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Abstract

In this thesis, we study two topics in Euclidean harmonic analysis. The

first one is the configurations contained in fractal-like sets in the Euclidean

space. The other is decoupling for various geometric objects in the Euclidean

space.

In the study of Euclidean configurations, we first discuss the background,

address their subtleties and do a simple survey on this subject. Then we

proceed to the proof of my main result, which demonstrates the topological

property of a set containing a similar copy of sequences converging to zero.

In the study of decoupling, we first formulate a general decoupling in-

equality and discuss some general upper and lower bound estimates Then

we move on to decoupling for manifolds in Euclidean space, and in partic-

ular curves in the plane. We then state a classical result by Bourgain and

Demeter and use it to prove a decoupling inequality that works uniformly

for all polynomials up to a certain degree, generalising an earlier result of

Biswas et al. in the plane.
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Lay Summary

This thesis studies two separate topics in harmonic analysis, namely,

fractal geometry and decoupling theory.

A fractal is a complex pattern that typically takes a highly irregular

shape. Yet many fractal-like patterns occur in nature, such as snowflakes,

ferns, and trees. As one zooms in, fractals often exhibit self similarity. Here

we study the relation between the size of fractals and the geometric figures

contained within them.

Decoupling theory is a branch of classical harmonic analysis, which deals

with functions formed from the superpositions of sinusoidal waves made

up by different frequencies. Decoupling studies the behaviour of functions

when their frequency is localized to a small neighborhood of a geometrically

significant shape.
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Preface

This dissertation is an original intellectual product of the author, Tongou

Yang.

Chapters 4 and 5 are based on the author’s publication [72]. Chapter

7 is based on the author’s publication [73]. All of the topics above were

directly or indirectly suggested by my advisor Malabika Pramanik.
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Chapter 1

Introduction

1.1 Euclidean configurations

Fix any subset B ⊆ Rn, called a configuration (or pattern). Given

a subset A ⊆ Rn, we say A contains a similar1 copy of B if there is a

translation t ∈ Rn and a uniform dilation δ 6= 0 such that t + δB ⊆ A.

For example, if A contains an open ball, then it contains a similar copy of

every bounded set B. In fact, the classical Lebesgue density theorem implies

the following nontrivial result: if A has positive Lebesgue measure, then it

contains a similar copy of every finite configuration B.

In 1955, Erdős and Kakutani [21] first generalised the Lebesgue density

theorem by constructing a perfect set A ⊆ [0, 1] with Lebesgue measure 0

and Hausdorff dimension 1, such that A still contains a similar copy of every

finite configuration. Since then, a lot of new results have been established,

either by weakening the assumption or strengthening the conclusion of pre-

viously proved theorems. In Chapter 3 we will present a survey of many

theorems and conjectures in this area. Most of the results are related to

constructions of Cantor-like sets.

Part of my doctoral work is based on the study of the topological prop-

erties of sets A ⊆ R containing similar copies of patterns B given by zero

sequences, that is, sequences strictly decreasing to 0.

My main result is as follows.

Theorem 1.1.1 (Theorem 1.1 of [72]). If A ⊆ R contains a similar copy of

any zero sequence, then the closure of A contains an interval.

1In this thesis we do not allow rotations or reflections.
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Theorem 1.1.2 (Theorem 1.2 of [72]). Let ηm be a zero sequence. Then

there is a closed and nowhere dense set A ⊆ [0, 1], depending on ηm, that

contains a similar copy of any sequence αm → 0 with supm αm/ηm <∞.

The proof of the theorems will be presented in Chapters 4 and 5, respec-

tively.

1.2 Decoupling

Roughly speaking, decoupling studies the superposition of waves in phys-

ical space with their frequencies lying in disjoint sets in frequency space.

Mathematically, given 1 ≤ p, q ≤ ∞ and finitely many disjoint setsA = {Ai}
in Rn, what is the smallest constant Dp,q(A) such that for all functions fi

each with Fourier transform f̂i supported on Ai, we have the inequality2

∥∥∥∥∥∑
i

fi

∥∥∥∥∥
Lp(Rn)

≤ Dp,q(A)

(∑
i

‖fi‖qLp(Rn)

) 1
q

?

For any finite collection A, not necessarily disjoint, by the triangle inequality

and Hölder’s, it is easy to see that Dp,q(A) ≤ (#A)1−1/q.

Decoupling studies the following fundamental question. If A is chosen

to be disjoint, then how can we give an estimate on Dp,q(A) for a pair of

exponents (p, q)? If yes, are the estimates sharp?

When p = q = 2, by Plancherel’s identity and the disjointness of Ai it is

easy to see that D2,2(A) = 1. It can be viewed as the simplest decoupling

inequality. Hence, we mainly seek to find sharp estimates of Dp,q(A) for

other pairs (p, q).

Decoupling theory originated from a Fourier analytic tool developed by

Wolff [71] in the study of local smoothing estimates for the cone. The subse-

quent work of  Laba–Wolff [52],  Laba–Pramanik [50], Pramanik–Seeger [60],

and Garrigós–Seeger [27, 28] provided useful insights prior to the systematic

study of decoupling. In the breakthrough work in 2015 of Bourgain and

2with the obvious modification for q =∞.
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Demeter [5], they proved a sharp decoupling estimate for a compact subset

of the standard elliptic paraboloid in Rn, namely, the graph of the function

ξ 7→ |ξ|2 for ξ ∈ [−1, 1]n−1. In particular, for n = 2, what they established

is the following.

Theorem 1.2.1 (Bourgain-Demeter [5], n = 2). Let φ(s) = s2. For δ ∈
N−2, let Ii = [(i − 1)δ1/2, iδ1/2] be the partition of [0, 1] into intervals of

length δ1/2. Let Ai be given by the δ-neighbourhood of the graph of φ over

Ii.

Assume 2 ≤ p ≤ 6. Then for any ε > 0, there is a constant Cε,p depend-

ing on ε, p only, such that for all functions fi each with Fourier support on

Ai, we have

∥∥∥∥∥∑
i

fi

∥∥∥∥∥
Lp(R2)

≤ Cε,pδ−ε
(∑

i

‖fi‖2Lp(R2)

) 1
2

. (1.1)

See Figure 1.1 for a picture of this theorem. We remark that the constant

Cε,p here is independent of δ and all fi, and this will be the feature of all

decoupling inequalities. Also, the range of exponents 2 ≤ p ≤ 6 is the largest

we can expect if we want the growth with respect to δ → 0 to be δ−ε for

any ε > 0. This can be seen from an exponential sum estimate; see [75].

1

1 2δ

δ1/2

s

t

Figure 1.1: δ-neighbourhood of t = s2
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42/3
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62/3

4
72/3

4
1−2−6

2−6

1− 2−6

1 + 2−6

2δ

δ = 2−6

s

t

Figure 1.2: δ-neighbourhood of t = s3

Part of my doctoral work in [73] is a generalisation of Theorem 1.2.1 in

n = 2. I derive there an inequality of the form (1.1) for all polynomials up

to a fixed degree.

Theorem 1.2.2 (Theorem 1.4 of [73]). For any 2 ≤ p ≤ 6, d ≥ 1 and ε > 0,

there is a constant Cε = Cd,ε,p such that the following is true.

For any 0 < δ ≤ 1, any polynomial φ of degree at most d, any “admissible

partition” P = {Ii} of [0, 1] for φ at the scale δ and any fi each Fourier

supported on the δ-neighbourhood of the graph of φ over Ii, we have

∥∥∥∥∥∑
i

fi

∥∥∥∥∥
Lp(R2)

≤ Cεδ−ε
(∑

i

‖fi‖2Lp(R2)

) 1
2

. (1.2)

Here, an “admissible partition” for φ at the scale δ is “the coarsest”

partition P of [0, 1] such that the δ-neighbourhood of the graph of φ over

each I ∈ P is an almost rectangle. The formal definition will be given in

Section 7.1.

We refer to this as a “uniform decoupling inequality” since the constant

Cε is independent of φ and P in addition to δ and fi.

In Figure 1.2 above, we also showcase an admissible partition of [0, 1] for

4



φ(s) = s3 at the scale δ = 2−6, given by

[(j − 1)2/3δ1/3, j2/3δ1/3], 1 ≤ j ≤ δ−1/2.

1.3 Outline of the thesis

The main body of the thesis is divided into two parts. The first part

deals with Euclidean configurations. We will start with some preliminaries

in Chapter 2. Chapter 3 is a detailed literature review. Chapters 4 and 5

are devoted to the proof of Theorems 1.1.1 and 1.1.2, respectively.

The second part deals with decoupling theory. In Chapter 6 we deal

with some preliminaries of decoupling, and state some known results in the

current literature. In Chapter 7 we prove Theorem 1.2.2.

5



Chapter 2

Configurations: Background

2.1 Definition and notation

In this chapter, we are only interested in Borel sets in Euclidean space,

unless otherwise stated.

2.1.1 A little set theory

Let A, B be Borel sets in Rn. For δ ∈ R, the notation δA is defined

as the set {δa : a ∈ A}. The notation A + B will be used to denote the

Minkowski sum of A and B, namely, A + B = {a + b : a ∈ A, b ∈ B}. In

particular, if A (and similarly B) is a singleton, by a+B or B+ a we mean

{a}+B. We also write −A to mean (−1)A and B −A to mean B + (−A).

Let A ⊆ Rn, let {Ai ⊆ Rn : i ∈ I} where I is any index set, and let

t ∈ Rn. The following relations show that translations commute with basic

set operations. The proof is immediate.

(A+ t)c = Ac + t, (2.1)⋃
i∈I

(Ai + t) =

(⋃
i∈I

Ai

)
+ t, (2.2)

⋂
i∈I

(Ai + t) =

(⋂
i∈I

Ai

)
+ t. (2.3)

For a Borel set A ⊆ Rn, we use Ln(A) to denote its n-dimensional Lebesgue

measure. The cardinality of a set will always be denoted as #A.

The notation | · | will be reserved for the Euclidean norm of a vector

in Rn. We use diam(A) to denote the diameter of a set A ⊆ Rn, defined

6



as diam(A) = sup{|x − y| : x, y ∈ A}. The distance between two sets

A,B ⊆ Rn, denoted dist(A,B), is defined as inf{|x − y| : x ∈ A, y ∈ B}.
The notation dist(x,B) means dist({x}, B).

2.1.2 Notation in topology

We use the notation Bn(x, r) (or simply B(x, r) when the ambient di-

mension is clear from the context) to denote the open ball in Rn of radius

r centred at x. All balls (open or closed) in this thesis are assumed to be

non-degenerate, that is, they have positive and finite radius. The interior

and the closure of a set A in Rn (with respect to the standard topology,

unless otherwise specified) will be denoted Int(A) and A, respectively.

We also make the following definitions about density of sets. If K ⊆ Rn

is a closed set, we say a set A ⊆ Rn is dense in K if for each open ball I ⊆ K
we have I ∩ A 6= ∅. It is an easy exercise to show that A ⊆ Rn is dense

in K if and only if A ∩K = K. We say a set A ⊆ Rn is nowhere dense if

Int(A) = ∅. We say a set is somewhere dense if it is not nowhere dense.

The following elementary lemma will be useful. The proof is elementary,

but we include it here for completeness.

Lemma 2.1.1. A ⊆ Rn is nowhere dense if and only if for each closed ball

K ⊆ Rn there is an open ball I ⊆ K such that I ⊆ Ac. As a corollary, if A

and B are nowhere dense, then so is A ∪B.

Proof. For the forward direction, assume towards contradiction that there is

a closed ball K ⊆ Rn such that for all open balls I ⊆ K, we have I ∩A 6= ∅.

Then by definition, A is dense in K. Equivalently, A ∩K = K. Hence

Int(A) ⊇ Int(A ∩K) = Int(K) 6= ∅,

which is a contradiction.

For the reverse direction, suppose towards contradiction that A is some-

where dense. Then A contains an open ball which in turn contains some

closed ball K. By assumption, there is some open ball I ⊆ K such that

7



I ⊆ Ac. Taking interiors on both sides, we see

I = Int(I) ⊆ Int(Ac) = A
c ⊆ Kc.

But this is a contradiction to I ⊆ K as I is nonempty.

Now we prove the corollary, namely, if A and B are nowhere dense, then

so is A ∪B. Let A and B be nowhere dense. By what we have just proved,

it suffices to show that for any closed ball K ⊆ Rn there is an open ball

I ⊆ K such that I ⊆ (A ∪ B)c. Let K ⊆ R be a closed ball. Since A is

nowhere dense, by what we just proved, there is an open ball I ′ ⊆ K such

that I ′ ⊆ Ac. But I ′ contains some closed ball K ′, and since B is nowhere

dense, by what we just proved, there is an open ball I ⊆ K ′ such that

I ⊆ Bc. But K ′ ⊆ I ′ ⊆ Ac, so I ⊆ Ac. Hence I ⊆ K is an open ball such

that I ⊆ Ac ∩Bc = (A ∪B)c, so A ∪B is nowhere dense.

Remark. All density in this article will always refer to topological density

as defined above, not to be confused with other notions of density such as

asymptotic density or Banach density, etc. These are interesting topics to

study, but they are not the main point of concern in this thesis.

2.2 Hausdorff measure and Hausdorff dimension

2.2.1 Definition and notation

We follow the formulation in Chapter 4 of [56].

Definition 2.2.1. Given any set A ⊆ Rn. For 0 < δ ≤ ∞ and s ≥ 0, define

Hsδ(A) := inf

{ ∞∑
i=1

diam(Ai)
s :

∞⋃
i=1

Ai ⊇ A,diam(Ai) < δ

}
∈ [0,∞].

Here, we adopt the convention that diam(∅) = 0 and that 00 = 1 (when

s = 0).

With this definition, Hsδ(A) is a decreasing function in δ. We then define

8



Hs(A) := sup
0<δ≤∞

Hsδ(A) = lim
δ→0+

Hsδ(A) ∈ [0,∞]. (2.4)

This is called the s-dimensional Hausdorff measure of A.

Remark. Hs defined in this way is only an outer measure on Rn, but using

Theorem 1.7 of [56], we can show that all Borel sets are Hs-measurable. (A

short note: the “measure” in Definition 1.1 of [56] is more commonly known

as an outer measure.) Since we are only interested in Borel sets in this

thesis, we may simply treat Hs as a measure.

Lemma 2.2.2 (Theorem 4.7 of [56]). Let A ⊆ Rn. Then Hs(A) is a decreas-

ing function in s ≥ 0. Moreover, there is a unique real number α ∈ [0, n]

such that Hs(A) = 0 for all s > α and Hs(A) =∞ for all 0 ≤ s < α.

With this, we can finally make the following definition:

Definition 2.2.3 (Hausdorff dimension). Let A ⊆ Rn. With the above

notation, the number α is called the Hausdorff dimension of A, denoted

dimH(A) = α.

2.2.2 Elementary properties and examples

When s is an integer, the Hausdorff measure Hs has some interesting

behaviours.

Theorem 2.2.4. For A ⊆ Rn, the following are true.

1. H0 is just the counting measure, that is, H0(A) = #A.

2. There is a constant c(n) ∈ (0,∞) such that Hn(A) = c(n)Ln(A). As

a corollary, if Ln(A) > 0, then dimH(A) = n.

3. For any s > n, we have Hs(A) = 0. Thus dimH(A) ≤ n.

4. Let m ∈ [0, n]∩N and suppose A is an m-dimensional smooth manifold

embedded in Rn. Then Hm(A) = c(m)σ(A) where σ is the surface

measure of A. As a result, dimH(A) = m.

9



Proof. The first two assertions are proved in Section 2.2 of [22], where Hs is

already normalised by some c(n) defined in Definition 2.1. The last assertion

is illustrated in Section 3.3.4 of [22]. We will only prove the third assertion

here.

Let M > 0 be arbitrary, and let AM = A ∩ Bn(0,M). Since Hs is

an outer measure, it suffices to show that Hs(AM ) = 0. Let δ > 0 be

arbitrary, and let r < δ. Cover Bn(0,M) by CMnr−n many open balls of

radius r where C = C(n) is an absolute constant. By definition, we have

Hsδ(AM ) ≤ CMnr−n = CMnrs−n, for any r < δ. Letting r → 0, we see

that Hsδ(AM ) = 0. But this holds for any δ > 0. Thus Hs(AM ) = 0 and our

proof is complete.

An application of the Hausdorff dimension is to measure fractals such

as the middle-third Cantor set C ⊆ R. It follows from the case λ = 1/3

of Section 4.10 of [56] that dimH(C) = ln 2/ ln 3. On the other hand, the

fat Cantor set F ⊆ R (Smith–Volterra–Cantor set) has Hausdorff dimension

1, which follows from Part 2 of Theorem 2.2.4 and the fact that L1(F ) =

1/2 > 0.

Lastly, we remark that the Hausdorff dimension is countably stable.

That is, we have the following

Proposition 2.2.5. Let Ai, i ≥ 1 be subsets of Rn. Then

dimH

( ∞⋃
i=1

Ai

)
= sup

i
dimH(Ai).

As a result, any countable set has Hausdorff dimension 0.

Proof. The “≥” side is trivial. For the “≤” side, by definition, we will show

that for any ε > 0, Hs+ε(∪iAi) = 0 where s = supi dimH(Ai) (s ≤ n by 3

of Theorem 2.2.4). Thus for each i, s ≥ dimH(Ai) and thus Hs+ε(Ai) = 0.

Since Hs+ε is an outer measure, we have

Hs+ε
( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

Hs+ε(Ai) = 0.
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It is easy to see that any singleton has zero Hausdorff dimension. Thus, the

equality implies that this is true for any countable set.

2.2.3 Generalised Hausdorff measures

In Definition 2.2.1, we can replace the term diam(Ai)
s by φ(Ai) where φ

is a suitable increasing function. The precise formulation, following Section

3.6 of [25], is as follows.

Definition 2.2.6 (Dimension function). Let h : [0,∞) → [0,∞). We say

it is a dimension function if it is right-continuous, increasing, h(0) = 0 and

h(t) > 0 for t > 0.

For example, for s > 0, the functions x 7→ xs is a dimension function.

Definition 2.2.7. Let h be a dimension function. For a set A ⊆ Rn and

0 < δ ≤ ∞, we define

Hhδ (A) = inf

{∑
i

h (diamAi) :
⋃
i

Ai ⊇ A, diam(Ai) < δ

}
,

which is a decreasing function of δ. We then define the h-Hausdorff measure

of A by

Hh(A) := sup
0<δ≤∞

Hhδ (A) = lim
δ→0+

Hhδ (A),

which is also a Borel outer measure on Rn.

Lemma 2.2.8. Let h be a dimension function and A ⊆ Rn. Then Hh(A) =

0 if and only if Hh∞(A) = 0.

Proof. By monotonicity it suffices to prove the “if” side. Let δ > 0 be

arbitrary and it suffices to show Hhδ (A) = 0.

SinceHh∞(A) = 0, for every 0 < ε < h(δ) there are sets Ai with A ⊆ ∪iAi
and

∑
i h(diam(Ai)) < ε. In particular, for each i we have h(diam(Ai)) < ε,

which implies diam(Ai) < δ since ε < h(δ) and h is increasing. Thus we

have Hhδ (A) < ε. Letting ε→ 0 proves the claim.
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Given a dimension function h, we say it is a zero dimension function or

zero dimensional if for every ε > 0 there is cε > 0 such that h(t) > cεt
ε for

0 < t < 1. For example, the following function

h(x) :=


0, if x = 0

− 1
lnx , if 0 < x ≤ 1

e

1, if x > 1
e

(2.5)

is a zero dimension function.

The following proposition explains the term “zero dimension function”.

Proposition 2.2.9. Let h be a zero dimension function and A ⊆ Rn be

such that Hh∞(A) = 0. Then dimH(A) = 0.

Proof. By Lemma 2.2.8 we have Hhδ (A) = 0 for every 0 < δ ≤ ∞. Let s > 0

be arbitrarily small. Since h is zero dimensional, there is c > 0 such that

h(t) > cst
s for any 0 < t < 1. Thus for every 0 < δ < 1,

Hsδ(A) = inf

{∑
i

(diam(Bi))
s :
⋃
i

Bi ⊇ A,diam(Bi) < δ

}

≤ inf

{∑
i

c−1s h(diam(Bi)) :
⋃
i

Bi ⊇ A,diam(Bi) < δ

}
= c−1s Hhδ (A) = 0.

