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Abstract

Fifth Generation (5G) cellular networks will be the backbone of the telecommunications infrastruc-

ture for the next decade. Massive Multiple–Input Multiple–Output (MIMO) and Non-Orthogonal

Multiple Access (NOMA) are two keys technologies behind 5G that aim to make massive connec-

tivity and green communications feasible.

This dissertation aims to improve the performance of massive MIMO and NOMA in 5G cel-

lular networks and beyond with a particular focus on enhancing channel estimation, improving

energy efficiency, and increasing the Quality-of-Service (QoS). Firstly, we tackle the well-known

pilot contamination problem by developing a novel channel estimation scheme called the Dual

Pilot Scheme (DPS). We show via mathematical analyses and simulations that this new scheme

provides more accurate Channel State Information (CSI) and universally outperforms the con-

ventional pilot scheme in 5G networks. Secondly, we develop the Extended Dual Pilot Scheme

(EDPS) to handle both the inter-cell and intra-cell interference. Compared to state-of-the-art so-

lutions for solving the pilot contamination problem, our DPS/EDPS are easier to integrate within

the current 5G networks, while still achieving significant improvements for both massive MIMO

and NOMA. Thirdly, we improve the energy efficiency in 5G systems employing the Discrete

Fourier Transform-spread-Orthogonal Frequency Division Multiplexing (DFT-s-OFDM) waveform

by developing a new scheme that combines DFT-s-OFDM with Barker Codes and DPS/EDPS.

We show via extensive simulations that this new scheme improves energy efficiency, reduces

Peak–to–Average Power Ratio (PAPR), and limits Out of Band (OOB) leakage in various realistic

scenarios. Fourthly, we further enhance the QoS in 5G networks by developing a new decoding
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Abstract

scheme for uplink NOMA based on the Compute-and-Forward (CaF) framework. We show that this

scheme achieves better fairness and smaller outage probabilities, while essentially keeping the same

complexity as the conventional Successive Interference Cancellation (SIC) decoding. Finally, we

enhance the performance of Integer-Forcing Linear Receiver (IFLR) for massive MIMO-NOMA

by combining DPS/EDPS with CaF decoding to mitigate the imperfect CSI and lower the CaF

sensitivity to estimation errors.

Overall, we demonstrate that the novel schemes proposed in this dissertation will improve the

performance, provide valuable tools for tackling real-world technical problems, and enhance oper-

ations of 5G cellular networks and beyond.



Lay Summary

The tremendous and rapid growth in mobile devices, wireless sensors, and other intelligent devices

that require wireless connectivity is becoming a significant challenge for cellular networks. To

address the demands of the resulting massive wireless connectivity and support the exchange of

colossal volumes of data traffic, the 5G cellular network has been envisioned. In this dissertation,

we investigate two enabling technologies for 5G: Massive MIMO and NOMA. In particular, we

have developed several novel schemes that are able to obtain better channel estimation, improve

energy efficiency, enhance the quality of service, and increase the robustness and reliability of

5G technologies and user equipment. Through mathematical analyses and extensive simulations,

we demonstrate that our proposed novel schemes offer significant advantages over conventional

schemes in various realistic settings of massive MIMO and NOMA. The contributions of this dis-

sertation will reshape the 5G technologies and facilitate in creating technical efficiencies to 5G

cellular networks and beyond.
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Chapter 1

Introduction and Overview

1.1 Background and Overview

In next generation (Fifth Generation (5G) and beyond) wireless cellular communication networks,

extremely large volumes of data will be exchanged through the cellular networks between large

numbers of users, sensors, and machines. Recently, there is increasing interest in the integration of

high-density wireless networks, such as Internet of Things (IoT). As a result, high demand for the

technical infrastructure to deploy 5G cellular networks continues to grow. World-wide data traffic

is growing at an unprecedented rate, with an average annual rate of 170% over 2018 and 2019,

according to the Ericsson’s biannual Mobile-Traffic Report [1]. Furthermore, with this explosive

increase in demands on the data traffic, it is expected that approximately 4 billion additional mobile

devices and wireless sensors will need to be served by cellular networks by 2025. Figure 1.1 shows

these expectations graphically. Therefore, 5G and beyond Radio Access Network (RAN) should

address the goals for achieving high capacity, exponential traffic growth, high spectral efficiency,

and the increasing demand for high bandwidth with very low latency while offering enormous

device connectivity in an energy-efficient manner.

Thus, 5G cellular network targets are to increase 1) the system connecting capacity by 1000

times, 2) the average cell throughput by 25 up to 100 times, and 3) the spectral efficiency by 10

times [2–5]. Furthermore, it is expected that the number of cells in a 5G cellular network will

1
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Figure 1.1: Expected data traffic volume and number of subscribers to be handled by 5G
cellular networks [1]

increase significantly due to the high density of served users, which requires a shrinking in the cell

coverage within a geographical area to serve as many users as possible. One of the requirements

of 5G cellular networks is to offer enormous connectivity with reliable performance. Achieving

this presents extreme challenges when designing 5G cellular networks. As a result, 5G solutions

for cellular networks form a portfolio of technologies that will not be exclusive to one specific

access or connectivity technology. Massive Multiple–Input Multiple–Output (MIMO) and Non-

Orthogonal Multiple Access (NOMA) are the two promising candidates technologies for the 5G

cellular networks deployment [6] which attracted a lot of attention. Massive MIMO, also called

very large scale and full dimensions MIMO, has high capacity, spectral efficiency, and energy

efficiency. Massive MIMO is the most feasible technology that offers a massive access connectivity

[7]. On the other hand, NOMA is another 5G candidate technology which increases the access

connectivity that can serve multiple users at the same time and frequency band to achieve low

transmission latency, high spectral efficiency, and offer high capacity.

In mid 2019 Ericsson announced the commercializing of 5G new-radio for massive MIMO and

the first deployment for testing started in 2019 with 64 antennas at the Base Station (BS) and sup-

porting a variety of configurations including NOMA integration [8]. Massive MIMO and NOMA

are still open research areas with capacity for further improvements. This Ph.D. dissertation ad-
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dresses the critical limitations and impairments that affect the performance of these technologies

with the aim to improve the performance of uplinks and downlinks, at the BS and the User Equip-

ment (UE), that will result in an improvement to the overall Quality-of-Service (QoS), system

capacity, and bring 5G targets a reality.

1.2 Dissertation Objectives

The ultimate objective of the dissertation is to enhance the cellular networks equipped with 5G

technologies of massive MIMO and NOMA to ensure optimal performance and achieve the expec-

tations targets of 5G. To this end, the overall users’ traffic exchanged in the cellular network has

been analyzed in both Orthogonal Multiple Access (OMA) massive MIMO and massive MIMO

with NOMA deployment.

As a first step, this dissertation models, analyzes, and proposes novel improvements to the

pilot signaling scheme used for channel estimation to obtain Channel State Information (CSI), in

clusters consisting of groups of non-cooperative multiple adjacent cells. The performance of these

architectures of the cellular networks have been evaluated mathematically and numerically using

simulations to mimic the real environment scenarios. Furthermore, this dissertation investigates

employing Barker codes to improve energy efficiency in 5G cellular networks and beyond. In

addition, it examines the application of the Compute-and-Forward (CaF) method to improve the

performance of NOMA technology in 5G and beyond. Lastly, it further explores the enhancement

of Integer-Forcing Linear Receiver (IFLR) in massive MIMO-NOMA.

1.3 Research Motivations and Challenges

1.3.1 Imperfect CSI

Wireless communication channels are continuously changing over time and frequency, and are reg-

ularly subject to fading effects. The fading effects arise due to scattering, refraction, and diffraction

of the transmitted signal due to obstacles and sharp edges in the propagation environment. CSI

describes how these combined factors are represented and how the propagation of the signals be-
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tween the transmitter and receiver is impacted by their resultant effects. Also, these factors cause

the propagation environment to exhibit multipaths propagation and reception of multiple copies of

the transmitted signal at the receiver. The reception of multiple copies of the transmitted signal

causes fluctuations in its amplitude. This causes significant challenges in building reliable wireless

communications.

CSI can be classified into two types, Channel State Information at the Receiver (CSIR) and

Channel State Information at the Transmitter (CSIT), where CSIR in the uplink transmission is

acquired at the BS. CSIR depends on the system duplexing mode that uses either Time Division

Duplexing (TDD) or Frequency Division Duplexing (FDD) and the channel estimation approaches

are varied accordingly. Accurate estimation of the communication channel is essential to obtain an

accurate CSI. Accurate CSI is vital to carry out any required compensation to remove undesired

effects, and precisely extract the originally transmitted signals. The performance of any communi-

cation system depends on its communication channel estimation accuracy. Therefore, the system’s

performance degrades significantly as the accuracy of channel estimation decreases.

Two main approaches are used for channel estimation: pilot aided and non-pilot aided. The

pilot aided approach tends to be more practical and has become more popular, while the non-pilot

aided approach suffers from higher complexity and has implementation limitations. In the pilot

aided approach, it has been shown that the optimal number of pilot symbols in uplink transmis-

sion at each coherence interval is equal to the number of mobile station antennas under optimum

power allocation for data transmission and pilot signaling transmission [9]. However, pilot based

estimators require additional pilots for enhancing the CSI accuracy [10]. More pilot symbols in

the coherence interval result in reduced spectral efficiency, (coherence interval (Ic) = coherence

bandwidth (Bc) × coherence time (Tc)). There is an unavoidable trade-off between how many and

how often pilot symbols are used to estimate the CSI and both the accuracy of CSI and spectral

efficiency. Therefore, in [10] an iterative space-alternating generalized expectation maximization

estimator was proposed which uses data symbols instead of additional pilots to increase the CSI ac-

curacy. However, this scheme increases the complexity of the BS estimator and requires two stages
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of operations. Designing and using efficient pilot sequences in channel estimation for obtaining an

accurate CSI with small overheads will lead to a smaller Normalized Mean Squared Error (NMSE)

of the channel estimation and improved performance; this is a main goal of this dissertation.

Another approach is to use blind estimation by employing the Singular Value Decomposition

(SVD), which also encounters computational and implementation complexities. Conventionally,

to overcome the complexity of SVD at UE and its practical limits, it requires pre-knowledge of

CSI at both Transmitter (TX) and Receiver (RX) and cooperative signal processing for all RX

antennas and TX antennas respectively. The BS performs Joint Detection (JD) in the uplink and

Joint Transmission (JT) in the downlink. Both JD and JT require accurate CSI and any degradation

in the accuracy of CSI will lead to performance deterioration in the overall system, especially at low

Signal-to-Noise-Ratio (SNR) [11]. The degradation gap in the performance increases as the number

of BS antennas increases. Theoretically, we may increase the transmission power to compensate

the reduction due to imperfect CSI but practically, the transmission power should be kept within

certain constraints. A different approach was proposed in [12], where the CSI in massive MIMO

system had been estimated based on applying the sparse Bayesian learning method. However, in

addition to the complexity of the approach, the sparsity property was not enough as a condition,

and the incoherence property is required to have a satisfying performance and valid assumptions.

In systems that employ TDD, there is channel reciprocity between uplink and downlink. There-

fore, the downlink instantaneous CSI is obtained by estimating the uplink instantaneous CSI. How-

ever, to avoid any CSI error, a calibration for hardware differences for the uplink and downlink

Radio Frequency (RF) chains is necessary. Thus, CSI imperfection can happen at the BS’s receiver

due to several reasons like RF chains mismatching. Also, the time delay between uplink channel

estimation and downlink transmission may be greater than the coherence time of the channel. This

leads to a random mismatch between uplink and downlink CSI accuracy. The effects of imperfect

channel reciprocity (due to random mismatch and hardware differences in downlink and uplink

channels in the RF chains) in TDD massive MIMO on CSI accuracy have been modeled and in-

vestigated in [13]. It has been found that this results in significant degradation in the CSI accuracy.
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This consequently results in a reduction in the performance of linear pre-coding and the overall

system performance, which in turn reduces the Signal-to-Interference-plus-Noise-Ratio (SINR) of

the received signals. It has been also found that the channel estimation error is amplified by the

reciprocity error [13]. On other hand, as the CSI will be used in the downlink precoder, it will de-

termine the allocated directive antennas that should be used. This relates to the power allocations

per antenna and affects the energy efficiency. More specifically, CSI inaccuracy may lead to the in-

correct use of antennas (i.e., pointing in wrong direction or use of extra antennas which may cause

interference and waste radiation power). Therefore, removing the Multi-User (MU) interference

in a Multi-User MIMO (MU-MIMO) system will be impossible in the presence of the imperfect

CSI due to the mismatch between the exact CSI and the pre-coder. In this Ph.D. dissertation, we

propose Dual Pilot Scheme (DPS), which performs the uplink estimation in a very short time and

ensures that the delay between the uplink estimation and the downlink transmission is less than the

coherence time. This leads to improvements in the accuracy of CSI of the downlink pre-coders.

Furthermore, in TDD massive MIMO system, Orthogonal Frequency Division Multiplexing

(OFDM) is adopted to mitigate the Inter–Symbol Interference (ISI) and exploits the space-frequency

diversities; however, this is based on using multiple sub-carriers. Therefore, the co-channel inter-

ference (or Inter–Carrier Interference (ICI)) has a high probability of occurrence when the CSI

lose their accuracy. On the other hand, there exists an inherent source that contributes to the CSI

inaccuracy due to hardware impairments. The hardware impairments also contribute to the channel

estimation errors and increase the inaccuracy of CSI. For example, the lack of perfect compensation

in phase noise, imbalances between in-phase and quadrature signals at the front end of the analogue

processing at the baseband, ICI, and inter-modulation due to the non-linearity in amplifiers may re-

sult in an inaccurate CSI [14]. Although some techniques and algorithms are used to compensate

and mitigate these impairments, these deterioration effects can not be removed completely [15].

Imperfect CSI leads to a mismatch in decoding at the BS receiver [16]. An imperfect CSI sig-

nificantly affects the data decoding of the uplink transmission, and consequently, the downlink data

transmission and beam-forming as TDD adopts the channel reciprocity. Jose et al. have shown
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the impact of imperfect CSI on the precoding of the downlink transmission [17]. Therefore, as the

channel estimation error increases, the ergodic capacity decreases while the bit error rate, symbol

error rate, and the outage probability increases. Outage probability occurs when the probability of

the instantaneous SINR falls below a certain threshold. The capacity gain offered by the MIMO

communication system is sensitive to the CSI errors where imperfect CSI results in reduced capac-

ity gain. The effect of imperfect CSI on MIMO system’s capacity and power allocation has been

investigated under Rayleigh flat fading channels in [18] and it has been found that the degradation

in capacity and the effects on power allocation vary, according to the characteristics of the commu-

nication channel and the fading conditions. The availability of an accurate CSI leads to a reduction

in the required power radiated by UE and improve the energy efficiency.

On the other hand, accurate CSI in a time-varying channel is important to achieve the goals

of the channel coding, enhance quantizers performance in the analogue-to-digital converter and

analogue-to-digital converter, limiting the ISI, increasing the utilization of resources, and prevent-

ing co-channel interference. The channel estimation error in TDD massive MIMO depends on

noise, number of antennas, the estimated channel matrix, and the length of pilot sequences. The

channel matrix becomes a space-time matrix if multiple symbols are sent at the same time to a mul-

tiple antennas. It is considered semi-static over each coherence interval (fading block). The CSI

accuracy increases and the channel estimation error decreases as the pilot signal power increases

and the number of pilot symbols increases within each coherence interval. However, while the

allocated power is subjected to several constraints, the length of the pilot sequence is limited which

in turns limits the number of orthogonal pilot sequences. Also, as the length of pilot sequence

becomes shorter, the channel estimation errors become slightly larger and lead to a bounded inac-

curacy at CSI. The length of a pilot sequence should be equal to or greater than the total number of

served users.

Therefore, reducing the channel estimation errors and increasing the accuracy of CSI involves

various type of techniques. Most techniques require complex signal processing and iterative algo-

rithms with a large number of iterations. This is a very challenging undertaking to be integrated in
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real environments. In this Ph.D. dissertation, the CSI accuracy has been improved and the channel

estimation error has been reduced by adopting a technique that uses simpler signal processing and

a fewer number of iterations. Also, the accuracy of the channel estimation can be improved by

designing a proper pilot scheme according to the propagation environment and system in use.

1.3.2 Massive Multiple Input Multiple Output

The idea of massive MIMO originated from the applications of random matrices theory. In a

random matrix, if the number of rows increases excessively compared to the number of its columns,

then the singular values of the matrix tend to be equal [19]. In this case, the columns tend to

be pair-wise nearly orthogonal, which is a feature that can be exploited in the area of MIMO

communications systems. Massive MIMO is an essential technology for the realization of 5G. It

has the ability to offer tremendous access connectivity to serve a very large number of users and

devices (e.g., as is the case in IoT).

As the number of BS antennas increases largely, the communication system converges to a

massive MIMO where more users can be served and a higher sum rate throughput can be achieved

for each cell. Although this leads to huge signal dimensions, massive MIMO due to hardening of

the wireless communication channel offers to achieve high multiplexing gain with simple linear

signal processing schemes. More antennas at the BS means higher spatial resolution that allows

the BS to focus the energy toward the targeted users. Focusing energy results in reduction in both

inter-cell and inter-user interference (intra-cell interference). However, achieving this is dependent

on having an accurate CSI. Therefore, massive MIMO as a large scale MU-MIMO is a technology

where the BS is equipped with a large number of antennas to achieve multiple orders of spectral

efficiency, enhance the spatial degree of freedom, and increase the throughput of each user (i.e.,

lead to increase the sum-rate capacity of each cell). On the other hand, one of the fundamental

benefits of massive MIMO is to harden the wireless communication channel to ensure reliable

wireless communication and enhance the diversity and spatial multiplexing gains, even if the UE

has only one antenna.
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Moreover, deploying a large number of antennas (compared to the number of served users) at

the BS improves the performance and reduces the complexity where simple linear signal processing

like Minimum Mean Squared Error (MMSE) can be used and provides nearly optimal performance

[20]. The MMSE receiver/precoder in uplink/downlink is the best amongst all types of linear sig-

nal processing based receivers/precoders, whereas such receiver/precoder maximizes the received

SINR and outperforms all linear precoders over the entire range of SNRs [21]. This results in

achieving high multiplexing gain and simplicity in signal processing. Also, it aides in improving

the energy efficiency in both downlink and uplink. In the downlink, the BS focuses the energy

beam into a very localized area. This enhances the spatial grid resolution and results in locating

the targeted UE precisely and focuses the beam of the downlink transmitted signal. In the uplink,

a very high array gain can be achieved by using coherent combining which results in significant

reduction of the UE transmitted power, however, more improvement is needed. In downlink, as the

number of antennas increases then lower-power rating amplifiers can be used to work in the linear

region which results in improved energy efficiency.

In massive MIMO, in order to achieve high diversity and spatial multiplexing gains, the BS is

required to employ coherent processing of the received signals. Accurate and timely acquisition of

CSI is required, however, this is extremely challenging, especially in high mobility environments.

However, in its ideal scenario, massive MIMO implementation grants a favorable propagation en-

vironment. Therefore, based on the law of large numbers (i.e., when the number of BS antennas

are very high compared to the served users), the length of the vectors representing the CSI between

the users and BS antennas increased and CSI vectors become pair-wise nearly orthogonal. The

degree of orthogonality becomes near optimal as a huge number of scatterers exist in the propaga-

tion environment. As a result, provided the CSI are accurate, the received signals from multiple

users are separable and result in maximizing the sum-rate capacity. The favorable propagation of

a channel can be assessed either by the condition number of the channel matrix or by comparing

the achievable sum-rate capacity with the one having favorable propagation, where the latter is

more general. Then, under this favorable propagation, the wireless communication system can ex-
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ploit the advantages of massive MIMO where the effect of noise and inter-user interference can be

averaged out with simple linear signal processing like MMSE. The channel matrix also becomes

well-conditioned. However, the cost of using the simple linear estimators in the uplink and linear

pre-coders in the downlink at massive MIMO is the overhead requirement of acquiring accurate

instantaneous CSI.

Antenna selection is another promising technology that may be used to get the advantages of

massive MIMO while reducing its complexity. An accurate CSI is essential to achieve the target

of antenna selection and is considered as a critical design objective [22]. In the reality, massive

MIMO suffers from inherent impairment which is conventionally known as the pilot contamination.

Pilot contamination reduces the CSI accuracy, the channel estimation performance, and spectral

efficiency. Also, the failure in obtaining an accurate channel estimation can be considered, and

seen from the opposite angle, as the main cause of the pilot contamination [12].

The classical multiple access used in the conventional massive MIMO is OMA. Also, TDD

is the efficient and most widely feasible approach to be used in massive MIMO due to its unique

feature of reciprocal channel [23–25]. TDD is more flexible in utilization of the frequency spectrum

as the uplink and downlink signals use the same frequency channel in different time slots. As a

consequence, the wireless communication channels of uplink and downlink are reciprocal under

perfect radio frequency chain calibration and the channel estimation can be done only once.

Assuming the BS is equipped with M antennas and serves K UEs. Conventionally channel

estimation is performed at the BS through pilot signals during the training phase of the uplink

transmission where it requires a minimum of K channel uses (i.e., K symbols) to estimate the CSI

of K served active users where the condition 2K < S 1 is required which independent of the number

of BS antennas, where S is the total number of symbols in the coherence interval. Therefore, reduc-

ing the pilot signaling overhead will improve the bandwidth utilization and increases the spectral

efficiency. In contrast to TDD, FDD needs to do estimation for both downlink and uplink where

1Using 2K symbols is the worst-case scenario. However, only K symbols are used for channel estimation if the UE
estimates blindly the effective channel coefficient for decoding the downlink signal. Then, the remaining symbols in
the coherence interval are used for effective data transmission.
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the overall channel estimation requires M +K symbols in the uplink transmission and M symbols

in the downlink transmission. Therefore the coherence interval should satisfy the constraint of

(M +K) < S which compared to TDD appears not as efficient in terms of effective transmission

usage of the coherence interval and it also limits the number of antennas equipped at the BS. Fur-

thermore, in FDD, the number of downlink pilots are proportional to the number of BS antennas.

Also, the bandwidth needed for the CSI feedback becomes very large. Both of these factors make

the implementation of massive MIMO based on FDD that is pilot based extremely impractical.

In TDD, the coherence interval has a limited length which results in an insufficient number of

orthogonal pilot sequences used in the training phase for estimating CSI. This leads to the pilot

contamination problem in multiple adjacent cells, especially in fast fading environments where

the channel has a shorter coherence time. As a result, this makes the number of available pilot

orthogonal smaller (i.e., worsens the pilot contamination and enforces the use of the same pilot

sequence, even in the same cell and creates both inter- and intra-cell interference). This dissertation

follows the same assumptions of using the MMSE receiver/precoder and TDD approach in massive

MIMO.

The main impairments that limits the performance of massive MIMO is pilot contamination

[24]. The pilot contamination problem arises because of the existing correlation between different

MU-MIMO channels due to: 1) insufficient antennas separation at the BSs and 2) the coherence

time of the communication channel being limited. The limited coherence time leads to a limited

number of users’ orthogonal pilot sequences used for the uplink to acquire and estimate the CSI at

the BS [20]; this pilot contamination problem has a strong presence in non-favorable propagation

environments where the numbers of scatterers are small compared to the numbers of users being

served [26]. To reduce the effects of pilot contamination several methods have been proposed, this

Ph.D. dissertation analyzes and examines them in Section 1.4 and Chapter 2. Furthermore, we

invented a new pilot scheme called DPS to mitigate the pilot contamination and offer additional

features for the BS. This Ph.D. dissertation introduces DPS as a general tool that can be applied

in any wireless communication system and demonstrates its application in massive MIMO and
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NOMA.

1.3.3 Non-Orthogonal Multiple Access

In wireless communication, multiple access involves multiple users to a one-point transmission. In

the uplink transmission of cellular networks, the one point is the BS that serves multiple users in

its cell coverage area. The separation of users’ received signals is achieved by using orthogonal

multiple access schemes in which either frequency, code, or time resources are mutually exclusive

allocated (orthogonal) for multiple users. NOMA is another type of multiple access that can be

used in transmitting the signals of multiple users to a one-point receiver. Multiple users are super-

imposed on the same orthogonal resource in NOMA. The frequency and time resources in NOMA

are shared among users that configuring a NOMA group, which are formed from multiple users

in the cell. Therefore, the received signals at the BS that are transmitted by those multiple users

are not orthogonal. The separation of users received signals in NOMA is achieved by using the

Successive Interference Cancellation (SIC) at the BSs’ receivers.

The challenges facing the realization and success of 5G cellular networks include the large

volume of traffic exchanged and the high users’ density with limited spectrum resources. These

challenges can be tackled by integrating both NOMA and massive MIMO [27]. Furthermore,

NOMA is considered as a 5G technology that aids massive MIMO to achieve low transmission

latency, high spectral efficiency and high capacity, under a strong assumption of having perfect CSI

[8, 27–30]. Compared to OMA, NOMA has many other features such as superior capacity and

better channel utilization. This dissertation focuses on the enhancement of both the OMA massive

MIMO and the NOMA massive MIMO in a practical approach that is feasible to implement.

One of the main impairments that limit the performance of NOMA is the error propagation dur-

ing the decoding of the received signals in the SIC due to imperfect CSI. Accurate CSI in NOMA

is essential and critical for achieving a reliable SIC [14], that will minimize the effects of error

prorogation between consecutive SIC stages. NOMA is yet under further examinations to improve

its performance, and rooms for more contributions are still available. One of the research gaps is to
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integrate NOMA into massive MIMO and equip the combined system with an accurate CSI. The

acquisition of an accurate CSI at the BS of a massive MIMO with NOMA integration is a very

challenging task to achieve in the conventional system structure. Integrating NOMA into massive

MIMO and finding effective ways to achieve this combination is also a very challenging and im-

portant topic that needs exploration [31]. Therefore, the Extended Dual Pilot Scheme (EDPS), we

propose in this dissertation, plays a vital role in achieving this integration between NOMA and

massive MIMO. Also, EDPS can provide an accurate estimate for CSI which is the key parame-

ter to enhance NOMA’s performance. This enhancement can facilitate proper resource scheduling

with low system complexity and offers lower channel estimation errors. Additionally, this disserta-

tion investigates CaF’s application to improve the NOMA performance and propose new decoding

schemes to be used in NOMA.

1.4 Literature Review of Related Works and Research Goals

1. Pilot Contamination Elimination in Massive MIMO: As previously mentioned, TDD is

the efficient and feasible way to implement the massive MIMO [23–25]. Accordingly and

as aforementioned, adopting TDD requires the BS to estimate the CSI using pilots signals

during the uplink training [23, 32, 33]. Pilot contamination during the uplink training is the

main inherent limitation that degrades the performance of massive MIMO [17]. Interference

arising from adjacent cells during the uplink training (due to reusing the pilot signals) is the

main source of pilot contamination [34]. Atzeni et al. in [35] suggested a pilot allocation

scheme that uses a fractional pilot reuse algorithm to minimize the effects of pilot contami-

nation. Since spectral efficiency is one of the main requirements of 5G, therefore the use of a

large frequency reuse factor to solve this problem is not an efficient approach because it will

reduce the spectral efficiency and the Pre-log factor [34]. Frequencies bandwidth where the

channel Doppler spectrum is equal to zero is known as the Pre-log factor. The reuse factor

is determined by how many cells reuse the pilots simultaneously. On the one hand, soft-

fractional pilot reuse incorporates power control (center users transmits less power than edge
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users by 1/3) and requires a fewer number of orthogonal pilots than the strict-fractional pilot

reuse but it has several drawbacks. On the other hand, the coherence interval of the channel

is limited, so the number of orthogonal pilots is limited [36].

Finding a creative solution for pilot contamination effects is a hot research topic. Several

researchers have worked on mitigating pilot contamination effects and proposed different

heuristic and suboptimal algorithms. Marzetta in [20] was the first to address this problem

in TDD massive MIMO for multiple cells with a non-cooperative scenario. Since then, it

has been extensively discussed in the literature [35, 37–52]. Xu et al. in [37] investigated

the pilot contamination effects on the estimation of CSI in massive MIMO over frequency-

selective channels and has shown that the MMSE estimation algorithm is more resistant

to pilot contamination. Ngo et al. in [38] also analyzed the effects of pilot contamina-

tion for physical channel models in multi-cell multi-user massive MIMO and showed pilot

contamination effects persist under finite dimensional channel models. Nguyen et al. in

[43] proposed time-shifted pilots and adopted two uplink training methods by combining the

conventional time-aligned pilots and time-shifted pilots to reduce the pilot contamination in

multicell massive MIMO. Jin et al. in [44] exploited combat pilot contamination property

of time shifted pilots and analyzed the performance of massive MIMO when a Zero-Forcing

precoder and beam-former were used. Besides, Ngo and Larsson proposed in [53] to ex-

ploit eigenvalue-decomposition to perform the channel estimation directly from the received

data under the assumption of the existence of asymptotic orthogonality between the chan-

nel vectors. To separate the signal subspace and the interference subspace, their approach

assumes the existence of asymptotic orthogonality between the channel vectors and requires

high computational complexity.

In contrast to the above, a semi-blind approach was proposed in [50] which has been devel-

oped based on the assumption of time shifted pilots and employs the independent component

analysis with successive cancellation. This approach has a similar problem of the time-sifted

pilots approach. Time shifted pilot signaling moves the BSs from operating in a synchronous
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into an asynchronous TDD mode of operation. This results in huge interference in uplink

transmitted signals, which is caused by the downlink transmitted signals. Downlink trans-

mitted signals have higher transmission power compared to the uplink transmission power.

The pilot decontamination performance will be a function of the pilot to data parts ratio. Eli-

jah et al. in [39, 40] introduced an extensive survey of other sources of pilot contamination

like hardware impairment, non-reciprocal transceivers, and presented suggested methods to

mitigate pilot contamination. These suggested methods were based on different assump-

tions, different system configurations, and different channel models. Based on the channel

estimation method, mitigation methods have been classified into either a subspace-based or

pilot-based approach.

Sarker and Lee in [41] studied the reduction of the pilot contamination problem in massive

MIMO based on a diagonal Jacket matrix. They proposed a diagonal Jacket based covari-

ance aided channel estimation method, where perfect multipath fast channel estimation was

assumed. Müller et al. in [42] analyzed a subspace projection to enhance the channel estima-

tion and proposed a blind pilot decontamination algorithm. The algorithm had a polynomial

complexity. Saxena et al. in [45] used an open loop power control and pilot reuse algo-

rithms adopted in Long-Term Evolution (LTE) and developed techniques to mitigate pilot

contamination. These techniques were effective for users moving at vehicular speeds and for

estimating the channel using a least square estimator. Lee et al. in [46] proposed a partial

sounding resource reuse strategy to mitigate pilot contamination where the cell was divided

into the center and edges areas, assuming multi-cells operated cooperatively in the edges

areas. Zhang et al. in [47] studied the pilot contamination (considering the OFDM system

parameters) and mitigated pilot contamination by using training techniques for both uplink

and downlink. Although the proposed techniques do not require the channel second order

statistics, they have the drawback of expanding the training overhead by a factor equal to the

number of interfering cells. In contrast, Farhang et al. in [48] replaced OFDM modulation

by Cosine Modulated multi-Tone (CMT) modulation and extended the blind estimation capa-
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bility of CMT to improve the accuracy of CSI and mitigate the pilot contamination in CMT

based massive MIMO. Sørensen and De Carvalho in [49] converted the pilot contamination

into randomized contamination by using pilot sequences hopping at each transmission slot

and used the Kalman filter to reduce the effect of randomized contamination. The channel

estimation was assumed to incorporate multiple time slots. This algorithm is efficient at low

and moderate mobility users.

Yin et al. proposed in [54] to assign the pilots among cells by using a covariance aware

pilot assignment scheme to mitigate the pilot contamination efficiently but this approach was

limited and worked under certain conditions of the channel covariance. Hu et al. in [50]

proposed a pilot decontamination algorithm based on semi-blind channel estimation, where

a constrained minimization optimization problem based on an asynchronous pilot protocol

was formulated for each user. The proposed algorithm required intensive computation and

its efficiency depended on the data length. Zhu et al. in [51] exploited the large-scale char-

acteristics of fading channels and proposed a smart pilot assignment based on measuring the

inter-cell interference with the aim to maximize the minimum uplink SINR of all users in

the served cell through an optimization algorithm. Users having the worst channel quality

will assign the pilot sequences which have the smallest inter-cell interference. However, the

proposed method requires the served cell to solve the optimization problem and perform a

sequential procedure iteratively until a convergent solution is reached. Vu et al. in [52]

proposed modified least square estimators that removed the pilot contamination based on

consecutive pilot transmission phases algorithm which required coordination between the

served cell and the adjacent cells.

In this dissertation, we develop an alternative novel method to eliminate the effects of pi-

lot contamination, bridge the research gaps mentioned above, and hence improves massive

MIMO performance through more accurate CSI estimation. The developed scheme has a

lower complexity and can be generalized to any system configuration such as the 5G cellular

networks and beyond.
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2. Enhancement of CSI Accuracy and SIC Performance in NOMA: SIC plays an important

role in NOMA technology. A reliable SIC that separates users’ signals at the BS’s receiver

and does not result in a residual interference is a critical factor that determines the perfor-

mance efficiency of the system. Reliable SIC can not be achieved without an accurate CSI

[8]. Hardware impairments at transceivers is another factor that should be considered in the

designing of SIC. The effects of these hardware impairments amplify and cause a significant

impact on SIC performance in the presence of imperfect CSI.

