
Scalable methods for improving genome assemblies

by

Vladimir Nikolić

B.Sc., The University of Belgrade, 2018

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES
(Bioinformatics)

The University of British Columbia
(Vancouver)

April 2021

© Vladimir Nikolić, 2021



The following individuals certify that they have read, and recommend to the Faculty of Grad-
uate and Postdoctoral Studies for acceptance, the thesis entitled:

Scalable methods for improving genome assemblies

submitted by Vladimir Nikolić in partial fulfillment of the requirements for the degree of
Master of Science in Bioinformatics.

Examining Committee:

Dr. Inanc Birol, Medical Genetics, UBC
Supervisor

Dr. Andrew Roth, Computer Science, UBC
Supervisory Committee Member

Dr. Faraz Hach, Urologic Sciences, UBC
Supervisory Committee Member

ii



Abstract

De novo genome assembly is cornerstone to modern genomics studies. It is also a useful

method for studying genomes with high variation, such as cancer genomes, as it is not biased by

a reference. De novo short-read assemblers commonly use de Bruijn graphs, where nodes are

sequences of equal length k, also known as k-mers. Edges in this graph are established between

nodes that overlap by k−1 bases, followed by merging nodes along unambiguous walks in the

graph. The selection of k is influenced by a few factors, and its fine tuning results in a trade-off

between graph connectivity and sequence contiguity. Ideally, multiple k sizes should be used,

so lower values can provide good connectivity in lesser covered regions and higher values can

increase contiguity in well-covered regions. However, this approach has only been explored

with small genomes, without addressing scalability issues with larger ones. Here we present

RResolver, a scalable algorithm that takes a short-read de Bruijn graph assembly with a starting

k as input and uses a k value closer to that of the read length to resolve repeats. RResolver

builds a Bloom filter of sequencing reads which it uses to evaluate the assembly graph path

support at branching points and removes the paths with insufficient support. RResolver runs

efficiently, taking 3% of a typical ABySS human assembly pipeline run time on average with

48 threads and 40GB memory. Compared to a baseline assembly, RResolver improves scaffold

contiguity (NGA50) by up to 16% and reduces misassemblies by up to 7%. RResolver adds

a missing component to scalable de Bruijn graph genome assembly. By improving the initial

and fundamental graph traversal outcome, all downstream ABySS algorithms greatly benefit

by working with a more accurate and less complex representation of the genome.

iii



Lay Summary

Current technologies that read DNA from a sample do so by providing only fragments of orig-

inal chromosome sequences. Moreover, depending on the technology used, these fragments

have a varying number of errors in them. For these reasons, there is a need for algorithms that

will assemble these fragments together to, ideally, form a sequence for every chromosome of

the sampled organism. However, this is far from an easy task and a number of algorithms is

used together in order to perform as high quality assembly as possible within reasonable time.

This work includes a new approach that helps improve the quality of these assemblies in the

contiguity of sequences, number of correctly joined fragments, and the number of genes recov-

ered. The tested genomes belong to a variety of species with very different genomes in terms

of total length and complexity.

iv



Preface

This work has been completed under the supervision of Dr. Inanc Birol at Canada’s Michael

Smith Genome Sciences Centre at BC Cancer. The research idea was conceived by Dr. Birol

and I have designed, implemented, and benchmarked the algorithms presented. René L. War-

ren, Justin Chu, Johnathan Wong, Lauren Coombe, and Ka Ming Nip from the Bioinformat-

ics Technology Lab at the Genome Sciences Centre have contributed to the design and trou-

bleshooting of the algorithms. Lauren Coombe has also helped with dataset benchmarking.

Shaun Jackman, a former Ph.D. student at the Genome Sciences Centre, has helped with the

discussions and clarifications around the ABySS assembler design and concepts as well as for

a number of suggestions on the algorithm design presented in the thesis. Kirstin Brown, from

Knowledge Translation & Communication team at Genome Sciences Centre has helped proof-

read the research chapter. The colorblind-friendly color palette used in the thesis figures was

provided by Martin Krzywinski, a staff scientist at the Genome Sciences Centre. This thesis

uses the ubcdiss LATEX template provided by Brian de Alwis. The content of this thesis is

solely the responsibility of the author, and does not necessarily represent the official views of

the funding organizations.

This work is planned for publication.

v



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Lay Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 History of de novo genome assembly . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Utility of sequence assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Assembly quality evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 de Bruijns Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Bloom filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

vi



1.4.2 Repeats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.3 Read coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.4 Iterative de Bruijn Graph construction . . . . . . . . . . . . . . . . . . 13

1.4.5 Multisized de Bruijn Graph . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Methods and findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 False positives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Varying coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.3 Complex repeats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.4 Repeat resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.5 Performance assessment . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Error correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Visualization software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vii



List of Tables

Table 2.1 Benchmarking machine specifications . . . . . . . . . . . . . . . . . . . . . 33

Table 2.2 ABySS, QUAST, and BUSCO parameters used . . . . . . . . . . . . . . . . 34

Table 2.3 Error correction results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

viii



List of Figures

Figure 1.1 History of assembly timeline . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.2 Visual explanation of three types of misassemblies . . . . . . . . . . . . . 6

Figure 1.3 Paired end reads with expected insert sizes . . . . . . . . . . . . . . . . . . 7

Figure 1.4 Sample FastQC output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 1.5 A simple de Bruijn Graph (DBG) . . . . . . . . . . . . . . . . . . . . . . 10

Figure 1.6 Two potentially resolvable branching points in a DBG . . . . . . . . . . . . 14

Figure 1.7 Condensation of k-mers into unitigs . . . . . . . . . . . . . . . . . . . . . 16

Figure 1.8 Opportunities for graph simplification . . . . . . . . . . . . . . . . . . . . 17

Figure 2.1 A potentially resolveable repeat . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 2.2 Path support histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 2.3 Branching in a complex repeat . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 2.4 A simplified repeat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 2.5 Repeat simplification explanation . . . . . . . . . . . . . . . . . . . . . . 26

Figure 2.6 Flowchart of the RResolver algorithm . . . . . . . . . . . . . . . . . . . . 27

Figure 2.7 ABySS pipeline with RResolver . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 2.8 H. sapiens parameter sweep QUAST results . . . . . . . . . . . . . . . . . 29

Figure 2.9 H. sapiens parameter sweep BUSCO results . . . . . . . . . . . . . . . . . 30

Figure 2.10 H. sapiens subsampled coverage QUAST results . . . . . . . . . . . . . . 31

Figure 2.11 C. elegans and A. thaliana QUAST results . . . . . . . . . . . . . . . . . . 32

ix



Figure 2.12 C. elegans and A. thaliana BUSCO results . . . . . . . . . . . . . . . . . . 32

Figure 2.13 Distribution of RResolver run times . . . . . . . . . . . . . . . . . . . . . 33

Figure 2.14 Characteristic FastQC output . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 2.15 Error correction reads recovered . . . . . . . . . . . . . . . . . . . . . . . 40

x



Glossary

BAC Bacterial Artificial Chromosome

BUSCO Benchmarking sets of Universal Single-Copy Orthologs

CEG Core Eukaryotic Gene

CNV Copy Number Variation

DBG de Bruijn Graph

FPR False Positive Rate

OLC Overlap-Layout-Consensus

ORF Open Reading Frame

POG Personalized OncoGenomics

SNP Single Nucleotide Polymorphism

TE Transposable Element

TR Tandem Repeat

xi



Acknowledgments

I would like to thank my supervisor Dr. Inanc Birol for entrusting me with this research after

I expressed interest in the field. For allowing me to explore different ideas and concepts and

satisfy my curiosity throughout my work. And more than being a supervisor, our lab socials

have made my time during this period much more enjoyable.

Thank you to my supervisory committee members, Dr. Andrew Roth and Dr. Faraz Hach,

for all the feedback and guidance.

Thank you to all the cool people in the Bioinformatics Technology Lab from whom I have

learned immensely. Shaun Jackman, Lauren Coombe, and René Warren have been especially

helpful.

Thank you to Jordan Sicherman and Mariia Radaeva for being great buddies during this

time. Your friendship and all the laughter has helped me go through the frustrating moments

of research.

This work has been supported by Genome BC and Genome Canada [281ANV]; the Na-

tional Institutes of Health [2R01HG007182-04A1]; and the Natural Sciences and Engineering

Research Council of Canada. The content of this thesis is solely the responsibility of the author,

and does not necessarily represent the official views of the funding organizations.

xii



Dedication

To my parents, Miroslav and Marina.

xiii



Chapter 1

Introduction

1.1 History of de novo genome assembly

De novo genome assembly problem deals with reconstruction of all chromosome and mito-

chondrial DNA sequences of a given organism without any reference genome sequence. The

initial approaches in the 80s relied on the shotgun method and Sanger sequencing [56] wherein

the target sequence had to be assembled from many randomly sampled subsequences, i.e.,

reads. A shotgun method relies on oversampling the target genome so that a number of reads

cover every, or almost every, part of the sequence. This ensures sufficient overlap between

reads and enough base pair redundancy to take into account erroneous base calls. The first

shotgun assembly [33] reconstructed the DNA sequence of bacteriophage λ [57] using reads

of approximately 200 base pairs (bp) and manual inspections of the pieces with the help of an

algorithm to guide overlaps.

Sanger sequencing paved way for publication of a series of genomes of model organisms

beginning in the 90s. From the C. elegans genome in 1995 through 1998 [70] followed by the

first complete eukaryote genome sequence of S. cerevisiae in 1996 [26] and D. melanogaster

in 2000 [6]. In 1990, The Human Genome Project was launched and in competition with J. C.

Venter produced a first draft of human genome in 2000 and a complete genome in 2003 [1, 64].

In 1997, paired-end sequencing was introduced [71], complementing information from an

1



individual read with approximate distance from another read. With this approach, reads are

taken from ends of a DNA fragment whose size ranges from less than reads’ sizes combined,

meaning they overlap, to multiple kilobases. Smaller fragments allow for inferring the se-

quence in-between reads in order to produce longer pseudo-reads [63]. Alternatively, they can

be used in order to pair two assembled sequences together to form a more contiguous sequence

called contig. For larger fragments in the kilobase range, the pairing can be done on contigs in

order to create scaffolds, i.e., paths of contigs with gaps of known distance in-between.

At the beginning of 80s, fairly basic programs were used to find overlaps between se-

quences [62]. Soon, however, new conceptual approaches were being introduced and algo-

rithms formalized. Two prominent approaches arose, Overlap-Layout-Consensus (OLC) and

de Bruijn Graph (DBG), which are, to this day, being widely used. In general, the former finds

overlaps between reads, taking into account sequencing errors, and arranges then together to

form an assembly, using consensus when bases conflict. The latter works at the level of k-mers,

i.e., substrings of reads of equal length, and relies on redundancy to work with correct k-mers,

joining them together when they overlap almost completely. OLC was the strategy of the early

methods [33] [51] [34] and was later modified in the string graph algorithms, introduced in

1995 [46] and formalized in 2005 [48] by E. W. Myers. String graphs have been later suc-

cessfully utilized by the SGA assembler [60], published in 2011. Celera assembler has used

the OLC approach successfully in the assembly of D. melanogaster and H. sapiens [47] [64].

DBG as an assembly concept was also introduced in 1995 [29] and has further explored by

Pevzner et al in their Euler assembler [53].

1.2 Utility of sequence assembly

De novo genome assembly has a wide range of applications, such as gene annotation [66],

phylogenetic inference [25], identifying polymorphisms [18] and structural variations [31]. De

novo assembly specifically is used when either no reference genome is available, or to avoid

the biases that may be introduced by using one. For example, a reference genome will not be

2



Figure 1.1: Timeline with early sequencing technology and landmark sequence publica-
tions.

available when sequencing and annotating the genome of a species for the first time. Another

example is cancer studies, in which structural differences between the sequenced tumor and

the reference are important.

Clinical applications such as Personalized OncoGenomics (POG) program [38] is certainly

one way in which de novo assembly is highly beneficial, both genomic and transcriptomic.

Structural variants inferred from the assemblies of healthy and tumor tissue can point to aberra-

tions in the tumor genome which may guide therapeutic decisions. Translocations, inversions,

and copy number variation are all known to be relevant for oncogenesis. Ideally, multiple

sources of evidence would point to the same abnormality providing higher confidence to the

clinicians. e.g., genomic and transcriptomic assembly might indicate Copy Number Varia-

tion (CNV) and high gene expression. Additionally, as studies and programs like POG collect

data on the efficacy of treatment decisions and genome and transcriptome sequences they were

based on, the utility of assemblies will increase.

When it comes to gene annotation of species without a reference, de novo assembly is indis-

pensable. Often, hybrid assembly of short and long-reads provides the highest quality output

[49]. There are multiple ways of assembling hybrid data. e.g., a short-read assembly followed

by long read repeat resolution and scaffolding [49]. Alternatively, the relative high quality of

short-reads compared to long can be used to correct the errors in long-reads, which are then

assembled, as is done in Canu [37] and Falcon [15] assemblers. A high quality assembly ob-

tained can then be used to shine light on gene function, annotate protein coding genes, and

3



evolution of gene families. Gene annotation today is far from perfect, however, as it suffers

from inaccuracies caused by fragmented and erroneous draft assemblies. The process requires

knowing which of the possible six Open Reading Frames (ORFs) translates a protein, but at-

tempts at figuring that out are hampered by errors. Moreover, for eukaryotes in particular, gene

annotation poses a difficult problem. Protein-coding genes are sparse, covering only a small

percentage of the genome, e.g., <%3 for H. sapiens [5] and can have many kilobases long

introns. Generally, an automated pipeline such as MAKER [12] is used to perform the anno-

tation, combined with manual expert inspection. No matter how good the annotation process

is, though, the quality is plagued by errors of the draft assemblies, the improvement of which

directly benefits annotation [54].

