

 Decreased lymphocyte proliferation to mitogenic stimulation in the 
first, second and third trimesters as compared to non-pregnancy. 

115 

 Decreased in IL-2 and IFN-γ production and increased in production 
of IL-4 and IL-10, during normal pregnancy in response to antigen- 
and mitogen stimulation.  

176 

 The ability of T cells to form colonies varied during pregnancy. 177 
B cells  
Total B cells  Lower numbers and/or frequency of total B cells in pregnant women 

compared to post-partum levels or to healthy non-pregnant women. 
117, 118, 134-

142 143,144 
 No changes in absolute levels of total B cells during the entire 

course of pregnancy. 
134, 178, 179 

 Decrease in the absolute levels of total B cells during the entire 
course of pregnancy. 

117, 137 
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Component  Main findings  References  
Subsets of B 
cells 

Lower frequency or total levels of CD5+ B cells during pregnancy, 
at delivery or early in the postpartum period. 

117, 134, 138, 

142 
 Lower absolute counts of transitional B cells, unswitched memory B 

cells, resting memory B cells, and plasmablasts during the third 
trimester than in non-pregnancy. 

143, 162 

Markers of B 
cell activation 
and function 

No difference in the percentage of activated B cells during the three 
trimesters compared to non-pregnant women. 

162 

 Higher B cell activating factor levels during their third trimester.  161 
 Loss of responsiveness of B cells to mitogens and infectious agents.  151 
Immunoglobulins  
Total IgG 
levels 

No significant changes in total IgG levels during pregnancy.  152-154 

 Decreased total IgG levels during pregnancy, especially in late 
pregnancy.  

155-161 

Subclass 
levels  

Higher IgG1 levels in the three trimesters when compared to non-
pregnant women. Higher IgG3 levels in the second trimester, when 
compared to non-pregnant women. No differences in IgG2 and 
IgG4 levels in any trimester as compared to non-pregnant women. 

162 

Glycosylation  Increase in galactosylation and sialylation of the Fc portion of IgG. 163, 165, 166 
 High and similar levels of fucosylation of Fc portion of IgG during 

pregnancy.  
163, 166 

 No changes in glycosylation in the Fab of IgG during pregnancy. 163 
IgA   
Total levels  No significant change in IgA levels during pregnancy. 135, 153, 154, 

157, 160 
 Higher IgA levels in the first compared to second or third trimester.  158 
 Higher IgA levels in the first trimester compared to non-pregnancy.  162 
 Lower IgA levels in the third trimester compared to non-pregnancy. 161 
IgM    
Total levels  No changes total IgM levels during the course of pregnancy.   135, 153, 155, 

157 
 Decrease in IgM levels in the second and third trimester compared 

to first trimester. 
152, 156, 158 

 Increase in total IgM levels during late-third compared with early-
third trimester.  

156, 180 

 Increase in total IgM levels in the first trimester  162 
 No differences in IgM levels in the third trimester  161 
IgE   
Total levels  No change in IgE levels during the course of pregnancy.   162 
Abbreviations: IFN-γ: Interferon- γ; Th: T helper; PHA: Phytohemagglutinin; IgG: 
immunoglobulin G; Fc: fragment crystallization; IgA: immunoglobulin A; IgM: 
immunoglobulin M; IgE: immunoglobulin E.     
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T regulatory cells  

	
T regulatory cells (Tregs) induce peripheral tolerance by suppressing the proliferation 

and cytokine production of CD4 and CD8 T cells, Ig production by B cells, cytotoxic 

activity of NK cells, and maturation of dendritic cells, resulting in tolerance induction181, 

182. Tregs express low levels of IL7R and high levels of the alpha chain of IL-2 receptor 

(CD25) 183 and the transcription factor Forkhead box p3 (Foxp3)184. Other suppressive T 

cell subsets have been described 185 including, CD4+CD25+Foxp3- type 1 regulatory T 

cells (Tr1), and CD4+CD25low Th3 cells186, 187 that are induced by, and exert their 

suppressive activity through IL-10188 and TGF-β189. The dynamics of Tregs during 

pregnancy are controversial, which might be in part due to difference in how Tregs are 

defined between studies (Table 1.5). Estrogen augmented Foxp3 expression in vitro and 

in vivo, and treatment with estrogen increased CD4+CD25+ “Tregs” in animal model, 

potentially promoting maternal fetal tolerance190.  

 

While CD25 and Foxp3 are often used as Treg markers, activated conventional T cells 

can also express Foxp3 in addition to dim levels of CD25191, 192. In one study, a higher 

percentage of CD4+CD25dim T cells was observed at term as compared to 17-24 weeks 

into gestation, however, no significant changes were observed in CD4+CD25bright T 

cells193. In another study, the number of CD4+CD25+FoxP3+ T cells decreased during the 

first trimester then increased at 24-30 weeks of gestation then again declined after 31 

weeks until term194. Some studies showed that the proportion of Tregs in circulation 

increases during early pregnancy183,195 and peaks in the second trimester183, 196, with one 

study showing that these cells express Foxp3183 to further support that they are Tregs 
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(Table 1.5). However, in the latter studies183, 196, no distinction between CD4+CD25dim 

and CD4+CD25bright T cells was made, thus limiting the definite conclusion about the true 

dynamics of Tregs during human pregnancy. Both CD4+CD25bright and 

CD4+CD127lowCD25+ T cells subsets were significantly elevated at the time of delivery 

compared to non-pregnant women197.  

B regulatory cells 

	
B regulatory cells (Bregs) express high levels of CD24, CD27 and/or CD38, and have the 

capacity to suppress T cell responses in part through production of the anti-inflammatory 

cytokine IL-10198-200. There is phenotypic heterogeneity of Bregs indicating that Bregs 

may not represent a distinct lineage201. CD19+CD24hiCD27+ Breg levels increase in the 

first trimester of pregnancy202 (Table 1.5). Human chorionic gonadotropin (hCG) 

enhances the function of Bregs as hCG induces IL-10 production in B cells and ~95% 

CD19+CD24hiCD27+ cells expressed the hCG receptor202. Bregs’ role may be to suppress 

maternal Th1 responses, thus preventing allogeneic responses against the fetus202.  
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Table 1. 5:  Changes in systemic T- and B- regulatory cells during pregnancy.  

Component  Main Findings  References  
T regulatory cells 
 Increased proportion of T regulatory cells in early pregnancy, 

peaking in the second and declining in the third trimester. 
183, 196 

 Higher percentage of CD4+CD25dim T cells in samples 
obtained at term (>37 weeks) as compared to 17-24 weeks, 
while no significant changes in CD4+CD25bright T cells.  

193 

 Increased CD4+CD25bright T cells during early pregnancy 
compared to non-pregnant women, from 6% to 8%. 

195 

 Decreased number of CD4+CD25+FoxP3+ T cells from 5 to 
23 weeks gestation, then increased during 24-30 weeks 
gestation, then declined after 31 weeks until term.  

194 

B regulatory cells 
 Lower IL-10-producing B cells and CD24hiCD38hi B cells 

during third trimester and at delivery than in post-partum.  
143 

 Increased CD19+CD24hiCD27+ B cells in the first trimester as 
compared to non-pregnant women. 

202 

1.1.3 Summary of immune system changes during pregnancy and reasons for 

discrepant results 

	
Based on review of the scientific literature, it is evident that there are dynamic changes in 

maternal immune system during normal pregnancy (Figure 1.1).  
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Figure 1. 1: Immune system in pregnancy 

Changes that are not depicted in the scientific literature are not shown (represented as 
gaps and stops in lines). Dashed lines indicate that reduction in B cell might happen 
during first or second trimester. Controversies in the literature regarding the dynamics of 
total and subclasses of IgG combined enabled drawing a definite pattern (not described in 
the figure, see full text). Fucosylation of Fc portion of IgG is similar to non-pregnancy 
but at very high levels. *Complement activation proteins: C3a, C4a, C5a, Serum 
Complement Membrane Attack Complex SC5b9; Complement regulatory proteins: 
Decay-accelerating factor (CD55), C3 inhibitor pregnancy-associated plasma protein A.  

	
 

There are different reasons for discrepancies in the literature regarding some changes in 

the immune system during pregnancy. First, inclusion of pregnant women from different 

populations and different ethnic backgrounds with different levels of exposure to 

different pathogens might lead to different levels of pre-existing immunity and dynamics 

during pregnancy. Second, timing of sampling during pregnancy is also an important 

determinant of the level of function of immune system. Third, the comparative group to 
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which pregnant women are compared is important. In some studies pregnant women were 

compared to women of childbearing age pre-pregnancy or post-partum, while others 

compared pregnant women during different times in pregnancy.  Forth, the use of 

different laboratory assays could have led to different results. Finally, variability of the 

definitions of specific immune cells might also contribute to variations in results and 

conclusions.  

1.2 Pertussis disease  
	

1.2.1 Resurgence of pertussis 
	

Pertussis (or “whooping cough” disease) is caused in humans mainly by Bordetella 

pertussis, a gram-negative, aerobic coccobacillus203. Pertussis was a common disease in 

the early 20th century and before the availability of a pertussis vaccine. In the US, the 

yearly rate of reported pertussis was 157/100,000 population in the early 20th century204. 

It should be noted however that this number should be interpreted with caution, as the 

true incidence at that time was underreported due to the limitation in sensitivity of relying 

on culture for diagnosing pertussis205.  

 

There are 2 types of pertussis vaccines. The whole-cell pertussis (wP) vaccine is 

composed of the whole inactivated organism, with all the virulence factors and antigens 

that are in the bacteria.  The wP vaccine was associated in some reports with local 

reactions and serious neurological diseases (e.g. convulsions and hypotonic 

hyporesponsive episodes)206, 207. Thus, there was an interest in development of a less 
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reactogenic vaccine. This was achieved with acellular pertussis (aP) vaccines, which are 

composed of purified bacterial antigens (pertussis toxin [PT], filamentous hemagglutinin 

[FHA], pertactin [PRN], fimbriae [FIM2/3]) (for role of vaccine antigens in pathogenesis 

of disease please see 1.2.2, and for vaccine-induced immunity please see 1.2.3). The 

latter vaccine is associated with fewer side effects, when compared with the former153,208. 

Thus, the aP vaccine has replaced the wP vaccine in most high-income countries, and is 

currently used in these countries for infants’ and adults’ immunization schedules.   

 

Immunization with the wP vaccine started in the 1940s in the US. By 1960s the average 

annual incidence rate declined to 10/100,000 population, and by 1970s the yearly 

incidence rate was low at 1/100,000 population in the US204. In Canada, the same pattern 

was observed. The incidence of reported pertussis disease was ~ 150/100,000 population 

before the introduction of wP vaccines (introduced in Canada in 1943). Following wP 

vaccine introduction, the incidence declined to ~ 10/100,000 population during 1980s209.   

 

In the past 2 decades, there has been an increase in pertussis disease rates, despite 

continued high aP vaccination uptake and coverage210, 211. Globally, it has been estimated 

that in 2014 there were 24.1 million pertussis cases and 160,700 deaths caused by 

pertussis in < 5 years children212. Several reasons have been suggested to explain the 

increase in incidence rates of pertussis. Specifically, increased awareness of pertussis 

disease by health care providers, improvements in diagnostics and surveillance methods 

(e.g. the use of polymerase chain reaction). In Canada, the increase use of a more 
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sensitive polymerase chain reaction assays was associated with 5-fold increase in 

pertussis incidence213.  

 

Adaption of B. pertussis to the vaccine is another potential reason for the increase of 

pertussis disease. Specifically, the circulation of pertussis vaccines not containing 

pertactin214, 215, which may represent escape from immunity to B. pertussis. In addition, 

polymorphism of PT subunit 1 has also be observed in circulating bacteria following 

widespread pertussis vaccination , and this is important because it is implicated in 

binding to the T-cell receptor216, 217. Waning immunity reflected by faster decline of 

antibodies in individuals given aP booster vaccines has been suggested to contribute also 

to the resurgence of pertussis. A decrease in effectiveness of aP vaccine as time since last 

dose increased was noted in several studies218-221, suggesting that waning immunity is an 

important contributor to the resurgence of pertussis disease.  However, detailed data were 

lacking on the burden of pertussis disease in hospitalized infants in Canada over the past 

two decades.  

 

1.2.2 Microbiology and clinical manifestations  

	
Several virulence factors of B. pertussis contribute to the development of pertussis 

disease in humans, including PT, FHA, FIM and PRN. The disease is initiated by the 

adherence of the bacteria to the respiratory epithelium, mainly via FHA and FIM 222.  
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Attachment via FHA and FIM is later followed by local damage to the mucosa of the 

respiratory tract223, 224. This might lead to pathological findings such as necrotizing 

bronchitis and diffuse alveolar damage222, 223, 225. However, some evidence suggests that 

FHA and FIM suppress inflammation in the airways. Human monocyte-derived dendritic 

cells stimulated with full-length FHA secreted IL-10, a suppressive cytokine226.  In 

animal models, mice inoculated with B. pertussis strains deficient with FIM have a higher 

inflammatory response when compared with those inoculated with wild-type B. pertussis 

strains227.  This findings provide clues that FIM might suppress the inflammatory 

immune response227. 

 

PRN is a surface-associated protein228, and it is suggested to contribute to adherence of B. 

pertussis to ciliated respiratory epithelium229. In addition, PRN resists neutrophil-

mediated clearance230. PT an adenosine diphosphate-ribosylating protein toxin and is an 

important virulence factor. PT enters the host cell by receptor-mediated endocytosis231. In 

addition to the local reaction, PT can induce lymphocytosis (thus termed previously as 

lymphocytosis-promoting factor), which can lead to pulmonary hypertension, leading to 

respiratory failure and death 222, 232-234. In the cytoplasm, PT inhibits signaling of 

inhibitory G proteins which inhibit adenylate cyclase activity235. In addition, it is 

proposed that PT reduced leukocytes retention in bone marrow and spleen and inhibits 

extravasation of leukocytes236-239.   

 

The incubation period of B. pertussis ranges between 7-10 days240. Clinical 

manifestations of the disease vary according to the age of the patient but most often 
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present as “whooping cough”, which consists of paroxysms of many violent and rapid 

coughs followed by a high-pitch “whoop” voice203. There are three classical stages of 

pertussis disease in infants, young children, adolescents and adults: the catarrhal, 

paroxysmal and convalescent stages. The catarrhal stage is manifested as a flu-like 

disease presenting as low-grade fever, malaise, nasal congestion, rhinorrhea, sneezing 

and mild cough. The paroxysmal stage is characterized by the classical “whooping 

cough”, which might be associated with vomiting (post-tussive vomiting). The 

convalescent stage is characterized by a decrease in paroxysmal cough frequency. Each 

of the stages lasts ~1-3 weeks241, 242. Pertussis is most severe in youngest infants leading 

to substantial morbidity and mortality243, 244. Infants with pertussis can have severe 

complications such as apnea, seizures (reported in 3% of infants <30 days with 

pertussis245), and can also die as a complication of the disease246, 247. Complications of 

pertussis in adults are rare but can include syncope248. Death is a rare event in adults with 

pertussis but was reported 249. 

1.2.3 Natural and vaccine-induced immunity to pertussis  

	
Protection following natural infection with B. pertussis or vaccination against pertussis 

disease is not lifelong250, 251. Among adults with pertussis, anti-PT IgG levels reached a 

peak 2 months after illness onset and then rapidly declined to reach a level that is 2-fold 

higher than 1 week after onset of symptoms by 28 months252. The decline was more rapid 

for anti-PT IgG compared with anti-PRN IgG and anti-FHA IgG. For IgA, anti-PT IgA 

levels increased 3-fold between 1 week and 2 months after symptoms onset, and returned 

to baseline at 1 year, while anti-FHA and anti-PRN IgA levels measured 28 months after 

onset of illness were still higher than levels measured 1 week after onset.  In another 
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study, it was also demonstrated that 3 years after a symptomatic pertussis infection, anti-

B. pertussis IgG levels declined. Anti-PT IgG levels waned the fastest when compared to 

other anti-B. pertussis IgG antibodies and anti-PT IgA levels waned faster than anti-PT 

IgG. IgG1 was the main IgG subclass detected after infection253. Among Danish infants 

and adults with bacteriologically confirmed B. pertussis infection, the median half-life for 

anti-PT IgG after infection was 221 days, to further confirm that immunity after natural 

infection is not durable254. Avidity of anti-B. pertussis antibodies was also assessed after 

infection. Among adolescents and adults with microbiology-confirmed pertussis disease, 

the avidity of anti-PT IgG increased within one month after infection255, supporting that 

also functional anti-B. pertussis antibodies increase after infection. Peripheral blood 

mononuclear cells from children infected with B. pertussis and recovered produced IFN-γ 

but low or undetectable interleukin (IL)-5, suggesting that Th1 cells may mediate 

protection from pertussis256, a finding that is supported by an animal study257. IL-12, 

which also polarizes Th cell to Th-1 lineage, might also mediate protection against B. 

pertussis 258.  

 

Both cellular and humoral immunity have been detected after immunization with 

pertussis-containing vaccines (wP and aP). In mice, Th1 and IL-17-producing Th cells 

(Th-17) are induced after wP vaccination259. In children, immunization with aP was 

associated with an increase in IFN-producing cells (Th-1) up to 2 years after 

immunization260. Another study in children supports that aP vaccines induce a Th-2 CD4-

positive immune response 261.  
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Children primed with aP vaccine had higher pertussis-specific IgG1, and IgG4 levels 

after booster with aP as compared to infants primed with wP and boosted with aP, 

suggesting that subclass distribution following pertussis immunization is affected by 

priming260.  In another study, IgG1 was the predominant pertussis subclass measured 

after pertussis immunization, and elevated IgG4 levels were present in children who had 

been primed with aP, when compared with wP vaccine262, a finding that supports 

polarization of the immune response to Th2 after aP vaccination. 

 

It is important to note that currently there are no well-established correlates of protection 

(COP) against pertussis disease, which complicates interpretation of immunogenicity 

data. However, higher anti-PT, anti-FHA, and PRN IgG levels are associated with 

clinical protection from pertussis disease263-265. 

1.2.4 Susceptibility of newborns to pertussis disease  
	

	
Different factors could put young infants at high risk for pertussis disease. The notion 

that anti-B. pertussis antibodies wane after infection and vaccination results in lower anti-

B. pertussis antibodies in pregnant women that are transferred to newborns. Recently, it 

has been shown that newborn mice are susceptible to B. pertussis and enriched with 

erythroid suppressor CD71+ cells. These cells express and CD71 and TER119 in mice, 

which might suppress the immune response through production of suppressive molecules 

(e.g. TGF-B)266, 267. Upon depletion of these cells, which are also enriched in human cord 

blood, reduced susceptibility to B. pertussis infection was noted as examined by reduced 
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pathological changes in mice lungs 266. Preterm infants are at particular risk for severe 

respiratory infection as they have immature respiratory control, smaller airways and 

immature lungs.  

1.3 Immunization against pertussis during pregnancy  
	

1.3.1 How does immunization mediate protection? 

	
Immunization with a vaccine induces immune responses that result in the production of 

different immune effectors that are capable of controlling the replication of a specific 

pathogen, that is the target of immunization, and/or inhibiting its toxins268. These immune 

system effectors that are induced via immunization are effector and memory immune 

cells or molecules. Namely, the most common measure of immune responses are 

antibodies that are capable of binding to a toxin of a pathogen or a pathogen itself269. 

CD4+ Th cells produce and secrete cytokines, provide support to the generation of B-

cells and CD8+ T-cells and are also be induced by immunization. Cytotoxic CD8+ T 

cells kill infected cells or secrete cytokines that are specific to the vaccine antigen. A 

subset of CD4+ Th cells are follicular Th cells that are located in the lymph nodes and 

support B-cell differentiation into antibody-secreting-cells270-273 . Tregs are involved in 

maintaining immune tolerance, and thus control immune responses274.  

 

There are several functions of antibodies. Antibodies have the capacity to neutralize 

toxins, reduce adhesion to host cells (thus reduce pathogen colonization on mucosal 

surfaces) and limit viral replication275, functions that are mediated through recognition of 
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the antigen via the antigen-binding fragment of the antibody. Effector functions that are 

mediated via the antibodies’ Fc domain include phagocytosis of the pathogen by 

macrophages and neutrophils, antibody-dependent cellular cytotoxicity, and complement-

dependent cytotoxicity276.  Antibodies are important in host defense against infection277.  

This could be indirectly concluded from studies showing that subjects with deficits in 

IgG are vulnerable to pneumococcal infection278 and that antibody concentration above a 

threshold cut-off is associated with protection from some diseases (e.g. Haemophilus 

influenzae type b [Hib]279).   

 

The type of vaccine influences the type of immune responses that are generated. For 

example, capsular polysaccharides vaccines induce B cell responses in a T-cell 

independent manner, leading to production of IgG2 and IgG4 subclasses280. Conjugation 

of capsular polysaccharides to a protein carrier, or immunization with toxoid or protein 

vaccines leads to recruitment of antigen-specific CD4+ Th follicular cells and production 

of antibodies in a T-cell dependent manner281, 282, thus leading to production of IgG1 and 

IgG3 as well high affinity antibodies and immune memory268.  IgG1 is the subclass that is 

most efficiently trans-placentally transferred to the newborn and is a stronger inducer of 

Fc-mediated effector mechanisms (e.g. antibody-dependent cellular cytotoxicity, 

complement-dependent cytotoxicity, and antibody-dependent cellular phagocytosis283). 

 

Vaccine-induced antigen-specific T cells may contribute to the protection conferred after 

vaccination. For example, T cells may confer protection against pertussis disease in 
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vaccinated children after vaccine-induced antigen-specific antibodies have waned284, 285. 

For many of these reasons, vaccination represents a window of opportunity to protect 

young infants in the first few, most vulnerable, months of life. 

1.3.2 Immune response to vaccines in pregnant compared with non-pregnant 

women 

	
The above-mentioned systemic immunological changes and adaptations in the maternal 

immune system that occur during normal pregnancy might indicate that immune 

responses to vaccines administered during pregnancy might be different and lower than 

immune responses to vaccines administered to non-pregnant women. Specifically, the 

decrease in B cells, increase in Bregs and Tregs. However, the current evidence does not 

fully support this.  

 

In one study, antibody levels to components of tetanus-diphtheria-acellular pertussis 

(Tdap) vaccine (pertussis antigens: PT, FHA, PRN; tetanus-toxoid [TT]; diphtheria-

toxoid [DT]) increased significantly after vaccination and to the same level between 

pregnant and non-pregnant women286. Studies for influenza vaccines have also addressed 

this question, but were less consistent. Some studies that compared the immune response 

to influenza vaccines showed similar antibody titers in pregnant and non-pregnant 

women after influenza vaccination. This has been true for pandemic H1N1/2009 

monovalent inactivated vaccine and seasonal trivalent inactivated vaccine287-289. 

However, other studies showed lower sero-conversion rates and lower antibody titers 

after vaccination of pregnant women when compared to non-pregnant women290-292. The 

effect of pregnancy status on the cellular immune responses to vaccines has been less 
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well studied. INF-γ levels to the B. pertussis antigens (PT, FHA) increased one month 

after immunization with Tdap but were not significantly different in pregnant and non-

pregnant women286.  

1.2.3 Factors affecting transfer of maternal antibodies via the placenta to the 

newborn  

	
Among the five Ig isotypes (IgG, IgM, IgA, IgE, IgD), IgG is the only isotype that 

crosses the placenta293. The efficiency of transfer of IgG (defined as the antibody levels 

in the newborn/cord divided by antibody levels in the mother) across the placenta 

increases as pregnancy progresses. Cord levels of IgG are ~ 50% of maternal levels at 

weeks 28–32 of gestation, and 120%–130% maternal levels at term delivery294-297.  

The transfer of IgG from the mother to the fetus across the placenta is mediated by the 

neonatal Fc receptors (FcRn), which is in the syncytiotrophoblasts293. FcRn-mediated 

transport has been suggested by examining the transport of a recombinant, humanized 

IgG1 antibody with that of a mutated variant that does not bind to FcRn in ex vivo 

perfused placenta298. FcRn actively transports IgG into the fetal circulation via binding to 

its constant domain (Fc fragment)299, 300. This is suggested as whole IgG molecules or Fc 

fragments of IgG pass into the fetal circulation more readily than antigen-binding 

fragment301. Recently, it has been shown that there is no association between the levels of 

placental FcRn and efficiency of transfer total IgG across the placenta302, suggesting that 

factors other than the levels of FcRn are responsible for the time-dependent efficiency of 

trans-placental transfer of antibodies as pregnancy advances.  
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Several factors affect the transfer of IgG from the mother to the newborn via the placenta. 

IgG subclasses have differences in efficiency of transfer across the placenta. IgG1 is the 

subclass transferred with the highest efficiency, achieving higher levels in cord blood 

compared with the maternal blood 303. IgG2 is transferred with the least efficiency,293, 304-

307,303, 308, 309. Transfer of IgG across the placenta to the newborn can also be influenced 

by several maternal clinical conditions. For example, infants of women infected with 

human immunodeficiency virus (HIV)310, malaria311, and women with high IgG levels312, 

had lower cord IgG levels when compared with infants of women without these maternal 

conditions.  

1.2.4 Immunogenicity of vaccines administered in pregnancy-tetanus, influenza and 

pertussis  

	
1.2.4.1 Tetanus and influenza  

 

Immunization with TT-containing vaccines induces anti-TT IgG antibodies, particularly 

of the IgG1303, 313, which are transferred across the placenta to the newborn, leading to 

protective antibody levels (anti-TT IgG ≥ 0.1 IU/mL) in the infant314-317. At the age of 

one month, ~80% of maternally-derived antibodies that are transferred to the infant 

remain in the infant’s circulation318.  

 

Immunization with influenza vaccine (a protein) induces IgG1 antibodies319. Influenza-

specific hemagglutinin antibodies are higher in neonates born to women vaccinated 

against influenza during pregnancy320-322. The rate of decline of influenza antibodies 

might provide clues for the duration of protection mediated via influenza vaccination 
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during pregnancy. Maternally-derived antibodies against seasonal influenza viruses have 

a half-life of ~ 45 days in infants after maternal vaccination and by 4 months of age 

antibody levels in infants born to vaccinated mothers are similar to those born to 

unvaccinated mothers323, 324. In another study, infants born to mothers vaccinated against 

influenza in pregnancy had seroprotective influenza-specific antibody levels up to 5 

months after birth325.  

1.2.4.2 Pertussis vaccines 

	
In Canada, there are two brands in Canada of aP vaccines that are administered during 

pregnancy.  These vaccines are licensed primarily for immunization of adolescents and 

adults.   Adacel (Sanofi Pasteur) contains PT, FHA, PRN, FIM2/3 vaccine antigens, and 

Boostrix (GlaxoSmithKline) contains PT, FHA, PRN vaccine antigens. Studies showed 

significant increase in anti-B. pertussis antibody levels one month after vaccination 

against pertussis during pregnancy326-328. Vaccination with aP vaccines (a protein) 

induces mainly IgG1 subclass antibodies262, 329, and this subclass is actively transferred 

across the placenta to the newborn, resulting in higher levels of antibodies (e.g. anti-PT 

IgG levels) in the newborn than in the mother316, 330, 331.  
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1.4. Strategies to protect infants from severe pertussis other than immunization 

during pregnancy  

1.4.1 Cocooning strategy  

	
The cocooning strategy aims to vaccinate those in close contact with the newborn (e.g. 

parents), and thus potentially indirectly protect infants from pertussis by reducing risk of 

transmission of the bacteria. The effectiveness of this strategy has been evaluated. In one 

study from the US, vaccination of mothers after delivery was not associated with a 

decrease in the number of infants <6 months of age with pertussis332. In another study 

that indirectly assessed the cocooning strategy in Australia, immunization of mothers and 

fathers was associated with a decrease the risk of pertussis by 51% in their infants333. In 

Canada, the number needed to vaccinate for parental immunization was at least 1 million 

to prevent 1 infant death from pertussis, and >10,000 to prevent 1 hospitalization334. 

These data suggest that cocooning strategy is not highly effective in reducing the burden 

of pertussis in young infants, and would require vaccination of a large number of close 

contacts to prevent severe disease. Thus this strategy might not be ideal and cost-

effective.     

