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Abstract

In this thesis, we study the low energy properties of SU(n) chains in various representations. We are
motivated by Haldane’s conjecture about antiferromagnets, namely that integer spin chains exhibit
a finite energy gap, while half-odd integer spin chains have gapless excitations. Haldane was led
to this conclusion by deriving a sigma model description of the antiferromagnet, and this is what
we generalize here to SU(n). We find that most representations of SU(n) admit a mapping to a
sigma model with target space equal to the complete flag manifold of SU(n). These theories are not
automatically relativistic, but we show that at low energies, their renormalization group flow leads
to Lorentz invariance. We also show explicitly in SU(3) that the theory is asymptotically free, and
contains a novel two-form operator that is relevant at low energies.

For all n, these sigma models are equipped with n − 1 topological angles which depend on the
SU(n) representation at each site of the chain. For the rank-p symmetric representations, which
generalize the spin representations of the antiferromagnet, these angles are all nontrivial only when
gcd(n, p) = 1. This observation, together with recent ’t Hooft anomaly matching conditions, and
various exact results known about SU(n) chains, allow us to formulate the following generaliza-
tion of Haldane’s conjecture to SU(n) chains in the rank-p symmetric representation: When p is
coprime with n, a gapless phase occurs at weak coupling; for all other values of p, there is a finite
energy gap with ground state degeneracy equal to n/ gcd(n, p). We offer an intuitive explanation of
this behaviour in terms of fractional topological excitations.

We also predict a similar gapless phase for two-row representations with even n. The topolog-
ical content of these chains is the same as the symmetric ones, with p now equal to the sum of
row lengths of the representation. Finally, we show that the most generic representation of SU(n)
will admit a sigma model with both linear and quadratic dispersion; such theories requires further
understanding before their low energy spectra can be characterized.

iii



Lay Summary

This thesis classifies new types of magnetic materials. Magnets are made up of atoms that, in
addition to having a mass and electric charge, also have a property called spin. The spin of a
magnet can be thought of as a microscopic arrow: it has a fixed length, and points in a particular
direction. In familiar fridge magnets, all of these spins point along the same direction, and this is
what causes them to be attracted to metallic surfaces. In this thesis, we consider magnetic materials
that are different in two ways: 1) instead of a microscopic arrow, the spin is now a more complicated
shape, 2) instead of aligning in the same direction, the spins now point in opposite directions, and
do not stick to metals. For these new types of magnets, we classify for the first time how different
spin shapes lead to different phases of matter.
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Chapter 1

Introduction

The Haldane conjecture is a statement about quantum spin systems in one spatial dimension. Such
systems are described by the Heisenberg model, and are either ferromagnetic or antiferromagnetic,
depending on the sign of the interaction term between neighbouring spins on the chain [7]. While
the ferromagnet’s ground state is the same for both classical and quantum chains (it is the state
with all spins aligned along a common direction), this is not true for the antiferromagnet. Clas-
sically, the ground state is the so-called Néel state, with spins alternating between being aligned
and anti-aligned along a common direction, but quantum mechanically the Néel state is no longer
an eigenstate of the Heisenberg Hamiltonian [7]. This fact can be understood from Coleman’s
theorem, which forbids the spontaneous ordering of a continuous symmetry in one spatial dimen-
sion [8].1

The absence of an ordered ground state in the antiferromagnet has long been of interest to
the physics community. Indeed, shortly after Heisenberg introduced his model of a ferromagnet in
1921 [11], Bethe discovered an exact solution of the antiferromagnetic chain with spin s = 1

2 at each
site [12].2 However, despite this initial progress, spin chains with s > 1

2 were not amenable to such
techniques, and fifty years would pass before their low energy properties could be characterized. In
1981, Duncan Haldane proposed a radical classification of antiferromagnetic chains: Those with
integer spin have a finite energy gap above their quantum ground states, and exponentially decaying
correlation functions. Meanwhile, those chains with half-odd integer spin have gapless excitations,
with algebraically decaying correlation functions [13, 14].3

Despite being consistent with Bethe’s 1931 solution, Haldane’s “conjecture” as it came to be
known, was met with widespread skepticism [16]. This was likely due to the fact that spin-wave
theory, a method that allows one to calculate the energy spectrum of antiferromagnets in higher
dimensions, largely agreed with Bethe’s one-dimensional results. We now know this to be a coin-
cidence, but at the time, this suggested to the community that spin-wave results might be reliable
in one dimension for all values of s. This would imply that all antiferromagnets would exhibit gap-
less excitations at low energies [7, 17]. Of course, this was in direct contradiction with Coleman’s
theorem, that invalidated spin-wave theory in one dimension, but nonetheless, by the 1980s it was

1Coleman’s theorem is often confounded with the Mermin-Wagner-Hohenberg theorem, which forbids an ordered
ground state in two spatial dimensions at finite temperature, and applies equally well to both ferromagnets and antifer-
romagnets [9, 10]. In Section 2.1.1, we review this subject further, and explain why Coleman’s theorem breaks down for
the ferromagnet.

2Unless otherwise specified, it is assumed that the spin value at each site of the chain is identical, so that an antifer-
romagnetic spin chain is uniquely defined by a positive half integer s.

3Haldane’s original preprint, which was rejected from publication in 1981, has since been made available online [15].
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Chapter 1. Introduction

widely accepted that gapless excitations were universal among one dimensional antiferromagnets.
In fact, Haldane’s conjecture was met with surprise in other research areas of physics as well.

As will be reviewed in great detail later, Haldane’s conjecture hinges on a correspondence between
antiferromagnets and the O(3) nonlinear sigma model, a quantum field theory that was being used
as a toy model for quantum chromodynamics at the time [18]. The role of the spin, s, manifests as
a topological angle θ in the sigma model, so that integer s translates to θ = 0 and half-odd integer
s translates to θ = π. Thus, Haldane’s claim about antiferromagnets was also a claim about mass
gaps in the O(3) nonlinear sigma model. At that time, it was widely believed that a finite gap
would exist for all values of θ. This was known exactly for θ = 0 [19], and suggested numerically
for small values of θ [20, 21].

Over the next few years, Haldane’s conjecture would defy these skeptics, thanks to verification
from multiple areas of research. Experimentally, neutron scattering on the organic nickel com-
pound NENP, which is a quasi-one dimensional s = 1 chain, detected a finite energy gap above the
ground state [22, 23]. Numerically, studies using exact diagonalization, Monte Carlo, and density
matrix renormalization group methods were able to detect a finite gap in s = 1, 2 and 3 [24–29].
Very recently this has been extended to s = 4, where a tiny gap of 7.99(5)×10−4 was measured [30].
Meanwhile, in the O(3) nonlinear sigma model picture, Monte Carlo methods were used to numer-
ically verify the absence of a mass gap when θ = π [31–36], and a related integrable model was
eventually discovered by the Zamolodchikov brothers [37].

In many cases, the studies carried out in order to verify Haldane’s claims were scientific break-
throughs in their own right. Indeed, the fields of density matrix renormalization group [38–40], and
more generally tensor networks [41–43], as well as symmetry protected topological matter [44–47]
all originated, in part, due to Haldane’s conjecture. It is thus not a leap to claim that any generaliza-
tion of Haldane’s conjecture would be an impactful result to the physics community. And indeed,
this is what led physicists, including Affleck, Read, Sachdev and others to extend Haldane’s work
to SU(n) generalizations of spin chains in the late 1980s [48–51]. At the time, these were purely
hypothetical models with no experimental realization, but thanks to the correspondence between
spin chains and sigma models, they were still interesting in their own right. Another motivation
was a proposed relation between nonlinear sigma models and the localization transition in the quan-
tum Hall effect [48, 52, 53]. And while this unsolved problem remains a motivator to study such
models, recent developments from the cold atom community have revealed that SU(n) chains are
now experimentally realizable, offering a much more physical motivation [54–66]. These propos-
als have led to a renewed theoretical interest in the field of SU(n) physics [61, 67–77]. Moreover,
generalizations of the O(3) nonlinear sigma model, called flag manifold sigma models, have also
garnered recent attention, as they realize so-called ’t Hooft anomalies, which are interesting to high
energy physicists [71, 72, 78, 79]. This calls for not only a generalization of Haldane’s prediction
of gapped vs. gapless behaviour (driven by topological terms), but also for developing a more gen-
eral understanding of the spin-chain/sigma model paradigm, so as to understand which families of
SU(n) chains correspond to a particular quantum field theory.

In this thesis, we study SU(n) Heisenberg models on one-dimensional chains in various repre-
sentations. Unlike the familiar spin chains with SU(2) symmetry, for n > 2, multiple non-negative

2



Chapter 1. Introduction

integers are required in order to completely specify the representation. Ultimately, our goal is to
establish a generalization of the Haldane conjecture for these models. That is, we seek to determine
which families of SU(n) representations give rise to chains with gapless ground states, and which
families give rise to chains with unique, gapped ground states. Essential to Haldane’s argument is a
low energy equivalence between the antiferromagnet and the O(3) nonlinear sigma model, and so in
extending Haldane’s conjecture, we also generalize this equivalence. That is, we determine which
SU(n) representations correspond to chains that admit mappings to flag manifold sigma models,
which are the SU(n) generalization of the O(3) nonlinear sigma model.

We begin in Chapter 2 of this thesis with a review of the various arguments that, collectively,
provide a modern proof of Haldane’s conjecture. A large part of this chapter is dedicated to the
derivation of the O(3) nonlinear sigma model description of the spin chain, in an equivalent CP1

language, as this will serve as our starting point in later chapters. The notion of topological angle,
and how it arises from the spin chain as a Berry curvature term is explained. We also introduce spin-
wave theory and explain how, despite Coleman’s theorem, it is a useful tool in analyzing quantum
spin chains in one spatial dimension. In Chapter 3, we promote the symmetry group of the antifer-
romagnet from SU(2) to SU(n), and discuss these so-called SU(n) chains in full generality. This
requires a detailed discussion of the irreducible representations and Casimir operators of SU(n),
which we provide. We also explain the issue of local degeneracies in SU(n) chains, and how this
requires the addition of longer-range terms in the Heisenberg Hamiltonians. Experimental realiza-
tion of SU(n) chains is also mentioned. Finally, we finish Chapter 3 by reviewing various exact
results that are known for SU(n) chain systems, including the LSMA theorem [80, 81], generalized
AKLT models [67, 82, 83], and integrable SU(n) chains [12, 84–89]. Next, in Chapter 4, we focus
our attention on the simplest SU(n) chains: the SU(3) chains in the totally symmetric representa-
tions. We extend much of the analysis from Chapter 2 to these chains: we introduce ‘flavour-wave’
theory, which generalizes spin-wave theory, and derive the corresponding low energy quantum field
theory description of the SU(3) chain. In this case, the O(3) nonlinear sigma model is replaced with
the SU(3)/[U(1)]2 flag manifold sigma model, equipped with two topological angles. We perform
extensive renormalization group calculations in this field theory, and combine these with results
from a Monte Carlo simulation and a strong coupling analysis to obtain a phase diagram for the
SU(3) chain. We discuss the ’t Hooft anomalies present in this model, and present an SU(3) ver-
sion of Haldane’s conjecture. We complete this chapter with a discussion of other representations
of SU(3), including the self-conjugate ones. Next, in Chapter 5, we consider the symmetric repre-
sentation SU(n) chains, thus extending the calculations from Chapter 4 from 3 to n. The low energy
physics of these chains is captured by the SU(n)/[U(1)]n−1 flag manifold sigma model with n − 1
topological angles. Here, new difficulties arise, perhaps most importantly the absence of Lorentz
invariance in the corresponding sigma model. We present extensive calculations that establish that
under renormalization, Lorentz invariance is restored. We also extend the strong coupling analysis
and ’t Hooft anomaly conditions from SU(3) to SU(n). This leads to a version of Haldane’s conjec-
ture for SU(n) chains in symmetric representations. Having identified the SU(n) sigma models of
interest, we turn in Chapter 6 to the task of reverse engineering the correspondence between SU(n)
chains and sigma models. That is, given the SU(n)/[U(1)]n−1 flag manifold, we classify all possible
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representations of SU(n) chains that admit a mapping from chain to sigma model with this target
space. We identify the key property that ensures the presence of an ’t Hooft anomaly, namely a
transitive Zn action on the field content, which is a manifestation of n-site translation invariance
in the SU(n) chain. We also discuss the emergence of quadratic Goldstone bosons, and the subtle
correspondence between non-Lorentz invariance, Goldstone’s theorem, and spontaneous symmetry
breaking in general SU(n) chains. This leads to detailed classification tables of dispersion relations
for each SU(n) representation. Finally, in the last major chapter of this thesis, Chapter 7, we pro-
vide a physical picture of the mass-generating mechanism in SU(n) chains. That is, we explain how
topological excitations with fractional charge produce a finite energy gap in the flag manifold sigma
model, akin to the vortex-generated gap in the Kosterlitz-Thouless transition [90, 91].4 This is first
done in the absence of topological angles; upon restoring the angles, we show how interference ef-
fects inhibit this mass-generating mechanism, and lead to a gapless ground state, for certain SU(n)
representations. Remarkably, these are precisely the representations that our generalized Haldane
conjecture predicts will have a gapless phase, and can be understood as a consequence of the tran-
sitive Zn action, which ensures n − 1 distinct topological angles. In Chapter 8, we summarize our
results and provide an outlook towards the rapidly developing field of SU(n) physics.

4Throughout, we will refer to the Kosterlitz-Thouless transition, but perhaps a more apt name is the Berezinskii-
Kosterlitz-Thouless transition.
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Chapter 2

A Review of the Haldane Conjecture

2.1 Introduction

Antiferromagnetic chains are described by the Heisenberg model,

H = J
∑

j

~S ( j) · ~S ( j + 1). (2.1)

Here, the sum runs overs all lattice sites j of the chain, and the interaction strength J is positive.
The vectors ~S are 3-tuples of spin operators,

~S =
(
S x S y S z

)T
(2.2)

and satisfy the su(2) Lie algebra:5

[S a, S b] = iεabcS c. (2.3)

These chains are defined by their spin s, which corresponds to the irreducible representation of
SU(2) under which the spin operators S a transform.6 The spin can be read off from the quadratic
Casimir operator,

~S · ~S = s(s + 1)I. (2.4)

On the right hand side of this expression, I is the identity operator, whose dimension is equal to
2s + 1, the dimension of the spin-s representation of SU(2).

Before Haldane, most physicists based their understanding of antiferromagnetic chains on spin-
wave theory, which corresponds to taking the limit s → ∞ [17]. This amounts to a semi-classical
limit, as can be seen by inserting (2.4) into the Heisenberg uncertainty relation:

∆S a∆S b ≥
1
2
|〈[S a, S b]〉| ∆S a :=

√
〈S 2

a〉 − 〈S a〉
2. (2.5)

For large values of s, relative fluctuations of the spin operator, ∆S a/|S a| are order O(s−1). Thus in
the limit s→ ∞, the spin operators can be simply treated as three-dimensional vectors constrained
to have length

√
s(s + 1), and the Hamiltonian (2.1) resembles that of a classical antiferromagnet.

Spin-wave theory proceeds from here, seeking to describe low energy fluctuations about the clas-
sical ground state, which has its spins adjacently antiparallel (the so-called Néel state). As we will

5Here and throughout, we set Planck’s constant ~ = 1.
6A formal treatment of the representation theory of SU(n) will be provided in Section 3.2.1.
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2.1. Introduction

demonstrate shortly, this leads to the prediction of gapless excitations, regardless of the value of s,
and largely agrees with Bethe’s s = 1

2 exact solution [12]. This agreement was sufficient evidence
for many, and as a consequence, the physics community largely accepted the spin-wave theory
prediction of gapless excitations as a universal property of antiferromagnetic chains [7, 16].

However, what most physicists were forgetting, or at least choosing to ignore, was the fact that
spin-wave theory inherently assumes an ordered quantum ground state. This is perfectly reasonable
in higher-dimensional systems, but is in direct contradiction with Coleman’s theorem for one-
dimensional chains [8]. In order to demonstrate this fact, we now present a brief review of spin-
wave theory, and discuss the Goldstone modes that lead to infrared divergences. Despite its general
invalidity, it has been appreciated rather recently that spin-wave theory can still be a useful tool in
one dimensional systems [92]. As such, this review will also set the stage for flavour-wave theory,
a generalization of spin-wave theory to larger symmetry groups, that we will introduce in later
chapters.

2.1.1 Spin-wave theory

To proceed with spin-wave theory, we begin by rewriting the Hamiltonian (2.1) in terms of boson
operators that satisfy canonical commutation relations. Since the classical ground state of the
antiferromagnet is the Néel state, which has a two-site unit cell, we introduce two bosons b1 and
b2, each via a Holstein-Primakoff transformation [93]. For example, on the even sites, we may
write,

S z = s − b†1b1 S x − iS y =
√

2sb†1

√
1 −

b†1b1

2s
, (2.6)

which preserves the algebra (2.3). For the odd sites, we use a similar expansion, except now
the presence of bosons should correspond to deviations of S z from −s: S z = −s + b†2b2. Now,
under the assumption of large s, we may expand the square root in powers of s−1, and substitute
this expression into (2.1). After performing a Bogoliubov transformation, we obtain a diagonal
quadratic Hamiltonian, with dispersion relation7

E(k) = 2Js| sin(k)|. (2.7)

In other words, spin-wave theory predicts gapless excitations that disperse linearly, with a velocity
of v = 2Js. In this context, these linear modes are referred to as Goldstone modes, since they arise
as a consequence of the spontaneous breaking of the spin symmetry, a result known as Goldstone’s
theorem [94].

It is these Goldstone modes that are the foundation of Coleman’s argument for the absence of
spontaneous symmetry breaking in one spatial dimension. To see this, note that the evaluation of
any physical expectation value, such as the staggered magnetization, necessarily involves a sum

7Throughout, we set the lattice spacing a = 1.
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2.2. Sigma Model Derivation

over these modes. Indeed, inverting the Bogoliubov transformation that led to (2.7), we find

〈S z(x)〉 = s − 〈b†1(x)b1(x)〉 → s −
1
2

∫
dk
2π

1 − | sin(k)|
| sin(k)|

(2.8)

in the continuum limit (here x is the continuous coordinate along the chain). For small values of
k, the integrand behaves like 1

k , indicating that 〈S z(x)〉 suffers from an infrared divergence. Such
divergences are a clear sign of an ill-defined theory, and are ubiquitous in one-dimensional systems
whenever one assumes the spontaneous breaking of a continuous symmetry. As an exception, the
ferromagnet evades this problem, which is related to the fact that its Goldstone bosons disperse
quadratically instead of linearly. The mechanism behind this quadratic dispersion has been com-
pletely understood only recently [95–97], and we will have more to say on this subject in Chapter
6.

As we’ve highlighted above, the fact that spin-wave theory leads to infrared divergences, and is
thus an inconsistent theory, did not deter researchers in the field from accepting its predictions. And
as it turns out, information can still be gleaned from this formalism, so long as the right calculations
are performed. By this, we mean that if one restricts to the calculation of quantities that preserve
the symmetry that is being spontaneously broken, then infrared divergences will be absent. This
was recently demonstrated explicitly for spin chains for spins up to s = 5

2 , and is expected to be true
for all spins [92]. However, for spin-wave theory to be valid when doing numerical simulations, it
is important that the system size is much smaller than the correlation length ξ ∼ s−1eπs.

And so, perhaps it is not surprising that the spin-wave prediction at s = 1
2 roughly reproduces

Bethe’s exact solution. However, the explanation for why spin-wave theory was fundamentally
wrong for s = 1 could not have been anticipated at the time. This is because it had to do with a
topological distinction between integer and half-odd integer spin chains, and such concepts were
foreign to condensed matter physicists in the early 1980s. As we will now detail, Haldane’s simple
approach of maintaining the large-s limit, while weakening the assumption of a Néel ground state,
leads directly to this exciting new field of theoretical physics.

2.2 Sigma Model Derivation

In this section, we derive a low energy mapping between the spin-s antiferromagnetic chain and
a particular sigma model. By sigma model, we mean a quantum field theory whose fields define
a map from (Euclidean) space time to some curved manifold. Recall that in the large-s limit, we
may replace the 3-tuple of operators ~S with a classical vector in R3, constrained to have length
√

s(s + 1) by the quadratic Casimir. In this case, we are eventually led to a quantum field theory
whose field ~n is constrained to live on the sphere S 2, a so-called S 2-sigma model. This was the
approach originally taken by Haldane, although he followed the widespread convention of referring
to the model as the O(3) nonlinear sigma model, even though O(3) is not isomorphic to S 2 as a
group. Instead, what holds is

S 2 = O(3)/O(2), (2.9)
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where the quotient by O(2) corresponds to the gauge symmetry of choosing a particular direction
for S z [98].

A slightly different approach is to make use of a true isomorphism between the groups S 2 and
CP1, and instead work with a complex field ϕ ∈ C2 that satisfies |ϕ| = 1. This is the approach that
we will follow. Our reasoning for this choice will become clear in Chapter 3, when we promote
the on-site symmetry of the chain from SU(2) to SU(n). In this more general case, it is much more
natural to work with complex vectors ϕ ∈ Cn than their real-vector equivalents.

To this end, let us introduce the following matrices of spin operators,

S =

(
S z S x − iS y

S x + iS y −S z

)
. (2.10)

The su(2) Lie algebra (2.3) manifests itself in the following commutation relations:

[S αβ, S µν] = δανS µβ − δµβS αν. (2.11)

In terms of these matrices, the Heisenberg interaction can be rewritten according to

~S (i) · ~S ( j) =
1
2

tr[S (i)S ( j)]. (2.12)

As before, in the limit of large s, quantum fluctuations tend to zero and we can treat these matri-
ces as classical objects. The quadratic Casimir constraint (2.4) restricts the eigenvalues of these
matrices to be ±s.

The main strategy behind Haldane’s derivation, which still carries over here to the complex
formalism, is to begin as in spin-wave theory with a classical ground state ansatz, but then promote
the matrices S to objects that can vary in space and in time. Therefore, we must first establish a
convenient way of representing the Néel state in the complex formalism, before proceeding. Since
the eigenvalues of S are constrained in the limit s→ ∞, we may write

S = V†
(
s 0
0 −s

)
V, (2.13)

with V a 2 × 2 unitary matrix. We may shift S by the constant matrix sI, since this only alters the
Hamiltonian by a fixed amount. This allows for a convenient representation in terms of the first
row of V , φ ∈ C2:

S αβ = sφ∗αφβ, (2.14)

Since V is unitary, we have that |φ|2 = 1. Inserting this into the Heisenberg interaction, we find

tr[S ( j)S ( j + 1)] = s2|φ∗( j) · φ( j + 1)|2. (2.15)

In words, this equation demonstrates that the Heisenberg interaction is minimized when neighbour-
ing complex vectors φ are orthogonal. Thus, the classical Néel state in this formalism corresponds
to a pattern of alternating, orthogonal vectors: At even sites we have φ = ϕ1, and at odd sites, we
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2.2. Sigma Model Derivation

have φ = ϕ2, which satisfy ϕ1,∗ · ϕ2 = 0. Pictorially, we may represent this ground state using two
coloured nodes := ϕ1 and := ϕ2:

· · · · · · (2.16)

This diagram can be compared with the typical Néel pattern · · · ↑↓↑↓ · · · , in which neighbouring
objects are antiparallel instead of orthogonal – this is a distinguishing feature between the two
formalisms.

Now that the ground state ansatz has been established, we introduce fluctuations about the ϕα,
for α = 1, 2. In terms of the original φα appearing in (2.13), we write8

φ1 =
1
s

L12ϕ
2 +

√
1 −
|L21|2

s2 ϕ1 φ2 =
1
s

L21ϕ
1 +

√
1 −
|L12|2

s2 ϕ2. (2.17)

This somewhat cumbersome notation has been chosen in order to be consistent with similar
derivations in later chapters of this thesis. The coefficients L12 = L∗21 correspond to fluctuations
within the two-site unit cell of the Néel state, and are functions of space and time, as are the basis
vectors ϕα. The remaining terms in (2.17), proportional to the radical, correspond to uniform
rotations of the entire two-site cell. We have chosen, by convention, to include a factor of 1

s in front
of the L12 and L21 coefficients.

In passing, we note that the expansion (2.17) can be related to the more familiar real-space
derivation of the spin chain/sigma model correspondence,

~n =
1
s
~l ±

√
1 −

l2

s2 ~m, (2.18)

using the equivalences
~m · ~σ∗ = U†σzU ~l · ~σ∗ = 2U†LU, (2.19)

where we’ve defined a unitary matrix U whose rows corresponds to ϕα (i.e. Uαβ = ϕαβ ) and set

L11 = L22 = 0. Here ~l, ~m and ~n are all vectors in R3, and the Pauli matrices ~σ are defined according
to

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (2.20)

In order to derive a sigma model, we now express the matrices S in terms of these new basis
vectors, ϕα, according to

S αβ(2 j) = sφ∗,1α φ1
β S αβ(2 j + 1) = sφ∗,2α φ2

β. (2.21)

8It is not necessary to work with both φ1 and φ2, since they are linearly dependent. We do so for convenience only.
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2.2. Sigma Model Derivation

We expand this expression in powers of s−1, and insert it into the Heisenberg Hamiltonian in order
to obtain a low energy description of the antiferromagnetic chain. Using

S αβ(2 j) = 2sϕ∗,1ϕ1 + U†LU + 1
s U†

(
−|L12|

2 0
0 |L12|

2

)
U + O(s−2), (2.22)

S αβ(2 j + 1) = 2sϕ∗,2ϕ2 + U†LU + 1
s U†

(
|L12|

2 0
0 −|L12|

2

)
U + O(s−2), (2.23)

and Taylor expanding the terms that occur on different sites, the Heisenberg interactions become

tr[S (2 j)S (2 j + 1)] = (2.24)

4s2tr[U∂xU†Λ1∂xUU†Λ2] + 4|L21|
2

+4s(L21[∂xUU†]12 + L12[U∂xU†]21),

tr[S (2 j + 1)S (2 j + 2)] = (2.25)

4s2tr[U∂xU†Λ2∂xUU†Λ1] + 4|L12|
2

−4s(L12[∂xUU†]21 + L21[U∂xU†]12),

where we have defined9

Λ1 :=
(
1 0
0 0

)
Λ2 :=

(
0 0
0 1

)
. (2.26)

Above, we have suppressed terms that are at least O(s−2). At this point, we are tasked with av-
eraging over the L12 fluctuations in order to obtain a theory written in terms of U only. Haldane
achieved this by turning from the Hamiltonian formalism to the Lagrangian formalism, and this
will be our approach as well.

2.2.1 Coherent state path integral

In order to derive the Lagrangian description of the antiferromagnetic chain, we introduce a com-
plete set of coherent states. Starting with φ ∈ C2, we define

|φ〉 :=
1

√
(2s)!

(φ · a)2s|0〉 (2.27)

where a is a 2-tuple of boson creation operators (known as Schwinger bosons) [99, 100]. With
these objects, we may construct a path integral by inserting them between thin time slices of width
δτ of the partition function:

Z =

∫
D[φ]

N−1∏
k=0

〈φ(τk)|e−Hδτ|φ(τk + δτ)〉. (2.28)

9Throughout, we will denote by Λα the matrix with a single nonzero entry (equalling 1), at row and column α. As
an abuse of notation, we will not specify the dimensions of Λ, which will change from 2 to n as we switch from SU(2)
to SU(n) in later chapters.
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Here |φ(τk)〉 is actually a direct product of coherent states, one for each site of the chain,

|φ(τk)〉 = ⊗L
j=1|φ( j, τk)〉, (2.29)

and the integration measure is defined to be

D[φ] :=
∫ ∏

k

∏
j

dΩφ( j,τk), (2.30)

where dΩφ is the normalized Haar measure of the coherent state [98]. To linear order in δτ, we
may expand

〈φ(τk)|e−Hδτ|φ(τk + δτ)〉 ≈ 〈φ(τk)|φ(τk + δτ)〉 − δτ〈φ(τk)|H|φ(τk)〉. (2.31)

The second term will generate the Hamiltonian contribution to the Lagrangian. Meanwhile, the
overlap term can be approximated using

〈φ(τk)|φ(τk + δτ)〉 ≈ (1 + φ∗ · ∂τφ)2s. (2.32)

By taking the product over all time slices τk, we can then reexponentiate according to∏
k

〈φ(τk)|φ(τk + δτ)〉 = exp
∑

k

log〈φ(τk)|φ(τk + δτ)〉 ≈ exp
∑

k

2sφ∗ · ∂τφ. (2.33)

This is the so-called “Berry phase contribution” to the path integral. It is a geometric quantity, and
mathematically speaking, corresponds to the symplectic form on the coherent state manifold [71,
72]. Adding to it the Hamiltonian term δτ〈φ|H|φ〉, and taking the number of time slices N → ∞,
we obtain a path integral description of the partition function,Z, with Lagrangian density

L = LBerry − 〈φ(τ)|H|φ(τ)〉. (2.34)

In the previous subsection, we were able to express H in terms of the matrices U and L. Using
(2.17), we also do this for LBerry. First note that

LBerry = s
1∑

j=0

φ( j)∗ · ∂τφ( j) (2.35)

≈ s
[
φ1,∗ · ∂τφ

1 + φ2,∗ · ∂τφ
2 + ∂xφ

2,∗ · ∂τφ
2 + φ2,∗ · ∂x∂τφ

2
]
.

