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Abstract

Handwritten note-taking with pen and paper is still the preferred medium to achieve

information seeking and comprehension from diverse learning objects. But students, es-

pecially in video-based learning settings, exercise laborious practices to re-find the corre-

sponding video context when reviewing notes. We propose the orchestration of students’

handwritten notebook content as interoperable links to retrieve previously watched in-

structional videos. This work articulates the research objectives in two phases. In phase

1, we analyzed the characteristic features of notebook content of watched videos. And,

in phase 2, we investigated student expectations and requirements of the proposed video

retrieval system.

Analysis of quality handwritten notebook samples and the related video materials in a

lab study with ten engineering students revealed distinctive characteristic representations

of note content such as text, formula, figures, and chiefly a hybrid of all the 3. A box

plot interpretation of notes and the watched video content confirmed that at least 75%

of the identified note samples demonstrated a verbatim overlap of 50% or more with the

related video content, hinting at its potential use as a query artifact. Additionally, the

video references to collected note samples exhibited referencing at three temporal levels:

point, interval, and whole video.

A 12-student lab study indicated higher satisfaction for video matches returned at

the ‘interval’ level and showcased students’ existing workarounds for linking back to

videos. Overall, students rated a positive Mean score for the system’s usability to re-

find note-specific video context. A medium-fidelity prototype was built, using off-the-

shelf computer vision algorithms, to deduce technology requirements associated with

the proposed approach. When tested on the 181 identified note samples, the prototype
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system matched 77.5% of the samples to corresponding watched videos. The proposed

method worked exceptionally well to find suitable videos for textual notes — yielding

a 98% accuracy. The note content overlap with the video results further highlights the

fragmented nature of the evaluated accuracy across all three temporal levels. Overall,

the presented work ascertains the prospect of augmenting prevalent Personalized learning

(PL) strategies, such as handwriting notes for future reference, to easily re-find and

connect to the watched videos.
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Lay Summary

When learning from instructional videos, students often take handwritten notes to im-

prove recall and comprehension. When reviewing their notes, it can be difficult for

students to return to the corresponding part of the video. In this thesis, we present the

idea of using content available in student notebooks to connect to relevant video context

in a video archive. A set of notebook samples were analyzed to explore distinct types of

content and references made to videos. A prototype was designed to test the resources

and requirements to develop a fully working system. Experimental studies conducted to

validate the proposed system demonstrated that it is feasible for implementation. The

findings indicated that the students find the proposed approach usable.
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CHAPTER 1

Introduction

Students frequently engage in note-taking to improve recall and comprehension [40] [85].

With paper-based notebooks, in particular, students maintain the notes in one place

and leverage a versatile platform for information gathering practices [63][77]. Pen and

paper medium enables students to handwrite flexibly and review notes in many learning

situations, such as during lectures, labs, or tutorials. However, it cannot be easy to return

to a specific source of the notes, for example, a related chapter in a specific textbook when

reviewing for an upcoming exam. This is fundamentally an issue of re-retrieval in pen-

paper note-taking medium when information spans across a diverse collection of media

services. Re-finding of information, a salient learning activity under the umbrella term of

personalized learning, can be challenging, especially as students learn from instructional

videos.

The adoption of personalized learning approaches has increased significantly in recent

years [18]. Personalized learning facilitates an efficient way of connecting instruction

to students’ preferences, interests, and needs [35] [75]. For instance, when a student

takes notes watching an instructional video, he is enabling himself to prepare in case he

forgets essential parts of the lecture. He makes a note of equations, diagrams, etc. that

are relevant to the discussion, such that when he returns to the part of the discussion

later, he can comprehend with relative ease. His learning activity is a conscious or an

unconscious effort to be equipped with the required knowledge in future need. This is

a classic illustration of personalized learning, which aligns well with the findings from
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prior research, that emphasizes the intentions of note-taking in video-based learning as

predominantly to review the notes afterward [47][18].

Thus, there is an imperative need to better understand the critical attributes of

reviewing handwritten notes captured when learning from instructional videos and ex-

ploring design opportunities to facilitate effective linking to video information without

hindering students’ natural note-taking practices.

1.1 Thesis Objective

When learning from notebooks, students often operate re-finding of the source with the

help of navigational cues [79][97]. With physical information objects, such as textbooks,

navigational cues include properties of the artifact (e.g., its size, color, thickness), para-

text (e.g., page numbers and headings), and the relative positions of the information

sought (e.g., “about half-way through the textbook on the top of a left-hand page”). In

e-books, while some previously-mentioned contextual cues are lost, students commonly

use text-search, highlighting, and scrolling to find information [56]. Bookmarks and an-

notations are other widely used cues to identify important parts of the book [68] [79].

With audio learning materials, indexing the transcripts converted from the speech is rel-

atively easy, similar to e-documents. These types of contextual cues can be less salient

in the video.

In the case of instructional videos, as the video content is visually changing with time,

students need to navigate the video to find the relevant content, which can be difficult and

time-consuming. Fewer and less rich cues are extracted from the visual, auditory, textual,

and temporal information such as slide transitions, talking head instructor. Current video

interfaces leverage these cues to facilitate navigation and re-finding of video information,

through supporting time-linked video-based annotation [44], [62] or table of contents

[101], for example. However, re-finding relevant information in a collection of videos
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whose cues are to be identified from handwritten paper-based notes is an under-explored

area of research.

In handwritten notes of instructional video content, students can write down time-

codes and slide titles as links/cues to associate to a video [23]. Unfortunately, when these

cues are present in a notebook, it can be difficult to look up the related video using a

timestamp or slide title when learning from an extensive video collection. Moreover, these

links are not always recorded by students because they are time-consuming to create and

can become a distraction to learning.

When learning from videos, students often transcribe or record verbatim content in

their notebooks rather than paraphrasing [8]. Comprehending, summarizing key points,

paraphrasing, and noting them down simultaneously might be too challenging, given the

time and efforts in scrolling back and forth. This is especially evident in courses involving

technical learning such as mathematics, engineering as pointed by researchers on note-

taking strategies [85]. Facts, definitions, and graphical representations are recorded when

students believe copying word to word will help recognize source material. This salient

feature of notes structure, often termed as Verbatim transcriptions by researchers [63]

[41] is leveraged in the current work to augment reviewing in students’ learning process.

Hence, the focus of the thesis is to evaluate the effectiveness of exercising content of notes

that are verbatim reference(s) to a specific part(s) of watched videos as query elements

to aid content-based video retrieval.

1.2 Research questions

The primary research objective of the current work is to glean the distinctive features and

requirements of linking notes to watched videos. First, we investigate the distinguishing

traits in the notebook content, such as the types of note representations and the extent

of verbatim occurrence of video content in the notebooks. Second, we showcase the
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requirements of rendering the found matching videos. Students’ attitudes towards the

ways of rendering videos, along with their expectations, are captured. The following

research questions address the above-defined objectives:

1. What are the characteristics of the note content captured when learning from in-

structional videos?

2. What are the requirements of a watched video rendering system to meet students’

reviewing expectations?

Throughout this work, watched video notes are the notes captured when learning from

instructional videos, and a video timepoint as the topically related timestamp in an

instructional video.

1.2.1 Characteristics of Watched Video Notes

To answer research question 1, we investigated the distinct types of representations in

watched video note content, along with the nature of the reference made, if done manually,

to a certain time in the video source. To this end, we conducted a lab study with ten

undergraduate students. Examining a total of 181 identified note samples from the data

collected led to the following findings:

• Students use four distinctive representations of content types in engineering notes:

text, formula, figure, and the hybrid types.

• Most (atleast 75%) of the notes demonstrated a verbatim overlap of some amount

with the watched videos.

• The note reference to video is often made to distinct temporal levels in a video.

The recorded observations yielded subsequent exploration of the student expectations

and requirements of watched video re-finding mechanism that follows in the next section.
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1.2.2 Student Expectations, Requirements of a Watched Video

Re-finding System

Two research elements can reflect the ability of the proposed mechanism to re-find

watched instructional videos from the already captured notes. First, students’ expec-

tations of a prototype system that transfers their existing re-finding strategies. Second,

implementation requirements to utilize notebook content as a linking artifact. We briefly

outline the incorporated methodology to deduce insights on both the expectations and

requirements below:

1. A 12-student study elicits the existing workarounds employed by students to link

notes to corresponding video sources. Students’ expectations towards a) video

timepoint retrieval in the conceptualized temporal levels, b) to-be-rendered video

surrogates, the elements of a video to help quick recollection of the included con-

tent, were recorded with the help of survey-based questions. Usability evaluation

followed by the qualitative analysis of the interview transcripts reports the useful-

ness and ability of the proposed approach to link note-book content to relevant

video materials.

2. Design and development of a a mid-fidelity prototype present the implementation

challenges and requirements of using Computer Vision to link handwritten notes to

video content. The implementation process employed readily available off-the-shelf

Optical Character Recognition (OCR) techniques and image matching algorithms.

Testing the prototype against a set of 181 identified note samples revealed salient

takeaways of the prototype’s linking feasibility.
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1.3 Contributions

Firstly, the proposed research work provides a new design solution to link physical notes

with corresponding digital video sources. The novelty of the proposed approach is in

employing note content instead of special markers or pre-recorded indices to aid video

retrieval, which is the primary contribution of this work. The empirical pieces of evidence

from controlled lab studies further support the contributions of the entailed work.

1. Firstly, this work recognizes, applies, and articulates the idea of video retrieval

using note content. Identifying an application domain, that is, technical notes cap-

tured in selected engineering courses, and testing out a design solution to extract

design recommendations for that domain is the core contribution of this work. The

concept also aims to seamlessly bridge the gap between paper and digital learn-

ing materials to better user experience in linking different learning materials. The

design application of a medium-fidelity prototype combines paper and mobile de-

vice merits where students can comfortably scan and access digital video sources

related to the note document. Testing the prototype against a set of note samples

also demonstrated the ability of the proposed approach by retrieving the correct

video matches for 77.5% of the total note samples. In particular, 97.5% of the text-

only notes matched to their corresponding videos also highlighted the advancement

in handwritten recognition of textual elements. The design challenges and impli-

cations showcase the feasibility of bringing the proposed approach to use. The fact

that early users reported that they find the system usable shows promise.

2. Content analysis of watched video notes, an important processing step to exten-

sively explore the recognition capacity, is a significant empirical contribution of the

work. A controlled lab study investigating ten students’ previously captured note-

books reported students’ increased use of textual descriptions in notebooks over the
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non-textual representations such as figures and formulas. A special case of hybrid

type addresses the complexities of recognizing closely connected text and non-text

components. Additionally, the percentage of content overlap between the captured

notes and the watched videos showed that most (at least 50%) of the note sam-

ples comprising of formulas and figures showed 100% overlap. In contrast, textual

notes exhibited a more considerable variance of paraphrasing or noting additional

information not available in the video materials. Interestingly, box plot distribution

indicated that at least 75% of the observed notes with both textual and non-textual

content types comprised some amount of content overlap. The findings also suggest

that the notes with as low as 25% overlap with the video content also retrieve ex-

pected videos. Thus corroborating the design choice of this work, that is to utilize

the notebook content to re-find watched videos

3. Outlines inferences on the timepoint in the video rendering. This work specifically

addresses the difference between the expected video timestamp and the retrieved

video timestamp by leveraging its temporal nature in point, interval, and whole

video. Experimental results from a 12-student lab study substantiated the pref-

erence for video result playing from any point in time inside the section/interval

where the note content occurs. A significantly lower satisfaction score was recorded

for a timepoint anywhere in the video than the timepoint in the relevant section/in-

terval in a Wilcoxon signed-rank test (Z = -2.240; p = 0.011). While the apparent

expectation of a video retrieval system is to render the exact matching slide/point

as expected, qualitative analysis of the interview transcripts confirmed a higher

temporal preference for interval level with 0 negative codes. The overall choice

for video rendering in the interval temporal level paves the way for a whole new

exploration in the video context to be rendered.

In sum, note-taking is an important learning activity. This paper discusses the uti-
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lization of technology support to prevailing note-taking habits employed by students.

Specifically, it describes the characteristics and requirements of a technique that lets

students link to a video source from which notes are captured. The goal is to allow

students to continue to produce notes in natural ways without heeding to efforts that go

to re-finding or reviewing later, so having the potential to serve interoperability between

handwritten notes and video materials for review purposes.

1.4 Thesis Overview

The thesis is organized as follows:

Chapter 1 Introduction: Introduces the impediments associated with linking of notes

to watched video as well as the motivation and objectives of the work contained in this

thesis.

Chapter 2 Background: Describes past work done in learning ecologies, video hyper-

links and utilizing handwritten notes.

Chapter 3 Characteristics of Watched Video Note Content: Describes the experimen-

tal user study conducted to explore the attributes of content types in notes and how a

video timepoint is employed in the linking process.

Chapter 4 Rendering Watched Video Matches: Includes study methods and findings

related to preferences for video rendering in temporal levels and related surrogates. Ar-

ticulates findings on the existing workarounds to link to videos, usability evaluation of

the proposed approach.

Chapter 5 Pragmatics of Linking Notes to Videos: Introduces the design and im-

plementation of note recognition, matching, and rendering of video, explains the re-

sources necessary for its implementation. Also, synopses of technology requirements

associated with implementation are covered. Accuracy analysis of matching notes to
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videos is demonstrated.

Chapter 6 Conclusions and Future Work: Presents the concluding remarks for this

thesis highlighting a summary of contributions and limitations and discusses possible

future directions for this work.
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CHAPTER 2

Background

This section covers some of the foundational studies related to linking paper-based hand-

written notes with digital materials such as e-documents, video and audio sources. Learn-

ing occurs in coordination with a collection of media types. Dodson et al. found that

undergraduates in flipped classrooms interact with heterogeneous information ecologies,

composed of learning materials that span text, video, and audio [23]. These learning

materials are accessed through a variety of platforms, such as video players, learning

management systems, and communication backchannels. A challenge for learners is the

limited interoperability within information ecologies, which can result in a kind of infor-

mation archipelagos [43]. The focus of this work is to build on the previous work that

highlights fundamental mechanisms to augment cross-linking between notes and video

materials in specific. An overview of handwritten notes’ characteristics when learning

from digital media and the current state of handwritten content recognition is also con-

tained in this section.

2.1 In-house Video Functionalities for Note-taking

Nowadays, increasingly, instructional videos are being embedded in traditional courses.

Also, video materials are an essential means of information delivery in massive online

open courses (MOOCs) and flipped classrooms [21]. Students often overt distinct learn-

ing behaviors in video-based learning settings, such as bursts of asynchronous engagement

across various information source materials and(or) selective sampling of video content
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for future review. Such characteristic video learning behaviors are classified by the Inter-

active, Constructive, Active, and Passive (ICAP) framework [13]. Behaviors that include

physical information manipulation for effective seeking or generation of additional in-

formation for comprehension fall under the active learning category. The affordances

available in the video learning objects, such as browsing, highlighting, annotating or

note-taking, are administered to control active learning.

Studies that operationalize the ICAP framework in relation to video-based learning

have emphasized positive learning outcomes when students engage cognitively and mean-

ingfully with the materials rather than passively viewing video content. Mitrovic et al.

[60] incorporated ICAP framework behaviours in an active viewing system to learn soft

skills. The focus was to evaluate conceptual understanding and reflection of video ma-

terials by leveraging commenting/rating on videos over passive viewing. Although the

findings indicated higher conceptual understanding, the participants found commenting

on the videos and rating comments cognitively demanding.

Dodson et al. [22] described students’ behaviors in video-based learning using a

ViDeX framework that is grounded in the model of active viewing. Common behaviors

identified in the previous work and their observations were categorized and assigned

to distinct groups of ICAP framework as seen in the figure 2.1. They discuss various

affordances exercised in active and constructive behaviors, such as highlighting transcripts

(constructive) and seeking subsequent highlighted instances (active).

A growing number of video platforms have included active-viewing affordances to

facilitate video-based learning. Pausing, browsing, replay, and archive mechanisms are

now standard in-built features. As video players are revamping active viewing, new

affordances for constructive behaviors are now a priority.

In the learning activities pertaining to constructive behavior, learners construct their

meaning to expand and extend beyond the video content itself [22]. Video platforms
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Figure 2.1: Behaviors of active and passive viewing, categorized using the ICAP
framework [22].

administer supporting mechanisms both in-house and external information mediums to

facilitate constructive actions. In-house mechanisms support annotation activities such

as adding notes to specific points in the video, highlight/underline a video frame or

transcript, or marking/tagging a video scene. Overall, they focus on elevating the syn-

chronization between the notes and the video context for easy review. Marshall [58]

articulated various functions of annotations from paper to digital note-taking forms,

which can transfer to relevant in-house video actions.

First, highlighting or underlining is performed to signal note-taker for future attention

on the specific part of the notes. Fong et al., in a video platform ViDeX, demonstrated

text-book style highlighting of video content [27]. The subsequent findings corroborated

that video transcripts will allow users to highlight, search, and review the video more

easily. Second, tagging acts as placeholders to personalize the reflection of an important
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point in the video. TagLecture [30] introduced a game to motivate the need to increase

the number of tags associated with video lectures. Consequent investigation revealed

that youth and almost 50% of the adults did not prefer playing the tagging game due to

the type of labels: “they think they are too personal and subjective to tag video lectures

properly”.

Next, in-video note-taking allows recording reflections or interpretations of the infor-

mation present. The interfaces today support in-house note-taking that is timestamped

to the current video time for efficient review. A tool called Interactive Shared Education

Environment (ISEE) [62] explored the issues in video annotation. It generates hyper-

linked timestamps, Smartlinks, to associate the notes with video contents. Similarly,

Dorn et al., examined the use of spatiotemporal anchored collaboration affordances to

enable collaborative annotation and discussion of video content as a first-order learning

activity [24]. Results indicated that students take advantage of the system’s affordances

to interact in meaningful ways, though overall student annotation authoring is restricted.

The limitations of in-video note-taking mechanisms are the linear-only capability, mean-

ing there is less room for physical non-linear formatting like adding doodlings/markings

of reflections around the notes taken.

NoteStruct [52], in-video note-taking system, prompted learners to perform a series

of note-taking activities. First, learners highlight, comment and add questions while

watching the video. Second, learners walk through every highlight they made and elab-

orate or merge key points. In the final phase, learners review all the notes generated

in steps 1 and 2 in a free-form text editor and are free to edit parts of the notes. The

free-form editor partly allocates non-linear formatting but fails to transfer the free-form

formatting affordances found in the paper medium. Also, the 3-step note-taking is both

time-consuming and demands additional effort when learning from videos.

Furthermore, Note-taking with a video annotation system was compared with hand-
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written note-taking when learning from videos by Bargeron et al., [2]. Results indicated

that note-taking with MRAS, a video annotation system, consumed a lot more time than

traditional note-taking, even though the number of words captured was the same on aver-

age. However, it is important to note that participants preferred MRAS over handwritten

notes because MRAS was able to contextualize the notes with the corresponding video

timestamp. This very observation indicates that retrieving the context of captured notes

is an important activity to support students’ constructive behaviors.

The preceding discussion pointed to several video platforms with features for textbook-

style highlighting, note-taking, and tagging, along with their contributions to transfer

physical annotating practices. Nevertheless, previous work suggests that students often

take notes with paper-based notebooks, even when provided with video annotation tools

[36] [94]. As Sellen and Harper [77] points out, the paperless office is a myth. Sam

et al. found that notebooks are used to synthesize, organize and orchestrate important

information from multiple class materials in one place for use [23]. The authors also

emphasize that students prefer interoperability over medium-specific tools. Thus, in the

following section, significant work of cross-referencing video materials from paper notes

is covered.

2.2 Cross-Media Interaction with Paper Notes

The key characteristic of students learning from various information objects is to acquire

and keep items of value, as defined in an umbrella term Personal Information Management

(PIM) [92] [4]. The onus is often on the students to manage their information in the

right place, in the suitable form to meet their learning needs. Microsoft’s OneNote, for

example, provides interactive features for note-taking but also constrains the use of a

tabbed platform to aid the organization of notes and references to other information

sources. Several researchers have highlighted the general lack of progress within HCI
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towards closing the gap between the affordances of paper and the benefits of digital

media [5] [4].

Hypertext is often thought of digital environments’ content, particularly the Web;

however, hypertext can also exist in non-digital environments [50]. For example, Mar-

shall’s studies of students’ textbook annotations suggest that annotations are conceptual

hyperlinks within and between Lexia [58]. Literary theorists have argued that hyperlinks

can have various extents or scopes [50], allowing links to reference objects at different

levels of granularity. For example, a student can create a ‘word level’ link by defining an

unfamiliar word from her textbook or a ‘collection level’ link by writing a note that sum-

marises a chapter. Other scholars have explored the linking between media. Augmenting

paper-based documents within digital information [34], in particular. For example, a

lepidopterist’s paper-based fieldnotes can be linked to photographs of butterflies [99]

[54].

Embedded Media Markers (EMM) are indicators, frequently employed in terms of

glyph codes, barcodes, or transparent marks, signifying the availability of additional me-

dia associated with that part of the document. Post-captured in-video notes are printed

on paper to include place markings or marginal markings that promote incidental reflec-

tions of material circumstances. Lynn D et al. developed a system for video access from

notes on a paper medium [93]. The invention includes a note-taking system that allows a

user to select keyframes or make annotations during a note-taking session (meeting, pre-

sentation, or other activity); the captured annotation indexes a position of a video. The

captured keyframes and annotations are printed on a paper sheet with glyph encoding.