1.4.2 Neonatal pertussis vaccination  

	
Infants’ vaccination against pertussis usually begins during age 6 to 8 weeks. As the most 

severe disease of pertussis occurs in the first months of life, then adding a dose of vaccine 

at the time of birth might theoretically add protection and this strategy has been 

investigated and yielded inconsistent results. At birth dose of aP vaccine in Italian 

infants, followed by aP vaccination at 3, 5, and 11 months, resulted in lower anti-PT IgG 
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levels, at 7 to 8 months compared with infant who did not receive at birth dose of aP of 

age335. At birth immunization with aP was associated with significantly reduced anti-B. 

pertussis antibody levels between 6-18 months of age (after primary and booster 

immunization), when compared with infants not immunized at birth336. A recent 

Australian study showed that at birth immunization with aP vaccine with subsequent 

immunization at 2, 4, and 6 months of age was associated with a similar levels at 6 

months of age, when compared to controls who did not receive at birth vaccination337.  

1.4 Rationale for thesis and research objectives  

	
Pertussis is a major global public health concern, despite high vaccination coverage, and 

there has been a resurgence of the disease, both globally and in Canada since 2010338-340. 

To protect infants too young to be vaccinated, immunization against pertussis in 

pregnancy is recommended by public health policy makers in a number of countries (e.g. 

the United States [US]341, 342, United Kingdom [UK]343, Australia344). At the start of my 

PhD in 2017, immunization during pregnancy had not been routinely recommended in 

Canada.  The Canadian National Advisory Committee on Immunization updated its 

guidelines in February 2018, and since then has recommended pertussis immunization 

during pregnancy of all Canadian pregnant women345. While the mechanism of protection 

following immunization in pregnancy is unknown, it is thought to be, at least partially, 

mediated by maternal antibodies transferred to the newborn via the placenta73. As 

immunization during pregnancy is a new strategy and there are important knowledge 

gaps, these must be addressed to inform an evidence-based immunization program. This 

is what I aimed to do during my PhD.  
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The aims of my PhD were to address critical knowledge gaps related to immunization 

against pertussis in pregnancy. Aim 1 was to determine the burden of age–specific 

epidemiology, morbidity and mortality of hospitalized pertussis disease in Canada in the 

aP vaccine era over a 17-year period and to establish risk factors associated with 

morbidity and mortality. Aim 2 was to enhance our understanding of the immune 

response to immunization in pregnancy by assessing the avidity of anti-pertussis 

antibodies elicited after immunization in pregnancy and how this is affected by timing of 

immunization during pregnancy. Aim 3 was to determine whether immunization against 

pertussis in pregnancy modifies the infants’ active immune response to vaccination.  

The results generated in the first aim are presented in Chapter 2, the results generated in 

the second aim are presented in Chapter 3, and the results generated in the third aim are 

presented in Chapter 4. Chapter 5 summarizes the body of work presented in the thesis 

and provides perspectives for the future in pertussis immunization during pregnancy.  
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2. Burden of pediatric pertussis disease in Canada 

2.1 Synopsis  

  

Increases in pertussis morbidity and mortality among young infants over the past decade 

have led to recommendation of vaccination against pertussis during pregnancy in 

increasing number of countries. Data on cases of hospitalized pediatric pertussis from a 

large population over a long period of time in Canada are important to establish the true 

burden of disease in the aP vaccine era in Canadian settings. In this chapter, I describe the 

age-specific epidemiology, morbidity and mortality of children hospitalized with 

pertussis over 17 years across Canada in the aP vaccine era. Patients ≤16 years admitted 

with pertussis to 12 pediatric tertiary-care hospitals across Canada during 1999–2015 

with confirmed (laboratory–confirmed or epidemiologically–linked) or probable 

(clinically diagnosed) pertussis were included. 

 

Overall, 1402 pediatric patients with pertussis were included. The overall mean annual 

pertussis hospitalization and intensive care unit (ICU) admission incidence in all age 

groups was, 2.61 (95%CI: 2.03–3.18) and 0.50 (95% CI: 0.40–0.60) per 100,000 

population, respectively. Infants aged <2 months had the highest mean annual pertussis 

hospitalization and ICU admission incidence, 116.40 (95% CI: 85.32–147.49) and 33.48 

(95% CI: 26.35-40.62) per 100,000 population, respectively. The overall proportion of 

children requiring ICU admissions among all age groups was 25.46% and this was 

highest in infants <2 months of age at 37.90%. There were 21 deaths. Age <16 weeks, 

prematurity, encephalopathy and confirmed pertussis diagnosis were found to be 
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independent risk factors for ICU admission. Age <4 weeks, prematurity and female sex 

were found to be independent risk factors for death. These data support that in the aP 

vaccine era, endemic pertussis still contributes considerably to childhood morbidity and 

mortality, particularly in infants aged <2 months. Vaccination against pertussis during 

pregnancy has the potential to reduce this disease burden.  
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2.2 Introduction 

	
B. pertussis is a gram-negative coccobacillus that causes a respiratory disease, “whooping 

cough” disease. Pertussis remains a major global public health concern with a recent 

global estimate of 24.1 million cases and 160,700 deaths from pertussis in children <5 

years of age in 2014. Globally, nearly 21% of pertussis cases and an estimated 53% 

deaths were in infants younger than 1 year212. Most industrialized countries use 

diphtheria-tetanus-acellular pertussis (DTaP) vaccines for primary and/or booster 

immunization against pertussis346, 347. In spite of high vaccination coverage with aP 

vaccine, pertussis outbreaks with substantial morbidity and mortality continue to occur210, 

339. Previous reports on the burden of pertussis disease in the aP vaccine era described 

incidence rates and clinical outcomes in small populations, a single center, a single 

region, a specific epidemic period or other limited time period or years during which both 

wP and aP vaccines were used210, 348,349, 350,245, 246, 351. Moreover, the estimates of burden 

of severe pertussis disease requiring ICU admission included studies that spanned a 

limited time period246, 352 Data on the burden of pediatric pertussis from a large 

population over time are important to establish the true burden of disease in the aP 

vaccine era, not only in an epidemic or outbreak setting, and to inform cost-effectiveness 

analyses of different immunization strategies. This is especially important, as several 

countries have recommended universal vaccination against pertussis during pregnancy in 

response to a recent rise in pertussis morbidity and mortality among young infants342, 343, 

353.  

 

In Canada, vaccination against pertussis commenced in 1943 with whole-cell pertussis 
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(wP) formulations. Between 1997-1998, all Canadian provinces and territories changed 

from wP to aP vaccine, given at 2, 4, 6, and 18 months and 4 to 6 years of age (Table 2.1) 

354.  

 

Table 2. 1: Vaccination schedule against pertussis in Canada (as of January 2020).  

Vaccine British Columbia, 
Alberta, Prince 
Edward Island, 
Yukon 

Saskatchewan, Manitoba, 
Ontario, New Brunswick, Nova 
Scotia, Newfoundland and 
Labrador, Northwest 
Territories, Nunavut 

Quebec 

DTaP-
IPV-Hib 

18 months 2,4,6,18 months 12 months 

DTaP-
HB-IPV-
Hib 

2,4,6 months  N/A 2, 4, months 

Tdap-IPV 4-6 years (4 years 
in Alberta, 4-5 
years in Prince 
Edward Island)  

4-6 years (4 years in New 
Brunswick)  

4-6 years 

TdaP Grade 9 Grade 8 in Saskatchewan and 
Manitoba;14-16 years in Ontario;  
Grade 7 in New Brunswick; Nova 
Scotia and Northwest Territories; 
Grade 9 in Newfoundland and 
Labrador; Grade 6 in Nunavut 

Not 
publically 
funded 

 
Abbreviations: DTaP-IPV-Hib: Diphtheria, Tetanus, acellular Pertussis, 
Inactivated Polio Virus, Haemophilus Influenzae type B vaccine; DTaP-HB-IPV-Hib: 
Diphtheria, Tetanus, acellular Pertussis, Hepatitis B, 
Inactivated Polio Virus, Haemophilus Influenzae type B vaccine; Tdap-IPV: 
Tetanus, diphtheria, acellular pertussis, Inactivated Polio Virus vaccine. Source: 
Government of Canada website355.  
 
 

The burden of pertussis disease among children in Canada during the wP and the wP-aP 

vaccine transition period have been described354, 356. Despite the ongoing impact on the 

health system of this severe yet preventable infection, there are limited data on long-term 

studies assessing the burden of pertussis disease in pediatric hospitalized pertussis 
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disease. In this chapter, I reported the age–specific epidemiology, morbidity and 

mortality of children hospitalized with pertussis disease in Canada in the aP vaccine era. I 

also identified risk factors associated with poor outcome (morbidity and mortality) 

among pediatric patients hospitalized with pertussis.     

  

2.3 Methods 
	

2.3.1 Study Locations  

	
Pertussis cases admitted to hospitals which are part of the Immunization Monitoring 

Program Active (IMPACT) were included. IMPACT is an active surveillance network 

collecting data from 12 pediatric tertiary-care hospitals across Canada since 1991.354 The 

12 IMPACT centers account for approximately 90% of the pediatric tertiary-care beds in 

Canada, with referrals from all provinces and territories. All IMPACT centers actively 

report all hospitalized pertussis cases to IMPACT data center, located in the Vaccine 

Evaluation Center at British Columbia Children’s Hospital Research Institute, 

Vancouver, British Columbia.  

2.3.2 Study Subjects  

	
Inclusion Criteria: Patients ≤16 years of age admitted to an IMPACT hospital with 

pertussis between 1st January 1999 and 31st December 2015 were included.  

 

Clinical case definition of pertussis: A clinical case of pertussis was defined as a cough 

illness lasting for ≥2 weeks, with paroxysmal coughing. Post–tussive vomiting, whoop, 

cyanosis during coughing, or apnea episodes were supportive evidence of a case.  



	 40	

Confirmed case of pertussis: Consistent with the Canadian national pertussis case 

definitions357, confirmed cases were laboratory–confirmed (at least one positive 

microbiological test for B. pertussis (culture, polymerase chain reaction [PCR], direct 

fluorescent assay [DFA], or serology)) or epidemiologically–linked (meeting the clinical 

case definition above and contact with a laboratory-confirmed case). Co-infections with 

B. pertussis and another Bordetella species were included.  

 

Probable case of pertussis: A probable case was defined as a case meeting the clinical 

case definition but none of the confirmed case criteria (i.e. absence of positive laboratory 

tests and not epidemiologically linked to a laboratory-confirmed case).  

 

Exclusion criteria: Compatible illnesses demonstrated to be due to another cause were 

excluded. Cases confirmed to be caused only by Bordetella species other than B. 

pertussis were excluded.  

2.3.3 Data Collection and Management  

	
Standardized case report forms were used at all IMPACT hospitals. Pertussis cases were 

identified via microbiology laboratories, ward and ICU admission lists, infection control 

practitioners and/or search of hospital records for ICD9 and ICD10 discharge codes that 

included terms for pertussis. Clinical data were collected from patient health records. 

This included the patient’s date of birth, sex, pre-existing medical conditions, the 

diagnostic method, evidence for diagnosis, complications (seizures, encephalopathy, 

death), level of care required (duration of hospital stay (length of stay [LOS], need for 

ICU admission, ICU LOS). Prematurity was defined as birth before 37 weeks gestation. 
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Encephalopathy was defined as a decreased level of consciousness not associated with 

post-ictal period. For each patient admitted with pertussis, vaccination records were 

initially reviewed per the hospital record. Data in the hospital records was confirmed 

from the relevant vaccine provider (public health or family physician), which varies by 

region. If there was discrepancy the vaccine provider record was considered accurate. All 

data were reviewed at the IMPACT data center in Vancouver before being entered into an 

electronic database by means of a dual–entry system with preprogrammed consistency 

checks. Errors were corrected by a data manager before files were added to the database. 

2.3.4 Pertussis vaccination status 

	
A valid vaccine dose was as any dose administered ≥28 days before hospital admission 

with pertussis, and this information was used to classify children ≥3 months with 

laboratory–confirmed pertussis disease as unimmunized, under-immunized, or as having 

received an age-appropriate number of pertussis vaccinations (Table 2.2). This is because 

there is a minimum of 2 weeks from vaccination to induce antibody response and the 

clinical cases definition of all cases includes cough of 2 or more weeks. Vaccinations 

received < 4 weeks prior to admission were not counted for determination of age-

appropriate vaccination status, and patients were considered unvaccinated if they had 

only received pertussis vaccinations within 4 weeks prior to admission to the hospital.  
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Table 2. 2:  Classification of age-specific vaccination status according to number of 
received pertussis-containing vaccine doses.  

 Unvaccinated  Under-vaccinated  Age-appropriately 
vaccinated 

3-4 months  0 Not applicable  ≥ 1  
5-6 months 0 1 ≥ 2  
7-18 months  0 1 or 2 ≥ 3  
19 months-6 years  0 1 or 2 or 3 ≥ 4 
7-16 years  0 1 or 2 or 3 or 4  ≥ 5 

 

2.3.5 Statistical analysis 

 

Pearson’s Chi–squared test was used to compare categorical variables (Fisher's exact test 

was used for comparisons with cell number <5), Student’s t–test was used for normally 

distributed continuous variables and Mann Whitney U test for non–normally distributed 

continuous variables. Annual age–specific pertussis hospitalization incidence was 

calculated using population estimates of each study hospital’s catchment area obtained 

from the 2006 Canadian census358. Each IMPACT hospital defined its estimated local 

population catchment area. Pertussis cases from the IMPACT hospital were matched to 

this catchment area using the first 3 characters of the postal code. The first 3 characters of 

the postal code form the forward sortation area, which represents a specific area within a 

major geographic region or province. Cases from outside the hospital catchment areas 

and one hospital with a large referral population and an undefined catchment area (The 

Hospital for Sick Children, Toronto) were not included in hospitalization incidence 

calculations (Table 2.3).  Annual age–specific pertussis ICU admission incidence was 

calculated using relevant provincial population estimates obtained from the 2006 

Canadian census358. Outside the province of Ontario, IMPACT hospitals are the only 
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pediatric centers admitting to the ICU. Age–specific population estimates of the study 

population areas included the respective province. Pertussis cases admitted to IMPACT 

hospitals’ ICUs were matched to the respective province. Cases admitted to IMPACT 

hospitals’ ICUs but residing in the Canadian territories were excluded from the ICU 

incidence analysis. Ontario was also excluded from the ICU incidence analysis because 

cases may also have been admitted to other ICUs, not included in the IMPACT network 

(Table 2.3). The overall mean annual pertussis hospitalization and ICU admission 

incidence rates and the 95% confidence interval (CI) were calculated for the 17-year 

period using the annual hospitalization and ICU admission incidence rates, respectively. 

The variability of the median hospital length of stay (LOS), the proportion of children 

requiring ICU admissions during the study period and the proportion of children 

requiring ICU admissions by their gestation age at birth were analyzed using the Kruskal-

Wallis test and the Chi-squared Test for trend, for continuous and categorical variables, 

respectively.  

 

Age-specific ICU admission rate of patients hospitalized with pertussis was reported as 

the proportion of patients admitted to the ICU among patients admitted with pertussis to 

IMPACT centers. Age-specific case-fatality rates were reported as the proportion of 

deaths among pertussis hospitalized cases.  

 

Univariate logistic regression analysis was used to identify risk factors for ICU admission 

and death. To identify the most appropriate age cut-off as a risk factor for ICU admission 

and death, regression models were generated using all ages between 0 up to 16 years, by 
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1-week intervals. The Akaike information criterion (AIC) of each model, which is a 

function of its maximized log-likelihood (ℓ) and the number of estimable parameters (K) 

(AIC=-2l +2K), was computed359. The model with the lowest AIC was used as the final 

model. Forward stepwise multivariable logistic regression models were developed to 

identify independent risk factors for ICU admission and death.  These included all 

variables identified in the univariate regression model with p–value ≤0.25 and the age-cut 

off with the lowest AIC. Variables with a p-value <0.05 were retained in the final model. 

P values of <0.05 were considered statistically significant for all tests. R version 3.4.0 

was used for all analyses. 
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Table 2. 3:  Numerator and denominator used for pertussis hospitalization incidence 
rate and intensive care unit incidence rate calculations, Canada, 1999-2015.  
Rate  Numerator   Denominator*   
Hospitaliz
ation 
incidence 
rate  

Included: Pertussis cases admitted to 11/12 IMPACT 
hospitals and matched to the hospital’s catchment area:   
1. Alberta Children’s Hospital, Calgary, AB. 
2. BC Children’s Hospital, Vancouver, BC. 
3. Le Centre Mère-Enfant de Québec City, QC. 
4. Children’s Hospital of Eastern Ontario, Ottawa, ON. 
5. CHU-Sainte-Justine, Montreal, QC. 
6. IWK Health Centre, Halifax, NS. 
7. Eastern Health Janeway Child Health and 
Rehabilitation Centre, St. John’s, NL. 
8. The Montreal Children’s Hospital, Montreal, QC. 
9. Royal University Hospital, Saskatoon, Sk. 
10. Stollery Children’s Hospital, Edmonton, AB. 
11. Children’s Hospital, Winnipeg, MB. 
Excluded: Pertussis cases admitted to The Hospital for 
Sick Children, Toronto, ON.** 

Included: 
Population 
estimates of the 
catchment areas 
corresponding to 
the 11/12 
IMPACT 
hospitals 
included. 
  
Excluded:  
The catchment 
area of The 
Hospital for Sick 
Children, 
Toronto.  

Intensive-
care unit 
admission 
incidence 
rate  

Included: Pertussis cases admitted to the intensive 
care unit of 10/12 IMPACT hospitals:  
1. Alberta Children’s Hospital, Calgary, AB. 
2. B.C. Children’s Hospital, Vancouver, BC. 
3. Le Centre Mère-Enfant de Québec City, QC. 
4. CHU-Sainte-Justine, Montreal, QC. 
5. IWK Health Centre, Halifax, NS. 
6. Eastern Health Janeway Child Health and 
Rehabilitation Centre, St. John’s, NL. 
7. The Montreal Children’s Hospital, Montreal, QC. 
8. Royal University Hospital, Saskatoon, SK. 
9. Stollery Children’s Hospital, Edmonton, AB. 
10. Children’s Hospital, Winnipeg, MB. 
Excluded: Pertussis cases admitted to the intensive 
care unit of 2 IMPACT hospitals: 
1. The Hospital for Sick Children, Toronto 
2. Children’s Hospital of Eastern Ontario, Ottawa 

Included: 
Population 
estimates of the 
provinces of 
10/12 IMPACT 
hospitals:1. BC; 
2. AB; 3. SK; 4. 
MB; 5. QC; 6. 
NS; 7. NL.    
Excluded: 
1. Population 
estimates of the 
province of ON, 
NB, PE; 2. NT, 
YT, NU.  

 * Based on 2006 Canadian census data. 
** This hospital was excluded because it has a large referral population and an undefined 
catchment area.   
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2.4 Results 

2.4.1 Study population 

	
Overall, 1402 children were included, of which 1157 (82.5%) were confirmed cases 

(1145 [81.7%] laboratory–confirmed, 12 [0.8%] epidemiologically-linked) and 245 

(17.5%) were probable cases. The majority (810/1145 [70.7%]) of laboratory-confirmed 

cases were diagnosed by PCR alone (Figure 2.1).  
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Figure 2. 1: Laboratory–confirmed Bordetella pertussis cases. 

Graph shows (A) laboratory–confirmed Bordetella pertussis cases stratified by type of 
laboratory test and (B) the number of the positive laboratory tests per year, MPACT 
hospitals, 1999–2015. * During 2010-2015, the laboratory diagnosis of pertussis was 
made by PCR in 8 out of 11 IMPACT centers. One center switched from culture to PCR 
testing in 2014. One center used PCR only for severe cases until 2012 and for all samples 
after 2012. In one center, the laboratory diagnosis of pertussis was made by either culture 
or PCR.   
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The baseline characteristics of pertussis hospitalized cases and stratified by evidence of 

diagnosis are summarized (Table 2.3). The majority of pertussis cases were among 

infants younger than 1 year old, specifically, younger than 4 months old. Of the total 

cases, nearly one quarter required admission to ICU. Prematurity (birth at gestational age 

<37 weeks gestation) was the most common risk factor (Table 2.4). Confirmed pertussis 

cases were significantly younger, had longer hospital and ICU LOS, and were more 

likely to be admitted to the ICU than probable cases (Table 2.4). The median hospital 

LOS was 8 days among infants <6 months of age (Table 2.4). There was significant year-

to-year variation in the median hospital LOS over the study period ranging from 4 to 10 

days (p=0.002). 
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Table 2. 4: Characteristics of pertussis cases admitted to IMPACT hospitals in 
Canada, 1999–2015.  

Characteristic All Pertussis 
cases a  
(n=1402)  

Confirmed 
pertussis cases b 
(n=1157) 

Probable 
pertussis cases c 

(n=245) 

P-
value d 

Demographics  
Male sex n (% of total)   655 (46.7)  525(45.4) 130 (53.1)  

0.034 
Age     
Median ([overall range], 
[Interquartile range [IQR]) 
(weeks)  

10 ([1-886][6-
17]) 

 9 ([1-884] [6-
16]) 

11 ([1-886] [7-
22]) 

0.003 

Age groups n (% of total)     
< 1 year  1265 (90.2) 1056 (91.3) 209 (85.3)  
                   0-1 months 612 (43.6) 523 (45.2) 89 (36.3)  
                   2-3 months 460 (32.8) 381 (32.9) 79 (32.2)   
                   4-5 months 119 (8.5) 91 (7.9) 28 (11.4)  
                   6-11 months 74 (5.3) 61 (5.3) 13 (5.3)  
1-4 years  72 (5.1) 53 (4.6) 19 (7.7)  
5-9 years  24 (1.7) 15 (1.3) 9 (3.7)  
10-16 years  41 (2.9) 33 (2.8) 8 (3.3)  
Clinical features  
Comorbidity e n (% of 
total) 

    

Underlying condition(s)  178 (12.7) 152 (13.1) 26 (10.6) 0.500 
Prematurity f 50 (3.6) 44 (3.8) 6 (2.4)  

 
 
 
 
0.735 

Pulmonary  31 (2.2) 23 (2.0) 8 (3.3) 
Neurologic 27 (1.9) 24 (2.1) 3 (1.2) 
Congenital Cardiac  23 (1.6) 20 (1.7) 3 (1.2) 
Gastrointestinal  20 (1.4) 16 (1.4) 4 (1.6) 
Genetic-Metabolic 13 (0.9) 10 (0.9) 3 (1.2) 
Failure to thrive 12 (0.8) 11 (0.9) 1 (0.4) 
Immuno-
compromised 

10 (0.7) 10 (0.9) 0  

Other  34 (2.4) 30 (2.6) 4 (1.6) 
Seizures n (% of total)    

 
New seizures 30 (2.1) 28 (2.4) 2 (0.8)  

0·120 
Exacerbation of an existing 
seizure disorder 

8 (0.6) 8 (0.7) 0 

Encephalopathy n (% of 
total) 

   0.344 

Present  8 g (0.6) 8 (0.7) 0  
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Characteristic All Pertussis 
cases a  
(n=1402)  

Confirmed 
pertussis cases b 
(n=1157) 

Probable 
pertussis cases c 

(n=245) 

P-
value d 

Outcome  
Hospitalization      
Median length of stay 
([overall range], [IQR])  
(days)  

7 ([1-185], [3-
13])  

8 ([1-185], [4-
14])  

4 ([1-45], [2-7])   
 
 

< 
0.0001 

< 1 year  8 ([1-185], [3-
14]) 

9 ([1-185], [4-
15]) 

4 ([1-45], [2-8]) < 
0.0001 

                   0-1 months 10 ([1-87], [5-
16]) 

11 ([1-87], [6-
17]) 

5 ([1-45], [2-9]) < 
0.0001 

                   2-3 months 6 ([1-185], [3-
12]) 

7 ([1-185], [3-
12]) 

4 ([1-37], [2-9]) < 
0.001 

                   4-5 months 4 ([1-59], [2-8]) 5 ([1-59], [3-
9.50]) 

3 ([1-15], [2-4]) < 
0.001 

                   6-11 months 4 ([1-38], [2-
9.75]) 

4 ([1-38], [2-10]) 3 ([1-8], [2-5]) 0.051 

1-4 years  3 ([1-60], [1-5]) 3 ([1-60], [2-5]) 2 ([1-13], [1-
4.50]) 

0.231 

5-9 years  2 ([1-8], [1-5]) 2 ([1-68], [1-4.5]) 3 ([1-5], [2-5]) 0.502 
10-16 years  3 ([1-14], [1-5]) 1 ([1-14], [2-5]) 1 ([1-5], [1-5]) 0.124 
ICU admission      

 
ICU admission n (% of 
total) 

357 (25.5) 316 (27.3) 41 (16.7) < 
0.001 

Median ICU length of stay 
([overall range], [IQR]) 
(days)  

4 ([1-79], [2-9]) 5 ([1-79], [2-10]) 3 ([1-23], [2-7]) 0.027 

< 1 year  5 ([1-79], [2- 
10]) 

5 ([1-79], [2.5- 
10]) 

3 ([1-23], [2-7]) 0.033 

                   0-1 months 5 ([1-79], [3-9]) 5 ([1-79], [3- 
9.75]) 

3 ([1-23], [2-6]) 0.031 

                   2-3 months 4 ([1-62], [2-
10]) 

4 ([1-62], [2- 9]) 3 ([1-13], [3-
11]) 

0.888 

                   4-5 months 7 ([1-42], [2-
12]) 

7 ([1-42], [2.50- 
12.25]) 

7 ([1-8], [4-
7.50]) 

0.559 

                   6-11 months 2.5 ([1-16], 
[1.75-9]) 

5 ([1-16], [2.25- 
13]) 

1.5 ([1-2], [1.25- 
1.75]) 

0.238 

1-4 years  2 ([1-29], [1-4]) 2.5 ([1-29], [1.75- 
5.25]) 

1 ([1-1], [1- 1]) 0.323 

Death n (% of total) 21 (1.5) 21 (1.8) 0 0.037 
 

a Includes confirmed and probable pertussis cases; b Laboratory-confirmed (n=1145) or 
epidemiologically linked (n=12) pertussis cases; c Clinical pertussis cases ; d For the 
comparison of confirmed versus probable pertussis cases; e As clinically denoted in the 
records. A patient can have more than one comorbidity; f Prematurity is defined as birth 
at gestational age <37 weeks gestation; g 5 cases had both new seizures and 
encephalopathy comorbidity.  
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2.4.2 Incidence of pertussis hospitalization 

	
In total, 747/1270 (58.81%) of pertussis cases occurred in the defined catchment areas for 

the study hospitals and were included in the hospitalization incidence calculations.  The 

cases used for the hospitalization incidence analysis had similar baseline characteristics 

(age, sex and comorbidities) as the cases not included in this analysis (data not shown). 

The overall mean annual pertussis hospitalization incidence was highest among infants 

<2 months of age (Table 2.5).  

 

Table 2. 5: Mean annual pertussis hospitalization and Intensive-care unit admission 
incidence (per 100,000 population) at IMPACT hospitals by age groups, 1999-2015.  

Age  Hospitalization 
incidence a  
(95% CI)  

Intensive-care unit 
admission incidence b  
(95% CI) 

< 1 year  42.3 (32.5–52.1) 8.6 (6.7–10.3)  
               < 2 months 116.4 (85.3–147.5) 33.5 (26.3-40.6)  
               2-3 months 95.9 (71.6–120.2)  14.6 (10.5-18.6)  
               4-5 months 28.3 (19.5–37.2) 2·5 (1.1–3.9) 
               6-11 months 5.1 (3.4–6.8) 0.4 (0.1–0.7) 
1-4 years  0.8 (0.6–1.1)  0.1 (0.0-0.1) 
5-9 years  0.2 (0.1–0.2) 0.0 (0-0.02) 
10-16 years  0.2 (0.1–0.3) 0.0 (0-0.01)  
All age groups  2.6 (2.0–3.2) 0.5 (0.4–0.6) 
a This analysis included 11/12 IMPACT hospitals (excluding The Hospital for Sick 
Children, Toronto); b This analysis included 10/12 IMPACT hospitals and their 7 
respective provinces (excluding 2 hospitals from the province of Ontario [The Hospital 
for Sick Children, Toronto; Children’s Hospital of Eastern Ontario, Ottawa]). 
 

Pertussis hospitalization incidence rates in young infants fluctuated over time with peaks 

every 2–5 years (Figure 2.2).  
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Figure 2. 2: Pertussis population hospitalization incidence at IMPACT hospitals, 
1999-2015. 

