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Abstract

Fifth Generation (5G) cellular networks will be the backbone of the telecommunications infrastruc-
ture for the next decade. Massive Multiple—Input Multiple—-Output (MIMO) and Non-Orthogonal
Multiple Access (NOMA) are two keys technologies behind 5G that aim to make massive connec-
tivity and green communications feasible.

This dissertation aims to improve the performance of massive MIMO and NOMA in 5G cel-
lular networks and beyond with a particular focus on enhancing channel estimation, improving
energy efficiency, and increasing the Quality-of-Service (QoS). Firstly, we tackle the well-known
pilot contamination problem by developing a novel channel estimation scheme called the Dual
Pilot Scheme (DPS). We show via mathematical analyses and simulations that this new scheme
provides more accurate Channel State Information (CSI) and universally outperforms the con-
ventional pilot scheme in 5G networks. Secondly, we develop the Extended Dual Pilot Scheme
(EDPS) to handle both the inter-cell and intra-cell interference. Compared to state-of-the-art so-
lutions for solving the pilot contamination problem, our DPS/EDPS are easier to integrate within
the current 5G networks, while still achieving significant improvements for both massive MIMO
and NOMA. Thirdly, we improve the energy efficiency in 5G systems employing the Discrete
Fourier Transform-spread-Orthogonal Frequency Division Multiplexing (DFT-s-OFDM) waveform
by developing a new scheme that combines DFT-s-OFDM with Barker Codes and DPS/EDPS.
We show via extensive simulations that this new scheme improves energy efficiency, reduces
Peak—to—Average Power Ratio (PAPR), and limits Out of Band (OOB) leakage in various realistic

scenarios. Fourthly, we further enhance the QoS in 5G networks by developing a new decoding

il



Abstract

scheme for uplink NOMA based on the Compute-and-Forward (CaF) framework. We show that this
scheme achieves better fairness and smaller outage probabilities, while essentially keeping the same
complexity as the conventional Successive Interference Cancellation (SIC) decoding. Finally, we
enhance the performance of Integer-Forcing Linear Receiver (IFLR) for massive MIMO-NOMA
by combining DPS/EDPS with CaF decoding to mitigate the imperfect CSI and lower the CaF
sensitivity to estimation errors.

Overall, we demonstrate that the novel schemes proposed in this dissertation will improve the
performance, provide valuable tools for tackling real-world technical problems, and enhance oper-

ations of 5G cellular networks and beyond.



Lay Summary

The tremendous and rapid growth in mobile devices, wireless sensors, and other intelligent devices
that require wireless connectivity is becoming a significant challenge for cellular networks. To
address the demands of the resulting massive wireless connectivity and support the exchange of
colossal volumes of data traffic, the 5G cellular network has been envisioned. In this dissertation,
we investigate two enabling technologies for 5G: Massive MIMO and NOMA. In particular, we
have developed several novel schemes that are able to obtain better channel estimation, improve
energy efficiency, enhance the quality of service, and increase the robustness and reliability of
5G technologies and user equipment. Through mathematical analyses and extensive simulations,
we demonstrate that our proposed novel schemes offer significant advantages over conventional
schemes in various realistic settings of massive MIMO and NOMA. The contributions of this dis-
sertation will reshape the 5G technologies and facilitate in creating technical efficiencies to 5G

cellular networks and beyond.
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Element a belongs to the set A

Open interval between a and b

Closed interval between a and b

f is a function of & and 8 with given of 7y as a sided information

By definition
For all

Maximum with respect to i
Minimum with respect to i

Argument that attains the minimum

Argument that attains the maximum
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D Average of D

D Estimated value of D

D Approximated value of D

log, Logarithmic operator with base 2
logj (+) The maximum of [0,1log,(.)].
log Logarithmic operator with base 10
R{-} Real part of a complex number

3{-} Imaginary part of a complex number
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Chapter 1

Introduction and Overview

1.1 Background and Overview

In next generation (Fifth Generation (5G) and beyond) wireless cellular communication networks,
extremely large volumes of data will be exchanged through the cellular networks between large
numbers of users, sensors, and machines. Recently, there is increasing interest in the integration of
high-density wireless networks, such as Internet of Things (IoT). As a result, high demand for the
technical infrastructure to deploy 5G cellular networks continues to grow. World-wide data traffic
is growing at an unprecedented rate, with an average annual rate of 170% over 2018 and 2019,
according to the Ericsson’s biannual Mobile-Traffic Report [1]. Furthermore, with this explosive
increase in demands on the data traffic, it is expected that approximately 4 billion additional mobile
devices and wireless sensors will need to be served by cellular networks by 2025. Figure 1.1 shows
these expectations graphically. Therefore, 5G and beyond Radio Access Network (RAN) should
address the goals for achieving high capacity, exponential traffic growth, high spectral efficiency,
and the increasing demand for high bandwidth with very low latency while offering enormous
device connectivity in an energy-efficient manner.

Thus, 5G cellular network targets are to increase 1) the system connecting capacity by 1000
times, 2) the average cell throughput by 25 up to 100 times, and 3) the spectral efficiency by 10

times [2-5]. Furthermore, it is expected that the number of cells in a 5G cellular network will
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Figure 1.1: Expected data traffic volume and number of subscribers to be handled by 5G
cellular networks [1]

increase significantly due to the high density of served users, which requires a shrinking in the cell
coverage within a geographical area to serve as many users as possible. One of the requirements
of 5G cellular networks is to offer enormous connectivity with reliable performance. Achieving
this presents extreme challenges when designing 5G cellular networks. As a result, 5G solutions
for cellular networks form a portfolio of technologies that will not be exclusive to one specific
access or connectivity technology. Massive Multiple—Input Multiple—Output (MIMO) and Non-
Orthogonal Multiple Access (NOMA) are the two promising candidates technologies for the 5SG
cellular networks deployment [6] which attracted a lot of attention. Massive MIMO, also called
very large scale and full dimensions MIMO, has high capacity, spectral efficiency, and energy
efficiency. Massive MIMO is the most feasible technology that offers a massive access connectivity
[7]. On the other hand, NOMA is another 5G candidate technology which increases the access
connectivity that can serve multiple users at the same time and frequency band to achieve low
transmission latency, high spectral efficiency, and offer high capacity.

In mid 2019 Ericsson announced the commercializing of 5G new-radio for massive MIMO and
the first deployment for testing started in 2019 with 64 antennas at the Base Station (BS) and sup-
porting a variety of configurations including NOMA integration [8]. Massive MIMO and NOMA

are still open research areas with capacity for further improvements. This Ph.D. dissertation ad-



1.2. Dissertation Objectives

dresses the critical limitations and impairments that affect the performance of these technologies
with the aim to improve the performance of uplinks and downlinks, at the BS and the User Equip-
ment (UE), that will result in an improvement to the overall Quality-of-Service (QoS), system

capacity, and bring 5G targets a reality.

1.2 Dissertation Objectives

The ultimate objective of the dissertation is to enhance the cellular networks equipped with 5G
technologies of massive MIMO and NOMA to ensure optimal performance and achieve the expec-
tations targets of 5G. To this end, the overall users’ traffic exchanged in the cellular network has
been analyzed in both Orthogonal Multiple Access (OMA) massive MIMO and massive MIMO
with NOMA deployment.

As a first step, this dissertation models, analyzes, and proposes novel improvements to the
pilot signaling scheme used for channel estimation to obtain Channel State Information (CSI), in
clusters consisting of groups of non-cooperative multiple adjacent cells. The performance of these
architectures of the cellular networks have been evaluated mathematically and numerically using
simulations to mimic the real environment scenarios. Furthermore, this dissertation investigates
employing Barker codes to improve energy efficiency in 5G cellular networks and beyond. In
addition, it examines the application of the Compute-and-Forward (CaF) method to improve the
performance of NOMA technology in 5G and beyond. Lastly, it further explores the enhancement

of Integer-Forcing Linear Receiver (IFLR) in massive MIMO-NOMA.

1.3 Research Motivations and Challenges

1.3.1 Imperfect CSI

Wireless communication channels are continuously changing over time and frequency, and are reg-
ularly subject to fading effects. The fading effects arise due to scattering, refraction, and diffraction
of the transmitted signal due to obstacles and sharp edges in the propagation environment. CSI

describes how these combined factors are represented and how the propagation of the signals be-
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tween the transmitter and receiver is impacted by their resultant effects. Also, these factors cause
the propagation environment to exhibit multipaths propagation and reception of multiple copies of
the transmitted signal at the receiver. The reception of multiple copies of the transmitted signal
causes fluctuations in its amplitude. This causes significant challenges in building reliable wireless
communications.

CSI can be classified into two types, Channel State Information at the Receiver (CSIR) and
Channel State Information at the Transmitter (CSIT), where CSIR in the uplink transmission is
acquired at the BS. CSIR depends on the system duplexing mode that uses either Time Division
Duplexing (TDD) or Frequency Division Duplexing (FDD) and the channel estimation approaches
are varied accordingly. Accurate estimation of the communication channel is essential to obtain an
accurate CSI. Accurate CSI is vital to carry out any required compensation to remove undesired
effects, and precisely extract the originally transmitted signals. The performance of any communi-
cation system depends on its communication channel estimation accuracy. Therefore, the system’s
performance degrades significantly as the accuracy of channel estimation decreases.

Two main approaches are used for channel estimation: pilot aided and non-pilot aided. The
pilot aided approach tends to be more practical and has become more popular, while the non-pilot
aided approach suffers from higher complexity and has implementation limitations. In the pilot
aided approach, it has been shown that the optimal number of pilot symbols in uplink transmis-
sion at each coherence interval is equal to the number of mobile station antennas under optimum
power allocation for data transmission and pilot signaling transmission [9]. However, pilot based
estimators require additional pilots for enhancing the CSI accuracy [10]. More pilot symbols in
the coherence interval result in reduced spectral efficiency, (coherence interval (I.) = coherence
bandwidth (B.) x coherence time (7;)). There is an unavoidable trade-off between how many and
how often pilot symbols are used to estimate the CSI and both the accuracy of CSI and spectral
efficiency. Therefore, in [10] an iterative space-alternating generalized expectation maximization
estimator was proposed which uses data symbols instead of additional pilots to increase the CSI ac-

curacy. However, this scheme increases the complexity of the BS estimator and requires two stages
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of operations. Designing and using efficient pilot sequences in channel estimation for obtaining an
accurate CSI with small overheads will lead to a smaller Normalized Mean Squared Error (NMSE)
of the channel estimation and improved performance; this is a main goal of this dissertation.
Another approach is to use blind estimation by employing the Singular Value Decomposition
(SVD), which also encounters computational and implementation complexities. Conventionally,
to overcome the complexity of SVD at UE and its practical limits, it requires pre-knowledge of
CSI at both Transmitter (TX) and Receiver (RX) and cooperative signal processing for all RX
antennas and TX antennas respectively. The BS performs Joint Detection (JD) in the uplink and
Joint Transmission (JT) in the downlink. Both JD and JT require accurate CSI and any degradation
in the accuracy of CSI will lead to performance deterioration in the overall system, especially at low
Signal-to-Noise-Ratio (SNR) [11]. The degradation gap in the performance increases as the number
of BS antennas increases. Theoretically, we may increase the transmission power to compensate
the reduction due to imperfect CSI but practically, the transmission power should be kept within
certain constraints. A different approach was proposed in [12], where the CSI in massive MIMO
system had been estimated based on applying the sparse Bayesian learning method. However, in
addition to the complexity of the approach, the sparsity property was not enough as a condition,
and the incoherence property is required to have a satisfying performance and valid assumptions.
In systems that employ TDD, there is channel reciprocity between uplink and downlink. There-
fore, the downlink instantaneous CSI is obtained by estimating the uplink instantaneous CSI. How-
ever, to avoid any CSI error, a calibration for hardware differences for the uplink and downlink
Radio Frequency (RF) chains is necessary. Thus, CSI imperfection can happen at the BS’s receiver
due to several reasons like RF chains mismatching. Also, the time delay between uplink channel
estimation and downlink transmission may be greater than the coherence time of the channel. This
leads to a random mismatch between uplink and downlink CSI accuracy. The effects of imperfect
channel reciprocity (due to random mismatch and hardware differences in downlink and uplink
channels in the RF chains) in TDD massive MIMO on CSI accuracy have been modeled and in-

vestigated in [13]. It has been found that this results in significant degradation in the CSI accuracy.
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This consequently results in a reduction in the performance of linear pre-coding and the overall
system performance, which in turn reduces the Signal-to-Interference-plus-Noise-Ratio (SINR) of
the received signals. It has been also found that the channel estimation error is amplified by the
reciprocity error [13]. On other hand, as the CSI will be used in the downlink precoder, it will de-
termine the allocated directive antennas that should be used. This relates to the power allocations
per antenna and affects the energy efficiency. More specifically, CSI inaccuracy may lead to the in-
correct use of antennas (i.e., pointing in wrong direction or use of extra antennas which may cause
interference and waste radiation power). Therefore, removing the Multi-User (MU) interference
in a Multi-User MIMO (MU-MIMO) system will be impossible in the presence of the imperfect
CSI due to the mismatch between the exact CSI and the pre-coder. In this Ph.D. dissertation, we
propose Dual Pilot Scheme (DPS), which performs the uplink estimation in a very short time and
ensures that the delay between the uplink estimation and the downlink transmission is less than the
coherence time. This leads to improvements in the accuracy of CSI of the downlink pre-coders.
Furthermore, in TDD massive MIMO system, Orthogonal Frequency Division Multiplexing
(OFDM) is adopted to mitigate the Inter—Symbol Interference (ISI) and exploits the space-frequency
diversities; however, this is based on using multiple sub-carriers. Therefore, the co-channel inter-
ference (or Inter—Carrier Interference (ICI)) has a high probability of occurrence when the CSI
lose their accuracy. On the other hand, there exists an inherent source that contributes to the CSI
inaccuracy due to hardware impairments. The hardware impairments also contribute to the channel
estimation errors and increase the inaccuracy of CSI. For example, the lack of perfect compensation
in phase noise, imbalances between in-phase and quadrature signals at the front end of the analogue
processing at the baseband, ICI, and inter-modulation due to the non-linearity in amplifiers may re-
sult in an inaccurate CSI [14]. Although some techniques and algorithms are used to compensate
and mitigate these impairments, these deterioration effects can not be removed completely [15].
Imperfect CSI leads to a mismatch in decoding at the BS receiver [16]. An imperfect CSI sig-
nificantly affects the data decoding of the uplink transmission, and consequently, the downlink data

transmission and beam-forming as TDD adopts the channel reciprocity. Jose et al. have shown
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the impact of imperfect CSI on the precoding of the downlink transmission [17]. Therefore, as the
channel estimation error increases, the ergodic capacity decreases while the bit error rate, symbol
error rate, and the outage probability increases. Outage probability occurs when the probability of
the instantaneous SINR falls below a certain threshold. The capacity gain offered by the MIMO
communication system is sensitive to the CSI errors where imperfect CSI results in reduced capac-
ity gain. The effect of imperfect CSI on MIMO system’s capacity and power allocation has been
investigated under Rayleigh flat fading channels in [18] and it has been found that the degradation
in capacity and the effects on power allocation vary, according to the characteristics of the commu-
nication channel and the fading conditions. The availability of an accurate CSI leads to a reduction
in the required power radiated by UE and improve the energy efficiency.