The integration of both NOMA and massive MIMO brings more technical challenges to

achieving reliable SIC because users pairing and scheduling into appropriate channels and

selecting the best antenna subset at the BS need to be considered jointly. Moreover, mas-

sive MIMO with NOMA integration can consume excessive bandwidth resources to acquire

accurate CSI [28]. Previous work done, that took these considerations into account, shows

that a very high complexity was added to the SIC design and therefore this integration can

only be applied to cells with small numbers of served users and antennas [27]. Using multi-

polarized antennas has been proposed in [29]; however, this solution is only considered a

slowly varying spatial correlation of the communication channels and also added complexity

to the system. An approach for reducing the computational complexity of SIC in [28] by em-

ploying low feedback and decomposing the massive MIMO NOMA into a set of single-input

single-output NOMA channels was proposed. This approach required a perfect knowledge

of users ordering at the BS, which is more feasible only at the downlink.

Li et al. in [55] used a novel approach that employs the Forward Error Correction (FEC)

and exploits the intrinsic diversity of code words to mitigate the imperfect CSI estimates in

NOMA and improve the performance of SIC. However, this approach added more complex-

ity to the SIC design. The SIC design in [56] considered an imperfect CSI which has been

classified into two types a) the channel distribution information and b) the channel estima-

tion uncertainty. However, this approach led to complexity in the SIC design, probabilistic

constraints, and assumed non-practical approximations. The decoding with a fixed order was
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replaced by decoding with a dynamic order in [57] to improve the performance of the SIC

but this approach was feasible only in a slow fading environment. This approach has been

extended in [58] to consider the existence of imperfect CSI. It has been shown that imperfect

CSI led to incorrect decoding order in addition to the extra interference on the desired signal,

which resulted in a degradation of the performance of the SIC.

Accordingly, based on the aforementioned, the performance of NOMA technology depends

heavily on SIC proper functionality which can not be achieved and guaranteed without accu-

rate CSI. A question that arises here, “how can we improves the SIC without increasing the

system complexity?” In this dissertation, we address this question and provide the appropri-

ate solution. The dissertation introduces EDPS for improving the accuracy of CSI estimation

ensuring compatibility for practical implementation and lower complexity. Therefore, EDPS

improves CSI accuracy and, as a consequence, accurate CSI facilitates the NOMA integration

into massive MIMO. In addition, EDPS enhances the performance of SIC.

3. Improving NOMA by Employing CaF and Reducing CaF Sensitivity to CSI Estimation

Errors: The allocated power variations of Power-Domain NOMA (PD-NOMA) paired

users play an important role in the performance of SIC. Keeping significant power differences

ensures good performance of SIC, which can not be guaranteed all the time. Besides, fairness

and outage probabilities are impacted when the paired users powers are close to each other.

Therefore, in this dissertation, another approach is used in NOMA to decode the received

uplink signal and de-multiplex the desired signals by employing the CaF decoding method.

CaF also called physical-layer network coding. CaF started as a relaying strategy, where

each relay computes a linear combination of transmitted signals and then forwards it to the

ultimate receiver [59]. As a concrete example, suppose that there are two transmitters, two

relays, and one destination. Each relay computes a linear combination and forwards it to the

destination. As long as the two linear combinations are linearly independent, the destination

can recover the transmitted signals. Besides, if the communication channel does not provide

a suitable linear combination of the transmitted signals then CaF cannot work properly to
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recover the desired signals.

Interestingly, the idea behind CaF goes beyond the relay scenario. It can be applied to other

scenarios, such as the point-to-point channel and Multiple Access Channel (MAC). CaF is

used for optimal utilization of interference [59], which can be employed in the uplink NOMA.

CaF is the decoding method used as the core of IFLRs in MIMO wireless communications

networks. Therefore, by employing CaF, the front end at the BS’s receiver decodes and

computes the linear combinations of joint signals transmitted from multiple served users in

NOMA and then forwards separable signals to the appropriate stage(s) at the BS’s receiver

for further processing. The transmitters in the equipment of served users do not require the

pre-knowledge of the CSI to employ the CaF in the uplink transmission [60]. However,

accurate CSI is required at the BS’s receiver.

Integrating CaF in a massive MIMO system improves the performance where CaF can be

enhanced by using multiple antennas at the receiver [60, 61]. The aim of CaF is to tackle

both the signal interactions introduced by the NOMA communication channel and the noise

in the communication environment [62]. Moreover, the CaF exploits rather than combats the

multiple access interference towards increasing the system throughput and, as a consequence,

the sum-rate capacity [59, 63]. There are many approaches to implement the CaF but there is

a trade-off between the reduction of implementation complexity and improving the achieved

performance. However, the CaF multiple access strategy keeps the decoding complexity to

grow linearly with the number of served users and the performance is improved by increasing

the accuracy of CSI [64]. Furthermore, Niesen et al. in [62] shows the CSI plays an impor-

tant role in the CaF performance and how it limits its degree of freedom. The DPS/EDPS

mechanisms which we introduce in this dissertation tackles this efficiently.

On the other hand, CaF uses scaling coefficients before forwarding where it has been found

that employing the MMSE scheme can uniquely maximize the computation rate and produce

the optimal scaling coefficients [59]. However, the accomplished computation rate relies on

the CSI accuracy. In [65] the sensitivity of CaF to the CSI errors has been investigated. It has
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been found that imperfect CSI leads to errors in the MMSE scaling coefficients and errors

in the integer coefficients used by CaF which are carefully chosen based on CSI. Therefore,

CaF is sensitive to the errors in CSI and an accurate CSI is needed to reap the full advantages

of CaF in practical implementation and avoid a significant rate loss and outage probability

increment [65, 66]. Another approach to overcome the effects of CSI accuracy has been

investigated in [66] where the blind CaF has been proposed which avoids the need for CSI.

However, this has resulted in a trade-off between increasing computational complexity and

only achieving a sub-optimal performance of CaF.

A question that arises here, “how can CaF guarantees improving NOMA performance with-

out increasing the system complexity?” In this dissertation, we address this question and

provide the robust solution. First, we propose new decoding schemes based on CaF that im-

proves the decoding performance of NOMA and massive MIMO-NOMA that ensure higher

fairness and smaller average outage probabilities while having the same SIC complexity.

Second, we integrate DPS/EDPS into massive MIMO-NOMA, which both improve the CSI

accuracy and enhance the overall performance.

4. Increasing Energy Efficiency and Promoting Green Communications: Incorporating

Energy Efficiency (EE) in the system design of 5G cellular networks and beyond is an essen-

tial goal and one of the 3rd Generation Partnership Project (3GPP) standards technical targets

that should be adopted. The approach of acquiring green communications in 5G cellular net-

works and beyond would improve the EE in Information and Communications Technologies

(ICT), and promote a healthy living environment [67]. Adopting this approach would result

to reduce the energy consumption without affecting other performance factors in 5G cel-

lular networks and beyond [67]. This can be achieved by maximizing the amount of data

transmitted per unit energy without degradation of spectral efficiency and system capacity.

Patcharamaneepakorn et al. in [68] investigated a generalized spatial modulation as a radio

access technology to improve the throughput and EE in 5G massive MIMO, but this has been

found to result in less spectral efficiency. This is contrary to the aim of 5G cellular networks
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to improve spectral efficiency by one order of magnitude. Therefore, there is a trade-off be-

tween EE and Spectral Efficiency (SE); this dissertation devises an approach that improves

EE without putting huge negative impacts on SE.

From another perspective, a statistical delay bounded QoS driven power allocation schemes

have been developed in [69] to maximize the power efficiency for 5G cellular networks while

assuming perfect CSI. However, the availability of perfect CSI at the BS is very challenging.

This dissertation addresses this, and proposes DPS/EDPS to improve CSI accuracy. Also,

pilot contamination with imperfect CSI limits the achievable EE, SE, and throughput [68].

Another approach to improve EE is to apply a perfect SIC at the receiver. This may show

a noticeable improvement of the energy efficiency in a massive MIMO system [70], but as

mentioned earlier, optimal SIC functionality can not be achieved without having an accurate

CSI. Therefore, devoting efforts to addressing the pilot contamination problem and enhancing

CSI is indirectly tackling the lack of EE, which has been achieved in this dissertation.

On the other hand, in [71] the EE for massive MIMO with a large number of antenna and

radio frequency chains have been investigated and an energy-efficient hybrid precoding al-

gorithm has been proposed to maximize the EE. The results show an improvement in EE

performance for a low number of users and it has been only compared to the Zero-Forcing

(ZF) precoder. However, MMSE is the recommended precoding technique used in massive

MIMO as ZF suffers from a low performance at a low SNR as it amplifies noise and also

massive MIMO supposed to provide high users connectivity. Also, it is highly expected the

cells in 5G cellular networks and beyond will have high density and a huge number of users.

Besides, the EE and green communications feasibility have been investigated in [72] and

[73]. Results showed improvements only for cellular networks configured with small cells.

This highlights the importance of EE as small cells with high-density of users are expected

to be used in 5G cellular networks. However, 5G addresses a wide range of applications

that make the adoption of small cell topology not only unrealistic, but also shows that other

scenarios with different cell sizes should be considered when investigating EE. This disser-
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tation explores in-depth into finding an optimum approach that can find an energy-efficient

mechanism. A mechanism that can be generalized regardless of the cell size and number of

served users used in 5G cellular networks and beyond.

Importantly, the explosive growth of subscribers and used devices in cellular networks en-

tails a massive amount of energy consumption when aggregated, which inevitably leads to

a larger carbon footprint, and greatly contributes to environmental pollution if the energy

sources used are not renewable. Furthermore, the rapid growth of energy consumption is

proportionally related to the rapid growth and evolutions in ICT, which occurs at a very fast

rate as shown in Fig. 1.2. Moreover, according to recent statistics, the energy consumption

in ICT occupied around 10% of the world’s total energy consumption [74]. Recent statistics

also show that the average current power consumption for the average UE is around 22.5

Watt daily. Accordingly, the expectation of having more than 9 billion UE to be served will

lead to a power consumption of 202.5 GigaWatt daily. This is a massive number that should

be reduced to promote green communications and achieve 5G technical targets. From a dif-

ferent perspective, 5G is expected to serve a huge number of sensors that embed into IoT

and have limited power storage and some types depend on energy harvesting. To highlight

the importance of EE in UEs, a Pre-Grant signaling scheme has been proposed in [75] to

reduce the energy consumption by the UEs but only for downlink. Nevertheless, an energy-

efficient scheme for uplink with reasonable cost to integrate is also highly needed especially

in systems with TDD integration. Moreover, it has been shown that most energy efficient

schemes suffer from high costs compared to the traditional approach [76]. In this disserta-

tion, we propose a scheme that reduces power consumption and improves EE in UEs and 5G

uplink transmissions without degradation of SE. The scheme we propose is an energy effi-

cient, economically feasible, adaptive, easy to integrate, which can find its way into practical

and real-life implementation.
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Figure 1.2: Green communications and energy efficiency

1.5 Dissertation Contributions

In this section, highlights of the major contributions of the dissertation are presented. A schematic

diagram of the contributions of the dissertation is illustrated graphically in Figure 1.3, and are

summarized as follows:

• Proposing the Novel Dual Pilot Scheme:

The accuracy of the CSI is a critical factor in achieving all the technical targets of any wire-

less communication system. Therefore, we develop a new signaling scheme named DPS

that would overcome the limitations of conventional schemes, promote simplicity, be easy

to implement and get deployed into existing systems, improve the performance indicators

and technical targets, and can be generalized to integrate into any wireless communication

systems. DPS offer beneficial and unique features and can be used in a non-cooperative

multi-cell cellular networks. Our evaluations show that DPS reduces the effects of pilot con-

tamination substantially, increases the CSI accuracy, and consequently improves the massive

MIMO performance. DPS works in one dimension in massive MIMO to mitigate inter-cell

interference.

In contrast to the recent works that traditionally focused on the improvements in sum-rate
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maximization with aim of optimizing the total network throughput, our DPS approach is dif-

ferent and maximizes the sum-rate and optimizes the total network throughput with ensuring

the maximization and optimization for each served user. Thus, it provides improvements

that convey the fairness and uniform QoS for each and every user is served. This guarantees

to avoid service disruption or poorly serving users experiencing poor channel conditions, or

those at the cell-edge whom under high attenuation path loss. Our contribution towards this

innovative pilot signaling scheme has been accepted as a provisional patent and has been

published in [77] and [78].

• Proposing the EDPS for NOMA and Massive MIMO-NOMA:

As a second contribution we extend DPS and develop the novel EDPS to operate in two di-

mensions to mitigate both intra-cell and inter cell interference. EDPS provides the BS with

more accurate CSI for multi-fold benefits. First, EDPS facilitates the integration of both

NOMA and massive MIMO as availability of an accurate CSI is essential to achieve this

integration. In addition, EDPS achieves this goal by a simple approach, which ensures eas-

iness for deployment in practical systems. Second, EDPS enhances the performance of SIC

in NOMA, as SIC performance depends on the accuracy of CSI. Third, EDPS equips the BS

with interference management that can work in non-cooperative multi-cells environments.

These highlights the importance of EDPS and result in enhancing several performance met-

rics. Our contributions on EDPS and its application in NOMA and massive MIMO-NOMA

have been submitted for publication [79].

• Investigating the EE Performance of DFT-S-OFDM and Proposing Barker

Coded DFT-S-OFDM for 5G Uplink Transmissions:

We first examine the performance of Discrete Fourier Transform -spread- OFDM (DFT-s-

OFDM) in 5G uplink transmissions with a focus on evaluating the EE. Our system model

considers both massive MIMO with OMA and massive MIMO with PD-NOMA. This dis-

sertation is the first to investigate both approaches. In the second contribution, we propose

a novel mechanism that lowers power consumption at UEs, improves EE without impacting
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the SE, and can be adopted in different applications of 5G using Barker Coded DFT-s-OFDM

(BC DFT-s-OFDM) in 5G uplink transmissions. The proposed scheme adds a Barker code

spreader at the UE and despreader at the BS, which results in lowering Peak–to–Average

Power Ratio (PAPR) and significantly reduced power consumption at UEs. We confirm that

BC DFT-s-OFDM enhances the performance of both OMA-massive MIMO and PD-NOMA-

massive MIMO and increases the EE under different communication channel models. This

dissertation is the first to open the doors for employing Barker code in 5G cellular networks

and beyond. These contributions have been published in [80] and submitted for publication

in [79].

• Employing and Improving CaF in NOMA and Massive MIMO-NOMA: In-

stead of using SIC to resolve interfering signals in NOMA, this dissertation proposes CaF

in NOMA and finds new decoding schemes for PD-NOMA and massive MIMO-PD-NOMA

based on CaF. These proposed schemes provide better performance in terms of increasing

users’ fairness and reducing the outage probabilities while preserving a low implementation

complexity.

CaF is very sensitive to the CSI estimation error. Besides, the performance of CaF also

improves as the number of available combinations of linearly independent equations in-

creases at the BS. As a second contribution in this matter, this dissertation integrates DPS

and EDPS with CaF to increase CaF robustness and lower the sensitivity of CaF to estima-

tion errors. This integration improves the overall systems performance of PD-NOMA and

massive MIMO-PD-NOMA in uplink transmissions. It also enhances the performance of

IFLRs. We claim this dissertation is the first that proposes such an approach. Our contribu-

tions toward this innovative new decoding schemes and for employing the DPS/EDPS have

been published in [81] and under submission in [82].
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1.6 Dissertation Outline and Organization

The structure of the dissertation has been composed and formed according to the research flow and

is connected to the list of contributions in Section 1.5. The dissertation is divided into five chapters

and two appendices, it is organized as follows:

In Chapter 1, we provide an overview of the research problems and challenges, research gaps,

research goals, and approaches to achieve these goals. We present background information on the

5G technologies and the impact of channel estimation errors on the performance of TDD systems.

We then discuss the literature review and related previous work that have been done, focusing on

articulating the gaps in research and identifying the areas of our contributions. We highlight the
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practical challenges in the TDD interference-limited cellular communications systems and the im-

portance of sustainability for green communications which motivated our research. This is followed

by the introduction of our developed schemes and solutions to improve CSI accuracy, mitigate pilot

contamination, ensure EE in 5G cellular networks, and employ and enhance CaF decoding in 5G.

In Chapter 2, we develop and apply the novel DPS in a massive MIMO system with OMA

deployment to mitigate the pilot contamination and generate an accurate CSI. We use different

wireless communication environments during our investigations, the independent and identically

distributed (i.i.d.) and the correlated Rayleigh fading channels. We start by illustrating how the

DPS is used in massive MIMO and how the pilot sequences codebook is formed. We show the

performance of DPS in one dimension to mitigate the inter-cell interference and introduce γ as

a design parameter. We derive the mathematical proofs for our theorems, which state the DPS

is universally outperforming the conventional Single Pilot Scheme (SPS), provides the guarantee

for a uniform quality of service for each served user, and generates lower MMSE of estimated

CSI, where the MMSE is a function of γ . A group of detailed mathematical derivations for this

chapter is provided in Appendix A. Numerical results depict superiority for the integration of DPS

which increases the sum-rate capacity of massive MIMO cell that is located within a group of

non-cooperative cells, where a BS is equipped with a given number of antennas and while varying

the SNR. The materials presented in this chapter have been included in one accepted provisional

patent, two publications, one journal article in [78], and one conference article and presentation in

[77].

In Chapter 3, we dive deeper and extend the DPS to work in two dimensions to simultaneously

mitigate inter-cell interference and intra-cell interference. We introduce two design parameters γ

and µ for constructing the EDPS sequences. The sequences codebook has been divided into three

groups. As a result, we gain advantages of EDPS and use it in massive MIMO with NOMA deploy-

ment to improve performance. Additionally, we investigate the feasibility of DFT-s-OFDM wave-

forms EE in both massive MIMO with OMA deployment and massive MIMO with PD-NOMA

deployment. Then, we conduct an in-depth examination of Barker codes as an approach to achieve
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the corresponding effective trade-off among spectral versus energy efficiency. Through this, we ex-

ploit Barker codes and propose their integration into the uplink waveforms in 5G. Numerical results

demonstrate improved EE performance of the proposed schemes and the prove significant advan-

tages of integrating BC DFT-s-OFDM in 5G. The materials presented in this chapter have been

included in one published conference article and presentation [80] and another journal submission

[79].

In Chapter 4, we begin by considering the main differences in the performance between the

SIC-NOMA and CaF-NOMA when the NOMA paired users are close to each other in terms of

allocated power. Then, we formulate the performance indicators in terms of users Jain’s fairness

index and outage probabilities. We propose new decoding methods for uplink PD-NOMA and

massive MIMO-PD-NOMA which achieve better fairness and smaller average outage probabilities,

while having the same decoding complexity as SIC decoding. We address the CaF sensitivity to the

CSI estimation error and we employ the novel DPS/EDPS into our system model to exploit their

unique features. We introduce the preliminaries of IFLR, and show its limitations and sensitivity

to channel estimation errors. In addition to this, we derive the analytical expression of reduction

loss in achievable rates (i.e., rate loss) and show numerically how DPS and EDPS improve the

performance of CaF and consequently enhance IFLR. A group of detailed mathematical derivations

for this chapter is provided in Appendix B. The materials presented in this chapter have been

included in one published journal article [81] and another journal submission [82].

Finally, the concluding remarks, main research outcomes, drawn findings, avenues of approach

more potential research, and some future work related to the topics covered in this dissertation

are presented and summarized in Chapter 5. in inclusive communication scenarios of 5G cellular

networks and beyond.

Appendices A and B present the mathematical derivations, proofs of the theorems, and pre-

liminary materials relevant to Chapters 2 and 4, respectively. Figure 1.4 illustrates the schematic

diagram of the dissertation structure and composition.
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Chapter 2

Dual Pilot Scheme and its Application in

Massive MIMO

2.1 Synopsis

The pilot scheme currently used in 5G cellular networks assigns the same set of orthogonal pilot

signals to all cells. This results in inter-cell interference, also known as pilot contamination, which

can significantly degrade performance, especially in massive MIMO systems. To mitigate this

interference, we propose a novel DPS that assigns a slightly modified set of nearly-orthogonal pilot

signals. DPS is a general scheme that can be implemented in any wireless communication system,

including 5G and beyond. We demonstrate the integration of DPS in a massive MIMO system in

both microscopic and macroscopic levels and analytically prove that DPS enables more accurate

estimates of the CSI in the minimum mean-squared error sense, under the i.i.d. and the correlated

Rayleigh fading wireless communication channel models. We further validate and demonstrate the

advantages of DPS over various channel models of massive MIMO 5G technology by extensive

simulations.

30
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2.2 Introduction

As mentioned in Chapter 1, accurate estimation of the characteristics of a wireless communication

channel, i.e., CSI, is vital for reliable wireless communications in contemporary cellular networks

[4, 5, 83]. Two main approaches for channel estimation are pilot aided and non-pilot aided, with

the former being more practical and widely adopted in current standards especially in conjunction

with TDD technology [4, 5, 84]. TDD is attractive for deployment in cellular networks due to

its unique reciprocal channel property between uplink and downlink. Thus a BS can periodically

perform channel estimation using the uplink Pilot Sequences (PSs) [20, 23, 24, 85, 86]. The du-

ration between channel estimations should be less than the minimum coherence interval related

to the specific application environment and system configuration, which together with the need to

minimize overhead limit the length of the PSs and hence the number of available orthogonal PSs.

In contemporary TDD cellular systems, the same set of PSs is used by all active users within each

cell and also reused in all adjacent cells for channel estimation [20, 24]. This leads to the critical

problem of pilot signal interference between adjacent cells, widely known as pilot contamination

[21, 24, 86, 87], which is one of the main impairments that limit the performance of massive MIMO

systems. Massive MIMO [7], which employs a large number of antennas at a BS to support beamed

or parallel links to one or multiple users, is widely considered as one of the key technologies that

enable the substantially higher system capacity in the emerging 5G cellular systems. As massive

MIMO requires accurate CSI, it is commonly deployed together with TDD, and is thus particular

susceptible to the pilot contamination problem.

Pilot contamination is caused by inter-cell interference between pilot signals from adjacent

cells, and can be a major cause of errors in the CSI of an intended user at the serving BS leading to

sub-optimal beamforming. When this is compensated by an increase in transmit power at the user

equipment or BS, it leads to reduction in the battery lifetime of mobile devices, or wasted energy

at the BS. If this degradation is not sufficiently compensated, it causes a drop in the quality of

service experienced by the users. Pilot contamination exhibits a strong presence in non-favorable

propagation environments where the number of scatterers is not sufficiently large [26, 39]. Re-



2.2. Introduction

ducing the effects of pilot contamination can improve the accuracy of channel estimation (or CSI)

[37, 85, 86, 88]. This tends to improve the energy efficiency and enhance the sum-rate capacity at

each cell, and hence improve the system capacity to serve more users [39].

Motivated by the needs to efficiently mitigate pilot contamination, especially in TDD massive

MIMO systems, we propose a novel mechanism named DPS. Rather than using the same set of

orthogonal PSs in every cell, adjacent cells in DPS use a different set of nearly-orthogonal PSs,

thus avoiding pilot contamination. We prove, mathematically, that this scheme reduces the inter-

cell interference compared to the conventional pilot scheme currently in use, leading to a smaller

MMSE in channel estimation. Besides, our proposed novel DPS does not require any additional

hardware configuration and is easy to integrate within current wireless communications systems

including massive MIMO. It also consumes the same amount of energy and uses the same transmis-

sion overhead as in the conventional scheme. DPS requires only a few additional signal-processing

operations that can be readily supported in contemporary systems.

The main contributions of this work include: (1) introduction and proposal of DPS as a novel

mechanism to mitigate pilot contamination in cellular wireless networks, which is generally appli-

cable in both TDD and FDD systems and can be employed in any wireless communications system

including 5G and beyond (2) validation of the effectiveness of DPS through detailed mathematical

analyses and simulations to show how DPS enhances TDD system performance with a guaran-

tee for a uniform QoS for each and every user being served in the system, especially in systems

employing massive MIMO, compared to the conventional pilot scheme.

As a first strategy, to validate our proposal, we start from a microscopic configuration of L cells,

deriving simple conditions under which DPS outperforms the conventional scheme for each and

every user under two-channel models: the i.i.d. and the correlated Rayleigh fading channels. In

sharp contrast, prior work mostly focused on minimizing a weighted sum of Mean-Squared Errors

without a per-user performance guarantee. Second, we move from a microscopic configuration of L

cells to a macroscopic configuration of the whole cellular network, explaining why the advantages

of our DPS still remain even if we keep the same overhead (i.e., the number of PSs is independent



2.3. Related Work

of the number of cells).

The i.i.d. Rayleigh fading wireless communication channel model is conventionally used in

the theoretical studies of massive MIMO. However, a study on massive MIMO channel measure-

ments conducted at Lund University [23] has found that these channels are well-represented by the

correlated Rayleigh fading wireless communication channel model. Therefore, in this chapter, to

demonstrate the advantages of implementing DPS in any wireless communication system including

massive MIMO, both the i.i.d. and the correlated Rayleigh fading wireless communication channel

models are used in our analyses.

The rest of this chapter is organized as follows: In the next section, we review the related

work. In Section 2.4 we present the system model. In Section 2.5 we introduce DPS as a general

scheme that is broadly applicable in wireless communication systems. We show how DPS can be

integrated in such systems and why it outperforms the conventional pilot scheme by enhancing

CSI accuracy and consequently mitigating the pilot contamination, especially in massive MIMO

systems. We prove mathematically that DPS achieves channel estimates with smaller MMSE than

the conventional scheme, under the i.i.d. Rayleigh fading wireless channel model. In Section 2.6,

these analyses are extended to the correlated Rayleigh fading wireless channel model, which has

been shown to be appropriate for massive MIMO systems. In Section 2.7, we illustrate the ap-

plication of DPS in massive MIMO by considering the entire cellular network at a macroscopic

level. Section 2.9 presents and evaluates the obtained numerical results. Section 2.10 concludes the

chapter.

2.3 Related Work

Existing solutions for the pilot contamination problem generally employ one or more of the fol-

lowing approaches: 1) adjacent cells coordination, 2) user grouping, 3) uplink and downlink coop-

eration, 4) interference alignment, and 5) blind estimation, which add complexity to the system in

terms of signaling for coordination or computations for signal processing.

For instance, the scheme in [52] employs adjacent cell coordination to eliminate pilot contam-
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ination. Pilot transmissions are organized in phases, such that users served by a BS stay idle in

one phase while users served by an adjacent BS transmit their PSs. This scheme increases the pilot

transmission overhead by a factor equal to the number of phases. Correspondingly, the approach

proposed in [44] uses time-shifted PSs that requires multiple-cell coordination and asynchronous

pilot transmissions in adjacent cells. Contrarily, DPS does not require users in adjacent cells to

transmit their PSs in different phases or different times, and hence it does not require multiple-cell

coordination or asynchronous pilots between adjacent cells.

To allow the use of a relatively small number of orthogonal training sequences to simultane-

ously train the links of all users, the works in both [89] and [90] followed the second approach by

grouping users according to their spatial signatures. In contrast, DPS does not require the grouping

and classification of users within the cells. Moreover, both works assumed the existence of a long

preamble to enable extraction of the required model parameters. On the other hand, DPS does

not have extra requirements on the preamble on top of what it is ordinarily used for, and it can

easily accommodate a shorter preamble to reduce system overhead. As a consequence, saving in

preamble’s duration can be used in the actual transmission, thereby offering more enhancement to

the system spectral efficiency. While a unified transmission strategy for TDD/FDD massive MIMO

has been proposed based on the spatial basis expansion model in [89], one of the objectives of this

strategy is to improve channel estimation for both uplink and downlink while reducing the train-

ing overhead. Consequently, more orthogonal training sequences can be allocated to the adjacent

cells and be exploited to mitigate pilot contamination. To extend this approach, the uplink and

downlink channel estimations for both TDD and FDD in time-varying massive MIMO networks

were investigated in [90]. A sparse Bayesian learning framework is designed to estimate the spatial

signatures and temporal varying characteristics of the channel model and exploit them to learn the

spatial information instead of the channel covariance matrices to avoid computation complexity. It

is important to highlight that DPS can also be integrated in both FDD and TDD massive MIMO

systems, although this chapter only evaluates the performance of DPS in TDD massive MIMO.

The pilot contamination mitigation scheme proposed in [47], which exemplifies the third ap-
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proach, is based on a downlink training stage followed by a scheduled uplink training stage, with

the downlink training stage adopting phased coordination with adjacent cells as in [52]. However,

DPS does not depend on coordination between the uplink and downlink. The uplink training in

DPS is used for estimating the downlink CSI to enable beamforming and precoding of downlink

transmissions, which does not add any additional complexity to conventional TDD system opera-

tion.

It has been shown recently that exploiting interference alignment allows the BS to use the radio

resources more efficiently under certain conditions. However, to achieve the optimal performance,

this approach needs to deal with a large number of signaling dimensions, which is proportional to

the number of interferers under consideration. The pilot contamination mitigation scheme proposed

in [91] uses interference alignment and a soft-space-reuse based cooperative transmission scheme

to improve CSI estimation. However, to enable the use of low dimensional training matrices,

this approach requires cooperation between adjacent cells, and thus exemplifies the combination

of approaches one and four. Also, through optimizing and minimizing the Mean Squared Error

(MSE) at each BS, an interference cancellation transceiver that reduces the overhead transmission

has been proposed in [92] for multi-user cooperative multi-cell networks. However, it is found

that there is a trade-off between the computational complexity and the number of users. In sharp

contrast, the complexity associated with these approaches is not found in DPS while the latter is

still capable of enhancing the system spectral efficiency. DPS also offers more signaling to the

BS without any additional system complexity or trade-off between cooperation amongst multiple

adjacent cells and computational complexity, as DPS does not require any cooperation between

multiple adjacent cells to manage the interference.

As the fifth approach, blind pilot decontamination as proposed in [42] exploits singular value

decomposition to perform a blind channel estimation directly from the received data without train-

ing. To separate the signal subspace and the interference subspace, this approach assumes the

existence of asymptotic orthogonality between the channel vectors and requires a high computa-

tional complexity. To reduce the complexity of this approach, semi-blind pilot decontamination
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was proposed in [50]. It treats the detected uplink data as pilot symbols such that a constrained

optimization problem based on an asynchronous pilot protocol was formulated for each user. How-

ever, the proposed semi-blind algorithm also requires intensive computations and its efficiency

depending on the data length. In comparison, DPS does not incur any additional computational

complexity over existing pilot detection schemes and its performance is independent of the length

of the transmitted data.

To summarize the above, the drawbacks and research gaps found commonly in currently sug-

gested solutions that overcome the pilot contamination problem include, but are not limited to, the

following: 1) limited performance in pilot contamination suppression; 2) the requirement of addi-

tional hardware configuration; 3) excessive computational complexity; 4) need of BS coordination

resulting in additional signal processing and transmission overhead; 5) reduction in the spectral ef-

ficiency; 6) need of excessive backhaul integration; 7) increase in the length of the training period;

and 8) dependency on the user’s mobility speed. The work we present in this chapter addresses

these drawbacks and research gaps which highlights the novelty and importance of DPS.

2.4 System Model

In this section, we present a system model that can be used to evaluate any pilot signaling design

including our DPS. We consider an uplink transmission in a wireless communication system with L

cells in each cluster1. Figure 2.1 illustrates a cell cluster with L = 7. Each cell has one BS located at

the center, or alternatively an Access Point (AP), and serves up to K user equipment or terminals in

its coverage area. Assume that each BS is equipped with M antennas and each UE is equipped with

a single antenna. If M� K, then this wireless communication system is conventionally known as

a massive MIMO system. We use (CELL INDEX,USER INDEX) to uniquely identify a UE in the

system-cluster. For example, UE (i, j) means the jth UE in the ith cell. Let hl
i j ∈ CM be the vector

of uplink channel coefficients from UE (i, j) to the BS in the lth cell. Following the notations in

1The concept of clustering here is the same as that in cellular network planning for frequency-reuse. It is assumed
that cells in adjacent clusters are sufficiently separated in distance that mutual interference can be neglected.
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[21] we model hl
i j as

hl
i j =

√
β l

i jg
l
i j (2.1)

in which the large-scale fading coefficient β l
i j is known a priori and the vector of small-scale fading

coefficients gl
i j is drawn as i.i.d. from the complex Gaussian distribution C N (0,IM), where β l

i j =

(d−ρ)l
i j, ρ is the path loss exponent, and d is the distance between the ith UE in jth cell and BS

in lth cell. For presentation simplicity, we begin in this section with the i.i.d. Rayleigh fading

wireless communication channel in our system model, and will consider the correlated Rayleigh

fading wireless communication channel in Section 2.6.

In every coherence interval of the wireless communication channel, each UE transmits a PS that

consists of τ symbols to enable the BS to estimate the CSI of the link between the BS and the UE.

That is, the vector of channel coefficients hl
i j is assumed to be constant throughout the coherence

interval, which length is dependent on the mobility speed of UEs and the propagation environment.

Let φi j ∈ Cτ be the PS of UE (i, j). Then, the pilot signals received at the BS of the lth cell from

all active UEs being served synchronously in a cluster is denoted by the matrix Yl ∈CM×τ and can

be written as:

Yl = ∑
(i, j)

hl
i jφ

T
i j +Wl, (2.2)

where Wl ∈CM×τ is the matrix of the additive channel noise whose entries are drawn as i.i.d. from

C N (0,σ2).

Upon receiving the M×τ size matrix Yl , the BS of the lth cell estimates the vectors of channel

coefficients for all the K active UEs in its coverage area {hl
l1, . . . ,h

l
lK}. A particular goal of the

BS of the lth cell in the cluster is, for each UE(l,k) in the cell, to find the optimal estimate of the

channel coefficient vector for the UE, i.e., ĥl
lk that minimizes the MSE from the actual channel

coefficient vector hl
lk. That is,

ĥl
lk = arg min

h∈CM
E
{
‖hl

lk−h‖2
2

}
, (2.3)
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where the expectation is over the Rayleigh fading distribution. It has been shown in [93] that the

optimal estimate ĥl
lk using the MMSE estimator is given by:

ĥl
lk =

(
β

l
lkφ

H
lk⊗ IM

)
(Dl⊗ IM)−1 vec(Yl), (2.4)

where Dl is the covariance matrix and is given by:

Dl = σ
2Iτ + ∑

(i, j)
β

l
i jφi jφ

H
i j . (2.5)

In (2.4), ⊗ is the Kronecker (tensor) matrix (vector) product operation and the vec(·) operation

stacks the columns of a matrix into a single column vector. The corresponding MSE is given by:

MSElk = Mβ
l
lk−M

(
β

l
lk

)2
φH

lkD−1
l φlk. (2.6)

The above MSE formula shows that achieving MMSE is subject to choosing an appropriate PS, and

this formula applies to any design of PSs {φi j}. While it is straightforward to evaluate a particular

pilot design by using (2.6), it is nontrivial to propose a simple design that is easy to implement

and is universally better2 than the conventional design that uses orthogonal pilots. Our proposed

DPS enjoys simple conditions under which it outperforms the conventional scheme for all UEs in

the network. In addition, our DPS design contains only one design parameter that facilitates the

implementation.