To see this, note that the LBerry is a Lagrangian density, obtained by summing over both sites of
the unit cell, and dividing by the unit cell size, which is 2. It is not important which unit cell we
choose, so we have taken sites 0 and 1 of the chain. We have also made use of the Néel ansatz (as
reflected in (2.22), to identify φ( j = 0) = φ1 and φ( j = 1) = φ2. The approximation follows from
Taylor expanding all terms about site j = 1, to linear order. Using (2.17), we find

LBerry = −sεµνtr[∂µU†Λ2∂νU] − 2tr[L∂τUU†], (2.36)

11



2.2. Sigma Model Derivation

where we have made use of the identity tr[U†∂U] = 0. This identity will be used repeatedly
throughout this thesis, and is proven for n×n unitary matrices in Appendix A. Combining this result
with (2.24) and (2.25), we arrive at the following Lagrangian description of the antiferromagnetic
chain:

L = 4s2Jtr[U∂xU†Λ1∂xUU†Λ2] + 4J|L2
1|

2 + sεµνtr[∂µU†Λ2∂νU] − 2tr[L∂τUU†]. (2.37)

Again, we have divided the Hamiltonian terms by 2, which is the size of the unit cell, to obtain the
Hamiltonian density. As a final step, we now integrate over the fluctuations L12, using the identity

dzdz∗e−z∗ωz+uz+vz∗ =
π

ω
euv/ω. (2.38)

This results in a Lagrangian in terms of U only:

L =
1

4J
tr[Λ1U∂τU†Λ2∂τUU†] + 4s2tr[Λ1U∂xU†Λ2∂xUU†] + sεµνtr[∂µU†Λ2∂νU]. (2.39)

There are two names for this quantum field theory. As it is written, it resembles a sigma model in
terms of matrices U ∈ U(2). However, U can actually be restricted to a smaller manifold, due to
the invariance of the theory under diagonal transformations:

U →
(
eiϑ1 0
0 eiϑ2

)
U. (2.40)

These transformations correspond to the group U(1) × U(1), and result in the restriction

U(2)→
U(2)

U(1) × U(1)
=

SU(2)
U(1)

, (2.41)

which is an example of a flag manifold. Thus, the above field theory can be referred to as the
SU(2)/U(1) flag manifold sigma model.

However, this naming convention is somewhat recent, and is related to extensions of Haldane’s
work to SU(n) chains, which is the subject of later chapters of this thesis. More commonly, physi-
cists choose to write the theory in terms of the first row of U, that is, in terms of ϕ := ϕ1 ∈ C2 [7].
In this formulation, (2.39) reads

L = 4s2
(
|∂xϕ|

2 − |ϕ∗ · ∂xϕ|
2
)

+
1

4J

(
|∂τϕ|

2 − |ϕ∗ · ∂τϕ|
2
)
− sεµν∂µϕ∗ · ∂νϕ. (2.42)

Since ϕ ∈ C2 and is constrained by |ϕ| = 1, this is known as the CP1 sigma model. It should
be emphasized that these two models are not just equivalent: they are identical. We are merely
distinguishing between two names for the same manifold, and thus the same sigma model. This
should be contrasted with the O(3) nonlinear sigma model originally obtained by Haldane. This
theory is equivalent, but distinct from the quantum field theory derived here.

12



2.3. Properties of the Sigma Model

This completes the derivation of Haldane’s low energy mapping between antiferromagnet and
sigma model. As mentioned previously, these calculations will serve as a template when we con-
sider chain systems with larger symmetry groups in the remaining chapters of this thesis. But
before embarking on this generalization program, it is necessary to review additional arguments
that led Haldane to his famed conjecture.

2.3 Properties of the Sigma Model

We begin with arguably the most distinguishing property of the quantum field theory derived above;
namely, its topological angle.

2.3.1 Topological angle

Perhaps the most surprising aspect of Haldane’s conjecture is its discreteness; that is, how it distin-
guishes between chains with spin 2s and 2s + 1. In many aspects, our above derivation resembles
spin-wave theory, which is a large-s expansion and parallels a typical semiclassical perturbative
expansion with s−1 ∼ ~. But if this were the case, and our calculations were purely perturbative,
then it would be impossible to detect a difference between even and odd s, in the limit s→ ∞. This
paradox is resolved by the final term in (2.39),10

Ltop = sεµνtr[∂µU†Λ2∂νU]. (2.43)

The subscript ‘top’ stands for ‘topological’, and refers to the fact that it is left unaffected by con-
tinuous transformations of U. In other words, a topological quantity cannot be detected by contin-
uously varying a small parameter, such as s−1. To see that this explicitly holds for (2.43), note that
it is a total derivative: ∫

d2xLtop = s
∫

d2x∂µ
(
εµνϕ

∗ · ∂νϕ
)
∈ 2πsiZ. (2.44)

Therefore,Ltop is affected only by the behaviour of ϕ on the boundary of R2, and will be unchanged
by transformations that alter ϕ in the bulk of R2 only. Since any field configuration that contributes
to the overall partition functionZ must have finite action, we may assume that ϕ attains a constant
value at some radius R away the origin. This allows us to identify R2 with the sphere S 2, so that ϕ
can be viewed as the following mapping:

ϕ : S 2 7→
SU(2)
U(1)

. (2.45)

The topological properties of such maps from S 2 to the flag manifold SU(2)/U(1) are classified by
the second homotopy group, π2(CP1),

π2(CP1) = Z. (2.46)
10We have used Λ2 = I − Λ1 and tr[U†∂U] = 0 to rewrite Ltop in terms of ϕ = ϕ1 instead.
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2.3. Properties of the Sigma Model

This is the formal justification for the appearance of Z on the right hand side of (2.44). Actually,
Ltop is usually identified with an element of H2(CP1,Z), the second cohomology group of CP1.
However, for all of the theories that we study, the groups H2 and π2 coincide, and so we will not
have to worry further about this distinction [71, 72]. And as is becoming a repeated phrase in this
chapter, this machinery may seem unnecessarily complicated but will prove to be incredibly useful
when we consider more general symmetry groups later on.

The prefactor occurring in (2.44) motivates the following definition:

θ := 2πs. (2.47)

This is the so-called topological angle of the sigma model. This nomenclature can be understood
by realizing that Ltop leads to the following prefactor in the path integral of the partition function:

e−
∫

d2 xLtop = eiθk k ∈ Z. (2.48)

In other words Ltop contributes a U(1) phase to particular field configurations, with phase angle θ.
Much later, in Chapter 7 of this thesis, we will explain how the energy gap predicted by Haldane
is related to this U(1) phase. In short, a nontrivial θ leads to interference effects among fractional
topological excitations, resulting in the closing of the energy gap.

At this point, the distinction between half-odd integer s and integer s becomes clear: In the
former case, the corresponding sigma model has a topological angle of θ = π, while in the latter
case, the topological angle is trivial. And while little was understood of the CP1 sigma model with
nonzero θ, it was known that at θ = 0, the model exhibited a finite mass gap [19]. This result, when
compared with Bethe’s proof that the s = 1

2 chain is gapless [12], led Haldane to argue that this
topological angle, which is ultimately determined by the parity of 2s, drives a phase transition in
the CP1 sigma model [13, 14]. That is, when θ = π, a gapless phase is possible, while when θ = 0,
the model should exhibit a finite gap in all cases.11 And thus, we arrive at the famous Haldane
conjecture for spin chains: Integer spin chains are gapped, while half-odd integer spin chains are
gapless. In the following subsection, we review additional studies that help elucidate the general
phase diagram of these chains.

2.3.2 Renormalization group flow

We may rewrite the sigma model in (2.39) as

L =
1
g

tr[U∂µU†Λ1∂µUU†Λ2] +
1

2π
θεµνtr[∂µU†Λ2∂νU], (2.49)

where we’ve defined
g =

1
s

v = 2Js, (2.50)

11The condensed matter community tends to use the phrase “energy gap”, while the high energy community tends to
instead use “mass gap”. This reflects the fact that historically, the CP1 sigma model was used by particle physicists as a
toy model for quantum chromodynamics.
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2.4. Exact Results

and rescaled τ → vτ. With this notation, it is clear that the Lagrangian is invariant under the ex-
change of spatial and temporal coordinates. In other words, Lorentz invariance has emerged in the
low energy theory of the antiferromagnet. This feature will prove to be essential when generalizing
Haldane’s conjecture to larger symmetry groups, as we will demonstrate in great detail in later
chapters of this thesis. Note that if one repeats this field theory derivation for the ferromagnet,
such Lorentz invariance is not achieved. This is deeply related to the fact that the corresponding
Goldstone bosons of the ferromagnet have quadratic dispersion relations [95–97].

The sigma model (2.49) at θ = 0 exhibits another interesting property, which is known as
asymptotic freedom [18, 92]. This means that as we increase the energy scale of our theory, the
coupling constant g tends to zero. This is a statement about renormalization group flow, a subject
that will be reviewed in detail in Section 4.5, and so we will not prove this result here. As a con-
sequence of asymptotic freedom, perturbatively massless excitations will become massive, which
explains the finite mass gap when θ = 0. Moreover, recent work suggests that asymptotic free-
dom may render spin-wave theory applicable to chains after all, so long as the physical quantities
considered preserve the spin symmetry [92]. This fact motivates our consideration of generalized
spin-wave theory in later chapters.

Since Haldane’s original papers, there has been a large research effort on broadening our un-
derstanding of the CP1 sigma model phase diagram. In [86], it is established that for bare coupling
g less than some critical gc, and for θ = π, the model flows to another sigma model which is confor-
mally invariant: the SU(2)1 Wess-Zumino-Witten (WZW) model [101, 102].12 While it is natural
to expect a flow to some SU(2)-invariant conformal field theory at the critical point, this particular
model is singled out due to the fact that all other theories (which are SU(2)k WZW models for
k > 1) are unstabilized due to relevant operators [86]. This flow behaviour is shown in Figure 2.1.
Note that for g > gc, the model goes into a gapped phase with a spontaneously broken Z2 symme-
try, which is a manifestation of the underlying translation symmetry in the spin chain.13 In [86], it
is explained how all regions of the phase diagram in Figure 2.1 can be reached: the bare coupling
g can be increased by adding antiferromagnetic next-nearest-neighbour interactions, and θ can be
changed by adding alternating exchange interactions, which explicitly break translation symmetry.
In both cases, the scaling of the mass gap has been calculated using the SU(2)1 WZW model. Fi-
nally, the right hand edge of the diagram, corresponding to the strong coupling limit g → ∞, has
also been considered [104, 105].

2.4 Exact Results

In addition to the exact result of Bethe for the s = 1
2 chain [12], which predicts a gapless ground

state with no broken symmetries, there are two additional pieces of rigorous evidence for the an-
tiferromagnet phase diagram, Figure 2.1. They are both in agreement with Haldane’s conjecture,

12Another name for these models is WZNW, after Sergei Novikov [103].
13If a translationally invariant chain with a d-site unit cell maps onto a sigma model, translation symmetry will

manifest as a Zd action.
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Figure 2.1: Phase diagram of the antiferromagnetic chain.

and are worth mentioning now, since their generalizations will appear later in the text.

2.4.1 The Lieb-Schultz-Mattis Theorem

The Lieb-Schultz-Mattis (LSM) theorem is a rigorous statement about ground states in translation-
ally invariant Hamiltonians [80]. Applied to the spin-s antiferromagnet, this theorem requires that
if s is not an integer, then either the ground state is unique with gapless excitations, or there is a
ground state degeneracy. This is consistent with the θ = π line in Figure 2.1. In Section 3.5.2, we
prove a more general result (an extension of the LSM-A theorem, where A stands for Affleck [81]),
from which a proof of the LSM theorem follows automatically.

2.4.2 The Affleck-Kennedy-Lieb-Tasaki model

One of the most important theoretical results to follow Haldane’s conjecture and support its conclu-
sion was the Affleck-Kennedy-Lieb-Tasaki (AKLT) construction [82]. By forming singlet bonds
between adjacent spin- 1

2 ’s of a spin-1 chain, the AKLT Hamiltonian was able to exhibit a unique,
translationally invariant ground state with a finite excitation gap. This result compliments the LSM
theorem, and corresponds to the θ = 0 line in Figure 2.1. In Figure 2.2, we provide a pictorial
representation of this construction, which also serves to introduce notation that we will use later on
to draw generalized AKLT states.
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2.5. Conclusion

Figure 2.2: The AKLT ground state in an SU(2) antiferromagnetic chain. Each node corresponds
to a spin- 1

2 representation. Two nodes arranged vertically in single column are symmetrized, and
correspond to a spin-1 representation. A dashed edge denotes a singlet bond. Notice that this state
is translationally invariant.

2.5 Conclusion

In this chapter, we reviewed the various arguments that support Haldane’s conjecture about antifer-
romagnetic spin chains. Our primary focus was the derivation of the correspondence between spin
chain and sigma model, which becomes exact in the limit s→ ∞. As we proceed to generalize the
Haldane conjecture to larger symmetry groups in the following chapters, we will follow the same
structure of argument as was presented in this chapter. For clarity, we repeat the steps followed
here:

1. Identify the classical ground states of the Hamiltonian, and the target space manifold of the
sigma model.

2. Perform a low energy expansion of the Hamiltonian, taking into account fluctuations that both
preserve and destroy the classical ground state structure.

3. Generate a Lagrangian from the path integral formalism, using coherent states.

4. Identify the (set of) topological angle(s) of the sigma model.

5. Determine the renormalization group flow of the sigma model, and make use of existing exact
solutions.14

6. Consult (and generalize) exact results for the original Hamiltonian, such as the LSMA theo-
rem and the AKLT construction.

7. Combine the results of Steps 5 and 6, and formulate a conjecture about the ground state
behaviour of the Hamiltonian.

In later chapters, we will attempt to follow this agenda for a variety of quantum chain systems.
In doing so, we will run into a variety of technical challenges, and in overcoming these challenges,
we will be led to exciting new physical phenomena.

14A large class of results pertaining to the sigma models that we encounter go by the name of ‘t Hooft anomaly
matching conditions [106, 107]. Such results also exist for the CP1 sigma model, and offer a modern interpretation of
Haldane’s conjecture. We will discuss ‘t Hooft anomalies extensively in Section 4.6.4.
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Chapter 3

SU(n) Chain Hamiltonians

3.1 Introduction

The defining symmetry of an antiferromagnet is the Lie group SU(2), the set of special unitary
2 × 2 matrices. The two complex dimensions of these matrices can be thought of as correspond-
ing to two species of particle: a ‘spin-up’ particle and a ‘spin-down’ particle. The fact that the
dimensions are complex follows from quantum mechanics, and is related to the invariance of the
wave function under U(1) phase transformations. These two particles correspond to the s = 1

2
representation of SU(2). Larger spin representations are constructed by taking tensor products of
these 2-dimensional spaces. For example, a spin-1 particle corresponds to the (symmetric) tensor
product of two 2-dimensional spaces, or 2 spin- 1

2 particles. Adding more spin- 1
2 ’s will increase the

representation (and thus the total spin), but the underlying symmetry group will remain SU(2).
In order to modify the group SU(2) itself, we must change the number of “species” of particle.

For example in quantum chromodynamics, the theory of strong interactions, the presence of three
species of quark (red, blue, and green) leads to an internal SU(3) symmetry [108]. However, quarks
are confined within hadrons, and do not form long chains like an SU(2) antiferromagnet. In fact, we
do not know of any naturally occurring chain systems with an on-site SU(n) symmetry, for n > 2.
This statement holds true not just for exact symmetries, but also for approximate symmetries, like
the SU(3) ‘flavour’ symmetry that relates the up, down and strange quark [108].

Nonetheless, shortly after Haldane’s conjecture was presented, work began on extending his
calculations from SU(2) to SU(n) chains [48–51]. Initially, this was a purely theoretical exercise,
with hopes of understanding the correspondence between sigma model and chain system on more
general grounds. It had been predicted that a certain family of sigma models could be used to
characterize the localization transition in the quantum Hall effect, and so there was promise that a
generalized Haldane conjecture could shed light onto this problem [48, 52, 53].

After this initial wave in the 1980s, interest in SU(n) chains diminished, likely due to their
disconnect from physically realizable systems. However, this all changed in the early 2000s, when
advances in cold atom experimentation suggested that chains with larger symmetry groups might
be possible to construct using optical traps [54–66]. In the past decade, these ideas have come to
fruition, and have resulted in a resurgence in theoretical interest in SU(n) chains.

The idea behind engineering SU(n) chains using cold atoms is the following. Alkaline Earth
atoms have vanishing electronic angular momenta. As a result, their nuclear spin Zeeman states
are all degenerate, and serve the roll of ‘species of particle’, in the sense mentioned above. If a
collection of these atoms are trapped in a chain-like formation, the interatomic potential between
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3.2. SU(n) Hamiltonians

sites will not distinguish between these Zeeman states, and an SU(2I + 1) symmetry will emerge,
where I is the atom’s nuclear spin [57, 64]. So far, the largest symmetry group that has been
realized in this way is SU(10), using Strontium, which has I = 9

2 [63].
One might ask why is it that alkaline Earth atoms are necessary in order to construct such SU(n)

chains. After all, doesn’t a spin-s SU(2) chain have 2s + 1 ‘species of particle’ at each site? The
issue is that while spin chains may have the correct number of states at each site, their Hamiltonians
are not invariant under larger symmetry groups except at fine-tuned points.15 This is because the
vector ~S of spin operators does not transform nicely under the larger SU(2s + 1) symmetry group.
On the other hand, when one writes down the Hamiltonian for a chain of alkaline Earth atoms, the
interactions are approximated by a pseudopotential that transforms trivially under the SU(2I + 1)
group [64].

Of course, the symmetry group is only half of the story. A more significant experimental
challenge is how to realize different representations of the SU(n) chain, which requires multiple
atoms trapped at the same site. There has been some progress is realizing 2-atom representations
(the analogue of spin-1) by making use of an additional degeneracy between the so-called s and f
states [57]. However, realizing the most general representations of SU(n) remains an outstanding
experimental problem. Even so, theoretical physicists have forged ahead, attempting to characterize
SU(n) chains in a variety of different representations.

In this chapter, we will introduce our systematic approach to studying SU(n) chain Hamilto-
nians in the most general representation. Our work builds off the seminal contributions of Af-
fleck [48–50] and Bykov [71, 72], and offers a modern perspective on how SU(n) representations
ultimately determine the target space manifold of the sigma model describing the chain’s low en-
ergy physics. In Section 3.2, we introduce the SU(n) Heisenberg Hamiltonian, and review elements
of the representation theory of SU(n), including Casimir operators and Young tableaux, that we will
require later on. Then, in Section 3.3, we discuss the classical ground states of these Hamiltonians.
We explain how longer-range interaction terms are necessary in order to stabilize these ground
states, and how the notion of flag manifolds arise from SU(n) representations. We also introduce
graphical notation that will be used throughout this thesis when discussing the structure of SU(n)
chains. Next, in Section 3.4, we classify all SU(n) chains that lead to an SU(n)/[U(1)]n−1 sigma
model at low energies. Finally, in Section 3.5, we review various exact results that exist for SU(n)
chains, including the Bethe ansatz models [12, 84, 85], the AKLT models [67, 82], and the Lieb-
Schultz-Mattis-Affleck theorem [80, 81]. We will make frequent reference to this section later on,
when we formulate our SU(n) versions of Haldane’s conjecture.

3.2 SU(n) Hamiltonians

In the previous chapter, we introduced 2 × 2 matrices in (2.10) that contained the 3 generators of
su(2). We now repeat these steps for general n. We define a traceless n × n matrix S αβ whose

15For an example of this fine-tuning, it is well known that the spin-1 bilinear-biquadratic chain has two points where
SU(3) symmetry emerges [48].
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entries correspond to the n2 − 1 su(n) generators. The entries of S αβ satisfy the same commutation
relations as in SU(2), (2.11), which we repeat here for convenience:

[S αβ, S µν] = δανS µβ − δµβS αν. (3.1)

Using these matrices, the Heisenberg interaction takes the same form as the right hand side of
(2.12), which is

Jtr[S (i)S ( j)]. (3.2)

As before, we take J > 0, which corresponds to an antiferromagnetic-like interaction. Thus, we
arrive at the SU(n) Heisenberg model:

H = J
∑

j

tr[S ( j)S ( j + 1)]. (3.3)

As it will turn out, this Hamiltonian will often be insufficient for our analysis. Instead, we will have
to consider a modified Hamiltonian which includes longer-range interaction terms. This is forced
on us by the representation theory of SU(n), which we now review.

3.2.1 Representation theory

Unlike SU(2), a representation of SU(n) is not labeled by a single number (the ‘spin’). Instead, it
is specified by n − 1 integers, which are related to so-called Casimir constraints:

tr[S m] = CmI m = 2, 3, . . . , n. (3.4)

In SU(2), the only constraint is the quadratic Casimir, tr[S 2] = s
2 (s+1)I, which uniquely defines the

spin, s. For n > 2, a representation’s defining integers are conveniently expressed in terms of row
lengths of a standard Young tableau. Indeed, the most general representation [p1, p2, . . . , pn−1] of
SU(n) corresponds to a unique diagram of boxes arranged in n− 1 rows, of lengths p1, p2, . . . , pn−1
respectively. The row lengths must satisfy p1 ≥ p2 ≥ · · · ≥ pn−1 ≥ 0. See Fig. 3.1 for some exam-
ples. This choice of labelling is related to the limit of large representation: in the limit p1 → ∞, the
matrix of operators S is again replaced with a classical matrix, whose eigenvalues are completely
determined by the row lengths pα [50]:

λα = pα − p p :=
1
n

n∑
α=1

pα. (3.5)

Here we’ve defined pn := 0. Note that since the quadratic Casimir tr[S 2] → ∞ when p1 → ∞,
it is sufficient to only consider large p1 to obtain the classical limit, as reflected in (2.5); it is not
necessary to also require pα → ∞ for α > 1.

It now becomes apparent how different representations of SU(n) may lead to different types of
sigma models. Indeed, the matrix S is constrained to live on the manifold U(n)/H, where

H = U(m1) × U(m2) × · · · × U(mk) (3.6)
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3.2. SU(n) Hamiltonians

Figure 3.1: Examples of Young tableaux in SU(n). A diagram with k nonzero rows corresponds to
a representation in SU(n) with n ≥ k + 1.

is a product of k unitary groups, one for each distinct value of λα, and mα is the degeneracy of
each λα. These spaces are known as flag manifolds, and can be thought of as generalizations of
Grassmannian manifolds, which correspond to m1 = m and m2 = n − m (i.e. k = 2). Complex
projective space CPn−1 is the Grassmannian with m1 = 1. Flag manifolds are very interesting
mathematical objects, and possess a variety of rich geometric structures, including symplectic and
Kähler forms. For an in-depth account of this structure, we encourage the reader to consult the
recent review [6].

According to (3.6), it is possible to fix the target space manifold of the matrices S by choos-
ing the appropriate representation of SU(n) on each site. This leads to a very important question
that we should ask as we embark on a program to generalize Haldane’s conjecture: what is the
appropriate generalization of the spin chain/sigma model correspondence beyond SU(2)? Recall
that in the previous chapter, we established two equivalent mappings for the antiferromagnet: one
in terms of the SU(2)/U(1) sigma model (which equals CP1), and one in terms of the S 2 sigma
model. Critically, when n > 2 these two descriptions are not equivalent. Moreover, the manifolds
SU(2)/U(1) and CP1 are no longer isomorphic when n > 2! This leads to at least three candidate
families of sigma model as we increase n.

One may protest that our above inquiry about the ‘appropriate’ generalization of Haldane’s
conjecture is misguided. After all, we have just established that the target space manifold of S
is uniquely determined by its representation, and so wherein lies our freedom to choose how to
generalize Haldane’s conjecture? In our defense, we stress a distinction that must be made between
the target space manifold of S , and the target space manifold of the corresponding sigma model.
In SU(2), these two spaces coincided but this is not a requirement for n > 2. Indeed, as we will
show in the following section, it is possible to work with matrices S that lie in smaller manifolds,
and then combine these degrees of freedom over consecutive sites of a unit cell to produce a larger
manifold. For example, our focus in Chapter 4 is the SU(3)/[U(1)]2 sigma model. One may
arrive at this sigma model by considering representations of SU(3) that restrict S to SU(3)/[U(1)]2

directly – these are so-called self-conjugate representations of SU(3). However, a second approach
is to consider representations that restrict S to CP2, and combine these degrees of freedom over a
three-site unit cell using orthogonality conditions to arrive at the same flag manifold. See Figure 3.2
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for examples of Young tableau in either case.

p︷ ︸︸ ︷
p p︷ ︸︸ ︷

Figure 3.2: Examples of Young tableaux that correspond to representations of SU(3) that lead to the
SU(3)/[U(1)]3−1 flag manifold sigma model. These representations will be studied in Chapter 4.

This second approach turns out to be a rich source of new physics, as was first emphasized
by Bykov [71, 72]. As such, we repeat this construction in Chapter 5 for general n: we choose
representations that restrict S to CPn−1, and then combine n such fields across an n-site unit cell
to obtain the SU(n)/[U(1)]n−1 sigma model. The flag manifold SU(n)/[U(1)]n−1 corresponds to
mα = 1, for α = 1, ..., n in (3.6), and is referred to as the ‘complete’ flag manifold associated with
U(n). By construction, these sigma models will also have a Zn translation symmetry, which is a
manifestation of the n-site unit cell. These combined symmetries will lead to a rich classification
based on ‘t Hooft anomaly matching [106, 107], among other exact results. However, various
technical hurdles must be cleared along the way.

In passing, it is worth mentioning that the initial studies of SU(n) chains did not consider
such multi-site constructions. Instead, those authors focused on sigma models whose target spaces
coincided with the target space of the S matrices themselves [49]. In particular, this approach was
used to obtain CPn−1 sigma models and their Grassmannian generalizations, with symmetry groups
U(n)/[U(m) × U(n − m)] [48, 50, 51]. In these papers, the desired sigma model was generated by
identifying the representationR that directly restricts S to the sigma model’s full manifold, and then
placing R and its conjugate R on even and odd sites of the chain, respectively. For representations
satisfying R = R, this construction reduces to the on-site method mentioned previously for SU(3)
self-conjugate chains.

3.3 Classical Ground States

In the limit of large representation, we replace S with V†diag(λ1, . . . , λn)V , where V is a unitary
matrix, and the eigenvalues λα are given in (3.5). Again, this structure of S follows from the n − 1
Casimir constraints. The Heisenberg interaction then reads

tr[S (i)S ( j)]→
∑
α,β,γ,δ

λαλβ|φ
α,∗(i) · φβ( j)|2, (3.7)

where we’ve defined Vαβ(i) = φαβ (i). Since the φα are rows of a unitary matrix, they must be
mutually orthonormal on the same site. Implicit in this expression is our assumption that the
same representation occurs at each site of the chain, which we will always take to be true. Since
λα = pα − p for the representation with Young tableau row lengths pα, we opt to shift S by pI
to simplify our calculations (this merely shifts the interaction term (3.7) by an overall constant).
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3.3. Classical Ground States

Having done this, the simplest SU(n) chain Hamiltonian, namely the nearest-neighbour model,
becomes

H = J
∑

j

n−1∑
α,β=1

pαpβ|φα,∗( j) · φβ( j + 1)|2, J > 0. (3.8)

Note that the sums over α and β stop at n − 1, since pn = 0 by definition. This nearest-neighbour
model is the logical starting point for any SU(n) generalization of the antiferromagnetic spin chain.
However, in most cases, we will be required to consider Hamiltonians with longer-range interac-
tions. For instance, if one considers an SU(n) chain in the totally symmetric representation, with
pα = 0 for α > 1, then S is restricted to the manifold SU(n)/U(n − 1) = CPn−1, meaning it is
entirely specified by a single complex unit vector φ ∈ Cn. Now, in the nearest-neighbour model
(3.8), a Néel-like state that alternates between two orthogonal directions in Cn, such as φ(2 j) = ϕ1

and φ(2 j + 1) = ϕ2, would be a classical ground state. For n = 2 this is the end of the story, and
led us to an appropriate flag manifold description in Chapter 2. But for n > 2, there is a nontrivial
subspace, namely Cn−2, that is spanned by vectors orthogonal to the Néel vectors ϕ1 and ϕ2. As
a consequence, any field theory derivation will be plagued with local zero modes – zero energy
excitations above the ground state - that correspond to transformations into this unused subspace.

In order to resolve this obstruction in deriving a field theory, we are forced to modify the
Hamiltonian (3.8) by adding longer-range interactions. This will couple more lattice sites together,
and result in a classical ground state that is made up of vectors that span all of Cn. For the totally
symmetric representations, this will require up to n−1-neighbour interactions, and will result in an
n-site unit cell structure for those chains. This is consistent with the exact Bethe ansatz solutions
(reviewed below in Section 3.5) that exhibit such n-site structure.16 Moreover, it has been shown in
SU(3) that zero point fluctuations are minimal in the 3-site state when p→ ∞, and this is expected
to hold for all n [109]. Accordingly, we believe that the first effect of quantum fluctuations in the
symmetric chains will be to select the n-sublattice state by an ‘order-by-disorder’ mechanism that
generates effective additional couplings of order 1/p that lift the classical degeneracy. It should
be kept in mind however that all the properties discussed for these longer-range Hamiltonians are
expected to apply to nearest-neighbour Hamiltonians, and that the longer-range couplings have
been introduced as a first effect of quantum fluctuations in those models. This sentiment applies
not only to the symmetric chains, but to all of the SU(n) chains that we consider.

In the following section, we explain how this construction generalizes as we increase the num-
ber of nonzero pα. Loosely speaking, the number of nonzero rows k in the representation will
correspond to the number of fields ϕ ∈ Cn that exist at each site of the chain. We will then take
λ ∼ n

k consecutive sites together to produce a mapping from the chain to the flag manifold sigma
model, SU(n−1)/[U(1)]n−1. As we will show, any attempt to derive a sigma model with a different
target space manifold will ultimately fail; again, this will be due to spurious zero modes. Before
we embark on this classification task, it will be useful to introduce some graphical notation that

16By n-site structure, we are referring to the presence of an order-n discrete symmetry Zn in the low energy theory.
It is not the case that the ground state has n-site order, which would correspond to the spontaneous breaking of this
symmetry.
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3.3. Classical Ground States

will aid us in our calculations.

3.3.1 Pictorial representation of classical ground states

According to (3.7), to each site of the chain we should assign a set of orthonormalized vectors ϕα.
We may use the same basis on each site of the chain, since any local change of basis transformation
leaves the Hamiltonian invariant (and fortunately, no superpositions of states arise). Further, we
will use coloured circles to represent the first few elements of this basis, in an effort to visually aid
the reader. This generalizes what we originally did for the Néel state in the previous chapter (see
(2.16). Our colour dictionary, for the first eight basis elements, can be found in Figure 3.3.