Hence Hs(A) = 0 for any s > 0, and thus dimH(A) = 0.

2.2.4 Frostman’s Lemma and energy integrals

Following Section 2.5 of [57], we give a few more sophisticated charac-

terisations of the Hausdorff dimensions for subsets of Rn. We start with the

following standard notation.

Given a Borel measure µ on Rn, we define the support of µ, denoted

supp(µ), to be the intersection of all closed sets K for which µ(Kc) = 0.

Also, for any set A ⊆ Rn, we say µ is supported on A if supp(µ) ⊆ A.

We now state Frostman’s lemma.
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Theorem 2.2.10 (Theorem 2.7 of [57]). Let A ⊆ Rn be a Borel set. Then

dimH(A) is equal to the supremum of the real numbers s for which there

exists a Borel probability measure µ supported on A and a constant C > 0

such that

µ(Bn(x, r)) ≤ Crs, for all r > 0, x ∈ A. (2.6)

Definition 2.2.11 (Energy integral). Let µ be a positive Borel measure in

Rn. The s-energy of µ, denoted Is(µ), is defined by

Is(µ) =

∫∫
|x− y|−sdµ(x)dµ(y). (2.7)

Using this, we obtain another characterisation of the Hausdorff dimen-

sion:

Theorem 2.2.12 (Theorem 2.8 of [57]). Let A ⊆ Rn be a Borel set. Then

dimH(A) is equal to the supremum of all real numbers s for which there

exists a Borel probability measure µ supported on A such that Is(µ) <∞.

Using the Fourier transform, we can give yet another characterisation of

the Hausdorff dimension.

Definition 2.2.13. If µ is a finite Borel measure, then the Fourier trans-

form of µ, denoted µ̂, is a function defined on Rn by

µ̂(ξ) =

∫
Rn
e−2πix·ξdµ(x).

Theorem 2.2.14 (Theorem 3.10 of [57]). If 0 < s < n and µ is a positive

Borel measure on Rn, then

Is(µ) = cs,n

∫
Rn
|µ̂(ξ)|2|ξ|s−ndξ <∞, (2.8)

where c(s, n) ∈ (0,∞) is a constant.

Combining with Theorem 2.2.12, we see that for a Borel A ⊆ Rn, its

Hausdorff dimension is equal to the supremum of all real numbers 0 < s < n
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for which there exists a Borel probability measure µ supported on A such

that ∫
Rn
|µ̂(ξ)|2|ξ|s−ndξ <∞.

2.3 Other dimensions

Apart from the Hausdorff dimension, there are also a few other notions

of dimensions.

2.3.1 Fourier dimension

In connection to the last section, we first define the Fourier dimension.

Definition 2.3.1 (Fourier dimension). Let A ⊆ Rn be a Borel set. Then

the Fourier dimension of A, denoted dimF (A), is defined by the supremum

of the real numbers 0 < s < n for which there exists a Borel probability

measure µ supported on A and a constant C > 0 such that

|µ̂(ξ)| ≤ C(1 + |ξ|)−
s
2 for all ξ 6= 0. (2.9)

Combining Theorems 2.2.12, 2.2.14 and Definition 2.3.1, we have

dimF (A) ≤ dimH(A) (2.10)

for any A. Strict inequality may occur, as in the case of the standard

middle-third Cantor set C which has dimH(C) = ln 2/ ln 3, while it follows

from Theorem 8.1 of [57] that dimF (C) = 0.

In some cases, the Fourier dimension is also countably stable as in Propo-

sition 2.2.5; see [17], which in particular proves the following finite stability

of the Fourier dimension:

Proposition 2.3.2. Let A, B be compact disjoint sets. Then dimF (A∪B) =

max{dimF (A),dimF (B)}.

A Borel set A ⊆ Rn is called a Salem set if dimF (A) = dimH(A). Since

dimF (A) ≤ dimH(A), we see that A is Salem if dimH(A) = 0. The stan-
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dard middle-third Cantor set C is not Salem. However, it is surprisingly

tricky to construct a Salem set with positive Hausdorff dimension, and most

constructions have to go through probabilistic arguments (see [62] by Salem

himself and [40, 41] by Kahane), which in particular implies the following

theorem.

Theorem 2.3.3. For every 0 ≤ s ≤ n, there exists a Salem set A ⊆ Rn of

Hausdorff dimension s.

For deterministic constructions of a Salem set, the reader may refer to

[35, 46].

Another interesting example is concerned with lower dimensional mani-

folds in Rn. It can be shown (see p. 348 and 350 of [65]) that any compact

hypersurface with nonzero Gaussian curvature is Salem. On the contrary, if

1 ≤ k ≤ n − 1, then a k-plane in Rn will always have Fourier dimension 0

and thus is not Salem.

We end this subsection with a trivial observation that any set A in Rn

containing an interior point is Salem. Indeed, dimH(A) = n, and so it

suffices to establish dimF (A) = n. But we may just take a nonnegative

bump function φ ∈ C∞c (Rn) supported on an open ball contained in A with

mass 1, and let µ = φ(x)dx. Since φ̂ is Schwartz, we have dimF (A) = n.

2.3.2 Minkowski dimension

We now introduce Minkowski dimensions, which are defined for bounded

sets.

Definition 2.3.4. Let A ⊆ Rn be a bounded set. For δ > 0, let Nδ(A) be

the smallest number of open balls of radius δ so that their union covers A.

We then define the upper and lower Minkowski dimensions as follows:

dimB(A) = lim
δ→0

lnNδ(A)

− ln δ
, (2.11)

dimB(A) = lim
δ→0

lnNδ(A)

− ln δ
, (2.12)
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respectively. If dimB(A) = dimB(A), then we define the Minkowski dimen-

sion of A as

dimB(A) = lim
δ→0

lnNδ(A)

− ln δ
. (2.13)

The subscript B here stands for the box-counting dimension, another

name of the Minkowski dimension. There are also many other equivalent

formulations; see Section 2.1 of [25]. The following proposition is very useful

in computations.

Proposition 2.3.5 (Proposition 2.4 of [25]). For A ⊆ Rn and δ > 0, let

Nδ(A) denote the δ-neighbourhood of A in Rn, i.e.

Nδ(A) := {x ∈ R : dist(x,A) < δ}. (2.14)

Then we have the following

dimB(A) = n− lim
δ→0

− lnLn(Nδ(A))

− ln δ
, (2.15)

dimB(A) = n− lim
δ→0

− lnLn(Nδ(A))

− ln δ
. (2.16)

As a result, we have

dimB(A) = n− lim
δ→0

− lnLn(Nδ(A))

− ln δ
(2.17)

whenever the limit on the right hand side exists.

We observe that the Minkowski dimension is defined in an easier way

than the Hausdorff dimension, and it seems to be more intuitive. Thus, one

may ask why we prefer the Hausdorff dimension. One reason is to avoid the

case when upper and lower Minkowski dimensions do not agree. But more

importantly, Minkowski dimension is not countably stable as in Proposition

2.2.5. Indeed, it is not necessarily true that dimB(∪iAi) = supi dimB(Ai),

as can be seen from the simple example where A = {ai} is an enumeration

of all rational numbers in [0, 1] and Ai = {ai}. In this example, it is easy

to see that dimB(A) = 1 because of the density of rational numbers, while
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dimB(Ai) = 0 for each i. Nevertheless, the upper Minkowski dimension is

finitely stable, that is, the relation in Proposition 2.2.5 holds when the index

set is finite.

Proposition 2.3.6. For bounded sets A,B ⊆ Rn, we have

dimB(A ∪B) = max{dimB(A),dimB(B)}.

If dist(A,B) > 0, then we also have

dimB(A ∪B) = max{dimB(A),dimB(B)}.

Proof. The first result follows from the observation that

max{Nδ(A), Nδ(B)} ≤ Nδ(A ∪B) ≤ Nδ(A) +Nδ(B).

For the second result, note that for δ small, the second inequality above

becomes an equality by the positive separation of A,B.

From the definition of the upper and lower Minkowski dimensions, we

have the following relation.

Proposition 2.3.7. Let A ⊆ Rn be bounded. Then

dimH(A) ≤ dimB(A) ≤ dimB(A) ≤ n. (2.18)

Proof. The second inequality is trivial. The last inequality can be proved in

exactly the same way as in the proof of Part 3 of Theorem 2.2.4. It remains

to prove the first inequality.

Let s = dimB(A). Let ε > 0. We will show that Hs+ε(A) = 0. Let

δ > 0, and let Ui, 1 ≤ i ≤ j be a cover of A with open balls of diameter

r < δ, such that j = Nr(A). Then by definition, we have

Hs+εδ (A) ≤ Nr(A)rs+ε,
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for all r < δ. Since s = dimB(A), there is a sequence δ ≥ rk ↘ 0 such that

lnNrk(A)

− ln rk
≤ s+

ε

2
.

Combining the last two inequalities shows that

Hs+εδ (A) ≤ r
ε
2
k .

Letting k → ∞, we have Hs+εδ (A) = 0. Letting δ → 0, we have Hs+ε(A) =

0.

Unlike the Hausdorff dimension, a countable set may have either zero

or positive Minkowski dimension. The set given by the geometric sequence

{rn : n ≥ 1} where |r| < 1 has zero Minkowski dimension, but it is easy to

see that A := Q ∩ [0, 1] has Minkowski dimension 1. It is also possible to

have a sequence with Minkowksi dimension strictly between 0 and 1, as can

be seen from the example dimB({n−p : n ≥ 1}) = (p + 1)−1 for any p > 0.

We give a proof of the last assertion.

Proposition 2.3.8. Let A = {n−p : n ≥ 1}. Then dimB(A) = (p+ 1)−1.

Proof. Using Proposition 2.3.5, it suffices to show that

lim
δ→0

− lnL1(Nδ(A))

− ln δ
=

p

p+ 1
.

Let 0 < δ ≤ (1− 2−p)/2. Since the sequence dk := k−p − (k + 1)−p, k ≥ 1 is

also strictly decreasing, there is a unique k ≥ 2 such that dk < 2δ ≤ dk−1.

Thus Nδ(A) can be expressed as

Nδ(A) = (−δ, k−p + δ) ∪

(
k−1⋃
n=1

(n−p − δ, n−p + δ)

)
,

which has measure k−p + 2kδ. Using the mean value theorem, we see that
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δ ∼ k−p−1. Letting δ → 0 shows that

lim
δ→0

− lnL1(Nδ(A))

− ln δ
=

p

p+ 1
.

Remark. In the proof, we see that Nδ(A) is comprised of two parts: a

single interval on the left and a disjoint union of intervals of the same length

on the right. A similar structure will be useful in Chapter 4 when we prove

Theorem 1.1 of [72].

Lastly, for the standard middle-third Cantor set C, we have dimB(C) =

ln 2/ ln 3, the same as dimH(C). The proof is simple (see Example 2.2 of

[25]).

We remark that there are other notions of dimension, such as the topo-

logical dimension, the Assouad dimension (see Part I of [61], the modified

box-counting dimension (see Section 2.3 of [25]) and the packing dimension

(see Section 3.5 of [25]).
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Chapter 3

Euclidean Configurations

Given two sets A,B ⊆ Rn, we say that A contains a similar copy of B if

there exist δ 6= 0 and t ∈ Rn such that t+ δB ⊆ A. Intuitively speaking, we

expect large sets to contain many configurations (patterns) and small sets to

avoid many patterns. In the last chapter, we defined various notions of size;

those notions are not all compatible, as it can often happen that sets which

are large in one sense are small in another. Depending on which definition

of size we choose in the last chapter, many historical results can be roughly

classified into one of the four following directions.

(i) If a set is large, then it should contain many patterns.

(ii) It is possible to construct certain large sets that avoid many prescribed

patterns.

(iii) If a set contains many patterns, then this set must be large.

(iv) It is possible to construct certain small sets that contain many pre-

scribed patterns.

Some of them seem to be contradictory with others, but they are all true

once we specify in what sense the set is large and how many prescribed

patterns it is to contain. We will elaborate each of the rough statements

above through a detailed literature review. Proofs of some facts of moderate

length are postponed to the last section of this chapter.

3.1 Large sets tend to contain many patterns

We first discuss direction (i).
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3.1.1 A few known results

We say a configuration B ⊆ Rn is universal if every set of positive

Lebesgue measure contains a similar copy of B. As pointed out in the

introduction, the Lebesgue density theorem shows that all finite sets are

universal.

If we suitably weaken the assumption of the Lebesgue density Theo-

rem, we may still obtain interesting conclusions. For example,  Laba and

Pramanik [51] showed that if a compact set in R satisfies a certain Frost-

man’s condition as in (2.6) and a Fourier decay condition as in (2.9), then

A must contain a 3-term arithmetic progression, that is, a similar copy of

{−1, 0, 1}. We also refer the reader to other results in this direction, in-

cluding [1, 32, 38, 39, 54], all in higher dimensions. For example, in [38] it

is proved that when n ≥ 4, if a compact set A ⊆ Rn has sufficiently large

Hausdorff dimension, then it contains vertices of an equilateral triangle, that

is, there are distinct x, y, z ∈ A such that |x− y| = |x− z| = |y − z|.

3.1.2 Distance set conjectures

For A ⊆ Rn, we consider its difference set defined by A − A := {a − b :

a, b ∈ A} ⊆ Rn. We also consider its distance set ∆(A) := {|a − b| : a, b ∈
A} ⊆ [0,∞).

The Erdős distance set conjecture is about the minimum cardinality of

∆(A) given a finite set A ⊆ Rn. In symbols, this conjecture studies the

function f : N→ N defined by

f(m) := min{#∆(A) : #A = m}.

In Erdős’ paper [19], he proved for n = 2 the easier upper bound f(m) .

m(logm)−1/2 and conjectured this should also be the sharp lower bound (up

to an absolute constant). This is still an open problem, and the best bound

is currently due to Guth and Katz [34], who proved that f(m) & m/ logm.

See also [69] for a survey which also discusses an intimately related unsolved

problem, namely, the Erdős unit distance problem.
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In the continuous setting, a classical result by Steinhaus [67] states that if

L1(A) > 0, then A−A and hence ∆(A) contains an open ball centred at the

origin. But if we weaken the assumption to dimH(A) > α where α ∈ [0, n),

then things get trickier. Falconer [24] proved that for n ≥ 2, if dimH(A) >

(n + 1)/2, then ∆(A) has positive Lebesgue measure. Based on this, he

formulated the long-standing conjecture that for n ≥ 2, if dimH(A) > n/2,

then ∆(A) has positive Lebesgue measure. The best result for general n is

due to Erdoğan [18], who proved that if n ≥ 3 and A ⊆ Rn is a compact set

with dimH(A) > n/2 + 1/3, then L1(∆(A)) > 0. In the case n = 2, the best

bound is due to Guth, Iosevich, Ou and Wang [33], who proved that the

condition dimH(A) > 4/3 is sufficient. See also [29–32, 38, 54] for related

results.

3.2 Large sets avoiding prescribed patterns

Now we elaborate direction (ii).

3.2.1 A few known results

In view of the Lebesgue density Theorem, one naturally asks if we can

weaken the assumption while still arriving at the same conclusion. For

example, on R, from 2 of Theorem 2.2.4, we know that L1(A) > 0 implies

dimH(A) = 1. Hence, we may ask the following question: if A ⊆ R with

dimH(A) = 1 and B ⊆ R is finite, must A contain a similar copy of B?

Unfortunately, the answer is negative. In fact, Keleti [47] proved that if

B ⊆ R is a set with 3 elements, then there exists a compact set A ⊆ R of

Hausdorff dimension 1 that does not contain a similar copy of B.

Moreover, if we make the modest restriction to 3-term arithmetic pro-

gressions, namely, B = {−1, 0, 1}, then we have an even stronger result by

Shmerkin [64], who proved the existence of a compact set A ⊆ R of Fourier

dimension 1 that does not contain a similar copy of B. (Thus A is Salem

by (2.10).)

Recently, Liang and Pramanik [53] generalised the above result by prov-
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ing that there is a large family of systems of linear equations, so that for any

such a system, there exists a compact set A ⊆ R of Fourier dimension 1 that

avoids all solutions to this system. We remark that it is still open whether

given any B ⊆ R of 3 elements, there is a set A of Fourier dimension 1 that

avoids any similar copy of B.

In higher dimensions, Fraser and Pramanik [26] showed that there is

a much larger family of systems of equations, so that for any such a sys-

tem, there exists a set with full Minkowski dimension and large Hausdorff

dimension that avoids all solutions to this system.

3.2.2 Erdős similarity conjecture

Apart from the above positive results, there is a still longstanding con-

jecture in this direction, namely, the Erdős similarity conjecture, raised in

[20].

We return to the Lebesgue density Theorem again. Another attempt

to generalise this could be to retain the assumption to see if a stronger

conclusion can be drawn. For example, we may ask the following question:

if A ⊆ R is such that L1(A) > 0 and B ⊆ R is infinite, must A contain a

similar copy of B? Unfortunately, the answer is negative again, even for B

being a real sequence strictly decreasing to 0 (which we will refer to as a

zero sequence from now on), as Eigen [16] and Falconer [23] independently

proved that any zero sequence {xn}∞n=1 such that lim infn→∞ xn+1/xn = 1

is not universal. Examples include sequences n−p for any 0 < p < ∞ and

R−n
p

where R > 1, 0 < p < 1. Inspired by this, we may now state the

famous Erdős similarity conjecture.

Conjecture 3.2.1 (Erdős). There is no infinite universal set in Rn for any

n ≥ 1.

We remark here that the hardest case is when n = 1, by the following

simple proposition.

Proposition 3.2.2. If there is an infinite universal set in Rn for some

n ≥ 2, then there is an infinite universal set in R.
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Proof. Suppose there is an infinite universal set B in Rn. Then there is

at least one unit vector u ⊆ Rn such that π(B) ⊆ R is infinite, where

π(b) := b · u. We claim that π(B) is universal. Indeed, let A ⊆ R be such

that L1(A) > 0. Then Ln(π−1(A)) > 0. Since B is universal, there is δ 6= 0

and t ∈ Rn such that t+ δB ⊆ π−1(A). Applying π on both sides gives

π(t) + δπ(B) ⊆ π(π−1(A)) = A,

and thus π(B) is universal.

We list some other known partial results towards this conjecture. Bour-

gain [3] proved that if B1, B2, B3 ⊆ R are infinite sets, then their Minkowski

sum B1 +B2 +B3 is not universal. See also [32] for a generalisation of this

result. In terms of zero sequences, one of the best results up to now is due

to Kolountzakis [48], which generalises Falconer’s classical result [23]. See

also [49] for a measure-theoretic result, and [68] gives a nice survey of partial

results in this field.

However, combining all the partial results above, it is still open whether

B = {2−n : n ≥ 1} is universal.

We also remark that if A is a set with full measure, then A indeed

contains a similar copy of any zero sequence. In fact, more is true.

Theorem 3.2.3. If A ⊆ [0, 1] has measure 1 and B ⊆ (0,∞) is a bounded

countable set, then there is δ > 0 such that δB ⊆ A.

This result actually aligns with direction (i). It shows that the candidate

positive measure sets used to attack the Erdős similarity conjecture cannot

have full measure in any interval.

Proof. Write B = {αm}∞m=1. The conclusion is equivalent to the statement

that
⋂∞
m=1 α

−1
m A ∩ (0,∞) 6= ∅. Since α−1m A ⊆ [0,∞), it suffices to prove

that
⋂∞
m=1 α

−1
m A has positive Lebesgue measure.

Let b = supB. Then for any m, we have α−1m A ∩ [0, α−1m ] differs from

[0, α−1m ] by a set of measure 0. Thus
⋂∞
m=1 α

−1
m A differs from

⋂∞
m=1[0, α

−1
m ]
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by a set of measure 0, by of the following general set relation:(⋂
m

(Am tNm)

)
∩

(⋃
m

Acm

)
⊆
⋃
m

Nm,

where t denotes disjoint union. But
⋂∞
m=1[0, α

−1
m ] is just [0, b−1] or [0, b−1),

which has positive Lebesgue measure. Thus
⋂∞
m=1 α

−1
m A also has positive

Lebesgue measure, and the result follows.