On the other hand, as mentioned above the wireless communication system under consideration

becomes a massive MIMO when M � K (i.e., the number of BS antennas in massive MIMO is

much greater than the number of UEs being served in the cell). So, based on this system feature

and according to the law of large numbers, massive MIMO implementation grants the closeness

to a favorable propagation environment. Thus, simple linear estimators are close to optimal under

semi-favorable propagation conditions [24].

2By universally better, we mean that a scheme provides better channel estimation than other schemes for every UE
being served in the whole cellular network.
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Figure 2.1: A cluster of seven non-cooperative adjacent cells with Cell-IDs assignment for
DPS, the home cell is located in the center. {ϕ1,ϕ2,ϕ3,ϕ4,ϕ5,ϕ6,ϕ7} are the as-
signed Cell-IDs sequences.

2.5 Dual Pilot Scheme

In this section, we present the proposed novel DPS as a general scheme that can be employed in any

wireless communication system using pilot signaling for CSI estimation. Also, we show how DPS

yields significantly better accuracy in estimating the CSI compared with the conventional scheme

employing orthogonal pilot signals, referred as the SPS in this chapter, and would therefore lead to

performance enhancement of a wireless communication system. This is proven through theoretical

analyses under the i.i.d. Rayleigh fading wireless communication channel model, described in

the previous section, and using the MMSE estimator, which is well-known to achieve the best

performance in both low and high signal to interference-plus-noise ratios compared to other types

of estimators [21, 93–95]. Although we consider only the MMSE estimator in our analyses which

is used by the current state-of-the-art works, DPS is compatible with other types of estimators such

as ZF and the Maximum Ratio Combing (MRC), and can achieve improved performance with these

estimators as well.
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2.5.1 SPS with Orthogonal Pilots

Consider N normalized orthogonal sequences, {ψ1, . . . ,ψk, . . . ,ψN}, where each sequenceψk ∈Cτ

is a normalized vector (i.e., ‖ψk‖2 = 1) and τ ≥ N. For SPS, the PS used by the intended UE (l,k)

in the intended cell consists of a single code sequence, given by:

φlk =
√

Pψk (2.7)

where P represents the power constraint determined by the limited energy resources and system

configuration. (Note that ‖φlk‖2
2 = P for any intended UE (l,k).) Substituting (2.7) into (2.5) and

(2.6), we obtain the MSE for SPS (with details given in Appendix A.1)

MSESPS
lk = Mβ

l
lk−M

(
β

l
lk

)2 P
σ2 +P∑i β l

ik
. (2.8)

2.5.2 DPS with Non-Orthogonal Pilots

The proposed DPS utilizes the same N normalized orthogonal code sequences as in SPS, but divide

them into two groups as in {ψ1, . . . ,ψN−L,ϕ1, . . . ,ϕL}. The sequence ϕl is called the lth Cell

Identification (Cell-ID), which is assigned to the lth cell in the cluster of L cells and is reused

across system-clusters. The sequence ψk is called the User-Equipment Identification (User-ID),

and is assigned to the kth UE in each cell in the cluster of L cells and is reused across system-

clusters. Thus, the Cell-ID in-conjunction with the User-ID can uniquely identify any UE in the

cluster of L cells. For our example of a seven-cells3 cluster, as shown in Figure 2.1, seven different

Cell-IDs, given by sequences ϕ1,ϕ2,ϕ3,ϕ4,ϕ5,ϕ6,ϕ7 are used to identify the seven cells, the

home cell is located at the center and has given number 1. The number of active UEs that can be

served per system-cluster at this configuration is shown in Table 2.1, which compares the maximum

numbers of UEs served per system-cluster for DPS, denoted as UCDPS, and SPS, denoted as UCSPS.

Note that these numbers are limited by the number of PSs available for assignment. The actual

3This configuration can be generalized to any cluster size that has an arbitrary number of cells.
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Table 2.1: Dual PSs assignments and comparisons of total numbers of UEs served in a system-
cluster for SPS (UCSPS) and DPS (UCDPS) with τ = N = K and L = 7 at different values
of M. Where M and N are the numbers of BS’s antennas and available orthogonal se-
quences, respectively. N − L and ID are the numbers of repeatedly reused sequences
(User-IDs) and Cell-IDs sequences in the system-cluster, respectively.

M N = K N−L ID = L UCDPS UCSPS

32 8 1 7 7 56
64 16 9 7 63 112
128 32 25 7 175 224
256 64 57 7 339 448
512 128 121 7 847 896

1024 256 249 7 1743 1792
2048 512 505 7 3535 3584

number of UEs that each cell would actually serve at any time depends on the SINR and might

be lower than the upper limits shown in Table 2.1. It is important to mention that the duration of

the training period within a coherence interval is the main factor that determines the number of

available orthogonal sequences N. In practice, the value of N increases as the length of the training

period increases, which implies longer coherence interval duration. The length of the training

period is inversely proportional to spectral efficiency. Therefore, there is a trade-off between CSI

accuracy, spectral efficiency, and system capacity. The optimal value of N should be chosen, in

practice, to offer a higher system capacity subject to maintaining high spectral efficiency.

In DPS, as each UE (l,k) is uniquely identified by a pair of code sequences, we combine them

into the so-called dual PS, which is given by:

φlk =
√

P
(√

γψk +
√

1− γϕl

)
(2.9)

where γ ∈ (0,1) is a design parameter to be specified later. Note that ‖φlk‖2
2 = P for any intended

UE (l,k) as before. In other words, DPS consumes the same amount of energy as SPS. However,

as will be shown below, DPS enhances the CSI accuracy and thus it has a better energy efficiency
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compared to SPS. Substituting (2.9) into (2.5), we obtain

DDPS
l (γ) = σ

2Iτ + γ ∑
j

β jψ jψ
H
j +(1− γ)∑

i
αiϕiϕ

H
i +

√
γ(1− γ) ∑

(i, j)
Pβ

l
i j
(
ψ jϕ

H
i +ϕiψ

H
j
)

(2.10)

where αi = P∑ j β l
i j and β j = P∑i β l

i j are short-hand notations. Hence, the MSE for DPS is given

by

MSEDPS
lk (γ) = Mβ

l
lk−M

(
β

l
lk

)2
φH

lk

(
DDPS

l (γ)
)−1

φlk. (2.11)

Note that, when γ = 1, we have MSEDPS
lk (1) = MSESPS

lk , which is as expected.

Next, we describe the CSI estimation procedure at the BS in the lth cell in order to provide

our readers with more insights. Recall that the received signal is given by Yl = ∑(i, j)hl
i jφ

T
i j +Wl .

Upon receiving Yl , the BS in the lth cell computes Ylψ
∗
j for j ∈ {1, . . . ,N−L} as well as Ylϕ

∗
i for

i ∈ {1, . . . ,L} (where ψ∗j and ϕ∗i are complex conjugates of ψ j and ϕi, respectively). Note that

Ylψ
∗
j = ∑

(i, j′)
hl

i j′φ
T
i j′ψ

∗
j +Wlψ

∗
j (2.12)

= ∑
i

hl
i j

√
P
(√

γψT
j +
√

1− γϕT
i

)
ψ∗j +Wlψ

∗
j (2.13)

=
√

γP∑
i

hl
i j +Wlψ

∗
j (2.14)

where Wlψ
∗
j ∈ CM is the effective noise whose entries are drawn as i.i.d. from C N (0,σ2). Simi-

larly,

Ylϕ
∗
i = ∑

(i′, j)
hl

i′ jφ
T
i′ jϕ

∗
i +Wlϕ

∗
i (2.15)

= ∑
j

hl
i j

√
P
(√

γψT
j +
√

1− γϕT
i

)
ϕ∗i +Wlϕ

∗
i (2.16)

=
√
(1− γ)P∑

j
hl

i j +Wlϕ
∗
i (2.17)

where Wlϕ
∗
i ∈ CM is the effective noise whose entries are drawn as i.i.d. from C N (0,σ2). Then,
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the BS in the lth cell applies the MMSE estimator for the intended UE (l,k) based on the N pro-

cessed signals, namely {Ylψ
∗
j}

N−L
j=1 and {Ylϕ

∗
i }L

i=1. The MSE of this estimator is given by (2.11)

as explained before.

Finally, we turn our attention to finding a sub-optimal CSI estimator for two reasons. First,

the sub-optimal estimator can be designed to be a “low-complexity approximation” of our optimal

MMSE estimator described above. This would be of practical interest if we would like to reduce

the computational complexity as well as the processing latency at the BS. Second, the sub-optimal

estimator may allow us to derive an upper bound for the MSE given by (2.11). This bound will be

used in the proofs of our main theoretical results.

Unlike the optimal MMSE estimator that relies on N processed signals, our proposed sub-

optimal estimator only uses two processed signals Ylψ
∗
k and Ylϕ

∗
l given by

Ylψ
∗
k =

√
γP∑

i
hl

ik +Wlψ
∗
k (2.18)

and

Ylϕ
∗
l =

√
(1− γ)P∑

j
hl

l j +Wlϕ
∗
l . (2.19)

Then, the sub-optimal estimator conducts the MMSE estimation for the intended UE (l,k) based

on Ylψ
∗
k and Ylϕ

∗
l only. That is,

ĥl
lk =

(
β

l
lk[
√

γP,
√
(1− γ)P]⊗ IM

)(
DSUB

l (γ)⊗ IM
)−1

Ylψ
∗
k

Ylϕ
∗
l

 , (2.20)

where the covariance matrix DSUB
l (γ) is given by

DSUB
l (γ) =

 γP∑i β l
ik +σ2

√
γ(1− γ)Pβ l

lk√
γ(1− γ)Pβ l

lk (1− γ)P∑ j β l
l j +σ2

 . (2.21)
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The corresponding MSE is

MSESUB
lk (γ) = Mβ

l
lk−M

(
β

l
lk

)2
P

 √γ

√
1− γ


T (

DSUB
l (γ)

)−1

 √γ

√
1− γ

 . (2.22)

Clearly, we have MSESUB
lk (γ)≥MSEDPS

lk (γ) since the above estimator is suboptimal (as it is based

on only two processed signals).

2.5.3 Characterizing the Advantages of DPS

We will show that DPS is universally better than SPS under certain conditions. That is, there exists

a parameter γ such that MSEDPS
lk (γ) < MSESPS

lk for each and every intended UE (l,k) in the lth

cell. Therefore, DPS provides a better channel estimation for each and every user compared to the

conventional SPS. DPS gives the BS the ability to do this minimization operation of estimation

errors for each and every user individually. Consequently, the BS can focus on improving the CSI

accuracy of users being served at cell’s edges to enhance their QoS, as a goal that ensures promoting

fairness and uniform QoS for the whole users being served. We have the following theorem.

Theorem 1 If the parameter γ ∈ (0,1) is chosen such that

1− γ

γ

∑ j 6=k β l
l j(

∑i 6=l β l
ik

)2 <
P

σ2 for all k, (2.23)

then MSEDPS
lk (γ)< MSESPS

lk for all k.

Proof: The proof consists of two steps. First, we have MSESUB
lk (γ) ≥MSEDPS

lk (γ) as explained

before. Second, we show that our suboptimal estimator still achieves a smaller MSE than the

SPS for each and every intended UE (l,k) under condition (2.23). Therefore, we conclude that

MSEDPS
lk (γ)< MSESPS

lk for all k under condition (2.23).

We now focus on Step 2, showing that MSESUB
lk (γ)< MSESPS

lk for all k under condition (2.23).
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Comparing (2.22) with (2.8), it suffices for us to prove that

 √γ

√
1− γ


T (

DSUB
l (γ)

)−1

 √γ

√
1− γ

>
1

σ2 +P∑i β l
ik
. (2.24)

The details are given in Appendix A.2. �

Theorem 2 The optimal γ for the intended UE (l,k) under the suboptimal estimator is given by

γ
∗ =

∑ j 6=k β l
l j

∑ j 6=k β l
l j +∑i6=l β l

ik
. (2.25)

Proof: Taking the derivative of gSUB
lk (γ) =

 √γ

√
1− γ


T (

DSUB
l (γ)

)−1

 √γ

√
1− γ

, we can show that

gSUB
lk (γ) is unimodal over the interval (0,1) and γ∗ is the only zero of its derivative. The details are

given in Appendix A.3. Therefore, γ∗ maximizes gSUB
lk (γ) for UE (l,k). �

Note that ∑ j 6=k β l
l j can be viewed as “intra-cell interference” since all the UEs in the lth cell

share the same sequence ϕl . Similarly, ∑i 6=l β l
ik can be viewed as “inter-cell interference” as UE

(i,k) share the same sequence ψk (i.e., every kth UE in each cell in the system-cluster share ψk).

Hence, Theorem 2 says that γ∗ is the fraction of intra-cell interference over the total interference.

This provides us with some design guidelines. For example, γ∗ is relatively small when the cells are

densely packed (which implies a relatively large ∑i6=l β l
ik) and each cell supports a smaller number

of UEs (which implies a relatively small ∑ j 6=k β l
l j).

Nevertheless DPS advantages come with a price of serving L fewer UEs than with SPS, where

L is the number of cells in the system-cluster, assuming the same N orthogonal sequences are

used. This is because SPS uses all N orthogonal PSs to serve the K UEs in each cell, i.e., K =

N, whereas DPS needs to use L of these sequences as the Cell-IDs and can only assign N − L

sequences to the UEs in each cell. However, as shown in Table 2.1, this disadvantage diminishes as

K grows large. Nevertheless, DPS ensures a uniform high QoS for each and every UE and enhances
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the system capacity indirectly by improving the CSI accuracy which is essential to maximize the

data throughput. Moreover, despite the number of PSs available for assignment to UEs in a cell

determines the maximum number of UEs that can be served simultaneously, in practice, the cell

can only serve a smaller number of UEs due to pilot contamination effects, in the case of SPS,

where an acceptable level of interference is the constraint.

2.6 Correlated Rayleigh Fading

In this section, we extend our discussion to the correlated Rayleigh fading channel model. We

assume that the small-scale fading vector gl
i j is drawn from C N (0,Rl

i j) where Rl
i j ∈ CM×M is

the covariance matrix. The remaining settings are the same as in Section 2.4. Therefore, for a

correlated Rayleigh fading channel, it has been shown in [93] that the optimal estimates of the

vector of channel coefficients for the intended UE in the intended cell (i.e., ĥl
lk ) using the MMSE

estimator at the BS in the lth cell is given by:

ĥl
lk = ZlkU−1

l vec(Yl), (2.26)

where Zlk ∈ CM×τM and Ul ∈ CτM×τM are given by

Zlk = β
l
lkφ

H
lk⊗Rl

lk (2.27)

and

Ul = σ
2IτM + ∑

(i, j)
β

l
i jφi jφ

H
i j ⊗Rl

i j. (2.28)

The corresponding MSE is

MSElk = β
l
lktr(Rl

lk)− tr
(
ZlkU−1

l ZH
lk
)
. (2.29)

Note that when Rl
i j = IM for all (i, j), then (2.29) reduces to (2.6), i.e., the MMSE for the i.i.d.

(uncorrelated) case.
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2.6.1 SPS with Orthogonal Pilots

Following the steps in Section 2.5.1, we obtain the MSE for the SPS under correlated Rayleigh

fading

MSESPS
lk = β

l
lktr(Rl

lk)−P
(

β
l
lk

)2
tr

Rl
lk

(
σ

2IM +∑
i

β
l
ikPRl

ik

)−1(
Rl

lk

)H

 . (2.30)

In particular, if Rl
i j = IM for all (i, j), then (2.30) reduces to (2.8), i.e., the MMSE of the SPS for

the i.i.d. (uncorrelated) case.

2.6.2 DPS with Non-Orthogonal Pilots

Substituting the dual PS, given by (2.9), φlk =
√

P
(√

γψk +
√

1− γϕl
)

that used by the intended

user (l,k) into (2.28), we obtain

UDPS
l (γ) = σ

2IτM +P ∑
(i, j)

β
l
i j

(
γψ jψ

H
j +(1− γ)ϕiϕ

H
i +

√
γ(1− γ)(ψ jϕ

H
i +ϕiψ

H
j )

)
⊗Rl

i j.

(2.31)

The corresponding MSE is given by

MSEDPS
lk (γ) = β

l
lktr(Rl

lk)− tr
(

Zlk

(
UDPS

l (γ)
)−1

ZH
lk

)
. (2.32)

2.6.3 Characterizing the Advantages of DPS

Recall that the BS in the lth cell applies the MMSE estimator for the intended UE (l,k) based on

N processed signals, namely {Ylψ
∗
j}

N−L
j=1 and {Ylϕ

∗
i }L

i=1. However, similar to the i.i.d. case, we

will here construct a suboptimal estimator that uses only two processed signals as follows. Upon

receiving the signals from all users Yl , the BS in lth cell computes Ylψ
∗
k and Ylϕ

∗
l and then applies
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the MMSE estimator based on Ylψ
∗
k and Ylϕ

∗
l only. That is,

ĥl
lk =

(
β

l
lk[
√

γP,
√
(1− γ)P]⊗Rl

lk

)(
USUB

l (γ)
)−1

Ylψ
∗
k

Ylϕ
∗
l

 , (2.33)

where the covariance matrix USUB
l (γ) is given by

USUB
l (γ) = σ

2I2M +∑
i 6=l

β
l
ik

γP 0

0 0

⊗Rl
ik + ∑

j 6=k
β

l
l j

0 0

0 (1− γ)P

⊗Rl
l j

+β
l
lk

 γP
√

γ(1− γ)P√
γ(1− γ)P (1− γ)P

⊗Rl
lk.

(2.34)

The corresponding MSE is

MSESUB
lk (γ) = β

l
lktr(Rl

lk)−P
(

β
l
lk

)2
tr


 √γ

√
1− γ


T

⊗Rl
lk
(
USUB

l (γ)
)−1

 √γ

√
1− γ

⊗ (Rl
lk)

H

 .

(2.35)

Clearly, in this case we will have MSESUB
lk (γ) ≥MSEDPS

lk (γ) since the above estimator is subopti-

mal.

We are particularly interested in a case when all the UEs have the same covariance matrix Rl

for the small-scale fading at the BS in the lth cell. (That is, Rl
i j = Rl for all (i, j).) This case allows

us to have simplified expressions

USUB
l (γ) = σ

2I2M +

 γP∑i β l
ik

√
γ(1− γ)Pβ l

lk√
γ(1− γ)Pβ l

lk (1− γ)P∑ j β l
l j

⊗Rl (2.36)
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and

MSESUB
lk (γ) = β

l
lktr(Rl)−P

(
β

l
lk

)2
tr


 √γ

√
1− γ


T

⊗Rl (USUB
l (γ)

)−1

 √γ

√
1− γ

⊗ (Rl)H

 .

(2.37)

Next, we introduce two short-hand notations:

flk(λ ) = tr


 √γ

√
1− γ


T

⊗Rl (USUB
l (γ)

)−1

 √γ

√
1− γ

⊗ (Rl)H

 , (2.38)

and

glk = tr

Rl

(
σ

2IM +∑
i

β
l
ikPRl

)−1(
Rl
)H

 . (2.39)

By comparing (2.37) and (2.30), we have the following theorem.

Theorem 3 When Rl
i j = Rl for all (i, j), the suboptimal estimator of DPS is universally better than

the MMSE estimator of SPS if and only if flk(λ )> glk for all k.

Proof: When Rl
i j = Rl for all (i, j), then MSESUB

lk (γ)< MSESPS
lk if and only if flk(λ )> glk. �

Note that if Rl = IM, the condition flk(λ )> glk reduces to the condition (2.24), which is proven

in Appendix A.2. Theorem 3 allows us to numerically find the value of λ for any given covariance

matrix Rl such that our suboptimal estimator is universally better than the SPS.

2.7 DPS in Massive MIMO Cellular Networks: Macroscopic
View

The previous sections proved that DPS is a superior mechanism that can be integrated into any

wireless communication system, including massive MIMO, to enhance CSI estimation accuracy

and consequently improve the system’s performance. As it is highly expected that massive MIMO

will be used in practical implementations of 5G cellular networks in the coming years, a question

naturally arises: “How can we integrate DPS into the practical implementation of massive MIMO?”



2.7. DPS in Massive MIMO Cellular Networks: Macroscopic View

In this section, we answer this question by highlighting the practical features of DPS, comparing

DPS with other recently proposed schemes, and providing a macroscopic view of how the entire

cellular network’s planning can be configured with the DPS integration. Thereafter, we propose a

system-cluster size that utilizes DPS assignments efficiently and provide a detailed illustration of

its features in massive MIMO.

As aforementioned, pilot contamination is the main inherent impairment of massive MIMO.

Different approaches have been presented in Section 2.3 that provide suggested solutions to over-

come the pilot contamination. However, these solutions suffer drawbacks and their effectiveness is

subjected to limited scenarios and certain conditions (i.e., specific environments and system con-

figurations that cannot be generalized) [17, 34, 42, 44, 47, 50–52]. Clearly, the existence of these

drawbacks forms obstacles that may prevent these recently suggested solutions to be adopted in

practical implementations. In contrast, our proposed novel DPS mechanism fills these gaps and

mitigates their limitations or shortcomings by offering the following features: 1) easy to imple-

ment; 2) incurs the same overhead and the same length of the training period as SPS; 3) does not

require additional hardware or a change in the cellular network backhaul; 4) reduces the pilot con-

tamination and resulting CSI errors significantly; 5) independent of user’s mobility speed; and 6)

improved spectral efficiency. Therefore, DPS offers the feasibility for implementation in practical

environments of 5G cellular networks and beyond.

Figure 2.2 illustrates the performance comparisons between DPS and some recently proposed

pilot contamination mitigation schemes for enhancing channel estimation. We set up the systems’

parameters to form identical or closest environments to ensure fair comparisons. Besides, the

NMSE has been selected as the performance metric. From the figure, it can be seen that DPS

outperforms the compared schemes by achieving lower MMSEs over the considered range of SNR

and also ensures a uniform QoS for each and every user as demonstrated in Figure 2.2, which shows

how DPS outperforms other suggested solutions. DPS treats edge UEs uniformly as central UEs

and ensures to achieve the smallest MMSE while estimating the CSI for every UE being served in

the cell, not as other schemes where UEs either are classified into edge UEs and central UEs or BS
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Figure 2.2: Performance comparisons between DPS and some exiting schemes for pilot con-
tamination mitigation.

focuses on achieving the smallest average MMSE not the smallest MMSE for each and every UE.

2.7.1 Integration Plan of DPS into Massive MIMO

Recall, DPS is based on using two sets of (orthogonal) sequences as demonstrated in the previ-

ous sections. The first set {ϕ1, . . . ,ϕL} is used to identify the cells and is thus called Cell-ID

sequences, where L is the cluster size based on the planning of the cellular network. The second

set {ψ1, . . . ,ψN−L} is the set of User-ID sequences, each assigned to a different UE in each cell,

where in DPS N ≥ (K +L) and K is the maximum number of UEs being served simultaneously in

each cell based on the capacity of the cellular network and N ≥ K in SPS. The User-ID sequences

are reassigned (reused) in all the cells in a system-cluster and in all other clusters. The number of
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orthogonal code sequences N is determined by the characteristics of the coherence interval in the

TDD system as explained before. It is important to re-emphasize that with DPS these cells work in

a non-cooperative mode of operation, which is a desirable approach in practical implementation.

Table 2.1 shows the dual PSs assignments in a system-cluster consisting of L= 7 non-cooperative

adjacent cells, at different configurations of M. It also shows that the DPS becomes more efficient

as we increase M and K. In Table 2.1, N is the number of available orthogonal sequences in the

codebook, ID is the number of sequences used to identify the cells uniquely within a cluster (i.e.,

Cell-IDs), N − L is the number of repeatedly used sequences (i.e., User-IDs), and UCDPS is the

number of UEs (per cluster) that being served and use the dual PSs in the system.

According to Figure 2.1, so far we have considered the performance of DPS within the center

cell of a system-cluster, which would be the worst case performance when there is no other cell

outside of the cluster. Nevertheless, in practice a cellular network may have any number of cells. In

the following, we show that the above results remain valid when we add more clusters to expand the

coverage area. While the Cell-ID assigned to each cell in a cluster is unique, when more clusters

are added there will be multiple cells with the same Cell-ID. This calls for cell planning, which

is similar in concept to frequency-reuse planning in legacy cellular networks. The purpose of cell

planning is to ensure that two cells with the same Cell-ID are sufficiently far apart so that their

signals do not interfere with each other.

Figure 2.3 illustrates cell planning with seven-cell clusters (i.e., L = 7), in which each hexagon

represents a cell and seven colors are used to identify seven group of cells, each cell assigned

with one of the seven Cell-IDs. We note that a dual PS constructed using (2.9) only guarantees its

uniqueness within a cluster; i.e., dual PSs are reused in cells with the same colour in Figure 2.3,

where BSs are ≈ 2.3 cell-diameters (referred as the reuse distance) away from each other. If the

link budget guarantees that signal power received at any home cell from cells that are at least

one reuse distance away is negligible, then we can assume that the dual PSs in one cluster do

not contaminate the dual PSs in adjacent clusters or clusters farther away, and the mathematical

analyses presented in the previous sections are still valid and can be extended in a straightforward
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Figure 2.3: Dual Pilot Scheme with Cell-IDs and cluster reuse. Cells with the same color are
using the same unique BS’s dual PS identifications (i.e., the same Cell-ID and User-
IDs).

manner. The “inter-cell interference” ∑i 6=l β l
ik remains the same because users (i,k) share the same

sequence ψk. However, the “co-cell interference” which arises due to the reuse of Cell-IDs and

the existence of co-cells (i.e., cells use the same Cell-IDs) contains two terms: one is still ∑ j 6=k β l
l j,

and the other is ∑ j 6=k β l
l′ j for all other cells l′ of the same color (i.e., Cell-ID) as cell l. Assuming

the total number of cells the network needs to cover its coverage area is C. Then, as we will soon

see, the second term is often small. So, setting L = 7 and here the number of clusters needed is

dC
7 e gives us almost the same estimation accuracy as setting L = C where the number of clusters

needed here dC
Ce = 1. In other words, the impact of reusing Cell-IDs on performance degradation

is negligible.

Thus, the cluster size depends on the reuse distance, which in turn depends on the radio environ-
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ment. The choice of a cluster size of seven is conservative. In this regard, SPS can be considered a

special case of DPS with a cluster size L = 1, in which case the use of a Cell-ID sequence becomes

unnecessary and all the available orthogonal PSs are assigned to different UEs in each cell.

Therefore, according to Figure 2.3, the pilot signals received at the BS of the lth home cell from

all active UEs being served synchronously in its cell, first-tier cells, second-tier cells, and third-tier

cells can be denoted by the matrix Yl ∈ CM×τ and can be written as:

Yl =
K

∑
j=1

(d
−ρ

2
l )l

l jg
l
l jφ

T
l j +

i=6
j=K

∑
i=1
j=1

(d
−ρ

2 )l
i jg

l
i jφ

T
i j +

i=12
j=K

∑
i=1
j=1

(d
−ρ

2
t2 )l

i jg
l
i jφ

T
i j +

i=18
j=K

∑
i=1
j=1

(d
−ρ

2
t3 )l

i jg
l
i jφ

T
i j +Wl,

where dl < dt1 < dt2 < dt3 , dl is the distance between UEs and BS in the lth home cell, dt1 is the

distance between UEs in any cell belongs to a first tier and BS of lth cell, dt2 is the distance between

UEs in any cell belongs to a second tier and BS of lth cell, dt3 is the distance between UEs in any

cell belongs to a third tier and BS of lth cell. Clearly, 0≤ dl < dmax
l , where dmax

l equals to the cell

radius. Also, dmax
l ≤ dt1 ≤

√
10 dmax

l , 2 dmax
l ≤ dt2 ≤

√
26 dmax

l , and
√

15 dmax
l ≤ dt3 ≤

√
50 dmax

l .

The co-Cell-IDs interference started to arise at the third tier, according to locations of cells having

co-Cell-IDs of lth cell (i.e., same color) in Figure 2.3, the average distance between UEs in any of

these cells to lth cell range from
√

28−1≈ 4.3 dmax
l up to

√
28+1≈ 6.3 dmax

l . Consequently, the

average increment in path loss of received co-Cell-IDs interfere signals at BS of a home cell will be

in the range of {−6.33ρ dB,−7.99ρ dB} added to the maximum path loss of the desired received

signals.

Therefore, it is evident that the co-cell interference, due to Cell-IDs reuse, between the centric

cell at any cluster and each of its co-cells in adjacent clusters is negligible due to a very large

distance between them that result in a very strong path loss. Remarkably, reusing Cell-IDs in

practice allows more active users to be served simultaneously which increases the capacity of the

cellular network without any harmful interference penalty.
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2.8 Additional Desirable Features of DPS

The previous sections have demonstrated and proved the main feature of the proposed novel DPS

in enhancing the CSI of the UEs being served. Besides, the features of DPS are multi-fold, this

section highlights these additional features that can be used in the practical improvement of wireless

communications systems with the main focus on 5G cellular networks and beyond. Figure 2.4

illustrates the integration structure that will be used at any BS (Alternatively an AP) in any cell of

the system to incorporate the DPS. For presentation simplicity, it shows the structure that is used at

a BS of a system-cluster that consists of two non-cooperative adjacent cells that serve up to K active

UEs in each cell. This structure can be generalized to a BS that is equipped with an M antennas

and located within a cluster of L cells. The DPS additional features can include, but are not limited

to, interference alignment, smart pilot assignments, and updating the second-order statistics of the

communication channels at the BS in a periodically real-time manner.
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Figure 2.4: DPS Structural integration for a cluster of two non-cooperative adjacent cells
where the BS is equipped with one antenna and serves K UEs.
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2.8.1 Interference Alignment and Interference Cancellation

Interference alignment is a strategy that has been adopted recently to be integrated into a transceiver

to increase the sum-rate capacity of the cell in cellular networks. Interference alignment uses linear

precoding to align the interfering signals in code, frequency, space, or time such that the inter-

ference signal lies in a reduced dimensional subspace at each intended receiver. However, this

transmission strategy requires coordination and feedback information which will result in many

challenges such as excessive backhaul integration, overhead, and reduces spectral efficiency. Ac-

cording to Figure 2.4, DPS provides the BS’s transceiver with a periodically real-time feedback

CSI about all adjacent cells without any coordination or backhaul cooperation integration. There-

fore, this available real-time information, at the BS of the home cell, about the adjacent cells can

be exploited to build efficient interference alignment algorithms in the downlink transmissions and

also interference cancellation algorithms in the uplink receptions at the BS.

2.8.2 Smart Pilot Assignment and User Scheduling

Smart pilot assignment algorithm is responsible to select which pilot in the code-book is suitable to

serve a certain UE based on the real-time system configuration and communications environment.

Such an algorithm is essential to maintain a lower bound of both intra-cell interference and inter-

cell interference which consequently guaranteed the optimality of the system performance and can

be integrated into efficient users scheduling algorithms. In contrast to SPS, where an efficient pilot

assignment is very challenging, in DPS such an algorithm is easy to adopt in a methodical and

real-time manner. As shown in Figure 2.4, the BS of the home cell in DPS are provided with real-

time CSI periodically for both UEs belong to its coverage area and also for UEs being served in

the adjacent cells, i.e., interfering cells. This available information can be used as inputs to smart

algorithms to add a distinguishability feature to the BS that provides the knowledge to check if a

User-ID sequence is currently in use at the adjacent cell/s or it is idle. Thus, a User-ID sequence

that is not assigned at adjacent cells will be given a high priority of assignment to be used by one

of UEs being served in the coverage area of the BS.
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2.8.3 Periodically Updated the Second-Order Statistics

Theoretically, statistical CSI is usually assumed to be available at the BS and perfectly known.

However, in practice this assumption is difficult to realize precisely and a solution is needed to

overcome this challenge. Also, the large scale fading coefficients depend on the separation distance

between the BS’s antenna and the UE’s antenna. Beside, MIMO technology is adopted in most

5Gs networks, with a large MIMO dimension in massive MIMO where the large scale fading has

an importance as it is the main significant fading effect [24]. Therefore, it is very important for

a BS to acquire a precise real-time second-ordered statistics and updating the large scale fading

coefficients which should be done continuously. On the one hand DPS provides the BS with a

more accurate CSI periodically. On the other hand, according to Figure 2.4, the statistical level

of CSI is extracted over a long term and DPS enables the BS to do this extraction mechanism

accurately in a real-time manner, not only for its home cell but also for its adjacent cells. The

received Cell-IDs pilot signals at the BS can be exploited jointly with the other received signals

to extract these second-order statistics. Thus, the proposed DPS in this dissertation, brings reality

a practical system that can start with a transient second-order statistics and then reach a real-time

second-order statistics after a specific period of employing DPS, which its length is determined

based on the system configuration and communications environment.

2.9 Numerical Results and Discussions

To mimic the real environment and assess the performance of the proposed DPS in comparison with

SPS, numerical results are presented and evaluated in this section. We consider a cluster of seven

cells in a system with an urban outdoor multi-micro hexagonal cells massive MIMO configuration.