ϕ1 = ϕ2 = ϕ3 = ϕ4 =

ϕ5 = ϕ6 = ϕ7 = ϕ8 =

Figure 3.3: Colour dictionary for the first eight basis elements in Cn. These coloured circles will
be used to pictorially represent ground states throughout.

When drawing a classical ground state, we will arrange the same-site vectors into a single
column, and use a white space to separate neighbouring chain sites. For example, the Néel state of
the SU(2) antiferromagnet is

· · · · · · , (3.9)

while a classical ground state of the adjoint SU(3) chain is

· · · · · · (3.10)

· · · · · · . (3.11)

That this is the ground state of the SU(3) adjoint chain will be demonstrated below.
The benefit of these ground state pictures is that it makes it easy to read off the energy cost of

a term tr[S (i)S ( j)]. Indeed, in a classical ground state, each colour corresponds to a standard unit
vector ϕα, and we have according to (3.8),

tr[S (i)S ( j)] =
∑
α,β

pαpβ|ϕα,∗(i) · ϕβ( j)|2. (3.12)

The right hand side of this expression vanishes unless one of the complex unit vectors (i.e. one of
the colours) at site i equals one of the complex unit vectors at site j. In this case, the right hand
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3.4. Classification of SU(n) Chains

side equals pα0 pβ0 , where α0 and β0 are the respective positions of the unit vector/colour in column
i and column j. To visualize this, it is useful to imagine bonds between all of the circles of the two
columns, as in Figure 3.4. These bonds are inactive (meaning zero energy cost), unless two nodes
are the same colour. For example, the Néel state in (3.9) has an energy cost of zero per site (recall
we have shifted the S αβ matrices by a constant), while the classical ground state of the adjoint
chain, (3.10), has an energy cost of p2

2 per site.

p1p3

p3p2

Figure 3.4: Left: Imaginary bonds between two sets of vectors ϕα and ϕβ at sites i and j of the
chain. Right: The energy cost of each bond is pα0 pβ0 whenever two nodes have the same colour;
α0 and β0 are the column positions of these nodes.

3.4 Classification of SU(n) Chains

As a warm-up to the more complicated representations below, we begin with the totally symmetric
representations that have Young tableaux with a single row of length p1. According to (3.12),
any configuration that has no energy cost per bond will be a classical ground state of the nearest-
neighbour SU(n) Hamiltonian. Since only one node is present at each site, the Néel state is such an
example. However, as mentioned above, the basis at each site is larger than 2 for n > 2 (i.e. there
are more than 2 colours available), and this leads to an infinite number of ground states. Indeed,
the ground state

· · · · · · , (3.13)

which exists for n > 2, is related by a zero-energy transformation to the Néel state. This lo-
cal degree of freedom is an example of a zero-energy mode, and destabilizes any candidate ground
state above which we would like to derive a quantum field theory. As a result, the nearest-neighbour
Hamiltonian must be modified if we would like to proceed. Since it is believed that longer-range in-
teractions may be dynamically generated from the nearest-neighbour model [109], we add further-
neighbour interactions to realize a stable ground state. Since there are n possible colours, we
require up to (n−1)-neighbour interactions, all of which are taken to be antiferromagnetic, in order
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3.4. Classification of SU(n) Chains

to remove the zero modes.17 For example, in SU(5), with interactions up to 4th-neighbour, one
such ground state is

· · · · · · . (3.14)

While this large number of interaction terms may seem contrived, there is a second reason why
one should consider adding them. Arguably, it is the simplest way to restrict to classical ground
states that have a Zn symmetry, which is to be expected for the symmetric chains, since this is a
feature of the integrable SU(n) chains, that correspond to p = 1 (see Section 3.5). Moreover, in
the following two chapters, we will explicitly demonstrate how the SU(n)/[U(1)]n−1 sigma model
arises as the low energy description of this longer-range Hamiltonian. In short, while the on-site
matrix S lines in CPn−1, by coupling n neighbouring sites, our underlying degrees of freedom are
actually n orthogonally coupled CPn−1 fields, which is equivalent to SU(n)/[U(1)]n−1.

In the more general representations with more than one Young tableau row, we will see a simi-
lar pattern: collections of CPn−1 fields from neighbouring sites will become orthogonally coupled,
ultimately leading to the flag manifold SU(n)/[U(1)]n−1. Actually, the fields at each site will cor-
respond to a Grassmannian manifold in this more general case. If the following discussion seems
too abstract, we encourage the reader to first turn to Chapter 4, where the symmetric representation
SU(3) chains are considered in great detail.

Loosely speaking, the number of nonzero rows k in the representation will correspond to the
number of fields ϕ that exist at each site of the chain. We can think of these k fields as living in the
product space Pk,n := [CPn−1]k of k copies of CPn−1. We will then take λ := n

k consecutive sites
together to produce a mapping to the complete flag manifold SU(n)/[U(1)]n−1. In other words, we
construct an embedding,

SU(n)/[U(1)]n−1 ↪→ Pk,n × · · · × Pk,n, (3.15)

into the λ-fold product of Pk,ns. However, this isn’t the whole story, since the k fields on each
site (those within Pk,n) can still be locally rotated amongst one another, leading to additional
zero modes. This is resolved by adding a λ-neighbour interaction that freezes out these addi-
tional degrees of freedom, which is essentially mimicking what happens when a representation R
is coupled to its conjugate representation R. It corresponds to the embedding Gk,n ↪→ Pk,n, where
Gk,n := U(n)/[U(k) ×U(n − k)] is a Grassmannian manifold. In other words, by adding a sufficient
number of interaction terms to our Hamiltonian, we end up with the following embedding of a flag
manifold into a λ-fold product of Grassmannians:

SU(n)/[U(1)]n−1 ↪→ Gk,n × · · · ×Gk,n. (3.16)

The argument that we have just sketched assumes that it is always possible to derive a complete
flag manifold sigma model description of an SU(n) chain. However, this is not entirely true: there
is a large family of representations that do not admit such a mapping, namely those representations
that satisfy pα = pβ , 0 for at least two rows of the Young tableau. For such representations, this

17This is consistent with [109], which found that the energetically favoured state should have n colours.
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3.4. Classification of SU(n) Chains

produces a factor of U(2) in the quotient group H in (3.6). While this also occurs when we have
two rows of zero length, as in the symmetric representations of SU(4), the result is fundamentally
different. In both cases, there are spurious local degrees of freedom on each site (corresponding
to rotating the ϕ fields into each other); however, the trick of adding a λ-range interaction does
not freeze this additional symmetry in the case of pα = pβ , 0. This should become apparent
below. As a result, for the most general representation of SU(n), we do not expect that a well-
defined mapping to the SU(n)/[U(1)]n−1 sigma model exists, and so henceforth we restrict to the
representations that satisfy pα , pβ for all nonzero row lengths. Our justification for this restriction
should be clear in Chapter 5, and it has to do with the classification of ’t Hooft anomalies in these
theories. As we will explain later, any generalization of Haldane’s conjecture is greatly bolstered
by the presence of an ’t Hooft anomaly, and at this time, only the SU(n)/[U(1)]n−1 sigma models
have been show to have this property. A second justification follows from Chapter 7, where we
interpret the Haldane gap as being generated by fractional instantons.

3.4.1 Representations with n − 1 rows

We now consider representations of SU(n) whose Young tableau have n − 1 nonzero rows. As
previously stated, we will assume throughout that no two rows have the same length. Arguably,
these representations are simpler than the symmetric ones considered above. Since the on-site
representation of the S matrix already corresponds to the manifold SU(n)/[U(1)]n−1, a nearest-
neighbour Heisenberg interaction is sufficient to derive the associated sigma model. Let us first
demonstrate this in SU(3). The interaction term for a classical ground state,

tr[S ( j)S ( j + 1)] =

2∑
α,β=1

pαpβ|ϕα,∗( j) · ϕβ( j + 1)|2, (3.17)

is never zero for two adjacent sites, which requires choosing the colour for four nodes. Since
p1 > p2, the minimum is p2

2, which is achieved when the two same-colour nodes are in the second
position of the column. Thus, a typical ground state in SU(3) looks like

· · · · · ·

· · · · · · ,

which is precisely what we drew above for the adjoint SU(3) chain (which corresponds to the case
p1 = 2, p2 = 1). Note that no local transformations exist that cost zero energy: all of the p2 nodes
must stay the same colour in order to minimize the tr[S ( j)S ( j + 1)] term, and the remaining two
colours behave just like the Néel state of SU(2). We will return to these chains near the end of
Chapter 4.

In SU(4), the term tr[S ( j)S ( j + 1)] requires the introduction of six coloured nodes. Using the
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inequality p2
2 + p2

3 ≥ 2p2 p3, we see that the ground states have the following form:

· · · · · ·

· · · · · ·

· · · · · · .

This pattern extends to general n: the first row of nodes establishes a Néel-like state, while the
remaining n−2 rows have a “reverse-ordered” pattern: the colour ordering along a column switches
direction between even and odd sites. Let us explain how this works. For general n, our task is to
minimize (3.12). Using orthonormality, this reduces to

tr[S ( j)S ( j + 1)] =

n∑
α,β=1

pαpβ|ϕ
β
α( j + 1)|, (3.18)

where we’ve defined pn := 0. Since ϕβ( j + 1) = ϕα
′

for some α′ (and all of the α′ are distinct), we
may introduce a permutation operator on the set of n elements, σ : {1, 2, . . . , n} → {1, 2, . . . , n} that
obeys

ϕβ(i + 1) = ϕσ(β)

and rewrite (3.18) as

tr[S ( j)S ( j + 1)] =

n∑
α=1

pαpσ(α). (3.19)

Thus, our task amounts to finding the permutation σ that minimizes (3.19). By defining a vector
~x := (p1, p2, . . . , pn), we can think of σ as specifying a second vector ~y; (3.19) is then their dot
product. Since the entries of both ~x and ~y are nonnegative and nondegenerate, it is clear how to
choose σ so that ~y is as orthogonal to ~x as possible:

• Since p1 is the largest component of ~x, we assign to σ(1) the smallest possible component of
~y, which is pn.
• Next, assign to σ(2) the second smallest possible component of ~y, which is pn−1.
• Repeating this procedure, we see that indeed the classical Hamiltonian is minimized by the

reverse-ordered ground state, corresponding to a permutation operator

σ : i 7→ k + 1 − i.

The basis states at site j + 1 are ϕβ( j + 1) = ϕσ(β).

The above procedure will work for all n. For another example, here is a ground state in SU(5):

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · · .

For these representations, the unit cell is always 2 sites in length, which leads to a Z2 translation
symmetry in the sigma model.
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3.4.2 Representations with row number dividing n

Let k be the number of nonzero rows in the Young tableau, and write n = kλ. In this case, the
matrix S at each site of the chain lies neither in CPn−1 nor SU(n)/[U(1)]n−1. While it would be
straightforward to derive other families of flag manifold sigma models from these representations,
we are only interested in those with target space SU(n)/[U(1)]n−1, as these models have been shown
to exhibit an ’t Hooft anomaly in certain cases. Thus, some care must be taken in order to realize
the appropriate degrees of freedom. As before, we begin with an example, this time with k = 2 in
SU(4). This requires choosing four colours for four nodes in order to minimize the tr[S ( j)S ( j + 1)]
term, which is easily done. For example:

· · · · · ·

· · · · · · .

However, such a configuration does not lead to the manifold SU(n)/[U(1)]n−1, because the four
colours do not behave like four orthogonal CP3 fields. Indeed, at each site, we may additionally
rotate the two colours into each other at no energy cost, which corresponds to another type of zero
mode. In order to achieve the correct flag manifold, we “freeze out” these additional degrees of
freedom by adding a weaker second-neighbour interaction, tr[S ( j)S ( j + 2)]. The effect of this
term is to invoke a “reverse-ordering” pattern between sites and their second-neighbours. The new
ground state is

· · · · · ·

· · · · · · .

The fact that this ground state minimizes the combined J1tr[S ( j)S ( j+1)]+J2tr[S ( j+1)S ( j+2)]
term (for antiferromagnetic couplings J1 � J2) follows from the identity p2

1 + p2
2 ≥ 2p1 p2. In a

sense, this second-neighbour interaction generates the same behaviour that we saw in the previous
case of k = n − 1: The nearest-neighbour term partitions the colours into subsets, and the second-
neighbour term reverse-orders these subsets, effectively breaking the additional on-site rotation
symmetry between colours. In the k = n − 1 case, both of these steps are achieved by the same
interaction term: first the colours are partitioned into 3 sets: e.g. { }, { }, { , , }, and then each
set is reverse-ordered compared to the previous time it occurred. It will turn out that this reverse-
ordering is a generic feature of all the representations that we consider.

As a next step, we extend from 4 to general even n, and consider k = n
2 . A nearest-neighbour

interaction will again serve to partition the colours into two sets, leaving a local rotation symmetry
among the k colours on each site. In order to freeze out these degrees of freedom, we again add a
second-neighbour interaction, which reverse-orders each set. For example, in SU(6) we have

· · · · · ·

· · · · · ·

· · · · · · .
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Clearly, the ground state will always have a 4-site unit cell for k = n
2 .

Now, when k < n
2 , the full set of colours is no longer used up when the nodes on two neigh-

bouring sites are filled. As a result, additional zero modes are present that cannot be removed by
reverse-ordering the colours within a set. To resolve this, we first add up to (λ − 1)-neighbour in-
teractions (always with antiferromagnetic couplings), to properly partition the full set of n colours
into λ sets of k elements (λ := n

k ). Then, we add a weaker λ-neighbour interaction which serves to
reverse-order within each set of the partition. For example, in SU(6) with k = 2, the Hamiltonian
we should consider is

H =
∑

j

(
J1tr[S ( j)S ( j + 1)] + J2tr[S ( j)S ( j + 2)] + J3tr[S ( j)S ( j + 3)]

)
, (3.20)

with J1 > J2 � J3 > 0, which has, for example, the following ground state:

· · · · · ·

· · · · · · .

The J1 and J2 terms serve to partition the colours into three sets: { , }, { , }, { , }, and the J3
terms serve to reverse-order within each of these three sets. Based off of this example, we can see
that the unit cell has size 2λ for these representations.

3.4.3 Remaining representations

Finally, we consider all remaining values of k (the number of nonzero rows in the Young tableau).
Let c = n mod k, so that n = λk + c for some λ ∈ Z. As in the previous case of n = kλ, local
zero modes will be present unless sufficiently long-range interactions are included to use up all of
the available colours. We add up to λ-neighbour terms, which partitions the colours into λ sets of
k elements, and one set of c elements. Briefly, we return to the notation ϕα for the basis vectors
instead of coloured nodes. Then, a possible partitioning of the colours is:

{ϕ1, . . . ,ϕk}, {ϕk+1, . . . ,ϕ2k}, . . . , {ϕ(λ−1)k+1, . . . ,ϕλk}, {ϕλk+1, . . . ,ϕλk+c}. (3.21)

Now, in order to minimize the interaction term tr[S ( j)S ( j+λ)], the remaining nodes on the (λ+1)th
site will be the reverse-ordered set {ϕk,ϕk−1, . . . ,ϕc+1}. For example, in SU(7) with k = 3, three
consecutive sites may look like

· · · · · ·

· · · · · ·

· · · · · · .
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The nodes of the next site (which is a (λ + 1)th neighbour), will then begin to be filled with the
remaining {ϕ1, . . . ,ϕc} colours from the first site. In our present SU(7) example, this looks like:

· · · · · · (3.22)

· · · · · ·

· · · · · · .

Since c = 1 in this example, the drawn ground state is stable. However for c > 1, there will still
be zero modes associated with rotating among the set {ϕ1, . . . ,ϕk}. Thus, an additional (λ + 1)-
neighbour interaction must also be added! The following ground state for SU(5) with k = 3
demonstrates this:

· · · · · · (3.23)

· · · · · ·

· · · · · · .

Thus, we are led to the following conclusion for this class of representations: If c = 1, our
Hamiltonians should contain up to λ-neighbour interactions, and if c > 1, we should also add an
additional (λ + 1)-neighbour interaction term.

Using the emerging patterns in the previous examples as a guide, we may now determine the
unit cell size for the most general representation. This quantity is very important, as it determines
the translation group symmetry that is present in the flag manifold sigma model. Note that in both
(3.22) and (3.23), there are two competing types of order among the coloured nodes. The first c
rows exhibit one type of order, which has periodicity λ + 1 when c = 1, and 2(λ + 1) otherwise.
Meanwhile, the remaining k − c rows have a periodicity 2λ for all c except c = k − 1, in which
case the periodicity is λ. In order to determine the overall unit cell length, we must find the least
common multiple of these two periodicities. For example, in our SU(7) example, we see that the
unit cell will have length 12, leading to a Z12 symmetry in the field theory. This can be seen in
Figure 3.5.

3.4.4 Summary of classification

In Table 3.1, we summarize our results from the previous subsections. In the first column, we
specify the number of nonzero rows in the Young tableau, k, and the integer c := n mod k. In the
second column, we write down the longest-range interaction that must be included in the Hamilto-
nian in order to eliminate any local zero modes. As always, it is understood that each interaction
term is Jrtr[S ( j)S ( j + r)] for some coupling Jr > 0, and that Jr > Js for r < s. Finally, in the
third column, we specify the order d of the translation group Zd that acts on the corresponding flag
manifold sigma model. This order equals the size of the unit cell in the classical ground states of
the Hamiltonian. In the final column of the table, the following identities are useful:

lcm[2λ, (λ + 1)] =

λ(λ + 1) λ is odd
2λ(λ + 1) λ is even

(3.24)
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period 3︷ ︸︸ ︷
· · · · · ·
· · · · · ·
· · · · · ·

︸ ︷︷ ︸
period 4

Figure 3.5: Potential ground state of an SU(7) chain. Since the first row has 3-site periodicity, and
the remaining rows have 4-site periodicity, the unit cell is 12 sites in length.

lcm[λ, 2(λ + 1)] =

2λ(λ + 1) λ is odd
λ(λ + 1) λ is even

(3.25)

Representation Longest Interaction Translation Group Order

k = 1 Jn−1tr[S ( j)S ( j + n − 1)] n

k = n − 1 J1tr[S ( j)S ( j + 1)] 2

k = n
λ , λ < n Jλtr[S ( j)S ( j + λ)] 2λ

n = 2λ + 1, k = 2 Jλtr[S ( j)S ( j + λ)] λ(λ + 1)

n = kλ + 1, λ > 1, k > 2 Jλtr[S ( j)S ( j + λ)] lcm[2λ, (λ + 1)]

n = kλ + c, c , 1, k − 1 Jλ+1tr[S ( j)S ( j + λ + 1)] 2λ(λ + 1)

n = kλ + (k − 1) Jλ+1tr[S ( j)S ( j + λ + 1)] lcm[λ, 2(λ + 1)]

Table 3.1: Classification results of all SU(n) representations satisfying pα , pβ for all nonzero pα.
We use the notation lcm[a, b] to denote the least common multiple of a and b.

3.5 Exact Results for SU(n) Chains

In this final section, we now review various exact results that are known for the SU(n) Hamiltoni-
ans considered above. These exact results will prove to be especially useful when we attempt to
generalize the Haldane conjecture to certain SU(n) chains in later chapters.
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3.5.1 Integrable SU(n) chains and SU(n)k critical points

Let us begin our discussion with the simplest representation of SU(n): the fundamental represen-
tation whose Young tableau consists of a single box. While this is a special case of the symmetric
models discussed above, we do not need to consider longer-range interactions, since in this case,
the model is exactly solvable. This was first realized by Sutherland [84], who used the Bethe
ansatz to find the exact spectrum of the p = 1 SU(n) chain, and show that it was gapless. Later,
it was discovered that the low energy degrees of freedom of this chain correspond to the SU(n)1
WZW model [50, 85, 110]. This generalizes the SU(2) result of Bethe that was mentioned in Chap-
ter 2: The low energy spectrum is gapless, with n − 1 relativistic bosons propagating with velocity
v = 2πJ/n [83, 84].

In order to understand this result, we may rewrite the nearest-neighbour SU(n) Hamiltonian in
terms of fermion operators. To this end, we introduce n flavours of fermion ψα and rewrite the
matrices S of SU(n) generators according to

S αβ( j) = ψ†β( j)ψα( j). (3.26)

There is only one independent Casimir constraint for the p = 1 model, tr[S 2], which in the fermion
language, corresponds to the condition of 1 particle on each site:

ψ†α( j)ψα( j) = 1. (3.27)

The nearest-neighbour Hamiltonian becomes a simple exchange term:

H = J
∑

j

ψ†β( j)ψα( j)ψ†α( j + 1)ψβ( j + 1). (3.28)

As in SU(2), we may obtain this model from an SU(n) Hubbard model,

H =
∑

j

(
−t[ψ†α( j)ψα( j + 1) + h.c.] + U[ψ†α( j)ψα( j) − 1]2

)
(3.29)

, in the limit U/t � 1. Starting at small U, we may take the continuum limit, giving n flavours of
relativistic Dirac fermion. Next, by using non-abelian bosonization, we obtain a charge boson plus
the SU(n)1 WZW model. The Hubbard interactions can be seen to gap the charge boson without
affecting the low energy behaviour in the spin sector, yielding the SU(n)1 WZW model as the low
energy effective theory [86].

It is worth mentioning that without any additional symmetries, the SU(n)1 model is actual
unstable, due to the relevant operator tr[g], for WZW field g ∈ U(n). However, for the SU(n)
chains presently discussed, at low energies there is an additional discrete symmetry, Zn, whose
action on g is

g 7→ e
2πi
n g, (3.30)

and forbids the term tr[g]. In our longer-range models, a similar symmetry also emerges, as we
will see in the following chapters. There, it will be a manifestation of the underlying translation
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3.5. Exact Results for SU(n) Chains

symmetry on the chain. Thus, the results in Table 3.1 should be quite suggestive of how Haldane’s
conjecture should be extended to SU(n).

For larger p, there exist integrable SU(n) models that can also be solved exactly [87–89]. These
models have more complicated nearest-neighbour interactions, and have been shown to correspond
to the SU(n)p WZW models at low energies [50, 68, 111]. Again, we can understand this from non-
abelian bosonization. In this case we must introduce fermions with p colours as well as n flavours,
and write a generalized Hubbard model. Non-abelian bosonization now gives the SU(n)p WZW
model in the flavour sector, together with a charge boson and an SU(p)n WZW model for the colour
degrees of freedom. However it is now seen that the Hubbard interactions will generally gap the
flavour sector as well as the charge and colour sector, unless the interactions are fine-tuned. This
can be understood from the fact that the SU(n)p WZW models contain relevant operators allowed
by symmetry for all p > 1, which are expected to appear in the Hamiltonian and destabilize the
critical theory. We understand the fine-tuned nature of the Bethe ansatz integrable models as,
remarkably, corresponding to fine-tuning of the field theory to eliminate all relevant operators.

In Section 2.3.2, we explained how the gapless phase predicted by Haldane in half-odd integer
spin chains is characterized by the SU(n)1 WZW model. We can now better explain why this is
the case. For arbitrary s, the spin chain may be mapped to the SU(2)k WZW model, with level
k = 2s [112, 113]. As mentioned above, these models will generically contain relevant operators
(unless they are fine-tuned, corresponding to the integrable models). Thus, under renormalization,
we expect the SU(2) chain to be described by some other, stable critical theory. With the added Z2
symmetry arising from a 2-site unit cell, the only candidate theory is SU(2)1. Thus, if a gapless
phase is to occur in the spin chain, we predict it will be characterized by this ‘attractor’ theory. This
is consistent with the Zamolodchikov c-theorem, which requires that k be a nonincreasing function
of energy scale [114].

Now, the obvious question is how to generalize this mechanism to SU(n). As hinted above,
when the Zn symmetry (3.30) is present, the SU(n)1 WZW model is stable. In fact, it is the only
stable WZW model with SU(n) symmetry [78, 79]. For instance, the primary operator transforming
under the adjoint representation of su(n) is a relevant operator in all levels k > 1. Therefore, one
might reasonably conclude that whenever an SU(n) chain can be mapped to an SU(n)k critical
theory, it will flow to SU(n)1 at low energies. Unfortunately, the flow from k 7→ k′ < k is actually
quite subtle for general n, and is related to the concept of ’t Hooft anomaly matching [115, 116].
We will return to this issue in the following two chapters.

Let us conclude this subsection by making a distinction between the low energy sigma models
that we seek in this thesis, and the Bethe ansatz integrable models mentioned above. Like Haldane,
our motivation is to predict gapless phases only at weak coupling, which lies outside the strong-
coupling regime of the integrable models. Thus, it is not appropriate to view our models as a
perturbation of the integrable ones, if we want to make any weak coupling predictions. However,
this is not to say that we aren’t interested in what happens when we add relevant operators to SU(n)k

for k > 1. For example, the operator |tr[g]|2 is a relevant perturbation for k > 1 and may lead to
a symmetry broken phase. However, we believe that this mechanism relies crucially on the sign
of the coupling constant in front of this term, and the gapped broken symmetry phase only occurs
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when this constant is negative. When it is positive, we instead expect a massless RG flow to SU(n)1
(so long as the other constraints on the flow of k do not apply). Note that both of these scenarios are
consistent with the LSMA theorem (reviewed below), and are present in the SU(2) phase diagram
Figure 2.1. This issue is discussed in detail by Affleck and Haldane in [86].

3.5.2 The Lieb-Schultz-Mattis-Affleck theorem

The Lieb-Schultz-Mattis-Affleck theorem (LSMA) is a rigorous statement about ground states in
translationally invariant SU(n) Hamiltonians [80, 81]. It claims that if the number of boxes p in a
Young tableau is not a multiple of n, then either the ground state is unique with gapless excitations,
or there is a ground state degeneracy. Recently, it was claimed in [67] that the LSMA theorem is not
applicable to models with longer-range interactions than nearest-neighbour. Here, we dispute this
claim by extending the original proof in [81] to models with further-range interactions. Explicitly,
we consider the following Hamiltonian on a ring of L sites:

H =

R∑
r=1

Hr Hr :=
L∑

j=1

Jrtr[S ( j)S ( j + r)] (3.31)

where S is defined as above. We assume that |ψ〉 is the unique ground state of H, and is transla-
tionally invariant: T |ψ〉 = |ψ〉. We then define a twist operator

U = eA A :=
2πi
nL

L∑
j=1

jQ( j) (3.32)

with

Q =

n−1∑
α=1

S αα − (n − 1)S nn = trS − nS nn = p − nS nn. (3.33)

Note that A is a Hermitian operator. Here p =
∑
α pα is the total number of boxes occurring in the

Young tableau. Using the commutation relations (3.1), it is easy to verify that[
tr[S ( j)S ( j + r)],Q( j) + Q( j + r)

]
= 0, (3.34)

which then implies

U†tr[S ( j)S ( j + r)]U = e−
rπi
nL (Q( j+r)−Q( j))tr[S ( j)S ( j + r)]e

rπi
nL (Q( j+r)−Q( j)). (3.35)

Using this, one can show that

U†HU − U = [H, A] − H + O(L−1) (3.36)

so that U |ψ〉 has energy O(L−1). Now, using the translational invariance of |ψ〉, we find

〈ψ|U |ψ〉 = 〈ψ|T−tUT |ψ〉 = 〈ψ|Ue
2πi
n Q(1)e−

2πi
nL

∑L
j=1 Q( j)

|ψ〉. (3.37)
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Since |ψ〉 is a ground state of H, it is an SU(n) singlet, and so must be left unchanged by the global
SU(n) transformation e−

2πi
nL

∑L
j=1 Q( j). Moreover, using (3.33), we have

〈ψ|U |ψ〉 = e
2πip

n 〈ψ|Ue2πiS nn |ψ〉. (3.38)

In Chapter 2, we saw that the matrices S could be written in terms of Schwinger bosons. This
is true for all n, as we will see in Chapters 4 and 5 when we discuss flavour-wave theory. The
diagonal elements S nn always correspond to number operators for these bosons. Thus, S nn acting
on |ψ〉 will always return an integer, and e2πiS nn can be dropped. Thus, we find that so long as p is
not a multiple of n,

〈ψ|U |ψ〉 = 0, (3.39)

implying that U |ψ〉 is a distinct, low-lying state above |ψ〉. This completes the proof. Finally, we
may also comment on the ground state degeneracy in the event that a gap exists above the ground
state. Through the repeated application of (3.38), we have

〈ψ|Uk|ψ〉 = e
2πipk

n 〈ψ|U |ψ〉. (3.40)

So long as k < r := n/ gcd(n, p), the family {Uk|ψ〉} is an orthogonal set of low-lying states. If
an energy gap is present, this suggests that the ground state is at least r-fold degenerate. In the
following subsection, we introduce valence bond solids that exhibit translation invariance when p
is a multiple of n. It is easy to see that when 1 < gcd(n, p) < n, these constructions lead to explicit
r-fold degeneracies, consistent with our findings here. For example, the symmetric representation
of SU(4) with p = 2 leads to 2 distinct valence bond solids that are both invariant under translation
by 2 sites.

3.5.3 Affleck-Kennedy-Lieb-Tasaki models

In Chapter 2, we introduced the AKLT model as an important theoretical result that served to
bolster Haldane’s conjecture in its infancy. This is because it exhibits a unique, translationally
invariant ground state with a finite excitation gap for a spin-1 chain. Note that this does not vi-
olate the LSMA theorem since a spin-1 chain has a corresponding Young tableau with 2 = n
boxes. Recently, the AKLT construction has been generalized by various research groups to SU(n)
chains [61, 67, 69, 74–76, 83, 117]. In particular, symmetric representation AKLT Hamiltonians
have been constructed whenever p is a multiple of n [67]. Again, this is precisely when the LSMA
theorem does not apply. These Hamiltonians exhibit a unique, translationally invariant ground
state, and are constructed by forming SU(n) singlets from n fundamental representations on adja-
cent sites. Since p is a multiple of n, this may be done in a translationally invariant manner, by
shifting the left-most site of the singlet along the chain as one cycles through the p (symmetrized)
fundamentals at each site of the chain. See Figure 3.6 for the case of n = p = 3. This picture can
be understood as follows. If we denote by αa

j a fundamental representation of SU(3) at site j, then
at each site we have

|α1
j , α

2
j , α

3
j〉, (3.41)
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which is symmetric under permutation of its entries (by definition). By considering three adjacent
sites, we may construct an SU(3) singlet out of three of these entries:

εα1
jα

2
j+1
α3

j+2|α
1
j , α

a
j , α

b
j〉|α

2
j+1, α

c
j+1, α

d
j+1〉|α

3
j+2, α

e
j+2, α

f
j+2〉. (3.42)

Here εab is the antisymmetric unit tensor with ε01 = −ε10 = 1. The remaining free representations
αa

j , . . . , α
e
j+2 are similarly combined with adjacent sites, eventually creating an SU(3) singlet out of

the entire chain.

