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Abstract

This thesis explores two investigations into improving the detachment strength and load distribution at the interface

of dry bio-inspired fibrillar adhesives subjected to normal loading. The first is in how interfacial curvature affects the

load sharing efficiency of engineering prototypes. Previous investigations unraveled the benefits of backing layer (BL)

thickness in counteracting the detrimental load concentration created by interfacial misalignment. However, little

attention was dedicated to the role of interfacial curvature on load distribution and the resulting adhesive strength.

Based on the concavity of the curvature, the adhesive can detach more easily or develop stronger adhesion, compared

to a flat-on-flat interface. This suggests the possibility to actuate curvature and better control adhesion. The

curvature-induced strengthening/weakening of the adhesive was analyzed in combination to BL thickness, interfacial

misalignment, and imperfections in the fibril length distribution. Detrimental load concentrations, created by BL

interaction and interfacial misalignment, drastically reduce when the curvature prompts larger stretch to the central

fibrils. This also mitigates load concentrations created by uneven fibril length distribution. These beneficial effects

are reverted when the curvature prompts larger stretch to the peripheral fibrils. The quantitative analysis provides

a design tool for stronger and more controllable adhesives.

The second investigation is into an asymptotic solution to the optimal compliance distribution attributable to fibrils

within the array. The optimal compliance distribution allows the adhesive to achieve equal load sharing (ELS)

which is its theoretical maximum strength i.e all fibrils carry the same load and detach simultaneously. The array

of fibrils is modelled as a continuum of linear elastic material that cannot laterally transmit load (analogous to a

Winkler soil). Ultimately, the closed form solution for the continuum distribution of fibril compliance is obtained

and compared to the data from a discrete model. The results show improving accuracy for an incremental number

of fibrils and smaller center to center spacing. Surprisingly, the approximation introduced by the asymptotic models

shows reduced sensitivity of the adhesive strength with respect to misalignment and improved adhesive strength for

large misalignment angles.
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Lay Summary

Fibrillar adhesives are inspired by the reversible adhesive mechanisms found on small creatures such as the gecko.

These creatures have shown the ability to attach and detach controllably to scale up vertical surfaces relying entirely

on the hierarchical fibrillar structures on their toe pads. Synthetic mimics of these mechanisms are in the prototype

stage and can benefit from the incorporation of beneficial or optimized geometric design principles. This work studies

demonstrates how introducing a curvature throughout the array and tailoring each fibril to a calculated value will

improve the strength and controllability of adhesion.
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1 Introduction

1.1 Applications for Reversible Adhesives

Reversible adhesion has significant applications in growing fields of research and exploration. Climb-

ing robots can greatly benefit in their efforts in extraterrestrial and terrestrial exploration. The

handling and insertion of gaskets in microfluidics could be greatly facilitated with reversible adhe-

sives allowing for simple attachment and removal. There is also applications in mechanical grippers

or pick and place handlers as there is a need to handle objects non-destructively without relying

on vaccuum or cappillary forces. These applications are compatible with two modes of detach-

ing a reversible adhesives, through either shear or orthogonal detachment. This work focuses on

applications of orthogonal adhesives.

Figure 1: Generalized depiction of a dry fibrillar reversible adhesive.

1.2 Inspiration for Fibrillar Adhesives

Researchers have looked to nature for inspiration to develop dry reversible adhesive mechanisms.

Many species of insects and small creatures such as the gecko possess reversibly adhesive mechanisms

at their toe pads that allow them to scale vertical surfaces[1–4]. Geckos are of particular interest due

to their relatively large mass. Research into the gecko’s toe pads reveals hierarchical structures that

consist of lamellae, setae and spatulae [5]. The end structures of this hierarchy are the spatulae,

which are sub-micrometer in diameter while several micrometers in length scale. The predominant

contributor to the adhesive ability of these structures are the van der waals interactions that occur

between the fibril tips and the substrate [6, 7]. Van der waals interactions are weak short ranged

interactions which suggests that mechanics play a role in determining the strength of these adhesives.
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(a) A continuum adhesive interface

(b) A sub-divided adhesive interface

Figure 2: Showcasing the crack propagation and re-nucleation in continuum and discrete adhesive interfaces.

1.3 Mechanics of Fibrillar Adhesion

Fibrillar adhesives are able to provide strong adhesive strength for a multitude of reasons. For in-

stance, the discrete contact points of the fibrils themselves means that for detachment to propagate,

it must be re-nucleated for every fibril [8]. The is analogous to the method of crack trapping, which

is used to toughen a continuum [9]. The fibrils are also capable of conforming to surface roughness

without accumulating significant amounts of strain energy in both natural systems and synthetic

mimics [10–13].

There is also an inverse scaling effect that occurs. This results in the adhesive force increasing with

a greater subdivision of terminal structures [14, 15]. Subdividing the contact area results in a larger

surface area to volume ratio and less sensitivity to variations in tip geometry which leads to a more

uniform stress distribution at the interface [15, 16]. In this case, detachment occurs due to cohesive

stress rather than via propagation of an interfacial defects. Cohesive detachment emerges from the

absence of load concentration, a condition called equal load sharing (ELS) where local detachment

of a fibril occurs only when the theoretical strength of adhesion is exceeded. This increases the
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strength of adhesion since variations in tip geometry and the induced stress concentrations are

what cause failure to propagate and reduce overall strength [17, 18]. It should be noted that the

absence of stress concentrations is only true below a critical size. The gecko’s terminal adhering

structures are at a nanometer-scale where as modern manufacturing capabilities cannot go below

the micron-scale.

1.4 Established Design Principles

Manufacturing synthetic mimics at feasible length scales does not result in flaw insensitivity or

conformation to finer surface asperities. This has led engineers to incorporate design strategies

that mitigate load concentrations and strive towards ELS. Typically, the materials chosen to mold

fibrillar dry adhesives are polydimethylsiloxanes (PDMS) and polyurethanes (PUs). These materials

provide flexibility due to their low elastic moduli and can experience large strains at their break

point. These culminate to provide good adhesive traits as the low stiffness leads to a slow build up

of strain energy within the material.

Designs have begun to incorporate refined tip geometries as shown in Figure-??. Tip geometries

that feature soft mushroom tips perform up to an order of magnitude greater than the conventional

flat punch design due to their ability to mitigate edge stress concentrations and optimize adhesive

strength [3, 19–21]. There has also been strategies that adopt stiffness grading along the longitudinal

axis of the fibrils. This involves soft fibril tips while keeping stalks sufficiently rigid to avoid their

mutual adhesion (fibril condensation). There is evidence to suggest that there are stiffness gradients

throughout the setae of the adhesive pads of insects, which soft tips have the additional ability to

better conform to surface roughness [22–24]. A similar approach has also been investigated for

synthetic mimics to define new engineering design principles for these adhesives to enter a flaw-

tolerant regime [25–27].

All of the above-mentioned investigations have been mainly focused on improving the design of

the single adhesive unit and less attention has been dedicated to the design of these adhesives

at the array scale. Engineers have incorporated a compliant backing layer (BL) into patterned

microstructures which proves to be beneficial in the presence of misalignment at the interface

and also helping micropillars conform to surface asperities [10–13, 24, 28]. The drawback of a

3



(a) Mushroom tip (b) Spherical tip (c) Concave tip (d) Flat tip

Figure 3: Showcasing common tip geometries implemented for fibrillar adhesive design.

circumferential load concentration at the edge of the array [29]. This reduces the strength or load

sharing efficiency of the adhesive in the aligned case due to the mechanical coupling of backing

layer interactions[24, 28]. The effects of BL compliance were calculated using contact mechanics

solutions with the assumption that the BL is an infinite elastic half space. However, the effects are

dependant on the thickness of the BL in proportion to a single fibril.

To counteract the non-uniformity in loading of fibrils incurred from the BL interactions, researchers

have proposed the spatial tailoring of fibril stiffness [28, 30]. This results in ELS or the load

being carried by each fibril being uniformly distributed throughout the array, hence leading to

simultaneous detachment. Bacca et. al (2016) suggests a numerical model to determine the optimal

compliance distribution of the fibrils within the array. This, however, comes with a computational

cost and without the numerous benefits of an analytical solution. Of particular importance is the

link between the physical properties of the adhesive and the contrast between the softest fibrils and

the stiffest ones.