On the other hand, accurate CSI in a time-varying channel is important to achieve the goals
of the channel coding, enhance quantizers performance in the analogue-to-digital converter and
analogue-to-digital converter, limiting the ISI, increasing the utilization of resources, and prevent-
ing co-channel interference. The channel estimation error in TDD massive MIMO depends on
noise, number of antennas, the estimated channel matrix, and the length of pilot sequences. The
channel matrix becomes a space-time matrix if multiple symbols are sent at the same time to a mul-
tiple antennas. It is considered semi-static over each coherence interval (fading block). The CSI
accuracy increases and the channel estimation error decreases as the pilot signal power increases
and the number of pilot symbols increases within each coherence interval. However, while the
allocated power is subjected to several constraints, the length of the pilot sequence is limited which
in turns limits the number of orthogonal pilot sequences. Also, as the length of pilot sequence
becomes shorter, the channel estimation errors become slightly larger and lead to a bounded inac-
curacy at CSI. The length of a pilot sequence should be equal to or greater than the total number of
served users.

Therefore, reducing the channel estimation errors and increasing the accuracy of CSI involves
various type of techniques. Most techniques require complex signal processing and iterative algo-

rithms with a large number of iterations. This is a very challenging undertaking to be integrated in
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real environments. In this Ph.D. dissertation, the CSI accuracy has been improved and the channel
estimation error has been reduced by adopting a technique that uses simpler signal processing and
a fewer number of iterations. Also, the accuracy of the channel estimation can be improved by

designing a proper pilot scheme according to the propagation environment and system in use.

1.3.2 Massive Multiple Input Multiple Output

The idea of massive MIMO originated from the applications of random matrices theory. In a
random matrix, if the number of rows increases excessively compared to the number of its columns,
then the singular values of the matrix tend to be equal [19]. In this case, the columns tend to
be pair-wise nearly orthogonal, which is a feature that can be exploited in the area of MIMO
communications systems. Massive MIMO is an essential technology for the realization of 5G. It
has the ability to offer tremendous access connectivity to serve a very large number of users and
devices (e.g., as is the case in [oT).

As the number of BS antennas increases largely, the communication system converges to a
massive MIMO where more users can be served and a higher sum rate throughput can be achieved
for each cell. Although this leads to huge signal dimensions, massive MIMO due to hardening of
the wireless communication channel offers to achieve high multiplexing gain with simple linear
signal processing schemes. More antennas at the BS means higher spatial resolution that allows
the BS to focus the energy toward the targeted users. Focusing energy results in reduction in both
inter-cell and inter-user interference (intra-cell interference). However, achieving this is dependent
on having an accurate CSI. Therefore, massive MIMO as a large scale MU-MIMO is a technology
where the BS is equipped with a large number of antennas to achieve multiple orders of spectral
efficiency, enhance the spatial degree of freedom, and increase the throughput of each user (i.e.,
lead to increase the sum-rate capacity of each cell). On the other hand, one of the fundamental
benefits of massive MIMO is to harden the wireless communication channel to ensure reliable
wireless communication and enhance the diversity and spatial multiplexing gains, even if the UE

has only one antenna.
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Moreover, deploying a large number of antennas (compared to the number of served users) at
the BS improves the performance and reduces the complexity where simple linear signal processing
like Minimum Mean Squared Error (MMSE) can be used and provides nearly optimal performance
[20]. The MMSE receiver/precoder in uplink/downlink is the best amongst all types of linear sig-
nal processing based receivers/precoders, whereas such receiver/precoder maximizes the received
SINR and outperforms all linear precoders over the entire range of SNRs [21]. This results in
achieving high multiplexing gain and simplicity in signal processing. Also, it aides in improving
the energy efficiency in both downlink and uplink. In the downlink, the BS focuses the energy
beam into a very localized area. This enhances the spatial grid resolution and results in locating
the targeted UE precisely and focuses the beam of the downlink transmitted signal. In the uplink,
a very high array gain can be achieved by using coherent combining which results in significant
reduction of the UE transmitted power, however, more improvement is needed. In downlink, as the
number of antennas increases then lower-power rating amplifiers can be used to work in the linear
region which results in improved energy efficiency.

In massive MIMO, in order to achieve high diversity and spatial multiplexing gains, the BS is
required to employ coherent processing of the received signals. Accurate and timely acquisition of
CSI is required, however, this is extremely challenging, especially in high mobility environments.
However, in its ideal scenario, massive MIMO implementation grants a favorable propagation en-
vironment. Therefore, based on the law of large numbers (i.e., when the number of BS antennas
are very high compared to the served users), the length of the vectors representing the CSI between
the users and BS antennas increased and CSI vectors become pair-wise nearly orthogonal. The
degree of orthogonality becomes near optimal as a huge number of scatterers exist in the propaga-
tion environment. As a result, provided the CSI are accurate, the received signals from multiple
users are separable and result in maximizing the sum-rate capacity. The favorable propagation of
a channel can be assessed either by the condition number of the channel matrix or by comparing
the achievable sum-rate capacity with the one having favorable propagation, where the latter is

more general. Then, under this favorable propagation, the wireless communication system can ex-
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ploit the advantages of massive MIMO where the effect of noise and inter-user interference can be
averaged out with simple linear signal processing like MMSE. The channel matrix also becomes
well-conditioned. However, the cost of using the simple linear estimators in the uplink and linear
pre-coders in the downlink at massive MIMO is the overhead requirement of acquiring accurate
instantaneous CSI.

Antenna selection is another promising technology that may be used to get the advantages of
massive MIMO while reducing its complexity. An accurate CSI is essential to achieve the target
of antenna selection and is considered as a critical design objective [22]. In the reality, massive
MIMO suffers from inherent impairment which is conventionally known as the pilot contamination.
Pilot contamination reduces the CSI accuracy, the channel estimation performance, and spectral
efficiency. Also, the failure in obtaining an accurate channel estimation can be considered, and
seen from the opposite angle, as the main cause of the pilot contamination [12].

The classical multiple access used in the conventional massive MIMO is OMA. Also, TDD
is the efficient and most widely feasible approach to be used in massive MIMO due to its unique
feature of reciprocal channel [23-25]. TDD is more flexible in utilization of the frequency spectrum
as the uplink and downlink signals use the same frequency channel in different time slots. As a
consequence, the wireless communication channels of uplink and downlink are reciprocal under
perfect radio frequency chain calibration and the channel estimation can be done only once.

Assuming the BS is equipped with M antennas and serves K UEs. Conventionally channel
estimation is performed at the BS through pilot signals during the training phase of the uplink
transmission where it requires a minimum of K channel uses (i.e., K symbols) to estimate the CSI
of K served active users where the condition 2K < § ! is required which independent of the number
of BS antennas, where S is the total number of symbols in the coherence interval. Therefore, reduc-
ing the pilot signaling overhead will improve the bandwidth utilization and increases the spectral

efficiency. In contrast to TDD, FDD needs to do estimation for both downlink and uplink where

'Using 2K symbols is the worst-case scenario. However, only K symbols are used for channel estimation if the UE
estimates blindly the effective channel coefficient for decoding the downlink signal. Then, the remaining symbols in
the coherence interval are used for effective data transmission.
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the overall channel estimation requires M + K symbols in the uplink transmission and M symbols
in the downlink transmission. Therefore the coherence interval should satisfy the constraint of
(M + K) < S which compared to TDD appears not as efficient in terms of effective transmission
usage of the coherence interval and it also limits the number of antennas equipped at the BS. Fur-
thermore, in FDD, the number of downlink pilots are proportional to the number of BS antennas.
Also, the bandwidth needed for the CSI feedback becomes very large. Both of these factors make
the implementation of massive MIMO based on FDD that is pilot based extremely impractical.

In TDD, the coherence interval has a limited length which results in an insufficient number of
orthogonal pilot sequences used in the training phase for estimating CSI. This leads to the pilot
contamination problem in multiple adjacent cells, especially in fast fading environments where
the channel has a shorter coherence time. As a result, this makes the number of available pilot
orthogonal smaller (i.e., worsens the pilot contamination and enforces the use of the same pilot
sequence, even in the same cell and creates both inter- and intra-cell interference). This dissertation
follows the same assumptions of using the MMSE receiver/precoder and TDD approach in massive
MIMO.

The main impairments that limits the performance of massive MIMO is pilot contamination
[24]. The pilot contamination problem arises because of the existing correlation between different
MU-MIMO channels due to: 1) insufficient antennas separation at the BSs and 2) the coherence
time of the communication channel being limited. The limited coherence time leads to a limited
number of users’ orthogonal pilot sequences used for the uplink to acquire and estimate the CSI at
the BS [20]; this pilot contamination problem has a strong presence in non-favorable propagation
environments where the numbers of scatterers are small compared to the numbers of users being
served [26]. To reduce the effects of pilot contamination several methods have been proposed, this
Ph.D. dissertation analyzes and examines them in Section 1.4 and Chapter 2. Furthermore, we
invented a new pilot scheme called DPS to mitigate the pilot contamination and offer additional
features for the BS. This Ph.D. dissertation introduces DPS as a general tool that can be applied

in any wireless communication system and demonstrates its application in massive MIMO and
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NOMA.

1.3.3 Non-Orthogonal Multiple Access

In wireless communication, multiple access involves multiple users to a one-point transmission. In
the uplink transmission of cellular networks, the one point is the BS that serves multiple users in
its cell coverage area. The separation of users’ received signals is achieved by using orthogonal
multiple access schemes in which either frequency, code, or time resources are mutually exclusive
allocated (orthogonal) for multiple users. NOMA is another type of multiple access that can be
used in transmitting the signals of multiple users to a one-point receiver. Multiple users are super-
imposed on the same orthogonal resource in NOMA. The frequency and time resources in NOMA
are shared among users that configuring a NOMA group, which are formed from multiple users
in the cell. Therefore, the received signals at the BS that are transmitted by those multiple users
are not orthogonal. The separation of users received signals in NOMA is achieved by using the
Successive Interference Cancellation (SIC) at the BSs’ receivers.

The challenges facing the realization and success of 5G cellular networks include the large
volume of traffic exchanged and the high users’ density with limited spectrum resources. These
challenges can be tackled by integrating both NOMA and massive MIMO [27]. Furthermore,
NOMA is considered as a 5G technology that aids massive MIMO to achieve low transmission
latency, high spectral efficiency and high capacity, under a strong assumption of having perfect CSI
[8, 27-30]. Compared to OMA, NOMA has many other features such as superior capacity and
better channel utilization. This dissertation focuses on the enhancement of both the OMA massive
MIMO and the NOMA massive MIMO in a practical approach that is feasible to implement.

One of the main impairments that limit the performance of NOMA is the error propagation dur-
ing the decoding of the received signals in the SIC due to imperfect CSI. Accurate CSI in NOMA
is essential and critical for achieving a reliable SIC [14], that will minimize the effects of error
prorogation between consecutive SIC stages. NOMA is yet under further examinations to improve

its performance, and rooms for more contributions are still available. One of the research gaps is to
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integrate NOMA into massive MIMO and equip the combined system with an accurate CSI. The
acquisition of an accurate CSI at the BS of a massive MIMO with NOMA integration is a very
challenging task to achieve in the conventional system structure. Integrating NOMA into massive
MIMO and finding effective ways to achieve this combination is also a very challenging and im-
portant topic that needs exploration [31]. Therefore, the Extended Dual Pilot Scheme (EDPS), we
propose in this dissertation, plays a vital role in achieving this integration between NOMA and
massive MIMO. Also, EDPS can provide an accurate estimate for CSI which is the key parame-
ter to enhance NOMA'’s performance. This enhancement can facilitate proper resource scheduling
with low system complexity and offers lower channel estimation errors. Additionally, this disserta-
tion investigates CaF’s application to improve the NOMA performance and propose new decoding

schemes to be used in NOMA.

1.4 Literature Review of Related Works and Research Goals

1. Pilot Contamination Elimination in Massive MIMO: As previously mentioned, TDD is
the efficient and feasible way to implement the massive MIMO [23-25]. Accordingly and
as aforementioned, adopting TDD requires the BS to estimate the CSI using pilots signals
during the uplink training [23, 32, 33]. Pilot contamination during the uplink training is the
main inherent limitation that degrades the performance of massive MIMO [17]. Interference
arising from adjacent cells during the uplink training (due to reusing the pilot signals) is the
main source of pilot contamination [34]. Atzeni et al. in [35] suggested a pilot allocation
scheme that uses a fractional pilot reuse algorithm to minimize the effects of pilot contami-
nation. Since spectral efficiency is one of the main requirements of 5G, therefore the use of a
large frequency reuse factor to solve this problem is not an efficient approach because it will
reduce the spectral efficiency and the Pre-log factor [34]. Frequencies bandwidth where the
channel Doppler spectrum is equal to zero is known as the Pre-log factor. The reuse factor
is determined by how many cells reuse the pilots simultaneously. On the one hand, soft-

fractional pilot reuse incorporates power control (center users transmits less power than edge
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users by 1/3) and requires a fewer number of orthogonal pilots than the strict-fractional pilot
reuse but it has several drawbacks. On the other hand, the coherence interval of the channel

is limited, so the number of orthogonal pilots is limited [36].

Finding a creative solution for pilot contamination effects is a hot research topic. Several
researchers have worked on mitigating pilot contamination effects and proposed different
heuristic and suboptimal algorithms. Marzetta in [20] was the first to address this problem
in TDD massive MIMO for multiple cells with a non-cooperative scenario. Since then, it
has been extensively discussed in the literature [35, 37-52]. Xu et al. in [37] investigated
the pilot contamination effects on the estimation of CSI in massive MIMO over frequency-
selective channels and has shown that the MMSE estimation algorithm is more resistant
to pilot contamination. Ngo et al. in [38] also analyzed the effects of pilot contamina-
tion for physical channel models in multi-cell multi-user massive MIMO and showed pilot
contamination effects persist under finite dimensional channel models. Nguyen ef al. in
[43] proposed time-shifted pilots and adopted two uplink training methods by combining the
conventional time-aligned pilots and time-shifted pilots to reduce the pilot contamination in
multicell massive MIMO. Jin ef al. in [44] exploited combat pilot contamination property
of time shifted pilots and analyzed the performance of massive MIMO when a Zero-Forcing
precoder and beam-former were used. Besides, Ngo and Larsson proposed in [53] to ex-
ploit eigenvalue-decomposition to perform the channel estimation directly from the received
data under the assumption of the existence of asymptotic orthogonality between the chan-
nel vectors. To separate the signal subspace and the interference subspace, their approach
assumes the existence of asymptotic orthogonality between the channel vectors and requires

high computational complexity.