Figure 3.6: AKLT state for an SU(3) chain in the symmetric representation with p = 3. Singlets
are formed from three consecutive sites.

Note that when n is not prime, similar valence bond solids may be constructed that are con-
sistent with a nontrivial result from the LSMA theorem. That is, for p not a multiple of n, with
r := n/ gcd(n, p), Hamiltonians may be constructed with r-fold degenerate ground states that are
invariant under translations by r sites. In Figure 3.7, we provide an example of two-fold degenerate
ground states in SU(4). All of these models have short range correlations, and are expected to have
gapped ground states, based on arguments of spinon confinement [67].

Figure 3.7: Two-fold degenerate AKLT states for an SU(4) chain in the symmetric representation
with p = 2.

Another generalization of AKLT models is possible for self-conjugate representations of SU(n).
We will make use of this fact explicitly in Section 4.7, when we discuss self-conjugate SU(3)
chains. Recall that such representations are labeled by a single integer p > 0, and have a Young
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tableau of the form
2p︷                              ︸︸                              ︷

. (3.43)

For all p, we may write down a translationally invariant valence bond state. This is done by
forming SU(3) singlets at each site, by pairing each fundamental representation with an adjacent
antifundamental representation. For example, in the adjoint representation of SU(3) with p = 1, at
each site we have

|α1
j , α

2
j ;α

3
j〉 (3.44)

which is antisymmetric across the ‘;’ symbol. Then a singlet bond between sites j and j + 1 is
constructed as follows:

εα1
j ,α

2
j+1,α

3
j+1
|α1

j , α
a
j ;α

b
j〉|α

c
j+1, α

2
j+1;α3

j+1〉. (3.45)

This is shown in Figure 3.8. Here and throughout, objects appearing within the same column
are symmetrized, and two nodes that appear close together in the same row are antisymmetrized.
Dashed lines denote singlet bonds, as before.

Figure 3.8: AKLT state for an SU(3) chain in the self-conjugate representation with p = 1. This
state spontanesouly breaks parity symmetry.

However, only when p is even is this ground state also invariant under a Z2 parity symmetry,
which corresponds to a mirror reflection about the center of a bond between two sites of the chain.
This is demonstrated in Figure 3.9 for the case of p = 2. Similar constructions exist for all n.

Figure 3.9: AKLT state for an SU(3) chain in the self-conjugate representation with p = 2. This
state is invariant under parity symmetry.

Finally, there is one more version of AKLT model that we will discuss in this thesis. In Chap-
ter 6, we will be led to SU(n) representations whose Young tableaux have two rows, with lengths
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p1, p2 satisfying p1 , p2 , 0. We note here that when p1 + p2 = n, it is straightforward to write
down a translationally invariant AKLT state. Indeed, we may construct a singlet over p1 consec-
utive sites using (p1 − p2) fundamentals and p2 antisymmetric doublets. Since each site has p1
representations (either fundamentals or doublets), we may shift the singlet by one site as we move
down the rows of the valence bond solid. Note that the self-conjugate SU(3) AKLT model is a
special case of this more general construction.

As a new example, let us explain this construction in greater detail for the case of SU(4), with
p1 = 3 and p2 = 1. We denote by αa

j a fundamental representation of SU(4) at site j. Then on each
site of the chain, we have the representation

|α1
j , α

2
j , α

3
j ;α

4
j〉, (3.46)

which is symmetric under permutations of the first three entries, and antisymmetric under ex-
changes with the fourth entry. For instance,

|α1
j , α

2
j , α

3
j ;α

4
j〉 = |α2

j , α
1
j , α

3
j ;α

4
j〉 = |α2

j , α
3
j , α

1
j ;α

4
j〉,

|α1
j , α

2
j , α

4
j ;α

3
j〉 = −|α1

j , α
2
j , α

3
j ;α

4
j〉 = −|α1

j , α
4
j , α

3
j ;α

2
j〉.

Using two fundamental representations αa
j , and one antisymmetric doublet representation

Figure 3.10: AKLT state for an SU(4) chain with p1 = 3 and p2 = 1. Singlets are formed from
three consecutive sites, using two fundamentals and one antisymmetric doublet.

|αa
j ;α

b
j〉 = − |αb

j ;α
a
j〉, we may contract indices to form a singlet across three sites according to

εα1
jα

2
j+1α

3
j+1α

4
j+2
|αa

j , α
1
j , α

b
j ;α

c
j〉|α

d
j+1, α

e
j+1, α

2
j+1;α3

j+1〉|α
4
j+2, α

f
j+2, α

g
j+2;αh

j+2〉. (3.47)

The remaining free representations αa
j , . . . , α

h
j+2 are then contracted into different singlet bonds,

over different sets of three sites. By using the pattern shown in Figure 3.10, a translationally
invariant valence bond solid can be constructed, that is also parity symmetric. In fact, for general
even n, we may always choose a p1-site singlet bond that is symmetric under parity, leading to a
parity-symmetric AKLT state. See Figure 3.11a and Figure 3.11b for two additional examples in
SU(6).
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(a) AKLT state for an SU(6) chain with p1 = 5 and p2 = 1. Singlets are formed from five consecutive sites,
using four fundamentals and one antisymmetric doublet.

(b) AKLT state for an SU(6) chain with p1 = 4 and p2 = 2. Singlets are formed from four consecutive
sites, using two fundamentals (single circles), and two antisymmetric doublet (double circle).

3.6 Conclusion

We began this chapter by motivating the study of SU(n) chains as a natural extension to the familiar
Heisenberg model. Thanks to recent advances in cold atom experimentation, what started out as
a purely theoretical study has since developed into an exciting cross-disciplinary effort. Indeed,
SU(n) chains now garner interest from condensed matter physicists, cold atom physicists, and even
theoretical high energy physicists.

We first introduced the SU(n) Hamiltonian, and the n × n matrices of operators, S . Then, by
reviewing the representation theory of SU(n), we were able to relate Young tableaux to the eigen-
values of S , and ultimately to a classical Hamiltonian. Then, in exhaustive detail, we considered
all of the possible ways of realizing a particular quantum field theory, the SU(n)/[U(1)]n−1 flag
manifold sigma model, by adding sufficiently long-range interactions to the Hamiltonian in order
to stabilize zero mode fluctuations. The results of this classification are presented in Table 3.1.
Then, in Section 3.5, we proceeded to review various exact results that exist for SU(n) Hamilto-
nians, namely the LSMA theorem, the AKLT construction, and the Bethe-ansatz integrable SU(n)
models. We also hinted at the renormalization flow of these SU(n) theories; this subject will treated
more thoroughly later on.

With this groundwork in place, we would now like to focus in more detail on particular repre-
sentations of SU(n). Admittedly, this chapter has been quite abstract, and quite removed from our
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ultimate goal of obtaining an SU(n)-version of the Haldane conjecture. In the following chapter,
we turn to SU(3) chains, and connect back to this overarching goal. The results of this chapter
will prove to be useful here, so that the appropriate Hamiltonian can be used, depending on which
SU(3) chain we consider. However, we will also draw on ideas from Chapter 2; in particular, we
will attempt to follow the prescription outlined in Section 2.5. This will lead to unexpected chal-
lenges, including the absence of Lorentz invariance, and also the presence of pure-imaginary, yet
non-topological terms in the sigma model.
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Chapter 4

SU(3) Chains

4.1 Introduction

In the previous chapter, we introduced SU(n) chains in full generality, and discussed how their
classical ground states, and consequently their underlying symmetries, depended on the chosen
SU(n) representation at each site. An important realization was that longer-range interaction terms
are necessary to include in the SU(n) Heisenberg Hamiltonian in order to stabilize local zero modes
that are present due to the larger symmetry available.

At this point, we are now prepared to derive our first mapping between SU(n) chain and quan-
tum field theory, and ultimately arrive at a generalization of Haldane’s conjecture. As will become
clear quite shortly, this is by no means a trivial task, and will require us to develop substantial
renormalization group results in order to arrive at any meaningful conclusion. As such, we restrict
in this chapter to the simplest extension possible; namely, we consider SU(3) chains in the totally
symmetric representations. According to the classification in Table 3.1, these chains require both
first and second-neighbour interactions in their Hamiltonian. Therefore, the model that we consider
in this chapter is

H =
∑

j

(
J1tr[S ( j)S ( j + 1)] + J2tr[S ( j)S ( j + 1)]

)
. (4.1)

As always, we take J1, J2 > 0. Each matrix S transforms under the symmetric representation,
labeled by p, which corresponds to the length of the single row in a Young tableau:

p boxes︷                              ︸︸                              ︷
(4.2)

Later on, we will comment on the remaining representations of SU(3), and explain how our results
can be extended to the self-conjugate representations of SU(3), with two-row Young tableaux.

For the most part, this chapter will follow the outline presented in Section 2.5. We will begin
with extending the familiar theory of spin-waves to SU(3), and derive the predicted velocities of
such low-lying excitations. As mentioned in Chapter 2, despite the lack of spontaneous symmetry
breaking in one spatial dimension, this perturbative treatment still serves its purpose; in particu-
lar, we will use this so-called flavour-wave theory to verify the absence of zero-mode excitations
when second-neighbour interactions are added to the SU(3) Heisenberg Hamiltonian. Next, in Sec-
tion 4.3, we derive the SU(3)/[U(1)]2 sigma model description of the symmetric SU(3) chain in
great detail. Our approach will be generalized in Chapter 5 to all n > 3, and so we make sure to be
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very explicit in our calculations. Following this, we turn to our renormalization group (RG) calcu-
lations in Section 4.5. Since this is the first appearance of RG technology in this thesis, we offer a
brief introduction to the subject, before turning to the flag manifold sigma model in particular. In
Section 4.6, we discuss the implications of these RG results, and present a phase diagram of the
SU(3) chain, which generalizes the SU(2) story in Figure 2.1. This phase diagram is supported by
the various exact results that we mentioned in the previous chapter, and we recall them here. The
phase diagram is also supported by a strong coupling analysis, and some Monte Carlo simulations,
which we review. At this stage, we are able to formulate our SU(3) version of Haldane’s conjecture
for symmetric chains. Finally, we finish this chapter by turning to the remaining representations of
SU(3) in Section 4.7.

The above work on symmetric SU(3) chains was published in 2017 in [1]. Section 4.7 was
published in [2]. Preceding our papers, Greiter and Rachel considered symmetric SU(n) chains
in [67], which was published in 2007. By constructing valence bond solids, à la AKLT, they pre-
dicted a finite energy gap for those representations whose row length p is a multiple of 3. The
result that we obtain will be consistent with this prediction. Similar results followed [61, 69, 74].
Furthermore, in 2012, Bykov established in two separate papers the first correspondence between
the symmetric SU(3) chains and the SU(3)/[U(1)]2 flag manifold sigma model [71, 72]. We were
not aware of Bykov’s contribution at the time of our research, and as such there is a large overlap
between his calculations and our derivation in Section 4.3. However, the remaining sections of
this chapter, including the extensive renormalization group calculations in Section 4.5, are entirely
novel. Finally, it is worth noting that various numerical studies have been carried out on the sym-
metric SU(3) chains, with contradicting predictions [70, 118–120]. However, these results were
recently surveyed in [77], and these contradictions are now better understood. This publication
also presented the most convincing results to date, using the density matrix renormalization group
to study the symmetric SU(3) chain with p = 3. Their findings are in complete accord with our
generalized Haldane conjecture, namely that a finite energy gap exists in this representation.

4.2 Flavour-Wave Theory

According to Coleman’s theorem [8], we do not expect spontaneous symmetry breaking of the
SU(3) symmetry in the exact ground state of our Hamiltonian. Nonetheless, we may still expand
about the classical (symmetry broken) ground state to predict the Goldstone mode velocities. If
the theory is asymptotically free (as in SU(2)), then at sufficiently high energies the excitations
may propagate with these velocities. In the familiar antiferromagnet, this procedure is known as
spin-wave theory; in SU(n) it is called flavour-wave theory [121, 122].

To begin, we rewrite the Hamiltonian (4.1) in terms of Schwinger bosons with three flavours.
The generators at site j can be written as

S αβ( j) = b†β( j)bα( j) (4.3)

and the local Hilbert spaces are defined by putting p bosons at each site, i.e. by the Casimir
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constraint ∑
α

b†α( j)bα( j) = p. (4.4)

The resulting Hamiltonian is quartic in bosonic operators:

H =
∑

j

(
J1b†β( j)bα( j)b†α( j + 1)bβ( j + 1) + J2b†β( j)bα( j)b†α( j + 2)bβ( j + 2)

)
. (4.5)

As in SU(2), we proceed by identifying a classical ground state which corresponds to a true ground
state of (4.1) in the limit p → ∞. It is a product wave function in which, at each site, all bosons
are in the same state. Note that if J2 were zero, there would be an infinite degeneracy of potential
states, and it would not be clear around which state the quantum fluctuations should be introduced.
Moreover, this degeneracy would lead to local zero modes with vanishing velocity.

The introduction of J2 resolves these issues and imposes a 3-site structure for the reference
state.18 As mentioned previously, this 3-site structure is consistent with the p = 1 Bethe ansatz
solution [12, 84, 85], and has been shown to be the state with minimal zero point fluctuations for
large p [109]. We view J2 as originating from quantum fluctuations in the nearest-neighbour model,
and accordingly, we will apply our conclusions about (4.1) to the nearest-neighbour model without
hesitation. Unfortunately, the exact mechanism by which J2 is generated is not yet understood,
and we cannot express J2 as a function of J1; however, on general grounds we at least know that it
should be suppressed by a factor of p−1.

Since we have 3 bosons for each of the 3 sites, we have actually introduced 9 bosonic operators.
To emphasize this, we introduce the following notation:

jα := 3 j + (α − 1). (4.6)

The classical ground state involves only ‘diagonal’ bosons of the type bγ( jγ) and b†γ( jγ). The ‘off-
diagonal’ bosons are Holstein-Primakoff bosons, like those defined in (2.6). Flavour-wave theory
allows for a small number of Holstein-Primakoff bosons at each site, captured by

ν( jγ) =
∑
α,γ

b†α( jγ)bα( jγ), (4.7)

and writes the Hamiltonian in terms of these 6 bosons. In the large-p limit, we have p � ν( jγ),
and we can expand

S γγ = p − ν( jγ),

S αγ( jγ) ≈
√

pb†α( jγ),

S γα( jγ) ≈
√

pbα( jγ),

18Another coupling that works is a ferromagnetic third-neighbour interaction. This was considered in [1].
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to find

tr[S ( jγ)S ( jη)] = p
[
b†γ( jη)bγ( jη) + b†γ( jη)bη( jγ) + b†η( jγ)b†γ( jη) + bη( jγ)bγ( jη)

]
+ O(p0). (4.8)

In terms of these degrees of freedom, the Hamiltonian (4.1) decomposes into a sum

H = H12 + H13 + H23, (4.9)

where Hγη is a Hamiltonian involving only the two boson flavours bγ( jη) and bη( jγ). In momen-
tum space, this gives 3 different 2 × 2 matrices, each of which can be diagonalized by the same
Bogoliubov transformation:

Hγ,γ+1 = const. +
∑

k

ω(k)
2∑

j=1

(
d†j (k)d j(k) +

1
2

)
(4.10)

where
ωt(k) = 2p

√
J1J2

∣∣∣∣∣sin
3ka
2

∣∣∣∣∣ . (4.11)

Therefore, the corresponding flavour-wave velocity is

v = 3p
√

J1J2, (4.12)

which is equal for each of the six Goldstone bosons. Later, when we consider SU(n) chains with
n > 3, we will learn that different branches of boson will generically propagate with different
velocities. This will inhibit the automatic emergence of Lorentz invariance in the corresponding
flag manifold sigma models.

4.3 Derivation of the Flag Manifold Sigma Model

Having verified that a unique, nonzero Goldstone velocity exists for the J1 − J2 Heisenberg Hamil-
tonian in (4.1), we now derive a low energy quantum field theory description of the chain. Since
the classical ground state has 3-site sublattice order, with unit vectors ϕα ∈ Cn defined on each site
(as per Chapter 3), we may define a unitary matrix U, by

Uαβ = ϕαβ . (4.13)

Throughout, a superscript index labels the vector, and a subscript index labels the component of
the vector. Applying the pictorial notation from Chapter 3, we may represent the classical ground
state at hand by

· · · · · · . (4.14)

Since the Hamiltonian is invariant under changing the overall phase of each of the three vectors
ϕα, (see (3.12)), we see that the ground state manifold is isomorphic to SU(3)/[U(1)]2. Two phases
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4.3. Derivation of the Flag Manifold Sigma Model

can be changed independently, later referred to as gauge symmetries, while the third phase is fixed
by setting the determinant of U to 1. This manifold has 6 generators, namely the six off-diagonal
Gell-Mann matrices of SU(3), which corresponds to the same amount of Goldstone bosons found
in the previous flavour-wave calculations.

To describe fluctuations about the ϕα, and thus about the ground state manifold, we write:

φα =
∑
β

1
p

Lαβϕβ +
√

1 − µ(α)ϕα. (4.15)

Here Lαα = 0 (no sum) and
p2µ(α) :=

∑
β

|Lαβ|2. (4.16)

These complex coefficients Lαβ describe general fluctuations about the ϕα. The vectors φα are
those that appear in the formula for the SU(n) matrices S in the limit of large p:

S αβ( jγ) = φ
∗,γ
α ( jγ)φγβ( jγ). (4.17)

This is the generalization to SU(3) of (2.21). By redefining the unitary matrix U, we may take L to
be Hermitian.19 Now, by letting U and L vary uniformly from site to site, we write

S αβ( jγ) = pφ∗,γα ( jγ)φγβ( jγ) = p
∑
δ,σ

L̃δγ( jγ)U†αδ( jγ)L̃γσ( jγ)Uσβ( jγ), (4.18)

where we’ve defined L̃αβ = 1
p Lαβ when α , β, and L̃αα =

√
1 − µ(α). Explicitly, the L̃ matrix is

L̃ =
1
p


p
√

1 − 1
p2 (|L12|2 − |L13|2) L12 L13

L∗12 p
√

1 − 1
p2 (|L12|2 + |L23|2) L2

3

L∗13 L∗23 p
√

1 − 1
p2 (|L13|2 + |L23|2)

 .
(4.19)

The expression (4.18) can be rewritten as

S αβ( jγ) = pL̃γγ( jγ)
∑
δ,γ

(
L̃δγ( jγ)U†αδ( jγ)Uγβ( jγ) + U†αγ( jγ)L̃γδ( jγ)Uδβ( jγ)

)
(4.20)

+p
[
L̃γγ( jγ)

]2
U†αγ( jγ)Uγβ( jγ) + p

∑
δ,σ,γ

L̃δγ( jγ)U†αδ( jγ)L̃γσ( jγ)Uσβ( jγ).

Using
L̃γγL̃δγ = L̃δγ + O(p−2) (4.21)

19The skew components of L generate unitary transformations, and can be recombined with the matrix U.
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we have
S αβ( jγ) =

∑
δ,γ

(
Lδγ( jγ)U†αδ( jγ)Uγβ( jγ) + U†αγ( jγ)Lγδ( jγ)Uδβ( jγ)

)
(4.22)

+p(1 − µ(γ))U†αγ( jγ)Uγβ( jγ) + p−1
∑
δ,σ,γ

Lδγ( jγ)U†αδ( jγ)Lγσ( jγ)Uσβ( jγ).

In matrix form, this is

S ( jγ) = pU†ΛγU + U†{L,Λγ}U + p−1U†LγU, (4.23)

where Λγ is zero except at entry (γ, γ) where it equals 1:

Λ1 =

 1 0 0
0 0 0
0 0 0

 , Λ2 =

 0 0 0
0 1 0
0 0 0

 , Λ3 =

 0 0 0
0 0 0
0 0 1

 . (4.24)

We’ve also defined
Lαβ( jγ) = Lαγ( jγ)Lγβ( jγ) − p2µ(γ)[Λγ]αβ. (4.25)

Let us pause for a moment and reflect on our calculations. Note that at no stage did we explicitly
use the fact that U, L and Λγ are 3 × 3 matrices. Indeed, the above calculations carry over directly
to SU(n) when we promote the objects ϕα to lie in Cn instead of C3. This observation will allow
us in Chapter 5 to immediately use the result (4.23) without further proof.

Using (4.23), we now evaluate the trace terms appearing in (4.1). Again, this derivation will
hold for general n×n matrices, and we will refer to these calculations in Chapter 5. Since the matri-
ces U and L are evaluated at different sites, we Taylor expand which introduces spatial derivatives.
For example

U( jγ) = U(n j + (γ − 1)) = U( jη) + (η − γ)∂xU( jη) +
1
2

(η − γ)2∂2
xU( jη) + · · · , (4.26)

where we’ve assumed the derivative is uniform: ∂xU( jη) = ∂xU( j′λ). Expanding in powers of L
and p−1, we find after some tedious algebra,

tr[S ( jγ)S ( jη)] = p2(η − γ)2tr[U∂xU†Λγ∂xUU†Λη] (4.27)

+2(η − γ)p
(
Lηγ[∂xUU†]γη + Lγη[U∂xU†]ηγ

)
+ 4|Lηγ|2 + const.

For the complete derivation of this result, see Appendix B. This completes the second item on the
recipe presented in Section 2.5.
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4.3.1 Coherent state path integral

Having rewritten the Hamiltonian in terms of U and L, we now derive the Lagrangian by using a
coherent state path integral approach [99, 100, 123]. Our approach mimics the procedure outlined
in Section 2.2.1. As a complete set of states, we introduce

|φ〉 = (φ · a)p|0〉, (4.28)

with φ ∈ Cn. As in SU(2), the a are bosonic operators, known as Schwinger bosons. Again,
we promote all of the fields to n-complex dimensional objects, so that we may make use of this
derivation again in Chapter 5. These states correspond to an element of the rank-p symmetric
representation of SU(n), [φ]p, acting on a highest-weight state in the Hilbert space:

|φ〉 = [φ]p|highest weight〉. (4.29)

The resolution of the identity is then the integration over all of SU(n) of the projection |φ〉〈φ|:

1 =

∫
Dφ|φ〉〈φ|. (4.30)

Inserting this between each time slice τi of the partition function, we obtain terms of the form

〈φ(τi)|e−Hδτ|φ(τi+1)〉 = 〈φ(τ)|φτ+δτ〉e−Hδτ. (4.31)

Exponentiating these terms, we find the following contribution to the action:∏
i

〈φ(τi)|φ(τi+1)〉 ∝ (1+φ∗(τi) ·∂τφ(τi))p = exp p log
∑

i

(1+φ∗(τi) ·∂τφ(τi)) ≈ exp p
∫

dτφ∗ ·∂τφ,

(4.32)
where we’ve used 〈φ|φ′〉 = (φ∗ · φ′)p. Now, using (4.15), we have

∂τφ
α
β =

∑
γ

∂τL̃αγUγβ + L̃αγ∂τUγβ, (4.33)

where L̃ is defined below (4.18). We neglect time derivatives of L̃, which are already small fluctu-
ations. Then we have

φ∗,α · ∂τφ
α =

∑
δ,γ,β

L̃δαU†βδL̃αγ∂τUγβ (4.34)

=
∑
δ,α

∑
β

[
LδαU†βδ∂τUαβ + U†βαL̃αδ∂τUδβ + (1 − µ(α))U†βα∂τUαβ

]
+ O(p−2)

= tr[Λα∂τUU†] + p−1tr[{Λα, L}∂τUU†] + O(p−2). (4.35)

Therefore, we see that the Lagrangian receives the following Berry contribution for each of the
n sites of the unit cell:
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LB = −
1
n

(
ptr[Λα∂τUU†] + tr[{Λα, L}∂τUU†]

)
+ O(p−1). (4.36)

We have divided by n, the size of the unit cell, since LB is technically a Lagrangian density that
will be integrated against the two-dimensional measure dxdτ. In SU(3), the explicit contribution
from a sum over 3 sites is, to O(p−1),

LB = −
p
3

tr
[
Λ1∂τU(x)U†(x) + Λ2∂τU(x + 1)U†(x + 1) + Λ3∂τU(x + 2)U†(x + 2)

]
(4.37)

−
1
3

tr
[
{Λ1, L(x)}∂τU(x)U†(x)+{Λ2, L(x+1)}∂τU(x+1)U†(x+1)+{Λ3, L(x+1)}∂τU(x+2)U†(x+2)

]
.

In SU(2), such an expression led directly to the topological term (2.44) upon Taylor expansion
and integrating out the L matrices. Here, we will find that such a procedure will lead to additional
terms that are purely imaginary in imaginary time (like a topological term), yet are not quantized.
These so-called ‘λ-terms’, which are absent in SU(2), can be interpreted as torsion terms in the flag
manifold metric tensor. In Section 4.5, we will devote considerable effort to analyzing the λ-term
in SU(3) using the renormalization group.

4.3.2 Complete field theory

We now are in a position to derive the complete field theory of the SU(3) chain in the symmetric
representation. First, we Taylor expand the result (4.37). Note that since the L matrices are already
subleading, this Taylor expansion is only nontrivial for the first line in (4.37). We find

LB = −
p
3
εµνtr[(Λ2 + 2Λ3)∂µU∂νU†] −

2
3

tr
[
L∂τUU†

]
, (4.38)

where we again made use of the identity tr[∂UU†] = 0, which is proven in Appendix A. Now,
let us determine the Lagrangian contribution from the Hamiltonian. Using the formula (2.34), we
have

L − LB = −
J1

3

(
tr[S (x)S (x + 1)] + tr[S (x + 1)S (x + 2)] + tr[S (x + 2)S (x)]

)
(4.39)

−
J2

3

(
tr[S (x)S (x + 2)] + tr[S (x + 2)S (x)]

)
.

Note that we have remembered to divide by 3, the size of the unit cell, when adding (4.27) into
this expression. We have also made use of the 3-site order to make the identification x ∼ x + 3.
Inserting (4.27), we then have

L − LB = −
J1

3

[ 3∑
α=1

p2tr[U∂xU†Λα∂xUU†Λα+1] + 2ptr[{L,Λα}∂xUU†Λα+1] + 4|Lα,α+1|
2
]

(4.40)
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−
J2

3

[
4p2

3∑
α=1

tr[U∂xU†Λα∂xUU†Λα+2] + 4ptr[{L,Λα}∂xUU†Λα+2] + 4|Lα,α+2|
2
]
,

where all indices are defined modulo 3. Now, the L matrices can be integrated out using the same
Gaussian identity we used in Chapter 2, (2.38), as well as the result (4.38). For example, integrating
out L12 and L∗12 leads to∫

dL12dL∗12 exp
[
−

4
3

(J1 + J2)|L12|
2 − 2L12

(
[∂τUU†]21 + 2(2J2 − J1)[∂xUU†]21

)]
(4.41)

× exp
[
−2L21

(
[∂τUU†]12 − 2((2J2 − J1)[∂xUU†]12

)]
= exp

[
−

1
3(J1 + J2)

tr[Λ1U∂τU†Λ2∂τUU†] + p2 (2J2 − J1)2

3(J1 + J2)
tr[Λ1U∂xU†Λ2∂xUU†]

]
× exp

[
p

2J2 − J1

3(J1 + J2)
εµνtr[∂µUU†Λ2∂τUU†Λ1]

]
.

Similar integrals can be done for the L23 and L13 terms as well. In the end, we arrive at the
following action:

S [U] =

∫
dxdτ

( 3∑
α=1

1
g

[
vtr[Λα−1U∂xU†Λα∂xUU†] +

1
v

tr[Λα−1U∂τU†Λα∂τUU†]
]

(4.42)

+i
θ

2πi
εµνtr

[
(Λ1 − Λ3)∂µU∂νU†

]
+ i

λ

2πi
εµν

3∑
α=1

tr[Λα−1U∂µU†Λα∂νUU†]
)
.

Let us define the various parameters introduced above. The coupling constants g and λ obey

1
g

= p
√

J1J2

J1 + J2
λ =

2πp
3

2J2 − J1

J1 + J2
, (4.43)

the velocity satisfies
v = 3p

√
J1J2, (4.44)

and the topological angle is defined by

θ =
2πp

3
. (4.45)

This action defines a sigma model quantum field theory. That is, a theory whose fields, (in this
case the matrices U), are restricted to lie in a particular smooth manifold. For us, this space is the
flag manifold SU(3)/[U(1)]2: the space of special unitary 3x3 matrices that are invariant under two
U(1) gauge transformations. The terms proportional to 1

g correspond to a symmetric metric tensor
on this manifold, and the λ-term corresponds to an antisymmetric metric torsion. For more details
on the mathematical structure of both sigma models, as well as flag manifolds in general, we refer
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the reader to the papers of Bykov [71, 72], as well as the recent review [6].20 In the following
section, where we list the various properties of this model, these gauge transformations will be
verified explicitly.

