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Abstract

Longitudinal studies are common in biomedical research, such as an HIV
study. In an HIV study, the viral decay during an anti-HIV treatment and
the viral rebound after the treatment is interrupted can be viewed as two
longitudinal processes, and they may be related to each other. In this thesis,
we investigate if key features of HIV viral decay and CD4 trajectories during
antiretroviral therapy (ART) are associated with characteristics of HIV viral
rebound following ART interruption. Motivated by a real AIDS dataset, two
non-linear mixed effects (NLME) models are used to model the viral load
trajectories before and following ART interruption, respectively, incorporat-
ing left censoring due to lower detection limits of viral load assays. A linear
mixed effects (LME) model is used to model CD4 trajectories. The models
may be linked through shared random effects, since these random effects
reflect individual characteristics of the longitudinal processes. A stochastic
approximation EM (SAEM) method is used for parameter estimation and
inference. To reduce the computation burden associated with maximizing
the joint likelihood, an easy-to-implement three-step (TS) method is pro-
posed by using SAEM algorithm and bootstrap. Data analysis results show
that some key features of viral load and CD4 trajectories during ART (e.g.,
viral decay rate) are significantly associated with important characteristics
of viral rebound following ART interruption (e.g., viral set point). Simula-
tion studies are conducted to evaluate the performances of the proposed TS
method and the naive method, which still uses SAEM algorithm but substi-
tutes the censored viral load values with half the detection limit and without
bootstrap. It is concluded that the proposed TS method outperforms the
naive method.
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Lay Summary

Motivated by an HIV study, a major interest of this piece of research is to
investigate if key features of viral decay during ART are associated with
individual-specific characteristics of viral rebound following ART interrup-
tion. Due to computational complexity of joint modelling, this thesis pro-
posed a three-step method by using a stochastic approximation EM algo-
rithm and a bootstrap method to analyze three linked LME and NLME
models with censoring. Data analysis results show that some key features
of viral load and CD4 trajectories during ART (e.g., viral decay rate) are
significantly associated with important characteristics of viral rebound fol-
lowing ART interruption (e.g., viral set point). These findings may provide
insights into HIV cure research. In addition, simulation studies show that
the three-step method performs reasonably well.
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Chapter 1

Introduction

1.1 Longitudinal Studies

Longitudinal studies are common in practice, especially in the field of biomed-
ical research. Longitudinal data consists of repeated measurements over
time on multiple subjects. For example, in an HIV study, viral loads are
repeatedly measured on participating patients over a period of time, and a
researcher may be interested in the changes of viral loads over time. Figure
1.1 shows a visualization of longitudinal viral load trajectories. In Figure
1.1, each line represents the viral load trajectory of a patient, and the solid
dots on each line represent the repeatedly measured viral loads for this pa-
tient. Suppose that these individuals are considered as a random sample
from a population. Since the repeated measurements are data collected over
time on the same patients, they are likely correlated. For instance, the vi-
ral load values from a patient measured at times t1 and t2 should be close
(i.e., correlated) if t1 and t2 are close. Ignoring this correlation may lead
to biased results in statistical analysis (Diggle et al., 2002). Therefore, in a
longitudinal analysis, it is important to incorporate the correlations between
repeated measures.

Sometimes, the values of some variables may be censored, since they
are too small or too large to be observed. For example, in an HIV study,
the viral loads may be left-censored due to a lower detection limit. As
shown in Figure 1.1, left-censored values are denoted by triangle dots on the
bottom horizontal line with the censored values imputed by the detection
limit. Since the (unobserved) true values of the left-censored data are smaller
than the detection limit, ignoring the censored data in statistical analyses
may lead to biased results (Hughes, 1999). The techniques used to analyze
longitudinal data with left censoring are discussed in Section 2.3.
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1.2. Analysis of Longitudinal Data

Figure 1.1: Viral load (in log10-scale) trajectories before and following ART inter-
ruption. left-censored values are denoted by triangle dots on the bottom horizontal
line with the censored values imputed by the detection limit. Observed values are
denoted by solid dots. Data during ART are in black, and data following ART in-
terruption are in blue. The dashed vertical lines in gray indicate times when the
ART was interrupted. Figure (A) shows data from all subjects, and Figure (B)
shows data from 5 randomly selected subjects.

1.2 Analysis of Longitudinal Data

Regression models are very useful in longitudinal data analysis, since the
covariates in the regression models can partly explain the systematic vari-
abilities in the longitudinal responses. To be more specific, a longitudinal re-
sponse consists of two types of variations. One is within-individual variation,
which reflects variations of the repeated measurements within an individ-
ual over time. The other one is between-individual variation, which reflects
variations of the response data between individuals at a given time point.
That is, the covariates in the regression models may partially explain both
types of variations since they can be either time-independent (e.g., gender)
or time-dependent (e.g., time). In the longitudinal analysis, the response
data are repeated measurements over time on a variable of interest, while
the covariates can either be longitudinal (time-dependent) or cross-sectional
(time-independent). Three types of regression models are commonly used in
longitudinal data analysis, which incorporate the within-individual correla-
tion in different ways. They are mixed effects models, generalized estimating
equation (GEE) models, and transitional models.

Mixed effects models assume that the repeated measurements within
each individual are correlated since they share some common unobserved

2
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characteristics of the individual. Mixed effects models incorporate these un-
observed characteristics by introducing random effects in the models. These
random effects not only incorporate the within-individual correlations, but
they also reflect individual deviations from population averages. A main
advantage of mixed effects models is that they allow for individual-specific
inference; that is, model parameters are allowed to be different across indi-
viduals. As a result, mixed effects models are preferred if data exhibit large
between-individual variations. There are three classes of commonly used
mixed effects models for longitudinal data, which are linear mixed effects
(LME) models, non-linear mixed effects (NLME) models, and generalized
linear mixed models (GLMMs). Some of them are reviewed in Chapter 2.
There are other common mixed effects models, such as survival models with
random effects (i.e., frailty models), semiparametric or nonparametric mixed
effects models. Those models may be studied in future research.

GEE models allow specifying the mean structure and variance-covariance
structure separately, without any distributional assumptions. These models
are preferred for non-normal data or when the distributional assumptions
do not hold. Transitional models assume that the repeated measurements
within each individual follow a stochastic process such as a Markov process.
Transitional models are preferred if such Markov structure is reasonable,
such that the previous response values can be viewed as covariates for the
current response value.

Each of the three types of models for longitudinal data has its advantages
and limitations. In practice, the choice of the methods for longitudinal
data analysis requires both statistical and scientific considerations. This
thesis focuses on mixed effects models, especially LME models and NLME
models, since the motivating HIV dataset exhibits large between-individual
variations.

1.3 Joint Modelling for Longitudinal Data

In practice, two or more longitudinal processes may be associated. For
example, in an HIV study, the entire longitudinal process may consist of two
separate longitudinal processes: viral decay during antiretroviral therapy
(ART) and viral rebound following ART interruption. As shown in Figure
1.1, the HIV viral loads during ART show decreasing trends, which are in
black. The viral loads following ART interruption show increasing trends,
which are in blue. The dashed vertical lines are used to separate the two
longitudinal processes, which indicate times when the ART was interrupted.

3



1.3. Joint Modelling for Longitudinal Data

We may be interested in studying the association between the key features
of viral decay during ART and important characteristics of viral rebound
following ART interruption. In this situation, we may need to model both
longitudinal processes simultaneously and make full use of the information
provided by both processes. Therefore, joint modelling is needed.

When modelling several longitudinal data at the same time, the longi-
tudinal models are often assumed to be linked through shared parameters
or random effects, since these random effects reflect individual characteris-
tics of the longitudinal processes. For example, in an HIV study, the viral
decay model during ART and the viral rebound model following ART may
share the same random effects, which reflect the individual-specific charac-
teristics of the viral decay phase. The individual-specific characteristics of
viral decay may be predictive for the individual trajectories of viral rebound,
and can be used as “covariates” in the viral rebound model following ART
interruption.

We will consider statistical inference methods for joint longitudinal mod-
els, such as a naive two-step method and joint likelihood method. These
methods are discussed in Chapter 3. Briefly, the naive two-step method
works as follows:

• Step 1: fit a model to the observed data in the first longitudinal pro-
cess, and estimate the random effects;

• Step 2: fit another model to the observed data in the second longitudi-
nal process, substitute the shared random effects in the second model
by their estimates from the first step, and then make inference in the
second model as if the estimated values were observed values.

Although the naive two-step method is straightforward and easy to imple-
ment in statistical software, it may lead to biased results since the uncer-
tainty of estimation in the first step is not incorporated in the second step.

To avoid potential bias in the joint modelling process, we can make
statistical inference based on the joint likelihood of all longitudinal data.
Maximum likelihood estimates (MLEs) of all parameters are obtained simul-
taneously by maximizing the joint likelihood. Inference based on the joint
likelihood method produces less biased estimates and more reliable standard
errors. However, the computation may be time-consuming, since the joint
likelihood for longitudinal models is often complicated, and involves high-
dimensional and intractable integral due to unobservable random effects and
censored data. Linearization methods can be used for approximate inference.

4



1.4. Literature Review

These approximate methods are computationally more efficient, but may of-
fer potential convergence problems. Therefore, we propose a three-step (TS)
method for joint analysis of two longitudinal models with shared parameters.

The TS method is modified based on the naive two-step method to ad-
dress its potential problem of biased results. It incorporates the estimation
uncertainty in the first step by bootstrap. The bootstrap step works as
follows:

• Step 1: generate longitudinal values from the fitted longitudinal mod-
els, with unknown parameters substituted by their estimates;

• Step 2: conduct the naive two-step method to fit the generated data
from Step 1 and obtain new estimates for parameters of interest;

• Step 3: repeat step 1 and step 2 for B times, and then use the stan-
dard deviations of all the new estimates as the standard errors for the
corresponding estimates.

The TS method provides more reliable standard errors than the naive two-
step method, since it adjusts the standard errors of the estimates by incor-
porating the estimation uncertainty using bootstrap. The TS method is also
easier to implement in statistical software than joint likelihood method.

In this thesis, a comprehensive data analysis on the motivating HIV data
is performed using the TS method. The performance of the TS method is
also evaluated using simulation studies.

1.4 Literature Review

There has been active research on NLME models and joint models of longitu-
dinal data in recent years. For NLME models, numerical integration meth-
ods and MCEM algorithms for likelihood estimation can be computation-
ally expensive and sometimes may exhibit convergence problems, especially
when the dimension of random effects is high. Therefore, a computationally
more efficient approximation method for NLME models was proposed by
Beal and Sheiner (1982), so-called first-order method. This method took
a Taylor series expansion of the NLME model about the mean of the ran-
dom effects, i.e., bi = 0. An improved method, called first-order conditional
method, was proposed by Lindstrom and Bates (1990), who took a Taylor
series expansion about the empirical Bayes estimates of the random effects,
i.e., bi = b̂i. The improved procedure has been proved to perform better
than that of Beal and Sheiner (1982). The procedures may also be derived
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1.5. Outline

using Laplace approximations (Wolfinger, 1993; Wolfinger and Lin, 1997).
Rather than the approximation methods, Delyon et al. (1999) proposed a
stochastic approximation version of the EM (SAEM) algorithm for NLME
models.

In practice, values of some variables may be censored, since they are too
large or too small to be observed. The proportion of censored data may
not be small in longitudinal studies, so failure to account for the censoring
in the statistical analysis may lead to biased results in the parameter es-
timates and inference (Hughes, 1999). Hughes (1999) proposed a MCEM
algorithm for LME models with censored responses. Fitzgerald et al. (2002)
extended Huges’ method to NLME models with censored responses. Wu
(2002) considered NLME models with both censored responses and covari-
ate measurement errors. Samson et al. (2006) also extended the SAEM
algorithm for NLME models with left-censored data. The above methods
assume that the censored data follow the same distribution as the observed
data. However, such an assumption is not testable based on the observed
data. Yu et al. (2018) considered an approach by treating the censored
values as point masses.

Statistical inference methods for jointly modelling longitudinal data and
survival data have received much attention in the literature. Lawrence Gould
et al. (2015) provided a review of this field. For example, Wu et al. (2008)
considered an NLME model for the longitudinal process and a Cox pro-
portional hazards model for the time-to-event process, where the individual
characteristics of the repeated measures may predict for the time to an
event. Rizopoulos et al. (2009) proposed a Laplace approximation approach
for joint models of continuous longitudinal response and time-to-event out-
come. Although there is a rich literature on joint models of longitudinal data
and survival data, there is relatively fewer literature on joint models of two
longitudinal processes. To our knowledge, there is no previous research on
joint NLME models with left censoring. A comprehensive statistical analysis
of HIV study requires us to link two NLME models with censoring, since the
two NLME models share some random effects. Therefore, a new statistical
method is in demand.

1.5 Outline

In this thesis, we consider two NLME models with left-censored responses:
one NLME model for viral dynamics during ART and another NLME model
for viral rebounds following ART interruption. We also consider a linear
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1.5. Outline

mixed effects (LME) model for CD4 data. The three models are linked
through some shared parameters. We fit the three models separately based
on a three-step (TS) method, using the SAEM algorithm. The performance
of the TS method is evaluated in simulation studies.

The contributions of this thesis are: (i) to our knowledge, this work is
the first to study the relationship between viral decay during ART and vi-
ral rebound following ART based on NLME models; (ii) the proposed TS
method is simple, and easy to implement in statistical software; (iii) the
proposed TS method is based on exact likelihood method, so there is no
concern about approximation accuracies as in other approximation methods
such as linearization methods, and it is also computationally efficient; and
(iv) the proposed TS method performs reasonably well, as shown in simula-
tion studies, and clearly outperforms a common naive two-step method that
uses an imputed value for censored observations and model-based standard
errors.

This thesis is organized as follows. Chapter 2 reviews mixed effects
models for longitudinal data, including LME models, NLME models, and
NLME models with left censoring. For inference, we review the Monte Carlo
EM (MCEM) algorithm and linearization method, as well as the Stochastic
Approximation EM (SAEM) algorithm. Simulation studies are conducted to
compare the performances of the linearization method (nlme package) and
the SAEM algorithm (saemix package) in R (R Core Team, 2013; Pinheiro
et al., 2019; Comets et al., 2017). In Chapter 3, we describe different joint
inference methods, such as a naive two-step method and joint likelihood
method, for two NLME models with shared parameters. Since the two
inference methods have some limitations, we have proposed a TS method
based on the SAEM algorithm for inference. In Chapter 4, real data analysis
is conducted on an HIV study by using the naive two-step method and the
proposed TS method. In Chapter 5, simulation studies are conducted to
compare the performances of the naive two-step method and the proposed
TS method under different settings. Conclusions and future research are
discussed in Chapter 6.
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Chapter 2

NLME Models with
left-censored Responses

In this chapter, we briefly review LME models and NLME models, including
their expressions and inference. We also discuss the NLME models when
there are left-censored responses. Comprehensive descriptions of these mod-
els can be found in Wu (2009).

2.1 LME Models

In this section, we first briefly review LME models, and then we extend
LME models to NLME models in the next section. Detailed descriptions of
these models can be found in Wu (2009), among others.

Suppose there are n individuals in a longitudinal study and ni is the num-
ber of repeated measurements within individual i. Let yi = (yi1, yi2, · · · , yini)

T

be the ni repeated measurements of the response variable y on individual
i, i = 1, 2, · · · , n. A general form of LME models can be written as (Laird
and Ware, 1982)

yi = Xiβ + Zibi + ei, i = 1, 2, · · · , n, (2.1)

bi ∼ N(0, D), ei ∼ N(0, Ri), (2.2)

where β = (β0, β1, · · · , βp)T is a (p + 1) × 1 vector of fixed effects, bi =
(bi0, bi1, · · · , biq)T is a (q + 1) × 1 vector of random effects for individual i,
ei = (ei1, ei2, · · · , eini)

T are random errors of the repeated measurements
within individual i, D is a (q+ 1)× (q+ 1) covariance matrix of the random
effects, and Ri is a ni×ni covariance matrix of the within-individual random
errors.

The diagonal elements of D are the variances of the random effects bi,
which measure the variability of longitudinal trajectories between individ-
uals. The diagonal elements of Ri are the variances of the random errors
eij ’s, which measure the variability of repeated measurements within each
individual. The design matrices Xi and Zi have dimensions ni× (p+ 1) and

8



2.1. LME Models

ni × (q+ 1) respectively, and Zi is often a submatrix of Xi. The two design
matrices often contain covariates of individual i (i.e., time and age) and can
be written as

Xi =


1 x11 · · · x1p
1 x21 · · · x2p
...

...
. . .

...
1 xni1 · · · xnip

 , Zi =


1 z11 · · · z1q
1 z21 · · · z2q
...

...
. . .

...
1 zni1 · · · zniq

 .

Note that, the repeated measurements {yi1, yi2, · · · , yini} within each in-
dividual can be taken at different time points tij for different individuals,
and the number of repeated measurements ni may also vary across individ-
uals. This is an advantage of LME models, such that they allow unbalanced
data in the response.

There are standard assumptions for LME models (2.1) and (2.2), includ-
ing: (i) the individuals are independent, and (ii) the random errors ei and
the random effects bi are independent and both are normally distributed
with mean zero. Under the above assumptions, the marginal distribution of
the response yi is a multivariate normal distribution, which can be written
as

yi ∼ N(Xiβ, ZiDZ
T
i +Ri). (2.3)

The marginal mean of the response yi is given by E(yi) = Xiβ, and the
variance covariance matrix of the response yi is given by

Cov(yi) = ZiDZ
T
i +Ri = Vi,

where Vi is an ni × ni square matrix. Note that, the marginal distribution
(2.3) provides population average inference, while the individual-specific in-
ference can be conducted by conditioning on the random effects bi.

The covariance Ri is often assumed to depend on i only through their
dimensions and the within-individual repeated measurements are condition-
ally independent given the random effects, i.e., it is often assumed that
Ri = σ2Ini , where Ini is a ni × ni identity matrix. This assumption may
be reasonable if the within-individual repeated measurements are far apart
or the between-individual variation dominates the within-individual varia-
tion. The simplified within-individual covariance structure greatly reduces
the number of parameters and may reduce some identifiability problems.

Let’s consider the motivating HIV dataset and fit an LME model with
first four viral load measurements as responses and time as predictors. The

9



2.1. LME Models

LME model with random intercept and random slope can be written as

yi = Xiβ + Zibi + ei, i = 1, 2, · · · , n, (2.4)

where

Xi =


1 ti1
1 ti2
...