The home cell under consideration is located at the center of the cluster and surrounded by six

adjacent first-tier cells that form the source of pilot contamination as shown in Figure 2.1. Each

cell has K active users. To generate the orthogonal PSs for SPS we used Walsh Hadamard matrices

of size τp× τp, where τp = K + 7 with complex entries. Each column in this matrix represents a

PS that is orthogonal to those represented by the other columns. Subsequently, to generate the dual



2.9. Numerical Results and Discussions

Table 2.2: The parameters used in simulations

Parameter Name Setting

Number of BS Antennas M 32, 64, and 128
Carrier Frequency 2 GHz

BS Antenna Height 25 m
Cell Radius 600 m

Min UE-BS distance 75 m
Bandwidth 20 MHz

Number of UEs K 8 at each cell
UE Height 1.7 m

Pathloss and Lognormal Shadowing From [96]
Noise Power Spectral Density -174 dBm/Hz

PSs for use in DPS, the forward Walsh Hadamard transform is used to rearrange the columns of this

matrix in ascending order with respect to the order of the sequences (i.e., number of zero-crossings

or number of changes in the sign of entries in every column). The columns with the seven highest

order of the sequences are assigned as Cell-IDs of the seven cells. The remaining sequences are

used as User-IDs. A (Cell-ID, User-ID) pair of orthogonal sequences forms a dual PS based on

(2.9) and uniquely identify a UE in the cluster. We assume the UEs in every cell are uniformly

distributed around the cell’s BS with equal power allocation. The simulation considers the worst-

case scenario and uses synchronous transmissions of PSs in all cells in each configuration either

when using a single PS for SPS or a dual PS for DPS. Table 2.2 shows the simulation parameters.

We also assume that the scatterers are distributed randomly in each cell and that a frequency flat

fading channel during each frame, where each frame occupies the channel coherence interval. Each

coherence interval is divided into four parts, the uplink training interval, the uplink data transmis-

sion interval, the downlink beam-forming (i.e., linear pre-coding) interval and the downlink data

transmission interval. We use MATLAB as the simulation environment. Furthermore, we have

done a calibration for the simulation environment by choosing simulation’s configurations identi-

cal to those used by the existing MIMO LTE cellular system (i.e., at reducing the number of BS’s

antennas), the simulation has produced results that matched the benchmark results. Lastly, due to
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the theoretical superiority that Linear MMSE (LMMSE) has shown amongst other estimation al-

gorithms (as aforementioned) and for evaluating the impacts of DPS practical implementation, we

assume the BS employs the LMMSE estimation method in the simulation environment.

2.9.1 Normalized Mean Squared Error

The NMSE is used to evaluate the proposed novel DPS and compare it with the SPS. Considering

the mth element of hl
i j, then the NMSE of the estimates of the wireless communication channel

coefficient between the jth user in the lth cell and the mth base station antenna at the lth cell

hlm
l j is given by NMSElm

l j = 1
N ∑

N
n=1E

{
‖ĥlm

l j,n−hlm
l j ‖

2

‖hlm
l j ‖2

}
where ĥlm

l j is the estimated channel coefficient,

hlm
l j is the actual channel coefficient and n is the simulation index. Figure 2.5 shows the NMSE

in the correlated Rayleigh fading channel environment of 1) the single cell scenario without the

effects of pilot contamination (i.e., the case which is free from the effects of pilot contamination

because adjacent cells do not exist), 2) the NMSE of the multiple non-cooperative adjacent cells

scenario using the conventional SPS (i.e., single PSs are used), and 3) the NMSE of the multiple

non-cooperative adjacent cells scenario using the DPS (i.e., dual PSs are used). Figure 2.6 shows

the NMSE for the i.i.d. Rayleigh fading channel environment case. The curves show that for the

SPS, as the SNR increases the inter-cell interference level increases. As a result, the NMSE will

be saturated at high SNR. While in DPS, as the SNR increases the inter-cell interference level

is minimal and fixed. As a result, the NMSE decreases proportionally, which leads to channel

estimation enhancement and improving CSI accuracy.

2.9.2 Achievable Sum-Rate

The sum-rate of a cell provides information about the achieved average high data throughput. In

particular, we follow the method proposed in [94] to compute the achievable ergodic sum-rate Cl
sum

at the BS of the lth home cell. The sum-rate is given by Cl
sum = E

{
log2

(∣∣∣∣IK + ξ Ĥl
HĤl

∣∣∣∣)},

where ξ is the average SNR per BS receiver’s antenna and Ĥl is the estimated channel matrix at

the BS using the LMMSE estimator.

Figure 2.7 shows the achievable sum-rate of the following cases: a single cell, non-cooperative
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Figure 2.5: The Normalized Mean Squared Error at M = 32 and using the correlated Rayleigh
fading channel.
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Figure 2.7: The achievable ergodic sum-rate per cell at M = 32 and using the correlated
Rayleigh fading channel.

multiple adjacent cells using SPS, and non-cooperative multiple adjacent cells using the DPS. The

performance achieved using the proposed novel DPS is very close to the performance of the single

cell configuration (i.e., the case which is free from the effects of pilot contamination because ad-

jacent cells do not exist). This shows that the proposed DPS significantly eliminates the effects of

pilot contamination, improves the channel estimation, enhances the CSI accuracy, and consequently

boosts the average high data throughput. Additionally, Table 2.3 presents the massive MIMO cell

capacity Csum at given values of NMSE for various SNRs when correlated Rayleigh fading channel

is used. The table reveals a comparison between SPS and DPS where it demonstrates that DPS

outperforms SPS and achieves a smaller NMSE, which resulted in improving the CSI and conse-

quently improves the achieved sum-rate capacity. On the other hand, the BS can achieves the same

sum-rate capacity that SPS offers at a lower SNR which implies improving the energy efficiency.
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Table 2.3: Comparisons of cell capacity Cl
sum in bps/Hz, for DPS and SPS at a given values

of NMSE in (dB), for correlated Rayleigh fading channel when M = 128, K = 8, and
L = 7.

SNR NMSEDPS NMSESPS CDPS
Sum CSPS

Sum

-10 -11.4146 -9.1973 3.0072 2.0704
-5 -12.7374 -10.2721 4.1616 2.7570
0 -13.7779 -11.4327 8.7215 4.8596
5 -17.1431 -12.5563 16.3685 10.6665

10 -20.4576 -13.9362 26.6856 18.5142
15 -24.8243 -14.2946 38.5148 27.6051
20 -29.2082 -14.6852 49.8413 35.9962

2.9.3 Singular Values Spread

One of the important metrics for assessing the performance of massive MIMO and analyzing the

propagation environment involves measuring differences between the channel coefficients of dif-

ferent UEs and the joint spatial correlation between columns of the channel matrix (where each

column represents the parallel channels between each UE and the BS’s antennas). This can be eval-

uated by finding the Cumulative Distribution Function (CDF) of the Singular Value Spread (SVS)

Γ, the spread between the smallest and the largest singular values of the wireless communications

channel matrix Hl , where hl
l j is the jth column in the matrix Hl . Assuming the ordered singular

values of Hl are σ l
1≥σ l

2≥ ··· ≥σ l
K ≥ 0, then the SVS in dB can be computed by Γ= 10log10

( σ l
1

σ l
K

)
.

SVS, which also known as the condition number, shows whether the columns of the channel

matrix tend to be orthogonal or highly correlated. If the singular values of the matrix Hl are equal

(i.e., the square roots of eigenvalues of the matrix Hl ×HH
l , also known as a Wishart matrix, are

equal), then the Euclidean norm condition number will be equal to one. In this case, the columns

of the channel matrix are orthogonal and the users’ signals will be separable and free of pilot

contamination at the BS. Moreover, the variance of the CDF of the SVS provides information about

the stability behavior of the system, (this stability increases as the variance decreases). Figure 2.8

and Figure 2.9 show that the median of the SVS is the largest at M = 32, this means the fading

margin is high and the additional power required to get reasonable SINR will be the highest.
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Also, Figure 2.8 shows the numerical CDF curves of the SVS for the channel matrix used

in 1) the case of a single cell scenario 2) the non-cooperative multiple adjacent cells scenario

when the DPS sequences are used and 3) the non-cooperative adjacent multiple cells scenario that
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uses the conventional SPS when the correlated Rayleigh fading wireless communication channel is

simulated using M = 32, M = 64, and M = 128. Similarly, Figure 2.9 shows the numerical CDF

curves of the SVS for the channel matrix used in all the three cases when the i.i.d. Rayleigh fading

wireless communication channel is simulated. Also, Figure 2.8 and Figure 2.9 illustrate the channel

characteristics and SVS of the real wireless communications channel measurements performed in

[23].

Besides, Figure 2.8 shows that the real measurements are most closest to the simulation envi-

ronment settings when M = 32 for i.i.d. Rayleigh channel. So, we have evaluated the performance

of DPS at M = 32 for i.i.d. and correlated Rayleigh fading channels. This shows how the perfor-

mance of DPS has been assessed in a simulation environment that has a very good closeness to the

real environment. Also, figures reveal implicitly, the performance of DPS in a real environment

that has an existence of a high correlation will be better, as DPS was assessed under the worst con-

ditions and considered a high fading margin compared to the real environment. Finally, in-depth

mathematical derivations of the joint CDF for eigenvalues of the Wishart matrix Hl×HH
l and the

CDF for its condition number (i.e., the equivalent joint CDF for singular values of the channel ma-

trix Hl and CDF for its condition number, taking into account a square root transformation function

between random variables) are available in [19].

2.10 Conclusions

In this chapter, we have proposed the novel DPS as an efficient mechanism for mitigation of pilot

contamination, and shown that it offers unique desirable features for use in massive MIMO systems

by improving system performance without cooperation between BSs. The advantages of DPS over

the conventional SPS have been proven mathematically, under the i.i.d. and the correlated Rayleigh

fading channel models. We have shown that by properly choosing a system parameter, DPS can be

designed so that it has universally better performance than SPS. Unlike the state-of-the-art works,

our DPS enjoys a uniform quality of service and per-user guarantees to enhance the performance.

Using proposed planning with a seven-cell cluster for pilot signal reuse with the proposed DPS,
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we have shown how DPS can be practically applied in an entire cellular network that has any num-

ber of cells. This reuse concept can be generalized to any cluster size appropriate for maintaining

the distance between two cells that use exactly the same PSs. Simulation results have been pre-

sented to show the advantages of DPS over SPS in terms of normalized mean squared error and the

sum-rate cell capacity, due to much improved channel estimation at various signal-to-noise ratios.

Remarkably, the numerical results have revealed that DPS reduces the normalized mean squared

error of the channel estimates by about 10 dB at 10 dB SNR relative to SPS, and the sum-rate

capacity of DPS approaches that of the single-cell scenario that is free from pilot contamination,

showing the effectiveness of DPS in almost completely mitigating the harmful effects of pilot con-

tamination. Beside, due to the existence of a high correlation in the communication channels in

practice, the DPS has the tendency to be more efficient and beneficial for practical implementation

in reality. Lastly, while we have demonstrated the effectiveness of DPS for TDD massive MIMO

systems, DPS is a general design that can be applied in any wireless communications system that

utilizes PSs for CSI, including 5G and beyond.



Chapter 3

Barker Coded DFT-s-OFDM Waveforms for

5G Uplinks

3.1 Synopsis

DFT-s-OFDM is used in LTE-Advanced (LTE-A) which is considered the Fourth Generation (4G).

DFT-s-OFDM is expected to be used as the air interface waveform for uplink transmissions in 5G

cellular networks according to the 3GPP recommendations. We investigate the performance of

DFT-s-OFDM and the trade-off between its EE and SE in 5G uplinks employing massive MIMO

antenna systems. We propose a novel method, using an adaptive length Barker Code (BC) for

spreading in DFT-s-OFDM, to improve the EE-SE trade-off in 5G uplink transmissions. The per-

formance of the proposed system is evaluated in terms of EE, Bit-Error Rate (BER), sum-rate

capacity, and NMSE under the i.i.d. and the correlated Rayleigh fading wireless communications

channel models. We extend DPS that we develop in Chapter 2 to operate in massive MIMO-

NOMA. Furthermore, we investigate the scenario where PD-NOMA is deployed over 5G uplinks

with the proposed waveform and examine the SE and EE of near/far user pairs. The numerical

results show that the proposed air interface waveform results in a significant improvement in the

uplink EE without degrading the SE over a range of SNRs for massive MIMO uplinks with either

OMA or PD-NOMA.
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3.2 Introduction

Uplink air interface waveforms need to be energy efficient to facilitate EE in uplink transmission.

For designing the air interface waveforms in 5G cellular networks with MIMO technology, there

are currently two possible approaches that provide backward compatibility with older generations

of cellular networks. These are the OFDM [97] and the DFT-s-OFDM. Two main advantages of

OFDM are the mitigation of ISI, and the ease of the channel equalization by converting a wide-

band frequency-selective fading channel into a group of parallel narrow-band frequency-flat fading

channels. However, it has been found that employing OFDM results in increasing PAPR which

leads to ICI, increased power losses in power amplifiers, and produces inter-modulation distortions.

For instance, uplink single-carrier NOMA and multiple-carrier NOMA face the drawbacks of high

PAPR due to the OFDM [98]. All of these drawbacks of OFDM have huge negative impacts on

EE. Therefore, the 3GPP has adopted DFT-s-OFDM for the uplink transmission in LTE networks

and 5G uplink transmissions to maintain acceptable PAPR level. DFT-s-OFDM waveforms in LTE

networks demonstrate improvements in reducing UE power consumption and in expanding the

coverage range. However, the performance of employing DFT-s-OFDM in 5G cellular networks

with both massive MIMO-OMA and massive MIMO-NOMA have not been investigated yet.

The differences between OFDM and DFT-s-OFDM is shown in Figure 3.1. In OFDM, time-

domain data symbols of each UE are payloaded and mapped into all allocated sub-carriers. There-

fore, the length of time-domain data symbols in OFDM without Cyclic Prefix (CP) equals the

number of the allocated sub-carriers in OFDM. In contrast to OFDM, data symbols length in DFT-

s-OFDM (i.e., length of Discrete Fourier Transform (DFT) outputs) is shorter than the number of

allocated sub-carriers. Therefore, frequency-domain data symbols (i.e., DFT outputs) are spread

amongst allocated sub-carriers, either in a distributed or localized configuration.

As 5G wireless networks aim to serve a variety of communications environments and services,

investigating EE and the performance of DFT-s-OFDM in 5G cellular networks is challenging. Re-

call, 5G wireless networks promise to support a variety of enhanced and new services, including

Enhanced Mobile Broadband (eMBB) for high speed Internet access, massive Machine Type Com-
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Figure 3.1: Payload data symbols comparison in OFDM, localized DFT-s-OFDM, and dis-
tributed DFT-s-OFDM, when 12 sub-carriers are used.

munications (mMTC) of pervasive IoT, and ultra-Reliable Low Latency Communications (uRLLC)

for Mission Critical Communications (MCC) such as between self-driving cars, with substantial en-

hancements in system capacity and EE [2, 3, 99, 100]. These enhancements are only enabled by

adopting advanced air interface waveforms that can adapt to different scenarios with improved EE

[101], and utilize massive MIMO antenna systems [7], which are key technologies of 5G RANs.

Thus, it is important to examine the performance of any proposed air interface waveforms in a

massive MIMO environment.

In massive MIMO, as a BS is equipped with a large number of antennas. Intuitively, this

architecture improves the downlink EE since it reduces the power loss in power amplifiers and

uses focused beamforming. However, the EE of massive MIMO for the uplink scenario is less

well understood [97] [102]. Since EE in uplink massive MIMO is important for ensuring green

communications and meeting the 5G requirements, it becomes an essential factor in designing the

5G air interface waveforms [102].

On the one hand, the deployment of OMA technique into massive MIMO have the advantage

that intra-cell interference does not arise. However, the use of OMA limits the number of served

users, as this number is determined by the available orthogonal resources. On the other hand,

NOMA technology has the promise of enhancing the SE capability that would increase the system

capacity of 5G cellular networks. Multiple users in NOMA could be served using the same re-

source simultaneously. This, unfortunately, comes at the cost of introducing intra-cell interference.
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Besides, NOMA offers other advantages and reduces both the signaling overhead and the latency in

the uplink transmission. In addition, NOMA can offer a higher data rate, better cell coverage range,

and thus promotes more the feasibility of higher massive connectivity [103]. Moreover, NOMA is

compatible with current and future generation of cellular networks architecture, and it has been

proposed for the downlink of 3GPP LTE-A networks with the name of multiuser superposition

transmission [104]. In this regards, one of the promising applications of NOMA is the remote en-

ergizing of IoT sensors and Wireless Power Transfer Networks (WPTN) including their low-power

profile devices with limited charging capabilities, which intuitively required an energy efficient

uplink mechanism. These advantages encourage us to (1) explore the deployment of NOMA in

massive MIMO cellular networks, as NOMA promises to be a 5G technology that aids massive

MIMO to achieve the 5G technical targets, and (2) assess the proposed air interface waveforms in

massive MIMO with NOMA deployment.

In NOMA, multiple users are served simultaneously in the same frequency-time band. This

improves the spectrum efficiency and enables the simultaneous service of multiple users at various

communication channel conditions. However, this also introduces intra-cell interference amongst

users within the same cell and increases the receiver complexity due to the implementation of

SIC. There are two types of NOMA, the first is the Code Domain NOMA (CD-NOMA), which

requires more bandwidth, and the second is PD-NOMA. Improving the EE is our main goal in

this chapter. Therefore, we focus on the PD-NOMA because it is easy to implement, and can be

embedded into existing networks. In contrast to CD-NOMA, PD-NOMA does not require any

additional bandwidth. In PD-NOMA, paired users are assigned distinct power levels that maximize

the performance and ensure that a diverse range of power levels arrive at the BS [105].

From a NOMA perspective, the recent work on NOMA has focused on enhancing the SE and

on reducing the complexity of SIC at the receiver, but there have been few works on EE. The EE

optimization of downlink MIMO-NOMA deployments has been investigated in [106] but EE in

uplink transmission is still an open research area for more avenue of contributions. Accordingly,

in addition to a massive MIMO with OMA deployment, this chapter considers improving the EE
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of the uplink transmissions in a massive MIMO with PD-NOMA deployment. Also, one critical

factor that plays an important role in the realization of EE is the total consumed power in uplink

transmission. Total consumed power include transmission power, circuit power, and power losses

due to external factors (external power consumption). The International Telecommunication Union

(ITU) recommends the circuit power and the transmission power to be reduced in any communica-

tion device to improve the EE [107], but this approach is limited due to the trade-off between SE

and EE [108]. Therefore, we took into consideration to improve the EE-SE trade-off.

To the best of our knowledge, there is no previous work done on usage evaluation of DFT-

s-ODFM (instead of OFDM) in the uplink transmission in massive MIMO-NOMA. This chapter

aims to fill this research gap. On the one side, DFT-s-OFDM has the flexibility in supporting

both the localized and the distributed OFDM. This capability enables its use in a wide range of

applications, services, and environments [109]. However, DFT-s-OFDM has several issues such

as poor spectral containment and noise enhancement [102]. On the other side, both OFDM and

DFT-s-OFDM exhibit high Out of Band (OOB) leakage, but DFT-s-OFDM results in lower PAPR

[100]. To reduce the OOB leakage a new waveform named Generalized DFT-s-OFDM (G DFT-s-

OFDM) has been proposed in [99], where the data symbols are sandwiched between head and tail

short sequences to offer a guard interval. A special case of this waveform is called Zero-tail DFT-

s-OFDM (ZT DFT-s-OFDM), where the head and tail sequences are set to zeros [110]. However,

the EE of the proposed waveforms has not been investigated. Also, ZT DFT-s-OFDM showed a

small increase in its PAPR and suffers from ISI in high delay spread environments. In a similar

approach to ZT DFT-s-OFDM, the Unique-word DFT-s-OFDM (UW DFT-s-OFDM) waveform

has been proposed in [111] by replacing the zero-tail sequence in ZT DFT-s-OFDM with a unique

fixed sequence. Although UW DFT-s-OFDM and its enhanced versions improve slightly the PAPR,

it increases the transmitter’s complexity significantly. Thus, motivated by the need to improve EE

while preserving a high level of SE in 5G uplink transmissions, in this chapter, we propose a novel

alternative approach that uses an adaptive length BC DFT-s-OFDM waveforms which reduce both

OOB and PAPR instead of conventional DFT-s-OFDM. Notably BC DFT-s-OFDM waveforms
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acquires the features of BCs. BCs are a special type of binary code that represents biphase codes,

which demonstrates advantages in producing the smallest achievable sidelobes and focusing the

energy into the main lobe, thus reducing power losses and restraining ICI. An uplink waveform

that has smaller side lobes improves the robustness of asynchronous transmission [99].

We first investigate the use of the conventional DFT-s-OFDM in massive MIMO uplink trans-

mission and its EE feasibility, with OMA and NOMA techniques employment, and then to enhance

EE we introduce adaptive length BC DFT-s-OFDM. We model and formulate the problem, consider

the scenario involving a cell located within a cluster of non-cooperative multiple adjacent cells1,

and when BCs of different lengths are employed. More specifically, we consider a single cell with

its BS (equipped with a very large number of antennas) located at the center of the cell. The CSI is

estimated in uplink transmission using the DPS that has been proposed in Chapter 2 when OMA is

used together with massive MIMO in non-cooperative multiple adjacent cells.

However, interference management becomes more complicated when NOMA is used together

with massive MIMO in non-cooperative multiple adjacent cells due to existence of both inter-cell

and intra-cell interference, as most proposed NOMA designs are agnostic to inter-cell interference

[112]. Therefore, in continuation to the development of DPS that we proposed in Chapter 2, we

propose and demonstrate in this chapter EDPS as an efficient scheme that significantly improves the

CSI accuracy and mitigates simultaneously both intra-cell and inter-cell interference when NOMA

is used together with massive MIMO in non-cooperative multiple adjacent cells. To demonstrate the

effectiveness of our proposed BC DFT-s-OFDM method in the uplink transmissions of 5G massive

MIMO, we compare its performance with that of the conventional DFT-s-OFDM. Our numerical

results demonstrate that the proposed BC DFT-s-OFDM waveforms (with the adaptive length of

BC) improves the performance and achieves better EE, lower BER, lower PAPR, and higher sum-

rate capacity compared to the conventional DFT-s-OFDM. In particular, the MMSE estimator is

used; and the NMSE of the estimated CSI of both the conventional DFT-s-OFDM and the proposed

BC DFT-s-OFDM are compared.

1This configuration can be easily generalized to any cellular network with any arbitrary cluster size, which consists
of a group of non-cooperative cells that mitigate pilot contamination by using DPS.
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The main contributions of this chapter include: (1) the first to investigate EE performance

of DFT-s-OFDM in the uplink transmission of massive MIMO cellular networks with two main

different configurations of multiple access a) OMA and b) PD-NOMA (2) the first which proposes

the use of BC in DFT-s-OFDM to generate adaptive length BC DFT-s-OFDM waveforms, to obtain

a better EE enhancement for 5G uplink transmissions while preserving a good level of SE-EE trade-

off (3) proposal of an efficient method to integrate NOMA into massive MIMO by employing

EDPS, which can significantly mitigate both intra-cell and inter-cell interferences either in a single

cell scenario and/or non-cooperative multiple adjacent cells scenario.

The rest of this chapter is organized as follows: In the following section, we discuss the EE

metrics. In Section 3.4, we review the theoretical background of BCs and illustrate how the BC

spreading matrix used in our system model is formed. In Section 3.5 we present the system con-

figuration of a single cell massive MIMO with OMA. In Section 3.6, we demonstrate the cell’s

system model of massive MIMO with PD-NOMA, and then introduce EDPS. Section 3.7 discusses

the obtained numerical results. Section 3.8 concludes the chapter.

3.3 The Energy Efficiency Metrics

In cellular communication systems, EE of a UE can be defined as the number of bits reliably deliv-

ered to the final destination (i.e., the BS in uplink) per unit of energy consumed at the originating

source (i.e., the UE), and is measured in bits per Joule (b/J). However, the system EE metric more

widely used is the energy consumption required to achieve the target system throughput, i.e., the

ratio of the achieved total system throughput to the total power consumed [113]. Another metric

of measuring the EE relates the achieved capacity to the consumed power, where the capacity is

measured in bits per channel use (simply in bps/Hz) and EE = Capacity
ConsumedPower [114]. The asymptotic

uplink Shannon capacity CUL of a single cell massive MIMO under favorable conditions is given

by CUL = ∑
K
k=1 log2(1+ pulMβk), where M is the number of BS antennas, pul is the SNR, K is the

number of users, and βk is the large scale fading coefficient of kth UE.

The consumed power can be splitted into three parts: the transmitted power, the circuit power,
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and the external system power. SE depends on the transmitted power and is measured in bits

per second per hertz (b/s/Hz) (i.e., the throughput per unit of the bandwidth) and SE = Capacity
Bandwidth .

Then, EE = SE×Bandwidth
ConsumedPower . It is important to emphasize that if SE increases in the numerator,

the consumed power in the denominator also increases and vice versa. The aim is to increase

SE with as little as a possible increment in the consumed power. Our system model is based on

DFT-s-OFDM with massive MIMO, so we use a global sum EE metric that considers the multiple

sub-carries, multiple antennas, and multiple UEs in the system. Implementing the BCs at the UE’s

transmitter improves the uplink throughput and enhances SE, which results in EE improvements

of the proposed system. It also significantly reduces the PAPR, which results in reducing the

consumed power at the UE. However, using BCs introduces an incremental increase in circuit

power as an additional circuit needs to be embedded into UE. Due to the simplicity of the additional

required circuitry, this increment is small, and has a limited impact compared to the improvements

offered by BC DFT-s-OFDM waveform in both EE and SE. As a result, the trade-off effect between

the EE and SE is minimized while achieving our target for improving the EE.

3.4 Barker Codes

This section reviews the theoretical background of BCs and illustrates how the BC matrix B in our

system model is formed using BC sequences. BC plays a critical role in the proposed BC DFT-s-

OFDM waveform and system architecture. The distinguished property of a BC waveform is that its

autocorrelation function has side lobes that are the lowest possible. This property maximizes the

peak-to-side lobes ratio of the autocorrelation function of the generated waveform. Thus, since BC

is employed after the DFT operation, the Power Spectral Density (PSD) of the resulting waveform

is concentrated in the desired frequency band while its OOB leakage is significantly reduced. This

is a very special property that could be exploited advantageously in wireless communications in

that it improves the SE, reduces the ICI, and improves EE. So, we recommend the deployment of

BCs into uplinks transmissions of 5G wireless networks. Beside, Barker coded waveforms are easy

to generate by a simple phase modulation circuit [115], where only very little additional circuit
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power is required. Also, the use of Barker coded air interface waveforms have shown results in an

improvement in the channel estimation of fading channels [116].

The metric that measures the EE in BCs sequences is called the Merit Factor (MF). As MF

increases, the energy of the transmitted waveform tends to be more uniformly distributed in the

frequency band [117]. As a consequence, Barker coded waveforms acquire immunity against OOB

leakage effects and become more energy efficient. Let F(b j) be the MF of the BC sequence b j of

length N; it is defined by:

F(b j) =
N2

2∑0<u<N [∑i b j(i)b j(i+u)]2
. (3.1)

The jth row in the BC matrix B consists of a generalized BC sequence b j with length N and

zero padding. A generalized BC sequence b j is a finite sequence with N entries. In this chapter,

the value of N is adaptive and varies from 1 to 13, which adds a degree of freedom to be used

in reality depending on the application of 5G. Therefore, N depends on the application type, the

size of the transmitted data, the number of active users, number of available sub-carriers, and the

strength of the wireless communication channel coefficients. The value of each entry of b j is a

complex number ±bi where bi has a unity magnitude and can only take the value 1 or i, (i is a pure

imaginary number). When N = 1 and bi is a real positive value, then our proposed waveform and

system becomes equivalent to the conventional DFT-s-OFDM. Any generalized BC sequence b j

must satisfy a condition of having an autocorrelation function Cb(τ) such that |Cb(τ)| ≤ 1,τ 6= 0

[115, 118]. The autocorrelation function is given by:

Cb(τ) =
N−τ

∑
j=1
{b j}{bH

j+τ}, (3.2)

where bH
j+τ is the complex conjugate transpose of b j+τ . When all the entry values of b j are real,

the BC sequence is called a Binary Barker Sequence (BBS). If the entry values of b j can include

both 1 and i then the BC sequence is called a Quaternary Barker Sequence (QBS). Our proposed

structures can use any of these sequences.
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Figure 3.2: Structures of BC DFT-s-OFDM when Barker code length=3, bi = {+1,−1}, and
12 sub-carriers are used.

Thus, a natural question is raised, “how to construct the spreader BC matrix B?”, as 5G wireless

networks vary according to their RAN technology, the applications they are intended for, their target

services, and backhaul architectures. Thus, in addition to satisfying the requirements mentioned

in this section, the structure of the spreader BC matrix B should also vary to capture and tackle

these aspects and variations of 5G wireless networks. Hence, our proposed system has a flexible

and adaptable structure of the BC matrix B to accommodate these variations which either generate

aggregated or distributed BC DFT-s-OFDM. Figure 3.2 shows the differences between aggregated

BC DFT-s-OFDM and distributed BC DFT-s-OFDM.

Assume the DFT output frequency-domain data symbols are d = {d f
1 , · · · ,d

f
s , · · · ,d f

S}, which

has a length of S and (·) f is a data symbol in frequency domain. Also, assume N is the suitable

BC length based on the factors mentioned previously that determine the used length. Then, the

structure of the spreader BC matrix can be formed by:

B = (IS⊗bT
N)

T , (3.3)

for the distributed mode, whereas for the aggregated mode it can be formed by:

B = (bT
N⊗ IS)

T . (3.4)
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Consequently, BC DFT-s-OFDM sequence xBC can be generated by:

xBC = d×B. (3.5)

Thus, the sequences in Figure 3.2 are generated using N = 3, S = 4, and number of sub-carriers

equals 12. Therefore, in a matrix format, (3.3) and spreader BC matrix B in this case can be

expressed as:

B =



b1 · · · b3 04 · · · · · · · · · · · · 012

01 · · · 03 b1 · · · b3 07 · · · 012

... ... ...
... ... ...

... ... ...

01 · · · · · · · · · · · · 09 b1 · · · b3


. (3.6)

3.5 System Model

We consider a single cell in a massive MIMO cellular network as described in [21], whose BS is

equipped with an array of M antennas, uses OMA to serve K users in its coverage area as shown

in Figure 3.3. Each UE is equipped with a single antenna. The cell under consideration is located

at the center of a cluster consisting of multiple non-cooperative adjacent cells. Besides, we assume

BS employs DPS to significantly mitigate pilot contamination2.

Considering the uplink transmission of K active UEs, the signal yl
m received at the mth antenna

of the BS corresponding to the lth channel tap is a superposition of all the signals transmitted from

the K UEs. We assume a favorable propagation environment with sufficient scatters that produce

dense multipath components for the signals transmitted by each UE. Mathematically, we can write

the received yl
m signal as:

yl
m =
√

ρul

K

∑
k=1

√
ηkhml

k xk +wl
m, (3.7)

where ρul denotes the SNR, ηk denotes the power control coefficient of kth UE, xk is the signal

2The effectiveness of DPS only appears in the case of a non-cooperative multiple-cells scenario is operated.
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Figure 3.3: Single cell massive MIMO, the BS has M antennas and serves K users.

transmitted by the kth UE, hml

k is the channel coefficient of the lth transmission path (corresponding

to average multipath components at the lth tap of the channel Finite Impulse Response (FIR))

between the kth UE in the cell and the mth BS’s antenna, and wl
m is the additive noise, which is

assumed to be C N (0,1) and independent across different l and m. In vector form, we rewrite (3.7)

as:

yl =
√

ρulHlD1/2
η x+wl, (3.8)

where yl = [yl
1, . . . ,y

l
M]T , wl = [wl

1, . . . ,w
l
M]T , x = [x1, . . . ,xK]

T is formed of all the signals trans-

mitted by all UEs in the cell to all BS’s antennas, Dη is a diagonal K×K matrix that has a diagonal

vector η = [η1,η2, · · · ,ηK]
T , and Hl is the M×K channel matrix corresponding to the lth trans-

mission path (i.e., lth channel tap) and each of its columns represents the parallel channels between

each UE and the BS’s antennas, Hl is expressed by:

Hl =


h1l

1 · · · h1l

K
... ... ...

hMl

1 · · · hMl

K

 . (3.9)

The received signal given by (3.8) takes into account only one channel tap, then the total re-
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ceived signal with taking into account all the channel taps L at a time index n is given by:

y[n] =
L

∑
l=1

√
ρulHlD1/2

η x[n− l +1]+wl[n], (3.10)

where L is the total number of channel taps (i.e., the length of the channel FIR), which is determined

by the delay spread and the transmission bandwidth. Equation (3.10) shows there are an L channel

matrices in the system model. Each one of them is a two dimensional (2D) matrix with a size of

M×K. These L channel matrices can be rearranged to form a three dimensional (3D) channel

matrix. Therefore, the 3D channel matrix H3D
M×K×L that is given by:

H3D
M×K×L =

h1L

1 · · · h1L

K

... . . . ...

hML

1 · · · hML

K



h11

1 · · · h11

K

... . . . ...

hM1

1 · · · hM1

K




, (3.11)

is the M×K×L matrix containing all the channel coefficients between all the UEs in the cell and

all M antennas at the BS for all L channel taps (transmission paths).

Following the notations used in [21], we factor the channel coefficient as hml

k =
√

β ml

k gml

k , where

β ml

k > 0 is called the large-scale fading coefficient (which characterizes the range-dependent path

loss and shadow fading and its value is assumed to be known to the BS) [119] and gml

k is called the

small-scale fading coefficient. We assume that the small-scale fading has a Rayleigh distribution

and we consider two Rayleigh-fading channel models: i.i.d. and the correlated Rayleigh fading.