1.3 Assembly quality evaluation

Given the complexity of the problem, genome assembly has seen many quality metrics devel-

oped over the years — contiguity, number of assembled bases, number of misassemblies and

their types, number of complete and/or fragmented genes, and number of mismatches and/or

indels are only some of the common ones. Along with them, more indirect approaches have

been used, such as haplotype inconsistency [41] which looks at whether the assembly stays

true to the ploidy of the genome.

Contiguity is perhaps the most straightforward family of metrics. One of the early ways in

which it has been reported is the N50 value, which is the length of the contig which splits the

set of contig lengths into two. More precisely, the sum of lengths of all contigs that are equal

or larger must be equal or larger than the sum of lengths of smaller contigs [22]. As explained

in first Assemblathon [22], however, this metric cannot be used to fairly compare contiguity of

two different assemblies, as it does not take actual genome size into account but instead uses

the sum of all contig lengths as the proxy. For this reason, the NG50 metric was introduced,

which requires that the length of the contig which splits the two sets and length of larger contigs

sum up to at least half of the genome size (hence the G in NG50), instead of comparing them

4



to smaller contigs. This means that the total sum of contig lengths must be at least half the

genome size, or the metric does not make sense. NG50 still does not give us the full picture,

though. It suffers from giving us an overly optimistic look into the correctness of the assembled

contigs. This number can be inflated by simply joining as many contigs as possible, giving a

highly contiguous, but erroneous output, so there needs to be a counterweight to mitigate this.

As proposed in GAGE paper [55], contiguity metrics can be corrected by breaking contigs at

misjoin locations or at indels 5bp or longer, and then calculating N50 or NG50. Similarly,

Assemblathon used aligned contig paths in order make the correction, and normalized N50 has

been proposed by Mäkinen et al[44]. Finally, QUAST paper [27] introduced the NGA50 (A

for aligned) metric, which is commonly used today. NGA50, similarly to corrected contiguity

in GAGE, breaks contigs at misassembled points. The broken contigs are then aligned to the

reference and the unaligned portions are removed. The contigs outputted from this procedure

are then used to calculate NG50, giving us the NGA50 metric that is comparable between as-

semblies and which counterweighs misassemblies. The caveat here is that a reference genome

is needed to perform the alignments, which may not always be available.

Misassemblies can also be reported as a separate metric. They are defined as a misjoin of

two sequences, i.e., the resulting sequence has structural difference from the target genome.

There are different types of misassemblies, as shown in Figure 1.2 — relocation, translocation,

and inversion. Depending on what the assembly is used for, they can have varying severity.

The process of identifying misassembly points may require a reference. In QUAST, contigs

or scaffolds are aligned to the reference and if parts of one sequence align to distant (e.g.,

>1000bp) sections of the reference or if they heavily overlap, it is considered an (extensive)

misassembly. It is important to note that misassemblies identified in this manner may also

indicate genuine structural variants.

For de novo assemblies, using a reference is not an option, and so tools such as ALE [17]

and REAPR [28] have been developed that do not need one and can identify misassemblies

through other means. ALE reports uses Bayes’ theorem in order to determine the likelihood

5



Figure 1.2: Visual explanation of three types of misassemblies: relocation, translocation,
and inversion are shown. Blue sequence is the reference genome and pink is from
assembled contigs, each containing a misassembly.

that the provided assembly was built from the input set of reads. Indirectly, this gives us a

"score" for that assembly that, by itself, is not meaningful but can be used to compare to other

assemblies to determine which one is of higher quality. Internally, ALE has four probabil-

ity sub-scores per base, based on whether aligned read bases are congruent with assembly,

how well insert lengths match expected distribution, whether depth agrees with expected, and

whether k-mer frequency is as expected. With this information, it is possible to locate places

in the assembly that are likely erroneous. Looking at insert lengths specifically can pinpoint

where a misassembly has occurred. Similarly, REAPR also assigns a score to each base to

identify misassemblies. For every base in the assembly, fragment coverage distribution is cal-

culated, i.e., distribution of mapped paired end reads for which this base lies in between the

pair. If this distribution does not match the theoretically expected, it indicates a possible mis-

assembly.

6



Figure 1.3: Distances between paired end reads follow a known distribution. In order to
find misassemblies, they can be mapped to a reference and their distances inspected
— if pairs in a region do not follow the expected distribution, a misassembly may
have occurred. In the figure, blue sequence is the genome being assembled and
pink are paired end reads. Often, a normal distribution is assumed with mean and
variance inferred from the majority of read pair distances, as is done in ALE paper.

De novo assemblies may also be evaluated on a more pragmatic way, by looking at recon-

structed genes in the draft assembly. As elaborated in Section 1.2, one of the primary goals

of a de novo assembly can be gene annotation. Parra et al[50] introduced the concept of Core

Eukaryotic Genes (CEGs) that are well conserved and present in low copy numbers across eu-

karyotes. Determining how many CEGs are present has been shown to be a good proxy for

determining the total number of recovered genes. Following this concept, Benchmarking sets

of Universal Single-Copy Orthologs (BUSCOs) [69] have been identified using OrthoDB to

assess assembly quality and this is the premise of the software under the same name [58]. The

chosen sets of representative genes had the requirement to be present in >90% of species with

a single copy for each orthologous group, and so from an evolutionary standpoint, we can ex-

pect these genes to be present in newly sequenced genomes. The BUSCO software specifically

outputs three metrics — complete, fragmented, and missing BUSCO genes, providing some

granularity when assessing quality.

7



It has been established numerous times that draft assembly quality can vary enormously

between assemblers, technologies, data quality, and the genomes being assembled [55] [22]

[11]. GAGE paper explains that contiguity can increase at the order of 30x if the reads are error

corrected, indicating the impact data quality can have on the output. Additionally, genome

size and complexity has been emphasized as a major determinant of final assembly quality.

Seeing as this is something inherent to the genomes being assembled, it hints at the importance

of benchmarking novel assembly methodologies on a number of genomes, in order to fully

understand how well they deal under different circumstances. Finally, it should be no surprise

that, given the complexity of the problem, even when assembling the same genome with the

same data, performance may vary between different assemblers and strategies significantly, as

shown in both Assemblathon 1 and 2.

Seeing as data is of fundamental importance, it can be insightful to understand the prop-

erties of the data we are dealing with. Simpson [59] has introduced a method that assess read

quality, fragment size distribution, and genome coverage. This is accomplished by looking at

overlaps between reads themselves to determine sequencing error rate and classifying branch

types in DBG to identify errors, variants, and repeats. Additionally, using tools such as FastQC

[7] can provide read error profile and a number of statistics that can help understand what qual-

ity we can reasonably expect. Figure 1.4 shows an example of what information FastQC can

provide — per base Phred quality scores [24]. Phred quality score Q is assigned to every base

and is defined as:

Q =−10log10 P (1.1)

Where P is the probability of an erroneous base call. The maximum score shown in Figure 1.4

is 40, which gives us the probability of 1 in 10,000 that the base call was wrong. The trend

of quality dropping towards the end is expected in short-reads [21] and since most bases have

>=30 quality, this can be considered good quality data. Deviations from this pattern may

indicate that the data is faulty and require a closer look into the sequencing procedure as well

as lowering the possible quality of assembly.

8



Figure 1.4: One of the outputs of the FastQC software, showing 110bp C. elegans read
base quality with Phred score on the Y axis.

Other than metrics described so far that look at the properties of the assembly output alone,

some experiments utilize independent validation from external sequencing. For example, to

assess the accuracy of the panda genome assembly, nine Bacterial Artificial Chromosomes

(BACs) were sequenced using Sanger technology, assembled, and aligned to the assembly [40].

These sequences were not part of the assembly and were only used for quality check. There

are other technologies, such as optical maps, that have been used for this purpose. Church et

al[16] were the first to use them in their assessment and disambiguation of repetitive regions

of the mouse genome assembly.

1.4 de Bruijns Graphs

The work presented here improves upon DBG assemblies and so the concept is more closely

explained. DBGs are directed graphs defined on an alphabet S and node size k, where all of

the nodes are composed of strings of size k containing the characters from the alphabet. For

9



Figure 1.5: A simple DBG on alphabet S = {A,C,T,G} and node size k = 3.

every pair of nodes x and y there is a directed edge going from x to y if the k−1 suffix of x is

the k−1 prefix of y, i.e., they overlap by k−1 symbols. In graph theory, a DBG has a node for

every permutation of S symbols. In the genome assembly problem, however, a variant is used

wherein the nodes are all read substrings of size k, known as k-mers, and the valid symbols are

S = {A,C,T,G}. An alternative to this is sometimes used that represents k-mers as the edges

and k−1 overlaps as the nodes, as is done in the EULER assembler [53]. In this setup, nodes

represent branching points.

Many short-read de novo assemblers make use of a DBG based approach [2, 8, 14, 30, 43,

73]. The assembly process usually starts out by splitting all reads into k-mers and storing them

in a hash table or a Bloom filter [14, 30, 61]. This provides the benefit of being able to query

node adjacency in constant time as opposed to searching for overlaps.

1.4.1 Bloom filters

A Bloom filter [10] is a probabilistic data structure that has the operations of a set: insertion

of an element and querying for the presence of an element. The set is typically implemented

as a bit vector, initialized with all zeroes. The elements must be hashable, i.e., there must

exist a hash function that takes the elements as its input. On insertion, the element is hashed

into a predetermined number of hash values, h, which represent indices in the bit vector that

get turned into ones. Essentially, the content of the element is compressed into only h bits,

making Bloom filters very memory efficient. To query for the presence of an element, like for

10



insertion it is hashed into h values and those are used as indices into the bit vector to check for

the presence of one bits. Because the bit vector is limited in size, some of the bit indices from

different elements may overlap. This can produce a query false positive if the queried element

bit indices happen to land on indices of other previously inserted elements, even if the queried

element has never been inserted. The chance of a query false positive, i.e., the False Positive

Rate (FPR) of a Bloom filter is estimated as [10]:

FPR = (1− (1− 1
b
)hn)h ≈ (1− e−(hn/b))h (1.2)

Where b is the number of bits in the bit vector, h the number of hash values per element, and

n the number of distinct elements. The chance of bit index overlap between elements and

thus false positives is increased with the reduction in size of the bit vector, as seen in the FPR

formula. In this way, Bloom filters allow the user to make the trade-off between memory usage

and produced false positives. It is worth noting that false negatives are not possible in a Bloom

filter designed this way, as once an element is inserted, its one bit indices stay unchanged.

Any subsequent query for the presence of this element will return true. Since Bloom filters

are highly memory efficient, they have been widely used with memory intensive genomic data

[14, 30, 63, 67]. In fact, they have enabled various bioinformatics tools such as assemblers and

scaffolders to work with large genomes and are also used in this work for scalability.

1.4.2 Repeats

One of the main confounders of genome assembly are repetitive sequences. If the same DNA

sequence is repeated at a single locus, potentially many times, it is known as a Tandem Re-

peat (TR). Otherwise, if the same sequence appears at different loci across the genome, as

Transposable Elements (TE) do, it is an interspersed repeat. In the context of DBG based as-

sembly, a repeat that is at least k−1 bases long will create a false edge, seeing as any sequence

overlap of that length creates an edge. While constructing a DBG, it is impossible to disam-

biguate repeats that are k−1 bases or longer, and this task is left to the downstream stages of

11



the assembly process.

To illustrate the magnitude of the problem repeats pose, it has been estimated that half or

more of the human genome is comprised of repeats [19]. The typical length of a TE is on the

order of several kilobases (kbp), ranging up to 20 kbp in eukaryotes [36]. A third of mammalian

genomes consists of TE and in vertebrates such as zebrafish they make up more than half of

the genome [13]. Since current short-read lengths are in the 100–300 base pairs (bp) range

[9], they are unable to span a large number of TE. On the other hand, TR can have motifs as

short as 1 bp. They are generally classified as microsatellites if they fall within 1–10bp range,

minisatellites if in the 10-100 bp range, and satellites if over 100 bp [32, 42, 65]. While the

motif may be fully spanned by a short read, the number of repetitions may not be possible to

estimate with short reads alone.

1.4.3 Read coverage

Due to non-uniform genome read coverage in the sequencing data [23], regions of the genome

with less short-read coverage will have a more sparse overlap between reads, whereas a highly

covered region will have an abundant number of reads that have significant overlap. This is

where the choice of k comes into play — a smaller size will capture the overlap in both low

and high coverage regions, but will additionally include many spurious overlaps due to repeats,

complicating the graph. On the other hand, a larger size will reduce the number of spurious

overlaps, but genuine overlaps from lesser covered regions will be missed. To overcome this

issue, some de novo assemblers, such as SPAdes [8], IDBA [52], SOAPdenovo2 [43], and

MEGAHIT [39], use an array of k values, starting from a small k to achieve high connectivity

and then proceeding to untangle the graph with higher k values. These methods demonstrate

improved assembly quality, but they have been limited to small k value increments or multiple

DBG constructions. This is problematic for large genomes (e.g., human), where the assembly

graph is large and iterating over a number of k values may significantly inflate the run time.