...
1 tini

 , Zi =


1 ti1
1 ti2
...

...
1 tini

 ,

β = (β0, β1)
T contains fixed effect parameters, bi = (b0i, b1i)

T contains
random effects for individual i and follows N(0, D) with D being a 2 × 2
covariance matrix, and ei is within-individual error. Assuming that the
random effects bi and the random error ei are independent, we have ei ∼
N(0, σ2Ini). The LME model can also be written as

yij = (β0 + b0i) + (β1 + b1i)tij + eij . (2.5)

Figure 2.1 shows the observed and fitted viral load trajectories before
ART interruption based on the LME model (2.4) for four randomly selected
patients. We can see that slope and intercept of the fitted line vary from
patient to patient.

Statistical inference for an LME model is typically based on the maxi-
mum likelihood method. Let θ denote all parameters in the LME model (2.1)
and (2.2). The likelihood for the observed response y = {y1,y2, · · · ,yn} is
given by

L(θ|y) =

n∏
i=1

f(yi|θ) (2.6)

=

n∏
i=1

∫
f(yi|bi, β, Ri)f(bi|D)dbi, (2.7)

where

f(yi|bi, β, Ri) = (2π)−ni/2|Ri|−1/2 exp[−(yi −Xiβ − Zibi)TR−1i
×(yi −Xiβ − Zibi)],

f(bi|D) = (2π)−q/2|D|−1/2 exp(−bTi D
−1bi).

10



2.1. LME Models

Figure 2.1: Observed and fitted viral load trajectories before ART interruption based
on LME model (2.4) for four randomly selected patients.

In the case Ri = σ2I, assuming Vi is known, the maximum likelihood
estimates (MLEs) of the fixed effects β and σ2 are

β̂ = (
n∑
i=1

XT
i V

T
i Xi)

−1
n∑
i=1

XT
i V
−1
i yi,

σ̂2 =
1

n

n∑
i=1

(yi −Xiβ̂)TV −1i (yi −Xiβ̂).

The MLEs of θ can be obtained by using the expectation-maximization
(EM) algorithm. The EM algorithm is a popular iterative method for com-
puting MLEs with incomplete data (Dempster et al., 1977). The EM al-
gorithm alternates between performing an expectation step (E-step) and a
maximization step (M-step). The E-step computes the conditional expecta-
tion of the “complete-data” log-likelihood evaluated based on the observed
data and current estimates for the parameters, and the M-step computes
parameters maximizing the expected log-likelihood in the E-step. These
parameter estimates are then used to compute the expectation of the log-
likelihood in the next E-step. Given starting values of θ, one iterates be-
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2.1. LME Models

tween the E-step and the M-step until convergence. At convergence, we
obtain (possibly local) maximizers of the observed-data likelihood.

To find MLEs of θ in LME model (2.1) and (2.2), the EM algorithm
is used by treating the random effects bi as “missing data”. Let k index
the iterations, where k = 0 refers to starting values and k = ∞ refers
to convergence. Define Q(θ|θ(k)) as the expected log-likelihood function
of θ given θ(k), where θ(k) denotes the parameter estimates from the k-th
iteration. Then, the E-step of the EM algorithm at iteration k+1 computes

Q(θ|θ(k)) = E
[
logL(θ|y,b)|y, θ(k)

]
= E

[
n∑
i=1

{
(log f(yi|bi, β, Ri) + log f(bi|D))|yi,θ(k)

}]
.

Let η denote the vector of all distinct parameters in the variance-covariance
matrices D and Ri. Then the estimated sufficient statistics of η at iteration
k are:

n∑
i=1

E
(
eTi ei|yi, θ̂(k)

)
=

n∑
i=1

[
ê
(k)T
i ê

(k)
i + tr

(
Cov(ei|yi, θ̂(k))

)]
,

n∑
i=1

E
(
bTi bi|yi, θ̂(k)

)
=

n∑
i=1

[
b̂
(k)
i b̂

(k)T
i + Cov(bi|yi, θ̂(k))

]
,

where

ê
(k)
i = yi −Xiβ̂

(k) − Zib̂(k)
i ,

b̂
(k)
i = D(η̂(k))ZTi V

−1
i (η̂(k))

(
yi −Xiβ̂

(k)
)
,

Vi(η̂
(k)) = ZiD(η̂(k))ZTi +Ri(η̂

(k)).

After E-step, we can obtain an updated parameter estimate θ(k+1) by
maximizing Q(θ|θ(k)) in the M-step, i.e.,

β̂(k+1) =

[
n∑
i=1

XT
i V̂
−1
i (η̂(k))Xi

]−1 n∑
i=1

XT
i V̂
−1
i (η̂(k))yi,

σ̂(k+1)2 =

n∑
i=1

E
(
eTi ei|yi, θ̂(k)

)
/

n∑
i=1

ni,

D̂(k+1) =
n∑
i=1

E
(
bTi bi|yi, θ̂(k)

)
/n.
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2.2. NLME Models

Alternating the above E-step and M-step until convergence, we obtain
the final parameter estimates that maximize the observed-data likelihood
(possibly locally), depending on the starting values. EM algorithm performs
well when finding the MLEs of θ for an LME model, since we can obtain
closed-form expressions of the E-step and M-step by integrating out the
unobserved random effects in the E-step.

2.2 NLME Models

In the previous section, we describe a widely used LME model in longi-
tudinal studies. In general, linear regression models have the advantage
of simplicity because they reasonably fit the observed data without under-
standing of the true relationship between the response and the covariates
(i.e., also known as the data-generation mechanism). In order to under-
stand the data-generation mechanism, mechanistic models such as nonlin-
ear regression models, are suggested. Compared to linear models, nonlinear
models have some advantages, including: (i) nonlinear models may be able
to make better predictions outside the range of the observed data, since they
usually have a better understanding of the data-generation mechanism; (ii)
the parameters in nonlinear models often have natural scientific interpreta-
tions; and (iii) non-linear models often need fewer parameters than linear
models to fit the observed data equally well.

In a longitudinal study, random effects can be introduced in the nonlin-
ear models to incorporate the within-individual correlations and between-
individual variations. The extended models are called nonlinear mixed ef-
fects (NLME) models. Suppose there are n individuals and ni is the number
of repeated measurements within individual i. Let yi = (yi1, yi2, · · · , yini)

T

be the ni repeated measurements of the response variable y on individual i,
i = 1, 2, · · · , n. A general form of NLME models can be written as (Lind-
strom and Bates, 1990)

yij = g(tij , βi) + eij , (2.8)

βi = h(xi, β,bi), i = 1, 2, · · · , n, j = 1, 2, · · · , ni (2.9)

bi ∼ N(0, D), ei ∼ N(0, Ri), (2.10)

where g(·) is a known nonlinear function governing within-individual behav-
ior depending on a (p× 1) vector of individual-specific parameter βi, h(·) is
a p-dimensional function depending on an (r× 1) vector of fixed effects β, a
(k × 1) vector of random effects bi, and a vector of covariates xi specific to
individual i, ei = (ei1, ei2, · · · , eini)

T are random errors of within-individual
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2.2. NLME Models

measurements, D is a covariance matrix of the random effects, and Ri is a
covariance matrix of the within-individual random errors. We assume that
bi and ei are independent. Similar as LME models, if the within-individual
repeated measurements are far apart or the between-individual variation
dominates the within-individual variation, we can assume that Ri = σ2Ini .

The function h(·) in model (2.9) is often a linear function, as a result,
the model can be written more compactly in the form

βi = Aiβ +Bibi, (2.11)

where Ai is a design matrix depending on xi, and Bi is a design matrix
typically involving only 0’s and 1’s depending on the random effects bi.

Let’s consider the motivating HIV dataset in Chapter 1 and fit an NLME
model (2.12) for viral decay before ART interruption. The NLME model
(2.12) is introduced by Wu and Ding (1999) and it is a widely used viral
dynamic model in HIV studies. The model can be written as:

yij = g(tij , βi) + eij ,

= log10(e
P1i−λ1itij + eP2i−λ2itij ) + eij , (2.12)

P1i = P1 + b1i, P2i = P2 + b2i, λ1i = λ1 + b3i, λ2i = λ2 + b4i,

i = 1, 2, · · · , n, j = 1, 2, · · · , ni,

where bi = (b1i, b2i, b3i, b4i)
T ∼ N(0, D) and eij ∼ N(0, σ2). The model may

be represented as in model (2.20) with β = (P1, P2, λ1, λ2)
T , and

Ai =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , and Bi =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Figure 2.2 shows the observed and fitted viral load trajectories before ART
interruption based on NLME model (2.12) for four randomly selected pa-
tients. Compare to Figure 2.1, we can see that the NLME model fits the
observed data better.
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2.2. NLME Models

Figure 2.2: Observed and fitted viral load trajectories before ART interruption based
on NLME model (2.12) for four randomly selected patients.

There are a number of inferential methods for the NLME model. We first
introduce the likelihood method. Let θ = (β,η, D) denote all parameters
in the NLME model (2.8), (2.9) and (2.10), where η is a vector of distinct
parameters in Ri. The marginal distribution of the response yi is given by

f(yi|θ) =

∫
f(yi|xi,β,η,bi)f(bi|D)dbi, (2.13)

and the likelihood can be written as

L(θ|y) =

n∏
i=1

∫
f(yi|xi,β,η,bi)f(bi|D)dbi. (2.14)

Since the NLME model is nonlinear in the random effects bi, the integrations
in the likelihood (2.14) cannot be done in a closed form. Thus, the evaluation
of the integral can be computationally expensive, which leads to a major
difficulty of likelihood inference for an NLME model. Three commonly used
methods are numerical or Monte Carlo integration methods, EM algorithms,
and approximate methods (Davidian and Giltinan, 1995).

An iterative EM algorithm can be used to compute the maximum like-
lihood estimates. Let’s denote {yi, i = 1, · · · , n} as the observed data. By
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2.2. NLME Models

treating the random effects bi as missing data, we have “complete data”
{(yi,bi), i = 1, · · · , n}. The “complete-data” log-likelihood for individual i
is given by

l
(c)
i (θ|yi,bi) = log f(yi|bi,β,η) + log f(bi|D).

At iteration k = 1, 2, 3, · · · , the E-step computes the conditional expectation

Q(θ|θ(k)) = E

[
n∑
i=1

l
(c)
i (θ|yi,bi)|yi, θ(k)

]

= E

[
n∑
i=1

{
(log f(yi|bi, β,η) + log f(bi|D))|yi,θ(k)

}]
,

with respect to the conditional distribution f(bi|yi,θ(k)), where θ(0) is the
starting value. Since the conditional expectation Q(θ|θ(k)) does not have a
closed-form expression, we may consider Monte Carlo simulations or numer-
ical integration methods to evaluate Q(θ|θ(k)) when the dimension of the
random effects bi is low. When the E-step of the EM algorithm is evaluated
using Monte Carlo simulations, the EM algorithm is called a Monte Carlo
EM algorithm (MCEM).

To perform MCEM algorithm, we need to simulate a large sample of
the missing data bi from the conditional distribution f(bi|yi,θ(k)) at k-
th EM iteration. This sampling can be accomplished using Markov Chain
Monte Carlo (MCMC) method such as the Gibbs sampler or a rejection
sampling method. The Gibbs sampling is proposed by Geman and Geman
(1993) and it is used to obtain random samples from an intractable multi-
dimensional probability distribution by sequentially sampling from lower-
dimensional conditional distributions which are easier to sample from. These
samples then comprise a Markov chain, whose stationary distribution is
the target distribution. The details of the Gibbs sampler are described as
follows.

Let u = (uT1 ,u
T
2 , · · · ,uTq )T be a random vector, and each component

ui may also be a random vector. Note that the component ui are usually
unobserved values with different dimensions. Suppose that we wish to gen-
erate samples from the probability distribution f(u|θ) and f(u|θ) is highly
intractable. Therefore, we are not able to generate a sample from f(u|θ)
directly, and the Gibbs sampler is introduced. For simplicity, assume that
θ is known. Let

u−j = (uT1 , · · · ,uTj−1,uTj+1, · · · ,uTq )T , j = 1, 2, · · · , q,
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be the subvector of u without the component uj . Beginning with the starting

values (u
(0)
1 , · · · ,u(0)

q ), at step k = 1, 2, · · · ,

• sample u
(k)
1 from f(u1|(u(k−1)

2 ,u
(k−1)
3 , · · · ,u(k−1)

q ,θ);

• sample u
(k)
2 from f(u2|(u(k−1)

1 ,u
(k−1)
3 , · · · ,u(k−1)

q ,θ);

• · · · ;

• sample u
(k)
q from f(uq|(u(k−1)

1 ,u
(k−1)
2 , · · · ,u(k−1)

q−1 ,θ).

The sampling procedure works well, because generating samples from the
lower dimensional conditional distribution f(uj |uj−1,θ), j = 1, 2, · · · , q,
is much easier. The sequence {(u(k)

1 , · · · ,u(k)
q ), k = 1, 2, · · · } comprises a

Markov chain with stationary distribution f(u|θ). Hence, when k is large,

u(k) = (u
(k)
1 , · · · ,u(k)

q )T can be viewed as a sample generated from the prob-
ability distribution f(u|θ).

In the E-step of the MCEM algorithm, the Gibbs sampler works when
simulate the missing data bi from the conditional distribution f(bi|yi,θ(k))
since

f(bi|yi,θ(k))∝f(yi|bi,θ(k))f(bi|D(k)),

where f(yi|bi,θ(k)) and f(bi|D(k)) are known distributions. Denote the

simulated data as {b(1)
i ,b

(2)
i , · · · ,b(M)

i }, where M is the number of Monte
Carlo sample. Then, the conditional expectation Q(θ|θ(k)) can be approxi-
mated by the following empirical mean:

Q̃(θ|θ(k)) =
1

M

M∑
j=1

[
log f(yi|b(j)

i , β,η) + log f(b
(j)
i |D)

]
.

The M-step is then to maximize Q̃(θ|θ(k)) to produce updated θ(k+1) by using
standard optimization procedure such as the Newton-Raphson method.

The foregoing Monte Carlo EM algorithm can be arbitrarily accurate by
increasing M, but the computational time also grows rapidly as M increases.
Alternatively, we can use numerical integration, such as the Gauss-Hermite
quadrature. Compared to Monte Carlo integration, numerical integration
may reduce computational time without loss of accuracy, especially when
the random effects have a low dimension and follow a normal distribution.
However, the computational time grows exponentially with the dimension
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of the random effects. More details can be found in Davidian and Gallant
(1993).

The approximation method is another approach for inference for NLME
models. Laplace approximation can be used to directly approximate the
likelihood (2.14). In addition, Taylor expansions can be used to linearize the
NLME model and iteratively solve the resulting LME models (Lindstrom
and Bates, 1990). The linearization method is widely used in standard
software such as the nlme package in R. The idea is to take a first-order
Taylor expansion about estimates of parameters and random effects, which
leads to a “working” LME model. Then, we update parameter estimates
from this LME model iteratively until they converge. To be more specific,
the NLME model (2.8) and (2.9) can be written as a single equation

yij = uij(xi,β,bi) + eij , i = 1, · · · , n; j = 1, · · · , ni,

where uij(·) is a nonlinear function. Let ui = (ui1, · · · , uini)
T . At each

iteration, denote the current estimates of (β,bi) by (β̂, b̂i), suppressing the
iteration number, where b̂i is the empirical Bayesian estimate of bi. Then,
iteratively solving the following “working” LME model (Wolfinger, 1993)

ỹi = Wiβ + Tibi + ei, (2.15)

where

ỹi = yi − ui(xi, β̂, b̂i) +Wiβ̂ + Tib̂i,

Wi =
∂ui(xi,β, b̂i)

∂βT
∣∣
β=β̂

, Ti =
∂ui(xi, β̂,bi)

∂bTi

∣∣
b=b̂i

.

At each iteration, the parameters and random effects from the LME model
(2.15) are updated by (β̂, b̂i) using standard methods described in Section
2.1. The advantage is that the approximation methods are computation-
ally efficient since they avoid intractable integration. A drawback of the
approximation method is that the approximation may not be accurate if the
model is very “nonlinear”. Another drawback is that there may arise some
convergence issues.

Other than the likelihood method and the linearization method, infer-
ence for an NLME model also can be based on a two-step method if the num-
ber of repeated measurements ni’s are large. In step 1, individual parameter
βi are estimated by fitting a nonlinear regression model to the repeated ob-
servations within each individual using standard estimation methods for
nonlinear models such as the least square method. In step 2, the individual
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2.3. NLME models with left censoring

estimates β̂i are used to estimate the fixed parameters β and perform infer-
ence based on large-sample asymptotic results. More details can be found in
Davidian and Giltinan (1995). The two-step method is simple and requires
no distributional assumptions, but it requires a large number of repeated
measurements.

2.3 NLME models with left censoring

In practice, the values of some variables may be viewed as censored since
their values are too large or too small to observe. For example, in the
motivating HIV dataset, some viral loads are (left) censored due to a low
detection limit. That is, if the viral loads are lower than the detection
limit, these values are unobservable. Figure 1.1 shows entire viral load
trajectories during ART and following ART interruption for all subjects
and for 5 randomly selected subjects, respectively (for data following ART
interruption, we only show the first 36 weeks of data because viral load levels
typically stabilize before then). left-censored values are denoted by triangle
dots on the bottom horizontal line with the censored values imputed by the
detection limit. Observed values are denoted by circle dots. Data during
ART are in black, and data following ART interruption are in blue. The
dashed vertical lines in gray indicate times when the ART was interrupted.
In this section, we mainly focus on NLME models with left censoring.

When data are censored, their true values are unknown but only known
to be lower or higher than some thresholds. In the HIV dataset, all the
censored viral loads are known to be between 0 and the detection limit,
that is, between 0 and log10 40. It is important to take into consideration of
censored value in the analysis, since the proportion of censored data is high.
Failure to account for the censored data in the statistical analysis may lead
to significant biased results (Hughes, 1999).

Paxton et al. (1997) introduced a naive method to address left censor-
ing problem in HIV studies, which imputes the censored values by half the
detection limit. A major drawback of this naive method is that this impu-
tation method ignores the uncertainty of the censored values, which may
lead to biased results. To better address censoring, we can consider an EM
algorithm for likelihood estimation.

Let yij be the response for individual i at time tij , i = 1, · · · , n; j =
1, · · · , ni. Since some observations are censored, we can write yij as (qij , cij),
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where qij is the observed value and cij is the censoring indicator such that

yij =

{
qij if cij = 0,

≤ d if cij = 1,

where d is a known constant such as a detection limit in an HIV study.
Denote yi = (yi1, · · · , yini)

T , qi = (qi1, · · · , qini)
T , and ci = (ci1, · · · , cini)

T .
The observed data are {(qi, ci, zi), i = 1, · · · , n}, where zi is a collection of
covariates.