Graphs show age-specific population-based pertussis hospitalization incidence in (A) 
children ≤ 16 years and (B) younger than 1 year of age, IMPACT hospitals, 1999–2015. 
 

  



	 53	

2.4.3 Intensive care admission 

 

In total, 357/1402 (25.5%) of children were admitted to ICU. There was significant year-

to-year variation between years in the proportion of children admitted to the ICU with a 

low of 14.0% and high of 41.7% (p<0·0001) over the 17 years. Of the cases admitted to 

the ICU, 316/357 (88.5%) were confirmed pertussis cases. Pertussis cases requiring 

admission to the ICU were younger, had higher rates of neurological complications, 

longer hospital LOS and were more likely to have comorbidities compared with cases not 

admitted to the ICU (Table 2.6). Of note, prematurity was the most common comorbidity, 

reported in 8.4% of ICU cases. The proportion of cases admitted to ICU was 37.9% 

(232/612) for infants <2 months of age, 19.8% (91/460) for infants 2–3 months of age, 

12.6% (15/119) for infants 4–5 months of age, 10.8% (8/74) for those 6–11 months of 

age and 27.3% (346/1265) for infants <1 year of age.  
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Table 2. 6: Characteristics of pertussis cases admitted to IMPACT hospitals ICU in 
Canada, 1999–2015. 

Characteristic   Admitted to the ICU 
(n=357)  

Not admitted to the 
ICU (n=1045) 

P-value a 

Demographics  
Male sex n (% of total) 171 (47.9) 484 (46.3) 0.648 
Age    
Median ([overall range], [IQR]) (weeks) 7 ([2-872], [4-10]) 11 ([1-886], [7-19]) <0.0001 
Age groups n (% of total)    
< 1 year  346 (96.9) 919 (87.9)  
                   0-1 months 232  (64.9) 380 (36.4)  
                   2-3 months 91 (25.5) 369(35.3)  
                   4-5 months 15 (4.2) 104(9.9)  
                   6-11 months 8 (2.2) 66(6.3)  
1-4 years  9 (2.5) 63(6.0)  
5-9 years 1 (0.3) 23(2.2)  
10-16 years 1 (0.3) 40(3.8)  
Clinical features  
Comorbidity b n (% of total)    
Underlying conditions n (% of total) 61 (17.1) 117 (11.2) 0.013 

Prematurity c 30 d (8.4) 20 e (1.9) <0.0001 
Congenital Cardiac  8 (2.2) 10 (0.9)  
Pulmonary  3 (0.8) 24 (2.3)  
Genetic-Metabolic 3 (0.8) 5  (0.5)  
Gastrointestinal  3 (0.8) 8 (0.8)  
Failure to thrive 2 (0.6) 5 (0.5)  
Neurologic 1 (0.3) 14 (1.3)  
Immuno-compromised 0 (0) 9 (0.9)  
Other  11 (3.1) 22 (2.1)  

Evidence of diagnosis n (% of total)   <0.001 
Confirmed f 316 (88.5) 841 (80.5)  
Probable g 41 (11.5) 204 (19.5)  
Seizures n (% of total)   <0.0001 
New seizures 17 (4.8) 13 (1.2)  
Exacerbation of an existing seizure 
disorder 

4 (1.1) 4 (0.4)  

Encephalopathy n (% of total)   0.005 
Present  6 (1.7) 2 (0.2)  
Outcome  
Hospitalization     
Median length of stay ([overall range], 
[IQR])  (days)  

13 ([1-185], [7-22]) 5 ([1-60], [3-10]) <0.0001 

Mortality n (% of total)    
Death  21 (5.9) 0 (0) <0.0001 
a For the comparison of pertussis cases admitted to the ICU versus not admitted to the ICU; b As clinically 
denoted in the records.  A patient can have more than one comorbidity; C Prematurity is defined as birth at 
gestational age <37 weeks gestation; d Data on gestational age at birth was available for 28/30 premature 
cases admitted to the intensive care unit; 5 were born at 24-26 weeks gestation, 7 were born at 27-31 weeks 
gestation, 16 were born at 32-36 weeks gestation; e Data on gestational age at birth was available for 19/20 
premature cases not admitted to the intensive care unit; 1 was born at 25 weeks gestation, 4 were born at 
27-31 weeks gestation, 14 were born at 32-36 weeks gestation; f Laboratory-confirmed or epidemiology-
linked pertussis cases; g Clinical pertussis cases.   
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The proportion of cases admitted to ICU decreased as gestational age at birth increased 

(p<0·0001) (Figure 2.3).  

 
 
Figure 2. 3:  Proportion of children admitted to the intensive care unit due to 
pertussis at IMPACT hospitals by their gestation age at birth, 1999-2015. 

The absolute number of patients admitted to the intensive care unit out of total children 
for each gestation age group is shown in the bar. 
 

With the exception of 2007, the proportion of children admitted to the ICU was higher for 

infants <2 months of age compared with infants aged 2–3 months (Figure 2.4).      

In total, 298/357 (83.5%) of pertussis cases admitted to the ICU were from provinces 

where almost all ICU admissions are captured by IMPACT hospitals (excluding Ontario 

and the Canadian territories) and were included in the ICU incidence calculations. The 
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overall mean annual incidence of ICU admission over the 17-year period was highest 

among infants <2 months of age (Table 2). With the exception of 2006, the incidence of 

ICU admission was higher for cases <2 months compared with cases 2–3 months with 

three peaks in 2004, 2009, and 2012 (Figure 2.4).  
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Figure 2. 4: Intensive care unit admission rate and admission incidence at IMPACT 
hospitals, 1999-2015. 

Abbreviation: ICU: intensive care unit. Graphs show age-specific (A) intensive care unit 
admission rate (in percentage) and (B) population–based intensive-care unit admission 
incidence (per 100,000 population) of patients hospitalized with pertussis among infants 
< 4 months, IMPACT hospitals, 1999–2015. This figures describes the Intensive-care 
unit admission rate and admission incidence in infants < 4 months of age. The small 
numbers of patients older than 4 months and admitted to the intensive care precluded the 
description of the incidence rates in this figure.   
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2.4.4 Mortality 

	
There were 21 deaths in children aged 2-14 weeks at admission reported to IMPACT 

centers during 17 years period (Table 2.7). None of the infants who died had received a 

valid dose of vaccine although 17/21 infants were aged <3 months and therefore too 

young to have received 1 valid pertussis vaccine dose.  

 

Table 2. 7: Characteristics of IMPACT hospitals pertussis fatalities, 1999–2015. 

Characteristic Deaths (n=21) No death (n=1381) P-value 
Male sex n (% of total) 4 (19.0) 651 (47.1) 0.019 
Age    
Median ([overall range], 
[IQR]) (weeks) 

5 ([2-14], [3-9])  10 ([1-886], [6 -17])  <0.0001 

Age groups    
< 1 year, n (% of total)  21 (100) 1244 (90.1)  
                   0-1 months  14 (66.7) 598 (43.3)  
                   2-3 months  7 (33.3) 453 (32.8)  
                   4-5 months 0 (0) 119 (8.6)  
                   6-11 months 0 (0) 74 (5.4)  
1-4 years 0 (0) 72 (5.2)  
5-9 years 0 (0) 24 (1.7)  
10-16 years 0 (0) 41 (2.9)  
Evidence of diagnosis   0.057 
Confirmed   21 (100)  1124 (81.4)  
Probable   0 (0)  257 (18.6)  
Morbidity     
Seizures n (% of total)   0.665 
No seizure  20 (95.2) 1344 (97.3)  
New seizures 1 (4.8) 29 (2.1)  
Exacerbation of an existing 
seizure disorder 

0 (0) 8 (0.6)  

Encephalopathy a n (% of total)   < 0.0001 
Not present 19 (90.5) 1373 (99.4)  
Present  0 (0) 8 (0.6)  
Hospitalization     
Median length of stay ([overall 
range], [IQR])  (days)  

3 ([1-79], [2-14])  7 ([1 185], [2-14])  0.050 

Comorbidity b n (% of total)    
Underlying conditions  5 (23.8) 173 (12.5) 0.303 
Prematurity c  4 (19.0) 46 (3.3) 0.001 
a 2 fatal cases with no data on encephalopathy; b As clinically denoted in the records.  A patient can have 
more than one comorbidity; c Prematurity is defined as birth at gestational age <37 weeks gestation. One 
case was born at 29 weeks gestation, two cases were born at 34 weeks gestation, and one case was born at 
35 weeks gestation.  



	 59	

 
Death occurred 1-47 days after admission with 61.9% (13/21) occurring in the first three 

days after admission (Figure 2.5). The overall case fatality rate (CFR) was 1.5% 

(21/1402). The CFR was 2.3% (14/612), 1.5% (7/460) and 1.7% (21/1265) for infants <2 

months of age, 2–3 months of age, and <1 year of age, respectively.  

 
 
Figure 2. 5:  Kaplan-Meier survival plot for pertussis fatal cases at IMPACT 
hospitals, 1999-2015. 

Graph shows time from admission with pertussis to death (n=21), IMPACT hospitals, 
1999–2015.  
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2.4.5 Risk factors for admission to intensive care unit and death 

 

In univariate analyses, different variables were associated with increased risk to ICU 

admission and death (Table 2.8). In multivariate analyses, independent risk factors for 

ICU admission were age <16 weeks, prematurity, encephalopathy, confirmed pertussis 

diagnosis and later year of admission (Table 2.8). Independent risk factors for death were 

age <4 weeks, prematurity, female sex and later year of admission (Table 2.8).  
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Table 2. 8: Risk factors for admission to intensive care unit and death in patients 
with pertussis  (n=1392).  

Variable P value Odds ratio  

(95% CI)  
P value Adjusted odds 

ratio  (95% CI) 
 Univariate analysis Multivariable analysis a 

Risk factors for admission to intensive care unit 
Age: 
≥ 16 weeks (380) 
< 16 weeks (1012) 

 
< 0.0001 

 
Ref 
4.47 (3.12-6.59) 

 
< 0.0001 
 

 
Ref 
4.83 (3.30-7.27) 

Male (648) 
Female (744) 

0.569 Ref 
0.93 (0.3-1.18) 

 
Not included  

No new seizures (1363) 
New seizures (29) 

< 0.001 Ref 
3.77 (1.80-8.06) 

 
Not included*  

Encephalopathy: 
No (1385) 
Yes (7) 

 
0.007 

 
Ref 
18.08 (3.07-342.22) 

 
 
0.007 

 
Ref 
21.13 (3.18-425.21) 

Prematurity b: 
No (1343) 
Yes (49) 

<0.0001  
Ref 
4.59 (2.58-8.35) 

 
<0.0001 

 
Ref 
5.81 (3.04-11.37) 

Comorbidity  
No (1252) 
Yes (140) 

0.580  
Ref 
1.11 (0.75-1.64) 

 
Not included 

Evidence for diagnosis: 
Probable (245) 
Confirmed (1147) 

 
< 0.001 

 
Ref 
1.84 (1.29-2.67) 

 
0.040 

 
Ref 
1.51 (1.03- 2.27) 

Admission date (year) < 0.0001 1.05 (1.03- 1.08)  <0.001 1.05 (1.02-1.07) 
Vaccination status c (3-4 
months) (n=184): 
Unvaccinated (102) 
AAV (n=82) 

 
 
0.665 

 
 
Ref 
0.83 (0.35- 1.89) 

 
Not included  

Risk factors for death 
Age: 
≥ 4 weeks (1280) 
< 4 weeks (112) 

 
< 0.0001 

 
Ref 
7.04 (2.57-17.89) 

 
0.0002 

 
Ref 
6.73 (2.39- 17.88) 

Male (648) 
Female (744) 

0.034 Ref 
3.31 (1.19- 11.66) 

0.032 Ref 
3·46 (1.21- 12.47) 

Prematurity b: 
No (1343) 
Yes (49) 

0.009  
Ref 
5.40 (1.23-16.95) 

0.015  
Ref 
5.36 (1.15-18.61) 

Comorbidity  
No (1252) 
Yes (140) 

0.493  
Ref 
0.49 (0.03-2.41) 

Not included 

Admission date (year) 0.022 1.11  (1.01-1.22) 0.014 
 

1.13 (1.03-1.25) 

a The multivariable intensive care unit analysis was adjusted to patient’s age, occurrence of 
encephalopathy, existence of prematurity, admission year, IMPACT hospital and evidence for diagnosis. 
The multivariable death analysis was adjusted to patient’s age, admission year, IMPACT hospital, and sex. 
b Prematurity is defined as birth at gestational age <37 weeks gestation. 
c This sub-analysis included laboratory-confirmed case age 3-4 months who received more than one vaccine 
dose or were unvaccinated. 
* Not included because some patients had both seizures and encephalopathy, so encephalopathy outcome 
was chosen. Abbreviation: AAV: Age-appropriately vaccinated 
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2.4.6 Vaccination status of laboratory-confirmed pertussis cases 

 

Among hospitalized patients with laboratory–confirmed pertussis aged 3 months–16 

years (n=355), 31.8% (113/355) had received an age-appropriate number of pertussis 

vaccine doses and 51.5% (183/355) were unvaccinated (0 doses) (Figure 2.6). The 

percentage of unimmunized patients hospitalized with pertussis was 55.4% (102/184), 

42.6% (23/54) and 59.6% (34/57), 58.3% (14/24) and 27.8% (10/36), among infants 3-4 

months old, 5-6 months old, 7-18 months old, 19 months- 6 years and 7-16 years, 

respectively (Figure 2.6). Among patients aged ≥7 months, 28.2% (33/117) had received 

an age-appropriate number of pertussis vaccine doses, 22.2% (26/117) were under-

vaccinated and 49.6% (58/117) were unvaccinated. Among infants aged 7 months–18 

months, 22.8% (13/57) patients had received 3 valid pertussis vaccine doses. Of those 

cases, 84.6% (11/13) occurred ≥7 months after the third dose (Figure 2.6).  
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Figure 2. 6: Vaccination status of patients hospitalized with pertussis at IMPACT 
hospitals, 1999-2015. 

Graph shows vaccination status of patients hospitalized with laboratory-confirmed 
pertussis 3 months-16 years, IMPACT hospitals, 1999–2015. The absolute number of 
patients for each vaccination status is shown in the bar.  
 

The median interval between the third vaccine dose and admission was 254 days (overall 

range=71–392, IQR= 218–317) (Figure 2.7).  
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Figure 2. 7: Cumulative incidence plot of hospital admission due to pertussis at 
IMPACT hospitals, 1999-2015. 

Graph shows time from vaccination with 3 received pertussis vaccine doses to disease 
onset among infants 7–18 months with laboratory-confirmed pertussis (n=13), IMPACT 
hospitals, 1999–2015.  
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2.5 Discussion 

 

In this chapter, I report on the longitudinal burden of hospitalized pertussis among 

pediatric population admitted to pediatric tertiary care centers in the aP vaccine era in 

Canada over a 17-year period. I show that that infants too young to be vaccinated were 

the major contributor to the burden of hospitalized pertussis disease. Specifically, infants 

<2 months of age displayed the highest hospitalization incidence rate. The rate of 

pertussis hospitalization fluctuated during this period but was still significant and the 

highest among infants younger than 2 months. Almost 25% of all cases were admitted to 

ICU, with the majority in infants aged <2 months. Age <16 weeks was independently 

associated with a 5-fold increase in odds for ICU admission compared with older 

children. Prematurity and confirmed pertussis diagnosis were independently associated 6-

fold and 1.5-fold increased odds for ICU admission, respectively. Age <4 weeks was the 

most significant independent risk factor for mortality, associated with 7-fold increased 

odds of death. Prematurity and female sex was significantly associated with 5-fold and 

3.5-fold increased odds of death, respectively. These data have important implications, 

establishing the true burden of endemic pertussis disease, and thus assisting public health 

policy makers to reach evidence-based conclusions regarding the optimal cost-effective 

preventative approach. Identification of risk factors for poor outcomes aids appropriate 

prioritization in management of young infants with pertussis, and counseling for families 

during hospitalization. 

 

In this chapter, I report that the majority of children hospitalized with pertussis were <4 
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months of age, consistent with previous data from Canada, USA and Australia in the aP 

vaccine era210, 339, 349, 354. While almost 21% of global pertussis cases are in infants <1 

year of age212, 90% of hospitalized pertussis cases in the aP era and 92% of hospitalized 

pertussis cases in the wP vaccine era in Canada were in this age group356. In addition, 

85% of hospitalized pertussis cases in this study and 79.1% of hospitalized pertussis 

cases in the wP vaccine era in Canada were in infants <6 months of age. This emphasizes 

that young infants are at disproportionate high risk for severe pertussis. Pertussis 

hospitalization incidence among infants <2 months of age (116.40/100,000) was lower 

than reported in the wP vaccine era in England during 1995–1997 (164/100,000 among 

infants <3 months of age)360, and in Australia four years after the introduction of aP 

vaccine (~200/100,000 among infants <2 months of age)349. Thus, although the incidence 

of hospitalized pertussis among infants aged <2 months in the aP era is lower than in the 

wP era, this age group accounts for a high proportion of pertussis–related hospital 

admissions. In addition, pertussis hospitalization incidence among infants <1 year of age 

(42.3/100,000) is lower than reported in the wP vaccine era in Canada (136/100,000)354.  

 

Children with pertussis had long hospitalization with median LOS of 7 days, notably 

higher than the median LOS of 4 days reported among patients hospitalized with 

pertussis (median age 2.6 months) during the 2010 California pertussis epidemic339. This 

difference might stem from the fact that IMPACT hospitals are pediatric tertiary-care 

centers admitting the more severe cases of pertussis. Moreover, the median LOS of 8 

days among infants <6 months of age in this study is comparable to the median LOS of 

9.3 days among infants aged <6 months admitted to IMPACT centers with pertussis 
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during the wP era, and both studies used the same clinical case definition of pertussis356. 

In this study, 77.2% of patients aged 7-18 months had received fewer than 3 vaccine 

doses while 44.9% of patients 6-24 months of age admitted to IMPACT centers with 

pertussis during the wP era received fewer than 3 vaccine doses. This emphasizes that in 

the aP era, under-vaccination is an important contributor to pertussis hospitalization. 

However, infection despite of completion of three vaccination doses among this age 

group was observed in 23% (13/57) of hospitalized pertussis cases, which could be due to 

waning immunity. In contrast to many other infectious diseases, immunity following 

pertussis vaccination is not long lasting.  Waning immunity is expected 4-12 years after 

vaccination221, 251, 361, and within 5 years after five doses of aP vaccine221. A recent study 

from New Zealand reported that the vaccine effectiveness (VE) of 3 doses of aP in 

preventing hospitalization due pertussis among infants 5-11 months old was 93%. This 

VE remained high, in a range of 91-98% during the first 2-3 years of life362. In this study, 

I found that among infants 7-18 months old, 13 cases out of 57 had infection although 

completed a series of primary immunization with 3 doses. This emphasized that 3 

pertussis vaccine doses were not sufficient to prevent hospitalized pertussis and reaffirm 

that pertussis short-lived vaccine-induced immunity. Although VE was not calculated in 

this analysis as the data included were collected prior to recommendation of pertussis 

vaccination in pregnancy in Canada, these data challenge the recent observational study 

in Australia showing that VE against hospitalized pertussis among infants 6-11 months 

old increased for dose 1 to 2 (from 55% to 83%) and remained high (85%) after the third 

dose361 and question the approach to delay the third dose of pertussis vaccine during 

infancy, a practice in Scandinavian countries363 and France364.  
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Neurological manifestations (new onset seizures and/or encephalopathy) were observed 

in 2.6% of patients admitted with pertussis, consistent with data from IMPACT centers in 

the wP era (2.4% among patients <2 years of age). Thus, these data emphasize that 

neurological manifestations still occur in the aP era in Canada. Moreover, the CFR in this 

study was 1.5% for all age groups (2.3% for infants <2 months of age), higher than the 

CFR reported in the wP era in Canada (0.9% among patients <2 years of age). In this 

study, two thirds of deaths were amongst <2 months infants, comparable with the data 

from IMPACT centers during the wP era where 80% of fatalities due to pertussis were 

among infants <2 months of age.  

 

Patients hospitalized with pertussis had frequent ICU admissions (25%). The range of 

ICU admission rate of patient hospitalized with pertussis is in the range of 4.6%-33% in 

studies reported from both high and middle income countries365,348,366. The highest ICU 

admission rate was among infants <2 months of age (37.9%). In a single center in 

California, a third of infants < 3 months admitted during 2009-2010 were admitted to the 

ICU367. The proportion of ICU admission among infants <1 year, is comparable to the 

rate reported in an epidemic in California (33% among hospitalized infants aged <1 

year)348, and higher than the rate reported during the wP era in Canada (16% among 

children aged <2 years and 19.2% among infants aged <6 months)356. In addition, median 

ICU LOS reported in this study (4 days) is comparable to that reported in Australia and 

New Zealand of 3.6 and 3.9 days366, 368. Similar to previous literature, nearly two third of 

infants admitted to the ICU were too young to be vaccinated365, 366 and 17% of infants 
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admitted to the ICU had at least one comorbidity, the most common was prematurity366, 

369.  

 

The mean CFR in this study was 1.5% for all age groups (2.3% for infants <2 months). 

Notably, this is slightly higher than the CFR reported in the wP (among patients < 2 years 

of age) and aP (< 16 years old) era by Canadian IMPACT centers, 0.9% and 0.7%, 

respectively356,354 but similar to the CFR reported during the California 2010 outbreak 

(CFR of 1.3% among infants < 3 months old) 339. In another study, a CFR of 2% was 

reported in a multinational study of infants < 1 year admitted to the ICU365. All deaths 

were among infants younger than 14 weeks old, and two thirds of deaths were amongst 

patients too young to be vaccinated with any vaccine dose, consistent with previous 

literature339,222, 246,350 . Two-third of patients died by the fifth day of admission while one 

patient died at day 47 of admission. This is consistent with 4 reported cases died in a 

range of 21-41 days in Australia in 2001351.  

 

There are no data on risk factors for admission to the ICU and scarce data on the risk 

factors for death due to pertussis. Identifying higher–risk infants can help physicians in 

their clinical management decisions and thus close monitoring and early consideration of 

need for ICU admission is required in infants displaying these risk factors. Infants with 

confirmed pertussis had longer hospital and ICU LOS than those with probable pertussis 

demonstrating that the clinical severity of confirmed pertussis disease is higher than 

clinically diagnosed pertussis disease, which may be because some probable cases did not 

have pertussis or had a lower bacteria load that led to less severe disease and was not also 
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detected by diagnostic methods. A case-control study during a period in which both wP 

and aP vaccine were used in Canada found that white-blood cell (WBC) count was risk 

factor for death from pertussis370. This is consistent with recent data from California 

showing that fatal pertussis cases had higher WBC counts compared to nonfatal cases371. 

Lower birth weight, higher peak WBC count, pulmonary hypertension, seizures244 and 

female sex372 were independent risk factors for death from pertussis among infants. 

Encephalopathy was independently associated with 21-fold increased odds for ICU 

admission, however, this is based on a small number of patients (8) and thus the precision 

of this estimate is unclear as the 95 CI was large. In the US in the aP vaccine era, 

prematurity was a risk factor for death from pertussis in univariate analyses only244,372. 

Premature infants were overrepresented (12/20) in a cohort of fatal pertussis cases in the 

US in the wP vaccine era373. This study sets prematurity as independent risk factor for 

death from pertussis in the aP era. The finding that female sex is risk factor for death is 

unexpected and surprising as female usually mount stronger innate and adaptive immune 

responses than males374. 

 

The data presented in this chapter has a number of strengths. This is a detailed 

characterization of pediatric hospitalized pertussis cases in the aP vaccine era. The study 

is unique for its inclusion of a national population, long duration and extensive active 

case finding. IMPACT reporting is active, prospective, standardized and performed by 

trained nurse monitors, and as such the accuracy and completeness of the data is high. 

The 17-year time period enabled evaluation of the burden and characteristics of pertussis 

disease that spanned over a prolonged period. IMPACT hospitals constitute 90% of 
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Canada’s tertiary-care pediatric beds, thus providing good estimates of severe pediatric 

pertussis cases that require hospitalization in tertiary care centers. Moreover, IMPACT 

hospitals’ catchment area covers 57% of the Canadian population <16 years of age.  

 

This study has some limitations. Less severe pertussis cases would have been admitted at 

smaller hospitals not part of the IMPACT network or diagnosed and treated in the 

community. Thus, the true burden of all pertussis cases is underestimated in this study. 

This limitation is less concerning when assessing severe pertussis requiring ICU 

admission as IMPACT centers comprise most of the pediatric tertiary-care beds in 

Canada. Misclassification of probable cases is possible, although this was a minority of 

cases. These data did not capture readmissions. However, this is expected to be 

uncommon as pertussis is a monophasic disease. This study is based on information 

collected from medical databases and as such there might be misclassification bias 

leading to underestimation of burden of pertussis disease during study period. The limited 

variables available for inclusion in risk factors analyses is another limitation as other 

important factors (e.g. maternal age, ethnicity) could be an important confounders of 

morbidity and mortality. There is a possibility that some of the patients included in this 

study were primed with wP vaccine, however the proportion of those cases is expected to 

be low as 90% of the patients were <1 year of age and admitted after 1999 (aP was 

introduced in Canada in 1997-1998). These data did not capture the onset of cough, an 

important variable in defining a vaccine dose as valid. However, the 4 week interval 

between recent vaccine dose and admission, used in this study, minimizes this 

misclassification. The diagnostic tests used during the study period might have affected 
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detection of cases with the increased use of PCR over culture. Literature supports that 

PCR is more sensitive than culture in diagnosing pertussis, mainly due to lower 

sensitivity of culture 205, 375.    

 

Two main potential strategies for reducing the burden of pertussis in infants include 

immunization of close contacts (“cocooning”) and antenatal maternal immunization. The 

cocooning strategy of all close contacts of infants too young for vaccination was shown 

to be difficult to implement376, unsuccessful in preventing  pertussis illness in infants ≤6 

months of age377, inefficient and resource intensive for the prevention of serious 

outcomes in early infancy334. Several countries (e.g. USA, UK) have responded to the 

increase in pertussis morbidity and mortality among young infants by universal 

recommendation of immunization of pregnant women against pertussis342, 343. Protection 

of infants against pertussis following maternal immunization is assumed to result from 

direct protection provided by maternally transferred pertussis-specific antibodies and 

indirect protection resulting from reduced risk of B. pertussis infection in the mother and 

thus lower risk for infant exposure. Vaccination against pertussis in pregnancy has 

proved to be effective in preventing pertussis disease among infants aged <3 months343, 

378, 379,and to decrease the risk of hospitalization, risk of ICU admission and hospital 

LOS380.Given the severe morbidity of endemic pertussis disease among infants during the 

first months of life, as shown in this study, vaccination against pertussis in pregnancy has 

the potential to control the burden of pertussis among young infants in countries with 

long standing use of aP vaccine. Vaccination against pertussis in pregnancy has proved to 

be highly (nearly 90%) effective in preventing pertussis disease and hospitalization 
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among infants aged <3 months in the UK and USA343, 379. Assuming that vaccination 

against pertussis in pregnancy is 90% effective in the prevention of pertussis 

hospitalization among infants aged <3 months, approximately 825 cases of hospitalized 

pertussis could have been prevented via maternal immunization in the study hospitals 

during this 17-year period. Universal vaccination against pertussis in pregnancy is now 

recommended in increasing number of countries and most recently in Canada353. While 

the optimal timing of vaccination against pertussis in pregnancy is under research, my 

finding that prematurity is independent risk factor for ICU admission and death from 

pertussis may support vaccination earlier in pregnancy.     

  



	 74	

3. Avidity of anti-Bordetella pertussis antibodies induced after vaccination during 
pregnancy  

 

3.1 Synopsis  

	
Vaccination of all pregnant women with Tdap vaccine is recommended in an increasing 

number of countries (e.g. the UK, US, Australia, Canada) in order to protect infants too 

young to be vaccinated themselves. The optimal timing of vaccination in pregnancy to 

provide maximal protection to young infants remains an important knowledge gap 

leading to variable national recommendations, for example 16-32 weeks gestation (WG) 

in the UK and 27-32 WG in Canada. These recommendations are based on studies 

showing higher levels of anti-B. pertussis antibodies in infants born to women vaccinated 

during early third trimester compared with vaccination in late third trimester or showing 

higher anti-B. pertussis antibody levels in infants born to women vaccinated in second 

compared to third trimester.   

