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Abstract

In this thesis, we construct a convenient presentation of weak n-categories for 0≤ n≤ ω whose corre-

sponding weak n-functors in particular do not strictly preserve units. The approach constructs the finite-

dimensional higher categories inductively using multi-opetopic sets, analogous to the construction of

Segal categories, and multi-simplicial nerves of Tamsamani. We prove that our construction is correct

in dimension two by providing a fully faithful and weakly essentially surjective functor from the cate-

gory of bicategories and pseudofunctors to our weak 2-categories. For the infinite-dimensional case, we

realise the weak ω-categories as formal limits of their finite-dimensional truncations, using coalgebras

over an appropriate endofunctor. We also prove that these weak ω-categories admit an equivalent char-

acterisation as infinitary opetopic sets subject to constraints analogous to the finite-dimensional case.

Finally, we specialise our construction to∞-groupoids and prove that the coalgebraic structure induces

a canonical functor from nice topological spaces that defines the Poincaré∞-groupoid construction. We

show that the Poincaré∞-groupoid has the correct higher morphisms in all dimensions and retains the

information about all homotopy groups of the space. Moreover, we show that this construction preserves

and reflects weak equivalences. We conclude by proposing a construction that likely recovers a space

from its Poincaré∞-groupoid which conjecturally establishes a version of the Homotopy Hypothesis.

iii



Lay Summary

Many mathematical structures can be studied holistically through the language of categories. In fact,

even categories themselves can be collected together to form an even larger category, but doing so loses

much of the nuance of category theory. This is resolved by instead collecting categories together into

what is called a 2-category, which adds an extra dimension of structure. In a similar way, 2-categories

can also be collected together, and this collection naturally carries the structure of a 3-category. Re-

peating this process indefinitely leads to an overarching structure of all higher-dimensional categories,

called an∞-category. As∞-categories are difficult to define directly, the goal of this thesis is to provide

an easy step-by-step way of constructing n-categories for all n, and show how to construct∞-categories

by taking the limit as n→∞.
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Preface

This thesis is original, unpublished, independent work by the author, Z. Goldthorpe. Chapter 1 provides

a non-technical summary of the context for the problems addressed in the thesis, as well as a brief

overview of the general approach, highlighting the main theorems of the thesis. Chapter 2 and Chapter 3

are expository, and Chapter 4 reviews all of the mathematics necessary for the main results. Chapter 5

contains the original results of the author, which may be published at a later date. Chapter 6 compares

the contributions of this thesis with other works in the literature.
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Chapter 1

Introduction

The theory of categories was first developed by Eilenberg and Mac Lane in 1945, and served as a con-

venient general framework for algebraic or set-theoretic mathematical objects to be studied holistically,

in terms of diagrams of arrows between points. These arrows—called morphisms—are subject to very

few rules:

• Arrows that share points can be connected tail-to-tip to uniquely produce other arrows, and this

composition is associative.

• There is a unit arrow at each point, and any other arrow does not change when composed with

one of the unit arrows.

The theory has since witnessed rapid and diverse development, providing a convenient language for

studying several abstract areas of mathematics, such as those in algebraic geometry and algebraic topol-

ogy. However, with mathematics becoming more refined with more subtle notions of equivalence be-

tween mathematical objects, ordinary category theory faced similar refinements, leading to generalisa-

tions such as enriched and higher category theory.

Higher category theory generalises the points-and-arrows language of ordinary categories to allow

for higher-dimensional arrows between arrows. Arrows of dimension k in a higher category are referred

to as k-morphisms, and allow for the rules of category theory to be relaxed: arrows can still be connected

tail-to-tip, but the composite arrow is no longer uniquely determined. Rather, any two candidates for the

composite arrow are connected by a reversible higher-dimensional arrow.

Reversibility—or more precisely, invertibility—of arrows in higher dimensions serve as a more

general method of studying the weaker notions of equivalence necessary in mathematics: for example,

higher categories are more capable of studying spaces that are considered equivalent to their continu-

ous deformations, such as in homotopy theory. While the intentions for higher category theory were

clear, producing a precise axiomatisation of higher categories requires exponentially more rules as the

dimension increases, and the ways of composing higher-dimensional morphisms also quickly become

unwieldy. For this reason, explicit theory for higher categories only exist for low dimensions: Bénabou

established the definition for dimension two with bicategories in [7], and this was extended to tricate-

gories in dimension three by Gordon, Power, and Street in [17]. For higher dimensions, the standard
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approach was instead to present higher categories indirectly using other mathematical objects that were

easier to describe, this resulting in several candidate presentations for higher categories.

The most popular models are based on simplicial sets, such as the quasicategories of Boardman and

Vogt in [9]. Simplicial sets are abstract structures built from gluing higher-dimensional triangles to-

gether, and these triangular shapes can encode how the one-dimensional arrows compose when compo-

sition is no longer strictly unique. However, their triangular shape limits their effectiveness in expressing

higher-dimensional arrows, so quasicategories are presentations only of a special case of higher cate-

gories called (∞,1)-categories: those higher categories wherein the k-morphisms are invertible for all

k > 1. While (∞,1)-categories are sufficient for handling algebraic or set-theoretic objects that are co-

herent up to higher homotopy, they cannot fully express homotopy theories themselves, as this requires

non-invertible 2-morphisms and thus (∞,2)-categories.

Even with an established presentation of (∞,2)-categories, this would surely lead to the need for a

theory of (∞,3)-categories—for instance, showing that two different presentations of (∞,2)-categories

are equivalent requires comparing them in an ambient (∞,3)-category. There should be a conceptual

limit to these iterative abstractions, and these would be the fully weak (∞,∞)-categories—also called

weak ω-categories—where all higher-dimensional arrows need not be invertible. Barring set-theoretic

complications, the theory of weak ω-categories is entirely self-contained. However, weak ω-categories

are also the most difficult to axiomatise, as they are the most structurally delicate versions of higher

categories. There are a handful of proposed presentations, many of which try to generalise the ideas

behind quasicategories: examples include the weak complicial sets of Verity in [47], and the opetopic

sets of Baez and Dolan in [3].

Despite the technical convenience of working with simplicial objects, an artefact of using them

for presentations of higher categories is that they inherently cause an obstruction in the presentation

of higher functors. In ordinary category theory, the functors describe a rule of translating points and

arrows of one category into those of another, in a compatible way such that composition of arrows is

preserved, in the sense that the composite of the image of two arrows should coincide with the image of

the composite of the same two arrows. When generalising this to higher categories, the compatibility of

composition also must be relaxed. Since composition is no longer uniquely determined, the composite

of the image of two arrows should be connected to the image of the composite of the same two arrows

by an invertible 2-morphism, and similarly for the higher dimensions. This should also be true for

the action of the unit arrows, but simplicial models of higher categories force the corresponding weak

functors to preserve these units exactly, rather than up to higher invertible morphism. Such functors

are called strictly unital, and the cause for this strict unity is that simplicial models of higher categories

encode unit arrows via degeneracies, and the simplicial structure forces degeneracies in general to be

preserved exactly.

The main goal of this thesis is to develop a theory of higher categories that is capable of presenting

weak functors that are not necessarily strictly unital. As this excludes any simplicial model, we ap-

proach this problem using opetopes similar to those of Baez and Dolan. These generalise simplices so

that the faces are no longer forced to be only triangular, but also allow for the other polygonal shapes.
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This corresponds to composing strings of several arrows together in a higher category simultaneously.

This generalisation removes the necessity for degeneracies, as units can now be presented by monogons

(one-sided polygons) correspond to composing an empty string of arrows together. Unfortunately, the

drawback of opetopes is that they require more care when defining precisely, though they are straight-

forward to reason with intuitively.

As we also want the theory of higher categories to be convenient to work with, we develop our higher

categories inductively: there should be a uniform way of producing (n + 1)-dimensional categories

given an established theory of n-dimensional categories. For this purpose, we adapt the construction

of higher nerves by Tamsamani in [46] by replacing his multi-simplicial sets with multi-opetopic sets.

The additional benefit of this approach is that the resulting objects retain the categorical structure of

the higher categories they present directly, such as having a straightforward way of extracting the n-

morphisms for any n ≥ 0. This is not as easy for instance in the quasicategorical model, as the higher

morphisms are only encoded implicitly by the simplicial structure.

Contributions of thesis. We introduce a modification of Cheng’s category of opetopes in [11] to elim-

inate the invertible structure maps that permute the inpute facets of opetopes. We achieve this by us-

ing Leinster’s definition in [31] of opetopes via nonsymmetric operads, and produce a category O of

opetopes by introducing opetopic analogues of the simplicial coface maps as the morphisms. This en-

sures that there are no nontrivial isomorphisms in O.

We define weak n-categories as certain presheaves on On, with the corresponding weak n-functors

being precisely the natural transformations. The conditions on weak n-categories are defined induc-

tively: after defining wknCat and a corresponding notion of equivalence of weak n-categories, the weak

(n+1)-categories are then defined as those functors A : Oop→ wknCat such that

• A0 is a discrete n-category,

• the target face map t :A2[1]→A1 is an equivalence of n-categories,

• for every opetope γ , the canonical mapAγ →A
×A0 |γ|1
1 is a surjective equivalence of n-categories.

with the weak (n+1)-functors Φ :A→ B defined to be the natural transformations from A to B. The

functor Φ is an equivalence of (n+1)-categories if and only if it is essentially surjective on objects and

fully faithful in the appropriate sense. As there is an explicit definition by Bénabou of higher categories

and weak functors in dimension two, we show that our construction of wk2Cat recovers the category

Bicat of bicategories and pseudofunctors in Theorem 5.16:

Theorem A. There is a fully faithful functor N : Bicat→ Func(Oop,Cat) that is weakly essentially

surjective on the full subcategory wk2Cat of weak 2-categories in Func(Oop,Cat).

In particular, this shows that our theory of weak n-functors is not strictly unital. Moreover, the

proof of the above theorem implies a general proof of correctness of wknCat for all n ≥ 0: given an

explicit definition of higher categories in some dimension n analogous to those of bicategories, with an
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appropriate analogue of categorical limits, there should be a natural analogue of our proof of the above

theorem to realise that theory as equivalent to wknCat. Therefore, our inductive construction provides

a good presentation of all higher categories of finite dimension.

We then consider the problem of extending the construction to the infinite-dimensional case. Similar

to an approach by Cheng and Leinster in [13], we define our weak ω-categories to be formal limits of

their finite-dimensional truncations, but our approach differs from theirs in the choice of n-truncation:

they eliminate all higher arrows above a certain dimension, leaving the composition of n-morphisms

somewhat incoherent, whereas we identify the n-morphisms up to equivalence before removing the

higher arrows so that the result of the truncation is always a weak n-category. This allows us to use our

theory of finite-dimensional higher categories directly in studying weak ω-categories.

We make precise sense of the above approach using the theory of coalgebras over an appropriate

endofunctor to obtain a category wkωCat of weak ω-categories and weak ω-functors. Coalgebras

provide an abstract framework that allows us to define objects coinductively; that is, with “bottomless”

recursion. We then show that our weak ω-categories admit a characterisation that strongly resembles

that of our finite-dimensional higher categories in Theorem 5.37:

Theorem B. The category wkωCat is isomorphic to the category of functors A : Oop→wkωCat such

that

• A0 is a discrete ω-category, corresponding to the set of objects of A,

• the target face map t :A2[1]→A1 is an equivalence of weak ω-categories,

• for every opetope γ , the canonical map Aγ → A
×A0 |γ|1
1 is a surjective equivalence of weak ω-

categories.

Moreover, the equivalences of weak ω-categories correspond to the natural transformations that are

essentially surjective and fully faithful under this isomorphism.

Moreover, wkωCat is universal with the above characterisation. Let V be a category equipped with

a suitable notion of weak equivalence. If V admits an inclusion V → Func(Oop,V ) which realises its

objects as certain functors Oop→ V satisfying analogous properties to those listed above, and the weak

equivalences of V become fully faithful and essentially surjective under this realisation, then there is a

unique functor V → wkωCat which respects this realisation and the weak equivalences.

We then briefly explore the subcategory ∞Grpd ⊂ wkωCat of higher groupoids: those higher

categories whose arrows are invertible in all dimensions. We show in Theorem 5.42 that∞-groupoids

also admit a coinductive characterisation as those weak ω-categories A such that Aγ is an∞-groupoid

for every opetope γ , and the various maps A2[p]→A
×A0 p
1 are also equivalences for all p≥ 0.

The invertibility of arrows in∞-groupoids make them more suitable in particular for studying ho-

motopy theory, as homotopies of a space are always reversible. Grothendieck’s Homotopy Hypothesis

stipulates that the theory of higher groupoids should be equivalent to homotopy theory of spaces. Intu-

itively, the∞-groupoid associated to a topological space X should be a higher-categorical generalisation
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of its fundamental groupoid Π1X ; thus, the k-morphisms of the∞-groupoid should correspond to the

k-dimensional homotopies in X .

Note that X can be realised as a groupoid weakly enriched in spaces: between any points x,y ∈ X ,

we have a space of continuous paths x→ y. This allows us to construct the∞-groupoid corresponding

to X coinductively, and we obtain a significant portion of the Homotopy Hypothesis:

Theorem C. Given a compactly generated and weakly Hausdorff space X, there is a canonical functo-

rial construction of its Poincaré∞-groupoid Π∞X in∞Grpd⊂ wkωCat such that

(i) the n-morphisms f → g in Π∞X are the boundary-preserving homotopies from f to g in X for

every n≥ 1; in particular, the 0-truncation of Π∞X is the set of path-connected components of X,

and the 1-truncation of Π∞X is the fundamental groupoid of X,

(ii) for any x ∈ X, the homotopy group πn(X ,x) is isomorphic to the group of equivalence classes of

n-morphisms over x in Π∞X,

(iii) if the homotopy groups of X are trivial for all levels above n, then Π∞X will be an n-groupoid.

Additionally, a continuous map X → Y is a weak homotopy equivalence if and only if the induced weak

ω-functor Π∞X →Π∞Y is an equivalence of∞-groupoids.

This is Theorem 5.47. We then propose a candidate space to any∞-groupoid G whose Poincaré∞-

groupoid should be weakly equivalent to G which, if correct, would validate the Homotopy Hypothesis

for our construction.

Organisation of thesis. Chapter 2 gives a more detailed exposition which outlines the main motivation

for studying higher category theory and establishes the basic definitions. Chapter 3 surveys existing

simplicial models of higher category theory, with the focus on highlighting the benefits and drawbacks

of these models. None of the work in the first three chapters of this thesis are original; the only contri-

butions of the author are in the organisation and presentation of the material. Chapter 4 motivates and

develops the mathematics directly necessary for the main results of the thesis. In particular, the author

provides a terse development of Tamsamani’s construction of multi-simplicial nerves, and the definition

of the category of opetopes is an adaptation of Cheng’s construction applied to Leinster’s definition of

opetopes. Chapter 5 is entirely independent and original work of the author, and contains all of the main

results of the thesis. Chapter 6 then provides a summary of the contributions of the thesis in the context

of other existing work, and describes various avenues for future research.
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Chapter 2

Background and Motivation

Historically, much of mathematics had been developed using set-theoretical language, with the primary

objects of study being sets of elements endowed with some form of additional structure. For instance,

groups are sets of symmetries subject to a rule describing how these symmetries can be combined,

while topological spaces are sets of points equipped with a configuration that describes an overarching

shape. The theory of any such flavour of mathematical object is then described by the functions of

their underlying sets that preserve this specified structure. For the aforementioned examples: group

theory is studied through group homomorphisms that map between symmetries in a way compatible

with how they are combined, and topology is studied through continuous functions that locally respect

the configurations of points. Broadly speaking, studying these theories in general can be achieved to

some extent through the notion of a category, which reduces mathematical objects to abstract points,

and shifts focus to the maps between them:

Definition 2.1. A category C consists of

• a collection C0 of objects,

• for x,y ∈ C0, a collection HomC (x,y) of morphisms f : x→ y,

• for x,y,z ∈ C0, a map ◦ : HomC (y,z)×HomC (x,y)→ HomC (x,z) called composition,

• for x ∈ C , a distinct morphism idx : x→ x called the identity on x

such that composition is

• associative: ( f ◦g)◦h = f ◦ (g◦h) for all f : y→ z, g : x→ y, h : w→ x, and w,x,y,z ∈ C0

• unital: f ◦ idx = f and idy ◦ f = f for all f : x→ y and x,y ∈ C0.

For brevity, composition of morphisms may also be denoted by juxtaposition. The category C is called

locally small if HomC (x,y) is a set for all x,y ∈ C0, and is moreover called small if it is locally small

and C0 is also a set.
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Refer to [33] or [40] for the basics of category theory. The prototypical example of a category

is Set: the category whose objects are sets, and whose morphisms are functions. In practice—as is

the case for the category Grp of groups and group homomorphisms, or Top of topological spaces and

continuous functions—categories often lie over Set in the sense that the category C has a canonical

functor U : C → Set sending objects x ∈ C0 to their underlying set Ux ∈ Set0. The functor is typically

faithful, as the set HomC (x,y) of morphisms x→ y is precisely the subset of those functions of sets

Ux→Uy which preserve the additional structure of these objects of C .

In fact, this perspective can be modified to apply to a general (locally small) category C as well. Fix

an object x ∈ C0, then for any other object s ∈ C0, we can think of the set of morphisms s→ x as the

set of “s-shaped elements” of x, allowing us to see x as a C0-indexed family of sets. Now, morphisms

x→ y in C become C0-indexed families of functions, which map s-shaped elements of x to s-shaped

elements of y for any given s ∈ C0. The structure on these families of sets describing any object x ∈ C0

is given by how we are allowed to move between elements of different shapes in x (through morphisms),

and the morphisms in C will then be exactly those families of functions which preserve this structure.

Working this interpretation out formally recovers the fully faithful Yoneda embedding, which establishes

an equivalence between any given category C and the full subcategory of representable presheaves in

the category PShC := Func(C op,Set) of presheaves on C and natural transformations. This makes

precise the idea that categories correspond to theories of structured sets.

This also reveals a limitation of ordinary categories: while they provide a convenient general frame-

work to study the set theory of mathematical objects, they provide little aid in studying any deeper

structure these objects may have. For example, suppose R is a commutative ring, then we can certainly

build the category RMod of R-modules and module homomorphisms. However, the language of cate-

gories is insufficient for homology, which require for instance good notions of kernels and images of

morphisms. These require observing that R-modules are more than just structured sets, but are struc-

tured abelian groups, meaning that we need to enrich the theory of R-modules with the language from

the theory of abelian groups. Remarkably, this action of enriching the theory can be reflected by endow-

ing the hom-sets HomRMod(M,N) of module homomorphisms M→ N with the structure of an abelian

group via pointwise addition. Categories whose hom-sets are abelian groups then serve as the founda-

tion for the classical theory of abelian categories, which provides a reasonable general framework for

homological algebra as described for instance in [15].

A similar deficiency can even be seen from studying categories directly. As (small) categories are

sets of objects equipped with additional structure, they too can be collected into a category Cat of

small categories and functors. However, set-theoretic language becomes inadequate for appropriately

comparing categories. For example, set-theoretic objects are considered the same if one can be obtained

from the other via a structure-preserving relabelling of its elements, this being called an isomorphism.

Isomorphisms of categories, however, are generally too strict to reflect when categories should be viewed

as the same: categories should be instead viewed as equivalent if their internal set theories are essentially

the same. We obtain the necessary language for making sense of this form of equivalence by enriching

the category Cat over itself: the set of functors C → D can be made into a category Func(C ,D) by
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taking its morphisms to be the natural transformations. This is described in more detail in Section 2.2.

2.1 Monoidal Structure and Enrichment
A category C enriched in another category V consists of a class C0 of objects as in the case of ordinary

categories, but the morphisms x→ y for x,y ∈ C0 collect to form an object C (x,y) of V . Making this

precise thus requires additional structure from V . If the theory of V is rich enough, we can appeal to

an enriched analogue of the Yoneda embedding as shown by Kelly in [27, §2.4] to conclude that this

notion of enrichment is sufficient in allowing us to view objects of C as structured objects of V . This

is the case when V = Ab is the category of abelian groups and group homomorphisms, as well as when

V = Cat. Note that this is also the case when V = Set, where we recover ordinary (locally small)

categories.

If C is a V -enriched category, then to each object x ∈ C0, we need an analogue of an identity

endomorphism idx : x→ x. If V = Set, then morphisms x→ y of C are elements of HomC (x,y), so by

the set-theoretic Yoneda embedding, the morphisms of C for a general V are generalised elements of

C (x,y) of a certain fixed shape 1 ∈ V0. In particular, the identity on x ∈ C0 is a choice of morphism

1x : 1→ C (x,x) in V .

More importantly, we also need a composition on C . If V = Set, then composition is defined by a

family of functions

◦ : HomC (y,z)×HomC (x,y)→ HomC (x,z)

for x,y,z ∈ C0. Translating this to enrichment in a general V requires being able to pair objects of V

together, which is done through a bifunctor ⊗ : V ×V → V . Then, composition on C is a family of

choices of morphisms ◦ : C (y,z)⊗C (x,y)→ C (x,z) in V for x,y,z ∈ C0. To assert the usual axioms of

category theory on this structure for C , we need 1 and ⊗ in V to satisfy axioms of their own:

• The unit axiom on C should reflect that composition with identity endomorphisms preserves

morphisms, which means for example that the two morphisms

1⊗C (x,y) C (y,y)⊗C (x,y) C (x,y)

C (x,y) C (x,y)

1y⊗C (x,y) ◦

idC (x,y)

should be comparable in V for all x,y,z ∈ C0. This is impossible unless we can identify their

domains, which suggests that 1⊗v should be naturally isomorphic to v for all v ∈ V0. Composing

identities in C on the right implies an analogous isomorphism between v⊗1 and v.

• The associativity axiom on C should reflect that the two ways of performing a three-fold com-
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posite of morphisms in C should be equal, meaning that the two morphisms

(
C (y,z)⊗C (x,y)

)
⊗C (w,x) C (x,z)⊗C (w,x) C (w,z)

C (y,z)⊗
(
C (x,y)⊗C (w,x)

)
C (y,z)⊗C (w,y) C (w,z)

(◦)⊗C (w,x) ◦

C (y,z)⊗(◦) ◦

should also be comparable in V for all w,x,y,z ∈ C0. This again requires identifying domains,

which suggests that (v⊗ v′)⊗ v′′ should be isomorphic to v⊗ (v′⊗ v′′) naturally in v,v′,v′′ ∈ V0.

To ensure that there is no ambiguity in how to rebracket iterated applications of ⊗, the aforemen-

tioned natural isomorphisms should also satisfy some coherence axioms. This ultimately implies that

V should at least be equipped with the structure of a monoidal category in order to discuss enrichment.

Definition 2.2. A monoidal category (V ,⊗,1) is a category V equipped with a fixed object 1 ∈ V0

called its tensor unit, a bifunctor ⊗ : V ×V → V called its tensor product, families of isomorphisms

λv : 1⊗ v ∼−→ v and ρv : v⊗ 1
∼−→ v natural in v ∈ V0 called unitors, and a family of isomorphisms

αu,v,w : (u⊗ v)⊗w ∼−→ u⊗ (v⊗w) natural in u,v,w ∈ V0 called associators. This structure is subject to

coherence axioms given by commutativity of the pentagon

((u⊗ v)⊗w)⊗ x (u⊗ v)⊗ (w⊗ x) u⊗ (v⊗ (w⊗ x))

(u⊗ (v⊗w))⊗ x u⊗ ((v⊗w)⊗ x)

αu⊗v,w,x

αu,v,w⊗x

αu,v,w⊗x

αu,v⊗w,x

u⊗αv,w,x

for all u,v,w,x ∈ V0, and the triangle

(u⊗1)⊗ v u⊗ (1⊗ v)

u⊗ v

αu,1,v

ρu⊗v u⊗λv

for all u,v ∈ V0.

If V has finite products, then it automatically admits a monoidal structure with the tensor product

being given by the categorical product (×), and the tensor unit by the terminal object (pt). The unitors

and associators are induced by the universal properties of these limits, and their uniqueness ensures that

the coherence axioms are already satisfied. The triple (V ,×,pt) is then called a cartesian monoidal

category. Note that while cartesian monoidal categories are easy to find and construct, the greater

generality is necessary to cover all of our basic examples of enrichment. For instance, enrichment over

abelian groups is not done through its cartesian structure (Ab,⊕,0): the category of abelian groups has

a zero object, meaning there is a unique morphism 0→ G for any abelian group G, and this map picks

out the neutral element of G. This is problematic since the identity endomorphism in HomRMod(M,M)

is never the zero map on M unless M = 0. Instead, the usual monoidal structure on Ab is given by the
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tensor product of abelian groups (Ab,⊗Z,Z), which is the prototypical example of a monoidal category.

In this case, set-theoretic elements of an abelian group G correspond to group homomorphisms Z→ G.

Since the category of abelian groups is precisely the category of Z-modules, we can enrich Ab over

itself by endowing its hom-sets with pointwise addition. Similarly, Cat is enriched over itself, as we

have a category Func(C ,D) of functors between any two categories C and D . This generalises the

tautological enrichment of Set over itself. Notice that in the case Set, its cartesian monoidal structure

and self-enrichment are connected by currying: functions f : X×Y → Z of sets naturally correspond to

maps f : X → HomSet(Y,Z) by partial evaluation. This correspondence extends to Ab and Cat as well,

which motivates the following definition:

Definition 2.3. A monoidal category (V ,⊗,1) is called (right) closed if for every v ∈ V0, the functor

v⊗ (−) admits a right adjoint [v,−].

Let (V ,⊗,1) be closed monoidal. Through the adjunction v⊗ (−) a [v,−], generalised elements

1→ [v,w] correspond to morphisms v ∼= 1⊗ v→ w naturally in w ∈ V0. In other words, [v,w] realises

HomV (v,w) as an object of V for all v,w ∈ V0. For this reason, [−,−] is called the internal hom of

V , and it defines a canonical enrichment of V over itself. The adjunction counit provides morphisms

evw : [v,w]⊗v→w internalising the notion of evaluating a morphism v→w at an element of v to yield an

element of w. The identity endomorphisms 1→ [v,v] are then the adjuncts of the left unitors 1⊗ v∼= v,

and the composition rule [v,w]⊗ [u,v]→ [u,w] is the adjunct of the composite

(
[v,w]⊗ [u,v]

)
⊗u [v,w]⊗

(
[u,v]⊗u

)
[v,w]⊗ v w

α[v,w],[u,v],u [v,w]⊗evv evw

2.2 Higher Category Theory
Given any monoidal category V , we can define a category V Cat of (small) V -enriched categories and

V -enriched functors. If the monoidal structure is symmetric (cf. Definition 2.6 below), then given

V -enriched categories C and D , we can define their tensor product C ⊗D by taking the class of

objects to be (C ⊗D)0 := C0×D0, and for c,c′ ∈ C0 and d,d′ ∈ D0 taking the hom-objects to be

(C ⊗D)((c,d),(c′,d′)) := C (c,c′)⊗D(d,d′). Note that the symmetry is necessary for a well-defined

composition on this construction. With B1 where (B1)0 := {∗} and B1(∗,∗) := 1, this data altogether

forms another symmetric monoidal category (V Cat,⊗,B1). Kelly discusses this in detail in [27, §1.4].

The cartesian monoidal structure (V ,×,pt) is symmetric, for example, and by this construction we can

see that the induced monoidal structure on V -enriched categories is cartesian also.

If (V ,⊗,1) is moreover complete and closed monoidal, then the same will hold for (V Cat,⊗,B1).

Completeness is straightforward: given a functor F : J → V Cat, then lim←−F has for its set of ob-

jects (lim←−F)0 = lim←− j∈J0
F( j)0 and for its hom-objects (lim←−F)(x,y) = lim←− j∈J0

F( j)(π jx,π jy), where

the maps π j : (lim←−F)0 → F( j)0 are the canonical projections produced by the limit. The categorical

structure on lim←−F is then induced by the universal property of its hom-objects. Kelly formalises the

closed monoidal structure in [27, Chapter 2] by constructing enriched functor categories via ends.
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Recall that categories enriched in the cartesian closed and complete category (Set,×,pt) are the

locally small categories. In particular, this means (Set)Cat = Cat, which is cartesian closed and com-

plete. Repeating this, a Cat-enriched category C consists of objects as before, but between any two

such objects x,y ∈ C0 we now have a hom-category C (x,y). Thus, the enrichment provides us with

morphisms x→ y via the objects of C (x,y), and also with higher morphisms between these morphisms,

which are called 2-morphisms. This additional structure allows us to define within C various category-

theoretic constructions, such as adjunctions (via their unit and counit formulation) and equivalences.

Cat-enriched categories are called strict 2-categories, and we denote the category of (small) strict 2-

categories by 2Cat := (Cat)Cat. Again, this is a cartesian closed and complete category, so the process

can be repeated.

If we take small 0-categories to be synonymous with sets, then we obtain an inductive definition

of strict n-categories by setting 0Cat := Set and (n+ 1)Cat := (nCat)Cat for all n ≥ 0. Moreover,

if 0-morphisms are synonymous with objects, then we can inductively define (k+ 1)-morphisms of an

(n+ 1)-category to be the k-morphisms of its hom-n-categories. We have a fully faithful embedding

disc : Set ↪→ Cat which views sets X as discrete categories discX whose objects are the elements of X ,

and whose hom-sets are given by

HomdiscX(x,y) =

pt, x = y

∅, otherwise

for all x,y∈X . This induces a similar embedding Cat ↪→ 2Cat which views categories as locally discrete

2-categories in that its only 2-morphisms are identities. Inductively, we obtain a chain of inclusions

0Cat ↪→ 1Cat ↪→ 2Cat ↪→ 3Cat ↪→ ·· · ↪→ nCat ↪→ ···

where in general, we think of an n-category as a higher category whose k-morphisms are trivial (i.e.,

identities) for all k > n. This alludes to a general notion of a higher category for which k-morphisms

are allowed to be nontrivial for arbitrary k > 0. Such a higher category can in fact be defined, and

admits a surprisingly compact definition via globular sets that can be found in [44]. Such objects are

called strict ω-categories, with ω referring to the first infinite ordinal, being the colimit of the ordinal

inclusions 0 ↪→ 1 ↪→ 2 ↪→ ··· , and they collect into another category ωCat which contains nCat for all

n≥ 0. Moreover, Street shows in [44, Theorem 1.5] that this is cannot be pushed further, as there is an

equivalence of categories (ωCat)Cat' ωCat.
Cheng and Leinster later show in [13, Theorem 3.6] that ωCat is in fact a limit of a tower of forgetful

functors

· · · → nCat→ ··· → 3Cat→ 2Cat→ 1Cat→ 0Cat

where the map (n+1)Cat→ nCat sends a strict (n+1)-category to the underlying strict n-category ob-

tained by discarding the (n+1)-morphisms. The fact that (ωCat)Cat∼= ωCat is even an isomorphism

of categories then follows from general abstract nonsense. Briefly, the inclusions nCat ↪→ (n+ 1)Cat
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endow nCat with the structure of a coalgebra over the enrichment endofunctor V 7→ V Cat on cartesian

monoidal categories, and the limit of the above tower constructs ωCat as the terminal coalgebra over

this endofunctor.

However, this is not the end of the story. The n-categories obtained by iterated enrichment are

called strict because the enrichment only uses the 1-categorical (i.e., set-theoretic) structure of the

cartesian monoidal category nCat. In particular, objects of nCat are compared up to strict isomorphism

when performing the enrichment, and so the resulting (n+1)-categories have a composition rule that is

associative and unital on-the-nose rather than up to a weaker notion of n-equivalence. This restriction

hampers the applicability of these higher categories to other fields of mathematics.

2.2.1 Weak Higher Categories

The notion of equivalence between objects in an n-category, which may be called an n-equivalence, is

defined inductively starting with 0-equivalence meaning genuine equality. For n≥ 1, an equivalence of

objects x,y in an n-category C is given by a pair of 1-morphisms f : x→ y and g : y→ x such that g◦ f is

(n−1)-equivalent to idx in C (x,x) and f ◦g is (n−1)-equivalent to idy in C (y,y). The cartesian closed

structure of nCat canonically makes it into an (n+ 1)-category, from which the (n+ 1)-equivalences

become the appropriate notion of equivalence of n-categories.

This weaker notion of equivalence resembles homotopy equivalences of spaces. In fact, higher

category theory can be thought of as a directed analogue of homotopy theory: objects correspond to

points in space, morphisms to directed paths, 2-morphisms to directed homotopies between paths, and

so on. From this perspective, one would expect higher category theory to subsume homotopy theory

by restricting to higher groupoids, where all the higher morphisms are invertible. This is the content of

Grothendieck’s Homotopy Hypothesis, which stipulates that (small) n-groupoids should correspond to

homotopy n-types, up to equivalence. However, this is not achieved by strict n-categories.

Strict n-groupoids can be defined inductively: the small 0-groupoids are precisely the sets, and the

strict (n+ 1)-groupoids for any n ≥ 0 are those strict (n+ 1)-categories whose 1-morphisms are all

equivalences, and whose hom-n-categories are all n-groupoids. On the other hand, (weak) homotopy

n-types are topological spaces considered modulo continuous functions which induce isomorphisms on

homotopy groups πk for all 0 ≤ k ≤ n. The Homotopy Hypothesis clearly holds when n = 0, since

homotopy 0-types can be represented by discrete spaces, and discrete spaces correspond to sets and thus

to 0-groupoids.

The hypothesis is also satisfied when n = 1. Consider the functor Π1 : Top→ Cat which sends a

topological space X to its fundamental groupoid Π1X , whose objects are the points of X and whose mor-

phisms x→ y are the continuous paths from x to y in X considered up to endpoint-preserving homotopy.

Just as for the fundamental groups of a space, the quotient by homotopy ensures that concatenation

of paths produces a well-defined associative and unital composition on Π1X . Moreover, two spaces

have the same homotopy 1-type if and only if their fundamental groupoids are equivalent as categories.

Eilenberg and Mac Lane have shown that we can also move in the other direction: given a groupoid G ,

there exists a CW complex K(G ,1) such that Π1K(G ,1) = G . An explicit construction is described for
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instance in [4, §1.4].

It turns out that strict 2-groupoids can also encode homotopy 2-types, but this is coincidental. The

main obstacle for strict n-groupoids to model homotopy n-types in general is the existence of nontriv-

ial Whitehead brackets, which reflect nontrivial commutation relations between higher homotopies of

a space. More concretely, Simpson proves in [43, Theorem 2.7.2] that any reasonable construction

analogous to K(G ,1) for strict 3-groupoids will fail to obtain the homotopy 3-type of the sphere S2.

Recall for a pointed topological space X that its loop space ΩX is the space of pointed continuous

functions S1→X (with the compact-open topology). We have natural isomorphisms πk(ΩX)∼= πk+1(X)

for all k ≥ 0, so ΩX is a homotopy (n−1)-type if X is a homotopy n-type for any n ≥ 1. Undoing the

action of producing loop spaces would thus provide a means of creating and studying higher homotopy

types. However, not all spaces X can be realised as the loop space ΩY for some Y . Loop spaces carry

a natural weak algebraic structure from the fact that loops can be concatenated, and so if X carries

analogous structure, we define its delooping BX to be a path-connected pointed space with X ' ΩBX .

In particular, this ensures that πk+1(BX)∼= πk(X) for all k≥ 0, so BX is a homotopy (n+1)-type for all

homotopy n-types X .