Let f(·) and F (·) denote a generic density function and the corresponding
cumulative density function (cdf), respectively. Assume that yi1, · · · , yini are
conditionally independent given the random effects bi, and bi ∼ N(0, D),
where D is an unknown covariance matrix. Let θ be the collection of all
unknown parameters. The likelihood for the observed data {(qi, ci, zi), i =
1, · · · , n} can be written as

Lo(θ) =
n∏
i=1

∫
{
ni∏
j=1

(f(yij |zi,bi,θ))1−cij (F (d|zi,bi,θ))cij}

×f(bi|B)dbi, (2.16)

where

F (d|zi,bi,β,σ) ≡ P (Yij < d|zi,bi,β,σ),

β contains mean parameter, σ contains variance-covariance parameters, and
Yij is the random version of yij . The likelihood (2.16) does not have an an-
alytic expression. Hughes (1999) proposed a Monte Carlo EM algorithm
to find the MLEs of the parameters θ for LME models with censored re-
sponses. The same method can also be extended to NLME models with
censored responses (Wu, 2002).

Treating the censored values in yi and the random effects bi as miss-
ing data, we have “complete data” {(yi, zi,bi), i = 1, 2, · · · , n}. The log-
likelihood of the complete data can be written as

lc(θ) =

n∑
i=1

l(i)c (θ) =

n∑
i=1

[log f(yi|zi,bi,θ) + log f(bi|θ)].

The E-step is to compute the conditional expectation of the complete data
log-likelihood given the observed data and current parameter estimates. The
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conditional expectation for the i-th observation at the (k+1)-th EM iteration
can be written as

Qi(θ|θ(k)) = E{lc(θ)|qi, ci, zi;θ(k)}

=

∫ ∫
[log f(yi|zi,bi,θ(k)) + log f(bi|θ(k))]

×f(yi,bi|qi, ci, zi;θ(k))dycen,idbi (2.17)

where ycen,i is a vector of censored responses.
Since the density function f(yi|zi,bi,θ(k)) is nonlinear in the random

effects bi, the random effects bi cannot be integrate out in the conditional
expectation (2.17), so we are unable to obtain a closed-form expression
for Qi(θ|θ(k)). To implement this E-step, we can use Monte Carlo meth-
ods to simulate the missing data (ycen,i,bi) from the conditional distri-
bution f(yi,bi|qi, ci, zi;θ(k)), and approximate the conditional expectation
Qi(θ|θ(k)) by an empirical mean based on the simulated missing data. In
other words, the censored values are assumed to follow the same distribution
as the distribution assumed for the observed data. The simulation step can
be done by using the Gibbs sampler along with rejection sampling methods.

As discussed in Section 2.2, the key idea of the Gibbs sampler is to gen-
erate samples from the target high dimensional distribution by sequentially
sampling from lower dimensional conditional distributions. In general, it
is easier to sample from these lower dimensional conditional distributions
than the target high dimensional distribution. However, sometimes, sam-
pling from the lower dimensional conditional distributions may not easy ei-
ther. In this case, we may need to combine the Gibbs sampler with rejection
sampling methods to sample from these conditional distributions.

Suppose that we wish to generate a sample from f(x), but f(x) is too
complicated to sample from directly. However, suppose that we know how
to sample from the density distribution h(x), and there is a known constant
c, such that

f(x) ≤ ch(x), for all x.

Then, a rejection sampling works as follows:

• generate a value x∗ from the density distribution h(x);

• generate a value u from the uniform distribution on (0, 1);

• accept x∗, if u <
f(x∗)

ch(x∗)
,

reject x∗, otherwise.
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Repeating the above steps and only retaining the accepted x∗. Then, x∗1,
x∗2, · · · , is a sample from the target distribution f(x).

In the E-step of the MCEM algorithm for NLME models with censored
responses, we can generate samples from f(yi,bi|qi, ci, zi;θ(k)) by itera-
tively sampling from the conditional distributions f(yi|bi,qi, ci, zi;θ(k)) and
f(bi|yi,qi, ci, zi;θ(k)) based on the Gibbs sampler. Note that

f(yi|bi,qi, ci, zi;θ(k)) ∝ f(yi|bi, zi;θ(k))× f(ci|yi, zi;θ(k)), (2.18)

f(bi|yi,qi, ci, zi;θ(k)) ∝ f(bi|θ(k))× f(yi|zi,bi;θ(k)), (2.19)

so we only need to generate samples from the right-hand sides of (2.18)
and (2.19), which can be accomplished using rejection sampling methods
since the density functions on the right-hand sides of (2.18) and (2.19) are
known. The resulting samples constitute a Markov chain which will con-
verge to a stationary distribution f(yi,bi|qi, ci, zi;θ(k)). Repeating this
process many times, we obtain many independent samples (yi,bi), say

{(y(1)
i ,b

(1)
i ), (y

(2)
i ,b

(2)
i ), · · · , (y(M)

i ,b
(M)
i )}, from f(yi,bi|qi, ci, zi;θ(k)). Then,

the conditional expectation Q(θ|θ(k)) in the E-step can be approximated by
its empirical mean

Q̃(θ|θ(k)) =
1

M

M∑
j=1

[
log f(y

(j)
i |zi,b

(j)
i ,θ(k)) + log f(b

(j)
i |θ

(k))
]
,

with the unobserved (ycen,i,bi) substituted by their simulated values. The
M-step is then to maximize the approximated conditional expectation in
order to obtain the updated parameters. The M-step is like a complete-
data maximization, so standard complete-data optimization procedures may
be used to update the parameter estimates, such as the Newton-Raphson
method. Iterating between the E-step and M-step until convergence, we
obtain an MLE of θ or a local maximum of the observed-data likelihood.

Since the parameters and the random effects enter the NLME models
in a nonlinear fashion, there are two major difficulties arise for the Monte
Carlo EM algorithm. Firstly, the E-step becomes very complicated since the
random effects cannot be integrated out. Secondly, analytic expressions for
the E-step and the M-step are no longer available, so iterative algorithms
are needed. Since the exact likelihood estimation for NLME models is com-
putationally expensive, approximate methods based on Taylor or Laplace
approximations can be used (Lindstrom and Bates, 1990). The linearization
method is computationally efficient, but its performance may be less satis-
factory in some cases. Multiple imputation methods may also be used when
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analyzing censored longitudinal data. For a multiple imputation method,
the choice of imputation models only affects the imputed values, so if the
proportion of censored values is small, a multiple imputation method should
perform well.

For parameter estimation and inference for NLME models, an MCEM
algorithm may be time-consuming while the linearization method may be
inaccurate and may have convergence issues. Hence, a stochastic approxi-
mation expectation-maximization (SAEM) algorithm is proposed by Delyon
et al. (1999). The SAEM algorithm is computationally more efficient than
the MCEM method, since in the E-step, only one value is simulated instead
of many values as in MCEM method. More details about SAEM algorithm
will be discussed in the next section.

2.4 Review of SAEM algorithm

For NLME models, an MCEM algorithm may be computationally inten-
sive, while the linearization method may not be accurate and may have
convergence issues. Therefore, Delyon et al. (1999) proposed a stochastic
approximation version of the EM algorithm (SAEM) for NLME models with
no censored values. As shown in Delyon et al. (1999), the SAEM algorithm
is computationally more efficient than an MCEM algorithm and it converges
to a (local) maximum of the likelihood theoretically. The SAEM algorithm
has also proven to perform better than the linearization method (Girard and
Mentré, 2005). It has been implemented in the Monolix software (Lavielle,
2014), and also in the R software through the saemix package (Comets et al.,
2017). Samson et al. (2006) has extended the SAEM algorithm to estimate
parameters of NLME models with left-censored data. The SAEM algorithm
and the extended SAEM algorithm will be reviewed in this section.

As reviewed in Section 2.2, the linearization and EM algorithm are two
commonly used inferential methods for NLME models. The linearization
method is to obtain an approximation of the likelihood, which is maximized
through Newton-Raphson minimization. There are different approximations
to the likelihood. Lindstrom and Bates (1990) proposed a first-order condi-
tional method, which uses Taylor expansions to linearize the NLME model
and iteratively solve the resulting LME models. This approximation method
is implemented in statistical software R, where the nlme package is widely
used in NLME modelling. However, the linearization methods have notable
shortcomings, such as convergence issues and possibly limited with complex
models. An alternative to the linearization method is the EM algorithm,
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which is developed based on missing data (Dempster et al., 1977).
Recall that the EM algorithm computes the maximum likelihood esti-

mates in two steps. At the k-th iteration, the E-step is the evaluation of the
conditional expectation of the complete data log-likelihood Q(θ|θ(k)), where
θ is a vector of all parameters in the model. The M-step then updates θ(k)

by maximizing Q(θ|θ(k)). For NLME models, we need to simulate a large
sample of the missing data bi at the k-th EM iteration. The simulation
of the missing data bi can be accomplished using MCMC method, such
as the Gibbs sampler or a rejection sampling method. This EM algorithm
is also known as MCEM algorithm. Since the MCEM algorithm requires
simulating a large number of the missing data, the computation may be ex-
pensive. The SAEM algorithm, as an alternative to the MCEM algorithm,
combines a stochastic approximation with an EM algorithm. It makes use of
a stochastic approximation procedure for estimating the conditional expec-
tation of the complete data log-likelihood. Unlike the MCEM algorithm, in
the E-step, the SAEM algorithm only simulates random effects once, rather
than many times, which greatly reduces computational costs. Delyon et al.
(1999) proves that the SAEM algorithm is very efficient for NLME models,
and also the convergence of the SAEM algorithm under general conditions if
the complete data log-likelihood belongs to the regular curved exponential
family.

Let {yi, i = 1, · · · , n} denote the observed data and θ = (β,η, D) denote
all parameters in the NLME model

yij = g(tij , βi) + eij ,

βi = h(xi, β,bi), i = 1, 2, · · · , n, j = 1, 2, · · · , ni
bi ∼ N(0, D), ei ∼ N(0, Ri),

where η is a vector of distinct parameters in Ri. Recall that the marginal
distribution of the response yi is given by

f(yi|θ) =

∫
f(yi|xi,β,η,bi)f(bi|D)dbi,

and the likelihood can be written as

L(θ|y) =
n∏
i=1

∫
f(yi|xi,β,η,bi)f(bi|D)dbi,

which does not have an analytical expression. By treating the random effects
bi as missing data, the complete-data log-likelihood for individual i can be
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written as

l
(c)
i (θ|yi,bi) = log f(yi|bi,β,η) + log f(bi|D).

At iteration k, the SAEM algorithm proceeds as follows. The E-step
is divided into a simulation step (S step) and a stochastic approximation

step (SA step). In the S step, {b(1)
i , · · · ,b(mk)

i } are simulated from the
conditional distribution f(bi|yi,θ(k)), then in the SA step, Qk(θ) is updated
based on

Qk(θ) = Qk−1(θ) + γk(
1

mk

mk∑
j=1

log f(yi|b(j)
i , β,η) + log f(b

(j)
i |D)−Qk−1(θ)),

where {γk}k≥1 is a sequence of positive step size. The choice of γk will be
discussed later. The M-step is then to maximize Qk(θ) to produce updated
θ(k+1).

In practice, if the M-step is much faster than the simulation step, the
number of simulations mk = 1 may set for all the iterations. This is also the
case in the saemix package (Delyon et al., 1999; Comets et al., 2017). The
simplified E-step is to simulate only a single vector of bi, and update Qk(θ)
according to

Qk(θ) = Qk−1(θ) + γk([log f(yi|bi, β,η) + log f(bi|D)]−Qk−1(θ)).

The SAEM algorithm improves the computing time greatly, since the num-
ber of simulations M in MCEM is very large.

The convergence of the SAEM algorithm depends on the sequence of the
step size γk. As discussed in Delyon et al. (1999), γk should be a decreasing
sequence with a rate slower than 1 and converging to 0. In practice, in the
first few initial iterations (default by 6 in saemix), the step size γk is set to
0, since computing the expectation Q(θ) is uninterested during the run-in
sequence (Comets et al., 2017). During the first K1 iterations, γk is set to
1. It allows the algorithm to explore the parameter space without memory,
and to converge to a neighbourhood of the MLE quickly. During the final
K2 iterations, γk is set to 1/(k − K1 + 1) to ensure that the estimator is
almost sure converged. The convergence of the SAEM algorithm is also
proved under general conditions (Kuhn and Lavielle, 2004). The two main
conditions are (i) for any θ ∈ Θ, the Gibbs algorithm generates a uniformly
ergodic chain whose invariant probability is f(bi|yi,θ); and (ii) for k =
1, 2, · · · , the step size γk ∈ [0, 1],

∑∞
k=1 γk =∞, and

∑∞
k=1 γ

2
k <∞.
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Compared to the MCEM algorithm, the SAEM algorithm uses the sim-
ulated missing values more efficiently. At each iteration of the MCEM al-
gorithm, an entire set of missing values needs to be simulated and all the
previously simulated missing values are dropped. This can be easily seen
from the E-step of the MCEM algorithm. Recall that to perform MCEM
algorithm, at iteration k, we need to simulate a large sample of the missing

data {b(1)
i , · · · ,b(M)

i } from the conditional distribution f(bi|yi,θ(k)). In the
E-step, the conditional expectation Q(θ|θ(k)) can be approximated by the
following empirical mean:

Q̃(θ|θ(k)) =
1

M

M∑
j=1

[
log f(yi|b(j)

i , β,η) + log f(b
(j)
i |D)

]
.

At iteration k+ 1, another set of missing data {b(M+1)
i , · · · ,b(2M)

i } need to
be simulated, and the new conditional expectation

Q̃(θ|θ(k+1)) =
1

M

2M∑
j=M+1

[
log f(yi|b(j)

i , β,η) + log f(b
(j)
i |D)

]
is independent of the simulated data at iteration k. However, in the SAEM
algorithm, all the simulated missing values contribute to Q(θ|θ(k)) since
Q(θ|θ(k)) is calculated fromQ(θ|θ(k−1)). Previously simulated missing values
weighted less in Q(θ|θ(k)), with a factor inversely proportional to the step
size γk. Therefore, the SAEM algorithm converges more quickly than the
MCEM algorithm in terms of the number of simulations and the SAEM
algorithm is much more computationally efficient.

Samson et al. (2006) extends the SAEM algorithm to NLME models with
left-censored responses, based on simulating the left-censored values yi,cen
from a right-truncated Gaussian distribution f(yi,cen|yi,obs,bi,θ(k)) based
on the Gibbs sampling in the E-step of the SAEM algorithm.

For NLME models with left-censored data, the unobserved values are
(yi,cen,bi), with ycen,i being the left-censored data vector and bi being
the random effects. The simulation step of the SAEM algorithm is the
simulation of the missing data (yi,cen,bi) from the conditional distribution
f(yi,cen,bi|qi, ci, zi;θ(k)), which can be performed by using Gibbs sampling
method. At the k-th iteration of the SAEM algorithm, the Gibbs sampling
procedure can be divided into two steps:

1. Simulate b
(k)
i by using a Metropolis-Hastings(M-H) algorithm con-

structing a Markov Chain b
(k)
i with f(b

(k)
i |yi,obs,y

(k−1)
i,cen ;θ(k−1)) as the

unique stationary distribution,
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2. Simulate y
(k)
i,cen with the posterior right-truncated Gaussian distribu-

tion f(y
(k)
i,cen|yi,obs,b

(k)
i ;θ(k−1)).

Then the E-step and M-step are similar as the regular SAEM algorithm
discussed earlier in this section. Under the two assumptions and general
additional conditions, the estimate sequence {θ(k)}k≥0 produced by the ex-
tended SAEM algorithm converges towards a (local) maximum of the like-
lihood Lo(θ) in (2.16).

The SAEM algorithm, combining a stochastic approximation to the like-
lihood with an EM algorithm, is shown to converge much faster to the max-
imum likelihood estimators than the MCEM algorithm (Delyon et al., 1999)
and perform much better than the linearization methods in the sense of
less non-convergence (Girard and Mentré, 2005). Another advantage of us-
ing SAEM is that there is developed software, such as “Monolix” (Lavielle,
2014). Comets et al. (2017) also provides an implementation of the SAEM
algorithm in the R software through the saemix package. All the data anal-
ysis and simulation studies in this thesis are conducted in R.

2.5 A Simulation Study

In this section, a simulation study is conducted to evaluate the performances
of the SAEM and the linearization method for NLME models, based on the
saemix package, compared to regular nlme package for NLME model fitting
in software R under different settings. The package nlme uses linearization
method (Lindstrom and Bates, 1990), while the package saemix uses SAEM
method for parameter estimations (Comets et al., 2017).

The performances of different methods are compared based on the rel-
ative biases and the relative mean square errors (rMSEs) of the estimates,
the computational time, and the frequency of convergence problems. For a
parameter β and its estimate β̂(i) in the i-th simulation, the relative bias and
mean square error (MSE) of the parameter estimates are defined as follows:

• relative bias (%) of β̂ =

∣∣∣∣∣
∑N

i=1(β̂
(i) − β)

Nβ

∣∣∣∣∣× 100%,

• relative MSE (%) of β̂ =

∑N
i=1(β̂

(i) − β)2

N |β|
× 100%,

where N is the number of simulation repetitions. The computational time
is in hours, and the frequency of convergence problems is presented by the
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number of non-converged runs before there are enough successful estimates.
The simulation study is designed as follows:

• Step 1: the observed data are generated from the following nonlinear
mixed effects model:

yij = log10(e
P1i−λ1itij + eP2i−λ2itij ) + eij , (2.20)

P1i = P1 + b1i, P2i = P2 + b2i, λ1i = λ1 + b3i, λ2i = λ2 + b4i,

i = 1, 2, · · · , n, j = 1, 2, · · · , ni,

where yij is the observed value for individual i at time tij , {P1, P2, λ1, λ2}
are the fixed effects, bi = (b1i, b2i, b3i, b4i)

T is a vector of random ef-
fects, and ei = (ei1, ei2, · · · , eini)

T is the measurement errors. Assume
that eij ∼ N(0, σ2) and bi ∼ N(0, D). To keep the procedure sim-
ple, assume that there are no censored observations in the simulated
dataset.

• Step 2: fit the simulated data using the nlme package and the saemix

package, respectively. If there is a non-convergence problem, re-simulate
the dataset and count for 1 non-converged run.