But before moving on, we make an additional useful observation. Since our quantum field
theory was derived to capture small fluctuations about a classical ground state, we may treat U as
a matrix close to the identity operator, and write

U = ei
∑

A ωATA , (4.46)

for small real fields ωA, and su(3) Lie algebra generators TA. Indeed, this is a defining property of
any Lie group, including SU(3) in which U belongs. Now, in Appendix C, we prove a factorization
property of SU(3) matrices. Namely, any matrix U can actually be written as

U = ei(ω3T3+ω8T8)ei
∑

A,3,8 ωATA , (4.47)

where T3 and T8 are diagonal matrices, and the remaining generators are off-diagonal. Inserting
this factorization into (4.42), the gauge invariance cited above will ensure that the fields ω3 and ω8
do not appear in the action. In other words, the flag manifold sigma model action is described by
only 6 fields, which agrees with the real dimension of SU(3)/[U(1)]2. This number of degrees of
freedom is consistent with the fact that we found 6 Goldstone bosons in our flavour-wave theory
calculations. Moreover the ωA fields propagate with precisely the same velocity, v. This is to
be expected, since it was flavour-wave theory that provided our reference state for deriving the
quantum field theory in the first place!

4.4 Properties of the Field Theory

The first symmetry to notice in (4.42) is the invariance under exchanging the spatial and temporal
coordinates, x ↔ τ; i.e. the theory is Lorentz invariant just as in SU(2). This can be made more
obvious by rescaling τ 7→ vτ.

Next, we comment on the coupling constants. The first, g, is a direct analogue of the CP1

coupling (2.50), and as in that theory, it tends to zero in the limit of large representation, p → ∞.
We will make use of this fact in the following section when we perform perturbation theory to
determine various renormalization group flows in the sigma model. Meanwhile, the coupling con-
stant λ is novel, and arises due to a mismatch between the first and second-neighbour interactions
in the Heisenberg Hamiltonian. Only for the fine-tuned choice of J1 = 2J2 does this term vanish.
Unfortunately, we are unable to identify a physical symmetry of the SU(3) chain that would rule
out such a term, and so we are forced to analyze its consequences. Interestingly, this λ-term is
a pure-imaginary term in imaginary time, and contributes only a phase to the underlying SU(3)
partition function, much like the topological term analyzed in Section 2.3.1. However, unlike a
topological term, it is not related to an invariant, and so is not quantized in any way.

20The ‘flag’ structure is more obvious when we recall the isomorphism U(3) ≡ SU(3) × U(1), so that the manifold is
U(3)/[U(1)]3. In [6], additional equivalent definitions of flag manifolds can be found.
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Finally, let us direct our attention to the terms involving θ. As our notation suggests, these are
topological invariants, and correspond to the second cohomology group of the manifold SU(3)/[U(1)]2:

H2(SU(3)/[U(1)]2) = Z × Z. (4.48)

Recall that this group is equivalent to the second homotopy group for flag manifolds, which clas-
sifies topologically distinct maps from S 2 to the target space. As we explained in Chapter 2, since
any finite-action field configuration must attain a constant value at some radius R away from the
origin in spacetime, we may identify R2 with the sphere S 2, and view any field ϕ ∈ SU(3)/[U(1)]2

as a map from S 2 to the flag manifold. Explicitly, the topological invariant is

Qα :=
1

2πi
εµν

∫
dxdτtr[Λα∂µU∂νU] ∈ Z, (4.49)

so that topological action arising from (4.42) reads

S top = i
3∑
α=1

θαQα, (4.50)

with θ1 = −θ3 = θ =
2πp

3 , and θ2 = 0. Actually, we have some freedom in our definition of the θα,
since it is easily verified using tr[U∂U†] = 0 that the topological charges Qα satisfy

Q1 + Q2 + Q3 = 0. (4.51)

In fact, not only do the topological charges sum to zero, but so do their densities, qα := tr[Λα∂µU∂νU†].

4.4.1 The flag manifold as coupled CP2 sigma models

In Section 3.3, we explained how longer-range interactions in the Heisenberg Hamiltonian served to
couple degrees of freedom together across sites of the chain. According to (4.18), in the symmetric
representations we presently consider, to each site of the chain we may assign a field ϕα, which
corresponds to a CP2 degree of freedom. In a nearest-neighbour model, the unit cell would involve
only two such CP2 fields, and local zero modes would persist. But as we have seen, by adding a
J2 term in (4.1), we couple three sites together, and obtain a field theory involving three separate
CP2 fields. We now rewrite our sigma model in a manner that makes this threefold CP2 structure
explicit. Using the identity

3∑
α=1

|ϕ∗,α−1 · ∂µϕ
α|2 =

1
2

3∑
α=1

(
|∂µϕ

α|2 − |ϕ∗,α · ∂µϕ
α|2

)
, (4.52)

we see that the flag manifold sigma model resembles that of three CP2 fields, coupled via orthog-
onality and the λ-term. Indeed, after some algebra we find

S =
1

2g

3∑
α=1

(
|∂µϕ

α|2 − |ϕ∗,α · ∂µϕ
α|2

)
+
εµν

2πi

3∑
α=1

[
iλ(ϕ∗,α+1 · ∂µϕ

α)(ϕα+1 · ∂νϕ
∗,α) + iθα∂µϕα · ∂νϕ∗,α

]
,

(4.53)
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where we have rescaled τ by setting v = 1. The first term occurring above is precisely the action
for a CP2 field. This expression makes explicit the embedding of the flag manifold SU(3)/[U(1)]2

into three copies of CP2:

U(3)
U(1) × U(1) × U(1)

↪→ CP2 × CP2 × CP2. (4.54)

Since CP2 is the Grassmannian G1,n, this embedding is a special case of (3.16).

4.4.2 Gauge symmetry

We now turn to the U(1) × U(1) gauge structure of the sigma model. In (4.42), this manifests as
invariance of the action under the transformation U′(x, τ) = D(x, τ)U(x, τ), where

D(x, τ) =

e
iϑ1(x,τ) 0 0

0 eiϑ2(x,τ) 0
0 0 eiϑ3(x,τ)

 (4.55)

with ϑ3 = −ϑ1 − ϑ2. It is actually easier to verify the gauge symmetry in terms of the ϕα. In terms
of these fields, this transformation corresponds to ϕ′α = eiϑαϕα. Let us verify each term in (4.53)
separately. Since

|ϕ′∗,α±1
· ∂µϕ

′α|2 = |ϕ∗,α±1e−iϑα±1 · (∂µϕαeiϑα + ϕα∂µeiϑα)|2 = |ϕ∗,α±1 · ∂µϕ
α|2 (4.56)

because the ϕα are mutually orthogonal, we can use (4.52) to verify that the real terms in (4.53) are
gauge invariant. The λ-term can be similarly shown to be invariant since the phase factors cancel
out. Finally, the topological charges transform as

εµν(∂µϕ′
α
· ∂νϕ

′∗,α) = εµν(∂µϕα · ∂νϕ∗,α) + εµν(∂µ(iϑα)∂ν(−iϑα)) (4.57)

+εµν(∂µϕα · ϕ∗,α∂ν(−iϑα)) + εµν(∂µ(iϑα)ϕα · ∂νϕ∗,α).

The second term on the right hand side vanishes by symmetry: εµν is antisymmetric while (∂µϑα∂νϑα)
is symmetric. Meanwhile, the third and fourth terms cancel due to the identity

∂(ϕα · ϕ∗,α) = 0. (4.58)

Thus, the topological term is invariant, and (4.42) possesses the gauge symmetry (4.55) as claimed.
It is perhaps useful to relate these gauge symmetries to the familiar U(1) gauge symmetry of

the CP2 sigma model. To this end, we introduce three fields Aαµ ∈ R2, which satisfy

A1
µ(x) + A2

µ(x) + A3
µ(x) = 0 (4.59)
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for all x and µ. This constraint is equivalent to the condition that ϑ3 = −ϑ1 − ϑ2 in (4.55). In terms
of these Aαµ , there exists yet another rewriting of (4.42), which is

S =

∫
dxdτ

 3∑
α=1

[
1
2g

∣∣∣(∂µ + iAαµ)ϕα
∣∣∣2 +

iθα
2πi

εµνAαν +
εµν

2πi
λ(ϕ∗,α+1 · ∂µϕ

α)(ϕα+1 · ∂νϕ
∗,α)

] . (4.60)

To prove this, we first expand the real term in (4.60):∣∣∣(∂µ + iAαµ)ϕα
∣∣∣2 =

∣∣∣∂µϕα∣∣∣2 + (Aαµ)2 − 2iAαµϕ
∗,α · ∂µϕ

α (4.61)

=
∣∣∣∂µϕα∣∣∣2 − ∣∣∣ϕ∗,α · ∂µϕα∣∣∣2 + (Aαµ − iϕ∗,α · ∂µϕα)2.

This form suggests we shift Aαµ by iϕ∗,α · ∂µϕα. In doing so, this changes the topological term in
(4.60) according to

εµν∂µAαν 7→ εµν∂µAαν + iεµν∂µϕ∗,α · ∂νϕα. (4.62)

Since the Aαµ are decoupled from the ϕα, we may now integrate out the gauge fields completely, and
obtain the desired theory (4.53). Note that shifting the gauge fields does not disturb the constraint
(4.59), since

A1
µ(x) + A2

µ(x) + A3
µ(x) 7→ A1

µ(x) + A2
µ(x) + A3

µ(x) +

3∑
α=1

ϕ∗,α · ∂µϕ
α, (4.63)

and the second term vanishes since it is of the form tr[U∂U†].

4.4.3 Z3 symmetry

Translation symmetry in the underlying SU(3) chain is realized in the sigma model as a global Z3
symmetry: U 7→ U′ = RU, with

R =

0 1 0
0 0 1
1 0 0

 . (4.64)

This cyclically permutes the three ϕα fields, which can be represented pictorially as

7→R 7→R 7→R . (4.65)

Note that R3 = 1, as it must. Using the form of the action (4.53), the only nontrivial calculation we
must do to verify symmetry under R has to do with the topological term. Note that

2π
3

(Q1 − Q3) 7→
2π
3

(Q2 − Q1) =
2π
3

(Q1 − Q3) +
2π
3

(Q1 + Q2 + Q3) − 3
2π
3

Q1. (4.66)

Since Q1 + Q2 + Q3 = 0, the second term vanishes. Now recall that the topological term enters the
partition function as a pure phase. Since Q1 ∈ Z, we have

e
2πip

3 (Q1−Q3) 7→ e
2πip

3 (Q1−Q3)e2πipQ1 = e
2πip

3 (Q1−Q3), (4.67)

which proves the symmetry. We will have more to say on this symmetry later on, when we discuss
the concept of ’t Hooft anomaly matching.
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4.4.4 Other discrete symmetries

Another discrete global symmetry of the sigma model is parity symmetry, which corresponds to
a mirror symmetry in the SU(3) chain. In fact, there are three non-equivalent mirror symmetries,
which lead to three non-equivalent parity symmetries. For example, a reflection about the line
separating and sites in the chain corresponds to

ϕ1(x, τ) 7→ ϕ3(−x, τ) ϕ2(x, τ) 7→ ϕ2(−x, τ) ϕ3(x, τ) 7→ ϕ1(−x, τ). (4.68)

It is easily verified that such a transformation leaves (4.53) invariant. Note for instance that the
topological term is unchanged: Q1 and Q3 change sign, but so does the partial derivative, ∂x, and
these two changes cancel out. This parity symmetry will not be related to any ‘t Hooft anomalies,
but will become important in Section 4.7 when we discuss other SU(3) representations.

Finally, the sigma model is also unchanged under the symmetry ϕα(x, τ) → ϕα(x,−τ), as well
as i 7→ −i. This corresponds to time-reversal symmetry in the SU(3) chain.

4.5 Renormalization Group Calculations

In Chapter 2, once we derived the corresponding sigma model of the antiferromagnet, we were
immediately able to draw conclusions about its phase diagram. This was because a great deal of
theoretical investigation had already been carried out for the CP1 sigma model. In particular, it was
well established that the theory is asymptotically free, meaning that the coupling constant g flows
to small values at high enough energies [18].

Having derived the flag manifold sigma model description of the SU(3) chain in this chapter, we
would now like to proceed in a similar fashion. Ultimately, we hope to establish a phase diagram
for the chain that depends on the representation p, and uncover an SU(3) version of Haldane’s
conjecture. Unfortunately, we have more work to do first. Since these flag manifolds are relatively
novel theories, they have not been studied to the same extend as in SU(2). Therefore, in this section,
we are forced to do the necessary renormalization group (RG) calculations ourselves, in order to
establish asymptotic freedom in the SU(3) chain. We will also investigate the relevance of the
λ-term, as it is an operator that is not often considered in standard quantum field theories.

4.5.1 A primer on renormalization group theory

Since the notion of renormalization group flow will be central to the results of this thesis, we offer
here a brief reminder of its theoretical foundation.21 The fundamental idea behind the renormal-
ization group is that coupling constants change as we change the length scale of our theory. In
the context of spin chains, this notion of different length scales is very natural: the atomic spacing
of spins along the chain is a much smaller distance than the observable lengths defined by macro-
scopic phenomena. This motivates the search for so-called relevant operators – those operators

21The content of this subsection is partially transcribed from the author’s MSc thesis [124].
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whose coupling constants increase as we increase length scales. In contrast, irrelevant operators,
those whose couplings decrease as we increase length scales, are less interesting to us as physicists
who seek to model and identify macroscopic phenomena.22 When we apply this thinking to our
flag manifold sigma model, what we hope to understand is which of the couplings g and λ are
associated with relevant operators.

In order to achieve this understanding, we must determine the functions governing the evolution
of g and λ as a function of length scale. These are known as beta functions, and can be defined
as follows. Given a family of length scales bΛ parametrized by b, the beta function of coupling
constant X is defined according to

βX :=
dX

d log b
. (4.69)

Here Λ can be thought of as an underlying ultraviolet (i.e. high energy) cutoff in the theory, de-
termined in part by the inverse lattice spacing, a−1.23 Since increasing b corresponds to increasing
length, relevant operators have positive beta functions. Now, there are various ways of calculating
βX; we choose to follow Ken Wilson’s approach, who is credited for much of our modern under-
standing of the renormalization group [125]. According to Wilson, one reduces the length scale of
the quantum field theory by integrating out those fields whose momentum modes are restricted to
lie in a thin shell in momentum space. This shell consists of all momenta with magnitude lying
within (b−1Λ,Λ).24

Let us explain how this integration is carried out for the case of a single scalar field, φ. Then
we will turn to the flag manifold sigma model in the following subsection. The Lagrangian density
is taken to be

Lϕ =
1
2

(∂ϕ)2 +
∑

i

XiOi[ϕ], (4.70)

where Oi[ϕ] is a generic operator involving the field ϕ and its derivatives. We begin by separating
the field into slow and fast components,

ϕ = ϕs + ϕ f , (4.71)

where ϕs contains the momentum modes of ϕ with magnitude less than b−1Λ, and ϕ f contains the
modes that lie within the shell. In terms of these new variables, the Lagrangian density can be
reorganized as follows:

Lϕ = Ls +L0
f +Ls f . (4.72)

The first term, Ls, equals the original Lagrangian density, but with ϕ replaced with ϕs. The sec-
ond term, L0

f , equals the free fast Lagrangian density, 1
2 (∂ϕ f )2. The remaining term contains all

22For completeness, we note that operators that are neither relevant nor irrelevant are referred to as marginal.
23In practice, Λ is a reduced cutoff, which is less than the bare cutoff Λ0 := a−1. This is because we typically work

with a Lagrangian that already corresponds to some lower energy description of the system than the original underlying
Hamiltonian.

24Note that since b is a length scale, b−1Λ corresponds to an energy scale less than Λ.
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operators that mix slow and fast components. The partition function can then be rewritten as

Z =

∫
Dϕsϕ f e

−
∫

dd x(Ls+L
0
f +Ls f )

= Z0, f

∫
Dϕse−

∫
dd x(Ls+δL)), (4.73)

where
Z0, f :=

∫
Dϕ f e−

∫
dd xL f 〈· · · 〉 f := Z−1

0, f

∫
Dϕ f · · · e−

∫
dd xL f (4.74)

and
e−

∫
dd xδL := 〈e−

∫
dd xLs f 〉 f . (4.75)

In other words, integrating out the fast modes has generated new terms in the Lagrangian. Since
the operators appearing in (4.70) were generic, we can write

δL =
1
2
δZϕ(∂ϕs)2 +

∑
i

δZiOi[ϕs] (4.76)

in terms of renormalization constants δZϕ and δZi. To compare Ls + δL to the original theory, we
rescale coordinates

x→ b−1x (4.77)

so that the new UV cutoff is once again Λ, and rescale the field

ϕs → ϕs

√
(1 + δZϕ)bd−2 (4.78)

so that the new kinetic term is once again 1
2 (∂ϕ)2. Defining di and ni to be the mass dimension

and number of factors of ϕ, respectively, of Oi, we find that the coupling constants of the reduced
theory, Xi(b), satisfy

Xi(b) = Xi

(
1 +

δZi

Xi

)
(1 + δZϕ)−nibdi . (4.79)

This expression can now be differentiated with respect to log b, yielding the beta functions of
the theory, βXi . Often, we use flow diagrams that capture the information provided by these beta
functions.

4.5.2 Renormalization of the SU(3) chain

According to the steps outlined above, we begin by deriving a perturbative expansion of the sigma
model, (4.42). This is achieved by rewriting the matrices U in terms of the 8 generators TA of
SU(3), according to

U = ei
∑8

A=1 ωATA . (4.80)

These matrices are defined explicitly in (E.1), and can be thought of as generalized Pauli matrices.
They satisfy the su(3) algebra

[TA,TB] = 2i fABCTC , (4.81)
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where the fABC structure constants are fully antisymmetric. Due to the factorization property of
SU(3) matrices (4.47), and the gauge symmetry (4.55), we can replace (4.80) with the simpler
relation

U = eiωaTa . (4.82)

Here and throughout, lowercase Latin letters index the off-diagonal Gell-Mann matrices, lowercase
Greek letters index the diagonal ones, uppercase Latin letters index all eight Gell-Mann matrices,
and repeated indices are summed over. Now following Wilson, we rewrite the fields U in terms of
‘slow’ (Us) and ‘fast’ (U f ) fields, as

U = U f Us (4.83)

and make use of (4.82) for each factor. These fast fields have momentum modes restricted to a
Wilson shell [b−1Λ,Λ), where Λ is an energy cutoff (less than the inverse lattice spacing), and b &
1. The RG step of integrating over this shell is then equivalent to integrating out the fields U f from
the theory. This factorization of U is motivated by Polyakov’s work on the O(3) nonlinear sigma
model, which found the model’s RG equations by a quadratic expansion of the ‘fast fields’ [126]. In
Appendix D, we review this calculation, and also demonstrate the equivalence between Polyakov’s
decomposition and (4.83) for the SU(2) case.

We are now ready to insert (4.83) into our Lagrangian. But since we will be forced to make use
of many identities involving the structure factors fABC , we choose to rewrite the Lagrangian in an
equivalent form, which is derived in Appendix E.2. Neglecting the topological term, as it does not
contribute to perturbative RG equations, this equivalent form reads

L =
1
8g

tr[∂µ(U†TγU)∂µ(U†TγU)] + λ

√
3

2
εµνtr[∂µUU†T8∂νUU†T3]. (4.84)

For convenience, we define the composite objects

MA = U†s TAUs Nµ = ∂µUsU†s (4.85)

which will simplify our notation greatly. We now derive a perturbative Lagrangian by focusing on
each term in (4.84) separately.

First term of (4.84)

We start by inserting U = U f Us into the first term of (4.84), and expanding U f = I + iωaTa −
1
2ωaωbTaTb + O(ω3). Then to leading order

U†f TγU f = Tγ − iωa[Ta,Tγ] + ωaωbTaTγTb −
1
2
ωaωb{TaTb,Tγ}. (4.86)

The quadratic term can be simplified by noting that since ωaωb is symmetric in a and b,

ωaωb

(
TaTγTb −

1
2
{TaTb,Tγ}

)
=

1
4
ωaωb

(
[Ta, [Tγ,Tb]] + [Tb, [Tγ,Ta]]

)
. (4.87)

58



4.5. Renormalization Group Calculations

Now using the su(3) algebra, and defining

habγD =
(

facD fγbc + fbcD fγac
)
, (4.88)

we obtain
U†TγU = Mγ + 2 faγbωaMb − ωaωbhabγDMD. (4.89)

Derivatives and traces are now taken, resulting in

tr[(∂µ(U†TγU))2] = (4.90)

tr[(∂µMγ)2] + 4 faγc fbγd∂µωa∂µωbtr[McMd] + 4 faγc fbγdωaωbtr[∂µMc∂µMd]

+ 4 faγb∂µωatr[∂µMγMb] + 4 faγbωatr[∂µMγ∂µMb]

+ 8 faγc fbγd∂µωaωbtr[Mc∂µMd] − 4∂µωaωbhabγDtr[∂µMγMD]

− 2ωaωbhabγDtr[∂µMγ∂µMD] + O(ω3).

We can simplify some terms. Using (E.4), we have

tr[McMd] = tr[U†s TcUsU†s TdUs] = tr[TcTd] = 2δcd. (4.91)

Additionally,

tr[MA∂µMB] = tr[Us∂µU†s TBTA] + tr[∂µUsU†s TATB] (4.92)

= tr[∂µUsU†s [TA,TB]] (4.93)

= 2i fABCtr[∂µUsU†s TC] (4.94)

and
habγD fDγC = − fDaE fbγE fDγC − fDbE faγE fDγC = 0 (4.95)

imply that the term proportional to ∂µωaωbhabγD vanishes. The result is

tr[(∂µ(U†TγU))2] = tr[(∂µMγ)2] + 8(∂µωa)2 + 4 faγc fbγdωaωbtr[∂µMc∂µMd]

+ 8i fabe∂µωaωbtr[∂µUsU†s Te] + 16i fabρ∂µωaωbtr[∂µUsU†s Tρ]

− 2ωaωbhabγDtr[∂µMγ∂µMD]

plus linear terms in ωa and higher-order corrections. For now, we neglect the linear terms: this will
be justified shortly. Then, to quadratic order in ωa, the first term of (4.84) can be written as

1
8g

tr[(∂µ(U†TγU))2] = (4.96)

1
8g

tr(∂µMγ)2 +
1
8g

[
8(∂µωa)2 + 4 faγC fbγDωaωbtr[∂µMC∂µMD]

+ 8i fabe∂µωaωbtr[∂µUsU†s Te] + 16i fabρ∂µωaωbtr[∂µUsU†s Tρ]

− 2ωaωbhabγDtr[∂µMγ∂µMD]
]
.
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Second term of (4.84)

We now perform the same expansion of U f to simplify the second term of (4.84). Define

Lq := εµνtr[∂µUU†T8∂νUU†T3], Nµ := ∂µUsU†s . (4.97)

Then we have

Lq = εµνtr[∂µU f U
†

f T8∂νU f U
†

f T3] + εµνtr[∂µU f U
†

f T8U f NνU
†

f T3] (4.98)

+ εµνtr[NµU†f T8∂νU f U
†

f T3U f ] + εµνtr[NµU†f T8U f NνU
†

f T3U f ].

Using (4.89), this is

Lq = + εµνtr[∂µU f U
†

f T8∂νU f U
†

f T3] (4.99)

+ εµνtr[∂µU f (T8 + 2 fa8bωaTb − ωaωbhab8DTD) NνU
†

f T3]

+ εµνtr[NµU†f T8∂νU f (T3 + 2 fa3bωaTb − ωaωbhab3DTD)]

+ εµνtr[Nµ (T8 + 2 fa8bωaTb − ωaωbhab8DTD) Nν (T3 + 2 fa3bωaTb − ωaωbhab3DTD)].

Expanding the remaining U f , and dropping a term proportional to ∂µωa∂νωbεµν which vanishes
after Fourier transforming, we find

λLq = εµνλ

√
3

2

[
tr[NµT8NνT3] + ∂µωaωbtr[NνTb (T3TaT8 − T8TaT3)] (4.100)

+
1
2
∂µ(ωaωb)tr[Nν(T8TaTbT3 − T3TaTbT8])]

+ ωaωb
(
4 fb3d fa8ctr[NµTcNνTd] + tr[NνTDNµ (hab8DT3 − hab3DT8)]

)
+ 2i∂µωaωbtr[TaTcNν ( fb8cT3 − fb3cT8)],

]
where again we have omitted the terms linear in ωa.

Discussion of linear terms

In both parts of (4.84), we have refrained from writing the terms linear in ωa explicitly. We now
justify this choice. After integrating by parts, all such terms are of the form

ωaFa(~x) (4.101)

where Fa(~x) is a function of the slow matrices Us, and involves two derivatives. Naively, we
may argue that

∫
d2xωaFa(~x) = 0, since ωa only contains fast modes, while Fa is made of slow

functions. However, since Fa contains products of slow modes, it will generically have some fast
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modes; thus a different argument is required to justify neglecting these terms. We present two such
arguments:

First, upon integrating out the fast fields, the contribution to the effective Lagrangian is

δL =
1
2

∫
d2~xd2~yFa(~x)Gab(~x − ~y)Fb(~y), (4.102)

where Gab(~x) is the Green’s function of the ω fields. In ~k-space, this is

δL(~k) =
1
2

∫
b−1Λ<|~k|<Λ

d2~k
(2π)2

1
k2 Fa(~k)Fa(−~k) (4.103)

because the ω fields only have momentum modes in the Wilson shell. Since F(~k) involves no more
than four slow fields, k is restricted to |k| < 4Λ̃, where Λ̃ := b−1Λ. Following [126], we will take
the limit Λ̃ → 0, and argue that |δL(~k)| → 0. Indeed, since Fa(~k) contains two derivatives of slow
modes,

|F(~k)| < Λ̃2|F̃(~k)| (4.104)

for some operator F̃(~k) involving up to four slow fields, without derivatives. Therefore,

|δL| <
3
2

Λ̃3 max
Λ̃<|k|<4Λ̃

|F̃(~k)||F̃(−~k)|. (4.105)

Since F̃(~k) just involves products of slow fields, this maximum should be bounded by some Λ̃ inde-
pendent constant as Λ̃ → 0, say max0<|k|<Λ|F(~k)||F̃(−~k)|. Therefore |δL| vanishes as Λ̃3. This is to
be compared with the marginal kinetic term, (∂µωa)2, which only vanishes as Λ̃2. This agrees with
our naive intuition, that since Fa(~x) involves two derivatives, δL should consist of irrelevant oper-
ators; however, we are more careful here, since the momenta of Gab(~x − ~y) in (4.102) is restricted
to the Wilson shell.

An alternative argument for neglecting linear terms is as follows. In the perturbative La-
grangian, the leading term that arises from ωa(x)Fa(x) will correspond to a Feynman diagram
with a single internal line. Since the leading g-dependent interaction is a four-point vertex, the
simplest O(λ) diagram arising from ωa(x)Fa(x) will serve to renormalize a five-point or six-point
interaction. Such diagrams can be excluded from a first-order perturbative calculation of β(g) and
β(λ), which consider the four-point and three-point interactions, respectively.

4.5.3 Integration over a Wilson shell

Having justified the dropping of linear terms, we now Fourier transform the sum of (4.96) and
(4.100) and perform Gaussian integrals over the ωa. We use the general formula∫

D[φ]e−
∫

d2 x(L−L0) = Ne−
1
2 tr

[
log

∫
O
]

(4.106)

61



4.5. Renormalization Group Calculations

where O is a formal expression involving the Green’s functions of ωa. Following Polyakov’s ap-
proach (reviewed in Appendix D), we expand the tr[log] to second order, since higher-order terms
will involve more than two derivatives acting on the Us, and correspond to irrelevant operators. The
slow functions appearing in the linear term of this expansion can be replaced by their averages, as
in (D.7). Meanwhile, the quadratic terms of the tr[log] can be approximated using (D.11). Notice
that terms proportional to ∂µωaωb do not contribute to linear order, according to (D.8). The result
is

tr[logO] = (4.107)∫
d2x

( ∫
d2k

(2π)2

( 1
2k2 faγC faγDtr[∂µMC∂µMD] −

1
4k2 haaγDtr[∂µMγ∂µMD]

)
−

1
2

∫
d2k

(2π)2

kµkν
k4

(
fabEtr[NµTE] + fabρtr[NµTρ]

)2

+
√

3
∫

d2k
(2π)2

( 2
gk2λ fa3d fa8cεµνtr[NµTcNνTd] +

g
2k2λεµνtr[NνTDNµ(haa8dT3 − haa3DT8)]

)
+
√

3λg
∫

d2k
(2π)2

kµkρερν
k4

(
fabEtr[NµTE] + fabγtr[NµTγ]

)
×

(
+

i
2

(tr[TbT8NνTaT3] − tr[NνTaT8TbT3]) − tr[Nν ( fa8cT3TbTc − fa3cT8TbTc)]

+
i
4

tr[Nν (T8{Ta,Tb}T3 − T3{Ta,Tb}T8)]
))

+ higher-order corrections.

Here the integration over k is restricted to the Wilson shell. The first line can be simplified using
haaγD = 6δγD, and (E.7). The second line can be simplified using(

fabEtr[NµTE] + fabρtr[NµTρ]
)2

= −12(tr[NµTγ])2 − (tr[NµTa])2. (4.108)

The third line can be simplified too. Since fa8c fa3d vanishes unless c = d, the first term is propor-
tional to εµνtr[NµTcNνTc] = 0. Using haaγD = 6δγD, the whole third line is

6
√

3gλεµν

∫
d2k

(2π)2

1
k2 tr[NνT8NµT3]. (4.109)

The last line can be dropped, since it is symmetric in a, b and multiplies terms proportional to fabγ.
Finally, we use the momentum-shell integrals∫

b−1Λ<k<Λ

d2k
(2π)2

1
k2 =

1
2π

log b
∫

d2k
kµkν
k4 g(k2) =

∫
d2k

1
2k2 g(k2) (4.110)
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for a general function g(k2). At last, we arrive at

tr[logO] ≈
∫

d2x
(
log b
4π

(
tr[(∂µMc)2] − 3tr[(∂µMγ)2]

)
+

log b
8π

(
12(tr[NµTA])2 − 11(tr[NµTa])2

)
(4.111)

+ 3
√

3(log b)gλεµνtr[NνT8NµT3] + i
√

3
εµνλg log b

8π

(
fabEtr[NµTE] + fabγtr[NµTγ]

)
×

(
(tr[NνTaT3TbT8] − tr[NνTaT8TbT3]) + 2itr[Nν ( fa8cT3TbTc − fa3cT8TbTc)]

))
.