There is also room for improvement in the span of k that is utilized, as it is not efficient to reach

12



a high k value with small steps.

Another aspect of DBGs is that it relies on sufficient number of k-mers being errorfree,

otherwise the overlaps would be missed or we would have false connections. One way this is

achieved is by only considering only k-mers that are found above a certain multiplicity (e.g.

they appear at least twice), as is done in the ABySS assembler [30]. These k-mers are known as

solid k-mers. Another method, often done in conjunction, is tip trimming, which removes short

sequences that branch off a longer sequence, presumably due to an error or a false positive in a

Bloom filter.

1.4.4 Iterative de Bruijn Graph construction

The IDBA assembler was the first to attempt to use multiple k values instead of a single moder-

ate one in order to improve the output [52]. It introduces the concept of an accumulated DBG,

which contains the information from its k value and all the previously processed ones. This

accumulated DBG is constructed iteratively, by starting from a low k value and building an

initial DBG, and then improving it with increasing k values. The initial graph is constructed

from solid k-mers, i.e., k-mers above a given multiplicity in order to filter out erroneous ones.

The next step is to assemble contigs, i.e., unambiguous walks in the graph, from which we

obtain sequences relatively larger than the input reads. Because there is no ambiguity involved

with these sequences, their constituent reads do not belong to any branching points, and so

cannot be used to resolve them. For that reason, these reads are removed from the set of reads

that will be used to improve the graph. After the construction of the initial graph, the iterative

procedure takes the next k value in the ascending order. The step between these values may

be as low as 1, but the paper suggests a higher step is possible in order to minimize run time.

However, to obtain high quality contigs, a step of 1 is recommended. The improve the graph,

situations such as the ones in Figure 1.6 are examined. Branching points such as the ones in

case of a repetitive region or an erroneous join may be resolved with the new, higher, k value.

Each iteration results in the accumulated DBG, that is being improved.

13



Figure 1.6: Two potentially resolveable branching points in a DBG. For a repeat se-
quence, a k-mer that spans the repeat R and further into A or B and X or Y can tell
which of the ARX , ARY , BRX , BRY paths is correct. Specifically, for a k parameter-
ized DBG, a k+2 k-mer is required for support, touching the adjacent nodes with
one nucleotide each. Similarly, for a branching point due to an error, a spanning
k-mer can cut out the false branch. In this case, the X contig is falsely connected to
B, and so a k-mer spanning A, B, and Y , with one nucleotide in A and Y each would
suggest that this is the true path.

The algorithm for the resolution transforms all edges in the graph into nodes of k+1 size.

Then, every pair of neighbouring nodes in this transformation is joined by an edge if it repre-

sents two consecutive k+ 1 k-mers and there exists a k+ 2 k-mer containing the sequence of

these two nodes joined together. This k+2 k-mer is searched for in the set of leftover reads, af-

ter reads from previous contigs are removed. The described iterative procedure is repeated for

every k value until the specified kmax is reached. For each accumulated DBG obtained, reads

that belong to contig sequences are removed, and so the set of working reads is decreased on

every iteration. Additionally, dead end sequences (tips) shorter than 2 · k are trimmed. After

all the iterations are done, bubbles are merged. Here, bubbles refer to two parallel paths due to

a Single Nucleotide Polymorphisms (SNPs) or indels which appear as two similar sequences.

The summary of IDBA algorithm can be seen in Listing 1.1.

14



Listing 1.1: Pseudocode of the IDBA algorithm. After the construction of the initial
DBG, iterative improvements are performed by increasing k and resolving branch-
ing paths.

# IDBA algorithm summary
k = kmin
build(DBGk, solid_kmers)
while k < kmax:
remove_dead_ends(DBGk)
reads = reads \ reads_in_contigs(DBGk)
DBGk+step = improve(DBGk, leftover_reads)
k += step

remove_dead_ends(DBGk)
merge_bubbles(DBGk)
connect_contigs(DBGk, mate_pairs)
output_contigs(DBGk)

1.4.5 Multisized de Bruijn Graph

The SPAdes assembler uses the concept of a multisized de Bruijn Graph in order to utilize

different k sizes. Like IDBA iterations of k values, this approach starts with a low k value

and constructs a regular DBG from input reads. The resulting DBG is then condensed by

unifying unambiguous k-mer paths into unitigs, as shown on Figure 1.7, which is a common

simplification operation in DBG assemblers.

After this operation, the outputted unitigs can form long sequences, often larger than the

original reads in non-repetitive regions where the graph does not branch. The next step is to

increase the k value and k-merize both the obtained unitigs and original reads to build a new

graph from. This new graph benefits from the long sequences built in the previous graph and

is subsequently able to get away with larger k-mer size. Each graph built is also processed by

simplification operations such as removal of bubbles, chimeric reads, and tips (Figure 1.8).

In IDBA, a k step of 1 is used, iterating over a small range of values. In SPAdes, however,

in the interest of minimizing run time and maximizing the range of iterated values, a step of

>1 is used. The important thing to keep here in mind is that SPAdes was designed to assemble

bacterial genomes, and for that purpose this approach is feasible. However, building a DBG

15



Figure 1.7: An operation commonly done by DBG assemblers – condensing unambigu-
ous k-mer paths into unitigs.

is an expensive operation, both in terms of run time and memory. Even for an assembler

optimized for large genomes such as ABySS 2 [30], the initial DBG step takes the most time

and memory. To assemble a large genome, reconstruction would be prohibitively slow, giving

motivation for an alternative method.

1.5 Research question

Seeing as DBGs are parametrized by a single k value and that so far improving the graph

with larger k values was either with small increments or reconstruction of the whole graph,

the question is — can this be done better? Specifically, is it possible to use a larger k step

to improve upon the initial DBG in a scalable manner that would not require reconstruction.

Additionally, the goal is to be able to utilize the new approach on large genomes, meaning that

run time and memory requirements should be reasonable.

16



Figure 1.8: Three types of opportunities for graph simplification operations — bubble,
chimeric read, and tip. A bubble can be caused by a SNP, an indel, or an error.
A chimeric read aligns to distinct, often distant, loci and so erroneously connects
contigs. The tip is a short sequence branching off a longer contig, often caused by
a read error or a Bloom filter false positive.

1.6 Contribution

The work presented here includes a novel algorithm for the purpose of scalably using an ad-

ditional k value, and addresses various challenges encountered. Unlikely previous approaches

that iterate over a list of k values, here, we pick a single additional k value that bypasses the

values in-between, allowing for a faster algorithm. This novelty also allows us to efficiently

utilize a Bloom filter for k-mer storage, as it only has to be built once for the k size that is being

used. This paradigm enables scalable improvement of the assembly graph and results in higher

contiguity and more genes recovered.

17



Chapter 2

Methods and findings

To address these issues, RResolver utilizes additional short-read information in a scalable man-

ner by taking a large step in k value from the one used to construct the DBG in order to resolve

repeats. This large step bypasses multiple short k increments, thus reducing the overall run

time, but comes with a set of challenges that have been explored in this study. The initially

constructed DBG is worked on directly, without the need for any costly graph reconstruction

steps. Additionally, to minimize memory usage, a Bloom filter is employed for k-mer storage.

Herein, DBG assembly k is denoted as kassembly and the larger k used by RResolver as krresolver.

2.1 Results

To improve a given DBG assembly, RResolver attempts to find k-mers of size krresolver along

assembly graph paths surrounding a repeat in order to evaluate their correctness. krresolver sized

k-mers are first extracted from reads and stored in a Bloom filter [10] for efficient memory use.

To find krresolver k-mer counts along a path, a sliding window of size krresolver is used, querying

the Bloom filter for presence or absence at every step with a step size of 1bp. In order to make

k-mer extraction from reads and paths fast, ntHash [45], a rolling hash algorithm for nucleotide

sequences, is used to efficiently calculate hashes of successive k-mers.

Figure 2.1 shows a typical situation in which paths can be evaluated. All paths of three

18



Figure 2.1: For a repeat to be considered, it has to be short enough so that the window of
krresolver size spans the adjacent nodes and has sufficient room to do a number of
moves, i.e., tests, dynamically determined based on sequencing coverage.

nodes are evaluated; in Figure 2.1, that would mean all possible paths from nodes to the left

to nodes to the right: ARX, ARY, ..., CRZ where R is the repeat. The algorithm is applied

to every repeat short enough for the sliding window to span the whole repeat node sequence,

overlap the nodes adjacent to the repeat along the path in question, and to perform a sufficient

number of tests (sliding window moves). The number of tests is dynamically determined based

on the number of expected krresolver k-mers (if the path were genuine) along each tested path.

This number is obtained from the kassembly coverage of the path, provided by the assembler.

krresolver sized k-mers found are tallied for every path and ones where the k-mer count is

above a threshold are considered supported. The unsupported paths are removed from the

graph, potentially duplicating the repeat in the process.

2.1.1 False positives

Since Bloom filters may return false positives on query operations, they need to be taken into

account when considering path support. To counteract these false positives, a threshold is set

for the number of krresolver k-mers that need to be found along a path for it to be considered

supported. A sufficiently high threshold tolerates a number of false positive matches in the

Bloom filter before considering a path supported.

The number of false positives depends on a number of factors, such as the number of tests

done per path (which depends on sequencing coverage), the number of possible paths, and

19



the FPR of the Bloom filters. As RResolver is used alongside a short-read assembler, we can

assume that it has the same memory constraints and works with the same read dataset. Success

with the low memory footprint assembler ABySS shows that RResolver can work with tight

memory constraints and gives us an upper limit on expected Bloom filter FPR.

The Bloom filter FPR increases the more elements are stored. To balance this out with

sufficient krresolver k-mer abundance, the number of extracted k-mers per read is equal to the

support threshold. This effectively makes one read found along a path sufficient to consider

that path supported. K-mers are extracted from the beginning of the read, reducing the effect

of the read quality drop towards the 3’ end [21].

Figure 2.2 shows the histogram of krresolver k-mers found along the tested paths for the

kassembly = 95,krresolver = 134 H. sapiens NA24631 assembly with a threshold of 4 (default).

There is a clear separation between the two distributions of unsupported and supported paths,

with the first noticeable histogram bar of supported paths at 4 k-mers suggesting that the thresh-

old of 4 is appropriate. The paths with Bloom filter false positives are found between the two

distributions, however, due to low FPR of 3.15e-08% for this assembly, they are few and not

visible. The spike at 20 k-mers is due to a default minimum number of sliding window moves

of 20.

2.1.2 Varying coverage

As the read coverage varies across the genome [23], the number of krresolver k-mers expected

along each path differs. In order to reliably determine whether a path is supported, RResolver

calculates the number of tests required to find sufficient number of krresolver k-mers along a

path.

Given assembly kassembly k-mer coverage of a graph node, i.e., the sum of multiplicities

of all the kassembly k-mers that make up that node provided by the assembler, the number of

krresolver k-mers can be found proportionally. Since every read provides l−kassembly+1 k-mers

of length kassembly, where l is read length, the number of reads that have contributed to the node

20



Figure 2.2: Histogram of the number of krresolver k-mers found along all tested paths for
H. sapiens NA24631 assembly. The number of extracted k-mers per read is 4 and
as can be seen on the figure, a threshold of 4 to consider a path supported separates
the distributions of unsupported and supported paths well. The paths with Bloom
filter false positives are found between the two distributions, but because of the low
FPR, they are few and not visible. The spike at 20 k-mers found is due to the lower
limit on the number of sliding window moves of 20.

in question is determined. Given the number of reads in a node and the length of that node,

the approximate number of bases between subsequent reads is calculated as the node length

over the number of reads. To find a read along a path, on average, the sliding window should

move the number of bases equal to the average number of bases between reads. As each read

provides a number of krresolver k-mers equal to the support threshold, a constant equal to the

threshold is added to the formula to ensure that all extracted krresolver k-mers are found.

Estimating coverage also allows the algorithm to skip over low covered regions of the graph

where kassembly has been an appropriate choice and further increase in k size is not helpful. The

criteria to skip a region is simply if the number of required tests is greater than the possible

number of moves the window can do. For a sliding window, there is only so many moves it can

perform while still overlapping all three nodes that form the path in question, giving an upper

limit on the number of tests that can be done in a repeat.

If any path in a tested repeat is found to have low coverage such that doing a sufficient

21



number of sliding window moves is impossible, the whole repeat is skipped. Skipping the

repeat is done because, despite possibly knowing whether other paths are supported, the repeat

as a whole cannot be resolved accurately without complete information, as trying to resolve it

could lead to misassemblies.

The coverage estimation formula (Equation (2.4), further elaborated in Methods section) is

only an approximation and its output should be interpreted conservatively. Because of this, the

number of tests to be done for any path is multiplied by a factor which can be parametrized. The

factor used in the results shown here is 4. The formula inaccuracy is also the rationale behind

setting a minimum number of sliding window moves (20). The formula may overestimate the

number of krresolver k-mers expected and perform too few tests, which this lower limit prevents.