A notion of delooping also exists in higher category theory, and the algebraic structure necessary for

delooping to be possible here is for the category to be monoidal. For example, if M is a monoid, then

we can reinterpret it as a category BM where (BM)0 := {∗} and HomBM(∗,∗) := M. The monoid unit

and multiplication on M become the identity and composition, respectively, on BM, and this defines the

categorical delooping of M. If (V ,⊗,1) is a monoidal category, then we would expect that it can also be

delooped into a one-object 2-category, but strict 2-categories require a strictly associative composition,

unlike the tensor product ⊗ that is associative only up to coherent isomorphism. However, by Mac

Lane’s Coherence Theorem (cf. [33, §VII.2]), we have that any monoidal category is equivalent to

one that is strictly associative and monoidal, and the equivalence is strongly monoidal in the sense that

the monoidal structure is preserved up to coherent isomorphism (cf. Remark 2.9). This explains why

homotopy 2-types can be successfully presented by strict 2-groupoids. In higher dimensions, we no

longer have access to such a strong coherence theorem as we face the following obstruction:

Proposition 2.4 (Eckmann-Hilton argument). Let C be a strict 2-category, and fix an object x ∈ C0. Set

M := HomC (x,x)(idx, idx), then M carries two strict monoidal structures: the first is vertical composition

◦ induced by the composition of 2-morphisms on the category HomC (x,x), and the second is horizontal

composition ⊗ induced by the Cat-enriched composition of 1-morphisms on the 2-category C . These

define the same monoidal structure on M, and this structure is moreover commutative.

Proof. The functoriality of ⊗ : C (x,x)×C (x,x)→ C (x,x) implies the exchange law for a,b,c,d ∈M:

(a◦b)⊗ (c◦d) = (a⊗ c)◦ (b⊗d)

We can explicitly check that the identity 2-cell on idx is the unit with respect to either of the above

products, but this also follows from the above identity and the fact that each product has a unit: let 1⊗
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and 1◦ be the units for ⊗ and ◦, respectively, then

1⊗ = 1⊗⊗1⊗ = (1⊗ ◦1◦)⊗ (1◦ ◦1⊗)

= (1⊗⊗1◦)◦ (1◦⊗1⊗) (exchange law)

= 1◦ ◦1◦ = 1◦

Now, denote this unit by 1, then for a,b ∈M we have

a⊗b = (a◦1)⊗ (1◦b) = (a⊗1)◦ (1⊗b) = a◦b

showing that the two multiplications coincide. Finally,

a◦b = a⊗b = (1◦a)⊗ (b◦1) = (1⊗b)◦ (a⊗1) = b◦a

shows that the multiplication on M is commutative.

Corollary 2.5. If C is a strict 3-category, then C (x,x)(idx, idx) is a strict commutative monoidal cate-

gory.

Therefore, the monoidal categories V that are twice-deloopable into a strict 3-category are those

that are equivalent to a strict commutative one. On the other hand, one would expect that a monoidal

category equipped with an additional compatible monoidal structure would also be sufficient for being

twice-deloopable, as the two tensor products could stand in for the horizontal and vertical composition.

Tracing through the Eckmann-Hilton argument with two weak monoidal structures on V , we obtain a

single monoidal category equipped with a braiding rather than commutativity:

Definition 2.6. A braided monoidal category is a monoidal category (V ,⊗,1) equipped with an iso-

morphism cu,v : u⊗ v ∼−→ v⊗ u natural in u,v ∈ V0, called a braiding, that is coherent in the sense that

the hexagons

(u⊗ v)⊗w (v⊗u)⊗w v⊗ (u⊗w)

u⊗ (v⊗w) (v⊗w)⊗u v⊗ (w⊗u)

cu,v⊗w

αu,v,w

αv,u,w

v⊗cu,w

cu,v⊗w αv,w,u

and

u⊗ (v⊗w) u⊗ (w⊗ v) (u⊗w)⊗ v

(u⊗ v)⊗w w⊗ (u⊗ v) w⊗ (v⊗u)

u⊗cv,w

α−1
u,v,w

α−1
u,w,v

cu,w⊗v

cu⊗v,w w⊗cu,v

commute for all u,v,w ∈ V0.

In particular, the double braid cv,ucu,v—called the monodromy—may be a nontrivial automorphism

of u⊗ v. The prototypical example of a braided monoidal category is the braid category, constructed
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by Joyal and Street in [25, Example 2.1] by taking the coproduct of the delooping of the Artin braid

groups, where the tensor product is given by concatenating braids, and so in particular has nontrivial

monodromy. From the Eckmann-Hilton argument, a monoidal category is twice-deloopable into a strict

3-category only if it is braided and the braiding has trivial monodromy; that is, only if V is symmetric

monoidal.

Indeed, suppose F is a braided strongly monoidal equivalence from a braided monoidal category V

to a strict commutative one. F being braided means that the braiding on V commutes with the strong

monoidal coherence isomorphisms of F , which is stated more precisely in [25, Definition 2.3], and this

reflects that F encodes an equivalence of 3-categories (so that this is the correct type of equivalence to

discuss two-fold delooping). Consider the square

Fu⊗Fv F(u⊗ v)

Fu⊗Fv F(u⊗ v)

∼=

idFu⊗Fv

∼=

where the horizontal isomorphisms are the same and given by the strongly monoidal structure of F . This

can be made commutative by taking the dashed arrow to be F(idu⊗v) by the functoriality of F , but it can

also be made commutative by taking the dashed arrow to be F(cv,ucu,v) by the fact that F is braided. As

all other arrows are isomorphisms, this implies that F(cv,ucu,v) = F(idu⊗v). As F is an equivalence, it is

fully faithful, and thus cv,ucu,v = idu⊗v, meaning V must have already had trivial monodromy and was

thus symmetric.

The nontrivial structure of braided monoidal categories makes them useful in three-dimensional

topology, and also provide a convenient language to study three-dimensional topological quantum field

theories as discussed in [6, Chapter 4]. To extend these applications to higher dimensions, we need weak

n-categories.

2.2.2 Bicategories

Bénabou took the first step towards establishing algebraic definitions of weak higher categories, provid-

ing an axiomatisation of weak 2-categories called bicategories that can be found in [7].

Definition 2.7. A bicategory B consists of a class B0 of objects and a category HomB(x,y) of mor-

phisms and 2-morphisms for all x,y ∈ B0 such that every x ∈ B0 admits an identity endomorphism

idx ∈ HomB(x,x), and such that there is a horizontal composition functor

⊗ : HomB(y,z)×HomB(x,y)→ HomB(x,z)

for all x,y,z ∈B0. Denote morphisms f ∈HomB(x,y) by arrows f : x→ y as before, and 2-morphisms

θ ∈ HomB(x,y)( f ,g) by double arrows θ : f ⇒ g.

These data are subject to unity and associativity axioms expressed respectively by the existence of

unitors λx,y( f ) : idy⊗ f ∼=⇒ f and ρx,y( f ) : f ⊗ idx
∼
=⇒ f both natural in f : x→ y for all x,y ∈B0, and
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associators αw,x,y,z( f ,g,h) : ( f ⊗ g)⊗ h ∼=⇒ f ⊗ (g⊗ h) natural in f : y→ z, g : x→ y, h : w→ x for all

w,x,y,z ∈B0. These data are moreover subject to coherence given by commutativity of the pentagon

((e⊗ f )⊗g)⊗h (e⊗ f )⊗ (g⊗h) e⊗ ( f ⊗ (g⊗h))

(e⊗ ( f ⊗g))⊗h e⊗ (( f ⊗g)⊗h)

α(e⊗ f ,g,h)

α(e, f ,g)⊗h

α(e, f ,g⊗h)

α(e, f⊗g,h)

e⊗α( f ,g,h)

for all (horizontally) composable morphisms e, f ,g,h, and the triangle

( f ⊗ idx)⊗g f ⊗ (idx⊗g)

f ⊗g

α( f ,idx,g)

ρ( f )⊗g f⊗λ (g)

for all f : x→ y and g : w→ x with w,x,y ∈B0. When the intention is clear, horizontal composition

of 1-morphisms may also be denoted by juxtaposition, as will vertical composition of 2-morphisms. In

particular, horizontal composition of 2-morphisms will always be denoted by ⊗.

Certainly any strict 2-category can be viewed as a bicategory in the obvious way. From the definition,

we can also see immediately how any monoidal category (V ,⊗,1) admits a delooping into a one-object

bicategory BV . In fact, this delooping process can be extended to weak monoidal functors in the same

way to produce lax functors:

Definition 2.8. Let B,B′ be bicategories, then a lax functor F : B→B′ consists of a map F : B0→B′0
of objects and local functors Fx,y : HomB(x,y)→ HomB′(Fx,Fy) equipped with a lax unity constraint

F0
x : idFx⇒Fx,x(idx) for x∈B0 and a lax functoriality constraint F2

f ,g : Fy,z f ⊗Fx,yg⇒Fx,z( f ⊗g) natural

in f : y→ z and g : x→ y for all x,y,z ∈B0. Diagrammatically, these constraints are given by

HomB(x,x)

1 HomB′(Fx,Fx)

Fx,xidx

idFx

F0
x

HomB(y,z)×HomB(x,y) HomB(x,z)

HomB′(Fy,Fz)×HomC (Fx,Fy) HomB′(Fx,Fz)

⊗

Fy,z×Fx,y Fx,z

⊗

F2

where 1 is the terminal object in Cat, and for instance idx : 1→ HomB(x,x) corresponds to the functor

which picks out idx ∈HomB(x,x)0. These constraints are then subject to compatibility with associators
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via commutativity of

(F f ⊗Fg)⊗Fh F f ⊗ (Fg⊗Fh)

F( f ⊗g)⊗Fh F f ⊗F(g⊗h)

F( f ⊗ (g⊗h)) F(( f ⊗g)⊗h)

α(F f ,Fg,Fh)

F2
f ,g⊗idFh idF f ⊗F2

g,h

F2
f⊗g,h F2

f ,g⊗h

F(α( f ,g,h))

for all composable morphisms f ,g,h, and also compatibility with unitors via commutativity of

idFy⊗F f F f

F(idy)⊗F f F(idy⊗ f )

λ (F f )

F0
y ⊗idF f

F2
idy, f

F(λ ( f ))

F f ⊗ idx F f

F f ⊗F(idx) F( f ⊗ idx)

ρ(F f )

idF f ⊗F0
x

F2
f ,idx

F(ρ( f ))

for all f : x→ y with x,y ∈B0.

If the components of F0 and F2 are all isomorphisms, then F is called a pseudofunctor. If they are

moreover identities, then F is called a strict 2-functor.

Remark 2.9. It follows from the above definitions that a functor F : V → W between monoidal cat-

egories is weak monoidal exactly when it corresponds to a lax functor BV → BW , and is likewise

strongly monoidal exactly when it corresponds to a pseudofunctor.

As these three classes of functors have well-defined composition and evident identity maps, we can

collect (small) bicategories to form categories Bicatstr, Bicat, and BicatLax, where the morphisms are

given by strict 2-functors, pseudofunctors, and lax functors, respectively. However, just as the category

Cat of small categories is more appropriately two-dimensional, Bicat naturally carries the structure of

a weak 3-category (called a tricategory). In fact, the 1-categorical structure of Bicat and BicatLax is

much less well-behaved than 2Cat and even Bicatstr: for instance, Bicat and BicatLax are not finitely

complete, as shown in [29, Example 4.5]. To obtain the complete picture for Bicat, we provide it with

appropriate notions of 2- and 3-morphisms.

Definition 2.10. Suppose B,B′ are bicategories with pseudofunctors F,G : B →B′. A lax natural

transformation θ : F⇒G consists of a morphism θx : Fx→Gx in B′ for every x∈B0 and 2-morphisms

θ f : (G f )⊗θx⇒ θy⊗ (F f ) natural in f : x→ y in B as per the diagram

Fx Fy

Gx Gy

F f

θx θy

G f

θ f
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and the data is subject to lax unity as per the pasting diagram identity

Fx Fx

Gx Gx

F(idx)

θx θxG(idx)

idGx

θidx

G0

=

Fx Fx

Gx Gx

F(idx)

idFx

F0

θx

θx

θx
ρ−1

λ

idGx

as well as lax naturality as per the pasting diagram identity

Fx Fz

Gx Gz

Gy

F(g f )

θx θz

θg f

G(g f )

G f

G2

Gg

=

Fx Fz

Fy

Gx Gz

Gy

F(g f )

θx

F f

θz

F2

Fg

θy

θ f

G f Gg

θg

If all θ f are invertible, then θ is called a pseudonatural transformation.

Given two lax natural transformations θ ,θ ′ : F ⇒ G, a modification Γ : θ V θ ′ consists of a 2-

morphism Γx : θx⇒ θ ′x in B′ for every x ∈B0 such that we have commutativity of the square

(G f )⊗θx (G f )⊗θ
′
x

θy⊗ (F f ) θy⊗ (F f )

G f⊗Γx

θ f θ ′f

Γy⊗F f

Fix two bicategories B,B′. From [23, Theorem 4.4.11] and its corollaries, we can construct a

bicategory Lax(B,B′) of lax functors, lax natural transformations, and modifications, as well as a bi-

category Funcps(B,B′) of pseudofunctors, pseudonatural transformations, and modifications. These

can be used to think of Bicat or BicatLax more as tricategories than ordinary 1-categories. We can also

use these constructions to produce an analogue of the Yoneda Lemma and hence a Yoneda embedding

B ↪→ Funcps(Bop,Cat), as is done in [23, Lemma 8.3.12]. This shows that the pseudofunctors form

the most natural framework for studying the general theory of bicategories. In particular, the repre-

sentable 2-presheaves of bicategories are not strict: nontrivial associators in the bicategory yield non-

trivial functoriality constraints in the representable 2-presheaves, and likewise for the unity constraints

from nontrivial unitors.

Since Cat is a strict 2-category, so is Funcps(Bop,Cat) for any bicategory B, as pseudonatural trans-
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formations are composed levelwise in Cat. Therefore, the Yoneda embedding also induces an equiva-

lence between any bicategory B and a sub-2-category of Funcps(Bop,Cat). In particular, this shows

that any bicategory is equivalent to a strict one, generalising the Coherence Theorem from monoidal

categories to arbitrary bicategories. This is formalised in [23, Theorem 8.4.1].

2.2.3 Monads and Enriched Categories

Lax functors also offer a terse definition of monoids. Given a monoidal category (V ,⊗,1), a monoid in

V is an object M ∈ V0 equipped with a neutral element e : 1→M and a multiplication µ : M⊗M→M

that is associative and unital in the sense that

(M⊗M)⊗M M⊗ (M⊗M)

M⊗M M M⊗M

αM,M,M

µ⊗M M⊗µ

µ µ

as well as the diagrams

1⊗M M

M⊗M

λM

e⊗M µ

M⊗1 M

M⊗M

ρM

M⊗e µ

commute, respectively. Accordingly, a monoid homomorphism in V is a morphism ϕ : M → M′ that

respects the respective monoidal structures in the sense that the diagrams

M⊗M M

M′⊗M′ M′

µ

ϕ⊗ϕ ϕ

µ ′

1 M

M′

e

e′
ϕ

commute. As the identity morphisms are always monoid homomorphisms, and monoid homomorphisms

are closed under the usual composition in V , we obtain a category Mon(V ) of monoids in V . For

example, Mon(Set) = Mon is the usual category of monoids, and Mon(Ab) = Ring is the category of

(non-commutative unital) rings.

With the language of bicategories, a monoid in V reduces to a lax functor M̃ : 1→ BV , where we

view the category 1 as a locally discrete bicategory, in the sense that its hom-set is viewed as a discrete

category. Indeed, with this interpretation, the underlying object of the monoid is given by M := M̃(id∗),

and the neutral element and multiplication on M are given by the lax functoriality and unity constraints

e := M̃0
∗ and µ := M̃2

id∗,id∗ , respectively. The monoid homomorphisms ϕ : M→M′ correspond to oplax

natural transformations (lax natural transformations whose lax coherence 2-morphisms are reversed)

ϕ̃ : M̃ ⇒ M̃′ as per [23, Proposition 4.3.11]. In particular, the realisation of Mon(V ) as a category

of lax functors 1→ BV immediately implies—at least on objects—that any weak monoidal functor
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F : V → W induces a change-of-base functor F∗ : Mon(V )→Mon(W ). Explicitly, F∗ is given by

post-composition of BF on lax functors 1→ BV . Presenting monoids in this way, we can readily

generalise them to the context of bicategories, giving the theory of monads:

Definition 2.11. The category of monads in a bicategory B is the category Mnd(B) := Lax(1,B) of

lax functors and lax natural transformations.

If (T,µ,η) is a monad on some object x ∈ B0, then this means T is an endomorphism x → x

equipped with a unit η : idx ⇒ T and multiplication µ : T T ⇒ T . A left T -module (coming from an

object y ∈B0) is a 1-morphism A : y→ x of B equipped with a 2-morphism ν : TA⇒ A called the

action of T such that the diagrams

(T T )A T (TA) TA

TA A

α(T,T,A)

µA

T ν

ν

ν

idx A TA

A A

ηA

νλ (A)

idA

commute. Accordingly, a left T -module homomorphism φ : (A,ν)→ (A′,ν ′) is a 2-morphism φ : A⇒A′

(which forces that the domains of A and A′ are the same) which respects the actions in the sense that

TA TA′

A A′

T φ

ν ν ′

φ

commutes. It is then clear that left T -modules coming from the same object y with T -module homo-

morphisms collect to form a category T Mody/.

Monads in the strict 2-category Cat (which are precisely the monads of ordinary category theory)

are particularly useful, appearing in various fields of mathematics as well as computer science such as

in universal algebra and functional programming, as discussed for example in [10, §4] and [36]. Given a

category C and a monad T : C → C , the left T -modules of particular interest are the T -algebras, which

are the left T -modules (A,ν) with A : 1→ Cat. With their corresponding homomorphisms, T -algebras

collect to form the Eilenberg-Moore category C T := T Mod1/. Note that by mapping from the terminal

category, a T -algebra is equivalently given by an object A ∈ C0 equipped with an action given by a mor-

phism ν : TA→ A in C . Likewise, T -algebra homomorphisms reduce to action-preserving morphisms

in C , and so we have an evident forgetful functor U : C T → C . Thinking of T as encoding abstract se-

mantics for an algebraic theory, then T -algebras correspond to algebras in the sense of universal algebra

that model the semantics with concrete functions over a set.

The above monad T induces a left adjoint T aU which sends an object x ∈ C0 to the free T -algebra

on x, whose underlying object is T x and whose action is given by µx : T T x→ T x. The composite

UT then recovers the original monad on C . In fact, this universally characterises the Eilenberg-Moore

category up to isomorphism, which is stated more precisely for example in [40, Proposition 5.2.12].
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Given an arbitrary adjunction L : C � D : R, we have a canonical monad structure on RL over C ,

where the unit is given by the adjunction unit η : idC ⇒ RL, and the multiplication by the counit as

RεL : RLRL⇒ RL, with the monad axioms following by the zigzag identities of the adjunction. From

this adjunction, we have an induced functor R : D → C RL into the Eilenberg-Moore category given by

sending an object x ∈ D0 to the RL-algebra whose underlying object is Rx and whose action is given

by εRx : RLRx→ Rx. If this defines an equivalence D ' C RL, then the functor R : D → C is said to be

monadic, and Riehl gives some instances of this phenomenon in [40, Example 5.2.6]. We will briefly

discuss the monadicity of monoids over sets in Section 4.3, but the main motivating example of that

section is that Cat as a 1-category is monadic over the category of directed graphs.

Enriched categories. The definition of monoid objects in a monoidal category by lax functors also

invites a generalisation on the domain side. The delooping of monoids allows us to think of categories as

many-object variants of monoids. Likewise, given a monoidal category V , categories enriched in V are

many-object generalisations of monoids in V . This interpretation can be formalised using lax functors:

if a monoid in V is a lax functor 1→BV , then a V -enriched category with a set S of objects should be a

lax functor from S to BV as well, where S is endowed with the appropriate bicategorical structure. This

is achieved by taking the codiscrete category codiscS, where (codiscS)0 := S, and HomcodiscS(x,y) := 1
contains a unique morphism x→ y for all x,y ∈ S.

Now, a lax functor C : codiscS→ BV is uniquely determined on objects since (BV )0 = {∗}, and

is locally given by functors 1 = HomcodiscS(x,y)→ HomBV (∗,∗) = V , meaning that it picks out an

object C (x,y) ∈ V0 for all x,y ∈ S. Similar to the case for monoid objects, the lax unity constraint picks

for every x ∈ S an identity 1x := C 0
x : 1→ C (x,x) while the lax functoriality constraint produces for

every x,y,z ∈ S a composition ◦ := C 2
!,! : C (y,z)⊗C (x,y)→ C (x,y). The coherence constraints of C

correspond precisely to the usual axioms for C to be a category enriched in V in the sense defined in

[27, §1.2].

We can then define for any set S a category V CatS of V -enriched categories over S, whose objects

are lax functors codiscS→ V and whose morphisms are oplax natural transformations where the com-

ponents are all given by the tensor unit1 1. Note that V Catpt = Mon(V ), as expected. We can then

reconstruct the entire category V Cat via the Grothendieck construction, which is worked out in more

detail in Appendix A. In particular, this makes it readily apparent that when given a weak monoidal func-

tor F : V →W , we obtain a change-of-base functor F∗ : V Cat→W Cat. Explicitly, the action is given

on a V -enriched category C by post-composition to give F∗C : codiscC0
C−→ BV

BF−−→ BW , meaning

that the objects remain the same as before, and the hom-objects are given by (F∗C )(x,y) := F(C (x,y))

for x,y ∈ C0.

1This restriction on the oplax natural transformations corresponds to the fact that V -enriched functors in V CatS should
act as identities on the fixed set S of objects.
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Chapter 3

Geometric Models for Higher Categories

Unlike in the strict setting, the definition of a weak 2-category via bicategories is already large even

after establishing ordinary category theory. Gurski’s PhD thesis [18] extends the construction one step

further, refining the weak 3-categories called tricategories first introduced in [17] and working out the

fundamental theory of these objects. Here, on top of having associators and unitors as in the case of bi-

categories, the pentagon and triangle axioms relax to invertible modifications which are themselves sub-

ject to further coherence axioms. This axiomatisation grows exponentially as the dimension increases,

though arguably algorithmically: the coherence diagrams always take the shape of associahedra (also

called Stasheff polytopes). For instance, Trimble has explicitly written down the coherence axioms for

weak 4-categories in response to Street challenging him to do so, and the 51-page feat can be found on

Baez’s homepage [5]. While the axiomatisation of his “tetracategories” is impressive to look at, such a

definition is far too unwieldy to work with in practice.

Therefore, higher categories are instead studied through geometric presentations, which avoid the

need for an explicit essentially algebraic axiomatisation of the theory. This is inspired by the Homotopy

Hypothesis: if k-morphisms are weakly invertible for every k ≥ 1, then we can encode the weak ω-

category with a topological space considered up to homotopy. This circumvents the need to define

higher coherence constraints, and this is mainly because concatenation of paths and higher homotopies

in a topological space are not explicitly defined, but are rather just characterised up to even higher

homotopy. This is similar to the situation with a cartesian monoidal category: formally, the cartesian

products are only characterised up to unique isomorphism, so realising a cartesian monoidal category

properly requires making a choice of representative for every product, and the uniqueness constraint on

the universal property ensures that the coherence axioms of a monoidal category then hold.

It is convenient when building models for higher categories from partial answers—such as spaces

for ∞-groupoids and our usual definitions for categories or bicategories—to refine the hierarchy of

higher categories to speak of (n,r)-categories in the sense of [4, Definition 8], where n,r ≤∞. In the

presence of an ambient notion of a weak ω-category, an (n,r)-category is a weak higher category whose

k-morphisms all exist and are unique for k > n+1, and whose k-morphisms are all weakly invertible for

k > r. For example, (n,n)-categories are precisely the weak n-categories and (n,0)-categories are the

n-groupoids for all n≤∞.
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From this perspective and through the Homotopy Hypothesis, it follows that Top with its homotopy

theory forms an (∞,1)-category: namely, the (∞,1)-category∞Grpd of∞-groupoids. More gener-

ally, thinking of (∞,1)-categories as being weakly enriched in∞-groupoids, (∞,1)-categories encode

homotopy-coherent category theory in the sense that they provide general frameworks to do homotopy

theory, and all of the categorical axioms that define them are themselves only described up to coherent

homotopy.

3.1 Model Categories
An (∞,1)-category whose composition and units are strict on the level of 1-morphisms, such as Top,

can make sense of strict 1-categorical notions such as limits and colimits. However, the correct notion

of equivalence between objects in an (∞,1)-category is not by isomorphism, but rather by morphisms

with homotopy inverses (similar to the situation in n-categories), and this greatly affects the desiderata

of categorical constructions. In particular, limits and colimits should be modified appropriately so that

they are invariant under these equivalence, rather than just up to isomorphism. For instance, consider

the strict pullback square in Top:
∅ {0}

{1} [0,1]

y

Considering this up to homotopy, [0,1]' {∗} is contractible, so the pullback should be equivalent to the

pullback
{?} {0}

{1} {∗}

y

yet the induced map ∅→ {?} cannot be made into a homotopy equivalence. This means that the strict

pullbacks in Top do not present pullbacks in the corresponding (∞,1)-category∞Grpd.

One way to work in the underlying 1-category of such an (∞,1)-category is to remember which of

its 1-morphisms are equivalences. This results in a category with weak equivalences, which is a pair

(C ,W) where C is an ordinary category, andW ⊆C1 is a class of morphisms called weak equivalences

such that

• W contains the isomorphisms of C

• weak equivalences satisfy two-out-of-three: if any two of f , g, g◦ f are weak equivalences, then

so is the third, for any composable pair of morphisms f ,g in C

The challenge is then to redefine limits and colimits in C so that they are characterised up to these weak

equivalences, but this turns out to be quite difficult in general. Thus, abstract homotopy theory often

uses additional scaffolding to make this more feasible, this structure given by the notion of a model
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category studied extensively for example in Hovey’s book [22]. For brevity, we will present here the

more concise definition described by Riehl in [39].

Definition 3.1. Consider commutative squares of the form

• •

• •
` r

k (Eq. 3.1)

Given a classR of morphisms, denote by llp(R) the class of those morphisms ` satisfying the left lifting

property agianst R; that is, those ` for which a lift k exists for any r ∈ R in (Eq. 3.1). Dually, given a

class L of morphisms, denote by rlp(L) the class of those morphisms r which satisfy the right lifting

property against L; that is, those r for which a lift k exists for any ` ∈ L in (Eq. 3.1).

A weak factorisation system in a category C is then a pair (L,R) of classes of morphisms in C such

that

• every morphism f in C admits a factorisation f = r ◦ ` where ` ∈ L and r ∈R

• R= rlp(L) and L= llp(R)

Note that invertibility implies that L andR will both contain the isomorphisms of C .

Finally, a model category is a quadruple (C ,cof,fib,W) where C is a complete and cocomplete

category, and cof,fib,W are classes of morphisms in C such that

• W satisfies two-out-of-three

• (cof∩W,fib) and (cof,fib∩W) form weak factorisation systems in C

Morphisms in W are called weak equivalences and are denoted by decorating the arrow with x y∼ .

Morphisms in fib are called fibrations and denoted x� y, while morphisms in cof are called cofibrations

and denoted x� y. Fibrations and cofibrations which are also weak equivalences are called acyclic.

From the definition, any two classes in (cof,fib,W) uniquely determine the third. For instance,

the prototypical example is the Quillen model structure on Top, which is uniquely defined by its weak

equivalences and fibrations. Namely:

• The weak equivalences are the weak homotopy equivalences, just as in∞Grpd as per the Homo-

topy Hypothesis.

• The fibrations are the Serre fibrations, which are those continuous maps which satisfy the right

lifting property against the inclusions Dn × {0} ↪→ Dn × [0,1] for n ≥ 0, where Dn is the n-

dimensional disk.

That this induces a model category is proven in [22, §2.4]. Therefore, we can say that TopQuillen presents

the (∞,1)-category of spaces and thus of ∞-groupoids. However, comparing the weak equivalences

here to the correct notion of equivalence in an (∞,1)-category, there is an obvious discrepancy since
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weak homotopy equivalences do not necessarily have homotopy inverses. There is in fact another model

structure on Top worked out by Strøm in [45] where the weak equivalences are the genuine homotopy

equivalences, but this phenomenon does not happen in a general model category.

The structure of any model category (C ,cof,fib,W) induces two dual notions of homotopy between

morphisms. Let y ∈ C0, then we can construct a path object yI by factoring the diagonal map into

∆y : y yI y× y∼ , which is then well-defined up to weak equivalence. With the two projections

d0,d1 : yI ⇒ y corresponding to taking the endpoints of any given path in yI, we can then define a

right homotopy between morphisms f ,g : x→ y to be a morphism h : x→ yI such that d0h = f and

d1h = g. Dually, we can construct for x ∈ C0 a cylinder object cylx by factoring the fold map into

∇x : x Π x cylx x∼ , which morally corresponds to taking the product of x with an interval. With

the two coprojections s0,s1 : x⇒ cylx which pick out each endpoint face of the cylinder, we can likewise

define a left homotopy between morphisms f ,g : x→ y to be a morphism h : cylx→ y such that hs0 = f

and hs1 = g. These two notions of homotopy are generally incomparable unless the objects involved are

particularly well-behaved.

Recall that Whitehead’s Theorem tells us all weak homotopy equivalences between CW complexes

are genuine homotopy equivalences. As every topological space admits a CW approximation, we

can thus adjust spaces in TopQuillen up to weak equivalence so that the notion of weak equivalence

is correct from a (∞,1)-categorical perspective. This phenomenon generalises to any model category

(C ,cof,fib,W): call an object x ∈ C0 cofibrant if the unique map /0→ x is a cofibration, and dually call

it fibrant if the unique map x→ pt is a fibration. If an object is both cofibrant and fibrant, say that it is

bifibrant. By the factorisation properties, any object x ∈ C0 admits a cofibrant resolution /0 Qx x∼

as well as a fibrant resolution x Rx pt∼ , both of which are well-defined up to weak equivalence.

In fact, applying both resolutions yields a bifibrant object RQx that is related to x by a zigzag of weak

equivalences, as can be seen by the diagram

/0 Qx x

RQx pt

∼

∼

with cofibrancy of RQx following as cofibrations are closed under composition. Restricting to bifibrant

objects, we obtain the following generalisation of Whitehead’s Theorem:

Proposition 3.2. Let C be a model category and suppose x,y ∈ C0 with x cofibrant and y fibrant. Then,

there exists a left homotopy between two morphisms x→ y if and only if there exists a right homotopy

between them, and this defines an equivalence relation (∼) on HomC (x,y). Moreover, if x and y are

bifibrant, then a morphism x→ y is a weak equivalence in C if and only if it is a homotopy equivalence

with respect to (∼).

Proof. This follows from [22, Corollary 1.2.7 and Proposition 1.2.8].

This suggests that a model category more accurately presents an (∞,1)-category whose class of

objects is given (up to equivalence) by the bifibrant objects, and whose 2-morphisms are encoded by
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(left or right) homotopies. In particular, this can be seen by considering the 1-truncation of the (∞,1)-

category, which is the 1-category obtained by taking the 1-morphisms of the (∞,1)-category modulo

higher equivalence, and then forgetting the higher morphisms. This procedure reduces 1-morphisms

that were originally equivalences into isomorphisms in the 1-truncation, meaning that if the (∞,1)-

category were presented by a category with weak equivalences (C ,W), then its 1-truncation should be

the localisation C [W−1] obtained by formally inverting the morphisms inW .

In general, this category can be quite difficult to study, as its morphisms are given by zigzags of

morphisms of C , where the arrows pointing backwards come fromW , and the zigzags are subject to the

relations that express them as inverse to their forward-facing counterparts. Fortunately, if C is a model

category, then the inclusion C ◦ ↪→ C of the full subcategory on bifibrant objects induces an equivalence

of categories C ◦/(∼) ' C [W−1], where the former is given by C ◦ with its morphisms taken modulo

the homotopy relation (∼) of Proposition 3.2.

All topological spaces are fibrant in TopQuillen, and we will see briefly in the next section that CW

complexes are among the cofibrant objects. The above discussion thus implies that the ∞-groupoids

are presented more accurately by CW complexes and their homotopy theory. This is perhaps more

satisfactory, since CW complexes are more combinatorial in nature, and higher categories should be

purely combinatorial objects. In fact, this suggests that we might be able to filter away the topological

structure of CW complexes altogether and produce an alternative presentation of ∞-groupoids that is

truly combinatorial.

3.2 Simplicial Sets
The acyclic cofibrations in TopQuillen are determined by having the left lifting property against Serre

fibrations, which implies in particular that the inclusions Dn×{0} ↪→Dn× [0,1] are acyclic cofibrations

for all n≥ 0, where Dn denotes the n-dimensional disk. On the other hand, there is also a simple family

of non-acyclic cofibrations, namely the boundary inclusions of disks ∂Dn ↪→ Dn for n ≥ 0. Given

these, we can generate further examples of cofibrations via closure properties induced on this class of

morphisms by virtue of the fact that it is characterised by a left lifting property.

More precisely, suppose R is any class of morphisms. Then, llp(R) is closed under pushout in the

sense that the pushout of a morphism in llp(R) along any other morphism will remain in llp(R). This

is immediate from the universal property of a pushout as can be seen in the diagram below:

u w x

v v Π
u w y

i∈llp(R) ∈Rk k′
i′

If i′ is the pushout of some i ∈ llp(R), then given any lifting problem for i′ against some morphism in

R, we can form the above diagram. The morphism k then exists by the definition of i, and then the

universal property of the pushout produces the morphism k′ which serves as a solution to the original

lifting property for i′. The class llp(R) is also closed under transfinite composition: given a family
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(uξ )ξ<λ of objects indexed by some ordinal λ and morphisms iξ : uξ → uξ+1 which all lie in llp(R),
then the coprojection i : u0 → lim−→ξ<λ

uξ =: uλ will also fall in llp(R). This follows by transfinite

induction on λ , as can be seen in the diagram below:

u0 x

uξ

uξ+1

uλ y

...

∈R

k

iξ∈llp(R)

k′

...

If the partial composite u0 → uξ admits a lift k, then we can use this to form a lifting property of iξ
against R which produces a lift k′ that also serves as a lift for the composite u0→ uξ+1. If ξ is a limit

ordinal and all partial composites u0→ uξ ′ for ξ ′ < ξ admit a lift uξ ′ → x, then the universal property

of the composite u0→ lim−→ξ ′<ξ
uξ ′ = uξ induces from each of these lifts a unique map k : uξ → x.

Therefore, given a class I of morphisms, define the class cell(I) of relative I-cell complexes to

be the class of morphisms obtained by taking transfinite composites of pushouts of morphisms in I. It

follows from the above discussion that if I ⊆ llp(R), then cell(I)⊆ llp(R) also. Note that cell{∂Dn ↪→
Dn | n≥ 0} is the usual class of relative cell complexes in Top, meaning in particular that cell complexes

(and hence CW complexes) are cofibrant in TopQuillen.