The printed sheet is used to access the relevant parts of the video by scanning the glyph

codes associated with the target keyframe or annotation. The printed sheet can then

be annotated or elaborated in free-form, allowing non-linear formatting of the captured

notes.
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PaperChains [69] connects paper-based material with digital audio using low-tech,

easily accessible equipment. The authors make use of standard camera phone handsets to

photograph physical content and then allow the photographed item to be augmented with

digital audio in multiple locations via interaction with the image. The approach uses two

precisely placed QR (quick response) codes printed on paper, allowing the PaperChains

system to detect the item, its orientation, and dimensions, with any camera-enabled mo-

bile handset. This method requires no additional specialist hardware (such as a dock or

camera-pen) – users interact directly with the photograph using the phone as a proxy.

When reviewing the audio files, touching anywhere on the photograph plays the audio

for that location. Although time-consuming, utilization of EMM-type indicators syn-

chronizes notes contextually with the corresponding video material. But the limitation

here is the onus in maintaining media-only special paper notes and also accomodating

the associated technology requirements.

More recent work in this area has adopted technology such as Anoto, which uses

a special dot-marked paper and a camera to recognize document areas while writing.

ChronoViz [28] integrates researcher’s paper notes into the composite time-coded data

set of video files. It exploits Anoto digital pen technology to support the integration of

paper-based digital notes. The pen includes an onboard infrared camera and tracks its

position on the paper in real-time by reading the dot pattern and, in turn, making it

possible to navigate data in more flexible and powerful ways.

Today, this work continues with research exploring how novel tools can support paper-

based note-taking practices for active, constructive learning when interacting with the

video. We address the imperative need to nurture interoperability between students’

paper-based notebooks, central to information weaving of videos and other media, and

the corresponding context. The integration of interactive navigation techniques with

existing note-taking practices enables students to navigate to moments noted during
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initial learning activity quickly.

2.3 Searchable-Video Data

Current work on instructional video indexing and matching gathers the visual, textual,

and auditory streams of data from videos, opening up the content of instructional video

for topic matching through traditional information retrieval approaches [45] [83] [87] [97]

[96]. TRECVid [1], a workshop series, has been pioneering content-based video analysis,

retrieval, and detection since 2001. Of special importance is their semantic indexing task,

assigning semantic tags to video samples, that aims at evaluating methods and systems

for detecting visual, auditory, or multi-modal concepts in video shots. The methods follow

a “bag of visual words” matching approach or more elaborate aggregation methods like

generating Fisher Vectors or SuperVectors. In VCenter [37], for example, Hsiao and

Wang segment video into a series of frames from which only the most representative

frames are used for indexing. iVIEW [53] is another system that supports full-content

searching of multilingual text and audio extracted from the video.

Temporal linking appears to be a widespread approach in video platforms for enter-

tainment too. In a study of YouTube comments, Yarmand et al. found that comments

reference a variety of temporal aspects of video: from single points to intervals to whole

videos [98]. Our approach utilizes all the visual, textual, and auditory data available

from the video materials to deduce matched results of videos from their corresponding

notes. This work also explores the effectiveness of linking note-based video content to

temporal aspects, as suggested in the previous studies.
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2.4 Note Content Characteristics

Notebooks fulfill a vital function for students because free-form writing, in particular,

allows them to leverage a greater breadth of expressions [77]; especially when, in our

case, writing notes on the content that appear in the videos, which include equations,

figures, and tables. Real-time notes are unwieldy: most contain mixed cursive and graph-

ical writing, often written at angles, in various sizes, and at multiple locations all over

the page. These constraints do not change the problem statement but require a more

profound investigation into the content of the notes.

Analyses of the lexical structure of notes by Piolet et al., [72] showed three charac-

teristics of notes. First, abbreviating procedures, for instance writing down ‘poss’ for

‘possibility’. Second, symbols substituting for syntax such as equals, star, arrows. Third,

the physical formatting of the notes in a non-linear way. As it is possible that each

individual uses different abbreviations/formatting techniques, or in some cases the same

individual can use different abbreviations/substitutes for the same word in various parts

of his notes, the current work does not observe the stated characteristics. Rather, the

focus of the work is to examine the features of notes in relation to the video materials.

In the context of recall performance evaluation, several characteristics of notebook

content have been identified in empirical studies, including note quantity [63], note quality

[70], and verbatim overlap [63]. Note quantity is the number of words while note quality

is measured by counting the number of factual statements in the notes compared to the

lecture video, which can be judged as either right or wrong, present in the notes. Verbatim

overlap stands for word-for-word overlap between the video content and the content of

the notes. In this work, we focus on the content of notes that can be overlapped and

matched with the video content.
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2.5 Handwriting Recognition

The notebook content, written in relevance to instructional videos, must be translated

to machine-readable information to assist the semantic lookup of the video source. Rec-

ognizing handwriting content remains an active area of research [73] [86]. A major area

of focus has been on handwriting recognition through the analysis of stroke data, such

as the direction and order letters are drawn [81] [19]. This information is readily cap-

tured by devices that support digital ink, such as mobile phones and tablets. However,

students continue to use pen and paper for taking notes [36], meaning stroke data is

not always available. Applications in off-line handwriting recognition through various

domains include recognizing postal addresses [80], bank checks [29], writer identification

[65], historical document recognition [65], and calligraphy imitation [102]. Various stud-

ies comparing on-line versus off-line handwritten recognition [73] [86] have articulated

the underlying methods and gaps in the respective categories.

Yuan and Seales [100] proposed a semi-automatic solution to reading manuscripts

that involves a document analysis (DA) module and a graphical user interface. The DA

module detects and ranks regions of interest in an image using which users can manually

configure the parameters of the DA module, thereby ranking candidate regions for linking.

Our work, on the contrary, proposes a fully automated solution that identifies regions of

interest for each image in every video from the library and delivers a ranked list of videos

without user intervention.

Alternative approaches to handwriting word recognition (HWR) have demonstrated

substantial improvements in recognition accuracy by employing a combination of con-

volutional and recurrent neural networks [12] [71] [74] [102]. Deep-learning approaches

require a large amount of training data to discern the most important features for char-

acter recognition. Collecting and annotating a sufficiently large dataset of handwritten

notes with connected components in different settings remains expensive and laborious.
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To our knowledge, no such dataset is publicly available. Therefore, in this work, the

medium-fidelity prototype is built upon readily available off-the-shelf Optical Character

Recognition (OCR) engines whose application can be scalable to different note types.
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CHAPTER 3

Characteristics of Watched Video Notes

This chapter aims to investigate how and what types of notebook content link to what

timepoint in a video. The diversity of the captured note content and the reference point

in the video material are surveyed and discussed. Identifying students’ notes’ distinct

characteristics is especially trivial to inform the selection of effective recognition tech-

niques. We also deduce a taxonomy of handwritten expressions and the temporal levels of

referencing the corresponding video timepoint. Additionally, a dataset of watched video

notes is created, which is later used for testing the performance of an automated linking

prototype.

3.1 Notes Collection

In this section, previously taken student notes on instructional videos are analyzed for

any information that could connect to the video. We inspect the identified information

to uncover the attributes of 1) the content type of the notes and 2) the corresponding

destination within the video, allowing us to compare the students’ notes to the correct

point in the video.

3.1.1 Participants

We recruited ten university students — four from an electromagnetics course, two from

machine learning, three from a data analysis course, and one from a crash course on

software engineering. The study targeted students from engineering courses specifically
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to increase the likelihood of finding diverse types of technical notes. 4 of the 12 students

were undergraduates and 6 graduates, all of them between 18 to 28 years old. Table

3.1 shows the demographic data of the ten students, their level of education at the time

of the study, and the course from which the notes. The table also includes the number

of videos and the average length of the videos in each course. The inclusion criteria

were that each unit of sample possessed pre-written notes recorded on paper notebooks

watching instructional videos. Before the study, each participant confirmed they had at

least eight pages of handwritten notes they had taken while learning with video that

ensured a sufficient amount of data in each session.

3.1.2 Procedure

Students located pages in their notebooks containing handwritten notes related to a

point in an instructional video. Each instance of a video-related note was recorded as a

link to populate a dataset of notebook-video mappings. A flatbed scanner recorded note

pages to maintain the resolution, luminance, and color quality of the data collected. The

notes collected were full-page copies of students’ notebooks. Given that we made copies

of students’ actual notes, they might have included personally identifiable information

or content that they would like to exclude from the database. Therefore, each partici-

pant was provided with a plain piece of paper to conceal all the content they were not

comfortable sharing.

Ground truthing was a crucial step for understanding the linking patterns and val-

idating the core idea of note-content-based video access. We collected student-labeled

ground truth observations along with the actual copies of video-related notebook content.

The course videos that students learned from were available in a video learning platform

ViDeX [27] prior to the study. We used a laptop to view the scanned notebook pages

and the videos to which the notes belonged. Once the copy of relevant notebook pages
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Table 3.1: Demographic data of Participants P1 to P10

Participant Gender Level Course No. of
Videos/-
Course

Average
video
length
(hh:mm:ss)

P1 Female 2nd year,
Undergradu-
ate

Engineering
Electromagnetics
(ELEC211)

15 0:07:56

P2 Female 2nd year,
Undergradu-
ate

Circuits & Elec-
tromagnetics
(BMEG220)

16 0:08:03

P3 Male 1st year,
MASc

Machine Learn-
ing (CPSC340)

12 0:50:43

P4 Male 2nd year,
Undergradu-
ate

Circuits & Elec-
tromagnetics
(BMEG220)

16 0:08:03

P5 Female 2nd year,
Undergradu-
ate

Engineering
Electromagnetics
(ELEC211)

15 0:07:56

P6 Male 1st year,
MASc

React, JS 1 2:25:26

P7 Male 1st year,
MASc

Machine Learn-
ing (CPSC340)

12 0:50:43

P8 Male 2nd year,
Meng

Data Analysis
(EOSC510)

13 0:18:41

P9 Male 1st year,
MASc

Data Analysis
(EOSC510)

13 0:18:41

P10 Female 2nd year,
MASc

Data Analysis
(EOSC510)

13 0:18:41

was taken, participants marked a rectangular box around the content that can be linked

to the video on each page using editing software like paint, PowerPoint slides. Each

marking included the following details as shown in 3.1.

1. Name/title of the video.

2. Timestamp of the referenced video material that links to the note content.

3. A confidence interval representing their level of confidence, measured using the
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Figure 3.1: An example of a student-labelled ground truth of a scanned note, record-
ing 1) the name of the matching video, 2) the timestamp within the matching video,
and 3) the students’ Remember, Know, Guess confidence interval.

Remember, Know, Guess paradigm [25], of their responses. Participants reported

if they remembered the video occurrence or knew about the occurrence or guessed

if they took some time to go through the videos and guessed the occurrence.

We returned students’ notebooks after completing the data collection session, which

took approximately 45 minutes, during which we gathered as many links as possible.

Pilot testing with four students prior to the data collection recorded any impediments

through the process that needs attention.

3.1.3 Description of the Captured Notes

Five to ten pages of notes per participant were recorded, comprising a minimum of 10

to a maximum of 35 video links. An important aspect to note is that each student took

considerable time to scroll through the videos and the video timeline to record the relevant

timestamp. However, the time taken to identify links did not indicate a general pattern.

Also, we did not see any consistency in the number of notes per student and their capacity

of recalling the related video context as Remember, Know, or Guess. For instance, two

students from the same course had contrasting patterns of link identification. P1 marked

9 note links to 9 different videos, whereas P5 marked 20 links to 6 different videos, with

at least 2 links pointing to each video.

Students marked most video links with a confidence level of Remember when asked to
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indicate the basis on which they judged that they had studied the video previously. The

apparent reason could be as students had the videos included as part of their ongoing

curriculum. They marked two links as Know and four as Guess. One student tagged a

part of the note page as video-related content but did not remember the video and marked

the confidence level as ‘Unsure’. In total, we collected 181 video links which can be seen

in detail in A.1 and analyzed for various characteristics so that we can apply appropriate

recognition analysis in the later phase. It is particularly imperative to identify the types

of note content that exist to aid the recognition of handwritten content and thereby elicit

design ideas to support the robust linking of notes to videos.

3.2 Results and Discussion

The identified set of notes and their corresponding video references set the stage for three

main subtasks:

1. Understanding the similarities and differences between the various content types of

the notes.

2. Developing a taxonomy of similar notes.

3. Understanding the temporal nature of the video references.

3.2.1 Content-based Categorization of Note Content

We observed the links for collective identities whose characteristics were derived based on

the subject matter in the note content. Previous work has demonstrated the distinction

between textual and non-textual content types in handwritten notes [20] [38]. They

emphasize the need for assigning a specific content type to corresponding specialized

recognition systems for high-quality accuracy. Accordingly, the following four main units

categorize the links based on the content type:
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Figure 3.2: Notes with text-only content

1. Text: A link that has plain textual content. This type includes groups that have

textual descriptions such as comparison table, a summary of a concept, definitions,

bulletin of important pointers, freestyle flowcharts, piece of code. An example for

each of these groups is shown in 3.2.

2. Formula: A link that includes mathematical symbols, equations as shown in figure

3.3. One line equation or a block of derivation were both regarded as formulas.

3. Figure: A link that comprises handwritten illustrations of graphical elements.

This includes pictorial representations of electromagnetic elements, graphs, circuits

whose examples can be seen in figure 3.4.

4. Hybrid: A link that uses a combination of the above three types in close connection

as shown in figure 3.5. An example could be a figure with one or more lines of

textual details of the figure.

The categorization was devised based on the examples described in the hierarchical

annotation of online handwritten documents [38]. Mapping video-related note content
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Figure 3.3: Notes with formula-only content

Figure 3.4: Notes with figure-only content

to the categories mentioned above showed that most links were text-based. 39.22% of

the references (n = 71) were written letters or words, 34.25% (n = 62) were formulas,

and 4.97% (n = 9) were drawings of figures/drawings/circuits, not surprising given that

our participants are student engineers. We also found 21.54% (n = 39) of hybrid cases

representing a combination of textual and non-textual content. It is important to note

that textual content type accounted for the highest usage of the video links data collected,

indicating its broader use over other content types to link to videos. This is consistent
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Figure 3.5: Notes with a combination of textual and non-textual content

with the findings from previous work [38] that reports text as the frequently used content

type in online handwritten documents.

3.2.2 Unfolding the Hybrid Type

In hybrid content types, textual and non-textual contents haphazardly amalgamate to

structure a reference to some point in a video. This poses a challenge in assigning a

recognition technique to hybrid types found in notes. Further scrutiny into the samples

of this type displayed that one of the 2 or 3 types dominate the other in obvious ways,

as listed below. We leveraged this factor of the predominance of one type over the others

to unfold and assign the hybrid type to text, formula, or figure.

1. The content load of one type exceeds the other types. This can be seen in the

sample shown in figure 3.6. The link comprises all three types; text, formula, and
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figure. However, it has more textual characters and letters when compared to

mathematical symbols and pictorial representations. So, the content type chosen

for this case is text.

2. The topical similarity between one content type and the video far exceeding the

other(s) distinguishes the hybrid types. Figure 3.7 shows one such example. Al-

though both content types have about an equal number of characters, the text

‘sample mean’ here is not unique and can be semantically related to several videos.

However, the equation can be a finer query that could be semantically close to the

expected video. Hence, the formula was the choice in this case.

3. Sometimes, the significance of a content type is manually highlighted in hybrid

notes. In the sample shown in figure 3.8, equations are highlighted in textual boxes

to indicate its significance. Hence the accentuated type was chosen, in this case,

formula.

We applied the above-discussed directions to all the hybrid cases to assign each

case to one of the other three content types. In the end, 98 of the total records

were tagged as text type, 65 as formula, and 18 as figure.

3.2.3 Verbatim Overlap

The Verbatim overlap is a measure of the word-for-word overlap between the lecture

content and the content of the notes. Mueller and Oppenheimer [63] explored the effects

of verbatim overlap in three studies (n = 65, n = 149, and n = 109). In all three studies,

all participants took notes, either by hand or with a computer. The authors scored these

notes on their verbatim overlap. They compared a fixed chunk of text in the notes with

a chunk of text in the lecture transcript and reported a percentage of match for each.

We followed a similar procedure to calculate the percentage of matching for each
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Figure 3.6: Hybrid link consisting of connected text, non-text components

Figure 3.7: Hybrid link with semantically broad text content

Figure 3.8: Hybrid link with highlighted content
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recorded link in the notes. As the content of the notes included both textual and non-

textual components, each chunk of the components in the notes was systematically com-

pared with the matching chunk in the video with the following guidelines.

• Firstly, for text, each word that is a noun or a term that has lexical significance and

is not a stop word was considered as a chunk of data. Stop words are commonly

used words, such as “how”, “what”, “or”, that are excluded from searches to parse

information objects faster. We identified the chunks discretely irrespective of the

sequence of their appearance.

• For formulas, defining a chunk was not straightforward as the length of equations

could vary from a simple two-term equation to a number of lines. Therefore, an

equation connected by less than or equal to 3 terms on either side of the equals sign

was regarded as a chunk. If an equation exceeded more than 3 terms, we assigned

it to the next chunk.

• In figures, a graphical representation that has connecting nodes from one end to

another was considered one chunk. As we looked into freehand paper drawings,

if the figure was structurally similar to the one in the video, the overlap was true

otherwise false.

• For the hybrid type, we identified the chunks according to the type assigned. For

example, if the hybrid representation has a higher number of graphical components,

we followed the figures’ procedure to identify and match the chunks.

Therefore, we computed the percentage of content overlap as:

% of overlap = # of matching chunks

total # of chunks in the notes
∗ 100 (3.1)
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Figure 3.9: Box plot comparison of content overlap in the text, formula and figure
representations respectively.

The box plot in figure 3.9 visualizes the overall distribution of the content overlap

across text, formula, and figure representations in the watched video note content.

A glance at the plots suggests that the Inter Quartile Regions (IQRs) of all the three

boxes are above the 50% overlap. This very fact implies that at least half of the note

links identified in each type, that is, text, formula, and figure, matched half or more of

the content chunk for chunk as found in the videos. We outline some of the observations

specific to each type below:

• In the case of texts and figures, at least 25% of the note samples showed an overlap of

less than 50% giving rise to two possible interpretations. One, students completely
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paraphrased the content in the notes in one’s own words or two, the matching video

timestamp as indicated in the ground truth did not exactly match the context of

the notes. The IQR for the text type also exhibits a larger variance in the 50-100%

window of overlap compared to the other two types. This indicates that with the

text type, there is more paraphrasing when compared to formula and figures.

• The median is the lowest for the text type pointing to 75% of overlap and is at

100% for the formula and figure. Formulas in specific manifest 100% overlap in the

case of at least half of the formula-based notes. This implies that when learning

from videos, formulas are transferred literally to notes for reviewing purposes.

• Furthermore, for both text and figure, there are cases when there is no overlap

at all, with a minimum overlap of 0%. But, it is extreme in the case of formula,

indicating some amount of obvious overlap for most cases.

3.2.4 Watched Video Timepoint

Investigating how students marked the expected timestamp of video to each part of notes

was crucial in determining the predicted outcome of searching through the videos. We

examined the timestamp — i.e., the link destination — recorded as the ground truth for

each collected note page and registered the following observations:

1. The note content did not always point to the video slide as indicated in the data

collected.

2. Expected timestamp did not always indicate the start of an interval. The video

content of the notes spread across a stretch in the video. When a software code is

explained, for instance.
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The recorded timestamp with the video title failed to indicate if a student is trying to

re-find the whole video, an interval of similar content in the video, or a particular slide.

Thus, there is added ambiguity in the video timestamp to be rendered that corresponds

to expected. It is crucial to rationalize the video timepoint rendering evaluation to

articulate the ability of an automated linking approach.

To this end, we conceptualized the timestamp to be rendered on the temporal at-

tributes in the video content. Previous work has emphasized the provision of temporal

context within search results in video [9] [90]. Yarmand et al., [98] presented a taxon-

omy for classifying video references in YouTube comments by temporal specificity. The

authors identified three temporal characteristics of video referencing as Point that refer-

ences distinct moment, Interval that references a span/section of time, and Whole Video

that references the entire video. Accordingly, we define the retrieved video timepoint as

a timepoint in the three temporal levels:

1. Point: when a video timestamp is pointing to specific content in a video,

2. Interval: when a video timestamp is pointing to an interval of the related video

section,

3. Video: when a video timestamp is anywhere in the video

3.3 Summary

We performed a needs assessment by collecting previously taken notes of watched videos

through a lab study with ten students to crucially analyze the types of notes and their

attributes to being used as query elements. First, we articulated the outlook of identifying

various information types: text, formula, drawing and hybrid, in the watched video notes.

It is important to note that textual content type accounted for about half of the video

link data collected, indicating its broader use over other content types to link to videos.
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It is also important to note that the extension of hybrid type to one of the other three

types also lead to a majority of text-dominant links; 26 out of 38 hybrid notes, to be

precise. This is consistent with the findings from previous work [38] that reports text as

the frequently used content type in handwritten documents.

In addition to the identified types of notes, investigation of the verbatim overlap factor

also yielded interesting insights in relation to each type. The box plot interpretations

implied that students tend to copy important formulas and figures as it is from the video

slides, but paraphrase or summarize the textual explanations into their notes. Overall, at

least 75% of the notes in each type showed some amount of verbatim overlap, confirming

the ability of watched video notes as efficient query elements to retrieve related videos.

While the 100% overlap of content between notes and corresponding video in at least

half of the identified formula and figure note samples, and in 25% of the text samples, is

a promising finding to aid the proposed approach, 0% overlap for text and figure samples

poses a trivial challenge.