3.5.1 Transmitter Configuration at the UE

The UEs within the massive MIMO cell generate the uplink transmitted signals denoted by x in

(3.8). The generated uplink signal by the kth UE, is denoted by xk in (3.7). Figure 3.4 shows the

proposed structural configuration of the kth UE’s transmitter, which used to generate the BC DFT-

s-OFDM waveform xk. For simplicity, similar to [120] we present how xk is generated within one
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Figure 3.4: The proposed transmitter structural configuration for the kth UE.

BC DFT-s-OFDM symbol and we assume BC DFT-s-OFDM symbols are statistically distributed

in an uncorrelated fashion with zero mean. The data symbol is denoted by the row vector dk

and has a length of S data points, so the generated BC DFT-s-OFDM signal xk becomes now a

vector and is denoted by xk with length of NSK. The S data points of dk are mapped to the input

of the DFT matrix through a time-domain mapping matrix denoted by Mt with size of S× S to

carry out a series to parallel conversion. The outputs of the DFT matrix T are mapped to a subset

of S sub-carriers (i.e., out of SK sub-carriers, only S sub-carriers are mapped either localized or

interleaved) through a frequency-domain mapping matrix denoted by Mf with size of SK × S.

The Mf structure depends on the applications and services introduced by the cellular network. In

contrast to the conventional DFT-s-OFDM, the output of matrixMf is spread using the BC matrix
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denoted by B3 in our proposed scheme that has a size of NSK×SK. Note that when the BC used

to generate the B matrix is BBS with N = 1, the generated BC DFT-s-OFDM waveform becomes

identical to the conventional DFT-s-OFDM waveform. Then the BC spreader output is converted

to the time-domain by the Inverse Fast Fourier Transform (IFFT) equivalent multiplication matrix

denoted by FH that has a size of NSK×NSK. This can be expressed mathematically by:

xk = F
HBMfTMtdT

k , (3.12)

where T is the DFT equivalent multiplication matrix whose (m,n) entry is given by Tm,n =
1√
S
e
− j2π(m−1)(n−1)

S .

The matrix H3D in (3.11) is a 3D matrix consisting also of K 2D matrices, each matrix has a size

of M×L. The channel matrix of the kth UE can be denoted by Hk and expressed as:

Hk =


h11

k · · · h1L

k
... ... ...

hM1

k · · · hML

k


k

, (3.13)

where each row in the matrix has a length of L, which is the length of Channel Impulse Response

(CIR) of the wireless communications channel between the UE and one antenna element at the BS

[32]. In particular, L is assumed to be less than or equal to the size of the CP used in our system

model.

3.5.2 The Base Station Receiver Configuration

Without loss of generality, the signal transmitted by the kth UE and received at the mth antenna of

the BS propagates over the wireless communications channel whose CIR hmk is given by:

hmk =

[
hm1

k , hm2

k , · · · hmL−1

k , hmL

k

]
. (3.14)

Then at the mth BS antenna, the received uplink signal that was transmitted by the kth UE is
3B here is the transpose of the matrix that is formed either by (3.3) or by (3.4) because the data points are also

transposed and became a row vector.
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expressed as:

ymk =
√

ρulηkCmkxk +wmk, (3.15)

where xk is the transmitted uplink signal generated by the kth UE’s transmitter using (3.12), Cmk

is the equivalent Toeplitz channel matrix that models the circular convolution to perform the linear

convolution between xk and hmk. The structure of Cmk is explained in [109]. The first column

of Cmk has the same length of xk such that its first L elements is equal to hT
mk and the remaining

elements are zero paddings. In (3.15), wmk is the additive Gaussian noise, where each element of

wmk is assumed to be C N (0,1). Using (3.12), we can rewrite (3.15) as:

ymk =
√

ρulηkCmkF
HBMfTMtdT

k +wmk. (3.16)

Therefore, taking into account all antennas, the signal received at the BS from the kth UE is

given by:

Yk =

[
y1k, y2k, · · · ymk, · · · y(M−1)k, yMk

]
. (3.17)

On the other hand, the received uplink signal at the mth BS antenna transmitted by all UEs in

the massive MIMO cell is given by:

ym =
K

∑
k=1

√
ρulηkCmkF

HBMfTMtdT
k +wm, (3.18)

where ym is a column vector. Thus, the received signal across all the BS antennas can be expressed

as matrix Y = [y1, · · · ,ym, · · · ,yM].

Figure 3.5 shows the proposed structure of the BS receiver. The receiver has M inputs, one

input at each antenna, with an input at the mth antenna denoted by ym. The signals received at

these inputs are processed simultaneously by applying the reverse of the operations that have been

carried at the UE’s transmitter, in the reverse order, and the transmitted uplink data are estimated

jointly by using the LMMSE estimator.

The BS’s receiver first removes the CP from the received signal Y, then applies the Fast Fourier
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Figure 3.5: The proposed structural configuration of the BS receiver.

Transform (FFT), followed by the BC de-spreader before applying the LMMSE. We choose the

LMMSE estimator because of its superior performance at both low and high SINR [93, 94, 121].

The signal at the front end of the LMMSE estimator can be written as:

YLMMSE =MH
f BHFY, (3.19)

where BH and MH
f are the Hermitian versions of B and Mf matrices respectively, and F is the

FFT matrix. Equation (3.19) shows that we apply the FFT on the received signal Y to reverse the

IFFT operation that has been carried out at the transmitter according to (3.15) and (3.16). However,

by applying the FFT on the received signal Y, (3.19) shows that the wireless channel coefficients

that are given in (3.15) and (3.16) (i.e., the entries of the Cmk matrix) are transformed into the

frequency domain as there was no an IFFT operation carried out on these channel coefficients.

Also, the circular convolution operation between the CIR and the transmitted signal becomes mul-

tiplication operation after applying the FFT operation on the received signal at the BS’s receiver.

Therefore, the decoding matrix QL
k,m of the LMMSE estimator that considers the CIR of the wire-

less communications channel with length L between the kth UE and mth BS antenna is given by:

QL
k,m =

(
D̃1/2H

η

( ˆ̃Hf
k,m

)H( ˆ̃Hf
k,m

)
D̃1/2

η +ρulI
)−1

D̃1/2H

η

( ˆ̃Hf
k,m

)H
, (3.20)
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where ˆ̃Hf
k,m is the estimated channel matrix in the frequency domain. The diagonal elements in

ˆ̃Hf
k,m are the FFT of the estimated version of the first column of Cmk. Then the output of the

LMMSE estimator is given by QL
k,mYLMMSE and can be expressed as:

QL
k,mYLMMSE =

(
D̃1/2H

η

( ˆ̃Hf
k,m

)H( ˆ̃Hf
k,m

)
D̃1/2

η +ρulI
)−1

D̃1/2H

η

( ˆ̃Hf
k,m

)H
MH
f BHFY. (3.21)

Applying the reverse operations carried at the UE’s transmitter in a reverse order according

to Figure 3.5, yields the outputs (i.e., D̃ataUser1 · · · D̃ataUserK ) of the BS’s receiver which can be

expressed as:

MH
t THQL

k,mYLMMSE =

MH
t TH

(
D̃1/2H

η

( ˆ̃Hf
k,m

)H( ˆ̃Hf
k,m

)
D̃1/2

η +ρulI
)−1

D̃1/2H

η

( ˆ̃Hf
k,m

)H
MH
f BHFY,

(3.22)

whereMH
t and TH are the Hermitian versions ofMt and T matrices respectively.

Based on (3.18) and (3.22) together with (3.11), the BS receiver should perform an M par-

allel processing in a quadrature mode of operation (i.e., in two dimensions), the first dimension

represents L and the second dimension represents K.

3.6 NOMA Deployment in Massive MIMO

3.6.1 PD-NOMA Integration in Massive MIMO with Perfect CSI

In Section 3.5, we present the system model in a single cell massive MIMO with the assumption

OMA is used. However, OMA techniques in cellular communications prevent the system from

reaching its capacity limit in uplink transmissions due to the mutual exclusiveness of resource

allocations [122]. So, in this section, we extend the system model to incorporate the PD-NOMA

deployment in massive MIMO cells. Assume the cell under consideration in Figure 3.3 is divided

into a number of R concentric circular regions whose center is the BS that serves up to K active

UEs simultaneously in each region. For simplicity, we assume R = 2 in this chapter. Thus, the
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number of active UEs served simultaneously in the cell is now doubled and becomes 2K, K active

UEs in each region.
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Figure 3.6: Two cells of massive MIMO with PD-NOMA deployment, each cell is divided
into two regions (R=2), each region has a set of K active users. The BS is equipped with
M antennas and located at the center of each cell.

Figure 3.6 shows the cell’s coverage map where users are uniformly and randomly distributed

inside the cell regions when R = 2, and it shows the formation of the PD-NOMA pairs. The users

inside the intended cell are categorized into two groups: the near users in the central region and the

far users in the edge region. Hence, the number of PD-NOMA-pairs, in this case, is equal to K. The

number of PD-NOMA-pairs and consequently the number of users within each PD-NOMA-pair in

a cell is determined by the acceptable level of intra-cell interference at its BS receiver, the number

of R concentric circular regions of a cell, and the number of available PSs during the coherence

interval for perfroming channel estimation. In our system model, each PD-NOMA pair consists of

a far UE in the edge (outer) region and a near UE in the central (inner) region. Each PD-NOMA

pair is formed by a random selection of the two UEs. The maximum distance between a near user

(resp., a far user) and the BS is denoted by dn (resp., d f ), where d f > dn. The two UEs in the

PD-NOMA pair (i.e., the near UE and the far UE) transmit their uplink signals simultaneously and

share the same sub-band. We assume a fully loaded cell where all 2K users4 are active and formed

4In massive MIMO 2K ≤ M
2 is recommended. The deployment of PD-NOMA in massive MIMO allows the number

of users to exceed the number of available PSs in the coherence interval, this results in increasing the system capacity
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K PD-NOMA pairs.

Consequently, (3.7) should be updated to take into account that PD-NOMA is now deployed

in the massive MIMO cell instead of OMA. Therefore, in this case, the received signal at the mth

BS antenna, through a favorable propagation environment that has sufficient scatters that produce

dense multipath components for the lth channel tap is given by:

yl
m =
√

ρul

K

∑
k=1

(
hml

kn

√
ηkxkn +hml

k f

√
ηkδxk f

)
+wl

m, (3.23)

where δ denotes the back-off step for the far UE to ensure the signal power received at the BS

from the far UE is less than the signal power received from the near UE, δ ∈ (0,1] (in PD-NOMA,

the system allocates more power to the UEs with weaker wireless channel coefficients). In the kth

PD-NOMA pair, xkn denotes the uplink signal transmitted by the near UE (i.e., the user belongs to

the inner region and closer to the cell center) and xk f denotes the uplink signal transmitted by the

far UE (i.e., the user belongs to the outer region and closer to the cell edge). Taking into account

only one BC DFT-s-OFDM symbol, both signals xkn and xk f become vectors denoted by xkn and xk f ,

respectively, which are generated at the transmitters of UEs using (3.12), where the near UE and the

far UE at each PD-NOMA pair share the same OFDM sub-carriers during the uplink transmission.

The additive noise which is assumed to be C N (0,1) and independent across different l and m is

denoted by wl
m.

For ease of presentation, let us consider only the uplink transmission of the kth PD-NOMA pair

in the cell through the lth transmission path with assuming both xkn and xk f become vectors, thus

(3.23) becomes:

yl
mk

=
√

ρul

(
hml

kn

√
ηkxkn +hml

k f

√
ηkδxk f

)
+wl

mk
, (3.24)

where the wireless channel coefficient of the lth transmission path between the near UE in the

kth PD-NOMA pair and the mth BS’s antenna is hml

kn
=
√

β ml

kn
gml

kn
whereas hml

k f
=
√

β ml

k f
gml

k f
is the

channel coefficient of the lth transmission path between the far UE in the kth PD-NOMA pair and

to serve more users. In this case by a factor of 2.
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the mth BS’s antenna.

At the kth PD-NOMA pair, let β ml

kn
= d−ρ

nk and β ml

k f
= d−ρ

f k denote the large-scale fading coef-

ficients of the near UE and of the far UE respectively, where dnk and d f k are the distances from

the near UE and from the far UE to the BS respectively (i.e., d f k > dnk), and ρ is the path loss

exponent of the cell environment. For each PD-NOMA pair, the BS receiver assumes the availabil-

ity of perfect CSI and employs SIC. Thus, the BS’s receiver structural configuration that is given

in Figure 3.5 should be modified to accommodate the deployment of PD-NOMA by embedding

the SIC circuity block. Thus, in this scenario, the red block in the receiver diagram in Figure 3.5

includes a SIC algorithm in addition to LMMSE estimator. Similarly, the transmitter needs to be

modified at the UE. Consequently, the the red block in the UE diagram in Figure 3.4 includes a

power allocation algorithm in addition to the sub-carriers allocation mapper.

The BS’s receiver decodes the signal of the near user first while considering the presence of

the far user’s signal as interference. The nearest user, which has the strongest channel, experiences

interference from all other users in the PD-NOMA pair during decoding its uplink signal at the BS.

Then, as a second step, the BS subtracts the decoded signal x̂kn of the near user from the total re-

ceived signal yl
mk

, and the remaining signal yl
mk
−hml

kn

√
ηkx̂kn will be decoded as the received uplink

signal of the far user. Therefore, the far user (i.e., the user served by the weakest channel) does

not experience interference from other users in the PD-NOMA pair during the decoding of its up-

link signal (i.e., assuming perfect SIC decoding is performed based on perfect CSI). Consequently,

the achievable average rates per sub-band for the near and the far users in the uplink PD-NOMA

massive MIMO are given by:

rUL
nUE

= E
{

log2

(
1+

ρulηk‖hml

kn
xkn‖2

2

‖hml

k f
xk f ‖2

2 +σ2
w

)}
. (3.25)

rUL
fUE

= E
{

log2

(
1+

ρulδηk‖hml

k f
xk f ‖2

2

σ2
w

)}
. (3.26)
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Equations (3.25) and (3.26) clearly demonstrate the useful advantage of PD-NOMA deploy-

ment in massive MIMO to increase the sum-rate capacity of the cell. Also, (3.25) and (3.26) imply

that this improvement in the sum-rate capacity, which is directly proportional to the numerator of

the EE metric, depends on the accuracy of the CSI.

3.6.2 PD-NOMA Integration in Massive MIMO with Imperfect CSI

In the previous sub-section, we assume the availability of perfect CSI at the BS receiver, where

accurate CSI is essential for perfect operations of SIC in a system that adopted PD-NOMA inte-

gration. Moreover, accurate CSI is essential and very important to build a reliable wireless com-

munication system. This sub-section focuses on highlighting the practical aspects of PD-NOMA

deployment in massive MIMO, where the inherent interference impairs the accuracy of CSI.

As mentioned in Section 3.5 we consider a cell that is located at a center within a cluster

consisting of non-cooperative multiple adjacent cells that use DPS for estimating CSI under this

scenario of operating. DPS significantly mitigates the inter-cells interference caused by users in

adjacent cells as explained in Chapter 2, where OMA has been used with massive MIMO. This

new structure of PD-NOMA deployment in a massive MIMO cell creates an opportunity to achieve

better EE but also introduces new design constraints that make the EE maximization challenging.

Notwithstanding the existence of inter-cell5 interference is tackled by DPS, this new configuration

introduces an intra-cell interference, a new source of interference that arises from all UEs within

the same cell that share the same sub-band which needs to be mitigated.

Consequently, the accuracy of CSI in NOMA systems plays an additional and critical role in

mitigating the error propagation in the SIC operation that is carried out at the BS receiver during

the decoding of received uplink signals. Therefore, it is essential to tackle the new intra-cell inter-

ference. Moreover, the CSI is used in the pre-coding and digital beam-forming operations for the

downlink signals as well. As a consequence, an inaccurate CSI causes imperfect beam-forming,

5The inter-cell interference of downlink in multiple cells with either PD-NOMA or OMA configurations have the
same level. In contrast, the inter-cell interference of uplink in PD-NOMA configuration is different than OMA inter-
cell interference, where it is directly proportional to the number of served users in PD-NOMA pairs at co-channel
adjacent cells.
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adds a new source of interference amongst the served users during the downlink, and causes a

reduction in the system EE.

Definitely, the assumption of perfect CSI availability for the PD-NOMA pair at the BS’s re-

ceiver is not practical. Instead, the BS estimates the CSI during the uplink training using the uplink

PSs. Therefore, the accuracy of the CSI depends on the quality of the channel estimation at the

BS. Although the system model in this chapter focuses on the performance of a single cell located

at the center of non-cooperative multiple adjacent cells, where inter-cell interference is assumed to

be tackled by DPS. In practice, it is important to adopt an interference mitigation scheme that con-

siders both inter-cell and intra-cell interference. Therefore, to mitigate the effects of the intra-cell

interference amongst PD-NOMA pairs and improve CSI accuracy at the intended cell, we introduce

EDPS and use it in this sub-section. EDPS is an extension of DPS that operates on two levels in a

cell of massive MIMO with NOMA deployment6. The first level to mitigate the inter-cell interfer-

ence and the second mitigates the intra-cell interference. Therefore, using EDPS, PSs assignment

in non-cooperative multiple adjacent cells for the NOMA massive MIMO is given by ΦR×K×C, as

follows:

ΦR×K×C =

φ1C

1 · · · φ1C

K

... . . . ...

φRC

1 · · · φRC

K



φ11

1 · · · φ11

K

... . . . ...

φR1

1 · · · φR1

K




, (3.27)

where C is the number of non-cooperative multiple adjacent cells in the NOMA massive MIMO

cluster, R is the number of concentric circular regions inside each cell, K is the total number of

users in each circular region, and φrk

c is the PS used by the kth UE in the rth circular region within

the cth cell. It represents a row vector and is normalized to 1, ‖φrk

c ‖2 = 1 for all r, k, and c. Then

6EDPS can be employed in different types of NOMA like CD-NOMA.
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φrk

c can be decomposed as follows:

φrk

c =
√

µυr +
√

γ(1−µ)ψk +
√

(1− γ)(1−µ)ϕc, (3.28)

where µ ≤ 1 is a NOMA pair design parameter, γ ≤ 1 is a massive MIMO cells cluster design

parameter, and υr, ψk, and ϕc are mutually orthogonal normalized energy sequences that belong

to the orthogonal sequences codebook available in the system. Thus, the PSs codebook consists of

K +R+C mutual orthogonal sequences and can be categorized into three groups as follows:

UESG = {ψ1,ψ2, ...,ψK},

NRSG = {υi,υii, ...,υR},

MCSG = {ϕa,ϕb, ...,ϕC},

(3.29)

where UESG stands for the Users Equipment Sequences Group, NRSG stands for the NOMA

Regions Sequences Group, and MCSG stands for the massive MIMO Cells-Clustering Sequences

Group. In the system model used in the previous sub-section, the analysis focused on one cell with

R = 2, then the codebook used in the intended cell (denoted by cell A) given by (3.29) becomes:

UESG = {ψ1,ψ2, ...,ψK},

NRSG = {υi,υii},

MCSG = {ϕa},

where ϕa is used as the Cell-ID, υi is used as the central region Identification (ID) (i.e., the inner

region contains the near UEs inside the cell), υii is used as the ID of the edge region (i.e., the

outer region contains the far UEs inside the cell), and ψ1,ψ2, ...,ψK are the User-IDs and used

in conjunction with the Cell-ID and NOMA regions IDs to identify the UEs within each NOMA
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region inside the cell. As a consequence (3.27) can be rewritten as:

ΦA =

φ1a

1 · · · φ1a

K

φ2a

1 · · · φ2a

K


2×K

. (3.30)

Now, to illustrate the reasons why employing the conventional SPS will result in imperfect CSI

and why the EDPS enhances the accuracy of CSI, let us consider the two scenarios in integrating

PD-NOMA in massive MIMO.

PD-NOMA Deployment in Massive MIMO with Conventional SPS Integration

If SPS is used in the deployment of PD-NOMA in a cell of massive MIMO, then only one PS is

used by each PD-NOMA pair. Therefore, using SPS, the two UEs in the kth PD-NOMA pair are

assigned the same PS, φk = ψk. Moreover, the same PS is reused at adjacent cells of the non-

cooperative multiple cells PD-NOMA massive MIMO cluster which worsens the level of inter-cell

interference due to the PD-NOMA deployment. Also, it leads to arising the intra-cell interference

amongst PD-NOMA pairs. Then, considering a single cell, the uplink pilot signal received at the

BS antenna m transmitted by UEs of the kth PD-NOMA pair through the transmission path l is

given by:

yl
mk

=
√

ρul

(
hml

kn

√
ηk +hml

k f

√
ηkδ

)
φk +wl

mk
. (3.31)

The BS receiver performs the so-called de-spreading operation by right-multiplying yl
mk

by φH
k ,

where φkφ
H
k = 1 (i.e., due to the unit energy normalization), obtaining:

yl
mk
φH

k =
√

ρul

(
hml

kn

√
ηk +hml

k f

√
ηkδ

)
+wl

mk
φH

k . (3.32)

The BS uses the conventional SPS to estimate the CSI. Equation (3.32) is the only equation for

the two unknowns hml

kn
and hml

k f
available at the BS using the conventional SPS. As a result, from

a geometric perspective, the BS receiver’s MMSE estimator is limited to generate three estimates

that are parallel and aligned in the same channel direction for hml

kn
, hml

k f
, or the linear combination
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hml

kn
+ hml

k f
. Thus, the resulted estimated CSI will be imperfect. Beside, from a beam-forming

perspective, the BS transceiver will not be able to distinguish the correct direction for the near

UE and the far UE in the PD-NOMA pair due to imperfect estimation of the CSI. Although the best

approach here is to use the linear combination of the estimated wireless channel coefficients and

employ the joint beam-forming. However, this will cause an imperfect pre-coding and improper

beam-forming in the downlink, reduction in the EE, and will add a new source of interference

amongst UEs.

PD-NOMA Deployment in Massive MIMO with EDPS Integration

To illustrates the advantages of the EDPS for mitigating both the intra-cell and inter-cell inter-

ference, let us consider a PD-NOMA massive MIMO cluster consisting of two non-cooperative

adjacent cells as shown in Figure 3.6 (denoted as A and B). Each cell is divided into two concentric

circular regions that employ the PD-NOMA, the central region and the edge region (i.e., R = 2).

According to this configuration, each cell has K PD-NOMA pairs where each pair consists of 2

UEs. As mentioned previously, all EDPS PSs have normalized unit energy. Then, in EDPS, the

near UEs (i.e., those located in the central region) of the intended cell A are assigned with PSs

expressed by:

φnk

a =
√

µυi +
√

γ(1−µ)ψk +
√

(1− γ)(1−µ)ϕa.

for all k=1,2,...,K.
(3.33)

Whereas the far UEs (i.e., those located in the edge region) of the intended cell A are assigned

with PSs expressed by:

φ f k

a =
√

µυii +
√

γ(1−µ)ψk +
√

(1− γ)(1−µ)ϕa.

for all k=1,2,...,K.
(3.34)
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Similarly, the near UEs of the adjacent cell B are assigned with PSs expressed by:

φnk

b =
√

µυi +
√

γ(1−µ)ψk +
√

(1− γ)(1−µ)ϕb.

for all k=1,2,...,K.
(3.35)

Whereas the far UEs of the adjacent cell B are assigned with PSs expressed by:

φ
f k

b =
√

µυii +
√

γ(1−µ)ψk +
√

(1− γ)(1−µ)ϕb.

for all k=1,2,...,K.
(3.36)

At the base station of cell A, the received signal consists of all pilot signals transmitted by all

UEs in the central region and the edge region of both cells A and B. Then, the received uplink

pilot signal at the mth BS receiver antenna transmitted by the kth PD-NOMA pairs through the

transmission path l is given by:

yl
mk

=
√

ρul

(
hml

kna

√
ηk +hml

knb

√
ηk +hml

k fa

√
ηkδ +hml

k fb

√
ηkδ

)
ψk

+
√

ρul

(
hml

kna

√
ηk +hml

knb

√
ηk

)
υi +
√

ρul

(
hml

k fa

√
ηkδ +hml

k fb

√
ηkδ

)
υii

+
√

ρul

(
hml

kna

√
ηk +hml

k fa

√
ηkδ

)
ϕa +

√
ρul

(
hml

knb

√
ηk +hml

k fb

√
ηkδ

)
ϕb +wl

mk
.

(3.37)

Equation (3.37) has four unknowns: 1) hml

kna
and hml

k fa
which are the two channel coefficients for

the near UE and the far UE at cell A, respectively, and 2) hml

knb
and hml

k fb
which are the two channel

coefficients for the near UE and the far UE at cell B, respectively.

The receiver of the BS at cell A performs the de-spreading operation by right-multiplying yl
mk

by ψH
k , where ψkψ

H
k = 1, obtaining:

yl
mk
ψH

k =
√

ρul

(
hml

kna

√
ηk +hml

knb

√
ηk +hml

k fa

√
ηkδ +hml

k fb

√
ηkδ

)
+wl

mk
ψH

k . (3.38)

The PD-NOMA massive MIMO system integrated with the convectional SPS is limited to do

one de-spreading operation given by (3.38). In contrast, the PD-NOMA massive MIMO system
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integrated with the EDPS can do three additional de-spreading operations at the receiver of the

BS at cell A. These de-spreading operations are accomplished by right-multiplying yl
mk

by υH
i to

generate (3.39), υH
ii to generate (3.40), and ϕH

a to generate (3.41). Where υiυ
H
i = 1, υiiυ

H
ii = 1,

and ϕaϕ
H
a = 1 as each sequence has a normalized unit energy. Thus, these additional equations are

given by:

yl
mk
υH

i =
√

ρul

(
hml

kna

√
ηk +hml

knb

√
ηk

)
+wl

mk
υH

i . (3.39)

yl
mk
υH

ii =
√

ρul

(
hml

k fa

√
ηkδ +hml

k fb

√
ηkδ

)
+wl

mk
υH

ii . (3.40)

yl
mk
ϕH

a =
√

ρul

(
hml

kna

√
ηk +hml

k fa

√
ηkδ

)
+wl

mk
ϕH

a . (3.41)

Equations (3.38), (3.39), (3.40), and (3.41) are linearly independent and generated simultane-

ously at the BS receiver. Therefore, the BS receiver now has the capability to jointly and accurately

estimate the unknown wireless channel coefficients, as the number of unknowns are equal to the

number of linearly independent equations. Thus, the EDPS enhances the CSI accuracy and outper-

forms the conventional SPS in the PD-NOMA massive MIMO system. This can be generalized for

a group of PD-NOMA massive MIMO non-cooperative adjacent cells that form a cluster and serve

any arbitrary number of users, which has been proving mathematically in our work presented in

[78], where dual PSs integration resulted in an enhancement of CSI accuracy compared to single

PSs employment and CSI were estimated with a smaller MMSE during channel estimation. As a

result of this CSI enhancement, the sum-rate capacity of the PD-NOMA massive MIMO system

increases and as a consequence, the system EE is improved.

Similar to the macroscopic view presented in Section 2.7, the concept of cluster reuse is used

as well in massive MIMO-PD-NOMA but with a smaller cluster size (i.e., number of cells L in the

cluster ). Figure 3.7 shows the reuse planning for the entire cellular network using a cluster size of
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Figure 3.7: EDPS cluster reuse in massive MIMO PD-NOMA cellular network. Cells with
the same color are using the same unique BS’s extended dual PSs (i.e., the same Cell-ID
(MCSG), same Region-IDs (NRSGs), and User-IDs (UESGs)).

three cells (i.e., L = 3). The idea behind using a smaller cluster size is adopted to tackle the trade-

off between CSI accuracy and system capacity. As aforementioned in Chapter 2, the number of

available orthogonal sequences N is limited and mainly determines by the duration of the training

period within a coherence interval. Hence, portions of these orthogonal sequences are dedicated

for MCSGs and NRSGs within a cluster. Therefore, to increase the system capacity the orthogonal

sequences dedicated for UESGs need to be increased which implies that a smaller cluster size is

recommended. However, to increase the reuse distance the NRSGs will be used reversely between

inner region and outer region of the co-cell every consecutive tier.

3.7 Numerical Results and Discussion

3.7.1 Generating the Channel Matrix

The 3D channel matrixH of the i.i.d. Rayleigh fading channel, which we have used in simulations,

was generated such that its entries are spatially and temporally independent and follow a circularly
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Table 3.1: System parameters used in simulations

Parameter Value

Number of BS Antennas M 128
Carrier Frequency 2 GHz

BS Antenna Height 25 m
UE Mobility Speed 80 km/h

Cell Radius 250 m
Bandwidth 20 MHz

Number of UEs K 32
UE Height 1.7 m
σsh[124] 8 dB

Maximum Delay Spread 10
QAM Constellation Size 32

Length of Barker Codes (N) 3, 5, and 7
Maximum Number of Sub-Carriers 1272

symmetric complex Gaussian random distribution with zero mean and unit variance. The channel

coefficient of the lth transmission path between the kth UE and the mth BS antenna, hml

k , is located

at the mth row and kth column of the 2D matrix H l . The 3D channel matrix of the correlated

Rayleigh fading channel is formed according to the model used in [123] based on the 3D i.i.d.

channel matrix mentioned above and with taking into account both the temporal and the spatial

correlations between the entries of the i.i.d. channel matrix.

3.7.2 Numerical Results for OMA Massive MIMO Cell Configuration

We consider a system with an urban outdoor macro-cell massive MIMO with a radius of 250 meters

whose BS is located at the center as shown in Figure 3.3. The cell serves K active users simulta-

neously. The PSs are generated and assigned using the DPS described in Chapter 2 to estimate the

CSI. We assume a uniform random distribution of all users around the BS with equal power allo-

cation. Also, we assume the scatterers are distributed randomly in each cell. Furthermore, OFDM

is converting a wide-band frequency-selective fading channel into a group of parallel narrow-band

frequency-flat fading channels. Then, in a frequency-flat fading channel, we assume each frame
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occupies the channel coherence interval. Each coherence interval (Ic = Bc×Tc) is divided into four

parts, the uplink training interval, the uplink data transmission interval, the downlink beam-forming

(linear pre-coding) interval, and the downlink data transmission interval.

In all of our simulations for both conventional OMA massive MIMO configuration and massive

MIMO with PD-NOMA deployment: We use MATLAB as the simulation environment. The length

of the BC is adaptive and set to three, five, or seven. Table 3.1 shows the system parameters used

in the simulations of the numerical results. In particular, we applied the large scale fading model

used in [96, 124], and [119] in our simulations.

Normalized Mean Squared Error:

The uplink system throughput is defined as the rate of the successfully delivered data symbols

transmitted by UEs to the BS over the wireless communication channel. To receive these trans-

mitted data symbols successfully, the BS receiver should decode and estimate the received uplink

signals accurately which depends on the accuracy of channel estimation. Thus, increasing the es-

timation accuracy of the CSI is essential to improve the uplink system throughput. This accuracy

enhancement is measured by the NMSE. Lower NMSE implies a better channel estimation and a

higher accuracy of the CSI which has a consequence of enhancing the system sum-rate capacity

and reducing the BER, using the same transmission power. As a result, it leads to improving EE.

Therefore, we use the NMSE of the CSI estimation as a performance metric to evaluate the

performance of the proposed BC DFT-s-OFDM waveform and compare it with the performance

of the conventional DFT-s-OFDM waveform in the uplink transmission. The normalized mean

squared channel estimation error is given by NMSEml

k = 1
N ∑

N
n=1E

{
‖ĥml

k,n−hml
k ‖

2

‖hml
k ‖2

}
where ĥml

k,n is the

estimated channel coefficient, hml

k is the actual channel coefficient and n is the simulation index.

Figure 3.8 shows the NMSE of the uplink conventional DFT-s-OFDM and the NMSE of the uplink

BC DFT-s-OFDM when the i.i.d. and the correlated Rayleigh fading channels are used. The

curves show that the uplink BC DFT-s-OFDM waveform outperforms the conventional DFT-s-

OFDM waveform at low SNR. Improving the NMSE for low SNR will result in using low power
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Figure 3.8: The CSI-NMSE performance metric with M=128 (BS’s antennas) and K=32 (ac-
tive UEs) using 32-QAM.

transmission (i.e., the dominant part at the denominator of EE metric) and hence improve the EE.

So, DFT-s-OFDM with BC spreader is shown to be an energy-efficient waveform for massive

MIMO.

Sum-Rate Capacity:

The ergodic sum-rate capacity of a massive MIMO cell provides information about the achieved

average data throughput. Throughput is the numerator of an EE metric, therefore increasing the

sum-rate capacity enhances the system EE. Figure 3.9 shows the sum-rate capacity performance

metric of uplink waveforms for both the conventional DFT-s-OFDM and the proposed BC DFT-s-

OFDM when both i.i.d. and correlated Rayleigh fading communications channels are used. The

curves show that the proposed scheme (i.e., the DFT-s-OFDM with adaptive length BCs) achieved

better performance in both i.i.d and the correlated Rayleigh fading communications channels en-

vironments at low SNR and consequently outperforms the conventional DFT-s-OFDM in massive

MIMO system. Thus, the proposed UE’s transmitter and BS’s receiver structures improve the sum-
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Figure 3.9: The uplink sum-rate capacity performance metric with M=128 (BS’s antennas)
and K=32 (active UEs) using 32-QAM.

rate capacity performance and boost the average high data throughput at low SNR. In other words,

these proposed structures improve EE significantly and make the green communications promise

of 5G more feasible to implement by adopting the proposed structures.

Bit Error Rate:

BER in the uplink transmission is another important metric. Having an energy-efficient waveform

implies that lower BER can be achieved at low SNR. On the other hand, achieving low BER leads

to lower power consumption in the system due to the reduction of corrupted data symbols received

at the BS, which implies a reduction in the re-transmission rate.