To conclude, the results in direction (ii) do not contradict those in direc-

tion (i). The idea is that if the assumptions in the theorems in direction (i)

fail, then one may construct specific examples to turn this into a negative

result as in direction (ii). Combining the two sides, we see that the results

are the sharpest if there is a single threshold on the largeness of sets, such

that if a set is larger than that, then it must contain specific configurations;

meanwhile, there exist corresponding counterexamples of sets just barely

smaller than the threshold but do not contain prescribed patterns.

3.3 Sets with many patterns tend to be large

We now come to direction (iii).

The famous longstanding Kakeya conjecture is in this direction. We say

a compact set E ⊆ Rn is a Kakeya (or Besicovitch) set if it contains a unit

line segment in every direction. That is, for every u ∈ Sn−1, there is some

x ∈ Rn such that x+ tu ∈ E for every t ∈ [0, 1]. It was shown by Besicovitch

[2] that a Kakeya set could have Lebesgue measure 0.

However, is it possible that dimH(E) < n? In the case n = 1 this answer

is trivially negative. However, for n ≥ 2, this becomes a very interesting

problem. Davies [11] proved that we must have dimH(E) = 2 for Kakeya

sets E in R2, but the question remains open in dimensions n ≥ 3. The best

bound so far for all n 6= 3, 4, 6 is due to Hickman, Rogers and Zhang [36]

and Zahl [76], who independently proved that for Kakeya sets E ⊆ Rn, we
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have

dimH(E) ≥ max
2≤k≤n

min

{
n− k + 2,

n2 + k2 + n− k
2n

}
.

The best lower bounds for n = 3, 4, 6 are respectively 5/2 + ε due to Katz

and Zahl [44], roughly 3.059 due to Katz and Zahl [45] and 4 due Wolff [70].

See also [4, 42, 43] and Section 23 of [57] for results that used to be optimal.

Note that Theorem 1.1.1 is also in this direction.

3.4 Small sets containing many patterns

We finally come to direction (iv). In the discussion of direction (ii), we

proved that even dimF (A) = 1 does not generally guarantee the existence

of a 3 term arithmetic progression in A. However, does there exist some

particular set A with L1(A) = 0 that contains many prescribed patterns?

The answer is yes, and we can do much better.

An early result by Erdős and Kakutani [21] says that there exists a

perfect set A ⊆ [0, 1] with L1(A) = 0 and dimH(A) = 1 such that it contains

a similar copy of every finite set. More surprisingly, one can construct

even smaller sets that contain a copy of any finite set. Máthé [55] proved

implicitly that there is a compact set A ⊆ [0, 1] with Hausdorff dimension 0

that contains a similar copy of every finite pattern.

Molter and Yavicoli proved another surprising result in [58]. This article

included many results on small sets containing patterns in Rn prescribed by

a large family of functions. In particular, they are able to construct an Fσ

set A ⊆ R with Hausdorff dimension 0 that contains a translated copy of

any countable set. A proof of this special case can be found in the appendix

of [72].

This seems to be a much stronger result than [55], but it should be noted

the above set A is not closed. Indeed, it cannot be closed, by the following

simple proposition.

Proposition 3.4.1. Suppose A ⊆ R contains a similar copy of any bounded

sequence. Then A contains an interval. As a result, the set A mentioned

above cannot be closed.
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Proof. Let {αm} be an enumeration of all the rationals in [0, 1]. By assump-

tion, there is some t ∈ R and δ 6= 0 such that t+ δαm ∈ A for all m. Taking

closure on both sides shows that A contains an interval.

If A were closed, then A would contain a interval, a contradiction to the

fact that dimH(A) = 0.

The above example suggests the subtlety of this subject to some extent.

Indeed, in terms of dimensionality, A is extremely small as dimH(A) = 0.

However, it is quite large in the sense of topology, as it is somewhere dense.

We now take a closer look at Proposition 3.4.1. The key for this result

is that a bounded sequence may have lots of accumulation points. This

motivates the following question:

Question 3.4.2. If A ⊆ R contains a similar copy of any zero sequence,

can A be nowhere dense?

The answer is still negative, and has been spelt out in Theorem 1.1.1

above. On the other hand, if we restrict the rate of decay of the zero

sequence, then we have Theorem 1.2 of [72], which aligns with this direction.
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Chapter 4

Proof of Theorem 1.1.1

In this chapter we prove Theorem 1.1.1.

4.1 Preliminaries of the proof

4.1.1 A preliminary reduction

From the statement of Theorem 1.1.1, given any αm ↘ 0, there is t ∈ R
and δ 6= 0 such that t + δαm ∈ E for all m. However, δ can be either

positive or negative. In this subsection, we shall show that without loss of

generality, it suffices to prove the case when δ > 0. More precisely, we will

show that the following Proposition 4.1.1 implies Theorem 1.1.1. Once this

is established, it suffices to prove Proposition 4.1.1.

Proposition 4.1.1. Let B ⊆ R. Suppose that for every zero sequence αm

there is some t′ ∈ R and δ′ > 0 such that t′ + δ′αm ∈ E for all m. Then B

contains an interval.

Remark: To avoid excessive use of extra terminology, from now on we

will not be referring to Proposition 4.1.1 itself in the subsequent argument.

Instead, we will assume without loss of generality that δ > 0 in the assump-

tion of Theorem 1.1.1.

Proof that Proposition 4.1.1 Implies Theorem 1.1.1

Proof. Suppose, towards contradiction, that the closure of E contains no

interval, that is, E is nowhere dense. Hence −E is also nowhere dense. Let

B = E ∪ (−E). Then by Lemma 2.1.1 for n = 1, B is nowhere dense.
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We claim that B satisfies the assumptions of Proposition 4.1.1. Let

αm ↘ 0 strictly. By the assumption on E, there is δ 6= 0 and t ∈ R such

that t+ δαm ∈ E for all m. If δ > 0, then t+ δαm ∈ E ⊆ B; if δ < 0, then

−t+ (−δ)αm ∈ −E ⊆ B.

By Proposition 4.1.1, B contains an interval, which is a contradiction as

we showed above that B is nowhere dense.

4.1.2 Some notation

For our future use, it is convenient to introduce the following notation.

We also remark that since n = 1, we may spare the subscript n in the

remaining parts of this chapter.

• If I is an interval with endpoints −∞ < a < b < ∞, we define I∗ :=

[a, b). If O is a union of intervals In with endpoints −∞ < an < bn <

∞ such that In ∩ In′ = ∅ for n 6= n′, we further define O∗ :=
⋃
n I
∗
n =⋃

n[an, bn).

• For any set S ⊆ R and any r > 0, we write B−(S, r) for the left

r-neighbourhood of the set S: B−(S, r) := {x− t : x ∈ S, 0 ≤ t < r}.

We list here some elementary properties we shall use.

Proposition 4.1.2. (i) If S = (a, b), then for each r > 0, B−(S, r) =

(a− r, b). In particular, B−(S, r) ⊇ [a, b) = S∗.

(ii) For any index set I and any r > 0,
⋃
i∈I B−(Si, r) = B−(

⋃
i∈I Si, r).

(iii) If S is a (countable or finite) union of bounded open intervals with

disjoint closures, then for any r > 0, B−(S, r) ⊇ S∗.

(iv) If S2 ⊇ S1, then for any r > 0, B−(S2, r) ⊇ B−(S1, r).

(v) If r < s, then for any set S, B−(S, r) ⊆ B−(S, s).

Proof. (i) Let S = (a, b) and r > 0. If y ∈ B−(S, r), then there is

x ∈ S = (a, b) and 0 ≤ t < r such that y = x− t, so y ∈ (a− t, b− t) ⊆
(a− r, b− 0) = (a− r, b). Hence B−(S, r) ⊆ (a− r, b).
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On the other hand, if y ∈ (a− r, b), then we have two cases:

If a < y < b, then letting x = y ∈ (a, b) and t = 0 shows that

y ∈ B−(S, r).

If a − r < y ≤ a, then we let δ = a − y ∈ [0, r), and let 0 < ε <

min{b − a, r − δ}. Then we let x = a + ε ∈ (a, b) = S and t = x − y.

Note that x−y > a−y ≥ 0 and x−y = a+ε−y = δ+ε < δ+r−δ = r.

Thus t ∈ [0, r) and so y = x− t ∈ B−(S, r).

Thus B−(S, r) ⊇ (a−r, b). Combining two arguments gives B−(S, r) =

(a− r, b).

Since a− r < a for all r > 0, we have B−(S, r) = (a− r, b) ⊇ [a, b).

(ii) Let {Si}i∈I and r > 0. If y ∈
⋃
i∈I B−(Si, r), then there is i ∈ I

such that y ∈ B−(Si, r), that is, there is x ∈ Si and 0 ≤ t < r

such that y = x − t. But Si ⊆
⋃
i∈I Si, so x ∈

⋃
i∈I Si, and thus

y ∈ B−(
⋃
i∈I Si, r). Hence

⋃
i∈I B−(Si, r) ⊆ B−(

⋃
i∈I Si, r).

On the other hand, if y ∈ B−(
⋃
i∈I Si, r), then there is x ∈

⋃
i∈I Si and

0 ≤ t < r such that y = x − t. Since x ∈
⋃
i∈I Si, there is i ∈ I such

that x ∈ Si. Hence y = x − t ∈ B−(Si, r) ⊆
⋃
i∈I B−(Si, r). Hence⋃

i∈I B−(Si, r) ⊇ B−(
⋃
i∈I Si, r).

(iii) Write S =
⋃
n(an, bn). Then for each r > 0,

B−(S, r)
(ii)
=
⋃
n

B−((an, bn), r)
(i)
=
⋃
n

(an − r, bn)
(i)

⊇
⋃
n

[an, bn) = S∗.

(iv) Since S2 ⊇ S1 we can write S2 = (S2\S1) ∪ S1. By (ii) we have

B−(S2, r) = B−(S2\S1, r) ∪B−(S1, r) ⊇ B−(S1, r).

(v) Let r < s, and let y ∈ B−(S, r). Then there is x ∈ S and 0 ≤ t < r

such that y = x − t. But then 0 ≤ t < s, so y ∈ B−(S, s). Hence

B−(S, r) ⊆ B−(S, s).
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4.2 A Cantor-like construction

The main idea behind the proof of Theorem 1.1.1 is by contradiction.

To achieve the contradiction, we will assume that E is nowhere dense, and

construct a Cantor-like set containing E. At each level of construction of the

Cantor set, we are removing intervals with specific lengths from the middle

thirds of the remaining intervals. We then construct a slowly decreasing se-

quence {αm}, with rate of decrease depending on the lengths of the removed

intervals, such that E contains no similar copy of {αm}. This construction

will be the key to our proof of Theorem 1.1.1.

We will use the following standard notations and definitions:

4.2.1 The main construction

One of the main steps in the proof of Theorem 1.1.1 is the following

Cantor-type construction.

Proposition 4.2.1. Let A ⊆ [0, 1] be nowhere dense. Then there is a

countable collection of open sets {On : n ≥ 1} and a countable collection

of closed intervals {Kn,j : n ≥ 1, 1 ≤ j ≤ 2n}, with the following properties:

(a) A ⊆ [0, 1]\(
⋃n
i=1Oi) for each n ≥ 1.

(b) On ∩On′ = ∅ for all n 6= n′.

(c) Each On is of the form

On =
2n−1⋃
j=1

In,j , (4.1)

where for each n, {In,j : 1 ≤ j ≤ 2n−1} is a collection of open intervals

of the same length (denoted by ln) with disjoint closures. Without loss

of generality, ln can be chosen to be decreasing to 0 such that l−1n ∈ N.

(d) For each n, [0, 1]\
⋃n
i=1Oi is a disjoint union of 2n closed intervals,

which we denote as {Kn,j : 1 ≤ j ≤ 2n} from left to right. They obey

the relation [0, 1]\
⋃n
i=1Oi =

⋃2n

j=1Kn,j, or equivalently [0, 1]\
⋃n
i=1Oi =
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⋃2n

j=1 Int(Kn,j). In addition, L1(Kn,j) < (2/3)n for each n and each

1 ≤ j ≤ 2n.

As a consequence,

A ⊆ [0, 1]\

( ∞⋃
n=1

On

)
=
∞⋂
n=1

2n⋃
j=1

Kn,j . (4.2)

Proof. We construct On inductively. In the first step, by Lemma 2.1.1 ap-

plied to A with K = [1/3, 2/3], we can find an open interval I1,1 ⊆ [1/3, 2/3]

which lies in Ac. Let the length of I1,1 be l1 (since we can always take a

shorter interval within I1,1, we may assume l−11 ∈ N), and let O1 := I1,1.

Note that [0, 1]\O1, which contains A, has 2 closed connected components,

which we denote as K1,1 and K1,2 from left to right (See Figure 4.1). By

construction, [0, 1/3] ⊆ K1,1 ⊆ [0, 2/3), so 1/3 ≤ L1(K1,1) < 2/3; similarly

we also have 1/3 ≤ L1(K1,2) < 2/3. Hence all (a)-(d) are satisfied for n = 1

((b) being null here).

0 1
3

2
3

1

K1,1

I1,1 = O1

K1,2

Figure 4.1: Removing an interval I1,1 from the middle third of [0, 1].

In general, at the end of the n-th step, we have obtained On and hence

In,j and Kn,j obeying the requirements (a)-(d). In the (n + 1)-th step, we

apply Lemma 2.1.1 to A for each 1 ≤ j ≤ 2n with I = Kn,j and find

an open sub-interval In+1,j of the closed middle third of Kn,j contained in

Ac. A priori the intervals In+1,j may have varying lengths. If l > 0 with

l−1 ∈ N and l ≤ min{ln/2,L1(In+1,1), . . . ,L1(In+1,2n)}, we replace each

In+1,j , 1 ≤ j ≤ 2n by a subinterval of length l, and we define ln+1 = l.

By a slight abuse of notation we continue to call these smallest subintervals
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In+1,j . Thus all In+1,j ’s now have the same lengths ln+1 ≤ ln/2, such that

l−1n+1 ∈ N and that ln → 0.

(Refer to Figure 4.2, which demonstrates for a fixed Kn,j two subsequent

iterations. We remark here that the two solid dots denote the trisection

points of Kn,j = [a, b]. Similarly, the four empty dots denote the trisection

points of Kn+1,2j−1 and Kn+1,2j , respectively.)

Since for each 1 ≤ j ≤ 2n, In+1,j lies in the closed middle third K̃n,j

of the closed interval Kn,j , and {Kn,j : 1 ≤ j ≤ 2n} are disjoint by (d) in

the n-th step, we see that {In+1,j : 1 ≤ j ≤ 2n} are disjoint. Furthermore,⋃2n

j=1 In+1,j is disjoint from
⋃n
i=1Oi since by the n-th step we have

n⋃
i=1

Oi = [0, 1]\
2n⋃
j=1

Int(Kn,j) ⊆ [0, 1]\
2n⋃
j=1

K̃n,j ⊆ [0, 1]\
2n⋃
j=1

In+1,j .

Let On+1 :=
⋃2n

j=1 In+1,j be the disjoint union of these open intervals, and

by disjointness we also have On+1 :=
⋃2n

j=1 In+1,j . Then we have just showed

that

On+1 ∩Oi = ∅, (4.3)

for all 1 ≤ i ≤ n.

a b

Kn+2,4j−3

In+1,2j−1

Kn+2,4j−2

In,j

Kn+2,4j−1

In+1,2j

Kn+2,4j

Kn+1,2j−1 Kn+1,2j

Figure 4.2: Two further iterations applied to Kn,j = [a, b] (trisection points
indicated).

We now proceed to verify conditions (a)-(d). We start with (a). Since

A ⊆ [0, 1]\(
⋃n
i=1Oi) by induction hypothesis, it suffices to show that

A ⊆ [0, 1]\On+1. (4.4)
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However, On+1 was chosen as the union of intervals In+1,j , all of which are

disjoint from A. Hence (4.4) follows.

We proceed to (b). In view of the induction hypothesis, this would follow

if we show that On+1 ∩ Oi = ∅ for i = 1, . . . , n. But this is (4.3) that we

have already proved.

Part (c) follows by definition of On+1 and disjointness of {In+1,j : 1 ≤
j ≤ 2n}.

For (d), since up to the n-th step we have 2n intervals Kn,j , and given

1 ≤ j ≤ 2n, each Kn,j\In,j is a union of 2 disjoint closed intervals, we see

[0, 1]\
⋃n+1
i=1 Oi is a disjoint union of 2n+1 closed intervals, which we denote

as Kn+1,j , 1 ≤ j ≤ 2n+1 from left to right.

With our choice of indices, we have Kn,j\In,j = Kn+1,2j−1 ∪ Kn+1,2j .

We write Kn,j = [a, b], In,j = (c, d), then Kn+1,2j−1 = [a, c]. Since In,j is a

subinterval of the middle third of Kn,j , we have

L1(Kn+1,2j−1) = c− a < 2

3
(b− a) =

2

3
L1(Kn,j).

By the induction hypothesis, we have L1(Kn,j) < (2/3)n, and so we have

L1(Kn+1,2j−1) < (2/3)n+1. Similarly we can show that L1(Kn+1,2j) <

(2/3)L1(Kn,j) < (2/3)n+1. As this holds for all 1 ≤ j ≤ 2n, we see that

L1(Kn+1,j) < (2/3)n+1 for all 1 ≤ j ≤ 2n+1.

Hence the induction follows. Lastly, letting n→∞ shows that

A ⊆ [0, 1]\

( ∞⋃
n=1

On

)
= [0, 1] ∩

( ∞⋂
n=1

Ocn

)

=
∞⋂
n=1

([0, 1] ∩Ocn) =
∞⋂
n=1

2n⋃
j=1

Kn,j .

The proof of Proposition 4.2.1 shows that any interval Kn,j from the n-th

step of the construction yields exactly two intervals Kn+1,2j−1 and Kn+1,2j
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at the n-th step, i.e.

Kn+1,r ⊆ Kn,j if and only if r ∈ {2j − 1.2j}.

Moreover, if Kn,j = [a, b], then a ∈ Kn+1,2j−1, b ∈ Kn+1,2j .

Each interval Kn,j generates exactly 2k descendants after k subsequent

steps. The rightmost of these intervals is Kn+k,2kj . For fixed n and j, as

k increases, the closed and bounded intervals {Kn+k,2kj : k ≥ 1} form a

decreasing nested sequence such that each Kn+k,2kj , k ≥ 1 contains the

right endpoint of Kn,j , namely, supKn,j . Additionally, in view of (d), we

have L1(Kn+k,2kj) < (2/3)n+k → 0. Hence the nested interval property

leads to the following lemma:

Lemma 4.2.2. Fix n ≥ 1, 1 ≤ j ≤ 2n. Then

sup
k≥1

(inf Kn+k,2kj) = lim
k→∞

(inf Kn+k,2kj) = supKn,j .

4.2.2 Distribution of the deleted open sets

The following set relation will be used in the last part of the proof of

Lemma 4.3.2 which leads to the main theorem. Recall the left neighbour-

hood B− and the I∗ notation introduced in Section 4.1.2.

Proposition 4.2.3. The sets {On : n ≥ 1} constructed in the proof of

Proposition 4.2.1 obey the following property: for N ≥ 1,

∞⋃
n=N+1

B−

(
On,

(
2

3

)n)
⊇ [0, 1)\

(
N⋃
n=1

O∗n

)
=

2N⋃
j=1

K∗N,j . (4.5)

In other words, the intervals {In,j} are densely distributed; if some x is not

covered by any of the O∗n’s up to stage N , then there is some n ≥ N + 1 and

some j so that x will be within the left (2/3)n-neighbourhood of In,j.

The proof of this proposition is based on the following simple observation.
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Lemma 4.2.4. Let K be a closed interval, and let K̃ denote its closed

middle third. Then for each open interval I ⊆ K̃, we have

B−
(
I, 23L

1(K)
)
⊇ [inf K, sup I).

(The illustration of this lemma and the proof is shown in Figure 4.3.)

Proof. Let K = [a, b] and I = (c, d). By (i) of Proposition 4.1.2, we have

B−
(
I, 23L

1(K)
)

=
(
c− 2

3L
1(K), d

)
.