We conceptualized the timestamp in the resulting video on the temporal scale to a

timepoint in point, section, or whole video. We believe the problem of accounting for a

difference between the retrieved to expected video timestamp has been addressed with

the temporal attributes through this approach. However, student reviews on the video

retrieval in the 3 levels and other requirements in the video viewing end are important

to determine the comprehensive features in the future systems. On the whole, the estab-

lished characteristics of both note content and the corresponding watched video address

the first research question of the work. In the following chapters, the emphasis is on

exploring how to link back to the video source material in one of the three temporal lev-

els. Also, we address the optimal temporal level among the three groups in the retrieved

video.
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CHAPTER 4

Rendering Watched Video Matches

Students’ attitude on employing a linking device as an educational tool is vital to design,

evaluate and roll out the right technology. As discussed in chapter 3, the timestamp

rendered in one of the temporal levels can influence the likelihood of determining the

video result as a potential match or not. Therefore, we evaluate the acceptable temporal

difference between the retrieved video and the expected in this chapter. In turn, the

chapter also draws on the inclusion of other video-related objects, along with the video

result playing from an expected timestamp, to conveniently establish the match. Drawing

inferences on these points are imperative in determining the optimization parameters for

the system’s ability to predict video matches. Therefore, the objective of this chapter is

three-fold:

1. To learn the temporal specificity, the preferred temporal level among point, interval,

and whole video levels where the temporal difference between retrieved to expected

is acceptable.

2. To examine the preferences for video surrogates along with the video when rendered

on search.

3. To evaluate the usability of the proposed approach, that is the idea of an automated

linking interface over the existing linking approaches.
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4.1 Experiment Design and Procedure

We conducted a user study with 12 Engineering students to demonstrate the preference

for temporal specificity in point, interval, and whole video, along with the expectations for

video surrogates in search results. With approval from the University of British Columbia

(UBC) Behavioural Research Ethics Board, we obtained informed consent was obtained

from all the participants. A pilot study with 2 participants confirmed any setbacks in the

procedure of the study. The study began with only 4 participants to determine the total

sample size. An a-priori power analysis was performed with the data received from the 4

participants using the G*Power application [26]. The chosen test family was the t-test,

and the chosen statistical test was the ‘Means: Difference between two dependent means

(matched pairs)’ test. We calculated the effect size based on the Likert-scale data for a

question comparing the information effectiveness among the three temporal levels ‘The

information is effective in helping me complete the tasks and scenarios for learning’. The

point level condition was the control group compared with the interval and whole video

levels as the treatment groups. The calculated effect size was dz = 1.03 for point-interval

group and α = 1.59 for the point-whole video using the difference of means and standard

deviations. The computed sample size was 6, 12 choosing an input error probability of

0:05 and desired power of 0:95. We finalized the sample size as 12 and recruited students

accordingly.

4.1.1 Participants

With a sample comprising 12 university students, the controlled lab-based study included

students from a range of engineering disciplines and degree levels. Table 4.1 outlines the

students’ basic information. We reached undergraduate and graduate engineering stu-

dents with convenience sampling. Inclusion criteria were that students were over eighteen
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years of age and had experience learning with video. We scheduled half-hour appoint-

ments with each participant. The entire session was audio-recorded, which enabled us to

focus on the verbal prompts. A verbatim transcript of the interview was later generated.

Table 4.1: Demographic data of the 12 students

Participants Gender Level
P1 Female MASC
P2 Female PhD
P3 Female MASC
P4 Male PhD
P5 Male MASC
P6 Male MASC
P7 Male MASC
P8 Male MASC
P9 Male 2nd year, Undergraduate
P10 Male 2nd year, Undergraduate
P11 Female 2nd year, Undergraduate
P12 Female 4th year, Undergraduate

4.1.2 Study Procedure

The conducted study was a within-subject study in which each subject performed the

same tasks in all the conditions. Before beginning with the key tasks of the study,

each participant went through an introductory session where they shared their existing

workarounds when learning from the videos. The session was followed by a mock video-

learning task to help students familiarize themselves with the video-learning settings and

also generate sufficient real-time notes to guide the subsequent tasks. The remainder of

the procedure was designed to address the key objectives of this chapter individually.

The study began with a few experience-based questions to learn about students’

current video learning, reviewing, and note-taking habits. The questions followed a semi-

structured interview pattern to allow students to express their reviews related to learning

from videos. We performed a 2-student pilot testing before the experiment to formulate
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the questions that sensitively addressed video-based learning reviews. Although the

session included exploratory questions, key questions asked were as follows:

1. How often do you learn from videos? What kinds?

2. What measures do you take to help you remember the things that you have learned

for reviewing later?

3. How do these measures help you re-find the source efficiently?

As a next step, we gave participants a realistic task scenario: to learn from an instruc-

tional video and complete a comprehension quiz to improve ecological validity, in line

with Borlund’s work on simulated work tasks in lab studies [6]. We modeled the task to

generate real-time notes whose purpose was to deduce inferences on the experience and

traits involved in the process of video-based learning. Additionally, participants used the

notes to reflect on the various conditions in the later part of the study.

Initially, we selected one 5-minute video to learn. The pilot study showed that stu-

dents have varied interests and might get frustrated to learn unrelated content. Hence,

we selected 3 videos of different genres to accommodate the curriculum-based choice of

preferred video. Three instructional videos that spanned approximately 5 minutes each

were chosen beforehand. Each student was free to choose any video from the three. The

topic of the videos were: 1) Introduction to capacitors, 2) Nervous system, and 3) Re-

inforcement learning. The motive of the study was not revealed to the students at this

point to avoid leading participants to perform a certain way. We told them that it is nec-

essary to remember the video content after the viewing session and connect back to the

video during the study. Participants were given blank sheets of paper to take notes while

they watched the video. Students were asked to identify parts of notes that pointed to

video-related content after completing the video learning session. Their general learning

and linking habits were discussed, which later followed to a discussion on the conditions
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that supported the objective of the study. After gleaning on various existing linking

strategies carried out, we explained the intent of our proposed linking approach to the

students.

4.1.2.1 Temporal Specificity

The first objective of this study was to investigate the acceptable temporal difference

in the video rendered to that of expected. We considered three conditions of delivering

a timepoint in point level, interval level, and whole video level. The conditions were

demonstrated relative to the participant’s notes captured in the previous step and the

related video. For instance, participants noted a video timestamp that connects to part

of their notes as mm:ss in video time. In the case of point condition, the timestamp to be

retrieved was demonstrated in two to three timepoints, say mm:ss+0:02 or mm:ss-0:02

in the same frame that pointed to the noted timestamp. If a frame spanned for about 30

seconds and the noted timestamp is inside the frame, the retrieved timestamp is either

the start, middle, or end of the 30 seconds window. Thus, the temporal difference is

now in this window condition. We repeated the procedure for the other two temporal

conditions, that is, various timepoints in the corresponding section and the whole video,

the order counterbalanced. Students discussed the pros and cons of all three conditions

in detail to observe the acceptable difference. Additionally, they provided the preference

for each condition based on the following after-scenario questionnaire on a Likert scale

of 1 (strongly disagree) to 5 (strongly agree):

1. It is easy to find the information I need from this point.

2. The information is effective in helping me complete the tasks and scenarios for

learning.

3. I’m satisfied with the retrieved video time point.
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4.1.2.2 Re-scan, list of search results

Submitting a meaningful query is essential for video search effectiveness from a large video

archive [91]. Taking the example of the Google search engine, a user often reformulates

or rephrases the topical content of queries to retrieve the desired information. Similarly,

students expressed their reviews on performing re-search operations with other relevant

video-related queries from their notes. The discussion also covered traditional ranked-list

presentation of more than one to two video results in the mobile scenario.

Along with the video and the timepoint at the acceptable temporal level, the video

surrogates’ rendering is significant in the video retrieval process. The next step was to

glean on the video surrogate’s expectations when rendering the predicted video.

4.1.2.3 Preference for Video Surrogates

Popular search engines such as Google provide a set of keywords along with the heading,

URL in search results to highlight query relevant pages. This page-related information

presented are surrogates for a web platform that assists searchers in deciding whether to

examine the full web page. Similarly, surrogates for video are a condensed representation

of the video as a whole while summarizing key features to cue a quick sense of the expected

video. They facilitate rapid sense-making. Textual and non-textual video surrogates were

used in Marchionini’s work [57] to aid rapid gist determinations from the list of results

to select which video to watch. While there are numerous types, four fundamental and

frequently exercised video surrogates were selected for the study: 1) Title of the video,

2) Thumbnail, a small image that exemplifies video content, 3) Keywords to indicate

significant video substance and, 4) A summary of the video content. We demonstrated

three sample designs with the four surrogates to the students:

1. Video with title and thumbnail
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Figure 4.1: An example video surrogate, comprised of a thumbnail (a), title (b),
keywords (c), and summary (d).

2. Video with title, thumbnail, and keywords

3. Video with title, thumbnail, keywords, and summary.

Figure 4.1 shows the design sample for the third condition. Students’ preferences for

each sample were discussed and rated based on a set of Likert-scale questions with a scale

of 1 (strongly disagree) to 5 (strongly agree) in three scenarios:

1. It is easy to find the information I need from this point.

2. This design has all the functions and capabilities I expect it to have.

3. The organization of information on the layout screen is clear.

4.1.2.4 Usability

Each participant talked about the usability of the proposed system as a working applica-

tion, recorded in terms of three key elements; efficiency, effectiveness, and satisfaction [9].

The ratings for the three elements were captured through the following set of Likert-scale

questions (1; strongly disagree to 5; strongly agree).
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1. Effectiveness is indicated by the quality of solution, accuracy, and completeness

with which users complete specific tasks. Following questions were used to report

on the effectiveness of our approach:

(a) I think the system is easy to use.

(b) I found the various functions in this system were well integrated.

(c) I think that I would need the support of a technical person to be able to use

this system.

2. Efficiency is shown by task completion time or learning time which was captured

using the following questions in our study:

(a) I believe I could become productive quickly using this system.

(b) I would imagine that most people would learn to use this system very quickly.

(c) I needed to learn a lot of things before I could get going with this system.

3. Satisfaction is confirmed by users’ comfort and positive attitudes towards using

the system. The study reported on users’ satisfaction rates based on the below

questions:

(a) I think that I would like to use this system frequently.

(b) I found the system unnecessarily complex.

(c) Overall, I am satisfied with this system.

The items for each usability element were phrased with two positive and one negative

question to avoid extreme response bias and acquiescent bias. Interview data was tran-

scribed and de-identified before analysis.
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4.2 Study Findings

In this section, we refer to the findings from the study discussed in the previous section,

particularly with respect to preferences in terms of video retrieval and attitudes towards

using the proposed system.

4.2.1 Video in “Interval” Temporal Level

We compared the difference in preference for the temporal levels of video timepoints

(i.e., retrieved video timepoint in point, interval, or full video) based on the data from

the three Likert-scale questions. Since the data collected was ordinal, it failed to meet the

assumptions for parametric tests. Thus, we performed the Friedman test, a parametric

alternative, that confirms whether there are overall differences between the groups of

consideration. But it does not pinpoint which groups, in particular, differ from each

other. To achieve this, one needs to run a post-hoc analysis. We conducted Wilcoxon

signed-rank test with a Bonferroni correction applied, resulting in a significance level set

at α < 0.017. Here we used an exact p-value considering the small sample size (n = 12).

We analyzed the three questions, respectively.

1. First, participants’ perceived ease in finding information from the retrieved time

point was statistically significantly different among the three timepoint groups

(χ2(2) = 7.4, p = 0.021). However, the post-hoc test did not locate significant

differences between the combinations of the three groups despite an overall reduc-

tion in the whole video group compared to the point and interval groups.

2. Participants’ perceived effectiveness in completing tasks for learning was statisti-

cally and significantly different among the groups (χ2(2) = 6.897, p = 0.029). But

no statistical difference was observed in the combinations.
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3. Lastly, participants’ satisfaction with the retrieved timepoint was significantly dif-

ferent in the groups (χ2(2) = 9.190, p = 0.008). Additionally, the post-hoc test

showed significant difference in the video versus interval groups (Z = −2.240; p =

0.011). Participants felt higher satisfaction when the retrieved video timepoint was

in the interval when compared to anywhere in the whole video. The Ranks table

provided some interesting data on the comparison of participants’ satisfaction for

the two groups. Ten participants had a higher satisfaction score for video playing

in the interval of the expected content occurrence over a timepoint anywhere in the

whole video. However, only 1 participant had a higher score for the whole video

condition, and one participant saw no change in terms of satisfaction.

To learn more about the preference for the video timepoint retrieval in one of the

three temporal groups, interview transcripts were examined for explanatory quotes. The

quotes from the 12 participants were coded with five different preference levels, very good,

good, neutral, bad, very bad as seen in figure 4.2. For example, P13 had the following

reviews for each category:

• Whole video; That can be really inconvenient because some videos are like two

hours → coded to very bad

• Interval; it is somewhat helpful I’ll probably be pretty satisfied → coded to good

• Point; Well, then I’ll just be pretty happy. Yeah. Gets me to where I want to go

→ coded to very good.

Quotes were coded as neutral if preference changed with contexts. For example, P1

reported that the length of the video influences preference when timepoint retrieved is

anywhere in the video; ‘If it’s a 15-minute video. Yeah, I would be OK with it because

it’s just 15 minutes you would want to devote like a solid understanding and if it’s a day
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Figure 4.2: Coded mapping of preference levels (i.e., very good, good, neutral, bad,
and very bad) to each level of temporal specificity (i.e., point, interval, and whole
video).

before an exam. Yeah, but if it’s an hour or two hours then it would become slight bit of

an inconvenience to find it.’

Following the coded mapping of preference to each temporal group across the 12

participants, the point-level temporal group presented 9 - very good, 1 - good, and 1 -

negative code tagged to bad. The interval-level temporal group displayed no negative

codes, 8 - good and 4 - very good codes. Six participants exhibited negative codes, bad,

in the case of the video-level temporal group with five participants still indicating positive

codes, 2 - very good and 3 - good.

4.2.2 Selection-based Use of Video Surrogates

To examine the video metadata cues to be rendered along with the video, data from

Likert-scale questions was analyzed to compare the three conditions: 1) Title + Thumb-

nail, 2) Title + Thumbnail + Keywords, and 3) Title + Thumbnail + Keywords +

Summary. Once again, we performed the Freidman test along with the Wilcoxon signed-
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rank test to investigate the difference between the three conditions.

Participants’ perceived ease in finding information from the retrieved timepoint showed

no statistically significant difference between the conditions (χ2(2) = 2.889, p = 0.240).

Participants’ expectations of the design (i.e., design has all the expected functions) also

showed no statistically significant difference between the conditions (χ2(2) = 2.8, p =

0.272). Participants’ perceived information clarity was statistically significantly differ-

ent among the groups (χ2(2) = 8.914, p = 0.008). Post hoc test indicated a significant

difference in the clarity of information organization among the summary and keyword

surrogates (Z = −2.762; p = 0.004). Ranks showed that 9 participants had a higher

clarity score for keywords than the summary. No participant preferred summary over

keywords. However, three participants saw no change in the organization with the two

groups.

Since there was no significant difference recorded in 2 out of the 3 likert-scale ques-

tions, we could not deduce preference for each of the selected surrogates. Although there

was the influence of the video surrogate combination in the organization of informa-

tion, it was not clear about the ease of finding information. Interview excerpts further

supported this evidence. Participant P3 preferred keywords; ‘Yeah. I would prefer the

keywords most because that one is short. For the abstract one, if it’s one or two sen-

tences, I think that will be better.’ Participant P10 pointed to the need for summary;

‘I think more the information more it will be easy for me. So ok from here it is like

more information so I can just read through and recall if that’s the video I’m looking for ’.

Therefore, Select or Deselect action items can be included in an expandable list of video

surrogate choices. When a student first views the video result on search, the default

value, title + thumbnail, is the choice that appears in the video control and selects the

other surrogate options that they want.

The inclusion of transcripts also seemed to be influenced by the author’s accent, video
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content type, compact video viewing in mobile applications. An additional observation

was that all the participants except one (P3) preferred seeing a thumbnail that showed

the video content that matches the note content. For example, P9 informed that ‘if

that slide would be in the thumbnail, Yeah that would be like the most optimal scenario’.

However, P3 reported that it might not be as useful: ‘I think it’s because, with the typical

video thumbnail, I think for a video they always have a thumbnail selected for that video

in the system and I remember that thumbnail. And if you change the thumbnail, during

the search, I’ll probably get confused.’

4.2.3 Usability reports

We analyzed the final survey data on usability. The figures 4.3, 4.4, and 4.5 below

show the stacked bar charts constructed from Likert scale data for 3 different usability

elements: Effectiveness, Efficiency and Satisfaction. The counts of participants on each

row who agree with the statement are shown to the right in dark blue color; the counts

who disagree are shown to the left in dark red color. Participants who neither agree nor

disagree are shown in a neutral color.

Participants thought that NoteLink was easy to use (M = 4.42, SD = 0.49) and were

able to become productive quickly using NoteLink (M = 4.33, SD = 0.62). Overall,

participants were satisfied with our NoteLink (M = 4.33, SD = 0.47). However, the

reports did not indicate complete agreement in terms of the system’s functioning. 2

participants marked ‘neutral’ when asked about the system’s integration of functions. 2

Participants also agreed that there is lot to learn. All the 12 participants asserted that

the system would be very useful while learning from videos if it were a real application

and if it could scope well to their expectations. P1 said, ‘If it had things I want, yes.

Very useful. Saves so much time, and maybe I’ll watch more videos then.’ P2 agreed:

‘Definitely, for videos that have to be bookmarked. This is very useful.’
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Figure 4.3: Stacked bar chart showing likert-scale observations for Effectiveness.

Figure 4.4: Stacked bar chart showing likert-scale observations for Efficiency.
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Figure 4.5: Stacked bar graph showing likert-scale observations for Satisfaction.

Lastly, qualitative analysis of the interview transcripts regarding the traditional list

of search results showed that 11 out of 12 participants preferred having a list of probable

video matches (in particular, three videos on average). For instance, P1 preferred having

at most three options; ‘Options are definitely good. But how many options are there? I

don’t want something like google where it has pages of matches. Maybe three, not more

than that’. Therefore, we decided to go with three options with an option to view more

when required.

4.3 Discussion

The video timestamp to be retrieved was conceptualized and evaluated on a temporal

scale to support semantic evaluation of the system’s retrieval prediction. We established

an overall difference in the preference for the predicted video timepoint in the three condi-

tions; point/interval/Whole-video. The interval group, in particular, showed a significant

increase in satisfaction compared to anywhere in the whole video. The reason is likely

contextual, involving several aspects of the viewer’s information need at the time that
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might influence the preferred temporal level. For instance, P9 had his preference change

with the length of the video and complexity of the topic: ‘If it’s a short video, I’d be

okay with just anywhere in the video. If it’s a long video, I wouldn’t be okay with just the

video. If it’s a very complex topic, I would definitely not prefer being taken to the point.

But, if it’s a rather simple topic, of course, I’d be okay with just, you know, like being

taken to the point. ...The sweet spot would be to use the middle one — interval.’ The

coded preference mapping in figure 4.2 also showed that interval level match point is the

most opted with 0 negative codes. The point-based temporal specificity also showed the

most positive codes (10 out of 12). However, 6 out of 12 participants shared negative

codes for the whole video level, indicating lower preference compared to the other two

levels.

Interview transcripts revealed students’ preference to view a list of probable video

matches seen in the traditional queries to digital libraries. Christel [14] discussed two

major challenges in locating needed information from the list of results: 1) Information

returned can be too much, and 2) Information needs are different for different users.

Similar trends were observed in the preference for video surrogates: title, thumbnail,

keywords, and summary. Therefore, the enable/disable feature-based selection of video

surrogates from the ranked list of video matches is suggested in this work. Furthermore,

emulating design recommendations from literature [10], [82] on effective mobile informa-

tion retrieval can boost the performance of our system in the human-computer interactive

perspective.

Analysis of interview excerpts along with the notes captured during the study led to

interesting themes towards linking and note-taking habits.
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4.3.1 Link to Note vs Note of Links – Linking Strategies

We analyzed the current conventional workarounds that students perform to link their

notes to videos in the interview excerpts. The findings led to a list of linking strategies

that can compile identical methods employed in digital and paper-based physical medi-

ums. This is a unique observation over the traditional categorization of digital versus

physical linking techniques. We classified the collection of linking methods into two main

groups whose elements are listed in the table 4.2:

1. One category comprises of links or video cues such as title, timestamp, content

headings, and many more adjacent to the relevant part of the notes, that is termed

as link to Notes.

2. Another category includes creating a document of links such as word or excel doc-

ument of pointers to videos that is named as Note of Links.

Each participant expressed their views of an existing approach versus the proposed

approach. P7 reported that ‘I never thought it would be easier or difficult. If I had

another choice like another process that makes things easier then definitely I would have

felt that this would be difficult.’ The participant also found the system’s approach to be

easy. ‘I would definitely like it. Instead of searching myself every time I go to YouTube

and saving a link somewhere and forgetting things. Yeah, scanning and it gets to the right

video, Yeah. That’s really good’. Thus, the proposed system hints at a great potential in

supporting automatic linking to videos over the existing manual inclusion of links.