1.5 Objectives and Outline

Since engineered prototypes for reversible adhesives are incapable of operating within the flaw

insensitive regime, a macroscopic model that provides quantitative design guidelines can aid the

development of this technology. A currently unexplored strategy to reduce array-level load concen-

trations is the use of interfacial curvature. This work explores the effects of interfacial curvature

in combination with interfacial misalignment, BL thickness and imperfections in fibril length dis-

tribution. Depending on the concavity of the curvature, the adhesive strength can be enhanced or

4



drastically reduced. This provides the theoretical basis for the development of actuated interfacial

curvature for enhanced adhesion control, i.e. strong adhesion and ease of detachment. A curvature

incrementing the stretch of central fibrils produces an increment in adhesive strength, compared

to a non-curved interface (flat-on-flat). This is because such an interfacial curvature counteracts

BL interaction and the benefits are proportional to BL thickness. The incremented strength also

produces a better resistance to interfacial misalignment and to imperfections on the fibril length

distribution.

This work also proposes an asymptotic model, providing an analytical solution for the optimal

compliance distribution for reversible adhesives in normal loading which overcomes the limitation

of the numerical solution. The model represents the collection of fibrils as a continuum made of a

linear elastic material that cannot laterally transmit load, analogous to a Winkler soil. The solution

can be obtained in closed form for various shapes of the contact region between the adhesive and

the adhered substrate. The solution is derived for the case of arrays with circular and square shapes

since they provide symmetry and are relevant to engineering prototypes. However, the applicability

of the method can extend to any array shape. The results obtained can be generalized to the case

of an adhesive interface populated by brittle bonds of varying compliance. When the distribution of

compliance matches the one proposed from the analytical model, the interface will reach maximum

theoretical strength by minimization of stress concentration at its surface. This phenomenon has

been experimentally observed in shear adhesion [31].
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2 Design and Methods

2.1 Displacement Input Model and Analytical Solution for Rigid Backing Layer

This section covers the computational model that considers how BL thickness and curvature affect

fibrillar detachment and the maximum detachment strength. First the model is constructed using

contact mechanics solution for an infinite BL. Next the model is tailored for finite thickness BL

that more accurately captures prototype geometry. The section concludes with the derivation of the

analytical solution for the detachment strength of a rigid BL array with both interfacial curvature

and misalignment.

2.1.1 Displacement Input Model for an Infinite Thickness Backing Layer

The computational model used in this work was run in MATLAB to calculate fibrillar detachment

and load sharing efficiency and expands on the purely linear elastic models utilized in previous works

[24, 28, 32, 33]. This model considers the adhesive as a homogeneous linear elastic material with

Young’s modulus E and Poisson’s ratio ν that consists of an array of N cylindrical fibrils protruding

from the surface of the BL as shown in Figure-4. The BL has a thickness H where as each fibril is of

height h and stalk radius a. The fibrils in the array are packed with orthogonal distribution along

the x and y-axes. Such a distribution is chosen due to mathematical simplicity, despite a hexagonal

distribution along non-orthogonal axis providing more efficient packing. However, for the case of

large and densely packed arrays, the influence of fibril packing on the final results is negligible.

The presence of interfacial misalignment and curvature are considered in the generalized displace-

ment of the fibril tips. Interfacial misalignment in the x and y directions are defined by the misalign-

ment ratios λx = tan θxz and λy = tan θyz, respectively, with θxz and θyz being the misalignment

angles. The interfacial curvatures in the x and y directions are identified as κx = 1/Rx and κy = 1/Ry

where Rx and Ry are the radii of curvature. The displacement at the tip of fibril i then becomes

ui = u+ λxxi + λyyi + κxx
2
i

2 + κyy
2
i

2 (1)

where xi & yi are the coordinates of the centre of fibril i with respect to the coordinate system

shown in Figure-4 and u represents the displacement of the rigid substrate (RS). For the purpose

6



of this study, the interfibrillar spacing is constant throughout the array and denoted as d.

Figure 4: Schematic of the model simulating the detachment of the fibrillar adhesive

By performing a force balance on the adhesive system in Figure-4, it becomes apparent that the

total force must be equal to the sum of the axial forces of all attached fibrils within the array.
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F =
N∑
i=1

fi (2)

The above expression can be normalized to represent what percentage of the maximum theoretical

adhesive strength is being exerted on the array. This is done as:

F̃max = F

Nfmax
(3)

where fmax is the maximum local strength of adhesion of a single fibrillar unit. The value of F̃max

is also an indication of how well the adhesive strength of a single fibril scales throughout the array.

As for contact between the fibril tip and the RS, it is assumed that perfect contact and adhesion

occurs.

The total displacement of a fibril tip ui is also expressible as the combination of the axial strain

experienced by fibril i and the BL deformation beneath it. This can be expressed as a superposition

of the two deformations and is given in the equation:

ui = ufibi (fi) +
N∑
j=1

uBLi (fj) (4)

where ufibi (fi) is simply the elongation due to axial strain within the fibril given by Equation-5.

The second term, ∑N
j=1 u

BL
i (fj) is the total BL deformation directly below fibril i due to the pulling

force exerted onto the BL by all active fibrils in the array (j ∈ Z ∩ [1, N ]).

ufibi (fi) = hfi
πa2E

(5)

The BL deformation underneath fibril i due to force fi was taken to be the average value of the

contact mechanics solution for the surface displacements on an infinite elastic half space caused by

a uniform stress applied over a contact radius a [34]. This computes to the expression given in

Equation-6 below where E∗ = E/1−ν2.

uBLi (fi) = 16fi
3π2aE∗

(6)

The pulling force fj that causes BL deformation underneath fibril i for i , j can be approximated
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as a concentrated normal force acting on the surface of an elastic half space [28]. The contact

mechanics solution for this provided by [34] is given in Equation-7 below where rij is the radial

distance between fibrils i & j. The superposition of displacement profiles from a concentrated force

and Euler-Bernoulli beam in bending are validated in Appendix B.

uBLi (fj) = fj
πE∗rij

for j , i (7)

The total displacement of the fibril tip given in Equation-4 can be expressed as a linear combination

of Equation-5, Equation-6, Equation-7 and fj. This results in the height of any fibril tip ui being

expressible as a product of a compliance matrix and a vector of the fibrillar forces acting throughout

the array as shown in Equation-8.

ui = Cij · fj (8)

The components of the compliance matrix are given in Equation-9a and Equation-9b.

Cij = 1
πrijE∗

, for j , i (9a)

Cij = 1
πaE∗

 16
3π + h

a(1− ν2)

, for j = i (9b)

By inverting Equation-8, the force in any fibril j can be obtained from the stiffness matrix Kji and

the known displacement at the tip ui.

fj = Kji · ui (10)
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2.1.2 Dimensional Analysis and Numerical Implementation of Model

All variables of length dimension are made relative to the radius of a fibril a except for the fibril

tip displacement ui. These variables are expressed below for reference.

r̃ = r

a

h̃ = h

a

d̃ = d

a

x̃ = x

a

The fibril tip displacement ui is scaled by un = πaE∗

fmax
which is the nominal displacement. This

scales the initial fibril tip displacements as shown in Equation-12 where κ̃x = κxa2/un, κ̃y = κya2/un,

λ̃x = λxa/un, λ̃y = λya/un and ũ = u/un.

ũi = ũ+ λ̃xx̃i + λ̃yỹi + κ̃xx̃
2
i

2 + κ̃yỹ
2
i

2 (12)

This also results in the dimensionless form of Equation-8 and Equation-9 taking the form of:

ũi = f̃j
r̃ij
, for j , i (13a)

ũi = f̃j

 16
3π + h̃

(1− ν2)

, for j = i (13b)

where f̃j = fj/fmax is the force exerted by fibril j, relative to the local detachment force. When

the model computes any f̃j ≥ 1, local detachment occurs so the force from these detached fibrils is

re-written as f̃j = 0. The stiffness matrix Kji is iterated down to an Na×Na array, where Na is the

remaining number of attached fibrils. This new stiffness matrix is used to recalculate the force in

the still attached fibrils, without the affects of the mechanical coupling between the detached fibrils

and the backing layer.

By summing all dimensionless fibrillar forces and dividing by the number of fibrils, one obtains

the expression for load sharing efficiency given in Equation-3. This allows for the final expression
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Equation-14 below which relates load sharing efficiency to the dimensionless displacement input

model.

F̃max =
∑N
j=1Kjiũi

N
(14)

2.1.3 Correction for Finite Thickness Backing Layers

The solutions for backing layer deformation provided in Equation-13, treat the backing layer as an

elastic half space that is infinitely thick and wide compared to the radius of a single fibrillar unit.

In other words, a � H & a � L where L = (nx−1)d/2 is considered the characteristic length of the

array. This assumption is not physically accurate for the backing layers in adhesive samples utilized

in prototype development. A typical adhesive sample is shown in Figure-5a, Figure-5b and Figure-6

where L/a ≈ 175 and H/a ≈ 20.