Since I ⊆ K̃, we have c < a+ 2(b− a)/3. Hence

c− 2
3L

1(K) < a+ 2
3(b− a)− 2

3(b− a) = a.

Thus we have B−
(
I, 23L

1(K)
)
⊇ [a, d) = [inf K, sup I).

a a+ b−a
3

c d a+ 2(b−a)
3

b

K

K̃

I

B−
(
I, 23L

1(K)
)

Figure 4.3: Illustration of Lemma 4.2.4, with [a, d) = [inf K, sup I) shaded

Now we can give a proof of Proposition 4.2.3.

Proof. Fix N . Recall that (d) of Proposition 4.2.1 gives that for each N ,

[0, 1)\
(⋃N

n=1On

)
=
⋃2N

j=1KN,j . Since {KN,j : 1 ≤ j ≤ 2N} are disjoint,

using our definition of I∗ for each interval I introduced above, we also have

[0, 1)\
(⋃N

n=1O
∗
n

)
=
⋃2N

j=1K
∗
N,j .
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Fix N, j and consider a single KN,j (See Figure 4.2 again). For k ≥ 1,

since the middle third of KN+k−1,2k−1j contains IN+k,2k−1j , by Lemma 4.2.4

applied to KN+k−1,2k−1j , we have

B−
(
IN+k,2k−1j ,

2
3L

1(KN+k−1,2k−1j)
)
⊇ [inf KN+k−1,2k−1j , sup IN+k,2k−1j).

(4.6)

Again, since IN+k,2k−1j is deleted from KN+k−1,2k−1j whose “child” on the

right is KN+k,2kj , we have

sup IN+k,2k−1j = inf KN+k,2kj . (4.7)

Taking the union over k ≥ 1 on both sides in (4.6), we have

∞⋃
k=1

B−

(
IN+k,2k−1j ,

2

3
L1(KN+k−1,2k−1j)

)

⊇
∞⋃
k=1

[inf KN+k−1,2k−1j , sup IN+k,2k−1j)

(by (4.7)) =

∞⋃
k=1

[inf KN+k−1,2k−1j , inf KN+k,2kj).

We observe that for each k, the k-th interval above is adjacent to the (k+1)-

th one. As a result, the union is a single interval given by

[inf KN,j , sup
k≥1

(inf KN+k,2kj)).

But by Lemma 4.2.2, supk≥1(inf KN+k,2kj) = supKN,j , so

[inf KN,j , sup
k≥1

(inf KN+k,2kj)) = [inf KN,j , supKN,j) = K∗N,j .

What we have just shown is then

∞⋃
k=1

B−

(
IN+k,2k−1j ,

2

3
L1(KN+k−1,2k−1j)

)
⊇ K∗N,j . (4.8)
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Thus the left hand side of (4.5) is equal to:

∞⋃
n=N+1

B−

(
On,

(
2

3

)n)

=
∞⋃
k=1

B−

(
ON+k,

(
2

3

)N+k
)

(by (c) of Prop. 4.2.1) =
∞⋃
k=1

B−

2N+k−1⋃
l=1

IN+k,l,

(
2

3

)N+k


(by (iv) of Prop. 4.1.2) ⊇
∞⋃
k=1

B−

 2N⋃
j=1

IN+k,2k−1j ,

(
2

3

)N+k


(by (ii) of Prop. 4.1.2) =
2N⋃
j=1

∞⋃
k=1

B−

(
IN+k,2k−1j ,

(
2

3

)N+k
)

⊇
2N⋃
j=1

∞⋃
k=1

B−

(
IN+k,2k−1j ,

2

3
L1(KN+k−1,2k−1j)

)

(by (4.8)) ⊇
2N⋃
j=1

K∗N,j ,

where in the second to last line we have used (d) of Proposition 4.2.1 and

(v) of Proposition 4.1.2.

4.3 Proof of Theorem 1.1.1

We will prove Theorem 1.1.1 by contradiction. Suppose E is nowhere

dense. For k ∈ Z, write

Ek = E ∩ [k, k + 1). (4.9)

Then for each k ∈ Z, Ek − k ⊆ [0, 1] is nowhere dense, so we can use

Proposition 4.2.1 with A = Ek − k ⊆ [0, 1] to find O
(k)
n ⊆ [k, k + 1] and

I
(k)
n,j ⊆ [k, k + 1] with lengths l

(k)
n as specified by (c) of Proposition 4.2.1.
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4.3.1 Constructing a slowly decreasing sequence {αm}

With the countable collection of sequences {l(k)n }∞n=1 indexed by k, we are

going to pick an extremely slowly decreasing sequence αm ↘ 0 depending

on {l(k)n }, such that E does not contain any similar copy of {αm}.
Note that for each k, {l(k)n } is a sequence in n that decreases to 0, but

the rate may vary for different k. By the following lemma, we are going to

construct a strictly decreasing sequence {µn} which decreases more rapidly

than {l(k)n } for any k.

Lemma 4.3.1. For each k ∈ Z, let {l(k)n }∞n=1 with (l
(k)
n )−1 ∈ N be strictly

decreasing to 0. Then there is a sequence {µn} with µ−1n ∈ N which also

decreases strictly to 0, such that for any k ∈ Z and any n ≥ |k| we have

µn ≤ l(k)n .

Proof. Let µn = min{l(k)n : |k| ≤ n}. Then µn > 0 for all n since l
(k)
n > 0 for

all k and n. Also, µ−1n ∈ N.

We prove that {µn} is strictly decreasing. Indeed, let n ≥ 2, then

µn = min{l(k)n : |k| ≤ n}

≤ min{l(k)n : |k| ≤ n− 1}

< min{l(k)n−1 : |k| ≤ n− 1} = µn−1,

where the strict inequality follows since for each k, {l(k)n } is strictly decreas-

ing with respect to n. Lastly, fix k ≥ 1. By definition, if n ≥ |k|, then

µn = min{l(k)n : |k| ≤ n} ≤ l(k)n .

Now we start to construct {αm}. We set N0 := 0 and Nn := µ−1n +Nn−1

for n ≥ 1, so Nn ∈ N and increases strictly to ∞.

We then define {αm}∞m=1 as follows:

αm =
1

n
−
(

1

n
− 1

n+ 1

)
m−Nn−1 − 1

Nn −Nn−1
, m = Nn−1 + 1, . . . , Nn. (4.10)
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That is, we set

α1 = αN0+1 = 1, αN1+1 =
1

2
, αN2+1 =

1

3
, . . . αNn+1 =

1

n+ 1
, . . . ,

(4.11)

and the choice of αm for intermediate values of m is made by linearly

interpolating between the two closest values, namely, Nn−1+1 < m < Nn+1.

Thus

αm − αm+1 =
1

n(n+ 1)(Nn −Nn−1)
, Nn−1 + 1 ≤ m ≤ Nn.

Since Nn − Nn−1 = µ−1n is increasing, it follows that αm − αm+1 is

decreasing. Since αm − αm+1 > 0, we see that {αm} is strictly decreasing.

Refer to Figure 4.3.1, which shows the sequence in the case N1 = 4 and

N2 = 8. For example, αm decreases from 1 to 1/2 in N1 = 4 steps of equal

size 1/2 × 1/4 = 1/8. It then decreases from 1/2 to 1/3 in N2 − N1 = 4

steps of equal size 1/6× 1/4 = 1/24.

0 1
6

1
5

1
4

1
3

1
2

1

α1αN5+1 αN2+1 αN1+1 α4 α3 α2

. . .

. . . . . . . . .

. . . . . . ... ... . . .

Figure 4.4: {αm} when N1 = 4, N2 = 8

We will then prove the following lemma.

Lemma 4.3.2. Let {αm : m ≥ 1} be the sequence defined in (4.10). For

every k ≥ 1, Ek denotes the set in (4.9). Then for every δ > 0 and m0 ≥ 1,

we have

[0, 1) ∩

( ∞⋂
m=m0

(Ek − k)− δαm

)
= ∅. (4.12)

The lemma will be proved in Section 4.4.
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4.3.2 Proof of Theorem 1.1.1 assuming Lemma 4.3.2

Recall that at the beginning of this section, we have assumed towards

contradiction that E is nowhere dense and from this constructed each Ek

and a slowly decreasing {αm}. We will show that E contains no similar

copy of {αm}, which contradicts the assumption of Theorem 1.1.1 and thus

finishes our proof.

Suppose, towards contradiction, that there is t ∈ R and δ 6= 0 such that

t+ δαm ∈ E for all m. Recalling the preliminary reduction in Section 4.1.1,

we may assume without loss of generality that δ > 0.

Thus there is k ∈ Z such that Ek contains all but finitely many terms

of t + δαm. Indeed, there is a unique k ∈ Z with t ∈ [k, k + 1). Since

t+ δαm ↘ t, there is m0 = m0({αm}, E) such that t+ δαm < k + 1 for all

m ≥ m0, so t + δαm ∈ Ek = E ∩ [k, k + 1] for all m ≥ m0. Equivalently,

t− k + δαm ∈ Ek − k ⊆ [0, 1] for m ≥ m0. Letting m→∞ also shows that

t− k ⊆ [0, 1). Rewriting this in set notation, we have

t− k ∈ [0, 1) ∩

( ∞⋂
m=m0

(Ek − k)− δαm

)
,

which is a contradiction to Lemma 4.3.2. This proves Theorem 1.1.1.

4.4 Translation of an interval

In this section, we will prove Lemma 4.3.2. The main ingredients of this

proof are two structural results concerning the union of translations of an

interval. These results are contained in Lemma 4.4.1 and 4.4.2 below. The

proof of Lemma 4.3.2 assuming these results appear in Section 4.4.4.

Before stating the lemma, we point out a minor simplification of nota-

tion. We will temporarily drop the dependence of every term on k until it

becomes necessary. This helps us get rid of using excessively cumbersome

notation.

To be more precise, for each k ≥ 1, let us write A := Ek − k ⊆ [0, 1],

and unless otherwise specified, O
(k)
n , I

(k)
n,j and l

(k)
n (defined at the beginning
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of this section) will be denoted by On, In,j and ln, respectively.

In the new notation, (4.12) in Lemma 4.3.2 reads

[0, 1) ∩

( ∞⋂
m=m0

A− δαm

)
= ∅. (4.13)

4.4.1 Structure of union of translates of an interval

Fix n and we examine carefully
⋃∞
m=1On − δαm for a large n. Let us

recall that On =
⋃2n−1

j=1 In,j from (4.1) of Proposition 4.2.1, and fix one

connected component In,j of On.

Let

M(n) = M(n,m0, δ) = min{m ≥ m0 : δ(αm − αm+1) < ln}. (4.14)

We note that M(n) is finite since αm − αm+1 ↘ 0. By the monotonicity

of αm − αm+1, for all m ≥ M(n), we have δ(αm − αm+1) < ln. It is worth

noting that M(n) depends δ and m0, but this dependence is suppressed

because the subsequent argument does not rely on the specified value of δ

and m0.

Lemma 4.4.1. Let {αm}∞m=1 be a sequence strictly decreasing to 0 such that

αm−αm+1 is also decreasing. Then for any m0 ≥ 1 and M(n) as in (4.14),

we can decompose the countable union of intervals
⋃∞
m=m0

In,j − δαm into a

disjoint union of U1 and U2, where

U1 = U1(j) =

M(n)−1⋃
m=m0

In,j − δαm

is a disjoint union of open intervals of the same length ln, and

U2 = U2(j) =
∞⋃

m=M(n)

In,j − δαm

is a single open interval with length ln+δαM(n) and the same right endpoint
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as In,j. Using our B− notation, this can be written as

U2 = B−(In,j , δαm). (4.15)

This lemma is illustrated in Figure 4.5. In this figure, we first fix an in-

terval I = In,j and show the relative positions of I−δαm for different choices

of m ≥ m0. To showcase the threshold for the overlapping phenomenon, we

draw these intervals indexed by m along the vertical axis.

We also remark that U1 and U2 again depend on n, j (as well as δ and

m0), but we suppress the dependence for the moment since for now we

will be only considering one single In,j . Another crucial observation is that

our M(n) is independent of the choice of j, so it works for all intervals

{In,j , 1 ≤ j ≤ 2n−1} in the n-th iteration of the construction in the proof

of Proposition 4.2.1. In the future, we call U1 the disjoint part and U2 the

overlapping part.

1

2

3

4

5

6

I − δαm0 I − δαm0+1 I − δαm0+2

. . .
U1 U2

I

R

m−m0 + 1

Figure 4.5: Structure of
⋃∞
m=m0

In,j − δαm when M(n) = m0 + 3

Proof of Lemma 4.4.1. As all In,j−δαm are open intervals and αm is strictly

decreasing, U1 is a disjoint union if and only if for each m0 ≤ m ≤M(n)−2,

we have sup In,j − δαm ≤ inf In,j − δαm+1. This is true if and only if

δ(αm − αm+1) ≥ sup In,j − inf In,j = ln for all 1 ≤ m ≤ M(n) − 2, which
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follows from the definition (4.14) of M(n). Since {In,j − δαm : 1 ≤ m ≤
M(n)− 1} are translates of the interval In,j , they have the same length ln.

Since δαm is strictly decreasing, U1 and U2 are disjoint if and only if

In,j − δαM(n)−1 and In,j − δαM(n) are disjoint. This is true if and only if

δ(αM(n)−1 − αM(n)) ≥ ln, which holds by (4.14).

The infinite union U2 is a single open interval if and only if for each

m ≥ M(n), we have sup In,j − δαm > inf In,j − δαm+1. This is true if and

only if δ(αm − αm+1) < sup In,j − inf In,j = ln for all m ≥ M(n), which

follows from (4.14).

Lastly, since αm decreases strictly to 0, sup In,j − δαm increases strictly

to sup In,j as m→∞. Since we have shown that U2 is an open interval, we

have U2 = (inf In,j − δαM(n), sup In,j). By Part (i) of Proposition 4.1.2, we

have U2 = B−(In,j , δαM(n)), which is (4.15).

4.4.2 Slow Decay of {αm}

In this subsection, we prove the following lemma, which is a result of the

slow decay of {αm}.

Lemma 4.4.2. Let k ≥ 1. Then there is n0 = n0(k, δ,m0) such that

αM(n) ≥ (n+ 1)−1, for all n ≥ n0. (4.16)

Recall that M(n) depends implicitly on k.

We first prove that there is n0 = n0(k, δ,m0) such that M(n) ≤ Nn for

all n ≥ n0. (Recall Nn was defined in the construction of {αm} at the end

of Section 4.3.1, and does not depend on k.) Indeed, by definition of M(n),

this is true if and only if

δ(αNn − αNn+1) < ln (4.17)

for all large n such that Nn ≥ m0. But by construction of the sequence αm,

we have

δ(αNn − αNn+1) =
δ

n(n+ 1)(Nn −Nn−1)
=

δ

n(n+ 1)µ−1n
,
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which will be strictly less than µn if n > δ−1. But by Lemma 4.3.1, µn ≤
ln := l

(k)
n for all n ≥ |k|. Hence (4.17) holds if n ≥ max{δ−1, |k|}.

Since Nn →∞, there is n1 such that Nn ≥ m0 for all n ≥ n1. Hence we

may choose n0 > max{δ−1, |k|, n1} so that M(n) ≤ Nn for all n ≥ n0. By

monotonicity of αm and recalling (4.11), we have

αM(n) ≥ αNn > αNn+1 = (n+ 1)−1, for all n ≥ n0,

which is (4.16).

4.4.3 A corollary of Lemma 4.4.1 and Lemma 4.4.2

In this subsection, we prove the following set relation:

∞⋃
m=m0

∞⋃
n=1

On − δαm ⊇ [0, 1). (4.18)

For the proof of (4.18), we will be only interested in the overlapping part.

For each n and j, we have

∞⋃
m=m0

In,j − δαm ⊇ U2(j)
(4.15)

= B−(In,j , δαM(n)). (4.19)

Recall that M(n) is independent of j. Thus we can take the union over

1 ≤ j ≤ 2n−1 on both sides of (4.19) and obtain

2n−1⋃
j=1

∞⋃
m=m0

In,j − δαm ⊇
2n−1⋃
j=1

B−(In,j , δαM(n)). (4.20)

Swapping the unions on the left hand side of (4.20) and by (4.1) and the

relation (2.1), we see it is equal to
⋃∞
m=m0

On − δαm. By (4.1) and (ii) of

Proposition 4.1.2, the right hand side of (4.20) is equal to B−(On, δαM(n)).

We have thus showed

∞⋃
m=m0

On − δαm ⊇ B−(On, δαM(n)). (4.21)
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Now we invoke Lemma 4.4.2 to find an n0 such that αM(n) ≥ (n+ 1)−1 for

all n ≥ n0. We then choose an integer N ≥ n0 such that for all n ≥ N , we

have δ/(n+ 1) ≥ (2/3)n. This implies

δαM(n) ≥ (2/3)n, for all n ≥ N. (4.22)

Taking union over n on both sides of (4.21), we have

∞⋃
n=1

∞⋃
m=m0

On − δαm

⊇
∞⋃
n=1

B−(On, δαM(n))

=

(
N⋃
n=1

B−(On, δαM(n))

)
∪

( ∞⋃
n=N+1

B−(On, δαM(n))

)

⊇

(
N⋃
n=1

B−(On, δαM(n))

)
∪

( ∞⋃
n=N+1

B−

(
On,

(
2

3

)n))

⊇

(
N⋃
n=1

B−(On, δαM(n))

)
∪

(
[0, 1)\

(
N⋃
n=1

O∗n

))

⊇

(
N⋃
n=1

O∗n

)
∪

(
[0, 1)\

(
N⋃
n=1

O∗n

))
⊇ [0, 1),

where in the fourth line we have used (v) of Proposition 4.1.2 and (4.22), in

the fifth line we have used (4.5) in Proposition 4.2.3, and in the sixth line

we have used (iii) of Proposition 4.1.2. Hence (4.18) follows.

4.4.4 Proof of Lemma 4.3.2

Using (4.18) we can now prove Lemma 4.3.2, which is expressed in the

form (4.13). We will use the relations (2.1) through (2.3) here.
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By the inclusion relation (4.2) in Proposition 4.2.1, for any δ > 0,

∞⋂
m=m0

A− δαm =

∞⋂
m=m0

(
[0, 1]\

( ∞⋃
n=1

On

)
− δαm

)

=
∞⋂

m=m0

(
[0, 1] ∩

( ∞⋂
n=1

Ocn

)
− δαm

)

⊆
∞⋂

m=m0

( ∞⋂
n=1

Ocn − δαm

)

=
∞⋂

m=m0

∞⋂
n=1

(Ocn − δαm).

Now we take complements in [0, 1) on both sides of (4.18) which was

obtained in the previous section. This gives

∅ ⊇ [0, 1) ∩

( ∞⋂
m=m0

∞⋂
n=1

(On − δαm)c

)

= [0, 1) ∩

( ∞⋂
m=m0

∞⋂
n=1

Ocn − δαm

)

⊇ [0, 1) ∩

( ∞⋂
m=m0

A− δαm

)
,

which is (4.13). This finishes the proof of Lemma 4.3.2 and thus Theorem

1.1.1.
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Chapter 5

Proof of Theorem 1.1.2

In this chapter we prove Theorem 1.1.2.

We start with a brief sketch of the proof. First, we introduce the defini-

tion of threshold sequences, and then prove Proposition 5.1.2 which is just

Theorem 1.1.2 with an additional assumption that the prescribed {βm} can

be replaced by a threshold sequence (definition right below) {ηm}. After

that, we will show that Proposition 5.1.2 and Lemma 5.1.3 together imply

Theorem 1.1.2. Lastly we give a proof of Lemma 5.1.3.

5.1 Threshold sequences

Definition 5.1.1 (Threshold Sequence). Let ηm be a zero sequence. We

say ηm is a threshold sequence if ηm − ηm+1 is non-increasing.

Proposition 5.1.2. Let {ηm}∞m=1 be a threshold sequence. Then there is a

closed and nowhere dense set A ⊆ [0, 1], depending on {ηm}, such that for

any sequence αm → 0 with supm |αm|/ηm < ∞, there is δ > 0 and t ∈ R
such that t+ δαm ∈ A for all m.

For the demonstration to be more clear, we give a proof of Proposition

5.1.2 in the next section.