4.3.2 Impact on the Existing Note-taking Practices

Technologies that create new environments for note-taking have shown to bring change in

the way students take notes. For instance, a study on the annotation of digital documents
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Table 4.2: Identified current linking techniques

Link to Notes Note of Links

1
Title, interval/content
headings, in-video text,
author name

Excel sheet of video to note
pointers

2 Timestamp, video link on
digital notes

Word document of slide
screenshots

3
Highlight, color code, ‘x’
identification marks to
notes

Video Bookmarks

[59] demonstrated significant changes in the note content and anchoring style. On the

same lines, students discussed the possible changes/influence on their existing note-taking

habits with the introduction of the proposed linking system. Interview quotes indicated

the proposed approach might not change students’ note-taking habits; ‘My note taking

wouldn’t change but would be far more helpful’ said P13. The possibility of extending the

application of our system on digital notes also played a role in indicating no influence;

‘...because I write electronic notes I can imagine that could also be something that I can

use this snipping tool to take pictures and do that.’ Overall the ability of the system

to retrieve video without adding links or pointers at the time of capturing notes assures

preserving students’ current note-taking style. ‘I don’t think my note taking process would

change as much. No, I don’t. I would still write my notes like this. Because it works

even now, if I scan this word’ said participant P12.

4.4 Summary

This chapter conducted an experimental study to draw on the students’ expectations

of mechanizing their existing workarounds in linking notes to videos to make informed

and inspired design solutions. The qualitative analysis of interview transcripts bolstered
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the evidence demonstrated by the qualitative data from Likert-scale questions. Results

indicated that students prefer video rendered with a timepoint in the interval level, while

point level matches also showed higher satisfaction. Rendering video with a timepoint

anywhere in the related interval/section provides a considerably large window of time

difference between the expected and the retrieved video timepoint. This is an important

finding as it aids future video retrieval systems to conceptualize the timepoint difference

in determining the right video context.

The results also showed that no participants had higher priority for summary than

keywords, although they showed no significant priority for thumbnail. A deeper inves-

tigation into the effects of video surrogates on video retrieval systems is necessary for

this work in the future. However, students indicated that the search results could go up

to 3 possible matches. Ultimately, the usability evaluation revealed that students would

find the proposed linking approach helpful when learning from instructional videos. The

students’ positive attitude towards the proposed method is paramount to advance into

the design and development of watched video retrieval systems.

Overall, results established the requirements of the video rendering in terms of tempo-

ral specificity and the types of surrogates. The next chapter moves discusses the pragmat-

ics of linking handwritten notes to corresponding videos with the help of a medium-fidelity

prototype design. We can perform an informed flow of recognition analysis with the es-

tablished content types used in watched video notes. Also, the preferences for temporal

levels can enable the prototype design to find the right video matches. The prototype

development and testing outline the technical requirements in the next chapter, which,

with the findings in this chapter, comprehensively answers the second research objective

of this work.
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CHAPTER 5

Pragmatics of Linking Notes to Video

From the previous chapters, three conclusions are apparent: 1) students make links to

video content in their notebooks using a variety of content representations (text, formulas,

and figures), 2) in all the identified content types of watched video notes, there is some

amount of verbatim overlap, and 3) expected timestamp in a video can be scaled to

three temporal levels in a video; timestamp in a point, interval, and whole video. A

medium-fidelity prototype was devised on top of the above hit inferences to evaluate the

effectiveness of exercising watched video notes to link to corresponding videos that:

1. Recognizes the three handwritten content types,

2. Matches these to a collection of videos and,

3. Presents three best matching videos with timepoint in one of the three temporal

levels.

5.1 Note Recognition Analysis

To limit the implementation efforts and focus on the implementation gaps associated

with the proposed approach, we explored readily available off-the-shelf Optical Charac-

ter Recognition (OCR) technologies to recognize handwritten images. The process of

selecting the best OCR model directed us to employ different recognition models for

different handwritten content types. The goal here was not to compare or evaluate the

recognition accuracy or capacity of various models.
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OCR Application Programming Interfaces (API) from PixLab1, Google cloud vision2,

and Microsoft’s computer vision read handwritten text API3 were used to compare and

identify the optimal recognition API. A random number of text-based samples from the

collected video notes in phase I were sampled and then compared for the word matching

count. The words matched did not include stop-words such as ‘the’, ‘at’, ‘is’, and so

on. With nearly similar results, Microsoft’s API worked slightly better with rotated

characters and produced relatively fewer false positives when compared to the other

APIs. However, it did not reliably recognize the special characters and symbols often

used in formulas. It also could not interpret lines in figures that did not contain any

meaningful text. Thus, we used Microsoft API to read text-only notes, and explored

other OCR APIs for non-textual components.

Our choice to extract special symbols like scientific notations from a given image,

without stroke data, was Mathpix OCR API4. The API’s performance was evaluated with

a few randomly picked formulas from the pilot study dataset and recorded the number

of matched characters from the original equation. The result object returned with a

confidence field which demonstrated a probability of more than 70% for all the tested

cases. Hence, Mathpix was used for reading mathematical content, that is, formulas.

A two-step recognition process facilitated reading lines in pictorial representations.

First, we used Scale Invariant Feature Transform (SIFT)5 algorithm from Open Source

Computer Vision Library (OpenCV) to extract feature-based keypoints and descriptors

from a scaled and slightly rotated image. Second, we studied structural information that

predicts the perceived quality of an image as Structural Similarity (SSIM) index[89].

Next, the Matcher block incorporates finding the corresponding video from the col-
1https://pixlab.io/api
2https://cloud.google.com/vision/docs/reference/rest/
3https://docs.microsoft.com/en-us/azure/cognitive-services/computer-vision/concept-recognizing-text
4https://mathpix.com/ocr
5https://docs.opencv.org/3.4/da/df5/tutorial py sift intro.html
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Figure 5.1: Matching flow for Text and Formula content.

lection of videos.

5.2 Finding Video Matches

Visual information from slides and the transcribed auditory text was compared with

the recognized handwritten content. Figure 5.1 illustrates the approach used to pick the

matching video for the handwritten units’ text and formula. Extracted data is the output

from OCRing text and formula handwritten input. Stop-words were filtered out before

feeding into the matching block.

A quick search of data occurrence in the transcripts of videos provided a list of

possible matches. We carefully examined the video slides of these matches to find the

best matching video timepoint. Finding similar textual components was straightforward

as the entire slide can be OCRed to extract all the text-only data. However, instructional

slides are often content-heavy and include various types of information like equations,

figures, and more content types in a slide. The non-textual objects, such as, formulas

have to be identified and highlighted before reading them. Region of Interest (ROI)

facilitates filtering or operating on unique portions of an image. Using OpenCV, ROIs

for each video slide equipped the highlighting and extracting borders of mathematical

content.
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Figure 5.2: Matching pictorial content for figures

The next step directly applied the chosen OCR techniques on the slides for text type

and the extracted ROIs for the formula type. The resulting data from this function was

compared with the input handwritten data to arrive at the best matching ROI, which

gives the best matching video with the timestamp where the data occurs.

The process flow for pictorial data is different from the text and formula as there is no

quantifiable information that can easily compare in this case. A flowchart can be seen in

the 5.2. Here, again, ROIs were extracted from each video slide. Feature descriptors were

detected using SIFT from ROIs and matched with input image descriptors. For feature

matching OpenCV’s Fast Library for Approximate Nearest Neighbors (FLANN)6 algo-

rithm was used. Here, to eliminate possible false matches, a ratio test was performed that

selects only the most promising matches for further screening. Following this approach

through the collection of videos, a list of possible matches was captured. Later, the SSIM

of the note image was compared with the list of ROIs from the filtered videos to get the

final matching video with a timestamp where the pictorial information exists.

In each case, the matcher block picked 3 best possible video matches, in line with the

inferences drawn from the students in the previous chapter. In the subsequent section, a

mobile interface application that provides a platform to submit the watched video notes

and play the retrieved videos is discussed.
6https://docs.opencv.org/3.4/dc/dc3/tutorial py matcher.html
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5.3 Smartphone as a Pedagogical Interface

Enabling an interaction platform to feed the note content and consume related videos is

an important step in designing the prototype. The goal here is to employ an interface that

expects minimum effort from a user to provide the desired input and delivers video results

that convey the information necessary to choose a match. Mobile devices allocate new

pedagogical affordances to students in varied temporal conditions and learning settings

[16]. They have proven to possess great potential in engaging students with effortless

access to needed content and delivering information ‘just-in-time’ [95], [32], [42], [48].

The annual survey by the Educause Center for Applied Research [ECAR] on Mobile

IT in higher education has tracked mobile technology usage since 2012 [31], [17]. The

reports demonstrate a positive correlation among student use, the importance placed on

these technologies, and students’ academic success. Additionally, considering students’

robust use of paper notebooks for their coursework, it is better to design a mechanism

in the mobile world that adapts to the attributes of paper. The attempt here is to aid

the ability to capture heterogeneous handwritten information in student notebooks and

quickly retrieve required video sources in their own devices.

To this end, we leveraged the ability to use a camera to take pictures and video

viewing in smartphones to design a mobile interface in this work. This interface employs

a mobile camera to point to video-related notes and re-find corresponding video in a

mobile-based video platform. Figure 5.3 illustrates the use of the interface in an example

case, where a student points to a textual description in notes to retrieve the corresponding

video. First, a student opens the application and is presented with the two options to

feed the formula, take a picture, or upload an image(top). For either option, the user

can crop/adjust the image containing the equation to delimit the note content that can

be linked to the video. The corresponding video, that is, the video watched while noting

down the content, is presented to the user, played back within the application (down).
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Figure 5.3: Mobile interface, is presented with the option to take a picture of students’
handwritten note content (top) to find the corresponding video with topically similar
content, read to be played back within the app (bottom)
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The mobile application was built using Nativescript plugin API7 for using device

camera8, background-http plugin9 for enabling http methods and video player plugin10

that uses the native video players to play remote. At the back end, the image input is

fed to Recognizer and Matcher blocks to find the corresponding video from a collection

of videos.

5.4 Accuracy of matching videos to notes

We assessed the ability of the prototype system to retrieve watched videos on the note-

book data sample identified in chapter 3. Additionally, instructional videos that students

learned to make notes were also collected to compare the video result with the ground

truth video marked with the note data. We transcribed the spoken content of the videos

to facilitate the matching between the note content and the video. The prototype tested

a total of 181 watched video notes. The evaluation metric used was accuracy which is a

fraction of the number of matched note samples to the total number of note samples:

% of Accuracy = # of matched notes

total # of notes
∗ 100 (5.1)

Following guidelines were used to choose a video result as matched or not-matched:

1. As the search result gives only three different videos relevant to the note content,

we treated any video result of the three as a match irrespective of their ranks.

2. Timestamp retrieved was compared with the observed timestamp collected as ground

truth. In both cases, the video content was checked and marked if they belonged to
7https://www.nsplugins.com/
8https://market.nativescript.org/plugins/nativescript-camera/
9https://market.nativescript.org/plugins/nativescript-background-http/

10https://market.nativescript.org/plugins/nativescript-videoplayer/
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the same point, the same interval where the video content marked as ground truth

or as the whole video if they were from different intervals.

3. If any of the three matches did not match the expected video, it was marked as

No-Match which is 0 relevance.

4. If the recognizer block threw an error or returned no information, it was marked

as No-Data.

After analyzing all the video notes, 38 of the 181 notes were regarded as no-data and

excluded from the set. Of the remaining 143 notes, one was marked as a special case as

it did not include ground truth, that is, timestamp and the video. Therefore, the data

from the Matcher block that was available for comparison was 142. About 77.5% of the

total notes (n = 142) returned video(s) that matched the expected videos that students

reported as ground truth. The pie chart in figure 5.4 illustrates the accuracy breakdown

across all the note samples. 29.58% of the notes samples were matched to the exact point

in video as that of the expected. 27.46% of the samples returned match results playing

in the same interval or section where the students’ note content is present. 20.42% of the

samples produced the right videos but did not play in the same point or interval as was

expected.

Figure 5.5 demonstrates the accuracy percentage for each of the types breaking down

the accuracy of finding the video matches across the three different content types, that

is, text, formula, and figure. The system matched textual content with an accuracy of

97.5%, formulas with 56.8%, and drawings with 38.9%. Table 5.1 shows the exact number

of matches and accuracy predicted for the three content types on the temporal scale of

point, interval, and video.
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Figure 5.4: The pie charts showing the total accuracy of finding the matched and
the breakdown across point, interval and whole video temporal levels

Figure 5.5: The bar chart showing the total number of matched note samples of the
3 content types; Text, Formula, and figure

63



Table 5.1: The number of count (n) of note-video matches, and accuracy of retrieving
matching video is reported for each content type (i.e., text, formula, and drawing)
overall and at the three levels of temporal specificity (i.e., point, interval, and whole
video).

Temporal Level
Note type Point Interval Whole video Overall

Count (n) Count (n) Count (n) Count (n) Notes (N) Accuracy(n/N%)
Text 36 27 15 78 80 97.5

Formula 5 10 10 25 44 56.8
Drawing 1 2 4 7 18 38.9

Total 42 39 29 110 142 77.5

5.5 Content Overlap

We computed the percentage of content overlap between the note content and the video

slide deduced from the results of our system. Doing this will give us more insights into

how the system performs concerning student’s manual process of linking their previously

written notes to corresponding video context. The proposed approach matched most of

the textual components in student notes related to watched videos with a 97.5% accuracy.

Thus, we first considered the general characteristics of the overlap results of the matched

video for the text-only content and made the following observations from the boxplot

shown in figure 5.6.

1. Atleast 50% of the video results that played from the exact video slide/point

matched the note content word to word with more than 90% overlap. Minimum

overlap is at 25%, and the IQR spans between 65-100%, indicating that video re-

sults playing from the same point as expected had an overlap greater than 65% for

most of the note samples.

2. IQR of the matched content in the case of interval condition also manifests a con-

siderable amount of overlap, that is 55-80%, with at least 75% of the note samples
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Figure 5.6: Results showing overlap between video results and text-only content.

matched in this condition showing an overlap greater than 50%. This hints that

the note content in the case of textual components summarize an interval of a video

and can point to multiple frames in a video interval

3. In the case of the whole video condition, the matched results still show some overlap.

However, it offers a decreased percentage of overlap. An interesting factor to note

is, more than 75% of the notes showed overlap between 20-40% indicating that the

note content might re-appear in various parts of the video.

Similarly, figure 5.7 also demonstrates the percentage of overlap for the formula-based

content.
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Figure 5.7: Boxplot results showing overlap between video results and formula-only
content.

1. Similar to the case of textual note samples, the point condition demonstrated an

overlap greater than 65% for at least 75% of the note samples.

2. Interval condition confirmed a wide range of overlap in the IQR region. However,

it also had matches with 0% overlap.

3. In the whole video condition, most cases showed an overlap of less than 30%, hinting

that the video results started playing randomly.

In the case of figure-type notes, the accuracy was predominantly low and recorded

only seven matches. Hence, we did not include the box plot representation of this type.
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5.6 Discussion

We showcased the accuracy of retrieving watched videos on both temporal levels and

content types. The system matched approximately 78% of the note data to expected

videos on one of the temporal levels. More than half of the returned videos exhibited a

timepoint in point level or interval temporal level as preferred among the participants.

The system did exceptionally well in matching textual note content to videos as finer

legibility in textual content and matured attempts in word-spotting exists [88]. Analysis

of content overlap between notes and the video results further highlighted interesting

findings respective to retrieval in the three temporal levels. Close to half of the text-only

samples were matched with timepoint in the point level and more importantly returned

a relevant context with a good amount of overlap for timepoint in the interval level.

Although a video point that is semantically closer to the note content exists, students’

choice of topical relevance was at another timepoint in the same section or interval where

the note content is present. The presented work has indeed conceptualized the difference

of timestamp between the result to that of the expected video. This is an important

finding in aiding the future video retrieval systems to allow a wider window of difference

in the retrieved video timepoint.

However, in terms of formulas and drawings, the system matched less than half of

the total links. The prototype system returned a few videos with point level matches

that had a content overlap of 100%. Additionally, more than half of the equations and

graphs that yielded no matching videos had an overlap of 100% in the actual observations.

One of the reasons for low accuracy in the two non-textual content types could be the

gap in generating non-textual Region of Interest (ROIs) in the Matcher block. The

start and end of outlines for ROI bounding boxes are not obvious in equations and

figures, which influences the matching effectiveness. ROI segmentation must be improved

with training models prior to matching the note image to address this gap. Moreover,
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Figure 5.8: Link samples with low legibility

recognition of handwritten equations does not always yield success. Recent reports from

Competitions on Recognition of Online Handwritten Mathematical Expressions (ICDAR

2019 CROHME) [55] have shown an accuracy of 77% for image-based recognition of

equations. Similarly, advancements in feature matching approaches must find sound

correspondences, especially with a higher proportion of false-positive matches in the case

of free-form drawings.

We shouldnote that 38 video notes were excluded, marked as No-data, from the ac-

curacy calculation. This was because the recognizer failed to detect the content before

the note was passed to the matcher block due to legibility concerns, such as bad image

quality or the information in the link might have been too less to detect content mean-

ingfully. It can be evident in the sample data shown in Figure 5.8 where the legibility is

compromised or the data to be recognized is too narrow for meaningful interpretation.

Additionally, in the proposed approach, the content types are physically categorized in

notebooks for the hybrid type before feeding into the recognition module. The distinction

between textual and non-textual content types is not always obvious. Of the 39 hybrid

notes assigned to one of the three content types, one was dropped as a special case with

no ground truth. Thus, 30 out of 38 hybrid notes were matched to the right videos,

leading to an accuracy of 78.94%. This corroborates the right choice of content type

assignment for improved accuracy in retrieving the video match.
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5.7 Implementation requirements

By designing the medium-fidelity prototype, a number of technology impediments were

identified that hinders the ability to recognize and match notes to videos effectively. The

following sections outline a few essential requirements.

5.7.1 Automated Content Type Segmentation

The primary step of the proposed system is to interpret the text and non-text elements

separately to carry out the subsequent recognition and matching processes. We must as-

sign the mobile-scanned note content to the appropriate content labels with the identified

types: text, formula, and figure before the corresponding recognition module assignment.

Several researchers have proposed heuristic methods to separate text/non-text segments

in online handwritten documents that utilize a combination of spatial and temporal in-

formation available from stroke level data [19], [20].

In classroom notebooks, however, this process is an arduous task without stroke-level

information. Furthermore, the content of paper-based handwritten notes varies in size,

shape, and orientation with different writing styles [76]. Most often, all the content types

are closely connected and merge haphazardly, which is a significant issue in distinguishing

them. Additional challenges include arbitrary layout, inconsistency in the note quality

as they can be written on a variety of paper and can be old.

Previous work has introduced techniques that allow content segmentation, and layout

analysis of a page in three main methods: top-down, bottom-up, and hybrid techniques

[66]. The top-down techniques first detect the highest level of structures and then pro-

ceed to the bottom layer by training a classifier model that successively splits text, and

non-text components [7], [38]. The top-down approach has shown a good (about 95%)

prediction rate for identifying textual information, but not when non-textual elements
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like formulas and graphs are present. On the contrary, bottom-up methods begin with

primary components and merge them into a segment [19]. These methods mostly focus on

online handwritten documents and do not fit our case as the knowledge of digital strokes

or individual pixel data are not available in paper-based documents. Hybrid methods

combine the two approaches [78]. Florent et al. [61] proposed a hierarchical combination

of Conditional Random Fields(CRFs) to extract the document layout of handwritten

letters. Sarkar et al. [76] presented a typical connected components(CCs) classification-

based method to separate text from non-text components. A similar method is proposed

in [3] where the LBP operator is used to classify the CCs. Kundu et al. [49] recently

proposed a method that applies Generative Adversarial Networks (GANs) where they

considered ‘text line extraction’ in handwritten documents as an image-to-image trans-

lation task. Many more methods have considered the complex type of documents but

have not addressed the most common issue of handwritten documents, i.e., overlapping

components.

Recent advancement has introduced a few commercial/non-commercial modules that

support text/non-text segmentation through pre-trained classifiers. Azure Custom vi-

sion11 is one such service that facilitates the use of a machine-learning algorithm to train

and classify the images. During the process of prototype implementation, we built a

training model with hundreds of handwritten note samples by tagging labels pointing

to the three content types. However, the test run with the data collected yielded us an

utmost accuracy of 60%. The performance of the classifier significantly dropped for the

images that had overlapping components of different types, that is, the hybrid type.

In the case of Hybrid images that consist of closely connected text and non-text

components, assigning a label involves more work than classifying an image into an

appropriate content type. Consider the example shown in Figure 3.7. Here, although the
11https://docs.microsoft.com/en-us/azure/cognitive-services/Custom-Vision-Service/overview
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text and non-textual data elements are arbitrarily constructed, the textual information

conveys semantically rich interpretations that can aid the accurate topical search of the

related video. The pictorial data, in this case, might not be as helpful. Therefore, the

classifier must point the following case to a text label instead of pointing to 3 independent

types, which otherwise becomes taxing to process both in time and space. This poses an

imperial need to possess prior knowledge of the content in the classifier.

Along with the content segmentation at the scanning end of the mobile interface, video

slides also contain both text and non-text components. As seen in the implementation

section, the Region of Interests (ROIs) extracted per image must be accurately mapped

to non-textual components for efficient matching. Thus, there is an imperative need

to develop an advanced content classification system that efficiently identifies different

content types in both handwritten paper notebooks and the video slides as a mandatory

pre-processing step.

5.7.2 Recognition Accuracy

Generally factors which affect accuracy of OCR can be disparate language classes [103],

character merging and fragmentation [11], resolution (e.g. [84], [64]), illumination, skew

and noise [46]. Handling each of these issues is significant in improving the overall

recognition accuracy. As we collected the data was collected under controlled conditions,

skew, blurriness and illumination are less likely to contribute towards OCR inaccuracy.