There are a couple of possible sources of the coverage formula inaccuracy. First, if a

read has an erroneous base call within the 4 extracted krresolver k-mers, RResolver will miss

those k-mers when querying a genuine path, reducing its support and potentially resulting in a

misassembly. This is especially problematic for larger reads and krresolver k-mers, as there are

more bases that could be erroneous. It may be the case that the erroneous base call is found

at the end of a krresolver k-mer, while a preceeding kassembly k-mer of the same read might not

have that error. This contributes to the inaccuracy of the proportion calculation in the coverage

formula.

Another source of error is node kassembly k-mer multiplicity. Since the ABySS assembler

provides average multiplicity along a node, the information granularity decreases the longer the

node is. For a particularly long node with highly varying coverage, this will lead to overesti-

mation in low-covered parts and underestimation in high-covered. Overestimating the number

of expected krresolver k-mers results in fewer tests done and therefore greater chance of missing

a read on a genuine path. While it is possible to simply increase the number of tests overall by

a factor, doing so reduces the number of repeats that can possibly be resolved, as the sliding

window might not be long enough to do the required number of tests.

22



Figure 2.3: In complex repeats with a large number of paths, the nodes adjacent to the
tested repeat tend to have short sequences before branching further. If the sequence
from the path being tested is shorter than the window, the only way to test the path
is to add the sequences of the nodes further away. E.g. if the tested path is ARX, all
combinations of paths from the nodes preceding node A to all the nodes succeeding
node X that fit within the window are considered. Support found in any of the paths
is sufficient to consider the ARX path supported.

2.1.3 Complex repeats

In highly repetitive regions, the graph becomes particularly complex. The incoming and out-

going nodes from the tested repeat can be repeats themselves, often quite short. This can result

in the sliding window being longer than the three nodes that are considered as a path. In such

cases, the nodes that branch out of the incoming and outgoing nodes are also taken to be pos-

sible segments of the path, as shown in Figure 2.3. Branching is done to the extent to which is

needed to accommodate the required number of moves with the sliding window to determine

support.

Given the branching nodes, all the possible path combinations are tested and if at least

one has a sufficient number of krresolver k-mers, the initially considered path of three nodes is

considered supported. For example, in Figure 2.3, if the path in question is ARX, all the nodes

preceding node A and succeeding node X that are within the window would be used to form

23



Figure 2.4: If the true paths in Figure 2.1 were found to be ARX, ARY, BRX, BRY,
CRY, CRZ, the subgraph would be simplified as shown in the figure. Although the
only nodes that can be unambiguously merged here are C and R, narrowing down
possible paths benefits downstream algorithms.

the path combinations to test. If ARX is a genuine path, then at least one combination path

should have reads, and so if any of them are found to be supported, then ARX is considered

supported.

If the number of combinations explodes beyond a set threshold, the paths are randomly

subsampled in order to limit run time and false positives. This threshold depends on the Bloom

filter FPR, as increasing the number of tested paths increases the chances that a path will be

supported by a series of false positive hits.

2.1.4 Repeat resolution

The resulting supported paths map may not unambiguously resolve paths in a repeat, but often

simplifies a repetitive region. A simplified repeat does not necessarily immediately merge

any nodes and increase contiguity, but helps downstream algorithms such as the contig and

scaffolding stages of ABySS. Figure 2.4 shows an example of a possible simplification from the

repeat in Figure 2.1. In cases where paths are unambiguously resolved, nodes are immediately

merged.

Once all considered paths are examined, for each repeat, a map is constructed that that has

supported outgoing nodes for each incoming node. As this may not unambiguously resolve

the paths, a simplification procedure is implemented. Incoming nodes are grouped based on

which outgoing nodes they have true paths to. All incoming nodes with the exact same set of

outgoing nodes form one group. For example, if on Figure 2.1 in the main text, the true paths

24



are determined to be ARX, ARY, BRX, BRY, CRY, CRZ, incoming nodes A and B would be

grouped together as they both go to X and Y, whereas node C would be in its own group as it

goes to Y and Z (Figure 2.5). Each group then forms an instance of the repeat, resulting in all

paths being supported in the new subgraph.

A summary flowchart of the algorithm can be seen on Figure 2.6. If the dataset used has

multiple read sizes, the whole procedure is repeated for each size, starting from the smallest.

Each read size works with a distinct krresolver value either provided or automatically calculated.

2.1.5 Performance assessment

To assess the performance of RResolver and explore the parameter space, the tool was tested on

2x150bp and 2x250bp Illumina data from four human individuals with fold-coverages ranging

between 43X and 58X. RResolver is integrated with the ABySS 2 assembler [30] and works

on the output of the DBG construction stage. Figure 2.7 shows how the tool fits within the

whole pipeline. Figures 2.8 and 2.9 show assembly quality results after scaffolding for a range

of ABySS assemblies with different k-mer sizes, with and without RResolver in the pipeline.

Assembly quality was assessed using QUAST [27] and BUSCO [58]. Each dataset was tested

with a sweep of kassembly values, a common ABySS procedure, using a step size of 3bp. The

optimal choice, with respect to NGA50, was kept plus the neighbouring values (+/-6 and +/-

12). The choice of −kc ABySS parameter, which specifies minimum k-mer multiplicity to

filter out erroneous k-mers, was also selected for the optimal assembly. Dataset information

can be found in Experimental Data section.

With RResolver, all ABySS assemblies achieved higher NGA50 and most have higher

percentage of complete BUSCO genes, while some have fewer misassemblies. We explored a

wide range of krresolver values between kassembly and read size in order to assess the impact of

krresolver on assembly quality. This information helps develop a heuristic for choosing krresolver

in the absence of a reference that would maximize contiguity and complete BUSCO genes and

minimize misasssemblies.

25



Figure 2.5: Step by step grouping of incoming nodes that have supported paths to the
same group of outgoing nodes. In this case, paths ARX, ARY, BRX, BRY, CRY,
CRZ were found to be supported. Each group then forms an instance of the repeat,
which in this case results in two green repeat sequences.

26



Figure 2.6: 1) krresolver k-mers are extracted from input reads and inserted into a Bloom
Filter. 2) Small repeats that can be spanned by the krresolver window are identified.
3) All possible paths in the repeat tested by sliding the window along them, with
1bp slide step size, querying the Bloom filter on every step. 4) Paths with sufficient
number of krresolver k-mers are identified. 5) Repeats are simplified by removing
unsupported paths and joining supported ones.

27



Figure 2.7: RResolver is ran after the DBG stage of the ABySS pipeline, benefiting the
downstream contig and scaffold stage with an improved graph.

For 2x150bp reads, increasing krresolver almost monotonically improves NGA50 and com-

plete BUSCO genes for both datasets. There is, however, a trend of increased misassemblies

past a krresolver value of around 137, giving a limit for how high krresolver should be. Since RRe-

solver does not make any cuts in the sequences, the reduction of misassemblies comes from

the additional repeat resolution enabling the downstream ABySS algorithms to better avoid

making erroneous joins.

For 2x250bp reads, increasing krresolver as high as the read length can deteriorate assem-

bly quality, as shown by increased misassemblies and decreased complete BUSCO genes.

The krresolver values below around 186 are a more appropriate choice, as they yield increased

NGA50 and increased complete BUSCO genes without too many additional misassemblies.

For both read 2x150bp and 2x250bp, lower kassembly values benefit more, reducing the effect

of a wrongly picked kassembly.

The results shown so far are for fold-coverages around 40-50X. Figure 2.10 shows the

28



Figure 2.8: NGA50 and misassembly scaffold metrics with and without RResolver. High
quality assemblies lean towards top left corner, with high contiguity and low mis-
assemblies. The text labels indicate the krresolver value used for each data point.
Some text labels (for smaller triangles) and overlapping data points are omitted
for clarity. All RResolver data points have higher NGA50 than the corresponding
baseline assembly, and some have fewer misassemblies. The plot also shows that
krresolver value beyond ~137 and ~186 for 150bp and 250bp assemlibes respectively
increases misassemblies without a significant contiguity increase, giving an upper
limit when choosing the parameter.

29



Figure 2.9: Similar to Figure 2.8, the plot shows an exploration of krresolver values and its
effect on complete BUSCO genes. A similar conclusion can be made that assembly
quality does not noticeably increase after krresolver values of around 137 and 186.

NGA50 and misassemblies statistics for a 2x150bp and a 2x250bp dataset, with the read cov-

erage subsampled down to 28X and 33X, respectively, with a step of 5 using seqtk [4]. Across

all assemblies, for both 2x150bp and 2x250bp reads, an offset of +45 between kassembly and

krresolver provides a good NGA50 increase while not introducing too many misassemblies. This

gives a heuristic to base krresolver value on and is the recommended approach if assessing mul-

tiple krresolver values is too costly or the reference is unavailable. When using this heuristic,

krresolver should have an upper limit of 137 and 186 for 150bp and 250bp reads respectively in

30



Figure 2.10: NGA50 and misassemblies plots for a 150bp and a 250bp dataset. The
250bp dataset has 4 separate plots as the datapoints are far away from each other
between them. The text label on each datapoint indicates the offset between
kassembly and krresolver. Across all coverages, an offset of +45 gives a good conti-
guity improvement without increasing misassemblies too much.

order to minimize introduced misassemblies.

To demonstrate that the algorithm performs well on genomes other than H. sapiens (3.1Gbp

haploid genome size), Figures 2.11 and 2.12 show results for C. elegans and A. thaliana

(101Mbp and 157Mbp genome sizes respectively) assemblies of 2x110bp and 2x101bp datasets,

respectively. For both datasets, we applied the heuristic krresolver = kassembly + 45bp, with

read size as upper limit. Interestingly, for C. elegans, the ABySS assembly with the high-

est contiguity (kassembly = 71bp) does not yield the highest contiguity final assembly with

ABySS+RResolver (kassembly = 68bp,krresolver = 107bp). The assembly yielding the high-

est contiguity is the one with a lower kassembly, meaning that it retains more connections in

the graph. While this also results in more false edges, those can be removed by RResolver

whereas it cannot recover connectivity lost by higher values of kassembly. For A. thaliana, while

all assemblies have increased contiguity, they come with a trend of increased misassemblies.

However, all of the assemblies have a fairly low number of misassemblies in the first place and

31



Figure 2.11: NGA50 and misassembly plots for C. elegans and A. thaliana. The
krresolver = kassembly + 45bp heuristic is used, limited by read size of 110bp and
101bp. Both datasets see an improvement in contiguity, with a small increase in
misassemblies.

Figure 2.12: Similar to Figure 2.11, instead showing BUSCO results. Assemblies from
both datasets show a clear improvement.

the increase is not significant.

Along with the improved assembly quality, the average RResolver run time was only

around 3% of the whole ABySS pipeline, with the slowest run time reaching 8%. For H.

sapiens runs, the RResolver step took between 17 and 70 minutes. The distribution of all

assembly run times can be found in Figure 2.13, and machine specifications in Table 2.1.

32



Figure 2.13: Distribution of RResolver run times, in % of the total ABySS pipeline run
time.

Table 2.1: Machine specifications for run time benchmarking.

Species CPU RAM OS

C. elegans
48 x Intel Xeon E5 -2650 @ 2.20 GHz 380 GB CentOS 6A. thaliana

H. sapiens

2.2 Methods

All assemblies were performed using ABySS v2.2.4, with the ABySS+RResolver assemblies

having RResolver in the assembly pipeline. For assembly evaluation, QUAST v5.0.2 and

BUSCO v5.beta were used. ABySS, QUAST, and BUSCO parameters used can be found

in Table 2.2.

The krresolver value used is either specified or automatically calculated using the heuristic:

krresolver = kassembly + 45bp as described in Results section. Additionally, krresolver value has

an upper limit of 137 and 186 for 150bp and 250bp reads respectively. These numbers were

obtained empirically by looking at the relationship of krresolver value and resulting assembly

33



Table 2.2: ABySS, QUAST, and BUSCO parameters used to assemble and assess tested
genomes. N/A denotes no parameteres were supplied. The−k parameter for ABySS
is omitted, as a sweep of values was done.

Species ABySS QUAST BUSCO

C. elegans -kc2 -B2G -H4 -j48 N/A
-m genome

-l nematoda_odb10

A. thaliana -kc2 -B3G -H4 -j48 N/A
-m genome

-l eudicots_odb10

H. sapiens

(NA12878) -kc2

-B40G -H4 -j48 --large
-m genome

-l primates_odb10
(NA24631) -kc2
(NA24143) -kc2
(NA24385) -kc3

quality. For read sizes other than 150bp and 250bp, the value is extrapolated with a linear fit:

limit = readsize ·a+b (2.1)

and if we substitute the values for 150bp and 250bp read sizes:

137 = 150 ·a+b

186 = 250 ·a+b
(2.2)

We get the values a = 0.49 and b = 63.5, and thus, limit = readsize ·0.49+63.5.

One of the reasons for an upper limit on the krresolver value is the short-read base quality

trend, which tends to drop sharply towards the read’s 3’ end [21]. This can be seen in the

output of FastQC [7] for NA24631 (150bp) and NA24143 (250bp) in Figure 2.14. For 150bp

reads, Phred quality [24] starts noticeably dropping in the 130-140bp range, whereas for 250bp

that happens in the 180-190bp range, providing support for the krresolver upper limit heuristic

previously obtained from assembly quality results.