(a) Top view of an adhesive sample. (b) Front view of an adhesive sample.

Figure 5: A typical adhesive sample utilized in prototype development.

Figure 6: Labelling the physical dimensions of the adhesive sample shown in Figure-5a and Figure-5b.

To the author’s knowledge, an analytical solution for non-infinite bodies has not been derived,

so to correct for physical inaccuracies empirical correction factors were calculated by performing
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parametric studies in finite element analysis. This results in Equation-13a and Equation-13b taking

on the modified forms below.

ũi = βf̃j
r̃γij

, for i , j (15a)

ũi = f̃j

α16
3π + h̃

(1− ν2)

, for i = j (15b)

The values of the correction factors were calculated using the surface level displacements experienced

by BLs of varying thicknesses caused by a uniform stress σ applied over a circular region of a =

0.1mm. Utilizing radial symmetry, a planar section of the backing layer was modelled in ABAQUS

with L̃ = L/a = 175 as shown in Figure-7. The lower face of the model was fixed from displacing

along the z-axis and x-axis, while the top face acts as a free deformable surface.

Figure 7: The boundary conditions and loading applied to the planar section model used in the finite element
analysis. The model computes the dimensionless displacement ũBL against radial coordinate r̃ at various values of
dimensionless BL thickness H̃.

Once a dimensionless thickness H̃ = H/a is prescribed, the dimensionless displacements ũ =
uπE∗a/f = uE∗/σa at the surface are calculated. These are recorded as a function of the dimen-

sionless distance from the center of the loaded zone r̃. The average displacement in response to

a unit force for within the loaded region of Figure-7 or r̃ ≤ 1 was calculated using trapezoidal

integration and is given by Equation-16.

〈ũBL〉 = α16
3π (16)

The parameter α is a function of the dimensionless backing layer thickness H̃ given by Equation-17

and plotted in Figure-8.
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α(H̃) = 1− 1
1 + 1.232H̃0.809

(17)

Figure 8: The fitting of the empirical correction factor α as a function of H̃.

The displacement in response to a unit force outside the loaded region in Figure-7 or r̃ ≥ 1 is plotted

with Equation-18.

ũBL = β

r̃γ
(18)

Similar to α, the parameters β and γ are functions of the dimensionless BL thickness H̃. Equation-

19a and Equation-19b are the expressions for the parameters β and γ respectively. Figure-9a and

Figure-9b show the plots for the respective parameters as well.

β(H̃) = exp 53.15H̃−1.688 (19a)

γ(H̃) = exp 10.82H̃−1.065 (19b)

As can be seen in Equation-17 and Equation-42, for the case of H̃ −→ ∞, α, β, γ = 1. This means

that Equation-15 approaches the theoretical solutions of an infinite elastic half space expressed in

Equation-13.While for the opposite case of H̃ −→ 0, α = 0 and β, γ = ∞ which results in ũBL = 0

or also known as the scenario of a rigid BL. The BL compliance that results from Equation-18 is
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(a) The fitting of the empirical correction factor β as a function of H̃

(b) The fitting of the empirical correction factor γ as a function of H̃

Figure 9: The fitting of the power function parameters in Equation-42
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plotted as function of r̃ for different BL thicknesses in Figure-10.

Figure 10: The value of the BL compliance as a function of r̃ & H̃ for i , j.

As for the case of a rigid BL, only fibril stretch contributes to ũi, so the compliance matrix takes

the form expressed in Equation-20 where δij is the Kronecker delta.

Cij = δij
h̃

1− ν2 (20)

The width of the model was then verified to be sufficiently large by comparing the surface displace-

ments of two models with L̃ = 175 & L̃ = 350 for H̃ = 10. It was found that these displacements

were identical to four decimal places for the two models, indicating that the width was large enough

to not be a factor in the displacement of the BL surface.

2.1.4 Analytical Solution for Maximum Load Sharing Efficiency in the Presence of Interfacial Cur-

vature and Misalignment

The solution for the maximum load sharing efficiency of a fibrillar array with a rigid BL was

originally proposed in [35]. Here it is expanded upon to account for misalignment at the interface.

For simplicity, we assume that λ̃y = κ̃y = 0 . Using Equation-20, one sees that the force experienced

within the fibril only depends on the tip displacement of the same fibril. Inverting and multiplying
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by Equation-12, one arrives at Equation-21 below.

f̃i = (1− ν2)
h̃

(
¯̃u+ λ̃xx̃i + κ̃xx̃

2
i

2

)
(21)

The total dimensionless force is obtained by substituting Equation-21 into Equation-3 which results

in

F̃ = (1− ν2)
h̃

(
¯̃u+ 1

N

Na∑
i=1

(
λ̃xx̃i + κ̃xx̃

2
i

2
))

(22)

where Na is the number of fibrils still attached to the RS, with 0 ≤ Na ≤ N . It has been shown

in [28] that dF̃/d¯̃u < 0 for Na < N for a rigid BL array. Hence the F̃ = F̃max occurs when the first

fibril detaches with Na = N . This occurs when the RS reaches a critical separation ¯̃u∗ where a row

of fibrils at x̃∗i experiences the maximum local force fmax. By setting f̃i = 1, ¯̃u = ¯̃u∗ & x̃i = x̃∗i in

Equation-21, one obtains the expression for the critical separation.

¯̃u∗ = 1− ν2

ĥ
−
(
λ̃xx̃i + κ̃xx̃

2
i

2

)
(23)

By substituting Equation-23 into Equation-22, the expression for the maximum detachment strength

as

F̃max = 1 + (1− ν2)
h̃

(
1
N

Na∑
i=1

(
λ̃xx̃i + κ̃xx̃

2
i

2
)
− λ̃xx̃∗ −

κ̃xx̃
∗2

2

)
(24)

For κ̃x ≥ 0, first detachment occurs at the perimeter of the adhesive. Therefor x̃∗ = ±(nx − 1)d̃/2

where the sign is that of λx. For κ̃x < 0, first detachment occurs near the center of the adhesive or

more precisely where the maximum initial strain occurs. This is calculated by solving dũ
dx̃

∣∣∣∣∣
x̃=x̃∗

= 0

for x̃∗ and rounding to the nearing value of x̃i which yields x̃∗i . The expression for x̃∗ is shown in

Equation-25 below.

x̃∗ = − λ̃x
κ̃x

(25)

If one were to assume that x̃∗ ≈ x̃∗i , then Equation-24 can be simplified to Equation-26. Note that

the maximum value of x̃∗ is ±(nx − 1)d̃/2. The results of the analytical solution are compared to
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the numerical model in Figure-11.

F̃max

∣∣∣∣∣
κ̃x<0

= 1 + (1− ν2)
h̃

(
1
N

Na∑
i=1

(
λ̃xx̃i + κ̃xx̃

2
i

2
)

+ λ̃2
x

2κ̃x

)
(26)

Figure 11: The results from the analytical solution in Equation-26 (dashed lines) are compared against the numerical
solution (solid lines) for a fibrillar array having a rigid BL.

2.2 Numerical and Analytical Solution for Optimal Compliance Distribution

This section focuses on the numerical and analytical solutions for optimal compliance distribution

throughout a fibrillar array. The section first covers the numerical compliance optimization method

that was proposed by Bacca et. al. (2016). Then, the numerical solution is expanded upon with an

asymptotic approximation that treats the array of fibrils to be a continuum of linear elastic material

without any lateral load transmission (analogous to a Winkler soil). This results in the analytical

solution at the end of the section.

2.2.1 Numerical Solution for Optimal Compliance Distribution

The condition of ELS is that at which each fibril tip transmits its maximum load at detachment,

hence
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fi = fmax ∀i (27)

with all fibrils detaching simultaneously. This also implies that

ui = ūc + λdxxi ∀i (28)

where ūc is the critical prescribed separation and λdx is the design misalignment. For simplicity,

only misalignment in the xz-place is considered. Substituting Equation-27 and 28 into Equation-8

one obtains

ūc
fmax

+ λdx
fmax

xi = 16
3π2E∗BLai

+ c∗i +
N∑

j=1,j,i

1
rij

(29)

where the optimal compliance can be expressed as

c∗i = hi
(1− ν2)πa2

iE
∗
f,i

(30)

Equation-29 averaged over the whole array gives

ūc
fmax

+ λdx
fmax

1
N

N∑
i=1

xi = 16
3π2E∗BLai

+ cm + 1
N

N∑
i=1

(
N∑

j=1,j,i

1
rij

)
(31)

where the average fibril compliance is

cm = h

(1− ν2)πa2Ef
(32)

with h and a the mean stalk length and radius of the fibrils and Ef being the nominal value of the

Young modulus. Equating Equation-29 and 31 results in

c∗i = cm + 1
πE∗BL

[
1
N

N∑
i=1

(
16

3πai
+

N∑
j=1,j,i

1
rij

)
−
(

16
3πai

+
N∑

j=1,j,i

1
rij

)
+ λdx
fmax

(xi − xm)
]

(33)

with xm = 1/N
∑
xi being the average fibril position along the x-axis. The solution proposed in

Equation-33 is valid for any array shape, but comes with the computational cost of N2 operations.