• Step 3: repeat the above steps for N times.

Simulation Study I

In Setting I, the true values of the model parameters are set to be similar
to the estimates in a real data analysis, where P1 = 17, P2 = 2.6, λ1 = 4.0,
and λ2 = 0.05, σ = 0.5, and

D =


2 0 0 0
0 0.03 0 0
0 0 1.4 0
0 0 0 0.0001

 .

The sample size is set to be n = 50 individuals. The within-individual
longitudinal measurements are set to be 10 repeated measurements: t =
(0.5, 1.7, 2.3, 3.0, 4.6, 6.5, 7.6, 11.2, 14.9, 19.1). The simulations are repeated
N = 100 times.

The simulation results based on model (2.20) are shown in Table 2.1. We
can see that the computational time for nlme is much longer than saemix,
while nlme seems more accurate than saemix based on the bias and rMSE,
especially for parameter P2 and λ2 in the second phase of viral decay where
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Table 2.1: Simulation results of comparing the linearization method and SAEM
method based on model (2.20).

Method Time NC Parameter True value Bias rMSE

linearization 2.0 18 P1 17.0 -0.6 6.7
λ1 4.0 -2.5 10.4
P2 2.6 -2.4 11.0
λ2 0.05 -14.4 6.6

SAEM 0.1 0 P1 17.0 -19.7 97.1
λ1 4.0 -23.0 55.9
P2 2.6 121.0 233.9
λ2 0.05 1587.4 430.5

Note: Time is the computational time in hours, and NC is the number of non-
convergence problems. Bias and rMSE are percentage relative bias and percent-
age relative mean square error respectively, units in %.

the variation in the data is larger than that in the first phase. This is unsur-
prising because the SAEM algorithm only simulates one set of unobserved
data in the E-step. The SAEM algorithm is computationally more efficient,
but may produce inaccurate results. The nlme package uses the lineariza-
tion method for parameter estimations. The linearization method produces
more accurate results, but relatively computationally expensive. It may also
sometimes cause convergence problems.

Different Variations of Data

The performances of the linearization method and the SAEM algorithm
are also compared under different conditions. Table 2.2 compares the two
methods when the variation of data is larger, while the models and the rest
of the parameter values we consider are similar to those in Setting I. The
within-individual standard deviation σ is increased from 0.5 to 2, and the
between-individual variance is increased by changing the covariance matrix
D to

D =


4 0 0 0
0 0.1 0 0
0 0 2 0
0 0 0 0.0005

 .

By comparing Table 2.1 and 2.2, we can see that when the variation
of data is increased significantly, the computational time for nlme is in-
creased, and nlme produces worse results based on the bias and rMSE.
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Table 2.2: Simulation results when the between-individual variation and within-
individual variation increase based on model (2.20).

between individual within individual
variation increased variation increased

Method Par TV Time NC Bias rMSE Time NC Bias rMSE

linearization P1 17.0 4.4 36 -0.6 9.5 49.3 411 -3.1 22.7
λ1 4.0 -2.3 13.4 -12.5 32.9
P2 2.6 -3.5 12.8 -17.3 46.0
λ2 0.05 -20.2 7.9 -95.7 29.1

SAEM P1 17.0 0.1 0 -17.8 88.3 0.1 0 4.8 27.2
λ1 4.0 -20.2 49.0 12.2 36.5
P2 2.6 112.7 217.2 27.3 58.6
λ2 0.05 1442.6 397.9 -74.7 27.3

Note: Par represents parameter, TV represents the true values of the parameters, and NC
represents the number of non-convergence problems. Time is the computational time in
hours. Bias and rMSE are percentage relative bias and percentage relative mean square
error respectively, units in %.

However, saemix produces similar results when data has larger variations.
Especially, the performances of nlme and saemix are quite close when the
within-individual variation is larger, while saemix is much faster than nlme.

Different Sample Size and Number of Repeated Measurements

Table 2.3 shows the simulation results when the sample size is increased and
when there are more frequent repeated measurements. In Table 2.3, the
sample size n is increased from 50 to 200, and the number of repeated mea-
surements ni is increased from 10 to 14, where the new set of repeated mea-
surements t = (0.4, 0.5, 1.2, 2.1, 3.1, 4.1, 5.5, 6.7, 8.2, 9.8, 11.6, 13.5, 15.5, 18).
The rest of the true values of parameters remain the same as in Setting I.

By comparing Table 2.1 and 2.3, we can see that when n is increased, the
performances of both nlme and saemix are improved based on the bias and
rMSE. The performance of nlme improves slightly, while the performance of
saemix improves significantly. However, nlme takes much longer to complete
the simulation and the number of non-convergence problems increases. The
results are expected because a larger sample size generally results in better
estimations.

When there are more frequent repeated measurements, the computa-
tional time of nlme is slightly slower, but the performance of nlme does not
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Table 2.3: Simulation results when the sample size n is increased to 200 and the
number of repeated measurements ni is increased to 14 based on model (2.20).

n increased ni increased
Method Par TV Time NC Bias rMSE Time NC Bias rMSE

linearization P1 17.0 29.63 106 -0.4 4.0 4.2 47 -4.1 6.6
λ1 4.0 -1.8 6.3 -1.5 9.6
P2 2.6 -2.3 8.8 -4.2 11.6
λ2 0.05 -15.0 5.1 -22.8 7.4

SAEM P1 17.0 0.3 0 -7.0 41.9 0.1 0 -24.4 105.2
λ1 4.0 -7.5 24.1 157.2 264.9
P2 2.6 44.2 101.1 -28.3 59.7
λ2 0.05 530.9 176.0 2201.1 519.5

Note: Par represents parameter, TV represents the true values of the parameters, and NC
represents the number of non-convergence problems. Time is the computational time in
hours. Bias and MSE are percentage relative bias and percentage relative mean square error
respectively, units in %.

seem to improve significantly based on the bias, rMSE, and number of non-
convergence problems. However, saemix shows a slightly worse performance
compared to Table 2.1. In general, the two methods need a large number of
repeated measurements to perform well, since more repeated measurements
provide more information about the longitudinal covariate process. The re-
sults do not show a significant difference probably because the change of the
number of repeated measurements is not large enough. We may consider an
even larger number of repeated measurements to investigate the influence
of the number of repeated measurements within individuals on parameter
estimation.

Simulation Study II

To check the sensitivity of the performances of the linearization method and
the SAEM algorithm to different models, we conduct another simulation
study based on another model

yij = β1i
tij

tij + exp(β2i − β3itij)
+ β4i + ξij , (2.21)

β1i = β1 + τ1i, β2i = β2 + τ2i, β3i = β3 + τ3i, β4i = β4 + τ4i,

i = 1, 2, · · · , n, j = 1, 2, · · · , ni,
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where vector βi = (β1i, · · · , β4i)T contains individual-specific parameters,
vector β = (β1, · · · , β4)T contains fixed effect parameters and represents
some key features of viral rebound trajectory, τi = (τ1i, · · · , τ5i)T ∼ N(0, G)
contains random effects with G being a covariance matrix, and ξij is within-
individual random error. We assume that the random effects τi and the
random error ξij are independent, and ξij are i.i.d. ∼ N(0, ω2). This model
is used for fitting viral rebound trajectories, and details about this viral
rebound model are described in Section 4.2.3. The entire simulation process
is similar as in Simulation Study I. Note that there are no censored values
in the simulated data for simplicity.

The true values of the model parameters are set to be similar to the
estimates in a real data analysis, where β1 = 3.2, β2 = 5.6, β3 = 10, and
β4 = 1, ω = 0.5, and

G =


0.5 0 0 0
0 2 0 0
0 0 10 0
0 0 0 0.006

 .

The sample size is set to be n = 50 individuals. The within-individual
longitudinal measurements are set to be 11 repeated measurements: t =
(0.2, 0.7, 1.1, 1.6, 2.1, 2.5, 3.0, 3.5, 4.0, 4.4, 4.9). The simulations are repeated
N = 100 times.

Table 2.4 shows the simulation results of the nlme package and saemix

package based on model (2.21). We can see that saemix performs better
than nlme, as the bias and rMSE are smaller, computing time is less, and
the number of non-convergence problems is fewer. The results are similar
to those in Simulation Study I, which indicate that the performances of the
linearization method and the SAEM algorithm may not be sensitive to the
models.

Different Variations of Data

Table 2.5 shows the simulation results when the variations of data is in-
creased. In Table 2.5, the within-individual standard deviation ω is increased
from 0.5 to 2, and the variance covariance matrix G is changed to

G =


1 0 0 0
0 4 0 0
0 0 15 0
0 0 0 0.02

 .
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Table 2.4: Simulation results of comparing the linearization method and SAEM
method based on model (2.21).

Method Time NC Parameter True value Bias rMSE

linearization 39.3 447 β1 3.2 40.1 203.7
β2 5.6 -82.1 201.6
β3 10 -73.2 241.0
β4 1 -64.0 126.0

SAEM 0.10 0 β1 3.2 -1.8 8.5
β2 5.6 55.3 169.6
β3 10 51.0 211.3
β4 1 4.2 9.7

Note: Time is the computational time in hours, and NC is the number of
non-convergence problems. Bias and rMSE are percentage relative bias and
percentage relative mean square error respectively, units in %.

Table 2.5: Simulation results when ω is increased to 2 and the diagonal elements
in G is increased based on model (2.21).

between individual within individual
variation increased variation increased

Method Par TV Time NC Bias rMSE Time NC Bias rMSE

linearization β1 3.2 3.57 303 24.1 1114.9 39.38 307 -4.2 42.7
β2 5.6 -82.1 228.9 -24.2 28.8
β3 10 -77.3 280.5 -11.1 92.8
β4 1 59.4 140.8 -24.8 103.5

SAEM β1 3.2 0.11 0 -26.5 49.3 0.093 0 -7.6 48.0
β2 5.6 2126.7 5687.5 -13.9 30.5
β3 10 1760.5 6251.1 16.1 72.7
β4 1 88.5 91.0 287.6 116.2

Note: Par represents parameter, TV represents the true values of the parameters, and NC
represents the number of non-convergence problems. Time is the computational time in
hours. Bias and rMSE are percentage relative bias and percentage relative mean square error
respectively, units in %.
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Table 2.6: Simulation results when the sample size n is increased to 200 and the
number of repeated measurements ni is increased to 21 based on model (2.21).

n increased ni decreased
Method Par TV Time NC Bias rMSE Time NC Bias rMSE

linearization β1 3.2 116.9 358 24.0 128.3 47.8 332 7.9 39.3
β2 5.6 -80.9 197.2 -36.4 93.6
β3 10 -71.3 233.1 -34.7 119.6
β4 1 -47.5 101.0 -12.1 18.9

SAEM β1 3.2 0.29 0 -2.4 5.7 0.13 0 1.0 6.9
β2 5.6 32.1 88.6 -0.4 31.4
β3 10 27.2 100.9 -1.7 38.2
β4 1 6.0 7.2 -0.6 5.5

Note: Par represents parameter, TV represents the true values of the parameters, and NC
represents the number of non-convergence problems. Time is the computational time in
hours. Bias and rMSE are percentage relative bias and percentage relative mean square
error respectively, units in %.

Table 2.5 shows that when within-individual standard deviation ω is
increased, the performance of saemix is much worse than nlme, as the bias
and rMSE are larger. This may be due to inaccurate single draw in the
SAEM when the model is more nonlinear and within-individual variation is
larger. It may lead to biased results as the model is complex and the data
has large variations. In addition, when the variance-covariance matrix G is
increased, the performance of nlme and saemix are quite close based on the
bias and rMSE, while nlme has a large number of non-convergence issues.

Different Sample Size and Number of Repeated Measurements

In Table 2.6, we increase the sample size and the number of repeated mea-
surements to examine the effect of sample size and number of repeated
measurements on the results. We consider a larger sample size n = 200.
We can see that both nlme and saemix perform better as the sample size
increases, which is expected.

In addition, we increase the number of repeated measurements from 11 to
21: t = (0.1, 0.3, 0.6, 0.8, 1.1, 1.3, 1.5, 1.8, 2.0, 2.2, 2.5, 2.9, 3.3, 3.7, 4.1, 4.5, 5.0,
5.5, 6.0, 6.8, 7.6). Table 2.6 shows that when the number of repeated mea-
surements is increased, both nlme and saemix perform better based on rela-
tive bias and rMSE. The results are expected since more repeated measure-
ments provide more information about the longitudinal covariate process,
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and the two methods result in more accurate parameter estimates.

Simulation Summaries

In general, nlme (the linearization method) produces more accurate esti-
mates than saemix (the SAEM algorithm), but with longer computational
time and more non-convergence problems. The performances of the two
methods may depend on the variations of data, sample size, and number of
repeated measurements. For example, the two methods perform better as
the sample size and the number of repeated measurements is increased. The
two methods usually have similar performances as the variations of data are
increased. The performances of nlme and saemix seem to be insensitive to
different models. However, the number of simulation repetitions N = 100
may not be large enough to produce reliable results. We may consider a
larger number of simulation repetitions in future research. In conclusion, it
is important to choose a suitable parameter estimation method for NLME
models by weighing the accuracy of the estimates against the computational
cost.
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Chapter 3

Simultaneous Inference for
Joint NLME Models with
left-censored Responses

As reviewed in the previous chapter, the SAEM algorithm makes use of a
stochastic approximation procedure for parameter estimations and inference
for the NLME models. As an alternative to the MCEM algorithm and the
linearization method of Lindstrom and Bates (1990), the SAEM algorithm
converges much faster to a local maxima of the likelihood function and
performs reasonably well.

In practice, there may be two NLME models which are associated. For
example, in the motivating HIV dataset, an NLME model can be fitted for
viral decay during ART, and a separate NLME model can be fitted for viral
rebound data following ART interruption. The two NLME models are linked
through some shared parameters, as will be described later. For parameter
estimations and inference, we may consider the MCEM or SAEM algorithm
for both models simultaneously based on the joint likelihood of all observed
data. However, such a joint likelihood method can be computationally ex-
tremely intensive. Therefore, we propose a three-step (TS) method to reduce
the computation burden.

3.1 Joint Modelling for Longitudinal Data

In practice, we may need to model several longitudinal processes jointly.
For example, in modelling the HIV viral loads, we want to study the asso-
ciation between the key features of viral decay during ART and important
characteristics of viral rebound following ART interruption. As shown in
Figure 1.1, the measurements before the gray dashed vertical lines belong
to the first longitudinal process, representing the viral decay before ART
interruption. The measurements after the gray vertical dashed lines are
the viral rebound following ART interruption, which belong to the second
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3.1. Joint Modelling for Longitudinal Data

longitudinal process.
Two NLME models are used to model the viral decay and viral rebound

respectively, and the two models share some random effects, which char-
acterize the individual-specific features of viral decay. Denote yij as the
observed value of viral load at tij during ART and wij as the observed value
of viral load at t∗ij following ART interruption. Let’s consider the following
viral decay NLME model proposed by Wu and Ding (1999)

yij = log10(e
P1i−λ1itij + eP2i−λ2itij ) + eij ,

P1i = P1 + b1i, P2i = P2 + b2i, λ1i = λ1 + b3i, λ2i = λ2 + b4i,

i = 1, 2, · · · , n, j = 1, 2, · · · , ni,
bi ∼ N(0, D), ei ∼ N(0, Ri),

and the following viral rebound NLME model proposed by Wang et al.
(2020)

wij = β1i
t∗ij

t∗ij + exp(β2i − β3it∗ij)
+ β4i + ξij ,

βi = Riβ + τi, i = 1, 2, · · · , n, j = 1, 2, · · · , n∗i .

Parameters λ1 and λ2 represent the viral decay rate during ART, β1 rep-
resents set point after a rebound, β2 and β3 represent rates of rise in viral
load during rebound, and β4 represents initial viral load value at the start of
rebound. Detailed justifications of both models will be discussed in Chapter
4. The two models are linked through shared parameters, since the indi-
vidual specific characteristics bi from viral decay may be predictive for the
individual trajectories of viral rebound. For example, if we want to study
the association between the viral decay rate and the set point in the second
longitudinal process, we may consider the following second-stage model for
viral rebound

β1i = β1 + γ13β3i + τ1i, βki = βk + τki, k = 2, 3, 4.

In this case, we need to model the two longitudinal processes simultaneously.
Statistical inference of several models with shared parameters may be

based on separate inference or joint inference. For separate inference of two
joint models, a simple approach is a two-step method:

• Step 1: estimate the shared variables or parameters in one model based
on the observed data.
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3.1. Joint Modelling for Longitudinal Data

• Step 2: estimate the parameters in the other model separately, with
the shared variables or parameters substituted by the estimated values
from Step 1.

This two-step method is simple and naive. Standard statistical software,
such as R, can be readily used. However, this simple approach may lead
to biased estimation and under-estimated standard errors of the parameter
estimates. The estimation may be biased, especially when the two longitudi-
nal processes are strongly associated. In addition, the standard errors of the
parameter estimates in the second NLME model may be under-estimated
because the uncertainty of estimation in the first step is not incorporated in
the second step.

Statistical inference for joint models can also be based on the (joint)
likelihood of all the observed data. Joint likelihood means the likelihood for
the two joint models. The MLEs of all model parameters can be obtained
simultaneously by maximizing the joint likelihood. Compared to separate
inferences, the MLEs from the joint likelihood approach are more efficient.
Since the likelihood method is a standard approach for inference in mixed
effects models, the joint likelihood method appears to be a natural choice
for inference in joint mixed effects models.

Motivated from the viral decay model and the viral rebound model in
an HIV study, let’s consider two NLME models for modelling the longitu-
dinal processes with censored responses. Let yij be the response in the first
longitudinal process for individual i at time tij , which follows the NLME
model

yij = g1(tij , βi) + eij , (3.1)

βi = h1(xi, β,bi), i = 1, 2, · · · , n, j = 1, 2, · · · , ni, (3.2)

bi ∼ N(0, D), eij i.i.d.∼ N(0, σ2). (3.3)

The observed responses yij can be written as (qij , cij), and

yij =

{
qij if cij = 0,

≤ d if cij = 1,

where cij is the censoring indicator and d is a known constant such as a detec-
tion limit. Let f(·) and F (·) denote a generic density function and the corre-
sponding cumulative density function, respectively. Let f(yi|zi,bi,β,σ) be
the density function of the above NLME model (3.1)−(3.3) for the first longi-
tudinal process, given random effects bi, mean parameters β, and variance-
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3.1. Joint Modelling for Longitudinal Data

covariance parameters σ. Assume that yi1, · · · , yini are conditionally in-
dependent given the random effect bi and bi ∼ N(0, D), where D is an
unknown covariance matrix.