In contrast to the above, a semi-blind approach was proposed in [50] which has been devel-
oped based on the assumption of time shifted pilots and employs the independent component
analysis with successive cancellation. This approach has a similar problem of the time-sifted

pilots approach. Time shifted pilot signaling moves the BSs from operating in a synchronous



1.4. Literature Review of Related Works and Research Goals

into an asynchronous TDD mode of operation. This results in huge interference in uplink
transmitted signals, which is caused by the downlink transmitted signals. Downlink trans-
mitted signals have higher transmission power compared to the uplink transmission power.
The pilot decontamination performance will be a function of the pilot to data parts ratio. Eli-
jah et al. in [39, 40] introduced an extensive survey of other sources of pilot contamination
like hardware impairment, non-reciprocal transceivers, and presented suggested methods to
mitigate pilot contamination. These suggested methods were based on different assump-
tions, different system configurations, and different channel models. Based on the channel
estimation method, mitigation methods have been classified into either a subspace-based or

pilot-based approach.

Sarker and Lee in [41] studied the reduction of the pilot contamination problem in massive
MIMO based on a diagonal Jacket matrix. They proposed a diagonal Jacket based covari-
ance aided channel estimation method, where perfect multipath fast channel estimation was
assumed. Miiller et al. in [42] analyzed a subspace projection to enhance the channel estima-
tion and proposed a blind pilot decontamination algorithm. The algorithm had a polynomial
complexity. Saxena et al. in [45] used an open loop power control and pilot reuse algo-
rithms adopted in Long-Term Evolution (LTE) and developed techniques to mitigate pilot
contamination. These techniques were effective for users moving at vehicular speeds and for
estimating the channel using a least square estimator. Lee et al. in [46] proposed a partial
sounding resource reuse strategy to mitigate pilot contamination where the cell was divided
into the center and edges areas, assuming multi-cells operated cooperatively in the edges
areas. Zhang et al. in [47] studied the pilot contamination (considering the OFDM system
parameters) and mitigated pilot contamination by using training techniques for both uplink
and downlink. Although the proposed techniques do not require the channel second order
statistics, they have the drawback of expanding the training overhead by a factor equal to the
number of interfering cells. In contrast, Farhang et al. in [48] replaced OFDM modulation

by Cosine Modulated multi-Tone (CMT) modulation and extended the blind estimation capa-
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bility of CMT to improve the accuracy of CSI and mitigate the pilot contamination in CMT
based massive MIMO. Sgrensen and De Carvalho in [49] converted the pilot contamination
into randomized contamination by using pilot sequences hopping at each transmission slot
and used the Kalman filter to reduce the effect of randomized contamination. The channel
estimation was assumed to incorporate multiple time slots. This algorithm is efficient at low

and moderate mobility users.

Yin et al. proposed in [54] to assign the pilots among cells by using a covariance aware
pilot assignment scheme to mitigate the pilot contamination efficiently but this approach was
limited and worked under certain conditions of the channel covariance. Hu ef al. in [50]
proposed a pilot decontamination algorithm based on semi-blind channel estimation, where
a constrained minimization optimization problem based on an asynchronous pilot protocol
was formulated for each user. The proposed algorithm required intensive computation and
its efficiency depended on the data length. Zhu et al. in [S1] exploited the large-scale char-
acteristics of fading channels and proposed a smart pilot assignment based on measuring the
inter-cell interference with the aim to maximize the minimum uplink SINR of all users in
the served cell through an optimization algorithm. Users having the worst channel quality
will assign the pilot sequences which have the smallest inter-cell interference. However, the
proposed method requires the served cell to solve the optimization problem and perform a
sequential procedure iteratively until a convergent solution is reached. Vu et al. in [52]
proposed modified least square estimators that removed the pilot contamination based on
consecutive pilot transmission phases algorithm which required coordination between the

served cell and the adjacent cells.

In this dissertation, we develop an alternative novel method to eliminate the effects of pi-
lot contamination, bridge the research gaps mentioned above, and hence improves massive
MIMO performance through more accurate CSI estimation. The developed scheme has a
lower complexity and can be generalized to any system configuration such as the 5G cellular

networks and beyond.
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2. Enhancement of CSI Accuracy and SIC Performance in NOMA: SIC plays an important
role in NOMA technology. A reliable SIC that separates users’ signals at the BS’s receiver
and does not result in a residual interference is a critical factor that determines the perfor-
mance efficiency of the system. Reliable SIC can not be achieved without an accurate CSI
[8]. Hardware impairments at transceivers is another factor that should be considered in the
designing of SIC. The effects of these hardware impairments amplify and cause a significant

impact on SIC performance in the presence of imperfect CSI.

The integration of both NOMA and massive MIMO brings more technical challenges to
achieving reliable SIC because users pairing and scheduling into appropriate channels and
selecting the best antenna subset at the BS need to be considered jointly. Moreover, mas-
sive MIMO with NOMA integration can consume excessive bandwidth resources to acquire
accurate CSI [28]. Previous work done, that took these considerations into account, shows
that a very high complexity was added to the SIC design and therefore this integration can
only be applied to cells with small numbers of served users and antennas [27]. Using multi-
polarized antennas has been proposed in [29]; however, this solution is only considered a
slowly varying spatial correlation of the communication channels and also added complexity
to the system. An approach for reducing the computational complexity of SIC in [28] by em-
ploying low feedback and decomposing the massive MIMO NOMA into a set of single-input
single-output NOMA channels was proposed. This approach required a perfect knowledge

of users ordering at the BS, which is more feasible only at the downlink.

Li et al. in [55] used a novel approach that employs the Forward Error Correction (FEC)
and exploits the intrinsic diversity of code words to mitigate the imperfect CSI estimates in
NOMA and improve the performance of SIC. However, this approach added more complex-
ity to the SIC design. The SIC design in [56] considered an imperfect CSI which has been
classified into two types a) the channel distribution information and b) the channel estima-
tion uncertainty. However, this approach led to complexity in the SIC design, probabilistic

constraints, and assumed non-practical approximations. The decoding with a fixed order was
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replaced by decoding with a dynamic order in [57] to improve the performance of the SIC
but this approach was feasible only in a slow fading environment. This approach has been
extended in [58] to consider the existence of imperfect CSI. It has been shown that imperfect
CSI led to incorrect decoding order in addition to the extra interference on the desired signal,

which resulted in a degradation of the performance of the SIC.

Accordingly, based on the aforementioned, the performance of NOMA technology depends
heavily on SIC proper functionality which can not be achieved and guaranteed without accu-
rate CSI. A question that arises here, “how can we improves the SIC without increasing the
system complexity?” In this dissertation, we address this question and provide the appropri-
ate solution. The dissertation introduces EDPS for improving the accuracy of CSI estimation
ensuring compatibility for practical implementation and lower complexity. Therefore, EDPS
improves CSI accuracy and, as a consequence, accurate CSI facilitates the NOMA integration

into massive MIMO. In addition, EDPS enhances the performance of SIC.

. Improving NOMA by Employing CaF and Reducing CaF Sensitivity to CSI Estimation
Errors: The allocated power variations of Power-Domain NOMA (PD-NOMA) paired
users play an important role in the performance of SIC. Keeping significant power differences
ensures good performance of SIC, which can not be guaranteed all the time. Besides, fairness
and outage probabilities are impacted when the paired users powers are close to each other.
Therefore, in this dissertation, another approach is used in NOMA to decode the received
uplink signal and de-multiplex the desired signals by employing the CaF decoding method.
CaF also called physical-layer network coding. CaF started as a relaying strategy, where
each relay computes a linear combination of transmitted signals and then forwards it to the
ultimate receiver [59]. As a concrete example, suppose that there are two transmitters, two
relays, and one destination. Each relay computes a linear combination and forwards it to the
destination. As long as the two linear combinations are linearly independent, the destination
can recover the transmitted signals. Besides, if the communication channel does not provide

a suitable linear combination of the transmitted signals then CaF cannot work properly to
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recover the desired signals.

Interestingly, the idea behind CaF goes beyond the relay scenario. It can be applied to other
scenarios, such as the point-to-point channel and Multiple Access Channel (MAC). CaF is
used for optimal utilization of interference [59], which can be employed in the uplink NOMA.
CaF is the decoding method used as the core of IFLRs in MIMO wireless communications
networks. Therefore, by employing CaF, the front end at the BS’s receiver decodes and
computes the linear combinations of joint signals transmitted from multiple served users in
NOMA and then forwards separable signals to the appropriate stage(s) at the BS’s receiver
for further processing. The transmitters in the equipment of served users do not require the
pre-knowledge of the CSI to employ the CaF in the uplink transmission [60]. However,

accurate CSI is required at the BS’s receiver.

Integrating CaF in a massive MIMO system improves the performance where CaF can be
enhanced by using multiple antennas at the receiver [60, 61]. The aim of CaF is to tackle
both the signal interactions introduced by the NOMA communication channel and the noise
in the communication environment [62]. Moreover, the CaF exploits rather than combats the
multiple access interference towards increasing the system throughput and, as a consequence,
the sum-rate capacity [59, 63]. There are many approaches to implement the CaF but there is
a trade-off between the reduction of implementation complexity and improving the achieved
performance. However, the CaF multiple access strategy keeps the decoding complexity to
grow linearly with the number of served users and the performance is improved by increasing
the accuracy of CSI [64]. Furthermore, Niesen ef al. in [62] shows the CSI plays an impor-
tant role in the CaF performance and how it limits its degree of freedom. The DPS/EDPS

mechanisms which we introduce in this dissertation tackles this efficiently.

On the other hand, CaF uses scaling coefficients before forwarding where it has been found
that employing the MMSE scheme can uniquely maximize the computation rate and produce
the optimal scaling coefficients [59]. However, the accomplished computation rate relies on

the CSI accuracy. In [65] the sensitivity of CaF to the CSI errors has been investigated. It has



1.4. Literature Review of Related Works and Research Goals

been found that imperfect CSI leads to errors in the MMSE scaling coefficients and errors
in the integer coefficients used by CaF which are carefully chosen based on CSI. Therefore,
CaPF is sensitive to the errors in CSI and an accurate CSI is needed to reap the full advantages
of CaF in practical implementation and avoid a significant rate loss and outage probability
increment [65, 66]. Another approach to overcome the effects of CSI accuracy has been
investigated in [66] where the blind CaF has been proposed which avoids the need for CSI.
However, this has resulted in a trade-off between increasing computational complexity and

only achieving a sub-optimal performance of CaF.

A question that arises here, “how can CaF guarantees improving NOMA performance with-
out increasing the system complexity?” In this dissertation, we address this question and
provide the robust solution. First, we propose new decoding schemes based on CaF that im-
proves the decoding performance of NOMA and massive MIMO-NOMA that ensure higher
fairness and smaller average outage probabilities while having the same SIC complexity.
Second, we integrate DPS/EDPS into massive MIMO-NOMA, which both improve the CSI

accuracy and enhance the overall performance.

. Increasing Energy Efficiency and Promoting Green Communications: Incorporating
Energy Efficiency (EE) in the system design of 5G cellular networks and beyond is an essen-
tial goal and one of the 3rd Generation Partnership Project (3GPP) standards technical targets
that should be adopted. The approach of acquiring green communications in 5G cellular net-
works and beyond would improve the EE in Information and Communications Technologies
(ICT), and promote a healthy living environment [67]. Adopting this approach would result
to reduce the energy consumption without affecting other performance factors in 5G cel-
lular networks and beyond [67]. This can be achieved by maximizing the amount of data
transmitted per unit energy without degradation of spectral efficiency and system capacity.
Patcharamaneepakorn et al. in [68] investigated a generalized spatial modulation as a radio
access technology to improve the throughput and EE in 5G massive MIMO, but this has been

found to result in less spectral efficiency. This is contrary to the aim of 5G cellular networks
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to improve spectral efficiency by one order of magnitude. Therefore, there is a trade-off be-
tween EE and Spectral Efficiency (SE); this dissertation devises an approach that improves

EE without putting huge negative impacts on SE.

From another perspective, a statistical delay bounded QoS driven power allocation schemes
have been developed in [69] to maximize the power efficiency for 5G cellular networks while
assuming perfect CSI. However, the availability of perfect CSI at the BS is very challenging.
This dissertation addresses this, and proposes DPS/EDPS to improve CSI accuracy. Also,
pilot contamination with imperfect CSI limits the achievable EE, SE, and throughput [68].
Another approach to improve EE is to apply a perfect SIC at the receiver. This may show
a noticeable improvement of the energy efficiency in a massive MIMO system [70], but as
mentioned earlier, optimal SIC functionality can not be achieved without having an accurate
CSI. Therefore, devoting efforts to addressing the pilot contamination problem and enhancing

CSI 1s indirectly tackling the lack of EE, which has been achieved in this dissertation.

On the other hand, in [71] the EE for massive MIMO with a large number of antenna and
radio frequency chains have been investigated and an energy-efficient hybrid precoding al-
gorithm has been proposed to maximize the EE. The results show an improvement in EE
performance for a low number of users and it has been only compared to the Zero-Forcing
(ZF) precoder. However, MMSE is the recommended precoding technique used in massive
MIMO as ZF suffers from a low performance at a low SNR as it amplifies noise and also
massive MIMO supposed to provide high users connectivity. Also, it is highly expected the
cells in 5G cellular networks and beyond will have high density and a huge number of users.
Besides, the EE and green communications feasibility have been investigated in [72] and
[73]. Results showed improvements only for cellular networks configured with small cells.
This highlights the importance of EE as small cells with high-density of users are expected
to be used in 5G cellular networks. However, 5G addresses a wide range of applications
that make the adoption of small cell topology not only unrealistic, but also shows that other

scenarios with different cell sizes should be considered when investigating EE. This disser-
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tation explores in-depth into finding an optimum approach that can find an energy-efficient
mechanism. A mechanism that can be generalized regardless of the cell size and number of

served users used in 5G cellular networks and beyond.