To consider a repeat for path evaluation, its length must be:

Lrepeat ≤ krresolver− (tests−1)−2 ·margin (2.3)

34



Figure 2.14: The output of FastQC for the H. sapiens NA24631 (2x150bp) and NA24143
(2x250bp) reads in first and second row respectively. The common pattern of base
quality distribution can be seen — high quality bases from the start with a sharp
drop at the end of the read.

where Lrepeat is the repeat length, tests the required number of tests (sliding window moves),

and margin the minimum number of bases the sliding window should touch on adjacent nodes

at all times (2 by default).

The formula for the number of required tests is:

tests = min(max(m,s · f + t),M) (2.4)

where m is the minimum number of tests (20), M maximum number of tests (36), s the ap-

proximated space between subsequent reads, f inaccuracy correction factor (4), and t support

threshold (4). All numbers shown in parentheses are the default values, and are tunable through

35



runtime parameters. If we substitute in the values used, we get:

tests = min(max(20,s ·4+4),36) (2.5)

The inaccuracy correction factor compensates for the errors of coverage estimation. Parameter

s is calculated from the kassembly k-mer coverage.

To determine the kassembly coverage of a path in a repeat, the coverages of the incoming

node, the repeat node, and the outgoing node are normalized by the formula:

Covkassembly =
Covkassembly

L− kassembly +1
(2.6)

where Covkassembly is the sum of kassembly k-mer multiplicities of each k-mer in the node, pro-

vided by the assembler (as is the case with ABySS), and L the length of the node. This gives us

an average multiplicity of each k-mer of a node. Among the three nodes, the lowest coverage

is taken to be the coverage of the path, as the higher coverage of other nodes can be explained

by different paths going through them.

Then, the read coverage is calculated. Since there can be multiple read lengths in the input

dataset and each read length would be an iteration with its own krresolver, the contribution of

each read length to node coverage is calculated. This contribution is l− kassembly + 1 (with

l being the read length) and adjusted for the proportion of those reads in the dataset. The

expected normalized number of reads along the path for the current iteration is calculated as:

Covread =
Covkassembly

l− kassembly +1
· p (2.7)

where p is the proportion of the reads in the input dataset of read length corresponding to the

current krresolver.

Knowing the number of reads along the path and the path length, the approximate number

of bases between the start of each read is obtained and from there the number of sliding window

36



moves. Moving the sliding window number of times equal to this spacing should, on average,

find one read on a true path. In practice, the number of moves is multiplied by a factor (4 by

default) to offset any inaccuracies of the coverage approximation formula and to make sure all

the extracted krresolver k-mers from the read are found.

To consider a path supported, a threshold of 4 krresolver k-mers is used. Additionally, 4

krresolver k-mers are extracter per read, starting from the 5’ end. The number of hash functions

per krresolver k-mers when inserting into the Bloom filter is seven by default.

When dealing with complex repeats (Figure 2.3), a maximum of 75 paths are allowed on

either side of the repeat for a maximum total of 5625 path combinations. In case there are more

than 75, the paths are randomly subsampled down to 75.

Two iterations of graph path evaluation and resolution are done per read size, as the path

evaluation completes very quickly and can uncover additional opportunities for repeat resolu-

tion.

2.3 Experimental Data

We used six datasets in our experiments, assessing performance for different genome lengths

and complexities, and for evaluating proper parameter choice. We used a C. elegans N2 strain

dataset, with 2x110bp paired end Illumina reads with 75-fold coverage. A. thaliana 2x101bp

paired end Illumina reads with 40-fold coverage. Four H. sapiens datasets — two 2x150bp

Illumina (NA12878, NA24631), and two 2x250bp Illumina (NA24143, NA24385) paired end

datasets were used with 45-, 43-, 48-, and 58-fold coverage respectively. The H. sapiens refer-

ence used for reference-based assessment was GRCh38.

C. elegans Illumina PE 2x110bp: DRR008444 https://www.ncbi.nlm.nih.gov/sra/?term=

DRR008444

C. elegans reference: ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_refseq/Caenorhabditis_

elegans

A. thaliana Illumina PE 2x101bp: SAMD00000601 https://www.ebi.ac.uk/ena/browser/view/

37

https://www.ncbi.nlm.nih.gov/sra/?term=DRR008444
https://www.ncbi.nlm.nih.gov/sra/?term=DRR008444
ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_refseq/Caenorhabditis_elegans
ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_refseq/Caenorhabditis_elegans
https://www.ebi.ac.uk/ena/browser/view/SAMD00000601
https://www.ebi.ac.uk/ena/browser/view/SAMD00000601


SAMD00000601

A. thaliana reference: https://www.ncbi.nlm.nih.gov/assembly/GCF_000001735.4

H. sapiens (NA12878) Illumina PE 2x150bp: ERR3685389 https://www.ebi.ac.uk/ena/browser/

view/ERR3685389

H. sapiens (NA24631) Illumina PE 2x150bp: ERR3687419 https://www.ebi.ac.uk/ena/browser/

view/ERR3687419

H. sapiens (NA24385) Illumina PE 2x250bp: SRR11321732 https://trace.ncbi.nlm.nih.gov/

Traces/sra/?run=SRR11321732

H. sapiens (NA24143) Illumina PE 2x250bp: SRR11321730 https://trace.ncbi.nlm.nih.gov/

Traces/sra/?run=SRR11321730

H. sapiens reference: GRCh38 ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_

000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids

Source code can be downloaded from: https://github.com/bcgsc/abyss/tree/master/RResolver.

The ABySS release with the RResolver algorithm used in the results can be downloaded from:

https://github.com/bcgsc/abyss/releases/tag/rresolver-release.

2.4 Error correction

As briefly discussed in Varying coverage section, read errors negatively affect path support

estimation. In this section, an experimental approach is assessed that attempts to perform error

correction. This error correction method can take into account at most one substitution error

per krresolver k-mer. The method, however, did not improve assembly quality and is presented

here to show what may initially seem like a way to improve the RResolver algorithm.

For each krresolver k-mer extracted from reads, in addition to being inserted in the Bloom

filter, a set of spaced seed [35] hash values are calculated so that the union of seed zeroes cover

all k-mer bases. These spaced seeds are then inserted into a secondary Bloom filter. Every time

the sliding window is moved along a path, first, the non-spaced seeds, primary Bloom filter is

queried for the presence of the k-mer. If found, the k-mer is counted towards the support of

38

https://www.ebi.ac.uk/ena/browser/view/SAMD00000601
https://www.ebi.ac.uk/ena/browser/view/SAMD00000601
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001735.4
https://www.ebi.ac.uk/ena/browser/view/ERR3685389
https://www.ebi.ac.uk/ena/browser/view/ERR3685389
https://www.ebi.ac.uk/ena/browser/view/ERR3687419
https://www.ebi.ac.uk/ena/browser/view/ERR3687419
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR11321732
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR11321732
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR11321730
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR11321730
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids
https://github.com/bcgsc/abyss/tree/master/RResolver
https://github.com/bcgsc/abyss/releases/tag/rresolver-release


the path and the window moves foward one base, as is the case without error correction. If,

however, the k-mer is not found, error correction is attempted as this could be due to a read

error. The set of spaced seeds’ hash values are calculated for the k-mer and queried against the

secondary Bloom filter. If this results in a hit, the algorithm takes the wildcard positions of the

matching spaced seed as possible positions of where the error may have occurred. Then, one

by one, bases in the krresolver k-mer at wildcard positions are substituted for other bases and

each time the krresolver k-mer is queried against the primary Bloom filter. If this results in a hit,

then the last performed substitution is considered to have been an error in a read and the k-mer

is counted towards the path support. If no substitution results in a primary Bloom filter hit, it is

considered a genuine absence of the k-mer and the window moves one base forward, repeating

the whole process.

There are three potential pitfalls for the error correction method — not correcting a suffi-

cient number of errors, producing too many false positives from the Bloom filter queries, and

producing too many false positives from repeats in the genome.

To show that the approach of correcting for one error per k-mer is sufficient, the number

of recovered reads is plotted. Figure 2.15 shows the percent of reads with no errors, with and

without error correction, if all bases had the same quality score for two common short-read

lengths. To determine the number of recovered reads, the following formulae are used:

R0 = (1− e)l

R1 = (1− e)l +

(
l
1

)
· e · (1− e)l−1

(2.8)

where R0 is the fraction of reads with no errors, R1 fraction of reads with with no errors after

correcting one base, e chance of a base error, based on Phred quality score of all bases in a read,

and l length of the reads. If all bases in a read have at least 30 Phred score, well above 90% of

reads can be recovered as errorless after correction. Given that krresolver k-mers are limited to

lengths of about 137bp and 186bp for 150bp and 250bp reads respectively, their base quality is

generally 30 and above according to Figure 2.14. This shows that correcting for a single error

39



Figure 2.15: The plot shows how many reads would be errorless if all of their bases had
the same base quality, with and without error correction.

per k-mer leaves only a small fraction of erroneous k-mers.

As every sliding window move involves multiple queries to the Bloom filters, it needs to be

ensured that these queries do not produce unmanageable number of false positives. The first

step involves querying the primary Bloom filter, where the FPR can be calculated as:

FPRprimary = oh (2.9)

where o is the occupancy rate of the Bloom filter, i.e., the fraction of 1 bits across the bit array,

and h is the number of hash functions. For the secondary Bloom filter, the FPR is:

FPRsecondary = 1− (1−oh)s (2.10)

where s is the number of spaced seeds. This gives the probability that at least one spaced seed

will be a false positive hit. For the whole process of querying for the presence of a k-mer, the

40



FPR is then:

FPR = FPRprimary +(1−FPRprimary) ·FPRsecondary ·FPRsub (2.11)

where FPRsub is the probability that any of the wildcard substitutions will give a false positive,

calculated as:

FPRsub = 1− (1−FPRprimary)
3·

krresolver

s (2.12)

The power term here is the number of substitutions, 3 per each of the wildcard positions which

are evenly distributed among spaced seeds, i.e.,
krresolver

s
positions.

To show that the reduced gains with error correction enabled are coming from matches with

similar sequences in the genome, a simulated C. elegans dataset was generated with DWGSIM

[3]. The reads generated from C. elegans reference were errorless (DWGIM parameters: -e 0

-E 0 -C 50 -1 150 -2 150 -r 0 -R 0 -X 0 -y 0) and RResolver was given

300GiB Bloom filter memory budget to minimize the chance of false positive matches. Two

assemblies were done, one with and the other without error correction, with total k-mer query

FPR value of FPR = 5.06e− 20% for error correction and FPRprimary = 1.17e− 24% for no

correction. The error correction approach split the 300GiB memory budget into 65GiB for the

primary Bloom filter and 235GiB for the secondary. ABySS parameters used were -k 117

-kc 2 -B2G -H4, which gives the optimal assembly for the choice of k and kc. krresolver

was selected with the previosuly obtained heuristic of krresolver = kassembly +45, limited by the

read size, resulting in krresolver = 147. A set of 6 spaced seeds were used with 5 hash values

each. The results are provided in Table 2.3. With no read errors and Bloom filter false positives

almost completely eliminated, there is still a large discrepancy between the contiguity of the

assemblies with and without error correction. Even correcting a single base per krresolver k-mer

was sufficient to have similar sequences from elsewhere in the genome give false support and

intefere with the method.

41



Table 2.3: C. elegans simulated dataset assemblies, with and without error correction.

Method NGA50 Misassemblies

ABySS only 84629 234
RResolver with error correction 86780 229

RResolver without error correction 90809 224

2.5 Visualization software

The figures and visualizations in this work have been generated using the ggplot2 [72] pack-

age of the R programming language, the seaborn [68] package of the Python programming

language, and Google Drawings1.

1https://docs.google.com/drawings

42



Chapter 3

Conclusion

3.1 Summary

Generating high quality de novo assemblies is crucial for any downstream process. Better as-

semblies can greatly benefit various clinical applications and have found use in oncological

projects [31]. Gene annotation can only go so far if the draft assembly being annotated is of

limited quality [54], further emphasizing the point. However, improving de novo genome as-

semblies still has ways to go, as sequencing errors and repetitive sequences are major obstacles

to achieving accurate assemblies [20].

Resolving repeats in the assembly graphs has been a widely researched topic. For DBGs,

one way in which this has been achieved is using multiple k-mer sizes. The smaller sizes ensure

connectivity in the graph whereas the larger sizes resolve repeats and untangle the graph. The

current state-of-the-art methods have used multiple k-mer sizes, but only for smaller genomes,

leaving a gap in the methodology. The studies so far have not addressed the scalability issues

of their methods when dealing with large genomes. The concept of a multisized DBG, as

used in the SPAdes assembler, relies on using multiple k values (i.e., k-mer sizes) to build

the graph. This requires constructing contigs for each k value, which is prohibitively slow for

large genomes. Another approach, as employed by the IDBA assembler, is to make small k

increments, making the exploration of a larger range of k values difficult and costly.

43



There are a number of challenges that come with attempting to use multiple k values ap-

proach scalably — high memory usage, long execution times, complex repeats with a large

number of possible paths, and errors. The work presented here addresses these challenges and

the gap in the methodology, expanding upon the ways in which short-read range information

can be used to the fullest extent. In addition to the k value used by DBG, RResolver uses only

one additional, larger k value in order to resolve repeats. This is different from the previous

approaches of processing a list of k values and is a key enabler of scalability of the algorithm.