Similarly, let wij be the response in the second longitudinal process for
individual i at time t∗ij , which follows the NLME model

wij = g2(t
∗
ij , β

∗
i ) + ξij , (3.4)

β∗i = h2(x
∗
i , β
∗, τi), i = 1, 2, · · · , n, j = 1, 2, · · · , n∗i , (3.5)

τi ∼ N(0, G), ξij i.i.d.∼ N(0, ω2). (3.6)

The observed responses wij can be written as (q∗ij , c
∗
ij), and

wij =

{
q∗ij if c∗ij = 0,

≤ d∗ if c∗ij = 1.

Assume that wi1, · · · , win∗
i

are conditionally independent given the random
effect τi and τi ∼ N(0, G), where G is an unknown covariance matrix. Let
f(wi|z∗i ,bi, τi,β∗,σ∗) be the density function of the above NLME model
(3.4)−(3.6) for the second longitudinal process, given random effects τi,
mean parameters β∗, variance-covariance parameters σ∗, and the random
effects bi from the first longitudinal process. The individual-specific char-
acteristics of the first longitudinal process, represented by bi, are included
in the NLME model (3.4)−(3.6) since they may be predictive for the in-
dividual trajectories of the second longitudinal process. For example, in
the motivating example, individual-specific viral decay rates during ART
may be associated with individual specific viral rebound rates or set points
following ART interruption. In this case, joint modelling is needed.

Let θ be the collection of all unknown parameters. The joint likelihood
for both longitudinal processes can be written as

Lo(θ) =
n∏
i=1

∫ ∫
{
ni∏
j=1

(f(yij |zi,bi,θ))1−cij (F (d|zi,bi,θ))cij}

×{
n∗
i∏

k=1

(f(wik|z∗i ,bi, τi,θ))1−c
∗
ij (F (d∗|z∗i ,bi, τi,θ))c

∗
ij}

×f(bi|B)f(τi|G)dbidτi, (3.7)

where

F (d|zi,bi,θ) ≡ P (Yij < d|zi,bi,θ),

F (d∗|z∗i ,bi, τi,θ) ≡ P (Wij < d∗|z∗i ,bi, τi,θ),
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3.1. Joint Modelling for Longitudinal Data

Yij is the random version of yij , and Wij is the random version of wij . The
likelihood (3.7) does not have an analytic expression.

The Monte Carlo EM algorithm can be used to find the MLEs of the
parameters θ for the two joint NLME models with censored responses.
Treating the censored values in yi and wi, and the random effects bi and
τi as “missing data”, we have “complete data” {(yi,wi, zi, z

∗
i ,bi, τi), i =

1, 2, · · · , n}. The log-likelihood of the complete data can be written as

lc(θ) =
n∑
i=1

l(i)c (θ) =
n∑
i=1

[log f(yi|zi,bi,θ) + log f(bi|θ)

+ log f(wi|z∗i ,bi, τi,θ) + log f(τi|θ)].

The E-step is to compute the conditional expectation of the complete data
log-likelihood given the observed data and current parameter estimates. The
conditional expectation for the i-th observation at the (k+1)-th EM iteration
can be written as

Qi(θ|θ(k)) = E{lc(θ)|qi,q∗i , ci, c∗i , zi, z∗i ;θ(k)}

=

∫ ∫ ∫ ∫
[log f(yi|zi,bi,θ(k)) + log f(bi|θ(k))

+ log f(wi|z∗i ,bi, τi,θ(k)) + log f(τi|θ(k))]
×f(yi,bi,wi, τi|qi,q∗i , ci, c∗i , zi, z∗i ;θ(k))dycen,idbidwcen,idτi,

where ycen,i and wcen,i are vectors of censored responses.
Since the above conditional expectation Qi(θ|θ(k)) is extremely compli-

cated, we are unable to obtain a closed-form expression for Qi(θ|θ(k)), and
evaluate the expectation analytically. Therefore, we can use a Monte Carlo
method to generate large samples of the “missing data” (ycen,i,bi,wi, τi)
from the conditional distribution f(yi,bi,wi, τi|qi,q∗i , ci, c∗i , zi, z∗i ;θ(k)) at
each iteration, and then approximate Q(θ|θ(k)) by an empirical mean. The
sampling procedure can be done using the Gibbs sampler by iteratively sam-
pling from the full conditionals f(ycen,i|bi,qi, ci, zi;θ(k)), f(bi|yi, zi;θ(k)),
f(wcen,i|bi, τi,q∗i , c∗i , z∗i ;θ(k)), and f(τi|bi,wi, z

∗
i ;θ

(k)). Sampling from the
full conditionals can be done using rejection sampling methods. The MCEM
algorithm can be computationally intensive since the dimension of the miss-
ing data (ycen,i,wcen,i,bi, τi) is very high, so simulating large numbers from
the conditional distribution can be very slow.

We may consider the linearization method based on Lindstrom and Bates
(1990) for the two joint NLME models, with some modification. Briefly, we
can rewrite NLME models (3.1)-(3.6) as a single equation of zij , where zij is
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the observed response for individual i at time tij for the entire study period.
Then, zij can be modelled by using two nonlinear functions uij(xi,βi,bi)
and u∗ij(x

∗
i ,β

∗
i , τi) at the same time. As discussed in Chapter 2, statisti-

cal inference for an NLME model based on the linearization method may
offer potential convergence problems. Hence, there may be more frequent
convergence problems when using the linearization method for the two joint
NLME models. In addition, the approximation may be less accurate if the
model of zij is very “nonlinear”. Hence, the linearization method may be
more computationally efficient than the MCEM algorithm for joint NLME
models, but the parameter estimates may be less accurate, and may offer
potential convergence problems. Details about the linearization method for
the two joint NLME models are provided in Section 6.2 of future research.

In addition, we may consider the SAEM algorithm for the two joint
NLME models. Recall that the SAEM algorithm replaces the E-step of the
MCEM algorithm by a single draw from the conditional distribution based
on an MCMC method, and then uses a stochastic approximation to update
the expectation. Although the SAEM algorithm for joint mixed effects mod-
els based on the joint likelihood may be computationally more efficient than
the MCEM algorithm, it may still be computationally expensive, since the
dimension of the missing data (ycen,i,wcen,i,bi, τi) is very high. In addition,
parameter estimates for the joint mixed effects models when using SAEM al-
gorithm may be less accurate than the linearization method according to the
simulation results in Section 2.5. More details about the SAEM algorithm
for the two joint NLME models are discussed in Section 6.2.

In conclusion, for joint inference of two NLME models, the MCEM al-
gorithm is extremely computationally expensive, the linearization method
may have convergence issues, and the SAEM algorithm may not be accu-
rate. The simulation studies in Section 2.5 may be viewed as a reference.
There are also some drawbacks for joint likelihood approaches. First of all,
the joint likelihood approaches can be quite time-consuming, since the joint
likelihood may involve high-dimensional and intractable integrals. In addi-
tion, model or parameter identifiability may be a potential problem due to
a possibly large number of unknown parameters in joint models. This arises
a non-identifiable problem, such that two sets of different parameters may
lead to the same likelihood. Although we can use Monolix and the nlme

package in R for the joint NLME models with SAEM and linearization, the
implementation and computation may take a long time. Hence, we propose
to use SAEM for each NLME model with left censoring separately to reduce
the computation burden, so-called a three-step (TS) method. This method
is easy to implement using the existing software and it is computationally
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efficient. For computational simplicity, the joint likelihood methods based
on the MCEM, linearization, and SAEM are not considered in this thesis.
The performance of different joint likelihood methods can be studied in fu-
ture research. More details about the three-step method are discussed in
the next section.

3.2 A Three-Step Method

As discussed in Section 3.1, a joint likelihood method is computationally
extremely intensive and the naive two-step method may lead to biased es-
timation and under-estimated standard errors of the parameter estimates.
Therefore, we propose a new method, three-step (TS) method for two longi-
tudinal processes.

The three-step (TS) method uses SAEM for each NLME model with left
censoring separately to simplify the computation process and the implemen-
tation can be done easily:

• Step 1: For the first longitudinal process, fit an NLME model with left
censoring using the SAEM algorithm and then obtain the maximum
likelihood estimates (MLEs) of the fixed parameters and the empirical
Bayes estimates of the random effects b̂i;

• Step 2: For the second longitudinal process, fit an NLME model with
left censoring using the SAEM algorithm, with the random effects bi
in the covariates model substituted by their empirical Bayes estimates
b̂i from Step 1;

• Step 3: Obtain the standard errors of the parameter estimates based
on a (parametric) bootstrap method.

In general, the above three-step method can be applied to any two or
more linked longitudinal processes. It can also be used in an HIV study,
with the viral loads and CD4 counts during ART and the viral loads follow-
ing ART interruption as three longitudinal processes. The correspondingly
modified three-step method is discussed in section 4.3.

In the three-step method, the random effects bi in the second step are
substituted by their empirical Bayes estimates b̂i. The resulting standard
errors of the parameter estimates are not accurate. Therefore, a parametric
bootstrap method is used to obtain the standard errors, which incorporates
the estimation uncertainty of random effect estimates b̂i in Step 1. The
parametric bootstrap method works as follows:
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1. Simulate data with left censoring, based on the fitted NLME models
using the above three-step method, where the model parameters are
replaced by their estimates.

2. For the simulated data, fit all models again using the above three-step
method and obtain all parameter estimates.

3. Repeat the above process B times (say, B = 100), we obtain B es-
timates for each parameter. The sample standard deviation of these
B estimates of each parameter is the parametric bootstrap estimate of
the standard error of the corresponding parameter estimate.

The above bootstrap method incorporates the estimation uncertainty of the
parameter and random effect estimates in the TS method with separate
model fitting, so it should produce more reliable standard errors of the
parameter estimates than those from separate model fitting.

The TS method is much faster than the joint likelihood method and it
can be easily implemented in statistical software. Therefore, the TS method
is applied to the motivating HIV dataset to study the association of the viral
loads before and following ART interruption. Data analysis, including study
background, model descriptions, and results, are discussed in the following
chapter.
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Chapter 4

Data Analysis

In the previous chapter, we propose a three-step method for parameter esti-
mations in the joint NLME models with left censoring based on the SAEM
algorithm. The proposed method can be easily implemented in statistical
software (e.g., R), and it is much faster than the joint likelihood method.
Moreover, it produces more reliable standard errors of the parameter esti-
mates than those from separate model fitting. In this chapter, we describe
the two NLME models motivated by the real HIV dataset, and we perform
a comprehensive data analysis based on the three-step method. We also ob-
tain results from a naive method, which still uses SAEM algorithm, but the
censored values are substituted by half the detection limit, and uses model
SE without bootstrapping.

4.1 Data Description and Objective

The dataset is from the Zurich Primary HIV Infection Study (Aceto et al.,
2005). The study consists of acutely or recently HIV-1 infected individuals
between November 2002 and July 2008. The participants were offered im-
mediate standard first-line antiretroviral therapy (ART) independently of
clinical indication and laboratory values (plasma viral load and CD4+ T-
cells). After one year of viral suppression below detection limits (< 50 HIV-1
RNA copies/ml of plasma), the participants could choose to stop therapy.
Successful ART suppresses viral replication in patients infected with HIV-1,
reduces HIV-1 RNA in plasma to levels below the detection limit of standard
assays, and results in a reduction of mortality and morbidity. More details
can be found in Gianella et al. (2011).

The dataset contains repeatedly measured viral loads (in copies/mL) and
CD4 values (in cells/mm3) during ART and following ART interruption, as
well as an indicator of left-censored viral loads, i.e., the indicator equals 1
when viral loads below the detection limit, 0 otherwise. To keep the analysis
simple and focused, some variables such as age, gender, and assay types
are not included in our analyses. They may be useful in future research.
Figure 4.1 (same as Figure 1.1 in Chapter 1) shows the entire viral load
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Figure 4.1: Viral load (in log10-scale) trajectories before and following ART inter-
ruption. left-censored values are denoted by triangle dots on the bottom horizontal
line with the censored values imputed by the detection limit. Observed values are
denoted by circle dots. Data during ART are in black, and data following ART
interruption are in blue. The dashed vertical lines in gray indicate times when the
ART was interrupted. Figure (A) shows data from all subjects, and Figure (B)
shows data from 5 randomly selected subjects.

trajectories during ART and following ART interruption for all subjects
and for 5 randomly selected subjects respectively. For data following ART
interruption, we only show the first 36 weeks of data because viral load levels
typically stabilize before then.

From Figure 4.1, we can see that viral loads decline rapidly during ART
and then may rebound quickly following ART interruption, and that viral
loads after reaching peak points during rebound exhibit large variations
between subjects without clear patterns. There are two patients in Figure
4.1 (A) exhibit distinct patterns from the other patients. The two patients,
who are separated, are not outliers because the duration of ART varies across
patients, and they have a long duration of ART. If we only look at viral
rebound data (with time since ART interruption), all the curves roughly
follow the typical pattern. Our main objective is to study if key features of
viral decay during ART are associated with important characteristics of viral
rebound following ART interruption. For example, we may be interested
in studying whether individual-specific viral decay rates during ART are
associated with individual-specific viral rebound rates or set points following
ART interruption.
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4.2 The Models

Mixed effects models are well-suited for the HIV dataset because there are
large variations between individual viral load trajectories, and random ef-
fects in the models can be used to incorporate the between-individual varia-
tions, as well as individual-specific inference. To model viral load trajectories
during ART, Wu and Ding (1999) proposed NLME models based on rea-
sonable biological arguments. The proposed exponential decay models have
been shown to fit viral decay trajectories well. For viral rebound trajectories
following ART interruption, recently Wang et al. (2020) proposed a different
NLME model where the key features of viral rebounds are represented by
the model parameters. In this section, we use these two NLME models to
fit viral loads before and after ART interruption respectively, as well as an
LME model for fitting the CD4 data. The three models are linked through
shared random effects, because we are interested in studying the association
between individual-specific characteristics of viral decay during ART and
important features of viral rebound following ART interruption, and the
individual-specific characteristics can be represented by random effects in
the models.

Specifically, an NLME model for viral decay and an LME model for CD4
trajectories during ART are considered at the first step. Then, the random
effects in these two models, which summarize individual-specific CD4 and
viral load trajectories, are used as “covariates” in the viral rebound NLME
model following ART interruption. In both NLME models, the left-censored
viral loads are incorporated in model fitting, as shown in Chapter 3. Our goal
is to exam if the individual-specific viral rebound characteristics following
ART interruption are associated with individual-specific CD4 and viral load
profiles during ART. To reduce the computation burden, we fit the three
models separately based on a three-step method, using the SAEM algorithm.
We use a parametric bootstrap method to obtain standard errors of all
parameter estimates since a bootstrap method may incorporate estimation
uncertainty from separate model fittings. We also obtain results from a naive
method, which still uses SAEM algorithm, but substitutes the censored viral
load values with half the detection limit. The corresponding SE is obtained
based on the model SE, without bootstrapping. The performances of the
two methods are further compared in Chapter 5.
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4.2.1 An NLME model for viral load during ART

Many deterministic HIV-1 dynamic models have been developed to describe
the viral load trajectories after the initiation of potential antiviral treat-
ments. However, most of the models are too complicated and contain too
many unknown parameters to be used to analyze real clinical data. There
are also several simplified models proposed in the literature (Ho et al., 1995;
Wei et al., 1995), but various assumptions have to be made in order to make
simplification. Even though these models can be applied, the estimation
methods used are not flexible enough to deal with sparse data. As a result,
Wu and Ding (1999) introduced random effects in the deterministic models
to obtain parametric NLME models and simplified them in different phases
of virological responses based on some reasonable biological arguments. To
be more specific, the viral load trajectories during ART is shown to typically
exhibit exponential decay patterns. A mathematical model for HIV dynam-
ics is proposed first by considering several cell and virus compartments. This
model is then simplified based on different phases of virological response, as
shown in Figure 4.2. Next, we introduce the NLME model used to fit viral
decay data during ART.

Let Yij be the (log10-transformed) viral load value (in copies/mL) of
individual i measured at time tij during ART. Let yij be the observed value
of Yij , and let yi = (yi1, yi2, · · · , yini)

T , i = 1, 2, · · · , n, j = 1, 2, · · · , ni. We
use the similar notations for other variables. The values of Y may be left-
censored due to a low detection limit. For the viral load data during ART,
as shown in Figure 4.1, let’s consider the following viral dynamic NLME
model proposed by Wu and Ding (1999)

yij = log10(e
P1i−λ1itij + eP2i−λ2itij ) + eij , (4.1)

P1i = P1 + b1i, P2i = P2 + b2i, λ1i = λ1 + b3i, λ2i = λ2 + b4i,

i = 1, 2, · · · , n, j = 1, 2, · · · , ni,
bi ∼ N(0, D), ei ∼ N(0, Ri),

where bi = (b1i, b2i, b3i, b4i)
T are random effects, ei = (ei1, · · · , eini)

T are
random errors of within-individual measurements, D is a covariance ma-
trix of the random errors, and Ri is a covariance matrix of the within-
individual random errors. We assume that the random effects bi and the
within-individual random errors ei are independent. We also assume that
the within-individual errors are conditionally independent given the random
effects, i.e., Ri = σ2Ini , where Ini is a ni × ni identity matrix. Note that
Yij is log-transformed in order to satisfy the assumptions of normality and
constant variance.
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Figure 4.2: Typical viral dynamic profiles during ART based on model (4.1).

The four model parameters represent different phases of plasma viral
dynamics: (1) λ1 is the first-phase viral decay rate, which corresponds to the
rapid decay phase reflecting decay of productively, long-lived and/or latently
infected cells; (2) λ2 is the second-phase viral decay rate during ART, which
corresponds to the slow decay phase reflecting decay of long-lived and/or
latently infected cells and other residual infected cells; and (3) log10(P1+P2)
is population viral load value at the start of ART. Figure 4.2 shows the viral
decline profile for a typical subject based on model (4.1). Random effects
are introduced to each parameter to incorporate large variations between
individuals.

As shown in Figure 4.1, some viral load values are left-censored or below
the detection limit. In estimating the parameters in the above NLME model,
the censored viral load values must be taken into account to avoid biased
results (Hughes, 1999; Wu, 2002). The SAEM algorithm simulates the left-
censored responses based on the Gibbs sampling in the E-step. Alternatively,
we may use a naive method by substituting the censored values by half
the detection limit. Since the naive method ignores the uncertainty in the
censored values, it may produce more biased results than using the SAEM
algorithm.