Importantly, the explosive growth of subscribers and used devices in cellular networks en-
tails a massive amount of energy consumption when aggregated, which inevitably leads to
a larger carbon footprint, and greatly contributes to environmental pollution if the energy
sources used are not renewable. Furthermore, the rapid growth of energy consumption is
proportionally related to the rapid growth and evolutions in ICT, which occurs at a very fast
rate as shown in Fig. 1.2. Moreover, according to recent statistics, the energy consumption
in ICT occupied around 10% of the world’s total energy consumption [74]. Recent statistics
also show that the average current power consumption for the average UE is around 22.5
Watt daily. Accordingly, the expectation of having more than 9 billion UE to be served will
lead to a power consumption of 202.5 GigaWatt daily. This is a massive number that should
be reduced to promote green communications and achieve 5G technical targets. From a dif-
ferent perspective, 5G is expected to serve a huge number of sensors that embed into IoT
and have limited power storage and some types depend on energy harvesting. To highlight
the importance of EE in UEs, a Pre-Grant signaling scheme has been proposed in [75] to
reduce the energy consumption by the UEs but only for downlink. Nevertheless, an energy-
efficient scheme for uplink with reasonable cost to integrate is also highly needed especially
in systems with TDD integration. Moreover, it has been shown that most energy efficient
schemes suffer from high costs compared to the traditional approach [76]. In this disserta-
tion, we propose a scheme that reduces power consumption and improves EE in UEs and 5G
uplink transmissions without degradation of SE. The scheme we propose is an energy effi-
cient, economically feasible, adaptive, easy to integrate, which can find its way into practical

and real-life implementation.
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Figure 1.2: Green communications and energy efficiency

1.5 Dissertation Contributions

In this section, highlights of the major contributions of the dissertation are presented. A schematic
diagram of the contributions of the dissertation is illustrated graphically in Figure 1.3, and are

summarized as follows:

e Proposing the Novel Dual Pilot Scheme:
The accuracy of the CSI is a critical factor in achieving all the technical targets of any wire-
less communication system. Therefore, we develop a new signaling scheme named DPS
that would overcome the limitations of conventional schemes, promote simplicity, be easy
to implement and get deployed into existing systems, improve the performance indicators
and technical targets, and can be generalized to integrate into any wireless communication
systems. DPS offer beneficial and unique features and can be used in a non-cooperative
multi-cell cellular networks. Our evaluations show that DPS reduces the effects of pilot con-
tamination substantially, increases the CSI accuracy, and consequently improves the massive
MIMO performance. DPS works in one dimension in massive MIMO to mitigate inter-cell

interference.

In contrast to the recent works that traditionally focused on the improvements in sum-rate
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maximization with aim of optimizing the total network throughput, our DPS approach is dif-
ferent and maximizes the sum-rate and optimizes the total network throughput with ensuring
the maximization and optimization for each served user. Thus, it provides improvements
that convey the fairness and uniform QoS for each and every user is served. This guarantees
to avoid service disruption or poorly serving users experiencing poor channel conditions, or
those at the cell-edge whom under high attenuation path loss. Our contribution towards this
innovative pilot signaling scheme has been accepted as a provisional patent and has been

published in [77] and [78].

e Proposing the EDPS for NOMA and Massive MIMO-NOMA:
As a second contribution we extend DPS and develop the novel EDPS to operate in two di-
mensions to mitigate both intra-cell and inter cell interference. EDPS provides the BS with
more accurate CSI for multi-fold benefits. First, EDPS facilitates the integration of both
NOMA and massive MIMO as availability of an accurate CSI is essential to achieve this
integration. In addition, EDPS achieves this goal by a simple approach, which ensures eas-
iness for deployment in practical systems. Second, EDPS enhances the performance of SIC
in NOMA, as SIC performance depends on the accuracy of CSI. Third, EDPS equips the BS
with interference management that can work in non-cooperative multi-cells environments.
These highlights the importance of EDPS and result in enhancing several performance met-
rics. Our contributions on EDPS and its application in NOMA and massive MIMO-NOMA

have been submitted for publication [79].

o Investigating the EE Performance of DFT-S-OF DM and Proposing Barker
Coded DFT-S-OFDM for 5G Uplink Transmissions:
We first examine the performance of Discrete Fourier Transform -spread- OFDM (DFT-s-
OFDM) in 5G uplink transmissions with a focus on evaluating the EE. Our system model
considers both massive MIMO with OMA and massive MIMO with PD-NOMA. This dis-
sertation is the first to investigate both approaches. In the second contribution, we propose

a novel mechanism that lowers power consumption at UEs, improves EE without impacting
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the SE, and can be adopted in different applications of 5G using Barker Coded DFT-s-OFDM
(BC DFT-s-OFDM) in 5G uplink transmissions. The proposed scheme adds a Barker code
spreader at the UE and despreader at the BS, which results in lowering Peak—to—Average
Power Ratio (PAPR) and significantly reduced power consumption at UEs. We confirm that
BC DFT-s-OFDM enhances the performance of both OMA-massive MIMO and PD-NOMA-
massive MIMO and increases the EE under different communication channel models. This
dissertation is the first to open the doors for employing Barker code in 5G cellular networks
and beyond. These contributions have been published in [80] and submitted for publication

in [79].

e Employing and Improving CaF in NOMA and Massive MIMO-NOMA: In-
stead of using SIC to resolve interfering signals in NOMA, this dissertation proposes CaF
in NOMA and finds new decoding schemes for PD-NOMA and massive MIMO-PD-NOMA
based on CaF. These proposed schemes provide better performance in terms of increasing
users’ fairness and reducing the outage probabilities while preserving a low implementation

complexity.

CaF is very sensitive to the CSI estimation error. Besides, the performance of CaF also
improves as the number of available combinations of linearly independent equations in-
creases at the BS. As a second contribution in this matter, this dissertation integrates DPS
and EDPS with CaF to increase CaF robustness and lower the sensitivity of CaF to estima-
tion errors. This integration improves the overall systems performance of PD-NOMA and
massive MIMO-PD-NOMA in uplink transmissions. It also enhances the performance of
IFLRs. We claim this dissertation is the first that proposes such an approach. Our contribu-
tions toward this innovative new decoding schemes and for employing the DPS/EDPS have

been published in [81] and under submission in [82].
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Figure 1.3: A schematic view of the dissertation’s contributions.

1.6 Dissertation Outline and Organization

The structure of the dissertation has been composed and formed according to the research flow and
is connected to the list of contributions in Section 1.5. The dissertation is divided into five chapters
and two appendices, it is organized as follows:

In Chapter 1, we provide an overview of the research problems and challenges, research gaps,
research goals, and approaches to achieve these goals. We present background information on the
5G technologies and the impact of channel estimation errors on the performance of TDD systems.
We then discuss the literature review and related previous work that have been done, focusing on

articulating the gaps in research and identifying the areas of our contributions. We highlight the
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practical challenges in the TDD interference-limited cellular communications systems and the im-
portance of sustainability for green communications which motivated our research. This is followed
by the introduction of our developed schemes and solutions to improve CSI accuracy, mitigate pilot
contamination, ensure EE in 5G cellular networks, and employ and enhance CaF decoding in 5G.

In Chapter 2, we develop and apply the novel DPS in a massive MIMO system with OMA
deployment to mitigate the pilot contamination and generate an accurate CSI. We use different
wireless communication environments during our investigations, the independent and identically
distributed (i.i.d.) and the correlated Rayleigh fading channels. We start by illustrating how the
DPS is used in massive MIMO and how the pilot sequences codebook is formed. We show the
performance of DPS in one dimension to mitigate the inter-cell interference and introduce ¥ as
a design parameter. We derive the mathematical proofs for our theorems, which state the DPS
is universally outperforming the conventional Single Pilot Scheme (SPS), provides the guarantee
for a uniform quality of service for each served user, and generates lower MMSE of estimated
CSI, where the MMSE is a function of y. A group of detailed mathematical derivations for this
chapter is provided in Appendix A. Numerical results depict superiority for the integration of DPS
which increases the sum-rate capacity of massive MIMO cell that is located within a group of
non-cooperative cells, where a BS is equipped with a given number of antennas and while varying
the SNR. The materials presented in this chapter have been included in one accepted provisional
patent, two publications, one journal article in [78], and one conference article and presentation in
[77].

In Chapter 3, we dive deeper and extend the DPS to work in two dimensions to simultaneously
mitigate inter-cell interference and intra-cell interference. We introduce two design parameters y
and u for constructing the EDPS sequences. The sequences codebook has been divided into three
groups. As aresult, we gain advantages of EDPS and use it in massive MIMO with NOMA deploy-
ment to improve performance. Additionally, we investigate the feasibility of DFT-s-OFDM wave-
forms EE in both massive MIMO with OMA deployment and massive MIMO with PD-NOMA

deployment. Then, we conduct an in-depth examination of Barker codes as an approach to achieve
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the corresponding effective trade-off among spectral versus energy efficiency. Through this, we ex-
ploit Barker codes and propose their integration into the uplink waveforms in 5G. Numerical results
demonstrate improved EE performance of the proposed schemes and the prove significant advan-
tages of integrating BC DFT-s-OFDM in 5G. The materials presented in this chapter have been
included in one published conference article and presentation [80] and another journal submission
[79].

In Chapter 4, we begin by considering the main differences in the performance between the
SIC-NOMA and CaF-NOMA when the NOMA paired users are close to each other in terms of
allocated power. Then, we formulate the performance indicators in terms of users Jain’s fairness
index and outage probabilities. We propose new decoding methods for uplink PD-NOMA and
massive MIMO-PD-NOMA which achieve better fairness and smaller average outage probabilities,
while having the same decoding complexity as SIC decoding. We address the CaF sensitivity to the
CSI estimation error and we employ the novel DPS/EDPS into our system model to exploit their
unique features. We introduce the preliminaries of IFLR, and show its limitations and sensitivity
to channel estimation errors. In addition to this, we derive the analytical expression of reduction
loss in achievable rates (i.e., rate loss) and show numerically how DPS and EDPS improve the
performance of CaF and consequently enhance IFLR. A group of detailed mathematical derivations
for this chapter is provided in Appendix B. The materials presented in this chapter have been
included in one published journal article [81] and another journal submission [82].

Finally, the concluding remarks, main research outcomes, drawn findings, avenues of approach
more potential research, and some future work related to the topics covered in this dissertation
are presented and summarized in Chapter S. in inclusive communication scenarios of 5G cellular
networks and beyond.

Appendices A and B present the mathematical derivations, proofs of the theorems, and pre-
liminary materials relevant to Chapters 2 and 4, respectively. Figure 1.4 illustrates the schematic

diagram of the dissertation structure and composition.
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Chapter 2

Dual Pilot Scheme and its Application in
Massive MIMO

2.1 Synopsis

The pilot scheme currently used in 5G cellular networks assigns the same set of orthogonal pilot
signals to all cells. This results in inter-cell interference, also known as pilot contamination, which
can significantly degrade performance, especially in massive MIMO systems. To mitigate this
interference, we propose a novel DPS that assigns a slightly modified set of nearly-orthogonal pilot
signals. DPS is a general scheme that can be implemented in any wireless communication system,
including 5G and beyond. We demonstrate the integration of DPS in a massive MIMO system in
both microscopic and macroscopic levels and analytically prove that DPS enables more accurate
estimates of the CSI in the minimum mean-squared error sense, under the i.i.d. and the correlated
Rayleigh fading wireless communication channel models. We further validate and demonstrate the
advantages of DPS over various channel models of massive MIMO 5G technology by extensive

simulations.
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2.2 Introduction

As mentioned in Chapter 1, accurate estimation of the characteristics of a wireless communication
channel, i.e., CSI, is vital for reliable wireless communications in contemporary cellular networks
[4, 5, 83]. Two main approaches for channel estimation are pilot aided and non-pilot aided, with
the former being more practical and widely adopted in current standards especially in conjunction
with TDD technology [4, 5, 84]. TDD is attractive for deployment in cellular networks due to
its unique reciprocal channel property between uplink and downlink. Thus a BS can periodically
perform channel estimation using the uplink Pilot Sequences (PSs) [20, 23, 24, 85, 86]. The du-
ration between channel estimations should be less than the minimum coherence interval related
to the specific application environment and system configuration, which together with the need to
minimize overhead limit the length of the PSs and hence the number of available orthogonal PSs.
In contemporary TDD cellular systems, the same set of PSs is used by all active users within each
cell and also reused in all adjacent cells for channel estimation [20, 24]. This leads to the critical
problem of pilot signal interference between adjacent cells, widely known as pilot contamination
[21, 24, 86, 87], which is one of the main impairments that limit the performance of massive MIMO
systems. Massive MIMO [7], which employs a large number of antennas at a BS to support beamed
or parallel links to one or multiple users, is widely considered as one of the key technologies that
enable the substantially higher system capacity in the emerging 5G cellular systems. As massive
MIMO requires accurate CSI, it is commonly deployed together with TDD, and is thus particular
susceptible to the pilot contamination problem.

Pilot contamination is caused by inter-cell interference between pilot signals from adjacent
cells, and can be a major cause of errors in the CSI of an intended user at the serving BS leading to
sub-optimal beamforming. When this is compensated by an increase in transmit power at the user
equipment or BS, it leads to reduction in the battery lifetime of mobile devices, or wasted energy
at the BS. If this degradation is not sufficiently compensated, it causes a drop in the quality of
service experienced by the users. Pilot contamination exhibits a strong presence in non-favorable

propagation environments where the number of scatterers is not sufficiently large [26, 39]. Re-
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ducing the effects of pilot contamination can improve the accuracy of channel estimation (or CSI)
[37, 85, 86, 88]. This tends to improve the energy efficiency and enhance the sum-rate capacity at
each cell, and hence improve the system capacity to serve more users [39].

Motivated by the needs to efficiently mitigate pilot contamination, especially in TDD massive
MIMO systems, we propose a novel mechanism named DPS. Rather than using the same set of
orthogonal PSs in every cell, adjacent cells in DPS use a different set of nearly-orthogonal PSs,
thus avoiding pilot contamination. We prove, mathematically, that this scheme reduces the inter-
cell interference compared to the conventional pilot scheme currently in use, leading to a smaller
MMSE in channel estimation. Besides, our proposed novel DPS does not require any additional
hardware configuration and is easy to integrate within current wireless communications systems
including massive MIMO. It also consumes the same amount of energy and uses the same transmis-
sion overhead as in the conventional scheme. DPS requires only a few additional signal-processing
operations that can be readily supported in contemporary systems.

The main contributions of this work include: (1) introduction and proposal of DPS as a novel
mechanism to mitigate pilot contamination in cellular wireless networks, which is generally appli-
cable in both TDD and FDD systems and can be employed in any wireless communications system
including 5G and beyond (2) validation of the effectiveness of DPS through detailed mathematical
analyses and simulations to show how DPS enhances TDD system performance with a guaran-
tee for a uniform QoS for each and every user being served in the system, especially in systems
employing massive MIMO, compared to the conventional pilot scheme.