In this work, we have demonstrated a method for improving the quality of de novo genome

assemblies from short-reads by utilizing unused range information. The presented algorithm,

RResolver, resolves repeats in a DBG by storing large k-mers in a Bloom filter to estimate

graph path support and remove unsupported paths. We have shown that the method consistently

increases the contiguity of the assemblies and recovers fragmented or missing genes.

RResolver works seamlessly with the ABySS assembler pipeline, without requiring user

involvement. When enabled, the output assembly benefits from higher quality. In this work,

RResolver was tested on C. elegans, A. thaliana, and H. sapiens genomes to assess perfor-

mance on different genome sizes and complexities. Its execution time is only a fraction of the

ABySS assembler pipeline it is a part of. We reported that on average RResolver takes 3% of

the whole pipeline run time. However, since the output is a simplified graph, the downstream

stages benefit from faster run times and so the total run time does not necessarily increase. The

ABySS assembler was designed to work on large genomes, and so working within similar run

time constraints is important.

RResolver adds one more piece of the puzzle to delivering high quality de novo assemblies

of large genomes and does so at the early stages of the assembly, benefiting any downstream

algorithms that build contigs, scaffold the assembly, or do final polishing.

44



3.2 Future work

The RResolver algorithm improves assembly contiguity and gene recovery, but does introduce

misassemblies in some cases. This may warrant additional investigation in order to find the

sources of error and attempt to avoid them. Some additional misassemblies are expected.

They can come from genuine structural variations between the assembled individual and the

reference. By simplifying the assembly graph, more can be done in downstream assembly

stages which also increases chances of misassembly. And, of course, RResolver making wrong

decisions directly introduces misassemblies.

Sources of errors come from either a false path being found supported or a genuine path

being found unsupported. For the former, the primary source of such error would be Bloom

filter false positives. As indicated in Methods and findings chapter, these are addressed and are

generally found in few numbers.

Missing support for a genuine path poses a bigger problem. Due to read errors and uncertain

coverage, krresolver k-mers may be missed and a path wrongly found unsupported. If a node

merge occurs in this situation, due to a missing genuine path, false node paths may be merged

and produce a misassembly. Uncertain coverage could be improved with higher granularity of

kassembly k-mer coverage at the assembler level. Alternatively, more conservative approach in

long nodes where coverage is more uncertain may help as well.

45



Bibliography

[1] https://www.genome.gov/human-genome-project/Timeline-of-Events, Accessed
December 1, 2020. → page 1

[2] DISCOVAR: Assemble genomes, find variants.
https://www.broadinstitute.org/software/discovar/blog. Accessed December 8, 2020. →
page 10

[3] DWGSIM whole genome simulator based off of wgsim found in SAMtools.
https://github.com/nh13/DWGSIM. Accessed 19 January, 2021. → page 41

[4] Seqtk, a fast and lightweight tool for processing sequences in the FASTA or FASTQ
format. https://github.com/lh3/seqtk. Accessed 13 January, 2021. → page 30

[5] An integrated encyclopedia of DNA elements in the human genome. Nature, 489(7414):
57–74, Sept. 2012. doi:10.1038/nature11247. → page 4

[6] M. D. Adams. The genome sequence of drosophila melanogaster. Science, 287(5461):
2185–2195, Mar. 2000. doi:10.1126/science.287.5461.2185. → page 1

[7] S. Andrews, F. Krueger, A. Segonds-Pichon, L. Biggins, C. Krueger, and S. Wingett.
FastQC. Babraham Institute, Jan. 2010. → pages 8, 34

[8] A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M.
Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski, A. V. Pyshkin, A. V. Sirotkin,
N. Vyahhi, G. Tesler, M. A. Alekseyev, and P. A. Pevzner. SPAdes: A new genome
assembly algorithm and its applications to single-cell sequencing. Journal of
Computational Biology, 19(5):455–477, May 2012. doi:10.1089/cmb.2012.0021. →
pages 10, 12

[9] V. Bansal and C. Boucher. Sequencing technologies and analyses: Where have we been
and where are we going? iScience, 18:37–41, Aug. 2019.
doi:10.1016/j.isci.2019.06.035. → page 12

[10] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, July 1970. doi:10.1145/362686.362692.
→ pages 10, 11, 18

46

https://www.genome.gov/human-genome-project/Timeline-of-Events
https://www.broadinstitute.org/software/discovar/blog
https://github.com/nh13/DWGSIM
https://github.com/lh3/seqtk
http://dx.doi.org/10.1038/nature11247
http://dx.doi.org/10.1126/science.287.5461.2185
http://dx.doi.org/10.1089/cmb.2012.0021
http://dx.doi.org/10.1016/j.isci.2019.06.035
http://dx.doi.org/10.1145/362686.362692


[11] K. R. Bradnam, J. N. Fass, A. Alexandrov, P. Baranay, M. Bechner, I. Birol, S. Boisvert,
J. A. Chapman, G. Chapuis, R. Chikhi, H. Chitsaz, W.-C. Chou, J. Corbeil, C. D.
Fabbro, T. R. Docking, R. Durbin, D. Earl, S. Emrich, P. Fedotov, N. A. Fonseca,
G. Ganapathy, R. A. Gibbs, S. Gnerre, É. Godzaridis, S. Goldstein, M. Haimel, G. Hall,
D. Haussler, J. B. Hiatt, I. Y. Ho, J. Howard, M. Hunt, S. D. Jackman, D. B. Jaffe, E. D.
Jarvis, H. Jiang, S. Kazakov, P. J. Kersey, J. O. Kitzman, J. R. Knight, S. Koren, T.-W.
Lam, D. Lavenier, F. Laviolette, Y. Li, Z. Li, B. Liu, Y. Liu, R. Luo, I. MacCallum,
M. D. MacManes, N. Maillet, S. Melnikov, D. Naquin, Z. Ning, T. D. Otto, B. Paten,
O. S. Paulo, A. M. Phillippy, F. Pina-Martins, M. Place, D. Przybylski, X. Qin, C. Qu,
F. J. Ribeiro, S. Richards, D. S. Rokhsar, J. G. Ruby, S. Scalabrin, M. C. Schatz, D. C.
Schwartz, A. Sergushichev, T. Sharpe, T. I. Shaw, J. Shendure, Y. Shi, J. T. Simpson,
H. Song, F. Tsarev, F. Vezzi, R. Vicedomini, B. M. Vieira, J. Wang, K. C. Worley, S. Yin,
S.-M. Yiu, J. Yuan, G. Zhang, H. Zhang, S. Zhou, and I. F. Korf. Assemblathon 2:
evaluating de novo methods of genome assembly in three vertebrate species.
GigaScience, 2(1), July 2013. doi:10.1186/2047-217x-2-10. → page 8

[12] B. L. Cantarel, I. Korf, S. M. Robb, G. Parra, E. Ross, B. Moore, C. Holt, A. S.
Alvarado, and M. Yandell. MAKER: An easy-to-use annotation pipeline designed for
emerging model organism genomes. Genome Research, 18(1):188–196, Nov. 2007.
doi:10.1101/gr.6743907. → page 4

[13] D. Chalopin, M. Naville, F. Plard, D. Galiana, and J.-N. Volff. Comparative analysis of
transposable elements highlights mobilome diversity and evolution in vertebrates.
Genome Biology and Evolution, 7(2):567–580, Jan. 2015. doi:10.1093/gbe/evv005. →
page 12

[14] R. Chikhi and G. Rizk. Space-efficient and exact de bruijn graph representation based on
a bloom filter. Algorithms for Molecular Biology, 8(1), Jan. 2013.
doi:10.1186/1748-7188-8-22. → pages 10, 11

[15] C.-S. Chin, P. Peluso, F. J. Sedlazeck, M. Nattestad, G. T. Concepcion, A. Clum,
C. Dunn, R. O'Malley, R. Figueroa-Balderas, A. Morales-Cruz, G. R. Cramer,
M. Delledonne, C. Luo, J. R. Ecker, D. Cantu, D. R. Rank, and M. C. Schatz. Phased
diploid genome assembly with single-molecule real-time sequencing. Nature Methods,
13(12):1050–1054, Oct. 2016. doi:10.1038/nmeth.4035. → page 3

[16] D. M. Church, L. Goodstadt, L. W. Hillier, M. C. Zody, S. Goldstein, X. She, C. J. Bult,
R. Agarwala, J. L. Cherry, M. DiCuccio, W. Hlavina, Y. Kapustin, P. Meric, D. Maglott,
Z. Birtle, A. C. Marques, T. Graves, S. Zhou, B. Teague, K. Potamousis, C. Churas,
M. Place, J. Herschleb, R. Runnheim, D. Forrest, J. Amos-Landgraf, D. C. Schwartz,
Z. Cheng, K. Lindblad-Toh, E. E. Eichler, and C. P. P. and. Lineage-specific biology
revealed by a finished genome assembly of the mouse. PLoS Biology, 7(5):e1000112,
May 2009. doi:10.1371/journal.pbio.1000112. → page 9

[17] S. C. Clark, R. Egan, P. I. Frazier, and Z. Wang. ALE: a generic assembly likelihood
evaluation framework for assessing the accuracy of genome and metagenome

47

http://dx.doi.org/10.1186/2047-217x-2-10
http://dx.doi.org/10.1101/gr.6743907
http://dx.doi.org/10.1093/gbe/evv005
http://dx.doi.org/10.1186/1748-7188-8-22
http://dx.doi.org/10.1038/nmeth.4035
http://dx.doi.org/10.1371/journal.pbio.1000112


assemblies. Bioinformatics, 29(4):435–443, Jan. 2013.
doi:10.1093/bioinformatics/bts723. → page 5

[18] P. Das, L. Sahoo, S. P. Das, A. Bit, C. G. Joshi, B. Kushwaha, D. Kumar, T. M. Shah,
A. T. Hinsu, N. Patel, S. Patnaik, S. Agarwal, M. Pandey, S. Srivastava, P. K. Meher,
P. Jayasankar, P. G. Koringa, N. S. Nagpure, R. Kumar, M. Singh, M. A. Iquebal,
S. Jaiswal, N. Kumar, M. Raza, K. D. Mahapatra, and J. Jena. De novo assembly and
genome-wide SNP discovery in rohu carp, labeo rohita. Frontiers in Genetics, 11, Apr.
2020. doi:10.3389/fgene.2020.00386. → page 2

[19] A. P. J. de Koning, W. Gu, T. A. Castoe, M. A. Batzer, and D. D. Pollock. Repetitive
elements may comprise over two-thirds of the human genome. PLoS Genetics, 7(12):
e1002384, Dec. 2011. doi:10.1371/journal.pgen.1002384. → page 12

[20] J. F. Denton, J. Lugo-Martinez, A. E. Tucker, D. R. Schrider, W. C. Warren, and M. W.
Hahn. Extensive error in the number of genes inferred from draft genome assemblies.
PLoS Computational Biology, 10(12):e1003998, Dec. 2014.
doi:10.1371/journal.pcbi.1003998. → page 43

[21] J. C. Dohm, C. Lottaz, T. Borodina, and H. Himmelbauer. Substantial biases in
ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids
Research, 36(16):e105–e105, Aug. 2008. doi:10.1093/nar/gkn425. → pages 8, 20, 34

[22] D. Earl, K. Bradnam, J. S. John, A. Darling, D. Lin, J. Fass, H. O. K. Yu, V. Buffalo,
D. R. Zerbino, M. Diekhans, N. Nguyen, P. N. Ariyaratne, W.-K. Sung, Z. Ning,
M. Haimel, J. T. Simpson, N. A. Fonseca, I. Birol, T. R. Docking, I. Y. Ho, D. S.
Rokhsar, R. Chikhi, D. Lavenier, G. Chapuis, D. Naquin, N. Maillet, M. C. Schatz, D. R.
Kelley, A. M. Phillippy, S. Koren, S.-P. Yang, W. Wu, W.-C. Chou, A. Srivastava, T. I.
Shaw, J. G. Ruby, P. Skewes-Cox, M. Betegon, M. T. Dimon, V. Solovyev, I. Seledtsov,
P. Kosarev, D. Vorobyev, R. Ramirez-Gonzalez, R. Leggett, D. MacLean, F. Xia, R. Luo,
Z. Li, Y. Xie, B. Liu, S. Gnerre, I. MacCallum, D. Przybylski, F. J. Ribeiro, S. Yin,
T. Sharpe, G. Hall, P. J. Kersey, R. Durbin, S. D. Jackman, J. A. Chapman, X. Huang,
J. L. DeRisi, M. Caccamo, Y. Li, D. B. Jaffe, R. E. Green, D. Haussler, I. Korf, and
B. Paten. Assemblathon 1: A competitive assessment of de novo short read assembly
methods. Genome Research, 21(12):2224–2241, Sept. 2011.
doi:10.1101/gr.126599.111. → pages 4, 8

[23] R. Ekblom, L. Smeds, and H. Ellegren. Patterns of sequencing coverage bias revealed by
ultra-deep sequencing of vertebrate mitochondria. BMC Genomics, 15(1):467, 2014.
doi:10.1186/1471-2164-15-467. → pages 12, 20

[24] B. Ewing, L. Hillier, M. C. Wendl, and P. Green. Base-calling of automated sequencer
traces UsingPhred. i. accuracy assessment. Genome Research, 8(3):175–185, Mar.
1998. doi:10.1101/gr.8.3.175. → pages 8, 34