Lemma 5.1.3. Let {βm} be a zero sequence. Then there is a threshold

sequence {ηm} such that βm ≤ ηm for all m.

5.1.1 Proof of Theorem 1.1.2

Assuming that Proposition 5.1.2 and Lemma 5.1.3 holds, we now prove

Theorem 1.1.2
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Proof. Let {βm} be given as in Theorem 1.1.2. By Lemma 5.1.3, find a

threshold sequence {ηm} such that βm ≤ ηm. By Proposition 5.1.2 applied

to {ηm}, we can find a closed and nowhere dense A ⊆ [0, 1], depending on

{ηm}, such that for all supm |αm|/ηm < ∞, there is δ > 0 and t ∈ R such

that t + δαm ∈ A for all m. But βm ≤ ηm, and hence supm |αm|/βm < ∞
implies supm |αm|/ηm < ∞. Lastly, since {ηm} depends on {βm} only, A

also depends on {βm} only.

5.2 Proof of Proposition 5.1.2

Now we prove Proposition 5.1.2.

5.2.1 Construction of the compact set

We start with any countable collection of open intervals Vn that forms

a countable base for the standard topology on (0, 1). For example, we can

choose {Vn} to be the countable collection of all open intervals in (0, 1) with

rational centres and rational radii. Our set A will be of the form

A = [0, 1]\
∞⋃
n=1

Jn (5.1)

for a carefully chosen collection of open intervals Jn ⊆ Vn whose lengths λn

are to be specified (See (5.10)). With this definition, A ⊆ [0, 1] is automat-

ically closed and nowhere dense.

5.2.2 A measure-theoretic argument

We will figure out what conditions can be imposed on λn so that the set A

we defined satisfies the affine containment property as stated in Proposition

5.1.2.

Let αm with supm |αm|/ηm <∞. Assuming λn has been chosen, we are

going to find δ > 0 and t ∈ R such that t+δαm ∈ A for all m. In contrast to

(4.13), we show that there is 0 < δ < 1 such that the following set relation
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holds:
∞⋂
m=1

A− δαm 6= ∅, (5.2)

which is true if, in particular,

L1
( ∞⋂
m=1

A− δαm

)
> 0. (5.3)

But using (5.1) and the set relation (2.2), we can compute

∞⋂
m=1

A− δαm = [0, 1] ∩

( ∞⋂
m=1

∞⋂
n=1

Jcn − δαm

)
.

Thus (5.3) holds if and only if

1 > L1
(

[0, 1]\
∞⋂
m=1

∞⋂
n=1

Jcn − δαm

)
= L1

(
[0, 1] ∩

∞⋃
m=1

∞⋃
n=1

Jn − δαm

)
.

Hence it suffices to show that there is δ > 0 such that

1 > L1
( ∞⋃
m=1

∞⋃
n=1

Jn − δαm

)
= L1

( ∞⋃
n=1

( ∞⋃
m=1

Jn − δαm

))
.

It further suffices to show there is δ > 0 such that

∞∑
n=1

L1
( ∞⋃
m=1

Jn − δαm

)
< 1. (5.4)

The following proposition will imply (5.4):

Proposition 5.2.1. 1. For any δ > 0 and any n ≥ 1,

lim
δ→0+

L1
( ∞⋃
m=1

Jn − δαm

)
= λn.

2. Let δ0 > 0 be a fixed constant such that |αm| ≤ ηm
2δ0

for all m ≥ 1.

(Such δ0 exists since supm |αm|/ηm < ∞, and note that δ0 does not
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depend on m,n.) Then for any 0 < δ < δ0 and any n ≥ 1,

L1
( ∞⋃
m=1

Jn − δαm

)
≤ L1

( ∞⋃
m=1

Jn − ηm

)
. (5.5)

3.
∞∑
n=1

L1
( ∞⋃
m=1

Jn − ηm

)
<∞.

Indeed, if all of the above are true, then by the Dominated Convergence

Theorem applied to fδ(n) = L1(∪∞m=1Jn − δαm) with the measure space

being the counting measure on N, we get

lim
δ→0+

∞∑
n=1

L1
( ∞⋃
m=1

Jn − δαm

)
=
∞∑
n=1

λn.

Thus (5.4) holds since
∑∞

n=1 λn < 1 by (5.10).

5.2.3 Proof of Proposition 5.2.1

We first prove Part (1). Let δ > 0 and n ≥ 1. Denote Jn := (a, b). Since

αm → 0, it is bounded. Let c = inf{αm : m ≥ 1} and d = sup{αm : m ≥ 1}.
Then we have inf(Jn − δαm) = a − δαm ≥ a − δd, and sup(Jn − δαm) =

b− δαm ≤ b− δc. Hence
⋃∞
m=1 Jn − δαm ⊆ (a− δd, b− δc), so

L1
( ∞⋃
m=1

Jn − δαm

)
≤ b− a+ δ(d− c) = λn + δ(d− c).

On the other hand,
⋃∞
m=1 Jn − δαm ⊇ Jn − δα1 = (a − δα1, b − δα1), so

L1 (
⋃∞
m=1 Jn − δαm) ≥ b − a = λn. Hence the squeeze law implies that

L1 (
⋃∞
m=1 Jn − δαm) converges to λn as δ → 0+.

Now we come to Part (2). Define, similar to (4.14),

T (n) := min{m : ηm − ηm+1 < λn}. (5.6)

Since ηm is a threshold sequence (see Definition 5.1.1), it decreases strictly
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to 0 and ηm− ηm+1 is also decreasing. Thus we have ηm− ηm+1 < λn if and

only if m ≥ T (n).

By Lemma 4.4.1, we have that U1 :=
⋃T (n)−1
m=1 Jn−ηm is a disjoint union

of open intervals of length λn, that U2 :=
⋃∞
m=T (n) Jn − ηm is a single open

interval of length ηT (n)+λn, and that
⋃T (n)−1
m=1 Jn−ηm and

⋃∞
m=T (n) Jn−ηm

are disjoint. Thus the right hand side of (5.5) can be computed as:

L1
( ∞⋃
m=1

Jn − ηm

)
= (T (n)− 1)λn + ηT (n) + λn = T (n)λn + ηT (n). (5.7)

Now we come to the left hand side of (5.5). Regardless of the positions

of the intervals {Jn − δαm}T (n)−1m=1 , we always have

L1
T (n)−1⋃

m=1

Jn − δαm

 ≤ T (n)−1∑
m=1

L1 (Jn − δαm) = (T (n)− 1)λn.

On the other hand, by Part 2 of Proposition 5.2.1, for all 0 < δ < δ0 and for

all m ≥ 1, we have δ|αm| ≤ ηm
2 . Denote Jn = (a, b). Then for all m ≥ T (n),

we have

sup(Jn − δαm) = b− δαm ≤ b+
ηm
2
≤ b+

ηT (n)

2
.

Similarly, for all m ≥ T (n), we have inf(Jn − δαm) ≥ a − ηT (n)

2 . This

implies
⋃∞
m=T (n) Jn − δαm ⊆

(
a− ηT (n)

2 , b+
ηT (n)

2

)
, and so

L1
 ∞⋃
m=T (n)

Jn − δαm

 ≤ ηT (n) + b− a = ηT (n) + λn.
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Thus

L1
( ∞⋃
m=1

Jn − δαm

)
≤ L1

T (n)−1⋃
m=1

Jn − δαm

+ L1
 ∞⋃
m=T (n)

Jn − δαm


≤ (T (n)− 1)λn + ηT (n) + λn

(by (5.7)) = L1
( ∞⋃
m=1

Jn − ηm

)
.

This finishes the proof of Part (2) of the proposition.

It remains to prove Part (3). By (5.7) this is equivalent to

∞∑
n=1

T (n)λn + ηT (n) <∞. (5.8)

To this end, we need to specify our choice of λn.

Define K(n) := 2 min{m : ηm < n−2}. K(n) is well defined since ηm ↘
0, and in particular, we have

K(n) is even and ηKn
2
< n−2. (5.9)

Recall that Vn’s are open intervals that form a topological base for (0, 1)

and that Jn are chosen to be subintervals of Vn for each n.

Then we define:

λn = min
{
|Vn|, 2−n, ηK(n) − ηK(n)+1

}
> 0. (5.10)

Note that λn ≤ ηK(n) − ηK(n)+1, so T (n) > K(n) by definition of T (n)

in (5.6). By monotonicity of {ηm} and (5.9), we have

∞∑
n=1

η⌊T (n)
2

⌋ ≤ ∞∑
n=1

η⌊K(n)
2

⌋ =
∞∑
n=1

ηK(n)
2

<

∞∑
n=1

n−2 <∞. (5.11)

Also note that since ηm is decreasing, ηT (n) ≤ ηbT (n)/2c is also summable

by (5.11).

The definition of T (n) (5.6) implies that for all m < T (n) we have
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ηm − ηm+1 ≥ λn. Hence we can bound T (n)λn from above by:

T (n)λn = 2
T (n)

2
λn ≤ 2

(
T (n)−

⌊
T (n)

2

⌋)
λn

≤ 2

(
η⌊T (n)

2

⌋ − η⌊T (n)
2

⌋
+1

+ · · ·+ ηT (n)−1 − ηT (n)
)

= 2η⌊T (n)
2

⌋ − 2ηT (n),

which is summable by (5.11) and the note following it. This proves (5.8),

and thus Part (3) of Proposition 5.2.1.

5.2.4 Proof of Lemma 5.1.3

Let βm ↘ 0 be given. Let η1 = β1 and η2 = β2. For m ≥ 3, we define

ηm = max {βm, 2ηm−1 − ηm−2} .

By this definition, we have ηm ≥ βm for all m ≥ 1 as well as ηm−1 − ηm ≤
ηm−2− ηm−1 for all m ≥ 3. It remains to show that ηm strictly decreases to

0.

We first show by induction that ηm is strictly decreasing. First, η2 =

β2 < β1 = η1. Assuming ηm−1 < ηm−2 for all m ≥ m0 where m0 ≥ 3, we

will show that ηm < ηm−1. We have 2 cases:

• If βm = max {βm, 2ηm−1 − ηm−2}, then ηm = βm < βm−1 ≤ ηm−1 as

βm is assumed to be strictly decreasing.

• If 2ηm−1 − ηm−2 = max {βm, 2ηm−1 − ηm−2}, then ηm = 2ηm−1 −
ηm−2 < ηm−1, since the last inequality equivalent to ηm−1 < ηm−2

which is our induction assumption.

Next we show that ηm converges to 0. We have two cases:

• If there is N ≥ 3 such that for all m ≥ N , βm ≤ 2ηm−1 − ηm−2, then

ηm = 2ηm−1 − ηm−2 for all m ≥ N . Thus {ηm : m ≥ N − 2} is an

infinite arithmetic progression of common difference ηN−1− ηN−2 < 0
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marching to the left. Hence if m ≥ N − 2 +
ηN−2

ηN−2−ηN−1
, then ηm ≤ 0,

which is a contradiction since by definition, ηm ≥ βm > 0 for all m.

• Otherwise, βm > 2ηm−1 − ηm−2 infinitely often, so there is a subse-

quence ηmk = βmk for all k. Since βm → 0, we have ηmk → 0. But

{ηm} is a strictly decreasing sequence, so {ηm} itself also converges to

0.
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Chapter 6

Introduction to Decoupling

In this chapter, we come to the second main topic of this thesis, namely,

decoupling theory.

Throughout the thesis we will write

e(z) := exp(2πiz).

The Fourier transform of a Schwartz function f : Rn → C is defined by

f̂(ξ) =

∫
Rn
f(x)e(−x · ξ)dx.

Here we recall that a Schwartz function f : Rn → C is a function satisfying

the following assumption:

sup
x∈Rn

|xα∂βf(x)| <∞, for any multi-indices α, β.

We have the Fourier inversion formula

f(x) =

∫
Rn
f̂(ξ)e(x · ξ)dξ.

We remark that there are various formulations of decoupling. For example,

in [5] decoupling is formulated using neighbourhoods of a hypersurface, and

in [8] decoupling is formulated using the extension operator, but in Section

5.1 there they also study the relation between the neighbourhood version

and the extension operator version. In this thesis we use the neighbourhood

version of decoupling, which we formulate in a moment.

Notation. Throughout this rest of the thesis, we use the standard nota-
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tion

A .p1,p2,...,pk B

to mean that for some constant C ′ depending on the parameters p1, . . . , pk

only, we have A ≤ C ′B. We also just write A . B if the constant C ′ is

absolute, or the dependence on the parameters is of no importance.

6.1 General decoupling

We shall first formulate decoupling in a very general way.

6.1.1 Formulation of decoupling

We make the following definition of decoupling, which is more general

than the version in the introduction since we do not require the disjointness

of A at this moment.

Definition 6.1.1 (General decoupling). Let 1 ≤ p, q ≤ ∞. Let A = {Ai}
be a finite collection of bounded open sets of Rn. Define Dp,q(A) to be the

smallest constant such that for all functions fi ∈ Lp(Rn) each of which has

its Fourier transform supported on Ai, we have∥∥∥∥∥∑
i

fi

∥∥∥∥∥
Lp(Rn)

≤ Dp,q(A)
∥∥∥‖fi‖Lp(Rn)∥∥∥

lq(i)
. (6.1)

We refer to (6.1) as an lq(Lp)-decoupling.

Remark. In most cases we are interested in, the sets Ai will be taken to be

an almost disjoint (i.e. their intersection has zero n-dimensional Lebesugue

measure) partition of a neighbourhood of a compact subset of some manifold

in Rn, as in the case of Theorem 1.2.2.

6.1.2 General estimates

In this subsection we prove some general bounds of global decoupling.

We say they are general because they hold regardless of the choice of the

collection A.
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Proposition 6.1.2 (General decoupling). With the above setting, for all

1 ≤ p, q ≤ ∞ and any A we have the trivial bound3

1 ≤ Dp,q(A) ≤ (#A)1−1/q. (6.2)

Taking q = 1, we have the following corollary.

Corollary 6.1.3 (Sharp decoupling at q = 1). For any 1 ≤ p ≤ ∞ we have

Dp,1(A) = 1.

Proof of Proposition 6.1.2. The inequality 1 ≤ Dp,q follows by taking f to

be a nonzero function Fourier supported on a single Ai. The upper bound

Dp,q(A) ≤ (#A)1/q follows from the triangle and Hölder’s inequalities. In-

deed, let fi be Fourier supported on Ai. Then∥∥∥∥∥∑
i

fi

∥∥∥∥∥
Lp(Rn)

≤
∑
i

‖fi‖Lp(Rn) ≤ (#A)
1− 1

q

∥∥∥‖fi‖Lp(Rn)∥∥∥
lq(i)

.

Since this works for an arbitrary functions fi ∈ Lp(Rn) Fourier supported

on Ai, our claim follows.

Proposition 6.1.4 (Lower bound for p ≤ q). If 1 ≤ p ≤ q ≤ ∞, then for

any A we have Dp,q(A) ≥ (#A)1/p−1/q.

For p = 1, combined with the trivial upper bound in Proposition 6.1.2,

we have the following corollary.

Corollary 6.1.5 (Sharp decoupling at p = 1). For any 1 ≤ q ≤ ∞ we have

D1,q(A) = (#A)1−1/q.

Proof of Proposition 6.1.4. Fix Schwartz functions gi each with Fourier sup-

port in Ai with ‖gi‖Lp(Rn) = 1, and let ci be arbitrary constants. Fix a unit

vector v. For each k, define a (#A)-tuple of functions fk,i

fk,i(x) = cigk,i(x) := cigi(x+ kiv).

3Throughout the thesis we make the usual convention 1/p = 0 when p =∞.

58



By definition of Dp,q(A), we have∥∥∥∥∥∑
i

fk,i

∥∥∥∥∥
Lp(Rn)

≤ Dp,q(A)
∥∥∥ci‖gk,i‖Lp(Rn)∥∥∥lq(i).

On the other hand, we have

‖gk,i‖Lp(Rn) = ‖gi‖Lp(Rn) = 1

by translation invariance. For the left hand side, note that

lim
k→∞

∥∥∥∥∥∑
i

fk,i

∥∥∥∥∥
Lp(Rn)

=
∥∥∥ci‖gi‖Lp(Rn)∥∥∥

lp(i)
= ‖ci‖lp(i),

where the first equality follows from a general measure-theoretic property

for Lp-functions4 since the “essential supports” of gk,i become “essentially

disjoint” as n→∞.

Thus, we have

‖ci‖lp(i) ≤ Dp,q(A)‖ci‖lq(i).

Since ci’s are arbitrary constants, this forces to Dp,q(A) ≥ (#A)1/p−1/q.

Using Hölder’s inequality for lq norms, we trivially arrive at

Proposition 6.1.6 (Hölder’s inequality). For all 1 ≤ p ≤ ∞ and 1 ≤ q1 ≤
q2 ≤ ∞ we have

Dp,q2(A) ≤ (#A)
1
q1
− 1
q2Dp,q1(A).

6.1.3 Disjointness

In most cases, decoupling estimates are formulated when A consists of

disjoint5 subsets Ai.

4when p =∞ the decay of gi is needed, which is true since gi is Schwartz here.
5In the decoupling part of this thesis we say A,B ⊆ Rn are essentially disjoint (or just

disjoint) if Ln(A ∩B) = 0.
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Remark. Starting from this point, we will always assume that A consists

of disjoing subsets, unless otherwise specified (for example, in Section 6.1.6).

Proposition 6.1.7 (General decoupling for q ≤ p = 2). For every 1 ≤ q ≤ 2

we have D2,q(A) = 1.

Proof. Let fi be Fourier supported on Ai. By Plancherel’s identity and the

disjointness of Ai, we have

∥∥∥∥∥∑
i

fi

∥∥∥∥∥
L2(Rn)

=

(∑
i

‖fi‖2L2(Rn)

) 1
2

.

Thus, if q ≤ 2, using the trivial inequality ‖·‖l2 ≤ ‖·‖lq , the result follows.

Corollary 6.1.8 (General decoupling for 2 = p ≤ q). For any 2 ≤ q ≤ ∞
we have D2,q(A) = (#A)1/2−1/q. In particular, D2,∞(A) = (#A)

1
2 .

Proof of corollary. Applying Proposition 6.1.6 with p = 2, q1 = 2 and

q2 = q, we have D2,q(A) ≤ (#A)1/2−1/qD2,2(A). But since D2,2 = 1 by

Proposition 6.1.7, we have D2,q(A) ≤ (#A)1/2−1/q. The lower bound then

follows from Proposition 6.1.4.

So far we have seen that for a lot of pairs of Lebesgue exponents (p, q)

we have obtained sharp decoupling estimates without any geometric infor-

mation of A but the disjointness.

In the following diagram 6.1, the red and blue lines indicate the pairs

(p, q) for which sharp general decoupling has been established. In particular,

the blue lines indicate (p, q) for which Dp,q(A) = 1.

6.1.4 Interpolation of general decoupling

We can improve the decoupling estimates shown in Figure 6.1 using the

following linear interpolation theorem for mixed norms. The proof can be

found in a nice survey [37] on the interpolation of mixed normed spaces.
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1

1
2

1

1
p

1
q

Figure 6.1: Known pairs of sharp general decoupling

Theorem 6.1.9. Let X,Y,M,N be σ-finite measure spaces. For k = 0, 1,

let 1 ≤ ak, bk, ck, dk ≤ ∞. Let 0 < θ < 1 and

1− θ
a0

+
θ

a1
=

1

a
,

1− θ
b0

+
θ

b1
=

1

b
,

1− θ
c0

+
θ

c1
=

1

c
,

1− θ
d0

+
θ

d1
=

1

d
.

Assume in addition a, c <∞.

Assume T is a linear operator from Lak(X,Lck(M)) to Lbk(Y, Ldk(N))

with operator norms Bk, k = 0, 1. Then T also maps La(X,Lc(M)) to

Lb(Y, Ld(N)) with operator norm bounded above by B1−θ
0 Bθ

1.

The decoupling inequality is not yet in the form of an operator bound,

because of the Fourier support condition. To deal with this, inspired by the

simple treatment in Section 3.2.3 of [77], we generalise a little and impose

a minor technical assumption which holds under most circumstances we are

interested in.