 

Evaluation of vaccine-induced antibody immune response includes assessment of the 

quantity and function of antibodies. No well-established specific anti-pertussis antibody 

level correlates with protection, suggesting the importance of antibody function such as 

avidity. Avidity (or functional affinity) of antibodies is a measure of the binding strength 

of bi- or poly-valent antibody with bi- or poly-valent antigens and is a functional measure 

of affinity maturation of antibodies following exposure to an antigen (e.g. vaccine 

components). Enzyme-linked immunosorbent assay (ELISA)-based elution assay is a 

common method for the measurement of antibody avidity and consists of the assessment 
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of the stability of antigen–antibody complexes in the presence of a chaotropic agent. The 

application of single chaotropic agent concentration to the ELISA-based elution assay, a 

frequently used approach in research and diagnostics, leads to an arbitrary separation of 

high and low avidity antibodies, presented in relative measures (e.g. relative avidity index 

[RAI]). However, the true avidity profile, induced following exposure to an antigen, 

includes continuous range of quantity of antibodies heterogeneous in their avidities. 

There are scare data on the laboratory and analytical approaches needed in order to 

profile the avidity of antibodies following antigen exposure (e.g. vaccination).  

 

In this chapter, I propose a step-by-step laboratory analysis and novel analytical 

approaches in order to allow in deep analysis of the profile of antibody avidity using 

ELISA-based elution.  I also aimed to determine the effect of timing of vaccination with 

Tdap in pregnancy on the avidity of cord anti-PT IgG. Included were newborns born in a 

tertiary hospital (Melbourne, Australia) born to women vaccinated with Tdap in 

pregnancy. Ammonium thiocyanate was used as a bond-breaking agent to measure the 

avidity of anti-PT IgG using concentrations between 0.25M (to measure low avidity 

antibodies) and 3M (to measure very high avidity antibodies).  

 

I also showed that using a range of concentrations of chaotropic agent, the fractional 

relative avidity index and the absolute levels of antibodies with different avidities can be 

accurately quantified. In addition, a single weighted value of total absolute avidity levels, 

that incorporates both quantitative and qualitative avidity characteristics can also be 

calculated. Using this approach, I found that cord specimens of women vaccinated with 
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Tdap in pregnancy had higher total absolute avidity levels and fractional absolute levels 

of low–medium, medium, medium–high, high, and very-high avidity levels compared 

with those of cord specimens of unvaccinated women. Vaccination was associated with 

avidity profile consisting of high levels of high avidity antibodies.  

 

Anti-PT IgG levels achieved at each ammonium thiocyanate concentration in cord 

samples of women vaccinated during 28–32 WG vs. 33–36 WG, and women vaccinated 

5–12 vs. 1–4 weeks prior to delivery were compared using t-tests. I found that newborns 

of women vaccinated with Tdap during 28–32 WG (n=43) had statistically significant 

higher concentrations of medium and high avidity anti-PT IgG compared with newborns 

of women vaccinated during 33–36 WG (n=47), 11.6 IU/ml (95% CI, 8.8–15.2) IU/ml vs. 

6.7 IU/ml (95% CI, 5.2–8.6) and 10.1 IU/ml (95% CI, 7.4–13.8) vs. 5.7 (95% CI, 3.6–

8.9) IU/ml, (p=0.007 and p=0.035), respectively. Newborns of women vaccinated 5–12 

weeks before delivery (n=64) had statistically significant higher concentrations of high 

and very high avidity anti-PT IgG compared with newborns of women vaccinated within 

4 weeks before delivery (n=25), 10.3 IU/mL (95% CI, 7.9–13.4) vs. 3.3 IU/mL (95% CI, 

1.7–6.4), 12.6 IU/mL (95% CI, 9.4–16.9) vs. 4.3 IU/mL (95% CI, 2.2–8.5), (all p<0.03), 

respectively.  

 

In conclusion, quantification of levels of anti-PT IgG with different avidities 

demonstrated that pertussis vaccination 5–12 weeks before delivery was associated with 

higher anti-PT IgG avidity compared with vaccination within 4 weeks before delivery. 

Pertussis vaccination during 28–32 WG was associated with higher anti-PT IgG avidity 
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compared with vaccination during 33–36 WG, supporting vaccination at 28–32 over 33–

36 WG for optimal protection against pertussis in infancy. 
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3.2 Introduction 

	
Vaccination of all pregnant women with Tdap vaccine is recommended in an increasing 

number of countries, including the UK381, US382, Australia383, Canada384, Brazil385 and 

Argentina386 to protect infants too young to be vaccinated themselves. The optimal timing 

of vaccination in pregnancy to provide maximal protection to young infants remains an 

important knowledge gap73 leading to variable national recommendations, for example 

16-32 WG in the UK and 27-32 WG in Canada381-384. In addition, although vaccination 

against pertussis in pregnancy has been shown to be effective in preventing pertussis 

disease in infancy, breakthrough cases do occur in infants born to women vaccinated 

according to their national recommendations378, 387-389,343, 390, suggesting the need for data 

to further understand the variables affecting vaccine effectiveness. The impact of timing 

of Tdap vaccination during pregnancy on the infants’ immunity to pertussis is one of the 

important variables.  

 

Data on the effect of timing of antenatal pertussis vaccination on the avidity of anti–

pertussis antibodies are scarce, conflicting and derived from two small studies which 

assessed avidity with limited approach of using a single concentration of bond-breaking 

agent391,392.  Acellular pertussis vaccines contain components of B. pertussis such as PT, 

FHA, FIM2/3 and PRN. PT is an important virulence factor of B. pertussis393, 394. PT is 

thought to be the cause of leukocytosis223, 225, 395, 396, which is associated with poor 

outcome among infants with pertussis222, 370. Anti-PT antibodies are thus important in 

protecting from pertussis disease. 
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Higher anti-pertussis antibody levels are associated with clinical protection from pertussis 

disease397, but there is no specific anti-pertussis antibody level that correlates with 

protection. This emphasizes the importance of evaluating anti-pertussis antibody function 

and not only antibody concentration. Antibody avidity is one important measure of 

function, which examines the overall binding strength between a specific antibody and a 

target antigen398,399. Antibody functions have been established as a correlate of post-

vaccination protection from other bacterial invasive diseases (e.g. bactericidal antibody in 

meningococcal disease)400 and are likely also be important for protection against pertussis 

disease.  

 

Affinity (or intrinsic affinity) of antibodies is a measure of the binding strength of 

monovalent antigen with monovalent antibody while avidity (or functional affinity) of 

antibodies is a measure of the binding strength of bi- or poly-valent antigens with bi- or 

poly-valent antibodies. Using interaction measures to describe the binding strength 

between antigens and antibodies, antibody affinity is described as the sum of attractive 

and repulsive physical and chemical forces between antigenic determinant and 

immunoglobulin combining site. Avidity is a measure of the stability of the antigen-

antibody complex and is affected, in addition to the sum of attractive and repulsive 

forces, also by other factors (e.g. antigen valency [i.e number of binding sites], antibody 

valency, structural arrangement of the antigen-antibody complex, the density of epitopes, 

and the antibody polyreactivity401.  
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There are different laboratory techniques to assess the avidity of antibodies. ELISA-based 

elution assay is a common method for the estimation of antibody avidity and consists of 

the assessment of the stability of antigen–antibody complexes in the presence of 

chaotropic agent402. In this technique, the preformed antigen-antibody complex is 

transiently exposed to a chaotropic agent and antigen-antibody complexes resisting 

dissociation, at a specific chaotropic agent concentration, are quantified and presented as 

a RAI. The RAI is calculated as antibody levels in samples treated with the chaotropic 

agent divided by antibody levels in samples not treated with chaotropic agent and is 

expressed as a percentage. Thus the RAI measurement after the application of single 

concentration of chaotropic agent leads to an arbitrary separate antibodies into high and 

low avidity antibodies.  

 

Previous studies evaluating the avidity of vaccine-induced antibodies are based on a 

comparison of antibody levels with vs. without the addition of a single concentration of 

bond-breaking agent, leading to an arbitrary and artificial separation of antibodies into 

‘low’ and ‘high’ avidity antibodies398, 399, 403.  However, immune response to vaccination 

is polyclonal and results in antibodies with different avidities. True avidity spectrum (or 

profile) should reflect the range of antibodies with heterogeneity of avidities that are 

produced in a polyclonal response to an antigen. Vaccination is expected to produce a 

spectrum of antibodies with different avidities, ranging from very low to very high 

avidity antibodies and measuring this requires the use of a gradient of increasing 

concentrations of chaotropic agent to dissociate antigen–antibody complexes. No 

published studies have assessed the full avidity profile of anti–pertussis antibodies after 
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vaccination in general and in pregnancy in particular255, 404, 405. Assessing the full 

spectrum of antibody avidity after vaccination will provide comprehensive insight on 

avidity maturation after vaccination.  

 

In this chapter, I aimed to develop a laboratory analysis and novel analytical approach in 

order to allow in deep analysis of the profile of antibody avidity using ELISA-based 

elution. I used this methodology aimed in order to determine the effect of timing of 

vaccination with Tdap in pregnancy on anti–PT antibodies conveyed to the newborn at 

the time of delivery in cord blood of a cohort of pregnant women, evaluating and 

contrasting both antibody concentration as well as avidity.  
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3.3 Methods 
	

3.3.1 Study design  

	
Pregnant women at a tertiary obstetric hospital (Monash Health, Melbourne, Australia) 

were prospectively recruited (April–September 2014) as previously reported.406 Inclusion 

criteria were healthy pregnant women with a singleton pregnancy between 28–36+6 

WG406. Women were excluded if they had one or more of the following: receipt of Tdap 

vaccine during their current pregnancy, having an immunosuppressive disorder 

(including human immune deficiency virus infection), or were considered at high risk for 

preterm delivery. Women were invited to participate in the study during the third 

trimester of their pregnancy. Women who agreed to vaccination were vaccinated with 

Tdap ([Boostrix] containing ≥2 IU diphtheria toxoid, ≥20 IU tetanus toxoid, 8 µg PT, 8 

µg FHA and 2.5 µg PRN and were allocated to either early third (28-32+6 [thereafter 28-

32] WG) or late third (33-36+6 [thereafter 33-36] WG) trimester vaccination group 

according to time of vaccination in pregnancy. Women who declined to receive Tdap but 

were willing to participate in the study were the unvaccinated control group. Data were 

prospectively collected from women’s medical records and participant questionnaire 

upon enrollment.  

3.3.2 Laboratory analysis  

	
Cord serum was separated from cord blood by centrifugation at the time of collection and 

stored at – 80 0C. Samples were shipped in temperature-controlled conditions to the 

Vaccine Evaluation Center (Vancouver, Canada) for avidity analysis.  
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Determination of anti- PT IgG antibody avidity  
	
 
Avidity analysis of anti-PT IgG was performed as previously described using anti-PT IgG 

ELISA (EUROIMMUN) with ammonium thiocyanate (NH4SCN) (SIGMA–ALDRICH, 

St. Louis, MO) as a bond-breaking agent391, 404. Briefly, 100 microliters (µL) of serum 

(1/101 dilution achieved by dilution 10 µL of serum with 1000 µL of sample buffer), 100 

µL of standards provided by the manufacturer and 100 µL of positive and negative 

control sera (1/101 dilution) were added per well and incubated at 37 °C for 60 minutes. 

After incubation, the plates were washed three times with 200 µL of washing buffer. 

After washing, 100 µL of phosphate buffered saline (PBS) or different NH4SCN 

concentrations (see below) were added for 20 minutes at 37 °C. One hundred µL of 

enzyme conjugate (peroxidase-labeled anti-human IgG) were added per well and 

incubated for 30 minutes at room temperature, after which the plates were washed three 

times with 200 µL of washing buffer. Positive reactions were developed by adding 100 

µL chromogen/substrate solution for 15 minutes at room temperature. The process was 

terminated by adding 100 µL of 0.5 M sulfuric acid, and the plates are developed. Optical 

density was measured immediately at 450 nm. All standards, controls and study samples 

were analyzed in duplicate with the average of the two samples taken as the final value.   

Determination of the optimal range of bond-breaking agent (chaotrope) 

	
In order to characterize the spectrum of antibody avidity in a sample, I used a range of 

concentrations of the chaotrope. I calculated the RAI achieved at each concentration (as 

above). Next, I determined the lowest and the highest chaotrope concentrations of this 
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range which provide helpful discrimination of antibody avidity. The lowest concentration 

was the chaotrope concentration that achieved the highest RAIs that was still different 

from the RAIs achieved at the next lower concentration. Chaotrope concentrations below 

this lowest concentration are thus less discriminatory and were not used. The highest 

concentration of the chaotrope was the highest concentration which still yielded antibody 

levels above the lower levels of quantification (LLOQ) of the ELISA. In my initial 

experiments, the range of ammonium thiocyanate concentrations was 0.25 molar (M), 

0.5M, 1M, 1.5M, 2M and 3M, while concentrations of 0.125M and 4M were rejected.  

Sample selection 

	
Samples not treated with the chaotrope or treated with the lowest concentration and 

yielded values lower than the ELISA’s LLOQ were excluded from further analysis. 

Avidity cannot be reliably measured in sera with very low total antibody levels404, or 

undetectable antibody levels following the addition of the lowest chaotrope 

concentration. Including such samples has the potential to introduce an error to the 

results, as these samples have undetectable antibody levels rather than low avidity 

antibodies.  

3.3.3 Calculation of Relative Avidity Index (RAI), fractional and total RAI of anti-

PT IgG 

	
The RAI for every sample at each ammonium thiocyanate concentration was calculated 

and expressed as a percentage (Table 3.1 and Table 3.2). Samples not treated with 

ammonium thiocyanate or treated with the lowest ammonium thiocyanate concentration 
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(0.25 M) with optical density values lower than the ELISA’s lower levels of 

quantification were excluded from further avidity analysis.  

 

The fractional RAI of anti-PT IgG achieved at a specific ammonium thiocyanate 

concentration was calculated (Table 3.1 and Table 3.2). Within the range of 

concentrations of ammonium thiocyanate used (0.25 M–3 M), the data demonstrated 

high linear correlation between increasing ammonium thiocyanate concentration and 

decreasing RAI (r=-0.88, p<0.001). Thus, a total RAI value of anti-PT IgG that reflected 

the weighted contribution of the fractional RAIs of anti-PT IgGs achieved at the specific 

ammonium thiocyanate concentrations was calculated (Table 3.1 and Table 3.2) and 

expressed in Avidity Units (AU).  

 

3.3.4 Quantification of fractional and total absolute avidity levels of anti-PT IgG 

	
The fractional absolute avidity levels of anti-PT IgG achieved at a specific 

ammonium thiocyanate concentration was quantified and expressed in IU/mL (Table 3.1 

and Table 3.2). The quantified fractional absolute avidity levels of anti-PT IgG at 0.25 M, 

0.5 M, 1 M, 1.5 M, 2 M, and 3 M of ammonium thiocyanate were classified as low, low-

medium, medium, medium-high, high and very high avidity anti-PT IgG antibodies, 

respectively. The levels of anti-PT IgG eluted by the lowest ammonium thiocyanate 

concentration (0.25 M) were classified as very low avidity anti-PT IgG antibodies. The 

total absolute avidity levels of anti-PT IgG reflecting the weighted contribution of the 

fractional absolute avidity levels of anti-PT IgG were calculated and expressed in 

Absolute Avidity Units (AAU)/mL (Table 3.1 and Table 3.2). Anti-PT IgG levels 
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measured without the addition of ammonium thiocyanate (T0 in Table 3.1 and 3.2), were 

referred to as total anti-PT IgG.   
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Table 3. 1: Calculation of relative avidity index, fractional relative avidity index, 
total relative avidity index and quantification of fractional and absolute avidity 
levels of anti-PT IgG.  

NH4SCN 
Concentra
tion 
(molar 
[M]) 

3 M 2 M 1.5 M 1 M 0.5 M 0.25 M 0 M  NA*** 

Anti-PT 
IgG levels 
(IU/mL) 

T3 T2 

 

T1.5 
 

T1 
 

T0.5 
 

T0.25 

 
 

T0 
 

NA 

RAI* (%)  
 
 

RAI3= 
T3/To*
100 

RAI2= 
T2/To*1
00 
 

RAI1.5= 
T1.5/To*
100 
 

RAI1= 
T1/To*1
00 
 

RAI0.5= 
T0.5/To*
100 
 

RAI0.25= 
T0.25/To*
100 

NA NA 

Fractional 
(F) RAI 
(%) 
 

F 
RAI3= 
RAI3 
 

F RAI2= 
RAI2-
RAI3 

 
 

F 
RAI1.5= 
RAI1.5-
RAI2 

 
 

F RAI1= 
RAI1-
RAI1.5 

F 
RAI0.5= 
RAI0.5-
RAI1 
 

F 
RAI0.25= 
RAI0.25-
RAI0.5 

NA F 
RAI<0.25
= 100% 
- RAI0.25 

Total RAI 
(AU) 

F RAI3*3 + F RAI2*2+ F RAI1.5*1.5+ F RAI1*1+ F RAI0.5*0.5+ F RAI0.25*0.25+ 
F RAI<0.25*0.125 

Fractional 
(F) 
absolute 
(abs) 
avidity 
levels** 
(IU/mL) 

F 
abs3=F 
RAI3*
T0 

 

 
 

F abs 
2=F 
RAI2*T0 

 

 
 

F 
abs1.5=F 
RAI1.5*
T0 

 

 

 
 

F 
abs1=F 
RAI1*T0 

 

 

 
 

F 
abs0.5=F 
RAI0.5*
T0 

F  abs 
0.25=FR
AI0.25*T
0 

 

 
 

NA F abs 
<0.25=FR
AI0<0.25*
T0 

Total 
absolute 
avidity 
levels 
(AAU/mL) 

F abs3*3 + F abs2*2+ F abs1.5*1.5+ F abs1*1+ F abs0.5*0.5+ F abs0.25*0.25+ F 
abs<0.25*0.125  
 

Abbreviations: NA: not applicable; IU:mL: international unit/ml;  T: total; F: fractional; abs: 
absolute. * Samples treated with PBS or the lowest NH4SCN concentration (0.25M NH4SCN) 
with optic density values lower than the ELISA’s lower levels of quantification (LLOQ) were 
excluded from further avidity analysis. Samples treated with 0.5M, 1M, 1.5M, 2M, 3M 
concentrations of NH4SCN and with optic density values lower than the ELISA’s LLOQ were 
assigned an arbitrary RAI value of 2.5%, 5%, 7.5%, 10% and 12.5%, respectively, for the 
respective NH4SCN concentrations.  
** Fractional absolute avidity levels of anti-PT IgG at a specific NH4SCN concentration 
quantified as 0 were assigned an arbitrary value of 0.04 IU/mL 
*** This column includes the Fractional (F) RAI and Fractional (F) absolute (abs) avidity levels 
of anti-PT IgG antibodies eluted at the lowest NH4SCN concentration.  
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Table 3. 2: Example of calculation of relative avidity index, fractional relative 
avidity index, total relative avidity index and quantification of fractional and 
absolute avidity levels of anti-PT IgG. 

NH4SCN 
Concentra
tion 
(molar 
[M]) 

3 M 2 M 1.5 M 1 M 0.5 M 0.25 M 0 M  NA*** 

Anti-PT 
IgG levels 
(IU/mL) 

18 
IU/mL 

42 
IU/mL 

60 
IU/mL 

84 
IU/mL 

96 
IU/mL 

108 
IU/mL 

120 
IU/mL 

NA 

RAI* (%)  
 

18/120
*100=
15 

42/120
*100=
35 

60/120*
100=50 

84/120*
100=70 

96/120*
100=80 

108/120
*100= 
90 

NA NA 

Fractional 
(F) RAI 
(%) 

15 35-
15=20 

50-
35=15 

70-
50=20 

80-
70=10 

90-
80=10 

NA 100-
90=10 

Total RAI 
(AU) 

15*3+ 20*2 + 15*1.5 + 20*1 + 10*0.5 + 10*0.25 + 10*0.125= 136.25 AU 

Fractional 
(F) 
absolute 
(abs) 
avidity 
levels** 
(IU/mL) 

15%* 
120= 
18  

20%* 
120= 
24  

15%* 
120=18  

20%* 
120=24  

10%* 
120=12  

10%* 
120=12  

NA 10%* 
120=12  

Total 
absolute 
avidity 
levels 
(AAU/mL) 

18*3 + 24*2 + 18*1.5 + 24*1 + 12*0.5 + 12*0.25 + 12*0.125= 163.5  

* Samples treated with PBS or the lowest NH4SCN concentration (0.25M NH4SCN) with optic 
density values lower than the ELISA’s lower levels of quantification (LLOQ) were excluded 
from further avidity analysis. Samples treated with 0.5M, 1M, 1.5M, 2M, 3M concentrations of 
NH4SCN and with optic density values lower than the ELISA’s LLOQ were assigned an arbitrary 
RAI value of 2.5%, 5%, 7.5%, 10% and 12.5%, respectively, for the respective NH4SCN 
concentrations.  
** Fractional absolute avidity levels of anti-PT IgG at a specific NH4SCN concentration 
quantified as 0 were assigned an arbitrary value of 0.04 IU/mL 
*** This column includes the Fractional (F) RAI and Fractional (F) absolute (abs) avidity levels 
of anti-PT IgG antibodies eluted at the lowest NH4SCN concentration  
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3.4.5 Statistical Analyses  

	
The demographic and baseline characteristics of the entire cohort have been published406. 

In this chapter, I report only data for participants included in the avidity analysis. The 

demographic and baseline characteristics of pregnant women vaccinated during 28–32 

WG, 33–36 WG (per the original study classification)406 and unvaccinated women and 

their newborns were compared using Pearson’s chi-squared test for categorical variables, 

and one-way analysis of variance for normally distributed continuous variables. The 

demographic and baseline characteristics of pregnant women vaccinated during 28–32 

WG and 33–36 WG and their newborns were compared using Pearson’s chi-squared test 

for categorical variables, and independent sample t-test for normally distributed 

continuous variables. The natural log of total anti-PT IgG levels, fractional absolute 

avidity levels of anti-PT IgG and total absolute avidity levels of anti-PT IgG were used 

for further analysis.  

 

Anti-PT IgG levels and the total RAI of anti-PT IgG were compared between newborns 

of women vaccinated with Tdap vs. unvaccinated women, and newborns of women 

vaccinated during 28–32 WG vs. 33–36 WG using independent sample t–tests. In 

addition, newborns were classified according to time elapsed between maternal Tdap 

vaccination in pregnancy and delivery initially into three groups: 1-4, 5-8 and 9-12 weeks 

prior to delivery, and later into two groups: 1-4 and 5-12 weeks prior to delivery. Anti-PT 

IgG levels and the total RAI of anti-PT IgG were compared between newborns of women 

vaccinated 1–4 vs. 5–12 weeks prior to delivery using independent sample t–tests. 

Univariate linear regression analysis was used to identify baseline characteristics 
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variables that could potentially impact anti-PT IgG levels and total RAI of anti-PT IgG. 

This was followed by multivariable linear regression models in which the response 

variable was anti-PT IgG levels or total RAI of anti-PT IgG levels, and all variables 

identified in the univariate regression model with p-value ≤0.25 were included. In all 

models, the variable of interest (Tdap vaccination status in pregnancy [Tdap vaccinated 

or Tdap unvaccinated] or timing of vaccination in pregnancy) was also included. Pearson 

correlation assessed the relationship between the timing of Tdap vaccination in 

pregnancy (in WG) or the time interval between vaccination and delivery (in weeks) and 

anti-PT IgG levels as well the total RAI of anti-PT IgG. Density estimates of total 

absolute avidity levels of anti-PT IgG according to vaccination status and timing of 

vaccination in pregnancy were performed using Gaussian kernels.  

 

In order to study the correlation between fractional absolute avidity levels of anti-PT 

IgG, a correlation matrix of correlation coefficients of pairs of logged anti-PT IgG 

levels achieved at two different NH4SCN concentrations among vaccinated and 

unvaccinated groups based on Pearson’s correlation coefficient test was performed. 

Statistical significance of each correlation coefficient of each paired comparison was set 

using a Bonferroni correction.  

 

Principal component analysis of the 7 logged fractional absolute anti-PT IgG levels was 

performed in order to display the potential clustering of absolute avidity of newborns 

born to women by their vaccination status.  
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Unsupervised clustering of the fractional absolute avidity levels of anti-PT IgG for all 

newborns were performed. The timing of Tdap administration in pregnancy and time 

interval between vaccination and delivery were independently displayed to enable 

visualization of the relationship between clinical variables and clusters of anti-PT IgG 

avidity profiles. R version 3.4.0 was used for all analyses.  

 

3.4.6 Ethical aspects 

The original study was approved by Monash Health Human Research Ethics Committee 

(HREC Ref:13426B) and all participants provided informed and signed consent 406. The 

current study was approved by University of British Columbia Children’s and Women 

Research Ethics Board (Certificate number: H17–00050).   
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3.4 Results 

In the original study, where only samples with paired maternal–cord sera were analyzed 

for total anti-PT IgG levels, analysis was performed on 29 samples for unvaccinated 

women, 42 samples for women vaccinated during 28–32 WG and 45 for women 

vaccinated during 33–36 WG. In this study, a total of 125 cord serum samples were 

available for avidity analysis (33 for unvaccinated women, 44 vaccinated with Tdap 

between 28–32 WG and 48 vaccinated with Tdap between 33–36 WG) and 112 were 

included in the final analysis (Figure 3.1).  

 
Figure 3. 1:  Flow chart of study participants.  
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3.4.1 Correlation between the different fractional absolute avidity levels of 

antibodies 

 

In order to address this, the correlation between the different fractional absolute 

avidity levels of antibodies was tested. Specifically, a correlation matrix of Pearson’s 

correlation coefficients of pairs of fractional absolute avidity levels achieved at two 

different chaotrope concentrations was performed. Statistical significance of each 

correlation coefficient of each paired comparison was set using Bonferroni correction to 

adjust for multiple comparisons. Overall, I did not find a high correlation between pairs 

of fractional absolute avidity levels achieved at two different chaotrope concentrations, 

to further confirm the need to use a range of chaotrope concentrations and to highlight the 

limitations of previous studies391,392 (Figure 3.2).   
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Figure 3. 2: Correlation matrix of fractional absolute avidity levels of anti-PT IgG 
achieved at different pairs of chaotrope concentrations based on Pearson’s 
correlation coefficient test. 

Each box represents the correlation coefficient of a pair of logged fractional absolute 
avidity levels of antibodies achieved at a pair of bond-breaking concentrations between 
all subjects by vaccination status (vaccinated [right], unvaccinated [left]). The boxes are 
colored according to the correlation coefficient from red (-1) to blue (+1) and the number 
represent the correlation coefficient rho value. Statistical significance of each correlation 
coefficient of each paired comparison was set using bonferroni correction. The X sign 
represents correlation coefficients that did not reach statistical significance, while 
absence of X sign represents statistical significance. 
 

3.4.2 Correlation between the total antibody levels and the total RAI 

 

To explore whether antibody levels influence the avidity, the correlation between the 

total anti-PT IgG levels and the total RAI was tested. I did not find high correlation 

(Pearson’s r=0.38) between total anti-PT IgG levels and total RAI, suggesting that avidity 

is not determined by total antibody levels (Figure 3.3). This confirms that the avidity is 
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not mainly driven by total antibody levels.  

 

Figure 3. 3: Scatter plot of total anti-PT IgG levels and total relative avidity index of 
anti-PT IgG.  

 

3.4.3 Anti-PT IgG avidity by vaccination status in pregnancy 

 

Newborns of women vaccinated with Tdap in pregnancy had higher total anti-PT IgG 

levels, total RAI of anti-PT IgG, total absolute avidity levels of anti-PT IgG, and 

fractional absolute levels of low, low-medium, medium, medium-high, high, and very 

avidity anti-PT IgG compared with newborns of unvaccinated women, after adjustment 

for multiple variables (Table 3.3). To investigate the potential effect of pre-pregnancy 

pertussis vaccination status on anti-PT IgG levels at delivery, I compared total anti-PT 

IgG levels in women vaccinated against pertussis during 5 years before pregnancy to 

levels of anti-PT IgG in women not vaccinated against pertussis in the past, vaccinated 
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more than 5 years before pregnancy or their vaccination status was not determined. The 

GMC of total anti-PT IgG was 25.4 IU/mL (95% CI: 17.3-37.2, n=15) vs. 18.6 IU/mL 

(95% CI: 13.4-25.9, n=85), in the former vs. the latter group, respectively, P=0.243. 