Note that many mathematical models, such as nonparametric smooth
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functions and polynomial functions may fit the viral load dynamic trajec-
tories equally well or even better. However, their biological interpretations
may not be valid. The NLME model may be used to predict unmeasured
or censored viral load values since it is based on the underlying data gen-
eration mechanism. This is one of the main advantages of NLME model
over empirical models, which only describe observed data well but may be
poor for predictions. The model (4.1) proposed by Wu and Ding (1999) is
preferred when analyzing the HIV-1 dynamics after initiation of potential
antiviral treatments because it has the following features: (i) good fit to the
observed data; (ii) reasonable biological interpretation; (iii) conceptual and
computational simplicity.

4.2.2 An LME model for CD4 during ART

Due to the known association between CD4 and viral load, the CD4 values
during ART may also be considered in the analysis. The observed CD4
values reflect both short-term biological variation and measurement error,
and we may fit a model on the observed CD4 values empirically to address
measurement errors in the observed CD4 values. To extract individual-
specific characteristics of CD4 trajectories, we may use an LME model.

Specifically, let zij be the observed CD4 value (in cells/mm3) of indi-
vidual i measured at time tij , i = 1, 2, · · · , n, j = 1, 2, · · · ,mi. We may
consider the following general LME model for CD4 data

zij = uTijα+ vTijai + εij ≡ z∗ij + εij , i = 1, 2, · · · , n, j = 1, 2, · · · ,mi, (4.2)

where vectors uij and vij contain covariates including time, vector α con-
tains fixed effect parameters, vector ai contains random effects with ai ∼
N(0, A), z∗ij is the (unobserved) true CD4 value whose corresponding ob-
served error-prone value is zij , and εij is the measurement error, with εij ’s
are i.i.d. ∼ N(0, δ2). We may take appropriate transformations of the ob-
served CD4 values, such as a log-transformation, or a

√
zij-transformation

to make the normality assumption reasonable.
Note that the general LME model (4.2) includes nonparametric mixed

effects models. They may be useful if the CD4 trajectories are complicated
without clear patterns, since we can use a basis-based approach to approxi-
mate the nonparametric mixed model by an LME model (Wu, 2009). Thus,
the general LME model (4.2) is quite flexible for modelling complex CD4
longitudinal data by choosing different fixed and random effects.

For the motivating dataset shown in Section 4.1, due to the lack of bio-
logically justified mechanistic models, we considered several empirical poly-
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nomial LME models for CD4 data during ART. We find that the following
simple empirical LME model fits the CD4 data reasonably well

zij = α1i + α2itij + εij , α1i = α1 + a1i, α2i = α2 + a2i, (4.3)

where α = (α1, α2)
T are fixed effects and ai = (a1i, a2i)

T are random effects.
The random effects a1i and a2i represent the individual-specific intercept
and slope of the CD4 trajectory respectively. More complex models, such
as a quadratic model

zij = α1i + α2itij + α3it
2
ij + εij ,

α1i = α1 + a1i, α2i = α2 + a2i, α3i = α3 + a3i,

do not appear to improve the fit significantly based on the likelihood ratio
test. Hence, model (4.3) is used to fit the CD4 values, since the model fits
the CD4 data well and easy to implement.

4.2.3 An NLME model for viral rebound following ART
interruption

From Figure 4.1, we can see that the viral loads rebound quickly following
ART interruption, and that viral loads after reaching peak points during
rebound start to decrease slightly and exhibit large variations between sub-
jects. There are many previously proposed nonlinear parametric models
for HIV-1 viral load dynamics, but these models either work for the rise
phase or the decay phase, followed by a possible rebound. Therefore, Wang
et al. (2020) proposed a new parametric model for the current setting where
the viral rebound after treatment interruption may rise rapidly to the peak
point followed by a decrease to a viral set point. The new parametric model
characterizes finer features of viral load rebound after ART interruption
that does not require assumptions about mechanisms of viral dynamics. A
flexible functional form is chosen to capture the shapes of viral rebound tra-
jectories and to provide biological insights regarding the rebound process.
Each parameter can incorporate a random effect to allow for variations in
parameters across individuals. Some key features of viral rebound, such as
rate of rise and set point, are represented by the parameters in the model.
The NLME model proposed by Wang et al. (2020) is described as follows.

Let wij be the log10-transformed viral load value of individual i measured
at time t∗ij , i = 1, 2, · · · , n, j = 1, 2, · · · , n∗i , where the time t∗ij is the time
since ART interruption (not since start of ART). Following Wang et al.
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(2020) (with minor modification), we consider the following NLME model
for modelling viral rebounds following ART interruption

wij = β1i
t∗ij

t∗ij + exp(β2i − β3it∗ij)
+ β4i + ξij , (4.4)

βi = Riβ + τi, i = 1, 2, · · · , n, j = 1, 2, · · · , n∗i , (4.5)

where vector βi = (β1i, · · · , β5i)T contains individual-specific parameters,
vector β = (β1, · · · , βq)T contains fixed effect parameters, Ri is a 5 × q de-
sign matrix contains covariates, and τi = (τ1i, · · · , τ5i)T ∼ N(0, G) contains
random effects with G being a covariance matrix, and ξij is within-individual
random error. We assume that the random effects τi and the random error
ξij are independent, and ξij are i.i.d. ∼ N(0, ω2).

Note that the above NLME model (4.4) - (4.5) may be viewed as a two-
stage model: In stage 1, model (4.4) describes the viral rebound trajectories
within an individual; and in stage 2, model (4.5) assumes that the between-
individual variations in the individual-specific parameters in model (4.4)
may be partially explained by covariates in Ri as well as random effects τi.

The parameters in NLME model (4.4) have the following attractive in-
terpretations (Wang et al., 2020): parameter β1 represents set point after a
rebound, parameter β2 and β3 respectively represent first and second phases
of the rates of rise in viral load during rebound, and parameter β4 denotes
initial viral load value at the start of a rebound. Figure 4.3 shows the viral
load rebound profile for a typical subject based on model (4.4). Each of the
four parameters denotes an important characteristic of the viral rebound
trajectories following ART interruption.

Recall that our main objective is to exam if key features of viral load or
CD4 trajectories during ART are associated with important characteristics
of viral rebounds following ART interruption. We may use the second-
stage model (4.5) to evaluate such possible associations. Note that the
random effects bi in NLME model (4.1) for viral load data during ART may
be viewed as individual-specific characteristics of the viral load trajectories
during ART. Thus, we may use the random effects bi as “covariates” in the
rebound model (4.5) to see if these “covariates” may partially explain the
large variations in the individual-specific parameters βi during viral rebound.
Similarly, we may also consider the random effects ai in the CD4 model (4.3)
during ART, and use them as possible “covariates” in the NLME model (4.5)
for viral load following ART interruption.

Specifically, in the NLME model (4.4) for viral rebound, we may consider
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Figure 4.3: Typical viral rebound profiles following ART interruption based on model
(4.4).

the following second-stage model for (4.5)

βki = βk + γk1b1i + γk2b2i + γk3b3i + γk4b4i

+γk5a1i + γk6a2i + γk7vi + τki, (4.6)

βji = βj + τji j 6= k, k = 1, · · · , 4, i = 1, · · · , n,

where ai = (a1i, a2i) are the random effects in the CD4 model (4.3), bi =
(b1i, b2i, b3i, b4i) are the random effects in the viral decay model (4.1) during
ART, βk’s are fixed effects parameters, γkl’s are fixed effect parameters as-
sociated with the corresponding random effects respectively, and vi denote
other baseline covariates. For example, if k = 1, testing H0 : γ13 = 0 versus
H1 : γ13 6= 0 allows us to check possible association between b3i and β1i. If
the null hypothesis is rejected, we can conclude that there is a significant as-
sociation between viral decay rate during ART and viral set point following
ART interruption.

4.3 A Three-Step (TS) method

As reviewed in Section 2.4, the SAEM method performs well in NLME
models with left censoring. Although the SAEM algorithm produces less

52



4.3. A Three-Step (TS) method

accurate estimates than the linearization method, it is much more compu-
tationally efficient. Therefore, SAEM method may be used for parameter
estimations in the NLME model (4.1) for viral decay during ART, as well
as in the NLME model (4.4) and (4.5) for viral rebound data following ART
interruption. In fact, we may consider the SAEM algorithm for all three
models simultaneously based on the joint likelihood of all observed data.
However, such a joint likelihood method may be computationally extremely
intensive, since the dimension of the “missing data” (ycen,i,wcen,i,bi, τi,ai)
is very high, so even a single simulation using an MCMC method may be
computationally over-whelming. Note that wcen,i denotes the censored com-
ponents of wi = (wi1, wi2, · · · , win∗

i
)T . Separate inference, such as the naive

two-step method, may also be applied to parameter estimations in joint mod-
elling. However, the naive two-step method may lead to biased estimations,
since the uncertainty of estimation in the first step is not incorporated in the
second step. Details about the joint likelihood method and the naive two-
step method are discussed in Section 3.1. Since the above two methods have
some drawbacks, we propose to use SAEM algorithm for each NLME model
with left censoring separately to reduce the computation burden, so-called
a three-step (TS) method.

We have discussed the TS method in Section 3.2. Here we make minor
modifications to the TS method for the specific NLME models for the HIV
data as described above.

• Step 1: For data during ART, fit the NLME model (4.1) for viral load
with censoring using the SAEM algorithm and fit the LME model
for CD4 using the standard method respectively, and then obtain the
maximum likelihood estimates (MLEs) of the fixed parameters and
the empirical Bayes estimates of the random effects, b̂i and âi, respec-
tively;

• Step 2: For viral rebound data following ART interruption, fit the
NLME model (4.4) with left censoring using the SAEM algorithm,
with the random effects ai and bi in the second-stage model (4.6)
substituted by their empirical Bayes estimates b̂i and âi from Step 1;

• Step 3: Obtain the standard errors of the parameter estimates based on
a (parametric) bootstrap method, which incorporates the estimation
uncertainty of random effect estimates b̂i and âi in Step 1.

The parametric bootstrap method works as follows:
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1. Simulate CD4 and viral load data with left censoring, based on the
fitted LME and two NLME models using the above three-step method,
where the model parameters are replaced by their estimates.

2. For the simulated CD4 and viral load data, fit all three models again
using the above three-step method and obtain all parameter estimates.

3. Repeat the above process B times (say, B = 100), we obtain B es-
timates for each parameter. The sample standard deviation of these
B estimates of each parameter is the parametric bootstrap estimate of
the standard error of the corresponding parameter estimate.

The above bootstrap method incorporates the estimation uncertainty of the
parameter and random effect estimates in the TS method with separate
model fitting, so it should produce more reliable standard errors of the
parameter estimates than those from separate model fitting.

4.4 Data Analysis Results

In this section, we analyze the dataset shown in Figure 4.1 using the pro-
posed TS method and a naive (NV) method, which still uses the SAEM
algorithm but the censored values are substituted by half the detection limit
and without bootstrap. The goal of data analysis is to study if key features
of viral decay during ART are associated with individual-specific character-
istics of viral rebound following ART interruption.

There are 75 patients in the study. Viral loads and CD4 are repeatedly
measured on patients during ART and following ART interruption. After
ART interruption, viral load usually increases to a peak within 6–10 weeks,
then decreases to a stable level over a time scale of months. Therefore, we
restrict our attention to data within week 36 (9 months) after interruption
of ART. From Figure 4.1, we see that the viral load trajectories during
ART exhibit clear patterns of viral decay. Following ART interruption,
the viral loads rebound quickly, but their trajectories become complicated
after reaching peak points, with substantial between-subject variations. We
excluded individuals with 2 or less repeated measurements either during
ART or following ART interruption (n = 2) or individuals with unclear
viral load patterns following ART interruption (n = 8). Some facts about
the initial and remaining dataset are summarized in Table 4.1, including the
duration of the study, number of repeated measurements, and the proportion
of censored measurements during ART and following ART interruption for
the initial dataset and the remaining dataset after removing the outliers.
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Table 4.1: Summary of repeated measurements in the initial HIV dataset and the
remaining dataset after removing outliers.

Initial dataset Remaining dataset
during following overall during following overall

Duration
(in months)

min
max
mean

6.97
47.97
18.52

4.37
87.9
34.20

16.77
107.77
59.19

7.83
47.97
18.55

4.37
14.33
9.08

16.73
58.4
27.46

Number of
repeated
measurement

min
max
mean

5
20
9.72

1
23
6.41

9
48
24.64

5
20
10

3
23
6.49

10
34
16.5

Proportion of
censored measurements (%)

63.5% 25.2% 32.7% 62.6% 27.7% 48.9%

Note: “during”, “following”, and ”overall” stand for during ART, following ART in-
terruption, and the entire dataset.

Model fitting was performed using the R package “saemix” (Comets
et al., 2017). The “saemix” package implements the SAEM algorithm for
parameter estimation in (non)linear mixed effects models. It computes the
maximum likelihood estimator of the population parameters, without any
approximation of the model such as linearization, using the SAEM algorithm
and provides standard errors for the maximum likelihood estimator.

For viral load data during ART, we fit the NLME model (4.1) of Wu
and Ding (1999), with left-censored data addressed by the SAEM method.
The bi-exponential decay NLME model (4.1) fits the viral load data very
well. Figure 4.5(A) (top four figures) shows the fitted values versus the
corresponding observed values for four randomly selected subjects during
ART.

For the CD4 data during ART, the CD4 trajectories do not appear to
exhibit clear patterns, as shown in Figure 4.4 (A). CD4 values show large
between-subject variations, which possibly due to substantial measurement
errors. However, there seems an overall upward trend, as shown in Figure
4.4 (B). Thus, we fit the LME model (4.3) to the CD4 data, which at least
captures a rough upward trend before ART interruption. A more complex
model, such as a quadratic model, does not seem to improve the fit.

For viral load data following ART interruption, we consider the following
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Figure 4.4: Figure (A) shows CD4 value (in cells/mm3) trajectories for all subjects,
and Figure (B) shows CD4 value trajectories for 5 randomly selected subjects.

NLME model

wij = β1i
tij

tij + exp(β2i − β3itij)
+ β4i + ξij , (4.7)

βki = βk + γk1b1i + γk2b2i + γk3b3i + γk4b4i + γk5a1i + γk6a2i + τki,

βji = βj + τji, k = 1, 2, 3, 4, j 6= k,

where βki is the individual-specific viral rebound feature following ART in-
terruption that we are interested in, and the random effects (ai,bi) are
defined in model (4.6) (e.g., b3i is the random effect associated with the
initial viral decay rate λ1i during viral decay before ART interruption). For
example, to study the association between individual-specific characteristics
of viral decay during ART and viral set point following ART interruption,
we may consider the NLME model:

wij = β1i
tij

tij + exp(β2i − β3itij)
+ β4i + ξij , (4.8)

β1i = β1 + γ11b1i + γ12b2i + γ13b3i + γ14b4i + γ15a1i + γ16a2i + τ1i,

βji = βj + τji, j > 1,

where β1i represents the viral set point during rebound.
We again address left-censored viral rebound data by the SAEM method.

We use the parametric bootstrap method with B = 100 to estimate the
standard errors of all the fixed effect parameter estimates. The NLME
model (4.8) for viral rebound also fits the data reasonably well. Figure 4.5
(B) (bottom four figures) shows the fitted values versus the corresponding
observed values for four randomly selected subjects during viral rebound.
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Table 4.2: Parameter estimates with a second-stage model for setpoint β1i.

Parameter Estimate Naive SE Bootstrap SE z-value p-value

P1 11.258 0.283 0.167 67.449 0.000
λ1 4.790 0.380 0.362 13.244 0.000
P2 3.271 0.117 0.206 15.872 0.000
α1 0.087 0.007 0.017 5.178 0.000
α2 24.080 0.517 0.438 54.985 0.000
λ2 0.225 0.027 0.019 11.788 0.000
β1 2.828 0.161 0.243 11.651 0.000
γ11 0.144 0.073 0.075 1.911 0.056
γ12 -0.027 0.559 0.755 -0.035 0.972
γ13 -0.252 0.079 0.116 -2.177 0.029
γ14 -97.574 50.944 26.294 -3.711 0.000
γ15 -0.026 0.033 0.035 -0.728 0.467
γ16 0.811 1.290 4.291 0.189 0.850
β2 1.588 1.308 0.694 2.289 0.022
β3 3.360 1.614 0.828 4.056 0.000
β4 0.783 0.119 0.151 5.195 0.000

Note: Naive SE is the standard error based on separate model fitting without bootstrap,
z-value is the ratio of Estimate/Bootstrap SE, and p-value is based on the z-value and
the standard normal tail probability for a two-sided test.

Table 4.2 shows parameter estimation results for models (4.1), (4.3), and
(4.8) (the unit of time in data analysis is month). We see that parameters
γ13 and γ14, which link the initial viral decay rates λ1i and the second-phase
viral decay rates λ2i (or bi3 or bi4) during ART to viral setpoints β1i following
ART interruption for individual i, appears to be statistically significant at
5% level. In other words, the initial viral decay rate during ART appears to
be negatively associated with the viral setpoints following ART interruption:
the faster the viral decay after the start of ART, the lower the setpoints
following ART interruption. In addition, the second-phase viral decay rates
during ART also appear to be negatively associated with the viral setpoints
following ART interruption. The naive method produces similar estimates
but different standard errors, so we only show naive SE in Table 4.2. We
will evaluate the two methods via simulation in the next chapter.

As another example, we may also consider the following two-stage model
to study the association between individual-specific features of viral decay
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Table 4.3: Parameter estimates with a second-stage model for rebound rate β3i.