Now, we make use of various identities proven in Appendix E. The identities (E.16) and (E.21)
let us rewrite the first line as

−
5 log b

16π
tr[(∂µMγ)2]. (4.112)

Now consider the last term:

A := i
√

3
εµνλg log b

8π

(
fabEtr[NµTE] + fabγtr[NµTγ]

)
(4.113)

×

(
(tr[NνTaT3TbT8] − tr[NνTaT8TbT3]) + 2itr[Nν ( fa8cT3TbTc − fa3cT8TbTc)]

)
.

The first term of the second line is simplified using (E.26). Then antisymmetry in a and b imply

A = −
√

3
εµνλg log b

8π

(
fabEtr[NµTE] + fabγtr[NµTγ]

)
(4.114)

×

(
f3bctr[Nν(TaTcT8 − T8TaTc)] + f8bctr[Nν(T3TaTc − TaTcT3)]

+ f3actr[Nν(T8TbTc − TbTcT8)] + f8actr[Nν(TbTcT3 − T3TbTc)]
)
.

Now we use (E.28) to simplify this to:

A = −2
√

3i
εµνλg log b

8π

(
fabEtr[NµTE]+ fabγtr[NµTγ]

)
tr[NνTdTc]

(
f3bc fa8d+ f8bc f3ad+ f3ac f8bd+ f8ac fb3d

)
.

(4.115)
Recognizing the antisymmetry, this is

A = −
√

34i
εµνλg log b

4π
tr[NνTdTc]

(
fabEtr[NµTE] + fabγtr[NµTγ]

)(
f8bc f3ad + f3ac f8bd

)
. (4.116)

Now we use (E.33). The result is

A =
√

3i
εµν
√

3λg log b
2π

(
tr[NµT1trNνT2] − tr[NµT4trNνT5] + tr[NµT6trNνT7]

)
. (4.117)
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Now we need to prove that the operator appear here is proportional to Lq
0. This is (E.41):

εµν
(
tr[NµT1trNνT2] − tr[NµT4trNνT5] + tr[NµT6trNνT7]

)
= −i

√
3tr[NµT8NνT3]. (4.118)

Therefore,

A = λ

√
3

2
3g log b

4π
εµνtr[NµT8NνT3]. (4.119)

Now we return to the Lagrangian, which requires dividing (4.111) by 2. Using (4.119) and
(4.112), this is

L =
1
8g

(
1 − g

5 log b
16π

)
tr[∂µMγ∂µMγ]+

√
3

2
λεµνtr[NµT8NνT3]

(
1−2

3g
2π

log b+2
g log b

4π
3
)
. (4.120)

This allows for the identification of

λeff = λ

(
1 −

3g
2π

log b
)

geff = g
(
1 −

5g log b
4π

)−1

(4.121)

from which we can read off the β functions:

βg(λ, g) =
5g2

4π
βλ(λ, g) = −

3gλ
2π

. (4.122)

4.5.4 Results of the RG calculations

Let us consider each beta function in turn. First off, we conclude that g is a relevant parameter:
Since it has a positive beta function, it flows to large values at large length scales. Such behaviour
is referred to as asymptotic freedom, since the opposite flow towards short length scales, or equiv-
alently high energies, renders the theory ‘free’ (i.e. g → 0). This is precisely the behaviour that
occurs in the CP1 sigma model considered in Chapter 2. In fact, asymptotic freedom is known to
occur in CPn−1 for all n > 2, and so our result should not be that surprising, since we have demon-
strated in (4.53) that the flag manifold can be viewed as three coupled CP2 fields.25 A fact that we
will use repeatedly throughout this thesis is that in the absence of topological angles, asymptotic
freedom indicates the presence of a finite energy scale in the theory. In other words, when θ is triv-
ial (corresponding to p being a multiple of 3), we expect our sigma model, and thus our underlying
SU(3) chain, to exhibit a finite energy gap. This is our first result that will lead us to an SU(3)
generalization of Haldane’s conjecture.

Now let us turn to the beta function for λ. At first glance, it appears that the λ-term is irrelevant:
at large length scales λ will flow to zero and we may drop it from our analysis. Unfortunately, this
is not the complete story. Recall that we are doing RG calculations for a perturbative Lagrangian,

25However, a critical difference between the theories CP1 and CPn−1 for n > 2 is that the latter is known to exhibit a
finite mass gap even in the presence of topological angle. This is where the intuition of a flag manifold as being coupled
CPn−1 sigma models dramatically breaks down.
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obtained by replacing U with eiωaTa in (4.42). The kinetic term that results upon this replacement
is

L0 =
1
g
∂µωa∂µωa. (4.123)

In order to obtain the more familiar kinetic term of free bosons, we must rescale the fields according

to ωa →

√
g
2ωa. As a result, the perturbative Lagrangian we obtain has the following structure

L =
1
2
∂µωa∂µωa + iλg

3
2 εµνRabcωa∂µωb∂νωc + gPabcdωaωb∂µωc∂µωd + O(λg2) + O(g2) (4.124)

where Rabc and Pabcd are tensors of real coefficients that can be expressed in terms of the SU(3)
structure factors. At this order in perturbation theory, the imaginary term does not have coupling
constant λ. Instead, its coupling constant is λ̃ = λg3/2. Therefore, in order to accurately assess the
relevance of the imaginary term, we must calculate the beta function of λ̃, and determine its sign.
Since

βλ̃(λ, g) = g
3
2 βλ +

3
2

g
1
2λβg =

3g
8π
λ̃ > 0 (4.125)

we conclude that the imaginary term in (4.124) is also relevant. Therefore, any comprehensive
phase diagram of the symmetric SU(3) must include axes for both λ and g. Despite this fact,
a novel interpretation of RG flows based on ’t Hooft anomalies suggests that it may be safe to
neglect the λ-term in many cases. This will be explained shortly. As a consequence, in some of the
arguments that follow, we will make the simplifying assumption that λ = 0.

4.6 Phase Diagram of the Symmetric SU(3) Chain

At this stage, let us reflect on our findings. Given an SU(3) chain in the rank-p symmetric rep-
resentation, we have obtained a mapping to an SU(3)/[U(1)]2 flag manifold sigma model, with
topological angles θ = ±

2πp
3 . In the absence of these angles, i.e. when p = 3k for some k ∈ Z+, we

expect this sigma model, and thus the underlying chain, to exhibit a finite mass gap.
Meanwhile, we have learned from the exact results of Chapter 3 that when the angles are

nontrivial (p , 3k), the LSMA theorem forbids such a finite mass gap in the SU(3) chain, unless
translation symmetry is spontaneously broken (see Section 3.5.2). This is consistent with the fact
that the spectrum of the chain with p = 1 is known exactly, and it does not exhibit a finite energy
gap (see Section 3.5.1). When p = 3k, the LSMA theorem breaks down, which is consistent
with our sigma model conclusions, and also the SU(3) AKLT model, which explicitly constructs a
translationally invariant SU(3) chain with a finite energy gap, as shown in Figure 3.6.

Together, these facts suggest that there should exist a gapless phase in the SU(3) chain driven by
topological effects. In other words, there should exist a critical coupling gc, below which the model
exhibits gapless excitations. Above gc, translation symmetry will be spontaneously broken with 3-
fold ground state degeneracy. Indeed, this is consistent with the findings of Corboz et. al. [109],
who found a trimerized phase in the J1 − J2 SU(3) Heisenberg model. According to our expression
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4.6. Phase Diagram of the Symmetric SU(3) Chain

for the coupling constant (4.43), g is an increasing function of J2, and so we expect that for J2
sufficiently large, the system will correspond to g > gc, and will be gapped with a spontaneous
breakdown of the Z3 symmetry.

See Figure 4.1 for our proposed phase diagram. So far, we haven’t discussed the model at θ = π,
which corresponds to a model that explicitly breaks the Z3 symmetry, and thus breaks translation
symmetry in the chain model. This aspect of the phase diagram, as well as the other ground state
degeneracy predictions, will be justified in the following subsections.

SU(3)1

SU(3)1

1×

2×

3×

1×

3×
gapless

gapless

gapped

gapped

SU(2)1

1×

2×

1×

gappedgapless

0

2π

4π/3

π

2π/3

0

θ

gc g

(b)

π

2π

(a)

ggc

θ

Figure 4.1: Phase diagram of the SU(3) chain in the rank-p symmetric representation. The angle,
θ =

2πp
3 , vanishes when p is a multiple of 3.

Let us compare our phase diagram to what occurs in the CP1 sigma model of the SU(2) chain
(see Figure 2.1). Both include gapless phases that are characterized by SU(n)1 Wess-Zumino-
Witten CFTs, and occur when θ = 2π

n . Indeed, this will be a general trait of symmetric SU(n)
chains – a fact that we will prove in following chapter, after a great deal of work. Both also include
gapped phases at θ = 0; it is here that the AKLT-like models reside. What is unique to SU(3) is the
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4.6. Phase Diagram of the Symmetric SU(3) Chain

2-fold degeneracy at θ = π, which can only be realized by explicitly breaking translation symmetry,
and will be shown below.

As it stands, our arguments are very similar to those initially put forward by Haldane, and so
perhaps one is also tempted to caveat our prediction as a ‘conjecture’. However, just as modern
developments have bolstered Haldane’s original arguments, there exist additional results in SU(3)
which support our findings. We now review each of these in turn.

4.6.1 Monte Carlo simulations

In order to verify the effect of topological angle on mass gap in the SU(3) chain, classical Monte
Carlo simulations were carried out by Lajkó in [1]. Typically, such a calculation is not possible
due to the sign-problem related to the pure-imaginary nature of the topological term. However, this
issue was resolved using a clever method of Allés and Papa, which first carries out the simulations
for imaginary topological angles ϑ = −iθ, and then extrapolates to real angles [33, 36]. This proce-
dure works only if we exclude the λ-term from our analysis (which is also a pure-imaginary term,
and contributes to the sign problem). Explicitly, the topological pat of the action was discretized
by splitting each square plaquette (in 2d Euclidean space) into two triangles [127], and defining a
local topological charge density qα according to

ei2πqα(∆i jk) =
(ϕ∗,α(~ri) · ϕα(~r j))(ϕ∗,α(~r j) · ϕα(~rk))(ϕ∗,α(~rk) · ϕα(~ri))
|ϕ∗,α(~ri) · ϕα(~r j)||ϕ∗,α(~r j) · ϕα(~rk)||ϕ∗,α(~rk) · ϕα(~ri)|

. (4.126)

Here ∆i jk is the triangle with nodes i, j and k defined in clockwise order. Combining these topolog-
ical charge densities with the discretized real action,

−
1
2g

2∑
α=1

∑
µ=x,τ

∣∣∣ϕ∗,α(~r j) · ϕα(~r j + ~δµ)
∣∣∣2, (4.127)

the algorithm proceeds by sampling the time averaged correlation functions,

C(x) =
1
L

∑
τ

〈
(ϕ1(0, 0) · ϕ∗,1(x, τ))(ϕ∗,1(0, 0) · ϕ1(x, τ))

〉
. (4.128)

Note that the λ-term is neglected in these simulations. The correlation length can then be extracted
by fitting C(x) with an exponential; its inverse defines the mass gap above the ground state that
we seek. The mass gap is extracted from imaginary to real angles using the fitting function (c1 +

c2θ
2)/(1 + c3θ

2) [33, 36].
In Figure 4.2, the results of these Monte Carlo simulations for the SU(3) chain can be found.

For completeness, we also include similar results for the SU(2) chain in Figure 4.3. As expected,
when θ = 0 a finite mass gap exists for all values of g, in both SU(3) and SU(2). However,
for sufficiently small g, this mass gap closes for particular values of θ2: in SU(3), this occurs at
θ = ± 2π

3 , and in SU(2), this occurs at θ = ±π. These are precisely the topological angles that occur
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Figure 4.2: Monte Carlo simulations in the SU(3)/[U(1)]2 sigma model, with λ = 0. By extrapo-
lating from imaginary topological angles, we see that below a critical coupling, the mass gap closes
at θ = ±2π/3.

in our flag manifold sigma models when p is not a multiple of n, for n = 2, 3. We believe the finite
mass gap that persists beyond some critical coupling gc, which is approximately 2.55 in SU(3),
corresponds to a phase transition from a gapless phase into a gapped phase with spontaneously
broken translation symmetry, in accordance with the LSMA theorem. Therefore, these Monte
Carlo simulations present strong evidence in favour of our proposed phase diagram in Figure 4.1.

4.6.2 Strong coupling analysis

A second calculation, also led by Lajkó in [1], was to consider the g→ ∞ limit of the flag manifold
sigma model, with λ set to zero. In this limit, the action consists only of a topological term, and
can be used to extract information about ground state degeneracies. Indeed, a similar calculation
was originally carried out by Seiberg in [104] and Plefka and Samuel in [105] for CPn−1 sigma
models, and their findings were in agreement with the far-right side of the SU(2) phase diagram
in Figure 2.1. In particular, the presence of a finite gap for all values of θ follows from the fact
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Figure 4.3: Monte Carlo simulations in the CP1 sigma model (corresponding to the SU(2) chain).
Below a critical coupling, we see that the mass gap closes at θ = ±π.

that when the action is purely topological, the field ϕα become correlation free. Thus, we may also
conclude that in SU(3), a finite gap will be universal in the limit g→ ∞.

In short, the strong coupling analysis of the sigma model involves obtaining the free energy
density, by first developing a lattice version of the gauge-field formulation of the action, (4.60). It
is found that in the limit g→ ∞, this density is given by

f (θ1, θ3) = − log
(
max
m,n

z(θ1 + 2πm, θ3 + 2π)
)
, (4.129)

where
1
2

z(θ1, θ3) =
(θ1 − θ3) cos

(
θ1−θ3

2

)
− θ1 cos

(
θ1
2

)
+ θ3 cos

(
θ3
2

)
θ1θ3(θ1 − θ3)

. (4.130)

Since (4.64) ensures that θ1 = −θ3 in our theories, we plot f (θ1, θ3) along this line in Figure 4.4.
The cusp in the free-energy at 2π/3 (the blue line) is indicative of a phase transition, and will

be what we consider in this section. The behaviour at θ = π (the red line) corresponds to a model
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Figure 4.4: Free energy of the SU(3)/[U(1)]2 sigma model at strong coupling. The blue line,
corresponding to our model with two topological angles, exhibits a cusp at θ = ±2π/3. The red
line, corresponding to a single topological angle, exhibits a cusp at θ = ±π. This corresponds to
the self-conjugate SU(3) chains, discussed in Section 4.7.

with explicitly broken Z3 symmetry, but possessing a Z2 parity symmetry. We will consider such
a model in Section 4.7.

Since a finite mass gap is present for all values of θ in the strong coupling limit, it should be that
the Z3 symmetry is spontaneously broken. We verify this explicitly by calculating the expectation
value of the topological charge densities,

〈q1〉 = −i
∂ f (θ1, θ3, g→ ∞)

∂θ1
〈q3〉 = −i

∂ f (θ1, θ3, g→ ∞)
∂θ3

(4.131)

depending on from which sector Rm,n we approach the point θ1 = −θ3 = 2π/3. By sector, we mean
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which values of m, n that maximize the free energy in (4.129). We find

θ1 → 2π/3
〈q1〉 〈q2〉 〈q3〉θ3 → −2π/3

from R0,0 −i 3
2π + i

√
3

8 0 i 3
2π − i

√
3

8

from R−1,0 i 3
2π − i

√
3

8 −i 3
2π + i

√
3

8 0
from R0,−1 0 i 3

2π − i
√

3
8 −i 3

2π + i
√

3
8 .

(4.132)

where 〈q2〉 was calculated using q2 = −(q1 + q3). These cases are connected by the Z3 transforma-
tion, clearly showing the spontaneous breaking of the symmetry.

4.6.3 Wess-Zumino-Witten models and the explicit breaking of Z3

The final two arguments that we mention here are related to the renormalization group flow of the
SU(3) chain. As discussed in Section 3.5, we expect that any gapless critical point that occurs in our
SU(3)/[U(1)]2 flag manifold sigma model will be described by a particular CFT, the SU(3)1 Wess-
Zumino-Witten model. This relies crucially on the fact that the model possesses an additional Z3
symmetry; otherwise the relevant operator tr[g] will destabilize the theory, where g is a fundamental
WZW field.26 We comment in passing that SU(3)1 has a marginal operator whose coupling constant
will change sign at the phase transitions identified in Figure 4.1. That is to say, at strong enough
coupling g in the sigma model, a marginal operator becomes marginally relevant, and drives a phase
transition to a gapped phase with 3 ground states that spontaneously break translation symmetry.
This is discussed further in Chapter 5.

Now, we consider what happens when the Z3 is explicitly broken, in order to predict the phase
structure of the sigma model at topological angles other than θ = 0,± 2π

3 .
Let us break the Z3 explicitly, but preserve a Z2 symmetry that exchanges g and g†. Then the

following relevant operator is permitted:

V = ρ(tr[g] + tr[g†]). (4.133)

Here ρ is an undetermined coupling constant. This is what occurs, for example, when we pre-
serve the parity symmetry (4.68) that interchanges ϕ1 and ϕ3. Such an explicit breaking could be
achieved by altering the nearest-neighbour bonds between the 1 and 3 sites from J1 to J1(1 + δ).
As a consequence of this, the topological angle θ is altered accordingly:

θ →
2πp

3

(
1 +

J2

J1 + J2
−

J2

J1(1 + δ) + J2

)
. (4.134)

We now consider two possible scenarios, distinguished by the sign of δ:

26Despite the confusing notation, we insist on using the standard variable g for our WZW fields, despite the fact that
it has nothing to do with the sigma model’s coupling constant, g.
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• Case 1: δ > 0 In this case, the bond is weakened, so that the underlying chain exhibits the
following pattern

· · · W S S W S S W S S W S S · · · (4.135)

where ‘W’ refers to a weaker bond, and ‘S’ to a stronger bond. Such a chain will form SU(3)
singlets from the three sites adjacent to two ‘S’ bonds, resulting in a unique ground state.
Since θ is shifted below 2π

3 , we predict a unique ground state for all values of θ until the
critical value of θ = 0.

• Case 2: δ < 0 In this case, the bond is strengthened, and the chain’s pattern becomes

· · · S W W S W W S W W S W W S · · · (4.136)

Instead of forming singlets, now the chain will form 3 representations out of the two sites
adjacent to a single ‘S’ bond.27 Such ‘33 chains’ are known to spontaneously dimerize and
exhibit a finite energy gap [128, 129]. Since θ is shifted above 2π

3 , we predict a 2-fold degen-
erate ground state for angles in the interval ( 2π

3 ,
4π
3 ), including the angle θ = π.

The previous discussion justifies the right edge of Figure 4.1. Now let us return to the WZW
operator V , defined in (4.133). We claim that ρ should have the following dependance on θ:

ρ ∝

(
θ −

2π
3

)
. (4.137)

Then, if we write the diagonal elements of the WZW fundamental g as eiϑ, V becomes

V ∝
(
θ −

2π
3

)∑
α

cosϑα. (4.138)

For values of θ less than 2π
3 , this term has a unique minimum with ϑα = 0, and corresponds to a

unique ground state. On the other hand, for θ > 2π
3 , V is minimized by the two values ϑα = ± 2π

3 .
Thus, with the form (4.137), we obtain the desired degeneracies.

4.6.4 ’t Hooft anomaly matching

Finally, we discuss the notion of ’t Hooft anomaly matching [106, 107]. In short, the presence of an
’t Hooft anomaly signifies nontrivial low energy physics. In one spatial dimension this necessitates
a gapless phase so long as the symmetries of the model are not spontaneously broken. Often, this
consequence is described as a field-theoretic version of the LSMA theorem. In this subsection, we
first review the theory of ’t Hooft anomalies, and then cite results that apply to our SU(3) chains.

In order to understand ’t Hooft anomalies, we must first define anomalies themselves. Consider
a quantum theory which has a symmetry group G that leaves the classical action invariant. We say

27The 3 representation of SU(3) has a Young tableau with p1 = p2 = 1, that is, .
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that G is anomalous if G is violated in the full quantum theory. Thus anomalous symmetries are
symmetries of classical theories which do not survive the transition to quantum mechanics. For
instance, if G is a continuous global symmetry, then it has a conserved current jA

µ with A labeling
the generators of G. If this symmetry is anomalous, then there are quantum corrections which
makes the divergence of jA

µ nonzero:
∂µ jA

µ = AA. (4.139)

The quantity Aa on the right hand side of this equation is what is referred to as the anomaly. The
chiral anomaly in quantum electrodynamics is the prototypical example of this behaviour [130].

So far, what we have said applies to global symmetries. If instead G is a gauge symmetry,
then anomalies indicate a fundamental inconsistency of the theory and must vanish. Recall that
gauge symmetries are not conventional symmetries that act on the configuration space and lead
to identical physics. Rather, they are redundancies in our description of the physics when we
work in the space of gauge fields rather than its quotient by gauge transformations. While these
gauge anomalies tell us our theory is sick, they can be used as a field theoretical tool, as was first
shown by ’t Hooft [106]. Given a theory with an exact global symmetry G (no anomaly), we
can imagine ‘gauge-ing’ the symmetry by introducing gauge bosons BA

µ , minimally coupled to the
theory according to the prescription

∂µ 7→ ∂µ − igBA
µT A (4.140)

for generators T A of G. If this G-gauge theory is anomalous, we say that the original theory has an
‘t Hoot anomaly. Thus, ‘t Hooft anomalies do not invalidate the global symmetry, but they lead to
powerful constraints on the phases of the theory.

The utility of ’t Hooft anomalies stems from their nonrenormalization property: the anomaly
is independent of energy scale. This implies that it can be calculated exactly using the low energy
degrees of freedom, which is precisely what we access when we derive field theory descriptions
of condensed matter systems. In one spatial dimension, if a symmetry with an ’t Hooft anomaly
is not spontaneously broken, we therefore may conclude that there exist low-lying excitations in
the theory.28 Otherwise, there would be no degrees of freedom to couple to the gauge fields and
generate the anomaly.

Let us now turn to the CP1 sigma model of the spin chain, which will prepare us for our dis-
cussion of ’t Hooft anomalies in SU(3) chains below. While there are no pure ’t Hooft anomalies
as we’ve defined them above, there are so-called mixed t’ Hooft anomalies in CP1. By this we
mean that if we gauge a continuous global symmetry, a second, independent symmetry becomes
anomalous. For CP1, this mixed anomaly is between the continuous group PSU(2), and the discrete
group of translations Z2. Here it is essential that we properly identify the continuous global sym-
metry of the model as PSU(2) = SU(2)/Z2, and not SU(2), since otherwise no anomaly would be
detectable [78, 79, 132].29 This is because SU(2) gauge fields have integer quantized topological

28In higher spatial dimensions there is another possibility: the system is gapped with some topological quantum field
theory [131].

29This quotient by Z2 follows from the fact that the center of SU(2) acts trivially on the spin chain.
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charge, while PSU(2) gauge fields can correspond to nontrivial sections of a PSU(2) bundle with
half-integer quantized charge. Now, it is found that if one tries to gauge PSU(2), the Z2 group of
translations is violated whenever θ = π: the corresponding counterterm added to the Lagrangian
to account for half-quantized PSU(2) gauge fields is not invariant under Z2. This is the ’t Hooft
anomaly, and implies that half-odd integer spin chains either have spontaneously broken transla-
tion symmetry, or gapless excitations. These possibilities reaffirm Haldane’s conjecture, and are
consistent with the phase diagram in Figure 2.1.

In the SU(3)/[U(1)]2 sigma model, a similar ’t Hooft anomaly result holds [78, 79]. When
θ = 2π

3 , there is a mixed anomaly between the continuous group PSU(3) = SU(3)/Z3 and Z3, the
latter of which corresponds to translations in the SU(3) chain. Thus, when p is not a multiple of
3, we may conclude that either a gapless phase exists, or translation symmetry is spontaneously
broken. This is entirely consistent with the phase diagram presented in Figure 4.1.

In fact, the nonrenormalizaiton of ’t Hooft anomalies provides further evidence that the critical
point characterizing these gapless phases indeed corresponds to the SU(3)1 universality class. In
[78, 79], the anomalies for both our flag manifold sigma model and the SU(3)1 WZW model
were calculated, and were shown to agree. Thus, a renormalization group flow from one to the
other is completely plausible. We will have more to say on how ’t Hooft anomalies constrain
renormalization group flow of these flag manifold sigma models in the following chapter.

4.7 Other SU(3) Chains

Before concluding this chapter, we turn to the remaining representations of SU(3): those which
have Young tableaux with row lengths p1 and p2 , 0. According to the discussion in Section 3.4,
so long as p1 , p2, it suffices to consider a nearest-neighbour Heisenberg Hamiltonian (i.e. J2 = 0).
The edge case p1 = p2 corresponds to a representation that is conjugate to a symmetric model with
p = p1, and leads to the same sigma model as the symmetric chains presented above. In the
following, we attempt to generalize our symmetric SU(3) calculations to this more general setting
of p1 , p2 , 0.

4.7.1 Classical ground states and mixed order parameters

In Section 3.4, we already established the classical ground states of these more general SU(3)
chains. Using the pictorial notation from that chapter, a typical ground state is

· · · · · · (4.141)

· · · · · · . (4.142)

Unlike the symmetric ones, these representations correspond to states with 2-site order. Another
novel property is the existence of both ferromagnetic and antiferromagnetic order parameters. In-
deed, we have that

〈S αβ(2 j) ± S αβ(2 j + 1)〉 , 0 (4.143)
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for both the choices of ‘+’ and ‘-’, which follows from the equation

〈S αβ(·)〉 =

p1φ
∗,1
α φ1

β + p2φ
∗,3
α φ3

β · = 2 j

p1φ
∗,3
α φ2

β + p2φ
∗,3
α φ3

β · = 2 j + 1
(4.144)

The expectation values taken in (4.144) are with respect to SU(3) coherent states, which are a direct
generalization of those in (4.28). We assume a lowest-order expansion, so that each φα is evaluated
at the same site. Explicitly, the positive sign corresponds to a ferromagnetic order parameter, F,

Fαβ =
1
2
〈S αβ(2 j) + S αβ(2 j + 1)〉 =

2p2 − p1

2
φ∗,3α φ3

β, (4.145)

and the negative sign corresponds to an antiferromagnetic order parameter, A,

Aαβ =
1
2
〈S αβ(2 j) − S αβ(2 j + 1)〉 =

p1

2
(φ∗,1α φ1

β − φ
∗,2
α φ2

β). (4.146)

If we recall our discussion of Coleman’s theorem and spontaneous symmetry breaking in one spa-
tial dimension, the presence of both F and A is rather interesting. On the one hand, we have
an antiferromagnetic order parameter, which leads to linearly dispersing Goldstone bosons which
are the source of infrared divergences when the symmetry is spontaneously broken. On the other
hand, we have a ferromagnetic order parameter, which leads to quadratically dispersing Goldstone
bosons.30 Such bosons are not ruled out by infrared divergence considerations. Thus, in this gen-
eral setting, it may be possible for the SU(3) symmetry to be partially broken spontaneously, so that
quadratic Goldstone bosons persist, while the remaining degrees of freedom correspond to a true
symmetry of the ground state [95–97]. In Chapter 6, we will further discuss these possibilities, and
speculate on an entire flag manifold sigma model hierarchy that may arise in generic SU(n) chains.
But for now, we turn to flavour-wave theory, and explicitly check that both linear and quadratic
modes are indeed present in the spectrum.

4.7.2 Flavour-wave theory

Following Mathur and Sen [123], we write the matrix of generators, S , in terms of two 3-component
commuting boson operators b1

α and b2
α:

S αβ = (p1 − p2)b†,1α b1
β − p2b†,2β b2

α. (4.147)

30That quadratically dispersing modes arise from a ferromagnetic order parameter can be understood as follows.
When one derives an effective Lagrangian for Goldstone bosons corresponding to broken symmetry generators Qα,
there is a term linear in ∂τ that is proportional to 〈[Qα,Qβ]〉 [95]. In the case of spin chains, these broken symmetry
generators are Ŝ x and Ŝ y, so that the linear time-derivative term depends on 〈Ŝ z〉. For ferromagnets, this is nonzero and
quadratic dispersion results; for antiferromagnets it vanishes so that the leading time-derivative term in the Lagrangian
is proportional to ∂2

τ, and results in linear dispersion. These results extend in a straightforward way to the SU(n) order
parameters discussed in the present section.
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The classical ground state corresponds to (p1 − p2) bosons of type b1, and p2 bosons of type b2.
Now, following the same steps as laid out in Section 4.2, including Holstein-Primakoff and Bogoli-
ubov transformations, we obtain a diagonalized Hamiltonian involving 6 Goldstone bosons.31 The
dispersion relations of the bosons at small energies are as follows:

ω1,2(k) = 2J1 p1|k| ω3,4(k) = ω5,6(k) =

 2J1(p1−p2)p2 |k|2

p1−2p2
p1 , 2p2

Jp1|k| p1 = 2p2
(4.148)

As expected, we find both linear and quadratic dispersion relations. However, for the special case
of p1 = 2p2, only linear modes exist. This is consistent with the fact that the ferromagnetic order
parameter (4.145) vanishes in this case. These representations are the so-called self-conjugate
representations of SU(3), with Young tableaux

2p︷                              ︸︸                              ︷
. (4.149)

In the mathematical language of Bykov, we say that the self-conjugate representations correspond
to a Lagrangian embedding, in which the total Berry phase of the unit cell vanishes [6, 71, 72].

Ultimately, we are interested in low energy theories that only possess linearly dispersing modes.
This is so that the emergence of Lorentz invariance can be facilitated, which would lead to a flag
manifold sigma model like the ones considered earlier in this chapter. Accordingly, we now restrict
to the self-conjugate SU(3) chains, and derive a low energy description.