 

Table 3. 3: Cord anti-PT IgG levels with different avidities of women vaccinated 
with Tdap during pregnancy and unvaccinated women.  

 Vaccinated  

(n=90) 

Unvaccinated 

(n=22) 

P Adjuste

d P* 

Total anti-PT IgG levels 

(IU/mL), GMC (95% CI) 

 62.5 (52.3-74.8)  21.4 (16.6-

27.6) 

<0.001 <0.0011 

Total RAI of anti-PT IgG (AU), 

mean (SD) 

 140.1 (31.9) 

 

117.8 (35.7) 
  

0.012 0.0242 

 

Total absolute avidity levels of 

anti-PT IgG (AAU/mL), GMC 

(95% CI) 

 84.9 (69.2-

104.1) 

 

 24.0 (17.0-

33.8) 

 

<0.001 <0.0011 

 

Fractional absolute anti-PT IgG levels (IU/mL) with different avidities, GMC (95% CI) 

Very low 1.0 (0.6-1.7)  1.4 (0.7-2.5) 0.495 0.6293  

Low  2.0 (1.3-3.1) 1.3 (0.8-2.2) 0.209 0.6724 

Low–medium  8.7 (6.8-11.1)  3.0 (1.8-5.1) 0.001 0.0051 

Medium  8.7 (7.2-10.6)  3.4 (2.2-5.4) <0.001 <0.0014 

Medium–high   9.1 (7.2-11.7)  2.8 (1.6-4.8) <0.001 <0.0015 

High  7.5 (5.6-9.9)  1.6 (0.9-2.9) <0.001 <0.0016 

Very high   9.2 (6.8-12.3)  1.4 (0.8-2.6) <0.001 <0.0017 

Abbreviations: SD: standard deviation. * For each specific anti-PT IgG levels, Univariate linear regression 
analysis was used to identify baseline characteristics variables that could potentially impact the anti-PT IgG 
levels. This was followed by multi-variate regression model, for each anti-PT IgG levels, that adjusted for 
potential confounders detected in univariate regression analysis as well vaccination status in pregnancy. 
The adjusted P value is presented.1 Adjusted for gestational age at birth (weeks), parity (yes, no) and 
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delivery mode (Caesarian Section or vaginal delivery); 2 Adjusted for gestation at delivery (≤37 weeks, >37 
weeks) and delivery mode (Caesarian Section or vaginal delivery); 3 Adjusted for ethnicity and delivery 
mode (Caesarian Section or vaginal delivery); 4 Adjusted for gestational age at birth (weeks) and gestation 
at delivery (≤37 weeks, >37 weeks); 5 Adjusted for gestational age at birth (weeks), gestation at delivery 
(≤37 weeks, >37 weeks), parity (yes, no) and ethnicity (Australian born, not-Australian born); 6 Adjusted 
for gestational age at birth (weeks), parity (yes, no), ethnicity and delivery mode (Caesarian Section or 
vaginal delivery); 7 Adjusted for maternal age (years), gestational age at birth (weeks), gestation at delivery 
(≤37 weeks, >37 weeks), parity (yes, no), ethnicity (Australian born, not-Australian born), and delivery 
mode (Caesarian Section or vaginal delivery).  

 

3.4.4 Distribution of avidity by vaccination status 

 

In order to further explore whether vaccinated and unvaccinated subjects differed by the 

quality and quantity of antibodies combined, I performed analysis of density estimates of 

total absolute avidity levels. I found that vaccination resulted in a shift of the distribution 

of total absolute avidity levels, demonstrating that there are more vaccinated subjects 

with higher avidity than unvaccinated subjects (Figure 3.4).  

 
Figure 3. 4: Distribution of total absolute avidity of anti-PT IgG by vaccination 
status. 

Kernel Density plot shows the total absolute avidity of antibodies in vaccinated versus 
unvaccinated subjects.  
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3.4.5 Clustering and separation of vaccinated and unvaccinated groups by avidity  

 

In order to gain further enhanced resolution on the results and to investigate whether it is 

possible to separate vaccinated and unvaccinated subjects based on their avidity, a 

dimensional reduction method (principal component analysis) was applied. I found that 

the vaccinated and unvaccinated groups could be separated based on their fractional 

absolute antibody levels (Figure 3.5).  

 

Figure 3. 5: Principal component analysis of the 7 fractional absolute anti-PT IgG 
levels by vaccination status. 

This principal component analysis shows each vaccination status as indicated by distinct 
colors. Each colored circle/triangle in space represents and individual avidity profile and 
similar avidity profiles are grouped more closely together in two-dimensional space. The 
principal components are ordered according to the amount of variance in the data they 
explain. The plot is based on principal component 1 and 2, which explains 53.9% and 
17.4% of the total variance of the data, respectively.  
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3.4.6 Results by timing of vaccination during pregnancy  

3.4.6.1 Baseline characteristics  

 

There were no significant differences in the baseline characteristics of pregnant women 

vaccinated during 28–32 WG compared with vaccination during 33–36 WG (Table 3.4).  

Table 3. 4: Demographic and baseline characteristics of study participants.  

Characteristic Tdap-
vaccinated 
(n=90) 

Unvaccinat
ed (n=22)  

P1 Vaccinated 
during 28–32 
WG 
(n=43)  

Vaccinated 
during  
33–36 WG 
(n=47)  

P2 P3 

Ethnicity   
Australian born, n 
(%)  

44 (48.9) 11 (50) 1 23 (53.5) 21 (44.7) 0.533 0.703 

Maternal age, years   
Mean (SD) 30.0 (4.4) 32.1 (4.8) 0.072 30.3 (4.2) 29.8 (4.6) 0.531 0.126 
Parity  
Nulliparous, n(%) 46 (51.1) 5 (22.7) 0.031 21 (48.8) 25 (53.2) 0.840 0.052 
Mode of delivery, n (%)  
Elective CS 6 (6.7) 15 (68.2)  

 
 

<0.001 

3 (6.9) 3 (6.4)  
 
 

0.882 

<0.00
1 Emergency CS 15 (16. 7) 0 (0) 8 (18.6) 7 (14.9) 

NVD 50 (55.5) 5 (22.7) 22 (51.1) 28 (59.6) 
Instrumental  19 (21.1) 2 (9.1) 10 (23.2) 9 (19.1) 
Gestational age at delivery, weeks  
Mean (SD) 39.3 (1.3) 38.6 (1.1) 0.015 39.2 (1.4) 39.4 (1.2) 0.523 0.054 
Gestational age at delivery, n (%)  
<37 weeks  14 (1.1) 14 (4.5)  

 
0.386 

1 (2.3) 0 (0)  
 

0.454 

0.529 
37–42 weeks  86 (95.6) 21 (95.5) 40 (93.0) 46 (97.9) 
>42 weeks  3 (3.3) 0 (0) 2 (4.6) 1 (2.1) 
Pertussis vaccination history before pregnancy   
No vaccination 8 (8. 9) 2 (9. 1)  

 
 
 

<0.001 
 

5 (11.6) 3 (6.4)  
 
 
 

0.616 
 

0.001 
Not sure 49 (54.4) 5 (22.7) 23 (53.5) 26 (55.3) 
<5 years before 
pregnancy  

7 (7. 8) 
 

10 (45.4) 
 

2 (4.6) 
 

5 (10.6) 
 

>5 years before 
pregnancy 

26 (28. 9) 
 

5 (22.7) 
 

13 (30.2) 
 

13 (27.6) 
 

Gestational age at vaccination (weeks gestation)  
Mean (SD) 32.6 (2.7) NA  30.2 (1.4) 34.9 (1.1) <0.00

1 
NA 

Time between vaccination and delivery  
Time interval in 
weeks (SD) 

6.7 (2.9) NA  9.0 (2.0) 
 

4.5 (1.5) 
 

< 
0.001 

NA 

Abbreviations: CS: caesarean section; NVD: normal vaginal delivery; 1 P-value for comparison between 
women vaccinated with Tdap vs. unvaccinated; 2 P-value for comparison between women vaccinated with 
Tdap during 28-32 WG vs. 33-36 WG; 3 P-value for comparison between women vaccinated with Tdap 
during 28-32 WG vs 33-36 WG vs unvaccinated; 4 Born at 36 WG 
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3.4.6.2 Anti-PT IgG avidity by timing of vaccination in pregnancy 

	
There was a significant negative association between later timing of Tdap administration 

and total anti-PT IgG levels and fractional absolute levels of low–medium, medium, 

medium–high and high avidity anti-PT IgG (Figure 3.6 and Figure 3.7).  

 

 

Figure 3. 6: Fractional absolute anti-PT IgG levels by time of vaccination against 
pertussis in pregnancy achieved at the different ammonium thiocyanate 
concentrations. 

The quantified fractional absolute avidity levels of anti-PT IgG at 0.25 M, 0.5 M, 1 M, 
1.5 M, 2 M, and 3 M of ammonium thiocyanate are classified as low, low–medium, 
medium, medium–high, high and very high avidity anti-PT IgG antibodies, respectively. 
The horizontal line denotes the cord mean levels in newborns born to unvaccinated 
women.  
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Figure 3. 7:  Cord (A) total anti-PT IgG, (B) total relative avidity index, (C) total 
absolute avidity levels anti-PT IgG levels by time of vaccination against pertussis in 
pregnancy. 

The horizontal line denotes the cord mean levels in newborns born to unvaccinated 
women. This figure shows that the earlier Tdap is given in pregnancy the higher total 
anti–PT levels are achieved at birth. 
 

Newborns of women immunized with Tdap during 28–32 WG had higher total anti-PT 

IgG levels and fractional absolute levels of medium and high avidity anti-PT IgG 

compared with newborns of women immunized during 33–36 WG (Table 3.5). In 

multivariate analysis, early vaccination remained significantly associated with higher 

total anti-PT IgG levels and fractional absolute levels of medium and high avidity anti-PT 

IgG after adjustment for gestational age at birth, ethnicity and delivery mode (Table 3.5).  
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Table 3. 5:  Cord anti-PT IgG levels with different avidities of women vaccinated 
with Tdap during early and late third trimester.  

 Vaccinated during  

28-32 WG (n=43) 

Vaccinated during 

33-36 WG (n=47) 

P Adjusted 

P* 

Total anti-PT IgG levels 

(IU/mL), GMC (95% CI) 

75.3 (61.2–92.9) 52.66 (39.9–69.6) 0.046 

 

0.038 1 

Total RAI of anti-PT IgG 

(AU), mean (SD) 

136.5 (28.4) 

 

143.3 (34.7) 0.313 

 

0.317** 

 

Total absolute avidity levels 

of anti-PT IgG (AAU/mL), 

GMC (95% CI) 

100.0 (78.3–127.8) 73.1 (53.3–100.3) 0.128 

 

0.119** 

 

Fractional absolute anti-PT IgG levels (IU/mL) with different avidities, GMC (95% CI) 

Very low 1.2(0.5–2.6) 0.9 (0.5–1.7) 0.667 0.675 2 

Low 2.0 (1.1–3.9) 2.0 (1.1–3.6) 0.986 0.759 3 

Low–medium 11.2 (8.5–14.7) 6.9 (4.7–10.2) 0.051 0.054** 

Medium 11.6 (8.8–15.2) 6.7 (5.2–8.6) 0.005 0.007 4 

Medium–high  11.4 (8.2–15.8) 7.5 (5.2–10.7) 0.088 0.090** 

High 10.1 (7.4–13.8) 5.7 (3.6–8.9) 0.042 0.0351 

Very high  11.2 (8.1–15.3) 7.7 (4.7–12.5) 0.210 0.268 5 

* For each specific anti-PT IgG levels, Univariate linear regression analysis was used to identify baseline 
characteristics variables that could potentially impact the specific anti-PT IgG levels. This was followed by 
multi-variate regression model, for each anti-PT IgG levels, that adjusted for potential confounders detected 
in univariate regression analysis as well timing of vaccination in pregnancy. The adjusted P value is 
presented.  
** No other variable (other than timing of vaccination) with p≤0.25; 1 Adjusted for gestational age at birth 
(weeks); 2 Adjusted for ethnicity (Australian born, not-Australian born) and delivery mode (Caesarian 
Section or vaginal delivery); 3 Adjusted for gestational age at birth (weeks), gestation at delivery (≤37 
weeks, >37 weeks); 4 Adjusted for gestation at delivery (≤37 weeks, >37 weeks); 5 Adjusted for ethnicity 
(Australian born, not-Australian born). 
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3.4.6.3 Anti-PT IgG avidity by interval between vaccination to delivery 

 

There was a significant positive association between increasing time between Tdap 

administration during the third trimester and delivery and total anti-PT IgG levels, total 

absolute avidity levels of anti-PT IgG and fractional absolute levels of low–medium, 

medium, medium–high and high avidity anti-PT IgG (Figure 3.8 and Figure 3.9). 

 

Figure 3. 8: Fractional absolute anti-PT IgG levels by time elapsed from vaccination 
against pertussis in pregnancy to delivery achieved at the different ammonium 
thiocyanate concentrations. 

The quantified fractional absolute avidity levels of anti-PT IgG at 0.25 molar (M,) 0.5 M, 
1 M, 1.5 M, 2M, and 3 M of ammonium thiocyanate are classified as low, low-medium, 
medium, medium-high, high and very high avidity anti-PT IgG antibodies, respectively. 
The horizontal line denotes the cord mean levels in newborns born to unvaccinated 
women. This figure shows that the longer the interval between Tdap administration 
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during the third trimester and delivery, the higher the fractional absolute levels of low–
medium, medium, medium-high and high avidity anti-PT IgG achieved at birth.  
 

 
 

Figure 3. 9: Cord (A) Total anti-PT IgG, (B) total relative avidity index, (C) total 
absolute avidity levels anti-PT IgG levels by time elapsed from vaccination against 
pertussis in pregnancy to delivery. 

The horizontal line denotes the cord mean levels in newborns born to unvaccinated 
women. This figure shows that the longer the interval between Tdap administration 
during the third trimester and delivery, the higher the total anti–PT IgG levels and total 
absolute avidity levels of anti–PT IgG achieved at birth. 
 

No significant differences were observed in anti-PT IgG of newborns born to women 

vaccinated 5–8 vs. 9–12 weeks prior to delivery, thus the two groups were combined 

(Table 3.6).  
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Table 3. 6: Cord anti-PT IgG levels with different avidities of women vaccinated at 
1-4 vs. 5-8 vs. 9-12 weeks prior to delivery.  

Time interval 

between 

vaccination 

and delivery 

Vaccinated 

1-4 weeks 

before 

delivery* 

(n=25) 

Vaccinated 5-8 

weeks before 

delivery (n=39) 

Vaccinated 9-12 

weeks before 

delivery (n=25) 

P1 P2 P3 

Total anti-PT 

IgG levels 

(IU/mL), 

GMC (95% 

CI) 

37.2 (25.3–

54.8) 

76.1 (60.9-90.1) 76.5 (55.9-104.4) 0.003  0.006  0.979 

Fractional absolute anti-PT IgG levels (IU/mL) with different avidities, GMC (95% CI) 

Very low 1.5 (0.7–3.3) 0.7 (0.3-1.7) 1.0 (0.4-3.0) 0.234 0.593 0.641 

Low 1.6 (0.8–3.4) 1.8 (0.9-3.5) 2.9 (1.3-6.6) 0.825 0.305 0.385 

Low–medium 5.6 (3.5–9.0) 9.2 (6.3-13.4) 12.0 (8.1-17.7) 0.118 0.019 0.337 

Medium 5.0 (3.6–7.0) 10.5 (8.2-13.2) 11.1 (7.3-16.9) 0.001 0.006 0.806 

Medium–high  5.1 (2.9–9.1) 11.5 (9.0-14.7) 11.4 (6.9-18.8) 0.015 0.044 0.966 

High 3.3 (1.7–6.4) 10.5 (7.7-14.3) 9.9 (6.1-16.0) 0.004 0.011 0.841 

Very high  4.3 (2.2–8.5) 15.1 (10.5-21.9) 9.4 (5.8-15.2) 0.002 0.070 0.129 

* One newborn born to woman vaccinated 1 week before delivery, 3 newborns born to women 
vaccinated 2 weeks before delivery, 9 newborns born to women vaccinated 3 weeks before 
delivery and 12 newborns born to women vaccinated 4 weeks before delivery.  
P1 comparison between women vaccinated 1-4 vs. 5-8 weeks prior to delivery 
P2 comparison between women vaccinated 1-4 vs. 9-12 weeks prior to delivery 
P3 comparison between women vaccinated 5-8 vs. 9-12 weeks prior to delivery 
 
 

Newborns of women vaccinated with Tdap 5–12 weeks prior to delivery had higher total 

anti-PT IgG levels, total absolute avidity levels of anti-PT IgG and fractional absolute 

levels of low–medium, medium, medium–high and high avidity anti-PT IgG compared 
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with newborns of women vaccinated four weeks or less prior to delivery (Table 3.7). In 

multivariate analysis, vaccination with Tdap 5–12 weeks prior to delivery remained 

significantly associated with higher total anti-PT IgG levels, total absolute avidity levels 

of anti–PT IgG and fractional absolute anti-PT IgG levels of low–medium, medium, 

medium–high and high avidity anti-PT IgG compared to newborns of women vaccinated  

four weeks or less prior to delivery (Table 3.7). 
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Table 3. 7:  Cord anti-PT IgG levels with different avidities of women vaccinated at 
different time intervals prior to delivery. 

 

 
* One newborn born to woman vaccinated 1 week before delivery, 3 newborns born to women vaccinated 2 
weeks before delivery, 9 newborns born to women vaccinated 3 weeks before delivery and 12 newborns 
born to women vaccinated 4 weeks before delivery; ** For each specific anti-PT IgG levels, Univariate 
linear regression analysis was used to identify baseline characteristics variables that could potentially 
impact the specific anti-PT IgG levels. This was followed by multi-variate regression model, for each anti-
PT IgG levels, that adjusted for potential confounders detected in univariate regression analysis as well 
timing between vaccination in pregnancy and delivery. The adjusted P value is presented; *** No other 
variable (other than timing of vaccination) with p≤0.25; 1 Adjusted for gestational age at birth (weeks); 2 

Adjusted for ethnicity and delivery mode; 3 Adjusted for maternal age (years); 4 Adjusted for ethnicity  
  

Time interval between 

vaccination and delivery 

Vaccinated 1-4 

weeks prior to 

delivery* 

(n=25) 

Vaccinated 5-

12 weeks prior 

to delivery 

(n=64) 

P 

 

Adjusted 

P** 

Total anti-PT IgG levels 

(IU/mL), GMC (95% CI) 

37.2 (25.3–54.8) 76.2 (63.6–91.3) 0.002 

 

<0.0011  

Total RAI of anti-PT IgG (AU), 

mean (SD) 

132.9 

(33.8) 

143.6 (30.5)  

 

0.174 

 

0.151*** 

 

Total absolute avidity levels of 

anti-PT IgG (AAU/mL), GMC 

(95% CI) 

47.8 (30.9–73.9) 

 

105.9 (86.3–

130.0) 

0.002 <0.001*** 

Fractional absolute anti-PT IgG levels (IU/mL) with different avidities, GMC (95% CI) 

Very low 1.5 (0.7–3.3) 0.9 (0.5–1.6) 0.282 0.3782 

Low 1.6 (0.8–3.4) 2.2 (1.3–3.6) 0.522 0.9503 

Low–medium 5.6 (3.5–9.0) 10.2 (7.7–13.5) 0.039 0.030*** 

Medium 5.0 (3.6–7.0) 10.7 (8.6–13.3) <0.001 <0.0011 

Medium–high  5.1 (2.9–9.1) 11.5 (8.9–14.6) 0.016 0.005*** 

High 3.3 (1.7–6.4) 10.3(7.9–13.4) 0.004 <0.0011 

Very high  4.3 (2.2–8.5) 12.6 (9.4–16.9) 0.007 0.0024 
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3.4.6.5 Distribution of anti-PT IgG avidity by timing of vaccination  

 

Vaccination with Tdap during 28–32 WG resulted in a shift in the overall distribution of 

total absolute avidity levels of anti-PT IgG, with higher levels total absolute avidity levels 

of anti-PT IgG in newborns of women vaccinated during 28–32 WG compared with 

newborns born to women vaccinated during 33–36 WG. Vaccination with Tdap 5–12 

weeks prior to delivery resulted in a shift in the overall distribution of total absolute 

avidity levels of anti-PT IgG, with higher levels in newborns of women vaccinated 5–12 

weeks pre delivery compared with vaccination within 4 weeks pre delivery (Figure 3.10).  

 
Figure 3. 10: Distribution of total absolute avidity of anti–PT IgG by timing of 
vaccination in pregnancy (A) and time elapsed between vaccination and delivery 
(B). 

Kernel Density plot shows the total absolute avidity of anti-PT IgG in cord sera of 
newborns of women vaccinated against pertussis in pregnancy at different times. The 
density curves were obtained using a Gaussian kernel. Abbreviations: WK: weeks. 
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3.4.6.6 Clustering of newborns by anti-PT IgG avidity 

 

Among newborns of women vaccinated during 28–32 WG, 36/43 (83.7%) had an avidity 

profile consisting of high levels of high fractional absolute anti-PT IgG levels. Among 

newborns of women vaccinated more than 4 weeks prior to delivery, 52/64 (81.3%) had 

an avidity profile consisting of high fractional absolute anti–PT IgG levels (Figure 3.11).  

 

Figure 3. 11: Heat-map analysis based on hierarchical unsupervised clustering. 

Fractional absolute levels of anti-PT IgG with different avidities for 112 cord samples are 
illustrated. In the heat-map, natural log fractional absolute anti-PT IgG levels are shown 
by column. The natural log fractional absolute anti-PT IgG levels were color-coded as 
indicated by the scale in the right, in which levels range from blue to red indicating high 
(red) and low (blue) levels. Timing of tetanus diphtheria and acellular pertussis (Tdap) 
administration is displayed by the different rows. This figure shows that most newborns 
of women vaccinated during 28–32 WG or more than 4 weeks prior to delivery had an 
avidity profile consisting of high levels of high fractional absolute anti-PT IgG levels. 
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3.5 Discussion:   

In this chapter, I described a novel experimental and analytical approach, which enabled 

comprehensive characterization of the full avidity profile of anti-pertussis antibodies 

induced by vaccination in pregnancy. This analytical approach can be adopted in studies 

assessing the avidity of antibodies after vaccination or infection with a range of vaccines 

and pathogens and settings, beyond pertussis immunization in pregnancy. I found that 

newborns of women vaccinated with Tdap in pregnancy had higher total absolute avidity 

levels of anti-PT IgG, and higher levels of medium to very high avidity anti-PT IgG 

compared with newborns of unvaccinated women. Furthermore, I found that newborns 

born to women vaccinated with Tdap during 28–32 WG had higher levels of medium and 

high avidity anti-PT IgG antibodies compared with newborns born to women vaccinated 

during 33–36 WG. In addition, newborns of women vaccinated 5–12 weeks prior to 

delivery achieved higher total absolute avidity levels of anti-PT IgG antibodies, and 

higher levels of medium to very high avidity anti-PT IgG antibodies compared with 

vaccination within 4 weeks prior to delivery. This is the first study that characterizes the 

full avidity profile of anti-PT IgG elicited by pertussis vaccination and highlights 

important changes in antibody avidity related to timing of vaccination in pregnancy, 

supporting vaccination in early vs. late third trimester of pregnancy.  

 

Data on the effect of timing of pertussis vaccination in pregnancy on the avidity of anti-

pertussis antibodies are scarce. In a small study, Tdap vaccination in pregnancy between 

27–31 WG resulted in higher RAI of cord anti-PT IgG compared with vaccination 

beyond 31 WG391. Conversely, in a small cohort of Belgium and Vietnamese women, 
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there was no significant correlation between cord anti-PT IgG RAI and gestational age at 

vaccination (categorized as <27, 27-30 and 31–36 WG)392. These two studies used 

different, fixed, ammonium thiocyanate concentrations, with the former using 0.25 M and 

the latter using 1.5 M. In these studies, avidity measurement was based on comparison of 

antibody levels with vs. without addition of a single, fixed concentration of a bond-

breaking agent that disrupts binding between antibodies and the target antigen. This 

arbitrarily separated antibodies into ‘low’ or ‘high’ avidity. Both studies therefore suffer 

the limitation of reporting results as a single relative measure and thus are only able to 

provide a limited perspective on antibody avidity. The approach taken in this chapter with 

a range of ammonium thiocyanate concentrations enables complete profiling of avidity of 

antibodies generated following vaccination. The data presented in this chapter of 

pregnant women using in depth profiling of antibody avidity confirms that concentration 

as well as avidity increase with increasing time elapsed between vaccination and 

delivery.  

 

Antigen–antibody bond is a result of reversible non-covalent intermolecular forces.  

Four types of non-covalent forces that can be identified in the antigen–antibody bond 

exist. Firstly, hydrogen bonding, which is established when the positive charge 

surrounding a hydrogen atom belonging to a residue in one molecule shares the negative 

charge of a chemical group in a residue in another molecule. There is prominent role of 

bound water molecules in forming hydrogen bond networks between the antigen and the 

antibody. Secondly, Van der Waals forces, which result when polarities oscillate in the 

outer electron clouds of two neighboring atoms, creates either attractive or repulsive 
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forces between the two atoms. The high frequency of aromatic amino acids in the pockets 

of antibody proteins increases the charge in this region, promoting both hydrogen and 

Van der Waals bonding. Thirdly, hydrophobic bonds, which are formed in aqueous 

solution when polar water molecules force hydrophobic, non-polar chemical groups (e.g. 

amino acids Leucin, isoleucine or valine) together in an effort to generate the minimum 

non-polar surface area possible. The larger the hydrophobic regions involved, the 

stronger the hydrophobic association between them. Finally, electrostatic or ionic bonds, 

which are the result of attraction between charged residues with opposite polarities407. 

Different factors can affect the relative contribution of each force to the overall antigen-

antibody binding complex, namely, the identity and location of the amino acids or other 

chemical groups in both the antibody and antigen molecules. The more closely the 

relevant chemical groups can approach one another, the more efficient is the antigen-

antibody binding. Similarly, the more complementary the shapes of the antigenic epitope 

and the antigen-binding site on the antibody, the more contact sites will simultaneously 

be brought into close proximity, increasing the number of non-covalent bonds of all types 

and resulting in a stronger overall binding408, 409.  

 

Different molecular mechanism of inhibition of binding of antibody to an antigen by 

chaotropic agents has been proposed. Chaotropic agents in general can disturb 

hydrophobic interactions, hydrogen bonding, and Van der Waals forces between antigen 

and antibodies. Thus, variation in chaotrope resistance according to the relative 

contributions to the antigen-antibody binding of van der Waals or hydrophobic versus 

polar interactions is expected410. NH4SCN is a stronger ionic chaotrope, and as such can 
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also dissociate electrostatic interactions411. NH4SCN can also interfere with 

conformational changes that occur as a consequence of antigen-antibody interactions412. 

Chaotropic agents has also been shown to disrupt the ordered shell of water that 

juxtaposes non-polar patches on the protein surfaces, so the tendency of water molecules 

to form shells around macromolecules is diminished, thus leading to reduction of protein-

protein interactions410. Ionic chaotropes, such as NH4SCN, also interact directly with the 

protein backbone resulting in a shift in the equilibrium towards the unfolded state413. This 

direct interaction between the chaotropic agent and proteins partly stem from ionic 

interactions with the peptidic backbone and the side chains, the latter in particular making 

the susceptibility of each antibody-antigen complex unique, like the amino-acid 

composition of the parts contributing to the antigen and the antibody410. 

 

Different factors have the potential to affect the determination of the avidity of antibodies 

as measured by ELISA-based elution assays, raising concerns regarding the 

standardization of this laboratory technique for the specific antigen-antibody complex in 

question. Elution of antigen–antibody complexes can be performed using different 

chaotropic agents (e.g. urea, NH4SCN, diethylamine). Different chaotropic anions have 

differential ability to alter the hydrogen bonding network of water, leading to changes in 

protein stability414 and protein–protein interactions415, 416. Thiocyanate is the anionic 

chaotropic agent with the highest ability to decrease protein stability, to increase protein 

denaturation and solubility of proteins, followed by ClO4, I, NO3, Br, Cl, respectively, in 

decreasing order417. Incubation with different chaotropeic agents has been performed for 

different lengths of incubation402, 418-421, which also has the potential to affect the 
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resultant avidity of specific antibodies and thus the standardization of the technique.  