18



2.2.2 Asymptotic Approximation and Analytical Solution for Optimal Compliance Distribution

An array of fibrils can be considered asymptotically as a continuum of linearly elastic material

without lateral load transmission. This results as BL interactions being the only mean of mechanical

coupling. The contact stress σ transmitted from the RS to the BL is defined as a function of position

via σ(x, y). This stress is homogenized from the load applied to the single fibril i via the relation

σ(xi, yi) = fi/d2. The accuracy of this asymptotic homogenization is inversely proportional to d.

Applying the conditions of ELS at detachment, the homogeneous contact stress is calculated as

Equation-34.

σ(x, y) = fmax
d2 (34)

This principal is expanded upon to obtain a function c∗(x, y).First, Equation-28 can is expressed as

the displacement of the backing layer and the elongation of a fibril as shown in Equation-35.

ūc = uBL(x, y) + ∆h(x, y) (35)

The elongation of a fibril, ∆h can be expressed with the optimal compliance and the force from

Equation-27.

∆h(x, y) = c∗(x, y)fmax (36)

where c∗(xi, yi) = c∗i . Substituting Equation-35 into Equation- 36 one obtains

ūc
fmax

+ λdx
fmax

x = uBL(x, y)
fmax

+ c∗(x, y) (37)

which can also be averaged over the area of the entire array to obtain

ūc
fmax

+ λdx
fmax

xm = uBL,m
fmax

+ cm (38)

where uBL,m = 1
A

∫
A uBL(x, y)dA is the average BL displacement and xm is the x coordinate of the

contact region’s centroid given by xm = 1
A

∫
A xdA. Next, by equating Equation-37 and Equation-38

one obtains the expression for c∗(x, y) in Equation-39
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c∗(x, y) = uBL,m − uBL(x, y)
fmax

+ cm + λdx
fmax

(x− xm) (39)

2.2.3 Dimensional Analysis for Numerical Solution

Equation-33 is divided by cm to obtain

c∗i
cm

= 1 + ρREf
hE∗BL

(Ψm −Ψi) + λdx
(xi − xm

∆hm

)
(40)

where

ρ = πa2

d2 (41)

is the fibril stalk density and

Ψi = ΓR
N

(
16

3πai
+

N∑
j=1,j,i

1
rij

)
(42a)

Ψm = 1
N

N∑
i=1

Ψi (42b)

are factors that depend on the position of the fibril within the array. Furthermore the parameter Γ

is a geometrical factor associated with the array shape and is defined in Equation-43.

Γ = Nd2

πR2 (43)

Note that R is the characteristic length of the contact area with R = (nx−1)d/2. Finally ∆hm is the

average fibril elongation at detachment and is expressed in Equation-44.

∆hm = cmfmax (44)

For dense arrays with a large number of fibrils, one can assume A ' Nd2 resulting in Γ ' 1 when

the array is circular and Γ ' 4/π when the array is a square.
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2.2.4 Dimensional Analysis for Analytical Solution

The optimal compliance in Equation-39 can be re-written as relative to the average compliance as

shown in Equation-45. Note that where Ef is the average fibrillar Young’s modulus.

c∗(x, y)
cm

= 1 + ρREf
hE∗BL

(
ũBL,m − ũBL(x, y)

)
+ λdx

∆hm
(x− xm) (45)

where the variable ũBL is shown in Equation-46.

ũBL = E∗BLd
2

fmaxR
uBL (46)
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3 Results

3.1 Interfacial Curvature in Finite Thickness Backing Layers

3.1.1 The Effect of Curvature in Finite Thickness BL Arrays

The evolution of F̃ versus ˜̄u for two adhesives with H̃ = 15 and H̃ = 40 is shown in Figure-12

below. Both adhesives have N = 1024 fibrils with h̃ = d̃ = 5 and λ̃x = λ̃y = 0. The curvature

κy = 0 while κx changes from −0.0006, 0 & 0.0006. A positive curvature increments the stretch of

peripheral fibrils (Figure-4), hence increases load concentration at the edge of the array. This effect

superposes to that of BL interaction and prompts earlier detachment of the adhesive, compared to

a system with no curvature. This in agreement with Figure-12, where κx > 0 results in a lower

F̃max compared to κx = 0. Conversely, a negative curvature counteracts the load concentrations

created by BL interactions, thereby generating higher strength. Figure-12 reports higher F̃max for

κ̃x < 0 than for κ̃x = 0.

Figure 12: Dimensionless force F̃ versus displacement ˜̄u for a fibrillar adhesive having N = 1024, λ̃x = λ̃y = 0, H̃ = 15
and H̃ = 40 and three values of κ̃x as indicated. Circular markers correspond to ˜̄u = 9.9 which is the point of
detachment for κ̃x = 0 and H̃ = 15, while square markers correspond to ˜̄u = 12.8, the point of detachment for κ̃x = 0

Figure-12 also reports square marks in the three force-displacement curves of H̃ = 40 at ˜̄u = 12.8,

which is the critical separation generating the peak force for κ̃x = 0. The circle markets in the three
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force-displacement curves of H̃ = 15 at ˜̄u = 9.9 which is a post peak force separation. The fibril

stretch and load distribution occurring within the array configurations associated with the square

and circle marks are visualized Figures-13,14.

Figure 13: Dimensionless force F̃ versus displacement ˜̄u for a fibrillar adhesive having N = 1024, λx = λy = 0.

Figure 14: Dimensionless force F̃ versus displacement ˜̄u for a fibrillar adhesive having N = 1024, λx = λy = 0.
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Figure-15 correlates the dimensionless detachment strength F̃max with BL thickness H̃, for various

curvatures κ̃x. The adhesive has N = 2500, h̃ = d̃ = 5, and we adopt λ̃x = λ̃y = 0 and κ̃y = 0. As

previously observed [28], a thick BL reduces the detachment strength of the adhesive in the absence

of interfacial misalignment, while a thinner one provides higher strength due to a reduced BL inter-

action. As deduced from Figure-15, the curvature-induced strengthening observed in the previous

figures applies only for relatively thick BL. Conversely, for thin BL negative curvature results in

strength reduction. This is due to the proportionality of BL interaction with H̃. BL interaction

produces load concentration to the peripheral fibrils, while negative curvature concentrates the load

to the center of the adhesive. The interplay between these competing phenomena defines the load

share within the array, and if one prevails the other, the result is a greater non-uniformity in load

sharing with consequent strength reduction.

Figure 15: The load sharing efficiency of arrays with constant κ̃x and increasing BL thickness. The arrays have
characteristics N = 2500 and h̃ = d̃ = 5

Figure-16 correlates F̃max with κ̃x, for various combinations of d̃, h̃, andN . The adhesive has H̃ = 25

and we adopt λ̃x = λ̃y = 0, and κ̃y = 0. A positive κ̃x = 0 always reduces F̃max because the edge

load concentration created by positive curvature, from Equation-12, amplifies that created by BL

interaction. The sensitivity of F̃max with respect to κ̃x is proportional to d̃ and N because both
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contribute to an enlargement of the fibrillar array and hence on the load concentration created by

curvature. Because h̃ is proportional to the compliance of each fibril, larger h̃ creates a reduction

in BL interaction and mitigates the effect of load concentration created by interfacial curvature.

This is because more compliant fibrils are less sensitive to non-uniform stretch and hence less likely

to create a significant load concentration. A negative κ̃x = 0 gives better strength up to peak,

and then begins to reduce it. The benefits in strength are created by a load concentration at the

center of the adhesive, from Equation-12, which counteracts the edge load concentration created by

BL interaction. An excessive curvature-induced load concentration overcomes BL interaction and

prompt early detachment of the central fibrils, thereby reducing the adhesive strength. The load

concentration is again proportional to d̃ and N , due to an increased array size, and to 1/h̃ due to

a better tolerance of each fibril to differential stretch. The strength peak from negative curvature,

evidenced for d̃ = 7, occurs at the critical curvature κ̃∗x, which modulus is inversely proportional to

d̃ and N , while appears to be indifferent to h̃.