As a first strategy, to validate our proposal, we start from a microscopic configuration of L cells,
deriving simple conditions under which DPS outperforms the conventional scheme for each and
every user under two-channel models: the i.i.d. and the correlated Rayleigh fading channels. In
sharp contrast, prior work mostly focused on minimizing a weighted sum of Mean-Squared Errors
without a per-user performance guarantee. Second, we move from a microscopic configuration of L
cells to a macroscopic configuration of the whole cellular network, explaining why the advantages

of our DPS still remain even if we keep the same overhead (i.e., the number of PSs is independent



2.3. Related Work

of the number of cells).

The i.i.d. Rayleigh fading wireless communication channel model is conventionally used in
the theoretical studies of massive MIMO. However, a study on massive MIMO channel measure-
ments conducted at Lund University [23] has found that these channels are well-represented by the
correlated Rayleigh fading wireless communication channel model. Therefore, in this chapter, to
demonstrate the advantages of implementing DPS in any wireless communication system including
massive MIMO, both the i.i.d. and the correlated Rayleigh fading wireless communication channel
models are used in our analyses.

The rest of this chapter is organized as follows: In the next section, we review the related
work. In Section 2.4 we present the system model. In Section 2.5 we introduce DPS as a general
scheme that is broadly applicable in wireless communication systems. We show how DPS can be
integrated in such systems and why it outperforms the conventional pilot scheme by enhancing
CSI accuracy and consequently mitigating the pilot contamination, especially in massive MIMO
systems. We prove mathematically that DPS achieves channel estimates with smaller MMSE than
the conventional scheme, under the i.i.d. Rayleigh fading wireless channel model. In Section 2.6,
these analyses are extended to the correlated Rayleigh fading wireless channel model, which has
been shown to be appropriate for massive MIMO systems. In Section 2.7, we illustrate the ap-
plication of DPS in massive MIMO by considering the entire cellular network at a macroscopic
level. Section 2.9 presents and evaluates the obtained numerical results. Section 2.10 concludes the

chapter.

2.3 Related Work

Existing solutions for the pilot contamination problem generally employ one or more of the fol-
lowing approaches: 1) adjacent cells coordination, 2) user grouping, 3) uplink and downlink coop-
eration, 4) interference alignment, and 5) blind estimation, which add complexity to the system in
terms of signaling for coordination or computations for signal processing.

For instance, the scheme in [52] employs adjacent cell coordination to eliminate pilot contam-
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ination. Pilot transmissions are organized in phases, such that users served by a BS stay idle in
one phase while users served by an adjacent BS transmit their PSs. This scheme increases the pilot
transmission overhead by a factor equal to the number of phases. Correspondingly, the approach
proposed in [44] uses time-shifted PSs that requires multiple-cell coordination and asynchronous
pilot transmissions in adjacent cells. Contrarily, DPS does not require users in adjacent cells to
transmit their PSs in different phases or different times, and hence it does not require multiple-cell
coordination or asynchronous pilots between adjacent cells.

To allow the use of a relatively small number of orthogonal training sequences to simultane-
ously train the links of all users, the works in both [89] and [90] followed the second approach by
grouping users according to their spatial signatures. In contrast, DPS does not require the grouping
and classification of users within the cells. Moreover, both works assumed the existence of a long
preamble to enable extraction of the required model parameters. On the other hand, DPS does
not have extra requirements on the preamble on top of what it is ordinarily used for, and it can
easily accommodate a shorter preamble to reduce system overhead. As a consequence, saving in
preamble’s duration can be used in the actual transmission, thereby offering more enhancement to
the system spectral efficiency. While a unified transmission strategy for TDD/FDD massive MIMO
has been proposed based on the spatial basis expansion model in [89], one of the objectives of this
strategy is to improve channel estimation for both uplink and downlink while reducing the train-
ing overhead. Consequently, more orthogonal training sequences can be allocated to the adjacent
cells and be exploited to mitigate pilot contamination. To extend this approach, the uplink and
downlink channel estimations for both TDD and FDD in time-varying massive MIMO networks
were investigated in [90]. A sparse Bayesian learning framework is designed to estimate the spatial
signatures and temporal varying characteristics of the channel model and exploit them to learn the
spatial information instead of the channel covariance matrices to avoid computation complexity. It
is important to highlight that DPS can also be integrated in both FDD and TDD massive MIMO
systems, although this chapter only evaluates the performance of DPS in TDD massive MIMO.

The pilot contamination mitigation scheme proposed in [47], which exemplifies the third ap-
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proach, is based on a downlink training stage followed by a scheduled uplink training stage, with
the downlink training stage adopting phased coordination with adjacent cells as in [52]. However,
DPS does not depend on coordination between the uplink and downlink. The uplink training in
DPS is used for estimating the downlink CSI to enable beamforming and precoding of downlink
transmissions, which does not add any additional complexity to conventional TDD system opera-
tion.

It has been shown recently that exploiting interference alignment allows the BS to use the radio
resources more efficiently under certain conditions. However, to achieve the optimal performance,
this approach needs to deal with a large number of signaling dimensions, which is proportional to
the number of interferers under consideration. The pilot contamination mitigation scheme proposed
in [91] uses interference alignment and a soft-space-reuse based cooperative transmission scheme
to improve CSI estimation. However, to enable the use of low dimensional training matrices,
this approach requires cooperation between adjacent cells, and thus exemplifies the combination
of approaches one and four. Also, through optimizing and minimizing the Mean Squared Error
(MSE) at each BS, an interference cancellation transceiver that reduces the overhead transmission
has been proposed in [92] for multi-user cooperative multi-cell networks. However, it is found
that there is a trade-off between the computational complexity and the number of users. In sharp
contrast, the complexity associated with these approaches is not found in DPS while the latter is
still capable of enhancing the system spectral efficiency. DPS also offers more signaling to the
BS without any additional system complexity or trade-off between cooperation amongst multiple
adjacent cells and computational complexity, as DPS does not require any cooperation between
multiple adjacent cells to manage the interference.

As the fifth approach, blind pilot decontamination as proposed in [42] exploits singular value
decomposition to perform a blind channel estimation directly from the received data without train-
ing. To separate the signal subspace and the interference subspace, this approach assumes the
existence of asymptotic orthogonality between the channel vectors and requires a high computa-

tional complexity. To reduce the complexity of this approach, semi-blind pilot decontamination
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was proposed in [50]. It treats the detected uplink data as pilot symbols such that a constrained
optimization problem based on an asynchronous pilot protocol was formulated for each user. How-
ever, the proposed semi-blind algorithm also requires intensive computations and its efficiency
depending on the data length. In comparison, DPS does not incur any additional computational
complexity over existing pilot detection schemes and its performance is independent of the length
of the transmitted data.

To summarize the above, the drawbacks and research gaps found commonly in currently sug-
gested solutions that overcome the pilot contamination problem include, but are not limited to, the
following: 1) limited performance in pilot contamination suppression; 2) the requirement of addi-
tional hardware configuration; 3) excessive computational complexity; 4) need of BS coordination
resulting in additional signal processing and transmission overhead; 5) reduction in the spectral ef-
ficiency; 6) need of excessive backhaul integration; 7) increase in the length of the training period;
and 8) dependency on the user’s mobility speed. The work we present in this chapter addresses

these drawbacks and research gaps which highlights the novelty and importance of DPS.

2.4 System Model

In this section, we present a system model that can be used to evaluate any pilot signaling design
including our DPS. We consider an uplink transmission in a wireless communication system with L
cells in each cluster!. Figure 2.1 illustrates a cell cluster with L = 7. Each cell has one BS located at
the center, or alternatively an Access Point (AP), and serves up to K user equipment or terminals in
its coverage area. Assume that each BS is equipped with M antennas and each UE is equipped with
a single antenna. If M > K, then this wireless communication system is conventionally known as
a massive MIMO system. We use (CELL INDEX, USER INDEX) to uniquely identify a UE in the
system-cluster. For example, UE (i, j) means the jth UE in the ith cell. Let hf i€ CM be the vector

of uplink channel coefficients from UE (i, j) to the BS in the /th cell. Following the notations in

IThe concept of clustering here is the same as that in cellular network planning for frequency-reuse. It is assumed
that cells in adjacent clusters are sufficiently separated in distance that mutual interference can be neglected.
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[21] we model hfj as
l Il ol
hij = :Biljgij (2.1)

in which the large-scale fading coefficient ﬁilj is known a priori and the vector of small-scale fading
coefficients gf ;18 drawn as i.1.d. from the complex Gaussian distribution € N (0,1)), where ,Bll] =
(d=P)! j» p is the path loss exponent, and d is the distance between the ith UE in jth cell and BS
in [th cell. For presentation simplicity, we begin in this section with the i.i.d. Rayleigh fading
wireless communication channel in our system model, and will consider the correlated Rayleigh
fading wireless communication channel in Section 2.6.

In every coherence interval of the wireless communication channel, each UE transmits a PS that
consists of T symbols to enable the BS to estimate the CSI of the link between the BS and the UE.
That is, the vector of channel coefficients k' ; 1s assumed to be constant throughout the coherence
interval, which length is dependent on the mobility speed of UEs and the propagation environment.
Let ¢;; € C* be the PS of UE (i, j). Then, the pilot signals received at the BS of the /th cell from
all active UEs being served synchronously in a cluster is denoted by the matrix ¥; € CM*7 and can

be written as:

Y, =Y nlol+w, (2.2)
(i.j)

where W; € CM*7 is the matrix of the additive channel noise whose entries are drawn as i.i.d. from
€N (0,07).

Upon receiving the M x 7 size matrix Y, the BS of the /th cell estimates the vectors of channel
coefficients for all the K active UEs in its coverage area {hfl, . ,hf x}- A particular goal of the
BS of the /th cell in the cluster is, for each UE(,k) in the cell, to find the optimal estimate of the
channel coefficient vector for the UE, i.e., ﬁ;k that minimizes the MSE from the actual channel

coefficient vector hl,. That is,

Al
h —ar minJE{ B, —h 2}, 23
ik = arg min, 1y —hll2 (2.3)
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where the expectation is over the Rayleigh fading distribution. It has been shown in [93] that the

. . Al . .
optimal estimate h;;, using the MMSE estimator is given by:

Iy, = (ﬁfkqb{i ®IM> (D@ Iy) " vee(Y)), (2.4)

where D) is the covariance matrix and is given by:

D, =c’I:+ Y Bliol (2.5)
(i,))
In (2.4), ® is the Kronecker (tensor) matrix (vector) product operation and the vec(-) operation

stacks the columns of a matrix into a single column vector. The corresponding MSE is given by:

2
MSEj = MBj,—M (Bj;)” $1iD; ' du. 2.6)

The above MSE formula shows that achieving MMSE is subject to choosing an appropriate PS, and
this formula applies to any design of PSs {¢;;}. While it is straightforward to evaluate a particular
pilot design by using (2.6), it is nontrivial to propose a simple design that is easy to implement
and is universally better® than the conventional design that uses orthogonal pilots. Our proposed
DPS enjoys simple conditions under which it outperforms the conventional scheme for all UEs in
the network. In addition, our DPS design contains only one design parameter that facilitates the
implementation.

On the other hand, as mentioned above the wireless communication system under consideration
becomes a massive MIMO when M > K (i.e., the number of BS antennas in massive MIMO is
much greater than the number of UEs being served in the cell). So, based on this system feature
and according to the law of large numbers, massive MIMO implementation grants the closeness
to a favorable propagation environment. Thus, simple linear estimators are close to optimal under

semi-favorable propagation conditions [24].

2By universally better, we mean that a scheme provides better channel estimation than other schemes for every UE
being served in the whole cellular network.
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Cell ID Ps Cell ID ¥4

Cell ID Ps

Figure 2.1: A cluster of seven non-cooperative adjacent cells with Cell-IDs assignment for
DPS, the home cell is located in the center. {@1,¥2,¥3,¥4,¥s,96,%7} are the as-
signed Cell-IDs sequences.

2.5 Dual Pilot Scheme

In this section, we present the proposed novel DPS as a general scheme that can be employed in any
wireless communication system using pilot signaling for CSI estimation. Also, we show how DPS
yields significantly better accuracy in estimating the CSI compared with the conventional scheme
employing orthogonal pilot signals, referred as the SPS in this chapter, and would therefore lead to
performance enhancement of a wireless communication system. This is proven through theoretical
analyses under the i.i.d. Rayleigh fading wireless communication channel model, described in
the previous section, and using the MMSE estimator, which is well-known to achieve the best
performance in both low and high signal to interference-plus-noise ratios compared to other types
of estimators [21, 93-95]. Although we consider only the MMSE estimator in our analyses which
is used by the current state-of-the-art works, DPS is compatible with other types of estimators such
as ZF and the Maximum Ratio Combing (MRC), and can achieve improved performance with these

estimators as well.
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2.5.1 SPS with Orthogonal Pilots

Consider N normalized orthogonal sequences, {11, ..., %, ...,%¥n}, where each sequence 1, € C*

is a normalized vector (i.e., ||1|l2 = 1) and T > N. For SPS, the PS used by the intended UE (I, k)

in the intended cell consists of a single code sequence, given by:
b= VP 2.7

where P represents the power constraint determined by the limited energy resources and system
configuration. (Note that ||qblk||% = P for any intended UE (/,k).) Substituting (2.7) into (2.5) and
(2.6), we obtain the MSE for SPS (with details given in Appendix A.1)

P

I S— (2.8)
0% +PY: By

2
MSE;}® = MB, — M <ﬁ11k>

2.5.2 DPS with Non-Orthogonal Pilots

The proposed DPS utilizes the same N normalized orthogonal code sequences as in SPS, but divide
them into two groups as in {t,...,¥N_r,¥1,...,or}. The sequence ¢ is called the /th Cell
Identification (Cell-ID), which is assigned to the /th cell in the cluster of L cells and is reused
across system-clusters. The sequence v is called the User-Equipment Identification (User-1ID),
and is assigned to the kth UE in each cell in the cluster of L cells and is reused across system-
clusters. Thus, the Cell-ID in-conjunction with the User-ID can uniquely identify any UE in the
cluster of L cells. For our example of a seven-cells® cluster, as shown in Figure 2.1, seven different
Cell-IDs, given by sequences 1,2, ¥3, P4, Ps,Ps, 7 are used to identify the seven cells, the
home cell is located at the center and has given number 1. The number of active UEs that can be
served per system-cluster at this configuration is shown in Table 2.1, which compares the maximum
numbers of UEs served per system-cluster for DPS, denoted as UCP?S, and SPS, denoted as UCSS,

Note that these numbers are limited by the number of PSs available for assignment. The actual

3This configuration can be generalized to any cluster size that has an arbitrary number of cells.
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Table 2.1: Dual PSs assignments and comparisons of total numbers of UEs served in a system-
cluster for SPS (UCS"®) and DPS (UCP?S) with T = N = K and L = 7 at different values
of M. Where M and N are the numbers of BS’s antennas and available orthogonal se-
quences, respectively. N — L and ID are the numbers of repeatedly reused sequences
(User-IDs) and Cell-IDs sequences in the system-cluster, respectively.