Pertinent to the avidity of anti-PT IgG using a commercial assay (EUROIMMUN), it has 

been shown that NH4SCN dissociates PT- anti-PT IgG complexes404. Specifically, 

accurate measurement of anti-PT IgG avidity was obtained using NH4SCN in 

concentrations lower than 3.0 M for 20 min time of incubation at 37 °C. Thus, these 

optimized laboratory conditions were used in my study.  

 

The difference in avidity development after antigen exposure is the result of affinity 

maturation and increased production of antigen-specific antibody-producing plasma cells 

during maturation of immune response in the germinal center of lymphoid follicles422,423-

426. Maturation of plasma cells to produce high-affinity antibodies, after an exposure to an 

antigen, is due to somatic hypermutation in the antibody variable region genes that 

encode the regions of antibodies that form the interface with the antigens422. One study 

showed that affinity maturation of antibodies occurs through simple changes in the 

complementarity-determining regions of the immunoglobulin heavy-chain variable 

region gens region427. However, other study showed that in order to acquire its full 

affinity activity, influenza-specific antibody needed to accumulate a minimum of seven 

specific mutations in two regions of its immunoglobulin heavy-chain variable region 

genes424. Somatic hypermutation is followed by selection of B cells based on the affinity 

of their B cell receptors for the specific antigen, with positive selection of B cells with 

improved affinity for a specific antigen426. It is also important to note that follicular 

dendritic cells are important in the immune response to antigen. Antigens (in the form of 

antigen:antibody:complement) bind to follicular dendritic cells in the lymph node and can 
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bind to B cells in the germinal center. B cells later take up this complex based on their 

affinity to the antigen428. Altogether, avidity maturation in response to an antigen occurs 

through a process of clonal proliferation, somatic hypermutation, and selection425. It has 

been shown that the affinity of antibodies progressively increases over time after antigen 

exposure426, 429-432. In addition, the increase in antibody avidity as time after antigen 

exposure increases has also been shown after vaccination with pertussis vaccine433,255, 405, 

Hib conjugate vaccine398, 434, and different pneumococcal vaccines399. However, those 

studies used a single concentration of bond-breaking agent in order to assess avidity. I 

hypothesize that the longer the interval between vaccination and delivery, the more 

maturation of immune response with somatic hypermutation and selection of B cells with 

higher affinity/avidity to the vaccine antigens. The mutations accumulate in a stepwise 

and time-dependent manner.  

 

Defining the optimal timing for vaccination against pertussis in pregnancy that provides 

maximal clinical protection to the infant is important and represents a critical gap in 

current knowledge73. Furthermore, data to define the preferred timing of vaccination 

against pertussis within the third trimester are limited and inconclusive389,390. Early third 

trimester vaccination was associated with infants’ lower odds ratio (0.43) to have 

pertussis infection at age <8 weeks compared with vaccination in late third trimester. 

However, the findings were limited by the wide CI of the odds ratio (0.02–7.58)389. In a 

small number of infants whose mothers received vaccine up to 1 week before delivery, 

vaccine effectiveness was 43%, with negative lower limit of the CI, limiting a firm 

conclusion from this study390. Vaccination earlier in the third trimester also has the added 
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advantage to increase immunization opportunities for pregnant women subsequently 

giving birth to premature infants. In the UK, among infants <3 months of age with 

laboratory–confirmed pertussis, 10/66 were premature (born at 32–36 WG)343. The latter 

findings, combined with these data that vaccination more than 4 weeks before delivery 

provides higher levels of high and very high avidity of anti-pertussis antibodies, suggests 

that vaccination earlier in the third trimester of pregnancy should be preferred. Although 

the clinical significance of high levels of medium and high avidity anti-PT IgG needs 

further study, function of antibodies may correlate with protection from infections. 

Function of anti-pertussis antibodies is important, as there is no anti–pertussis antibody 

level that correlates with protection. Function of meningococcal vaccine-induced 

antibodies (bactericidal titers) has been found to correlate with protection from the 

meningococcal disease400. Antibody avidity was reported to be an important surrogate for 

determining protective immunity for Hib conjugate vaccine398. The amount of human 

anti-pneumococcal capsular polysaccharide (PCP) 6B-seroytpe specific antibodies 

required for the prevention of lethal pneumococcal serotype 6B bacteremia in mice was 

lower for high avidity antibodies demonstrating potential clinical implication in the 

protection from invasive pneumococcal disease435. In addition, higher avidity antibodies 

to PPS 6B and 23F were more effective than lower avidity antibodies in mediating 

opsonophagocytosis435. 

 

In addition to the highest vaccine-induced immune responses, there are different variables 

that affect the uptake of a vaccine in pregnancy that need to be considered when 

determining and recommending the ideal timing of pertussis vaccination in pregnancy. 



	 117	

The uptake of a specific vaccine in pregnancy is influenced by timing and number of 

antenatal care visits, timing of administration of other vaccines (e.g. influenza) and 

access to vaccination services436. Achieving the highest vaccine uptake is ideal for 

optimal protection against pertussis disease in infancy and should be balanced against 

vaccination in a narrow window that is associated with the highest vaccine-induced 

immune response.  

 

This analysis has a number of strengths. This is the first detailed characterization of full 

antibody avidity spectrum of anti-pertussis antibodies in a large cohort of well 

characterized subjects. The use of a concentration gradient of bond-breaking agent 

enabled accurate quantification of fractional absolute anti–PT IgG levels according to 

their binding characteristic to PT antigen. The high linear correlation between anti-PT 

IgG RAI and ammonium thiocyanate, within the range of ammonium thiocyanate 

concentration used in the study, enabled the calculation of a weighted measure of total 

RAI and the quantification of total absolute avidity levels of anti-PT IgG. Altogether, this 

analytical approach enabled us to perform novel and in-depth analyses of the immune 

response following vaccination in pregnancy and to link it to clinical variables. The 

calculated single value of total absolute avidity levels of anti-PT IgG, incorporating both 

antibody quantity and function (avidity) can be used in future research aimed at 

establishing correlates of protection against pertussis. In addition, given the ability to 

characterize the composition of antibodies with different avidity characteristics, I was 

also able to show that newborns can be clustered according to the timing of vaccination 

in the third trimester.  
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This analysis also has some limitations. The effect of timing during the third trimester 

was explored; however, optimal timing of vaccination during the entire pregnancy should 

be explored, as vaccination against pertussis in the second trimester has been shown to be 

associated with higher anti-pertussis antibody levels as compared to vaccination in the 

third trimester437. This study was not a randomized controlled trial and there were 

imbalances in some baseline characteristics (e.g. mode of delivery) between the different 

cohorts; however, adjustments were made for co-variates in multivariable analysis. There 

is a possibility of selection bias as healthier pregnant women could have chosen to 

receive the vaccine. In addition, some other variables that could have affected immune 

responses (e.g. maternal body mass index, smoking) could have affected the outcome. 

Including women vaccinated against pertussis within 5 years before pregnancy, and their 

high percentage in unvaccinated women, is another limitation as it could have affected 

the results of the comparison of anti-PT IgG levels of newborns born to vaccinated and 

unvaccinated women. However, the GMC of anti-PT IgG levels of this subgroup was 

18.6 IU/mL and thus it is expected to have has minimal effect on anti-PT IgG. A study by 

Abu-Raya et al. followed women vaccinated with Tdap during the third trimester of 

pregnancy and reported that anti-PT IgG levels declined significantly from 21.5 IU/mL to 

11.7 IU/mL, 9-15 months after delivery327. A study by Maertens et al. found that after 

pre-pregnancy Tdap vaccination, anti-PT IgG levels decreased significantly from 69.9 

ELISA Units (EU)/mL 1-month post-vaccination to 13.43 EU/mL at delivery (within a 

mean interval of 16 months after pre-pregnancy Tdap vaccination)328. The small number 

of the study participants might have limited the ability to detect significant differences in 
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the anti-PT IgG levels achieved at 0.5 M and 1.5 M of ammonium thiocyanate. In 

addition, this study included only cord sera for analysis and did not include premature 

infants. Thus, additional studies in preterm infants are needed to investigate the avidity 

profile of preterm infant born within short time after maternal pertussis vaccination in 

pregnancy. In this study, only one full-term infant was born 1 week after maternal Tdap 

vaccination in pregnancy, a time period not sufficient for induction of immune response. 

Thus, the inclusion of this newborn is unlikely to affect the results. Lastly, these data did 

not have full details of previous pertussis immunization of the participants.  

 

In conclusion, in this study I characterized in-depth the profile of the avidity of anti-

pertussis antibodies elicited by vaccination in pregnancy and it’s relation to timing of 

vaccination in pregnancy. Neonates born to women vaccinated against pertussis in during 

28–32 WG had higher levels of medium and high avidity anti-pertussis antibodies 

compared with newborns born to women vaccinated during 33–36 WG. Furthermore, 

most newborns of women vaccinated during 28–32 WG have avidity profile consisting of 

high levels of high avidity anti-pertussis antibodies. Future studies need to determine the 

profile of avidity of anti-pertussis antibodies that is generated after vaccination even 

earlier in pregnancy and to determine the correlation of these findings with clinical 

protection from pertussis disease.   
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4. Modification of immune response following vaccination during pregnancy- a 

systematic review and individual participant data meta-analysis   

4.1 Synopsis  

 

Immunization against pertussis in pregnancy might affect the antibody response of 

infants to their own vaccinations. In this chapter, I aimed mainly to determine the impact 

of Tdap immunization in pregnancy on antibody levels to routine immunizations in 

infants of women who did or did not receive pertussis-containing vaccine in pregnancy 

and factors affecting these. Systematic literature search was performed for randomized 

and non-randomized studies published between January 1st, 1990 and January 6th, 2020 

and investigating antibody responses to vaccinations in infants. After reviewing the 

studies, I performed an individual participant data meta-analysis with the geometric mean 

ratios (GMRs) of pertussis-specific (pertussis toxin [PT], filamentous haemagglutinin 

[FHA], pertactin [PRN], fimbriae 2/3 [FIM2/3]), tetanus-toxoid [TT]; diphtheria-toxoid 

[DT], pneumococcal polysaccharide; and Haemophilus influenzae type b polyribosyl 

ribitol phosphate [PRP]) antibody levels/titres after primary and booster immunization, as 

the primary outcome. Mixed-effects models were used. Seroprotection rates against TT, 

DT (anti-TT and anti-DT IgG ≥0.1 IU/mL) and Streptococcus pneumoniae (SPN) (anti-

SPN IgG ≥0.35 µg/mL) were calculated. As secondary objectives, factors influencing 

antibody responses to Tdap vaccination in pregnant women and primary and booster 

immunizations with DTaP in infants of immunized women were also determined using 

mixed-effects models. From 8391 citations identified, 16 articles met the inclusion 

criteria, resulting in 14 articles included in the individual participant data meta-analysis 
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(data from 2 studies was not shared). After primary immunization, infants of Tdap-

immunized women had significantly lower PT (GMR, 0.65; 95%CI, 0.57-0.74), FHA 

(0.68;0.53-0.87), PRN (0.65;0.58-0.72) and FIM2/3 (0.41; 0.32-0.52) antibody levels 

compared with infants of unimmunized women. These low antibody levels persisted at 

time of booster for PT, FHA, PRN and after booster immunization for FHA and FIM2/3. 

Anti-TT IgG levels were higher in infants born to Tdap-immunized women after booster 

immunization with DTaP, compared with infants of women who did not receive TT-

containing vaccines during pregnancy (1.59; 1.04-2.42). Anti-DT IgG levels were lower 

in infants born to Tdap-immunized women after primary immunization, at time of 

booster immunization and after booster immunization with DTaP compared to infants of 

women who did receive DT-containing vaccines (0.63; 0.5-0.79), (0.68; 0.54-0.87), and 

(0.81; 0.71-0.91), respectively. Anti-SPN IgG levels were lower in infants born to Tdap-

immunized women after primary immunization with pneumococcal conjugate vaccine 13 

(PCV-13) for serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 18C, 19A, 19F, 23F with a reduction 

ranging from 15%-35%. 

 

After primary immunization, infants of Tdap-immunized women had lower 

seroprotection rates against diphtheria (90% [843 /973] vs 98% [566/579]; p<0.001) and 

invasive pneumococcal disease (IPD) caused by 5 Streptococcus pneumoniae (SPN) 

serotypes (SPN5, SPN6B, SPN9V, SPN19A, SPN23F), and higher seroprotection rates 

against Haemophilus influenzae type b (short-term and long-term seroprotection rates, 

86%[471/547] vs 76%[188/247] and 62%[337/547]  vs 49%(121/247), respectively, all 

p=0.001). 



	 122	

Among infants born to women immunized against pertussis in pregnancy, doubling of 

pre-existing antibody levels at primary immunization resulted in 9% (GMR 0.92, 95% 

CI: 0.88-0.95) lower post-primary immunization levels and doubling of anti-PT and anti-

FHA IgG levels at primary immunization resulted in 10% (GMR 0.90. 95% CI: 0.85-

0.97) and 8% (GMR 0.92, 95% CI: 0.86-0.99) lower post-booster immunization levels.    

Timing of vaccination in pregnancy did not affect post-primary immunization anti-B. 

pertussis, anti-TT and anti-DT antibody levels. Vaccination schedule did not affect anti-

PT, anti-FHA, anti-PRN, anti-FIM and anti-DT antibody levels, while a 2,3,4 months 

schedule was associated with lower post-primary immunization anti-TT antibody levels, 

compared with a 2,4,6 months vaccination schedule.  

 

This large, longitudinal analysis demonstrates lower infants’ antibody levels to pertussis, 

diphtheria and some SPN serotypes, after maternal pertussis immunization compared 

with unvaccinated women. This supports enhanced surveillance of pertussis, diphtheria 

and invasive pneumococcal disease in infants to determine the clinical significance of this 

effect. 
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4.2 Introduction  
 
 

Immunization against pertussis in pregnancy is thought to reduce pertussis disease 

morbidity and mortality in the offspring by reducing the risk of transmission of the 

bacteria438 and enhancing the trans-placental transfer of vaccine-specific antibodies to the 

newborn316, 439. However, several early studies suggested that high pre-existing 

maternally derived antibody levels, not induced by vaccination in pregnancy, can have a 

suppressive effect on infants’ active immune responses to their own vaccination440-443 

leading to lower post-vaccination antibody levels in infants. There is an increasing 

evidence to support that immunization against pertussis in pregnancy can modify infants’ 

active immune responses to immunization in infancy, leading to lower anti-B. pertussis 

antibody levels in infants born to vaccinated compared with unvaccinated women316, 330, 

444, 445. Current formulations of Tdap vaccines used in pregnancy include tetanus toxoids 

and diphtheria toxoids. Thus, infants’ immune responses to TT and diphtheria toxoid DT 

components of vaccines and vaccines conjugated these toxoids as carrier proteins (e.g. 

Hib vaccine, Neisseria meningitidis, and PCVs) might also be modified. However, data 

are conflicting regarding the antigen-specific antibodies affected, the degree and the 

duration of such modification in immune responses. In addition, it is unknown yet 

whether this translates into lower seroprotection rates for some diseases in which COP 

exist (e.g. tetanus disease, diphtheria disease, and invasive pneumococcal disease [IPD]).  

Primary vaccination against pertussis is given to infants as part of a three (2, 4, 6 months; 

2, 3, 4 months) or 2 doses (3, 5 months) schedules in different countries. Factors affecting 

immune response to vaccines in infants born to vaccinated women are not yet known, 
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including the ideal vaccination schedule. Thus, the aim of work presented in this chapter 

is to determine the association between immunization of mothers against pertussis in 

pregnancy and infants’ active immune responses to their own vaccinations. In addition, to 

explore factors that are associated with immune responses to Tdap immunization during 

pregnancy and routine vaccines of infants born to women vaccinated against pertussis in 

pregnancy and unvaccinated women.  

4.3 Methods 

 

4.3.1 Search strategy and selection criteria 

 

PubMed, MEDLINE, Embase, CINAHL, and the CENTRAL databases were searched 

for English language literature reporting on antibody levels/titers following primary and 

booster immunization in infants born to mothers immunized against pertussis during 

pregnancy versus unimmunized women, published between January 1st, 1990 and January 

6th, 2020 following PRISMA guidelines (original search performed on February 21st, 

2017 and updated searches performed on June 4th, 2018 and January 6th, 2020)446. The 

following search terms were used for all databases: "pertussis immunization" or 

"pertussis vaccination" or "Tdap vaccination" or "Tdap vaccine" or  "Tdap 

immunization" or “Tdap pregnancy” and “interference” or “antibody response” or 

“immunogenicity” or “immune responses” and “pregnancy" (PROSPERO: 

CRD42017079171). Additional studies were identified by contacting experts in the field 

of immunization in pregnancy. Reference lists of identified publications and trial 

registries (clinical trials.gov) were searched for completed studies that have not been 
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identified through any of the above databases. Included were randomized and non-

randomized studies. Letters, editorials and review articles containing no primary data 

were excluded. 

 

A systematic literature search was performed by two independent researchers and 

references were de-duplicated automatically by EndNoteTM Web/Basic and manually 

according to the last name of the first author447, 448. De-duplicated references were 

screened by title and abstract by two researchers, with a third researcher consulted 

when necessary. Articles screened and found to be possibly eligible were fully assessed 

for eligibility (full-text fully assessed against inclusion and exclusion criteria) by two 

researchers with a third researcher consulted when necessary. 

 
 

Inclusion criteria were all of the following: The study included infants born to healthy 

women immunized at any time during pregnancy with a single dose of vaccine against 

pertussis; The study included a control group: infants born to healthy women 

unimmunized against pertussis during pregnancy; The study included infants after 

primary and/or booster (at age 9-24 months) immunization against pertussis-containing 

vaccines and vaccines containing TT or DT as a carrier protein; The study reported on 

antibody levels and/or titres of at least one of the following antigens (PT, FHA, PRN, 

FIM2/3, TT, DT, Hib, Neisseria meningitidis and/or SPN) following infants’ primary 

and/or booster immunization.  

 

Exclusion criteria were any of the following: The study included infants born to mothers 
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having an immunologic disorder, received immunoglobulins in the previous year, 

received immunosuppressive drugs during the current pregnancy (including high-dose 

steroids), or received blood products 3 months prior to delivery; The study included 

infants having immunologic disorder, received immunoglobulins within the previous 

year, received immunosuppressive drugs (including high-dose steroids), received blood 

products 3 months prior to antibody response assessment.  

 

Studies meeting the inclusion criteria were included in the systematic review and the 

authors of the included studies were contacted to share individual participant data for the 

meta-analysis. 

 

4.3.1 Data analysis 

 

I performed an individual-participant data meta-analysis of antibody levels to primary 

and booster immunizations in infants of women who did or did not receive pertussis 

vaccine in pregnancy. Antibody levels were log2-transformed and meta-analyzed using 

mixed-effects models for each antigen-specific antibody and time point. Time points 

included were: at time of immunization in pregnancy, 4 weeks after immunization in 

pregnancy, at delivery (maternal sera and cord), at time of primary immunization, after 

primary immunization, at time of booster immunization, after booster immunization.   
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For the time points (4 weeks after immunization and at delivery [maternal sera and cord 

sera] and at primary immunization), the mixed-effects models included co-variates that 

were shown to affect immune responses to immunization and that were available within 

the datasets of the included studies 449 (maternal age at vaccination, pre-existing 

homologous antibody levels). For the infants’ post-primary, at booster and post-booster 

immunization time points, the mixed-effects included co-variates that were shown to 

affect immune responses to immunization to account for their influence449 (infants’ sex, 

infants’ age at primary immunization). 

 

The antilog (2x) of the coefficients from models and their 95% CI were presented as 

GMRs and their 95% CIs. For maternal time points, the GMR was interpreted as the ratio 

of antigen-specific antibody levels in women immunized against pertussis in pregnancy 

versus unimmunized women. For infants’ time points, the GMR was interpreted as the 

ratio of antigen-specific antibody levels in infants born to women immunized in 

pregnancy versus unimmunized women (a GMR of ≥ 1 indicates higher antibody levels 

in infants of mothers immunized in pregnancy versus unimmunized, while a GMR ≤ 1 

indicates lower antibody levels in infants of mothers immunized in pregnancy versus 

unimmunized).  

 

In order to determine whether immunization in pregnancy affects protection against 

vaccine-preventable diseases with known COP, seroprotection rates against tetanus 

disease (anti-TT IgG ≥0.1 IU/mL), diphtheria disease (anti-DT IgG ≥0.1 IU/mL), IPD 
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(anti-SPN ≥0.35 µg/mL), short and long term Hib (anti-polyribosylribitol phosphate 

[PRP] IgG ≥ 0.15 mcg/ml and anti-PRPR IgG ≥ 1 mcg/ml, respectively) were 

calculated450. A chi-square test was used to determine whether the percentage of 

protection is different among immunized versus unimmunized pregnant women, or in the 

groups of infants born to pertussis-immunized versus pertussis-unimmunized women at 

the different time points. 

 

To explore maternal factors that affect the maternal immune response to pertussis 

vaccination in pregnancy, co-variates influencing antibody responses to pertussis 

immunizations in pregnancy were determined using mixed-effects models. This analysis 

was restricted to studies that included antibody levels at time of vaccination during 

pregnancy and at delivery. Co-variates included were maternal age, timing of vaccination 

in pregnancy in weeks gestation, and pre-existing homologous antibody levels at time of 

vaccination.  

 

To explore factors that can affect the immune response of infants’ to their own 

vaccination, co-variates influencing antibody responses to primary and booster 

immunizations in infants born to women immunized and unimmunized against pertussis 

in pregnancy were determined using mixed-effects models. This analysis was restricted to 

studies that used a 2,3,4 or 2,4,6 months primary vaccination schedule and that included 

antibody levels at time primary vaccination and post-primary vaccination (for the post-

primary vaccination model), or at time primary vaccination and post-booster vaccination 

(for the post-booster vaccination model).  
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For the primary immunization model, co-variates included were infants’ sex, gestational 

age at delivery, timing of vaccination in pregnancy (for the cohort of infants born to 

vaccinated mothers), pre-existing homologous antibody levels at time of primary 

immunization, age at initiation of primary vaccination and primary immunization 

schedule (2,3,4 months versus 2,4,6 months). For the booster immunization model, co-

variates included were infants’ sex, time elapsed between vaccination in pregnancy and 

delivery in weeks (for the cohort of infants born to vaccinated mothers), pre-existing 

homologous antibody levels at time of primary immunization, age at primary vaccination, 

primary immunization schedule (2,3,4 months versus 2,4,6 months), age at booster 

immunization (except for anti-TT and anti-DT antibodies of unvaccinated women, in 

order to enable fitting the model with more than one level of vaccination schedule).  

The antilog (2x) of the coefficients from models and their 95% CIs are presented as 

GMRs and their 95% CIs. For this analysis, the GMR indicates the relative increase (fold 

rise) in antibody levels in response to vaccination associated with 1 unit change in a co-

variate (e.g. the relative increase in antibody response for a 1-week older infant, or the 

relative increase in antibody response associated with a doubling in antibody levels).  

R version 3.4.0 was used for all analysis (meta package, version 4.9-1). Study was 

registered at PROSPERO International prospective register of systematic reviews 

(CRD42017079171).  

4.4 Results 

 

4.4.1 Studies characteristics   
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A total of 8391 studies were screened for eligibility and 8319 were excluded. Seventy 

two full-text articles were assessed for eligibility and 56 articles were excluded. Sixteen 

articles met the inclusion criteria and were included in the systematic-review (Figure 4.1).   
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Abbreviations:	IPD:	individual-participant	data;	GMR:	geometric	mean	ratio.	 

Figure 4. 1: PRISMA 2009 flow chart  
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The PRISMA IPD flow diagram. © Reproduced with permission of the PRISMA IPD Group, 
which encourages sharing and reuse for non commercial purposes  
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The studies included in the systematic review originated from 7 randomized-controlled 

trials and 5 non-randomized trials (Table 4.1). The vast majority (11/12) of the trials were 

performed in high-income countries (The United States, United Kingdom, Belgium, 

Canada, Spain, Italy, Australia, Finland, Netherlands, Czech Republic) with 1 trial 

conducted in a middle-income country (Vietnam). Different Tdap formulations were 

administered during the second and third trimester of pregnancy (Adacel [Sanofi Pasteur] 

in 4/11 trials, Boostrix [GlaxoSmithKline] in 5/11 trials, and Repevax [Sanofi Pasteur] in 

2/11 trials). In one trial, Tdap formulation was not specified451. Infants were immunized 

with different DTaP formulations administered per a 2-3-4 months, 2-4-6 months, 3-5 

months and 6 weeks-4-6 months schedules in 5/12, 4/12, 1/12 and 1/12 trials, 

respectively. In one international trial infants were vaccinated per the country’s 

vaccination schedule452. Antibody responses one month after both primary and booster 

immunization were assessed in 8/12 trials, and after primary immunization only in 4/12 

trials.  

 

Authors of the articles included in the systematic review were contacted to obtain 

individual level data; 14/16 articles were included in the meta-analysis, which originated 

from 10 trials (Table 4.1).   
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Table 4. 1: Characteristics of studies identified through the systematic review. 
 

 
 
 

Autho
r 
(study 
locatio
n, time 
period
) 

Study 
design  
 

Vaccine in 
pregnancy 
(timing of 
vaccination in 
pregnancy)  

Pertussis vaccine 
administered to 
infants for primary 
immunization and 
schedule 

Pertussis vaccine 
administered to 
infants for booster 
immunization and 
schedule 

Infants’ 
outcomes 
measure 
(antibody 
levels/titers 
to vaccine 
specific 
antigens) 

Hardy-
Fairba
nks 
(US, 
2006, 
2008-
2009)45

3  
 

Retrosp
ective 
cohort 
study  

Adacel, Sanofi 
Pasteur (any 
trimester 
[Trimester 1: 4 
women 
Trimester 2: 8 
women 
Trimester 3: 4 
women])   
 

Tdap group: Pediarix, 
GSK; 2, 4, 6 months  
Control group: 
Pediarix, GSK or 
Pentacel, Sanofi 
Pasteur or Infanrix, 
GSK or a 
combination of these 
vaccines; 2, 4, 6 
months 

Tdap group: Infanrix, 
GSK or TriHIBit, 
Sanofi Pasteur or 
Pediarix®, GSK; 12-
18 months.  
Control group: 
Infanrix, GSK or 
Pediarix®, GSK or 
Daptacel® Sanofi 
Pasteur, or Pentacel®, 
Sanofi Pasteur; 12-18 
months 

PT, FHA, 
PRN, 
FIM2/3, TT, 
DT, HBV, 
Polio1/2/3 
 

Ladhan
i (UK, 
2012-
2014)45

4 

Case-
control 
study 
with 
historic
al 
cohort  

Repevax®, 
Sanofi Pasteur 
(median 
interval 
between 
vaccination 
and delivery: 
9.9 WG) 

Pediacel, Sanofi 
Pasteur; 2, 3, 4 
months 
Prevenar-13®, Pfizer; 
2, 4 months  
Neivac-C, Pfizer or 
Menjugate, Sanofi 
Pasteur or 
Meningitec, Pfizer; 3, 
4 months 

N/A PT, FHA, 
FIM2/3, TT, 
DT, Hib, 
MenC, SPN 
1, 3, 4, 6A, 
6B, 7B, 9V, 
14, 18C, 19A, 
19F, 23F.  