Classes of morphisms defined by a left lifting property are also preserved under taking retracts in the

arrow category, meaning that if i : u→ v is in llp(R), then so is any morphism i′ fitting in the diagram

w u w

z v z

idw

i′ i i′

idz

also lies in llp(R). Indeed, any lifting problem for i′ against some morphism in R induces through the

retraction a lifting problem for i which produces a lift k. Composing with the section then yields the

desired lift k′, as illustrated in the diagram

w u w x

z v z y

idw

i′ ∈R

idz

s

ks
ki

i′
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Accordingly, given a class I of morphisms, define the class cof(I) to be the class of morphisms

obtained by taking retracts of relative I-cell complexes. It then follows from the above discussion

that if I ⊆ llp(R), then cof(I) ⊆ llp(R) also. In fact, the class cof{∂Dn ↪→ Dn | n ≥ 0} is precisely

the class of cofibrations in TopQuillen, meaning that the cofibrations are generated by the boundary

inclusions of disks. Similarly, cof{Dn×{0} ↪→ Dn× [0,1] | n ≥ 0} is precisely the class of acyclic

cofibrations on TopQuillen. These generating families of morphisms will also uniquely determine the

entire model structure of TopQuillen, as (acyclic) fibrations are determined by the right lifting property

against these classes, and then by the factorisation properties it follows that the weak equivalences

are precisely compositions of acyclic fibrations followed by acyclic cofibrations. Therefore, to extract

the combinatorial nature of the homotopy theory of topological spaces, it is enough to do so for the

generating (acyclic) cofibrations. By triangulating the disks, this leads to the study of simplicial sets.

Let ∆ be the full subcategory of Cat on the categories [n] := {0→ 1→ ·· · → n} for n ≥ 0. This

is to say that ∆ is the category whose objects are the nonempty finite sets {0, . . . ,n} equipped with

the standard ordering on numbers, whose morphisms are given by monotone maps. This category can

also be described by generators and relations, being the category whose morphisms are generated by

coface maps di : [n− 1]→ [n] for 0 ≤ i ≤ n (which are explicitly the inclusions [n− 1] ↪→ [n] whose

images do not contain i, and thus di( j) = j for j < i and di( j) = j+1 for j≥ i) and codegeneracy maps

si : [n+1]→ [n] for 0≤ i≤ n (which are the surjections [n+1]→ [n] that combine i with i+1, meaning

that si( j) = j for j ≤ i and si( j) = j−1 for j > i), subject to the simplicial identities

d jdi = did j−1, (i < j)

s jsi = si−1s j, (i > j)
s jdi =


dis j−1, (i < j)

id, ( j ≤ i≤ j+1)

di−1s j, (i > j+1)

The category of simplicial sets is then defined to be the category sSet := PSh∆ of presheaves on

∆. Given a simplicial set A : ∆op → Set, we thus have a set An := A([n]) of n-cells for all n ≥ 0 as

well as face maps di := A(di) : An → An−1 and degeneracy maps si := A(si) : An → An+1 which are

subject to the dual identities to those listed above. An n-cell is then said to be degenerate if it lies in

the image of one of the degeneracy maps, and non-degenerate otherwise. The geometric intuition is

that a simplicial set is a complex of simplices of various dimensions glued together, analogous to how

CW complexes are constructed from gluing cells of various dimensions together: An is the set of n-

dimensional simplices of A, and the face maps indicate which (n− 1)-dimensional simplices in An−1

correspond to the boundaries of these. The degenerate elements are then those simplices which are

completely flattened by these identifications.

For example, consider the standard n-simplex for any n ≥ 0, which is defined as the representable

presheaf ∆[n] :=Hom∆(−, [n]). The 0-cells of ∆[n] are the maps [0]→ [n] and thus correspond to the ele-

ments of [n] = {0, . . . ,n}. More generally, the nondegenerate k-cells of ∆[n] are the monotone injections

[k] ↪→ [n] and thus correspond to size-(k+1) subsets of [n]. Geometrically, these are the k-dimensional

simplices spanned by the chosen k+ 1 vertices; in particular, there is a unique nondegenerate n-cell,
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(a) Standard 2-simplex
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1
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(b) Boundary of ∆[2]

0

1

2

(c) 0-horn of ∆[2]

0

1

2

(d) 1-horn of ∆[2]

0

1

2

(e) 2-horn of ∆[2]

Figure 3.1: Visualisations of ∆[2], ∂∆[2], and Λi[2]

and all k-cells are degenerate for k > n. Thus, as the name suggests, ∆[n] represents an abstract n-

dimensional simplex. Supporting our intuition for a general simplicial set A, the Yoneda lemma ensures

that the elements of An naturally correspond to simplicial maps ∆[n]→ A, meaning that An indeed can

be thought of as the set of n-dimensional simplices in A.

From the standard n-simplex, we can construct its boundary ∂∆[n] ⊂ ∆[n] as the simplicial set ob-

tained by discarding the unique nondegenerate n-cell given by the identity [n] → [n] in ∆[n]n. For

0≤ i≤ n, we can further define the i-horn Λi[n] of ∆[n] by taking ∂∆[n] and discarding the unique non-

degenerate (n− 1)-cell excluding vertex i; that is, by discarding the simplicial map represented by the

coface di : ∆[n−1]→ ∆[n]. Visualisations of these three families of simplicial sets in dimension two are

given in Figure 3.1.

To be more precise about how simplicial sets encode the combinatorial data of the homotopy types

of topological spaces, first note that the standard n-simplices have natural incarnations as topological

spaces: for instance, we can realise them as subspaces of Euclidean space via

|∆[n]| :=
{
(x0, . . . ,xn) ∈ Rn+1

≥0

∣∣x0 + · · ·+ xn = 1
}
⊂ Rn+1

For a general simplicial set A, we can construct a topological space |A| inductively as follows. Take

for every n-cell a ∈ An a disjoint copy of |∆[n]|. If n > 0, then glue the faces of this space to to the

topological (n− 1)-dimensional simplices already constructed corresponding to the faces d0a, . . . ,dna.

This construction readily extends to simplicial maps and produces the geometric realisation functor

|− | : sSet→ Top which can be seen to map simplicial sets to CW complexes. Conversely, to extract

combinatorial information from a general topological space, we proceed through the path of least resis-

tance by taking for any topological space X its singular simplicial complex or nerve NX , whose n-cells

are just the continuous maps |∆[n]| → X . This defines an adjunction |− | a N, which is described more

formally and in greater generality in Section 3.3.

We wish for sSet to preserve the homotopy theory of TopQuillen through the above adjunction. This

leads to the Quillen model structure on sSet, which is developed in detail in [22, Chapter 3]. The weak
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equivalences in sSetQuillen are those simplicial maps whose geometric realisation is a (weak) homotopy

equivalence in Top. The fibrations are a combinatorial analogue of those maps satisfying the homotopy

lifting property called Kan fibrations, which are those simplicial maps which satisfy the right lifting

property against the horn inclusions Λi[n] ↪→∆[n] for all 0≤ i≤ n. As before, this uniquely characterises

the cofibrations: the acyclic cofibrations are then generated by the horn inclusions, being precisely the

class cof{Λi[n] ↪→ ∆[n] | 0 ≤ i ≤ n}, and the cofibrations in general turn out to be the monomorphisms

in sSet. In particular, all objects in sSetQuillen are cofibrant, and the fibrant objects are called Kan

complexes. That the previously established adjunction preserves the homotopy theories of these model

categories is then expressed more formally by saying that |− | a N is a Quillen equivalence, which is

proven for instance in [22, Theorems 2.4.23 and Theorem 3.6.7].

Definition 3.3. Adjoint functors L : C � D : R between model categories are called left and right

Quillen functors if they satisfy any of the equivalent properties:

• L preserves cofibrations and acyclic cofibrations;

• R preserves fibrations and acyclic fibrations;

• L preserves cofibrations and R preserves fibrations.

These properties are seen to be equivalent by translating lifting problems through the natural isomor-

phism HomD(L(−),−)∼= HomC (−,R(−)).
In this situation, L a R establishes a Quillen equivalence if the derived units x→ RLx→ R(RLx)

for all cofibrant x ∈ C0 are weak equivalences in C , and the derived counits L(QRy)→ LRy→ y for all

fibrant y ∈ D0 are weak equivalences in D . This definition is independent of the choice of fibrant and

cofibrant resolutions by Ken Brown’s Lemma (cf. [22, Lemma 1.1.12]).

Quillen adjunctions form the appropriate homomorphisms of model categories, and correspond to

adjunctions of the (∞,1)-categories they present, which is shown concretely in [35, Theorem 2.1].

This means that Quillen equivalences present more appropriate equivalences of (∞,1)-categories, so in

particular the Quillen equivalence | − | : sSetQuillen � TopQuillen : N implies that ∞-groupoids can be

equivalently described by the more combinatorial Kan complexes.

On top of being a combinatorial model of ∞-groupoids, sSetQuillen also celebrates nicer general

structure compared to its topological counterpart, which makes it more convenient to work in. Most

notably, by being a category of presheaves, sSet is cartesian closed, and its internal hom Map(A,B)

is defined by Map(A,B)n = HomsSet(A×∆[n],B). In fact, the internal hom—also called a mapping

space—is compatible with the model structure, in the sense that it makes sSetQuillen into a cartesian

model category, as proven in [22, Proposition 4.2.8].

Definition 3.4. A monoidal model category is a closed symmetric monoidal category (C ,⊗,1) where

C is equipped also with a model structure that is subject to the following:
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• Given cofibrations i : w� x and j : y� z, the pushout product i ⊗̂ j defined as the uniquely

existing morphism in

w⊗ y x⊗ y

w⊗ z (x⊗ y)Π
w⊗y (w⊗ z)

x⊗ z

i⊗y

w⊗ j
p

x⊗ j

i⊗z

i⊗̂ j

∃!

is also a cofibration, and is moreover acyclic if either of i or j is.

• The induced map (Q1)⊗ x→ 1⊗ x is a weak equivalence for every cofibrant x ∈ C0.

If the monoidal structure on C is cartesian, then C is called a cartesian model category.

If (C ,⊗,1) is a monoidal model category, then the pushout product axiom implies in particular that

whenever x ∈ C0 is cofibrant, then (−)⊗ x a [x,−] defines a Quillen adjunction. Indeed, the pushout

product of any cofibration j : y� z with the cofibration /0� x yields the morphism j⊗ x and thus

shows it to be a cofibration which is even acyclic once j is. Therefore, (−)⊗ x preserves cofibrations

and acyclic cofibrations and thus is a left Quillen functor. As a result, the internal hom [x,−] is a right

Quillen functor and hence in particular preserves fibrant objects as well as weak equivalences between

fibrant objects by Ken Brown’s Lemma. Specialising to the cartesian model category sSetQuillen, this

means that Map(A,B) is a Kan complex once B is, providing a convenient way of seeing ∞Grpd as

weakly enriched in itself.

Unfortunately, while using Kan complexes and derivative models of higher categories through sim-

plicial sets will certainly present the higher categories properly, they are inherently limited with regards

to higher functors. More specifically, the functors of these simplicial models of higher categories will

always be strictly unital, which will be illustrated in the next section. The reason that the Homotopy

Hypothesis cannot remedy this is because of the following. For a topological space X , the components

of its fundamental∞-groupoid Π∞X are straightforward to define: the objects are points in X , the mor-

phisms are paths in X , the 2-morphisms are endpoint-preserving homotopies in X , the 3-morphisms are

endpoint-path-preserving higher homotopies in X , and so on. The delicacy is in formalising the canoni-

cal higher categorical structure that these components carry; in particular, there is no unique choice for

how to compose higher homotopies in X , and accordingly the associators and unitors at each level are

not unique either. However, Π∞X does carry canonical units: given any k-morphism φ in Π∞X , we

can take the identity (k+1)-morphism idφ to be the constant higher homotopy on φ . Continuous maps

f : X → Y induce higher functors Π∞X → Π∞Y in the obvious way, by sending a k-morphism φ in

Π∞X to the post-composite f φ in Π∞Y , and this will always preserve the canonical units on the nose.

Therefore, even the Homotopy Hypothesis itself can only see strictly unital higher functors.
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3.3 Nerve and Realisation
To see explicitly why simplicial maps between Kan complexes yield strictly unital higher functors, we

need to better understand how the combinatorial structure of Kan complexes represents higher cate-

gories. We will draw intuition from the 1-truncated situation and look at the Grothendieck nerve of

1-categories. Both the Grothendieck nerve and the singular simplicial complex are special cases of a

general construction of nerves, which is originally attributed to Kan’s work in [26, §3].

Let S be a small category such as the category ∆ of simplices, where the objects are thought of

as abstract shapes and the morphisms as structure maps between these shapes. The category PShS

of presheaves is then intuitively the category of complexes of the shapes in S . To realise these S -

shaped complexes concretely as objects in some cocomplete category C , Kan shows that it is enough

to first realise the elementary shapes—that is, the objects of S —and build the complexes from these.

More precisely, the abstract shapes of S appear as elementary complexes in PShS via the Yoneda

embedding, and we can construct a realisation functor PShS →C by first defining how the elementary

shapes behave via a covariant functor S : S → C . This is analogous to defining a linear transformation

between vector spaces by linearly extending from a choice of actions on basis elements; indeed, this

is because the Yoneda embedding realises PShS as the free cocompletion of S , and thus we can

extend S : S → C cocontinuously to yield the realisation functor | − | : PShS → C . Explicitly, the

realisation is defined as the left Kan extension of S along the Yoneda embedding, making it a coend: for

A : S op→ Set, we have

|A| :=
(

Lan
S ↪→PShS

)
(A) =

∫ s∈S0 ∏

A(s)
S(s)

By definition, realisation is left adjoint to the nerve functor N : C → PShS that sends an object C ∈ C0

to the presheaf NC := HomC (S(−),C) : S op → Set. Indeed, this ensures that the realisation functor

does extend S: using the adjunction and the Yoneda Lemma, we have

HomC (|HomS (−,s)|,C)∼= Nat(HomS (−,s),NC)∼= (NC)s =: HomC (S(s),C )

naturally in s ∈ S0 and C ∈ C0. By the fully faithfulness of the Yoneda embedding, this implies

|HomS (−,s)| ∼= S(s) naturally in s ∈S0 as desired.

For example, the geometric realisation functor sSet→ Top is realised by taking S : ∆→ Top to

be S[n] := |∆[n]|. The coface maps di : [n− 1]→ [n] are realised in Top by inserting zeroes in the ith

coordinates as

|∆[n−1]| → |∆[n]|, (x0, . . . ,xn−1) 7→ (x0, . . . ,0, . . . ,xn−1)

which appropriately realises |∆[n− 1]| as the ith face of |∆[n]|. On the other hand the codegeneracy

maps si : [n+1]→ [n] are realised by adding the ith and (i+1)st coordinates as

|∆[n+1]| → |∆[n]|, (x0, . . . ,xn+1) 7→ (x0, . . . ,xi + xi+1, . . . ,xn+1)

which projects |∆[n+1]| onto its ith face. Spelling out the coend for an arbitrary simplicial set recovers
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the geometric realisation described in Section 3.2.

Looking at 1-categories, we already have a canonical realisation of standard simplices as categories

by definition: we can realise ∆ as a full subcategory of Cat, and thus we can take S : ∆→ Cat to be

the corresponding inclusion functor. The induced nerve N : Cat→ sSet by definition sends a (small)

category C to the simplicial set NC called the Grothendieck nerve of C , whose n-cells are the functors

[n]→ C . This is equivalent to taking (NC )n to be the set of length-n strings of composable morphisms

in C ; in particular, (NC )0 = C0 and (NC )1 = C1. From this perspective, we find that the face maps

di : (NC )n → (NC )n−1 act by composing the ith and (i− 1)st morphisms when 0 < i < n, and the

degeneracy maps si : (NC )n → (NC )n+1 act by inserting an identity morphism at the ith position.

Therefore, the Grothendieck nerve completely preserves the structure of its underlying category.

We can also characterise the essential image of the Grothendieck nerve: a simplicial set is isomor-

phic to the nerve of a small category if and only if it admits a unique right lift against any inner horn

inclusion, which is an inclusion of simplicial sets of the form Λi[n] ↪→∆[n] with 0< i< n. This is proven

rigorously in [32, Proposition 1.1.2.2], but intuitively this is because having unique lifts against inner

horn inclusions means that we can use the inner face maps to produce a well-defined composition rule

for the 1-cells, and the identity 1-cells for this composition rule will come from the degeneracy maps.

For instance, the unique lifts against the inclusion Λ1[2] ↪→ ∆[2] correspond to finding unique dashed

arrows in the diagram
x1

x0 x2

f1,2f0,1

of 1-cells. Viewing this as a commutative diagram means that the dashed arrow corresponds to the

composite f1,2 ◦ f0,1, and this is indeed the case when the simplicial set is given by the Grothendieck

nerve of a category.

Note however that nerves of categories are not necessarily Kan complexes. In fact, the nerve of

a category is a Kan complex if and only if the category is a groupoid. Indeed, suppose NC is a Kan

complex and let f : x→ y be any morphism in C . Then, lifts of outer horn inclusions would imply in

particular that we can find morphisms which fit as the dashed arrows in the commutative diagrams

y

x x

f

idx

x

y y

f

idy

coming from horn inclusions Λ0[2] ↪→ ∆[2] and Λ2[2] ↪→ ∆[2], respectively. These produce retractions

and sections of f , respectively, and thus f will be an isomorphism. Moreover, f being an isomor-

phism makes all retractions and sections equal to f−1, so this shows that the essential image of the

Grothendieck nerve when restricted to groupoids is spanned by those simplicial sets who admit unique

right lifts against all horn inclusions.

Relaxing the uniqueness constraint on lifts against horn inclusions in the nerve of a groupoid when
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moving to general Kan complexes reflects relaxing the uniqueness for how to compose morphisms,

which frees composition to be defined only up to coherent homotopy. As mentioned in the beginning

of the chapter, this eliminates the need for higher unitors and associators, albeit at the cost of no longer

having a purely algebraic theory of higher categories. This point of view also motivates one of the most

popular presentations of (∞,1)-categories in practice called weak Kan complexes or quasicategories.

Based on the characterisation of nerves of 1-categories, a quasicategory is a simplicial set which satisfies

the right lifting property against all inner horn inclusions. This incarnation of (∞,1)-category theory

translates much of ordinary category theory into a homotopy-coherent setting, as is explored at length

for instance in [32].

However, being simplicial presentations of higher categories, Kan complexes and quasicategories

have some drawbacks from a categorical perspective. As already mentioned, the corresponding higher

functors given by simplicial maps are necessarily strictly unital by the need to preserve degeneracies,

but we also face some inconveniences when trying to define even higher categories as simplicial sets.

Namely, while simplicial sets readily present the objects and morphisms of a higher category with

its 0-cells and 1-cells respectively, the higher morphisms cannot be extracted without padding with

degeneracies due to the non-globular shape of simplices. This also leads to it being less clear how to

define the appropriate hom-objects: for example, refer to [32, §1.2.2] for various (homotopy equivalent)

ways of constructing the hom-∞-groupoids of a quasicategory.

3.3.1 The Duskin Nerve

To be more explicit about the shortcomings of simplicial presentations of higher categories, we will

consider a natural generalisation of the Grothendieck nerve for bicategories. This construction was first

studied by Duskin in [14], but a more refined account can be found in [23, §5.4]. Briefly, the Duskin

nerve is what would have been the right adjoint to the realisation induced by the cosimplicial bicategory

∆ ↪→ Cat ↪→ BicatULax. This means that the Duskin nerve of a bicategory B is the simplicial set NB

where (NB)n := ULax([n],B) is the set of strictly unital lax functors [n]→B. Note, however, that we

do not actually obtain a corresponding realisation functor, as BicatULax is not cocomplete.

As Cat is a full subcategory of BicatULax, we recover the Grothendieck nerve when restricting the

Duskin nerve to 1-categories. The reason for already restricting the 2-functors to be strictly unital is to

ensure that the n-cells have the expected diagrammatic shape in the bicategory. More specifically, we

want (NB)0 to correspond to the set of objects of B, which is only possible via 2-functors [0]→B if

we restrict to those that are strictly unital; otherwise, we would have the set of monads over B. With the

Duskin nerve, (NB)0 and (NB)1 are the sets of objects and morphisms in B, respectively, as before.

One dimension higher, we find that (NB)2 consists of tuples ( f ,g,h;θ) where f ,g,h are morphisms and

θ : g f ⇒ h is a 2-morphism in B, which fits into a diagram that is analogous to the standard 2-simplex

of Figure 3.1:
y

x z

g
θ

f

h
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Note that this means (NB)2 cannot encode the 2-morphisms as easily as the 1-morphisms and objects

were encoded. More generally, n-cells of the Duskin nerve correspond to n-simplex-shaped pasting

diagrams in B; that is, the elements of (NB)n consist of objects xi for 0≤ i≤ n, morphisms fi, j : xi→ x j

for 0≤ i < j≤ n, and 2-morphisms θi, j,k : f j,k fi, j⇒ fi,k for 0≤ i < j < k≤ n (from the lax functoriality

constraints) subject to the identity

x j xk

xi xl

f j,k

f j,lθi, j,l

θ j,k,l

fk,l
fi, j

fi,l

=

x j xk

xi xl

f j,k

θi, j,k

θi,k,l

fk,l
fi, j

fi,k

fi,l

for all 0 ≤ i < j < k < l ≤ n. Note that pasting diagrams make it clear how the above identity relates

to the shape of a 3-simplex, but suppress the associator α( fk,l, f j,k, fi, j) that is necessary to make the

perimeters compatible; the explicit commutative diagram of 2-morphisms is given in [23, Equation

(5.4.13)]. The horizontal composition rules are now given in the higher cells implicitly, as the face maps

d` : (NB)n → (NB)n−1 send such a family (xi, fi, j,θi, j,k) to the subfamily where none of the indices

i, j,k are equal to `. This allows for composition to be defined only up to coherent 2-isomorphism. On

the other hand, the degeneracy maps s` : (NB)n→ (NB)n+1 sends a family (xi, fi, j,θi, j,k) to the family

which includes another copy of x`, inserts the identity morphism idx` : x`→ x`, and the unitors λ ( fi,`)

for i < ` and ρ( f`, j) for j > l.

Duskin described the essential image of this nerve construction in [14, Theorem 8.6], and moreover

characterised the nerves of (2,1)-categories (that is, 2-truncated (∞,1)-categories) and 2-groupoids. He

proved that a simplicial set is isomorphic to the nerve of a (2,1)-category if and only if it is a quasi-

category whose lifts against inner horn inclusions of dimension at least two are unique, and likewise is

isomorphic to the nerve of a 2-groupoid iff it is a Kan complex whose lifts against any horn inclusion of

dimension at least two are unique. Therefore, the Duskin nerve is the correct simplicial nerve for bicat-

egories, and we may use it to reveal the insufficiency of simplicial sets for presenting higher functors.

More specifically, we have the following well-known result:

Proposition 3.5. The Duskin nerve is a fully faithful functor N : BicatULax→ sSet.

Proof. To see that it is faithful, suppose F,G : B→B′ are normal lax functors such that NF = NG. As

(NB)0 and (NB)1 are precisely the sets of objects and morphisms of B, respectively, and analogously

for B′, we have that F and G must necessarily act on objects and morphisms in the same way. As for

2-morphisms, note that (NF)2 maps

y

x z

g
θ

f

h

7→
Fy

Fx Fz

Fg
F2

g, f
F f

F(g f )

Fh

Fθ

35



and analogously for (NG)2. By considering the case where h = g f and θ = idg f , this shows that F and

G must have the same lax functoriality constraint, as they must strictly preserve identity 2-morphisms

from being local functors. Finally, since F and G are strictly unital, F0 and G0 are identities, and thus

F2
idy, f and G2

idy, f must be invertible for all f : x→ y by the compatibility constraints of F with the left

unitor described in Definition 2.8, and so considering the case where g = idy, the invertibility allows us

to conclude that F and G must have also agreed on 2-morphisms, showing that F = G.

To see that the nerve functor is full, suppose we have a simplicial map Φ : NB→ NB′. For this to

be the nerve of a strictly unital lax functor F : B→B′, the action of Φ and F on objects and morphisms

must agree exactly. Moreover, we can extract the lax functoriality constraint as before by considering

the image of idg f under Φ and taking the interior 2-simplex. By considering thew case where g = idy,

h = f , and θ = λx,y( f ), its image under Φ reveals how F must act on the unitor. With this, we can

extract how F acts on an arbitrary 2-morphism γ : f ⇒ h by considering the case where g = idy and

θ = γ ⊗ λx,y( f ), taking its image under Φ, and composing with (Fλx,y( f ))−1. That this construction

produces a strictly unital lax functor is elementary but technical, and is spelled out in [19, Proof of 3.17],

where he takes advantage of a natural stratification on the nerves of bicategories.

It remains to check that NF = Φ. Indeed, it already agrees on objects and morphisms by definition.

To see that its action is consistent on the 2-cells, note that Φ sends the 3-cell

y z

x z

g

gθ

λy,z(g)

idz
f

h

=

y z

x z

g

idg f

θ⊗λ

idz
f g f

h

by the definition of F to

Fy Fz

Fx Fz

Fg

Fg
Φθ

F(λy,z(g))

idFz
F f

Fh

=

Fy Fz

Fx Fz

Fg

F2
g, f

Fθ⊗λ

idFz
F f

F(g f )

Fh

for any θ : g f ⇒ h. As F is a lax functor, the unitors cancel by the corresponding compatibility constraint

on F , and we are left with Φθ on the left and the definition of (NF)(θ) on the right, as desired. The

actions on higher simplices coincide by definition, so this shows NF = Φ.

On top of establishing that simplicial maps are precisely the strictly unital maps, we can see from

the above proof also how awkward it is to translate between how the lax functors act on 2-morphisms

and how the induced simplicial maps act on 2-cells. The goal in the remaining chapters will be to work

around both of these obstacles.
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Chapter 4

Towards an Unbiased Presentation

We have seen in Section 3.3 how relaxing the definition of composition of 1-morphisms up to higher

coherence significantly simplifies the axiomatisation of various higher categories; however, we have

also seen how simplicial sets complicate the study of higher morphisms, which is apparent for instance

in the proof of Proposition 3.5. On the other hand, the original approach to (strict) higher categories via

iterated enrichment allowed higher morphisms and their composition to be handled by induction while

the challenge was addressing 1-morphisms. This inspires trying to combine these two approaches so that

we may have both well-defined weak composition, as well as readily available higher hom-categories.

Suppose (V ,⊗,1) is a monoidal category and C is a (strictly) V -enriched category, then an enriched

analogue of the Grothendieck nerve for C should be a simplicial object in V ; that is, it should be a

functor NC : ∆op→ V . Recall that the n-cells of the nerve of an ordinary category are given by length-

n strings of composable morphisms, so assuming V has finite coproducts, a natural start point would be

to take

(NC )n :=
∏

x0,...,xn∈C0

(
n⊗

i=1

C (xi−1,xi)

)
In particular, this would mean (NC )1 =

∏
x,y∈C0 C (x,y) and (NC )0 =

∏
C0 1. The degeneracy maps

would correspond to inserting identity morphisms, and the inner face maps di : (NC )n→ (NC )n−1 for

0 < i < n can still be induced by the composition rules.

Unfortunately, such a construction cannot be completed to form a simplicial object in general, with

the main obstacle being to define the remaining face maps d0,dn : (NC )n→ (NC )n−1. In the original

Grothendieck nerve, these remove the first and last morphisms in the length-n string, and thus would re-

quire the tensor product to have projections. Moreover, when n= 1, these face maps must define domain

and codomain morphisms ∏
x,y∈C0 C (x,y)⇒∏

C0 1, which would require canonical maps into the tensor

unit. Effectively, this forces (V ,⊗,1) to be cartesian monoidal. This direction is studied extensively in

Pellisier’s PhD Thesis [37], where he focuses the case where V is a “catégorie discrétisante,” which is

a cartesian monoidal category with a reasonable notion of set-like objects. However, this suggests that

the nerve construction and general enrichment are likely incompatible. The issue is that the nerve of a

general (small) V -enriched category C cannot be defined because C0 is a set rather than an object of
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V . Therefore, to properly iteratively utilise nerves to define higher categories, we would have to have a

way of defining C solely using the internal language of V .

4.1 Internal Categories
The process of translating set-theoretic structures into more categorical language so that they make sense

in more general categories is called internalisation, and capitalises on how categories are meant to serve

as a general framework for doing set theory. One example that we have already seen is that of monoid

objects in Section 2.2.3, which internalise monoids into any monoidal category. A more ubiquitous

example is with groups, whose internalisation into a cartesian monoidal category is given by monoid

objects further equipped with an inversion endomorphism subject to the axioms of group theory. Group

objects produce several familiar examples of structured groups: topological groups in Top, algebraic

groups in the category of algebraic varieties, Lie groups in the category of smooth manifolds, and Hopf

algebras in the opposite of the category of commutative rings.

We can likewise internalise categories themselves into any category with finite limits, and this can in

fact be used as an alternative means to produce (strict) higher categories. While less prevalent, internal

categories can serve as a means of categorifying set-theoretic structures to allow for more nuanced study

of the structure’s theory. For example, categories internal to the category of vector spaces (over a fixed

field) yield 2-vector spaces in the sense of [2], wherein the objects, being vectors, formalise directions in

space as is normally the case for vectors, but the morphisms provide a means of formalising infinitesimal

directions as well. This is useful for instance in higher Lie theory.

Definition 4.1. Let E be a finitely complete category, then a category C internal to E consists of a pair

of objects C0,C1 ∈ E0 equipped with source and target morphisms s, t : C1⇒ C0, an identity-assigning

morphism e : C0→ C1, and a composition morphism c : C1×C0 C1→ C1 mapping out of the pullback

in the diagram
C1×C0 C1 C1

C1 C0

π2

π1
y

s

t

The structure is subject to type compatibility, asserting that e is a section of both s and t, and asserting

commutativity of the squares

C1×C0 C1 C1

C1 C0

c

π1 s

s

C1×C0 C1 C1

C1 C1

c

π2 t

t

These ensure that the (co)domains of identities and composites are as expected of data for a category.

Finally, composition is subject to the axioms of category theory, which is expressed by asserting com-
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mutativity of the diagrams

C1×C0 C1×C0 C1 C1×C0 C1

C1×C0 C1 C1

c×C0C1

C1×C0 c c

c

C0×C0 C1 C1×C0 C1 C1×C0 C0

C1

e×C0C1

π2
c

C1×C0 e

π1

asserting associativity and unity, respectively.

Given two categories C and D internal to E , an internal functor F : C →D consists of morphisms

F0 : C0→ D0 and F1 : C1→ D1 in E such that they commute with the structure morphisms s, t,e,c of

C and D . As functors defined this way are closed under composition, and idC = (idC0 , idC1) provides

an identity functor on any internal category C , we have a category Cat(E ) of categories and functors

internal to E .

By design, Cat(Set) = Cat, meaning categories internal to Set are precisely the small categories.

For any finitely complete category E , the category Cat(E ) will also be finitely complete. Indeed, given

a functor F : J → Cat(E ) where J is finite, then the internal category lim←−F can be constructed by

taking (lim←−F)0 = lim←− j∈J0
F( j)0 and (lim←−F)1 = lim←− j∈J0

F( j)1, where the structure morphisms are then

induced by the universal properties of these limits over the structure morphisms on each of the internal

categories F( j). Therefore, we are allowed to iteratively internalise categories as a way of producing

strict higher categories. However, unlike enrichment, this construction generally provides too much

structural flexibility for the class of objects.

We see this immediately with categories internal to Cat: for any C ∈ Cat(Cat)0, the morphisms

of the category C1 of morphisms serve as 2-morphisms for C , and the objects of the category C0 of

objects serve as the objects for C , but now we have two independent sets of morphisms which both act

as 1-morphisms for C . By the generic construction of internalisation, we obtain our usual 1-morphisms

as the objects of C1—called horizontal morphisms—but since C0 is now a category, we also have 1-

morphisms coming from the morphisms of C0—then called vertical morphisms. Therefore, a generic

2-morphism of C takes the shape of
• •

• •

and these can be composed both horizontally and vertically. Due to the orthogonality of the two cate-

gorical structures C ends up carrying, categories internal to Cat are instead called double categories.

Fortunately, we can recover strict 2-categories from double categories by taking the category of

objects to be discrete. More precisely, we have a fully faithful inclusion 2Cat ↪→Cat(Cat) which sends

a strict 2-category C to the double category whose category of objects is given by disc(C0) and whose

category of morphisms is ∏
x,y∈C0 C (x,y). The essential image of this functor consists of those double

categories whose vertical morphisms are trivial.

More generally, the category (n+1)Cat is equivalently the full subcategory of Cat(nCat) on those

internal categories whose n-category of objects is discrete in the sense that it lies in the image of the
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inclusion Set ↪→ nCat. Therefore, internalisation provides a reasonable alternative for producing higher

categories, and this approach allows more readily for an analogue of the Grothendieck nerve construc-

tion.

4.1.1 The Segal Condition

Let E be a finitely complete category, then unlike in the case for enrichment, we can readily generalise

the Grothendieck nerve construction to categories internal to E to produce simplicial objects in E . Fix

an internal category C ∈ Cat(E )0, then just as the n-cells of the Grothendieck nerve of an ordinary

category were the length-n composable strings of morphisms, we can define (NC )n ∈ E0 to be the

iterated pullback

(NC )n := C
×C0 n
1 = C1×C0 C1×C0 · · ·×C0 C1︸ ︷︷ ︸

n times

which is shorthand for the limit of the diagram

C1 C1 . . . C1 C1

C0 . . . C0

s t s t s t

In particular, (NC )0 = C0 and (NC )1 = C1 as expected. To produce a simplicial object NC : ∆op→ E ,

define its face and degeneracy morphisms as follows. The first face d0 : (NC )n→ (NC )n−1 internalises

the act of taking the domain of the first morphism and is thus given by the morphism

(NC )n = C1×C0 C
×C0 (n−1)
1

s×C0 id
−−−−→ C0×C0 C

×C0 (n−1)
1

∼= C
×C0 (n−1)
1 = (NC )n−1

Similarly, the last face dn takes the codomain of the last internal morphism. The intermediate faces

di : (NC )n→ (NC )n−1 for 0 < i < n correspond to composing the ith and (i+1)st morphisms, and are

thus given by

C
×C0 (i−1)
1 ×C0 C1×C0 C1×C0 C

×C0 (n−i−1)
1︸ ︷︷ ︸

(NC )n

id×C0 c×C0 id
−−−−−−−−→ C

×C0 (i−1)
1 ×C0 C1×C0 C

×C0 (n−i−1)
1︸ ︷︷ ︸

(NC )n−1

The degeneracy maps si : (NC )n→ (NC )n+1 for 0 ≤ i ≤ n on the other hand correspond to inserting

an identity morphism at index i and thus are given by

C
×C0 i
1 ×C0 C

×C0 (n−i)
1︸ ︷︷ ︸

(NC )n

∼= C
×C0 i
1 ×C0 C0×C0 C

×C0 (n−i)
1

id×C0 e×C0 id
−−−−−−−−→ C

×C0 i
1 ×C0 C1×C0 C

×C0 (n−i)
1︸ ︷︷ ︸

(NC )n+1

That these satisfy the simplicial identities follows precisely from the fact that the composition in C

is associative and unital. Moreover, this general nerve construction canonically extends to a functor

N : Cat(E )→ Func(∆op,E ) by taking an internal functor F : C → D to the simplicial morphism NF
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whose action on n-cells is induced by the universal property of the limits defining (NC )n and (ND)n,

which may be expressed symbolically by saying (NF)n = F
×F0 n

1 .

In Section 3.3, the essential image of the Grothendieck nerve for ordinary categories was charac-

terised in terms of lifting properties against horn inclusions. However, it can also be characterised by

the fact that the nerve of an ordinary category provides no additional information after dimension two,

which says in particular that nerves of categories are 2-coskeletal as simplicial sets. Of course, not all

2-coskeletal simplicial sets are nerves of categories, but the characterisation of the essential image will

then only propagate from the fact that the 2-cells must reflect the compositional structure of a category:

any composable pair of morphisms must have a unique composite. Being 2-coskeletal then handles the

fact that the composition is associative, and the degeneracies ensure that the composition is unital.