Figure 16: The dimensionless detachment strength F̃max versus curvature κ̃x for adhesives of various number of
fibrils N , dimensionless fibril length h̃ and spacing d̃. For all curves H̃ = 25, λ̃x = λ̃y = 0 and κ̃y = 0.

Figure-17 correlates F̃max with λ̃x for various combinations of κ̃x and H̃. The adhesive has N = 900,

d̃ = h̃ = 5 and λ̃y = κ̃y = 0. For H̃ = 0 we used the analytical solution provided in Appendix

B, for an adhesive having a rigid BL. Negative curvature has proven to strengthen the adhesive,
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within the limitations dictated by N, d̃, h̃ & H̃, while misalignment has shown to reduce detachment

strength [28]. From Figure-17 we can observe that a negative κ̃x always reduces the sensitivity of

F̃max to λ̃x for any H̃. Negative curvature, hence, mitigates the load concentration created by

misalignment for any BL thickness. The reduced sensitivity produces a higher adhesive strength

when λ̃x is larger than a threshold, which is proportional to the modulus of κ̃x, and 1/H̃. This is

due to the interplay between the center load concentration created by the negative curvature, the

edge load concentrations created by BL interaction, and that created by misalignment. Because a

positive curvature would only superpose to misalignment and further reduce strength, in this figure

we only explore the interplay between misalignment and negative curvature.

Figure 17: Comparing load sharing efficiency against misalignment angles for arrays of varying BL thickness and
curvature. Each array has the constant parameters N = 900, d̃ = 5, and 5̃.
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In Figure-18 the sensitivity to misalignment of finite thickness BL arrays is compared to the two

simplified cases of a rigid BL and an infinite elastic half space. Neither of the cases of H̃ = 30 or

H̃ = 15 are not accurately represented by the assumption of a rigid BL. Significant discrepancy in

strength occurs at small misalignment angles as well as in the sensitivity to misalignment itself. The

arrays with H̃ = 200 and H̃ = 300 demonstrate how thick of BL is necessary for the assumption of

an infinite elastic half space to be applicable.

Figure 18: Dimensionless force F̃ versus displacement ˜̄u for a fibrillar adhesive having N = 1024, λx = λy = 0.

In Figure-19 the average detachment strength for arrays with varying amounts of fibril defects is

is plotted against BL thickness. The average detachment strength was calculated by performing

a Monte-Carlo simulation that treated fibril heights as a stochastic property modulated about an

intended mean of 〈h〉 = 5. The randomly distributed offset in fibril height influences both the

pre-loading experienced by the fibrils and the compliance of the fibril itself. The variance in fibril

height within a sample is denoted as s2
h and 50 trials are run for each combination of s2

h and H̃.

For thin backing layers, there is a greater sensitivity to non-uniform fibril height and compliance.

The drop in average load sharing capability becomes more significant as the variability in height

and compliance increases. As the BL thickness increases, the drop off in average ultimate strength

decreases which is due to the increased BL compliance being able to mitigate pre-loading and

varying fibril compliance. Although more uniform arrays show the greatest sensitivity to increases
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in BL compliance, the effect plateaus as H̃ increases. The curves of s2
h = 0.15, 0.225 and 0.3 display

inflection points at H̃ ≈ 11.67, 13.34 and 15 where the plateauing begins. The inflection point acts

as a bounding between the array’s compliance being predominantly controlled by fibril length or

the BL.

Figure 19: Dimensionless force F̃ versus displacement ˜̄u for a fibrillar adhesive having N = 1024, λx = λy = 0.

3.1.2 Discussion

The model is based on linear elasticity, which relies on the hypothesis of small strain and small

displacements. This hypothesis is satisfied if the pull-off strength of each fibril is sufficiently small

to ensure small displacements overall in the adhesive. In the case of significant adhesion forces,

the adhesive might experience significant strain. In this case, our model only provides a first-order

estimation of the detachment strength. Additionally, the model considers quasi-static detachment.

I.e. it neglects the rate-dependent behavior of the material composing the adhesive. Our hypothesis

is satisfied if the velocity of BL-RS separation, dū/dt, is negligible compared to the ratio between the

fibril length, h, and the relaxation time, tr.

[24] explored the effect of BL thickness, H, through experiments and compared their results with

the two aforementioned extreme cases. The case of a rigid BL corresponds to that at which H = 0.

In this case, the fibrillar adhesive exhibits no BL interaction and the displacement of the fibrils’ tip
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is only due to fibril stretch. The case of a BL considered to be an elastic half space corresponds

to that at which H = ∞. In many engineering prototypes as well as in nature, the BL has a

thickness that is comparable to the size of the fibrillar interface, hence one needs to extend the

model by [28] to account for the influence of H on BL interaction quantitatively for the general case

of 0 < H < ∞. The correctional terms in Equation-19a and 19b, where the second term on the

right-hand side relies on the description of the displacement field surrounding the region of fibrillar

protrusion with a power-law function, as detailed in Section-2.1.3. This approximation provides

good accuracy for large BL thickness, while introduces significant error when H̃ < 10. A more

sophisticated law can provide better accuracy for a very thin BL.

In Equation-12, the influence of interfacial curvature between the adhesives and the RS with a

quadratic function of the fibril position in the array. This expression is accurate only in the case

of small curvatures, i.e when κxLx � 1, with Lx = (nx−1)d/2 the size of the contact region along the

x-axis.

3.2 Analytical Solution for Compliance Optimization

3.2.1 Solution for a Circular Array of Fibrils

This section will demonstrate the solution for Equation-45 for thee case of a fibrillar adhesive in the

form of a circular array. Since misalignment in an application can be indeterminable in magnitude

and sign, the design misalignments of λdx = 0 will be imposed. This will guarantee ELS for any case

with λx = 0 and improve load sharing for λx , 0 [28]. Using the contact mechanics solution from

[34], Equation-46 takes the form of

ũBL = 4
π
Ĕ

(
r

R

)
(47)

where x and y are replaced by r, thanks to radial symmetry and R = L. In Equation-47 Ĕ( r
R

) =∫ π/2
0

√
1− (r sin θ∗/R)2dθ∗ is the complete elliptical integral of the second kind and θ∗ being an inte-

gration variable. Equation-45 becomes

c∗(r̃)
cm

= 1 + ρEf4R
E∗BLπh

[
Ĕm − Ĕ(r̃)

]
(48)
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where r̃ = r/R and Ĕm = 2
∫ 1

0 Ĕ(r̃)r̃dr̃ due to radial symmetry.

Figure 20: Optimal compliance distribution for fibrils in a circular array of radius R. Crosses and circles indicate
the solution obtained with the numerical method from [28], while the solid line reports the results from the proposed
analytical model from Equation-48.

The optimal compliance given by the numerical method and Equation-45 are generally maximum

at the perimeter of the contact region and minimum at the center. Identifying the former with c∗max
and the latter with c∗min, the geometrical distribution of fibril compliance in dimensionless form

using Equation-49 in Figure-20.

γc = c∗ − c∗min
c∗max − c∗min

(49)

In Figure-20 the solid line indicates the results obtained from the proposed asymptotic solution at

Equation-48, while the symbols indicate the results obtained from [28]. Parameters of the array

were set to Ef = E, ν = 0.5, R = 78.54a, and h = 5a. For the numerical analyses, the cases of

d = 3.57a and N = 1597 giving ρ = 0.25 from Equation-41 as well as d = 7.14a and N = 421 giving

ρ = 0.06. An increase in accuracy is shown as the fibril density ρ increases.
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3.2.2 Asymptotic Solution for Compliance Optimization in Rectangular Arrays

For a rectangular array with dimensions 2L by 2l with the aspect ratio η = l/L (η ≥ 1), Equation-45

becomes Equation-50

ũBL(x, y) = 1
π
φ
(x
L
,
y

l

)
(50)

where

φ(x̂, ŷ) = (x̂+ 1) ln
η(ŷ + 1) +

√
η2(ŷ + 1)2 + (x̂+ 1)2

η(ŷ − 1) +
√
η2(ŷ − 1)2 + (x̂+ 1)2


+ η(ŷ + 1) ln

 (x̂+ 1) +
√
η2(ŷ + 1)2 + (x̂+ 1)2

(x̂− 1) +
√
η2(ŷ + 1)2 + (x̂− 1)2


+ (x̂− 1) ln

η(ŷ − 1) +
√
η2(ŷ − 1)2 + (x̂− 1)2

η(ŷ + 1) +
√
η2(ŷ + 1)2 + (x̂− 1)2


+ η(ŷ − 1) ln

(x̂− 1) +
√
η2(ŷ − 1)2 + (x̂− 1)2

(x̂+ 1) +
√
η2(ŷ − 1)2 + (x̂+ 1)2



(51)

where x̂ = x/L and ŷ = y/Lη. Substituting Equation-50 into Equation-45

c∗(x, y)
cm

= 1 + ρEfL

E∗BLπh

[
φm − φ(x

L
,
y

Lη
)
]

(52)

with φm =
∫ 1

0
∫ 1

0 φ(x̂, ŷ)dx̂dŷ.