Hoang 
(Vietna
m, 
2013-
2013)45

5 * 

Rando
mized 
Control
led 
Trial  
 

Adacel, Sanofi 
Pasteur ( 
18-36 WG) 
 

Infanrix Hexa, GSK 
Biologicals;  
2, 3, 4 months of age  
 

N/A TT, DT, PT, 
FHA, PRN  

Ladhan
i et al, 
2015; 
UK, 
2012- 
2014 

Case-
control 
study 
with 
historic
al 
cohort; 
Level 2 

Repevax, 
Sanofi 
Pasteur;   
 
N/Av;  
 
N/Av  

Pediacel, Sanofi 
Pasteur; 2, 3, 4 
months 
 
 

N/A PT, FHA, 
FIM2/3 DT, 
TT, Hib, 
MenC, 13 
serotypes of 
pneumococcu
s 

Maerte
ns 
(Belgiu
m, 
2012-
2014)33

0*  

Prospec
tive 
controll
ed 
cohort 
study  

Boostrix, GSK 
(22-33 WG) 
 

Infanrix Hexa®, 
GSK; 8, 12 and 16 
weeks of age 

N/A TT, DT, PT, 
FHA, PRN 
 

Maerte
ns 
(Belgiu
m, 
2012-
2014) 
456* 

Prospec
tive 
controll
ed 
cohort 
study  
 

Boostrix, GSK 
(22-33 WG) 
  

N/A Infanrix Hexa®, GSK 
Biologicals; 15 
months of age (booster 
vaccination) 
 

TT, DT, PT, 
FHA, PRN  
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Autho
r 
(study 
locatio
n, 
time) 

Study 
design  
 

Vaccine in 
pregnancy 
(timing of 
vaccination in 
pregnancy)  

Pertussis vaccine 
administered to 
infants for primary 
immunization and 
schedule 

Pertussis vaccine 
administered to 
infants for booster 
immunization and 
schedule 

Infants’ 
outcomes 
measure 
(antibody 
levels/titers 
to antigens) 

Maerte
ns ( 
Vietna
m, 
2013) 
457* 

Rando
mized 
Control
led 
Trial  
 

Adacel, Sanofi 
Pasteur (18-36 
WG)  

N/A Infanrix Hexa®, GSK; 
Second year of life 
(mean age Tdap 
group: 22.18 months; 
mean age control 
group: 21.44 months) 

TT, DT, PT, 
FHA, PRN 
 

Munoz 
( 
US, 
2008-
2012)31

6* 

Rando
mized 
controll
ed 
clinical 
trial  
 

Adacel, Sanofi 
Pasteur (30-32 
WG)  

Pentacel, Sanofi 
Pasteur;  
2, 4, 6 months 
 
 

Pentacel®, Sanofi 
Pasteur; 12 months 

PT, FHA, 
PRN, 
FIM2/3, TT, 
DT 
 

Maerte
ns ( 
Belgiu
m, 
2011-
2015)45

8* 

Prospec
tive 
controll
ed 
cohort 
study  
 

Boostrix, GSK 
(22-33 WG)  
 

Prevenar-13, Pfizer;  
2, 4 months 
 
Infanrix Hexa, GSK;  
2, 3, 4 months 
 

Prevenar-13, Pfizer at 
12 months  

SPN 1, 3, 4, 
6A, 6B, 7B, 
9V, 14, 18C, 
19A, 19F, 
23F. 

Halperi
n ( 
Canada
, 2007-
2011 
and 
2012-
2014)33

1* 

Rando
mized 
Control
led 
Trial  
 

Adacel, Sanofi 
Pasteur (33–
35 WG)  
 

DTaP-IPV-Hib; 
Pediacel, Sanofi 
Pasteur; 
2, 4, and 6, months  
 
 

DTaP-IPV-Hib; 
Pediacel, Sanofi 
Pasteur; 12 months  
 
 

PT, 
FHA,PRN , 
FIM2/3, TT, 
DT, Hib  
 

Barug 
(Nethe
rlands, 
N/Av) 
459* 

Rando
mized 
controll
ed trial  

Boostrix, GSK 
(30-32 WG).  
  

Infanrix Hexa, GSK; 
 
Synflorix, GSK;  
at 3, 5 months of age  

Infanrix Hexa, GSK; 
 
Synflorix, GSK;  
at 11 months of age 

PT, FHA, 
PRN  
 

Zimme
rmann 
(Austra
lia, 
2013-
2016)46

0* 

Rando
mized 
controll
ed trial  

Boostrix, GSK 
(N/Av) 
  

Infanrix Hexa, GSK; 
 
Prevenar 13, Wyeth; 
 
At 6 weeks, 4 months 
and 6 months of age  
 

Menitorix, GSK; 
 
at 12 months of age   

PT, FHA, 
PRN, TT, 
DT,,Hib, 
SPN 1, 3, 4, 
6A, 6B, 7B, 
9V, 14, 18C, 
19A, 19F, 
23F.  
Polio (types 
1, 2, 3),  
MenC,measls
,mumps, 
rubella 
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* Study included in the individual-participant-data meta-analysis. Abbreviations: GSK: GlaxoSmithKline; 
HBV: Hepatitis b virus; Menc: meningococcal C; SPN: N/Av: not available.   

Autho
r 
(study 
locatio
n, 
time) 

Study 
design  
 

Vaccine in 
pregnancy 
(timing of 
vaccination in 
pregnancy 

Pertussis vaccine 
administered to 
infants for primary 
immunization and 
schedule 

Pertussis vaccine 
administered to 
infants for booster 
immunization and 
schedule 

Infants’ 
outcomes 
measure 
(antibody 
levels/titers 
to antigens) 

Rice 
(UK, 
2014-
2016)46

1* 

Prospec
tive 
controll
ed 
cohort 
study  
 

Repevax,  
Sanofi Pasteur 
(prior to July 
2014) and 
Boostrix-IPV 
GSK (after 
July 2014) 
(N/Av).   

DtaP5-IPV-Hib 
Pediacel, Sanofi  
Pasteur  or  DtaP3-
IPV-Hib (Infanrix-
IPV-Hib;GSK) at 2, 3 
and 4 months.   
Prevenar 13 (Pfizer) 
at 2 and 4 months . 

NA  PT, FHA, 
PRN, TT, 
DT, Hib, 
SPN 1, 3, 4, 
6A, 6B, 7B, 
9V, 14, 18C, 
19A, 19F, 
23F. 

Perret 
(Austra
lia, 
Canada
, Czech 
Republ
ic, 
Finlan
d, Italy 
and 
Spain, 
2016-
2018)45

2* 

Phase 
IV, 
multi-
center, 
observe
r-blind, 
random
ized, 
placebo
controll
ed  

Boostrix, GSK 
(27–36  WG)  

2 or 3 doses of DTaP-
HepB-IPV/Hib 
(Infanrix Hexa, GSK) 
co-administered with 
PCV13 (Prevnar 13, 
Pfizer Inc.) at 2 and 4 
months; or 3 and 5 
months; or 2, 4 and 6 
months; or 2, 3 and 4 
months  

NA PT, FHA, 
PRN, TT, 
DT, Hib, 
HBV, SPN 1, 
3, 4, 6A, 6B, 
7B, 9V, 14, 
18C, 19A, 
19F, 23F; 
Polio (types 
1, 2, 3) 

Barug 
(Nethe
rlands, 
N/Av) 
462*  

Rando
mized 
controll
ed trial  

Boostrix, GSK 
(30-32 WG).  
  

Infanrix Hexa, GSK; 
 
Synflorix, GSK;  
at 3, 5 months of age  

Infanrix Hexa, GSK; 
 
Synflorix, GSK;  
at 11 months of age 

DT, TT, Hib, 
SPN 1, 4, 5, 
6B, 7F, 9V, 
14, 18C, 19F, 
23F, 6A, 19A   

Klein 
(US, 2-
0014-
2015) 
451*  

Rando
mized 
controll
ed trial 

Pertussis 
vaccine (trade 
name  N/Av), 
(timing, N/Av)  

Infanrix Hexa, GSK 

Pentacel, Sanofi  

Pediarix,  GSK 

co-administered with  
with PCV13 (Prevnar 
13, Pfizer Inc.) at 2, 
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4.4.2 Effect of maternal pertussis immunization during pregnancy on antigen-

specific antibody response in mothers and their infants   

4.4.2.1 Anti-B. pertussis antibodies 

 

Anti-B. pertussis IgG levels were comparable at time of immunization during pregnancy 

in pregnant women who later received Tdap compared to women who later did not 

receive Tdap. Anti-B. pertussis IgG levels were higher in women who received Tdap 

during pregnancy 4 weeks after immunization and at delivery compared to women who 

did receive Tdap. Anti-B. pertussis IgG levels were higher in infants born to Tdap-

immunized women at birth and at time of primary immunization. After primary 

immunization, infants of Tdap-immunized women had significantly lower PT (GMR, 

0.65; 95%CI, 0.57-0.74), FHA (0.68;0.53-0.87), PRN (0.65;0.58-0.72) and FIM2/3 (0.41; 

0.32-0.52) antibody levels compared with infants of unimmunized women. These low 

antibody levels persisted at time of booster for PT, FHA, PRN and after booster 

immunization for FHA and FIM2/3 (Figure 4.2, Figure 4.3, Figure 4.4, Figure 4.5). The 

range of reduction in anti B. pertussis-specific antibody levels in infant born to pertussis 

vaccinated women when compared with unvaccinated women was 32-59% after primary 

immunization for PT, FHA, PRN and FIM2/3; 33-43% before booster immunization for 

PT, FHA and PRN, and 28-47% after booster immunization for FHA and FIM2/3.  
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Figure 4. 2: Antibody responses to PT in women after vaccination in pregnancy, at 
delivery, cord sera, in infants before and after primary immunization, before and 
after booster immunization with tetanus- diphtheria -acellular pertussis vaccine. 

Vertical blue lines indicate the GMR at the different time points with the 95% CI. 
Horizontal line indicates a GMR of 1. Numbers (n) indicate the number of infants whom 
serotype-specific antibody levels were available for meta-analysis. This figure shows 
higher anti-PT IgG levels in pregnant women Tdap -vaccinated vs. unvaccinated and 
their infants until primary immunization. Anti-PT IgG levels are lower in infants born to 
Tdap-vaccinated vs –unvaccinated after primary immunization, at booster immunization 
and after booster immunization against pertussis. Abbreviation: Pre-vac: pre-vaccination; 
Post-vac: post-vaccination; Mat: maternal; Pre-prim: pre-primary; Post-prim: post-
primary; Pre-boost: pre-booster; Post-boost: post-booster.  
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Figure 4. 3: Antibody responses to FHA in women after vaccination in pregnancy, at 
delivery, cord sera, in infants before and after primary immunization, before and 
after booster immunization with tetanus- diphtheria -acellular pertussis vaccine. 

Vertical blue lines indicate the GMR at the different time points with the 95% CI. 
Horizontal line indicates a GMR of 1. Numbers (n) indicate the number of infants whom 
serotype-specific antibody levels were available for meta-analysis. This figure shows 
higher anti-FHA IgG levels in pregnant women Tdap -vaccinated vs. unvaccinated and 
their infants until primary immunization. Anti-FHA IgG levels are lower in infants born 
to Tdap-vaccinated vs –unvaccinated after primary immunization, at booster 
immunization and after booster immunization against pertussis.  
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Figure 4. 4: Antibody responses to PRN in women after vaccination in pregnancy, at 
delivery, cord sera, in infants before and after primary immunization, before and 
after booster immunization with tetanus- diphtheria -acellular pertussis vaccine. 

Vertical blue lines indicate the GMR at the different time points with the 95% CI. 
Horizontal line indicates a GMR of 1. Numbers (n) indicate the number of infants whom 
serotype-specific antibody levels were available for meta-analysis. This figure shows 
higher anti-PRN IgG levels in pregnant women Tdap -vaccinated vs. unvaccinated and 
their infants until primary immunization. Anti-PRN IgG levels are lower in infants born 
to Tdap-vaccinated vs –unvaccinated after primary immunization and at booster 
immunization.  
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Figure 4. 5: Antibody responses to FIM2/3 in women at delivery, cord sera, in 
infants before and after primary immunization, and after booster immunization 
with tetanus- diphtheria -acellular pertussis vaccine. 

Vertical blue lines indicate the GMR at the different time points with the 95% CI. 
Horizontal line indicates a GMR of 1. Numbers (n) indicate the number of infants whom 
serotype-specific antibody levels were available for meta-analysis. This figure shows 
higher anti-FIM2/3 IgG levels in pregnant women Tdap -vaccinated vs. unvaccinated and 
their infants until primary immunization. Anti-FIM2/3 IgG levels are lower in infants 
born to Tdap-vaccinated vs –unvaccinated after primary immunization and at booster 
immunization. GMR was not computed post-vaccination in pregnancy and pre-booster in 
infancy as data were available for one study on these time points precluding meta-
analysis.   
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4.4.2.2 Anti-TT and anti-DT antibodies 

 

Anti-TT IgG levels were higher in infants born to Tdap-immunized women at birth, 

before primary immunization and after booster immunization with DTaP, compared with 

infants of women who did not receive TT-containing vaccines during pregnancy, (4.53; 

1.55-13.25), (5.46; 3.98-7.49) and (1.59; 1.04-2.42), respectively (Figure 4.6).  

 

Figure 4. 6: Antibody responses to TT in women at delivery, cord sera, in infants 
before and after primary immunization, and after booster immunization with 
tetanus- diphtheria -acellular pertussis vaccine. 

Vertical blue lines indicate the GMR at the different time points with the 95% CI. 
Horizontal line indicates a GMR of 1. Numbers (n) indicate the number of infants whom 
serotype-specific antibody levels were available for meta-analysis. This figure shows 
higher anti-TT IgG levels in pregnant women after Tdap vaccination compared with 
unvaccinated women, and their infants until primary immunization. Anti-FIM2/3 IgG 
levels are higher in infants born to Tdap-vaccinated vs –unvaccinated after booster 
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immunization.  

 

Anti-DT IgG levels were comparable at time of immunization during pregnancy in 

pregnant women who later received Tdap compared to women who later did not receive 

DT-containing vaccines. Anti-DT IgG levels were higher in women who received Tdap 

during pregnancy 4 weeks after immunization and at delivery compared to women who 

did receive DT-containing vaccines. Anti-DT IgG levels were higher in infants born to 

Tdap-immunized women at birth and at time of primary immunization with DTaP 

compared to infants of women who did receive DT-containing vaccines. Anti-DT IgG 

levels were lower in infants born to Tdap-immunized women after primary 

immunization, at time of booster immunization and after booster immunization with 

DTaP compared to infants of women who did receive DT-containing vaccines (0.63; 0.5-

0.79), (0.68; 0.54-0.87), and (0.81; 0.71-0.91), respectively (Figure 4.7).  
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Figure 4. 7: Antibody responses to DT in women at delivery, cord sera, in infants 
before and after primary immunization, and after booster immunization with 
tetanus- diphtheria -acellular pertussis vaccine. 

Vertical blue lines indicate the GMR at the different time points with the 95% CI. 
Horizontal line indicates a GMR of 1. Numbers (n) indicate the number of infants whom 
serotype-specific antibody levels were available for meta-analysis. This figure shows 
higher anti-DT IgG levels in pregnant women Tdap -vaccinated vs. unvaccinated and 
their infants until primary immunization. Anti-DT IgG levels are lower in infants born to 
Tdap-vaccinated vs –unvaccinated after primary immunization, at booster immunization 
and after booster immunization against pertussis.  

 

4.4.2.3 Anti-SPN antibodies  

 

Anti-SPN IgG levels were lower in infants born to Tdap-immunized women after primary 

immunization with PCV-13 for serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 18C, 19A, 19F, 23F 
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with a reduction ranging from 15%-35% (Figure 4.8). 

 

Figure 4. 8: Antibody responses to SPN. GMR of antibody levels to SPN serotypes in 
infants after primary immunization pneumococcal conjugate vaccine-13. 

Horizontal line indicates a GMR of 1. Numbers (n) in brackets indicate the number of 
infants whom serotype-specific antibody levels were available for meta-analysis. This 
figure shows lower anti-SPN IgG levels in infants born to Tdap-vaccinated vs –
unvaccinated after primary immunization with pneumococcal conjugate vaccine 13 for 
12/13 serotypes  
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4.4.2.4 Anti-PRP antibodies  

 

Anti-PRP IgG levels were not significantly different in infants born to Tdap-immunized 

women after primary immunization, at time of booster immunization and after booster 

immunization with Hib-including vaccines, compared with infants of women who did not 

receive TT-containing vaccines during pregnancy (Figure 4.9). 

 

 

Figure 4. 9: Antibody responses to PRP in infants before and after primary 
immunization, and after booster immunization with tetanus- diphtheria -acellular 
pertussis vaccine. 

Vertical blue lines indicate the GMR at the different time points with the 95% CI. 
Horizontal line indicates a GMR of 1. Numbers (n) indicate the number of infants whom 
serotype-specific antibody levels were available for meta-analysis. This figure shows no 
significant change in anti-PRP levels in infants born to Tdap-vaccinated vs –unvaccinated 
before and after primary and booster immunization. GMR was not computed post-
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vaccination in pregnancy (no data), in maternal sera (one study), cord sera (one study) 
precluding meta-analysis.   

4.4.3 Effect of maternal pertussis immunization during pregnancy on seroprotection 

rates against tetanus, diphtheria, Haemophilus influenzae type b and invasive 

pneumococcal disease   

4.4.3.1 Seroprotection rates against tetanus disease 

 

At time of vaccination with Tdap, ~93% of women had seroprotective antibody levels 

against tetanus disease. This rate increased to nearly 100% at birth in women vaccinated 

with Tdap during pregnancy and in cord sera both from pregnant women vaccinated and 

unvaccinated with TT-containing vaccines during pregnancy. Infants of women 

vaccinated with Tdap during pregnancy had significantly higher seroprotection rate 

against tetanus at time of primary and booster vaccination compared with infants of 

women unvaccinated with TT-containing vaccines during pregnancy, and comparable 

high seroprotection rate after primary and booster immunization  (Figure 4.10). 
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Figure 4. 10: Seroprotection rates against tetanus. 

Rates of participants with anti–tetanus toxoid (TT) (anti-TT IgG ≥0.1 IU/mL) levels in 
women immunized with tetanus-diphtheria-acellular pertussis (Tdap) versus women who 
did not receive Tdap or diphtheria and tetanus toxoids (dT) vaccine or TT in pregnancy at 
time of immunization and after immunization, at delivery (women and cord blood); in 
infants born to women immunized Tdap versus infants of women not immunized with 
Tdap or dT or TT in pregnancy before and after primary immunization, before and after 
booster immunization with diphtheria-tetanus-acellular pertussis vaccine (*comparisons 
with p-values <0.05). This figure shows significantly higher seroprotection rates against tetanus 
disease in Tdap-vaccinated pregnant women after vaccination and at delivery, in their infants 
before primary immunization. This figure also shows significant lower seroprotection rates 
against tetanus in infants born to Tdap-vaccinated women at time of booster immunization.  P-
values for the time points: Pre-vac:P=0.806; Post-Vac:P= 0.001; Maternal:P<0.001; Cord:P= 
0.754; Pre-prim:P<0.001;Post-prim:P=1; Pre-boost:P=0.001;Post-boost:P=1.  
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4.4.3.2 Seroprotection rates against diphtheria disease 

 

At time of vaccination in pregnancy, nearly 60% of pregnant women had seroprotection 

antibody levels against diphtheria disease. Seroprotection rates against diphtheria disease 

were significantly higher in women vaccinated with Tdap during pregnancy after 

vaccination, at birth and in their infants at time of primary vaccination, compared with 

women who did not receive DT-containing vaccines during pregnancy. Infants of Tdap-

vaccinated pregnant women had statistically significant lower seroprotection rates after 

primary immunization compared with infants of women who did not receive DT-

containing vaccines during pregnancy. Nearly 60% of infants born to women vaccinated 

with Tdap during pregnancy had seroprotective anti-DT levels at time of booster 

immunization, increasing to nearly 100% after booster vaccination (Figure 4.11). 
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Figure 4. 11: Seroprotection rates against diphtheria. 

Rates of participants with anti-diphtheria toxoid (DT) (anti-DT IgG ≥0.1 IU/mL) levels in 
women immunized with tetanus-diphtheria-acellular pertussis (Tdap) versus women who 
did not receive Tdap or diphtheria and tetanus toxoids (dT) vaccine in pregnancy at time 
of immunization and after immunization, at delivery (women and cord blood); in infants 
born to women immunized Tdap versus infants of women not immunized with Tdap or 
dT vaccine in pregnancy before and after primary immunization, before and after booster 
immunization with diphtheria-tetanus-acellular pertussis vaccine (*comparisons with p-
values <0.05). This figure shows significantly higher seroprotection rates against 
diphtheria disease in Tdap-vaccinated pregnant women after vaccination and at delivery, 
in their infants at delivery and before primary immunization. This figure also shows 
significant lower seroprotection rates against diphtheria in infants born to Tdap-
vaccinated women after primary immunization.  P-values for the time points: Pre-vac:P= 
0.045; Post-Vac:P<0.001; Maternal:P<0.001; Cord:P<0.001; Pre-prim:P<0.001;Post-
prim: <0.001; Pre-boost:P=0.116;Post-boost:P=0.863.  
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4.4.3.3 Seroprotection against invasive pneumococcal disease 

 

After primary immunization with PCV-13, seroprotection rates for serotypes 5, 6B, 9V, 

19A, 23F were significantly lower in infants of Tdap-immunized women compared with 

unimmunized women (Figure 4.12). 

 

Figure 4. 12: Seroprotection rates against invasive pneumococcal disease. 

Rates of subjects with anti–streptococcus pneumonia (SPN) IgG levels ≥0.35 mg/mL in 
infants in infants born to women immunized tetanus-diphtheria-acellular-pertussis (Tdap) 
versus infants of women not immunized with Tdap or diphtheria and tetanus toxoids 
vaccine in pregnancy after primary immunization with pneumococcal conjugate vaccine 
13 (PCV13) (*denotes comparisons where p-values <0.05 [Serotypes 5, 6B, 9V, 19A, 
23F]). Number of infants born to women vaccinated and unvaccinated during pregnancy 
was in the range of 304-323 and 279-290, respectively, for the different serotypes.   This 
figure shows significantly lower seroprotection rates against Serotypes 5, 6B, 9V, 19A, 
23F in infants of Tdap-vaccinated pregnant women after primary vaccination with PCV-
13. P-values for the specific serotypes: 1:P= 0.642;3:P= 0.13;4:P= 0.057; 5:P= 0.004; 
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6A:P= 0.079 ; 6B:P= 0.009  ; 7F:P= 0.607; 9V:P= 0.016   ; 14:P= 0.358  ; 18C: 0.661 ; 
19A:P= 0.048; 19F:P=1; 23F:P=0.003.  
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4.4.3.4 Seroprotection against Hib  

 

At time of immunization in pregnancy, nearly 85% of pregnant women had protective 

antibody levels against Hib using the short term cut off for protection. Infants of women 

vaccinated with Tdap during pregnancy had significantly higher seroprotection rates 

against Hib after primary immunization, comparable rates at booster immunization, 

increasing to nearly 95% after booster immunization (Figure 4.13). Infants of women 

vaccinated with Tdap during pregnancy had significantly higher seroprotection rates 

against Hib after primary immunization, at booster immunization, and after booster 

immunization, when using the cut-off of long term protection against Hib (Figure 4.14).  
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Figure 4. 13: Short term seroprotection rates against Hib disease. 

Rates of subjects with seroprotective anti–PRP IgG levels (anti-PRP IgG ≥0.15 mcg/ml) 
Rates of subjects with anti–polyribosylribitol phosphate (PRP) IgG ≥0.15 mcg/ml in 
women immunized with tetanus-diphtheria-acellular pertussis (Tdap) versus women who 
did not receive Tdap vaccine or tetanus-toxoid (TT) vaccine in pregnancy at time of 
immunization, at delivery (women and cord blood); in infants born to women immunized 
Tdap versus infants of women not immunized with Tdap vaccine or TT vaccine in 
pregnancy before and after primary immunization with diphtheria-tetanus-acellular-
pertussis-Hib (DTaP-Hib), before and after booster immunization with DTaP-Hib vaccine 
(*comparisons where p-values <0.05). This figure shows significantly lower 
seroprotection rates against Hib disease in infants of Tdap-vaccinated women before 
primary immunization and higher rates after primary vaccination. This figure also shows 
that most infants of Tdap-vaccinated and unvaccinated have achive protective levels after 
booster immunization. P-values for the time points: Pre-vac:P= 0.707; Maternal:P<0.001; 
Cord:P=0.765; Pre-prim:P<0.001;Post-prim: P= 0.001; Pre-boost:P= 0.651;Post-
boost:P=0.801.  
 



	 154	

 

Figure 4. 14: Long term seroprotection rates against Hib disease. 

Long-term seroprotection rates against haemophilus influenzae type b (Hib) disease. 
Rates of subjects with anti–polyribosylribitol phosphate (PRP) IgG ≥1 mcg/ml in women 
immunized with tetanus-diphtheria-acellular pertussis (Tdap) versus women who did not 
receive Tdap vaccine or tetanus-toxoid (TT) vaccine in pregnancy at time of 
immunization, at delivery (women and cord blood); in infants born to women immunized 
Tdap versus infants of women not immunized with Tdap vaccine or TT vaccine in 
pregnancy before and after primary immunization with diphtheria-tetanus-acellular-
pertussis-Hib (DTaP-Hib), before and after booster immunization with DTaP-Hib vaccine 
(*comparisons where p-values <0.05). This figure shows significantly lower 
seroprotection rates against Hib disease in infants of Tdap-vaccinated women before 
primary immunization and higher rates after primary vaccination, at booster 
immunization and after booster immunization. P-values for the time points: Pre-vac:P= 
0.705; Maternal:P= 0.189; Cord:P=1; Pre-prim:P<0.001;Post-prim: P= 0.001; Pre-
boost:P= 0.021;Post-boost:P=0.009.  
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4.4.4 Factors affecting antibody response to Tdap vaccination during pregnancy  

 

Among pregnant women immunized with Tdap in pregnancy, higher anti-B. pertussis-

specific antibody levels at of immunization were associated with increase in vaccine-

induced immune responses to Tdap vaccines, with doubling homologous antigen-specific 

antibody levels resulting in 14%-28% higher maternal post-immunization antibody levels 

measured at delivery. Doubling of anti-DT antibody levels at time of vaccination resulted 

in 24% higher post-immunization antibody levels measured at delivery, while pre-

existing anti-TT IgG level at time of vaccination did not affect maternal anti-TT IgG 

levels measured at delivery. Maternal age, and timing of vaccination in pregnancy, did 

not affect post-immunization antibody levels measured at delivery (Figure 4.15).  
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Figure 4. 15: Variables affecting antibody immune response to Tdap vaccine during 
pregnancy. 

Effect of different variables on antibody levels against PT, FHA, PRN, FIM2/3, TT, DT, 
after vaccination with Tdap vaccine during pregnancy. The GMR indicates the relative 
increase (fold rise) in antibody levels after primary vaccination that is associated with 1 
unit change in a co-variate. GMRs less than 1.0 indicate that a 1 unit increase in the 
variable that is associated with lower antibody levels after primary vaccination, while 
GMR >1 indicates that a 1 unit increase in the variable is associated with higher antibody 
levels after the third dose. This figure shows that doubling of homologous antigen-
specific anti-B. pertussis antibody levels results in 14%-28% higher maternal post-
immunization antibody levels measured at delivery. Doubling of anti-DT antibody levels 
at time of vaccination resulted in 24% higher post-immunization antibody levels 
measured at delivery.  
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4.4.5 Factors affecting infants’ antibody immune response to primary immunization  

4.4.5.1 Infants of Tdap-vaccinated women 

 

Among infants born to women immunized against pertussis in pregnancy, anti-PT and 

anti-DT antibody levels at primary immunization were associated with reduction of 

antibody immune responses to TDaP vaccines, with doubling antibody levels resulting in 

8% and 10% lower post-primary immunization levels, respectively (Figure 4.16a). 

Timing of vaccination in pregnancy did not affect post-primary immunization anti-PT, 

anti-FHA, anti-PRN, anti-FIM, anti-TT and anti-DT antibody levels (Figure 4.16a).  

Age at initiation did not affect post-primary immunization anti-PT, anti-FHA, anti-FIM, 

anti-TT and anti-DT antibody levels. Older age at first vaccination was associated with 

higher post-vaccination antibody levels against PRN (Figure 4.16a).  

Vaccination schedule did not affect anti-PT, anti-FHA, anti-PRN, anti-FIM and anti-DT 

antibody levels, while 2,3,4 months schedule that was associated with lower post-

immunization anti-TT antibody levels, compared with 2,4,6 months vaccination schedule.  