Figure 3.10 shows the BER performance metric of uplink waveforms for both the conventional

DFT-s-OFDM and the BC DFT-s-OFDM when both i.i.d. and correlated Rayleigh fading com-

munications channels are used. The curves show that the proposed BC DFT-s-OFDM scheme

outperforms the conventional DFT-s-OFDM at low SNR. This results in improving the EE of the

5G massive MIMO system. On the other hand, Quadrature Amplitude Modulation (QAM) is the
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UEs) using 32-QAM.

modulation scheme used in the 5G and our proposed structure is shown to be energy efficient and

to achieve low BER at low transmitted power when using this modulation scheme. The transmitted

power is the dominant part of the denominator of the EE metric, therefore reducing the transmis-

sion power improves the system EE. We used QAM with a constellation size of 32 in the numerical

results but this can be generalized to any constellation size of the QAM. The selection of the opti-

mal QAM consultation size is an optimization problem where the required transmission power to

maintain the same BER performance increases as the QAM constellation size increases. There have

been works done on 5G cellular networks to be equipped with optimization algorithms to allocate

adaptive QAM constellation size to optimize both EE and SE. Our proposed scheme enables these

algorithms to work more efficiently.

Energy Efficiency:

The EE, in the uplink transmission, is an essential metric that should be used to assess the proposed

scheme EE. Having an energy-efficient waveform implies that high data throughput and high SE
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Figure 3.11: The Energy Efficiency performance metric with M=128 (BS’s antennas) and
K=32 (active UEs) using 32-QAM.

could be achievable with low power consumption at both UE’s transmitter and BS’s receiver. Our

system model measured the received uplink SINR ratio at the BS and the EE metric is derived for

the uplink massive MIMO according to the same mathematical modeling used in [125], and given

by:

EE =
∑

K
k=1 rk

∑
K
k=1 pk +PCT x +PMS

, (3.42)

where, PMS is a power consumption adjustment factor at the UE, PCT x is the circuit power con-

sumed at the UE, pk is the total average transmission power consumed by sub-carries at kth UE,

and rk is the achievable average rate capacity of the kth user measured at the BS. The SINRs for

both the conventional DFT-s-OFDM and the BC DFT-s-OFDM are measured at the BS where the

LMMSE estimation algorithm is used to estimate the received uplink signals. Also, the LMMSE

estimator employs the DPS during the phase of channel estimation which adds a second degree of

improvement in EE due to DPS’s capability to enhance the accuracy of CSI at low SNR.

Figure 3.11 shows the EE performance metric of uplink waveforms for both the conventional

DFT-s-OFDM and the DFT-s-OFDM with adaptive length BCs when both i.i.d. and correlated
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Rayleigh fading communications channels are used. The curves show that the proposed BC DFT-

s-OFDM scheme outperforms the conventional DFT-s-OFDM with a significant gain at low power

consumption. It also implies, employing BC DFT-s-OFDM results in improving the EE of the

5G massive MIMO system which is the technical infrastructure of many networks requiring low

power consumption like IoT. So, implementation of the proposed BC DFT-s-OFDM scheme in

5G networks will result in prolonging the battery lifetime, especially of limited energy devices

such as IoT sensors. This has huge economic, social, and environmental impacts that make 1)

green communications and 2) affording the deployment of smart ICT infrastructures, are feasible

to achieve.

3.7.3 Numerical Results for PD-NOMA Deployment in Massive MIMO

Similarly, we consider a system with an urban outdoor macro-cell PD-NOMA massive MIMO with

a radius of 250 meters whose BS is located at the center as shown in Figure 3.6. The cell is divided

into two concentric circular regions. The inner central region contains the near users and the outer

edge region contains the far users. All users in each region are uniformly and randomly distributed

around the BS. The BS controls the UEs transmitted power and controls the back-off power step to

ensure different power levels between far UE and near UE during the reception of the uplink signals.

The cell serves 2K active users simultaneously, K users at each region and forms K PD-NOMA

pairs. The PSs are generated and assigned using the EDPS described and proposed in Section 3.6,

to estimate the CSI. Similar to the conventional OMA massive MIMO cell configuration, we also

assume the scatterers are distributed randomly in each call to ensure the existence of favorable

propagation conditions at massive MIMO system with PD-NOMA deployment. Identically, we also

assume a frequency flat fading channel where each frame occupies the channel coherence interval.

Where each coherence interval (Ic = Bc×Tc) is divided into four parts, the uplink training interval,

the uplink data transmission interval, the downlink beam-forming (linear pre-coding) interval, and

the downlink data transmission interval.
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Normalized Mean Squared Error:

We have examined the performance of EDPS over a range of SNR values to assess its estimation

accuracy when the proposed BC DFT-s-OFDM waveform is used in the uplink transmission of

massive MIMO with PD-NOMA at various BC length. We have used NMSE as the performance

metric. Then, we have compared the obtained results with the performance of the conventional

DFT-s-OFDM waveform when it is used in the uplink transmission in massive MIMO with PD-

NOMA. Table 3.2 shows that the EDPS achieves a high estimation accuracy and the BC DFT-s-

OFDM waveform outperforms the performance of the conventional DFT-s-OFDM waveform when

both are used in the uplink transmission in massive MIMO with PD-NOMA. We have performed

the evaluations when both the i.i.d. and the correlated Rayleigh fading channels are used. Also, we

found that the NMSE in EDPS is monotonically decreasing as the SNR increases. The obtained

numerical results demonstrated that improving the NMSE for low SNR results in using low power

transmission (i.e., the dominant part at the denominator of EE metric) and hence improve the EE,

whereas at the same time it is very well known that PD-NOMA improves the SE. This improves

the EE-SE trade-off in the massive MIMO with PD-NOMA uplink transmission.

Table 3.2: NMSE Performance metric in dB for DFT-s-OFDM and BC DFT-s-OFDM in PD-
NOMA at different values of SNR with various BC length, using i.i.d. and correlated
Rayleigh fading channels at M = 128 and active UE= 32.

SNR (dB)
i.i.d. Correlated

DFT-s-OFDM
BC DFT-s-OFDM

DFT-s-OFDM
BC DFT-s-OFDM

BC=3 BC=5 BC=7 BC=3 BC=5 BC=7

0 -08.4615 -15.8462 -17.3462 -19.9808 -10.4231 -16.2462 -17.3462 -19.9885
2 -15.1823 -24.0231 -25.3692 -27.5793 -16.9789 -24.7923 -26.6191 -28.8693
4 -19.0371 -28.8646 -31.6992 -35.1706 -21.1673 -32.1705 -33.6221 -36.1775
6 -22.9885 -33.5577 -35.5769 -39.8846 -25.6731 -36.7961 -38.3654 -42.9233
8 -27.1192 -37.3115 -39.1002 -44.7497 -29.8269 -40.6038 -42.0497 -46.8477
10 -31.7415 -41.2646 -43.0962 -48.8454 -34.1608 -44.9112 -46.7108 -50.7101
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Sum-Rate Capacity:

We have used the sum-rate as the performance metric to assess the performance of the proposed

BC DFT-s-OFDM waveform over a range of SNR values when it is used in the uplink transmission

of massive MIMO with PD-NOMA at various BC length. Then, we have compared the obtained

results with the performance of the conventional DFT-s-OFDM waveform when it is used in the up-

link transmission of massive MIMO with PD-NOMA. Table 3.3 shows that the BC DFT-s-OFDM

waveform achieves a better performance and outperforms the performance of the conventional

DFT-s-OFDM waveform when both are used in the uplink transmission of massive MIMO with

PD-NOMA. We have performed the assessments when both the i.i.d. and the correlated Rayleigh

fading channels are used. The obtained numerical results showed that a higher sum-rate capacity

is achieved at using lower SNR. This implies a reduction in the transmission power is possible

while maintaining the sum-rate offered by the conventional DFT-s-OFDM by using the proposed

BC DFT-s-OFDM waveform in the uplink transmission of massive MIMO with PD-NOMA. Con-

sequently this will result in improving EE.

Table 3.3: Cell’s sum-rate performance metric in bps/Hz for DFT-s-OFDM and BC DFT-s-
OFDM in PD-NOMA at different values of SNR with various BC length, using i.i.d. and
correlated Rayleigh fading channels at M = 128 and active UE= 32.

SNR (dB)
i.i.d. Correlated

DFT-s-OFDM
BC DFT-s-OFDM

DFT-s-OFDM
BC DFT-s-OFDM

BC=3 BC=5 BC=7 BC=3 BC=5 BC=7

8 016.2487 157.4781 254.7083 315.3701 013.5416 059.6251 068.7488 139.3774
10 018.8583 159.2355 258.3516 318.8621 036.4546 124.2577 104.7521 199.1073
12 032.7916 167.9273 263.7391 321.8901 095.8986 204.1250 174.9763 272.3089
14 075.2248 197.2470 275.8166 332.2477 170.8211 289.3758 249.7589 356.8735
16 152.2436 258.7081 313.3732 360.1034 257.1779 373.7511 334.7796 438.6702
18 229.5612 331.1539 389.3741 422.0811 337.5914 455.1241 429.1135 522.1206

Bit Error Rate:

We have used the BER as other performance metric to inspect the performance of the proposed

BC DFT-s-OFDM waveform over a range of SNR values when it is used in the uplink transmis-
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sion of massive MIMO with PD-NOMA at various BC length. Then, we have compared the ob-

tained results with the performance of the conventional DFT-s-OFDM waveform when it is used

in the uplink transmission of massive MIMO with PD-NOMA. Table 3.4 shows that the BC DFT-

s-OFDM waveform achieves a lower BER and outperforms the performance of the conventional

DFT-s-OFDM waveform when both are used in the uplink transmission of massive MIMO with

PD-NOMA. We have performed the assessments when both the i.i.d. and the correlated Rayleigh

fading channels are used. A contemplation into these results, we found that lowering the BER

improves the transmission performance and reduces the number of resend trials at the UE’s trans-

mitter, which consequently implies a preserving of power usage at the UE and extend the battery

life. Besides, it implies an energy conservation improvement at the system that embeds the pro-

posed BC DFT-s-OFDM waveform in the uplink transmission of massive MIMO with PD-NOMA.

Table 3.4: BER Performance metric for DFT-s-OFDM and BC DFT-s-OFDM in PD-NOMA
at different values of SNR with various BC length, using i.i.d. and correlated Rayleigh
fading channels at M = 128 and active UE= 32.

SNR (dB)
i.i.d. Correlated

DFT-s-OFDM
BC DFT-s-OFDM

DFT-s-OFDM
BC DFT-s-OFDM

BC=3 BC=5 BC=7 BC=3 BC=5 BC=7

8 1.51∗10−1 8.25∗10−2 2.02∗10−2 8.06∗10−3 1.61∗10−1 1.49∗10−1 1.32∗10−1 9.69∗10−2

10 1.45∗10−1 8.19∗10−2 1.99∗10−2 7.45∗10−3 1.58∗10−1 1.41∗10−1 1.24∗10−1 8.89∗10−2

12 1.41∗10−1 8.05∗10−2 1.95∗10−2 7.00∗10−3 1.43∗10−1 1.12∗10−1 1.19∗10−1 6.07∗10−2

14 1.35∗10−1 7.93∗10−2 1.67∗10−2 6.23∗10−3 1.28∗10−1 6.91∗10−2 8.19∗10−2 2.11∗10−2

16 1.29∗10−1 6.61∗10−2 1.33∗10−2 5.04∗10−3 9.08∗10−2 2.05∗10−2 3.14∗10−2 5.01∗10−3

18 1.05∗10−1 3.03∗10−2 8.89∗10−3 2.11∗10−3 4.07∗10−2 5.13∗10−3 8.17∗10−3 1.06∗10−3

20 4.52∗10−2 7.64∗10−3 3.12∗10−3 5.71∗10−4 9.74∗10−3 1.07∗10−3 2.01∗10−3 1.86∗10−4

3.7.4 Peak to Average Power Ratio

The circuit power is the second dominant part of the consumed power of the UE’s transmitter.

A significant portion of the circuit power is consumed at the Power Amplifier (PA). The power

consumption at the PA in any wireless communications system is directly related to the PAPR of

the transmitted signal. The PAPR measured in (dB) for a transmitted baseband uplink signal x(t)

is defined as PAPRdB = 10log10

(
max(|x(t)|2)
E
{
|x(t)|2

} ). High PAPR leads to high power consumption at
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Figure 3.12: The CCDF of PAPR in a massive MIMO cell with PD-NOMA deployment using
32-QAM at different configurations.

the PA, which proportionally affects and decreases the EE of the wireless communications system.

Furthermore, high PAPR pushes the PA to operate in the saturation region and causes ICI. The

BCs reduce the side lobes power of the auto-correlation function and concentrate the power at

the main lobe. As a result, the proposed system generates waveforms that have small PAPR, which

facilitates the PA to operate in the linear region. Figure 3.12 shows the Complementary Cumulative

Distribution Function (CCDF) of the PAPR in (dB) for the massive MIMO system with PD-NOMA

deployment that employs the proposed DFT-s-OFDM with the adaptive length BCs. The CCDF is

conventionally used for evaluating the probability of the proposed system to have higher PAPR

greater than the maximum allowable reference PAPR (we call it in this chapter PAPRr). The curves

in Figure 3.12 show that the PAPRs of the BC DFT-s-OFDM waveforms is lower than the PAPR of

the conventional DFT-s-OFDM waveform. This impels a UE equipped with BC spreader consumes

less power compared with a UE uses the conventional DFT-s-OFDM waveform.
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3.7.5 Out of Band Leakage

The leakage in the frequency band is measured by the power in dB per Hertz (Hz) that falls outside

the allocated frequency bandwidth. Therefore, as this leakage increases, the EE decreases due

to the dissipated power that is not exploited correctly and also caused extra interference. Figure

3.13 shows the OOB leakage performance comparison between DFT-s-OFDM, G DFT-s-OFDM,

and BC DFT-s-OFDM during the usage of a bandwidth of 20 MHz. Figure 3.13 reveals that BC

DFT-s-OFDM outperforms the conventional DFT-s-OFDM waveform recommended by 3GPP and

G DFT-s-OFDM waveform proposed in [99], and achieves gains for suppressing the leakage by 50

dB and 30 dB, respectively.
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3.8 Conclusion

In this chapter, we have proposed the BC DFT-s-OFDM waveform with an adaptive length BC

spreader, which shows significantly better performance in the uplink transmission of both configu-

rations 1) the conventional massive MIMO with OMA, and 2) the massive MIMO with PD-NOMA
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deployment. We have proposed new structure for the UE’s transmitter that adds and a BC spreader,

and for the BS’s receiver that adds a BC de-spreader. Our numerical results, of the conventional

massive MIMO that employs the OMA, have demonstrated that the proposed BC DFT-s-OFDM

with an adaptive length BC spreader achieves high EE, low NMSE with better CSI accuracy, low

BER, and high sum-rate capacity at low SNRs. Consequently, the system reduces the required en-

ergy and consumes low transmission power while maintains to achieve the targets of performance

metrics in terms of BER, NMSE, and sum-rate capacity. As a result the EE has been improved

while preserving the average throughput. Thus, implementing our proposed schemes reduces the

required transmission power without degrading the sum-rate capacity. This results in improving the

system EE without reducing the SE, where the system EE can be improved by two approaches: 1)

reduction in the consumed power at the UEs which reduces the denominator of the EE metric, and

2) increasing the cell sum-rate capacity (average data throughput) which increases the numerator

of the EE metric.

We have observed that the deployment of PD-NOMA in massive MIMO improves the over-

all system performance and enhances both EE and SE, where the sum-rate capacity increases and

the PAPR has small level. Moreover, we have demonstrated that integrating our EDPS in massive

MIMO with NOMA deployment improves the CSI accuracy and adds a second degree of improve-

ments to EE. This also enhances the downlink beam-forming and improves the EE of the whole

system. Although we have used the linear MMSE estimator at the BS receiver in this chapter,

the proposed schemes and structures could be generalized to other types of detectors at the BS

receiver. Finally, these findings can be easily generalized to any cellular network which uses any

arbitrary cluster size that consists of a group of non-cooperative adjacent cells of massive MIMO

with OMA/NOMA that employ DPS/EDPS to estimate the CSI.



Chapter 4

Compute-and-Forward for NOMA and

Massive MIMO-NOMA Uplinks

4.1 Synopsis

In Chapter 3 we have used SIC in NOMA configuration. SIC has been regarded as the de facto

decoding method in NOMA system. However, SIC requires the paired users to have significantly

different received power levels at the BS receiver for effective operation. This is problematic in

terms of fairness and outage probabilities when the paired users are close to each other in terms of

allocated power. To address this challenge, we propose in this chapter a new decoding method for

uplink NOMA based on CaF. Then, we extend the proposed CaF decoding into massive MIMO-

NOMA. Extending the applications of CaF into uplink MIMO and use it at the BS’s receiver is also

widely referred as IFLR for the MIMO uplink scenario. In particular, we show that our decoding

method achieves better fairness and smaller average outage probabilities while enjoying essentially

the same complexity as SIC decoding. Then, we explore the benefits and limitations of IFLR in

uplink of massive MIMO-NOMA. First, we prove that IFLR can be made more efficient by using

practical code construction and successive cancellation. Second, we show that the IFLR achieves

better performance compared to the standard approach based on SIC. Finally, we investigate the

effects of channel estimation errors on the achievable sum-rate when the proposed CaF core decod-
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ing is used at IFLR in massive MIMO with NOMA deployment. Consequently, we demonstrate

how DPS and EDPS are effective to reduce channel estimation errors and enhance the performance

of IFLR.

4.2 Introduction

NOMA is envisioned as an enabling technology to satisfy the requirements of the 5G wireless

networks [126]. For example, a simplified version of NOMA, called Multi-User Superposition

Transmission (MUST), has been proposed in 3GPP LTE [127]. Compared with OMA, NOMA can

significantly improve the SE and scale up the number of users [128]. The main idea of NOMA is

to exploit the power/code domain to realize the multiple access. Especially, in uplink PD-NOMA,

multiple users non-orthogonally transmit their messages to a single BS at the same frequency, time

and code resource. The BS employs SIC to decode the signal of the strong user and then subtracts it

in order to decode that of the weak user. Therefore, in a typical uplink massive MIMO-PD-NOMA

scenario, the separation of user signals is achieved by using SIC at the BS.

However, SIC decoding does not work well in terms of fairness when two users’ signals have

comparable received power levels at the BS receiver. For this reason, most prior work assumes that

there is a balance between strong users and weak users so that a strong user can always be paired

with a weak user in order to ensure power difference. Contrarily, in the unbalanced scenario,

the power levels of users who belong to the same NOMA pair can not be guaranteed to have

significant differences. It is only recently that Pan, Lu, and Liew have studied the unbalanced

scenario [129] where far users outnumber near users as shown in Figure 4.1. In particular, they

proposed a network-coded multiple-access scheme that combines physical-layer network coding

and multiuser decoding to handle the challenging unbalanced scenario.

In this chapter, we take a new approach to addressing the unbalanced scenario based on CaF.

As a starting point, we propose a new decoding method for uplink NOMA, which has the potential

to achieve better performance at essentially the same computational cost of SIC. In the first half

of the chapter, for presentation simplicity, our system model starts by considering the case where
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the BS is equipped with a single antenna only, assumes perfect CSI are available at the BS, and its

underlying code construction is based on Loeliger’s random ensemble of lattice codes [130]. Then,

to generalize our system model and move forward for real world implementation, we move from

Loeliger’s random ensemble of lattice codes to low density Construction-A lattice codes [131].

On the one hand, in Section 4.3 and Section 4.4 of this chapter, compared to [129] our CaF-

NOMA decoding algorithm focuses on improving the fairness and average outage probability with

CaF decoding, whereas [129] mainly considers the performance of throughput with different decod-

ing strategy. Beside, compared to conventional SIC-NOMA, our CaF-NOMA decoding algorithm

achieves better performance at essentially the same computational cost. More specifically, our sim-

ulation results show that CaF-NOMA can increase relatively Jain’s fairness index and decrease the

average outage probability significantly up to 15% and 46%, respectively.

On the other hand, in the second half of this chapter, we scale up the number of BS anten-

nas, forming a massive MIMO configuration. In MIMO wireless communications, the BS usually

utilizes a linear receiver architecture to avoid implementation complexity of maximum likelihood

receiver. CaF applications in MIMO systems generalize the conventional linear receivers used in

MIMO systems into a class that is well known as IFLRs. IFLR recovers linearly independent com-

binations of the transmitted codewords by multiple UEs, each integer-forcing decoder recovering a

different linear combination. Therefore, a full rank matrix of the coefficients of these linear combi-

nations is required. However, in conventional linear receivers like MMSE, the receiver recovers the

codewords transmitted by multiple UEs directly. Linear MMSE receiver, which is widely used in

massive MIMO is a special case of IFLR where the integer coefficients matrix of IFLR is the iden-

tity matrix. Linear MMSE receiver performance can be significantly improved via SIC. However,

this approach fails to provide an optimal diversity multiplexing trade-off compared to IFLR [132].

Therefore, we start in Section 4.5 by introducing CaF decoding as the core of IFLR. Subsequently,

we highlight in Section 4.5 how IFLR can be constructed via nested lattices codes.

Then, Section 4.6 expands the proposed decoding scheme to the field of massive MIMO-NOMA

systems. In Section 4.7, we demonstrate a different approach by answering the following question:
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Far Users’ Area

Base Station

Uplink

D1

D2

 Uplink

Near Users’ Area

Figure 4.1: The uplink NOMA with more far users than near users.

“How can we improve the CSI of CaF decoding in IFLR without increasing the system complex-

ity?” The answer is by exploiting the ideas and techniques developed and proposed in the previous

chapters of this dissertation that include DPS and EDPS. Besides, the answer is supported by an-

alytical derivations and numerical results presented in Section 4.8, which prove the achievement

of improving CSI accuracy and consequently reducing the loss of achievable sum-rate. Finally,

Section 4.9 concludes the chapter.

4.3 SIC-NOMA

We consider an uplink NOMA scenario where K users, each with a single antenna, are transmitting

signals simultaneously to one BS equipped with a single antenna as shown in Figure 4.1. The

number of near users (resp., far users) is denoted by K1 (resp., K2). The number of NOMA pairs

that can be formed is equal to K1+K2
2 . The maximum distance between a near user (resp., a far user)

and the BS is denoted by D1 (resp., D2).

For the channel model, we consider both large-scale and small-scale fading. Let
√

d−ρ

k denotes

the large-scale fading coefficient of a user k, where dk is the distance from user k to the BS and

ρ is the path loss exponent. Let gk denotes the small-scale fading coefficient of the user k, where

each gk is assumed to be an i.i.d. complex Gaussian random variable with zero mean and unit

variance. Then, the channel-gain coefficient for the user k is hk = gk

√
d−ρ

k . The channel noise at

the BS’s receiver is assumed to be Additive White Gaussian Noise (AWGN) which is represented
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by a complex random variable with zero mean and unit variance. Under the above channel model,

the received signal at the BS is given by:

y =
K

∑
k=1

hk
√

pkxk +w, (4.1)

where xk is the message transmitted by the user k, pk is the transmission power for the user k, and

w is the channel noise described above.

We assume, without loss of generality, that the users in uplink NOMA are ordered by their

distances d1 ≤ d2 ≤ ·· · ≤ dK . We consider a particular pairing method as follows: user 1 is paired

with user K, user 2 is paired with user K− 1, and so on1. Additionally, different pairs of NOMA

work in OMA mode, so that it suffices to focus on only one pair.

We now consider a pair consisting of user k and user l where dk < dl (i.e., user k is a strong user

and user l is a weak user). Under SIC decoding, the BS first decodes xk, then subtracts it from y in

order to decode xl . It is well known that under SIC decoding [133], the following data rates Rk and

Rl in Bits Per Channel Use (BPCU) are achievable:

 Rk = log2

(
1+ pk|hk|2

pl |hl |2+1

)
Rl = log2

(
1+ pl|hl|2

) (4.2)

4.4 CaF-NOMA

In this section, we introduce CaF decoding and explain why it outperforms SIC decoding for uplink

NOMA.

To introduce CaF decoding, we need to describe the set of Gaussian integers. A complex

number a+bi is called a Gaussian integer if a and b are both integers. Formally, Gaussian integers

are the set Z[i], {a+bi : a,b ∈ Z}2.

1Note that our main conclusions apply to any pairing method. We consider a particular method in this chapter for
ease of presentation.

2In addition to Gaussian integers, we can use Eisenstein integers or more generally a principal ideal domain. See,
e.g., [60] for details.
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We consider again a pair consisting of user k and user l. CaF decoding is similar to SIC de-

coding in that it first decodes a Gaussian-integer combination a1xk + a2xl (where the coefficients

a1,a2 ∈ Z[i] are chosen by the decoder based on CSI as explained later in Algorithm 1) and then

“subtracts” it from y to decode a second Gaussian-integer combination b1xk + b2xl (which is lin-

early independent of the first combination). Similarly, the coefficients b1,b2 ∈ Z[i] are chosen by

the decoder based on CSI as explained later in Algorithm 1. With two linearly independent combi-

nations, the CaF decoder is able to recover both signals xk and xl . (Note that SIC decoding can be

viewed as a special case of CaF decoding with a, [a1,a2] = [1,0] and b, [b1,b2] = [0,1].) Indeed,

CaF decoding can be extended to the case of more than two users, where the BS decodes linearly

independent combinations by applying a lattice reduction algorithm [60, 130].

Figure 4.2 illustrates the advantage of CaF decoding over SIC decoding with respect to the

Gaussian MAC capacity region, which is defined as the set of rate pairs (Rk,Rl) such that

Rk ≤ log2
(
1+ |hk|2 pk

)
Rl ≤ log2

(
1+ |hl|2 pl

)
Rk +Rl ≤ log2

(
1+ |hk|2 pk + |hl|2 pl

)

0 1 2

R
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Figure 4.2: CaF decoding offers two additional choices, namely, CaF1 and CaF2.
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Operationally, the MAC capacity region represents the set of rate pairs achieved by all possible

encoding/decoding methods [133]. Figure 4.2 shows that CaF decoding achieves not only the two

corner points of the MAC capacity region as SIC does (i.e., SIC1 and SIC2) but also two additional

“boundary” points (i.e., CaF1 and CaF2). These additional points make CaF decoding a better

choice than SIC decoding in terms of fairness and outage probabilities, as shown in Section 4.8.

Interestingly, CaF decoding has essentially the same complexity as SIC decoding as we will explain

in Remark 4.

Finally, a question naturally arises: How to choose the “best possible” Gaussian-integer coeffi-

cients (a,b)? To answer this question, we consider two rate pairs (Rk,Rl) and (R′k,R
′
l) induced by

(a,b) and (a′,b′), respectively. We say (Rk,Rl) is better than (R′k,R
′
l) if Rk > R′k and Rl > R′l . We

say (Rk,Rl) is a Pareto-optimal solution if there exists no (R′k,R
′
l) such that (R′k,R

′
l) is better than

(Rk,Rl). See Figure 4.3 for an illustration.
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Figure 4.3: (Rk,Rl) is better than (R′k,R
′
l), and (Rk,Rl) is Pareto-optimal. The MAC region is

the capacity region for multiple access channels.

As our first technical contribution of this chapter, Theorem 4 characterizes all Pareto-optimal

solutions under CaF decoding. The proof of Theorem 4 is provided in Appendix B.1.

Theorem 4 Any Pareto-optimal solution for CaF decoding is induced by ([1,0], [0,1]), or ([0,1], [1,0]),

or (a∗,b∗), where (a∗,b∗) is the output of Algorithm 1.
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Algorithm 1 Compute a∗ and b∗
Input: pk, pl , hk, hl .
Output: a∗ and b∗

1. Let h = [hk,hl], P =

[
pk 0
0 pl

]
and M = (P−1 +hHh)−1.

2. SVD decomposition for M = USVH and Gold ,
√

SVH .
3. Let b1 and b2 be the first and second row of Gold, respectively.
4. if ‖b1‖2 > ‖b2‖2 then
5. Swap b1 and b2.
6. end if
7. OK=1.
8. while OK > 0 do
9. if |ℜ{bH

1 b2}| ≤ 1
2‖b1‖2

2 and |ℑ{bH
1 b2}| ≤ 1

2‖b1‖2
2 then

10. OK=0.
11. else
12. b2 = b2− round

(
bH

1 b2
‖b1‖2

2

)
b1.

13. if ‖b2‖2 > ‖b1‖2 then
14. OK=0.
15. else
16. Swap b1 and b2.
17. end if
18. end if
19. end while
20. Gnew =

[
b1n,b2n

]
.

21. Output a∗ , round(G−1
oldb1n) and b∗ , round(G−1

oldb2n).

Remark 1 CSI and users’ power matrix P are the two inputs of Algorithm 1. First, Algorithm 1

computes the matrix M where M = (P−1 +hHh)−1. In the second step, Algorithm 1 executes SVD

algorithm on M. The SVD is done only once in Algorithm 1 (i.e., not every iteration) over a low

dimensional square matrix, where the matrix’s dimension is determined by the number of UEs in

the NOMA pair. Then, Algorithm 1 performs a lattice reduction algorithm used in [134], which

is usually known as Gauss’ algorithm and is very similar to Euclid’s algorithm for computing the

greatest common divisor [135]. The outputs of Algorithm 1 are two vectors a∗ and b∗ that have

some important properties as stated in Appendix B.1. These properties allow us to complete the

proof of Theorem 4.

Remark 2 Theorem 4 says that the BS can find out all Pareto-optimal solutions under CaF de-
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coding by evaluating three coefficient vectors (a∗,b∗), ([1,0], [0,1]), and ([0,1], [1,0]). Once these

solutions are found, the BS can choose the “best possible” solution based on a particular crite-

rion such as Jain’s fairness index [136]. In other words, CaF decoding improves SIC decoding by

offering the BS more choices.

Remark 3 Theorem 4 is based on successive computation proposed in [130], the most general

form of CaF decoding. Theorem 4 can be applied to scenarios other than uplink NOMA where SIC

decoding is replaced by CaF decoding (based on successive computation). Thus, Theorem 4 may

be of general interest.

Remark 4 Theorem 4 implies that CaF decoding has essentially the same complexity as SIC de-

coding. To see this, note that CaF decoding needs to find the values of (a∗,b∗) before decoding

two Gaussian-integer combinations of signals xk and xl . It turns out that decoding one Gaussian-

integer combination of signals is as hard as decoding one signal, as explained in [130]. Therefore,

the only additional computational cost is computing (a∗,b∗), which can be done very efficiently via

Algorithm 1 that involves a fast computational lattice reduction algorithm as explained in [134].

4.5 CaF in Integer-Forcing Linear Receiver

IFLR is a type of receiver that is used often in multiple-antenna systems to reduce the implementa-

tion complexity. CaF decoding is used as the core of IFLR [132]. In this section, we explain how to

construct an IFLR based on low density Construction-A lattices. As shown below, a key ingredient

is a linear labeling that enables efficient encoding and decoding operations. Appendix B.2 provides

the necessary preliminaries for the basics of lattices and nested lattice codes.

4.5.1 Low Density Construction-A Lattices

Following the steps in [131, 137], we can construct a nested lattice code L (Λc,Λ f ) from nested

Low Density Parity Check (LDPC) codes C2 ⊂ C1 ⊂ Zn
p, where Ci is specified by a parity-check

matrix Hi of size mi×n, and p is a prime number. In particular, H1 consists of the first m1 rows of

H2. The number of codewords in L (Λc,Λ f ) is pm2−m1 . As shown in [137], if H2 is chosen so that



4.5. CaF in Integer-Forcing Linear Receiver

the Tanner graphs corresponding to both C1 and C2 have the required expansion properties, then

both Λ f and Λc have the goodness properties with high probability.

4.5.2 Construction of a Linear Labeling

We would like to map messages over Zp to codewords in the nested lattice code L (Λc,Λ f ) in order

to construct the IFLR. To this end, we make use of the linear labeling framework proposed in [60].

Definition 1 Given a positive scaling factor γ which is applied to obtain a fine lattice, a mapping

ϕ : γZn→ Zn
p is called a linear labeling if it satisfies the following three properties.

1. A lattice point λ belongs to Λ f if and only if the first m1 components of its label ϕ(λ) are

equal to 0.

2. A lattice point λ belongs to Λc if and only if the first m2 components of its label ϕ(λ) are

equal to 0.

3. For all a1,a2 ∈ Z and λ1,λ2 ∈ Λ f , we have

ϕ (a1λ1 +a2λ2) = q1ϕ (λ1)+q2ϕ (λ2) , (4.3)

where qi = ai mod p.

We are ready to construct a linear labeling. Recall that H1 consists of the first m1 rows of H2.

By the Basis Extension Theorem [138], there exists some matrix H′ of size (n−m2)×n so that

H=

H2

H′


is an invertible matrix of size n×n. Then, we define the mapping φ : γZ→ Zp as

φ(v), γ
−1v mod p
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along with an inverse operation φ Inv : Zp→ γZ as

φ
Inv(u), γu.

These mappings can be naturally extended to vectors via element-wise operations.

Theorem 5 Let ϕ : γZn→ Zn
p be a map given by

ϕ(λ), φ(λ)HT .

Then, ϕ is a linear labeling.

See Appendix B.3 for the proof of Theorem 5. Next, we construct an inverse map ϕ Inv : Zn
p→ γZn

for the linear labeling ϕ from Theorem 5. Specifically, define

ϕ
Inv(u) = φ

Inv
(

u
(
HT)−1

)
.

Clearly, we have ϕ
(
ϕ Inv(u)

)
= u and the first m1 components of u are equal to 0 if and only if

ϕ Inv(u) belongs to Λ f .

With the linear labeling ϕ and its inverse ϕ Inv, we can map messages over Zm2−m1
p to codewords

in the nested lattice code L (Λc,Λ f ) as follows. First, each message u in Zm2−m1
p is embedded into

Zn
p using m1 leading zeros and n−m2 trailing zeros

(0m1,u,0n−m2) .

Then, it is mapped to a lattice point λ in Λ f via

λ, ϕ
Inv (0m1 ,u,0n−m2) .
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Finally, we apply the mod operation

λ mod Λc , λ−QΛc(λ f )

to ensure that λ f , λ mod Λc is indeed a codeword in the nested lattice code L (Λc,Λ f ).