M N=K N-L ID=L UCPPS ycss

32 8 1 7 7 56

64 16 9 7 63 112
128 32 25 7 175 224
256 64 57 7 339 448
512 128 121 7 847 896
1024 | 256 249 7 1743 1792
2048 | 512 505 7 3535 3584

number of UEs that each cell would actually serve at any time depends on the SINR and might
be lower than the upper limits shown in Table 2.1. It is important to mention that the duration of
the training period within a coherence interval is the main factor that determines the number of
available orthogonal sequences N. In practice, the value of N increases as the length of the training
period increases, which implies longer coherence interval duration. The length of the training
period is inversely proportional to spectral efficiency. Therefore, there is a trade-off between CSI
accuracy, spectral efficiency, and system capacity. The optimal value of N should be chosen, in
practice, to offer a higher system capacity subject to maintaining high spectral efficiency.

In DPS, as each UE (/,k) is uniquely identified by a pair of code sequences, we combine them

into the so-called dual PS, which is given by:

du = VP (VIb+ V1= 101) 2.9)

where ¥ € (0,1) is a design parameter to be specified later. Note that || |3 = P for any intended
UE (I,k) as before. In other words, DPS consumes the same amount of energy as SPS. However,

as will be shown below, DPS enhances the CSI accuracy and thus it has a better energy efficiency
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compared to SPS. Substituting (2.9) into (2.5), we obtain

DPP(y) = e+ v Bipjf + (1= 1) L avpiel! +/7(1=7) X PBj; (vl + i)
: | o (2.10)
where o; = PY.; ilj and B; = PY; ilj are short-hand notations. Hence, the MSE for DPS is given
by

2 -1
MSER™S () = MBl, M (BL) #it (DP™(1) o @.11)

Note that, when y = 1, we have MSELY5 (1) = MSE?!S, which is as expected.

Next, we describe the CSI estimation procedure at the BS in the /th cell in order to provide
our readers with more insights. Recall that the received signal is given by ¥Y; =} ; hf i ,'Tj+ Ww;.
Upon receiving Y, the BS in the /th cell computes Ym,/);f for je{l,...,N—L} as well as Y} for

ie{l,...,L} (where ¢j and 7 are complex conjugates of 1); and ¢;, respectively). Note that

Yiph = Y hiyol i+ Wi (2.12)
(i7)

= Y VP (V] + /T 1l ) o)+ Wi 2.13)

= V1P Y hi;+ Wi (2.14)

where W7 € CM is the effective noise whose entries are drawn as i.i.d. from €4 (0,62). Simi-

larly,

Yioi = Y byl ioi + W) (2.15)
)
= Y VP (vl +/T= 10l ) o) + Wi} (2.16)
J
= V(=P hi;+ Wi (2.17)
J

where W} € CM is the effective noise whose entries are drawn as i.i.d. from ¢4 (0, 6?). Then,
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the BS in the /th cell applies the MMSE estimator for the intended UE (/,k) based on the N pro-
cessed signals, namely {¥;9} IJV;IL and {Y;p;}- |. The MSE of this estimator is given by (2.11)
as explained before.

Finally, we turn our attention to finding a sub-optimal CSI estimator for two reasons. First,
the sub-optimal estimator can be designed to be a “low-complexity approximation” of our optimal
MMSE estimator described above. This would be of practical interest if we would like to reduce
the computational complexity as well as the processing latency at the BS. Second, the sub-optimal
estimator may allow us to derive an upper bound for the MSE given by (2.11). This bound will be
used in the proofs of our main theoretical results.

Unlike the optimal MMSE estimator that relies on N processed signals, our proposed sub-

optimal estimator only uses two processed signals ¥;1; and Y;¢; given by

Yipi = /YPY b+ Wiy (2.18)

and

Yiof =/ (1=y)PY hj;+Wip;. (2.19)
j

Then, the sub-optimal estimator conducts the MMSE estimation for the intended UE (I, k) based

on Y4 and Y;; only. That is,

Y ;

it = (BALV/7P /(=P @ 1) (D™ () @) , (220

Yipp

where the covariance matrix D;V®(y) is given by

YPY Bl +0*  \/Y(1—7)PB;
D" (y) = ‘ U=NPh | 2.21)

VY1 =7)PB (1_7)P2jﬁllj+02
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The corresponding MSE is

T

T rem)y | YT e

MSE;(®(y) = MBj, — M (Bllk> 2P
VIi=y VI=y

Clearly, we have MSE;"E () > MSERFS (y) since the above estimator is suboptimal (as it is based

on only two processed signals).

2.5.3 Characterizing the Advantages of DPS

We will show that DPS is universally better than SPS under certain conditions. That is, there exists
a parameter 7y such that MSERYS (y) < MSEJFS for each and every intended UE (1,k) in the Ith
cell. Therefore, DPS provides a better channel estimation for each and every user compared to the
conventional SPS. DPS gives the BS the ability to do this minimization operation of estimation
errors for each and every user individually. Consequently, the BS can focus on improving the CSI
accuracy of users being served at cell’s edges to enhance their QoS, as a goal that ensures promoting

fairness and uniform QoS for the whole users being served. We have the following theorem.

Theorem 1 If the parameter y € (0,1) is chosen such that

1—y LBy
Y (LBl

P
< ?for all k, (2.23)
then MSEDTS (y) < MSESYS for all k.

Proof: The proof consists of two steps. First, we have MSE{® (y) > MSERFS(y) as explained
before. Second, we show that our suboptimal estimator still achieves a smaller MSE than the
SPS for each and every intended UE (/,k) under condition (2.23). Therefore, we conclude that
MSERS (y) < MSE}F® for all k under condition (2.23).

We now focus on Step 2, showing that MSESYE(y) < MSESF® for all k under condition (2.23).
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Comparing (2.22) with (2.8), it suffices for us to prove that

T

VY VY 1

(DR (7))~ > (2.24)
vI=y JI—y| O +PLBy
The details are given in Appendix A.2. O

Theorem 2 The optimal 7y for the intended UE (1,k) under the suboptimal estimator is given by

LB

v= YiuBl+Liu Bl

(2.25)

T

VY VY

Proof:  Taking the derivative of g,"®(y) = (D;YB(y)) ! , we can show that
VI=y VI=y
SUB

g " (7) is unimodal over the interval (0,1) and y* is the only zero of its derivative. The details are
given in Appendix A.3. Therefore, y* maximizes g;”" () for UE ([,k). O

Note that )+, [311 ; can be viewed as “intra-cell interference” since all the UEs in the /th cell
share the same sequence ;. Similarly, };; ﬁ,lk can be viewed as “inter-cell interference” as UE
(i,k) share the same sequence vy (i.e., every kth UE in each cell in the system-cluster share 1)).
Hence, Theorem 2 says that y* is the fraction of intra-cell interference over the total interference.
This provides us with some design guidelines. For example, y* is relatively small when the cells are
densely packed (which implies a relatively large };; ﬁilk) and each cell supports a smaller number
of UEs (which implies a relatively small } ;¢ ,Bll j).

Nevertheless DPS advantages come with a price of serving L fewer UEs than with SPS, where
L is the number of cells in the system-cluster, assuming the same N orthogonal sequences are
used. This is because SPS uses all N orthogonal PSs to serve the K UEs in each cell, i.e., K =
N, whereas DPS needs to use L of these sequences as the Cell-IDs and can only assign N — L
sequences to the UEs in each cell. However, as shown in Table 2.1, this disadvantage diminishes as

K grows large. Nevertheless, DPS ensures a uniform high QoS for each and every UE and enhances
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the system capacity indirectly by improving the CSI accuracy which is essential to maximize the
data throughput. Moreover, despite the number of PSs available for assignment to UEs in a cell
determines the maximum number of UEs that can be served simultaneously, in practice, the cell
can only serve a smaller number of UEs due to pilot contamination effects, in the case of SPS,

where an acceptable level of interference is the constraint.

2.6 Correlated Rayleigh Fading

In this section, we extend our discussion to the correlated Rayleigh fading channel model. We
assume that the small-scale fading vector g’ ; is drawn from &4 (0,R! ;) where R ;€ CM*M g
the covariance matrix. The remaining settings are the same as in Section 2.4. Therefore, for a
correlated Rayleigh fading channel, it has been shown in [93] that the optimal estimates of the
vector of channel coefficients for the intended UE in the intended cell (i.e., ilék ) using the MMSE

estimator at the BS in the /th cell is given by:
hy, = Zy Uy 'vee(Y), (2.26)

where Z;; € CY*™ and U; € C*M*™ are given by

Zy = BLot R, (2.27)
and
U =0T+ Y Bioijd OR};. (2.28)
(irj)
The corresponding MSE is
MSE;; = Bl te(R}) — tr (Zy U, 'Z3) . (2.29)

Note that when Rfj = Iy for all (i, j), then (2.29) reduces to (2.6), i.e., the MMSE for the i.i.d.

(uncorrelated) case.
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2.6.1 SPS with Orthogonal Pilots

Following the steps in Section 2.5.1, we obtain the MSE for the SPS under correlated Rayleigh

fading
2 -1 H
MSESPS — Bl ir(R!,) — P (/3[,() | R, (o—zIM +y B,-lkPRfk> (ng) _ (2.30)

In particular, if Rfj = I for all (i, j), then (2.30) reduces to (2.8), i.e., the MMSE of the SPS for

the i.1.d. (uncorrelated) case.

2.6.2 DPS with Non-Orthogonal Pilots

Substituting the dual PS, given by (2.9), ¢y = VP (\/74x + /T — y¢;) that used by the intended

user (/,k) into (2.28), we obtain

UPPS(y) = 0o + P Y Bl (ww;’ (- P VAT (0 + o >) ORL.
(i,))
2.31)

The corresponding MSE is given by

-1
MSERPS(7) = Bhur(Rly) (2 (VPP () 2. 2.32)

2.6.3 Characterizing the Advantages of DPS

Recall that the BS in the /th cell applies the MMSE estimator for the intended UE (/,k) based on
N processed signals, namely {Yl'gbj IJY:_{“ and {Y ;! ,'L:1- However, similar to the i.i.d. case, we
will here construct a suboptimal estimator that uses only two processed signals as follows. Upon

receiving the signals from all users Y;, the BS in /th cell computes ¥;1); and Y;¢; and then applies
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the MMSE estimator based on ¥;4); and Y;¢; only. That is,

Y

i = (BLLV/1P /(T =P 2Ry ) (U () , (2:33)

Yip;

where the covariance matrix U;V®(y) is given by

YP 0 0 0
U (y) = o’ Ly + Y B} QR+ Y Bllj ®R5j

i#Z |0 0 10 (1—y)P
(2.34)
YP y(1=y)P
+ By © R
y(l-mp (1-7P
The corresponding MSE is
T
2 V7 | VY
MSE;™ () = Bler(Rl,) — P (Bf,) @R}, (U°(1) ® (Ry)"
Vi—y Vi—y
(2.35)

Clearly, in this case we will have MSESY®(y) > MSEDRPS(y) since the above estimator is subopti-
mal.

We are particularly interested in a case when all the UEs have the same covariance matrix R’
for the small-scale fading at the BS in the /th cell. (That is, Rf = R’ for all (i, j).) This case allows

us to have simplified expressions

YPY B /Y(1—7)PBj, .
VYA =7PB (1- Y)PZjﬁzlj

USUB (y) = 6% Loy + R (2.36)
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and
T
2 NG | VY
MSE;" (7) = Blur(R') — P (Bj,) OR' (U (7)) @ (R
Vi=y V1i=y
(2.37)
Next, we introduce two short-hand notations:
T
Y - Y
fir(A) =tr VY QR (U (y)) " VY ® (RHYH |, (2.38)
vi—y Vi—y
and
_1 i
en—tr| R (GZIM +ZﬁkaRl> (Rl) . (2.39)

By comparing (2.37) and (2.30), we have the following theorem.

Theorem 3 When R! ;= R’ for all (i, j), the suboptimal estimator of DPS is universally better than

the MMSE estimator of SPS if and only if fix(A) > gy for all k.

Proof:  When R!; = R' for all (i, j), then MSE}’® (y) < MSE;"® if and only if fix(A) > gy. O
Note that if R' = I, the condition fj;(A) > g reduces to the condition (2.24), which is proven
in Appendix A.2. Theorem 3 allows us to numerically find the value of A for any given covariance

matrix R’ such that our suboptimal estimator is universally better than the SPS.

2.7 DPS in Massive MIMO Cellular Networks: Macroscopic
View

The previous sections proved that DPS is a superior mechanism that can be integrated into any

wireless communication system, including massive MIMO, to enhance CSI estimation accuracy

and consequently improve the system’s performance. As it is highly expected that massive MIMO

will be used in practical implementations of 5G cellular networks in the coming years, a question

naturally arises: “How can we integrate DPS into the practical implementation of massive MIMO?”
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In this section, we answer this question by highlighting the practical features of DPS, comparing
DPS with other recently proposed schemes, and providing a macroscopic view of how the entire
cellular network’s planning can be configured with the DPS integration. Thereafter, we propose a
system-cluster size that utilizes DPS assignments efficiently and provide a detailed illustration of
its features in massive MIMO.

As aforementioned, pilot contamination is the main inherent impairment of massive MIMO.
Different approaches have been presented in Section 2.3 that provide suggested solutions to over-
come the pilot contamination. However, these solutions suffer drawbacks and their effectiveness is
subjected to limited scenarios and certain conditions (i.e., specific environments and system con-
figurations that cannot be generalized) [17, 34, 42, 44, 47, 50-52]. Clearly, the existence of these
drawbacks forms obstacles that may prevent these recently suggested solutions to be adopted in
practical implementations. In contrast, our proposed novel DPS mechanism fills these gaps and
mitigates their limitations or shortcomings by offering the following features: 1) easy to imple-
ment; 2) incurs the same overhead and the same length of the training period as SPS; 3) does not
require additional hardware or a change in the cellular network backhaul; 4) reduces the pilot con-
tamination and resulting CSI errors significantly; 5) independent of user’s mobility speed; and 6)
improved spectral efficiency. Therefore, DPS offers the feasibility for implementation in practical
environments of 5G cellular networks and beyond.