Given a (2-coskeletal) simplicial set A, the composable pairs of morphisms are given by the pullback

A1×A0 A1 of d1,d0 : A1 ⇒ A0. Note that every 2-cell θ ∈ A2 induces a composable pair (d2θ ,d0θ)

of 1-cells by the simplicial identities, meaning that d2 and d0 induce a unique map A2 → A1×A0 A1.

The corresponding composite for such a pair is then given by d1θ , so to say that every composable

pair of morphisms in A has a composite means asserting that this canonical map A2 → A1×A0 A1 is

surjective. To ensure that the choice of composite is unique, we just ensure that the choice of 2-cell for

any composable pair which may provide a composite through d1 is necessarily unique, meaning that

A2→ A1×A0 A1 must also be injective.

Therefore, a simplicial set A is the nerve of a category if and only if it is 2-coskeletal and the

canonical map A2→ A1×A0 A1 is bijective. Unwinding what it means to be 2-coskeletal, we obtain the

(strict) Segal condition. For any 0 ≤ i < n, call the inclusion {i, i+ 1} ↪→ [n] in ∆ an inert morphism,

then a simplicial set X is said to satisfy the Segal condition if the canonical maps An→ A
×A0 n
1 induced

by the inert morphisms into [n] are all isomorphisms. This recovers the well-known characterisation

of the essential image of the Grothendieck nerve, and in fact generalises readily to arbitrary internal

categories:

Lemma 4.2. Let E be a finitely complete category. A simplicial object A : ∆op→ E is isomorphic to the

nerve of a category internal to E if and only if it satisfies the Segal condition.

Proof. The nerves of categories internal to E satisfy the Segal condition by definition. Suppose A is a

simplicial object such that the inert morphisms into [n] induce an isomorphism An ∼−→A
×A0 n
1 for all n≥ 0.

Consider the internal category C ∈ Cat(E )0 where C0 := A0 and C1 := A1, the source and target maps

are given by s := d0 : A1→ A0 and t := d1 : A0→ A1, respectively, the identity-assigning morphism is

taken to be e := s0 : A0→ A1, and the composition map is given by c : A1×A0 A1 ∼= A2
d1−→ A1 by the Segal

conditions. The simplicial identities ensure that the type compatibility constraints on C are satisfied.
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To see that this composition rule is associative, consider first the diagram

A3 A2

A2×A0 A1

A1×A0 A1×A0 A1 A1×A0 A1

d1

(d2d3,d0d3,d0d0)

(d3,d0d0)

(d2,d0)
(d2,d0)×A0 A1 d1×A0 A1

c×A0 A1

where the tuples indicate which morphisms induce by universal property the maps into the pullbacks.

Commutativity of the lower triangle follows by the definition of c, and the rest by the simplicial identities

did j = d j−1di for i < j. Now, consider the diagram

A3 A2

A1×A0 A1×A0 A1 A1×A0 A1

A2 A1×A0 A1 A1

d1

∼

d2

∼

d1c×A0 A1

A1×A0 c c

∼

d1

c

We have just shown that the topmost square commutes, and an analogous argument shows the same

for the square on the left. That the right and lower triangles commute is precisely the definition of c.

Since the indicated morphisms are invertible by the Segal conditions, it follows that the inner square

commutes, which establishes associativity of c.

To see that c is left unital, consider the diagram

A1 A2

A0×A0 A1 A1×A0 A1

A1

s0

(s0d1,id)
(d1,id)

∼

(d2,d0)

d1e×A0 A1

π2
c

That the rightmost triangle commutes is the definition of c, and the leftmost triangle commutes because

e = s0. The simplicial identities dis j = s jdi−1 for i > j+1 and dis j = id for j≤ i≤ j+1 imply commu-

tativity of the topmost triangle as well as the perimeter. Since the indicated morphism is invertible, this

implies that the bottom left triangle commutes, which shows that c is left unital. The proof for being

right unital is analogous.

Therefore, C indeed defines a category object in E , and the Segal condition ensures that the induced

maps An → A
×A0 n
1 = (NC )n are isomorphisms, and these collect to define a simplicial isomorphism
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A∼= NC as desired.

The Segal condition ensures that all simplicial data in the nerve of a category is uniquely determined

by the 0- and 1-cells, and this extends to the simplicial morphisms between nerves: the simplicial

identities force any Φ : NC →ND to be completely determined by its action on 0- and 1-cells, meaning

more precisely that Φn = Φ
×Φ0 n
1 is uniquely determined by the universal property of the fibre products

over inert morphisms for all n≥ 0. As Φ0,Φ1 necessarily provide the data for a functor C →D (whose

nerve is then necessarily equal to Φ), this shows that N : Cat(E )→ Func(∆op,E ) is fully faithful and

thus establishes an equivalence of categories between the categories internal to E and the simplicial

objects of E that satisfy the Segal condition.

4.2 Tamsamani n-Nerves
If we view strict 2-categories as double categories, then the nerve construction of Section 4.1.1 restricts

to a fully faithful functor N : 2Cat→ Func(∆op,Cat), whose essential image consists of those simpli-

cial categories A : ∆op → Cat with A0 discrete that satisfy the strict Segal condition. This implies in

particular that the functor A2→ A1×A0 A1 is an isomorphism in Cat, meaning that it is fully faithful and

bijective on objects. In other words, there is a one-to-one correspondence between composable pairs of

morphisms f and g, and commutative triangles of the form

• •

•
f g

which is functorial with respect to 2-morphisms. As discussed in the previous section, this correspon-

dence provides a composition rule for morphisms (with functoriality giving horizontal composition for

2-morphisms), while the simplicial structure of A handles associativity and unity.

The advantage of this point of view is that it suggests a relaxation of the Segal condition to account

for bicategories. Isomorphisms are generally too restrictive as a way of comparing categories, with

the more reasonable means of comparison being through equivalences of categories. If we relax the

Segal condition on a simplicial category A to assert only that the canonical functors An → A
×A0 n
1 are

equivalences of categories, then A presents a 2-category whose structure is specified only up to unique

2-isomorphism. Indeed, the composition rule on A is induced by weakly inverting A2 → A1×A0 A1,

implying that a choice of composite for any composable pair of morphisms is unique only up to unique

2-isomorphism. Analogously, associativity of composition requires a choice of weak inverse for the

Segal map A3 → A1×A0 A1×A0 A1, and this choice reflects choosing a coherent natural associator for

the composition in A. Unitors follow similarly, which suggests that simplicial categories with a discrete

category of 0-cells that satisfy the Segal condition up to equivalence correspond to the bicategories of

Section 2.2.2.

Tamsamani formalises this observation in his PhD thesis [46], motivating an inductive definition

of weak n-categories similar to the iterated internalisation for the strict case done in the beginning of
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Section 4.1. The construction requires an appropriate notion of weak equivalence at each step of the

induction in order to make sense of the Segal condition, so he defines these weak equivalences induc-

tively using a well-behaved 0-truncation functor that sends weak n-categories to their sets of equivalence

classes of objects. The idea is that equivalences of (n+ 1)-categories should be essentially surjective

on objects and locally equivalences of hom-n-categories. [46, Définition 1.3.2] unwinds the inductive

nature of the construction of his higher categories—which he calls n-nerves—so we will follow a more

streamlined approach that is similar in spirit to that of [21, §2].

Definition 4.3. Define the category nPNerve of n-prenerves with an inclusion of discrete objects disc :

nSet ↪→ nPNerve as follows. Start with 0PNerve := Set with the identity endofunctor as the inclusion

of discrete objects. Inductively, define (n+1)PNerve to be the full subcategory of Func(∆op,nPNerve
on those simplicial n-prenerves A for which A0 is discrete. Then, take the corresponding inclusion

disc : Set ↪→ (n+ 1)PNerve to be the functor which sends a set S to the constant functor on discS ∈
nPNerve0.

Unpacking the inductive definition as done in the beginning of [21, §2], we find that nPNerve is the

full subcategory of PSh(∆n) on those presheaves whose value on ([m1], . . . , [mn]) does not depend on

any m j for j < i once mi = 0:

Lemma 4.4. Define Θn to be the quotient of ∆n modulo the equivalence generated by identifying

([m1], . . . , [mn])∼ ([m′1], . . . , [m
′
n]) whenever there exists some 1≤ i≤ n where mi = m′i = 0 and m j = m′j

for all j < i. Then, we have an isomorphism of categories nPNerve∼= PSh(Θn), under which the inclu-

sion disc : Set ↪→ nPNerve corresponds to the inclusion Set ↪→ PSh(Θn) mapping a set S to the constant

presheaf on S.

In particular, nPNerve is complete, and its limits are computed levelwise. From here, we define

the category of n-nerves to be a full subcategory nNerve ⊆ nPNerve equipped with a class of weak

equivalences (containing the isomorphisms) as well as a truncation functor τ≤0 : nNerve→ Set such

that

(N1) nNerve has fibre products over discrete objects,

(N2) weak equivalences are stable under pullback over discrete objects in the sense that the dashed

arrow in
A′×discSB′ B′

A′ A×discSB B

A discS

g

f

y

is a weak equivalence once f and g are,

(N3) τ≤0 preserves fibre products over discrete objects and sends weak equivalences to bijections.
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The above desiderata are clearly satisfied when n= 0 by taking 0Nerve := 0PNerve= Set, declaring

the weak equivalences to be the bijections, and taking τ≤0 to be the identity endofunctor.

Definition 4.5. Assuming nNerve is equipped with a class of weak equivalences and a truncation functor

satisfying (N1), (N2), (N3), define (n+ 1)Nerve to be the full subcategory of (n+ 1)PNerve on those

(n+1)-prenerves A such that for every p≥ 0,

• Ap ∈ nNerve0,

• (Segal condition) the Segal map Ap→A
×A0 p
1 induced by inert morphisms is a weak equivalence

of n-nerves

Proposition 4.6. (n+1)Nerve as in Definition 4.5 satisfies (N1).

Proof. Consider a cospan A→ discS←B of (n+ 1)-nerves. The pullback in (n+ 1)PNerve is com-

puted levelwise, so it is enough to show that this defines an (n+ 1)-nerve. By induction, Ap×discS Bp

will be an n-nerve for all p≥ 0, so we are left to check the Segal condition. SinceA and B are assumed

to be n-nerves, they satisfy the Segal condition, so since weak equivalences are stable under pullback

over discrete objects, we obtain a weak equivalence Ap×discSBp→A
×A0 p
1 ×discSB

×B0 p
1 . Finally, since

limits commute with limits, the codomain is isomorphic to (A1×discS B1)
×(A0×discSB0)

p, showing that

A×discSB is an (n+1)-nerve, as desired.

Define τ≤1 := (τ≤0)∗ : Func(∆op,nNerve)→ Func(∆op,Set) = sSet, then this functor preserves fi-

bre products over discrete objects since these are computed levelwise in both categories. We have that

τ≤1A is (the Grothendieck nerve of) a category for any (n+ 1)-nerve A. Indeed, we have by defi-

nition that (τ≤1A)p = τ≤0(Ap), so τ≤0 will send the weak equivalence Ap →A
×A0 p
1 to the bijection

τ≤0(Ap)→ τ≤0

(
A×A0 p

1

)
∼= τ≤0(A1)

×τ≤0(A0)
p for every p ≥ 0, putting τ≤1A in the essential image of

the Grothendieck nerve by Lemma 4.2. We can thus compose τ≤1 with the functor τ0 : Cat→ Set which

sends small categories to their sets of isomorphism classes of objects:

Definition 4.7. With (n+1)Nerve as in Definition 4.5, define its truncation functor to be the composite

τ≤0 : (n+1)Nerve
τ≤1−−→ Cat τ0−→ Set.

Remark 4.8. Since τ0 and τ≤1 both preserve fibre products over discrete objects, the same holds for τ≤0.

The truncation functor allows us to define an analogue of essential surjectivity of a morphism Φ

to mean its truncation τ≤0Φ is a surjection of sets, which establishes half of the definition of a weak

equivalence in (n+ 1)Nerve. Fully faithfulness is defined by Φ being a weak equivalence on hom-n-

nerves:

Definition 4.9. For A ∈ (n+ 1)Nerve0, identify the discrete n-nerve A0 with its underlying set. The

two coface maps d0,d1 : [0]⇒ [1] induce a map A1→A0×A0, from which we define for any pair of
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objects x,y ∈ A0 the hom-n-nerve A(x,y) to be the fibre

A(x,y) A1

pt A0×A0

y

(x,y)

As A0×A0 and pt are discrete, A(x,y) is indeed an n-nerve. Now, define a morphism Φ : A→ B of

(n+1)-nerves to be fully faithful if the induced maps Φx,y :A(x,y)→B(Φx,Φy) of n-nerves are weak

equivalences for every x,y ∈ A0. If Φ is fully faithful and τ≤0Φ is surjective, then say that Φ is a weak

equivalence.

Lemma 4.10. (n+1)Nerve with the weak equivalences and truncation defined above satisfies (N2) and

(N3).

Proof. If Φ :A→B is a weak equivalence of (n+1)-nerves, then τ≤1Φ will be an equivalence of ordi-

nary categories. Indeed, (τ≤1Φ)x,y = τ≤0(Φx,y) is bijective for every x,y ∈A0, and τ0τ≤1Φ is surjective.

Therefore, τ≤0Φ = τ0τ≤1Φ is a bijection, proving (N3).

Note that fully faithfulness of maps in (n+1)Nerve is preserved by pullbacks over discrete objects

by (N2) on nNerve. On the other hand, essential surjectivity are seen to be preserved by pullbacks over

discrete objects by taking τ≤0 of the pullback diagram. As the weak equivalences are the fully faithful

and essentially surjective maps, this proves (N2).

This completes the inductive construction of Tamsamani n-nerves for all finite n≥ 0.

4.2.1 Double Nerves

Tamsamani 0-nerves are precisely the sets by definition, and Lemma 4.2 establishes an equivalence of

categories Cat ' 1Nerve. In dimension two, Tamsamani proves in [46, §1.4] that his 2-nerves recover

the bicategories of Bénabou discussed in Section 2.2.2 by describing how to construct a 2-nerve from

a bicategory and vice versa. Note that since 1-nerves are already equivalent to small categories, this

reduces to comparing bicategories with simplicial categories A : ∆op → Cat where A0 is discrete and

the Segal maps Ap→A
×A0 p
1 are equivalences of categories for all p≥ 0.

Given a bicategory B, Tamsamani constructs a double nerve NB : ∆op → Cat as follows. The

objects of (NB)n are families (x•, f••,θ•••) where xi ∈B0 for 0≤ i≤ n, fi, j : xi→ x j for 0≤ i < j≤ n,

and θi, j,k : f j,k fi, j
∼
==⇒ fi,k for 0 ≤ i < j < k ≤ n. Intuitively, this means (NB)n,0 consists of strings of

n composable morphisms fi−1,i for 1 ≤ i ≤ n along with weak composites at all stages up to a single

overall weak composite f0,n. The morphisms (x•, f••,θ•••)→ (x•, f ′••,θ
′
•••) necessarily map between

families with the same tuple of objects of B, and are given by families of 2-morphisms ξi, j : fi, j⇒ f ′i, j
for all 0 ≤ i < j ≤ n such that ξi,k ◦θi, j,k = θ ′i, j,k ◦ (ξ j,k⊗ ξi, j) for every 0 ≤ i < j < k ≤ n; that is, the

morphisms of (NB)n are given by families of commutative triangular prisms between weak composites.

The face maps di : (NB)n→ (NB)n−1 act by dropping all elements of the tuples in (x•, f••,θ•••)

with an index specified by i, which intuitively corresponds to taking the chosen weak composite of the
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morphisms fi−1,i and fi,i+1 when 0 < i < n. On the other hand, the degeneracies si : (NB)n→ (NB)n+1

act by inserting an additional copy of xi into x•, inserting idxi into f••, and inserting the unitors λx j,xi( f j,i)

for j < i and ρxi,x j( fi, j) for j > i into θ••• where appropriate, which corresponds to inserting an identity

at the ith position and choosing all weak composites with it to just be determined by the unitors of B.

By definition, we find (NB)0 = discB0, and (NB)1 =
∏

x,y∈B0 HomB(x,y) as categories. More-

over, if B is locally discrete and hence an ordinary category, its double nerve is levelwise discrete and

recover its Grothendieck nerve. Consider the Segal maps (NB)n→ (NB)
×(NB)0

n
1 , which send an n-cell

(x•, f••,θ•••) to the string ( f0,1, . . . , fn−1,n). This is genuinely surjective, as any length-n composable

string of morphisms can be obtained from the n-cell given by taking all weak composites to be those cho-

sen by the horizontal composition rule of B. The map is also full for the same reason, as length-n hori-

zontally composable strings of 2-morphisms can be obtained in the same way. The functor is moreover

faithful because the θ••• are chosen to be invertible 2-morphisms, and so any morphism ξ•• of n-cells is

uniquely determined by the 2-morphisms ξ0,1, . . . ,ξn−1,n from the identity ξi,k ◦θi, j,k = θ ′i, j,k ◦(ξ j,k⊗ξi, j)

for all 0≤ i < j < k≤ n. Therefore, the Segal maps are equivalences of categories, showing that NB is

indeed a 2-nerve.

Conversely, any 2-nerve A : ∆op→ Cat is levelwise equivalent to the double nerve of some bicate-

gory. The construction of B is similar in spirit to the proof of Lemma 4.2, and is done explicitly in [46,

Théorème 1.4.2]: take B0 :=A0,0, and for x,y∈B0 define HomB(x,y) :=A(x,y). To define horizontal

composition, we need the axiom of choice to form a weak inverse of the equivalence A2→A1×A0A1,

after which ⊗ can be pulled via fibres from the composite A1×A0 A1 →A2
d1−→ A1. Associators for

⊗ are likewise obtained from weakly inverting A3 →A
×A0 3
1 . The reliance on the axiom of choice in

defining composition on B reflects how n-nerves do not make any explicit choices for composites and

instead only leaves them specified up to equivalence. This also means that maps of n-nerves will only

preserve composition up to equivalence by design, implying that n-nerves also serve to present a class

of pseudofunctors rather than strict 2-functors.

However, the identity endomorphisms of B are given by the degeneracy functor s0 :A0→A1, with

their corresponding unitors coming from the simplicial identities of s0 with d0 and d2. In particular, this

means that the identities play a critical role in the structure of A as a simplicial category; moreover,

as simplicial functors must strictly preserve simplicial structure, this means that the pseudofunctors

presented by maps of 2-nerves are necessarily strictly unital. Lack and Paoli prove this explicitly in [30,

Theorem 3.7]. The similarity to the restrictions imposed by the simplicial maps between Duskin nerves

of bicategories seen in Section 3.3.1 suggests that the main obstacle to relaxing strict unity is degeneracy

in ∆.

4.3 Unbiased Operations
To overcome the obstacle posed by simplicial degeneracy maps in presenting weakly unital functors,

Kock offers an alternative in [28] with fair n-categories. Here, the simplex category is replaced with

the fat delta, which consists of stratified simplices without codegeneracy maps. The idea is that the

stratification replaces the degeneracies in indicating which morphisms serve as candidates for identities.
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Kock originally proposed fair categories in order to provide a general framework to address an open

conjecture [42, Conjecture 2] of Simpson, which states that all weak higher categories are equivalent to

one with a composition that is strictly associative but weakly unital.

However, the distinction made between composition and units in fair n-categories is arguably ar-

tificial. Associative and unital binary operations are often just a practical presentation of unbiased

multiary operations. This is evidently the case for set-theoretic operations such as binary union and

intersection, but is true also for more algebraic operations such as addition and multiplication. While

unbiased operations require more work to write down formally, they can streamline other definitions

and arguments so that they are more uniform in shape, which can make the objects easier to reason with

conceptually. For example, primality of an integer p is often defined in a biased fashion, stating that p

is non-invertible, and p | ab implies p | a or p | b. On top of commonly being confusing to the public as

to why 1 is excluded from being prime, the first condition is also consequently an edge case that must

be handled separately in proofs. Conversely, the equivalent unbiased definition of primality for p is that

p |∏n
i=1 ai implies p | ai for some 1 ≤ i ≤ n. The usual primality definition is recovered by taking the

above definition with n = 0 and n = 2, respectively, and now we have a more uniform characterisation

of primes.

The unbiased presentation of monoidal binary operations is also more natural from a categorical

perspective. More precisely, the monadicity of monoids over sets follows from the equivalence between

the usual (biased) definition of monoidal structure and associative families of multiary operations. Ex-

plicitly, the forgetful functor U : Mon→ Set admits a left adjoint given by the Kleene star operator

(−)∗ : Set→Mon, which sends a set X to the collection X∗ :=
⋃

p≥0 X p of finite-length lists of ele-

ments of X . This has a canonical monoid structure given by list concatenation, and the monoidal unit

is the empty list. The algebras of the induced monad T := U(−)∗ on Set consist of a ground set A

and an action ν : TA→ A that commutes with the monad unit and multiplication of T . Specifically,

the action assigns an element ν(a1, . . . ,an) ∈ A to every list of elements (a1, . . . ,ap) ∈ A∗ such that

ν(a) = a for singleton lists, and ν(ν(a1
1, . . . ,a

1
q1
), . . . ,ν(ap

1 , . . . ,a
p
qp)) = ν(a1

1, . . . ,a
p
qp). This is precisely

the axiomatisation of an unbiased monoidal structure on A, and the biased structure is recovered by

taking the monoidal unit to be e := ν() on the empty list, and taking the product to be a · b := ν(a,b).

The higher arity operations then ensure that the associativity and unit axioms of a monoid are met: in

particular, a · (b ·c) = ν(a,ν(b,c)) = ν(a,b,c) = ν(ν(a,b),c) = (a ·b) ·c proves associativity, and right

unity follows because a · e = ν(a,ν()) = ν(a) = a with left unity following analogously.

Geometric presentations of higher categories by multisimplicial nerves such as the one of Tam-

samani are already mostly unbiased. As we have already seen, binary composition on an n-nerve A
comes from inverting the Segal map A2 →A1×A0 A1, and then we obtain associators for this com-

position from choosing an inverse for A3→A
×A0 3
1 ; however, the way we obtain these associators for

the binary composition is via two unbiased associators that relate the binary composition to its ternary

analogue. Informally, the equivalence ( f ⊗g)⊗h' f ⊗(g⊗h) of stacked binary composites is given by

the composite of equivalences ( f ⊗g)⊗h' ( f ⊗g⊗h)' f ⊗ (g⊗h). Higher coherence equivalences

between associators then arise similarly from quaternary composition rules, and so on. In general, we
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Figure 4.1: Multiary composition diagrams

can obtain p-ary composition for the n-nerveA by choosing an inverse of the p-ary Segal map and then

taking fibres of the composite A×A0 p
1 → Ap

d1...dp−1−−−−−→ A1. However, this definition only makes sense

when p≥ 1, so we cannot recover units in this way. This problem is avoided in Section 4.2.1 by taking

d−1 :A0→A1 to be the degeneracy map s0.

The reason this works for arity p≥ 1 is as follows. By viewing p-ary composition as a commutative

diagram, we obtain a directed graph in the shape of a (p + 1)-gon as in Figure 4.1. When p ≥ 2,

this diagram arises as a subgraph of the complete graph on p + 1 vertices. Orienting the edges of

the complete graph consistently with the orientation of the (p+ 1)-gon, we recover the skeleton of a

standard p-simplex. The triangles then correspond to intermediate partial composites: for example, in

Figure 4.1d, the graph would embed into the standard 3-simplex, whose triangular faces correspond to

taking the composites g◦ f , h◦g, h◦(g f ), and (hg)◦ f . This is no longer precisely the case when p = 1,

but unary composition is itself degenerate in the sense that the unary composite of any morphism should

just be itself, making the commutative digon in Figure 4.1b more appropriately just a single directed

edge and thus precisely a 1-simplex. We cannot recover the case when p = 0 with simplices since the

0-simplex by definition has no nondegenerate edges, whereas the nullary composition in Figure 4.1a has

one which constitutes the weakly degenerate identity endomorphism.

The conceptual benefit mentioned earlier for using unbiased operations is especially highlighted

when axiomatising associativity up to coherent equivalence. While the usual biased definition is very

terse, requiring only one type of associator and two types of unitors on the level of 2-morphisms, the

coherence constraints described by higher invertible morphisms corresponding to the pentagon and tri-

angle identities are not self-evident to non-experts; moreover, it is difficult to see that these axioms

alone are sufficient in describing a fully coherent associative composition. On the other hand, the asso-

ciators relating the multiary family of composition rules are far more natural, giving the n-ary operation

one associator for every partitioning of n, corresponding to every possible way of bracketing an n-fold

composition. The coherence constraint is then that any two ways of iteratively subdividing a string of

composable morphisms yields the same associator. While this means that the unbiased definition has far

more axioms, the constraints are much more natural, which allow for them to be more easily generalised.
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4.3.1 Unbiased Bicategories

The observation about monoids being monadic over sets can be generalised: small categories are di-

rected graphs equipped with a meaningful composition rule, and the corresponding forgetful functor

turns out to also be monadic. The left adjoint is given by the free category monad of [31, Example

6.5.3], which sends a directed graph to the category whose objects are the vertices of the graph, and

whose morphisms are given by finite-length paths of edges. That the algebras of this monad are pre-

cisely the small categories is proven entirely analogously to the case for monoids, and in particular

describes the unbiased axiomatisation of category theory. This monadicity will be revisited in greater

generality in Section 4.3.2, but here we will categorify this phenomenon to fit the context of bicategories.

The categorification of monads and their algebras up one dimension yields 2-monads and their

pseudoalgebras as defined in [8], where the algebraic axioms are relaxed to only hold up to specified

coherent isomorphism. It turns out that bicategories are 2-monadic over a categorification of directed

graphs called Cat-graphs, where between any two vertices is a small category of edges rather than a mere

set. The 2-monadicity is proven explicitly and in more generality in [41, §5], and the pseudoalgebras

of the resulting free strict 2-category 2-monad are precisely the bicategories, presented with unbiased

composition rules akin to those of [31, Definitions 3.4.1, 3.4.3]:

Definition 4.11. An unbiased bicategory B consists of a class B0 of objects and a category HomB(x,y)

of morphisms and 2-morphisms for all x,y ∈B0 as in the biased case, then equipped for every integer

p≥ 0 and x0, . . . ,xp ∈B0 with a (horizontal) p-fold composition functor

⊗p : HomB(xp−1,xp)×·· ·×HomB(x0,x1)→ HomB(x0,xp)

For brevity, we will write
⊗p

i=1 fi :=⊗p(~f ) where ~f = ( f1, . . . , fp). Associativity of these composition

rules is expressed by a chosen family of 2-isomorphisms for p≥ 0 and q1, . . . ,qp ≥ 0

α
p
~f 1,...,~f p :

p⊗
i=1

qi⊗
j=1

f i
j
∼

===⇒⊗∑
p
i=1 qi( f 1

1 , . . . , f p
qp
)

natural in all composable f i
j, called (unbiased) associators, as well as 2-isomorphisms

ι f : f ∼
===⇒⊗1( f )

natural in f called inserters. The data are then subject to commutativity of the coherence square

p⊗
i=1

qi⊗
j=1

ri, j⊗
k=1

f i, j
k ⊗∑i qi

(
⊗r1,1(~f 1,1), . . . ,⊗rp,qp (~f p,qp)

)

p⊗
i=1

(
⊗∑ j ri, j( f i,1

1 , . . . , f i,qi
ri,qi

)
)

⊗∑i ∑ j ri, j( f 1,1
1 , . . . , f p,qp

rp,qp )

α p

⊗
i αqi α∑i qi

α p
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for all morphisms f i, j
k and integers p,qi,ri, j ≥ 0, and also commutativity of the coherence triangles

p⊗
i=1

fi

p⊗
i=1

(
⊗1( fi)

)

p⊗
i=1

fi

⊗
i ι fi

id
α p

⊗1

(
p⊗

i=1

fi

)
p⊗

i=1

fi

p⊗
i=1

fi

α1

ι

id

for all ~f . Denote the unique morphisms picked by the nullary composites ⊗0 : 1→ HomB(x,x) by idx,

and use infix notation for binary composites so that f ⊗g :=⊗2( f ,g).

Given two unbiased bicategories B,B′, a lax functor F : B → B′ consists of a map of objects

F0 : B0→B′0, a local functor Fx,y : HomB(x,y)→HomB′(Fx,Fy) for all x,y∈B0, and a lax (unbiased)

functoriality constraint F p
f1,..., fp

:
⊗p

i=1 F fi ⇒ F
(⊗p

i=1 fi
)

natural in the morphisms fi in B for every

p≥ 0 such that they satisfy commutativity of the compatibility pentagon

p⊗
i=1

qi⊗
j=1

F f i
j

p⊗
i=1

F

(
qi⊗

j=1

f i
j

)
F

(
p⊗

i=1

qi⊗
j=1

f i
j

)

⊗∑i qi(F f 1
1 , . . . ,F f p

qp
) F

(
⊗∑i qi( f 1

1 , . . . , f p
qp
)
)

⊗
i Fqi

α p

F p

F(α p)

F∑i qi

and compatibility triangle
F f

⊗1(F f ) F
(
⊗1 f

)ι Fι

F1

If F p is invertible for every p ≥ 0, then F is called a pseudofunctor as before. Unbiased bicategories

and their lax or pseudofunctors collect to form (1-)categories UBicatLax and UBicat, respectively.

While shrouded in technicalities, the axioms of an unbiased bicategory convey more directly that

computing a p-fold composition should be unique up to unique coherent isomorphism, as it extracts

the key properties that induce coherence for objects defined by universal property. In particular, there

are some cases where a weakly associative composition is more easily realised in its unbiased form.

For instance, the p-fold products are more readily available in a cartesian monoidal category, and this is

evident when proving that the cartesian product is indeed monoidal: the (biased) associators are induced

from the fact that both (x× y)× z and x× (y× z) satisfy the universal property of the three-fold product

x× y× z and are thus uniquely isomorphic; likewise, the pentagon axiom follows from the uniqueness

property when noting that all of the various ways of using binary products to combine objects w,x,y,z

will satisfy the universal property of the four-fold product w× x× y× z.

The unbiased associators arise from respecting the multiplication of the free strict 2-category 2-
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monad up to coherent isomorphism, and the inserters likewise from respecting the 2-monad unit. The

reason for the two different types of associators (and consequently two different types of coherence

axioms) is that the definition of 2-monad used is itself biased.Intuitively, the coherence square asserts

that any two ways of unbracketing composites yield the same coherence 2-isomorphism, while the co-

herence triangles assert that any two ways of rebracketing composites also yield the same coherence

2-isomorphism. If we were to use unbiased 2-monads instead, we would obtain an equivalent charac-

terisation of unbiased bicategories with a far more technical family of associators:

Lemma 4.12. The following data is equivalent to providing an unbiased bicategory as in Defini-

tion 4.11: B0, HomB , and ⊗p for p≥ 0 as before, but now with 2-isomorphisms

β
N;~p
~f

:
p1⊗

i1=1

p2
i1⊗

i2=1

· · ·
pN

i1 ,...,iN−1⊗
iN=1

fi1,...,iN
∼

===⇒
⊗
~i

f~i

for all N ≥ 0 and p1, . . . , pN
p1,...,pN−1 ≥ 0 and natural over composable morphisms fi1,...,iN , subject to the

identities

id⊗p(~f ) = β
1;p
~f

;

 p1⊗
i1=1

· · ·
pN

i1 ,...,iN−1⊗
iN=1

β
Ni1,...,iN

β
N;~p = β

∑i1
···∑iN Ni1 ,...,iN

Proof. This ultimately amounts to unpacking definitions. Given the above 2-isomorphisms, we recover

associators and inserters by taking α• := β 2;• and ι := β 0, respectively. On the other hand, given an

unbiased bicategory, we can produce the 2-isomorphisms β N inductively on N, starting naturally with

β 0 := ι , and then taking

β
N+1;~n
~f

:
p0⊗

i0=1

 p1
i0⊗

i1=1

p2
i0 ,i1⊗

i2=1

· · ·
pN

i0,i1 ,...,iN−1⊗
iN=1

fi0i1,...,iN

 ⊗
i0

β N;p

====⇒
p0⊗

i0=1

⊗
~i

fi0,~i
α

===⇒
⊗
i0,~i

fi0,~i

The fact that id = β 1 then follows from the left coherence triangle for inserters, and the other identity

follows inductively from the coherence square for associators.

Remark 4.13. We can see that there is still a shadow of bias in the above characterisation, as the β N are

subject to two different identities. We could make this further unbiased by combining these identities

into a much larger family of identities of the form “(
⊗
•β ) . . .β = β” with appropriate indexing, but

this would only be useful in the context of 3-categories.

Given an unbiased bicategory as per Definition 4.11, we recover an ordinary bicategory from taking

the nullary and binary composites, as suggested by the special notation for these arities. The (biased)

associator ( f ⊗g)⊗h ∼
==⇒ f ⊗ (g⊗h) is obtained from the composite

( f ⊗g)⊗h
( f⊗g)⊗ιh
∼

===⇒ ( f ⊗g)⊗ (h)
α2
( f ,g),(h)
∼

===⇒ ⊗3( f ,g,h)
(α2

( f ),(g,h))
−1

∼
===⇒ ( f )⊗ (g⊗h)

ι
−1
f ⊗(g⊗h)
∼

===⇒ f ⊗ (g⊗h)
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while the left unitor id⊗ f ∼
==⇒ f is obtained from

id⊗ f
id⊗ι f
∼

===⇒ id⊗( f )
α2
(),( f )
∼

===⇒ ( f )
ι
−1
f
∼

===⇒ f

with the right unitors defined analogously.

From a biased bicategory, there are several ways to resolve its bias: for instance, we can define

its multiary compositions with a left-associative bias by taking ⊗0 := idx : 1→ Hom(x,x) and then

proceeding inductively with
⊗p+1

i=1 fi :=
(⊗p

i=1 fi
)
⊗ fp+1. The inserters would be given by identity 2-

isomorphisms, and the pentagon and triangle axioms ensure that any path of rebracketing using ordinary

associators and unitors can be used to produce the unbiased associators for these p-fold compositions.

These actions of introducing and resolving biases for bicategories extend naturally to lax and pseud-

ofunctors, and induce equivalences of categories Bicat ' UBicat and BicatLax ' UBicatLax by the

Irrelevance of Signature Theorem in [31, §3.4].

4.3.2 Generalised Operads

While the Segal condition yields a nearly unbiased composition, the triangular shape of simplices indi-

cate that simplicial nerves are still biased: triangles can only encode binary operations, and the n-cells

of the nerve of a higher category really just provide a string of n composable morphisms with every

possible intermediate way of composing morphisms together through these binary operations. In order

to resolve this bias, the conceptually simplest approach is to modify the category of shapes from the

simplex category ∆ to one which allows for other directed polygons than just the triangle in dimension

two. This will also remove the necessity of degeneracy, as nullary composition can then be obtained

from the polygon in Figure 4.1a.

Fleshing this out results in opetopes,1 which are unfortunately much more technical to construct than

simplices, but fortunately yield a much simpler category of shapes due to the absense of codegeneracy

maps. Opetopes were first introduced by Baez and Dolan in [3] for the same purpose of constructing

presentations of higher categories, where they sought to generalise the simplicial model of quasicat-

egories to weak ω-categories as opetopic sets subject to analogous lifting properties. However, they

defined opetopic sets directly, rather than via a shape category, and moreover their original definition

suffered from redundancy due to input facets having labels. For example, there would be 3! incarnations

of the 2-opetope corresponding to the ternary composition shape of Figure 4.1d.