4.5.3 Integer Forcing Linear Receiver via Nested Lattices

We now have all the ingredients (i.e., the nested low density Construction-A lattice code L (Λc,Λ f )

and the linear labeling ϕ) to construct the IFLR. It suffices to consider the case of two users, since

the extension to the case of more than two users is straightforward. We use the parameters m(`)
1

and m(`)
2 for user ` ∈ {1,2}. Let m2 ,max m(`)

2 . Construct a parity-check matrix H of size m2×n

following the steps of [131, 137]. Let H(`)
i denote the matrix consisting of the first m(`)

i rows of H.

Let Λ
(`)
f and Λ

(`)
c be the resulting Construction-A lattices. If H is chosen so that the Tanner graphs

associated with {H(`)
i } have the required expansion properties, then both Λ

(`)
f and Λ

(`)
c have the

goodness properties with high probability.

With the nested lattice code L (Λ
(`)
c ,Λ

(`)
f ), we can proceed to the encoding and decoding oper-

ations.

Encoding: User ` maps its message u` to a codewordλ(`)
f in the nested lattice code L (Λ

(`)
c ,Λ

(`)
f )

λ
(`)
f = ϕ

Inv
(

0
m(`)

1
,u`,0n−m(`)

2

)
mod Λ

(`)
c (4.4)

and then produces its transmitted signal x`

x` =
(
λ
(`)
f +d`

)
mod Λ

(`)
c . (4.5)

Here, d` is a random dither for user `, which is generated uniformly over the Voronoi region of

the coarse lattice V
(

Λ
(`)
c

)
. The random dither d` is introduced in [130] only to simplify the

achievability proof, which can be replaced by a fixed dither (see Appendix H of [130] for a proof)
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or even removed in practice under some mild condition (see [131] for a proof). We keep the

random dither d` in this chapter so that we can reuse the proof steps in [130]. It should be removed

in practical implementation.

Channel model: Consider an uplink scenario with two single-antenna users and one BS with

M antennas. The BS receives

Y = h1x1 +h2x2 +W, (4.6)

where x` ∈ R1×n is the transmitted signal for user `, h` ∈ RM×1 is the channel-coefficients vector

for user `, and W ∈ RM×n is the channel noise. Note that {h`} is a column vector whereas the

original message {u`} and its codeword λ(`)
f , which associated with the transmitted signal {x`} are

row vectors3. We assume that the channel vectors ({h`},∀ `) are known to the BS but unknown to

the users.

Decoding: From a high-level view, the BS first computes one integer-linear combination a1λ
(1)
f +

a2λ
(2)
f and then subtracts it from the received signal Y in order to compute another integer-linear

combination b1λ
(1)
f + b2λ

(2)
f . The BS can recover the transmitted messages u1 and u2 as long as

these two combinations are linearly independent. Clearly, this decoding strategy generalizes the

standard SIC decoding, where a , (a1,a2)
T = (1,0)T and b , (b1,b2)

T = (0,1)T , or a = (0,1)T

and b = (1,0)T .

The detailed decoding steps can be found in [130]. Here, we only present the achievable rates

of this decoding strategy. We need to introduce some additional notation. Let P be the diagonal

matrix of the power constraints

P, diag(P1,P2)

where P̀ is the average power constraint for user `. Let H be the channel-coefficient matrix

H ,
[

h1,h2

]
.

3This is because messages and codewords are often row vectors in coding theory and channel vectors are usually
column vectors in information theory.
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Let

σ
2 (H,a), aT (P−1 +HT H

)−1 a

and

σ
2(H,b|a), P1P2

σ2(H,a)
· 1∣∣IM +HPHT

∣∣ .
Operationally, σ2 (H,a) is the effective noise variance associated with the first integer-linear com-

bination a1λ
(1)
f +a2λ

(2)
f and σ2(H,b|a) is the effective noise variance associated with the second

integer-linear combination b1λ
(1)
f +b2λ

(2)
f (by using the first combination as side information), as

explained in [130].

Proposition 1 The following rate pairs are achievable by the above encoding and decoding oper-

ations.

• When a1 mod p 6= 0 and a2 mod p = 0,

R1 =
1
2

log2

(
P1

σ2(H,a)

)
=

1
2

log2
(
1+P1hT

1 (IM +P2h2hT
2 )
−1h1

)
R2 =

1
2

log2

(
P2

σ2(H,b|a)

)
=

1
2

log2
(
1+P2‖h2‖2

2
)

• When a1 mod p = 0 and a2 mod p 6= 0,

R1 =
1
2

log2

(
P1

σ2(H,b|a)

)
=

1
2

log2
(
1+P1‖h1‖2

2
)

R2 =
1
2

log2

(
P2

σ2(H,a)

)
=

1
2

log2
(
1+P2hT

2 (IM +P1h1hT
1 )
−1h2

)

• When a1 mod p 6= 0 and a2 mod p 6= 0,

R1 = min
{

1
2

log+2

(
P1

σ2(H,a)

)
,
1
2

log+2

(
P1

σ2(H,b|a)

)}
R2 =

1
2

log+2

(
P2

σ2(H,a)

)
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or

R1 =
1
2

log+2

(
P1

σ2(H,a)

)
,

R2 = min
{

1
2

log+2

(
P2

σ2(H,a)

)
,
1
2

log+2

(
P2

σ2(H,b|a)

)}

where log+2 (.) = max{0, log2(.)}. In particular, when σ2(H,a)≤ σ2(H,b|a),

R1 +R2 =
1
2

log2
∣∣IM +HPHT ∣∣ . (4.7)

The proof of Proposition 1 is essentially the same as the proof of Theorem 5 in [130]. The

key observation is that Theorem 5 in [130] holds for any nested lattices with goodness properties

and any linear labeling satisfying Definition 1. Compared to the statement of Theorem 5, we

have managed to avoid the concept of complicated admissible mappings by explicitly evaluating

all the possibilities of successive cancellation for the two-user case. These explicit expressions in

Proposition 1 may be of independent interest for those who would like to apply the IFLR with low

density Construction-A lattices for the two-user case.

4.5.4 Extension to the Complex Field

As stated in [130], all of its results can be extended from real-valued models of channel coefficients

to complex-valued models of channel coefficients either via a real-valued decomposition of the

channel or by building nested lattices directly over the complex field using the algebraic framework

in [60]. This extension leads to the following achievable rates for the channel-coefficient matrix H

over the complex field.

Proposition 2 The following rate pairs are achievable:
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• When a1 mod p 6= 0 and a2 mod p = 0,

R1 = log2

(
P1

σ2(H,a)

)
= log2

(
1+P1hH

1 (IM +P2h2hH
2 )
−1h1

)
R2 = log2

(
P2

σ2(H,b|a)

)
= log2

(
1+P2‖h2‖2

2
)

• When a1 mod p = 0 and a2 mod p 6= 0,

R1 = log2

(
P1

σ2(H,b|a)

)
= log2

(
1+P1‖h1‖2

2
)

R2 = log2

(
P2

σ2(H,a)

)
= log2

(
1+P2hH

2 (IM +P1h1hH
1 )
−1h2

)

• When a1 mod p 6= 0 and a2 mod p 6= 0,

R1 = min
{

log+2

(
P1

σ2(H,a)

)
, log+2

(
P1

σ2(H,b|a)

)}
R2 = log+2

(
P2

σ2(H,a)

)

or

R1 = log+2

(
P1

σ2(H,a)

)
,

R2 = min
{

log+2

(
P2

σ2(H,a)

)
, log+2

(
P2

σ2(H,b|a)

)}
.

In particular, when σ2(H,a)≤ σ2(H,b|a), we have

R1 +R2 = log2
∣∣IM +HPHH∣∣ . (4.8)

Here, a and b are over Gaussian integers Z[i] , {a+ bi : a,b ∈ Z} and p as mentioned should be

a Gaussian prime (i.e., p ∈ Z is a prime number that can be written in a form of 4m+3, where m

is an integer number), as explained in [60]. The new expressions of σ2 (H,a) and σ2(H,b|a) are
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given below:

σ
2 (H,a), aH (P−1 +HHH

)−1 a

and

σ
2(H,b|a), P1P2

σ2(H,a)
· 1∣∣IM +HPHH

∣∣ .
Again, the explicit expressions in Proposition 2 may be of independent interest.

4.6 CaF for Massive MIMO-NOMA

4.6.1 Integer Forcing Linear Receiver for Massive MIMO-NOMA

In this subsection, we characterize the best possible achievable rates of IFLR for uplink massive

MIMO-NOMA. We consider an uplink transmission scenario, as shown in Figure 4.4, for massive

MIMO-NOMA in which up to 3K
2 NOMA pairs4 of UEs, each UE equipped with a single antenna,

are transmitting signals to a BS equipped with M antennas, where as mentioned previously in

massive MIMO M� K. We assume, without loss of generality, that the users are ordered by their

distances to the BS so that d1 ≤ d2 ≤ ·· · ≤ d3K . We allow any pairing method in our system model

as long as different pairs work in OMA mode5 so that a pair does not interfere another pair. Hence,

it suffices for us to focus on a particular pair with a near user, say user k, and a far user, say user l

(where dk < dl). Under this model, the received signal Y ∈CM×n observed by the BS across the M

antennas over n channel uses can be written as

Y = hkxk +hlxl +W, (4.9)

where xk ∈ C1×n and xl ∈ C1×n are the transmitted signals of length n at kth UE and lth UE

respectively, hk ∈ CM×1 and hl ∈ CM×1 are the channel coefficients vectors for user k and user l

respectively, and W ∈ CM×n is the channel noise. Following to the same channel model presented

4A NOMA pair can involve one user from the near region and up to two users from the far region.
5It is important to mention that user pairing methods are a key research approach in energy efficient NOMA cellular

networks in 5G and beyond, and our concluding outcomes of this section can apply to any of them. However, for
consistency we follow the same particular pairing method we have used in Section 4.3.
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Figure 4.4: The uplink of Massive MIMO-NOMA with more far users than near users.

in Section 4.3, then the M×1 channel-coefficients vector for the user k is hk = gk

√
d−ρ

k . As before,

P, diag(Pk,Pl) where Pk and Pl are the average power constraints for user k and user l, respectively,

and H ,
[

hk,hl

]
.

Both UEs apply the encoding strategy described in Section 4.5.3 without random dithers. That

is, xk = λ
(k)
f and xl = λ

(l)
f . The BS applies the decoding strategy described in Section 4.5.3. As

stated before, the BS as shown in Figure 4.5 first computes one Gaussian-integer combination (say,

akxk +alxl where ak,al ∈ Z[i]) and then subtracts it from the received signal Y in order to compute

another Gaussian-integer combination (say, bkxk + blxl) which is linearly independent of the first

combination. With two linearly independent combinations, the BS can recover the transmitted

signals xk and xl . The achievable rates of this decoding strategy are given in Proposition 2, which

clearly includes the standard SIC decoding as a special case. In other words, CaF decoding offers

the same MAC capacity region as SIC decoding, however, CaF decoding enlarges the achievable

rates of user k and user l with SIC decoding6, which increases the degree of freedom at the BS’s

6This decoding strategy can be extended to the case of more than two users, where the BS decodes linearly inde-
pendent combinations by applying a lattice reduction algorithm [60, 130].
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IFLR receiver. This leads to better fairness and smaller outage probabilities for uplink massive

MIMO-NOMA as we will show in our simulation results.

Next, a question naturally arises: How to choose the “best possible” Gaussian-integer coeffi-

cients a = (ak,al)
T and b = (bk,bl)

T ? To answer this question, we consider two rate pairs (Rk,Rl)

and (R′k,R
′
l) associated with (a,b) and (a′,b′), respectively. We say (Rk,Rl) is better than (R′k,R

′
l)

if Rk > R′k and Rl > R′l . We say (Rk,Rl) is a Pareto-optimal solution if there exists no (R′k,R
′
l) such

that (R′k,R
′
l) is better than (Rk,Rl). It turns out that there are at most three Pareto-optimal solutions.

Theorem 6 Let a∗ be an optimal solution to

min
a6=0

aH (P−1 +HHH
)−1 a. (4.10)

Let b∗ be an optimal solution to (4.10) under the constraint that a∗ and b∗ are linearly indepen-

dent. Then, any Pareto-optimal solution is associated with [(1,0)T ,(0,1)T ], or [(0,1)T ,(1,0)T ], or

[a∗,b∗].

See Appendix B.4 for the proof of Theorem 6. Theorem 6 states that the BS only needs to

evaluate three rate pairs (associated with [(1,0)T ,(0,1)T ], [(0,1)T ,(1,0)T ], and [a∗,b∗]) and then

pick the best one based on a particular criterion such as Jain’s fairness index and targeted outage

probability. If the rate pair associated with [a∗,b∗] is better than others, then the new decoding

strategy outperforms the standard SIC decoding.

This brings us to a final question: How to compute [a∗,b∗] efficiently when the BS is quipped

with a massive number of antennas? It turns out that we can exploit the lattice reduction algorithm

for MIMO system used in [134] to update Algorithm 1 to compute [a∗,b∗]. As shown in [134],

the algorithm only requires one or two iterations in most cases, where each iteration involves a few

simple operations such as rounding. Channel matrix and users’ power matrix P are the two inputs

of Algorithm 2. Algorithm 2 demonstrates how [a∗,b∗] are computed, which is nothing other

than a generalization of Algorithm 1 from a single antenna system to MIMO systems. Therefore,

Algorithm 2 follows the same logical steps as Algorithm 1 yet with a higher dimension that is
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determined by the number of BS’s antennas.

Algorithm 2 Compute a∗ and b∗
Input: Pk, Pl , hk, hl .
Output: a∗ and b∗

1. Let H = [hk,hl], P = diag(Pk,Pl) and M = (P−1 +HHH)−1.
2. SVD decomposition for M = USVH and Gold ,

√
SVH .

3. Let b1 and b2 be the first and second column of Gold, respectively.
4. if ‖b1‖2 > ‖b2‖2 then
5. Swap b1 and b2.
6. end if
7. OK=1.
8. while OK > 0 do
9. if |ℜ{bH

1 b2}| ≤ 1
2‖b1‖2

2 and |ℑ{bH
1 b2}| ≤ 1

2‖b1‖2
2 then

10. OK=0.
11. else
12. b2 = b2− round

(
bH

1 b2

‖b1‖2
2

)
b1.

13. if ‖b2‖2 > ‖b1‖2 then
14. OK=0.
15. else
16. Swap b1 and b2.
17. end if
18. end if
19. end while
20. Gnew =

[
b1n,b2n

]
.

21. Output a∗ , round(G−1
oldb1n) and b∗ , round(G−1

oldb2n).

4.7 The Role of Imperfect CSI in Massive MIMO-NOMA with
CaF Decoding

In the previous sections, we have assumed perfect CSI (i.e., the BS knows the channel-coefficients

matrix H). In reality, the BS can only estimate H, which leads to some estimation errors. Estima-

tion errors of channel coefficients lead to sub-optimal choices of CaF multiplying (i.e., equalization)

coefficients and consequently inefficient decoding, which result in a reduction in achievable rates

and hence the sum-rate capacity of a cell. On the one hand, as demonstrated in previous sections,

efficient decoding at BS to retrieve back transmitted signals depends on the optimal computation

of CaF multiplying coefficients, which also depends on the accuracy of channel coefficients as il-
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Figure 4.5: Block diagram illustrating CaF decoding in a single antenna BS receiver.

lustrated in Algorithm 2. The accuracy of estimated channel coefficients is vital to produce optimal

multiplying CaF coefficients. On the other hand, CaF is sensitive to channel estimation errors, as

explained in [65]. In particular, imperfect CSI may lead to a significant rate loss [65, 66]. An

approach to overcoming the effects of CSI accuracy has been investigated in [66] where blind CaF

has been proposed to avoid the need for CSI. However, this approach has an inherent trade-off be-

tween computational complexity and achievable rates. In this section, we dive deep to characterize

the effects of channel estimation errors on the achievable rates, and we then propose a solution to

mitigate these effects.

4.7.1 Effects of Channel Estimation Errors

To capture the effects of imperfect CSI, we need to introduce some additional details of integer-

forcing decoding. Again, for ease of presentation, we start from the case of real-valued models of

channel coefficients and then extend it to complex-valued models of channel coefficients. Recall

that the receiver first computes an integer combination a1x1 + a2x2. This step is done as follows.

The receiver applies a so-called equalization vector α ∈ RM to its received signal Y in order to
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obtain the effective channel

ỹ1 =α
T Y

=αT (h1x1 +h2x2)+α
T W

= a1x1 +a2x2 +(αT h1−a1)x1 +(αT h2−a2)x2 +α
T W

where (αT h1− a1)x1 + (αT h2− a2)x2 +α
T W is the effective noise. The receiver as shown in

Figure 4.5 then decodes ỹ1 to the closest lattice codeword. Intuitively, the decoding of a1x1 +a2x2

is successful if the effective noise is small enough. As shown in [130], the effective noise variance

is given by

σ
2(H,a;α) =

1
n
E
{
‖(αT h1−a1)x1 +(αT h2−a2)x2 +α

T W‖2
2

}
= ‖α‖2

2 +‖(α
T h1−a1,α

T h2−a2)P1/2‖2
2

=αTα+(αT H−aT )P(HTα−a)

which can be expanded as

σ
2(H,a;α) =αT (IM +HPHT )α−aT PHTα−αT HPa+aT Pa.

Hence, α should be chosen to minimize the effective noise variance σ2(H,a;α). Its optimal value

α∗ can be found by setting the derivative of σ2(H,a;α) to zero:

2αT (IM +HPHT )−2aT PHT = 0. (4.11)

The corresponding σ2(H,a;α∗) is given by aT (P−1 +HT H
)−1 a, which is equal to σ2(H,a) as

expected. Note that σ2(H,a;α∗) depends on H, where only estimated version of H is available at

the BS. Therefore, estimation accuracy is vital for determining the optimal value of σ2(H,a;α∗)

and also to prevent any error prorogation to the computation of second integer combination.
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Accordingly after computing the first integer combination, the receiver then computes a second

integer combination b1x1 + b2x2 by using the first combination as side information. This step is

done as follows. The receiver forms the effective channel

ỹ2 = β
T Y+ c(a1x1 +a2x2)

= b1x1 +b2x2 +(βT h1 + ca1−b1)x1 +(βT h2 + ca2−b2)x2 +β
T W

where both β ∈ RM and c ∈ R are for the purpose of equalization. Here, the effective noise is

(βT h1 + ca1−b1)x1 +(βT h2 + ca2−b2)x2 +β
T W with the effective noise variance given by

σ
2(H,b|a;β,c) =

1
n
E
{
‖(βT h1 + ca1−b1)x1 +(βT h2 + ca2−b2)x2 +β

T W‖2
2

}
= βT (IM +HPHT )β− (bT − caT )PHTβ−βT HP(b−ac)+(bT − caT )P(b−ac).

Hence, β and c should be chosen to minimize the effective noise variance σ2(H,b|a;β,c). The

optimal value β∗ can be found by setting the derivative of σ2(H,b|a;β,c) (with respect to β) to

zero:

2βT (IM +HPHT )−2(bT − caT )PHT = 0. (4.12)

Similarly, the optimal value c∗ can be found by setting the derivative of σ2(H,b|a;β,c) (with

respect to c) to zero:

2(aT Pa)c−2aT Pb+2aT PHTβ = 0. (4.13)

It is important to mention that (4.11), (4.12), and (4.13) are used to generate the optimal values

of α∗, β∗ , c∗ respectively. They all depend on the estimation accuracy of the channel matrix H

to obtain the optimal values. Therefore, estimation errors of the channel matrix lead to errors in

the obtained optimal multiplying (i.e., equalization) coefficients, where εα , εβ , and εc represent

the effects of resulting errors on α∗, β∗ , c∗, respectively. Thus, the sub-optimal multiplying

coefficients can be modeled as α∗ + εα , β∗ + εβ , and c∗ + εc respectively, all of which result

in generating sub-optimal effective noise variances (i.e., the effective noise variance in each case
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becomes greater than the optimal effective noise variance). These effective noise variances are

given by:

σ
2(H,a;α∗+εα) = (α∗+εα)

T (IM +HPHT )(α∗+εα)

−aT PHT (α∗+εα)− (α∗+εα)
T HPa+aT Pa

= σ
2(H,a)+(α∗)

T (IM +HPHT )εα +εT
α(IM +HPHT )α∗+ε

T
α(IM +HPHT )εα

−aT PHTεα −εT
αHPa

= σ
2(H,a)+

(
(α∗)

T (IM +HPHT )−aT PHT)εα +εT
α

(
(IM +HPHT )α∗−HPa

)
+εT

α(IM +HPHT )εα

= σ
2(H,a)+εT

α(IM +HPHT )εα ,

since both (α∗)
T (IM +HPHT )− aT PHT and (IM +HPHT )α∗−HPa are equal to 0 based on

(4.11).

Similarly, we have

σ
2(H,b|a;β∗+εβ ,c∗+ εc) = σ

2(H,b|a)+εT
β
(IM +HPHT )εβ + ε

2
c aT Pa

+ εcaT PHTεβ +εT
β

HPaεc.

Clearly, when εα = 0, we have σ2(H,a;α∗+εα) = σ2(H,a). Similarly, when εβ = 0 and εc = 0,

we have σ2(H,b|a;β∗+ εβ ,c∗+ εc) = σ2(H,b|a). Substituting the expressions of σ2(H,a;α∗+

εα) and σ2(H,b|a;β∗ + εβ ,c∗ + εc) into Proposition 1, we have the following theorem which

extends the work of Pappi, Karagiannidis, and Schober [65] from the single-antenna case to multi-

antenna case. This may be of independent interest.

Theorem 7 The following rate pairs are achievable under imperfect CSI.
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• When a1 mod p 6= 0 and a2 mod p = 0,

R1 =
1
2

log2

(
P1

P1−P2
1 hT

1 (IM +HPHT )−1h1 +εT
α(IM +HPHT )εα

)

R2 =
1
2

log2

 P2

P2
(
1+P2‖h2‖2

2
)−1

+εT
β
(IM +HPHT )εβ +P1ε2

c + εcP1hT
1 εβ +εT

β
h1P1εc


• When a1 mod p = 0 and a2 mod p 6= 0,

R1 =
1
2

log2

 P1

P1
(
1+P1‖h1‖2

2
)−1

+εT
β
(IM +HPHT )εβ +P2ε2

c + εcP2hT
2 εβ +εT

β
h2P2εc


R2 =

1
2

log2

(
P2

P2−P2
2 hT

2 (IM +HPHT )−1h2 +εT
α(IM +HPHT )εα

)

• When a1 mod p 6= 0 and a2 mod p 6= 0,

R1 = min
{

1
2

log+2

(
P1

σ2(H,a)+εT
α(IM +HPHT )εα

)
,
1
2

log+2

(
P1

σ2(H,b|a)+g(εβ ,εc)

)}
R2 =

1
2

log+2

(
P2

σ2(H,a)+εT
α(IM +HPHT )εα

)

or

R1 =
1
2

log+2

(
P1

σ2(H,a)+εT
α(IM +HPHT )εα

)
,

R2 = min
{

1
2

log+2

(
P2

σ2(H,a)+εT
α(IM +HPHT )εα

)
,
1
2

log+2

(
P2

σ2(H,b|a)+g(εβ ,εc)

)}

where

g(εβ ,εc) = ε
T
β
(IM +HPHT )εβ + ε

2
c aT Pa+ εcaT PHTεβ +εT

β
HPaεc.

Finally, by following the algebraic framework in [60] and taking Proposition 2 into account,

we can obtain the following achievable rates for the channel-coefficient matrix H over the complex

field.
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Theorem 8 The following rate pairs are achievable for complex-valued H under imperfect CSI.

• When a1 mod p 6= 0 and a2 mod p = 0,

R1 = log2

(
P1

P1−P2
1 hH

1 (IM +HPHH)−1h1 +εH
α (IM +HPHH)εα

)

R2 = log2

 P2

P2
(
1+P2‖h2‖2

2
)−1

+εH
β
(IM +HPHH)εβ + |εc|2P1 + εH

c P1hH
1 εβ +εH

β
h1P1εc


• When a1 mod p = 0 and a2 mod p 6= 0,

R1 = log2

 P1

P1
(
1+P1‖h1‖2

2
)−1

+εH
β
(IM +HPHH)εβ + |εc|2P2 + εH

c P2hH
2 εβ +εH

β
h2P2εc


R2 = log2

(
P2

P2−P2
2 hH

2 (IM +HPHH)−1h2 +εH
α (IM +HPHH)εα

)

• When a1 mod p 6= 0 and a2 mod p 6= 0,

R1 = min
{

log+2

(
P1

σ2(H,a)+εH
α (IM +HPHH)εα

)
, log+2

(
P1

σ2(H,b|a)+g(εβ ,εc)

)}
R2 = log+2

(
P2

σ2(H,a)+εH
α (IM +HPHH)εα

)

or

R1 = log+2

(
P1

σ2(H,a)+εH
α (IM +HPHH)εα

)
,

R2 = min
{

log+2

(
P2

σ2(H,a)+εH
α (IM +HPHH)εα

)
, log+2

(
P2

σ2(H,b|a)+g(εβ ,εc)

)}

where

g(εβ ,εc) = ε
H
β
(IM +HPHH)εβ + |εc|2aHPa+ ε

H
c aHPHHεβ +εH

β
HPaεc. (4.14)
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Proof: This theorem follows immediately from Theorem 7 through a real-valued decomposition

technique as used in [59] or applying the algebraic framework developed in [60] over Gaussian

integers. �

Remark 5 Theorem 8 highlights the impact of channel coefficients estimation errors, which result

in increasing the effective noise variances and a reduction of the rates that CaF decoding achieves.

Besides, it can be used in conjunction with Proposition 2 to compute the rate loss that results due

to imperfect CSI. It is clear that subtracting the sum-rate (i.e., R1 +R2 in each case) provided

by Theorem 8 from the sum-rate provided by (4.8) gives the rate loss. Clearly the sum-rate loss

depends on the multiplying coefficients a∗ and b∗. The sum-rate loss LSR can be evaluated by:

• When a1 mod p 6= 0 and a2 mod p = 0,

LSR = log2

{(∣∣IM +HPHH∣∣)(P1−P2
1 hH

1 (IM +HPHH)−1h1 +ε
H
α (IM +HPHH)εα

)
(
P2
(
1+P2‖h2‖2

2
)−1

+εH
β
(IM +HPHH)εβ + |εc|2P1 + ε

H
c P1hH

1 εβ +εH
β

h1P1εc
)}

− log2(P1P2)

• When a1 mod p = 0 and a2 mod p 6= 0,

LSR = log2

{(∣∣IM +HPHH∣∣)(P1
(
1+P1‖h1‖2

2
)−1

+εH
β
(IM +HPHH)εβ + |εc|2P2

+ ε
H
c P2hH

2 εβ +εH
β

h2P2εc
)(

P2−P2
2 hH

2 (IM +HPHH)−1h2 +ε
H
α (IM +HPHH)εα

)}
− log2(P1P2)
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• When a1 mod p 6= 0 and a2 mod p 6= 0,

LSR = min

{
log2

∣∣IM +HPHH∣∣−min
{

log+2

(
P1

σ2(H,a)+εH
α (IM +HPHH)εα

)
+ log+2

(
P2

σ2(H,a)+εH
α (IM +HPHH)εα

)
, log+2

(
P1

σ2(H,b|a)+g(εβ ,εc)

)
+ log+2

(
P2

σ2(H,a)+εH
α (IM +HPHH)εα

)}
, log2

∣∣IM +HPHH∣∣
−min

{
log+2

(
P1

σ2(H,a)+εH
α (IM +HPHH)εα

)
+ log+2

(
P2

σ2(H,a)+εH
α (IM +HPHH)εα

)
,

log+2

(
P2

σ2(H,b|a)+g(εβ ,εc)

)
+ log+2

(
P1

σ2(H,a)+εH
α (IM +HPHH)εα

)}}
.

where g(εβ ,εc) is given by (4.14).

4.7.2 Employing DPS and EDPS to Mitigate Channel Estimation Errors

As aforementioned and proven in the previous chapters, the employing of DPS and EDPS in mas-

sive MIMO with OMA and NOMA integration, respectively, results in improving the channel es-

timation accuracy. In other words, the employment of DPS and EDPS minimizes the channel

estimation error’s matrix, i.e., E = H− Ĥ, and reduces its effects on generating and/or increas-

ing εα , εβ , and εc which further impacts on the overall system performance. Therefore, DPS and

EDPS improve the performance of CaF by reducing channel estimation errors, promoting the op-

timal computation of CaF multiplying coefficients, which prevent a significant reduction-loss in

achievable rates and maintain higher sum-rate capacity of the cell.

4.8 Numerical Results

4.8.1 CaF-NOMA with Perfect CSI

In this sub-section, we conduct Monte Carlo simulations to evaluate the advantage of CaF decoding

over SIC decoding. In our simulations, we have 100 users including 40 near users whose distance

to the BS is less than D1 and 60 far users whose distance to the BS is between D1 and D2. All the
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users are randomly deployed in the two areas. We set the path-loss exponent ρ = 2. For simplicity,

our simulations apply equal power for the paired users. We vary the values of D1 and D2 to

demonstrate the advantage further. We employ Jain’s fairness index, which is defined in [136], and

given by:

J =
(∑K

k=1 Rk)
2

K ∑
K
k=1(Rk)2

(4.15)

as our fairness measure, and the average outage probability (i.e., the standard outage probability of

having a rate less than a targeted rate Rt averaged by all the users) as our performance metric.

In Figure 4.6, the performance of Jain’s fairness index is shown as a function of SNR. The pro-

posed CaF-NOMA can outperform the conventional SIC-NOMA, especially in high SNR regimes.

CaF-NOMA can increase the Jain’s fairness 15% when SNR equals to 40 dB. This is because CaF-

NOMA can balance the two users’ rates compared to SIC-NOMA. This conclusion also holds when

the ratio of D1 to D2 changes from 1/2 to 1/3.

In Figure 4.7, the performance of average outage probability is shown as a function of SNR.

Once again, the proposed CaF-NOMA performs better than SIC-NOMA, especially in high SNR

regime. CaF-NOMA can decrease the average outage probability 46% when SNR equals to 40 dB.
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4.8.2 CaF-NOMA in Massive MIMO with Imperfect CSI

In this sub-section, we conduct MATLAB simulations to demonstrate the effectiveness of employ-

ing DPS/EDPS to mitigate the CaF sensitivity to channel estimation errors in IFLR of a BS located

at the center of a single cell; the BS is equipped with massive MIMO with PD-NOMA. We show

that the impact of imperfect CSI on the reduction of the achievable rates by two methods, namely,

channel estimation employing SPS, channel estimation employing DPS/EDPS, and compare them

with the achievable rates of having perfect CSI. The considered single cell scenario is shown in Fig-

ure 4.4, under which both DPS/EDPS provide the same performance and work similarly. Further,

the advantage of EDPS over DPS appears in a non-cooperative multiple cells scenario of massive

MIMO-NOMA.

Rate Region:

The MAC capacity region represents the closure of the set of all possible achievable rate-pairs of

multiple users. Figure 4.8 shows the MAC capacity region as well as four dominant rate pairs

using CaF as the core of an IFLR of a BS that is equipped by a massive MIMO with PD-NOMA.
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Thereafter, under the same configurations, we assess the performance of DPS/EDPS and SPS, and

we computed the achievable rate region at each case. Then, we compare the obtained rate regions

with the capacity region of the perfect channel estimation.

Figure 4.9 shows the obtained rate regions using DPS/EDPS, SPS, and perfect CSI. It also

shows the implications of channel estimation errors, where estimation errors resulted in shrinking

the rate region in a proportional relation where higher estimation errors leads to a higher shrink-

ing in size. Figure 4.9, also shows that DPS/EDPS have better performance than SPS, where the

estimation errors are minimized and consequently the resulted shrinking is minimized. Therefore,

DPS/EDPS outperform SPS and provide the CaF a robustness against the sensitivity of estima-

tion errors, suppress the effects of the consequences and maintain the rate region. Afterwards,

we assess the reliability of the robustness provided by DPS/EDPS. Therefrom, we investigate the

performance of DPS/EDPS and SPS in a noisy environment. Figure 4.10 demonstrates that the

robustness provided by DPS/EDPS against the sensitivity of estimation errors is still significant in

a noisy environment, which is an additional desirable feature to promote the implementation of
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DPS/EDPS in practical systems.

Average Sum-Rate Loss:

The mathematical derivations in Subsection 4.7.1 demonstrate analytically the effects of imperfect

CSI on the achievable rates. Also, in Subsection 4.7.1, we introduce εα , εβ , and εc to represent

the consequences of the channel estimation errors and to capture the effects of imperfect CSI on

computing the optimal multiplying coefficients (i.e., equalization vectors) of CaF in IFLR of mas-

sive MIMO with PD-NOMA. Therefore, we choose the average sum-rate loss, which is measured

in BPCU, as the performance metric to highlight the effects of εα , εβ , and εc on the overall perfor-

mance.

Figure 4.11 illustrates the effects of varying the variance σ2
εα

of εα on the average sum-rate loss

at different configurations, whereas, Figure 4.12 illustrates the effects of varying the variance σ2
εβ

of εβ on the average sum-rate loss at different configurations. Further, Figure 4.13 illustrates the

effects of varying the variance σ2
εc

of εc on the average sum-rate loss at different configurations.
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The results demonstrate that as εα has the only dominant effects on computing the first multiplying

CaF coefficient to decode the first integer combination in IFLR, so σ2
εα

has significant effects on

reducing the average sum-rate loss. As σ2
εα

increases the average sum-rate loss increases rapidly.