4.4.5.2 Infants of unvaccinated women 

 

Among infants born to women unimmunized with Tdap during pregnancy, doubling of 

anti-B. pertussis antibodies resulting in 8-15% lower post-primary immunization levels 

(Figure 4.16b).  Anti-TT and anti-DT antibody levels at primary immunization were 

associated with reduction of antibody immune responses to TDaP vaccines, with 

doubling of antibody levels resulting in 12% and 17% lower post-primary immunization 

levels, respectively. Older age at initiation of primary vaccination did not affect post-
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immunization anti-PT, anti-FHA, anti-FIM2/3 and anti-TT antibody levels, but was 

associated with higher post-primary immunization antibody levels against PRN and DT  

(Figure 4.16b). Vaccination schedule did not anti-PT, anti-FHA, anti-PRN, anti-FIM 

antibody levels, while vaccination schedule 2,3,4 months was associated with lower post-

immunization anti-TT and anti-DT antibody levels, compared with 2,4,6 months 

vaccination schedule (Figure 4.16b). 

 

Figure 4. 16: Variables affecting antibody immune response to primary 
immunization with DTaP vaccine during infancy. 

Effect of different variables on antibody levels against PT, FHA, PRN, FIM2/3, TT, DT, 
after the third dose of vaccination with Diphtheria-Tetanus-acellular pertussis vaccine (2-
, 3-, and 4-month schedules and 2-, 4- and, 6-month schedules) in infants born to women 
vaccinated against pertussis during pregnancy (left). The GMR indicates the relative 
increase (fold rise) in antibody levels after primary vaccination that is associated with 1 
unit change in a co-variate. GMRs less than 1.0 indicate that a 1 unit increase in the 
variable (for continuous variables, or a 2-3-4 month schedule) is associated with lower 
antibody levels after primary vaccination, while GMR >1 indicates that a 1 unit increase 
in the variable is associated with higher antibody levels after the third dose; Results of 
infants born to women unvaccinated against pertussis during pregnancy (right).  
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4.4.6 Factors affecting infants’ antibody immune response to booster immunization  

4.4.6.1 Infants of Tdap-vaccinated mothers  

 

Among infants born to women immunized with Tdap during pregnancy, doubling of anti-

PT and anti-FHA IgG levels at primary immunization resulted in 10% (95% CI: 10-15%) 

and 8% (95% CI:1-15%) lower post-booster immunization levels. Doubling of anti-PRN 

IgG levels at primary immunization resulted in 12% (95% CI: 2-23%) higher post-

booster immunization levels.  

 

Time difference between Tdap vaccination and delivery did not affect post-primary 

immunization anti-PT, anti-FHA, anti-PRN, anti-TT and anti-DT antibody levels (Figure 

4.17 a). Age at initiation of primary vaccination and at booster immunization did not 

affect anti-PT, anti-FHA and anti-PRN antibody levels. Spacing of vaccinations (2,3,4 vs. 

2,4,6 months) did not affect anti-PT, anti-PRN, anti-TT and anti-DT post-booster 

immunization antibody levels, while vaccination schedule 2,3,4 months was associated 

with higher post-immunization anti-FHA antibody levels, compared with 2,4,6 months 

vaccination schedule (Figure 4.17 a).  

4.4.6.2 Infants of unvaccinated mothers  

 

Among infants born to women immunized against pertussis in pregnancy, doubling of 

anti-FHA antibody levels at primary immunization resulted in 8% lower post-booster 

immunization levels (Figure 4.17 b). Age at initiation of primary vaccination did not 

affect post-immunization anti-PT, anti-FHA and anti-PRN, anti-TT and anti-DT antibody 
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levels. Older age at booster vaccination did not affect post-immunization anti-FHA, and 

anti-TT antibody levels, but was associated with higher post-primary immunization 

antibody levels against PT. Spacing of vaccinations (2,3,4 vs. 2,4,6 months) did not affect 

post-booster immunization antibody levels except for anti-PT where 2,3,4 months 

schedule was associated with lower post-immunization anti- antibody levels, compared 

with 2,4,6 months vaccination schedule (Figure 4.17 b). 

 

 
Figure 4. 17: Variables affecting antibody immune response to booster 
immunization with DTap vaccine during infancy. 

Effect of different variables on antibody levels against PT, FHA, PRN, TT, DT, after 
booster vaccination with Diphtheria-Tetanus-acellular pertussis vaccine (2-, 3-, and 4-
month schedules and 2-, 4- and, 6-month schedules) in infants born to women vaccinated 
against pertussis during pregnancy (left). The GMR indicates the relative increase (fold 
rise) in antibody levels after primary vaccination that is associated with 1 unit change in a 
co-variate. GMRs less than 1.0 indicate that a 1 unit increase in the variable (for 
continuous variables, or a 2-3-4 month schedule) is associated with lower antibody levels 
after primary vaccination, while GMR >1 indicates that a 1 unit increase in the variable is 
associated with higher antibody levels after the third dose; Results of infants born to 
women unvaccinated against pertussis during pregnancy (right).  



	 161	

4.5 Discussion  
 
 

This large, international, longitudinal meta-analysis demonstrates reduction in infants’ 

immune responses to pertussis, diphtheria and some SPN serotypes, after Tdap 

immunization in pregnancy. This effect was observed after primary and booster 

immunization. This also resulted in lower sero-protection rates for some SPN serotypes 

and diphtheria after primary immunization in infants born to women immunized with 

Tdap in pregnancy when compared to unimmunized women. Enhanced immune response 

to tetanus and Hib vaccine components was observed in infants born to women 

vaccinated with Tdap during pregnancy compared with infants of unimmunized women. 

High maternally derived antibody levels have inhibitory effect to antibody immune 

response to PT and DT among infants of vaccinated mothers and this effect persisted at 

booster immunization for PT. Primary vaccination schedule at 2,3,4 months, compared 

with 2,4,6 months schedule was associated with lower post-primary anti-TT antibody 

levels and higher post-booster anti-FHA levels, in infants born to women vaccinated and 

unvaccinated with Tdap during pregnancy.   

 

These data have important implications in establishing the effect of pertussis 

immunization in pregnancy on the antibody immune response to various vaccine antigens 

in infancy and can assist public health policy makers in countries where maternal 

pertussis immunization programs have been recommended.  
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In this chapter, I report on the different statistical approaches which were undertaken to 

address the question of modification of infants’ immune responses after vaccination with 

Tdap during pregnancy. The GMR of antigen-specific antibodies of infants born to 

vaccinated compared with unvaccinated women at different time points. A GMR and an 

upper bound of the GMR CI below 1 implies significantly lower antibody levels (or 

titers) in infants born to vaccinated compared with unvaccinated women, and thus 

supports interference. This approach has the advantage of adjustment for co-variables that 

could affect the infants’ immune responses, such as gestational age, sex or age at 

vaccination. However, this approach does not take into account whether a reduction in 

antibody levels is associated with a reduction in protection against specific diseases. 

Investigating whether a reduction in antibody levels is associated with a potentially 

higher risk of infection is feasible for diseases for which a correlate of protection [COP] 

exists is thus another approach to investigate interference and can be used for diseases 

like tetanus, diphtheria, invasive pneumococcal disease, and Hib. A statistically 

significant reduction in seroprotection rate in infants born to vaccinated compared with 

unvaccinated women might also be used to define interference. However, this approach is 

not possible for vaccination against diseases for which a well-defined COP does not exist 

(e.g. pertussis).  

 

This meta-analysis shows reduced immune responses to pertussis in infants born to 

women vaccinated against pertussis during pregnancy after primary and booster 

immunization. Several studies from the pre-maternal pertussis immunization era 

suggested that high pre-existing maternally derived antibody titers can have a suppressive 
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effect on infants’ immune responses to primary immunization against pertussis440-443. 

This meta-analysis provides further support to these findings in the era of maternal 

pertussis immunization and also extends these findings to pertussis booster 

immunization. This reduction might potentially put infants born to women immunized 

against pertussis in pregnancy at increased risk for pertussis disease later in their infancy. 

However, the clinical significance of these findings is not clear, as current surveillance 

data from the UK do not indicate that this reduction in anti-pertussis antibody levels is 

clinically significant 390. This is because incidence of pertussis disease in infants after 

primary and booster immunization did not increase years after the introduction of 

maternal pertussis immunization program in the UK390.   However, more data are needed 

to definitely assess the true clinical significance of such reduction as the cohort of infants 

born to pertussis-vaccinated women is increasing464.  

 

As current formulations of Tdap vaccines used in pregnancy also include tetanus toxoids 

and diphtheria toxoids, infants’ immune responses to TT and DT components of vaccines 

and vaccines conjugated these toxoids as carrier proteins (e.g. Hib vaccine, and PCVs) 

might also be modified. I found reduced immune responses to diphtheria and some SPN 

serotypes in infants born to women vaccinated with Tdap during pregnancy after primary 

and booster immunization, and a lower sero-protection rates for some SPN serotypes and 

diphtheria after primary immunization. This might increase the risk of infection with 

these pathogens in infants born to immunized women. Although diphtheria disease 

incidence has decreased since the implementation of 3 diphtheria-containing vaccine 
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doses, outbreaks do still occur, especially in low-middle income countries and among 

unvaccinated subjects465 . In high-income countries diphtheria is a rare disease466. In 

Canada, between 1993-2012, 19 cases were reported with a range of 0-4 cases 

annually467. This supports the need to enhance surveillance for diphtheria disease among 

infants born to women immunized against pertussis in infancy. The clinical significance 

of reduction of seroprotection rates against SPN is not clear and should be investigated by 

future research. While anti-SPN >0.35 ug/ml cut-off is used for licensure of 

pneumococcal vaccines, some studies showed that the COP are serotype-specific, and is 

different for protection against disease compared with colonization468, 469. In addition, 

there are changes in the pneumococcal vaccination programs in different countries and 

these should be considered in the setting of immunization in pregnancy. In the UK, PCV 

primary vaccination has been reduced from 2 primary doses followed by a booster dose 

to a one primary dose followed by a booster dose470. This meta-analysis showed also 

enhanced immune response to tetanus and Hib vaccine components was observed in 

infants born to women vaccinated with Tdap during pregnancy compared with infants of 

unimmunized women.  

 

The mechanism of interference has not been fully investigated. Inhibition of B cell 

activation through the FcγRIIB on B cells has been proposed as a possible mechanism of 

interference. Specifically, vaccine antigen–antibody complexes cross-link the B-cell 

receptor with the FcγRIIB, thus inhibiting antigen specific B-cell activation471. It was 

recently shown in a mouse model of influenza vaccination, that interference of influenza 

vaccination with maternal antibodies was antigen-specific and in a dose-dependent 



	 165	

manner. In addition, maternal immunization was associated with reduction in the number 

of germinal center B cells that differentiate into plasma cells and memory B cells, 

potentially explaining the durable effect of maternal immunization during pregnancy on 

booster immunization in infancy472. Other proposed mechanisms of interference include 

removal of vaccine antigen by macrophages through binding to FcR, although this has 

never been shown473. Inhibition of B cell via epitope masking is another suggested 

mechanism. In this mechanism, the B cell epitopes on a vaccine antigen(s) are covered by 

antibodies and thus are not recognized by B cells473. However, this does not explain the 

inhibitory effect observed following booster immunization.    

 

The association between Tdap administration in pregnancy and infants immunization 

PCV13 is probably mediated via anti-DT antibodies that are transferred to infants, 

because each of the 13 polysaccharides included in PCV13 is conjugated to CRM197 (a 

non-toxic mutant of DT). This is supported by finding from a recent meta-analysis that 

reported that maternal pre-existing anti-DT levels were associated with lower immune 

response to serotypes 4, 6B and 9V after vaccination with PCV-7, and lower response to 

19F (the only serotype conjugated to diphtheria protein) after vaccination with PCV-

10474. The mechanism of enhancement of immune response to TT and vaccines 

conjugated to TT is yet to be explored. Studies not in the setting of maternal 

immunization showed that vaccination with Hib vaccine conjugated to TT was associated 

with higher anti-PRP levels when given concomitantly with meningococcal serogroup C 

polysaccharide vaccine conjugated to TT, supporting the enhancement of 

immunogenicity of Hib vaccines conjugated to TT475, 476.  
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This meta-analysis also identified factors that have the potential to affect vaccine-induced 

immune response in the setting of maternal immunization. In pregnant women, high 

antigen-specific antibody levels are associated with higher anti-B. pertussis and anti-DT 

antibody levels at delivery. There are scarce data assessing the effect of pre-existing 

immunity on immune response to vaccination during pregnancy. Data from non-pregnant 

population showed a positive relationship between pre-vaccination antibody levels and 

post-immunization antibody response. Among young children (4 years of age), higher 

pre-vaccination influenza titres were associated with higher post-vaccination odds ratios 

for seroprotection477. Among subjects older than 61 years of age, those who were 

seronegative at time of vaccination, might not seroconvert after one dose of influenza 

vaccine478.  

 

Maternal age (range 16-44 years) was not associated with post-immunization antibody 

response. Age is an important factor affecting immune response to vaccination especially 

in the extremes of age (newborns and elderly) (reviewed in449). It is thus possible that 

within the range of age of pregnant women, this factor is not affecting immune response. 

Timing of vaccination during pregnancy was also not associated with immune response 

in this analysis. However, this should be interpreted with caution, as the included studies 

were not primarily designed to answer this question. In addition, antibody response to 

Previous studies showed that vaccination in the second trimester is associated with higher 

anti-B. pertussis antibody levels than vaccination in the third trimester479, and vaccination 
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in the early third trimester is associated with higher anti-B. pertussis antibody levels at 

delivery when compared with vaccination in the late third trimester439.    

 

I also found that high maternally-derived anti-PT and anti-DT antibody levels at primary 

immunization were independent factors associated with lower post-primary antibody 

levels to the same vaccine antigen. This inhibitory effect of maternal antibodies extended 

to booster immunization for PT. This finding is consistent with previous literature 

showing that high maternal antibody concentrations reduces infants’ vaccine immune 

responses to primary and booster immunization474. A recent meta-analysis found that 

preexisting maternally-derived antibody levels, not in the context of maternal 

immunization, were associated with inhibition of immune response to primary 

vaccination of 20/21 antigens including pertussis antigens (PT, FHA, PRN), diphtheria 

and tetanus474. The latter meta-analysis also showed that the inhibitory effect of maternal 

antibodies extended to booster immunization for PT, FHA and PRN.   Thus, my findings 

in this chapter further confirm these findings and extend them to infants born to women 

vaccinated against pertussis during pregnancy. These findings should stimulate the search 

for factors affecting antibody levels at primary immunization, for example timing of 

vaccination in pregnancy and delaying primary immunization. This is because 

vaccination early in pregnancy (the second trimester or early third trimester) were 

associated with higher B. pertussis-specific antibody levels compared to later times in 

pregnancy406, 437, 439.  The effect of timing of vaccination against pertussis in pregnancy 

on post-immunization anti-B. pertussis antibody levels is being investigated 

(NCT03908164). Delaying initiation of primary immunization beyond 2 months of age is 



	 168	

another approach and has been recommended in some HICs (the Netherlands)480. While 

delaying pertussis primary immunization in the context of maternal immunization might 

minimize the inhibitory effect of maternal immunization, additional aspects need to be 

considered. This approach might not be ideal for optimal protection against other 

vaccine-preventable diseases included in aP vaccine formulations (e.g. hepatitis B, Hib), 

for which delaying primary immunization might increase the risk for these infections.  

 

In addition to pre-existing antibody levels, I found that primary vaccination schedule at 

2,3,4 months, compared with 2,4,6 months schedule was associated with lower post-

primary anti-TT antibody levels and lower post-booster anti-PT levels, in infants born to 

women vaccinated and unvaccinated with Tdap during pregnancy.  Spacing of vaccine 

doses has been shown to affect post-immunization immune response with findings 

supporting that vaccine schedules that allow longer intervals between the vaccine doses 

are associated with higher immune responses. Infants immunized with a 2, 4, 6-months 

primary vaccination schedule had a significantly higher immune response to pertussis 

(measured by neutralization assay) than infants immunized with a 2-, 3, 4-months 

schedule481. In another study, immunization with 3, 5, 9-months schedule was associated 

with significantly higher antibody levels against diphtheria and tetanus, than 

immunization with 2, 3, 4-months schedule442.  

 

Age at initiation of primary vaccination was not found to affect post-primary and post-

booster antibody levels. This could be explained by the narrow range of initiation of 

primary vaccination in this subgroup (restricted to 2,3,4 or 2,4,6 primary schedules).   



	 169	

This meta-analysis highlights the need to enhance pertussis, diphtheria and invasive 

pneumococcal disease surveillance in countries implementing maternal pertussis 

programs in order to investigate the clinical significance of interference on vaccine-

preventable disease in infancy. In addition, this meta-analysis also highlights the need to 

determine the serological correlate(s) of protection for pertussis disease against which 

clinical trails results can be tested. This is of particular importance for countries where 

surveillance systems are not well established.  

 

This project has a number of strengths. This is the first detailed and longitudinal analysis 

of the largest number of samples combined to establish the effect of maternal pertussis 

immunization on immune response to different vaccine antigens, routinely given to 

infants worldwide. Given the individual-participant nature of this meta-analysis, I was 

able to determine seroprotection rates for some vaccine-preventable disease and 

investigate modifiable factors that could affect vaccine-induced immune responses in the 

setting of maternal pertussis immunization.   

 

This project has also some limitations. The lack of serological correlate of protection for 

pertussis disease, against which data can be tested, necessitates that these results should 

be backed up by epidemiological surveillance data. This meta-analysis included 

randomized and non-randomized studies. While adjustments for different co-variates 

were made in different analyses, there is still a potential of residual confounding. 

Residual confounding happens when there is error in measurement of a co-variate or 

when a confounding co-variate is not measured. An important limitation is that most 
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studies were conducted in HICs were aP is used in infants’ immunizations programs. As 

a significant proportion of pertussis cases are in low-middle income countries using 

whole cell pertussis vaccines, these data are less relevant to countries where whole-cell 

pertussis is being used for primary and booster vaccination.  
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5. Overall conclusions and future directions 

 

5.1 Conclusions  

	
During my PhD, I report that the highest morbidity and mortality from pertussis is among 

infants <2 months of age. Age of <16 weeks, encephalopathy and prematurity were 

independently associated with an increased risk for intensive-care unit admission. Age of 

<4 weeks and prematurity were independently associated with increased risk for death. 

These data determined the burden of pertussis disease among young infants in Canada 

and supported the recommendation for pertussis immunization during pregnancy because 

these young and highly vulnerable infants cannot be protected by the infant program 

which commences at 2 months of age.  

 

I also developed a novel analytical approach that allowed me to comprehensively 

characterize the full avidity profile of anti-pertussis antibodies using a range of bond-

breaking agent. Applying this methodology on cord samples collected from women 

vaccinated against pertussis during pregnancy I found that vaccination against pertussis 

during pregnancy was associated with high levels of high avidity antibodies. Pertussis 

vaccination during 28–32 weeks gestation was associated with higher anti-pertussis IgG 

avidity compared with vaccination during 33–36 weeks gestation. These findings support 

vaccination against pertussis during the early third trimester of pregnancy.  
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Using a meta-analysis of individual participant level data of antibody response after 

primary and/or booster immunization in infants born to mothers immunized against 

pertussis in pregnancy vs. unimmunized women, I found lower antibody levels to 

pertussis, diphtheria and some Streptococcus pneumoniae serotypes in infants born to 

women vaccinated against pertussis during pregnancy compared with infants of 

unvaccinated women. Furthermore, I found that antibody levels at time of primary 

immunization are the main determinant of this lower immune response in infants after 

their own vaccination.  These data provide evidence that immunization against pertussis 

in pregnancy modifies the infants’ active immune response to their own vaccination. This 

also supports enhanced surveillance of pertussis, diphtheria and invasive pneumococcal 

disease in infants to determine the clinical significance of this effect. This also supports 

delaying primary pertussis immunization in infants born to women vaccinated against 

pertussis during pregnancy.  

5.2 Future directions 

5.2.1 Further investigation of function of anti-B. pertussis antibodies 
	
 

Functions of anti-B. pertussis antibodies, other than avidity, should be explored by future 

research. This will be important and could be deployed to investigate correlates of 

protection against pertussis disease.   
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5.2.1.1. Anti-adhesion of anti- B. pertussis antibodies 
	
 

FHA and FIM are presumed to mediate adherence of B. pertussis to host tissues482. aP 

vaccines efficiently protect against the symptomatic disease of pertussis disease but fail 

to prevent colonization483. Thus, it is important to explore the effect of anti-B. pertussis 

vaccine-induced antibodies on colonization by testing the functionality of vaccine-

induced antibodies in inhibiting the bacterial adhesion in a cell culture. Adhesion assay 

offers the possibility to test the functionality of vaccine-induced antibodies in inhibiting 

the B. pertussis adhesion to the host cells. Indeed, during my PhD, I developed an assay 

that measures inhibition of anti-B. pertussis antibodies of the adhesion of B. pertussis to 

epithelial cells based on previous publication484 using B. pertussis Tohama 1 strain 

(Kindly provided by Dr. Rachel Fernandez, Department of Microbiology and 

Immunology, University of British Columbia, Canada). This assay can be used in future 

studies.  

5.2.1.2. Antibody-dependent complement deposition 
	
 

B. pertussis binds C4b-binding protein via its surface protein FHA. The host complement 

regulator C4b-binding protein inhibits complement activation (reviewed in485). Vaccines 

should contain antigen preparations that, in addition to inducing long-lasting immunity, 

can prevent suppression of the innate immune response by B. pertussis. To generate the 

membrane attack complex, antigen on the surface of the bacteria must complex with 

complement-fixing antibody. It is important to explore whether aP vaccines elicit 

deposition of complement on target cells. For example, studies with serum from 
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vaccinated subjects depleted and not depleted for complement can be used to test 

bactericidal activity of antibodies against pertussis.    

5.2.1.3. Antibody-dependent phagocytosis 
	
 

Neutrophils are an important part of the innate immune response, and opsonizing 

antibodies enable neutrophils to contribute to microbial clearance in the presence of an 

acquired immune response. Neutrophil infiltration was observed in the lungs of mice 

following aerosol challenge with B. pertussis486. Neutrophils contribute to clearance of B. 

pertussis, in a naive mouse model487. Two virulence factors (FHA and adenylate cyclase 

toxin) influence phagocytosis of B. pertussis by neutrophils488-490. Previous studies have 

shown that opsonization with a human immune serum could inhibit both attachment and 

phagocytosis of wild-type B. pertussis by neutrophils488-491.  

 

The role of antibody-dependent cellular phagocytosis in protection from pertussis has not 

also been established. During my PhD, I developed (Technologist, Tony Harn, Vaccine 

Evaluation Center, Vancouver, Canada) an assay to test the phagocytosis of B. pertussis 

antigen-antibody complexes based on previous literature492, 493. This assay can be used in 

future studies.   

 

5.2.1.4. Antibody-dependent NK cell activation 
	
 

Following B. pertussis infection of mice, NK cells provide the initial source of IFN–γ, 

which is essential for containing the bacteria within the respiratory tract494, and 
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promoting Th1 responses that mediate bacterial clearance257, 495. Depletion of NK cells 

resulted in dissemination of B. pertussis to the liver494. NK cells crosslink CD16 by 

antigen–antibody immune complexes and thus might contribute to immune responses 

after vaccination496. Antibodies produced after vaccination against pertussis could be 

tested for their NK cell activation.  

5.2.1.5. Antibody-dependent respiratory burst 
	
 

B. pertussis survives intra-cellularly within human polymorphonuclear leukocytes. 

Internalization of these bacteria is IgG dependent, and survival depends, at least in part, 

on inhibition of phagosome-lysosome fusion. Two purified exoproducts of B. pertussis, 

PT and adenylate cyclase toxin, have also been reported to inhibit phagocyte respiratory 

burst activity497-503. Antibodies produced after vaccination against pertussis should be 

tested for their inhibition of respiratory burst in human polymorphonuclear leukocytes.  

 

5.2.1.6. Neutralization of B. pertussis by anti-B. pertussis antibodies  
	
 

Toxins from B. pertussis induces clustering of Chinese hamster ovary cells504, and anti-B. 

pertussis antibodies with neutralizing activity against PT have been observed to inhibit 

this effect505. A significant rise in anti-PT antibodies titer by neutralization test was found 

in 70% of patients with culture-confirmed pertussis infection506. Thus, neutralization of 

B. pertussis by anti-B. pertussis antibodies following vaccination should be explored.		 
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5.2.2. Gaps in knowledge in immunization against pertussis during pregnancy 

  
 

Although during my PhD I have addressed critical gaps in knowledge related to 

immunization against pertussis in pregnancy, there are still important gaps in knowledge 

that should be addressed by future research 

 

5.2.2.1 The clinical significance of interference to pertussis immunization in 
pregnancy  
	
 

In Chapter 4, I found that infants of women immunized against pertussis in pregnancy 

had lower anti-B. pertussis, anti-diphtheria and anti-pneumococcal antibodies levels. 

Currently, there are data to support that there is no increase in pertussis incidence later in 

infancy in infants born to women immunized in pregnancy. However, enhanced 

surveillance should continue to ensure that this is not a clinical problem in the years to 

follow. This is also true for diphtheria and invasive pneumococcal disease, where 

surveillance needs to be enhanced and data provided by future research.     

 

5.2.2.2 Establishing the immune correlates for protection against pertussis disease  
	
	
This is important for further evaluation of maternal vaccination strategies as it might 

provide clues for clinical significance of lower anti-B. pertussis antibody levels in 

settings where surveillance is problematic (e.g. Low-middle income countries464). This 

could be studied from cohort studies in which pre-existing immunity (anti-B. pertussis 
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antibodies) is known and later subsequent infection with B. pertussis or not is captured. 

The association between pre-existing immunity and later infection could provide clues 

for potential correlate of protection.    

5.2.2.3 Understanding the cellular basis of the transplacental transfer of maternal 
anti- B. pertussis antibody 
	
 

\While it is now well established that FcRn mediates transfer of IgG across the placenta, 

involvement of other receptors should be explored and will aid in better understanding 

the cellular basis of the transplacental transfer of maternal anti- B. pertussis antibody and 

it’s relation with timing of delivery. This could be done using immunohistochemistry 

studies on placental tissues.   

5.2.2.4 Investigating the induction of anti-B. pertussis IgG subclasses  
	
 

Investigating the induction of B. pertussis IgG subclasses after vaccination could help 

evaluate new pertussis vaccines. Vaccines capable of inducing IgG1 and IgG3 will be 

preferable to be used in pregnant population as it will be expected that these vaccines will 

lead to higher anti-B. pertussis antibodies in newborns and infants.  

5.2.2.5 The effect of timing of immunization during pregnancy on the function of 
anti- B. pertussis antibodies 
	
 

During my PhD, I found that vaccination early in the third trimester is associated with 

higher anti-B. pertussis antibody levels in newborns compared to vaccination in late third 
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trimester, confirming my previous findings in a more detailed approach. However, it will 

be important also to explore the effect of timing of immunization during pregnancy on 

other functions of anti- B. pertussis antibodies. Such data will provide further support to 

immunization at a specific time window.   

5.2.2.6 The mechanism(s) of interference and modifiable factors that can mitigate it 
	
 

The exact mechanism of interference needs to be explored. One of the mechanisms that 

has not been explored is removal of vaccine antigens by macrophages. This could be 

done using assays that measure the phagocytic activity of anti-B. pertussis antibodies 

generated after immunization in pregnancy compared to antibodies from unimmunized 

host. If interference is found to have clinical significance in the future, modifiable factors 

that can mitigate this effect need to be explored. An important modifiable factor is timing 

of vaccination during pregnancy.  

5.2.2.7 Maternal health conditions and placental conditions that affect transfer of B. 
pertussis IgG across the placenta  
	
 

It will be important to investigate maternal health conditions that could affect the transfer 

of anti-B. pertussis after vaccination in pregnancy. For example, the effect of maternal 

HIV infection on transfer of anti-B. pertussis antibodies have not been explored 

following maternal immunization. In addition, placental conditions (insufficiency, 

malaria) that affect transfer of B. pertussis IgG across the placenta also needs to be 

explored.  



	 179	

5.2.2.8 The additional protective effect of breastfeeding in the protection against 
pertussis in young infants and the duration of persistence of antibodies in breast 
milk 
	
 

My previous work before my PhD, and consistent with others, have shown that 

immunization against pertussis in pregnancy results in induction of anti-B. pertussis 

antibodies measured up to 8 weeks after delivery507, 508. However, the duration of 

persistence of antibodies in breast milk of pregnant women immunized against pertussis 

in pregnancy beyond 8 weeks has not been explored. It will also be important to 

investigate whether this has clinical significance. However, this might be challenging due 

to the large number of infants needed to answer this question where clinical outcome 

(infection with pertussis or not) needs to be linked to breastfeeding status.  
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