Cheng resolves this in [11] by generalising the construction to symmetric multicategories, and fur-

ther defines a category of opetopes whose presheaves recover the desired opetopic sets. In this category,

opetopes corresponding to the same shape but with possibly different labels for the input facets become

isomorphic. However, to ensure that our category of opetopes is discrete at each dimension in the sense

that the only nontrivial maps are face maps, we will follow Leinster’s approach in [31, §7] via nonsym-

metric operads that drops the labelling altogether. The category of opetopes can then be constructed

1The authors of [3] and [31] emphasise that the pronunciation of “opetope” is /6p@"t@Up/, as it is a portmanteau of “opera-
tion” and “polytope” for its role as a geometric presentation of multiary operations.
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analogously to Cheng, and she proves in [12] that these categories of opetopes are equivalent.

The following definitions can be found in [31, §§4–7].

Definition 4.14. Let E be a category and T a monad on E . Say that the pair (E ,T ) is cartesian if E is

finitely complete, T preserves pullbacks, and the naturality squares for the unit and multiplication trans-

formations on T are pullback squares. If (E ,T ) is cartesian, call it suitable if moreover the following

hold:

• E has disjoint finite coproducts, meaning that it has an initial object /0, the coproduct x Π y exists

for all x,y ∈ E0 with monic coprojections x,y ↪→ x Π y, and x×xΠy y = /0.

• Finite coproducts in E are pullback-stable, meaning for any morphism z→ x Π y in E that we

have (x×xΠy z)Π
(y×xΠy z) = z.

• Given a functor ω→ E , where ω is the first infinite ordinal viewed as a posetal category, such that

all morphisms in ω are mapped to monomorphisms (such a functor is called a nested sequence),

then its colimit exists, and the canonical coprojections are again monic.

• Colimits of nested sequences are pullback-stable, meaning that given a functor F : Λ2[2]×ω→ E

such that F i : ω → E is a nested sequence for every i ∈ Λ2[2]0 (where Λ2[2] = {• → • ← •}
is the walking cospan category, whose nerve is the simplicial 2-horn of the same name), then

lim−→n
lim←−i

F i
n = lim←−i

lim−→n
F i

n.

• T preserves colimits of nested sequences.

Definition 4.15. The bicategory Span(E ,T ) of T -spans in E for a cartesian pair (E ,T ) is given as

follows. The objects are the same as those of E , the morphisms f : a 7→ a′ are given by spans of the

form Ta
f0←− b

f1−→ a′ in E for b ∈ E0, and the corresponding 2-morphisms θ : f ⇒ g : a 7→ a′ are given

by morphisms θ : b→ b′ in E such that

b

Ta a′

b′

f0 f1

θ

g0 g1

commutes. Composition of spans f : a 7→ a′ and f ′ : a′ 7→ a′′ is given by choosing a fixed pullback in
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the diagram below and taking the encompassing span:

T b×Ta b′ b′ a′′

T b Ta′

T Ta

Ta

y

f ′1

f ′0

T f1

T f0

µT
a

where µT is the multiplication transformation on T . The natural choice of an identity a 7→ a is then just

the span Ta
ηT

a←− a ida−→ a, and the unitors and associators are induced by the universal property of the

pullback in the above diagram, using the fact that T is cartesian.

Definition 4.16. Let (E ,T ) be cartesian. For V ∈ E0, define the category of (E ,T )-graphs with V the

object of vertices to be the monoidal endomorphism category (E ,T )GraphV := HomSpan(E ,T )(V,V ).

This construction is functorial in V : given a morphism V →V ′ in E , we obtain a corresponding functor

(E ,T )GraphV → (E ,T )GraphV ′ that sends a graph TV ← E→V to the graph

TV ′← TV ← E→V →V ′

extending to graph morphisms in the obvious way. Therefore, the covariant Grothendieck construction

(cf. Appendix A) produces the category

(E ,T )Graph := E
∫
(E ,T )Graph(−)

of all (E ,T )-graphs.

Unpacking the definition, the category of (E ,T )-graphs consists of spans TM0
s←−M1

t−→M0 rep-

resenting graphs M with object of vertices M0 and object of edges M1. The source and target vertices

of any edge are intuitively chosen by s and t, respectively. Note that the source of an edge is generalised

from being a single vertex as in usual graphs to allow for a family of vertices, depending on the structure

of the monad T . Graph homomorphisms Φ : M →M ′ are commutative rectangles

TM0 M1 M0

TM ′
0 M ′

1 M ′
0

T Φ0

s t

Φ1 Φ0

s′ t ′

which are intuitively maps of vertices and edges that respect sources and targets.

Definition 4.17. Let (E ,T ) be cartesian. For V ∈ E0, the category of (E ,T )-multicategories on V is

the category of monoids (E ,T )MulticatV := Mon(E ,T )GraphV . This construction is also functorial
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in V : given a morphism V →V ′ in E , the induced functor (E ,T )GraphV → (E ,T )GraphV ′ of graphs

is weak monoidal by the universal property of the pullbacks involved, and thus further induces a functor

of monoid categories. Therefore, we have by the Grothendieck construction a category

(E ,T )Multicat := E
∫
(E ,T )Multicat(−)

of (E ,T )-multicategories and (E ,T )-multifunctors.

Moreover, the canonical forgetful functor UV : (E ,T )MulticatV → (E ,T )GraphV is natural in V

and thus lifts to a forgetful functor U : (E ,T )Multicat→ (E ,T )Graph that lies over E .

An (E ,T )-multicategory is given by a (E ,T )-graph M equipped with an identity-assigning mor-

phism e : M0→M1 and a composition morphism c : TM1×TM0 M1→M1 fitting in the commutative

diagrams
M0

TM0 M0

M1

ηT
M0 id

e

s t

TM1×TM0 M1

TM0 M0

M1

µT
M0
◦T s

t

c

s t

where the span on top of the right hand diagram is the horizontal composite M ⊗M in Span(E ,T ).

The monad axioms on M assert that c is associative with unit e in the same way as for a category, and

a multifunctor Φ : M →M ′ is a morphism of the underlying graphs that respects e and c in the sense

that the diagrams

M0 M1

M ′
0 M ′

1

e

Φ0 Φ1

e′

TM1×TM0 M1 M1

TM ′
1×TM ′

0
M ′

1 M ′
1

c

T Φ1×T Φ0 Φ1 Φ1

c′

both commute. With this explicit formulation, the forgetful functor U : (E ,T )Multicat→ (E ,T )Graph
becomes obvious, and can be seen to lie over the projection from these categories onto E that retain only

the underlying object of vertices.

Example 4.18. The pair (Set, id) is suitable. Indeed, Set is complete and cocomplete, and the coprod-

ucts are readily seen to be disjoint and pullback-stable just by checking the identities element-wise.

Pullback stability of colimits of nested sequences follows from the fact that finite limits commute with

filtered colimits in Set. As for the suitability of the identity monad, there is nothing to check.

More generally, if E is a finitely complete category, then (E , id) will at least be cartesian. This is

enough structure to follow through the constructions in Definition 4.17, and we can see that (E , id)-

graphs produce graph objects in E , and more importantly (E , id)Multicat = Cat(E ) recovers the cate-

gories internal to E .

Example 4.19. The pair (Set,(−)∗) is also suitable, where (−)∗ is the Kleene star, and this can be

easily checked elementwise. This example highlights the role of the monad in generalising the in-

ternal categories of the above example, as (Set,(−)∗)Multicat = Multicat recovers the category of
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ordinary small multicategories, which are categories where the morphisms have several domains and

one codomain. In more detail, a (small) multicategory M consists of a set M0 of objects, and hom-sets

HomM (x1, . . . ,xp;y) of morphisms (x1, . . . ,xp)→ y for all x1, . . . ,xp,y ∈M0 and p ≥ 0. Composition

is then given by an associative family of maps

HomM (y1, . . . ,yp;z)×
p

∏
i=1

HomM (xi
1, . . . ,x

i
qi

;yi)→ HomM (x1
1, . . . ,x

p
qp

;z)

with identity morphisms idx : (x)→ x as before.

For example, any monoidal category V (with an unbiased tensor product) has the natural structure

of a multicategory V ⊗ where HomV ⊗(x1, . . . ,xp;y) := HomV (x1⊗·· ·⊗ xp,y).

The main benefit here of establishing the above generalisation of the monadicity phenomenon of

categories over graphs is that under suitable initial conditions, the construction can be iterated and

provide a streamlined means for producing intricate unbiased higher-dimensional structures.

Lemma 4.20. Let (E ,T ) be suitable. Then, (E ,T )Multicat is monadic over (E ,T )Graph, meaning

that the canonical forgetful functor U : (E ,T )Multicat→ (E ,T )Graph admits a left adjoint F a U,

and the (E ,T )-multicategories are precisely the algebras for the induced monad UF. Moreover, the

resulting pair ((E ,T )Graph,UF) is suitable.

This is also true on fibres: if V ∈ E0, then (E ,T )MulticatV is monadic over (E ,T )GraphV , and the

induced monad forms a suitable pair with (E ,T )GraphV .

Proof. The full proof can be found in [31, Theorems 6.5.2, 6.5.4]. Here, we will only reconstruct the

“free multicategory” left adjoint F , as it will be needed when discussing opetopes in the next section.

Let M be an (E ,T )-graph with vertex object V ∈ E0, then the free (E ,T )-multicategory on M

is the colimit of a nested sequence of graphs M 0 ↪→M 1 ↪→M 2 ↪→ . . . on V . This generalises the

construction of the free monoid on a set X , which is done by taking a colimit of the sets X≤p :=
⋃

k≤p Xk

of finite strings of length at most p. Indeed, M p consists of paths on the graph M of length at most

p. At p = 0, this makes M 0 the identity span TV
ηT

V←− V id−→ V , as this yields the discrete graph on V .

Given M p, we then take M p+1 := M 0 Π
(M ⊗M p), which provides new null paths and appends to

all existing paths a new edge from M .

The chain of inclusions ip : M p ↪→M p+1 are defined inductively with i0 : M 0 ↪→M 0 Π
(M ⊗M 0)

being given by the first coprojection, and ip+1 := idM 0
Π
(idM ⊗ip). In general, a morphism i : x→ y is

monic if and only if its kernel pair is trivial in the sense that

x x

x y

id

id i

i

is a pullback square. Since coproducts in E are pullback-stable with monic coprojections, this means

that the ip are monic for all p ≥ 0 and thus the nested sequence of edge objects M 0
1 ↪→M 1

1 ↪→ . . .
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admits a colimit in E . The universal property of the colimit induces canonical morphisms onto TV and

V from those of the M p, making this colimit a (E ,T )-graph and thus a colimit FV M := lim−→p
M p in

(E ,T )GraphV also.

In words, FV M is the graph of paths on M , and it carries a canonical (E ,T )-multicategorical struc-

ture, where composition is induced by path concatenation, and identities are given by null paths. Pre-

cisely, the identity-assigning map is given by the canonical coprojection e : M 0 ↪→FV M . As for compo-

sition, we have maps M p⊗M q→M p+q obtained from noting that pullback stability of coproducts in

E implies M p =
∏

k≤p M⊗k, and thus M p⊗M q =
∏

k≤p
∏

k′≤q M⊗(k+k′), which canonically embeds

into M p+q =
∏

k≤p+q M⊗k. Taking colimits as p,q→∞ and recalling that colimits of nested sequences

are also pullback-stable, these produce the desired composition map c : FV M ⊗FV M → FV M .

This construction extends to a functor FV : (E ,T )GraphV → (E ,T )MulticatV on each fibre natu-

rally in V . Therefore, we can combine them via the (covariant) Grothendieck construction to produce

the overall left adjoint F aU .

Definition 4.21. If (E ,T ) is suitable, then denote by (E +,T+) the pair where E + := (E ,T )Graph and

T+ is the monad on (E ,T )Graph whose algebras are the (E ,T )-multicategories. Similarly, if V ∈ E0,

denote by (E +
V ,T+

V ) the pair where E +
V := (E ,T )GraphV and T+

V is the monad on (E ,T )GraphV whose

algebras are the (E ,T )-multicategories over V . By Lemma 4.20, the pairs (E +,T+) and (E +
V ,T+

V )

always exist and are suitable.

Baez and Dolan had originally defined opetopes via symmetric operads. Loosely speaking, an op-

erad is a system of abstract operators of various arities that can have their outputs plugged into other

operators to form larger ones. The operad is symmetric if the abstract operators are insensitive to input

permutation up to isomorphism. The issue with this original approach was that the “slice operation”

they used to build operads of higher dimension would forget the symmetries of the lower-dimensional

operads they were built from, meaning many higher operads that should have been equivalent were no

longer isomorphic. With Leinster’s approach, we avoid this altogether by working with (generalised)

nonsymmetric operads and picking a representative for every isomorphism class of symmetric operads.

Note that abstract operators in an operad have no restrictions on how they can be wired together,

so long as output nodes are only connected to input nodes of other operads such that no feedback

loops are formed. We can generalise the abstract operators so that their input and output nodes have

associated colours, and then further restrict composability to be between nodes that share the same

colour. Formalising this idea would recover the ordinary multicategories of Example 4.19, which is why

multicategories are also referred to as coloured operads: the colours make up the multicategory objects,

and the abstract operators the multimorphisms. In particular, ordinary operads are just multicategories

on one object.

This also means that operads can be internalised: if (E ,T ) is cartesian, and pt ∈ E0 is a terminal

object, then the corresponding category of generalised operads can be taken to be (E ,T )Multicatpt.

If (E ,T ) is suitable, then Definition 4.21 provides a procedure (E ,T ) 7→ (E +
pt ,T

+
pt ) which serves as the

nonsymmetric analogue of Baez and Dolan’s slice operation. Note that the T+
pt -algebras will be precisely

the (E ,T )-operads.
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4.4 The Category of Opetopes
Here, we will finally define the shape category O that will replace the simplex category for nerves of

higher categories. We will construct opetopes as in [31, §7.1] and define structure maps according to

[11, §1.4].

Given any cartesian pair (E ,T ), the category E +
V of (E ,T )-graphs on V is equivalent to the slice

category (E ↓ TV×V ) since the presence of finite products in E allow us to identify spans TV ←E→V

with morphisms E → TV ×V , and graph morphisms on V are likewise identifiable with morphisms of

edge objects in E that lie over TV ×V . Taking V = pt to be terminal in E , this means in particular that

E +
pt
∼= (E ↓ T (pt)). From Example 4.18, we have seen that the pair (E 0,T 0) := (Set, id) is suitable, and

this will serve as the base of our inductive definition of suitable pairs (E n,T n) as iterative slices. More

precisely, define E n+1 := (E n)+pt
∼= (E n ↓ T n(pt)) and T n+1 := (T n)+pt.

Proposition 4.22. For every n≥ 0, there is a unique set On, up to bijection, such that E n ∼= (Set ↓ On).

Call On the set of n-opetopes.

Proof. This is proven in [31, §7.1], but we will recount the proof here to help describe the elements

of On later. Note that uniqueness follows from objects being determined up to isomorphism by the

isomorphism class of their slice category.

The proposition is certainly true when n = 0 with O0 := pt. Inductively, suppose E n ∼= (Set ↓ On)

for some n≥ 0 and consider E n+1 ∼= (E n ↓ T n(pt)). By being a slice category, E n has a terminal object

given by idOn : On→ On, so consider the object t := T n(pt) = T n(idOn) in (Set ↓ On) and define On+1

to be the domain of t as a function in Set. Then, E n+1 ∼= (E n ↓ t)∼= ((Set ↓On) ↓ t) is isomorphic to the

category whose objects are commutative triangles

X On+1

On

t

for X some set. The morphisms of this category are functions X→ X ′ which lie over t in the above trian-

gle. Commutativity forces the map X → On in the triangle to be uniquely determined as the composite

of the map X → On+1 and t, which means that the forgetful functor ((Set ↓ On) ↓ t)→ (Set ↓ On+1) is

in fact an isomorphism of categories, establishing that E n+1 ∼= (Set ↓ On+1), as desired.

The above proof provides an explicit induction for constructing n-opetopes via On+1 := T n(On), as

we can retrace through the details of the proof of Lemma 4.20 to understand how the monad T n acts.

Additionally, the above proof provides a canonical map t : On+1→ On for all n≥ 0.

At dimension zero, we have E 0 = Set, T 0 = id, and O0 = pt by definition, meaning we have only

one 0-opetope. This also means O1 = T 0(O0) = pt, which in turn implies that E 1 ∼= (Set ↓ pt)∼= Set is

the usual cartesian monoidal category of sets. The monoid objects in E 1 are just the usual set-theoretic

monoids, so T 1 = (−)∗ recovers the Kleene star or “free monoid” monad.
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1 2 3 4

cap

5

1 2 3 1 2 1 2 3

1 1 2 3 4

Figure 4.2: Example of an oriented capped rooted tree

Moving to dimension two, O2 := T 1(O1) = pt∗ ∼= N0 is the monoid of nonnegative integers under

addition, and therefore E 2 = (Set ↓ N0) is the category of graded sets. The monoidal product on E 2 is

given on graded sets X = (Xp)p≥0 and Y = (Yp)p≥0 by

(X⊗Y )p :=
⋃

q1+···+qk=p
k≥0

Xq1×·· ·×Xqk ×Yk

We can interpret the degree-p elements of the graded set X as circuit gates with p inputs and one output,

then X ⊗Y consists of gates y ∈ Yk for some k ≥ 0 with each of their k input nodes wired to the output

node of some gate in X , and the degree is determined by the resulting number of (open) input nodes of

this circuit. As in Example 4.19, the monoids in E 2 are the plain operads. This interpretation realises

the gates as abstract operators, and wiring gates together yields other operators such that this process is

associative and unital. Therefore, T 2 is the “free operad” monad that takes a graded set X and produces

the operad whose operators are freely generated by the gates of X by wiring them together.

Under this interpretation, O2 ∼= N0 is the graded set with a unique gate of each arity, and so by

thinking of each such gate as a vertex, O3 = T 2(O2) can be identified with the set of oriented capped

rooted trees, with the root being the unique output node and the leaves being input nodes. The caps

on a rooted trees are just labels on a subset of their leaves to indicate that a rooted tree cannot be

connected there, which corresponds to the nullary gate 0 ∈ N0 ∼= O2. The orientation is given by a

fixed enumeration of the child nodes for each node of the tree, which corresponds to fixing an order of

the inputs for the corresponding gate that the node represents. The canonical map t : O3 → O2 maps

an oriented capped rooted tree to its number of uncapped leaves. Figure 4.2 gives an example of an

oriented rooted tree with a single cap and twelve uncapped leaves. The root is placed at the bottom of

the tree to suggest that this is the output, while the leaves are the inputs, corresponding to the fact that
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•
(a) Unique 0-opetope and 1-opetope

(b) First several 2-opetopes 2[0], . . . ,2[4]

V

(c) Unfolded example of a 3-opetope

Figure 4.3: Visualisation of opetopes

its target 2-opetope is the twelve-input gate.

Alternatively, we can use dual diagrams to view the p-ary abstract operator in O2 instead as a (p+1)-

gon with p input edges and one output edge. Then, O3 may be identified with the set of polyhedra with

various polygonal input faces and a single output face. The benefit of this visualisation of opetopes

as polytopes is that it corresponds more readily to diagrams of (higher) morphisms: for instance, O2

corresponds to the set of multiary composition diagram shapes of Figure 4.1.

Inductively, given that an n-opetope γ for n > 0 is determined by its configuration of input facets

skγ ∈ On−1 with k in some index set (which produces a single output facet tγ ∈ On−1), consider the

following procedure:

• Start with a finite sequence γ1, . . . ,γm of n-opetopes for some integer m≥ 0.

• For each 1 < j ≤ m, glue the output facet tγ j of γ j to an input facet skγi of an opetope γi for some

i < j such that skγi = tγ j. If this is impossible, declare that this procedure failed; otherwise, say

that this procedure is successful.

Then, On+1 is the collection of all configurations Γ of n-opetopes obtained from successful runs of the

above procedure. Any such configuration Γ yields from the unglued input facets a configuration of

(n− 1)-opetopes, which by induction determines a unique n-opetope. This n-opetope is taken to be

the output facet tΓ, while the n-opetopes in the configuration define the input facets skΓ, and so we are

allowed to continue this procedure inductively. Note that taking the output facet defines the canonical

map t : On+1→ On of Proposition 4.22.

Just as the name suggests, this interpretation allows us to view n-opetopes as directed n-dimensional

polytopes that encode abstract operators by having a prescribed output facet, and therefore as an un-

biased and nondegenerate generalisation of the abstract n-simplices of Section 3.2. A visualisation of
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opetopes in the first few dimensions that is similar to that for simplices is given in Figure 4.3. In partic-

ular, the example of a 3-opetope in Figure 4.3c is the dual polytope corresponding to the rooted tree in

Figure 4.2.

We compile these opetopes into a category analogous to that of Cheng in [11, §1.4]:

Definition 4.23. For an n-opetope γ ∈ On with n > 0, recall that it is determined by its configuration of

input (n−1)-opetope facets skγ , and has a unique output (n−1)-opetope facet tγ . Define the category

of opetopes O to be the category whose set of objects is ∏
n≥0 On and whose morphisms are generated

by

• target coface maps t : tγ → γ for all γ ∈ On with n > 0, and

• source coface maps sδ : δ → γ for every input opetope δ = skγ of γ ∈ On with n > 0

subject to the following opetopic identities: for any two input (n− 1)-opetopes δ ,δ ′ of γ wherein the

output facet ε := tδ of δ is glued to the input facet sε : ε → δ ′ of δ ′, we have commutativity of the

square

ε δ
′

δ γ

sε

t sδ ′

sδ

Write dimγ := n if γ ∈ On, then the coface maps all decrease dimension by exactly one.

Note that the coface maps in Cheng’s original category of opetopes defined in [11, §1.4] are more-

over subject to several other compatibility constraints on top of the opetopic identities described above.

This is because her definition of opetopes via generalised symmetric operads requires the coface maps to

reflect input insensitivities to permutation up to isomorphism. As our generalised operads are nonsym-

metric, this is unnecessary in our case. The generating coface maps of O correspond to the simplicial

coface maps di : [n]→ [n + 1] of ∆, and the asserted opetopic identities likewise correspond to the

simplicial identities of the form d jdi = did j−1 for i < j.

We can also realise the visual intuition for opetopes provided in Figure 4.3 formally with the shape

functor J : O→ Top from [31, §7.4]:

Definition 4.24. Let O≤n be the full subcategory of O on opetopes γ with dimγ ≤ n. Define the functors

Jn : O≤n→ Top inductively as follows. Set J0 : O≤0 = 1→ Top to map to the singleton space. Given

Jn : O≤n→ Top for some n≥ 0, we have from Section 3.3 an induced nerve-realisation adjunction

Rn : PSh(O≤n)� Top : HomO≤n(Jn,−)

where in particular Rn(HomO≤n(−,δ )) ∼= Jn(δ ) for every δ in O≤n. Extend Jn to O≤n+1 to define a

functor Jn+1 : O≤n+1→ Top by setting

Jn+1(γ) := Cone
(

Rn(HomO(−,γ)|O≤n
)
)
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for γ ∈On+1, where Cone(X) of a space X is the contractible space X×[0,1]
X×{1} . For a face map d : δ → γ in

O≤n+1 with dimδ = n and dimγ = n+1, define Jn+1(d) to be the composite

Jn+1(δ ) Rn

(
HomO(−,δ )|O≤n

)
Rn

(
HomO(−,γ)|O≤n

)
Jn+1(γ)

∼ Rn(d∗)

Note that O = lim−→n
O≤n is the colimit of the inclusions O≤n ⊂ O≤n+1. Therefore, the above family of

functors Jn : O≤n→ Top induces a unique co-opetopic space J : O→ Top.

Proposition 4.25. J(γ) is a contractible CW complex for every opetope γ . Moreover, if δ → γ is a map

of opetopes with dimδ < dimγ , then J(δ )→ J(γ) is an inclusion of J(δ ) as a subcomplex of ∂J(γ).

Proof. It is clear from the definition that J(γ) is contractible for all opetopes γ . We prove the remainder

of the proposition by induction on Jn : O≤n→ Top. This is trivial for n = 0, so suppose the proposition

is true for some n≥ 0. For γ ∈ On+1, we have that

B := Rn

(
HomO(−,γ)|O≤n

)
=
∫

δ∈(O≤n)0

HomO(δ ,γ)× Jn(δ )

where the hom-set is given the discrete topology. B is thus a quotient of the disjoint union of CW

complexes {d}× Jn(δ ) with δ ∈ (O≤n)0 and d : δ → γ .

For any map e : ε → ε ′ in O≤n, we have by induction that Jn(ε) is a subcomplex of ∂Jn(ε
′) via e.

The quotient B then identifies for any d : ε ′→ γ the complex {de}× Jn(ε) of B with the subcomplex

{d}× Jn(ε) ⊂ ∂ ({d}× Jn(ε
′)). Therefore, B is the result of gluing CW complexes along boundary

subcomplexes, and is thus a CW complex also. This shows that Jn+1(γ) := Cone(B) is indeed a CW

complex.

For a face map d : δ → γ of γ with dimδ = n, the map Jn+1(d) is the composite of the subcomplex

inclusions Jn(δ )∼= {d}×Jn(δ )⊂ B and the inclusion B ↪→Cone(B) which factors through ∂ (Cone(B)).

Therefore, the proposition holds for Jn+1 as well. By induction, and taking the colimit, this proves the

proposition for J : O→ Top.

As opetopes are far more structurally involved than their simplicial analogue, they are also difficult

to label. As we will primarily be dealing with opetopes of dimension at most three, we will establish

some notation for symbolically referring to them. The notation for 3-dimensional opetopes will be

cumbersome, but we will largely only refer to a special subfamily of 3-opetopes which are of depth two

when viewed as capped rooted trees.

There is a unique 0-opetope and 1-opetope, so denote these by 0 and 1, respectively. In dimension

two, each 2-opetope corresponds to a natural number p, so denote by 2[p] the 2-opetope with p input

edges. For 3-opetopes, view them as oriented capped rooted trees and produce the name by traversing

the tree with a depth-first search as follows. Do not label uncapped leaf nodes, and then inductively label

a node by its number of input edges followed by a comma-separated list of labels of its child subtrees

(in the order given by their orientation) wrapped in parentheses. The array ~p of numbers obtained for

the overall 3-opetope is then given by the label for its root, and we then denote the 3-opetope by 3[~p]. If
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3[ ]5( )3( 1),, , ,2(4 ),0, ,3

cap

Figure 4.4: Example of labelling a capped rooted tree

all input subtrees of a vertex are given by leaf nodes, then the vertex may simply be labelled by its arity

without traversing further. This process is illustrated in Figure 4.4, where the orientation of the vertices

is the same as in Figure 4.2.
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Chapter 5

Opetopic Nerves

Now that we have defined the shape category O of opetopes, we can replace the simplex category ∆ for

the nerve-based definition of higher categories. We will see that much of the construction of Section 4.2

readily translates to the opetopic case, using an analogue of the simplicial Segal condition. However,

due to the deliberate removal of degeneracies, the Segal condition alone will be insufficient, so we will

also need another constraint on the structure morphisms to characterise opetopic higher categories.

We will start by establishing an opetopic analogue of the Grothendieck nerve, and prove a similar

result to Lemma 4.2, which we can define via a co-opetopic category S : O→ Cat that forgets all but

the 1-dimensional structure of the opetopes.

Definition 5.1. For an opetope γ , define the set {γ}1 inductively on dimγ as follows.

• Set {0}1 :=∅ and {1}1 := HomO(1,1) = pt.

• For the 2-opetope 2[p], set {2[p]}1 := HomO(1,2[p])\{t} to be its set of source 1-opetopes.

• If dimγ > 2, then set {γ}0 := {tγ}0 and {γ}1 := {tγ}1.

Call{γ}1 the set of input 1-opetopes of γ , and denote by |γ|1 the cardinality of {γ}1.

Proposition 5.2. The input 1-opetopes induce a linear order on the 0-opetopes 0→ γ of γ by asserting

that 0 s−→ 1→ e to be less than 0 t−→ 1→ e for any e ∈ {γ}1. Moreover, for a map δ → γ , the induced

map HomO(0,δ )→ HomO(0,γ) of 0-opetopes is monotone.

Proof. The linear order is trivial for 0 and 1. For 2-opetopes, the linear order follows by construction, as

2[p] is constructed from gluing p many 1-opetopes source-to-target (cf. Figure 5.1). That maps δ → γ

preserve the above ordering on 0-opetopes when dimγ ≤ 2 is then clear by design. In particular, the

ordering on 0-opetopes is preserved for target coface maps t : 1→ 2[p].

If dimγ ≥ 2, note that a 1-opetope 1→ γ is either an input 1-opetope, or the target of some coface

2[p]→ γ . This is clear if dimγ = 2. If dimγ > 2 and an input 1-opetope of some source facet of γ is

not glued to the target 1-opetope of another source facet, then it is a 1-opetope of tγ by the definition of

tγ . By induction this 1-opetope 1→ tγ is either an input 1-opetope of tγ (and thus of γ), or is the target

1-opetope of some coface 2[p]→ tγ → γ .
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Figure 5.1: Chains of input 1-opetopes in the first several 2-opetopes

Suppose δ → γ and let e ∈ {δ}1. Let x : 0 s−→ 1 e−→ δ and y : 0 t−→ 1 e−→ δ , then x < y in δ . If e is

an input 1-opetope of γ , then x < y in γ by definition. Otherwise, by the previous paragraph, e is the

target 1-opetope of some coface 2[p]→ γ . In this case, note that x < y in 2[p] as well, because the target

map t : 1→ 2[p] induces a monotone map on 0-opetopes. If the source 1-opetopes of 2[p]→ γ are input

1-opetopes of γ , then this implies x < y in γ . Otherwise, we may recurse on the 1-opetopes of 2[p]→ γ

that are not input 1-opetopes of γ , as they are target 1-opetopes of other 2-dimensional cofaces of γ . As

γ consists of only finitely many opetopes of smaller dimension, this recursion must eventually terminate

at input 1-opetopes, after which we find that x < y in γ .

Definition 5.3. Define the functor S : O→ Cat with S(γ) := [|γ|1] set as the chain {0 < · · · < |γ|1} of

0-opetopes of γ , and S(δ )→ S(γ) the corresponding inclusion of chains for any map δ → γ . Using the

general construction in Section 3.3, S induces an adjunction | − | : PSh(O)� Cat : N between small

categories and opetopic sets. The right adjoint is the opetopic nerve, which is given on a category C by

(NC )γ := Func(S(γ),C ).

As in the case of the Grothendieck nerve, we have for the opetopic nerve of a category C that

(NC )γ = C
×C0 |γ|1
1 , meaning that the γ-cells of the opetopic nerve of C are the length-|γ|1 strings of

composable morphisms in C . In particular, (NC )0 = C0 and (NC )1 = C1 as before.

We can also describe the opetopic nerve of C more explicitly: for any opetope γ , consider its 1-

skeleton, which is the directed graph obtained by remembering only the vertices (0-opetopes) and edges

(1-opetopes) of γ , then define (NC )γ to be the set of commutative diagrams in C whose shape is given

by the 1-skeleton of γ . The coface maps δ → γ induce inclusions of 1-skeleta and thus provide a natural

function (NC )γ → (NC )δ by sending such a commutative diagram to the subdiagram corresponding to

the sub-1-skeleton of δ in γ . Due to the commutativity constraint on the cells in (NC )γ , each diagram is

completely determined by the morphisms chosen for the source 1-opetopes of γ , and so we recover the

same definition (NC )γ = C
×C0 |γ|1
1 as before. This has an obvious generalisation to internal categories,

and leads to an analogue of the strict Segal condition of Lemma 4.2.

However, a strict opetopic Segal condition is insufficient to characterise the essential image of the

above nerve construction. For example, fix a monoid M (in Set) and consider the set M̃ := {0,1}×M

equipped with the unbiased product ∏
p
i=1(bi,mi) :=

(
0,∏p

i=1 mi
)
. This almost defines an associative

and unital multiplication on M̃, except ∏
1(1,m) = (0,m) for all m ∈ M shows that the unary product

is not well-behaved. However, we can still follow the above nerve construction and define a functor

A : Oop→ Set by taking Aγ to be the set of length-|γ|1 strings of elements of M̃ and the face maps on

A to be given by multiplying the appropriate elements of a string together. We can see by construction
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then that A0 = pt and A1 = M̃, and so Aγ = M̃|γ|1 = A
×A0 |γ|1
1 despite not A being isomorphic to the nerve

of a category.

The reason for the insufficiency of the Segal condition is the lack of codegeneracy maps in O.

Recall that the codegeneracy maps in ∆ were necessary to provide units for nerves (cf. Lemma 4.2).

The problem with this incarnation of units is that the resulting units are preserved too strictly in general.

As identity morphisms should instead arise from nullary composition, O is already capable of providing

them from the Segal condition on the opetope 2[0]; however, there are no restrictions on the unary

operations obtained from the Segal condition on the opetope 2[1] to act essentially trivially. This issue

can be resolved by simply asserting that every morphism arises as a unary composite of some other

morphism: for instance, we can see that ∏
1 on M̃ in the previous example is not surjective. In the

simplicial case, this surjectivity is automatic by the simplicial identity disi = id, which ensures that the

face maps of a simplicial set are already split epic.

Lemma 5.4. An opetopic set A : Oop → Set is isomorphic to the opetopic nerve of a category if and

only if it satisfies the following:

• (Segal condition) The canonical map Aγ → A
×A0 |γ|1
1 (which we will refer to as a Segal map) is an

isomorphism for all opetopes γ .

• (Unary condition) The target face map t : A2[1]→ A1 is an isomorphism.

Proof. That the opetopic nerve of a category satisfies the Segal and unary conditions follows by defini-

tion. Suppose A : Oop→ Set satisfies the above conditions, then we will show that A ∼= NC for some

category C . Define C0 := A0 and C1 := A1 with the source and target maps defined by the correspond-

ing source and target cofaces 0⇒ 1 in O. Define composition in an unbiased manner: for any p ≥ 0,

define p-ary composition on C by cp : A
×A0 p
1 ← A2[p]

t−→ A1, inverting the left-facing arrow by the Segal

condition.

To see that this composition is associative in the unbiased sense, note that the opetopic identities

ensure that the following diagram commutes for all p≥ 0 and q1, . . . ,qp ≥ 0:

p

∏
i=1

A0A
×A0 qi

1 A2[∑i qi]

p

∏
i=1

A0A2[qi] A3[p(~q)] A1

A
×A0 p
1 A2[p]

∼

t∼

t
×A0

p

∼

(s2[qi ])i

s2[p]

t

∼

t

The indicated isomorphisms are given by the Segal maps, so we can invert these and obtain the commu-
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tative diagram

p

∏
i=1

A0A
×A0 qi

1 A2[∑i qi]

p

∏
i=1

A0A2[qi] A3[p(~q)] A1

A
×A0 p
1 A2[p]

∼

∼∼ t

t s

t

∼

t

(Eq. 5.1)

The lower path ∏
p
i=1 A0A

×A0 qi

1 → A1 composes morphisms of C via cp(cq1 , . . . ,cqp) while the upper

path composes the morphisms all at once with c∑i qi , so commutativity here proves that the family of

compositions on C is associative.

It remains to check that unary composition c1 : A1
s−1

−−→ A2[1]
t−→ A1 acts by the identity. This follows

from t : A2[1]→ A1 being epic: by the associativity proven above with p = q1 = 1, we have c1c1 = c1;

that is, ts−1ts−1 = ts−1, which implies ts−1t = t. As t is an epimorphism, this means s−1t = id, from

which the invertibility of s−1 gives c1 = ts−1 = id. We can then recover C as a (biased) category in E

by taking c := c2 and e := c0, and the Segal maps provide the natural isomorphisms Aγ → (NC )γ , as

desired.

Remark 5.5. The proof reveals that the unary condition can be relaxed to just asserting that the target

face map is an epimorphism.