4.7.3 Low energy field theory and the absence of Lorentz invariance

The field theory derivation for self-conjugate SU(3) chains (i.e. those with p1 = 2p2) is very similar
to that of Section 4.3 for the symmetric chains. Indeed, the only modification has to do with the
coherent states that we use. Defining p according to p = p2 = p1/2, these coherent states are

|φ1, φ2〉 = (φ1 · a†,1)p(φ2 · a†,2)p|0〉, (4.150)

with φ∗,1·φ2 = 0 and |φα|2 = 1. The aα are Schwinger bosons. After a series of lengthy calculations,
we obtain the following action

S =

∫
dxdτ

(
p2J1

[
4|ϕ∗,2 · ∂xϕ

1|2 + |ϕ∗,3 · ∂xϕ
2|2 + |ϕ∗,1 · ∂xϕ

3|2
]

(4.151)

+
1

4J

[
4|ϕ∗,2 · ∂τϕ1|2 + |ϕ∗,2 · ∂τϕ

2|2 + |ϕ∗,1 · ∂τϕ
3|2

] )
+ S top.

31Actually, flavour-wave theory also produces two spurious ‘flat modes’, with momentum-independent dispersion
relations ω7,8(k) = 4(p1 − p2). However, these modes do not lie entirely in the representation, and should be removed
from the analysis. Indeed, they do not appear in the field theory.
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Here
S top = iπp(Q1 − Q2), (4.152)

where Qα is defined in (4.49), with Qα ∈ Z. Note that the topological angle is now θ = πp, instead
of the value ± 2πp

3 found previously. Therefore, in the strong coupling limit the free energy of this
model coincides with the red line in Figure 4.4.

Moreover, we observe that while this theory involves three complex fields ϕα, it does not pos-
sess the same symmetries of the symmetric chain’s sigma model derived above. Most notably,
there are now two distinct velocities, which prevents the theory from being invariant under Lorentz
transformations. In a perturbative expansion, in which we replace the matrix Uαβ = ϕαβ with eiωaTa ,
we find that four of the ωa propagate with one velocity v, while the remaining two fields propa-
gate with v/2. These velocities, as well as the counting of these modes, are in agreement with the
flavour-wave findings of the previous subsection.

A further point of interest is that while this theory lacks Lorentz invariance, it does possess a
symmetry that rules out the possibility of a λ-term. Indeed, the Z2 translation symmetry, which
acts as

ϕ1 7→ ϕ2 ϕ3 → −ϕ3, (4.153)

or
↔ → ,

changes the sign of each term proportional to λ in (4.42). This symmetry is also responsible for
restricting the number of velocities to 2, down from the most general possibility of 3. It also leads
to the 2-fold degeneracy at strong coupling that we see at θ = π in the phase diagram, Figure 4.1.

4.7.4 Phase diagram

Let us consider how the phase diagram of these self-conjugate SU(3) chains should differ from that
of the symmetric chains, Figure 4.1. Unfortunately, the LSMA theorem does not apply to these
models, as can be seen by examining the proof in Section 3.5.2. The so-called twist operator that
served to generate a distinct low-lying state acts trivially on the self-conjugate representations of
SU(3), so that no conclusions may be drawn.

In fact, none of the arguments in favour of a gapless phase carry over to these SU(3) chains.
There is no self-conjugate analogue of the Bethe-ansatz solvable model discussed in Section 3.5.1.
Moreover, Monte Carlo analysis indicate a finite gap for all values of p [2]. And finally, the ’t
Hooft anomaly was related to the Z3 manifestation of translation invariance, and does not occur
for the Z2 symmetry of a chain with a 2-site unit cell. These facts lead us to predict that there is no
gapless phase in the self-conjugate SU(3) chain: there is a finite energy gap for every value of p.

That being said, there is still a way to distinguish between the cases of even and odd p. When p
is even, we may write down a translationally invariant valence bond state, which is a self-conjugate
generalization of the SU(3) AKLT state. This state is also invariant under the Z2 parity symmetry,
(4.153). When p is odd, any translationally invariant AKLT-like state we attempt to write down
necessarily breaks this parity symmetry. These states are shown in Figures 3.8 and 3.9. This leads
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us to conclude that self-conjugate SU(3) chains with p odd will exhibit spontaneously broken parity
symmetry. This is also supported by a strong coupling analysis, which finds broken parity when
θ = π, but not when θ = 0.

4.8 Conclusion

In this chapter, we have generalized Haldane’s conjecture to SU(3) chains in various represen-
tations. First, we considered the rank-p symmetric SU(3) chains, whose Young tableaux have a
single row of p boxes. Such chains admit a low energy mapping to the SU(3)/[U(1)]2 flag mani-
fold sigma model, with topological angles θ = ±2πp/3. By combining extensive renormalization
group calculations with a collection of supporting arguments, including Monte Carlo simulations, a
strong coupling analysis, ’t Hooft anomaly matching conditions and known exact results for SU(3)
chains, we proposed the phase diagram in Figure 4.1. In particular, we argued that when p is a
multiple of 3, the SU(3) chain will exhibit a unique, gapped ground state, in a fashion similar to the
integer-spin SU(2) chains. For all remaining values of p, we argued that gapless excitations would
exist for small enough interaction strengths, with a transition to a phase with spontaneously broken
translation symmetry at larger strengths.

Next, we considered SU(3) chains with 2-row Young tableaux. We demonstrated that in this
more general setting, the spectrum is no longer purely linearly dispersing. Instead, there are both
linear and quadratic low energy modes, which can be understood as arising from the mixed ferro-
and antiferromagnetic order parameters that exist simultaneously in these models. This led us to
focus on the self-conjugate representations, with p1 = 2p2, since these are the only other SU(3) rep-
resentations with linear modes only. Again, a flag manifold sigma model description was obtained,
but this time it lacks Lorentz invariance due to the presence of two distinct velocities. Conse-
quently, we conclude that a gapless phase does not occur in the self-conjugate chains for any value
of p1 = 2p2. When p2 is odd, we further predict that parity symmetry is always spontaneously
broken.

Our findings are summarized below in Table 4.1 for all SU(3) representations that lead to flag
manifold sigma model descriptions.

Representation (p1, p2) Spectrum

(3k, 0) gapped; unique

(3k ± 1,0) gapless

(4k, 2k) gapped; unique

(4k+2, 2k+1) gapped; 2-fold

Table 4.1: A generalization of the Haldane conjecture to SU(3) chains. We label representations
by the lengths of their Young tableau’s rows, p1 and p2. Here k is a positive integer.
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Chapter 5

Symmetric SU(n) Chains

5.1 Introduction

In the previous chapter, we established a low energy mapping between the symmetric SU(3) chain
and the SU(3)/[U(1)]2 flag manifold sigma model. This model can be visualized as three copies
of CP2 that are coupled via orthogonality. And since each copy of CP2 has the same velocity and
coupling constant, the resulting flag manifold exhibits Lorentz invariance. This fact is not always
guaranteed, as we saw when we studied the self-conjugate SU(3) chains, and were led to a sigma
model with two distinct velocities.

In this chapter, we again focus on symmetric representations, but promote the symmetry group
from SU(3) to SU(n) in general. We will attempt to derive a flag manifold sigma model description
of these chains in a similar fashion; namely, by starting with flavour-wave theory and then deriving
a path integral using SU(n) coherent states. As expected, the structure of an SU(n)/[U(1)]n−1

manifold will emerge, equipped with n−1 topological angles that depend on the representation size,
p. However, the unique velocity property in SU(3) that ensured Lorentz invariance will not prove
to be a general property of SU(n). Instead, we will find that there exist b n

2c unique velocities, which
at first appears to be a major impediment to any SU(n) generalization of Haldane’s conjecture.
Indeed, any gapless phase should correspond to some Lorentz invariant conformal field theory, and
so, perhaps these distinct velocities prevent such a phase from occurring.

The majority of the calculations in this chapter are devoted to resolving this concern. In partic-
ular, we make use of the renormalization group to study the flow of these distinct velocities as we
change the energy scale of our theory. Ultimately, we will find that these velocities flow to a single
unique value, so that Lorentz invariance emerges after all. At this point, we are then able to extend
our SU(3) phase diagram to SU(n), and predict various gapless phases driven by topological terms.
Again, we will rely on the presence of ’t Hooft anomalies, as well as more general results about the
renormalization group flow of conformally invariant field theories with SU(n) symmetry, namely
the SU(n)k WZW models. Our main result is the prediction of gapless excitations above the ground
state when p and n have no common divisor greater than 1.

In Section 5.2, we begin by writing down the SU(n) Heisenberg Hamiltonian with interactions
up to (n − 1)-th neighbour. As explained in Chapter 3, such long-range interactions are necessary
in order to stabilize local zero modes. We also present the findings of SU(n) flavour-wave theory
in this section. Next, in Section 5.3, we derive the low energy quantum field theory description of
the chain, and obtain the same flavour-wave velocities in a perturbative expansion. In Section 5.4,
we use the renormalization group to argue that at low energies, these (distinct) velocities flow
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to a common value, so that Lorentz invariance emerges and the field theory becomes a Lorentz
invariant SU(n)/[U(1)]n−1 flag manifold sigma model. The first derivation of the SU(n)/[U(1)]n−1

flag manifold sigma model from SU(n) chains was done by Bykov in [71, 72], who elected to
fine-tune the various interaction strengths in the Heisenberg Hamiltonian to guarantee Lorentz
invariance from the outset. These sigma models were also studied systematically in [78] and [79].
In Section 5.5, we present our proposed phase diagram for the SU(n) chain, incorporating the ’t
Hooft anomaly matching conditions of [78, 79] and [116], This phase diagram is the source of our
SU(n) version of the Haldane conjecture. We also perform a strong coupling analysis. Finally, our
conclusions follow in Section 5.6.

5.2 SU(n) Chains and Flavour-Wave Theory

Our starting point is the following SU(n) Heisenberg Hamiltonian, with interactions J1, J2, . . . , Jn−1,
all positive, that couple each site of the chain with up to its (n − 1)-th neighbours:

H =
∑

j

n−1∑
r=1

Jrtr[S ( j)S ( j + r)]. (5.1)

In Figure 5.1, we draw the first few interactions in a typical SU(n) chain.

Figure 5.1: Interactions in a typical symmetric SU(n) chain. Explicitly, we have drawn the nearest-
neighbour interactions in blue, second-neighbour interactions in red, and third-neighbour interac-
tions in green. For n > 4, further interactions must also be included.

As always, S ( j) is an n × n matrix whose entries contain the n2 − 1 generators of SU(n). We
consider only symmetric representations in this chapter, meaning that the chain is characterized
by a single integer p, according to tr[S ] = p. In the large-p limit, we are able to replace S with
a matrix of classical numbers. To this order in p, the Casimir constraints of SU(n) completely
determine the eigenvalues of S . We have

S αβ = pφ∗,αφβ (5.2)

for φ ∈ Cn with |φ|2 = 1. The interaction terms appearing in (5.1) reduce to

tr[S ( j)S ( j + r)] = p2|φ( j)∗ · φ( j + r)|2. (5.3)
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Since φ lives in Cn, a classical ground state will possess local zero modes unless the Hamiltonian
gives rise to n − 1 constraints. This is the justification for our study of the longer-range Hamil-
tonian above, which removes any local zero modes by including longer-range interactions. These
interactions result in an n-site ordered classical ground state which gives rise to a Zn symmetry in
any low energy field theory description. For example, in SU(5), one such ground state is

· · · · · · . (5.4)

This Zn symmetry is also present for the p = 1 Bethe ansatz-solvable models, as mentioned in
Section 3.5.1 [12, 84, 85]. In fact, it is expected that quantum fluctuations may produce an n-site
structure through an order-by-disorder mechanism that generates effective additional couplings of
order p−1 that lift the local zero modes [109].32 However, the explicit mechanism for generating
these couplings has not yet been worked out, so that we cannot predict the numerical values of
these longer-range interactions from a nearest-neighbour model.

Since the classical ground state minimizing (5.1) has n-site order, it is characterized by n nor-
malized vectors that mutually minimize (5.3). That is, the classical ground state gives rise to an
orthonormal basis of Cn. Due to this n-fold structure, we rewrite the Hamiltonian as a sum over
unit cells (indexed by j):

H =
∑

j

n∑
α=1

n−1∑
r=1

Jrtr[S ( jα)S ( jα + r)] jα := n j + (α − 1). (5.5)

5.2.1 Flavour-wave theory

As we’ve mentioned repeatedly above, we do not expect spontaneous symmetry breaking of the
SU(n) symmetry in the exact ground state of our Hamiltonian, due to Coleman’s theorem [8].
Nonetheless, we may still expand about the classical (symmetry broken) ground state to predict
the Goldstone mode velocities. If the theory is asymptotically free, as in SU(2) and SU(3), then at
sufficiently high energies (set by the inverse correlation length) the excitations may propagate with
these velocities [92].

To this end, we introduce n2 bosons in each unit cell to reproduce the commutation relations of
the S matrices, (3.1):

S αβ( jγ) = b†α( jγ)bβ( jγ). (5.6)

The counting is n flavours of boson for each of the n sites of a unit cell. The condition tr[S ] = p
implies there are p bosons at each site. The classical ground state involves only ‘diagonal’ bosons
of the type bγ( jγ) and b†γ( jγ). The ‘off-diagonal’ bosons are Holstein-Primakoff bosons. Flavour-
wave theory allows for a small number of Holstein-Primakoff bosons at each site, captured by

ν( jγ) =
∑
α,γ

b†α( jγ)bα( jγ),

32Again, we emphasize that n-site structure refers to the presence of a Zn symmetry, and not of a spontaneously broken
quantum ground state.
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and writes the Hamiltonian (5.5) in terms of these n(n − 1) bosons. In the large-p limit, p � ν( jγ)
and we expand

S γ
γ( jγ) = p − ν( jγ),

S α
γ ( jγ) ≈

√
pb†α( jγ),

S γ
α( jγ) ≈

√
pbα( jγ),

to find

tr[S ( jγ)S ( jη)] = p
[
b†γ( jη)bγ( jη) + b†γ( jη)bη( jγ) + b†η( jγ)b†γ( jη) + bη( jγ)bγ( jη)

]
+ O(p0). (5.7)

In terms of these degrees of freedom, the Hamiltonian (5.5) decomposes into a sum

H =
∑
γ<η

Hγη, (5.8)

where Hγη is a Hamiltonian involving only the two bosons bγ( jη) and bη( jγ). In momentum space,
this gives n(n−1)

2 different 2 × 2 matrices, each of which can be diagonalized by a Bogoliubov
transformation:

Hγ,γ+t = const. +
∑

k

ωt(k)
2∑

j=1

(
d†j,t(k)d j,t(k) +

1
2

)
, (5.9)

where
ωt(k) = 2p

√
Jt Jn−t

∣∣∣∣∣sin
nka
2

∣∣∣∣∣ , (5.10)

and the d j,t are new boson operators. Therefore, the corresponding flavour-wave velocities are

vt = np
√

Jt Jn−t t = 1, 2, . . . , n − 1. (5.11)

When n is odd, there are n modes with each flavour-wave velocity. When n is even, this is true
except for the velocity v n

2
, which has only n

2 modes. In each case, the number of modes adds up to
n(n− 1). We note that for n > 3, there is no longer a unique velocity, and the emergence of Lorentz
invariance does not occur. Only for a specific fine-tuning of the couplings can Lorentz invariance
be restored. These tuned models were the ones considered by Bykov in [71] and [72].

5.3 Derivation of the Flag Manifold Sigma Model

As hinted in Section 4.3, much of our calculations from the symmetric SU(3) chains easily general-
ize to SU(n) chains in the same representation. As such, we include only an abbreviated derivation
of the sigma model; for further details, we refer the reader to Chapter 4. Since the classical ground
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state has n-site order, with unit vectors φα ∈ Cn defined on each site, we first introduce a second
set of vectors, ϕα ∈ Cn, defined via a unitary matrix, U:

Uαβ = ϕαβ . (5.12)

This new basis can be used to describe fluctuations about the φα on each site, as in (4.15):

φα =
∑
β

1
p

Lαβϕβ +
√

1 − µ(α)ϕα. (5.13)

As before, Lαα = 0 (no sum), and p2µ(α) =
∑
β |Lαβ|2. Following Chapter 4 (which in turn follows

Chapter 2 for SU(2)), we let U and L vary uniformly from site to site, and write S ( jγ) in terms of
them. After many simplifications, we find

tr[S ( jγ)S ( jη)] = p2(η − γ)2tr[U∂xU†Λγ∂xUU†Λη] (5.14)

+2(η − γ)p(Lηγ[∂xUU†]γη + Lγη[U∂xU†]ηγ) + 4|Lηγ|2 + const..

The complete derivation of this result can be found in Appendix B. The next step is to construct the
coherent state path integral, and derive the Berry phase contribution to the Lagrangian. This pro-
cedure was done for general n in Section 4.3.1. We repeat the result here, (4.36), for convenience:

LB = −
1
n

(
ptr[Λα∂τUU†] + tr[{Λα, L}∂τUU†]

)
+ O(p−1). (5.15)

5.3.1 The complete field theory

Since our approximated action is only quadratic in the L matrices, we may integrate out these modes
to obtain an action in terms of the U matrices only. Combining (5.14) and (5.15), the Lagrangian
terms involving a given matrix element Lαβ are:

4(Jt + Jn−t)|Lαβ|2 − 2Lαβ
(
[∂τUU†]βα + p((n − t)Jn−t − tJt)[∂xUU†]βα

)
(5.16)

−2Lβα
(
[∂τUU†]αβ − p((n − t)Jn−t − tJt)[∂xUU†]αβ

)
,

where t := |α − β|. The ∂τ-dependent terms have come from the Berry phase term (5.15), and the
∂x-dependent terms have come from

Jttr[S ( jα)S ( jβ)] + Jn−ttr[S ( jβ)S ( jn+α)] (5.17)

in the Hamiltonian. Integrating over Lαβ, we are left with a real term,

Lreal
αβ =

1
n(Jt + Jn−t)

tr[ΛαU∂τU†Λβ∂τUU†] − p2 [(n − t)Jn−t − tJt]2

n(Jt + Jn−t)
tr[ΛαU∂xU†Λβ∂xUU†],

(5.18)

83



5.3. Derivation of the Flag Manifold Sigma Model

as well as an imaginary term

L
imag
αβ = p

((n − t)Jn−t − tJt)
n(Jt + Jn−t)

(
[∂xUU†]αβ[∂τUU†]βα − [∂τUU†]βα[∂xUU†]αβ

)
. (5.19)

Above, there is no sum over the repeated α, β indices. The factor of n in the denominator comes
from converting the sum over lattice sites within the n-site unit cell to an integral. To these terms,
we must add the L-independent terms appearing in (5.14) and (5.15). They modify (5.18) to

Lreal
αβ →

1
n(Jt + Jn−t)

tr[ΛαU∂τU†Λβ∂τUU†] + p2 Jn−t Jtn
(Jt + Jn−t)

tr[ΛαU∂xU†Λβ∂xUU†]. (5.20)

Comparing the ratios of the prefactors of the spatial and imaginary temporal terms, we identify the
velocities of the theory as

v2
t = n2 p2Jn−t Jt. (5.21)

This agrees with the flavour-wave velocities found in Section 5.2. Meanwhile, the terms in (5.15)
modify (5.19) to produce the following pure-imaginary contribution to the Lagrangian:

Limag = −εµν
∑
α<β

λ|α−β|tr[∂µUU†Λα∂νUU†Λβ] − S, (5.22)

where
S :=

p
n

∑
α

tr[Λα∂τUU†] (5.23)

and
nλt

p
:=

(n − t)Jn−t − tJt

Jt + Jn−t
. (5.24)

Using the identity tr[∂UU†] = 0, the integral of S can be shown to be a total derivative:

iS =
2πp

n

n∑
α=2

(α − 1)Qα (5.25)

where
Qα :=

1
2πi

εµν

∫
dxdτtr[∂µU∂νU†Λα]. (5.26)

Relabelling S = −S top, and combining (5.22) with (5.20), we arrive at the following action:

S =
∑
α<β

∫
dxdτ

1
g|α−β|

(
v|α−β|tr[ΛαU∂xU†Λβ∂xUU†] +

1
v|α−β|

tr[ΛαU∂τU†Λβ∂τUU†]
)

(5.27)

−εµν
∑
α<β

λ|α−β|

∫
dxdτtr[∂µUU†Λα∂νUU†Λβ] + S top,
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with
gt =

n
vt

(Jt + Jn−t). (5.28)

Since the coupling constants and velocities satisfy gt = gn−t and vt = vn−t, we conclude that there
are bnc velocities and coupling constants. Moreover, we have that

n∑
α=1

Qα =
1

2πi
εµν

∫
dxdτtr[∂µU∂νU†] =

1
2πi

εµν

∫
dxdτ∂µtr[U∂νU†] = 0, (5.29)

so that there are n − 1 independent topological charges. We note that the λ-terms appearing in
(5.27) are not quantized, despite the fact that they are pure-imaginary in imaginary time. We give
an interpretation of these terms below. In [72], these λ-terms were absent as a result of the same

fine-tuning that ensured a unique velocity. Indeed, the choice Jt =

√
n−t

t ensures that vt ≡ 1 for
all t, and moreover that λt = 0 for all t. Note that this choice does not, however, equate all of the
coupling constants, gt.

5.3.2 Gauge invariance

The theory (5.27) is invariant under the gauge transformations

U(x, τ)→ D(x, τ)U(x, τ), (5.30)

where D(x, τ) is a local, diagonal matrix. Since such matrices are generated by the n − 1 diagonal
SU(n) generators, this corresponds to a [U(1)]n−1 gauge symmetry. Thus, we have obtained the
SU(n)/[U(1)]n−1 flag manifold sigma model description of the SU(n) chain, as expected. The
topological angle content of this model follows from the second cohomology group, which is

H2(SU(n)/[U(1)]n−1) =

n − 1 times︷        ︸︸        ︷
Z × · · · × Z . (5.31)

So, this model is characterized by n−1 topological charges, which is consistent with S top in (5.27).
The coupling constants gt and λt correspond to the metric and torsion tensors on this manifold,
respectively [79]. However, a unique metric cannot be defined, since the theory (5.27) lacks the
Lorentz invariance that is often assumed for sigma models. Thus, we have a non-Lorentz invariant
flag manifold sigma model, just as was the case in Section 4.7, where self-conjugate SU(3) chains
were considered. In the following section, we will use the renormalization group to show that at low
enough energies, these distinct velocities in fact flow to a single value, so that Lorentz invariance
emerges after all.

5.3.3 Embedding into complex projective spaces

In Chapter 3, it was explained how the complete flag manifold SU(n)/[U(1)]n−1 can be embedded
into an n-fold product of CPn−1 spaces. In (6.7), this was restated explicitly for the case of SU(3).
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Here, the situation is no different. The n complex fields ϕα may be viewed as each living in its own
CPn−1 sector, and we may identify the flag manifold with its image under the following map:

U(n)
[U(1)]n ↪→

n copies︷                    ︸︸                    ︷
CPn−1 × · · · × CPn−1 . (5.32)

Explicitly, this embedding is determined by the metric parameters gt, the torsion parameters λt,
as well as the condition of orthogonality between the fields. In this context, we may view the
topological charges Qα as the pull-backs to the flag manifold of the familiar topological charges
defined on CPn−1. In Section 4.4.2, we further made use of this embedding to introduce U(1) gauge
fields Aa

µ, to rewrite the action as in (4.60). A similar rewriting proves to be much more difficult in
SU(n), since now there are multiple coupling constants gt. Said differently, the metric is no longer
diagonal in the ϕα.

5.3.4 Translation invariance

Since it will be critical below, we take a moment to observe the action of translation on the flag
manifold sigma model. Since translation shifts the chain by one site, it corresponds to the mapping

ϕα 7→ ϕα+1, (5.33)

where the index α is defined modulo n. Therefore, translation manifests itself in the sigma model as
a Zn action, generalizing the Z3 symmetry present in the symmetric SU(3) chains. We will return
to this fact when we discuss ’t Hooft anomalies below.

5.4 Renormalization Group Analysis

Recently, the Lorentz invariant versions of the above flag manifold sigma models were studied in
great detail in [79]. In particular, the renormalization group flow of both the gt and λt parameters
were determined for general n. Moreover, field theoretic versions of the LSMA theorem were
formulated, using the methods of ’t Hooft anomaly matching. For a review of this subject, see
Section 4.6.4. Here, we would like to apply these results to our SU(n) chains which lack Lorentz
invariance in general. To do so, we consider the differences of velocities occurring in (5.27), namely

∆tt′ := vt − vt′ , (5.34)

and ask how they behave at low energies. More precisely, we calculate the one-loop beta functions
of these ∆tt′ , to O(gt) and O(λt). We will find that each of the ∆tt′ flows to zero under renormaliza-
tion. Moreover, we will show that this implies Lorentz invariance at our order of approximation.
This is consistent with the fundamental SU(n) models with p = 1, where it is known by Bethe
ansatz that Lorentz invariance is present [12, 84, 85]. Our calculations were motivated by a sim-
ilar phenomenon in 2+1 dimensional systems, where an interacting theory of bosons and Weyl
fermions renormalizes to a Lorentz invariant model [133, 134].
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5.4.1 Goldstone mode expansion

In the following, it will be useful to introduce dimensionless velocities, ut, defined according to

ut :=
vt

v̄
v̄ =

1
bn

2c

b n
2 c∑

t=1

vt, (5.35)

and introduce new spacetime coordinates which both have units of (length · time)1/2:

x→
x
√

v̄
τ→

√
v̄τ. (5.36)

In these units, ∆tt′ = ut − ut′ . The coefficients gt appearing in (5.27) are dimensionless, and are all
proportional to 1

p . Since we’ve taken a large-p limit, we will expand all quantities in powers of the
gt. As we will see below, the coefficients λt in (5.27) do not enter into our one-loop calculations,
and so we will neglect them throughout.

Since we are interested in the low energy dynamics of these quantum field theories, we make
the simplifying assumption that the matrices U are close to the identity matrix, and expand them in
terms of the SU(n) generators. In Appendix C, we prove that U may factorized according to

U = DV

D = eiωγTγ

V = eiωaTa
. (5.37)

Let us explain our notation. Here and throughout, we use Greek letters to index the diagonal SU(n)
generators, lowercase Latin letters to index the off-diagonal ones, and uppercase Latin letters to
index the complete set. Repeated indices will always be summed over unless otherwise specified.
Since D is diagonal, this factorization of U implies that D drops out from the traces occurring in
(5.27):

tr[U∂µU†Λα∂µUU†Λβ] = tr[V∂µV†Λα∂µVV†Λβ] (5.38)

Therefore, when deriving the Lagrangian of the ωa, we may write U in terms of the off-diagonal
generators only:

U = eiωaTa = 1 + iωaTa −
1
2
ωaωbTaTb + O(ω3). (5.39)

We choose a convenient normalization in which the off-diagonal generators have entries 1 or ±i,
and satisfy

[Ta,Tb] = 2i fabCTC . (5.40)

These generators are n × n matrices that have a very specific structure. There are n − 1 diagonal
ones, and n(n− 1) off-diagonal ones, that come in pairs. For each pair of integers {α, β} with α, β =

1, . . . , n and α , β, there are exactly two generators with nonzero (α, β) entries. We define Iαβ to
be the set of two indices corresponding to the SU(n) generators with nonzero (α, β) entries. For
example, in SU(3), the off-diagonal generators (in Gell-Mann’s notation) are T1,T2 with nonzero
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entries in the (1, 2) positions; T4,T5 with nonzero entries in the (1, 3) positions; and T6,T7 with
nonzero entries in the (2, 3) positions. They are provided explicitly in Appendix E. Then,

I12 = {1, 2} I13 = {4, 5} I23 = {6, 7}. (5.41)

With this notation, we now expand −tr[∂µUU†Λα∂µUU†Λβ] to O(ω4). We start with

∂µUU† = i∂µωaTa +

[
∂µωaωb −

1
2
∂µ(ωaωb)

]
TaTb (5.42)

−
i
2

[
∂µωaωbωc − ∂µ(ωaωb)ωc +

1
3
∂µ(ωaωbωc)

]
TaTbTc + O(ω4).

(5.43)

Since
∂µωaωb −

1
2
∂µ(ωaωb) =

1
2

[
∂µωaωb − ωa∂µωb

]
, (5.44)

we have [
∂µωaωb −

1
2
∂µ(ωaωb)

]
TaTb =

1
2
∂µωaωb[Ta,Tb] = i∂µωaωb fabCTC . (5.45)

Moreover, since

∂µωaωbωc−∂µ(ωaωb)ωc+
1
3
∂µ(ωaωbωc) =

1
3

(∂µωaωbωc−ωa∂µωbωc)+
1
3

(ωaωb∂µωc−ωa∂µωbωc),
(5.46)

we also have[
∂µωaωbωc − ∂µ(ωaωb)ωc +

1
3
∂µ(ωaωbωc)

]
TaTbTc (5.47)

= −
1
3
ωa∂µωbωc ([Ta,Tb]Tc + Ta[Tb,Tc])

= −
2i
3
ωa∂µωbωc fabD[TD,Tc]

=
4
3
ωa∂µωbωc fabD fDcETE .

Combining these facts, we have

∂µUU† = i∂µωaTa + i∂µωaωb fabCTC −
2i
3

fabD fDcEωa∂µωbωcTE + O(ω4). (5.48)

This yields
−tr[∂µUU†Λα∂µUU†Λβ] = ∂µωa∂µωbtr[TaΛαTbΛβ] (5.49)

+

[
fbcE +

2
3

fbcD fDgEωg

]
∂µωa∂µωbωc

(
tr[TaΛαTEΛβ] + tr[TEΛβTaΛα]

)
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+∂µωaωb∂µωcωd fabE fcdGtrΛαTEΛβTG.