Figure 2.2 illustrates the performance comparisons between DPS and some recently proposed
pilot contamination mitigation schemes for enhancing channel estimation. We set up the systems’
parameters to form identical or closest environments to ensure fair comparisons. Besides, the
NMSE has been selected as the performance metric. From the figure, it can be seen that DPS
outperforms the compared schemes by achieving lower MMSEs over the considered range of SNR
and also ensures a uniform QoS for each and every user as demonstrated in Figure 2.2, which shows
how DPS outperforms other suggested solutions. DPS treats edge UEs uniformly as central UEs
and ensures to achieve the smallest MMSE while estimating the CSI for every UE being served in

the cell, not as other schemes where UEs either are classified into edge UEs and central UEs or BS
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Figure 2.2: Performance comparisons between DPS and some exiting schemes for pilot con-
tamination mitigation.

focuses on achieving the smallest average MMSE not the smallest MMSE for each and every UE.

2.7.1 Integration Plan of DPS into Massive MIMO

Recall, DPS is based on using two sets of (orthogonal) sequences as demonstrated in the previ-
ous sections. The first set {¢1,...,¢r} is used to identify the cells and is thus called Cell-ID
sequences, where L is the cluster size based on the planning of the cellular network. The second
set {2)1,...,%n_L} is the set of User-ID sequences, each assigned to a different UE in each cell,
where in DPS N > (K 4 L) and K is the maximum number of UEs being served simultaneously in
each cell based on the capacity of the cellular network and N > K in SPS. The User-ID sequences

are reassigned (reused) in all the cells in a system-cluster and in all other clusters. The number of
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orthogonal code sequences N is determined by the characteristics of the coherence interval in the
TDD system as explained before. It is important to re-emphasize that with DPS these cells work in
a non-cooperative mode of operation, which is a desirable approach in practical implementation.

Table 2.1 shows the dual PSs assignments in a system-cluster consisting of L = 7 non-cooperative
adjacent cells, at different configurations of M. It also shows that the DPS becomes more efficient
as we increase M and K. In Table 2.1, N is the number of available orthogonal sequences in the
codebook, ID is the number of sequences used to identify the cells uniquely within a cluster (i.e.,
Cell-IDs), N — L is the number of repeatedly used sequences (i.e., User-IDs), and UCPPS is the
number of UEs (per cluster) that being served and use the dual PSs in the system.

According to Figure 2.1, so far we have considered the performance of DPS within the center
cell of a system-cluster, which would be the worst case performance when there is no other cell
outside of the cluster. Nevertheless, in practice a cellular network may have any number of cells. In
the following, we show that the above results remain valid when we add more clusters to expand the
coverage area. While the Cell-ID assigned to each cell in a cluster is unique, when more clusters
are added there will be multiple cells with the same Cell-ID. This calls for cell planning, which
is similar in concept to frequency-reuse planning in legacy cellular networks. The purpose of cell
planning is to ensure that two cells with the same Cell-ID are sufficiently far apart so that their
signals do not interfere with each other.

Figure 2.3 illustrates cell planning with seven-cell clusters (i.e., L = 7), in which each hexagon
represents a cell and seven colors are used to identify seven group of cells, each cell assigned
with one of the seven Cell-IDs. We note that a dual PS constructed using (2.9) only guarantees its
uniqueness within a cluster; i.e., dual PSs are reused in cells with the same colour in Figure 2.3,
where BSs are ~ 2.3 cell-diameters (referred as the reuse distance) away from each other. If the
link budget guarantees that signal power received at any home cell from cells that are at least
one reuse distance away is negligible, then we can assume that the dual PSs in one cluster do
not contaminate the dual PSs in adjacent clusters or clusters farther away, and the mathematical

analyses presented in the previous sections are still valid and can be extended in a straightforward
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Very large distance

Figure 2.3: Dual Pilot Scheme with Cell-IDs and cluster reuse. Cells with the same color are
using the same unique BS’s dual PS identifications (i.e., the same Cell-ID and User-
IDs).

manner. The “inter-cell interference” ¥4, Bilk remains the same because users (i, k) share the same
sequence ;. However, the “co-cell interference” which arises due to the reuse of Cell-IDs and
the existence of co-cells (i.e., cells use the same Cell-IDs) contains two terms: one is still }_ ik ﬁl’j,
and the other 18 ). ;4 ﬁll, i for all other cells [’ of the same color (i.e., Cell-ID) as cell /. Assuming
the total number of cells the network needs to cover its coverage area is C. Then, as we will soon
see, the second term is often small. So, setting L = 7 and here the number of clusters needed is
[%] gives us almost the same estimation accuracy as setting L = C where the number of clusters
needed here [%1 = 1. In other words, the impact of reusing Cell-IDs on performance degradation
is negligible.

Thus, the cluster size depends on the reuse distance, which in turn depends on the radio environ-
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ment. The choice of a cluster size of seven is conservative. In this regard, SPS can be considered a
special case of DPS with a cluster size L = 1, in which case the use of a Cell-ID sequence becomes
unnecessary and all the available orthogonal PSs are assigned to different UEs in each cell.
Therefore, according to Figure 2.3, the pilot signals received at the BS of the /th home cell from
all active UEs being served synchronously in its cell, first-tier cells, second-tier cells, and third-tier

cells can be denoted by the matrix ¥; € CM*7 and can be written as:
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where d; < dy, < d;, < dy;, d; 1s the distance between UEs and BS in the /th home cell, d;, is the
distance between UEs in any cell belongs to a first tier and BS of /th cell, d;, is the distance between
UEs in any cell belongs to a second tier and BS of /th cell, dy, is the distance between UEs in any
cell belongs to a third tier and BS of /th cell. Clearly, 0 < d; < d]"*, where d;"** equals to the cell
radius. Also, d" < d;, < /10 d"™, 2 d" < d;, < /26 d"™, and /15 d"™ < d,, < /50 dI"™.
The co-Cell-IDs interference started to arise at the third tier, according to locations of cells having
co-Cell-IDs of Ith cell (i.e., same color) in Figure 2.3, the average distance between UEs in any of
these cells to /th cell range from v/28 — 1 ~ 4.3 d"™ up to V28+1~6.3 d"™. Consequently, the
average increment in path loss of received co-Cell-IDs interfere signals at BS of a home cell will be
in the range of {—6.33p dB,—7.99p dB} added to the maximum path loss of the desired received
signals.

Therefore, it is evident that the co-cell interference, due to Cell-IDs reuse, between the centric
cell at any cluster and each of its co-cells in adjacent clusters is negligible due to a very large
distance between them that result in a very strong path loss. Remarkably, reusing Cell-IDs in
practice allows more active users to be served simultaneously which increases the capacity of the

cellular network without any harmful interference penalty.
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2.8 Additional Desirable Features of DPS

The previous sections have demonstrated and proved the main feature of the proposed novel DPS
in enhancing the CSI of the UEs being served. Besides, the features of DPS are multi-fold, this
section highlights these additional features that can be used in the practical improvement of wireless
communications systems with the main focus on 5G cellular networks and beyond. Figure 2.4
illustrates the integration structure that will be used at any BS (Alternatively an AP) in any cell of
the system to incorporate the DPS. For presentation simplicity, it shows the structure that is used at
a BS of a system-cluster that consists of two non-cooperative adjacent cells that serve up to K active
UEs in each cell. This structure can be generalized to a BS that is equipped with an M antennas
and located within a cluster of L cells. The DPS additional features can include, but are not limited
to, interference alignment, smart pilot assignments, and updating the second-order statistics of the

communication channels at the BS in a periodically real-time manner.
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Figure 2.4: DPS Structural integration for a cluster of two non-cooperative adjacent cells
where the BS is equipped with one antenna and serves K UEs.
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2.8.1 Interference Alignment and Interference Cancellation

Interference alignment is a strategy that has been adopted recently to be integrated into a transceiver
to increase the sum-rate capacity of the cell in cellular networks. Interference alignment uses linear
precoding to align the interfering signals in code, frequency, space, or time such that the inter-
ference signal lies in a reduced dimensional subspace at each intended receiver. However, this
transmission strategy requires coordination and feedback information which will result in many
challenges such as excessive backhaul integration, overhead, and reduces spectral efficiency. Ac-
cording to Figure 2.4, DPS provides the BS’s transceiver with a periodically real-time feedback
CSI about all adjacent cells without any coordination or backhaul cooperation integration. There-
fore, this available real-time information, at the BS of the home cell, about the adjacent cells can
be exploited to build efficient interference alignment algorithms in the downlink transmissions and

also interference cancellation algorithms in the uplink receptions at the BS.

2.8.2 Smart Pilot Assignment and User Scheduling

Smart pilot assignment algorithm is responsible to select which pilot in the code-book is suitable to
serve a certain UE based on the real-time system configuration and communications environment.
Such an algorithm is essential to maintain a lower bound of both intra-cell interference and inter-
cell interference which consequently guaranteed the optimality of the system performance and can
be integrated into efficient users scheduling algorithms. In contrast to SPS, where an efficient pilot
assignment is very challenging, in DPS such an algorithm is easy to adopt in a methodical and
real-time manner. As shown in Figure 2.4, the BS of the home cell in DPS are provided with real-
time CSI periodically for both UEs belong to its coverage area and also for UEs being served in
the adjacent cells, i.e., interfering cells. This available information can be used as inputs to smart
algorithms to add a distinguishability feature to the BS that provides the knowledge to check if a
User-1D sequence is currently in use at the adjacent cell/s or it is idle. Thus, a User-ID sequence
that is not assigned at adjacent cells will be given a high priority of assignment to be used by one

of UEs being served in the coverage area of the BS.
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2.8.3 Periodically Updated the Second-Order Statistics

Theoretically, statistical CSI is usually assumed to be available at the BS and perfectly known.
However, in practice this assumption is difficult to realize precisely and a solution is needed to
overcome this challenge. Also, the large scale fading coefficients depend on the separation distance
between the BS’s antenna and the UE’s antenna. Beside, MIMO technology is adopted in most
5Gs networks, with a large MIMO dimension in massive MIMO where the large scale fading has
an importance as it is the main significant fading effect [24]. Therefore, it is very important for
a BS to acquire a precise real-time second-ordered statistics and updating the large scale fading
coefficients which should be done continuously. On the one hand DPS provides the BS with a
more accurate CSI periodically. On the other hand, according to Figure 2.4, the statistical level
of CSI is extracted over a long term and DPS enables the BS to do this extraction mechanism
accurately in a real-time manner, not only for its home cell but also for its adjacent cells. The
received Cell-IDs pilot signals at the BS can be exploited jointly with the other received signals
to extract these second-order statistics. Thus, the proposed DPS in this dissertation, brings reality
a practical system that can start with a transient second-order statistics and then reach a real-time
second-order statistics after a specific period of employing DPS, which its length is determined

based on the system configuration and communications environment.

2.9 Numerical Results and Discussions

To mimic the real environment and assess the performance of the proposed DPS in comparison with
SPS, numerical results are presented and evaluated in this section. We consider a cluster of seven
cells in a system with an urban outdoor multi-micro hexagonal cells massive MIMO configuration.
The home cell under consideration is located at the center of the cluster and surrounded by six
adjacent first-tier cells that form the source of pilot contamination as shown in Figure 2.1. Each
cell has K active users. To generate the orthogonal PSs for SPS we used Walsh Hadamard matrices
of size 7, X 7,, where 7, = K + 7 with complex entries. Each column in this matrix represents a

PS that is orthogonal to those represented by the other columns. Subsequently, to generate the dual
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Table 2.2: The parameters used in simulations

Parameter Name Setting
Number of BS Antennas M 32, 64, and 128
Carrier Frequency 2 GHz
BS Antenna Height 25m
Cell Radius 600 m
Min UE-BS distance 75 m
Bandwidth 20 MHz
Number of UEs K 8 at each cell
UE Height 1.7m
Pathloss and Lognormal Shadowing From [96]
Noise Power Spectral Density -174 dBm/Hz

PSs for use in DPS, the forward Walsh Hadamard transform is used to rearrange the columns of this
matrix in ascending order with respect to the order of the sequences (i.e., number of zero-crossings
or number of changes in the sign of entries in every column). The columns with the seven highest
order of the sequences are assigned as Cell-IDs of the seven cells. The remaining sequences are
used as User-IDs. A (Cell-ID, User-ID) pair of orthogonal sequences forms a dual PS based on
(2.9) and uniquely identify a UE in the cluster. We assume the UEs in every cell are uniformly
distributed around the cell’s BS with equal power allocation. The simulation considers the worst-
case scenario and uses synchronous transmissions of PSs in all cells in each configuration either
when using a single PS for SPS or a dual PS for DPS. Table 2.2 shows the simulation parameters.
We also assume that the scatterers are distributed randomly in each cell and that a frequency flat
fading channel during each frame, where each frame occupies the channel coherence interval. Each
coherence interval is divided into four parts, the uplink training interval, the uplink data transmis-
sion interval, the downlink beam-forming (i.e., linear pre-coding) interval and the downlink data
transmission interval. We use MATLAB as the simulation environment. Furthermore, we have
done a calibration for the simulation environment by choosing simulation’s configurations identi-
cal to those used by the existing MIMO LTE cellular system (i.e., at reducing the number of BS’s

antennas), the simulation has produced results that matched the benchmark results. Lastly, due to
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the theoretical superiority that Linear MMSE (LMMSE) has shown amongst other estimation al-
gorithms (as aforementioned) and for evaluating the impacts of DPS practical implementation, we

assume the BS employs the LMMSE estimation method in the simulation environment.

2.9.1 Normalized Mean Squared Error

The NMSE is used to evaluate the proposed novel DPS and compare it with the SPS. Considering

the mth element of A!., then the NMSE of the estimates of the wireless communication channel

ij»

coefficient between the jth user in the /th cell and the mth base station antenna at the /th cell

o Ry~ S - . .
th is given by NMSEZ’ = 1%/22\[:1 E{ M} where hf’}" is the estimated channel coefficient,

a7
hf’l" is the actual channel coefficient and n is the simulation index. Figure 2.5 shows the NMSE
in the correlated Rayleigh fading channel environment of 1) the single cell scenario without the
effects of pilot contamination (i.e., the case which is free from the effects of pilot contamination
because adjacent cells do not exist), 2) the NMSE of the multiple non-cooperative adjacent cells
scenario using the conventional SPS (i.e., single PSs are used), and 3) the NMSE of the multiple
non-cooperative adjacent cells scenario using the DPS (i.e., dual PSs are used). Figure 2.6 shows
the NMSE for the i.i.d. Rayleigh fading channel environment case. The curves show that for the
SPS, as the SNR increases the inter-cell interference level increases. As a result, the NMSE will
be saturated at high SNR. While in DPS, as the SNR increases the inter-cell interference level

is minimal and fixed. As a result, the NMSE decreases proportionally, which leads to channel

estimation enhancement and improving CSI accuracy.