Similarly, as εβ has a significant dominant effects on computing the second multiplying CaF coef-

ficient to decode the second integer combination in IFLR, so σ2
εβ

has significant effects on reducing

the average sum-rate loss as well. Then, in a similar way to the attribute of change while varying

σ2
εα

, as σ2
εβ

increases the average sum-rate loss increases rapidly. Additionally, εc affects the com-

putation of the second multiplying CaF coefficients to decode the second linear combination in an

IFLR, so σ2
εc

has a semi-constant effects (i.e., almost stable) over a range of σ2
εc

on reducing the

average sum-rate loss in IFLR that employs DPS/EDPS. In contrast, in an IFLR that employs SPS,

as σ2
εc

increases the average sum-rate loss increases slowly for SPS in a linear fashion.

Furthermore, in a comparison with the presence of εβ and εc, the results show that the presence

of εα has more significant effects to reduce the sum-rate and increases the average sum-rate loss be-

cause its effects go beyond the decoding of the first linear combination. Actually, the high average

sum-rate loss resulted in the presence of εα is due to the propagating effects of εα to the decoding

of the second linear combination, which matches the theoretical expectation. It is important to men-

tion that the joint presences of εα with either εβ , εc, or both worsens the performance and increase

the average sum-rate loss. Finally, the results have shown that DPS/EDPS outperforms SPS and

as a consequence IFLR in a massive MIMO with PD-NOMA that employs DPS/EDPS achieves

higher sum-rate capacity, mitigates the sensitivity of CaF for imperfect CSI in a robustness way,

and suffers a lower average sum-rate loss.

4.9 Conclusion

In this chapter, we have shown that CaF-NOMA can achieve better fairness and outage probability

than SIC-NOMA. In particular, we have explained how the BS can find out all the Pareto-optimal

solutions and why CaF decoding has essentially the same complexity as SIC decoding. In addition,

we have conducted various simulations to demonstrate the advantages of CaF-NOMA over SIC-
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NOMA in terms of Jain’s fairness and average outage probability. We have shown how an efficient

IFLR can be constructed via nested lattice codes. We have derived analytically the loss in the

achievable sum-rate, due to imperfect CSI.

We have shown that the sensitivity of CaF decoding in massive MIMO with PD-NOMA inte-

gration to the channel estimation errors. We have demonstrated the impacts of this sensitivity on

the performance of IFLR. Through extensive simulations, we have shown how DPS/EDPS mit-

igate this sensitivity and provide robustness against it, and consequently achieve better sum-rate

capacity of the cell and enhances the performance. Consequently, this adds desirable features for

the proposed construction of IFLR, which promotes its practical implementation into real systems.

In particular, we have found that DPS/EDPS achieve significantly larger rate regions than SPS as

DPS/EDPS improve the estimation accuracy of CSI. Furthermore, we have found that as channel

estimation errors increase, the average sum-rate loss increases, which shrinks the size of the rate

region rapidly.



Chapter 5

Conclusions and Future Works

In this chapter, we summarize the contributions of this dissertation, provide concluding remarks on

the accomplished works, and suggest several topics for future research.

5.1 Concluding Remarks

The technical targets of the 5G cellular networks are very ambitious yet essential to offer mobile

users a variety of services and to support a wide range of applications. However, several challenges

and obstacles need to be overcome to reach these technical targets. In this dissertation, we have

focused on some of these challenges and developed novel solutions to improve the performance of

5G cellular networks and beyond. These solutions can be utilized in various state-of-the-art wire-

less systems, as we have considered different architectures in developing and providing the pro-

posed solutions to improve 5G technologies. Distinguishably from most research in improving 5G

technologies, the schemes developed in this dissertation followed different approaches that ensure

promising innovative economical-engineering solutions. The proposed schemes have considered

the practical implementation feasibility that have low complexity and backward compatibility and

can be generalized for a wide range of applications in 5G cellular networks and beyond. Therefore,

the research work we have developed throughout the dissertation provides valuable timely contri-

butions that can be taken as a stepping stone and transforming into tools for tackling real-world

problems of 5G and beyond to advance communication technologies to facilitate supporting a wide

144
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range of applications, achieved the technical targets, and offering new services. The main conclud-

ing remarks we draw from our work in this dissertation are briefly illustrated in the following list

and sorted by each chapter.

5.1.1 Summaries and Contributions

• In Chapter 2, we have introduced and proposed the novel DPS. DPS is a general pilot signal-

ing scheme that can be used in any wireless communication system. We have demonstrated

that using DPS at massive MIMO with OMA integration significantly suppresses pilot con-

tamination, which results in an accurate CSI and enhanced channel estimation at the BS

during the uplink training. This way, besides enhancing the uplink transmission, employing

DPS results in a more efficient use in precoding by the BS during downlink transmission

and therefore improving the cell sum-rate. Moreover, DPS offers multifold unique desirable

features and provides additional useful information to the BSs, which results in more op-

portunities and in enhancing the overall system performance without cooperation between

BSs. DPS is easy to implement, uses the same overhead during the training period as the

conventional schemes, does not necessitate additional hardware or a change in the cellular

network backhaul, not reliant on user’s mobility speed, and improves SE. Unlike state-of-

the-art works, we have shown that DPS ensures a uniform high QoS for each and every UE.

However, DPS advantages come with a price of serving L fewer UEs than with SPS, where

L is the number of cells in the system-cluster. This is because SPS uses all orthogonal PSs to

serve the UEs in each cell, whereas DPS needs to use L of these sequences as the Cell-IDs

and can only assign N−L sequences to the UEs in each cell (N is the number of available

orthogonal sequences). However, we have shown this disadvantage diminishes as number of

UEs grows large. Moreover, despite the number of PSs available for assignment to UEs in a

cell determines the maximum number of UEs that can be served simultaneously, in practice,

the cell can only serve a smaller number of UEs due to pilot contamination effects, in the

case of SPS, where an acceptable level of interference is the constraint.
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We have provided insights on how the DPS cluster configuration can be planned and designed

to cover the entire coverage area of massive MIMO by using a cluster size of seven adjacent

non-cooperative cells. It has shown that in SPS other inter-cell interference that arise from

the second and third tiers on a BS at the home cell, worsen the pilot contamination problem.

Therefore, in comparison with SPS, this clustering configuration of the DPS allows a further

greater enhancement, improves SE, and enhances system capacity. Thereby, DPS with the

proposed clustering configuration preserves a low level of interference and facilitates scala-

bility which is an essential feature to be offered in 5G cellular networks and beyond.

• In Chapter 3, we have deepened our analyses of the uplink transmission in massive MIMO

presented in Chapter 2 to include NOMA into the system architecture, and we have extended

our investigation to include EE. The novel EDPS that we have proposed in Chapter 3 is

an efficient scheme to obtain an accurate CSI in massive MIMO with NOMA integration.

EDPS is an extended version of DPS that tackles both intra-cell and inter-cell interference

in an environment of non-cooperative multiple cells cellular networks. We have found that

massive MIMO and NOMA aid each other and acheive better performance when integrated,

provided that an accurate CSI is available at the BS. EDPS facilitates this integration.

The EE of DFT-s-OFDM waveforms in 5G uplinks has been examined for both massive

MIMO with OMA and massive MIMO with PD-NOMA. We have found that improving

CSI results in improving EE. We have clarified the impact of improving uplink EE on the

EE of downlink and overall system. In fact, we have found that the enhancement in uplink

leads to performance enhancement of downlink as well, as TDD is the adopted duplexing

scheme. We have proposed a new waveform based on an adaptive length BC DFT-s-OFDM

and shown that it significantly enhances EE of uplink transmissions in massive MIMO with

OMA or PD-NOMA. To realize the performance improvements in practice, accurate CSI is

needed at the BS. We have shown that this can be accomplished by integrating DPS/EDPS

with BC DFT-s-OFDM. We have shown that these strategies can achieve an effective trade-

off between SE, power consumption, and EE, where the enhancements in EE do not cause
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a substantial degradation of SE. The numerical results have depicted the benefits of the pro-

posed BC DFT-s-OFDM to achieve high EE, low NMSE with better CSI accuracy, low BER,

and high sum-rate capacity at low SNRs for massive MIMO with OMA and PD-NOMA.

Also, we have demonstrated that BC DFT-s-OFDM reduces PAPR to better preserve the

signal’s peak power at the UEs within the dynamic range enabling linear operation of the

power amplifier to further prevent inter-carrier interference, intermodulation distortions, and

high power losses. This contributes to a noticeable reduction in the power consumption at

the UE, which supports green communications. However, these benefits come at a cost in

changing the UEs structures by adding a BC spreader and the BS’s receiver by adding a BC

de-spreader, with a minimal increase in circuit power consumption. We have illustrated the

necessary modification for the UE’s transmitter and the BS’s receiver structures.

• In Chapter 4, we have addressed the problem that SIC decoding results in poor performance

when served users in NOMA pairs have relatively equal power levels in their received signals

at the BS. As an effective solution, we have proposed novel decoding schemes based on CaF.

The proposed schemes work in both PD-NOMA stand-alone and integrated with massive

MIMO. We have shown that the proposed scheme provides better fairness and lowers outage

probability without significantly increasing complexity compared to SIC decoding. We have

found that the proposed decoding schemes is general and include SIC decoding as a special

case.

Simulation results have shown that CaF-NOMA increases Jain’s fairness index and decreases

the average outage probability significantly compared to SIC. Furthermore, we have com-

bined both CaF decoding mechanism and EDPS/DPS in massive MIMO with NOMA to pro-

mote practical implementation. This enhanced IFLR to tackle imperfect CSI, maintain the

MAC rate region, and reduce the average sum-rate loss. Numerical results have confirmed

that our approach adds appreciable robustness against CSI estimation errors, and significantly

enhances the performance of IFLR in massive MIMO with PD-NOMA. Consequently, this

paves the way for practical implementation of IFLR in massive MIMO with PD-NOMA.
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However, CaF decoding adds a minimum cost compared with its benefits where an addi-

tional block needs to be added into the BS’s receiver.

5.2 Future Works

In this section, we provide several interesting possibilities for expanding the research work pre-

sented in this dissertation. The main idea is to extend the applications of our proposed schemes

and investigate their performance in other 5G technologies or in different network scenarios. We

believe, based on our findings, that there are still many valuable ways in which the research work

we have demonstrated here could be extended further. In what follows, we illustrate several poten-

tial future extensions by providing summarize research topics, that can be considered as enriching

starts towards the first step.

5.2.1 Expected Future Extensions

The work in this dissertation has built on five pillars which are 1) DPS, 2) EDPS, 3) BC DFT-

s-OFDM, 4) CaF, and 5) EE enhancement. The technical performance of these pillars has been

investigated under various state-of-the-art cellular networks configurations of emerging 5G tech-

nologies which are 1) Massive MIMO with OMA, 2) NOMA, 3) Massive MIMO with NOMA.

Therefore, there are still several paths that can be considered as natural extensions of the presented

research work. Besides, the schemes we have developed show the attributes of additional research

work and analyses that could be done either using the same approaches as we have illustrated or

new envision methodologies. Further development can be realized by building on our schemes and

either applying them into new combined models of novel technologies to acquire further enhance-

ment or using them to devise efficient signal processing algorithms. Specifically, we are suggesting

the following research topics:

• Investigating the Improvement of SIC in NOMA by Applying DPS

In Chapter 2, we have developed DPS which offers unique attributes in non-cooperative mul-

tiple adjacent cells configurations, and applied the technique throughout this dissertation to
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enhance channel estimation and improve CSI accuracy. However, as we stated in Section

2.8, DPS can also be used in improving the performance of interference cancellation. De-

signing an effective SIC is a current research area in wireless cellular communications with

still many open problems, especially in multi-cell environments. Such research direction can

be both challenging and promising, due to the intensive in frequency reusing encountered in

multi-cells environments at the next generations of cellular networks in 5G and beyond. Ad-

dressing the interference resulted from adjacent cells in SIC is very critical as it can degrade

the performance of the overall system. However, one of the main opportunities that DPS is

offering is to facilitate interference management and cancellation mechanisms with avoiding

coordination between the adjacent cells, where entities’ involvement is very challenging and

adds overheads on SE. On the other hand, rather than exploiting the primal decomposition

method in designing the precoder, DPS offers an alternative and easier mechanism to enable

the BS to design the precoders for its own served users independently. Besides, DPS provides

the BS accurate CSI, which can enhance interference alignment further, where accurate CSI

is required to implement effective interference alignment and efficient beam-former. There-

fore, an interesting natural extension is to investigate and examine the integration of DPS for

improving the performance of SIC could be a future research topic.

• Performance Analysis of DPS Using Superimposed Pilot Sequences

In this dissertation, we assumed a configuration of multiplexed pilots is used, where part of

the coherence interval in the uplink transmission is dedicated to PSs to be time-multiplexed

with the data in one coherence time block. Thereby, we have evaluated the performance of

the proposed DPS and EDPS under this configuration. However, another configuration is

the superimposed pilots, where PSs are added at low power to that data symbols prior to the

transmission. Figure 5.1 shows both configurations. Although this approach requires more

computational power and increases signal processing complexity to separate the data sym-

bols from pilots, it may lead to exploiting the dedicated part of pilots in the coherence interval

to be used for actual data transmission which may improve the efficiency of resource utiliza-
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Figure 5.1: Superimposed and multiplexed pilots configurations in TDD.

tion. Therefore, exploring the performance of DPS and EDPS under the configuration of the

superimposed pilots’ approach and examine both OMA and NOMA massive MIMO systems

performance can provide a new potential research direction that needs further investigations

and developments. Moreover, given the existing variations of communication technologies

in 5G and beyond, exploring the feasibility of a hybrid configuration that trades off multi-

plexed pilots against superimposed pilots to reach an optimal operating point that provides

adaptive and elastic services on-demand while acquiring the advantages of both approaches

is an interesting direction that has yet to be investigated.

• Performance Analysis of Joint DPS and Machine Learning

The recent trends of utilizing Machine Learning (ML) in many applications have gained at-

tention from both industry and academia, which provides attractive solutions that should be

explored more. Besides, various ML techniques have rekindled the interest in developing

novel solutions for wireless communications and are considered an inevitable trend. One of

the outcomes of this trend is to add smart capabilities to the BSs and evolve cellular net-

works. Given the success of the DPS in adding additional knowledge to the BS, we have

applied it to improve CSI accuracy and eliminate pilot contamination as illustrated in Chap-

ter 2. However, DPS can be exploited to add intelligence capability to the BS, which permits



5.2. Future Works

the continuous updated extraction and characterization of large scale fading channel coeffi-

cients patterns, provides adaptive user scheduling, and provides better adaptable interference

alignment. Several ML techniques can be exploited in this future research direction, includ-

ing support vector machine, neural network, and deep learning. Therefore, exploring the

performance of joint ML and DPS approach can leverage advantages of both DPS and ML,

which is considered an interesting avenue for future research. One open problem is how to

build this joint model while ensuring high efficacy.

• Performance Analysis of Massive MIMO Serving UEs Equipped with Multiple-Antennas

Throughout the entire dissertation, we took a conventional assumption that previous re-

searchers have followed, which is that each UE is supplied with one antenna. It is a valid

assumption but the scenario that considers UEs equipped with multiple antennae may be of

interest in the future and has yet to be studied. Apparently, the advantages of deploying UEs

with multiple antennas is twofold. First, it substantially enhances the data rate, and second, its

feasibility to support full-duplex operation [139]. However, for both OMA and NOMA mas-

sive MIMO there are several challenges in the realization of this scenario. One of them is the

increased complexity of system architecture and hence the complexity of channel estimation.

A relevant future research direction is to exploit the schemes proposed in this dissertation

to analyze the asymptotic effect of increasing the number of UEs antennas. Obtaining the

optimal number of antennae that can be used by each UE to achieve maximum performance

of the whole system is another factor to be considered. To this ends, a scenario that starts

with UEs having two antennae and considers using Alamouti space-time block code [140]

could be investigated.
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Appendix A

Related Proofs of Chapter 2

A.1 Derivation of Equation (2.8)

It suffices to prove that φH
lkD−1

l φlk =
P

σ2+P∑i β l
ik

when φlk =
√

Pψk for all k. First, note that

φH
lkD−1

l φlk = PψH
k D−1

l ψk. (A.1)

Hence, it suffices to show that ψH
k D−1

l ψk =
1

σ2+P∑i β l
ik

. Second, note that

Dl = σ
2Iτ + ∑

(i, j)
Pβ

l
i jψ jψ

H
j (A.2)

= σ
2Iτ +∑

j
∑

i
Pβ

l
i jψ jψ

H
j (A.3)

= σ
2Iτ +∑

j
β jψ jψ

H
j (A.4)

where β j = P∑i β l
i j is a short-hand notation. Hence, it suffices to show that

ψH
k

(
σ

2Iτ +∑
j

β jψ jψ
H
j

)−1

ψk =
1

σ2 +βk
. (A.5)
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A.2. Derivation of Inequality (2.24)

By the Sherman-Morrison formula, we have

(
σ

2Iτ +∑
j

β jψ jψ
H
j

)−1

=
1

σ2

(
Iτ −∑

j

β j

σ2 +β j
ψ jψ

H
j

)
. (A.6)

It follows that ψH
k

(
σ2Iτ +∑ j β jψ jψ

H
j

)−1
ψk =

1
σ2+βk

. This proves (A.5).

A.2 Derivation of Inequality (2.24)

First, we have

(
DSUB

l (γ)
)−1

=
1

∆SUB
l (γ)

(1− γ)P∑ j β l
l j +σ2 −

√
γ(1− γ)Pβ l

lk

−
√

γ(1− γ)Pβ l
lk γP∑i β l

ik +σ2

 (A.7)

where ∆SUB
l (γ) is the determinant of DSUB

l (γ). Hence, we have
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1
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j 6=k
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i 6=l
β

l
ik)+σ
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(A.8)

Next, we would like to show that

γ(1− γ)P(∑ j 6=k β l
l j +∑i6=l β l

ik)+σ2

∆SUB
l (γ)

>
1

σ2 +P∑i β l
ik

(A.9)



A.3. Derivative of gSUB
lk (γ)

or equivalently,

(
σ

2 + γ(1− γ)P(∑
j 6=k

β
l
l j +∑

i 6=l
β

l
ik)

)(
σ

2 +P∑
i

β
l
ik
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SUB
l (γ) (A.10)

under the condition 1−γ

γ

∑ j 6=k β l
l j

(∑i6=l β l
ik)

2 < P
σ2 . To see this, we separate terms with and without σ2 in the

above inequality, obtaining

γ(1− γ)P2
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β
l
ik
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if 1−γ

γ

∑ j 6=k β l
l j

(∑i6=l β l
ik)

2 <
P

σ2 .

We have two cases as follows.

1. ∑i 6=l β l
ik ≥

1−γ

1+γ ∑ j 6=k β l
l j. In this case, the above inequality always holds because the right-

hand-side is no greater than 0.

2. ∑i6=l β l
ik <

1−γ

1+γ ∑ j 6=k β l
l j. In this case, we need the following inequality

σ
2 <

γP
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∑i6=l β l

ik
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l j− (1+ γ)∑i6=l β l

ik
, (A.12)

which holds as long as σ2 < P γ

1−γ

(∑i 6=l β l
ik)

2

∑ j 6=k β l
l j

or equivalently 1−γ

γ

∑ j 6=k β l
l j
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ik)

2 <
P

σ2 .

A.3 Derivative of gSUB
lk (γ)

Let g′(γ) denote the derivative of gSUB
lk (γ). Then, we can show that

g′(γ) = h(γ)(Aγ
2 +Bγ +C) (A.13)



A.3. Derivative of gSUB
lk (γ)

where h(γ)> 0 for all γ ∈ (0,1) and
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l
l j)σ
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2 (A.16)

Hence, we have g′(0)> 0 (since h(0)> 0 and C > 0) and g′(1)< 0 (since h(1)> 0 and A+B+

C < 0). Indeed, we can show that g′(γ) has two zeros γ1 =
∑ j 6=k β l

l j

∑ j 6=k β l
l j+∑i 6=l β l

ik
and γ2 =

∑ j 6=k β l
l j+2σ2

∑ j 6=k β l
l j−∑i 6=l β l

ik
.

Note that γ1 ∈ (0,1) and γ2 > 1. Hence, we have g′(γ)> 0 when γ ∈ (0,γ1) and g′(γ)> 0 when

γ ∈ (γ1,1). This implies that g(γ) is unimodal over the interval (0,1) and the optimal γ is given by

γ
∗ =

∑ j 6=k β l
l j

∑ j 6=k β l
l j +∑i6=l β l

ik
, (A.17)

which does not depend on σ2.



Appendix B

Related Proofs and Preliminaries of

Chapter 4

B.1 Proof of Theorem 4

In this appendix, we will prove Theorem 4 through two steps. First, we will show that the rate pairs

induced by ([1,0], [0,1]), ([0,1], [1,0]), and (a∗,b∗) are indeed Pareto-optimal solutions. Second,

we will show that any Pareto-optimal solution is induced by ([1,0], [0,1]), ([0,1], [1,0]), or (a∗,b∗).

Before conducting these two steps, we need to introduce some properties for (a∗,b∗) proven in

[130].

Property 1: The matrix

a∗

b∗

 is invertible over Z[i]. In particular, the greatest common divisor

gcd(a1∗,a2∗) = 1.

Property 2: a∗ minimizes a
(
P−1 +hHh

)−1 aH where a 6= 0;

Property 3: b∗ minimizes a
(
P−1 +hHh

)−1 aH where a is linearly independent of a∗.

Step 1 of the proof. When the coefficient vector (a,b) = ([1,0], [0,1]), the induced rate pair

is given by (4.2), which is a Pareto-optimal solution because it is a “corner point” of the capacity

region. Similarly, the induced rate pair by ([0,1], [1,0]) is also a Pareto-optimal solution.

Next, we consider the rate pair induced by (a∗,b∗). By Property 1, we have the following three
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cases.

1. a∗ ∈ {[1,0], [−1,0], [i,0], [−i,0]}. In this case, the induced rate pair is given by (4.2), which

is a Pareto-optimal solution.

2. a∗ ∈ {[0,1], [0,−1], [0, i], [0,−i]}. Similarly, the induced rate pair is Pareto optimal.

3. a1∗ 6= 0 and a2∗ 6= 0. In this case, the induced rate pair is given by

 R1 = min
{

log2

(
p1

σ2(a∗)

)
, log2

(
p1

σ2(b∗|a∗)

)}
R2 = log2

(
p2

σ2(a∗)

) (B.1)

or  R1 = log2

(
p1

σ2(a∗)

)
,

R2 = min
{

log2

(
p2

σ2(a∗)

)
, log2

(
p2

σ2(b∗|a∗)

)} (B.2)

where σ2(a∗) = a∗(P−1 +hHh)−1 (a∗)H is the effective noise variance associated with the

first integer-linear combination (with P and h defined in Algorithm 1), and σ2(b∗|a∗) =
p1 p2

σ2(a∗)
· 1

1+hPhH is the effective noise variance associated with the second integer-linear com-

bination with the first combination as side information. Note that when σ2(a∗)≤ σ2(b∗|a∗),

we have

R1 +R2 = log2
(
1+hPhH) . (B.3)

That is, the induced rate pair in (B.1) or (B.2) achieves the sum capacity when σ2(a∗) ≤

σ2(b∗|a∗). Hence, we consider two sub-cases as follows.

Sub-case 1) σ2(a∗)≤ σ2(b∗|a∗). The induced rate pair (R1,R2) is indeed Pareto-optimal as

explained before.

Sub-case 2) σ2(a∗)> σ2(b∗|a∗). In this case, the induced rate pair (R1,R2) is given by

 R1 = log2

(
p1

σ2(a∗)

)
,

R2 = log2

(
p2

σ2(a∗)

)
.

(B.4)
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We will show that (R1,R2) is Pareto-optimal by using “proof by contradiction.” Consider a

rate pair (R̄1, R̄2) induced by (ā, b̄) with ā1 6= 0 and ā2 6= 0. We have

 R1 ≤ log2

(
p1

σ2(ā)

)
R2 ≤ log2

(
p2

σ2(ā)

) (B.5)

which is the rate constraint for decoding the first integer-linear combination associated with

ā. Now suppose that (R̄1, R̄2) is better than (R1,R2) in (B.4). Then we have

log2

(
p1

σ2(ā)

)
> log2

(
p1

σ2(a∗)

)

and

log2

(
p2

σ2(ā)

)
> log2

(
p2

σ2(a∗)

)
.

This contradicts Property 2 (i.e., a∗ minimizes σ2(a)).

Step 2 of the proof. Consider a Pareto-optimal rate pair (R̃1, R̃2) induced by (ã, b̃). We will

show that (R̃1, R̃2) can also by induced by ([1,0], [0,1]), ([0,1], [1,0]), or (a∗,b∗). We consider the

following cases.

1. The rate pair (R̃1, R̃2) is a “corner point” of the capacity region. In this case, (R̃1, R̃2) can be

induced by ([1,0], [0,1]) or ([0,1], [1,0]).

2. The rate pair (R̃1, R̃2) is induced by (ã, b̃) with ã1 6= 0 and ã2 6= 0. In this case, we will

show that (R̃1, R̃2) can be induced by (a∗,b∗). We assume, without loss of generality, that the

greatest common divisor gcd(ã1, ã2) = 1, because otherwise, we can achieve a strictly better

rate pair than (R̃1, R̃2) by first decoding the integer-linear combination associated with 1
d a∗,

where d = gcd(ã1, ã2) and |d|> 1. We now consider two sub-cases as follows.

Sub-case 1) ã and a∗ are linearly dependent. In this case, we have ã = ga∗ for some |g| =

1, because gcd(a1∗,a2∗) = 1 and gcd(ã1, ã2) = 1. Hence, we have σ2(ã) = σ2(a∗) and

σ2(b̃|ã) = σ2(b∗|a∗). That is, (R̃1, R̃2) can be induced by (a∗,b∗) as well.
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Sub-case 2) ã and a∗ are linearly independent. Recall that b∗ is an optimal solution by

Property 3, we have σ2(ã)≥ σ2(b∗). Hence,

 R̃1 ≤ log2

(
p1

σ2(ã)

)
≤ log2

(
p1

σ2(b∗)

)
R̃2 ≤ log2

(
p2

σ2(ã)

)
≤ log2

(
p2

σ2(b∗)

)
.

(B.6)

On the other hand, we have σ2(b∗) ≥ σ2(a∗) (by Property 1) and σ2(b∗) ≥ σ2(b∗|a∗) (as

shown in [130]). Hence, if we compare (B.6) with (B.1) and (B.2), we conclude that the rate

pair (R̃1, R̃2) is either the same as the pair induced by (a∗,b∗) or strictly worse than it. This

completes the proof.

B.2 Preliminaries for Lattices and Nested Lattice Codes.

Here, we review some basics of lattices and nested lattice codes. More details can be found in a

recent book [141] and a tutorial presentation [142].

A lattice is a discrete subgroup (under vector addition) of Rn. Any (full-rank) lattice Λ in Rn

can be expressed in terms of some (full-rank) n×n generator matrix GΛ ∈ Rn×n as

Λ = {aGΛ : a ∈ Zn}.

That is, Λ is the set of all integer combinations of the rows of GΛ.

A nearest neighbour quantizer QΛ : Rn→ Λ associated with the lattice Λ maps a vector in Rn

to the closest lattice point

QΛ(x) = argmin
λ∈Λ

‖x−λ‖2, (B.7)

where ties in (B.7) are broken systematically. The Voronoi region of Λ, denoted by V (Λ), is the set

of all vectors in Rn which are quantized to 0, i.e., V (Λ) = {x ∈ Rn : QΛ(x) = 0}. The volume of

the Voronoi region is denoted by V (Λ).

A nested lattice is a pair of lattices (Λc,Λ f ) such that Λc ⊂ Λ f , where Λ f is called the fine

lattice and Λc is called the coarse lattice. A nested lattice code L (Λc,Λ f ) consists of the lattice
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points of Λ f in the Voronoi region V (Λc), i.e.,

L (Λc,Λ f ) = Λ f ∩V (Λc).

For this reason, L (Λc,Λ f ) is also known as a Voronoi codebook. The number of codewords in

L (Λc,Λ f ) is

|L (Λc,Λ f )|=
V (Λc)

V (Λ f )
.

Intuitively, each lattice point of Λ f “occupies” a Voronoi region of volume V (Λ f ), and so the

number of lattice points inside V (Λc) is V (Λc)/V (Λ f ).

A nested lattice code can be constructed from a nested linear code. Consider two linear codes

C1 and C2 over the field Zp = {0,1, . . . , p−1}, where C2 ⊂ C1 ⊂ Zn
p, and p should be a Gaussian

prime (i.e., p ∈ Z is a prime number of the form 4m+3). By “lifting” these linear codes to Zn via

Construction A, we obtain two lattices

Λ1 = {x ∈ Zn : x mod p ∈ C1}

and

Λ2 = {x ∈ Zn : x mod p ∈ C2}

with Λ2 ⊂ Λ1 ⊂ Zn.

Finally, we can apply some positive scaling factor γ to obtain a fine lattice

Λ f = γΛ1 , {γλ : λ ∈ Λ1}

and a coarse lattice

Λc = γΛ2 , {γλ : λ ∈ Λ2}

with Λc ⊂ Λ f ⊂ γZn.
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B.3 Proof of Theorem 5

Proof: We will show that the map ϕ satisfies the three properties.

1. Note that

λ ∈ Λ f ⇐⇒ γ
−1λ ∈ Λ1

⇐⇒ γ
−1λ mod p ∈ C1

⇐⇒ φ(λ) ∈ C1

⇐⇒ φ(λ)HT
1 = 0

⇐⇒ φ(λ)HT has m1 zeros at the beginning

⇐⇒ ϕ(λ) has m1 zeros at the beginning.

2. The proof is essential the same as above.

3. Note that

ϕ(a1λ1 +a2λ2)

= φ(a1λ1 +a2λ2)H
T

=
(
γ
−1(a1λ1 +a2λ2) mod p

)
HT

=
(
(a1γ

−1λ1 +a2γ
−1λ2) mod p

)
HT

=
(
(q1γ

−1λ1 +q2γ
−1λ2) mod p

)
HT

= (q1φ(λ1)+q2φ(λ2))H
T

= q1ϕ(λ1)+q2ϕ(λ2).

Therefore, the map ϕ is a linear labeling. This completes the proof of Theorem 5. �



B.4. Proof of Theorem 6

B.4 Proof of Theorem 6

Proof: First, we show that the rate pairs associated with [(1,0)T ,(0,1)T ], [(0,1)T ,(1,0)T ], and

[a∗,b∗] are indeed Pareto-optimal solutions. When a = (1,0)T and b = (0,1)T , by Proposition 2,

the associated rate pair (Rk,Rl) satisfies

Rk +Rl = log2
∣∣IM +HPHH∣∣ , (B.8)

which is the sum capacity. Hence, (Rk,Rl) is a Pareto-optimal solution. Similarly, when a = (0,1)T

and b = (1,0)T , the associated rate pair (Rk,Rl) is a Pareto-optimal solution. We proceed to the rate

pair (Rk,Rl) associated with [a∗,b∗]. Without loss of generality, we assume that ak mod p 6= 0 and

al mod p 6= 0, because otherwise it reduces to the previous two cases. We consider two sub-cases

as follows:

1. σ2(H,a∗)≤σ2(H,b∗|a∗). In this case, by Proposition 2, we have Rk+Rl = log2
∣∣IM +HPHH

∣∣.
Hence, (Rk,Rl) is a Pareto-optimal solution.

2. σ2(H,a∗)> σ2(H,b∗|a∗). In this case, the rate pair (Rk,Rl) is given by

Rk = log+2

(
Pk

σ2(H,a∗)

)
Rl = log+2

(
Pl

σ2(H,a∗)

)
.

We can show that (Rk,Rl) is a Pareto-optimal solution by using the “proof by contradiction”

technique developed in the proof of Theorem 4 in Appendix B.1.

Next, we consider a Pareto-optimal rate pair (R̃k, R̃l) associated with [ã, b̃] and we show that

(R̃k, R̃l) is also associated with [(1,0)T ,(0,1)T ], [(0,1)T ,(1,0)T ], or [a∗,b∗]. To this end, we con-

sider the following cases.

1. The rate pair (R̃k, R̃l) is a “corner point” of the capacity region. In this case, (R̃k, R̃l) is also

associated with [(1,0)T ,(0,1)T ] or [(0,1)T ,(1,0)T ].
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2. The rate pair (R̃k, R̃l) is associated with [ã, b̃] with ãk mod p 6= 0 and ãl mod p 6= 0. In

this case, we will show that (R̃k, R̃l) is also associated with [a∗,b∗]. We assume, without

loss of generality, that the greatest common divisor gcd(ãk, ãl) = 1, because otherwise, we

can achieve a strictly better rate pair than (R̃k, R̃l) by first decoding the linear combination

associated with 1
d a∗, where d = gcd(ãk, ãl) and |d| > 1. We now consider two sub-cases as

follows.

Sub-case 1) ã and a∗ are linearly dependent. In this case, we have ã = ga∗ for some |g|= 1,

because gcd(ak∗,al∗) = 1 and gcd(ãk, ãl) = 1. Hence, we have σ2(H, ã) = σ2(H,a∗) and

σ2(H, b̃|ã) = σ2(H,b∗|a∗). That is, (R̃k, R̃l) is associated with [a∗,b∗] as well.

Sub-case 2) ã and a∗ are linearly independent. Recall that b∗ is an optimal solution to (4.10)

under the constraint that a∗ and b∗ are linearly independent. Hence, we have σ2(H, ã) ≥

σ2(H,b∗) and  R̃k ≤ log2

(
Pk

σ2(H,ã)

)
≤ log2

(
Pk

σ2(H,b∗)

)
R̃l ≤ log2

(
Pl

σ2(H,ã)

)
≤ log2

(
Pl

σ2(H,b∗)

)
.

(B.9)

On the other hand, we have σ2(H,b∗)≥ σ2(H,a∗) and σ2(H,b∗)≥ σ2(H,b∗|a∗) (as shown

in [130]). Hence, if we compare (B.9) with the rate expressions in Proposition 2, we conclude

that the rate pair (R̃k, R̃l) is either the same as the pair associated with [a∗,b∗] or strictly worse

than it.

This completes the proof of Theorem 6. �
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