Figure -21 reports the solution of Equation-52 (crosses and circles) and compares it to the numerical

solution from [28] (solid line) for a square array. In this case, it was assumed Ef = E, ν = 0.5,

R = 71.4a, and h = 5a. For the numerical analyses, the cases of d = 3.57a and N = 1681 giving

ρ = 0.25 as well as d = 7.14a and N = 441 giving ρ = 0.06. Also in this case, the accuracy increases,

as the fibril density ρ increases.

In Figure-22, the force-versus-separation plot in dimensionless form for a circular and a square array

with uniform compliance (solid lines) and with optimal compliance distribution, from Equation-48

and Equation-52, respectively, and same contact area (dashed lines). The parameters that were

used in the simulations to generate Figures-20 and 21 are used again, however only with the highest
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Figure 21: Optimal compliance distribution for fibrils in a square array of size 2L. Crosses and circles indicate the
solution obtained with the numerical method from [28], while the solid line reports the results from the proposed
analytical model from Equation-52

N . The arrays having uniform compliance detach earlier and do not achieve ELS. Furthermore, the

fibrils detach rapidly but not simultaneously once first detachment has occurred. The arrays with

optimal compliance distribution instead obtain ELS reaching nearly maximum theoretical strength,

with Fmax ≈ Nfmax.

Figure-23 and Figure-24 show the distribution of fibril forces as well as the deformation of the fibrils

and BL for various cases taken from the simulations in Figure-22 (circles and squares overlaid to

the plots). Figure-23 shows the case of the circular array while Figure-24 shows that of a square

array. Both figures compare the case of uniform compliance distribution (left) with that of optimal

compliance distribution (right). In this comparison, we keep the same separation ū for uniform

compliance and optimal compliance.

3.2.3 Optimized Load Sharing in the Presence of Misalignment

Figure-25 reports the normalized detachment force (or adhesive strength) in the presence of misalign-

ment for circular arrays (black lines) and square arrays (blue lines) optimized with the numerical
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Figure 22: Force versus displacement during detachment for a fibrillar adhesive having circular (black) and square
(blue) array. Fibrils with uniform compliance (UC, solid lines) and optimal compliance (OC, dashed lines) are
compared. The hollow circle and square markers indicate the configuration shown in Figure-23 and Figure-24
respectively.

(a) Fibrillar force distribution fi/Nfmax at ū/un = 24.5.

(b) Deformation

Figure 23: Adhesive configuration, inters of (a) fibrillar force distribution and (b) BL and fibril deformation, for a
circular array with uniform (left) and optimal (right) compliance distribution, from the analysis in Figure-22.
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(a) Fibrillar force distribution fi/Nfmax at ū/un = 23.5.

(b) Deformation

Figure 24: Adhesive configuration, inters of (a) fibrillar force distribution and (b) BL and fibril deformation, for a
square array with uniform (left) and optimal (right) compliance distribution, from the analysis in Figure-22.

solution from [28] (dashed lines) and with the proposed analytical solution from Equation-45 (solid

lines). In this figure, we use the same parameters used in Figure-22 but the different number of

fibrils.The normalized detachment force, Fmax/Nfmax, can be used as a measure of the load sharing

efficiency of the array. In our analysis, we only consider positive misalignment θ; however, the

results reported can be easily extended to negative misalignments in force of the symmetry of the

problem given by θd = 0. For both circular and square arrays, the numerical solution produces

higher adhesive strength, compared with the analytical solution, for relatively small misalignments.

For misalignments that are larger than a transition value θtr, the analytical solution outperforms

the numerical one, evidencing a benefit from the asymptotic approximation in the case of signif-

icant statistical misalignment (|θ| > |θtr|). θtr is a function of the parameters defining the array,

namely, number of fibrils N , fibril spacing d and the average fibril length h. This is because the

numerical solution is exact and hence will be inherently more sensitive to unintended variations at

the interface. In Figure-25, the transition misalignment is tan θtr = 0.006 for the circular array and

tan θtr = 0.021 for the square array. For both square and circular arrays, the adhesive strength

produced with numerical optimization appears to be more sensitive to misalignment, compared
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with the strength produced by the proposed analytical solution.

Figure 25: Evolution of the dimensionless adhesive strength for increasing misalignment of arrays having optimal
fibril compliance distribution. We consider square arrays (blue lines) and circular arrays (black lines) optimized with
the numerical solution (NS, dashed lines), from [28] and with the proposed asymptotic solution (AS, solid lines),
from Equation-48 and Equation-52.

3.2.4 Optimized Load Sharing in the Presence of Fibrillar Defects

To validate the proposed theory and test the robustness of the optimization in compliance distri-

bution among fibrils, a Monte Carlo simulation was conducted. This simulation treats the height

of each single fibril as a stochastic property, which is modulated about the intended value. A ran-

domly distributed error is used to offset the fibril height. This produces an array having fibrils

with different height experiencing a different preload once the adhesive starts detaching from the

adhered surface. The longer fibrils will experience a compressive preload, while the shorter fibrils

will experience a tensile preload. This is done both for arrays having a uniform compliance dis-

tribution and for arrays having an optimized compliance distribution. The statistical variation of

fibril length affects not only fibril preload but also fibril compliance. The same simulations are run

multiple times generating arrays with increasing standard deviation in the stochastic variability of

fibril height. Figure-26 shows the results of the Monte Carlo simulation and demonstrates that an

optimized array outperforms an array with intended uniform compliance for a standard deviation
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that goes beyond 20%. The optimized arrays show a greater sensitivity to random deviation in

height. The compliance optimization still provides a benefit in adhesive strength, compared with a

homogeneous compliance distribution. For a standard deviation in fibril length that is around 20%,

the benefit from compliance optimization in adhesive strength is around 5% for square arrays and

around 10% for circular arrays.

Figure 26: Dimensionless adhesive strength versus standard deviation in fibril length as the results of a Monte Carlo
simulation. Blue squares indicate optimal compliance distribution for square arrays and cyan squares indicate square
arrays with uniform distribution. Red circles indicate circular arrays with optimal compliance distribution, while
purple circles indicate arrays with uniform compliance.
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3.2.5 Discussion

The adhesive strength obtained from arrays optimized with the proposed asymptotic solution shows

lower sensitivity to misalignment, compared with the ones optimized via numerical solution, and

in some cases even higher value. The latter phenomenon is likely related to the significant stress

redistribution generated by large misalignments, which challenges the benefits obtained from the

optimal distribution of fibril compliance since the latter was constructed under the hypothesis of

θd = 0. The benefit emerged from the asymptotic approximation suggests the possibility of exploring

array optimization for a range of misalignment angles instead of simply assuming a specific value

for θd when calculating the optimal compliance distribution. This is beyond the scope of the current

dissertation, hence is left for future work.

To achieve ELS at the array scale, functional grading of the fibril compliance distribution can

potentially be done in multiple ways. For example, the Young modulus of the material composing

the fibrils could be graded so that for fibril i,Ef,i/Ef = cm/c∗i substituted in the numerical solution from

[28], while for the continuum ensemble of fibrils, Ef (x,y)/Ef = cm/c∗(x,y) is substituted into Equation-

45. Another way to achieve optimal compliance distribution is tailoring the length of each fibril

following the relation hi/h = c∗i/cm or h(x,y)/h = c∗(x,y)/cm. In this case, different fibril lengths within

the same array would make it difficult for all the fibrils to adhere perfectly to the RS. This is

because the longest fibrils will likely undergo buckling, and therefore, lose contact, in order to allow

for the shortest ones to enter into contact. To counteract this effect, the RS or the BL should

have a properly curved surface so that uniform contact across the interface can be achieved. The

requirement for a specific curvature at the RS surface would significantly limit the applicability of

the adhesive. The requirement of a properly curved BL surface, on the other hand, appears much

less limiting; however, the proposed model should be modified to account for this feature. Finally,

another method to achieve ELS is functional grading of the stalk radius of the fibrils, following
ai/a =

√
cm/c∗i or a(x,y)/a =

√
cm/c∗(x,y).