Parameter Estimate Naive SE Bootstrap SE z-value p-value

P1 11.258 0.283 0.204 55.176 0.000
λ1 4.790 0.380 0.236 20.321 0.000
P2 3.271 0.117 0.167 19.575 0.000
α1 0.087 0.007 0.011 7.765 0.000
α2 24.080 0.517 0.518 46.456 0.000
λ2 0.225 0.027 0.019 11.627 0.000
β1 2.946 0.375 0.127 23.196 0.000
β2 1.542 1.040 0.419 3.680 0.000
β3 3.280 – 0.448 7.327 0.000
γ31 0.837 0.053 0.211 3.971 0.000
γ32 -4.589 0.177 2.691 -1.705 0.088
γ33 -1.110 0.008 0.317 -3.501 0.000
γ34 -221.564 12.712 116.409 -1.903 0.057
γ35 -0.106 0.023 0.109 -0.969 0.333
γ36 -0.090 0.445 8.458 -0.011 0.991
β4 0.772 0.448 0.057 13.625 0.000

Note: Naive SE is the standard error based on separate model fitting without bootstrap,
z-value is the ratio of Estimate/Bootstrap SE, and p-value is based on the z-value and
the standard normal tail probability for a two-sided test.

and viral rate of rise following ART interruption:

wij = β1i
tij

tij + exp(β2i − β3itij)
+ β4i + ξij , (4.9)

β3i = β3 + γ31b1i + γ32b2i + γ33b3i + γ34b4i + γ35a1i + γ36a2i + τ3i,

βji = βj + τji, j 6= 3,

where β3i represents the rate of viral rise during rebound. The analysis re-
sults are presented in Table 4.3. We see that the rate of rise during viral
rebound following ART interruption (β3i) appears to be negatively corre-
lated with initial viral load values during ART (γ31) and initial viral decay
rate (γ33). That is, the higher the initial viral loads during ART, or the
faster the initial viral decline during ART, the slower the viral rising follow-
ing ART interruption. Note that some standard errors for the population
parameter are not available. It may be because the model is too complex
and the parameters are unidentifiable.

Similar analysis can be done by linking the random effects in model

58



4.4. Data Analysis Results

Table 4.4: Parameter estimates with a second-stage model for the delay in rise β2i.

Parameter Estimate Naive SE Bootstrap SE z-value p-value

P1 17.179 0.504 0.294 58.488 0.000
λ1 3.922 0.269 0.183 21.381 0.000
P2 2.460 0.184 0.260 9.444 0.000
α1 0.036 0.013 0.014 2.519 0.012
α2 23.886 0.549 0.431 55.364 0.000
λ2 0.217 0.027 0.025 8.657 0.000
β1 3.243 0.187 0.180 18.023 0.000
β2 7.609 1.277 1.193 6.375 0.000
γ1 1.437 0.911 0.714 2.013 0.044
γ2 10.318 9.960 6.881 1.500 0.134
γ3 0.869 0.629 0.728 1.195 0.232
γ4 117.176 68.364 224.765 0.521 0.602
γ5 0.134 0.398 0.164 0.817 0.414
γ6 3.416 11.115 13.095 0.261 0.794
β3 2.919 0.461 0.461 6.327 0.000
β4 0.437 0.244 0.078 5.613 0.000

Note: Naive SE is the standard error based on separate model fitting without bootstrap,
z-value is the ratio of Estimate/Bootstrap SE, and p-value is based on the z-value and
the standard normal tail probability for a two-sided test.

(4.1) and (4.3) to the delay of rise during rebound β2i and the initial viral
load value at the start of rebound β4i separately. The analysis results are
presented in Table 4.4 and Table 4.5. From the tables, we can see that the
higher the initial viral loads during ART, the lower the initial value and more
delay in rise following ART interruption. In addition, the faster the viral
decay rate after the start of ART, the lower the initial viral load following
ART interruption.

In summary, the analysis results show that some key characteristics of
the viral load trajectories during ART, especially the initial viral decay rates
after the start of ART, appear to be associated with some important features
of the viral rebound following ART interruption, such as viral setpoints and
initial viral loads. Note that CD4 data during ART seems not associated
with important features of the viral rebound following ART interruption,
which may occur due to large measurement error. To further compare and
evaluate the performances of the TS method and the naive method, a sim-
ulation study is conducted in the next chapter.
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Table 4.5: Parameter estimates with a second-stage model for initial value β4i.

Parameter Estimate Naive SE Bootstrap SE z-value p-value

P1 17.179 0.504 0.515 33.326 0.000
λ1 3.922 0.269 0.168 23.300 0.000
P2 2.460 0.184 0.217 11.319 0.000
α1 0.036 0.013 0.015 2.400 0.016
α2 23.886 0.549 0.348 68.727 0.000
λ2 0.217 0.027 0.022 10.020 0.000
β1 3.045 0.118 0.129 23.531 0.000
β2 16.906 2.859 3.797 4.452 0.000
β3 5.931 1.096 1.203 4.929 0.000
β4 0.729 0.003 0.060 12.243 0.000
γ1 -0.190 0.003 0.082 2.327 0.020
γ2 -0.796 0.020 1.056 0.754 0.451
γ3 -0.158 0.002 0.070 2.253 0.024
γ4 -28.549 0.136 24.028 1.188 0.235
γ5 -0.037 0.001 0.085 0.432 0.666
γ6 -0.358 0.027 10.958 0.033 0.974

Note: Naive SE is the standard error based on separate model fitting without bootstrap,
z-value is the ratio of Estimate/Bootstrap SE, and p-value is based on the z-value and
the standard normal tail probability for a two-sided test.
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Figure 4.5: Observed and fitted viral load trajectories before (top four figures) and
following (bottom four figures) ART interruption for 4 randomly selected subjects
respectively. The red vertical bars represent left-censored viral loads.
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Chapter 5

A Simulation Study

In this chapter, we conduct extensive simulations to evaluate the proposed
TS method and compare it with the naive method used in data analysis. We
choose similar NLME models to those in the data analysis section, but we
omit the CD4 model for simplicity. The true values of the model parameters
are set to be similar to those estimated in the data analysis section.

The viral load data during ART are generated based on the following
NLME model

yij = log10(e
P1i−λ1itij + eP2i−λ2itij ) + eij , (5.1)

P1i = P1 + b1i, P2i = P1 + b2i, λ1i = λ1 + b3i, λ2i = λ2 + b4i,

where eij i.i.d. ∼ N(0, σ21) and bi = (b1i, b2i, b3i, b4i)
T ∼ N(0, D). The viral

load data following ART interruption are generated based on the following
NLME model

wij = β1i
tij

tij + exp(β2i − β3itij)
+ β4i + ξij , (5.2)

β1i = β1 + b3iγ3 + τ1i, β2i = β2 + τ2i, β3i = β3 + τ3i, β4i = β4 + τ4i,

where b3i is the random effect from model (5.1), ξij ∼ N(0, σ23), and τi ∼
N(0, G).

The performance of MLEs of mixed effects models may depend on the
number of repeated measurements, the variations of data, the sample size,
and the detection limit. Intuitively, when there are more frequent repeated
measurements, more information about the longitudinal covariate process
is provided. Both of the TS method and the naive method may perform
better. When the variations of data are decreased (both between-individual
variations and within-individual variations), the difference between subjects
and the difference between repeated measurements within each subject are
small. The naive method and the TS method may have similar performance,
since the impact of ignoring the uncertainty of censored values and separate
model fitting is small. A larger sample size may generally result in better
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estimations, since more information about the longitudinal covariate pro-
cess is provided. When the detection limit is increased, the proportion of
censored values also increase, and the naive method might perform poorly.

Since the performance of MLEs of mixed effects models may depend on
the above conditions, we conduct several simulation studies by considering
different settings to compare the performance of the naive method and the
proposed TS method. Setting I is the baseline setting, which is closest to
the situation of the real data set. We then change some features in Setting
I to mimic the foregoing conditions. For example, in Setting II, we consider
more frequent repeated measurements. In Setting III, we consider smaller
variations of data. In Setting IV, the sample size is increased. In Setting V,
the detection limit is increased.

We evaluate the performance of the proposed TS method and the naive
method based on bias, mean square error (MSE), and coverage rates of 95%
confidence intervals. For a parameter β and its estimate β̂, the bias and
root MSE (rMSE) are defined as bias = β̂ − β, rMSE =

√
MSE, and

the coverage rate is the proportion of confidence intervals that cover the
true value. We will also compare the TS method to a naive method which
replaces censored viral loads by half the detection limits without bootstrap-
ping. For the TS method, the number of bootstrap samples is B = 100. The
simulations are repeated 100 times. While a larger number of repetitions
may be desirable, the bootstrap procedure may be computationally expen-
sive (Morris et al., 2019). The simulation results show that 100 repetitions
seem sufficient for us to make reasonable conclusions.

In the tables displaying the results, for each parameter,“Estimate” is
the average of the 100 estimates from the 100 simulation repetitions. For
the TS method, “SE” is the average of the 100 bootstrap standard errors.
Note that for each simulation run, we generate 100 bootstrap samples, and
the bootstrap SE is the standard deviation of the 100 estimates from the
100 bootstrap samples. For the naive method, “SE” is the average of the
100 standard errors of the estimates from the 100 simulations. “Bias” is
the difference between the “Estimate” and the corresponding true value.
“rMSE” is square root of MSE, where MSE is calculated from the sum of
the corresponding squared “SE” and the squared “Bias”, divided by the
corresponding true value. “Coverage” is the percentage of the confidence
intervals containing the true value among the 100 confidence intervals from
the 100 simulation repetitions.
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5.1 Setting I: Baseline

In Setting I, most of the true values are chosen to be similar to those in
the data analysis section. Specifically, the sample size is set to be N =
50 individuals. For the within-individual longitudinal measurements, to
mimic the real dataset, for half the sample, we choose 10 repeated mea-
surements during ART and 9 repeated measurements following ART inter-
ruption, while for the remaining half the sample, we choose 11 repeated
measurements during ART and 11 repeated measurements following ART
interruption. The measurement times are chosen to be similar to those in
the real dataset. Two sets of measurement times during ART are t1 =
(0.5, 1.6, 2.3, 3, 4.6, 6.5, 7.6, 11.2, 14.9, 19.1) and t2 = (0.5, 0.7, 1.7, 3, 4.4, 5.9,
7.9, 9.6, 11.7, 14, 16.5). Two sets of measurement times following ART inter-
ruption are t∗1 = (0.1, 1.1, 1.6, 2.4, 2.8, 3.3, 3.7, 4.2, 5.2) and t∗2 = (0.2, 0.6, 1.1,
1.6, 2.1, 2.5, 3, 3.5, 4, 4.4, 4.9).

For model (5.1), some true values are P1 = 17.0, P2 = 2.6, λ1 = 4,
λ2 = 0.05, and σ1 = 0.5. The detection limit is set to be d = 1.60. For
model (5.2), some true parameter values are β1 = 3.2, β2 = 5.6, β3 = 10,
β4 = 1, γ3 = 1, σ3 = 0.5,

D =


1.7 −0.4 0.06 −0.003
−0.4 1.5 −0.1 0.005
0.06 −0.1 0.05 −0.002
−0.003 0.005 −0.002 0.0002

 , and G =


0.5 0.03 0.2 0.03
0.03 2.3 −0.3 −0.04
0.2 −0.3 11.8 0.06
0.03 −0.04 0.06 0.006

 .
The simulation results of Setting I are shown in Table 5.1. We can see

that the proposed TS method performs quite well and shows a better per-
formance than the naive method in terms of the coverage probabilities and
the biases. Estimates based on the TS method are approximately unbiased
as the estimated coverage probabilities are close to the nominal level 0.95.
However, estimates based on the naive method may sometimes produce bi-
ased results as some of the estimated coverage probabilities are way below
the nominal level 0.95. The reason for the biased results based on the naive
method may be the under-estimated SE’s as well as biased estimates. Note
that the naive method ignores the uncertainties of the censored values and
the separate NLME model fitting, as the censored values are imputed by half
of the detection limit and the random effect bi in the second step are sub-
stituted by their empirical Bayes estimates b̂i. As a result, the SE’s based
on the naive method may be under-estimated, and the naive method may
lead to smaller MSE’s but low coverage probabilities. On the other hand,
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Table 5.1: Simulation results for Setting I.

Parameter True value Method Estimate SE Bias rMSE Coverage

P1 17.0 TS 17.097 0.425 0.097 0.435 0.95
Naive 17.088 0.257 0.088 0.272 0.91

λ1 4.0 TS 4.092 0.240 0.092 0.257 0.91
Naive 4.137 0.216 0.137 0.256 0.91

P2 2.6 TS 2.794 0.398 0.194 0.442 0.95
Naive 2.222 0.111 -0.378 0.394 0.39

λ2 0.1 TS 0.040 0.081 -0.010 0.081 0.95
Naive 0.029 0.009 -0.021 0.023 0.40

β1 3.2 TS 3.267 0.140 0.067 0.155 0.95
Naive 3.324 0.130 0.124 0.180 0.86

γ3 1.0 TS 0.986 0.096 -0.014 0.097 0.94
Naive 0.999 0.083 -0.001 0.083 0.92

β2 5.6 TS 5.588 1.187 -0.012 1.187 0.94
Naive 6.370 1.354 0.770 1.558 0.84

β3 10.0 TS 10.079 2.062 0.079 2.064 0.94
Naive 11.170 2.650 1.170 2.897 0.88

β4 1.0 TS 0.930 0.092 -0.070 0.115 0.85
Naive 0.861 0.072 -0.139 0.157 0.62

the proposed TS method incorporates the uncertainties of the censored val-
ues by the SAEM algorithm and the uncertainties of separate NLME model
fitting by bootstrap, so it may lead to larger MSE’s but correct coverage
probabilities.

5.2 Setting II: More Frequent Repeated
Measurements

Since the performance of MLEs of mixed effects models may depend on the
number of repeated measurements, we conduct another simulation study
by choosing more frequent repeated measurements, with other true pa-
rameter values remain the same. The measurement times are chosen to
be close to those in the real dataset with additional measurement times
in between. Specifically, the new sets of measurement times during ART
are chosen to be t1 = (0.4, 1.2, 1.6, 2.1, 3.2, 4.6, 5.3, 7.8, 10.4, 13.4, 17), and
t2 = (0.4, 0.5, 1.2, 2.1, 3.1, 4.1, 5.5, 6.7, 8.2, 9.8, 11.6, 13.5, 15.5, 18). The new
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Table 5.2: Simulation results for more frequent repeated measurements.

Parameter True value Method Estimate SE Bias rMSE Coverage

P1 17.0 TS 16.820 0.733 -0.180 0.755 0.93
Naive 16.981 0.259 -0.019 0.260 0.89

λ1 4.0 TS 4.011 0.288 0.011 0.288 0.92
Naive 4.103 0.202 0.103 0.227 0.85

P2 2.6 TS 2.968 0.705 0.368 0.796 0.95
Naive 2.273 0.142 -0.327 0.357 0.51

λ2 0.1 TS 0.096 0.186 0.046 0.191 0.95
Naive 0.041 0.012 -0.009 0.015 0.34

β1 3.2 TS 3.223 0.132 0.023 0.134 0.94
Naive 3.304 0.121 0.104 0.159 0.87

γ3 1.0 TS 0.986 0.095 -0.014 0.096 0.97
Naive 0.996 0.089 -0.004 0.089 0.96

β2 5.6 TS 5.553 0.873 -0.047 0.874 0.95
Naive 6.258 0.676 0.658 0.943 0.79

β3 10.0 TS 9.757 1.460 -0.243 1.481 0.96
Naive 10.715 1.166 0.715 1.368 0.82

β4 1.0 TS 0.980 0.079 -0.020 0.081 0.88
Naive 0.886 0.048 -0.114 0.124 0.63

sets of measurement times following ART interruption are chosen to be t∗1 =
(0, 0.6, 0.8, 1.2, 1.4, 1.7, 1.9, 2.1, 2.6, 3.1, 3.8, 4.5, 5.4, 6) and t∗2 = (0, 0.3, 0.6, 0.8,
1.0, 1.3, 1.5, 1.8, 2.0, 2.2, 2.5, 2.9, 3.3, 3.7, 4.1, 4.5, 5.0, 5.5, 6.0, 6.8, 7.6). In Set-
ting II, ni increases to 11 and 14 during ART, and increases to 14 and 21
following ART interruption. The simulation results for more frequent re-
peated measurements are shown in Table 5.2. We can see that the proposed
TS method performs better than the naive method, and the two methods
seem to perform roughly the same as in Setting I.

Since both the TS method and the naive method require large within-
individual repeated measurements to perform well, and more frequent re-
peated measurements provide more information about the longitudinal co-
variate process, so these two methods may perform well when there are
more frequent repeated measurements. Compared to Table 5.1, the two
methods do not seem to perform better when there are more frequent re-
peated measurements, probably because in Setting I, the number of repeated
measurements is large enough to produce good results.
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5.3 Setting III: Smaller Variations of Data

We also consider another different setting to compare the performance of the
naive method and the proposed TS method by reducing variations of data,
including both within-individual variations and between-individual varia-
tions. In Setting III, σ1 in model (5.1) decreases from 0.5 to 0.2, and σ3 in
model (5.2) decreases from 0.5 to 0.2. The covariance matrices D and G are
simplified to diagonal matrices

D =


1.7 0 0 0
0 0.5 0 0
0 0 0.05 0
0 0 0 0.0001

 , and G =


0.25 0 0 0

0 1 0 0
0 0 4 0
0 0 0 0.0003

 .
Table 5.3 shows the simulation results by choosing smaller variations of

data, with other true parameter values remain the same. The naive method
and the proposed TS method do not show a better performance than Set-
ting I in terms of the coverage probabilities. In general, when the between-
individual variations and within-individual variations are decreased, the dif-
ference between subjects and the difference between repeated measurements
within each subject is small. A key disadvantage of the naive method is that
it does not incorporate the uncertainties in the estimation in the first step.
If the variations of data are small, ignoring the uncertainties in the estima-
tion may have less impact on the results, so the performance of the naive
method and the TS method may be close to each other. In Table 5.3, the
performances of the two methods are somewhat different, and the proposed
TS method has a better performance than the naive method.

5.4 Setting IV: Increased Sample Size

In Setting IV, we simulate data with a larger number of individuals N = 200
to check how sample size affects parameter estimations in the naive method
and the proposed TS method. Table 5.4 shows the simulation results for
Setting IV with other parameter values remain the same as in Setting I.
Compared to the simulation results in Table 5.1, both the naive method
and the proposed TS method produce slightly lower coverage probabilities.
In general, a larger sample size leads to better estimations. However, a
larger sample size may lead to more accurate estimations of parameters and
standard errors, making the differences between the methods more obvious.
Overall, the TS method outperforms the naive method.
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Table 5.3: Simulation results for smaller variations of data.