2.9.2 Achievable Sum-Rate

The sum-rate of a cell provides information about the achieved average high data throughput. In

particular, we follow the method proposed in [94] to compute the achievable ergodic sum-rate C éum

)}

where & is the average SNR per BS receiver’s antenna and H; is the estimated channel matrix at

at the BS of the /th home cell. The sum-rate is given by Cl = E{ log, ( Ix +EH lHﬁl

the BS using the LMMSE estimator.

Figure 2.7 shows the achievable sum-rate of the following cases: a single cell, non-cooperative
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fading channel.
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Figure 2.7: The achievable ergodic sum-rate per cell at M = 32 and using the correlated
Rayleigh fading channel.

multiple adjacent cells using SPS, and non-cooperative multiple adjacent cells using the DPS. The
performance achieved using the proposed novel DPS is very close to the performance of the single
cell configuration (i.e., the case which is free from the effects of pilot contamination because ad-
jacent cells do not exist). This shows that the proposed DPS significantly eliminates the effects of
pilot contamination, improves the channel estimation, enhances the CSI accuracy, and consequently
boosts the average high data throughput. Additionally, Table 2.3 presents the massive MIMO cell
capacity Cyp, at given values of NMSE for various SNRs when correlated Rayleigh fading channel
is used. The table reveals a comparison between SPS and DPS where it demonstrates that DPS
outperforms SPS and achieves a smaller NMSE, which resulted in improving the CSI and conse-
quently improves the achieved sum-rate capacity. On the other hand, the BS can achieves the same

sum-rate capacity that SPS offers at a lower SNR which implies improving the energy efficiency.
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Table 2.3: Comparisons of cell capacity

Cl

sum

in bps/Hz, for DPS and SPS at a given values
of NMSE in (dB), for correlated Rayleigh fading channel when M = 128, K = 8, and

L=17.
SNR  NMSEP?S  NMSES?S  CDFS CoFs

-10 | -11.4146 | -9.1973 | 3.0072 | 2.0704

5| -12.7374 | -10.2721 | 4.1616 | 2.7570

0 | -13.7779 | -11.4327 | 87215 | 4.8596

5 | -17.1431 | -12.5563 | 16.3685 | 10.6665

10 | -204576 | -13.9362 | 26.6856 | 18.5142

15 | -24.8243 | -14.2946 | 38.5148 | 27.6051

20 | -29.2082 | -14.6852 | 49.8413 | 35.9962

2.9.3 Singular Values Spread

One of the important metrics for assessing the performance of massive MIMO and analyzing the
propagation environment involves measuring differences between the channel coefficients of dif-
ferent UEs and the joint spatial correlation between columns of the channel matrix (where each
column represents the parallel channels between each UE and the BS’s antennas). This can be eval-
uated by finding the Cumulative Distribution Function (CDF) of the Singular Value Spread (SVS)
I', the spread between the smallest and the largest singular values of the wireless communications
channel matrix H;, where hf j is the jth column in the matrix H;. Assuming the ordered singular
values of H; are Gll > Gé > > GII( > 0, then the SVS in dB can be computed by I' = 10log;, (g—l}i).

SVS, which also known as the condition number, shows whether the columns of the channel
matrix tend to be orthogonal or highly correlated. If the singular values of the matrix H; are equal
(i.e., the square roots of eigenvalues of the matrix H; X H{I , also known as a Wishart matrix, are
equal), then the Euclidean norm condition number will be equal to one. In this case, the columns
of the channel matrix are orthogonal and the users’ signals will be separable and free of pilot
contamination at the BS. Moreover, the variance of the CDF of the SVS provides information about
the stability behavior of the system, (this stability increases as the variance decreases). Figure 2.8

and Figure 2.9 show that the median of the SVS is the largest at M = 32, this means the fading

margin is high and the additional power required to get reasonable SINR will be the highest.
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Figure 2.8: The Cumulative Distribution Function of the Singular Values Spread when the
correlated Rayleigh fading channel is used.
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Figure 2.9: The Cumulative Distribution Function of the Singular Values Spread when the
1.i.d. Rayleigh fading channel is used.

Also, Figure 2.8 shows the numerical CDF curves of the SVS for the channel matrix used
in 1) the case of a single cell scenario 2) the non-cooperative multiple adjacent cells scenario

when the DPS sequences are used and 3) the non-cooperative adjacent multiple cells scenario that
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uses the conventional SPS when the correlated Rayleigh fading wireless communication channel is
simulated using M = 32, M = 64, and M = 128. Similarly, Figure 2.9 shows the numerical CDF
curves of the SVS for the channel matrix used in all the three cases when the i.i.d. Rayleigh fading
wireless communication channel is simulated. Also, Figure 2.8 and Figure 2.9 illustrate the channel
characteristics and SVS of the real wireless communications channel measurements performed in
[23].

Besides, Figure 2.8 shows that the real measurements are most closest to the simulation envi-
ronment settings when M = 32 for i.1.d. Rayleigh channel. So, we have evaluated the performance
of DPS at M = 32 for i.i.d. and correlated Rayleigh fading channels. This shows how the perfor-
mance of DPS has been assessed in a simulation environment that has a very good closeness to the
real environment. Also, figures reveal implicitly, the performance of DPS in a real environment
that has an existence of a high correlation will be better, as DPS was assessed under the worst con-
ditions and considered a high fading margin compared to the real environment. Finally, in-depth
mathematical derivations of the joint CDF for eigenvalues of the Wishart matrix H; X H? and the
CDF for its condition number (i.e., the equivalent joint CDF for singular values of the channel ma-
trix H; and CDF for its condition number, taking into account a square root transformation function

between random variables) are available in [19].

2.10 Conclusions

In this chapter, we have proposed the novel DPS as an efficient mechanism for mitigation of pilot
contamination, and shown that it offers unique desirable features for use in massive MIMO systems
by improving system performance without cooperation between BSs. The advantages of DPS over
the conventional SPS have been proven mathematically, under the i.i.d. and the correlated Rayleigh
fading channel models. We have shown that by properly choosing a system parameter, DPS can be
designed so that it has universally better performance than SPS. Unlike the state-of-the-art works,
our DPS enjoys a uniform quality of service and per-user guarantees to enhance the performance.

Using proposed planning with a seven-cell cluster for pilot signal reuse with the proposed DPS,
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we have shown how DPS can be practically applied in an entire cellular network that has any num-
ber of cells. This reuse concept can be generalized to any cluster size appropriate for maintaining
the distance between two cells that use exactly the same PSs. Simulation results have been pre-
sented to show the advantages of DPS over SPS in terms of normalized mean squared error and the
sum-rate cell capacity, due to much improved channel estimation at various signal-to-noise ratios.
Remarkably, the numerical results have revealed that DPS reduces the normalized mean squared
error of the channel estimates by about 10 dB at 10 dB SNR relative to SPS, and the sum-rate
capacity of DPS approaches that of the single-cell scenario that is free from pilot contamination,
showing the effectiveness of DPS in almost completely mitigating the harmful effects of pilot con-
tamination. Beside, due to the existence of a high correlation in the communication channels in
practice, the DPS has the tendency to be more efficient and beneficial for practical implementation
in reality. Lastly, while we have demonstrated the effectiveness of DPS for TDD massive MIMO
systems, DPS is a general design that can be applied in any wireless communications system that

utilizes PSs for CSI, including 5G and beyond.



Chapter 3

Barker Coded DFT-s-OFDM Waveforms for
5G Uplinks

3.1 Synopsis

DFT-s-OFDM is used in LTE-Advanced (LTE-A) which is considered the Fourth Generation (4G).
DFT-s-OFDM is expected to be used as the air interface waveform for uplink transmissions in 5G
cellular networks according to the 3GPP recommendations. We investigate the performance of
DFT-s-OFDM and the trade-off between its EE and SE in 5G uplinks employing massive MIMO
antenna systems. We propose a novel method, using an adaptive length Barker Code (BC) for
spreading in DFT-s-OFDM, to improve the EE-SE trade-off in 5G uplink transmissions. The per-
formance of the proposed system is evaluated in terms of EE, Bit-Error Rate (BER), sum-rate
capacity, and NMSE under the i.i.d. and the correlated Rayleigh fading wireless communications
channel models. We extend DPS that we develop in Chapter 2 to operate in massive MIMO-
NOMA. Furthermore, we investigate the scenario where PD-NOMA is deployed over 5G uplinks
with the proposed waveform and examine the SE and EE of near/far user pairs. The numerical
results show that the proposed air interface waveform results in a significant improvement in the
uplink EE without degrading the SE over a range of SNRs for massive MIMO uplinks with either
OMA or PD-NOMA.
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3.2 Introduction

Uplink air interface waveforms need to be energy efficient to facilitate EE in uplink transmission.
For designing the air interface waveforms in 5G cellular networks with MIMO technology, there
are currently two possible approaches that provide backward compatibility with older generations
of cellular networks. These are the OFDM [97] and the DFT-s-OFDM. Two main advantages of
OFDM are the mitigation of ISI, and the ease of the channel equalization by converting a wide-
band frequency-selective fading channel into a group of parallel narrow-band frequency-flat fading
channels. However, it has been found that employing OFDM results in increasing PAPR which
leads to ICI, increased power losses in power amplifiers, and produces inter-modulation distortions.
For instance, uplink single-carrier NOMA and multiple-carrier NOMA face the drawbacks of high
PAPR due to the OFDM [98]. All of these drawbacks of OFDM have huge negative impacts on
EE. Therefore, the 3GPP has adopted DFT-s-OFDM for the uplink transmission in LTE networks
and 5G uplink transmissions to maintain acceptable PAPR level. DFT-s-OFDM waveforms in LTE
networks demonstrate improvements in reducing UE power consumption and in expanding the
coverage range. However, the performance of employing DFT-s-OFDM in 5G cellular networks
with both massive MIMO-OMA and massive MIMO-NOMA have not been investigated yet.

The differences between OFDM and DFT-s-OFDM is shown in Figure 3.1. In OFDM, time-
domain data symbols of each UE are payloaded and mapped into all allocated sub-carriers. There-
fore, the length of time-domain data symbols in OFDM without Cyclic Prefix (CP) equals the
number of the allocated sub-carriers in OFDM. In contrast to OFDM, data symbols length in DFT-
s-OFDM (i.e., length of Discrete Fourier Transform (DFT) outputs) is shorter than the number of
allocated sub-carriers. Therefore, frequency-domain data symbols (i.e., DFT outputs) are spread
amongst allocated sub-carriers, either in a distributed or localized configuration.

As 5G wireless networks aim to serve a variety of communications environments and services,
investigating EE and the performance of DFT-s-OFDM in 5G cellular networks is challenging. Re-
call, 5G wireless networks promise to support a variety of enhanced and new services, including

Enhanced Mobile Broadband (eMBB) for high speed Internet access, massive Machine Type Com-
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Figure 3.1: Payload data symbols comparison in OFDM, localized DFT-s-OFDM, and dis-
tributed DFT-s-OFDM, when 12 sub-carriers are used.

munications (mMTC) of pervasive 10T, and ultra-Reliable Low Latency Communications (uRLLC)
for Mission Critical Communications (MCC) such as between self-driving cars, with substantial en-
hancements in system capacity and EE [2, 3, 99, 100]. These enhancements are only enabled by
adopting advanced air interface waveforms that can adapt to different scenarios with improved EE
[101], and utilize massive MIMO antenna systems [7], which are key technologies of 5G RANSs.
Thus, it is important to examine the performance of any proposed air interface waveforms in a
massive MIMO environment.

In massive MIMO, as a BS is equipped with a large number of antennas. Intuitively, this
architecture improves the downlink EE since it reduces the power loss in power amplifiers and
uses focused beamforming. However, the EE of massive MIMO for the uplink scenario is less
well understood [97] [102]. Since EE in uplink massive MIMO is important for ensuring green
communications and meeting the 5G requirements, it becomes an essential factor in designing the
5G air interface waveforms [102].

On the one hand, the deployment of OMA technique into massive MIMO have the advantage
that intra-cell interference does not arise. However, the use of OMA limits the number of served
users, as this number is determined by the available orthogonal resources. On the other hand,
NOMA technology has the promise of enhancing the SE capability that would increase the system
capacity of 5G cellular networks. Multiple users in NOMA could be served using the same re-

source simultaneously. This, unfortunately, comes at the cost of introducing intra-cell interference.
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Besides, NOMA offers other advantages and reduces both the signaling overhead and the latency in
the uplink transmission. In addition, NOMA can offer a higher data rate, better cell coverage range,
and thus promotes more the feasibility of higher massive connectivity [103]. Moreover, NOMA is
compatible with current and future generation of cellular networks architecture, and it has been
proposed for the downlink of 3GPP LTE-A networks with the name of multiuser superposition
transmission [104]. In this regards, one of the promising applications of NOMA is the remote en-
ergizing of 10T sensors and Wireless Power Transfer Networks (WPTN) including their low-power
profile devices with limited charging capabilities, which intuitively required an energy efficient
uplink mechanism. These advantages encourage us to (1) explore the deployment of NOMA in
massive MIMO cellular networks, as NOMA promises to be a 5G technology that aids massive
MIMO to achieve the 5G technical targets, and (2) assess the proposed air interface waveforms in
massive MIMO with NOMA deployment.

In NOMA, multiple users are served simultaneously in the same frequency-time band. This
improves the spectrum efficiency and enables the simultaneous service of multiple users at various
communication channel conditions. However, this also introduces intra-cell interference amongst
users within the same cell and increases the receiver complexity due to the implementation of
SIC. There are two types of NOMA, the first is the Code Domain NOMA (CD-NOMA), which
requires more bandwidth, and the second is PD-NOMA. Improving the EE is our main goal in
this chapter. Therefore, we focus on the PD-NOMA because it is easy to implement, and can be
embedded into existing networks. In contrast to CD-NOMA, PD-NOMA does not require any
additional bandwidth. In PD-NOMA, paired users are assigned distinct power levels that maximize
the performance and ensure that a diverse range of power levels arrive at the BS [105].

From a NOMA perspective, the recent work on NOMA has focused on enhancing the SE and
on reducing the complexity of SIC at the receiver, but there have been few works on EE. The EE
optimization of downlink MIMO-NOMA deployments has been investigated in [106] but EE in
uplink transmission is still an open research area for more avenue of contributions. Accordingly,

in addition to a massive MIMO with OMA deployment, this chapter considers improving the EE
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of the uplink transmissions in a massive MIMO with PD-NOMA deployment. Also, one critical
factor that plays an important role in the realization of EE is the total consumed power in uplink
transmission. Total consumed power include transmission power, circui