Definition 6.1.10 (Smooth cutoff condition). Let A = {Ai} be given as in

Definition 6.1 and assume A is disjoint. We say A satisfies a smooth cutoff

condition, if there is an absolute constant C such that for each i there exists
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a Schwartz function ψi obeying the following:

1. ‖ψi‖L1(Rn) ≤ C.

2. ψ̂i = 1 on Ai.

3. ψ̂i is supported on some A′i with the following condition: for any 1 ≤
p, q ≤ ∞ and any functions gi Fourier supported on A′i, we have∥∥∥∥∥∑

i

gi

∥∥∥∥∥
Lp(Rn)

.C,p,q,n Dp,q(A)
∥∥∥‖gi‖Lp(Rn)∥∥∥

lq(i)
. (6.3)

Now we apply the interpolation theorem to get the following proposition.

Proposition 6.1.11. Assume A satisfies the smooth cutoff condition as in

Definition 6.1.10. Let θ ∈ (0, 1) and assume 1 ≤ pk, qk, p, q ≤ ∞, k = 0, 1

satisfy
1

p
=

1− θ
p0

+
θ

p1
,

1

q
=

1− θ
q0

+
θ

q1
.

Assume in addition that p, q <∞. Then

Dp,q(A) .C,p,q Dp0,q0(A)1−θDp1,q1(A)θ.

Proof. Define the vector-input linear operator T by

T (fi)
#A
i=1 =

#A∑
i=1

fi ∗ ψi,

where fi are arbitrary functions (with no Fourier support assumption) in

Lp(Rn). Take

X = {1, . . . ,#A}, M = N = Rn, Y = {1},

and the following choices of Lebesgue exponents:

ak = qk, ck = pk, dk = pk, k = 0, 1, and a = q, c = p, d = p.
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We will show that T maps Lak(X,Lck(M)) to Lbk(Y,Ldk(N)) with operator

norms Bk . Dpk,qk(A).

Given arbitrary functions fi ∈ Lp(Rn). Since fi ∗ψi is Fourier supported

on A′i, by (6.3), we have

‖T (fi)i‖Lpk (Rn) . Dpk,qk(A)
∥∥∥‖fi ∗ ψi‖Lpk (Rn)∥∥∥

lqk (i)
.

On the other hand, for each i, using Young’s convolution inequality, we have

for any 1 ≤ p ≤ ∞

‖fi ∗ ψi‖Lp(Rn) ≤ C‖fi‖Lp(Rn).

Hence, we arrive at

‖T (fi)i‖Lpk (Rn) . Dpk,qk(A)
∥∥∥‖fi‖Lpk (Rn)∥∥∥

lqk (i)
,

which is valid for all (#A)-tuples of functions gi. Thus, we may apply the

interpolation theorem to get

‖T (fi)i‖Lp(Rn) . Dp0,q0(A)1−θDp1,q1(A)θ
∥∥∥‖fi‖Lp(Rn)∥∥∥

lq(i)
,

for all (#A)-tuples of functions fi. In particular, this works for all functions

fi with Fourier support on Ai. Since ψ̂i = 1 on Ai, we have T (fi)i =
∑

i fi.

Hence

‖f‖Lp(Rn) . Dp0,q0(A)1−θDp1,q1(A)θ
∥∥∥‖f |Ai‖Lp(Rn)∥∥∥

lq(i)
,

from which the result follows.

Using interpolation and known upper and lower bounds of general de-

coupling, we have

Proposition 6.1.12. Assume Ai satisfies the smooth cutoff condition in

Definition 6.1.10. Then for all exponents (p, q) with (1/p, 1/q) lying in the
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triangle B with vertices (1/2, 1/2), (0, 1), (1, 1), we have

Dp,q(A) ∼ 1.

Also, for all exponents (p, q) with (1/p, 1/q) lying in the trapezoid R with

vertices (1/2, 1/2), (1, 1), (1, 0), (1/2, 0), we have

Dp,q(A) ∼ (#A)
1
p
− 1
q .

The implicit constants here depends on p, q and the constant C in the smooth

cutoff condition.

Proof. Refer to Figure 6.1. The first part Dp,q(A) ∼ 1 follows directly from

interpolation between the vertices (1/2, 1/2), (0, 1), (1, 1). For the second

part, given (1/p, 1/q) ∈ R, we use Hölder’s inequality 6.1.6 and Dp,p(A) ∼ 1

to get the required upper bound. The lower bound follows from Proposition

6.1.4.

Assuming the smooth cutoff condition, the blue triangle B and the red

trapezoid R in Figure 6.2 are the range of exponents (p, q) where we have

sharp general decoupling. In particular, in B we even have Dp,q(A) ∼
1. Therefore, it then suffices to consider the exponents (p, q) for which

(1/p, 1/q) lies in the trapezoid W defined by the vertices (0, 0), (1/2, 0),

(1/2, 1/2), (0, 1), i.e. the white region in Figure 6.2.

Proposition 6.1.13. If (1/p, 1/q) lies in W, then we have

Dp,q(A) . (#A)
1− 1

p
− 1
q . (6.4)

In particular, for 2 ≤ p ≤ ∞ we have the l2(Lp) and lp(Lp) estimates

Dp,2(A) . (#A)
1
2
− 1
p , Dp,p(A) . (#A)

1− 2
p . (6.5)

Proof. Let (1/p, 1/q) be given. Then we see (1/p, 1−1/p) lies on the straight

line 1/p+1/q = 1 which is in B. Hence Dp,(1−1/p)−1 ∼ 1. Applying Hölder’s
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Figure 6.2: Known pairs of sharp general decoupling, with interpolation

inequality 6.1.6 we then have

Dp,q(A) . (#A)
1− 1

p
− 1
q .

Therefore, inspired by the result given by interpolation, below we are

mostly interested in p ≥ 2. In fact, the most studied pairs of exponents are

q = 2 ≤ p and 2 ≤ p = q. The former is usually called an l2-decoupling and

the latter is usually called an lp-decoupling.

6.1.5 Flat decoupling

So far we have studied decoupling in a very general setting. Now we

shall focus on a special case in which A is the partition of a rectangle into

identical pieces, as is the case of Proposition 9.5 of [12].

Theorem 6.1.14 (Flat decoupling). Let A be a rectangle in Rn and A =

{Ai} be the decomposition of A into N congruent and parallel rectangles
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using N − 1 parallel hyperplanes. Then for all 1 ≤ p, q ≤ ∞ we have

Dp,q(A) ∼


1, if (1/p, 1/q) ∈ B

(#A)
1
p
− 1
q , if (1/p, 1/q) ∈ R

(#A)
1− 1

p
− 1
q , if (1/p, 1/q) ∈W

. (6.6)

Proof of Theorem 6.1.14. The proof is divided into a few parts.

1. We first deal with simple invariance observations. By the translation-

modulation and rotation invariance of the Fourier transform, it suffices

to consider A to be axis-parallel and centred at 0. We now use a

simple scaling argument to show that it is also dilation invariant in

each coordinate, namely, for any non-isotropic dilation mapping

∆(x1, . . . , xn) := (λ1x1, . . . , λnxn), λi > 0 ∀i,

we have Dp,q(A) = Dp,q(∆A), where ∆A := {∆Ai : Ai ∈ A}.

Suppose the conclusion holds for B which comprises of a partition

of [0, 1]n into N congruent and parallel rectangles Bi. Now given a

general axis-parallel A, a partition A and fi Fourier supported on Ai

as in the assumption. Denote by li the length of A in the direction ei.

Then we define gi by

gi(x1, . . . , xn) = l−11 · · · l
−1
n fi(l

−1
1 x1, . . . , l

−1
n xn), (6.7)

so that

ĝi(ξ1, . . . , ξn) = f̂i(liξ1, . . . , lnξn)

is supported on [0, 1]n. Applying the result for B, we have∥∥∥∥∥∑
i

gi

∥∥∥∥∥
Lp(Rn)

≤ Dp,q(B)
∥∥∥‖gi‖Lp(Rn)∥∥∥

lq(i)
.

66



Now using (6.7), rescale back to f and cancelling the factors to get∥∥∥∥∥∑
i

fi

∥∥∥∥∥
Lp(Rn)

≤ Dp,q(B)
∥∥∥‖fi‖Lp(Rn)∥∥∥

lq(i)
.

Thus Dp,q(A) ≤ Dp,q(B). By symmetry we thus have Dp,q(A) =

Dp,q(B).

With this, we then have Dp,q(A) = Dp,q(N) where the latter is defined

to be the smallest constant such that for all fi Fourier supported in

Ai we have ∥∥∥∥∥∑
i

fi

∥∥∥∥∥
Lp(Rn)

≤ Dp,q(N)
∥∥∥‖fi‖Lp(Rn)∥∥∥

lq(i)
, (6.8)

where we may take Ai = [0, 1]n−1 × [(i− 1)N−1, iN−1].

2. We now prove the upper bound forDp,q(N). We then check the smooth

cutoff condition 6.1.10 so that we can use Proposition 6.1.12 to obtain

the result in B and R.

To this end, we simply choose A′i to be the twice of Ai, that is, the

uniform dilation of Ai by a factor of 2 with respect to the centre of

Ai. Then it is easy to pick ψi with the first two assumptions satisfied.

For (6.3), we let gi be supported on A′i. By our choice of A′i (the twice

of Ai), they have bounded overlap in the sense that
∑

i 1Ai ≤ 2n−1.

Hence, we may split the collection {A′i} into 2n−1 subcollections Aj ,
each of which has cardinality less than N and is exactly an almost

disjoint partition of another rectangle. See Figure 6.3, where each Ai

is represented by a black rectangle and {A′i} is partitioned into the

two families of blue and green rectangles. (The green rectangles in the

figure are slightly enlarged visually to showcase the separation from

the blue rectangles.)
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Figure 6.3: Ai and A′i in n = 2

Thus, by the triangle and Hölder’s inequalities we have∥∥∥∥∥∑
i

fi

∥∥∥∥∥
Lp(Rn)

≤
∑
j

∥∥∥∥∥∥
∑

i:A′i∈Aj

fi

∥∥∥∥∥∥
Lp(Rn)

≤ Dp,q(N)
∑
j

∥∥∥‖fi‖Lp(Rn)∥∥∥
lq(i:A′i∈Aj)

.q Dp,q(N)
∥∥∥‖fi‖Lp(Rn)∥∥∥

lq(i)
.

Hence the smooth cutoff condition holds and we have the required

upper bounds in B and R.

The required upper bound in W follows from Proposition 6.1.13.

3. Lastly we come to the lower bounds. We will show that

Dp,q(N) & N1−1/p−1/q (6.9)

works for all 1 ≤ p, q ≤ ∞, which gives the sharp lower bound for (p, q)

in the range W. The lower bounds for B and R have been established

in Proposition 6.1.12 (and are better than (6.9).

To prove (6.9), we first fix a nonzero and nonnegative smooth function

η supported on [0, 1]n. We then take fi so that

f̂i(ξ1, . . . , ξn) = η (ξ1, . . . , ξn−1, Nξn − i+ 1) ,
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which is supported on Ai. With this choice of fi, we substitute it into

(6.8). The right hand side of (6.8) is essentially

N
−1+ 1

p
+ 1
q .

To compute the left hand side of (6.8), we write x = (x1, . . . , xn) and

ξ = (ξ1, . . . , ξn). Since η is nonnegative, for any 1 ≤ i ≤ N we have

Re(fi)(x)

=

∫
Rn
η(ξ1, . . . , ξn−1, Nξn − i+ 1) cos(2πx · ξ)dξ

=

∫
[0,1]n η(ξ) cos(2π(x1ξ1 + · · ·+ xn−1ξn−1 + xnN

−1(ξn + i− 1)))dξ

N
.

Hence, if x ∈ [0, (10N)−1]n, then for 1 ≤ i ≤ N and ξ ∈ [0, 1]n we have

|x1ξ1 + · · ·+ xn−1ξn−1 + xnN
−1(ξn + i− 1)| ≤ 1

10
,

from which it follows that

Re(fi)(x) ≥ 1

2N
‖η‖L1(Rn)

for all i, using the simple fact that cos(2πt) > 1/2 for |t| < 1/10.

Hence ∥∥∥∥∥∑
i

fi

∥∥∥∥∥
Lp(Rn)

≥

∥∥∥∥∥∑
i

fi

∥∥∥∥∥
Lp([0,(10N)−1]n)

& 1.

Combining the estimates on both sides gives (6.9).

6.1.6 Bounded overlap

In practice it is common to deal with decoupling for a slightly non-

disjoint family A = {Ai} with bounded overlap. This means that instead of

requiring {Ai} to be almost disjoint, we impose the slightly weaker assump-

tion that
∑

i 1Ai = O(1), where the implicit constant depends on unimpor-

69



tant parameters only (such as the dimension). In this case, we still have

D2,2(A) = O(1). Indeed, this is true by a simple tiling argument similar to

the proof of Part 2 of Theorem 6.1.14. More precisely, we split A into O(1)

many subcollections, so that each of them is disjoint, and then apply the

triangle and Hölder’s inequalities.

Hence, from now on the decoupling formulation also works well with a

bounded overlapping collection A.

6.2 Decoupling for manifolds

In this section we will focus on more specific cases of decoupling, namely,

decoupling related to manifolds such as curves and surfaces in Rn.

Before we introduce the formal definition, we give a brief description. In

all decoupling inequalities in this thesis we work with a compact subset of

a manifold M in Rn. We are then given a tiny scale δ > 0, and our test

function f will be Fourier supported on some neighbourhood of M where

the scale depends on δ. The collection A = {Ai} will be given by a suitable

partition of the aforesaid neighbourhood.

6.2.1 Formulation of decoupling

Let M be a compact piece of a manifold of dimension 1 ≤ m ≤ n − 1.

Thus, it can be divided into finitely many subsets, each of which can be

parametrized as the graph of a function φ : [0, 1]m → Rn−m. In below this

will always be assumed.

Let M be an m-dimensional manifold in Rn and let φ : [0, 1]m → Rn−m

be a local parametrization of M . For δ > 0, let Pδ = {Si} be a partition of

[0, 1]m into open subsets.

Definition 6.2.1 (Neighbourhoods). The (vertical) δ-neighbourhood of the

graph of φ over Si, denoted N φ
δ (Si), is defined by

N φ
δ (Si) := {(ξ′, ξ′′) : ξ′ ∈ Si, |ξ′′ − φ(ξ′)| < δ}. (6.10)
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Remark. The advantage of using vertical neighbourhoods is that they are

almost disjoint and will not exceed the domain of φ. In this thesis we try to

avoid working with the natural neighbourhoods defined by {ξ : dist(ξ, S) <

δ}, for technical reasons. Yet, under relatively general assumptions (such

as 1 < p <∞ together with some minor regularity assumption on Si), they

can be shown to be equivalent. We omit the details.

Definition 6.2.2 (Decoupling for a manifold). Consider the family Aδ =

{N φ
δ (Si) : Si ∈ Pδ} where N φ

δ (Si) is defined as in (6.10). For 1 ≤ p, q ≤ ∞,

define

Dφ
p,q(Pδ) = Dp,q(Aδ). (6.11)

That is, Dφ
p,q(Pδ) is the best constant such that for any fi Fourier supported

on N φ
δ (Si), we have∥∥∥∥∥∑

i

fi

∥∥∥∥∥
Lp(Rn)

≤ Dφ
p,q(Pδ)

∥∥∥‖fi‖Lp(Rn)∥∥∥
lq(i)

. (6.12)

Remark. For a generic decoupling inequality, we are always concerned

with extremely small values of δ and thus #Pδ will be huge. We can usually

tolerate a loss of a constant factor depending on φ, n, p, q but not on δα

where α > 0 is a fixed power. In many cases, however, we have to tolerate

an ε-loss. This means that it is generally acceptable to prove an inequality

of the form

Dp,q(Pδ) ≤ Cεδ−ε,

for every small ε > 0, where Cε depends on ε as well as other parameters

mentioned above.

6.2.2 A literature review

With all the terminology introduced, let us do a brief survey on the most

important results in decoupling theory. The most fundamental breakthrough

is the paper of Bourgain and Demeter in 2015 [5] which we already mentioned

in the introduction. In the newest terminology we introduced, the theorem
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says that if φ : Rn−1 → R is defined by φ(ξ) = |ξ|2, and if Pδ is defined

as the uniform partition of [−1, 1]n−1 into cubes of side length δ1/2, then

for all 2 ≤ p ≤ 2(n+1)
n−1 we have Dφ

p,2(Pδ) .ε δ
−ε. In the same paper, they

also generalised this theorem to all C3-functions φ : [−1, 1]n−2 with positive-

definite Hessian determinant.

In a later work of Bourgain and Demeter [7], they extended the result

in [5] to surfaces with nonzero Gaussian curvature over a compact domain,

but with the l2(Lp) inequality replaced by a corresponding weaker lp(Lp)

inequality. This weakening is unavoidable as the graph of a non-convex

function may contain a straight line, in which case we have flat decoupling

(see Theorem 6.1.14 or Proposition 6.3.3 below). The case when the surface

has zero Gaussian curvature somewhere is still unknown in general; see

Conjecture 8.2.2 in the conclusion chapter of this thesis.

So far we have only discussed decoupling for hypersurfaces, namely,

manifolds of codimension 1. On the other extreme, decoupling for curves

in higher dimensions is also of interest. In 2016, Bougain, Demeter and

Guth [9] proved a remarkable decoupling theorem for the moment curve

(t, t2, . . . , tn) ∈ Rn for t ∈ [0, 1], which has some profound application in

number theory, particularly the proof of Vinogradov’s mean value theorem.

There are also decoupling results for manifolds of intermediate codimension,

see, for instance [6, 13, 59].

Decoupling theory has also been applied to fully or partially solve many

open problems in partial differential equations and Euclidean configurations.

For instance, decoupling can be applied to prove the almost everywhere

convergence of the solution to Schrödinger’s equation (see [14, 15]) and a

partial result (the best up to date of this thesis) on Falconer’s distance set

problem (see [33]).

6.2.3 Linear invariance

We observe that adding to φ an affine transformation does not change

the decoupling constant.

Proposition 6.2.3. Let ψ(ξ′) = φ(ξ′) + L(ξ′) where L : Rm → Rn−m is an
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affine transformation. Then for any partition Pδ we have

Dφ
p,q(Pδ) = Dψ

p,q(Pδ).

Proof. We will only prove the ≤ direction and the opposite inequality follows

by symmetry.

Let fi have Fourier support in N φ
δ (Si). We will show that∥∥∥∥∥∑

i

fi

∥∥∥∥∥
Lp(Rn)

≤ Lψp,q(Pδ)
∥∥∥‖fi‖Lp(Rn)∥∥∥

lq(i)
.

Let gi be defined by the relation

ĝi(ξ) = f̂i(ξ
′, ξ′′ − Lξ′),

where ξ′ = (ξ1, . . . , ξm) and ξ′′ = (ξm+1, . . . , ξn). Thus gi is Fourier sup-

ported on Nψ
δ (Si).

Then we can apply the definition of Lψp,q,E(Pδ) to get∥∥∥∥∥∑
i

gi

∥∥∥∥∥
Lp(Rn)

≤ Lψp,q(Pδ)
∥∥∥‖gi‖Lp(Rn)∥∥∥

lq(i)
.

But by the definition of gi we have

gi(x) = fi(x
′ + Ltx′′, x′′).

It is then easy to see that

‖gi‖Lp(Rn) = ‖fi‖Lp(Rn),

∥∥∥∥∥∑
i

gi

∥∥∥∥∥
Lp(Rn)

=

∥∥∥∥∥∑
i

fi

∥∥∥∥∥
Lp(Rn)

,

from which the conclusion follows.
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6.2.4 Rough cutoff

We lastly mention a rough cutoff formulation of decoupling. Let 1 < p <

∞ and let Pδ = {Si} consist of disjoint rectangles in Rn−m. Then by the

boundedness of the Hilbert transform, the Fourier multiplier

(ξ′, ξ′′) 7→ 1Si(ξ
′)

is bounded on Lp(Rn), with the operator norm depending on p, n only. That

is, for 1 < p < ∞ and rectangles S ⊆ Rm we always have the following

inequality

‖fS‖Lp(Rn) .n,p ‖f‖Lp(Rn), (6.13)

for all f ∈ Lp(Rn), where fS denotes the Fourier restriction of f on the strip

S × Rn−m, and this notation will be used from now on.