Parameter True value Method Estimate SE Bias rMSE Coverage

P1 17.0 TS 16.955 0.393 -0.045 0.396 0.94
Naive 17.061 0.207 0.061 0.216 0.96

λ1 4.0 TS 3.990 0.147 -0.010 0.148 0.96
Naive 4.095 0.115 0.095 0.149 0.97

P2 2.6 TS 2.327 0.587 -0.273 0.647 0.88
Naive 1.830 0.040 -0.770 0.772 0.10

λ2 0.1 TS 0.043 0.095 -0.007 0.095 0.94
Naive 0.011 0.004 -0.039 0.040 0.09

β1 3.2 TS 3.453 0.131 0.253 0.285 0.55
Naive 3.409 0.075 0.209 0.222 0.22

γ3 1.0 TS 1.007 0.116 0.007 0.116 0.91
Naive 1.009 0.095 0.009 0.096 0.91

β2 5.6 TS 3.928 0.607 -1.672 1.779 0.23
Naive 5.341 0.459 -0.259 0.527 0.13

β3 10.0 TS 7.704 0.945 -2.296 2.483 0.30
Naive 9.560 0.689 -0.440 0.818 0.21

β4 1.0 TS 0.754 0.110 -0.246 0.269 0.38
Naive 0.795 0.021 -0.205 0.206 0.03
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Table 5.4: Simulation results for increased sample size.

Parameter True value Method Estimate SE Bias rMSE Coverage

P1 17.0 TS 16.981 0.465 -0.019 0.465 0.94
Naive 17.011 0.130 0.011 0.130 0.89

λ1 4.0 TS 4.033 0.172 0.033 0.176 0.97
Naive 4.092 0.105 0.092 0.140 0.94

P2 2.6 TS 2.776 0.447 0.176 0.480 0.95
Naive 2.218 0.039 -0.382 0.384 0.24

λ2 0.1 TS 0.048 0.112 -0.002 0.112 0.84
Naive 0.033 0.005 -0.017 0.017 0.08

β1 3.2 TS 3.259 0.072 0.059 0.093 0.86
Naive 3.331 0.060 0.131 0.144 0.81

γ3 1.0 TS 0.989 0.047 -0.011 0.048 0.97
Naive 0.998 0.042 -0.002 0.042 0.94

β2 5.6 TS 4.843 0.558 -0.757 0.940 0.70
Naive 5.791 0.442 0.191 0.481 0.60

β3 10.0 TS 8.772 0.874 -1.228 1.507 0.67
Naive 10.090 0.701 0.090 0.707 0.54

β4 1.0 TS 0.960 0.048 -0.040 0.063 0.86
Naive 0.875 0.027 -0.125 0.127 0.54
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Table 5.5: Simulation results for increased detection limit.

Parameter True value Method Estimate SE Bias rMSE Coverage

P1 17.0 TS 17.056 0.426 0.056 0.430 1.00
Naive 17.076 0.266 0.076 0.277 0.86

λ1 4.0 TS 4.028 0.237 0.028 0.239 0.94
Naive 4.152 0.217 0.152 0.264 0.83

P2 2.6 TS 2.880 0.447 0.280 0.527 0.96
Naive 2.391 0.096 -0.209 0.229 0.05

λ2 0.1 TS 0.037 0.083 -0.013 0.084 1.00
Naive 0.037 0.010 -0.013 0.016 0.00

β1 3.2 TS 3.252 0.145 0.052 0.154 0.90
Naive 3.267 0.128 0.067 0.144 0.91

γ3 1.0 TS 0.995 0.097 -0.005 0.097 0.97
Naive 1.129 12.969 0.129 12.970 0.86

β2 5.6 TS 5.641 1.190 0.041 1.190 0.97
Naive 6.940 1.546 1.340 2.046 0.91

β3 10.0 TS 10.023 2.024 0.023 2.025 0.95
Naive 11.750 2.904 1.750 3.391 0.92

β4 1.0 TS 0.964 0.099 -0.036 0.105 0.94
Naive 0.931 0.061 -0.069 0.092 0.91

5.5 Setting V: Increased Detection Limit

In Setting V, we compare the simulation results between the naive method
and the proposed TS method by increasing the detection limit from 1.6 to
1.9. Since the censored values are imputed by half of the detection limit in
the naive method, increasing the detection limit may affect the simulation
results because the proportion of censored values increases. Table 5.5 shows
the simulation results for Setting V, with other parameter values remain the
same as in Setting I.

In Table 5.5, we can see that the proposed TS method still performs
better than the naive method in terms of the coverage probabilities. Note
that the censored values are imputed by half of the detection limit in the
naive method, and the uncertainties of the censored values are ignored.
When the detection limit is increased, the proportion of censored values
may increase, and more uncertainties in data may be ignored. Thus, the
naive method may perform much worse than the proposed TS method.
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5.6 Conclusions

From the simulation results, the proposed TS method clearly performs well
and outperforms the naive method, as the proposed TS method has smaller
bias and the coverage probabilities mostly close to the nominal level 0.95.
These results confirm that the proposed TS method produces less biased
estimates and more reliable standard errors, by adjusting the standard errors
through bootstrap. The naive method has relatively large bias and low
coverage probabilities because the naive method ignores the uncertainties of
the censored values and the separate NLME model fitting.

The performances of the methods depend on the variations of data, sam-
ple size, and detection limit. Based on the simulation results in Table 5.2,
more frequent repeated measurements do not seem to affect the simulation
results, which may be because the number of repeated measurements in Set-
ting I is large enough to produce good results. Choosing even more frequent
repeated measurements does not have a significant impact on the simula-
tion results. Smaller variations of data seem to somewhat lower the coverage
probabilities of both the naive method and the proposed TS method. In-
creasing the detection limit leads to worse performance of the naive method,
but not the proposed TS method. Overall, the proposed TS method has a
better performance than the naive method, because it takes both the un-
certainties of the censored values and the separate NLME model fitting into
consideration. Note that the simulation is repeated 100 times. A larger
number of repetitions may be considered for more reliable results in the
future with more computing power.
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Chapter 6

Conclusions and Future
Research

6.1 Conclusions and Discussions

In this thesis, we have reviewed different models for fitting longitudinal
data, including linear mixed effects (LME) models and nonlinear mixed
effects (NLME) models. We have also reviewed several parameter estimation
methods for NLME models and NLME models with censoring, including
Monte Carlo EM (MCEM) algorithm, linearization method, and Stochastic
Approximation EM (SAEM) algorithm.

In addition, we have considered joint NLME models for two longitudinal
processes which are related to each other. The two longitudinal processes
are linked through shared random effects, since these random effects reflect
individual characteristics of the longitudinal processes. We have discussed
joint inference methods, including the naive two-step method and the joint
likelihood method. For parameter estimation in the joint models of two
NLME models with censoring, the standard joint likelihood method may
be computationally too intensive due to high-dimensional and unobservable
random effects. Thus, we have proposed a three-step (TS) method based on
the SAEM algorithm to reduce the computation burden, and also to pro-
duce more reliable results by incorporating the uncertainties in the censored
values and separate model fitting using bootstrap. Another advantage of
the TS method is easy to implement in standard software, such as R.

A real dataset from an HIV study has been analyzed by using a naive
method and the proposed TS method. The naive method still uses the
SAEM algorithm, but the censored values are substituted by half the de-
tection limit and without bootstrap. We have found that the estimates
from the two methods are close to each other, but the naive method usually
has under-estimated standard errors (SE’s). The naive method may lead
to biased estimations, since the uncertainty of censored values and the un-
certainty of estimation in the first step are not incorporated in the second
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step. The goal of data analysis for the motivating HIV dataset is to study
if key features of viral decay during ART may be associated with important
features of viral rebound following ART interruption. The main findings
are:

• the initial and second-phase viral decay rates during ART are nega-
tively associated with the viral setpoints following ART interruption;

• the initial viral load values and initial viral decay rate during ART
are negatively correlated with the rate of rise during viral rebound
following ART interruption;

• the higher the initial viral load values during ART, the lower the initial
value and more delay in rise following ART interruption; and

• the faster the viral decay rate after the start of ART, the lower the
initial viral load following ART interruption.

These findings may provide insights into HIV cure research. Recent findings
suggest that HIV-1 latent reservoir is primarily established near the time of
ART initiation (Abrahams et al., 2019). Interventions in addition to ART
to inhibit the formation of the latent reservoir may subsequently lead to a
lower viral set point – a key goal of the HIV functional cure.

We have used simulation studies to compare the performances of the
nlme package and saemix package for parameter estimation of NLME mod-
els using linearization and SAEM in standard software R based on the com-
putational time, accuracy, and number of convergence problems. The results
have shown that the nlme package produces more accurate estimates than
the saemix package, but with longer computational time and more frequent
convergence problems. The performances of the two packages may depend
on the variations of data, sample size, and number of repeated measure-
ments.

We have used another simulation study to compare the performances of
the naive method and the proposed TS method based on the bias, mean
square error (MSE), and coverage rate of 95% confidence intervals. We have
found that the proposed TS method outperforms the naive method. Thus,
by adjusting the SE’s through bootstrapping, the proposed TS produces
more reliable results than the naive method. From the simulation studies,
we have also found that the variations of data, sample size, and detection
limit may influence the performances of the two methods.
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6.2 Future Research

In this thesis, we have proposed a computationally efficient TS method to
study the associations among the individual viral dynamic characteristics
during ART and following ART interruption, such as the individual viral
decay rates and setpoints. The proposed TS method has also been proved
to perform reasonably well by simulation studies. However, there are also
some limitations in our research:

• The sample size n = 75 is relatively small.

• The parameter estimates may not be most efficient if the assumed
models hold, since the TS method fit joint longitudinal processes sep-
arately rather than simultaneously.

• Many other possible covariates, such as the time from viral suppression
to ART interruption and the possible association between the random
effects in the CD4 model and the viral load model, are not considered
in the model fitting for simplicity.

• We have assumed that the left-censored viral loads follow the same
distribution as the observed viral loads, but this assumption is not
testable based on the observed data.

• Due to large variations of viral loads following ART interruption, the
viral rebound trajectories after reaching peak points may not be easily
modelled parametrically.

In the following, we briefly describe some possible improvements in our
research and some possible topics for future research. Firstly, we may con-
sider the linearization method and the SAEM algorithm for the joint NLME
models, and compare the performance of different joint methods through
simulation studies. Basic ideas are as follows.

As discussed in Section 3.1, we may consider the linearization method
based on Lindstrom and Bates (1990) for the two joint NLME models, with
some modification. For simplicity, we first ignore the censoring. Let’s rewrite
NLME models (3.1)- (3.6) as a single equation

zij = uij(xi,β,bi) + u∗ij(x
∗
i ,β

∗, τi) + ξij ,

i = 1, · · · , n, j = 1, · · · ,mi

where zij is the observed response for individual i at time tij for the entire
study period, uij(·) and u∗ij(·) are two nonlinear functions, mi = ni + n∗i
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is the number of repeated measurements both before and after ART in-
terruption, and ξi = (ξi1, · · · , ξini) is a vector of random errors of the re-
peated measurements within-individual i. Note that uij are all zeros after
the first ni repeated measurements, and u∗ij are all zeros in the first ni
repeated measurements, which allows different nonlinear functions for the
viral decay period and viral rebound period. Let ui = (ui1, · · · , uini)

T and
u∗i = (u∗i1, · · · , u∗ini

)T . At k-th iteration, denote the current estimates of

(β,β∗,bi, τi) by (β̂(k), β̂∗(k), b̂
(k)
i , τ̂

(k)
i ), where b̂

(k)
i and τ̂

(k)
i are the empiri-

cal Bayesian estimates of bi and τi, respectively.
Then the linearization method is used to iteratively solve the following

“working” LME model

z̃i = Wiβ +W ∗i β
∗ + Tibi + Viτi + ξi, (6.1)

where

z̃i = zi − ui(xi, β̂, b̂i)− u∗i (x
∗
i , β̂

∗, τ̂ ) +Wiβ̂ +W ∗i β̂
∗ + Tib̂i + Viτ̂ ,

Wi =
∂ui(xi,β, b̂i)

∂βT
∣∣
β=β̂

, Ti =
∂ui(xi, β̂,bi)

∂bTi

∣∣
b=b̂i

,

W ∗i =
∂u∗i (x

∗
i ,β

∗, τ̂ )

∂β∗T
∣∣
β∗=β̂∗ , Vi =

∂u∗i (x
∗
i , β̂

∗, τ )

∂τTi

∣∣
τ=τ̂i

.

At (k + 1)-th iteration, the parameters and random effects from the

LME model 6.1 are updated by (β̂(k+1), β̂∗(k+1), b̂
(k+1)
i , τ̂ (k+1)) using stan-

dard methods described in Section 2.1. As discussed in Section 3.1, the
linearization method is computationally more efficient than the MCEM al-
gorithm, but the parameter estimates for joint models based on the lin-
earization method may be less accurate than those based on the MCEM
algorithm, and may offer potential convergence problems. We can use the
nlme package in standard software R for the joint NLME models with lin-
earization, and the performance of the linearization method for the joint
NLME models can be studied using simulations in future research.

When some of the response values are censored, we can extend the
MCEM algorithm based on Wu (2002). The basic idea is to use a Monte
Carlo method in the E-step to approximate the conditional expectations
given the observed data and current estimates, incorporating the censoring
information. Then, the M-step is to apply a one-step linearization procedure
to the nonlinear function and obtain the approximate MLEs by solving the
score equations. The E-step and M-step are iterated until convergence. Wu
(2002) uses the MCEM algorithm to find the MLEs of the parameters in the
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covariate model and the response model simultaneously, and we can extend
this method for the joint NLME models with censoring.

In addition, we may also consider the SAEM algorithm for the two joint
NLME models with censoring. The SAEM algorithm is computationally
more efficient than the MCEM algorithm, since the SAEM algorithm re-
places the E-step of the MCEM algorithm by a single draw from the condi-
tional distribution based on an MCMC method. To be more specific, under
settings in Section 3.1, at iteration k, the E-step is to generate a sample from
the conditional distribution f(yi,bi,wi, τi|qi,q∗i , ci, c∗i , zi, z∗i ;θ(k)) by iter-
atively sampling from the conditional distributions f(yi|bi,qi, ci, zi;θ(k)),
f(bi|yi,qi, ci, zi;θ(k)), f(wi|τi,bi,q∗i , c∗i , z∗i ;θ(k)), and f(τi|wi,q

∗
i , c
∗
i , z
∗
i ;θ

(k))
based on the Gibbs sampler. Note that

f(yi|bi,qi, ci, zi;θ(k)) ∝ f(yi|bi, zi;θ(k))× f(ci|yi, zi;θ(k)),
f(bi|yi,qi, ci, zi;θ(k)) ∝ f(bi|θ(k))× f(yi|zi,bi;θ(k)),

f(wi|τi,bi,q∗i , c∗i , z∗i ;θ(k)) ∝ f(wi|τi,bi, z∗i ;θ(k))× f(c∗i |wi, z
∗
i ;θ

(k)),

f(τi|wi,q
∗
i , c
∗
i , z
∗
i ;θ

(k)) ∝ f(τi|θ(k))× f(wi|z∗i , τi;θ(k)),

so we only need to generate samples from the right-hand sides of the above
functions, which can be accomplished using rejection sampling methods since
the density functions on the right-hand sides are known. The resulting sam-
ple roughly follows the distribution f(yi,bi,wi, τi|qi,q∗i , ci, c∗i , zi, z∗i ;θ(k)).
Then the conditional expectation is updated based on

Qk(θ) = Qk−1(θ) + γk([log f(yi|zi,bi,θ) + log f(bi|θ) +

log f(wi|z∗i ,bi, τi,θ) + log f(τi|θ)]−Qk−1(θ)),

where {γk}k≥1 is a sequence of positive step size.
Although the SAEM algorithm for joint NLME models based on the joint

likelihood is computationally more efficient than the MCEM algorithm, it
can still be computationally intensive, since the dimension of the missing
data (ycen,i,wcen,i,bi, τi) is very high. In addition, parameter estimates for
the joint NLME models when using SAEM algorithm may be inaccurate. We
can use software Monolix and R for the joint NLME models with SAEM. The
performance of different methods for joint NLME models can be compared
by simulation studies in future research.

There are some other topics that can be studied in future research:

• We may consider joint likelihood method via MCEM algorithm (Wu,
2009), but this method may be computationally expensive due to high-
dimensional and unobserved random effects and censored viral loads.
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6.2. Future Research

Other methods, such as approximate joint likelihood inferences based
on the so-called h-likelihood (Lee et al., 2017) or based on Laplace
approximations (Vonesh et al., 2002), and Bayesian methods (Dey
et al., 1997; Huang et al., 2018) may also be considered. However, the
accuracy of the estimates based on the approximate joint likelihood
methods could be a potential issue. The performances of different
methods can be further compared in simulation studies.

• In future research, we may study the association between the individ-
ual viral dynamic characteristics and times to viral rebound or times
to setpoints after the therapy is stopped. This association can be
identified using joint inference of an NLME model for viral dynamics
during ART and a time-to-event model such as a Cox proportional
hazards model. As discussed in the literature review, there have been
extensive studies on joint models for longitudinal and survival data
(Yu et al., 2018; Hill et al., 2016; Conway et al., 2019, e.g.).

• We may consider different models in the research. Since we may not
able to model the viral rebound trajectories after reaching peak points
parametrically, we may consider semi-parametric NLME models for
viral rebound. Since the distribution of censored viral loads are not
testable, we may consider an approach that does not make such an
assumption, e.g., treating the censored values as point masses as in
Yu et al. (2018).

• In practice, there may be dropouts in the HIV studies due to some non-
ignorable reasons, such as the health conditions of the patients. These
dropouts may be associated with the longitudinal patterns of viral
loads. Thus, we may consider incorporating missing data mechanisms
into the joint models in future research.

In summary, there are still many issues about joint NLME models remain
in this thesis. We plan to investigate these issues in our future research.
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Appendix A

Software Codes

Github link for R code is provided below:

https://github.com/Sihaoyu1220/Thesis_Code

83

https://github.com/Sihaoyu1220/Thesis_Code

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Longitudinal Studies
	Analysis of Longitudinal Data
	Joint Modelling for Longitudinal Data
	Literature Review
	Outline

	NLME Models with left-censored Responses
	LME Models
	NLME Models
	NLME models with left censoring
	Review of SAEM algorithm
	A Simulation Study

	Simultaneous Inference for Joint NLME Models with left-censored Responses
	Joint Modelling for Longitudinal Data
	A Three-Step Method

	Data Analysis
	Data Description and Objective
	The Models
	An NLME model for viral load during ART
	An LME model for CD4 during ART
	An NLME model for viral rebound following ART interruption

	A Three-Step (TS) method
	Data Analysis Results

	A Simulation Study
	Setting I: Baseline
	Setting II: More Frequent Repeated Measurements
	Setting III: Smaller Variations of Data
	Setting IV: Increased Sample Size
	Setting V: Increased Detection Limit
	Conclusions

	Conclusions and Future Research
	Conclusions and Discussions
	Future Research

	References
	Software Codes