[25] S. Fitz-Gibbon, A. L. Hipp, K. K. Pham, P. S. Manos, and V. L. Sork. Phylogenomic
inferences from reference-mapped and de novo assembled short-read sequence data

48

http://dx.doi.org/10.1093/bioinformatics/bts723
http://dx.doi.org/10.3389/fgene.2020.00386
http://dx.doi.org/10.1371/journal.pgen.1002384
http://dx.doi.org/10.1371/journal.pcbi.1003998
http://dx.doi.org/10.1093/nar/gkn425
http://dx.doi.org/10.1101/gr.126599.111
http://dx.doi.org/10.1186/1471-2164-15-467
http://dx.doi.org/10.1101/gr.8.3.175


using RADseq sequencing of california white oaks (quercus section quercus). Genome,
60(9):743–755, Sept. 2017. doi:10.1139/gen-2016-0202. → page 2

[26] A. Goffeau, B. G. Barrell, H. Bussey, R. W. Davis, B. Dujon, H. Feldmann, F. Galibert,
J. D. Hoheisel, C. Jacq, M. Johnston, E. J. Louis, H. W. Mewes, Y. Murakami,
P. Philippsen, H. Tettelin, and S. G. Oliver. Life with 6000 genes. Science, 274(5287):
546–567, Oct. 1996. doi:10.1126/science.274.5287.546. → page 1

[27] A. Gurevich, V. Saveliev, N. Vyahhi, and G. Tesler. QUAST: quality assessment tool for
genome assemblies. Bioinformatics, 29(8):1072–1075, Feb. 2013.
doi:10.1093/bioinformatics/btt086. → pages 5, 25

[28] M. Hunt, T. Kikuchi, M. Sanders, C. Newbold, M. Berriman, and T. D. Otto. REAPR: a
universal tool for genome assembly evaluation. Genome Biology, 14(5):R47, 2013.
doi:10.1186/gb-2013-14-5-r47. → page 5

[29] R. M. IDURY and M. S. WATERMAN. A new algorithm for DNA sequence assembly.
Journal of Computational Biology, 2(2):291–306, Jan. 1995.
doi:10.1089/cmb.1995.2.291. → page 2

[30] S. D. Jackman, B. P. Vandervalk, H. Mohamadi, J. Chu, S. Yeo, S. A. Hammond,
G. Jahesh, H. Khan, L. Coombe, R. L. Warren, and I. Birol. ABySS 2.0:
resource-efficient assembly of large genomes using a bloom filter. Genome Research, 27
(5):768–777, Feb. 2017. doi:10.1101/gr.214346.116. → pages 10, 11, 13, 16, 25

[31] F. Jamshidi, E. Pleasance, Y. Li, Y. Shen, K. Kasaian, R. Corbett, P. Eirew, A. Lum,
P. Pandoh, Y. Zhao, J. E. Schein, R. A. Moore, R. Rassekh, D. G. Huntsman,
M. Knowling, H. Lim, D. J. Renouf, S. J. Jones, M. A. Marra, T. O. Nielsen, J. Laskin,
and S. Yip. Diagnostic value of next-generation sequencing in an unusual sphenoid
tumor. The Oncologist, 19(6):623–630, May 2014.
doi:10.1634/theoncologist.2013-0390. → pages 2, 43

[32] A. J. Jeffreys, V. Wilson, and S. L. Thein. Hypervariable ‘minisatellite’ regions in
human DNA. Nature, 314(6006):67–73, Mar. 1985. doi:10.1038/314067a0. → page 12

[33] E. W. M. Jr. A history of DNA sequence assembly. it - Information Technology, 58(3),
Jan. 2016. doi:10.1515/itit-2015-0047. → pages 1, 2

[34] J. D. Kececioglu and E. W. Myers. Combinatorial algorithms for DNA sequence
assembly. Algorithmica, 13(1-2):7–51, Feb. 1995. doi:10.1007/bf01188580. → page 2

[35] U. Keich, M. Li, B. Ma, and J. Tromp. On spaced seeds for similarity search. Discrete
Applied Mathematics, 138(3):253–263, Apr. 2004.
doi:10.1016/s0166-218x(03)00382-2. → page 38

[36] M. G. Kidwell. Genetica, 115(1):49–63, 2002. doi:10.1023/a:1016072014259. → page
12

49

http://dx.doi.org/10.1139/gen-2016-0202
http://dx.doi.org/10.1126/science.274.5287.546
http://dx.doi.org/10.1093/bioinformatics/btt086
http://dx.doi.org/10.1186/gb-2013-14-5-r47
http://dx.doi.org/10.1089/cmb.1995.2.291
http://dx.doi.org/10.1101/gr.214346.116
http://dx.doi.org/10.1634/theoncologist.2013-0390
http://dx.doi.org/10.1038/314067a0
http://dx.doi.org/10.1515/itit-2015-0047
http://dx.doi.org/10.1007/bf01188580
http://dx.doi.org/10.1016/s0166-218x(03)00382-2
http://dx.doi.org/10.1023/a:1016072014259


[37] S. Koren, B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman, and A. M. Phillippy.
Canu: scalable and accurate long-read assembly via adaptivek-mer weighting and repeat
separation. Genome Research, 27(5):722–736, Mar. 2017. doi:10.1101/gr.215087.116.
→ page 3

[38] J. Laskin, S. Jones, S. Aparicio, S. Chia, C. Ch'ng, R. Deyell, P. Eirew, A. Fok,
K. Gelmon, C. Ho, D. Huntsman, M. Jones, K. Kasaian, A. Karsan, S. Leelakumari,
Y. Li, H. Lim, Y. Ma, C. Mar, M. Martin, R. Moore, A. Mungall, K. Mungall,
E. Pleasance, S. R. Rassekh, D. Renouf, Y. Shen, J. Schein, K. Schrader, S. Sun,
A. Tinker, E. Zhao, S. Yip, and M. A. Marra. Lessons learned from the application of
whole-genome analysis to the treatment of patients with advanced cancers. Molecular
Case Studies, 1(1):a000570, Sept. 2015. doi:10.1101/mcs.a000570. → page 3

[39] D. Li, C.-M. Liu, R. Luo, K. Sadakane, and T.-W. Lam. MEGAHIT: an ultra-fast
single-node solution for large and complex metagenomics assembly via succinct de
bruijn graph. Bioinformatics, 31(10):1674–1676, Jan. 2015.
doi:10.1093/bioinformatics/btv033. → page 12

[40] R. Li, W. Fan, G. Tian, H. Zhu, L. He, J. Cai, Q. Huang, Q. Cai, B. Li, Y. Bai, Z. Zhang,
Y. Zhang, W. Wang, J. Li, F. Wei, H. Li, M. Jian, J. Li, Z. Zhang, R. Nielsen, D. Li,
W. Gu, Z. Yang, Z. Xuan, O. A. Ryder, F. C.-C. Leung, Y. Zhou, J. Cao, X. Sun, Y. Fu,
X. Fang, X. Guo, B. Wang, R. Hou, F. Shen, B. Mu, P. Ni, R. Lin, W. Qian, G. Wang,
C. Yu, W. Nie, J. Wang, Z. Wu, H. Liang, J. Min, Q. Wu, S. Cheng, J. Ruan, M. Wang,
Z. Shi, M. Wen, B. Liu, X. Ren, H. Zheng, D. Dong, K. Cook, G. Shan, H. Zhang,
C. Kosiol, X. Xie, Z. Lu, H. Zheng, Y. Li, C. C. Steiner, T. T.-Y. Lam, S. Lin, Q. Zhang,
G. Li, J. Tian, T. Gong, H. Liu, D. Zhang, L. Fang, C. Ye, J. Zhang, W. Hu, A. Xu,
Y. Ren, G. Zhang, M. W. Bruford, Q. Li, L. Ma, Y. Guo, N. An, Y. Hu, Y. Zheng, Y. Shi,
Z. Li, Q. Liu, Y. Chen, J. Zhao, N. Qu, S. Zhao, F. Tian, X. Wang, H. Wang, L. Xu,
X. Liu, T. Vinar, Y. Wang, T.-W. Lam, S.-M. Yiu, S. Liu, H. Zhang, D. Li, Y. Huang,
X. Wang, G. Yang, Z. Jiang, J. Wang, N. Qin, L. Li, J. Li, L. Bolund, K. Kristiansen,
G. K.-S. Wong, M. Olson, X. Zhang, S. Li, H. Yang, J. Wang, and J. Wang. The
sequence and de novo assembly of the giant panda genome. Nature, 463(7279):
311–317, Dec. 2009. doi:10.1038/nature08696. → page 9

[41] K. Lindblad-Toh, , C. M. Wade, T. S. Mikkelsen, E. K. Karlsson, D. B. Jaffe, M. Kamal,
M. Clamp, J. L. Chang, E. J. Kulbokas, M. C. Zody, E. Mauceli, X. Xie, M. Breen, R. K.
Wayne, E. A. Ostrander, C. P. Ponting, F. Galibert, D. R. Smith, P. J. deJong,
E. Kirkness, P. Alvarez, T. Biagi, W. Brockman, J. Butler, C.-W. Chin, A. Cook, J. Cuff,
M. J. Daly, D. DeCaprio, S. Gnerre, M. Grabherr, M. Kellis, M. Kleber, C. Bardeleben,
L. Goodstadt, A. Heger, C. Hitte, L. Kim, K.-P. Koepfli, H. G. Parker, J. P. Pollinger,
S. M. J. Searle, N. B. Sutter, R. Thomas, C. Webber, and E. S. Lander. Genome
sequence, comparative analysis and haplotype structure of the domestic dog. Nature,
438(7069):803–819, Dec. 2005. doi:10.1038/nature04338. → page 4

[42] M. Litt and J. A. Luty. A hypervariable microsatellite revealed by in vitro amplification
of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet, 44(3):
397–401, Mar 1989. → page 12

50

http://dx.doi.org/10.1101/gr.215087.116
http://dx.doi.org/10.1101/mcs.a000570
http://dx.doi.org/10.1093/bioinformatics/btv033
http://dx.doi.org/10.1038/nature08696
http://dx.doi.org/10.1038/nature04338


[43] R. Luo, B. Liu, Y. Xie, Z. Li, W. Huang, J. Yuan, G. He, Y. Chen, Q. Pan, Y. Liu, J. Tang,
G. Wu, H. Zhang, Y. Shi, Y. Liu, C. Yu, B. Wang, Y. Lu, C. Han, D. W. Cheung, S.-M.
Yiu, S. Peng, Z. Xiaoqian, G. Liu, X. Liao, Y. Li, H. Yang, J. Wang, T.-W. Lam, and
J. Wang. SOAPdenovo2: an empirically improved memory-efficient short-read de novo
assembler. GigaScience, 1(1), Dec. 2012. doi:10.1186/2047-217x-1-18. → pages 10, 12

[44] V. Mäkinen, L. Salmela, and J. Ylinen. Normalized n50 assembly metric using
gap-restricted co-linear chaining. BMC Bioinformatics, 13(1), Oct. 2012.
doi:10.1186/1471-2105-13-255. → page 5

[45] H. Mohamadi, J. Chu, B. P. Vandervalk, and I. Birol. ntHash: recursive nucleotide
hashing. Bioinformatics, page btw397, July 2016. doi:10.1093/bioinformatics/btw397.
→ page 18

[46] E. W. MYERS. Toward simplifying and accurately formulating fragment assembly.
Journal of Computational Biology, 2(2):275–290, Jan. 1995.
doi:10.1089/cmb.1995.2.275. → page 2

[47] E. W. Myers. A whole-genome assembly of drosophila. Science, 287(5461):2196–2204,
Mar. 2000. doi:10.1126/science.287.5461.2196. → page 2

[48] E. W. Myers. The fragment assembly string graph. Bioinformatics, 21(Suppl 2):
ii79–ii85, Sept. 2005. doi:10.1093/bioinformatics/bti1114. → page 2

[49] R. M. Nowak, J. P. Jastrzębski, W. Kuśmirek, R. Sałamatin, M. Rydzanicz,
A. Sobczyk-Kopcioł, A. Sulima-Celińska, Ł. Paukszto, K. G. Makowczenko, R. Płoski,
V. V. Tkach, K. Basałaj, and D. Młocicki. Hybrid de novo whole-genome assembly and
annotation of the model tapeworm hymenolepis diminuta. Scientific Data, 6(1), Dec.
2019. doi:10.1038/s41597-019-0311-3. → page 3

[50] G. Parra, K. Bradnam, Z. Ning, T. Keane, and I. Korf. Assessing the gene space in draft
genomes. Nucleic Acids Research, 37(1):289–297, Nov. 2008. doi:10.1093/nar/gkn916.
→ page 7

[51] H. Peltola, H. Söderlund, and E. Ukkonen. SEQAID: a DNA sequence assembling
program based on a mathematical model. Nucleic Acids Research, 12(1Part1):307–321,
1984. doi:10.1093/nar/12.1part1.307. → page 2

[52] Y. Peng, H. C. M. Leung, S. M. Yiu, and F. Y. L. Chin. IDBA – a practical iterative de
bruijn graph de novo assembler. In Lecture Notes in Computer Science, pages 426–440.
Springer Berlin Heidelberg, 2010. doi:10.1007/978-3-642-12683-3\_28. → pages
12, 13