With functors being determined by their action on objects and morphisms, the above nerve con-

struction naturally extends to a faithful functor N : Cat→ Func(Oop,Set). As opetopic maps between

nerves must respect the structure maps, they will respect the Segal maps, and thus also their inverses,

meaning that opetopic maps between nerves are automatically functorial as well. Therefore, Lemma 5.4

describes Cat as a full subcategory of Func(Oop,Set).

Remark 5.6. We can define an analogue of opetopic nerves of categories internal to a finitely complete

category E in a similar way as in Section 4.1. Given C ∈ Cat(E )0, define (NC )γ := C
×C0 |γ|1
1 , and the

maps (NC )γ → (NC )δ correspond to composition in C for all δ → γ . Then, Lemma 5.4 generalises to

realise Cat(E ) as a full subcategory of Func(Oop,E ). In particular, by taking E := nCat, we find that

strict (n+1)-categories correspond to functors A : Oop→ nCat such that

• A0 is a discrete n-category.

• Aγ → A
×A0 |γ|1
1 is an isomorphism for all opetopes γ .

• t : A2[1]→ A1 is an isomorphism.
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5.1 Unbiased Double Nerve
We can generalise the idea of taking cells of NC as commutative diagrams in C to the context of

unbiased bicategories as well to yield an analogue of Section 4.2.1. Let B be an unbiased bicategory,

then its nerve should be a functor NB : Oop → Cat (functors of this type may be called opetopic

categories) whose γ-cells for an opetope γ are diagrams that commute up to specified 2-isomorphisms,

where the shape of these diagrams of morphisms and 2-isomorphisms correspond to the 2-skeleton of γ .

Definition 5.7. Define the unbiased double nerve functor N : UBicat→ Func(Oop,Cat) as follows.

Consider families in B of the form (x•, f•,θ•) with objects xi ∈ B0 for every vertex i : 0→ γ ,

morphisms f j : xs j → xt j for every edge j : 1→ γ , and 2-isomorphisms θk :
⊗p

i=1 fsik
∼
=⇒ ftk for every

face k : 2[p]→ γ . For every 3-opetope δ → γ , the above family produces a diagram of 2-isomorphisms in

B via the various faces k : 2[p]→ δ → γ , so take the objects of (NB)γ to be those families (x•, f•,θ•)

where every diagram of 2-isomorphisms induced by some 3-opetope δ → γ commutes. Just as with

the simplicial double nerve, take the morphisms (x•, f•,θ•) → (x•, f ′•,θ
′
•) in NB to be families of

2-morphisms ξ j : f j ⇒ f ′j such that ξtk ◦ θk = θ ′k ◦
⊗p

i=1 ξsik for every face k : 2[p]→ γ . With this

construction, the face maps become apparent, and produce the desired opetopic category NB.

Given bicateogires B,C and a pseudofunctor F : B→C , we can define its nerve NF : NB→NC

to be the opetopic functor that sends a γ-cell (x•, f•,θ•) in B to the γ-cell (Fx•,F f•,ϑ•), where the

2-isomorphisms are given by the composite ϑk :
⊗p

i=1 F fsik
F p

=⇒ F
(⊗p

i=1 fsik
) F(θ p)
===⇒ F ftk. The latter is a

well-defined γ-cell in C by the pseudofunctoriality of F .

As before, it follows from the definition that (NB)0 = discB0 and (NB)1 =
∏

x,y∈B0 HomB(x,y),

and we recover the opetopic nerve of the previous section if B were in fact a 1-category. The Segal

maps (NB)γ → (NB)
×(NB)0

|γ|1
1 send a γ-cell (x•, f•,θ•) to the composable string of morphisms f j

corresponding to the source 1-opetopes j of γ . Reasoning exactly as with the simplicial double nerve,

the Segal maps will be genuinely surjective and fully faithful, and thus in particular will be equivalences

of categories. Moreover, since (NB)2[1] is the category of 2-isomorphisms and commutative squares of

2-morphisms in B, the map t : (NB)2[1]→ (NB)1 that sends a 2-isomorphism to its codomain can be

easily seen to be strictly surjective. Again by the invertibility of the 2-morphisms in 2[1]-cells, the map

is also fully faithful and thus an equivalence of categories as well.

The goal now is to understand how to reverse engineer this process; that is, recognise which opetopic

categories are levelwise equivalent to the unbiased double nerve of a bicategory, and recover the under-

lying bicategory. Refer back to Lemma 5.4: the Segal maps there were asserted to be isomorphisms

into a limit. As limits are defined up to unique isomorphism, this allows us to reinterpret the strict Segal

condition as asserting that the object Aγ with its structure morphisms into the input 1-faces and vertices

forms a universal cone; that is, Aγ is the limit A
×A0 |γ|1
1 . This perspective makes the commutativity of the
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diagram
p

∏
i=1

A0A
×A0 qi

1 A2[∑i qi]

p

∏
i=1

A0A2[qi] A3[p(~q)] A1

A
×A0 p
1 A2[p]

∼

∼∼ t

t s

t

∼

t

from (Eq. 5.1) more intuitively clear: the pentagon on the lower left commutes by the universal property

of A2[p] as a limit via the Segal condition, as it makes the two paths mapping into it from ∏
p
i=1 A0A

×A0 qi

1

necessarily equal; likewise, the universal property of A2[∑i qi] makes the upper triangle commute. There-

fore, our goal is to view the Segal condition for double nerves in a similar way so that associativity can

follow by universal property as well. This will make the argument more readable, and also easier to

generalise to higher dimensions (though the proof will still be quite involved).

5.1.1 Higher Limits

Given an unbiased bicategory B, we have seen that the Segal maps (NB)γ → (NB)
×(NB)0

|γ|1
1 of its

nerve are surjective equivalences of categories. Unlike in the 1-dimensional case, this is insufficient

for witnessing (NB)γ as a limit, as limits are not necessarily preserved under equivalences. Therefore,

we will study the double nerve with the 2-categorical analogue of a limit, which is only defined up to

equivalence rather than isomorphism.

Given a category C , recall that the limit of a diagram F : J →C , if it exists, is a representing object

for the corresponding limit of representable presheaves lim←− j∈J0
HomC (−,F j) : C op→ Set. Note that

the limit of a general diagram of sets G : J → Set is just the set of tuples u• ∈ ∏ j∈J0 G j such that

(G f )(u j) = u j′ for every f : j→ j′ in J , and this is equivalently the set of natural transformations

constpt ⇒ G from the functor constpt : J → Set mapping everything in J to a singleton. In other

words, lim←−G∼= Nat(constpt,G). Applying this pointwise to our diagram of representable presheaves for

F , we find in general that the limit of a diagram F : J → C is an object lim←−F ∈ C0 equipped with

isomorphisms of sets

HomC (x, lim←−F)∼= lim←−
j∈J0

HomC (x,F j)∼= Nat(constpt,HomC (x,F))

natural in x ∈ C0. We can also read off the universal property of lim←−F from the above characterisation:

Nat(constpt,HomC (x,F)) is precisely the set of cones from x to F , and we have a natural correspondence

between these and morphisms x→ lim←−F . In particular, the universal cone with x = lim←−F corresponds to

the identity endomorphism on lim←−F , and naturality of this correspondence in x unwinds to say that the

morphism x→ lim←−F for any cone from x to F is precisely the unique morphism that factors this cone
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through the universal cone for lim←−F .

The representability characterisation of limits generalises to the 2-dimensional setting:

Definition 5.8. Fix a bicategory B, and let F : J →B be a pseudofunctor. The conical 2-limit of F

is defined to be an object lim←−
2 F ∈B0 equipped with a pseudonatural equivalence of categories

HomB(−, lim←−
2F)' Natps(const1,HomB(−,F))︸ ︷︷ ︸

HomFuncps(J ,Cat)(const1,HomB(−,F))

: Bop→ Cat

By the bicategorical Yoneda Lemma (cf. [23, Lemma 8.3.12]), this uniquely characterises the 2-

limit up to equivalence in B, as desired. These are well-known objects, and can be found for instance

in [23, §5.1].

We can extract from this definition the 2-universal property of lim←−
2 F . The objects of the cate-

gory Natps(const1,HomC (x,F)) are the cones from x to F that commute up to coherent specified 2-

isomorphism, and the morphisms are families of 2-morphisms between the cone morphisms that com-

mute with the coherence 2-isomorphisms. The equivalence with the category of morphisms x→ lim←−
2 F

means that every such cone from x is in the essential image of some morphism x→ lim←−
2 F that is unique

up to unique 2-isomorphism. The image of the identity endomorphism on lim←−
2 F gives the 2-universal

cone from lim←−
2 F to F , and pseudonaturality in x tells us that any cone from x to F factors up to co-

herent 2-isomorphism through the 2-universal cone via some x→ lim←−
2 F , and any two such factoring

morphisms are uniquely 2-isomorphic from the pseudonatural transformation being a levelwise equiva-

lence.

The 2-universal property will be important when proving coherence for the underlying unbiased

bicategories of opetopic 2-nerves, but we can also compute 2-limits much more concretely in Cat:
suppose G : J → Cat is a pseudofunctor, then lim←−

2 G ' Natps(const1,G). Indeed, a pseudofunctor

Φ : X → Natps(const1,G) is equivalently a pseudonatural transformation Φ̃ : const1⇒ Funcps(X ,G)

of pseudofunctors J → Cat by taking its components to be Φ̃ j := Φ(−) j : X → G j for j ∈J0

(recalling that a pseudofunctor 1→ Funcps(X ,G j) is up to equivalence a pseudofunctor X →G j) and

similarly for morphisms. This identification extends readily to pseudonatural transformations Φ⇒ Ψ

by identifying them with modifications Φ̃V Ψ̃. Reversing this identification is obvious, establishing

the desired equivalence

Funcps(X ,Natps(const1,G))' Natps(const1,Funcps(X ,G))

which is moreover pseudonatural in X .

Example 5.9 (2-pullback). Given a cospan X
F−→Z

G←−Y of categories, a 2-cone from 1 is equivalently

a choice of objects x ∈X0, y ∈ Y0, z ∈Z0 and specified isomorphisms Fx ∼= z and Gy ∼= z. Any such

cone is isomorphic to one where the isomorphism Fx ∼= z is given by an identity, so we can simplify

our canonical 2-limit X ×2
Z Y of the cospan to be the category whose objects are triples (x,y,φ) with

x ∈X0, y ∈ Y0, and φ : Fx ∼= Gy in Z , and whose morphisms (x,y,φ)→ (x′,y′,φ ′) are given by pairs

of morphisms f : x→ x′ and g : y→ y′ such that F f ◦φ ′ = φ ◦Gg.
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Note that the strict pullback X ×Z Y by definition forms a cone with this cospan and thus admits

an essentially unique functor into X ×2
Z Y by its 2-universal property. In fact, X ×Z Y is the full

subcategory of the 2-pullback on those triples (x,y,φ) where φ is an identity, and the essentially unique

functor X ×Z Y →X ×2
Z Y can be taken to be the corresponding inclusion. In particular, if Z is

discrete, then X ×2
Z Y recovers the strict pullback of categories.

Remark 5.10. Recall from Section 4.2 that it was crucial for the induction that the category nNerve had

fibre products over discrete objects, and moreover that weak equivalences were stable under such pull-

backs. That the above example showing in particular that 2-fibre products over discrete categories can

be presented with a usual fibre product suggests that these assumptions on nNerve really just describe

the properties necessary for using 1-categorical language to work with higher limits without much loss

of generality.

Let A : Oop → Cat be an opetopic category with A0 discrete, and γ an n-opetope for some n ≥ 3

to ensure that |γ|1 = |tγ|1. Suppose the Segal maps f :Atγ →A
×A0 |γ|1
1 and g :Aγ →A

×A0 |γ|1
1 into the

1-fibre product are surjective equivalences of categories. By the axiom of choice, we can find sections

f−1 : A×A0 |γ|1
1 → Atγ of f and g−1 : A×A0 |γ|1

1 → Aγ of g that are also weak inverses. Fix natural

isomorphisms ξ : id ∼=⇒ gg−1 and ζ : id ∼=⇒ f f−1, then for every input edge i : 1→ γ we obtain a natural

isomorphism ξ(i) : πi
∼
=⇒ ig−1 from the pasting diagram

A×A0 |γ|1
1

Aγ

A×A0 |γ|1
1 A1

g−1

id
∼
ξ

g
i

πi

	

where πi :A×A0 |γ|1
1 →A1 is the canonical projection. Since i : 1→ γ is also an input edge of tγ using the

fact that dimγ ≥ 3, we similarly obtain a natural isomorphism ζ(i) : πi
∼
=⇒ i f−1 from the pasting diagram

A×A0 |γ|1
1

Atγ

A×A0 |γ|1
1 A1

f−1

id
∼
ζ

f
i

πi

	

By Example 5.9, the 1-fibre product A×A0 |γ|1
1 being over a discrete category A0 also satisfies the uni-

versal property of the corresponding 2-pullback. Given that g : Aγ → A
×A0 |γ|1
1 is an equivalence of

categories, this means that Aγ will also satisfy this 2-universal property, which implies the following
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key observation:

Lemma 5.11. Let A : Oop → Cat be an opetopic category with A0 discrete, and γ an n-opetope for

some n≥ 3. Suppose the Segal maps f :Atγ→A
×A0 |γ|1
1 and g :Aγ→A

×A0 |γ|1
1 into the 1-fibre product—

that is, computing A×A0 |γ|1
1 in Cat as a 1-category—are surjective equivalences of categories, and fix

f−1,g−1,ζ(i),ξ(i) as above. Then, there exists a unique natural isomorphism α : tg−1 ∼=⇒ f−1 as in the

diagram

A×A0 |γ|1
1

Aγ Atγ

g−1

f−1

t

∃!α
∼

such that for every input 1-opetope i : 1→ γ , we have (i⊗α) ◦ ξ(i) = ζ(i) as natural isomorphisms

πi
∼
=⇒ i f−1.

While the above lemma also follows by a simple direct computation with the natural isomorphisms

involved, the realisation of α by 2-universal property as uniquely determined by the natural isomor-

phisms ξ : id ∼
=⇒ gg−1 and ζ : id ∼

=⇒ f f−1 generalises to other similar diagrams involving sections of

Segal maps in an opetopic category. This will be instrumental when proving Theorem 5.12: we will fix

sections g−1 for all Segal maps g, as well as natural isomorphisms id ∼=⇒ gg−1, and implicitly use them

to construct and argue uniqueness of various natural isomorphisms similar to α in Lemma 5.11.

5.1.2 Recovering the Underlying Algebraic Structure

With the language of 2-limits established, we can generalise the proof of Lemma 5.4 to unbiased bicat-

egories. We will moreover confirm that this opetopic approach fully characterises the pseudofunctors as

well.

Theorem 5.12. Let A : Oop→ Cat be an opetopic category satisfying:

• (Discreteness condition) A0 is discrete.

• (Unary condition) The target face map t :A2[1]→A1 is an equivalence of categories.

• (Segal condition) The map Aγ →A
×A0 |γ|1
1 into the 1-fibre product is a surjective equivalence of

categories for all opetopes γ .

Then, there exists an unbiased bicategory B with a levelwise equivalence A→ NB.

Remark 5.13. As surjectivity on objects is not stable under equivalences of categories, this does not

completely characterise the weak essential image of the double nerve construction. The reason for as-

serting 1-categorical constraints onA is an artefact of how hom-categories arise as 1-fibres of the overall

category of morphisms and 2-morphisms in a bicategory. By making the equivalences surjective, we

guarantee that the Segal maps admit weak inverses that are also sections, which is important for ensur-

ing that composites strictly respect domains and codomains; otherwise, we will only have isomorphisms

dom(g⊗ f )∼= dom f for composable morphisms f ,g.
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Note that this was unnecessary to assert in the simplicial context because Segal maps are already split

epic: the Segal maps are induced from the inert morphisms {i, i+1} ↪→ [n] which all have retractions in

the other direction by mapping k ∈ [n] to i if k ≤ i and otherwise to i+1. As retractions map to sections

under a contravariant functor (such as a presheaf), these combine to form a section for the induced Segal

map.

Proof of Theorem 5.12. We will construct an unbiased bicategory B from A in a similar manner to the

simplicial case. Take B0 := (A0)0 and for x,y ∈B0 define HomB(x,y) as the 1-fibre

HomB(x,y) A1

1 A0×A0

y
(s,t)

(x,y)

This establishes the objects, morphisms, and 2-morphisms of the proposed bicategory B.

To define and establish associativity of the composition on B, fix once and for all sections g−1 for

every Segal map g :Aγ →A
×A0 |γ|1
1 as well as natural isomorphisms id ∼=⇒ gg−1. This is possible by the

axiom of choice, since the Segal maps are assumed to be surjective equivalences of categories.

Unbiased composition. For each integer p≥ 0, the p-ary composition on B is induced by taking

the fixed section of the Segal map in the span ⊗p : A×A0 p
1 ←A2[p]

t−→ A1. In particular, note that the

unary composition when p = 1 is given by ⊗1 := ts−1 : A1 ← A2[1] → A1, where s−1 is the chosen

section of the Segal map s :A2[1]→A1. We need to check that p-ary composition ⊗p as defined above

restricts to a functor

⊗p : HomB(x0,x1)×·· ·×HomB(xp−1,xp)→ HomB(x0,xp)

for all objects x0, . . . ,xp ∈B0. This indeed holds because we take a section of the Segal map rather than

an arbitrary weak inverse: the canonical inclusions of the hom-categories into A1 induce a map fitting

as the dashed arrow in the commutative square (in fact, this is a pullback square)

HomB(x0,x1)×·· ·×HomB(xp−1,xp) A×A0 p
1

1 A×(p+1)
0

∃!

(x0,...,xp)

where the vertical map A×A0 p
1 →A×(p+1)

0 sends a composable string of 1-cells ( f1, . . . , fp) to the tuple

(s f1,s f2, . . . ,s fp, t fp). Note that t fi = s fi+1 for all 1 ≤ i < p. This establishes commutativity of the
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pentagon on the left of the diagram

HomB(x0,x1)×·· ·×HomB(xp−1,xp) A×A0 p
1

A×A0 p
1 A2[p] A1

1 A×(p+1)
0 A0×A0

id ⊗p

∼ t

(s,t)

(x0,...,xp)

(x0,xp)

(proj0,projp)

Commutativity of the triangle on the bottom is obvious, and commutativity of the lower right pentagon

follows by opetopic identities. The upper right triangle commutes by the definition of ⊗p, and the

triangle to its left commutes because the map A×A0 p
1 →A2[p] was chosen to be a section of the Segal

map. This proves commutativity of the perimeter in the diagram

HomB(x0,x1)×·· ·×HomB(xp−1,xp) A×A0 p
1

HomB(x0,xp) A1

1 A0×A0

∃!⊗p ⊗p

y

(x0,xp)

and thus we obtain the desired composition map as the unique dashed arrow indicated above. We will

prove associativity of these composition maps by looking at the global maps ⊗p :A×A0 p
1 →A1, as this

will imply associativity for the composition maps in B by taking fibres.

Associators and inserters. Now that we have established p-ary composition functors for B, we

will construct the unbiased associators. Recall from Lemma 5.4 that we have a (strictly) commutative

diagram
p

∏
i=1

A0A
×A0 qi

1 A2[∑i qi]

p

∏
i=1

A0A2[qi] A3[p(~q)] A1

A×A0 p
1 A2[p]

∼

t∼

t
×A0

p

∼

(s2[qi ])i

s2[p]

t

∼

t

by opetopic identities. Our Segal maps are only weakly invertible, so the diagram obtained after re-

versing the Segal maps in the above diagram (cf. (Eq. 5.1) from Lemma 5.4) will commute only up to

specified 2-isomorphisms. The resulting pasting diagram of these 2-isomorphisms will form our desired

75



associators.

More precisely, for p≥ 0 and q1, . . . ,qp ≥ 0, consider the pasting diagram

p

∏
i=1

A0A
×A0 qi

1 A2[∑i qi]

p

∏
i=1

A0A2[qi] A3[p(~q)] A1

A×A0 p
1 A2[p]

∼

∼∼ t

t s

t

	

∼ α(t)

∼

∼
α(s)

t

(Eq. 5.2)

where the morphisms marked as equivalences are the chosen sections of Segal maps. The natural iso-

morphism α(t) arises from the 2-universal property of A2[∑i qi] as a 2-limit by an argument analogous to

that of Lemma 5.11. Note that α(t) is implicitly uniquely determined by the fixed natural isomorphisms

id ∼=⇒ gg−1 for every Segal map g. Similarly, α(s) exists by the 2-universal property of A2[p] as the 2-

limit A
×2

A0
p

1 . The remaining square commutes by opetopic identities, and the overall diagram defines

the corresponding associator α p; specifically, we have

α
p := (t⊗α(s))◦ (t⊗α(t)) :

p⊗
i=1

⊗qi ∼=⊗∑i qi :A×A0 ∑i qi

1 →A1

Recall that unary composition is given by⊗1 := ts−1 :A1←A2[1]→A1 with s−1 the chosen section

to the Segal map s :A2[1]→A1. Taking p= q1 = 1 in (Equation Eq. 5.2) provides a natural isomorphism

ts−1ts−1 ∼= ts−1, and thus by precomposing with s a natural isomorphism φ : t ∼=⇒ ts−1t. By assumption,

t is essentially surjective, so the axiom of choice provides every y ∈ (A1)0 with an object xy ∈ (A2[1])0

and an isomorphism ψy : y ∼=⇒ txy. For f : y→ z in A1, let f̃ := ψz f ψ−1
y and consider the diagram

y txy ts−1txy ts−1y

z txz ts−1txz ts−1z

∼=
ψy

f

φxy

∼=

f̃

∼=

ts−1ψ−1
y

ts−1 f̃ ts−1 f

∼=
ψz

∼=
φxz

∼=
ts−1ψ−1

z

The left and right squares commute by the definition of f̃ , and the middle square commutes because

the fullness of t allows us to write f̃ = t(g) for some g : xy→ xz, and then we use the naturality of φ .

Therefore, (ts−1ψ−1)⊗φx• ⊗ψ defines a natural isomorphism ι : id ∼= ⊗1 : A1→A1 which serves as

our inserter.

Coherence axioms. In order to show that B equipped with the established p-ary composition

functors and associators indeed defines an unbiased bicategory, it remains to check that the associators
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satisfy commutativity of the diagram

p⊗
i=1

qi⊗
j=1

ri, j⊗
⊗∑i qi (⊗r1,1 , . . . ,⊗rp,qp )

p⊗
i=1

∑ j ri, j⊗
⊗∑i ∑ j ri, j

α p

∼

⊗
i αqi

∼

α∑i qi

∼

α p
∼

We will do so by defining the natural isomorphism β 3;p(~q(~r)) from Lemma 4.12 and show that the two

triangles in

p⊗
i=1

qi⊗
j=1

ri, j⊗
⊗∑i qi (⊗r1,1 , . . . ,⊗rp,qp )

p⊗
i=1

∑ j ri, j⊗
⊗∑i ∑ j ri, j

α p

∼

⊗
i αqi

∼ β 3;p(~q(~r))

∼ α∑i qi

∼

α p
∼

(Eq. 5.3)

both commute.

Similar to the unbiased associators, define β 3;p(~q(~r)) to be the pasting diagram

p

∏
i=1

A0

qi

∏
j=1

A0A
×A0 ri, j

1 A2[∑i ∑ j ri, j]

p

∏
i=1

A0

qi

∏
j=1

A0A2[ri, j] A3[p(~q(~r))] A1

p

∏
i=1

A0A
×A0 qi

1

p

∏
i=1

A0A2[qi] A×A0 p
1 A2[p]

∼
∼ ∼ t

t

t

s

	

∼ β(t)

∼

∼
β(s)

t ∼

t

(Eq. 5.4)

where β(t) comes from the 2-universal property of A2[∑i ∑ j ri, j], and β(s) from that of A2[p].

We will first show that the upper right triangle of (Eq. 5.3) commutes. Let 4[q] be the 4-opetope

that compares these two composition complexes of natural isomorphisms: explicitly, define its complex

of source 3-opetopes by pasting 3[p(~q)] to the central input 2-opetope of 3[(∑i qi)(~r)]. The correspond-

ing target 3-opetope of this complex is 3[p(~q(~r))]. The example where all p,qi,ri, j = 3 is given in

Figure 5.2a.
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V
V

(a) Complex of source 3-opetopes for 4[q]

V W

V
(b) Complex of source 3-opetopes for 4[x]

V

(c) Target 3-opetope for both 4[q] and 4[x]

Figure 5.2: Examples of the 4-opetopes used for associator coherence

Now, we can subdivide (Eq. 5.4) to yield the equal pasting diagram

p

∏
i=1

A0

qi

∏
j=1

A0A
×A0 ri, j

1 A2[∑i ∑ j ri, j]

p

∏
i=1

A0

qi

∏
j=1

A0A2[ri, j] A4[q] A3[p(~q(~r))] A1

p

∏
i=1

A0A
×A0 qi

1

p

∏
i=1

A0A2[qi] A×A0 p
1 A2[p]

∼

∼ ∼
∼ t

t

∼
β 1
(s)

t

s

∼

β 0
(s)

t

s

	

∼ β(t)

∼ t

∼
β 2
(s)

∼

t

the maps β 0
(s), β 1

(s), β 2
(s) arising from the 2-universal properties of A3[p(~q(~r))], A

×A0 ∑i qi

1 , and A2[p], re-

spectively. That these three natural isomorphisms paste together to recover β(s) in (Eq. 5.4) follows from
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the 2-universal property of A2[p] making β(s) unique. Composing β 0
(s) and β(t) together then yields the

pasting diagram

p

∏
i=1

A0

qi

∏
j=1

A0A
×A0 ri, j

1 A2[∑i ∑ j ri, j]

p

∏
i=1

A0

qi

∏
j=1

A0A2[ri, j] A4[q] A1

p

∏
i=1

A0A
×A0 qi

1

p

∏
i=1

A0A2[qi] A×A0 p
1 A2[p]

∼

∼ ∼ t

t

∼
β 1
(s)

t

s
s

∼
β 0
(t)

	

∼ t

∼ β 2
(s)

∼

t

Subdividing the commutative square based on the input 3-opetopes of 4[q] then gives

p

∏
i=1

A0

qi

∏
j=1

A0A
×A0 ri, j

1 A2[∑i ∑ j ri, j]

A3[(∑i qi)(~r)] 	

p

∏
i=1

A0

qi

∏
j=1

A0A2[ri, j] A4[q] A2[∑i qi] A1

A3[p(~q)] 	

p

∏
i=1

A0A
×A0 qi

1

p

∏
i=1

A0A2[qi] A×A0 p
1 A2[p]

∼

∼ ∼

∼

t
t

s

∼ α
∑i qi
(t)

t

∼
β 1
(s)

s

s

s

	

∼

α
(0)
(s)

t

t

s

∼

∼

∼
α
(0)
(t)

t ∼

∼ α
p
(s)

t

with α
∑i qi
(t) , α

(0)
(s) , α

(0)
(t) , α

p
(s) arising from the 2-universal properties of A2[∑i ∑ j ri, j], A3[(∑i qi)(~r)], A3[p(~q)],

A2[p], respectively. Equality with the previous pasting diagram follows from the 2-universal properties

ofA2[∑i ∑ j ri, j] andA2[p] for the nontrivial natural isomorphisms, and by opetopic identities for the strictly
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commutative parts. We can then finally compare this with the pasting diagram

p

∏
i=1

A0

qi

∏
j=1

A0A
×A0 ri, j

1 A2[∑i ∑ j ri, j]

A3[(∑i qi)(~r)] 	

p

∏
i=1

A0

qi

∏
j=1

A0A2[ri, j] A2[∑i qi] A1

A3[p(~q)] 	

p

∏
i=1

A0A
×A0 qi

1

p

∏
i=1

A0A2[qi] A×A0 p
1 A2[p]

∼

∼

∼

t
t

s

∼ α
∑i qi
(t)

t

t

t

s

∼

∼

∼

∼
α

∑i qi
(s)

∼
α

p
(t)

t ∼

∼ α
p
(s)

t

(Eq. 5.5)

The existence of α
∑i qi
(s) and α

p
(t), and the fact that they coincide with the natural isomorphisms in the

previous pasting diagram all follow from the 2-universal property of A2[∑i qi]. Referring to (Eq. 5.2),

we find that these natural isomorphisms paste together to form the unbiased associators α∑i qi and α p to

give

p

∏
i=1

A0

qi

∏
j=1

A0A
×A0 ri, j

1 A2[∑i ∑ j ri, j]

p

∏
i=1

A0

qi

∏
j=1

A0A2[ri, j] A2[∑i qi] A1

p

∏
i=1

A0A
×A0 qi

1

p

∏
i=1

A0A2[qi] A×A0 p
1 A2[p]

∼

∼ t

t

∼
α∑i qi

t

∼

∼

t ∼

∼
α p t

This proves that the upper right triangle in (Eq. 5.3) commutes.

If we use the 4-opetope 4[x] whose complex of source 3-opetopes is given by pasting each 3[qi(~ri)]

for 1≤ i≤ p to the leaf input 2-opetopes of 3[p(
−−−−→
∑ j r−, j)] (cf. Figure 5.2b) and insert this into (Eq. 5.4),

we can proceed in a similar manner to show that the lower left triangle in (Eq. 5.3) commutes.
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Subdivide the pasting diagram (Eq. 5.4) for β 3;p(~q(~r)) through our new 4-opetope 4[x] to obtain

p

∏
i=1

A0

qi

∏
j=1

A0A
×A0 ri, j

1 A2[∑i ∑ j ri, j]

p

∏
i=1

A0

qi

∏
j=1

A0A2[ri, j] A4[x] A3[p(~q(~r))] A1

p

∏
i=1

A0A
×A0 qi

1

p

∏
i=1

A0A2[qi] A×A0 p
1 A2[p]

∼

∼ ∼
∼ t

t

∼
β 1′
(s)

t

s

∼

β 0′
(s)

t

s

	

∼ β(t)

∼ t

∼
β 2′
(s)

∼

t

We can compose the natural isomorphisms β 0′
(s) and β(t) together to form

p

∏
i=1

A0

qi

∏
j=1

A0A
×A0 ri, j

1 A2[∑i ∑ j ri, j]

p

∏
i=1

A0

qi

∏
j=1

A0A2[ri, j] A4[x] A1

p

∏
i=1

A0A
×A0 qi

1

p

∏
i=1

A0A2[qi] A×A0 p
1 A2[p]

∼

∼ ∼ t

t

∼
β 1′
(s)

t

s
s

∼
β 0′
(t)

	

∼ t

∼ β 2′
(s)

∼

t

Subdividing by the input 3-opetopes of 4[x], we obtain the diagram

p

∏
i=1

A0

qi

∏
j=1

A0A
×A0 ri, j

1 A2[∑i ∑ j ri, j]

p

∏
i=1

A0

qi

∏
j=1

A0A2[ri, j]

p

∏
i=1

A0A3[qi(~ri)] A4[x] A3[p(∑ j ~r−, j)] A1

p

∏
i=1

A0A
×A0 qi

1

p

∏
i=1

A0A2[qi] A×A0 p
1 A2[p]

∼

∼ ∼
∼

∼

∼
α
(1′)
(s)

∼
α
(0′)
(s)

t

t s

s s

s

t

	

∼
α

p
(t)

∼

∼
∏i A0 α

qi
(s)

t

∼
α
(0′)
(t)

∼

t

The natural isomorphisms ∏i A0α
qi
(s), α

(0′)
(t) , and α

(1′)
(s) combine to form an equal pasting diagram to that

of β 1′
(s) and β 2′

(s) by the 2-universal property of A2[p]. Similarly, α
(0′)
(s) and α

p
(t) combine to form β 0′

(t) by
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the 2-universal property of A2[∑i ∑ j ri, j]. This produces the pasting diagram

p

∏
i=1

A0

qi

∏
j=1

A0A
×A0 ri, j

1 A2[∑i ∑ j ri, j]

p

∏
i=1

A0

qi

∏
j=1

A0A2[ri, j]

p

∏
i=1

A0A3[qi(~ri)]

p

∏
i=1

A0A2[∑ j ri, j] A3[p(∑ j ~r−, j)] A1

p

∏
i=1

A0A
×A0 qi

1

p

∏
i=1

A0A2[qi] A×A0 p
1 A2[p]

∼

∼ ∼
∼

∼

∼
∏i A0 α

qi
(t)

t

t s

t

	 t s

t

	

∼
α

p
(t)

∼
α

p
(s)

∼

∼
∏i A0 α

qi
(s)

t ∼

t

Note that ∏i A0α
qi
(t) and α

p
(s) compose to the same natural isomorphism as α

(0′)
(t) , α

(1′)
(s) , and α

(0′)
(s) by the

2-universal property of A2[p]. Referring to (Eq. 5.2), we find that these natural isomorphisms paste

together to form the unbiased associators ∏i A0αqi and α p to give

p

∏
i=1

A0

qi

∏
j=1

A0A
×A0 ri, j

1 A2[∑i ∑ j ri, j]

p

∏
i=1

A0

qi

∏
j=1

A0A2[ri, j]

p

∏
i=1

A0A2[∑ j ri, j] A1

p

∏
i=1

A0A
×A0 qi

1

p

∏
i=1

A0A2[qi] A×A0 p
1 A2[p]

∼

∼ ∼ t

t t

∼
α p

∼

∼
∏i A0 αqi

t ∼

t

which is precisely the pasting diagram for the lower left path in (Eq. 5.3).

Therefore, the lower left and upper right triangles of (Eq. 5.3) commute, showing coherence for the

unbiased associators of B. The coherence constraints for inserters can be proven entirely analogously,

invoking 2-universal properties to compare the pasting diagrams for rebracketing and unbracketing to

the identity pasting diagram. This completes the proof that B is indeed an unbiased bicategory. By

construction, the Segal maps for A then define a levelwise equivalence A→ NB, as desired.

Remark 5.14. Similar to the observation made in Remark 5.5, Theorem 5.12 remains true if we relax

the unary condition to just assert that t :A2[1]→A1 is essentially surjective and full.

Note that just as in the simplicial case, reconstructing the unbiased bicategory from its nerve requires

several invocations of the axiom of choice to weakly invert the Segal maps. This is because the nerve

provides a means of describing coherence for weakly associative operators without explicitly specifying

coherence isomorphisms for every weak identity the operators carry.

82



Lemma 5.15. The unbiased double nerve functor N : UBicat→ Func(Oop,Cat) is fully faithful.

Proof. Any pseudofunctor F : B → B′ has its action on objects, morphisms, and 2-morphisms de-

termined uniquely by how its nerve acts on the categories (NB)0 and (NB)1; as for the functori-

ality constraint, these can be extracted from the fact that the nerve sends the 2[p]-cell (x•, f•,α
p
~f
) to

(Fx•,F f•,F(α p
~f
)◦F p), which uniquely determines F p from the invertibility of F(α p

~f
). This establishes

that the unbiased double nerve is faithful.

It remains to show that this functor is full. LetA= NB and B= NB′ be double nerves of unbiased

bicategories and suppose Φ : A→ B is an opetopic functor, then the goal is to show that Φ = NF for

some pseudofunctor F : B→B′. Define F0 := (Φ0)0 on objects, and Fx,y as the unique functor induced

by the universal property of the 1-fibre in

HomB(x,y) A1

HomB′(Φ0x,Φ0y) B1

1 B0×B0

!