An important design limitation related to functional grading of fibril compliance is the incremented

risk of mutual adhesion among fibrils, also called fibril condensation [25], for the softest fibrils

located at the perimeter of the contact region. This is because of the proportionality between axial
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stiffness and bending stiffness in a fibril, with bending stiffness being responsible for the prevention

of fibril condensation. Since the closed-form solution presents the parameters that influence the

stiffness gradient, one can infer that functional grading of the fibril modulus Ef,i appears to be

the most convenient strategy. This is because both axial stiffness and bending stiffness are linearly

proportional to the fibril modulus. The other two methods instead appear to be suboptimal since

bending stiffness decreases more rapidly than axial stiffness for an increment of stalk length hi and

a reduction of stalk radius ai.

To mitigate the phenomenon of fibril condensation, one could reduce the contrast between maximum

and minimum optimal compliance (in order to reduce the maximum compliance). Equation-45

evidences how this contrast is proportional to the term ρ(Ef/E∗)(R/h), suggesting its minimization

as a viable strategy. At this purpose, one could reduce the contrast in optimal compliance by

reducing the fibril stalk density ρ. From Equation-41, one can deduce that this would imply a

reduction in the fibril stalk radius, hence a reduction in bending stiffness, therefore requiring proper

consideration. A significant reduction in stalk radius would also increment the stress experienced

by the fibril at detachment, incrementing the risk of failure of the material composing the fibril.

Another approach is the reduction of the ratio Ef/E∗ by producing softer fibrils or stiffer BL. The

reduction in fibril modulus comes again at the price of a reduction in bending stiffness but less so

than a reduction in ρ. A stiffer BL would give instead more effective results but only in the presence

of negligible misalignment. This is because a softer BL has been observed to better resist interfacial

misalignment (θ , 0) [24, 28]. Finally, one can reduce the ratio R/h by incrementing the overall fibril

length h or by reducing the size of the array, via reduction of R. The former produces a significant

loss in bending stiffness, as explained above, while the latter requires a reduction of the area of

adhesive contact with the consequent reduction of the maximum detachment force. This limitation

can be mitigated by the division of the contact region into multiple sub-regions with independent

arrays of fibrils. Such a hierarchical fibrillar subdivision in multiple arrays is often observed in

nature but its development in engineering prototypes brings again new challenges. Experimental

validation of the proposed method requires the creation of an adhesive prototype having functionally

graded fibril compliance. The stiffness of an elastomer can be controlled via crosslink density and

inclusions. This process is feasible in principle; however, it is complicated and requires further
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development. An experimental proof of concept of our method, however, is proposed by Kumar et

al. [31], where shear adhesion is improved by a graded compliance at the interface.
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4 Conclusions and Future Work

4.1 Interfacial Curvature in Finite Thickness Arrays

We provide a quantitative analysis of the detachment kinetic and the adhesive strength of a fibrillar

adhesive in the presence of interfacial curvature. While a (positive) curvature prompting higher

stretch to peripheral fibrils always produces a reduction in strength, a (negative) curvature prompt-

ing higher stretch to central fibrils can produce an increment in strength. This effect emerges from

the competition between BL interaction and curvature. The strength increment produced by cur-

vature is therefore limited to relatively small curvatures, depending from the BL thickness. Higher

BL thickness increments BL interaction, giving a larger margin for curvature-induced strengthen-

ing. Interfacial curvature can be prompted by a soft actuator on the BL or by forcing the fibrils to

conform to a curved RS. In the former case, the actuation of curvature can also be used to prompt

easy detachment (with positive curvature) for an enhanced adhesion control. The ability of the

curvature to improve the arrays strength upholds even in the presence of misalignment. In fact, the

sensitivity to misalignment decreases with the implementation of negative curvature.

4.2 Asymptotic Approximation

The accuracy of our asymptotic model, in generating ELS for zero misalignment, increases with the

density of the array. We performed multiple numerical simulations with various N and ρ for both

circular and square arrays utilizing the asymptotic solution for optimal compliance distribution,

from Equation-48 and 52, respectively. For the circular arrays, the number of fibrils were varied

from 208 to 1804 for a constant radius of R/a = 80. This varied the fibrillar density from 0.1 to 0.3

and resulted in a minimum load sharing efficiency of 0.98. For the square array, the number of fibrils

was varied from 289 to 2401 for a constant radius of R/a = 80. This also varied the fibrillar density

from 0.1 to 0.3, and again resulted in a minimum load sharing efficiency of 0.98. In conclusion,

for both circular and square arrays, the results indicated a deviation in adhesive strength that is

within 2%, compared with ELS. All this for θd = 0 and θ = 0 for square arrays and circular arrays,

taken as representative cases for a wide range of practical applications. For the case of θ , 0, the

asymptotic approximation demonstrated some benefits in terms of reduced sensitivity of strength

versus misalignment and even higher strength, for |θ| > |θtr|.
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The proposed asymptotic analysis provides the numerous benefits of a closed-form solution, evidenc-

ing the determinants of an optimal interfacial stiffness distribution to reduce stress concentration,

and hence achieve ELS, at the fibril array level. We demonstrated the robustness of the proposed

compliance optimization algorithm in providing higher adhesive strength also in the presence of

statistical imperfections in fibrils’ length. Our model system can be further generalized beyond

fibrillar adhesives if used in an analogy that considers fibrils as brittle bonds uniformly distributed

across an interface separated by a tensile load. Our solution indeed suggests a theoretical strat-

egy to achieve maximum toughness of an adhesive interface by grading the stiffness of its bonds.

Incremented strength in adhesive interfaces designed with proper compliance grading has been ex-

perimentally observed in shear adhesion [31]. Although shear adhesion is a different phenomenon

than that analyzed in this paper, both adhesion mechanisms are controlled by stress concentration;

hence, the aforementioned experimental findings are to be taken as a qualitative validation of our

theory.

4.3 Future Works

The most pressing future work is an experimental validation of the finite thickness BL correction

factors. The results generated by the model will be compared with the results of [24], to validate

whether the sensitivity to misalignment can be quantitatively predicted. Another experimental

validation of the model will be attempted with array aspect ratios and how that effects the sensitivity

to misalignment. The experimental procedure for this has been outline in Appendix A.

A third future work involves expanding the displacement input model for viscoelastic materials

instead of just linear elastic. An attempted method involved treating the fibrils as behaving with

linear viscoelasticity while the BL was still entirely linear elastic. This assumed that BL displace-

ments were small relative to the fibrillar elongation which could not be validated with the results

of the simulation. This project requires investigation into the displacement profile of a viscoelastic

BL in response to a concentrated force.
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Appendices

Appendix A: Experimental Setup

The experimental work was performed at the Leibniz Institute for New Materials at the University

of Saarland. Testing the adhesive samples was done on a Hegewald & Peschke Inspekt Table Blue

Universal Testing Machine. The tensile testing machine operates within a close able chamber that

limits free flowing air and external light. Additionally the position and motion of the tester’s arm

is controlled via software from a desktop computer.

The adhesive samples were prepared from a thermoplastic polyurethane. The tip geometry of

the adhesive fibrils was of a mushroom tip design and the fibrils themselves were arranged in a

hexagonal pattern. Measurements on the adhesive’s physical parameters were made using a Keyence

digital light microscope. The microscope was focused into specific zones of the adhesive to measure

parameters of fibrillar geometry as shown in Figure-27a and Figure-27b. The measurements for

each respective zone was recorded and then averaged to be taken as a constant throughout the

array. After measurements, the adhesive sample was lightly washed in acetone to remove the build

up of dust and various air debris on the fibril tips. A double sided tape was applied to the backing

layer of the adhesive sample to couple it with the tensile tester.

Glass substrates of varying aspect ratio were made from microscope slides. The microscope slides

were marked and cut by hand using a glass cutter. Once cut, the edges of the substrates were

sanded with 1000-1200 grit sandpaper to prevent sharp edges from cutting or damaging the fibril

tips that would come into contact with them at the perimeter. Once the edges were smoothed, the

substrates were submerged into ispropanol and placed into an ultrasonic bath to remove any oils

on their surface. Once cleaned, the substrates were adhered to a larger glass substrate using PDMS

and cured in an oven for 1 hour. The experimental setup is labelled in Figure-28.

The principle of frustrated total internal reflection was utilized to capture video of adhesion tests.

Light was shined into the glass substrates along their circumference. Then, as the fibril tips came

into contact with the glass substrate, light rays scatter and reflect into the camera as shown in

Figure-29a. Video for each tensile test was capture using a DMK33GX236, Imaging Source Europe

GmbH, Bremen, Germany. A picture of this setup is also shown in Figure-29b.
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(a) Top down view of a fibrillar adhesive sample.