Character segmentation for multi-lingual handwritten recognition is now a significant

area of research. The proposed system has been developed with recognizers to accom-

modate English, mathematical characters, and pictorial representations. However, the

recognizer should be able to scale to notes of multiple languages. For instance, for notes

with a mix of English and Korean/Chinese language, the OCR accuracy might signifi-

cantly drop. Tesseract has proven to show very high accuracy for Latin characters. Park
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et al. [67] proposed a framework to tackle multi-lingual scripts. The words are split into

multiple character images fed to a set of pre-trained classifier models. Unlike English,

languages like Korean, Chinese have thousands of character classes. Thus, independent

recognizers with explicit character segmentation and individual character recognition are

important to map videos of interest.

Poor resolution of the notebook content scanned can greatly influence the OCR accu-

racy. Notes can be old or ill-maintained, which degrades the quality of content present in

the notebook. Image interpolation as a pre-processing step in the Recognition pipeline

can lessen the overall accuracy. Several researchers have proposed to tackle resolution

degradation in printed document images [39], [15] [33]. Ankit et al. [51] showed an

accuracy improvement of up to 21% in OCRing document images by employing a super-

resolution-based pre-processing step.

5.7.3 Computing Time

Research suggests that even slightly higher retrieval latency by search engines can sig-

nificantly decline in users’ perceptions of result quality and engagement with the search

results. The time between query submission to search response should be reduced as

much as possible. In the case of the proposed system for video search, the processing

time is dependent on the number of videos to be looked up.

In textual links, the processing time is directly proportional to the number of videos as

the content is searched in the video transcript directly. However, the time taken depends

on the number of ROIs extracted per video slide for formulas and figures. As the ROI

extraction becomes more precise, the time factor increases with a potential improvement

in the matching accuracy. A more grouped ROI can produce good speed, which might

affect the accuracy of finding the right video match. Hence deeper work to address this

trade-off is necessary to aid the system’s ability to retrieve videos of interest efficiently.
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CHAPTER 6

Conclusions

The work in this thesis investigated the use of engineering students’ handwritten note

content, captured when learning from educational videos, as a linking artifact to connect

back to originally watched video context when reviewing. We observed distinct charac-

teristics of notes, references to related videos, and verbatim overlap, a pivotal element

to find relevant video content, in 10 engineering students’ video notes. Results indi-

cated overlap of some amount in at least 75% of the notes in all the identified types of

note content. The retrieved video timepoint was conceptualized on the temporal scale,

a timepoint in the same point, interval, or the whole video as that of the expected. We

believe this approach accounts for the difference between the retrieved to expected video

timestamp.

The findings from the 12-student lab study showed an overall preference for video

timepoint retrieval in the ‘interval’ level. Also, a medium-fidelity prototype informed

insights regarding the existing technology in designing a fully working application. Eval-

uating the prototype system against a set of 181 identified note samples, 77.5% of the

samples were matched with the right videos as expected, with the video result playing in

one of the temporal levels. Also, 97.5% of the total textual notes were matched to the

videos observed in the ground truth. This is especially interesting given that more than

half of the links identified were textual content indicating its broader use over other con-

tent types. The thematic analysis of interview transcripts in the study revealed that the

proposed system of linking notebook content with corresponding videos was perceived
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as usable, effective, and easy to use. and can improve both the learning experience and

learning outcomes. The implementation gaps given the existing technology such as au-

tomated content separation, recognition inaccuracy and computation time were derived

in prototype development.

Along with the established results on the temporal specificity and video surrogates

associated with matching video rendition, it was interesting to note how it affects users’

linking behaviors. Students’ response to the system’s usability showcased its potential

use as a supplement to bring context back to their notes rather than modeling notebook

as a platform to include video-related annotations. Also, the existing linking practices

as seen in the study transcripts in Table 4.2 are mostly manual approaches that confirm

the proposed approach’s novelty.

6.1 Limitations and Future Work

Although the results of our initial evaluation are positive, we recognized limitations within

the study. With regard to the notes collection elaborated in chapter 3, the focus was only

on technical notes to generate varied types of content types. The observations were based

on a small corpus of class notes gathered from Engineering students at the University

of British Columbia. The intention was to consider diverse content types accessible in

engineering notes as confirmed during the pilot study. It is important to note that there

is a great deal of individual variation in note-taking practices. So the characteristics of

video-based notes described in this work are applicable only generally, not universally.

Additionally, the participants in the latter study, that reported on the systems’ us-

ability and requirements were recruited based on convenience sampling. All the students

were part of varied degree levels pursuing different majors. Also, they were in no way

connected and randomly picked. While an ample amount of qualitative data was col-

lected that led to interesting inferences, the study might be vulnerable to selection bias
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and other influences that go beyond the control of the study.

Next, the collected notes benefited us with distinctive content types, data from other

domains fall out of scope in this work, music-based courses or notes from a chemistry

course, for example. The extension of this work in the future must address notes of other

genre containing unique characters and different languages.

Along with the diverse genres, lecture characteristics such as the modality and the

lecture structure is another critical factor that needs deeper investigation concerning

the note-taking styles. Lectures can be seen to be presented with a classroom style

written content or spoken content with talking heads. Previous work, however, shows no

indications of lecture modality influencing the amount of lecture material students record

or remember. Furthermore, the structure of lectures in a specific modality can have

closely connected or disconnected/discontinuous segments stitched together depending

on the complexity of the lecture topic. The temporal specificity of such lecture materials

dramatically varies and is an important factor to consider in rendering the matching

videos.

While the current work has confirmed students’ positive attitude towards the in-

strumentation of notebook content-based video retrieval, the current work falls short of

evidence in various learning settings, as shown in the examples below:

1. First, how a linking interface functions when working on assessments and preparing

for exams. A detailed review of the expectations of a linking system’s use when

approaching class tests or an examination can contradict some of the observations

here, chiefly pertaining to temporal specificity and surrogates of the retrieved video.

2. Second, how does the system perform on old notes, say older than a year or more.

An interesting factor would be evaluating the validity of the matched video results.

Although the prototype designed for this work was of sufficient fidelity to draw in-
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ferences on the requirements, incorporating additional image correction methods can

significantly improve performance. For instance, 38 records were dropped as the recog-

nizer failed to translate the note content. Since the intention was to employ off-the-shelf

recognition algorithms to implement a prototype of sufficient fidelity, a pre-processing

step to improve the resolution was not a part of this work. Particularly for handwrit-

ten drawings, image warping as a mandatory pre-processing step can significantly aid

the matching accuracy. Future work needs to address the optimization of matching

non-textual data and more comparative experimental designs with more extensive data

collections.

Lastly, the focus of this work emphasizes the interoperable nature between notebooks

and video materials. However, nowadays, most paper documents have an electronic

counterpart in a variety of media that is accessible on the World Wide Web or from some

other online database or document corpus. While the video plays a central role in flipped

classrooms and other video-based pedagogies, video is not the only media type students

engage with when learning with video. Students make use of a diverse collection of

information objects from within their information ecology. A typical engineering student,

for example, will use her notebook during class, in labs, when doing homework, and

tutorials, to name a few everyday academic tasks. Thus, as part of future work, the aim

is to evaluate how notebooks can become more interoperable with other media types.

6.2 Extension of Application Interactions

We have demonstrated a set of primary user interactions with the presented prototype

to associate a piece of watched-video note in a paper document with a particular video.

The future can build on numerous extensions on that association, whose illustrations we

briefly outline in this section.

At the most superficial level, when a user scans a part of notes, the mobile app could
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provide more options over the regular edit/crop features. Suppose the user feels that the

information in the scanned part of notes could be insufficient in fetching the videos of

interest. In that case, an option to add more information by typing/drawing free-hand

can strengthen the context. This way, the actual notes can remain unchanged. Advanced

collaborative actions such as inviting friends, colleagues, or peers to add on the scanned

note can help locate the video counterpart better. Audio-augmented action items may

also be designed on the edit page of scanned notes to provide bonus information.

The strength of the scanned query in fetching suitable videos may be improved, taking

into account the types of errors likely to occur in the particular captured note data. One

example of this is an indication of suspected errors in recognizing specific characters such

as a mathematical symbol or highlighting a word as important; in this instance, a search

engine may assign them a lower priority or treat highlighted characters as wildcards.

Additionally, the same video(s) can often be searched using multiple scans of notes,

pages of notes that entail a mathematical derivation, for example. The mobile app

can implement these and many other extensions of “paper/digital integration” without

requiring changes to the current writing processes, editing and sharing documents, giving

such conventional paper documents a whole new layer of digital functionality.

The ability and time to recognize the scanned notes can also be improved by keeping

frequently occurring or important records of capturing-retrieving video results. One can

keep track of a map of a key portion of notes such as words, characters, or descriptors

to the corresponding videos so that the occurrence of the same corpus can be used to

enhance the recognition process, eventually increasing the likelihood of bringing up the

same video results. To aid indexing of capture-retrieve process maps, students may choose

markers such as emoticons, stars, or the capture time. Doing this, the future capture-

retrieve actions on the same set of notes can be faster and may not require additional

cueing to fetch the video match.
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User feedback can be trivial in identifying a set of one or more candidate matching

videos. Candidate videos can be weighted according to their probable relevance (for

example, based on the number of other users who have scanned to fetch these videos or

their popularity on the Internet). These weights can be applied in the iterative matching

process. If there are likely to be delays or cost associated with processing a note query or

receiving the results, this data can improve the performance of the local device, reduce

processing costs, and provide helpful and timely user feedback.

Adding overlays or markups on the retrieved videos can also supplement the feedback

process and, in turn, future lookup of the videos. For example, a student can attach

text or an audio recording of his/her thoughts about a particular video segment for later

retrieval as annotations. As another example, a user may also attach a picture(s) of

notes used to retrieve the video that might assist other users when shared with the class

group. Another possible functionality that may benefit users is to enable the lookup and

subsequent inclusion of other related electronic counterparts of a specific video section.

Say, a text document that details the functioning of a model in a PDF document or

a podcast introduced in the video section. Thus, we believe that the retrieved video

and its digital counterparts as markups can bolster the prospect of added note-related

information, eventually creating a rich, interactive platform to connect to a wide range

of information sources in a single scan.

Lastly, user-specific actions and history may also enhance many aspects of the system

operation. Say, if the previous capture was within the last few minutes, it is very likely

to be from the same video or area of study. Similarly, it is more likely that a note is

being recorded in start-to-finish order. Or a student might frequently capture text-only

or mathematics notes, as he/she finds it important for future review. Such user-specific

factors can help the system establish the location of relevant videos in cases of ambiguity

and also reduce the effort in looking up through a large video archive.
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In summary, the proposed approach has established a new baseline for linking paper-

based notes to instructional videos with room for future improvement. The design,

implementation, and evaluation of the system have led to several interesting implications

and extensions, including note-type scalability, recognition optimization, and improving

interaction with the system. In turn, they are paving the way for future trials to inves-

tigate similar approaches in augmenting interoperability between notebook content and

corresponding reference media.
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APPENDIX A

Participant data

A.1 Notebook Samples

The notebook samples are grouped under each participant number, example P1 and can

be accessed here1. Further details about each of the notebook sample is detailed in the

following table A.1.

Table A.1: Notebook Sample details

. Notes Actual

Type

Grouped

Type

Course Video,

timepoint

.

Over-

lap

. No

Over-

lap

% of

Over-

lap

1 P1r1 hybrid equation ELEC211 Coloumb’s

law, 3.23

4 6 40

2 P1r2 hybrid text ELEC211 Electric flux,

5.11

3 3 50

3 P1r3 hybrid equation ELEC211 Electric

Dipole, 3.48

2 9 18.18

4 P1r4 hybrid text ELEC211 Biot-Savart

law, 3.05

7 2 77.78

5 P1r5 equation equation ELEC211 Magnetic

Force, 1.06

4 7 36.36

1https://ubcca-my.sharepoint.com/:f:/g/personal/ranjs92 student ubc ca/
EtvgSRjJKktPqKHcXUxUauIBynZU9R26ePuSuwC-5YvZpA?e=VN1Kei
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6 P1r6 hybrid text ELEC211 Magnetic ma-

terials, 4.54

16 5 76.19

7 P1r7 equation equation ELEC211 Magnetic

Flux, 1.41

3 6 33.33

8 P1r8 equation equation ELEC211 Current, 4.17 2 7 22.22

9 P1r9 hybrid text ELEC211 Unsure

10 P2r1 equation equation BMEG220 Potential

Energy, 1:43,

1:56, 2:09

2 4 33.33

11 P2r2 graph graph BMEG220 Electric flux,

2.10

3 1 75.00

12 P2r3 equation equation BMEG220 Current, 3.05 3 4 42.86

13 P2r4 graph graph BMEG220 Conducting

materials,

1.12

1 1 50.00

14 P2r5 text text BMEG220 Classification

of Electrical

networks,

1.25

3 2 60.00

15 P2r6 graph graph BMEG220 Electric

Dipole, 1.20

1 1 50.00

16 P2r7 equation equation BMEG220 Capacitance,

1.32

1 0 100.00

17 P2r8 graph graph BMEG220 Ideal op-

amps, 7.40

0 1 0.00
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18 P2r9 equation equation BMEG220 Biot-Savart

law, 4.05

1 0 100.00

19 P2r10 graph graph BMEG220 Magnetic

Flux, 2.01

0 1 0.00

20 P2r11 equation equation BMEG220 Magnetic

Force, 5.01

3 0 100.00

21 P2r12 graph graph BMEG220 Solenoids &

Toroids, 7.57

1 0 100.00

22 P2r13 hybrid text BMEG220 Magnetic ma-

terials, 4.51

15 0 100.00

23 P2r14 equation equation BMEG220 Faraday’s

law, 6.47

1 0 100.00

24 P2r15 hybrid text BMEG220 Coulomb’s

law, 1.51

4 0 100.00

25 P3r1 text text CPSC340 Neural Net-

works -

Prediction,

1:27

3 5 37.50

26 P3r2 hybrid text CPSC340 Neural Net-

works -

Prediction,

4.25

2 1 66.67
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27 P3r3 text text CPSC340 Neural Net-

works -

Prediction,

7.25

3 1 75.00

28 P3r4 text text CPSC340 Neural Net-

works -

Training,

22.19

5 1 83.33

29 P3r5 text text CPSC340 Neural Net-

works -

Training,

22.57

4 0 100.00

30 P3r6 text text CPSC340 Neural Net-

works -

Training,

23.56

3 3 50.00

31 P3r7 text text CPSC340 Convolutional

networks,

2.04

6 0 100.00

32 P3r8 equation equation CPSC340 Convolutional

networks,

2.31

1 0 100.00

33 P3r9 text text CPSC340 K-Nearest

Neighbours,

32.27

7 0 100.00

93



34 P3r10 text text CPSC340 K-Nearest

Neighbours,

36.50

7 0 100.00

35 P3r11 text text CPSC340 K-Nearest

Neighbours,

37.53

3 3 50.00

36 P3r12 text text CPSC340 K-Nearest

Neighbours,

40.37

2 0 100.00

37 P3r13 hybrid text CPSC340 Ordinary

Least

Squares,

29.08

2 1 66.67

38 P3r14 text text CPSC340 Ordinary

Least

Squares,

33.08

2 0 100.00

39 P3r15 hybrid text CPSC340 Normal

Equations,

3.31

4 0 100.00

40 P3r16 equation equation CPSC340 Normal

Equations,

11.40

1 0 100.00
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41 P3r17 text text CPSC340 Exploratory

Data Analy-

sis, 0.35

5 6 45.45

42 P3r18 text text CPSC340 Exploratory

Data Analy-

sis, 2.36

7 4 63.64

43 P3r19 text text CPSC340 Exploratory

Data Analy-

sis, 5.45

3 2 60.00

44 P4r1 hybrid graph BMEG220 Coulomb’s

Law, 0:14

1 2 33.33

45 P4r2 equation equation BMEG220 Coulomb’s

Law, 1:18

1 5 16.67

46 P4r3 hybrid text BMEG220 Potential En-

ergy, 0:20

3 7 30.00

47 P4r4 equation equation BMEG220 Potential En-

ergy, 1:35

1 6 14.29

48 P4r5 hybrid text BMEG220 Potential En-

ergy, 2:19

3 1 75.00

49 P4r6 equation equation BMEG220 Potential En-

ergy, 3:04

2 4 33.33

50 P4r7 text text BMEG220 Classification

of Electrical

Networks,

0:27

9 1 90.00
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51 P4r8 text text BMEG220 Classification

of Electrical

Networks,

0:44

1 2 33.33

52 P4r9 text text BMEG220 Classification

of Electrical

Networks,

1:04

2 2 50.00

53 P4r10 text text BMEG220 Classification

of Electrical

Networks,

2:16

4 3 57.14

54 P4r11 text text BMEG220 Classification

of Electrical

Networks,

3:09

4 4 50.00

55 P4r12 text text BMEG220 Classification

of Electrical

Networks,

4:05

4 6 40.00

56 P4r13 graph graph BMEG220 Capacitance,

0:33

1 0 100.00

57 P4r14 equation equation BMEG220 Capacitance,

1:13

1 1 50.00
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58 P4r15 text text BMEG220 Capacitance,

1:32

0 4 0.00

59 P4r16 text text BMEG220 Ideal

OpAmps,

0:40

2 2 50.00

60 P4r35 text text BMEG220 Ideal

OpAmps,

1:36

2 0 100.00

61 P4r17 hybrid graph BMEG220 Ideal

OpAmps,

1:18

1 0 100.00

62 P4r18 text text BMEG220 Ideal

OpAmps,

2:34

5 2 71.43

63 P4r19 hybrid text BMEG220 Ideal

OpAmps,

5:01

1 2 33.33

64 P4r20 hybrid text BMEG220 Ideal

OpAmps,

7:25

7 3 70.00

65 P4r21 hybrid text BMEG220 Magnetic

Flux, 0:15

5 1 83.33

66 P4r22 hybrid text BMEG220 Magnetic

Flux, 0:39

2 6 25.00
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67 P4r23 equation equation BMEG220 Magnetic

Flux, 1:32

2 0 100.00

68 P4r24 equation equation BMEG220 Magnetic

Flux, 2:00

1 5 16.67

69 P4r25 hybrid text BMEG220 Magnetic

Flux, 3:06

3 0 100.00

70 P4r26 hybrid text BMEG220 Magnetic

Flux, 3:16

1 2 33.33

71 P4r27 hybrid text BMEG220 Magnetic

Flux, 4:35

1 3 25.00

72 P4r28 hybrid text BMEG220 Solenoids and

Toroids, 0:26

1 3 25.00

73 P4r29 hybrid text BMEG220 Solenoids and

Toroids, 3:03

1 5 16.67

74 P4r30 text text BMEG220 Solenoids and

Toroids, 6:14

0 2 0.00

75 P4r31 hybrid graph BMEG220 Solenoids and

Toroids, 6:45

1 1 50.00

76 P4r32 hybrid text BMEG220 Solenoids and

Toroids, 8:30

0 2 0.00

77 P4r33 hybrid graph BMEG220 Solenoids

and Toroids,

10:21

2 0 100.00
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78 P4r34 equation equation BMEG220 Solenoids

and Toroids,

13:09

2 1 66.67

79 P5r1 equation equation ELEC211 Biot-Savart

law, 2.20

1 0 100.00

80 P5r2 equation equation ELEC211 Biot-Savart

law, 3.29

1 0 100.00

81 P5r3 equation equation ELEC211 Biot-Savart

law, 5.12

1 0 100.00

82 P5r4 equation equation ELEC211 Biot-Savart

law, 6.05

1 0 100.00

83 P5r5 equation equation ELEC211 Capacitance,

1.20

1 0 100.00

84 P5r6 equation equation ELEC211 Capacitance,

2.10

1 0 100.00

85 P5r7 equation equation ELEC211 Capacitance,

3.10

1 0 100.00

86 P5r8 equation equation ELEC211 Capacitance,

3.42

1 0 100.00

87 P5r9 equation equation ELEC211 Capacitance,

4.15

1 0 100.00

88 P5r10 equation equation ELEC211 Coulomb’s

law, 1.50

1 0 100.00

89 P5r11 equation equation ELEC211 Magnetic

Force, 3.53

0 1 0.00
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90 P5r12 equation equation ELEC211 Magnetic

Flux, 1.35

1 0 100.00

91 P5r13 equation equation ELEC211 Magnetic

Flux, 2.15

1 0 100.00

92 P5r14 equation equation ELEC211 Magnetic

Flux, 2.51

3 0 100.00

93 P5r15 equation equation ELEC211 Magnetic

Flux, 3.20

1 0 100.00

94 P5r16 equation equation ELEC211 Magnetic

Force, 0.40

1 1 50.00

95 P5r17 equation equation ELEC211 Magnetic

Force, 2.43

1 0 100.00

96 P5r18 equation equation ELEC211 Magnetic

Force, 6.50

0 1 0.00

97 P5r19 equation equation ELEC211 Magnetic Ma-

terials, 7.14

1 0 100.00

98 P5r20 equation equation ELEC211 Magnetic Ma-

terials, 7.40

1 0 100.00

99 P6r1 text text React 0.1 3 0 100.00

100 P6r2 text text React 0.17 0 1 0.00

101 P6r3 text text React 0.47 5 0 100.00

102 P6r4 text text React 3.23 3 0 100.00

103 P6r5 hybrid graph React 3.29 2 2 50.00

104 p6r6 text text React 3.29 2 3 40.00

105 P6r7 hybrid graph React 5.07 2 0 100.00
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106 P6r8 text text React 6.38 3 1 75.00