∃!Fx,y Φ1

y
(s,t)

(Φ0x,Φ0y)

The functoriality constraints F p :⊗pΦ1⇒Φ1⊗p are induced by the pasting diagrams

A×A0 p
1 A2[p] A1

B×B0 p
1 B2[p] B1

∼

Φ
×Φ0

p

1

t

Φ2[p] Φ1

∼

∼
Φp

t

	

in the sense that F p is obtained as the fibres of t⊗Φp. Note that the inverted Segal maps are defined ex-

plicitly via the composition rules of B and B′: for instance, the mapA×A0 p
1 →A2[p] is given by sending

a length-p string of composable morphisms ( f1, . . . , fp) in B to the 2[p]-cell whose 2-isomorphism is

given by the identity on
⊗p

i=1 fi. The natural isomorphism Φp then comes from the 2-universal property

of B2[p] as the 2-limit B
×2

B0
p

1 as before with a similar argument to Lemma 5.11.

It remains to show that this construction is coherent. We will first show that the diagram below

commutes:
p⊗

i=1

⊗qiΦ1

p⊗
i=1

Φ1⊗qi Φ1

p⊗
i=1

⊗qi

⊗∑i qiΦ1 Φ1⊗∑i qi

∼

⊗
i Fqi

α ′ p

∼

∼
F p

Φ1(α
p)

∼

∼
F∑i qi

As before, we will do so by introducing an intermediate natural isomorphism F p(~q) along the diagonal
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of the above diagram as in

p⊗
i=1

⊗qiΦ1

p⊗
i=1

Φ1⊗qi Φ1

p⊗
i=1

⊗qi

⊗∑i qiΦ1 Φ1⊗∑i qi

∼

⊗
i Fqi

α ′ p

∼ ∼
F p(~q)

∼
F p

Φ1(α
p)

∼

∼
F∑i qi

(Eq. 5.6)

and show that the two triangles commute separately. Define F p(~q) to be the pasting diagram

p

∏
i=1

A0A
×A0 qi

1 A2[∑i qi] A1

p

∏
i=1

B0B
×B0 qi

1 A3[p(~q)] B2[∑i qi]

A2[p] B3[p(~q)]

p

∏
i=1

B0B2[qi] B×B0 p
1 B2[p] B1

∼

∏i Φ0 Φ
×Φ0

qi
1

∼

t

Φ2[∑i qi]
∼

α
p
(t)

Φ1

∼

t

s
Φ3[p(~q)]

	

t

	

Φ2[p]

	

s

t

	

t

∼
φ(0)

∼ t

(Eq. 5.7)

The squares commute by the naturality of Φ and the opetopic identities; the natural isomorphisms α
p
(t)

and φ(0) arise from the 2-universal properties of A2[∑i qi] and B2[p], respectively, as in Lemma 5.11.

The upper right path in (Eq. 5.6) is given by the pasting diagram

p

∏
i=1

A0A
×A0 qi

1 A2[∑i qi] A1

p

∏
i=1

B0B
×B0 qi

1

p

∏
i=1

A0A2[qi] A3[p(~q)]

A×A0 p
1 A2[p]

p

∏
i=1

B0B2[qi] B×B0 p
1 B2[p] B1

∼

∏i Φ0 Φ
×Φ0

qi
1

∼ ∼

t

∼
α

p
(t)

Φ1

∼

∼
∏i B0 Φqi

∏i Φ0 Φ2[qi]

t

t

s

	

Φ
×Φ0

p

1

∼

	

∼
α

p
(s)

t

Φ2[p]

	

t ∼

∼
Φp

t

Indeed, α
p
(s) and α

p
(t) combine to form the associator α p :

⊗p
i=1⊗qi ⇒⊗∑i qi for B just as in (Eq. 5.2).
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That this pasting diagram agrees with (Eq. 5.7) is because α
p
(s), Φp, and ∏i B0Φqi paste together to

produce the unique natural isomorphism φ(0) by the 2-universal property of B2[p].

On the other hand, the lower left path in (Eq. 5.6) is given by the pasting diagram

p

∏
i=1

A0A
×A0 qi

1 A2[∑i qi] A1

p

∏
i=1

B0B
×B0 qi

1 B2[∑i qi]

B3[p(~q)]

p

∏
i=1

B0B2[qi] B×B0 p
1 B2[p] B1

∼

∏i Φ0 Φ
×Φ0

qi
1

Φ2[∑i qi ]

t

Φ1

∼

∼

∼

∼
Φ∑i qi

t

	

t

s

∼

α ′ p
(t)

	

t

∼
α ′ p

(s)

∼ t

with α ′p(s) and α ′p(t) forming the associator α ′p for B′. This will be equal to the pasting diagram

p

∏
i=1

A0A
×A0 qi

1 A2[∑i qi] A1

p

∏
i=1

B0B
×B0 qi

1 A3[p(~q)] B2[∑i qi]

B3[p(~q)]

p

∏
i=1

B0B2[qi] B×B0 p
1 B2[p] B1

∼

∏i Φ0 Φ
×Φ0

qi
1

∼

t

Φ2[∑i qi]
∼

α
p
(t)

Φ1

∼

∼

∼
φ(1)

t

Φ3[p(~q)]

	

t

	

s

t

	

t

∼
α ′ p

(s)

∼ t

with the composition of α ′p(t) with Φ∑i qi coinciding with the composition of φ(1) and α
p
(t) by the 2-

universal property of B2[∑i qi]. This pasting diagram is then equal to (Eq. 5.7) as α ′p(s) and φ(1) compose

to recover φ(0) by the 2-universal property of B2[p].

Therefore, both triangles in(Eq. 5.6) commute, proving the associator identity for F . The inserter

identity follows from a similar argument, from which it follows that F as defined indeed yields a pseud-

ofunctor whose nerve is Φ.

85



By combining Theorem 5.12 and Lemma 5.15, we have proven our first main result:

Theorem 5.16. The unbiased double nerve defines a fully faithful functor N : Bicat→ Func(Oop,Cat)
that is weakly essentially surjective on those A : Oop→ Cat satisfying:

• (Discreteness condition) A0 is discrete.

• (Unary condition) The target face map t :A2[1]→A1 is an equivalence of categories.

• (Segal condition) The map Aγ →A
×A0 |γ|1
1 into the 1-fibre product is a surjective equivalence of

categories for all opetopes γ .

5.2 Higher Opetopic Nerves
We can now generalise the work in Section 5.1 to produce an inductive definition of both weak n-

categories and the pseudofunctors between them, yielding large 1-categories wknCat for n ≥ 0. The

idea is to take the weak (n+ 1)-categories to be the opetopic weak n-categories A : Oop → wknCat
subject to direct analogues of the discreteness, unary, and Segal conditions listed in Theorem 5.16. This

inductive framework for defining higher categories requires well-defined notions of weak equivalence,

objectwise surjectivity, and discreteness in wknCat to characterise the objects of wk(n+1)Cat. In fact,

we can generalise the above construction to any sufficiently nice category V equipped with appropriate

notions of weak equivalences, objectwise surjections, and discreteness to obtain a category wkV Cat of

categories weakly internal1 to V .

Definition 5.17. Define the (huge) category2 WkCat of (large) categories of (small) weak categories as

follows. The objects V ∈WkCat0 are quadruples (V ,W,E,τ≤0) where

• V is a (locally small) category containing Set as a full subcategory of discrete objects via a fully

faithful inclusion disc : Set→ V ,

• W ⊆V1 is a class of morphisms in V called weak equivalences, which contains the isomorphisms,

• E ⊆ V1 is a class of morphisms in V called objectwise surjections, which contains the surjective

maps in Set,

• τ≤0 : V → Set is a retraction of the inclusion of discrete objects,

which are subject to the additional constraints

1The collection of objects for any category in wkV Cat is discrete, so wkV Cat may be more appropriately interpreted as
a category of categories weakly enriched in V .

2The usual axioms of set theory prohibit sets from becoming “too large” in order to avoid paradoxes such as the well-known
Russell’s Paradox. The simplest way to avoid an explicit use of proper classes is via Grothendieck universes, which are sets
that are large enough to model enough axioms of set theory so that we can develop mathematics comfortably within them. In
this case, we have two Grothendieck universes V ( V ′, and a set is called small if it lies in V , large if it lies in V ′, and huge
otherwise.

86



(W1) V has all discrete fibre products; that is, all cospansA→ discS←B in V have a limit. Moreover,

fibre products consisting only of discrete objects remain discrete,

(W2) W (resp. E) is preserved along discrete fibre products, in the sense that the dashed arrow in

A′×discSB′ B′

A′ A×discSB B

A discS

g

f

y

is a weak equivalence (resp. objectwise surjection) once f and g are,

(W3) τ≤0 preserves discrete fibre products, sends weak equivalences to bijections, and objectwise sur-

jections to surjections.

The morphisms F : V → W are then functors that preserve the discrete objects, weak equivalences,

objectwise surjections, and discrete fibre products.

Example 5.18. The category Set of sets, with W the class of bijections, E the class of surjections, and

τSet
≤0 given by the identity, forms a category of weak categories. The only possibly nontrivial fact to

check is that surjectivity is preserved along fibre products, which reduces to a simple diagram chase.

Indeed, given a cospan A
p−→ S

q←− B of sets, its pullback is canonically given by the set

A×S B = {(a,b) ∈ A×B | p(a) = q(b)}

Given surjections f : A′→ A and g : B′→ B, the map A′×S B′→ A×S B simply acts by sending pairs

(a′,b′) 7→ ( f (a′),g(b′)). For any (a,b) ∈ A×S B, we have f (a′) = a and g(b′) = b for some a′ ∈ A′

and b′ ∈ B′, and p( f (a′)) = p(a) = q(b) = q(g(b′)), so (a′,b′) ∈ A′×S B′ also, proving surjectivity is

preserved.

In fact, Set is the terminal object in WkCat. Indeed, any functor F : V → Set in WkCat must

commute with τ≤0, meaning that τSet
≤0 ◦F = τV

≤0, and thus F = τV
≤0 is necessarily unique. By the assumed

structure on τV
≤0, this does define a morphism V → Set of WkCat, ensuring that the necessarily unique

functor lies in WkCat, as desired. Dually, the inclusion of discrete objects in any category V of weak

categories also serves as a unique morphism Set→ V in WkCat, meaning that Set is actually a zero

object.

Lemma 5.19. WkCat has all cofiltered limits.

Proof. Let X : J →WkCat be a functor with J cofiltered, then consider the category lim←−X com-

puted as a limit in the huge category CAT of large categories. Explicitly, objects (resp. morphisms) of

lim←−X are J0-indexed tuples (u j) j∈J0 of objects (resp. morphisms) of each X j such that Xφ (ui) = u j

for every φ : i→ j in J . By its universal property as a limit in CAT, any cone from V to X in WkCat
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admits a necessarily unique ordinary functor to lim←−X , so it remains to endow lim←−X with the structure

necessary to make this functor lie in WkCat also.

Note that Set embeds fully faithfully into lim←−X via the inclusions disc : Set ↪→X j; explicitly, the

discrete objects of lim←−X are the constant tuples (discS) j∈J0 for S ∈ Set0. Define the class W of weak

equivalences (resp. E of objectwise surjections) to be those ( f j) j∈J0 such that f j is a weak equivalence

(resp. objectwise surjection) of X j for every j ∈J0.

Define the truncation functor τ≤0 : lim←−X → Set to be the composite τ≤0 : lim←−X
π j−→X j

τ≤0−−→ Set
for some arbitrary j ∈J0, where π j is the canonical projection map. This definition is independent

of the choice of j, and at least one such j exists, both due to the fact that J is cofiltered. Indeed,

J is nonempty because the empty diagram in J must have a cone, so suppose j, j′ ∈J0. As J is

cofiltered, we can find a span j
φ←− i

ψ−→ j′ in J0 and thus we obtain a commutative diagram

lim←−X

X j Xi X j′

Set

π j
πi

π j′

τ≤0

Xφ Xψ

τ≤0
τ≤0

where the top triangles commute from lim←−X and its projections being a (universal) cone to X , and the

lower triangles commute because Xφ and Xψ lie in WkCat and thus preserve truncation. By design,

the overall truncation functor will send weak equivalences to bijections and objectwise surjections to

surjections.

Limits in lim←−X are computed pointwise when they exist in each X j, so in particular lim←−X has all

discrete fibre products. By being computed pointwise, this makes it clear that the weak equivalences

and objectwise surjections are preserved along discrete fibre products, and also that τ≤0 preserves these

limits. Therefore, lim←−X ∈WkCat0, and it is a straightforward to see that its projection maps make it a

universal cone to X in WkCat, as desired.

5.2.1 The Weak Internalisation Endofunctor

We can now describe the construction of Section 4.2 in the opetopic setting in the full generality of

WkCat, which yields an endofunctor wk(−)Cat : WkCat→WkCat.

Definition 5.20. For V ∈WkCat0, define wkV Cat to be the full subcategory of Func(Oop,V ) spanned

by those opetopic objects A : Oop→ V satisfying

• (Discreteness condition) A0 is discrete,

• (Unary condition) t :A2[1]→A1 is a weak equivalence,

• (Segal condition) the Segal map Aγ → A
×A0 |γ|1
1 is an equivalence of weak n-categories that is

surjective on objects for all opetopes γ .
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Note that the constant functors Oop → V that map onto discrete objects in V will trivially satisfy

these conditions since their structure maps are all identities, and isomorphisms are always weak equiv-

alences. These form the discrete objects in wkV Cat:

Proposition 5.21. Let V ∈WkCat0, then Set embeds fully faithfully into wkV Cat by sending a set

S to the constant functor discS : Oop → V on the discrete object discV S ∈ V0 corresponding to S in

V . Define the image of this embedding to be the class of discrete weak V -categories, then wkV Cat
satisfies (W1): the limit of any cospan A→ discS←B in wkV Cat exists and is moreover discrete if A
and B are.

Proof. If A → discS ← B is a cospan in wkV Cat, then its fibre product is computed levelwise in

Func(Oop,V ). Note that (A×SB)0 =A0×SB0 is already discrete, and the unary and Segal conditions

follow from the fact that weak equivalences and objectwise surjections in V are preserved along discrete

fibre products. Therefore, A×S B lies in wkV Cat. That this limit is discrete if A and B are follows

from this being true in V and how limits are computed levelwise in wkV Cat.

Let τ̂≤1 := (τ≤0)∗ : Func(Oop,V )→ Func(Oop,Set) act by truncating opetopic objects levelwise,

then its restriction to wkV Cat preserves discrete fibre products from the same holding for τ≤0 in

V . If A ∈ wkV Cat0, then τ≤0(A2[1]) → τ≤0(A1) is a bijection by (W3), and similarly the Segal

map τ≤0(Aγ)→ τ≤0(A
×A0 |γ|1
1 ) = τ≤0(A1)

×A0 |γ|1 is a bijection for every opetope γ . This shows by

Lemma 5.4 that τ̂≤1(A) is a small category and thus τ̂≤1 : wkV Cat→ Cat. In particular, this allows us

to make the following definition:

Definition 5.22. For V ∈WkCat0, define the 0-truncation functor of weak V -categories to be the

composite τ≤0 : wkV Cat
τ≤1−−→ Cat τ0−→ Set, which sends a weak V -category to the set of isomorphism

classes of its 1-truncation.

Remark 5.23. It follows from this definition that τ≤0(discS) = S for any set S, showing that τ≤0 is a

retraction of the inclusion of discrete objects in Proposition 5.21. Note also that τ≤0 preserves discrete

fibre products because the same is true for τ̂≤1 and τ0.

In order to realise wkV Cat as a category of weak categories, it remains to define appropriate classes

of weak equivalences and objectwise surjections.

Definition 5.24. For V ∈WkCat0, let Φ :A→B be a weak V -functor (that is, a morphism in wkV Cat).
Say that Φ is an objectwise surjection if Φ0 : A0→B0 is a surjection of sets. Similarly, say that Φ is

essentially surjective (on objects) if τ≤0Φ : τ≤0A→ τ≤0B is a surjection of sets.

Remark 5.25. It follows from the diagram chase in Example 5.18 for sets that objectwise surjectivity

is preserved along discrete fibre products. As τ≤0 preserves discrete fibre products, the same diagram

chase shows that essential surjectivity is preserved along discrete fibre products as well.
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Definition 5.26. Let V ∈WkCat0. For a weak V -category A and x,y ∈ A0, define the hom-V -object

A(x,y) to be the 1-fibre
A(x,y) A1

disc(pt) A0×A0

y
(s,t)

(x,y)

of the map induced by the two coface maps s, t : 0⇒ 1. This is well-defined by Proposition 5.21 as

A0×A0 is discrete.

Say that a weak V -functor Φ :A→ B is fully faithful if for all x,y ∈ A0, the induced local map of

fibres Φx,y :A(x,y)→B(Φx,Φy) is a weak equivalence in V .

Remark 5.27. Fully faithfulness is preserved along discrete fibre products. Indeed, suppose we have

a cospan A→ discS← B of weak V -categories and fully faithful weak V -functors Φ : A′ →A and

Ψ : B′→B. For x,y ∈ (A′×discSB′)0 =A′0×SB′0, the fibre (Φ×discS Ψ)x,y is computed by a limit and

thus commutes with the discrete fibre product, meaning that (Φ×discS Ψ)x,y = Φx,y×discS Ψx,y. Since

weak equivalences in V are preserved along discrete fibre products, it follows that Φ×discS Ψ is fully

faithful, as desired.

Definition 5.28. For V ∈WkCat0, define the weak equivalences in wkV Cat to be those weak V -

functors that are fully faithful and essentially surjective.

Remark 5.29. Note that the weak V -functors Φ :A→ B that are isomorphisms are also weak equiva-

lences under this definition: essential surjectivity follows from Φ0 being bijective, and fully faithfulness

from the fact that Φx,y is an isomorphism in V for all x,y ∈ A0.

This establishes all of the data necessary to realise wkV Cat as a category of weak categories, so it

remains to show that this data satisfies the constraints of Definition 5.17:

Lemma 5.30. Let V ∈WkCat0, then wkV Cat ∈WkCat0 with the structure established above. More-

over, this construction extends to define an endofunctor wk(−)Cat on WkCat by sending F : V →W

in WkCat to the functor F∗ : wkV Cat→ wkW Cat that acts by F levelwise.

Proof. We have already shown (W1) in Proposition 5.21. (W2) follows from Remark 5.25 and Re-

mark 5.29, which show that objectwise and essential surjections, and fully faithfulness respectively are

preserved along discrete fibre products. It remains to show (W3). Preservation of discrete fibre prod-

ucts by τ≤0 was observed in Remark 5.23. Let Φ : A→ B be a weak V -functor, and that τ≤0 sends

objectwise surjections to surjections is obvious.

Let Φ : A→ B be a weak V -functor that is a weak equivalence, then τ̂≤1Φ is an equivalence of

ordinary categories. Indeed, τ̂≤1Φ is essentially surjective because τ0(τ̂≤1Φ) = τ≤0Φ is surjective by

assumption. To see that τ̂≤1Φ is fully faithful, note that as Φ is fully faithful, Φx,y is a weak equivalence

in V , which shows that τ≤0(Φx,y) = (τ̂≤1Φ)x,y is a bijection of sets. Therefore, since τ̂≤1Φ is an equiva-

lence of categories, it follows that τ≤0Φ = τ0(τ̂≤1Φ) is a bijection of sets, showing that τ≤0 sends weak

equivalences to bijections as desired.
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That the construction V 7→ wkV Cat is functorial follows from the fact that functors F : V → W

in WkCat must preserve discrete objects, weak equivalences, objectwise surjections, and truncations

on V . This ensures that the induced functor F∗ : Func(Oop,V )→ Func(Oop,W ) restricts to a functor

wkV Cat→wkW Cat, and moreover that F∗ continues to preserve discrete objects, weak equivalences,

objectwise surjections, and truncations on wkV Cat.

5.2.2 Weak ω-Categories

Having formalised the induction step for weak higher categories, we can finally explicitly define the

category of weak n-categories for every finite n≥ 0.

Definition 5.31. Define the category of weak 0-categories to be the terminal object wk0Cat := Set of

WkCat. Inductively, define wk(n+1)Cat := wk(wknCat)Cat for n≥ 0.

The work done in Lemma 5.4 and Theorem 5.16 prove that wknCat presents the correct weak n-

categories and n-functors for n ≤ 2 up to equivalence, making our construction a viable candidate for

presenting (unbiased) higher categories as well as their functors. In fact, by viewing the Segal condition

on a weak n-category A as asserting that all Aγ satisfy the appropriate universal property of an n-

limit, the proofs of correctness for n ≤ 2 likely generalise readily to proving that wknCat agrees with

coherent algebraic definitions of weak n-categories for higher n as well (such as with the tricategories

of [18] when n = 3), though these proofs would be shrouded in exponentially more technical details and

unwieldy diagrams.

Now that we have established a notion of weak n-categories for all finite n≥ 0, we can consider the

case where n = ω is infinite. A weak ω-category A should consist of possibly nontrivial k-morphisms

for every k ≥ 0, and coherence for (unbiased) composition in dimension k should be expressed by

invertible (k+1)-morphisms, which are then subject to their own coherence by higher morphisms and

so on. However, all of these higher morphisms are finite-dimensional, which means that we should

recover any particular higher morphism or coherence morphism of A from its n-truncation τ≤nA for a

sufficiently large n ≥ 0. As τ≤nA should be a weak n-category, this reduces the problem of studying

weak ω-categories to studying their truncations: the weak n-categories τ≤nA for every n ≥ 0 should

uniquely characterise the weak ω-category A. This motivates the following definition:

Definition 5.32. Define the n-truncation τ≤n : wk(n+1)Cat→wknCat inductively: take τ≤0 to be the

truncation functor wk1Cat→ Set = wk0Cat, and then define τ≤n+1 := (τ≤n)∗ to be the image of τ≤n

under wk(−)Cat. This produces a diagram

· · · wk3Cat wk2Cat wk1Cat wk0Cat
τ≤2 τ≤1 τ≤0

in WkCat. Define the category of weak ω-categories to be the limit wkωCat := lim←−n
wknCat of this

diagram, and denote by τ≤n : wkωCat→ wknCat the induced canonical projections.

By Lemma 5.19, we know that wkωCat is well-defined, and moreover that an objectA∈wkωCat0
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corresponds to an infinite tuple (. . . ,τ≤2A,τ≤1A,τ≤0A) such that τ≤n(τ≤n+1A) = τ≤nA for all n ≥ 0.

This allows us to think of weak ω-categories as formal limits of their n-truncations as n→∞.

In some cases, however, it is more useful to view weak ω-categories as the result of a bottomless

recursion: a weak ω-category A should be a collection A0 of objects such that between any x,y ∈ A0

we have a weak ω-category A(x,y) of higher morphisms, further equipped with a weakly coherent

(unbiased) composition. This can simplify the construction of weak ω-categories in some cases. For

example, regarding the Homotopy Hypothesis, we want to realise a space X as a weak ω-category

Π∞X whose objects are points, and whose higher morphisms are higher homotopies. With our current

characterisation of weak ω-categories, we would have to first construct a weak n-category ΠnX for

every n≥ 0 such that τ≤nΠn+1X = ΠnX , and then Π∞X would be their formal limit. On the other hand,

Π∞X should be the weak ω-category whose objects are the points of X , and whose hom-ω-categories

(Π∞X)(x,y) for x,y∈ X are the weak ω-categories corresponding to the space of paths from x to y in X .

The construction of objects through a bottomless recursion is called coinduction, and can be formalised

using terminal coalgebras over an endofunctor.

Algebras over an endofunctor generalise the construction of algebras over a monad discussed in

Section 2.2.3. Recall that for a monad T , its algebras are defined to be objects A equipped with an

action TA→ A subject to compatibility with the monad structure on T . If T is merely an endofunctor,

then the compatibility constraints no longer make sense, so an algebra over an arbitrary T is simply an

object A with a morphism TA→ A. Coalgebras of T are the dual concept:

Definition 5.33. Given a category E and an endofunctor T : E → E , a coalgebra over T is an object

X ∈ E0 equipped with a coaction morphism υ : X→ T X . A coalgebra homomorphism (X ,υ)→ (X ′,υ ′)

is then just a morphism φ : X → X ′ in E which respects the coaction in the sense that

X X ′

T X T X ′

φ

υ υ ′

T φ

commutes.

A coalgebra over wk(−)Cat requires a category V ∈WkCat0 and a coaction V → wkV Cat. This

is impossible to do in general, but Example 5.18 shows that Set = wk0Cat carries a unique coalgebra

structure from being an initial object in WkCat, and that the coaction is given by the inclusion of sets

disc : wk0Cat→ wk1Cat. Inductively applying wk(−)Cat to this inclusion, we obtain a canonical

coalgebra structure on wknCat for every n ≥ 0. Explicitly, the coaction wknCat→ wk(n+ 1)Cat
realises weak n-categories as weak (n+1)-categories whose (n+1)-morphisms are trivial.

As these coactions allow us to realise a weak n-category as a weak m-category for all m ≥ n, these

induce a canonical inclusion wknCat→wkωCat for all n≥ 0 which realise weak n-categories as weak

ω-categories whose k-morphisms are trivial for all k > n. A coaction on wkωCat would realise weak

ω-categories as categories weakly enriched in weak ω-categories, so we should expect that in this case

the coaction should be trivial; that is, an isomorphism.
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From the limit definition of wkωCat, we have a canonical map

R : wk(wkωCat)Cat = wk(lim←−n
wknCat)Cat→ lim←−n

wk(wknCat)Cat = lim←−wk(n+1)Cat = wkωCat

The objects of wk(wkωCat)Cat are particular functors A : Oop→ wkωCat, which allows us to iden-

tify A with a family of formal limits Aγ = (. . . ,τ≤2(Aγ),τ≤1(Aγ),τ≤0(Aγ)) for each opetope γ . The

corresponding weak ω-category R(A) is given by setting (τ≤n+1R(A))γ := τ≤n(Aγ) for every n≥ 0 and

opetope γ , and τ≤0R(A) := τ0(τ̂≤1A•). This is the inverse of the canonical coaction on wkωCat:

Lemma 5.34. The canoncial map R : wk(wkωCat)Cat→ wkωCat is an isomorphism in WkCat.

Proof. We will construct an inverse R−1 : wkωCat→ wk(wkωCat)Cat as follows. For a weak ω-

category B= (. . . ,τ≤1B,τ≤0B), defineA := R−1(B) : Oop→wkωCat by taking τ≤n(Aγ) := (τ≤n+1B)γ

for every n≥ 0 and opetope γ , extending to morphisms in the obvious way.

We first check that indeedA lies in wk(wkωCat)Cat. A0 is discrete because τ≤n(A0) := (τ≤n+1B)0

is discrete for every n and thus

τ≤n(A0) := (τ≤n+1B)0 = τ≤0((τ≤n+1B)0) =: (τ̂≤1τ≤n+1B)0 = (τ≤1B)0

is independent of n, making A0 a constant functor on discrete objects. For the unary condition, we

have A2[1] → A1 is a weak equivalence if and only if its n-truncation is for every n ≥ 0, but its n-

truncation is just τ≤n(A2[1]) = (τ≤n+1B)2[1] → (τ≤n+1B)1 = τ≤n(A1). This is a weak equivalence by

virtue of τ≤n+1B being a weak (n+1)-category. The Segal condition follows similarly becauseA×A0 |γ|1
1

is computed levelwise in wkωCat, and τ≤n+1B being a weak (n+ 1)-category as well implies that

τ≤n(Aγ) = (τ≤n+1B)γ → (τ≤n+1B)
×(τ≤n+1B)0

|γ|1
1 = (τ≤n(A1))

×τ≤n(A0)
|γ|1 is an objectwise surjective weak

equivalence.

For any A in wk(wkωCat)Cat, it is clear that R−1R(A) =A, since

τ≤nR−1R(Aγ) = τ≤n+1R(Aγ) = τ≤n(Aγ)

for every n≥ 0. On the other hand, let B ∈ (wkωCat)0, then τ≤n+1RR−1(B) = τ≤nR−1(B) = τ≤n+1B for

every n≥ 0. In order to see that RR−1(B) =B, we need to check 0-truncation. By definition, τ̂≤1R−1(B)
maps γ 7→ τ≤0(R−1(B)γ) = τ̂≤1(B)γ , which proves τ̂≤1R−1(B) = τ̂≤1B, so

τ≤0RR−1(B) := τ0(τ̂≤1R−1(B)) = τ0τ̂≤1(B) = τ≤0B

which implies RR−1(B) = B.

Therefore, we have proven that R−1 is the inverse of R in CAT, so now we need to check that R−1

is a morphism of WkCat. It is clear that R−1 preserves discrete objects, objectwise surjectivity, and

0-truncation. As equivalences of categories preserve limits, R−1 also preserves discrete fibre products.

Given a weak equivalence Ψ : B → B′ in wkωCat, then we need to check that the induced map

Φ := R−1(Ψ) : A→A′ is essentially surjective and fully faithful in wk(wkωCat)Cat. To see essen-
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tial surjectivity, we have that τ≤0Φ := τ0τ̂≤1Φ = τ0(τ≤1Ψ) is bijective since Ψ is a weak equivalence

means τ≤1Ψ is an equivalence of categories. Note that the hom-ω-category A(x,y) for x,y ∈ A0 is

given by τ≤n(A(x,y)) = (τ≤n+1B)(x,y) at each level. In particular, τ≤n(Φx,y) = (τ≤n+1Ψ)x,y is a weak

equivalence for all n≥ 0 because τ≤n+1Ψ is fully faithful in wk(n+1)Cat, which establishes the fully

faithfulness of Φ.

Therefore, R−1 : wkωCat→ wk(wkωCat)Cat is a morphism in WkCat, as desired.

Remark 5.35. The proof shows in particular that the set of objects of a weak ω-category A is precisely

the set of objects of its 1-truncation τ≤1A∈ wk1Cat. Applying this inductively, this means that we can

extract the k-morphisms of A just from looking at the k-morphisms τk+1A. This means that we can

perform compositions of k-morphisms in τ≤k+1A, although the associators would have to be obtained

by looking them up in τ≤k+2A, and so on for higher coherence equivalences.

Moreover, the realisation of a weak ω-categoryA as a functor Oop→wkωCat provides a means to

define the hom-ω-category of morphisms x→ y in A for any x,y ∈ A0 to be the fibre product

A(x,y) A1

pt A0×A0

y
(s,t)

(x,y)

as in Definition 5.26. As mentioned in the above proof of Lemma 5.34, discrete fibre products in

wkωCat are computed levelwise, which means that τ≤n(A(x,y)) = (τ≤nA)(x,y) for every n≥ 0.

This verifies that the canonical coaction on wkωCat is trivial, which is consistent with our coinduc-

tive intuition that weak ω-categories should be precisely the categories weakly enriched in wkωCat.
In fact, it now follows from general abstract nonsense that wkωCat is the terminal coalgebra over

wk(−)Cat. This means that in order to realise objects of some V ∈WkCat0 as weak ω-categories, it is

enough to realise them as weak V -categories via a coaction V →wkV Cat, as coinduction then induces

a unique map V → wkωCat. We reproduce the general construction of terminal coalgebras below, as

it also describes the construction of the unique terminal map from any other coalgebra:

Lemma 5.36 (Adámek’s construction). Let E be a category and T : E → E an endofunctor. If E has a

terminal object pt, and the limit of

· · · T 3(pt) T 2(pt) T (pt) ptT 2! T ! !

exists and is preserved by T , then the limit defines a terminal coalgebra over T .

Proof. This result can be found in [1]. Let X := lim←−n
T n(pt) in E , then the map T X → X induced by the

univeral property of X is an isomorphism by assumption, so define the coaction υ : X → T X to be its

inverse.

Let (X ′,υ ′) be any coalgebra over T , then define morphisms φn : X ′ → T n(pt) inductively with

φ0 : X ′ → pt uniquely determined, and then taking φn+1 : X ′ υ ′−→ T X ′
T φn−−→ T n+1(pt). By construction,
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we certainly get !◦φ1 = φ0 by the uniqueness of the map X ′→ pt. Inductively, if T n!◦φn+1 = φn, then

applying T to this identity implies we have commutativity of diagram

X ′

T X ′

T n(pt) T n+1(pt)

φn+1

υ ′

φn+2

T φn T φn+1

T n!

showing T n+1!◦φn+2 = φn+1. Inductively, this defines a cone from X ′ to T •(pt), inducing a unique map

φ : X ′→ X . The uniqueness implies commutativity of

X ′ X

T X ′ T X

φ

υ ′

T φ

υ−1

which, after inverting υ , means that φ : (X ′,υ ′)→ (X ,υ) is a coalgebra homomorphism. Moreover, any

coalgebra homomorphism ψ : (X ′,υ ′)→ (X ,υ) will induce maps ψn : X ′→ X πn−→ T n(pt) through the

canonical projections from the limit X such that we have commutativity of

X ′ X T n(pt)

T X ′ T X T n+1(pt)

ψ

υ ′

πn

πn+1

T ψ

υ−1

T πn

T n!

implying that ψn+1 = T ψn ◦υ ′ with ψ0 : X ′→ pt uniquely determind, meaning inductively that ψn = φn

for every n≥ 0 and thus ψ = φ after taking limits.

As Set is the terminal object in WkCat, we can see that wkωCat is constructed precisely as in

Lemma 5.36. From Lemma 5.34, this construction is preserved by wk(−)Cat, and so we arrive at the

universal property of the category of weak ω-categories:

Theorem 5.37. wkωCat is the terminal coalgebra over wk(−)Cat.

Remark 5.38. Cheng and Leinster describe in [13, Theorem 3.6] how the category of strict ω-categories

arises as the terminal coalgebra for the enrichment endofunctor V 7→ V Cat in the category of cartesian

monoidal categories and strong monoidal functors, and they also use Adámek’s construction above.

However, as the terminal cartesian monoidal category is 1, the induced maps (n+1)Cat→ nCat send a

strict (n+1)-category to the underlying strict n-category obtained by throwing away all of the (n+1)-

morphisms. Indeed, this is because they identified (1)Cat—the category of categories enriched in the

terminal category 1, which is equivalently the category of complete graphs—with Set by identifying a

set X with the complete graph on X .
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This has little effect in the strict setting, but in order to generalise this approach to weak higher

categories, Cheng and Leinster had to work with weak n-categories that lacked coherent composition

in dimension n in order to build their weak ω-categories. This is necessary in their approach because

forgetting the higher morphisms eliminates the higher coherence isomorphisms necessary for weak

composition. The advantage of our approach is that the induced maps wk(n+ 1)Cat→ wknCat will

be given by reducing n-morphisms to their (n+ 1)-isomorphism classes before forgetting the (n+ 1)-

morphisms, making our presentation of weak ω-categories a limit of fully coherent weak n-categories

instead.

Comparing with the Tamsamani n-nerve. The construction of wknCat for 0 ≤ n ≤ ω does not

rely on much special structure of O; in particular, we can follow this construction almost verbatim with

∆ to reproduce the multi-simplicial higher categories of Tamsamani. More precisely, we can construct

an analogous endofunctor

(−)Nerve : WkCat→WkCat

which sends a category V of weak categories to the full subcategory V Nerve⊆ Func(∆op,V ) of those

simplicial objects A : ∆op→ V such that A0 is discrete, and Ap→A
×A0 p
1 is a weak equivalence for all

p≥ 0. Note that Remark 5.13 ensures that the simplicial Segal maps are always surjective.

The induced map τ̂≤1 := (τ≤0)∗ : Func(∆op,V )→ sSet restricts on V -nerves to Grothendieck nerves

of ordinary categories, so we can define 0-truncation of a V -nerve to be the composite

τ≤0 : V Nerve
τ̂≤1−−→ Cat τ0−→ Set

as before. The weak equivalences of V -nerves are then the fully faithful and essentially surjective

functors, and the objectwise surjections are the surjections on 0-cells.