With this, we see that Dφ
p,q(Pδ) is also comparable to the best constant

M such that for all function f ∈ Lp(Rn) Fourier supported on ∪iN φ
δ (Si),

we have

‖f‖Lp(R2) ≤M(Pδ)
∥∥∥‖fSi‖Lp(Rn)∥∥∥

lq(i)
.

6.3 Decoupling for curves: geometric aspects

In this section we restrict our attention to curves in R2, and study the

most important geometric properties that will play an important role in

decoupling. Many of the following results admit a natural generalisation to

higher dimensions, but we do not pursue that here.

6.3.1 Flatness

We have seen in Theorem 6.1.14 that decoupling is sharp and well-

understood in the “flat case”, i.e when φ is given by a constant function. By

Proposition 6.2.3 the same is true if φ is a linear function. More generally,

this continues to hold if φ is “essentially linear” over a considerable portion

of [0, 1]. To make this precise, we introduce the following terminology.
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Definition 6.3.1 (δ-flatness). Let φ : [0, 1] → R be C2. We say φ is δ-flat

over an interval I ⊆ [0, 1], if for any u, v ∈ I we have

|φ(v)− φ(u)− φ′(u)(v − u)| ≤ 2δ. (6.14)

Note that if φ is a linear function, then φ is δ-flat over the entire [0, 1].

Also, by Taylor expansion, (6.14) is true if we have

sup
u∈I
|φ′′(u)|L1(I)2 ≤ 4δ. (6.15)

Proposition 6.3.2 (Almost rectangles). Let φ : [0, 1] → R be C2 with

|φ′| + |φ′′| = O(1), and assume φ is δ-flat over an interval I ⊆ [0, 1] which

has length l ≥ δ. Then N φ
δ (I) is essentially a rectangle of dimensions l× δ,

that is, there is an actual rectangle T ⊆ R2 of dimensions l× δ and absolute

constants C1, C2, C3 such that

C1T ⊆ N φ
C2δ

(I) ⊆ C3T,

where CT is the dilation of T by a factor of T with respect to its centre.

Proof. Without loss of generality, take I = [0, l] and let s = l/2 ∈ I. Let

T be the rectangle centred at (s, φ(s)) and with sides parallel to (1, φ′(s))

and (−φ′(s), 1) with lengths l and δ, respectively. We claim that T is as

required.

We first prove C1T ⊆ N φ
C2δ

(I). Let (w, t) ∈ T . Then

|(w − s, t− φ(s)) · (1, φ′(s))| . C1l, (6.16)

|(w − s, t− φ(s)) · (−φ′(s), 1)| . C1δ, (6.17)

where the implicit constants are absolute. To show (w, t) ∈ N φ
C2δ

(I), we will

show

|w − s| ≤ l/2, |t− φ(w)| ≤ C2δ.

The first ensures that w ∈ I and the second ensures that (w, t) ∈ N φ
C2δ

(I).

For the first inequality, since (1, φ′(s)) and (−φ′(s), 1) form an essentially
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orthonormal basis for R2 as |φ′| = O(1), by δ ≤ l, (6.16) and (6.17) we have

|(w − s, t− φ(s))| . C1l.

Thus, in particular, we have |w − s| . C1l. Hence, if C1 is chosen small

enough, then |w − s| ≤ l/2.

For |t− φ(w)|, we use triangle inequality

|t− φ(w)| ≤ |t− φ(s)− φ′(s)(w − s)|+ |φ(w)− φ(s)− φ′(s)(w − s)|

. C1δ + δ,

where in the last line we have used (6.17), (6.14) and the bound on ‖φ′′‖.
Choosing C2 suitably, we are done.

Now we come to prove N φ
C2δ

(I) ⊆ C3T . Let (u, v) ∈ N φ
C2δ

(I). Then

u ∈ I and |v − φ(u)| ≤ C2δ. Since δ ≤ l it suffices to prove

|(u− s, φ(u)− φ(s)) · (1, φ′(s))| . l,

|(u− s, φ(u)− φ(s)) · (−φ′(s), 1)| . δ.

The former inequality follows easily since |u − s| ≤ l/2 and φ′ is bounded.

The second inequality follows by (6.14). Choosing C3 suitably, we are done.

Proposition 6.3.3 (Flat decoupling). Let φ be a smooth function with |φ′|+
|φ′′| = O(1). Let Pδ be a partition on [0, 1] such that each I ∈ Pδ has length

at least δ. Suppose also that there is a sub-collection S ⊆ Pδ consisting

of consecutive intervals of the same length, such that φ is δ-flat over their

union ∪S. Then Dφ
p,q(Pδ) & #S1−1/p−1/q.

Proof. Let J := ∪S and let l := L1(J) ≥ δ. Proposition 6.2.3 allows us to

assume φ(s) = φ′(s) = 0 where s is the centre of J . Since φ is δ-flat over

J , the proof of Proposition 6.3.2 shows that for some absolute constant C,

N φ
Cδ(J) contains an axis-parallel rectangle T of dimensions∼ l×δ. Moreover,

the part of T over each I ∈ S is contained in N φ
δ (I), and the number of

I ∈ S so that I × R intersects T is essentially #S.
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Thus, we can take fi = 1T∩(Ii×R) where Ii runs through S, so that∑
i fi = 1T . Then we may apply Theorem 6.1.14 to conclude thatDφ

p,q(Pδ) &
#S1−1/p−1/q.

Thus, we see that φ being flat over a large collection of intervals leads

to flat decoupling. To prevent this from happening, we would like φ to be

“curved” in an appropriate sense. One immediate condition to impose is

that |φ′′| is bounded away from 0 over [0, 1], which is the case of Bourgain-

Demeter decoupling [5] in the case n = 2 (see Theorem 1.2.1.) Note that

in this case, since φ(s) = s2, direct computation shows that φ is δ-flat over

each interval I of length δ1/2, which is also essentially the largest length of

an interval on which φ is δ-flat.

6.4 Decoupling for curves with nonzero curvature

In this section we study Theorem 1.2.1 and prove a quantitative version

of it that will be used later. For simplicity, we will restrict to n = 2. For

higher dimensional results like decoupling for the hyperbolic paraboloid and

the moment curve, the reader may refer to [5, 8–10] as well as [77] for details.

The main goal of this section is to upgrade Theorem 1.2.1 to the following

Lemma for all functions with nonzero second derivative. (Note we are using

the rough cutoff version now. Refer to Section 6.2.4 for the notation.)

Lemma 6.4.1. Let 2 ≤ p ≤ 6 and M > 1. Let φ : [0, 1] → R be a C3

function with

inf
s∈[0,1]

|φ′′(s)| ≥M−1,
∥∥φ′′∥∥∞ ≤M,

∥∥φ′′′∥∥∞ ≤M. (6.18)

For δ ∈ N−2, let Pδ be the partition of [0, 1] into intervals of equal length

δ1/2. Then for all function f Fourier supported on N φ
Mδ([0, 1]), we have

‖f‖Lp(R2) ≤ Cε,M,pδ
−ε

∑
I∈Pδ

‖fI‖2Lp(R2)

 1
2

. (6.19)
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6.4.1 Decoupling for parabolas

To prove the lemma, we will first prove it for all parabolas.

Proposition 6.4.2. Lemma 6.4.1 holds for all parabolas φ(s) = as2 +bs+c

satisfying (6.18).

Proof. By Proposition 6.2.3, it suffices to prove it for φ(s) = as2, where

|a| ≥ M−1/2 by (6.18). We then use a simple scaling argument. Let f be

Fourier supported on N φ
Mδ([0, 1]). Then let g be such that

ĝ(s, t) = f̂(s, at),

and hence g is Fourier supported on N s2

2M2δ([0, 1]). We then apply Theorem

1.2.1 at the scale 2M2δ (enlarging M so that 2M2δ ∈ N−2 if necessary) to

get

‖g‖Lp(R2) ≤ Cε,p(2M
2δ)−ε

 ∑
J∈P2Mδ

‖gJ‖2Lp(R2)

 1
2

,

where P2M2δ is the partition of [0, 1] into subintervals of length (2M2δ)1/2.

Next, use the triangle and Cauchy-Schwarz inequalities to get

‖gJ‖Lp(R2) ≤ CM

 ∑
I∈Pδ,I⊆J

‖gI‖2Lp(R2)

 1
2

. (6.20)

Combining the above two inequalities, using M ε ≤ 1 and rescaling back to

f , we are done.

6.4.2 Induction on scales

We now prove Lemma 6.4.1.

Proof. We basically follow the same idea of Section 7 of [5]. Let K(δ) =

K(δ,M, p) be the best constant such that under the assumptions of Lemma
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6.4.1, we have

‖f‖Lp(R2) ≤ K(δ)

∑
I∈Pδ

‖fI‖2Lp(R2)

 1
2

.

Our goal is to prove that K(δ) ≤ Cε,M,pδ
−ε.

Let δ′ ∈ N−2 ∩ (0, δ] be an intermediate scale to be determined. Since

f is Fourier supported on N φ
Mδ([0, 1]) and δ′ ≥ δ, it is Fourier supported on

N φ
Mδ′([0, 1]) as well.

Thus, if we let Pδ′ be the partition of [0, 1] into subintervals of length

δ′1/2, then

‖f‖Lp(R2) ≤ K(δ′)

 ∑
J∈Pδ′

‖fJ‖2Lp(R2)

 1
2

.

Our hope is that the graph of φ over each J is approximated by a

parabola with error O(δ). Fix any sJ ∈ J for each J . We define

pJ(s) = φ(sJ) + φ′(sJ)(s− sJ) +
1

2
φ′′(sJ)(s− sJ)2.

Then by Taylor’s theorem, for s ∈ J , we have

|φ(s)− pJ(s)| ≤
‖φ′′′‖∞

6
δ′3/2 ≤ M

6
δ′3/2.

This suggests that we take δ′ to be the smallest number in N−2 such that

δ′ ≥ δ2/3.
With this choice of δ′ (so δ′ < 4δ2/3), since f is Fourier supported on

N φ
Mδ([0, 1]), we have fJ is Fourier supported on N pJ

CMδ([0, 1]). Since pJ

satisfies (6.18), we can apply Proposition 6.4.2 to get

‖fJ‖Lp(R2) .ε,M,p δ
−ε

∑
I⊆J
‖fI‖2Lp(R2)

 1
2

.
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Squaring both sides and summing over J , we obtain

‖f‖Lp(R2) .ε,M,p K(δ′)δ−ε

∑
I∈Pδ

‖fI‖2Lp(R2)

 1
2

.

This implies that

K(δ) ≤ Cε,M,pδ
−εK(δ′),

where we recall δ′ is the smallest number in N−2 such that δ′ ≥ δ2/3. For

δ < 1/4, we iterate this inequality n times until we get to the scale 1/4:

K(δ) ≤ Cnε,M,pδ
−ε
(
1+ 2

3
+···+( 2

3)
n−1

)
K

(
1

4

)
≤ CCnε,M,pδ

−3ε,

since K(1/4) ∼ 1 by the triangle and Cauchy-Schwarz inequalities. Lastly,

since δ′ ≥ δ2/3 in each iteration and n is the first time we stop the iteration,

we have δ(2/3)
n−1

< 1/4. This shows that

n < 1 +
log log(δ−1)− log log 4

log(3/2)
≤ C log log(δ−1),

for some suitable absolute constant C. Thus

Cnε,M,p ≤ (log(δ−1))C logCε,M,p .ε,M,p δ
−ε,

and hence we have K(δ) .ε,M,p δ
−4ε.
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Chapter 7

Uniform Decoupling

Theorem

In this chapter we prove the uniform decoupling Theorem 1.2.2. We

will first formally define the notion of an admissible partition, formulate a

rigorous version of the uniform decoupling theorem, and prove it.

7.1 Admissible partitions

From the discussion in Section 6.3, we see that if we have an interval

I on which φ is δ-flat, then further decomposition of I will likely lead to

flat decoupling as in the case of Proposition 6.3.3. Hence, we would like to

partition [0, 1] into “maximal” subintervals I on each of which φ is δ-flat.

This motivates the following definition.

Definition 7.1.1 (Admissible partitions). Let φ : [0, 1] → R be C1 and let

P be a partition of [0, 1]. We say P is

1. a super-admissible partition for φ at the scale δ, if φ is δ-flat over each

I ∈ P.

2. a sub-admissible partition for φ at the scale δ, if for each pair of ad-

jacent intervals I, J ∈ P, φ is not δ-flat over I ∪ J .

3. an admissible partition for φ at scale the δ, if it is both super-admissible

and sub-admissible for φ at the scale δ.

From this definition it is clear that the partition Pδ of [0, 1] is admissible

for φ(s) = s2 at the scale δ.
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We first show that admissible partitions exist for every C2 function φ

over [0, 1].

Proposition 7.1.2 (Existence of admissible partitions). Let φ : [0, 1] → R
be C2. Then for any δ > 0, there exists an admissible partition P of [0, 1]

for φ at the scale δ.

Proof. If φ is linear, then the trivial partition is admissible. Otherwise,

‖φ′′‖∞ > 0 and we will construct an admissible partition P of I0 for φ at

the scale δ.

Let a0 = 0. Let

a1 := max{t ∈ [0, 1] : max
s,c∈[0,t]

|φ(s)− φ(c) + φ′(c)(s− c)| ≤ 2δ}.

Such a1 always exists in [0, 1] since φ is C2. If a1 = 1, then we arrive at the

trivial partition which is admissible for φ at the scale δ.

If a1 < 1, then there are s, c ∈ [0, a1], either s or c being a1, such that

|φ(s)− φ(c) + φ′(c)(s− c)| = 2δ.

Taylor’s theorem implies that

∥∥φ′′∥∥∞(s− c)2 ≥ 4δ,

so

a1 ≥ |s− c| ≥
2δ1/2

‖φ′′‖1/2∞
.

Let

a2 := max{t ∈ [a1, 1] : max
s,c∈[a1,t]

|φ(s)− φ(c) + φ′(c)(s− c)| ≤ 2δ}.

If a2 = 1, then P := {[0, a1], [a1, 1]} is an admissible partition of [0, 1] for φ

at the scale δ. Otherwise, by the same analysis above, we have a2 − a1 ≥
2
√
δ/‖φ′′‖∞. Then define a3 in the above fashion, and repeat.

This process must stop at finite time since an − an−1 ≥ 2
√
δ/‖φ′′‖∞ for
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all n ≥ 1.

The next proposition is about the lengths of intervals constituting a

sub-admissible partition for certain phase functions.

Proposition 7.1.3. Let φ : [0, 1]→ R be C2. Let δ > 0 and suppose P is a

sub-admissible partition of [0, 1] for φ at scale δ. Then there is a partition

P ′ of [0, 1], such that each interval I ∈ P ′, except possibly the last one, is a

union of two adjacent intervals in P and has length bounded below by

2

√
δ

‖φ′′‖∞
.

As a result, the number of intervals in P is bounded above by δ−1/2‖φ′′‖1/2∞ +

1.

Proof. Denote P as aj , 0 ≤ j ≤ n. If P is the trivial partition, then we

define P ′ to be trivial as well. If not, then in particular, φ cannot be linear,

so ‖φ′′‖∞ > 0. By (6.15), we have

aj+2 − aj ≥
2δ1/2

‖φ′′‖1/2∞
.

Therefore, we can define P ′ as follows. If n is even, then we define

P ′ = {[a2k, a2(k+1)] : 0 ≤ k ≤ n/2}.

If n is odd, then we define

P ′ = {[a2k, a2(k+1)] : 0 ≤ k ≤ (n− 3)/2} ∪ {[an−1, an]}.

Thus P ′ is as required.

The bound on the number of intervals in P follows immediately.

7.2 Uniform decoupling theorem

Now we can state the l2-uniform decoupling theorem.
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Theorem 7.2.1 (Uniform l2-decoupling for polynomials). For any 2 ≤ p ≤
6, d ≥ 0 and ε > 0, there is a constant Cε = Cd,ε,p such that the following is

true. For any 0 < δ ≤ 1, any polynomial φ : [0, 1] → R of degree at most d

with coefficients bounded by 1 in absolute value, any sub-admissible partition

Pδ of [0, 1] for φ at the scale δ and any f ∈ Lp(R2) Fourier supported on

N φ
δ ([0, 1]), we have

‖f‖Lp(R2) ≤ Cεδ
−ε

∑
I∈Pδ

‖fI‖2Lp(R2)

 1
2

. (7.1)

7.3 Proof of uniform decoupling theorem

Assuming a bootstrap inequality to be stated soon, we now give a proof

of the theorem.

Proof. Let Dd
p(δ), δ > 0 be the best constant such that under the assumption

of Theorem 7.2.1, we have

‖f‖Lp(R2) ≤ D
d
p(δ)

∑
I∈Pδ

‖fI‖2Lp(R2)

 1
2

. (7.2)

Our goal is to prove that Dd
p(δ) ≤ Cεδ−ε for all ε > 0, where Cε depends on

ε, p, d only.

Indeed, this follows once we have proved the following key inequality. It

will be referred to as a “bootstrap inequality” since it will be applied in the

Proof of the uniform decoupling theorem at each intermediate scale. 6

Theorem 7.3.1 (Bootstrap inequality). Let 2 ≤ p ≤ 6, ε > 0, d ≥ 0. For

any M > 1, there is a constant Cε,M = C(p, d, ε,M) ≥ 1 and a constant

K = K(d) ≥ 1, such that for each 0 < δ ≤ 1 we have

Dd
p(δ) ≤ K(Cε,Mδ

−ε + sup
δ′≥Mδ

Dd
p(δ
′)). (7.3)

6In the following we will often drop the dependence on p since it will be fixed throughout
the proof.
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Assuming Theorem 7.3.1, we will now finish the proof of Theorem 7.2.1.

Let M > 1 to be determined. Denote S(r) := supδ′≥rD
d
p(δ
′). Then (7.3)

says that

Dd
p(δ) ≤ K(Cε,Mδ

−ε + S(Mδ)). (7.4)

For any δ′ ≥Mδ but δ′ ≤ 1, we may apply (7.3) again to get

Dd
p(δ
′) ≤ K(Cε,Mδ

′−ε + S(Mδ′)).

Taking supremum over δ′ ≥Mδ to the above equation, we have

S(Mδ) ≤ K(Cε,MM
−εδ−ε + S(M2δ)) ≤ K(Cε,Mδ

−ε + S(M2δ)).

Plugging into (7.4), we have

Dd
p(δ) ≤ KCε,Mδ−ε +K2Cε,Mδ

−ε +K2S(M2δ).

In general, for each n ≥ 0, if Mnδ ≤ 1, then

Dd
p(δ) ≤ KnS(Mnδ) +

n∑
m=1

Cε,Mδ
−εKm ≤ KnS(Mnδ) + nKnCε,Mδ

−ε.

We choose n ≥ 0 to be the smallest integer such that Mnδ ≥ 1, and thus

n < log(δ−1)
logM + 1.

We also have S(Mnδ) = 1. Indeed, if δ′ ≥ Mnδ ≥ 1, then all sub-

admissible partitions of [0, 1] for φ at the scale δ′ must be the trivial partition,

in view of (6.15). Thus

KnS(Mnδ) + nKnCε,Mδ
−ε ≤ Kn + (2K)nCε,Mδ

−ε ≤ (3K)nCε,Mδ
−ε,

and thus

Dd
p(δ) ≤ (3K)

log(δ−1)
logM

+1
Cε,Mδ

−ε = (δ−1)
log(3K)
logM 3KCε,Mδ

−ε.

Now we may choose M = (3K)1/ε, so M depends on d, ε only. If we choose
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Cε = 3KCε,M , then

Dd
p(δ) ≤ Cεδ−2ε,

which finishes the proof.

Thus, all that remains is to prove Theorem 7.3.1.

7.4 Decoupling for curves with nonzero curvature

In this section we further upgrade Lemma 6.4.1 to include the case of all

sub-admissible partitions.