[53] P. A. Pevzner, H. Tang, and M. S. Waterman. An eulerian path approach to DNA
fragment assembly. Proceedings of the National Academy of Sciences, 98(17):
9748–9753, Aug. 2001. doi:10.1073/pnas.171285098. → pages 2, 10

[54] S. L. Salzberg. Next-generation genome annotation: we still struggle to get it right.
Genome Biology, 20(1), May 2019. doi:10.1186/s13059-019-1715-2. → pages 4, 43

51

http://dx.doi.org/10.1186/2047-217x-1-18
http://dx.doi.org/10.1186/1471-2105-13-255
http://dx.doi.org/10.1093/bioinformatics/btw397
http://dx.doi.org/10.1089/cmb.1995.2.275
http://dx.doi.org/10.1126/science.287.5461.2196
http://dx.doi.org/10.1093/bioinformatics/bti1114
http://dx.doi.org/10.1038/s41597-019-0311-3
http://dx.doi.org/10.1093/nar/gkn916
http://dx.doi.org/10.1093/nar/12.1part1.307
http://dx.doi.org/10.1007/978-3-642-12683-3_28
http://dx.doi.org/10.1073/pnas.171285098
http://dx.doi.org/10.1186/s13059-019-1715-2


[55] S. L. Salzberg, A. M. Phillippy, A. Zimin, D. Puiu, T. Magoc, S. Koren, T. J. Treangen,
M. C. Schatz, A. L. Delcher, M. Roberts, G. Marcais, M. Pop, and J. A. Yorke. GAGE:
A critical evaluation of genome assemblies and assembly algorithms. Genome Research,
22(3):557–567, Jan. 2012. doi:10.1101/gr.131383.111. → pages 5, 8

[56] F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with chain-terminating
inhibitors. Proceedings of the National Academy of Sciences, 74(12):5463–5467, Dec.
1977. doi:10.1073/pnas.74.12.5463. → page 1

[57] F. Sanger, A. Coulson, G. Hong, D. Hill, and G. Petersen. Nucleotide sequence of
bacteriophage λ DNA. Journal of Molecular Biology, 162(4):729–773, Dec. 1982.
doi:10.1016/0022-2836(82)90546-0. → page 1

[58] F. A. Simão, R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov.
BUSCO: assessing genome assembly and annotation completeness with single-copy
orthologs. Bioinformatics, 31(19):3210–3212, June 2015.
doi:10.1093/bioinformatics/btv351. → pages 7, 25

[59] J. T. Simpson. Exploring genome characteristics and sequence quality without a
reference. Bioinformatics, 30(9):1228–1235, Jan. 2014.
doi:10.1093/bioinformatics/btu023. → page 8

[60] J. T. Simpson and R. Durbin. Efficient de novo assembly of large genomes using
compressed data structures. Genome Research, 22(3):549–556, Dec. 2011.
doi:10.1101/gr.126953.111. → page 2

[61] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and I. Birol. ABySS: A
parallel assembler for short read sequence data. Genome Research, 19(6):1117–1123,
Feb. 2009. doi:10.1101/gr.089532.108. → page 10

[62] R. Staden. A strategy of DNA sequencing employing computer programs. Nucleic Acids
Research, 6(7):2601–2610, 1979. doi:10.1093/nar/6.7.2601. → page 2

[63] B. P. Vandervalk, C. Yang, Z. Xue, K. Raghavan, J. Chu, H. Mohamadi, S. D. Jackman,
R. Chiu, R. L. Warren, and I. Birol. Konnector v2.0: pseudo-long reads from paired-end
sequencing data. BMC Medical Genomics, 8(S3), Sept. 2015.
doi:10.1186/1755-8794-8-s3-s1. → pages 2, 11

[64] J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton, H. O.
Smith, M. Yandell, C. A. Evans, R. A. Holt, J. D. Gocayne, P. Amanatides, R. M.
Ballew, D. H. Huson, J. R. Wortman, Q. Zhang, C. D. Kodira, X. H. Zheng, L. Chen,
M. Skupski, G. Subramanian, P. D. Thomas, J. Zhang, G. L. G. Miklos, C. Nelson,
S. Broder, A. G. Clark, J. Nadeau, V. A. McKusick, N. Zinder, A. J. Levine, R. J.
Roberts, M. Simon, C. Slayman, M. Hunkapiller, R. Bolanos, A. Delcher, I. Dew,
D. Fasulo, M. Flanigan, L. Florea, A. Halpern, S. Hannenhalli, S. Kravitz, S. Levy,
C. Mobarry, K. Reinert, K. Remington, J. Abu-Threideh, E. Beasley, K. Biddick,
V. Bonazzi, R. Brandon, M. Cargill, I. Chandramouliswaran, R. Charlab, K. Chaturvedi,
Z. Deng, V. D. Francesco, P. Dunn, K. Eilbeck, C. Evangelista, A. E. Gabrielian,

52

http://dx.doi.org/10.1101/gr.131383.111
http://dx.doi.org/10.1073/pnas.74.12.5463
http://dx.doi.org/10.1016/0022-2836(82)90546-0
http://dx.doi.org/10.1093/bioinformatics/btv351
http://dx.doi.org/10.1093/bioinformatics/btu023
http://dx.doi.org/10.1101/gr.126953.111
http://dx.doi.org/10.1101/gr.089532.108
http://dx.doi.org/10.1093/nar/6.7.2601
http://dx.doi.org/10.1186/1755-8794-8-s3-s1


W. Gan, W. Ge, F. Gong, Z. Gu, P. Guan, T. J. Heiman, M. E. Higgins, R.-R. Ji, Z. Ke,
K. A. Ketchum, Z. Lai, Y. Lei, Z. Li, J. Li, Y. Liang, X. Lin, F. Lu, G. V. Merkulov,
N. Milshina, H. M. Moore, A. K. Naik, V. A. Narayan, B. Neelam, D. Nusskern, D. B.
Rusch, S. Salzberg, W. Shao, B. Shue, J. Sun, Z. Y. Wang, A. Wang, X. Wang, J. Wang,
M.-H. Wei, R. Wides, C. Xiao, C. Yan, A. Yao, J. Ye, M. Zhan, W. Zhang, H. Zhang,
Q. Zhao, L. Zheng, F. Zhong, W. Zhong, S. C. Zhu, S. Zhao, D. Gilbert, S. Baumhueter,
G. Spier, C. Carter, A. Cravchik, T. Woodage, F. Ali, H. An, A. Awe, D. Baldwin,
H. Baden, M. Barnstead, I. Barrow, K. Beeson, D. Busam, A. Carver, A. Center, M. L.
Cheng, L. Curry, S. Danaher, L. Davenport, R. Desilets, S. Dietz, K. Dodson, L. Doup,
S. Ferriera, N. Garg, A. Gluecksmann, B. Hart, J. Haynes, C. Haynes, C. Heiner,
S. Hladun, D. Hostin, J. Houck, T. Howland, C. Ibegwam, J. Johnson, F. Kalush,
L. Kline, S. Koduru, A. Love, F. Mann, D. May, S. McCawley, T. McIntosh,
I. McMullen, M. Moy, L. Moy, B. Murphy, K. Nelson, C. Pfannkoch, E. Pratts, V. Puri,
H. Qureshi, M. Reardon, R. Rodriguez, Y.-H. Rogers, D. Romblad, B. Ruhfel, R. Scott,
C. Sitter, M. Smallwood, E. Stewart, R. Strong, E. Suh, R. Thomas, N. N. Tint, S. Tse,
C. Vech, G. Wang, J. Wetter, S. Williams, M. Williams, S. Windsor, E. Winn-Deen,
K. Wolfe, J. Zaveri, K. Zaveri, J. F. Abril, R. Guigó, M. J. Campbell, K. V. Sjolander,
B. Karlak, A. Kejariwal, H. Mi, B. Lazareva, T. Hatton, A. Narechania, K. Diemer,
A. Muruganujan, N. Guo, S. Sato, V. Bafna, S. Istrail, R. Lippert, R. Schwartz,
B. Walenz, S. Yooseph, D. Allen, A. Basu, J. Baxendale, L. Blick, M. Caminha,
J. Carnes-Stine, P. Caulk, Y.-H. Chiang, M. Coyne, C. Dahlke, A. D. Mays,
M. Dombroski, M. Donnelly, D. Ely, S. Esparham, C. Fosler, H. Gire, S. Glanowski,
K. Glasser, A. Glodek, M. Gorokhov, K. Graham, B. Gropman, M. Harris, J. Heil,
S. Henderson, J. Hoover, D. Jennings, C. Jordan, J. Jordan, J. Kasha, L. Kagan, C. Kraft,
A. Levitsky, M. Lewis, X. Liu, J. Lopez, D. Ma, W. Majoros, J. McDaniel, S. Murphy,
M. Newman, T. Nguyen, N. Nguyen, M. Nodell, S. Pan, J. Peck, M. Peterson, W. Rowe,
R. Sanders, J. Scott, M. Simpson, T. Smith, A. Sprague, T. Stockwell, R. Turner,
E. Venter, M. Wang, M. Wen, D. Wu, M. Wu, A. Xia, A. Zandieh, and X. Zhu. The
sequence of the human genome. Science, 291(5507):1304–1351, Feb. 2001.
doi:10.1126/science.1058040. → pages 1, 2

[65] G. Vergnaud. Minisatellites: Mutability and genome architecture. Genome Research, 10
(7):899–907, July 2000. doi:10.1101/gr.10.7.899. → page 12

[66] R. L. Warren, C. I. Keeling, M. M. S. Yuen, A. Raymond, G. A. Taylor, B. P.
Vandervalk, H. Mohamadi, D. Paulino, R. Chiu, S. D. Jackman, G. Robertson, C. Yang,
B. Boyle, M. Hoffmann, D. Weigel, D. R. Nelson, C. Ritland, N. Isabel, B. Jaquish,
A. Yanchuk, J. Bousquet, S. J. M. Jones, J. MacKay, I. Birol, and J. Bohlmann.
Improved white spruce (picea glauca) genome assemblies and annotation of large gene
families of conifer terpenoid and phenolic defense metabolism. The Plant Journal, 83
(2):189–212, June 2015. doi:10.1111/tpj.12886. → page 2

[67] R. L. Warren, C. Yang, B. P. Vandervalk, B. Behsaz, A. Lagman, S. J. M. Jones, and
I. Birol. LINKS: Scalable, alignment-free scaffolding of draft genomes with long reads.
GigaScience, 4(1), Aug. 2015. doi:10.1186/s13742-015-0076-3. → page 11

53

http://dx.doi.org/10.1126/science.1058040
http://dx.doi.org/10.1101/gr.10.7.899
http://dx.doi.org/10.1111/tpj.12886
http://dx.doi.org/10.1186/s13742-015-0076-3


[68] M. L. Waskom. seaborn: statistical data visualization. Journal of Open Source Software,
6(60):3021, 2021. doi:10.21105/joss.03021. URL https://doi.org/10.21105/joss.03021.
→ page 42

[69] R. M. Waterhouse, F. Tegenfeldt, J. Li, E. M. Zdobnov, and E. V. Kriventseva. OrthoDB:
a hierarchical catalog of animal, fungal and bacterial orthologs. Nucleic Acids Research,
41(D1):D358–D365, Nov. 2012. doi:10.1093/nar/gks1116. → page 7

[70] R. Waterston and J. Sulston. The genome of caenorhabditis elegans. Proceedings of the
National Academy of Sciences, 92(24):10836–10840, Nov. 1995.
doi:10.1073/pnas.92.24.10836. → page 1

[71] J. L. Weber and E. W. Myers. Human whole-genome shotgun sequencing. Genome
Research, 7(5):401–409, May 1997. doi:10.1101/gr.7.5.401. → page 1

[72] H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York,
2016. ISBN 978-3-319-24277-4. URL https://ggplot2.tidyverse.org. → page 42

[73] D. R. Zerbino and E. Birney. Velvet: Algorithms for de novo short read assembly using
de bruijn graphs. Genome Research, 18(5):821–829, Feb. 2008.
doi:10.1101/gr.074492.107. → page 10

54

http://dx.doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
http://dx.doi.org/10.1093/nar/gks1116
http://dx.doi.org/10.1073/pnas.92.24.10836
http://dx.doi.org/10.1101/gr.7.5.401
https://ggplot2.tidyverse.org
http://dx.doi.org/10.1101/gr.074492.107

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgments
	Dedication
	1 Introduction
	1.1 History of de novo genome assembly
	1.2 Utility of sequence assembly
	1.3 Assembly quality evaluation
	1.4 de Bruijns Graphs
	1.4.1 Bloom filters
	1.4.2 Repeats
	1.4.3 Read coverage
	1.4.4 Iterative de Bruijn Graph construction
	1.4.5 Multisized de Bruijn Graph

	1.5 Research question
	1.6 Contribution

	2 Methods and findings
	2.1 Results
	2.1.1 False positives
	2.1.2 Varying coverage
	2.1.3 Complex repeats
	2.1.4 Repeat resolution
	2.1.5 Performance assessment

	2.2 Methods
	2.3 Experimental Data
	2.4 Error correction
	2.5 Visualization software

	3 Conclusion
	3.1 Summary
	3.2 Future work

	Bibliography