Beginning with 0Nerve := Set and setting (n+ 1)Nerve := (nNerve)Nerve, we recover the Tam-

samani n-nerves of Section 4.2 for every n ≥ 0, which are moreover coalgebras over (−)Nerve in the

same way as before. We can then adapt the proof of Theorem 5.37 to find that ωNerve := lim←−n
nNerve is

the terminal coalgebra over (−)Nerve, meaning that our general construction also completes the picture

for Tamsamani’s construction.

Moreover, we can canonically compare multi-simplicial n-nerves with our presentation of weak

n-categories for all 0≤ n≤ ω:

Proposition 5.39. (−)Nerve is a subfunctor of wk(−)Cat. In particular, there is a canonical inclusion

of Tamsamani n-nerves into weak n-categories for every 0 ≤ n ≤ ω which preserves and reflects weak

equivalences.

Proof. Recall that we have a co-opetopic category S : O → Cat which sends an opetope γ to the

chain [|γ|1]. This evidently factors through the simplex category ∆ ↪→ Cat and thus induces a map

S∗ : Func(∆op,V )→ Func(Oop,V ) for any category V , which is in fact injective on objects and mor-

phisms.

Fix V ∈WkCat0 and suppose A ∈ V Nerve ⊆ Func(∆op,V ). Then, (S∗A)0 = A0 is discrete, and
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(S∗A)2[1] =A1 = (S∗A)1 means that t : (S∗A)2[1]→ (S∗A)1 is an identity and thus in particular a weak

equivalence. Similarly, the Segal maps (S∗A1)
×(S∗A)0

|γ|1 → (S∗A)γ are just precisely the simplicial

Segal maps A×A0 |γ|1
1 →A|γ|1 and thus are already objectwise surjective weak equivalences. Therefore,

S∗ restricts to an inclusion V Nerve ↪→ wkV Cat that is natural in V , as desired.

5.2.3 Towards the Homotopy Hypothesis

Now that we have established weak n-categories for all 0≤ n≤ ω , we want to develop a corresponding

theory of higher groupoids in order to address some form of the Homotopy Hypothesis mentioned in

Section 2.2.1: namely, that homotopy n-types correspond to n-groupoids for every 0 ≤ n ≤∞. This

requires first establishing full subcategories nGrpd⊆wknCat for every n≥ 0, which we will obtain by

defining a subfunctor (−)Grpd of wk(−)Cat. To motivate this construction, consider the 1-dimensional

case: if G is a (small) groupoid, consider its opetopic nerve NG ∈ wk1Cat0. The p-ary composition

is obtained by the Segal condition on (NG )2[p], and reflects that the equation f1 . . . fp = f can always

be solved for f ; however, since G is a groupoid, we can also solve this equation for any of the fi for

1≤ i≤ p, and this can be expressed by a similar isomorphism to the Segal map.

FixA∈wk1Cat0. For 1≤ i≤ p, let ŝi :A2[p]→A
×A0 p
1 be the universal map induced by the source

1-opetopes s j : A2[p]→A1 for j 6= i and the target 1-opetope t : A2[p]→A1. Solving f1 . . . fp = f for

fi amounts to inverting ŝi and taking the composite A×A0 p
1

ŝi←− A2[p]
si−→ A1, and this is possible if and

only if A is isomorphic to the opetopic nerve of a groupoid. Indeed, invertibility of ŝi is clear when

A is isomorphic to the nerve of a groupoid. Conversely, A is always isomorphic to the nerve of some

category C , so in particular having inverses to ŝi :A2[2]→A1×A0 A1 means in particular that for any

f : x→ y in C , we can find 2[2]-cells in A that correspond to the commutative diagrams

y

x x

f

idx

x

y y

f

idy

thus showing that f has both left and right inverses and is thus invertible.

Definition 5.40. If V ∈WkCat0, then define V Grpd to be the full subcategory of wkV Cat on those

A : Oop → V satisfying the groupoid condition that the map ŝi : A2[p] → A1 induced by the source

1-opetopes s j :A2[p]→A1 for j 6= i and the target 1-opetope t :A2[p]→A1 is an objectwise surjective

weak equivalence for all p≥ 0 and 1≤ i≤ p.

V Grpd is closed under discrete fibre products because preservation of the groupoid condition is

entirely analogous to the preservation of the Segal condition. Inheriting the weak equivalences, ob-

jectwise surjections, and truncation map from wkV Cat, this yields a category of weak categories

V Grpd ∈WkCat0. As before, this extends readily to functors, so that we obtain a subfunctor (−)Grpd
of wk(−)Cat.
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Definition 5.41. Define the category of 0-groupoids to be 0Grpd := Set, and inductively define the

category of (n + 1)-groupoids to be (n + 1)Grpd := (nGrpd)Grpd for every n ≥ 0. We obtain n-

truncation functors τ≤n : (n+ 1)Grpd→ nGrpd by inductively applying (−)Grpd to the truncation

map τ≤0 : 1Grpd→ Set = 0Grpd. This is equivalently the restriction of the truncation maps of Defini-

tion 5.32 to higher groupoids. This produces a tower

· · · 3Grpd 2Grpd 1Grpd 0Grpd
τ≤2 τ≤1 τ≤0

in WkCat, from which we define the category of∞-groupoids to be the limit∞Grpd := lim←−n
nGrpd.

Denote by τ≤n :∞Grpd→ nGrpd the induced canonical projections.

As (−)Grpd is a subfunctor of wk(−)Cat, we obtain a canonical inclusion∞Grpd→ wkωCat
which identifies ∞-groupoids with weak ω-categories whose n-truncation is an n-groupoid for every

n ≥ 0. Moreover, the similarity between the groupoid condition and the Segal condition allows us to

retrace our work for wkωCat to obtain:

Theorem 5.42. ∞Grpd is the terminal coalgebra over (−)Grpd.

Proof. Mutatis mutandis, the argument is just as for Theorem 5.37.

In particular, this allows to define the Poincaré∞-groupoid of a topological space coinductively. As

our focus in this section is to make steps towards the Homotopy Hypothesis, we will restrict our atten-

tion to the full subcategory CGWH ⊂ Top of compactly generated weakly Hausdorff spaces. Indeed,

inheriting the cofibrations, fibrations, and weak equivalences from the Quillen model structure in Top,

we obtain a Quillen equivalent model structure on CGWH by [22, Theorems 2.4.23 and 2.4.25]. The

benefit is that the space Map(X ,Y ) of continuous functions X→Y between compactly generated weakly

Hausdorff spaces with the compact-open topology defines an internal hom for the cartesian monoidal

structure on CGWH, and [22, Proposition 4.2.11] shows that this makes CGWHQuillen a cartesian model

category. The Quillen model structure on CGWH also makes it into a category of weak categories:

Lemma 5.43. (CGWH,W,E,π0) ∈WkCat0, where W is the class of weak homotopy equivalences, E

is the class of continuous maps that are surjective on the underlying sets, and π0 sends a space to its set

of path-connected components.

Proof. CGWH is complete and thus in particular has discrete fibre products. Moreover, the fibre prod-

uct of sets in CGWH will always be a set. The surjections are preserved along discrete fibre products

from the same diagram chase as done for Set in Example 5.18. It is easy to see that π0 preserves discrete

fibre products and surjections, while it sends weak homotopy equivalences to bijections by definition.

Preservation of weak equivalences along discrete fibre products can be checked explicitly, but also

follows from the fact that discrete fibre products are homotopy limits in CGWHQuillen. In general, for

a Reedy category R and any model category M , there is a canonical model structure on Func(R,M )

called the Reedy model structure, where the weak equivalences are the levelwise weak equivalences.

The constant functor M → Func(R,M )Reedy will be a left Quillen functor, and so in particular its
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right adjoint lim←− : Func(R,M )→M is a right Quillen functor. By Ken Brown’s Lemma, this proves

that taking limits preserves weak equivalences of Reedy fibrant diagrams. The relevant theory for this

argument is discussed in more detail in [22, §5.2]. The walking cospan is especially a Reedy category,

and the corresponding Reedy fibrant cospans are those whose objects are fibrant with one of the leg

morphisms being a fibration. In CGWHQuillen, this means all cospans of the form A→ discS← B are

Reedy fibrant, since all maps into a discrete set are Serre fibrations, and all spaces are already fibrant. In

particular, this means that levelwise weak equivalences between such cospans induce weak equivalences

of limits, as desired.

The goal now is to endow CGWH with coalgebraic structure over (−)Grpd, so that the Poincaré

∞-groupoid construction arises as the unique coalgebra homomorphism Π∞ : CGWH → ∞Grpd.

Intuitively, the coalgebraic structure on CGWH realises a space X as a groupoid on its underlying set

that is weakly enriched in the (∞,1)-category of spaces, taking its morphisms to be the continuous paths

in X . We will formalise this with the co-opetopic space J : O→CGWH constructed in Definition 4.24.

As in Section 3.3, the co-opetopic space J induces a nerve N : CGWH→ Func(Oop,CGWH) where

(NX)γ := Map(J(γ),X). However, NX will not be an object of (CGWH)Grpd for the simple reason

that (NX)0 = X as spaces, and is thus not discrete unless X is. For such a nerve to be effective, we

would have to develop an opetopic analogue of complete Segal spaces as originally defined by Rezk in

[38] rather than Segal categories, as Segal spaces allow the set of objects to be endowed with nontrivial

topology. Therefore, we restrict the nerve as follows:

Definition 5.44. For an opetope γ , let v0, . . . ,v|γ|1 be the 0-opetopes of γ . For any x0, . . . ,x|γ|1 ∈ X , let

Map~x(γ,X) be the subspace of continuous functions f : J(γ)→ X such that f (vi) = xi for all i. Then,

define (N̂X)γ := ∏
~x Map~x(γ,X) to be the disjoint union of all these possible spaces. Given a coface

δ → γ , so we obtain a continuous map (N̂X)γ → (N̂X)δ simply by restricting the functions J(γ)→ X to

J(δ ). This construction of N̂ extends canonically to continuous maps by postcomposition to define the

restricted nerve N̂ : CGWH→ Func(Oop,CGWH).

Lemma 5.45. The restricted nerve N̂ : CGWH→ Func(Oop,CGWH) defines a coalgebraic structure

on CGWH over (−)Grpd.

Proof. We need to first show that N̂X ∈ (CGWH)Grpd0 for every space X . By design, (N̂X)0 = discX ,

so it remains to verify the unary condition, the Segal condition, and the groupoid condition, which all

amount to checking that appropriate maps are surjective weak homotopy equivalences. The key is

that the map J(1)→ J(2[1]) corresponding to the unary condition, and the maps J(1)
Π

J(0)|γ|1 → J(γ)

corresponding to the Segal and groupoid conditions, are all acyclic cofibrations of cofibrant objects in

CGWH. As the arguments are similar for all three conditions, we will only explicitly check the Segal

condition. Fix an opetope γ .

By Proposition 4.25, the map ι : J(1)
Π

J(0)|γ|1 → J(γ) is an inclusion of contractible CW complexes

and is therefore an acyclic cofibration of cofibrant objects in CGWH. In particular, this ensures that we
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have a lift
J(1)

Π
J(0)|γ|1 J(1)

Π
J(0)|γ|1

J(γ) pt

ι

∼

id

!∃

!

which is a retraction of ι . The Segal map (N̂X)γ → (N̂X)
×

(N̂X)0
|γ|0

1 is the coproduct over all points

x0, . . . ,x|γ|1 ∈ X of the maps

Map~x(γ,X)→Map(x0,x1)
(1,X)×{x1}Map(x1,x2)

(1,X)×{x2} · · ·×{x|γ|1−1}Map(x|γ|1−1,x|γ|1 )
(1,X) (Eq. 5.8)

For a space Y with marked points y0, . . . ,y|γ|1 ∈ Y , let Map~x(Y,X) be the space of continuous functions

f : Y → X where f (yi) = xi for every i. Then, the codomain of the map in (Eq. 5.8) is homeomorphic

to Map~x(J(1)
Π

J(0)|γ|1 ,X) by concatenating paths. This can be checked explicitly, but also follows from

the cartesian closed structure of CGWH, as this implies that the internal hom Map(−,−) is continuous

and thus sends colimits in the first variable to limits, after which the desired homeomorphism follows

by restricting to the fibres over ~x. The map in (Eq. 5.8) is thus precisely Map~x(ι ,X). As we have seen

that ι admits a retraction, this means Map~x(ι ,X) admits a section and is thus in particular surjective.

View the x0, . . . ,x|γ|1 ∈ X as marked points, and likewise the points v0, . . . ,v|γ|1 as marked points

of J(γ) and J(1)
Π

J(0)|γ|1 . The forgetful functor CGWH(|γ|1+1)→ CGWH from the category of spaces

with |γ|1 + 1 marked points and their continuous functions that preserve the marking has a left adjoint

which transfers the Quillen model structure of CGWH to the marked context, meaning that maps are

cofibrations, fibrations, or weak equivalences in CGWH(|γ|1+1) if and only if they are when viewed as

unmarked maps. Moreover, CGWH(|γ|1+1) will be a monoidal model category. This follows by itera-

tively applying [22, Proposition 4.2.9]. In particular, since all spaces are fibrant, the functor Map~x(−,X)

will preserve weak equivalences between cofibrant objects by [22, Lemma 4.2.2] and Ken Brown’s

Lemma. Since CW complexes are cofibrant, it follows that Map~x(γ,X)→ Map~x(J(1)
Π

J(0)|γ|1 ,X) is a

weak homotopy equivalence.

Taking coproducts over all markings~x of X , this shows that the Segal map for γ induces an isomor-

phism πn((N̂X)γ ,θ)→ πn((N̂X)
×

(N̂X)0
|γ|1

1 ,θ) for all basepoints θ and all n≥ 1. Since the fibres for each

marking ~x of X is disjoint, the Segal map will also induce a bijection on path-connected components.

Therefore, the Segal maps in N̂X are surjective weak homotopy equivalences, verifying the Segal con-

dition. The unary condition and groupoidal condition can be checked in the same way, meaning that

N̂X ∈ (CGWH)Grpd0 for every space X . For this construction to define a coalgebra over (−)Grpd,

we need to ensure that N̂ preserves all of the structure of CGWH as a category of weak categories.

We can readily check that N̂ preserves discrete objects and surjections from its construction, and it

preserves all limits because of the continuity of the internal hom in the second variable and how limits

commute with taking fibres. Suppose f : X → Y is a weak homotopy equivalence, then we want to

see that N̂ f is essentially surjective and fully faithful. Note that the 1-truncation of N̂X by definition

recovers the fundamental groupoid Π1X = τ̂≤1(N̂X), which means that τ≤0(N̂X) = π0(X) and thus
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τ≤0N̂ f is bijective from f inducing a bijection on π0. This establishes essential surjectivity. As for

being fully faithful, note for x,y ∈ (N̂X)0 that the discrete fibre product defining the hom-space from

Definition 5.26 gives precisely that (N̂X)(x,y) = Map(x,y)(1,X) = Map(x,y)(J(1),X). Since the space

J(1)∼= [0,1] is a CW complex and thus cofibrant in CGWH, it follows that Map(x,y)(J(1),−) preserves

weak equivalences of fibrant objects, and thus f : X → Y being a weak homotopy equivalence means

the same for (N̂ f )x,y. Therefore, N̂ preserves weak equivalences as well.

The now established coalgebra structure on CGWH allows us to employ Theorem 5.42 to coinduc-

tively define the Poincaré∞-groupoid of a space:

Definition 5.46. Define the Poincaré ∞-groupoid construction to be the unqiue (−)Grpd-coalgebra

homomorphism Π∞ : CGWH→∞Grpd. Accordingly, define the Poincaré n-groupoid to be the n-

truncation Πn := τ≤nΠ∞ : CGWH→ nGrpd.

Theorem 5.47. The Poincaré ∞-groupoid of a compactly generated and weakly Hausdorff space X

satisfies the following:

(i) τ≤0Π∞X = π0X and τ≤1Π∞X = Π1X, where Π1X here is the fundamental groupoid of X.

(ii) The n-morphisms f → g in Π∞X are the boundary-preserving homotopies from f to g in X for

every n≥ 1.

(iii) For x ∈ X and n ≥ 1, the composition of n-morphisms in Π∞X induces group structure on the

hom-set

Πn(X ,x) := (τ≤nΠ∞X)(x,x)(x,x) . . .(x,x)︸ ︷︷ ︸
n times

and moreover this group is isomorphic to πn(X ,x).

Additionally, a map f : X→Y is a weak homotopy equivalence of spaces if and only if the corresponding

weak ω-functor Π∞ f : Π∞X →Π∞Y is an equivalence of∞-groupoids.

Proof. As Π∞ must preserve 0-truncation, we have τ≤0Π∞ = π0. Similarly, we have τ≤1Π∞ = Π1 by

the commutativity of the diagram

CGWH

(CGWH)Grpd

∞Grpd (∞Grpd)Grpd Grpd

N̂Π∞ Π1

(Π∞)∗
τ̂≤1

∼=

τ≤1

τ̂≤1

where the square on the left commutes from Π∞ being a coalgebra homomorphism, the upper triangle

commutes by the construction of N̂ as observed win Lemma 5.45, the middle triangle commutes from
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the identity on 0-truncations applied levelwise, as per the definition of the τ̂≤1, and the bottom triangle

commutes by the definition of τ≤1. This proves (i), which allows us to write Πn := τ≤nΠ∞ as in

Definition 5.46 without risk of ambiguity.

From Remark 5.35, the n-morphisms of Π∞X can be obtained just from looking at the n-morphisms

of Πn+1X , which we can understand inductively through the restricted nerve N̂. Explicitly, the proof

of Adámek’s construction applied to (−)Grpd shows that Π∞ : CGWH→∞Grpd is obtained from

the family of morphisms φn : CGWH→ nGrpd defined inductively with φ0 := π0 : CGWH→ Set and

φn+1 being the composite CGWH N̂−→ (CGWH)Grpd
(φn)∗−−−→ (n+ 1)Grpd, where (φn)∗ acts levelwise.

Moreover, these maps φn were uniquely determined to be the composites

φn : CGWH Π∞−−→∞Grpd
τ≤n−−→ nGrpd

which are precisely the maps Πn. Therefore, we obtain an inductive definition of Πn with Π0 = π0 and

Πn+1 = (Πn)∗◦N̂. Unrolling this induction shows that ΠnX is obtained by applying N̂ levelwise n times,

and then taking path-connected components of each level as in

CGWH N̂−→ (CGWH)Grpd
(N̂)∗−−→ ((CGWH)Grpd)Grpd

(N̂)∗−−→ . . .

. . .
(N̂)∗−−→ ((((CGWH)Grpd) . . .)Grpd)Grpd

(π0)∗−−−→ nGrpd

As (N̂X)(x,y) = Map(x,y)(1,X) is the space of paths from x to y for any x,y ∈ X , this observation

inductively proves (ii). For instance, given paths f ,g : x→ y in X , the 2-morphisms f ⇒ g are the

points of
(

N̂(N̂(x,y))
)
( f ,g) =Map( f ,g)(1,Map(x,y)(1,X)), which are precisely the endpoint-preserving

homotopies f ' g.

By iteratively taking hom-groupoids of ΠnX at a point x ∈ X , we find that

Πn(X ,x) := (ΠnX)(x,x)(idx, idx) . . .(idx, idx)︸ ︷︷ ︸
n times

= π0 Map(idx,idx)(1,Map(idx,idx)(1, . . .Map(x,x)(1,X) . . .))

After currying the right hand side, this says that Πn(X ,x) is the set of homotopy classes of maps

f : J(1)n → X such that f (p1, . . . , pn) = x once any pi is given by a source or target vertex of J(1).

This is precisely the homotopy classes of pointed maps (Sn,∗)→ (X ,x), which is the underlying set of

πn(X ,x). Showing (iii) now reduces to showing that composition in ΠnX of n-morphisms is given by

path concatenation when n ≥ 1, but this follows inductively from the fact that Π1 recovers the funda-

mental groupoid of X wherein composition is precisely path concatenation.

It remains to show that Π∞ preserves and reflects weak equivalence. Preservation follows from

the fact that Π∞ is a morphism of WkCat, so conversely suppose f : X → Y is a continuous map

such that Π∞ f : Π∞X → Π∞Y is an equivalence of ∞-groupoids. For x ∈ X , fully faithfulness of

Π∞ f inductively implies that the induced maps (Π∞X)(x,x) . . .(x,x)→ (Π∞Y )( f x, f x) . . .( f x, f x) are

weak equivalences. Taking the n-truncation of these maps induce isomorphisms πn(X ,x)→ πn(Y, f x)

of groups for all n ≥ 1 from (iii). For n = 0, (i) implies that the 0-truncation Π0 f = π0 f of Π∞ f is
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a bijection as well. Therefore, if Π∞ f is an equivalence of ∞-groupoids, then f is already a weak

homotopy equivalence, as desired.

Corollary 5.48. A space X ∈ CGWH0 is a homotopy n-type if and only if Π∞X is an n-groupoid, in

the sense that it lies in the image of the canonical inclusion nGrpd ↪→∞Grpd.

Remark 5.49. Since continuous maps of spaces are uniquely determined by their action on elements, and

the elements of a space make up the objects of its Poincaré∞-groupoid, it follows that Π∞ is faithful.

However, the functor is likely not full, because continuous maps induce strictly unital weak functors of

higher groupoids when the higher identity morphisms are all chosen to be constant homotopies.

This establishes most of the Homotopy Hypothesis, leaving out only the converse direction: given an

∞-groupoid G, can we find a space K(G) and a weak equivalence G 'Π∞K(G)? Tamsamani proposed

a construction for his simplicial n-nerves that modelled n-groupoids in [46, §2.5] which provided for

every multisimplicial cell a product of geometric realisations of standard simplices, and then glued them

together according to the structure maps of the n-nerve. This generalises the construction in [4, §1.4]

of K(G ,1) for a 1-groupoid G alluded to in Section 2.2.1. Proceeding similarly, a reasonable guess for

K(G) given an∞-groupoid G would be the quotient space

K(G) :=
∏

n≥0

∏

γ1,...,γn

(
Gγ1,...,γn,0×

n

∏
i=1

J(γi)

)/
(∼)

computed in CGWH, where (∼) encodes the structure of G. More explicitly, (∼) would identify

Gγ1,...,γn,0 ∼ Gγ1,...,γk,0,...,0 for k ≤ n to preserve the discreteness property of G. Given maps ji : δi→ γi in

O, the relation (∼) would also identify points according to the pushout

Gγ1,...,γn,0×
n

∏
i=1

J(δi) Gγ1,...,γn,0×
n

∏
i=1

J(γi)

Gδ1,...,δn,0×
n

∏
i=1

J(δi)

[(
Gγ1,...,γn,0×∏

n
i=1 J(γi)

)Π (Gδ1,...,δn,0×∏
n
i=1 J(δi)

)
(∼)

]
∏

n
i=1 J( ji)

G j1 ,..., jn ,0 p

Therefore, K(G) is the space obtained by giving each multi-opetopic cell of G a geometric realisation

and then gluing these realisations together according to the coface maps of the opetopes involved. While

one might intuitively expect the Poincaré∞-groupoid of K(G) to be weakly equivalent to G since any

higher homotopy in K(G) by construction should admit a homotopy to one corresponding to a higher

morphism in G, we are unsure of how to approach this formally and thus leave it to conjecture:

Conjecture 5.50. Given an∞-groupoid G, the space K(G) as defined above admits a weak equivalence

G →Π∞K(G).

In conjunction with Theorem 5.47, this would establish an appropriate version of the Homotopy

Hypothesis for our unbiased opetopic presentation of weak ω-categories.
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Chapter 6

Conclusion

The main goal of this thesis was to produce a uniform, inductive algorithm for constructing weak higher

categories and their corresponding weak functors. To this end, the thesis was very successful, producing

the categories wknCat of weak n-categories for every finite n ≥ 0 through a notion of weak iterated

internalisation. The approach is similar to the construction of higher nerves due to Tamsamani, but the

obstacle to higher nerves modelling weakly unital functors with simplicial nerves was the presence of

strictly preserved codegeneracy maps.

The idea for our construction was to replace the simplex category with a category of shapes without

codegeneracy maps, encoding the units of higher categories in the same way as composition. This led to

the notion of unbiased composition rules and the construction of the category of opetopes, after which

Tamsamani’s construction could be retraced with little additional effort. As units were replaced with

nullary composition, the resulting functors were necessarily already weakly unital, and we proved this

precisely for higher categories of dimension up to two. Moreover, the argument used for the proof of

correctness offers a natural generalisation which would prove the same result for higher dimensions

given sufficient higher categorical language; namely, given the appropriate notion of higher limits.

By describing the inductive construction of higher categories through an endofunctor wk(−)Cat,
we were also able to extend the construction indefinitely to define the category wkωCat of infinite-

dimensional weak ω-categories, which encompasses all higher categories obtained from the original

induction. The technique used the theory of endofunctor coalgebras, from which we realised wkωCat
to be the universal coalgebra over wk(−)Cat. This was similar to an earlier approach of Cheng and

Leinster, but in our case the finite truncations of wkωCat recover our weak n-categories exactly, rather

than partially incoherent n-categories resulting from just forgetting all higher morphisms.

We then adapted the above construction to yield an inductive construction of n-groupoids via a sub-

functor (−)Grpd of wk(−)Cat, with the intention of testing this new presentation of higher categories

against the Homotopy Hypothesis. With∞Grpd being a terminal coalgebra as well, the Poincaré∞-

groupoid construction Π∞ arises by universal property from the coalgebraic structure on the category

of (nice) topological spaces. We proved that Π∞ identifies homotopy n-types with n-groupoids for

all 0 ≤ n ≤ ∞, and also identifies weak homotopy equivalences of spaces with equivalences of ∞-

groupoids. Moreover, we showed that the higher morphisms of the Poincaré∞-groupoid are precisely
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the higher homotopies of the corresponding space, as desired. In particular, we showed that the Poincaré

∞-groupoid contains the homotopy groups of the space as automorphism groups.

Finally, we constructed a candidate space K(G) for any∞-groupoid G whose Poincaré∞-groupoid

should be equivalent to G. Modulo the conjectured correctness of this construction, this would prove that

our proposed presentation for weak ω-categories is both capable of presenting weakly unital functors

and also satisfies the Homotopy Hypothesis.

With the numerous competing definitions for weak higher categories already in literature and folk-

lore, our construction of wknCat for 0≤ n≤ ω provides several advantages:

• We can readily extract the k-morphisms of a weak ω-category for any k≥ 0. This is similar to the

multisimplicial constructions of weak n-categories by Tamsamani in [46] and (∞,n)-categories

by Simpson in [43], and similar also to the complete Segal spaces of Rezk in [38]. Note that

this is unlike the case for the quasicategories of Boardman and Vogt in [9] and similar stratified

generalisations such as the weak complicial sets of [47], both which describe higher categories as

simplicial sets with appropriate lifting properties.

• More generally, we can readily construct hom-ω-categories of a weak ω-category between any

two objects as observed in Remark 5.35. This separates our construction also from even the

unbiased presentations of weak ω-categories via opetopic sets as constructed by Baez and Dolan

in [3], or multitopic sets as introduced by Hermida, Makkai, and Power in [20] and [34].

• The functors between weak higher categories are themselves weak; in particular, they are weakly

unital, just as in the other opetopic and multitopic approaches, but the approaches using simplicial

sets.

• The construction of weak higher categories of finite dimension is inductive, unlike the purely

algebraic approaches or the quasicategorical model. Moreover, the weak ω-categories can be

studied through their finite truncations.

• The Poincaré ∞-groupoid construction from compactly generated weakly Hausdorff spaces to

∞Grpd is canonical, even encoding all of the higher homotopy groups. Modulo one conjecture,

our construction of higher categories satisfies the Homotopy Hypothesis, which is an important

litmus test that all presentations of higher categories should pass.

6.1 Future Work
Beyond resolving Conjecture 5.50, there are important extensions to this work that need to be addressed

in order to establish a solid theory of higher categories with this model. Most importantly, we lack

appropriate weak ω-categories Func(A,B) of functors A → B for A,B ∈ wkωCat0. Just as Cat is

canonically a 2-category and Bicat is similarly a tricategory, wknCat should carry the structure of a

weak (n+1)-category for every n≥ 0, where the morphisms are weak functors, 2-morphisms are weak

natural transformations, 3-morphisms are weak modifications, and so on. In particular, wkωCat should
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carry the structure of a (huge) weak ω-category. From our discussion of 2-limits in Section 5.1.1,

establishing functor ω-categories in wkωCat would provide a means to define weak limits, which are

essential for universal constructions in higher category theory.

Constructing weak functor ω-categories in wkωCat is also a special case of the problem of for-

malising weak enrichment in a higher category. The current state of the art for weak enrichment has

been developed by Gepner and Haugseng in [16], where they worked in the context of quasicategories.

The idea behind their approach generalised a correspondence between categories (strictly) enriched in

a monoidal category V with set S of objects, and functors between the associative operad on S to the

multicategory V ⊗ (cf. Example 4.19). They thus used quasicategorical analogues of operads to define

enrichment in a monoidal quasicategory V , and constructed a quasicategory of V -enriched categories.

However, by being simplicial in nature, all of the resulting enriched (∞,1)-functors are necessarily

strictly unital, and the construction is moreover limited to studying the (∞,1)-category theory of the

enrichment, unless the monoidal structure on V is sufficiently symmetric.

Their operadic approach to enrichment is very closely related to the observations made at the end of

Section 2.2.3 that categories (strictly) enriched in a monoidal category V with object set S correspond

to lax functors from the codiscrete category on S to the delooping of V . In fact, the author had begun

this thesis with the lofty ambition of making headway in the direction of weak enrichment, and this

observation is what had originally motivated formalising a theory of higher categories with weakly unital

functors. The Delooping Hypothesis (cf. [4, Hypothesis 22]) identifies monoidal weak n-categories

with weak (n+1)-categories with one object for all 0≤ n≤ ω . Under this hypothesis, we can define a

monoidal weak ω-category to be a weak ω-categoryA withA0 = pt. Then, categories with object set S

that are weakly enriched in A should correspond to lax ω-functors codiscS→ V .

One way to formalise lax ω-functors would be to relax the axioms of higher opetopic nerves de-

scribed in the beginning of Section 5.2 so that the nerves correspond to lax higher categories, where the

associativity coherence constraints are expressed by higher morphisms rather than equivalences. The

corresponding maps between lax nerves should then present higher lax functors. To see this, consider

the 2-dimensional case, where we consider lax unbiased bicategories in the sense of [31, Definition

3.4.1]. There is a generalisation of the unbiased double nerve of Section 5.1 which makes sense also for

a lax unbiased bicategory B: for an opetope γ , take the γ-cells of the nerve NLax B to be families of the

form (x•, f•,θ•) as with the unbiased double nerve, but allow the 2-morphisms θ• to be non-invertible.

Following the proof of Lemma 5.15 on the fully faithfulness of the unbiased double nerve construction,

we can see that for any map F : NLax B→ NLax B′ between unbiased (lax) bicategories B and B′, the

p-ary functoriality constraint F p is no longer necessarily invertible, meaning that F corresponds to a lax

functor B→B′.

A major obstacle in generalising weak ω-categories to a lax coherent context is that there is no clear

analogue of the Segal condition. Even for an unbiased bicategory B that is not necessarily lax, the

Segal maps (NLax B)γ → (NLax B)×B0 |γ|1 are no longer equivalences of categories. Therefore, the first

challenge is to characterise the (weak) essential image of NLax : UBicatLax→ Cat.
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Appendix A

The Grothendieck Construction

Recall from Section 2.2.3 that for any monoidal category V and any set S of objects, we can define a

V -enriched category as a lax functor codiscS→ BV . As in the case for monoids in V , we can extend

this to define a category V CatS where the morphisms between V -enriched categories on S are the oplax

natural transformations whose component 1-morphisms are given by the tensor unit 1 in V . However,

the desired category V Cat requires allowing S to vary, and this only provides a Set0-indexed family of

categories which appear to be fibres of V Cat.
More precisely, the appropriate category V Cat should come with a canonical functor V Cat→ Set

that sends V -enriched categories to their sets of objects, such that V CatS is the subcategory which lies

over S via this projection for any set S. As the construction of V CatS is contravariantly functorial over

Set, we can reverse this intuition and recover V Cat via the Grothendieck construction described in [24,

§B1.3].

Explicitly, given a pseudofunctor F : C op→ Cat from an ordinary category C viewed as a locally

discrete bicategory into the 2-category of small categories, the Grothendieck construction explicitly

yields the category C
∫

F where

• the objects are pairs (c,x) where c ∈ C0 and x ∈ (Fc)0

• the morphisms (c,x)→ (d,y) are given by pairs ( f ,φ) where f : c→ d in C and φ : x→ (F f )(y)

in Fc

and composition is defined as (g,ψ) ◦ ( f ,φ) := (g ◦ f ,(F f )(ψ) ◦ φ). This category has an obvious

canonical projection C
∫

F→ C , for which the fibre at any c ∈ C recovers the category Fc. In fact, this

construction extends naturally to a 2-functor C
∫

: Funcps(C op,Cat)→ (Cat ↓ C ) from the 2-category

of pseudofunctors, pseudonatural transformations, and modifications to the 2-category of functors over

C , commutative triangles of functors, and natural transformations. In fact, the Grothendieck construc-

tion establishes an isomorphism of 2-categories between Funcps(C op,Cat) and the sub-2-category of

Grothendieck fibrations in (Cat ↓ C ). However, this fact is not necessary for the main discussion.

Returning to the pseudofunctor V Cat(−) : Setop→ Cat, the Grothendieck construction will indeed

construct the desired category V Cat. Certainly the objects of Set
∫

V Cat(−) are correct, as these are
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just V -enriched categories over an arbitrary set of objects, but now a morphism Φ : (C0,C )→ (D0,D)

consists of a function F : C0→ D0 of sets and a certain oplax natural transformation C ⇒ Φ∗D from

V CatC0 , which is ultimately1 a family of morphisms Φx,y : C (x,y)→ D(Φx,Φy) in V such that we

have commutativity of

C (y,z)⊗C (x,y) C (x,z)

D(Φy,Φz)⊗D(Φx,Φy) D(Φx,Φz)

◦

Φy,z⊗Φx,y Φx,z

◦

1 C (x,x)

D(Φx,Φx)

1x

1Φx
Φx,x

This is precisely the definition of a V -enriched functor as in [27].

In particular, if F : V →W is a lax monoidal functor between monoidal categories, then it induces

an ordinary functor F∗S : V CatS→W CatS for any set S just as in the case for monoidal categories, and

this induced functor is pseudonatural in S. Thus, the Grothendieck construction provides us with an

induced functor F∗ : V Cat→W Cat, as alluded to at the end of Section 2.2.3.

There is also a covariant analogue of the construction: given a pseudofunctor F : C → Cat, the

covariant Grothendieck construction yields the category also2 denoted C
∫

F , where

• the objects are pairs (c,x) where c ∈ C0 and x ∈ (Fc)0

• the morphisms (c,x)→ (d,y) are pairs ( f ,φ) where f : c→ d in C , but φ : (F f )(x)→ y in Fc

with composition defined as (g,ψ)◦ ( f ,φ) := (g◦ f ,ψ ◦ (Fg)(φ)). Again, this category has an obvious

projection C
∫

F → C , and the construction extends to a 2-functor C
∫

: Funcps(C ,Cat)→ (Cat ↓ C ).

1The family of morphisms is technically mapping C (x,y)⊗1→ 1⊗D(Φx,Φy), but by padding with unitors from V , we
can suppress the tensor units.

2While the notation may seem to conflict with its contravariant analogue, note that for a pseudofunctor F : C op → Cat,
the contravariant Grothendieck construction from before would yield C

∫
F lying over C , whereas the covariant construction

would give C op ∫ F lying over C op.
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