Theorem 7.4.1. Let 2 ≤ p ≤ 6. Let M ≥ 1 and let φ : [0, 1] → R be a C3

function with

∥∥φ′′′∥∥∞ +
∥∥φ′′∥∥∞ ≤M inf

s∈[0,1]
|φ′′(s)| and

∥∥φ′′∥∥∞ ≤M.. (7.5)

Then for any ε > 0, there is some Cε,M = Cε,M,p such that for any 0 < δ ≤ 1

and any sub-admissible partition P of [0, 1] for φ at the scale δ, we have

Dφ
p,2(P) ≤ Cε,Mδ−ε for any ε > 0.

The rest of this section is devoted to the proof of this theorem. The

main ingredients of the proof include Lemmas 7.1.3, 6.4.1 and the following

simple tiling argument.

Proposition 7.4.2. Let 0 < l0 ≤ 1/4 and let P be a collection of disjoint

subintervals of [0, 1] with lengths bounded above by 2l0 and below by l0. Then

there is l ∈ 2−N with l/l0 ∈ [4, 8) and two subcollections Ui, i = 1, 2 of P,

such that the following statements are true.

1. For each I ∈ U1, there is some 1 ≤ j ≤ l−1 such that I ⊆ [(j − 1)l, jl].

Moreover, each such [(j − 1)l, jl] contains less than 8 intervals I.

2. For each I ∈ U2, there is some 1 ≤ j ≤ l−1 such that I ⊆ [(j −
1/2)l, (j + 1/2)l] ∩ [0, 1]. Moreover, each such [(j − 1/2)l, (j + 1/2)l]

contains less than 8 intervals I.
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Proof. Let l ∈ 2−N be the smallest number such that l ≥ 4l0, so l/l0 ∈ [4, 8).

Each interval I ∈ P has length at most 2l0 ≤ l/2. Include I inside U1 if

it is fully contained in a dyadic interval [(j − 1)l, jl] for some 1 ≤ j ≤ l−1.

Otherwise, it has to be fully contained in [(j − 1/2)l, (j + 1/2)l] for some

1 ≤ j ≤ l−1, so we can include it in the collection U2. The bound on the

number of intervals I ∈ P contained in each dyadic interval follows from the

lower bound of the lengths of the intervals I.

Now we can give a proof of Theorem 7.4.1, in a series of steps.

7.4.1 A few technical reductions

By the scaling invariance of δ-flatness we may assume infs∈[0,1] φ
′′(s) = 1.

Let f ∈ Lp(R2) with Fourier support onN φ
δ ([0, 1]) and P be a sub-admissible

partition of [0, 1] for φ at the scale δ.

We invoke Lemma 7.1.3 to get the coarser partition P ′. Since ‖φ′′‖∞ ≤
M , each interval I ∈ P ′, except possibly the last one, is a union of two

adjacent intervals in P and has length bounded below by 2(δ/M)1/2. As a

result, the number of intervals in P is bounded above by (M/δ)1/2 + 1.

By the triangle and Cauchy-Schwarz inequalities we may assume the

number of intervals in P is even, and that each interval in P ′ has length

bounded below by 2(δ/M)1/2. Since each interval I ∈ P ′ is a union of two

adjacent intervals in P, by the triangle and Cauchy-Schwarz inequalities it

suffices to prove that

‖f‖Lp(R2) .ε,M δ−ε

(∑
I∈P ′
‖fI‖2Lp(R2)

) 1
2

.

We now partition the collection P ′ according to the lengths of intervals.

Let I∗ be an interval in P ′ with maximum length (we may of course assume

|I∗| ≤ 1/2). Let P ′1 be the collection of intervals in P ′ with length > |I∗|/2.

For each k ≥ 2, let P ′k be the collection of intervals in P ′ with length in

the range (2−k|I∗|, 2−k+1|I∗|]. Since each interval in P ′ has length bounded

below by 2(δ/M)1/2, we have only O(log(δ−1)) many such collections. Since
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we can afford logarithmic losses, it suffices to show for each P ′k that

∥∥∥f∪{I:I∈P ′k}∥∥∥Lp(R2)
.ε,M δ−ε

∑
I∈P ′k

‖fI‖2Lp(R2)

 1
2

.

Now fix such k ≥ 1. We can apply Proposition 7.4.2 with l0 = 2−k|I∗| ≤ 1/4

and P = P ′k to get the corresponding l = l(k) and Ui = Ui(k), i = 1, 2. Also,

note that l ≥ 8(δ/M)1/2 since l0 ≥ 2(δ/M)1/2.

By the triangle and Cauchy-Schwarz inequalities again, it suffices to

prove for i = 1, 2 that

‖fJi‖Lp(R2) .ε,M δ−ε

∑
I∈Ui

‖fI‖2Lp(R2)

 1
2

,

where Ji := ∪{I : I ∈ Ui}, i = 1, 2.

7.4.2 Applying Lemma 6.4.1

We deal with i = 1 first. We have δ ≤ l2 by our choice of l. By (7.5), we

may apply Lemma 6.4.1 with the scale δ = l2 to get

‖fJ1‖Lp(R2) .ε,M l−ε

 l−1∑
j=1

∥∥f[(j−1)l,jl]∩J1∥∥2Lp(R2)

 1
2

.

But by Proposition 7.4.2, for each j, [(j−1)l, jl]∩J1 is equal to a union of less

than 8 intervals I ∈ U1. By the triangle and Cauchy-Schwarz inequalities,

we have

‖fJ1‖Lp(R2) .ε,M δ−ε

∑
I∈U1

‖fI‖2Lp(R2)

 1
2

.

For the case i = 2, we note that translating the domain of φ to the right by

σ := l/2 is equivalent to changing φ(s) to φ̃(s) := φ(s + σ), s ∈ [0, 1 − σ].

Since the domain of φ̃ is now a subset of [0, 1], the conditions in (7.5) still
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hold. Hence, the same argument for the case i = 1 works in this case.

7.5 A rescaling theorem

The following rescaling theorem resembles the parabolic rescaling theo-

rem in [5].

Notation. From now on we denote

Dφ
p (δ) = sup{Dφ

p,2(Pδ) : Pδ is sub-admissible for φ at the scale δ}.

The subscript q = 2 is dropped because throughout the section we are

considering l2-decoupling.

Theorem 7.5.1 (Rescaling). Let φ ∈ C2([0, 1]), 0 < δ ≤ 1 and P be a sub-

admissible partition of [0, 1] for φ at the scale δ. Then for any J = [α, β]

which is a union of consecutive intervals in P, there exists another C2-

function ψ such that for any f ∈ Lp(R2) with Fourier support in N φ
δ (J), we

have

‖f‖Lp(R2) ≤ D
ψ
p ((β − α)−1δ)

 ∑
I∈P,I⊆J

‖fI‖2Lp(R2)

 1
2

. (7.6)

In particular, if φ is a polynomial of degree at most d, then so is ψ. As a

result

‖f‖Lp(R2) ≤ D
d
p((β − α)−1δ)

 ∑
I∈P,I⊆J

‖fI‖2Lp(R2)

 1
2

, (7.7)

where Dd
p(δ) was defined at the beginning of the proof of Theorem 7.2.1.

Proof. By a change of variables, we have

f[α,β](x, y) =

∫ δ

−δ

∫ β

α
f̂(s, φ(s) + t)e(xs+ y(φ(s) + t))dsdt.
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Define s′ = (s− α)/(β − α) ∈ [0, 1]. Then by direct computation,

f[α,β](x, y) = (β − α)

∫ δ

−δ
e(ty)

∫ 1

0
f̂(s, φ(s) + t)

· e(x(β − α)s′ + α)

· e
(
yφ(α+ (β − α)s′)

)
ds′dt.

We define ψ by

ψ(s′) = (β − α)−1φ(α+ (β − α)s′). (7.8)

Thus ψ(s′) = (β − α)−1φ(s).

Define t′ = (β−α)−1t and (x′, y′) = (β−α)(x, y). We also define another

function F by the relation F̂ (s′, ψ(s′) + t′) = f̂(s, φ(s) + t). More explicitly,

for any (u, v) ∈ R2, F̂ is defined as

F̂ (u, v) = f̂((β − α)u+ α, (β − α)v).

Then we see that F ∈ Lp(R2) and is Fourier supported on Nψ
(β−α)−1δ

([0, 1]).

Thus, in the above notation, we arrive at

f[α,β](x, y) = e(αx)

∫ δ
(β−α)

− δ
(β−α)

e(t′y′)

∫ 1

0
F̂ (s′, ψ(s′) + t′)e(x′s′)e(y′ψ(s′))ds′dt′

= e(αx)F (x′, y′).

Also, observe that the following partition of [0, 1]

P ′ :=
{
I ′ =

I − α
β − α

: I ∈ P
}

is sub-admissible for ψ at the scale (β − α)−1δ. Applying the definition of

Dψ
p ((β − α)−1δ), we have

‖F‖Lp(R2) ≤ D
ψ
p ((β − α)−1δ)

(∑
I′∈P ′

‖FI′‖2Lp(R2)

) 1
2

.
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Rescaling back, we obtain

‖f‖Lp(R2) ≤ D
ψ
p ((β − α)−1δ)

 ∑
I∈P,I⊆J

‖fI‖2Lp(R2)

 1
2

,

which proves (7.6).

7.6 Proof of the bootstrap inequality

Using Theorem 7.4.1 and Theorem 7.5.1, we now prove Theorem 7.3.1.

The main idea is to partition [0, 1] into subintervals according as whether

|φ′′| is bounded below. On subintervals where |φ′′| is bounded below, we use

decoupling for curves with nonvanishing curvature, which is Theorem 7.4.1.

Otherwise, we use the rescaling Theorem 7.5.1 and the following lemma on

the polynomial sub-level sets.

Lemma 7.6.1. Let P : R → R be a polynomial of degree at most d. Then

for any r > 0, the set

B(P, r) := {s ∈ [0, 1] : |P (s)| < r} (7.9)

is a union of at most d intervals relatively open in [0, 1] and each of them

have length at most

Cd

(
r

sups∈[0,1] |P (s)|

) 1
d

. (7.10)

The implicit constant here is independent of the choice of P .

Proof. The assertion on the number of intervals follows easily from the fun-

damental theorem of algebra. The assertion on the lengths of the intervals

follows from Proposition 2.2 of [66] in case n = 1 as well as the observa-

tion that sups∈[0,1] |P (s)| is essentially the sum of all the coefficients of a

polynomial P .

We will also need the following Markov Brother’s inequality.
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Lemma 7.6.2. (Inequality of A. and M. Markov [63]) For any polynomial

P of degree at most d and any α < β,

sup
s∈[α,β]

∣∣P ′(s)∣∣ ≤ 2d2

β − α
sup
s∈[α,β]

|P (s)|.

Proof. For α = −1 and β = 1, this is the classical inequality of the Markov

brothers. Several different proofs of this may be found in [63]. The proof

for a general interval [α, β] follows by mapping it into [−1, 1] by an affine

transformation.

Now we can prove the bootstrap inequality.

Proof. Let φ be polynomial of degree at most d. For M > 1, we will find

K = K(d) and Cε,M = Cε,M,d,p such that

Dφ
p (δ) ≤ K(Cε,Mδ

−ε + sup
δ′≥Mδ

Dd
p(δ
′)). (7.11)

Let δ > 0 and P be a sub-admissible partition of [0, 1] for φ at the scale δ.

Let f ∈ Lp(R2) with Fourier support in N φ
δ ([0, 1]).

Since φ be polynomial of degree at most d, we have φ′′ is a polynomial

of degree at most d− 2.

Take B = B(φ′′,M−d) as in (7.9). Split P into 3 subcollections

P1 := {I ∈ P : I ⊆ B}

P2 := {I ∈ P : I ⊆ [0, 1]\B}

P3 := {I ∈ P : I ∩B 6= ∅ and I\B 6= ∅}.

Denote fi := f∪{I:I∈Pi}, i = 1, 2, 3.

Since B has at most d − 2 connected components, P3 has cardinality

bounded above by O(d), and so by the triangle and Cauchy-Schwarz in-

equalities it suffices to consider P1 and P2.
Consider P1 first. Write B = ∪Ni Ji where N ≤ d and L1(Ji) .d M

−1.
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Apply (7.7) to Ji to get

‖(f1)Ji‖Lp(R2) ≤ D
d
p(L1(Ji)−1δ)

 ∑
I∈P,I⊆Ji

‖fI‖2Lp(R2)

 1
2

≤ sup
δ′≥Mδ

Dd
p(δ
′)

 ∑
I∈P,I⊆J1

‖fI‖2Lp(R2)

 1
2

.

Thus

‖f1‖Lp(R2) .d sup
δ′≥Mδ

Dd
p(δ
′)

∑
I∈P1

‖fI‖2Lp(R2)

 1
2

.

Now we come to P2. Write [0, 1]\B = ∪N ′i J ′i where N ′ = O(d). Apply (7.6)

to J ′i := [α, β] to get

∥∥∥(f2)J ′i

∥∥∥
Lp(R2)

≤ Dψ
p (L1(Ji)−1δ)

 ∑
I∈P,I⊆J ′i

‖fI‖2Lp(R2)

 1
2

,

where ψ(s) = (β − α)−1φ(α+ (β − α)s) as in (7.8).

Using Lemma 7.6.2 to φ′′, we have ψ satisfies (7.5) with M replaced by

Md. Hence, by Theorem 7.4.1, we have

Dψ
p (L1(Ji)−1δ) .ε,M,d,p (L1(Ji)−1δ)−ε ≤ δ−ε.

Thus, by the triangle and Cauchy-Schwarz inequalities,

‖f2‖Lp(R2) .ε,d,M,p δ
−ε

∑
I∈P2

‖fI‖2Lp(R2)

 1
2

.

Combining the estimates above, we have

‖f‖Lp(R2) ≤ K

(
Cε,d,M,pδ

−ε + sup
δ′≥Mδ

Dd
p(δ
′)

)(∑
I∈P
‖fI‖2Lp(R2)

) 1
2

,
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for some absolute constant K = K(d). Since f and P are arbitrary, we have

(7.11).

This finishes the proof of the bootstrap inequality and consequently the

uniform decoupling theorem.
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Chapter 8

Conclusion

In this thesis we studied two topics in harmonic analysis: Euclidean

configurations and decoupling. Finally we point out some future directions

of research in both topics.

8.1 Euclidean configurations

The proof of Theorem 1.1.2 relies heavily on measure theory. For this

reason, we are only able to obtain the set A with positive Lebesgue measure.

It is natural to ask if such a set A could be constructed to have zero Lebesgue

measure, when the prescribed sequence βm decays quickly enough. As a

model problem, we may ask the following question:

Problem 8.1.1. If A ⊆ R is a closed set that contains a similar copy of

every sequence that converges to 0 faster than {2−n}, must A have positive

Lebesgue measure?

Next we consider higher dimensional generalisations.

Problem 8.1.2. If A ⊆ Rn contains a similar copy of every convergent

sequence, must the closure of A contain an open ball?

The proof of Theorem 1.1.1 relies heavily on the interval structure of the

real line, which cannot be trivially generalised to higher dimensions.

8.2 Decoupling

In Theorem 7.2.1 we studied a uniform l2-decoupling theorem for poly-

nomials of a fixed degree. It is also natural to ask if this result generalises

to higher dimensions.

95



Problem 8.2.1. In Rn, given a pair of exponents (p, q) and a degree d, let

Dd
p,q(δ) be the supremum of all decoupling constants Dφ

p,q(Pδ) as φ ranges

through all real polynomial in n− 1 variables of degree at most d, and as Pδ
ranges through all “admissible partitions” of [0, 1]n−1 for φ at the scale δ.

Then what can we say about Dd
p,q(δ)?

In fact, for n ≥ 3 it is not even obvious how one might formulate the

notion of admissibility of a partition, which may consist of rectangles in

different orientations. In fact, this is related to a conjecture by Bourgain,

Demeter and Kemp [10], which we state below.

Conjecture 8.2.2 (Bourgain, Demeter and Kemp, [10]). Let φ : (−2, 2)2 →
R be a real analytic function. Then for every ε > 0, there is a constant

Cε, depending on φ and ε only, such that the following is true. For every

0 < δ < 1, there is a boundedly overlapping family P = Pδ of rectangles

covering [−1, 1]2, such that φ is δ-flat (in the sense of (6.14)) over each

P ∈ P, and for any function f : R3 → C with Fourier support on the δ-

neighbourhood of the graph of φ above [−1, 1]2, we have the l4-decoupling

inequality:

‖f‖L4(R3) ≤ Cεδ
−ε#P

1
4

(∑
P∈P
‖fP ‖4L4(R3)

) 1
4

. (8.1)

In our language, this conjecture says that for each analytic function,

there exists a boundedly overlapping family Pδ as above, such that

Dφ
4,4(Pδ) ≤ Cεδ

−ε#P
1
4 .

We remark that we cannot aim for a l2 decoupling inequality since the

function φ may have negative Hessian determinant; see the discussion in

Section 6.2.2.

In a recent work [74] with Jianhui Li, I have made some partial progress

on this conjecture. We are able to prove the conjecture for each single mixed-

homogeneous polynomial φ (for an exact definition, see the first displayed

equation in Section 1.2 of [74]). However, neither is our decoupling result
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uniform in all mixed-homogeneous polynomials with a bounded degree, nor

does it hold for a single general polynomial φ which may not be mixed-

homogeneous. The full conjecture still remains widely open for us.

97



Bibliography

[1] M. Bennett, A. Iosevich, and K. Taylor. Finite chains inside thin subsets

of Rd. Anal. PDE, 9(3):597–614, 2016.

[2] A. S. Besicovitch. The Kakeya problem. Amer. Math. Monthly, 70:697–

706, 1963.

[3] J. Bourgain. Construction of sets of positive measure not containing an

affine image of a given infinite structures. Israel J. Math., 60(3):333–

344, 1987.

[4] J. Bourgain. Besicovitch type maximal operators and applications to

Fourier analysis. Geom. Funct. Anal., 1(2):147–187, 1991.

[5] J. Bourgain and C. Demeter. The proof of the l2 decoupling conjecture.

Ann. of Math. (2), 182(1):351–389, 2015.

[6] J. Bourgain and C. Demeter. Decouplings for surfaces in R4. J. Funct.

Anal., 270(4):1299–1318, 2016.

[7] J. Bourgain and C. Demeter. Decouplings for curves and hypersurfaces

with nonzero Gaussian curvature. J. Anal. Math., 133:279–311, 2017.

[8] J. Bourgain and C. Demeter. A study guide for the l2 decoupling

theorem. Chin. Ann. Math. Ser. B, 38(1):173–200, 2017.

[9] J. Bourgain, C. Demeter, and L. Guth. Proof of the main conjecture in

Vinogradov’s mean value theorem for degrees higher than three. Ann.

of Math. (2), 184(2):633–682, 2016.

[10] J. Bourgain, C. Demeter, and D. Kemp. Decouplings for real analytic

surfaces of revolution. arXiv:1908.07053, 2019.

98



[11] R. O. Davies. Some remarks on the Kakeya problem. Proc. Cambridge

Philos. Soc., 69:417–421, 1971.

[12] C. Demeter. Fourier restriction, decoupling, and applications, volume

184 of Cambridge Studies in Advanced Mathematics. Cambridge Uni-

versity Press, Cambridge, 2020.

[13] C. Demeter, S. Guo, and F. Shi. Sharp decouplings for three dimen-

sional manifolds in R5. Rev. Mat. Iberoam., 35(2):423–460, 2019.

[14] X. Du, L. Guth, and X. Li. A sharp Schrödinger maximal estimate in

R2. Ann. of Math. (2), 186(2):607–640, 2017.

[15] X. Du, L. Guth, X. Li, and R. Zhang. Pointwise convergence of

Schrödinger solutions and multilinear refined Strichartz estimates. Fo-

rum Math. Sigma, 6:Paper No. e14, 18, 2018.

[16] S. Eigen. Putting convergent sequences into measurable sets. Studia

Sci. Math. Hungar., 20(1-4):411–412, 1985.

[17] F. Ekström, T. Persson, and J. Schmeling. On the Fourier dimension

and a modification. J. Fractal Geom., 2(3):309–337, 2015.

[18] M. B. Erdog̃an. A bilinear Fourier extension theorem and applications

to the distance set problem. Int. Math. Res. Not., (23):1411–1425, 2005.
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[20] P. Erdős. Remarks on some problems in number theory. Math. Balkan-

ica, 4:197–202, 1974.
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