(b) Front facing view of a fibrillar adhesive sample.

Figure 27: Close up images of fibrils and pillars of an adhesive sample under the Keyence light microscope.
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Figure 28: Labelled diagram for the testing setup of tensile tests in the Hegewald & Peschke Inspekt Table Blue
Universal Testing Machine.

The testing of the samples was done in a normalized manner to minimize variations and alterations

in conditions of properties of anything involved. The adhesive sample was brought into contact

with the glass substrate at 1mm
min

until all fibrils came into contact and were sufficiently pre-loaded.

The local detachment force of a fibril increases with the compressive pre-load that is applied to it,

until it enters a saturation zone and eventually buckles as illustrated in Figure-30.

Once a fibril has approached the saturation zone, variations in pre-load do not significantly affect

the adhesive strength of that fibril. This is greatly beneficial for testing arrays with misalignment at

the adhesive interface, as the local detachment force can be assumed constant throughout the array.

It should be noted that during the pre-loading step, fibrils along the direction of the misalignment

will not simultaneously make contact with the rigid substrate. This is seen in Figure-31a, where

fibrils make first contact with the bottom of the substrate resulting in a greater compressive pre-

load. This also results in the fibrils at the bottom being more susceptible to buckling as shown in

Figure-31b.

Once all fibrils were saturated with pre-load, the substrate was held in contact for 1s and retracted at
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(a) Diagram of how frustrated total internal reflection was utilized to capture video for the adhesion
tests.

(b) A picture of the adhesive test setup. Green light is shined into the glass substrates and reflects
off a mirror into the camera.

Figure 29: A schematic diagram and image illustrating the working principle behind the frustrated total internal
reflection principle.

10mm
min

. Throughout the test, the force displacement graph and maximum force is recorded. Testing

trials were held between three minute intervals to ensure that the frequency of loading on the

polyurethane remained constant (cite frequency of loading). During these three minute intervals,

the adhering side of scotch tape was applied to the ends of the fibril tips and then removed to

remove any build up of dust or debris on the fibril tips. Furthermore, acetone was applied to a
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Figure 30: A qualitative plot of the adhesive strength vs. pre-loading performed on a fibril prior to tensile testing.

cotton cloth and used to wipe the glass substrate to clean its surface as well of any accumulating

dust or debris.

The local detachment force for each fibril was approximated by imposing a large misalignment on a

test with a large aspect ratio. This results in only a perimeter strip of several fibrils adhering to the

substrate. The adhesive was then retracted from the substrate and the ultimate force recorded was

assumed to occur with equal load sharing amongst the number of fibrils in contact. The assumption

of equal load sharing is based on the principle that load sharing efficiency of an array approaches

100% as the number of fibrils in contact decreases [28].

The computational model explained in Section-2.1.1 had to be modified for a hexagonal distribution

of fibrils and the mushroom tipped fibril geometry. In addition, correction factors are required

to account for the softening of the polyurethane adhesive sample after multiple tests [36]. The

correctional factors from Section-2.1.3 will also need to be used as the BL thickness is not large

compared to the fibril length scales.

The computational model for fibrillar detachment assumes that detachment occurs when the local

forces results in a stress corresponding to a critical axial strain. In other words, it will be assumed

that contact between the fibril tip and the displacing rigid surface is perfect, meaning that no centre

or edge crack propagation is the driving force behind detachment. Instead, the fibril force will be

computed with the stalk radius of the fibril as in done in the expression:

50



(a) A screenshot of the pre-loading stage during a test with misalignment at the interface.
Fibrils at the bottom make first contact with the rigid substrate.

(b) A screenshot of the pre-loading stage where fibril buckling occurred. Fibrils at the bottom
of the image buckled first.

Cij = 1
πastalkE∗

 16
3π + h

astalk(1− ν2)

, for j = i (53)

which revises Equation-9b. The same will occur for computing the limit for maximum misalignment

which revises Equation-54 below.

tan θ∗xz = hfmax
πa2

stalkE(nx − 1)d (54)
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A.1 Definition of Aspect Ratio

The aspect ratio of the arrays tested is defined be the contacting distance along the misalignment

over the contacting distance orthogonal to the misalignment, as expressed in Equation-55 below.

γ = Lθ
L⊥

(55)

With the use of the multi-axis goniometer, the aspect ratio was inversed by switching the axis of

rotation. The first benefit of this was maintaining a constant area of contact since the same adhering

substrate was used. The second benefit of this was not adjust the reference aligned position of the

pull tester and needed to re-align the experimental setup. This is exemplified in Figure-32a and

Figure-32b, where the aspect ratio is switched from 2.86 to 0.35 solely through the orientation of

misalignment. The benefit of this method is that the same adhering substrate can be used for 2

different aspect ratio and that the contact area does not change between tests.

(a) The misalignment is oriented along the vertical axis.
This creates an aspect ratio of γ = 2.86

(b) The misalignment is oriented along the horizontal axis.
This creates an aspect ratio of γ = 0.35

Figure 32: Screenshots of the a substrate being pre-loading for two different orientations of misalignment.

Due to the hexagonal distribution of the fibrils, the glass substrates did not perfectly align with the

circumference of fibril tips. This results in partial contact between these fibrils and the adhering

surface which inevitably leads to these fibrils having a reduced localized detachment force. It was

observed that these partially contacting fibrils were the first ones to detach, and increased the

stiffness of the system while adhered as in shown in Figure-33. Since these fibrils detach prior to

the ultimate adhesive force being reached, they can be neglected and treated as inactive fibrils.

It should be noted that Figure-33 also confirms the theoretical expectation of rapid detachment
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following the peak force.

Figure 33: Force displacement curve recorded for the experimental trial of γ = 2.86 with θ = 0◦. The partially
adhered fibrils increase the stiffness of the system until they detach.
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Appendix B: Validating the Superposition of a Concentrated Normal Force on a Curved

Backing Layer

To model the force displacement relationship of a fibril protruding from a curved backing layer, a

finite element simulation was performed using two simplifications. The first was if the characteristic

length of the backing layer is large compared to the thickness, it can be considered as an Euler-

Bernoulli beam in pure bending. The second was if the radius of a fibril is small relative to both the

thickness and characteristic length of the backing layer, than the fibrillar force can be considered a

concentrated normal force. The latter has already been proven in [28].

Figure 34: The FEA model used for the superposition of a concentrated normal force applied to a beam in bending.

The finite element model used to verify the superposition of concentrated force applied to a beam

in bending is shown above in Figure-34. The beam has a characteristic length and width of 2L = 80

and a thickness of H = 20 that is being bent by a varying normal stress σx = Az. The concentrated

normal force is approximated by a uniform stress applied over a circular region, using the relationship

F = σzπa
2 where a is the radius of a fibrillar unit.

The total moment acting on the backing layer is M = AI, where I is the area moment of inertia of

the beams cross section. By treating the backing layer as an Euler-Bernoulli beam, the displacement

profile due to this bending moment is

uBL,i = −κxx
2
i

2 + C2 (56)
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where κx = M/EI and C2 is an integration constant that depends on the coordinate system. The

displacements that would result from a concentrated normal force are given by the contact mechanics

solution found in [34].

uBL,i = σja
2

rijE∗
(57)

where σj is the uniform stress applied by fibril j and rij is the centre to centre distance between

fibrils i and j. To officially validate the superposition of the combined loading, the sum of Equation-

56 and Equation-57 was compared to the FEA results as shown in Figure-35. All displacements are

taken along the x-axis where ri = xi and scaled by a factor of E∗/aσ∗ where σ∗ is an arbitrary stress.

Additionally, the coordinates are represented relative to fibril radius which give x̃ = x/a.

Figure 35: Comparing the FEA results of the combined loading case with the superposition of a concentrated normal
force and Euler-Bernoulli beam in pure bending. σ̂ = σ/σ∗ and κ̃x = κxa.

The curvature of the beam is given by χBL = |u′′BL|/[1+(u′BL)2]1.5. Since only small moments will

be applied to the model, it can be taken that (u′BL)2 � 1 so the curvature of the beam can be

defined as χBL = |u′′BL| = χx. For the purpose of this work, a backing layer that is curved upwards

from its centre will be defined as having positive curvature or being concave up. Consequently, a

backing layer that is curved downward from its centre will be defined as having negative curvature
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or being concave down. A concave up and concave down backing layer are shown in Figure-36a and

Figure-36b respectively.

(a) A backing layer with upward concavity or positive
curvature

(b) A backing layer with downward concavity or negative
curvature

Figure 36: Showcasing the definitions of backing layer curvature.
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