107 P6r9 text text React 10.07 2 6 25.00

108 P6r10 text text React 11.34 3 0 100.00

109 P6r11 text text React 13.43 1 4 20.00

110 P6r12 text text React 16.35 2 1 66.67

111 P6r13 text text React 28.31 4 4 50.00

112 P6r14 text text React 39.3 3 1 75.00

113 P7r1 text text CPSC340 CS3 Design

in Comput-

ing, 12.09

6 3 66.67

114 P7r2 text text CPSC340 CS3 Design

in Comput-

ing, 12.40

2 2 50.00

115 P7r3 text text CPSC340 Fundamentals

of learning,

35.36

3 6 33.33

116 P7r4 text text CPSC340 Fundamentals

of learning,

41.43

7 0 100.00

117 P7r5 text text CPSC340 Fundamentals

of learning,

42.48

7 0 100.00

118 P7r6 text text CPSC340 k-nearest

neigh-

bors,6.37

3 1 75.00
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119 P7r7 text text CPSC340 k-nearest

neighbors,

22.14

7 2 77.78

120 P7r8 text text CPSC340 k-nearest

neighbors,

29.49

7 0 100.00

121 P7r9 text text CPSC340 L2 Regu-

larization,

12.52

7 0 100.00

122 P7r10 equation equation CPSC340 L2 Regu-

larization,

13.30

2 0 100.00

123 P7r11 hybrid graph CPSC340 PCA Intu-

ition, 4.13

1 0 100.00

124 P7r12 hybrid text CPSC340 PCA train-

ing, 27.22

11 3 78.57

125 P8r1 hybrid text EOSC510 Mean & Vari-

ance, 9.03

1 0 100.00

126 P8r2 text text EOSC510 Mean & Vari-

ance, 13.11

3 0 100.00

127 P8r3 text text EOSC510 Non-linear

optimization,

0.02

2 0 100.00
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128 P8r4 text text EOSC510 Non-linear

optimization,

4.30

6 0 100.00

129 P8r5 text text EOSC510 Non-linear

optimization,

13.00

4 2 66.67

130 P8r6 hybrid equation EOSC510 Non-linear

optimization,

15.40

2 3 40.00

131 P8r7 hybrid text EOSC510 Eigen vector

approach,

0.08

4 2 66.67

132 P8r8 text text EOSC510 Classification:

k nearest

neighbouring

classifier ,

0.05

5 0 100.00

133 P8r9 text text EOSC510 Classification:

k nearest

neighbouring

classifier,

9.36

3 1 75.00
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134 P8r10 text text EOSC510 Classification:

k nearest

neighbouring

classifier,

13.02

6 0 100.00

135 P8r11 text text EOSC510 Mean & Vari-

ance, 4.17

2 0 100.00

136 P8r12 hybrid equation EOSC510 Mean & Vari-

ance, 6.28

1 0 100.00

137 P9r1 text text EOSC510 Correlation

& Regression,

0.34

0 1 0.00

138 P9r2 text text EOSC510 Correlation

& Regression,

0.56

0 1 0.00

139 P9r3 equation equation EOSC510 Mean & Vari-

ance, 2.15

1 0 100.00

140 P9r4 equation equation EOSC510 Mean & Vari-

ance, 4.26

1 0 100.00

141 P9r5 equation equation EOSC510 Mean & Vari-

ance, 4.44

1 0 100.00

142 P9r6 equation equation EOSC510 Mean & Vari-

ance, 6.40

2 0 100.00

143 P9r7 equation equation EOSC510 Mean & Vari-

ance, 7.28

1 0 100.00
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144 P9r8 text text EOSC510 Mean & Vari-

ance, 8.39

5 0 100.00

145 P9r9 equation equation EOSC510 Mean & Vari-

ance, 9.15

4 0 100.00

146 P9r10 equation equation EOSC510 Mean & Vari-

ance, 11.06

1 0 100.00

147 P9r11 equation equation EOSC510 Mean & Vari-

ance, 11.43

1 0 100.00

148 P9r12 text text EOSC510 Mean & Vari-

ance, 13.11

4 0 100.00

149 P9r13 equation equation EOSC510 Mean and

Variance,

14.28

1 0 100.00

150 P9r14 equation equation EOSC510 Mean & Vari-

ance, 16.15

1 0 100.00

151 P9r15 hybrid text EOSC510 Mean & Vari-

ance, 18.25

3 0 100.00

152 P9r16 equation equation EOSC510 Mean & Vari-

ance, 19.12

1 0 100.00

153 P9r17 text text EOSC510 Linear Re-

gression,

0.08

4 0 100.00

154 P9r18 equation equation EOSC510 Linear Re-

gression,

0.56

1 0 100.00
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155 P9r19 equation equation EOSC510 Linear Re-

gression,

2.20

1 0 100.00

156 P9r20 equation equation EOSC510 Linear Re-

gression,

4.19

2 0 100.00

157 P9r21 equation equation EOSC510 Linear Re-

gression,

5.05

2 0 100.00

158 P9r22 text text EOSC510 Geometric

approach,

00:27

2 2 50.00

159 P9r23 text text EOSC510 Geometric

approach,

6.41

7 0 100.00

160 P9r24 text text EOSC510 PCA applied

to real data

00:22

1 0 100.00

161 P9r25 text text EOSC510 PCA applied

to real data

00:26

1 0 100.00

162 P9r26 text text EOSC510 PCA applied

to real data

00:54

4 0 100.00
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163 P9r27 hybrid graph EOSC510 Rotated PCA

00:17

1 0 100.00

164 P9r28 hybrid graph EOSC510 Rotated PCA

00:29

1 0 100.00

165 P9r29 graph graph EOSC510 Rotated PCA

00:41

1 0 100.00

166 P9r30 graph graph EOSC510 Rotated PCA

2.44

1 0 100.00

167 P9r31 text text EOSC510 Rotated PCA

3.25

5 0 100.00

168 P10r1 equation equation EOSC510 Mean and

Variance,

0.01

1 0 100.00

169 P10r2 equation equation EOSC510 Mean and

Variance,

4.17

1 0 100.00

170 P10r3 equation equation EOSC510 Mean and

Variance,

4.17

1 0 100.00

171 P10r4 equation equation EOSC510 Mean and

Variance,

15.51

1 0 100.00

172 P10r5 equation equation EOSC510 MLP, 0.02 1 0 100.00

173 P10r6 text text EOSC510 MLP, 8.06 1 0 100.00
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174 P10r7 text text EOSC510 PCA –

Geometric

approach

0:01

6 0 100.00

175 P10r8 text text EOSC510 PCA – Eigen

vector ap-

proach 0:08

5 0 100.00

176 P10r9 equation equation EOSC510 PCA – Eigen

vector ap-

proach 0:08

1 0 100.00

177 P10r10 equation equation EOSC510 Complex

Data 7:45

1 0 100.00

178 P10r11 equation equation EOSC510 Complex

Data 9:17

1 0 100.00

179 P10r12 hybrid text EOSC510 Scaling 9:35 2 0 100.00

180 P10r13 text text EOSC510 KNN classi-

fier 2:28

2 2 50.00

181 P10r14 text text EOSC510 KNN classi-

fier 4.36

3 3 50.00
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APPENDIX B

Study Results

B.1 Accuracy-Overlap results

In this section, the results of the accuracy calculation are outlined in the table B.1. The

columns show the note sample No. along with the type. 3 best matches are listed in the

results column which can be compared with the ground truth observations. The level

demonstrates the temporal level in which the results were retrieved. The percentage pf

overlap for both the actual ground truth video and the results videos are listed.
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Table B.1: Accuracy-Overlap Evaluation Results

Note Note

Type

Results Ground Truth Level Actual

Over-

lap

(%)

Result

Over-

lap

(%)

P1r1 formula {”name”: ”6- Con-

duction Materi-

als”, ”timestamp”:

”00:03:48”},

{”name”: ”9- Mag-

netic Flux”, ”times-

tamp”: ”00:06:24”},

{”name”: ”11-

Magnetic Materi-

als”, ”timestamp”:

”00:05:22”}

Coloumb’s

law, 3.23

No match 40.00 NA

P1r2 text {”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:04:07”},

{”name”: ”9- Mag-

netic Flux”, ”times-

tamp”: ”00:00:44”},

{”name”: ”3- Electric

Flux”, ”timestamp”:

”00:03:28”}

Electric flux,

5.11

3rd,

Section

50.00 33.33
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P1r3 formula {”name”: ”9- Mag-

netic Flux”, ”times-

tamp”: ”00:03:05”},

{”name”: ”4- Electric

Dipole”, ”timestamp”:

”00:03:40”},

{”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:00:30”}

Electric

Dipole, 3.48

2nd,

frame

18.18 18.18

P1r4 text {”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:02:24”},

{”name”: ”10- Mag-

netic Force”, ”times-

tamp”: ”00:02:14”},

{”name”: ”12- Fara-

day’s Law”, ”times-

tamp”: ”00:00:00”}

Biot-Savart

law, 3.05

1st,

Frame

77.78 77.78
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P1r5 formula {”name”: ”11-

Magnetic Materi-

als”, ”timestamp”:

”00:07:12”},

{”name”: ”9- Mag-

netic Flux”, ”times-

tamp”: ”00:00:20”},

{”name”: ”12- Fara-

day’s Law”, ”times-

tamp”: ”00:05:45”}

Magnetic

Force, 1.06

No

match

36.36 NA

P1r6 text {”name”: ”11-

Magnetic Materi-

als”, ”timestamp”:

”00:04:59”},

{”name”: ”12- Fara-

day’s Law”, ”times-

tamp”: ”00:00:10”},

{”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:00:20”}

Magnetic ma-

terials, 4.54

1st,

Frame

76.19 76.19
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P1r7 formula {”name”: ”9- Mag-

netic Flux”, ”times-

tamp”: ”00:02:55”},

{”name”: ”11-

Magnetic Materi-

als”, ”timestamp”:

”00:07:12”},

{”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:04:47”}

Magnetic Flux,

1.41

1st,

section

33.33 66.67

P1r8 formula {”name”: ”5- Cur-

rent”, ”timestamp”:

”00:01:43”},

{”name”: ”7- Capaci-

tance”, ”timestamp”:

”00:01:38”},

{”name”: ”10- Mag-

netic Force”, ”times-

tamp”: ”00:02:24”}

Current, 4.17 1st,

video

22.22 11.11
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P1r9 text {”name”: ”10- Mag-

netic Force”, ”times-

tamp”: ”00:00:34”},

{”name”: ”2- Potential

Energy”, ”timestamp”:

”00:00:50”},

{”name”: ”11-

Magnetic Materi-

als”, ”timestamp”:

”00:03:09”}

Unsure Special

case

.DIV/0! .DIV/0!

P2r1 formula {”name”: ”2- Potential

Energy”, ”timestamp”:

”00:02:05”},

{”name”: ”13 - Mag-

netic Force”, ”times-

tamp”: ”00:00:20”},

{”name”: ”5- Con-

ducting Materi-

als”, ”timestamp”:

”00:02:05”}

Potential En-

ergy, 1:43,

1:56, 2:09

1st,

frame

33.33 33.33
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P2r2 figure {”name”: ”8- Electric

Dipole”, ”timestamp”:

”01:10”},

{”name”: ”9- Capaci-

tance”, ”timestamp”:

”00:35”},

{”name”: ”14 -

Solenoids and

Toroids”, ”times-

tamp”: ”09:30”}

Electric flux,

2.10

No

match

75.00 NA

P2r3 formula {”name”: ”4- Cur-

rent”, ”timestamp”:

”00:01:43”},

{”name”: ”15 -

Magnetic Materi-

als”, ”timestamp”:

”00:03:09”}

Current, 3.05 1st,

section

42.86 28.57
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P2r4 figure {”name”: ”2- Potential

Energy”, ”timestamp”:

”01:45”},

{”name”: ”1 -

Coulomb’s Law”,

”timestamp”:

”02:20”},

{”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:50”}

Conducting

materials, 1.12

No

match

50.00 NA

P2r5 text ”name”: ”6- Clas-

sification of Electri-

cal Networks”, ”times-

tamp”: ”00:01:20”},

{”name”: ”2- Potential

Energy”, ”timestamp”:

”00:05:19”},

{”name”: ”9- Capac-

itance”, ”timestamp”:

”00:04:45”}

Classification

of

Elec-

tri-

cal

net-

works,

1.25

1st,

frame

60.00 60.00
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P2r6 figure {”name”: ”14 -

Solenoids and

Toroids”, ”times-

tamp”: ”06:00”},

{”name”: ”1 -

Coulomb’s Law”,

”timestamp”:

”02:20”},

{”name”: ”9- Capaci-

tance”, ”timestamp”:

”00:35”}

Electric

Dipole, 1.20

No

match

50.00 NA

P2r7 formula Capacitance,

1.32

No

data

100.00 NA

P2r8 figure {”name”: ”2- Potential

Energy”, ”timestamp”:

”01:45”},

{”name”: ”1 -

Coulomb’s Law”,

”timestamp”:

”02:15”},

{”name”: ”9- Capaci-

tance”, ”timestamp”:

”00:35”}

Ideal op-amps,

7.40

No

match

0.00 NA

P2r9 formula Biot-Savart

law, 4.05

No

data

100.00 NA
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P2r10 figure {”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”01:50”},

{”name”: ”9- Capaci-

tance”, ”timestamp”:

”00:35”},

{”name”: ”5- Con-

ducting Materials”,

”timestamp”: ”04:15”}

Magnetic Flux,

2.01

No

match

0.00 NA

P2r11 formula {”name”: ”17 - Fara-

day’s Law”, ”times-

tamp”: ”00:05:45”},

{”name”: ”12- Mag-

netic Flux”, ”times-

tamp”: ”00:00:20”},

{”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:02:43”}

Magnetic

Force, 5.01

No

match

100.00 NA
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P2r12 figure {”name”: ”1 -

Coulomb’s Law”,

”timestamp”:

”02:25”},

{”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”02:15”},

{”name”: ”14 -

Solenoids and

Toroids”, ”times-

tamp”: ”06:00”}

Solenoids &

Toroids, 7.57

3rd,

section

100.00 0.00

P2r13 text {”name”: ”15 -

Magnetic Materi-

als”, ”timestamp”:

”00:04:59”},

{”name”: ”14 -

Solenoids and

Toroids”, ”times-

tamp”: ”00:01:56” ,

{”name”: ”13 - Mag-

netic Force”, ”times-

tamp”: ”00:00:00”}

Magnetic ma-

terials, 4.51

1st,

Frame

100.00 100.00
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P2r14 formula {”name”: ”17 - Fara-

day’s Law”, ”times-

tamp”: ”00:07:35”},

{”name”: ”12- Mag-

netic Flux”, ”times-

tamp”: ”00:00:20”},

{”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:02:43”}

Faraday’s law,

6.47

1st,

video

100.00 0.00

P2r15 text {”name”: ”1 -

Coulomb’s Law”,

”timestamp”:

”00:02:02”},

{”name”: ”18 -

Displacement Cur-

rent \u00a9Carol

Jaeger”, ”timestamp”:

”00:07:09”},

{”name”: ”12- Mag-

netic Flux”, ”times-

tamp”: ”00:00:20”}

Coulomb’s

law, 1.51

1st,

frame

100.00 100.00
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P3r1 text {”name”: ”Neural

Networks - Predic-

tion”, ”timestamp”:

”00:03:09”},

{”name”: ”K-Nearest

Neighbors”, ”times-

tamp”: ”00:32:12”},

{”name”: ”PCA”,

”timestamp”:

”00:37:40”}

Neural Net-

works - Predic-

tion, 1:27

1st,

section

37.50 87.50

P3r2 text {”name”: ”Con-

volutional Neural

Networks”, ”times-

tamp”: ”02:40”},

{”name”: ”CS3:

Design in Comput-

ing”, ”timestamp”:

”01:15”},

{”name”: ”Neural net-

works”, ”timestamp”:

”10:50”}

Neural Net-

works - Predic-

tion, 4.25

No

match

66.67 NA
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P3r3 text {”name”: ”Neural

Networks - Predic-

tion”, ”timestamp”:

”00:08:01”},

{”name”: ”PCA”,

”timestamp”:

”00:02:30”},

{”name”: ”Normal

Equations”, ”times-

tamp”: ”00:28:40”}

Neural Net-

works - Predic-

tion, 7.25

1st Sec-

tion

75.00 75.00

P3r4 text {”name”: ”Neural net-

works”, ”timestamp”:

”00:23:26”},

{”name”: ”K-Nearest

Neighbors”, ”times-

tamp”: ”00:18:16”},

{”name”: ”CS3:

Design in Comput-

ing”, ”timestamp”:

”00:38:54”}

Neural Net-

works - Train-

ing, 22.19

1st sec-

tion

83.33 100.00
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P3r5 text {”name”: ”Funda-

mentals of Learn-

ing”, ”timestamp”:

”00:15:18”},

{”name”: ”Neural

Networks - Predic-

tion”, ”timestamp”:

”00:37:24”},

{”name”: ”K-Nearest

Neighbors”, ”times-

tamp”: ”00:09:02”}

Neural Net-

works - Train-

ing, 22.57

No

match

100.00 NA

P3r6 text {”name”: ”Neural net-

works”, ”timestamp”:

”00:24:40”},

{”name”: ”Neural

Networks - Predic-

tion”, ”timestamp”:

”00:11:32”},

{”name”: ”Ordinary

least squares”, ”times-

tamp”: ”00:20:27”}

Neural Net-

works - Train-

ing, 23.56

1st sec-

tion

50.00 100.00
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P3r7 text {”name”: ”Con-

volutional Neural

Networks”, ”times-

tamp”: ”00:02:28”},

{”name”: ”PCA -

Training”, ”times-

tamp”: ”00:02:21”},

{”name”: ”Neural net-

works”, ”timestamp”:

”00:00:00”}

Convolutional

networks, 2.04

1st Sec-

tion

100.00 100.00

P3r8 formula Convolutional

networks, 2.31

No

data

100.00 NA

P3r9 text {”name”: ”K-Nearest

Neighbors”, ”times-

tamp”: ”00:32:47”},

{”name”: ”Normal

Equations”, ”times-

tamp”: ”00:08:17”},

{”name”: ”Ordinary

least squares”, ”times-

tamp”: ”00:19:29”}

K-Nearest

Neighbours,

32.27

1st

frame

100.00 100.00
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P3r10 text {”name”: ”K-Nearest

Neighbors”, ”times-

tamp”: ”00:37:32”},

{”name”: ”Ex-

ploratory Data Anal-

ysis”, ”timestamp”:

”00:38:39”},

{”name”: ”Normal

Equations”, ”times-

tamp”: ”00:44:44”}

K-Nearest

Neighbours,

36.50

1st

frame

100.00 100.00

P3r11 text {”name”: ”K-Nearest

Neighbors”, ”times-

tamp”: ”00:39:06”},

{”name”: ”PCA -

Training”, ”times-

tamp”: ”00:01:00”},

{”name”: ”Normal

Equations”, ”times-

tamp”: ”00:35:58”}

K-Nearest

Neighbours,

37.53

1st Sec-

tion

50.00 100.00

P3r12 text K-Nearest

Neighbours,

40.37

No

data

100.00 NA
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P3r13 text {”name”: ”Ordinary

least squares”, ”times-

tamp”: ”00:00:00”},

{”name”: ”Normal

Equations”, ”times-

tamp”: ”00:01:13”},

{”name”: ”K-Nearest

Neighbors”, ”times-

tamp”: ”00:23:31”}

Ordinary Least

Squares, 29.08

1st

video

66.67 33.33

P3r14 text Ordinary Least

Squares, 33.08

No

data

100.00 NA

P3r15 text {”name”: ”K-Nearest

Neighbors”, ”times-

tamp”: ”00:03:04”},

{”name”: ”Normal

Equations”, ”times-

tamp”: ”00:20:55”},

{”name”: ”Neural net-

works”, ”timestamp”:

”00:06:30”}

Normal Equa-

tions, 3.31

1st

video

100.00 25.00

P3r16 formula [] Normal Equa-

tions, 11.40

No

data

100.00 NA
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P3r17 text {”name”: ”K-Nearest

Neighbors”, ”times-

tamp”: ”00:09:02”},

{”name”: ”Ex-

ploratory Data Anal-

ysis”, ”timestamp”:

”00:22:03”},

{”name”: ”Funda-

mentals of Learn-

ing”, ”timestamp”:

”00:32:37”}

Exploratory

Data Analysis,

0.35

2nd

video

45.45 27.27

P3r18 text {”name”: ”Ex-

ploratory Data Anal-

ysis”, ”timestamp”:

”00:05:16”},

{”name”: ”Regular-

ization”, ”timestamp”:

”00:02:18”},

{”name”: ”Funda-

mentals of Learn-

ing”, ”timestamp”:

”00:47:27”}

Exploratory

Data Analysis,

2.36

1st sec-

tion

63.64 54.55
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P3r19 text {”name”: ”Ordinary

least squares”, ”times-

tamp”: ”00:02:27”},

{”name”: ”Ex-

ploratory Data Anal-

ysis”, ”timestamp”:

”00:46:34”},

{”name”: ”K-Nearest

Neighbors”, ”times-

tamp”: ”00:23:31”}

Exploratory

Data Analysis,

5.45

2nd

video

60.00 60.00

P4r1 figure {”name”: ”17 - Fara-

day’s Law”, ”times-

tamp”: ”00:00:00”},

{”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:00:50”},

{”name”: ”3- Electric

Flux”, ”timestamp”:

”00:00:20”}

Coulomb’s

Law, 0:14

No

match

33.33 NA
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P4r2 formula {”name”: ”1 -

Coulomb’s Law”,

”timestamp”:

”00:02:02”},

{”name”: ”5- Con-

ducting Materi-

als”, ”timestamp”:

”00:02:55”},

{”name”: ”12- Mag-

netic Flux”, ”times-

tamp”: ”00:00:00”}

Coulomb’s

Law, 1:18

1st,

section

16.67 50.00

P4r3 text {”name”: ”2- Potential

Energy”, ”timestamp”:

”00:00:50”},

{”name”: ”14 -

Solenoids and

Toroids”, ”times-

tamp”: ”00:01:56”},

{”name”: ”17 - Fara-

day’s Law”, ”times-

tamp”: ”00:00:32”}

Potential En-

ergy, 0:20

1st,

section

30.00 40.00
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P4r4 formula {”name”: ”2- Potential

Energy”, ”timestamp”:

”00:02:05”},

{”name”: ”15 -

Magnetic Materi-

als”, ”timestamp”:

”00:07:02”},

{”name”: ”17 - Fara-

day’s Law”, ”times-

tamp”: ”00:06:05”}

Potential En-

ergy, 1:35

1st,

section

14.29 85.71

P4r5 text {”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:02:43”},

{”name”: ”2- Potential

Energy”, ”timestamp”:

”00:00:25”},

{”name”: ”13 - Mag-

netic Force”, ”times-

tamp”: ”00:00:00”}

Potential En-

ergy, 2:19

2nd,

video

75.00 50.00
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P4r6 formula {”name”: ”12- Mag-

netic Flux”, ”times-

tamp”: ”00:00:20”},

{”name”: ”4- Cur-

rent”, ”timestamp”:

”00:01:43”},

{”name”: ”15 -

Magnetic Materi-

als”, ”timestamp”:

”00:03:19”}

Potential En-

ergy, 3:04

No

match

33.33 NA

P4r7 text {”name”: ”6- Clas-

sification of Electri-

cal Networks”, ”times-

tamp”: ”00:00:30”},

{”name”: ”17 - Fara-

day’s Law”, ”times-

tamp”: ”00:04:06”},

{”name”: ”2- Potential

Energy”, ”timestamp”:

”00:00:25”}

Classification

of Electrical

Networks, 0:27

1st,

frame

90.00 90.00
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P4r8 text {”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:02:54”},

{”name”: ”6- Classi-

fication of Electrical

Networks”, ”times-

tamp”: ”00:00:00”},

{”name”: ”14 -

Solenoids and

Toroids”, ”times-

tamp”: ”00:00:00”}

Classification

of Electrical

Networks, 0:44

2nd,

video

33.33 0.00

P4r9 text {”name”: ”6- Clas-

sification of Electri-

cal Networks”, ”times-

tamp”: ”00:01:10”},

{”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:02:43”},

{”name”: ”13 - Mag-

netic Force”, ”times-

tamp”: ”00:00:00”}

Classification

of Electrical

Networks, 1:04

1st,

Frame

50.00 50.00
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P4r10 text {”name”: ”6- Classi-

fication of Electrical

Networks”, ”times-

tamp”: ”00:02:47”},

{”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:02:43”},

{”name”: ”3- Electric

Flux”, ”timestamp”:

”00:05:58”}

Classification

of Electrical

Networks, 2:16

1st,

Section

57.14 71.43

P4r11 text {”name”: ”6- Classi-

fication of Electrical

Networks”, ”times-

tamp”: ”00:03:17”},

{”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:06:38”},

{”name”: ”14 -

Solenoids and

Toroids”, ”times-

tamp”: ”00:00:00”}

Classification

of Electrical

Networks, 3:09

1st,

Frame

50.00 50.00
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P4r12 text {”name”: ”6- Classi-

fication of Electrical

Networks”, ”times-

tamp”: ”00:04:54”},

{”name”: ”10- Ideal

OpAmps”, ”times-

tamp”: ”00:10:58”},

{”name”: ”15 -

Magnetic Materi-

als”, ”timestamp”:

”00:05:22”}

Classification

of Electrical

Networks, 4:05

1st,

Section

40.00 80.00

P4r13 figure {”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”02:15”},

{”name”: ”13 - Mag-

netic Force”, ”times-

tamp”: ”06:20”},

”name”: ”12- Mag-

netic Flux”, ”times-

tamp”: ”02:25”}

Capacitance,

0:33

No

match

100.00 NA

P4r14 formula [] Capacitance,

1:13

No

data

50.00 NA
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P4r15 text {”name”: ”18 -

Displacement Cur-

rent \u00a9Carol

Jaeger”, ”timestamp”:

”00:09:20”},

{”name”: ”9- Capaci-

tance”, ”timestamp”:

”00:02:45”},

{”name”: ”2- Potential

Energy”, ”timestamp”:

”00:00:25”

Capacitance,

1:32

2nd,

video

0.00 50.00

P4r16 text Ideal OpAmps,

0:40

No

data

50.00 NA

P4r35 text {”name”: ”10- Ideal

OpAmps”, ”times-

tamp”: ”00:01:40”},

{”name”: ”6- Classi-

fication of Electrical

Networks”, ”times-

tamp”: ”00:01:37”}

Ideal OpAmps,

1:36

1st

frame

100.00 100.00
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P4r17 figure {”name”: ”14 -

Solenoids and

Toroids”, ”times-

tamp”: ”06:00”},

{”name”: ”2- Potential

Energy”, ”timestamp”:

”03:25”}

{”name”: ”18 - Dis-

placement Current

\u00a9Carol Jaeger”,

”timestamp”: ”02:40”}

Ideal OpAmps,

1:18

No

match

100.00 NA

P4r18 text {”name”: ”10- Ideal

OpAmps”, ”times-

tamp”: ”00:01:40”},

{”name”: ”17 - Fara-

day’s Law”, ”times-

tamp”: ”00:00:00”},

{”name”: ”12- Mag-

netic Flux”, ”times-

tamp”: ”00:00:00”}

Ideal OpAmps,

2:34

1st sec-

tion

71.43 57.14
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P4r19 text {”name”: ”15 -

Magnetic Materi-

als”, ”timestamp”:

”00:03:09”},

{”name”: ”10- Ideal

OpAmps”, ”times-

tamp”: ”00:03:36”},

{”name”: ”17 - Fara-

day’s Law”, ”times-

tamp”: ”00:00:00”}

Ideal OpAmps,

5:01

2nd,

video

33.33 66.67

P4r20 text {”name”: ”10- Ideal

OpAmps”, ”times-

tamp”: ”00:08:03”},

{”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:02:43”},

{”name”: ”14 -

Solenoids and

Toroids”, ”times-

tamp”: ”00:04:30”}

Ideal OpAmps,

7:25

1st sec-

tion

70.00 90.00
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P4r21 text {”name”: ”12- Mag-

netic Flux”, ”times-

tamp”: ”00:00:20”},

{”name”: ”18 -

Displacement Cur-

rent \u00a9Carol

Jaeger”, ”timestamp”:

”00:07:09”},

{”name”: ”15 -

Magnetic Materi-

als”, ”timestamp”:

”00:05:22”}

Magnetic Flux,

0:15

1st

frame

83.33 83.33

P4r22 text {”name”: ”12- Mag-

netic Flux”, ”times-

tamp”: ”00:01:00”},

{”name”: ”13 - Mag-

netic Force”, ”times-

tamp”: ”00:00:34”},

{”name”: ”17 - Fara-

day’s Law”, ”times-

tamp”: ”00:00:32”}

Magnetic Flux,

0:39

1st sec-

tion

25.00 75.00

P4r23 formula Magnetic Flux,

1:32

No

data

100.00 NA
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P4r24 formula {”name”: ”12- Mag-

netic Flux”, ”times-

tamp”: ”00:00:20”}

Magnetic Flux,

2:00

1st,

video

16.67 33.33

P4r25 text {”name”: ”12- Mag-

netic Flux”, ”times-

tamp”: ”00:03:45”},

{”name”: ”17 - Fara-

day’s Law”, ”times-

tamp”: ”00:02:08”},

{”name”: ”3- Electric

Flux”, ”timestamp”:

”00:01:48”}

Magnetic Flux,

3:06

1st Sec-

tion

100.00 100.00

P4r26 text {”name”: ”12- Mag-

netic Flux”, ”times-

tamp”: ”00:03:15”},

{”name”: ”17 - Fara-

day’s Law”, ”times-

tamp”: ”00:03:38”},

{”name”: ”3- Electric

Flux”, ”timestamp”:

”00:01:00”}

Magnetic Flux,

3:16

1st

frame

33.33 33.33
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P4r27 text {”name”: ”18 -

Displacement Cur-

rent \u00a9Carol

Jaeger”, ”timestamp”:

”00:06:28”},

{”name”: ”17 - Fara-

day’s Law”, ”times-

tamp”: ”00:00:32”},

{”name”: ”12- Mag-

netic Flux”, ”times-

tamp”: ”00:00:44”}

Magnetic Flux,

4:35

3rd,

video

25.00 25.00

P4r28 text {”name”: ”14 -

Solenoids and

Toroids”, ”times-

tamp”: ”00:00:00”}

Solenoids and

Toroids, 0:26

1st

frame

25.00 25.00
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P4r29 text {”name”: ”14 -

Solenoids and

Toroids”, ”times-

tamp”: ”00:05:30”},

{”name”: ”17 - Fara-

day’s Law”, ”times-

tamp”: ”00:03:38”},

{”name”: ”15 -

Magnetic Materi-

als”, ”timestamp”:

”00:01:09”}

Solenoids and

Toroids, 3:03

1st sec-

tion

16.67 50.00

P4r30 text Solenoids and

Toroids, 6:14

No

data

0.00 NA

P4r31 figure {”name”: ”14 -

Solenoids and

Toroids”, ”times-

tamp”: ”06:00”},

{”name”: ”18 -

Displacement Cur-

rent \u00a9Carol

Jaeger”, ”timestamp”:

”03:05”},

{”name”: ”5- Con-

ducting Materials”,

”timestamp”: ”00:15”}

Solenoids and

Toroids, 6:45

1st Sec-

tion

50.00 0.00
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P4r32 text {”name”: ”14 -

Solenoids and

Toroids”, ”times-

tamp”: ”00:10:01”},

{”name”: ”12- Mag-

netic Flux”, ”times-

tamp”: ”00:00:54”},

{”name”: ”17 - Fara-

day’s Law”, ”times-

tamp”: ”00:04:06”}

Solenoids and

Toroids, 8:30

1st sec-

tion

0.00 50.00

P4r33 figure {”name”: ”2- Potential

Energy”, ”timestamp”:

”01:45”},

{”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:50”},

{”name”: ”14 -

Solenoids and

Toroids”, ”times-

tamp”: ”05:00”}

Solenoids and

Toroids, 10:21

3rd

video

100.00 50.00
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P4r34 formula {”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:00:30”},

{”name”: ”12- Mag-

netic Flux”, ”times-

tamp”: ”00:00:20”}

Solenoids and

Toroids, 13:09

No

match

66.67 NA

P5r1 formula {”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:06:07”},

{”name”: ”12- Fara-

day’s Law”, ”times-

tamp”: ”00:07:30”},

{”name”: ”1 -

Coulomb’s Law”,

”timestamp”:

”00:01:52”}

Biot-Savart

law, 2.20

1st

video

100.00 100.00

P5r2 formula {”name”: ”12- Fara-

day’s Law”, ”times-

tamp”: ”00:04:06”},

{”name”: ”5- Cur-

rent”, ”timestamp”:

”00:01:58”},

{”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:00:30”}

Biot-Savart

law, 3.29

3rd

video

100.00 0.00
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P5r3 formula {”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:06:07”},

{”name”: ”12- Fara-

day’s Law”, ”times-

tamp”: ”00:07:30”},

{”name”: ”5- Cur-

rent”, ”timestamp”:

”00:01:58”}

Biot-Savart

law, 5.12

1st sec-

tion

100.00 0.00

P5r4 formula {”name”: ”12- Fara-

day’s Law”, ”times-

tamp”: ”00:07:30”},

{”name”: ”5- Cur-

rent”, ”timestamp”:

”00:01:58”},

{”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:02:58”}

Biot-Savart

law, 6.05

3rd

video

100.00 0.00

P5r5 formula {”name”: ”7- Capac-

itance”, ”timestamp”:

”00:01:38”}

Capacitance,

1.20

1st sec-

tion

100.00 100.00

P5r6 formula [] Capacitance,

2.10

No

data

100.00 NA

P5r7 formula [] Capacitance,

3.10

No

data

100.00 NA
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P5r8 formula {”name”: ”7- Capac-

itance”, ”timestamp”:

”00:03:31”}

Capacitance,

3.42

1st sec-

tion

100.00 100.00

P5r9 formula {”name”: ”7- Capac-

itance”, ”timestamp”:

”00:01:38”}

Capacitance,

4.15

1st

video

100.00 0.00

P5r10 formula {”name”: ”7- Capac-

itance”, ”timestamp”:

”00:03:23”},

{”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:02:59”},

{”name”: ”9- Mag-

netic Flux”, ”times-

tamp”: ”00:00:15”}

Coulomb’s

law, 1.50

No

match

100.00 NA
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P5r11 formula {”name”: ”12-

Faraday’s

Law”,”timestamp”:

”00:07:30”},

{”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:02:43”},

{”name”: ”11-

Magnetic Materi-

als”, ”timestamp”:

”00:07:07”}

Magnetic

Force, 3.53

No

match

0.00 NA

P5r12 formula {”name”: ”12- Fara-

day’s Law”, ”times-

tamp”: ”00:04:21”},

{”name”: ”9- Mag-

netic Flux”, ”times-

tamp”: ”00:05:00”},

{”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:00:30”}

Magnetic Flux,

1.35

2nd

video

100.00 100.00
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P5r13 formula {”name”: ”9- Mag-

netic Flux”, ”times-

tamp”: ”00:05:00”},

{”name”: ”12- Fara-

day’s Law”, ”times-

tamp”: ”00:04:06”},

{”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:00:30”}

Magnetic Flux,

2.15

1st

video

100.00 0.00

P5r14 formula {”name”: ”9- Mag-

netic Flux”, ”times-

tamp”: ”00:03:05”},

{”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:00:30”},

{”name”: ”5- Cur-

rent”, ”timestamp”:

”00:00:43”}

Magnetic Flux,

2.51

1st

frame

100.00 100.00
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P5r15 formula {”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:04:28”},

{”name”: ”1 -

Coulomb’s Law”,

”timestamp”:

”00:01:37”},

{”name”: ”12- Fara-

day’s Law”, ”times-

tamp”: ”00:05:45”}

Magnetic Flux,

3.20

No

match

100.00 NA

P5r16 formula Magnetic

Force, 0.40

No

data

50.00 NA

P5r17 formula {”name”: ”12- Fara-

day’s Law”, ”times-

tamp”: ”00:06:00”},

”name”: ”11- Magnetic

Materials”, ”times-

tamp”: ”00:07:07”},

{”name”: ”5- Cur-

rent”, ”timestamp”:

”00:01:48”}

Magnetic

Force, 2.43

No

match

100.00 NA
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P5r18 formula {”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:00:30”},

{”name”: ”5- Cur-

rent”, ”timestamp”:

”00:00:43”},

{”name”: ”9- Mag-

netic Flux”, ”times-

tamp”: ”00:00:15”

Magnetic

Force, 6.50

No

match

0.00 NA

P5r19 formula {”name”: ”12- Fara-

day’s Law”, ”times-

tamp”: ”00:07:30”},

{”name”: ”11-

Magnetic Materi-

als”, ”timestamp”:

”00:07:07”},

{”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:02:43”}

Magnetic Ma-

terials, 7.14

2nd

frame

100.00 100.00
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P5r20 formula {”name”: ”11-

Magnetic Materi-

als”, ”timestamp”:

”00:07:07”},

{”name”: ”8- Biot-

Savart Law”, ”times-

tamp”: ”00:00:30”},

{”name”: ”5- Cur-

rent”, ”timestamp”:

”00:01:48”}

Magnetic Ma-

terials, 7.40

1st sec-

tion

100.00 0.00

P6r1 text {”name”: ”Re-

act”, ”timestamp”:

”00:00:00”}

0.1 1st Sec-

tion

100.00 66.67

P6r2 text 0.17 No

data

0.00 NA

P6r3 text {”name”: ”Re-

act”, ”timestamp”:

”00:01:00”}

0.47 1st sec-

tion

100.00 80.00

P6r4 text {”name”: ”Re-

act”, ”timestamp”:

”00:03:09”}

3.23 1st sec-

tion

100.00 66.67

P6r5 figure {”name”: ”React”,

”timestamp”: ”19:30”}

3.29 video 50.00 0.00
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p6r6 text {”name”: ”Re-

act”, ”timestamp”:

”00:03:42”},

{”name”: ”Re-

act”, ”timestamp”:

”00:01:00”}

3.29 1st sec-

tion

40.00 80.00

P6r7 figure {”name”: ”React”,

”timestamp”: ”3:10”}

5.07 1st

video

100.00 0.00

P6r8 text [] 6.38 No

data

75.00 NA

P6r9 text {”name”: ”Re-

act”, ”timestamp”:

”00:09:57”},

{”name”: ”Re-

act”, ”timestamp”:

”00:03:42”},

{”name”: ”Re-

act”, ”timestamp”:

”00:00:00”}

10.07 1st sec-

tion

25.00 75.00

P6r10 text 11.34 No

data

100.00 NA
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P6r11 text {”name”: ”Re-

act”, ”timestamp”:

”00:13:16”},

{”name”: ”Re-

act”, ”timestamp”:

”00:10:17”},

{”name”: ”Re-

act”, ”timestamp”:

”00:03:42”}

13.43 1st

video

20.00 0.00

P6r12 text {”name”: ”Re-

act”, ”timestamp”:

”00:15:02”},

{”name”: ”Re-

act”, ”timestamp”:

”00:00:00”},

{”name”: ”Re-

act”, ”timestamp”:

”01:75:35”}

16.35 1st sec-

tion

66.67 66.67
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P6r13 text {”name”: ”Re-

act”, ”timestamp”:

”00:27:57”},

{”name”: ”Re-

act”, ”timestamp”:

”00:01:00”},

{”name”: ”Re-

act”, ”timestamp”:

”00:01:09”}

28.31 1st sec-

tion

50.00 50.00

P6r14 text {”name”: ”Re-

act”, ”timestamp”:

”00:29:48”},

{”name”: ”Re-

act”, ”timestamp”:

”00:02:29”},

{”name”: ”Re-

act”, ”timestamp”:

”00:01:00”}

39.3 1st sec-

tion

75.00 75.00
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P7r1 text {”name”: ”CS3:

Design in Comput-

ing”, ”timestamp”:

”00:12:14”},

{”name”: ”Funda-

mentals of Learn-

ing”, ”timestamp”:

”00:26:28”},

{”name”: ”Neural net-

works”, ”timestamp”:

”00:26:22”}

CS3 Design in

Computing,

12.09

1st

frame

66.67 66.67

P7r2 text {”name”: ”CS3:

Design in Comput-

ing”, ”timestamp”:

”00:13:14”},

{”name”: ”Neural net-

works”, ”timestamp”:

”00:30:12”},

{”name”: ”Neural

Networks - Predic-

tion”, ”timestamp”:

”00:37:04”}

CS3 Design in

Computing,

12.40

1st sec-

tion

50.00 50.00
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P7r3 text {”name”: ”K-Nearest

Neighbors”, ”times-

tamp”: ”00:09:02”},

{”name”: ”PCA -

Training”, ”times-

tamp”: ”00:15:46”},

{”name”: ”Funda-

mentals of Learn-

ing”, ”timestamp”:

”00:47:27”}

Fundamentals

of learning,

35.36

3rd

video

33.33 11.11

P7r4 text {”name”: ”K-Nearest

Neighbors”, ”times-

tamp”: ”00:24:46”},

{”name”: ”Funda-

mentals of Learn-

ing”, ”timestamp”:

”00:27:13”},

{”name”: ”CS3:

Design in Comput-

ing”, ”timestamp”:

”00:03:24”}

Fundamentals

of learning,

41.43

1st

video

100.00 14.29
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P7r5 text {”name”: ”Funda-

mentals of Learn-

ing”, ”timestamp”:

”00:43:37”},

{”name”: ”K-Nearest

Neighbors”, ”times-

tamp”: ”00:04:07”},

{”name”: ”Regular-

ization”, ”timestamp”:

”00:16:20”}

Fundamentals

of learning,

42.48

1st

frame

100.00 100.00

P7r6 text {”name”: ”Funda-

mentals of Learn-

ing”, ”timestamp”:

”00:49:06”},

{”name”: ”Neural net-

works”, ”timestamp”:

”00:27:24”},

{”name”: ”K-Nearest

Neighbors”, ”times-

tamp”: ”00:21:38”}

k-nearest

neighbors,6.37

3rd

video

75.00 50.00
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P7r7 text {”name”: ”K-Nearest

Neighbors”, ”times-

tamp”: ”00:22:11”},

{”name”: ”Funda-

mentals of Learn-

ing”, ”timestamp”:

”00:45:47”},

{”name”: ”Regular-

ization”, ”timestamp”:

”00:25:10”}

k-nearest

neighbors,

22.14

1st

frame

77.78 77.78

P7r8 text {”name”: ”K-Nearest

Neighbors”, ”times-

tamp”: ”00:30:04”},

{”name”: ”Normal

Equations”, ”times-

tamp”: ”00:35:58”},

{”name”: ”Funda-

mentals of Learn-

ing”, ”timestamp”:

”00:01:40”}

k-nearest

neighbors,

29.49

1st

frame

100.00 100.00
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P7r9 text {”name”: ”Regular-

ization”, ”timestamp”:

”00:12:47”},

{”name”: ”PCA”,

”timestamp”:

”00:02:33”},

{”name”: ”Neural net-

works”, ”timestamp”:

”00:21:59”}

L2 Regulariza-

tion, 12.52

1st

frame

100.00 100.00

P7r10 formula {”name”: ”Funda-

mentals of Learn-

ing”, ”timestamp”:

”00:14:09”}

L2 Regulariza-

tion, 13.30

No

match

100.00 NA

P7r11 figure {”name”: ”Normal

Equations”, ”times-

tamp”: ”39:40”},

{”name”: ”PCA”,

”timestamp”:

”15:20”},

{”name”: ”K-Nearest

Neighbors”, ”times-

tamp”: ”09:00”}

PCA Intuition,

4.13

2nd

video

100.00 0.00
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P7r12 text {”name”: ”PCA -

Training”, ”times-

tamp”: ”00:28:35”},

{”name”: ”Funda-

mentals of Learn-

ing”, ”timestamp”:

”00:28:34”},

{”name”: ”Convo-

lutional Neural Net-

works”, ”timestamp”:

”00:19:26”}

PCA training,

27.22

1st

frame

78.57 78.57

P8r1 text Mean & Vari-

ance, 9.03

No

data

100.00 NA

P8r2 text {”name”: ”Mean and

Variance”, ”times-

tamp”: ”00:14:45”},

{”name”: ”PCA

- Geometric ap-

proach”, ”timestamp”:

”00:00:07”},

{”name”: ”Multi-

ple Linear Regres-

sion”, ”timestamp”:

”00:13:01”}

Mean & Vari-

ance, 13.11

1st

frame

100.00 0.00
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P8r3 text Non-linear

optimization,

0.02

No

data

100.00 NA

P8r4 text {”name”: ”Non-linear

optimization”, ”times-

tamp”: ”00:04:38”},

{”name”: ”Multi-

ple Linear Regres-

sion”, ”timestamp”:

”00:12:00”},

{”name”: ”PCA

- Eigenvector ap-

proach”, ”timestamp”:

”00:00:36”}

Non-linear

optimization,

4.30

1st

frame

100.00 100.00

P8r5 text {”name”: ”Non-linear

optimization”, ”times-

tamp”: ”00:11:43”},

{”name”: ”k-means

clustering”, ”times-

tamp”: ”00:02:50”},

{”name”: ”Multi-

ple Linear Regres-

sion”, ”timestamp”:

”00:08:03”}

Non-linear

optimization,

13.00

1st

frame

66.67 66.67
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P8r6 formula {”name”: ”Linear

Regression”, ”times-

tamp”: ”00:00:00”},

{”name”: ”PCA

- Geometric ap-

proach”, ”timestamp”:

”00:08:00”},

{”name”: ”PCA

- Eigenvector ap-

proach”, ”timestamp”:

”00:00:00”}

Non-linear

optimization,

15.40

No

match

40.00 NA

P8r7 text {”name”: ”PCA

- Eigenvector ap-

proach”, ”timestamp”:

”00:00:20”},

{”name”: ”Linear

Regression”, ”times-

tamp”: ”00:00:20”},

{”name”: ”Multi-

ple Linear Regres-

sion”, ”timestamp”:

”00:04:40”}

Eigen vector

approach, 0.08

1st

frame

66.67 66.67
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P8r8 text {”name”: ”KNN clas-

sifier”, ”timestamp”:

”00:00:20”},

{”name”: ”k-means

clustering”, ”times-

tamp”: ”00:02:14”},

{”name”: ”Mean and

Variance”, ”times-

tamp”: ”00:00:20”}

Classification:

k nearest

neighbouring

classifier , 0.05

1st

frame

100.00 100.00

P8r9 text {”name”: ”KNN clas-

sifier”, ”timestamp”:

”00:09:48”},

{”name”: ”MSE

and max likeli-

hood”, ”timestamp”:

”00:04:05”},

{”name”: ”Mean and

Variance”, ”times-

tamp”: ”00:02:37”}

Classification:

k nearest

neighbouring

classifier, 9.36

1st

frame

75.00 75.00
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P8r10 text {”name”: ”KNN clas-

sifier”, ”timestamp”:

”00:13:03”},

{”name”: ”Multi-

ple Linear Regres-

sion”, ”timestamp”:

”00:09:43”},

{”name”: ”PCA

- Geometric ap-

proach”, ”timestamp”:

”00:00:20”}

Classification:

k nearest

neighbouring

classifier, 13.02

1st

frame

100.00 100.00

P8r11 text Mean & Vari-

ance, 4.17

No

data

100.00 NA

P8r12 formula {”name”: ”Mean and

Variance”, ”times-

tamp”: ”00:09:49”},

{”name”: ”Linear

Regression”, ”times-

tamp”: ”00:01:45”},

{”name”: ”Multi-

ple Linear Regres-

sion”, ”timestamp”:

”00:08:29”}

Mean & Vari-

ance, 6.28

1st sec-

tion

100.00 0.00
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P9r1 text Correlation

& Regression,

0.34

No

data

0.00 NA

P9r2 text Correlation

& Regression,

0.56

No

data

0.00 NA

P9r3 formula {”name”: ”Linear

Regression”, ”times-

tamp”: ”00:04:48”}

Mean & Vari-

ance, 2.15

No

match

100.00 NA

P9r4 formula [] Mean & Vari-

ance, 4.26

No

data

100.00 NA

P9r5 formula [] Mean & Vari-

ance, 4.44

No

data

100.00 NA

P9r6 formula {”name”: ”Mean and

Variance”, ”times-

tamp”: ”00:04:08”},

{”name”: ”Linear

Regression”, ”times-

tamp”: ”00:04:42”}

Mean & Vari-

ance, 6.40

1st sec-

tion

100.00 50.00

P9r7 formula {”name”: ”Linear

Regression”, ”times-

tamp”: ”00:04:48”}

Mean & Vari-

ance, 7.28

No

match

100.00 NA
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P9r8 text {”name”: ”Mean and

Variance”, ”times-

tamp”: ”00:07:37”},

{”name”: ”Multi-

ple Linear Regres-

sion”,”timestamp”:

”00:08:24”},

{”name”: ”Linear

Regression”, ”times-

tamp”: ”00:09:32”}

Mean & Vari-

ance, 8.39

1st

frame

100.00 100.00

P9r9 formula [] Mean & Vari-

ance, 9.15

No

data

100.00 NA

P9r10 formula [] Mean & Vari-

ance, 11.06

No

data

100.00 NA

P9r11 formula {”name”: ”MSE

and max likeli-

hood”, ”timestamp”:

”00:05:31”},

{”name”: ”Linear

Regression”, ”times-

tamp”: ”00:04:48”}

Mean & Vari-

ance, 11.43

No

match

100.00 NA
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P9r12 text {”name”: ”Mean and

Variance”, ”times-

tamp”: ”00:09:17”},

{”name”: ”Linear

Regression”, ”times-

tamp”: ”00:12:05”},

{”name”: ”PCA

- Eigenvector ap-

proach”, ”timestamp”:

”00:05:47”}

Mean & Vari-

ance, 13.11

1st sec-

tion

100.00 75.00

P9r13 formula {”name”: ”Linear

Regression”, ”times-

tamp”: ”00:10:30”},

{”name”: ”MSE

and max likeli-

hood”, ”timestamp”:

”00:05:31”}

Mean and

Variance,

14.28

No

match

100.00 NA

P9r14 formula [] Mean & Vari-

ance, 16.15

No

data

100.00 NA
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P9r15 text {”name”: ”Mean and

Variance”, ”times-

tamp”: ”00:17:15”},

{”name”: ”PCA

- Geometric ap-

proach”, ”timestamp”:

”00:11:52”},

{”name”: ”PCA

- Eigenvector ap-

proach”, ”timestamp”:

”00:22:23”}

Mean & Vari-

ance, 18.25

1st

frame

100.00 100.00

P9r16 formula [] Mean & Vari-

ance, 19.12

No

data

100.00 NA

P9r17 text {”name”: ”Linear

Regression”, ”times-

tamp”: ”00:00:20”},

{”name”: ”Multi-

ple Linear Regres-

sion”, ”timestamp”:

”00:00:20”},

{”name”: ”PCA

- Eigenvector ap-

proach”, ”timestamp”:

”00:08:33”}

Linear Regres-

sion, 0.08

1st

frame

100.00 100.00
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P9r18 formula [] Linear Regres-

sion, 0.56

No

data

100.00 NA

P9r19 formula [] Linear Regres-

sion, 2.20

No

data

100.00 NA

P9r20 formula {”name”: ”Mean and

Variance”, ”times-

tamp”: ”00:04:07”},

{”name”: ”PCA

- Geometric ap-

proach”, ”timestamp”:

”00:00:15”}

Linear Regres-

sion, 4.19

No

match

100.00 NA

P9r21 formula {”name”: ”Mean and

Variance”, ”times-

tamp”: ”00:04:07”},

{”name”: ”Linear

Regression”, ”times-

tamp”: ”00:04:48”}

Linear Regres-

sion, 5.05

2nd

frame

100.00 100.00
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P9r22 text {”name”: ”PCA

- Geometric ap-

proach”, ”timestamp”:

”00:00:20”},

{”name”: ”KNN clas-

sifier”, ”timestamp”:

”00:16:33”},

{”name”: ”PCA

- Eigenvector ap-

proach”, ”timestamp”:

”00:05:55”}

Geometric ap-

proach, 00:27

1st

frame

50.00 50.00

P9r23 text {”name”: ”Linear

Regression”, ”times-

tamp”: ”00:00:20”},

{”name”: ”MSE

and max likeli-

hood”, ”timestamp”:

”00:04:05”},

{”name”: ”PCA

- Geometric ap-

proach”, ”timestamp”:

”00:00:07”}

Geometric ap-

proach, 6.41

3rd

video

100.00 42.86
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P9r24 text PCA

ap-

plied

to

real

data

00:22

No

data

100.00 NA

P9r25 text PCA

ap-

plied

to

real

data

00:26

No

data

100.00 NA

P9r26 text {”name”: ”PCA on

real data”, ”times-

tamp”: ”00:01:40”},

{”name”: ”PCA

- Geometric ap-

proach”, ”timestamp”:

”00:00:07”},

{”name”: ”Multi-

ple Linear Regres-

sion”, ”timestamp”:

”00:10:10”}

PCA

ap-

plied

to

real

data

00:54

1st

frame

100.00 100.00
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P9r27 figure {”name”: ”MSE

and max likeli-

hood”, ”timestamp”:

”02:20”},

{”name”: ”Non-linear

optimization”, ”times-

tamp”: ”18:20”},

{”name”: ”k-means

clustering”, ”times-

tamp”: ”05:00”}

Rotated

PCA

00:17

No

match

100.00 NA

P9r28 figure {”name”: ”Rotated

PCA”, ”timestamp”:

”00:02”},

{”name”: ”MSE

and max likeli-

hood”, ”timestamp”:

”02:40”},

{”name”: ”Non-linear

optimization”, ”times-

tamp”: ”13:20”},

Rotated

PCA

00:29

1st

frame

100.00 100.00
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P9r29 figure {”name”: ”MSE

and max likeli-

hood”, ”timestamp”:

”01:00”},

{”name”: ”Non-linear

optimization”, ”times-

tamp”: ”06:20”},

{”name”: ”k-means

clustering”, ”times-

tamp”: ”05:00”}

Rotated

PCA

00:41

No

match

100.00 NA

P9r30 figure {”name”: ”MSE

and max likeli-

hood”, ”timestamp”:

”05:00”},

{”name”: ”Non-linear

optimization”, ”times-

tamp”: ”06:20”},

{”name”: ”KNN clas-

sifier”, ”timestamp”:

”01:00”}

Rotated

PCA

2.44

No

match

100.00 NA

172



P9r31 text {”name”: ”Rotated

PCA”, ”timestamp”:

”00:04:09”},

{”name”: ”k-means

clustering”, ”times-

tamp”: ”00:08:26”},

{”name”: ”PCA

- Geometric ap-

proach”, ”timestamp”:

”00:06:29”}

Rotated

PCA

3.25

1st

frame

100.00 100.00

P10r1 formula {”name”: ”Linear

Regression”, ”times-

tamp”: ”00:04:48”}

Mean

and

Vari-

ance,

0.01

No

match

100.00 NA

P10r2 formula [] Mean

and

Vari-

ance,

4.17

No

data

100.00 NA

P10r3 formula [] Mean

and

Vari-

ance,

4.17

No

data

100.00 NA
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P10r4 formula {”name”: ”Complex

Data”, ”timestamp”:

”00:00:48”},

{”name”: ”Linear

Regression”, ”times-

tamp”: ”00:04:48”}

Mean

and

Vari-

ance,

15.51

No

match

100.00 NA

P10r5 formula [] MLP,

0.02

No

data

100.00 NA

P10r6 text MLP,

8.06

No

data

100.00 NA

P10r7 text {”name”: ”PCA

- Geometric ap-

proach”, ”timestamp”:

”00:00:10”},

{”name”: ”PCA

- Eigenvector ap-

proach”, ”timestamp”:

”00:05:55”},

{”name”: ”KNN clas-

sifier”, ”timestamp”:

”00:16:33”}

PCA

–

Ge-

o-

met-

ric

ap-

proach

0:01

1st

frame

100.00 100.00
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P10r8 text {”name”: ”PCA

- Eigenvector ap-

proach”, ”timestamp”:

”00:00:10”},

{”name”: ”Non-linear

optimization”, ”times-

tamp”: ”00:00:10”},

{”name”: ”Linear

Regression”, ”times-

tamp”: ”00:00:10”}

PCA

–

Eigen

vec-

tor

ap-

proach

0:08

1st

frame

100.00 100.00

P10r9 formula [] PCA

–

Eigen

vec-

tor

ap-

proach

0:08

No

data

100.00 NA

P10r10 formula {”name”: ”Linear

Regression”, ”times-

tamp”: ”00:04:48”},

{”name”: ”Complex

Data”, ”timestamp”:

”00:00:48”}

Complex

Data

7:45

2nd

video

100.00 0.00
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P10r11 formula [] Complex

Data

9:17

No

data

100.00 NA

P10r12 text Scaling

9:35

No

data

100.00 NA

P10r13 text {”name”: ”MSE

and max likeli-

hood”, ”timestamp”:

”00:03:28”},

{”name”: ”KNN clas-

sifier”, ”timestamp”:

”00:03:20”},

{”name”: ”Multi-

ple Linear Regres-

sion”, ”timestamp”:

”00:10:10”}

KNN

clas-

si-

fier

2:28

2nd frame 50.00 50.00
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P10r14 text {”name”: ”KNN clas-

sifier”, ”timestamp”:

”00:13:03”},

{”name”: ”Multi-

ple Linear Regres-

sion”, ”timestamp”:

”00:08:24”},

{”name”: ”PCA

- Eigenvector ap-

proach”, ”timestamp”:

”00:15:28”}

KNN

clas-

si-

fier

4.36

1st video 50.00 100.00

B.2 Friedman & Wilcoxon test results

The friedman and wilcoxon test results for the preference levels in temporal conditions

and video surrogates is shown in the figures B.1, B.2, B.3, B.4, B.5, and B.6.
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Figure B.1: Temporal preference: a) It is easy to find the information I need from
this point
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Figure B.2: Temporal preference: b) The information is effective in helping me
complete the tasks and scenarios for learning
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Figure B.3: Temporal preference: c) I’m satisfied with the retrieved video time point
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Figure B.4: Temporal preference: a) It is easy to find the information I need from
this point
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Figure B.5: Preference for Video Surrogates: b) This design has all the functions
and capabilities I expect it to have
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Figure B.6: Preference for Video Surrogates: c) The organization of information on
the layout screen is clear
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B.3 Interview Transcripts

The interview transcripts of the user study with 12 participants can be accessed here1.

B.4 Survey results

This section shows the survey data for the preference of temporal level and video sur-

rogates in the retrieved video results as can be seen in the tables B.2, B.3. Later, the

usability data in terms of Effectiveness, Efficiency and Satisfaction is also covered in the

section in the tables. The results are derived from the 12-student experimental study

discussed in chapter 4. The likert-scale data in all the results range from 1-Strongly

disagree to 5-Strongly agree.

1https://ubcca-my.sharepoint.com/:f:/g/personal/ranjs92 student ubc ca/
EtvgSRjJKktPqKHcXUxUauIBynZU9R26ePuSuwC-5YvZpA?e=Zl0y1u
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Table B.2: Likert-scale data for temporal preference in Point, Interval and whole
video

Point Interval Video

Participant Name a b c a b c a b c

P1 Fan 5 5 5 4 4 5 4 4 3
P2 Qian 3 4 4 3 3 3 3 3 3
P3 Rui 5 5 5 5 5 5 3 4 4
P4 Mazoud 3 4 3 2 2 2 4 4 4
P5 Praneeth 5 5 5 5 5 5 5 5 4
P6 Taslim 4 5 4 4 4 4 3 4 3
P7 Pramit 5 5 3 4 5 4 3 3 2
P8 Deb 5 3 2 5 5 5 5 4 4
P9 Achinth 5 5 3 5 5 4 4 5 2
P10 Shaunak 5 4 5 4 4 3 4 4 2
P11 Munira 5 5 5 3 3 4 1 2 2
P12 Lakshmi 4 5 3 5 5 5 4 4 3

• a - It is easy to find the information I need from this point

• b - The information is effective in helping me complete the tasks and scenarios for
learning

• c - I’m satisfied with the retrieved video time point
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Table B.3: Likert-scale data for video surrogate preference

Title +
Thumbnail

Title +
Thumbnail
+
Keywords

Title +
Thumbnail
+
Keywords
+
Summary

Participant Name a b c a b c a b c

P1 Fan 4 5 5 4 4 3 3 3 2
P2 Qian 4 4 4 4 4 4 3 3 4
P3 Rui 4 4 5 5 5 5 4 4 3
P4 Mazoud 4 4 4 5 5 5 3 3 3
P5 Praneeth 5 5 4 5 5 5 5 5 4
P6 Taslim 4 3 4 3 3 4 4 3 3
P7 Pramit 4 3 4 4 5 5 5 5 5
P8 Deb 3 4 5 5 4 5 5 5 5
P9 Achinth 2 3 5 4 4 4 5 5 2
P10 Shaunak 4 5 5 4 4 2 3 3 1
P11 Munira 2 3 5 5 5 5 5 5 4
P12 Lakshmi 1 2 2 4 4 4 3 3 3

• a - It is easy to find the information I need from this point

• b - This design has all the functions and capabilities I expect it to have.

• c - The organization of information on the layout screen is clear
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Table B.4: Likert-scale survey results for Effectiveness in Usability Evaluation

Effectiveness

Easy to
use

Functions
well inte-
grated

Need
technical
support

5 4 2
5 5 1
4 4 1
4 4 3
4 4 1
4 5 1
4 3 4
5 4 2
4 4 1
5 4 1
4 3 2
5 4 1

187



Table B.5: Likert-scale survey results for Efficiency in Usability Evaluation

Efficiency

Quick pro-
ducitivity

Quick
Learning

Lot to
learn

5 4 3
5 5 1
3 5 2
4 4 1
5 3 4
5 5 1
4 4 4
4 4 2
4 4 1
5 5 2
4 4 2
4 5 1

Table B.6: Likert-scale survey results for Satisfaction in Usability Evaluation

Satisfaction
Frequent

use
Overall
satisfac-
tion

Complexity

5 4 2
5 5 5
4 4 2
3 4 2
4 5 2
5 5 1
4 4 2
5 4 2
4 4 2
4 5 2
4 4 2
5 4 2
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APPENDIX C

Implementation Details

The implementation details of the note recognition of each type that is text, formula,

and figure and the mobile application interface design can be accessed here 1.

1https://learning.github.ubc.ca/ranjs92/NoteLink.git

189

https://learning.github.ubc.ca/ranjs92/NoteLink.git

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Acknowledgements
	Introduction
	Thesis Objective
	Research questions
	Characteristics of Watched Video Notes
	Student Expectations, Requirements of a Watched Video Re-finding System

	Contributions
	Thesis Overview

	Background
	In-house Video Functionalities for Note-taking
	Cross-Media Interaction with Paper Notes
	Searchable-Video Data
	Note Content Characteristics
	Handwriting Recognition

	Characteristics of Watched Video Notes
	Notes Collection
	Participants
	Procedure
	Description of the Captured Notes

	Results and Discussion
	Content-based Categorization of Note Content
	Unfolding the Hybrid Type
	Verbatim Overlap
	Watched Video Timepoint

	Summary

	Rendering Watched Video Matches
	Experiment Design and Procedure
	Participants
	Study Procedure

	Study Findings
	Video in “Interval” Temporal Level
	Selection-based Use of Video Surrogates
	Usability reports

	Discussion
	Link to Note vs Note of Links – Linking Strategies
	Impact on the Existing Note-taking Practices

	Summary

	Pragmatics of Linking Notes to Video
	Note Recognition Analysis
	Finding Video Matches
	Smartphone as a Pedagogical Interface
	Accuracy of matching videos to notes
	Content Overlap
	Discussion
	Implementation requirements
	Automated Content Type Segmentation
	Recognition Accuracy
	Computing Time


	Conclusions
	Limitations and Future Work
	Extension of Application Interactions

	References
	Appendices
	Participant data
	Notebook Samples

	Study Results
	Accuracy-Overlap results
	Friedman & Wilcoxon test results
	Interview Transcripts
	Survey results

	Implementation Details