Now we want to simplify this by understanding

tr[TaΛαTbΛβ] = [Ta]βα[Tb]αβ. (5.50)

Since α , β, the above expression vanishes if either of a or b is a diagonal generator. In fact, we
have

tr[TaΛαTbΛβ] + tr[TbΛαTaΛβ] =

2δab a, b ∈ Iαβ
0 else

. (5.51)

Returning to our calculation, we now have

− tr[∂µUU†Λα∂µUU†Λβ] =
∑
a∈Iαβ

[
(∂µω2

a) + 2 fbca∂µωa∂µωbωc (5.52)

+
4
3

fbcE fEda∂µωa∂µωbωcωd + ∂µωeωb∂µωcωd feba fcda
]
,

where all repeated indices are summed over. Now, to obtain the full Lagrangian, we must sum over
the possible combinations of α and β. Since

n∑
α<β

∑
a∈Iαβ

:=
n∑
β=2

β−1∑
α=1

∑
a∈Iαβ

=
∑

a

, (5.53)

where
∑

a again denotes a sum over all the off-diagonal generators of SU(n), the non-interacting
Lagrangian has the form

L0 =
1
ga

[
1
ua

(∂τωa)2 + ua(∂xωa)2
]
, (5.54)

where
ga := g|α−β|

∣∣∣∣
Iαβ3a

ua := u|α−β|
∣∣∣∣
Iαβ3a

. (5.55)

and again, all repeated indices are summed over. We rescale the fields according to

ωa 7→

√
ga

2
ωa (5.56)

to yield

L =
1
2

[
1
ua

(∂τωa)2 + ua(∂xωa)2
]

+

√
gagbgc
√

2

ha(µ)
ga

fbca∂µωa∂µωbωc (5.57)

√
gbgcgd

4
ha(µ)

ga

[√
ge∂µωe∂µωbωcωd feca fbda +

4
3

fbcE fEda
√

ga∂µωa∂µωbωcωd
]

+ O(ω5),

where

ha(µ) =

 1
ua

µ = τ

ua µ = x
. (5.58)

This expression will be the starting point of our renormalization group calculations.
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5.4.2 Dimensional regularization

In Chapter 4, we introduced the theory behind the renormalization group and proceeded to use
Wilson’s formalism in order to calculate the beta functions of g and λ in the symmetric SU(3)
chain. In this approach, the length scale of the theory is explicitly changed, and the beta functions
are determined by finding the altered values of g and λ at this new scale.

An alternative approach is to use a regularized theory at a fixed energy scale.33 Consider the
following example Lagrangian density of a real scalar field:

Lϕ4 =
1
2

(∂ϕ)2 + m2ϕ2 + Xϕ4. (5.59)

This theory is not regularized: a perturbative expansion of its correlation functions will lead to
divergences, order by order. To resolve this, we use a procedure known as dimensional regulariza-
tion, in which we continue the spacetime dimension away from an integer, rendering momentum
loop integrals finite. We then subtract off these contributions by introducing counterterms into the
Lagrangian density, before continuing back to an integer dimension. This is performed at a given
energy scale M, which we fix.

For example, at one loop, the ϕ self energy receives a contribution proportional to∫
dd p

(2π)d

1
(p2 + m2)

∝ Γ

(
1 −

d
2

)
, (5.60)

where Γ(x) is the gamma function with poles at non-positive integers. For non-integer d, this
expression is finite, and can be cancelled by introducing a counterterm

δZϕ
1
2

(∂ϕ)2 (5.61)

into the Lagrangian, with

δZϕ ∝ −Γ

(
1 −

d
2

)
. (5.62)

Repeating these steps for all divergences at a given order, we arrive at a renormalized Lagrangian
density at scale M,

Lϕ4,r =
1
2

Zϕ(∂ϕr)2 + ZmM2m2
rϕ

2
r + ZX M4−dXrϕ

4
r , (5.63)

in terms of a renormalized field ϕr and renormalized coupling constants mr and Xr. The renormal-
ization constants Zi contain the introduced counterterms δZi according to

Zi = 1 + δZi. (5.64)

The explicit energy scale M enters to make the renormalized coupling constants dimensionless.
Now, to extract the beta functions, we must relate the two Lagrangian densities (5.59) and (5.63).
Matching kinetic terms, we find

ϕ =
√

Zϕϕr, (5.65)
33The beginning of this discussion first appeared in [124].

90



5.4. Renormalization Group Analysis

and then rescaling, we find
mr = mM−1ZϕZ−1

m , (5.66)

Xr = XM4−dZ2
ϕZ−1

X . (5.67)

These equations are the dimensional regularized analogues of (4.79) in Chapter 4. Differentiating
with respect to (− log M) generates the desired beta functions. The negative sign enters because an
increase in energy M corresponds to a decrease in length scale, b.

Exactly how the counterterms in (5.64) are defined leads to further choice in renormaliza-
tion scheme. If only the divergent parts of the loop diagram are included in the counterterm, the
scheme is known as ‘minimal subtraction’. In our calculations, we use the more common ‘mod-
ified minimal subtraction’ scheme, or MS , which adds to the counterterm the universal constant
log (eγE/4π) that often occurs in Feynman diagrams. This is implemented by rescaling the energy
scale M → M eγE

4π in (5.63) [130, 135].

5.4.3 Renormalization group equations

In order to derive the renormalization group equations for the model (5.57), we introduce a set of
renormalization coefficients, Zµa and Ze

µabcd, as follows. Since (5.57) has divergences at one-loop
order, we rewrite the theory in terms of renormalized parameters, as

L =
1
2

[
Zτa

1
ur

a
(∂τωa)2 + ur

aZx
a(∂xωa)2

]
+ Z(1)

µabc

√
gr

agr
bgr

c
√

2

hr
a(µ)
gr

a
fbca∂µωa∂µωbωc (5.68)

+

√
gr

bgr
cgr

d

4
hr

a(µ)
gr

a

[
Z(2),e
µabcd

√
gr

e∂µωe∂µωbωcωd feca fbda+Z(3)
µabcd

4
3

fbcE fEda
√

gr
a∂µωa∂µωbωcωd

]
+O(ω5).

The superscripts ‘r’ emphasize that the coupling constants and velocities appearing in (5.68) are
different from those appearing in (5.57) (and are not indices to be summed over). Each of the renor-
malization coefficients has the form Z = 1 + δZ, where δZ is a one-loop counterterm regularizing
any UV divergence. Below, we use dimensional regularization to calculate the δZ at a fixed energy
scale M. Then, by rescaling

ωa →

(
1

Zx
aZτa

)1/4

(5.69)

in (5.68), and comparing (∂xωa)2 terms in (5.57) and (5.68), we obtain the following equation for
ur

a:

ua = ur
a

√
Zx

a

Zτa
. (5.70)

The derivative of ur
a with respect to − log M,

βua := −
dur

a

d log M
, (5.71)
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is the beta function of ua, and describes the flow of ua as the energy scale, M, is changed. The
negative sign is present, so as to be consistent with our definition of beta function in Chapter 4,
which differentiated with respect to a length scale, log(b). It is important to note that since this
equation only depends on Zτa and Zx

a , we are only tasked with calculating divergences of two-point
functions in our lowest-order regularization scheme.

We use dimensional regularization to evaluate one-loop diagrams in d = 2 − ε dimensions in
(5.68). We drop all ‘r’ superscripts, and introduce the following compact notation:

g(1)
abcd(µ) :=

Mε

4
√

gagbgcgdhe(µ)
face fbde

ge
(5.72)

g(2)
abcd(µ) :=

Mεha(µ)
3

√
gagbgcgd

ga
fbcE fEda (5.73)

Again, all indices refer to off-diagonal SU(n) generators, except for the uppercase letters, which
refer to the complete set. We’ve introduced the renormalization scale M so that the coupling con-
stants remain dimensionless. Since we are only tasked with calculating the Zµa , the only diverging
diagrams we must consider are those that correct the boson self energy. This immediately implies
that the cubic interaction term occurring in (5.68) plays no effect at this order. The only contributing
diagram Πab(k), shown in Figure 5.2, equals

Πab(k) = −2
∫

ddq
(2π)d 〈ωc(q)ωc(−q)〉

[
gabcc(µ)kµkµ + gccab(µ)qµqµ

]
(5.74)

where
gabcd = g(1)

abcd + g(2)
abcd. (5.75)

In addition to UV divergences, there are also IR divergences occurring at zero momenta. To
remove these, we introduce a small mass m to the boson fields ωa, and take the limit m → 0 once
we’ve extracted the UV divergence. A convenient mass term with the appropriate dimensions is
m2v̄3uaω

2
a. Then, the free propagator is

〈ωc(q)ωc(−q)〉 =
uc

ω2 + u2
c~q2 + m2u2

c v̄3
q = (ω, ~q) (5.76)

and we have two integrals to consider:

• Integral 1: ∫
ddq

(2π)d 〈ωc(q)ωc(−q)〉 =
1
2

∫
dd−1q

(2π)d−1

1√
~q2 + m2v̄3

=
1

2πε
+ O(ε0) (5.77)

• Integral 2:∫
ddq

(2π)d 〈ωc(q)ωc(−q)〉qxqx =
1
2

∫
dd−1q

(2π)d−1

~q2√
~q2 + m2v̄3

=
1

2πε
m2v̄3 + O(ε0) (5.78)
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q

-k

k

c

ba

Figure 5.2: The diagram Πab(k), drawn using [136].

In Integral 2, we’ve taken µ = x without loss of generality. It appears that such integrals will
renormalize the boson masses; however, since these contributions are proportional to the IR
cutoff m, when we restore m→ 0, these poles will drop out of our calculations. See equation
13.82 of [130] for a similar argument in the O(3) nonlinear sigma model.

Returning to the process (5.74), we find that

Πab(k) = −
1
πε

kµkµgabcc(µ) = −
Mε √gagb

πε
kµkµgc

[
1
4

he(µ)
face fbce

ge
−

ha(µ)
3ga

fbcE facE

]
. (5.79)

This result will contribute to the renormalization constants involving ωa and ωb.

5.4.4 Beta functions of the Goldstone velocities

In order to simplify (5.79) further, we make use of two identities (F.1) and (F.12), proven in Ap-
pendix F. Doing so, we conclude that (5.79) equals

Πab(k) = −
Mεgaδab

2πε
kµkµ

( n−1∑
i=1
i,t

hi(µ)
2gi

g|t−i| −
ha(µ)
3ga

[
ga +

1
2

∑
c

gc
])
. (5.80)

(no sum over a). Since
∂µω∂µω ∼ −ω∂

2
µω ∼ +kµkµω(k)ω(−k) (5.81)
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we may read off from Πab(k) the renormalization group constants:

Zτa = 1 +
Mεgaua

2πε

( n−1∑
i=1
i,t

1
uigi

g|t−i| −
2

3gaua

[
ga +

1
2

∑
c

gc
])

(5.82)

Zx
a = 1 +

Mεga

2πuaε

( n−1∑
i=1
i,t

ui

gi
g|t−i| −

2ua

3ga

[
ga +

1
2

∑
c

gc
])

(5.83)

(no sum over a). Inserting these expressions into (5.71), and using (5.70), we find that for t =

1, 2, . . . , q := b n
2c,

βut = −
utgt

4π

n−1∑
i=1
i,t

g|t−i|

gi

[
ut

ui
−

ui

ut

]
. (5.84)

These are the beta functions for the different Goldstone velocities in the flag manifold sigma model.
In the following subsection, we use (5.84) to show that these velocities flow to a common value at
small energies.

5.4.5 Renormalization of velocity differences

We want to study the renormalization group flow of the velocity differences, ∆tt′ defined in (5.34).
As mentioned above, the identity ut = un−t reduces the number of independent velocities to q = b n

2c,
and the relation

∆tt′ = ∆t1 + ∆1t′ = ∆1t′ − ∆1t (5.85)

shows that the number of independent velocity differences is q−1. To study their flow collectively,
we introduce a (q − 1)-component vector, ∆, with components

∆i := ∆1,i+1 i = 1, 2, . . . , q − 1. (5.86)

If we assume that the velocities ut are initially close together, so that the SU(n) chain is approxi-
mately Lorentz invariant, the vector ∆ will obey an equation of the form

−β∆ =
d

d log M
∆ = R∆ (5.87)

for a (q− 1)× (q− 1) matrix R. The spectrum of R will reveal the low energy behaviour of the ∆tt′ :
if the spectrum is strictly positive, we may conclude that all velocity differences flow to zero in the
IR. Let us now determine R.

Assuming the velocities ut are initially close together, we rewrite (5.84) to linear order in ∆t as

β
n=2q
ut = −

gt

2π

[ q−1∑
i=1

∆ti

gi

(
gi+t + g|t−i|

)
+

g|t−q|

gq
∆tq

]
+ O(∆2), (5.88)
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β
n=2q+1
ut = −

gt

2π

q∑
i=1

∆ti

gi

(
gi+t + g|i−t|

)
+ O(∆2), (5.89)

depending on the parity of n. (We’ve introduced a g0 := 0 for notational convenience). Here
we have used the fact that only q := b n

2c velocities and coupling constants are unique. The beta
function for a component ∆i of ∆ is then

β
n=2q
∆t = −

1
2π

q−1∑
i=1

∆i

gi

[
g1

(
gi+1 + g|1−i|

)
− gt

(
gi+t + g|t−i|

) ]
(5.90)

−
gt∆

t

2π

[ q−1∑
i=1

1
gi

(
gi+t + g|t−i|

)
+

g|t−q|

gq

]
−

∆q

2πgq

[
−gtg|t−q| + g1g|1−q|

]
+ O(∆2),

β
n=2q+1
∆t = −

1
2π

q∑
i=1

∆i

gi

[
g1

(
gi+1 + g|i−1|

)
− gt

(
gi+t + g|i−t|

) ]
−

gt∆
t

2π

q∑
i=1

1
gi

(
gi+t + g|i−t|

)
+ O(∆2),

(5.91)
depending on the parity of n. Clearly, finding the eigenvalues of the R matrix in (5.87) is a difficult
task. As a first check, we consider the symmetric point where all couplings equal the same value, g
(except for the artificial g0, which is always zero). In this case, we can clearly read off from (5.84)
that

β∆t = −
g∆t

2π
(n − 1) (5.92)

so that the matrix beta equation is diagonal, with R having positive eigenvalues. Next, we consider
small values of n.

• SU(4)
In this case, there is a single velocity difference, β∆12 , with

β∆12 = −
∆12

2πg2

[
g2

1 + 2g2
2

]
< 0. (5.93)

• SU(5)
In this case, there is again a single velocity difference, with

β∆12 ==
1
πg2

∆12(g2
1 + g2

2) < 0. (5.94)

• SU(6)
In this case, there are three velocities, three coupling constants, and two unique velocity
differences, ∆12 and ∆13. The eigenvalues of the 2 × 2 matrix R are both positive. Explicitly,
they are

{
1

2πg1g2g3

(
g2

1g2
2 + g3

1g3 + g1g2
2g3 + g2

1g2
3 + g2

2g2
3

)
,

1
2πg1g2g3

(
g2

1g2
2 + 2g2

1g2
3 + 2g2

2g2
3

)
}.

(5.95)
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Unable to find the eigenvalues of the R matrix explicitly, we resort to a numerical investiga-
tion of its spectrum. We verify that the spectrum is positive definite by computing the minimal
eigenvalue of R for fixed coupling constants. First, we choose the b n

2c coupling constants randomly
from the interval (0, 1). In 10 000 trials, we find that the minimal eigenvalue is always strictly
positive, for SU(n) with n = 3, 4, . . . , 50. Next, we probe points in parameter space where different
coupling constants have a common value, by choosing coupling constants from a discrete lattice
on (0, 1)b

n
2 c. Since the dimension of the lattice increases with n, we choose a coarser discretization

as n increases, to keep the number of lattice points below 100 000. In this case, we find that for
n = 3, 4, . . . , 16, the minimal eigenvalue of the R matrix is again strictly positive. This supports the
conjecture that the spectrum of R is always positive, so that each velocity difference ∆tt′ flows to
zero in the IR.

So far, we have verified that the velocity differences ∆tt′ in these sigma models flow to zero at
low energies. However, we now claim that this is sufficient to conclude that the entire theory (5.27)
is Lorentz invariant at low energies. We note that we are not required to restore the pure-imaginary
λ-terms occurring in (5.27), since they are proportional to εµν∂µφ∂νφ, a Lorentz scalar. Indeed,
since the interaction vertex receives no O(g) correction, the only spacetime dependence enters
through the renormalization of ht(µ) and through the renormalization of the fields ωa themselves.
Since the latter are independent of µ (see (5.82) and (5.83)), the Lorentz non-invariance of the
interactions is entirely captured by the ht(µ). Since ut − u′t → 0 implies u−1

t − u−1
t′ → 0 at O(g),

we may use the results of the previous subsection to conclude that the ht(µ) all flow to a common
value h(µ), and thus Lorentz invariance of the entire model (5.27) is possible if the velocities are
initially close to each other.

5.5 General Phase Diagram

Based on the renormalization group analysis in the previous section, we conclude that at low
enough energies, SU(n) chains in the rank-p symmetric representation (without fine-tuning) will
be described by a Lorentz invariant flag manifold sigma model

L =
∑
α<β

1
g|α−β|

tr[ΛαU∂µU†Λβ∂µUU†] − εµν
∑
α<β

λ|α−β|tr[∂µUU†Λα∂νUU†Λβ], (5.96)

with topological term

S top = iθ
n−1∑
α=1

αQα θ :=
2πp

n
. (5.97)

In [79], the renormalization group flow of the λt and the gt was determined, and given a geometric
interpretation. It was found that for n > 4, the gt flow to a common value in the IR, and that for
n > 6, the λt flow to zero in the IR. Thus we may expect an S n (permutation group) symmetry to
emerge at low enough energies, and for n > 6. It is known that in these S n-symmetric models, the
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unique coupling constant g obeys [79]

βg = −
dg

d log M
=

n + 2
4π

g2 > 0, (5.98)

and the theory is asymptotically free. These facts suggest that a gapless phase, driven by topological
terms, may be present in these types of SU(n) chains. In previous chapters, we learned that this
occurred whenever the topological angles of the theory were nontrivial, i.e. for p not a multiple of
n. Should this phenomenon extend to all values of n?

Before jumping to this conclusion, it is important to realize that SU(2) and SU(3) are special.
Since 2 and 3 are prime, any value of p not a multiple of n is necessarily coprime with n, and
leads to n − 1 nontrivial topological angles. And, by the LSMA theorem, this leads to either a
gapless phase or an n-fold degenerate ground state. However, for nonprime values of n, that have
nontrivial greatest common divisors with p, another scenario is possible. For example, in the
p = 2 representation of SU(4), the topological angle θ2 =

πp
2 becomes trivial; moreover, the LSMA

theorem implies only a 2-fold degenerate ground state, instead of an n-fold one. These observations
should make one hesitate before extrapolating our results from the previous chapters.

On the other hand, we do expect the prediction of a unique gapped ground state when p is a
multiple of n to be robust. This follows directly from the fact that AKLT-like states exist for these
representations, as shown in Section 3.5.3.

5.5.1 Strong coupling analysis

By taking the large coupling limit, gt → ∞, we are able to see that the ground state degeneracy of
the flag manifold sigma model does in fact depend on gcd(n, p). In this limit, only the λ-terms and
topological terms survive. We will neglect the λ-terms: for n > 6 this is justified by the fact that
the λt parameters flow to zero under renormalization; for n ≤ 6, this is an added assumption that is
made to simplify our analysis. In this case, with only the topological terms remaining, the partition
function is a path integral over the topological charge densities, with the extra constraints that the
topological charges take integer values, and that the topological charge densities on each plaquette
of the lattice sum to zero. We find

Z(θ1, . . . , θn) =
∑

{m1,...,mn}

z(θ1, θ2 + 2πm2, . . . , θn + 2πmn)V (5.99)

where V is the spacetime volume, mi ∈ Z, and

z(θ1, θ2, . . . , θn) =

∫
dk
2π

n∏
α=1

2 sin
(

1
2 (k − θα)

)
(k − θα)

. (5.100)

For our models, we have θα =
2πp

n (α − 1), so that the denominator of this expression does not
diverge. The term(s) with the largest value dominate the sum, so that the free energy density reads
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as

f (θ1, . . . , θn) = − log
(

max
{m2,m3,··· ,mn}

z(θ1, θ2 + 2πm2, . . . , θn + 2πmn)
)
. (5.101)

Just as in SU(3), we may identify phase transitions in this model by identifying sets of {mα} where
multiple terms in the free energy density dominate the logarithm. Indeed, as we pass from one
phase to another, we shift from one dominant term to another, resulting in a cusp in f . The number
of dominant terms meeting at a given point will give the degeneracy of the phase transition. Thus,
we search for distinct sets {mα} and {nα} that obey

z(θ1, θ2 + 2πm2, . . . , θn + 2πmn) = z(θ1, θ2 + 2πn2, . . . , θn + 2πnn), (5.102)

which can happen if the angles on the right hand side are a permutation of the ones on the left, up
to a constant shift. This fact follows from the explicit expression of z, given in (5.100). So, we look
for permutations σ ∈ S n such that

mσ(α) = nα + ∆, (5.103)

where ∆ is some constant shift. The solutions of this expression are

σ(k) : α 7→ α + k k = 1, 2, . . . , n − 1, (5.104)

where the right hand side is defined modulo n. The number of distinct solutions equals n/ gcd(n, p).
Thus, we find that if n and p are coprime, there are n such solutions, leading to an n-fold ground
state degeneracy. Meanwhile, if gcd(n, p) = q > 1, we find an r-fold degeneracy, where r := n/q.

5.5.2 ’t Hooft anomaly matching

Using the notion of ’t Hooft anomaly matching, both [79] and [78] were able to formulate a field-
theoretic version of the LSMA theorem for SU(n) chains. In short, the presence of an ’t Hooft
anomaly signifies nontrivial low energy physics; in one dimension, this necessitates a gapless phase
so long as the symmetries of the SU(n) chain are not spontaneously broken (see Section 4.6.4 for
a review). It was shown that in these models, an ’t Hooft anomaly is present so long as p is not a
multiple of n. Explicitly, it is a mixed anomaly between the PSU(n) := SU(n)/Zn symmetry and
the Zn translation symmetry of the n-site-ordered classical ground state. It is a PSU(n) symmetry,
and not an SU(n) symmetry, because of a Zn subgroup of SU(n) that acts trivially on each term in
the field theory. This is important because when one tries to gauge PSU(n), it leads to gauge fields
with topological charge 1

n , and forces one to include in the Lagrangian a counterterm that violates
the Zn symmetry. When this anomaly is present, the gapped phase must have spontaneously broken
translation or PSU(n) symmetry; the latter is ruled out by Coleman’s theorem. In the gapped phase,
the ground state degeneracy is predicted to be n

gcd(n,p) , which is consistent with the strong coupling
analysis of the previous subsection, as well as the LSMA theorem.

The authors of [79] then argued that while an anomaly is present whenever p mod n , 0,
an RG flow to an IR stable WZW fixed point is possible only when p and n have no nontrivial
common divisor. In this case, the flow is to SU(n)1. Otherwise, the candidate IR fixed point
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is SU(n)q, where q = gcd(n, p), which is unstable and requires fine-tuning in order for the flag
manifold sigma model to flow there. Also, there is no possible flow from this unstable theory
to SU(n)1, since this would violate the anomaly matching conditions derived in [116] for generic
SU(n) WZW models. There, it was found that the WZW model of level k′ can flow to level k only
if k′ > k and gcd(n, k) = gcd(n, k′).

5.5.3 A Haldane conjecture for SU(n) chains

Based on these arguments, we conclude that the rank-p symmetric SU(n) chains may flow to an
SU(n)1 WZW model if p and n do not have a common divisor. In this case, we expect gapless
excitations to appear in the excitation spectrum. For other values of p not a multiple of n, we
predict a gapped phase with n/ gcd(n, p)-fold ground state degeneracy, in accordance with the
LSMA theorem. Finally, when p is a multiple of n, we predict a unique gapped ground state,
such as the AKLT-like configuration given in Section 3.5.3. See Figure 5.3 for a simplified phase
diagram of the SU(n) chain in the case when p and n are coprime. We can understand this phase
transition as being driven by the SU(n)-invariant interaction term

∑
a Ja

LJa
R in the SU(n)1 WZW

model, where JL and JR are the left and right moving currents, respectively. This operator is
marginal: for one sign of its coupling constant, it is marginally irrelevant and flows to zero; for the
other sign it flows to large values [115]. Our claim about gapless behaviour translates to a statement
about the sign of this coupling constant: at weak flag manifold coupling g, we expect this term to be
marginally irrelevant. Then, at larger couplings, the term becomes marginally relevant, and there
is an RG flow to a gapped phase with n degenerate ground states that break translation symmetry.

These predictions are a natural extension of our SU(3) Haldane conjecture from the previous
chapter. We note that when p and n have a common divisor, at least one of the topological angles
occurring in (5.97) is necessarily trivial. In the instanton gas picture of Haldane’s conjecture, each
type of topological excitation must have a nontrivial topological angle in order to ensure total
destructive interference in half-odd integer spin chains [137]. This might lead one to speculate that
a similar mechanism is at play here in SU(n) chains. We will prove that this is indeed the case in
Chapter 7.

ggapless gapped
(n-fold degeneracy)

SU(n)1

Figure 5.3: A simplified phase diagram of the SU(n) chains we consider, as a function of coupling
constant g when p and n are coprime. A more accurate diagram would include b n

2c different cou-
pling constants; in this case, we predict a critical point described by SU(n)1 occurring somewhere
in this multidimensional space.
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Finally, we may speculate on the size of the energy gap when p is not coprime with n. In
general this is a difficult task, but in the special case of a theory with a unique coupling constant g,
one may identify a characteristic length scale. This follows from the fact that g is described by the
beta function (5.98), which has a lowest-order solution of the form

g(M) =
g0

1 + n+2
4π g0 log(M)

. (5.105)

Here g0 is the bare value of g, and is a function of the interaction strengths Jt of the underlying
SU(n) chain. This equation shows that g becomes order 1 at an energy scale of

∆ = Ce−
4π

(n+2)g0 , (5.106)

for some unknown prefactor C with units of energy. This expression defines a characteristic energy
scale that should correspond in magnitude to the finite mass gap in our SU(n) chains. For SU(2)
and SU(3) chains, this calculation leads to a direct prediction. In particular, we predict the Haldane
gap in SU(3) chains with p a multiple of 3 to be of the order

∆n=3 = Ce−
4πp
√

J1 J2
5(J1+J2) . (5.107)

Of course, if one starts with a nearest-neighbour SU(3) model, then this expression is less predictive
because of the difficulty in finding J2 as a function of J1. And even still, the prefactor C is unknown.
In [77], a numerical estimate of this gap in the nearest-neighbour p = 3 model was found to be
∆n=3/J ∈ (0.017, 0.046).

For n > 3, the presence of multiple coupling constants leads to another complication. While
we know that each coupling is inversely proportional to p, the prefactors depends on the interaction
strengths Jt of the chain, and we do not have a beta function as simple as (5.98). Nonetheless, if the
interaction strengths are chosen so that all of the couplings gt are of the same magnitude gt ∼ c/p,
then we may still expect the gap to scale like e−

4πcp
(n+2) . For example, in SU(4) the simultaneous tuning√

J1J3/(J1 + J3) ∼ c J2 ∼ c (5.108)

leads to a Haldane gap prediction of order ∆n=4 = Ce−
2πp
3c . In any case, the prediction of a gap that

decreases exponentially in p should hold for all values of n, even without fine-tuning.

5.6 Conclusion

In this chapter, we have extended Haldane’s conjecture to SU(n) chains that have a rank-p sym-
metric representation at each site. Our starting point was SU(n) flavour-wave theory, where we
first realized that the property of having a unique excitation velocity, which is present in SU(2)
and SU(3) chains, no longer is true for chains with n > 3. This fact inhibits the immediate emer-
gence of Lorentz invariance that occurred in those simpler models. In Section 5.4, we came to
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the same conclusion by deriving in detail the low energy sigma model description of these SU(n)
chains. However, in Section 5.5, after extensive renormalization group calculations, we were able
to conclude that these distinct velocities in fact flow to a common value at low enough energies.
Because of this, we argued that SU(n) chains in the rank-p symmetric representation do in fact
correspond to the (Lorentz-invariant) SU(n)/[U(1)]n−1 flag manifold sigma model, equipped with
n−1 topological angles θα = 2π

n pα. Then, by applying a combination of exact results, including the
LSMA theorem, AKLT constructions, and ’t Hooft anomaly matching, we were able to formulate
the following conjecture:

• For p and n coprime, we predict a gapless phase driven by topological angles to exist below
some critical interaction strength. This phase is characterized by the SU(n)1 WZW model.
Above this critical coupling, we predict spontaneously broken translation symmetry and n-
fold degenerate ground states.

• For 1 < gcd(n, p) < n, we predict that a gapless phase can never occur, so that translation
symmetry is always spontaneously broken by the LSMA theorem. The ground states are
n/ gcd(n, p)-fold degenerate.

• Finally, for p a multiple of n, we predict a unique, gapped ground state that is translationally
invariant. The AKLT ground states presented in Section 3.5.3 correspond to this scenario.

Our prediction that translation symmetry is necessarily broken when p and n have a nontrivial
common divisor other than n is rather interesting. This was not a possibility for the chains with
smaller symmetry groups considered in Chapters 2 and 4, because n = 2 and n = 3 are both prime
numbers. When this is the case, we see that some, but not all of the topological angles in the
sigma model vanish. It appears then, that in order for a phase transition to be driven by topological
effects in these SU(n) chains, we require all n − 1 angles to be nontrivial. In Chapter 7, we present
an elegant argument for why this is the case. In essence, the finite gap in SU(n) chains can be
understood as being generated by topological excitations. However, when all n − 1 topological
angles are nonzero, these excitations destructively interfere with each other, and destroy the mass-
generating mechanism.
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Chapter 6

Flag Manifold Sigma Models From
Other Representations of SU(n)

6.1 Introduction

In the previous chapters, we have clearly seen that much can be learned by establishing a mapping
between SU(n) chains and flag manifold sigma models. In this chapter, we seek a more complete
understanding of this correspondence. What this entails is addressing the following question: What
representations of SU(n) chains give rise to SU(n)/[U(1)]n−1 flag manifold sigma models? Once
this has been answered, we should then further ask: What representations of SU(n) chains give
rise to those flag manifold sigma models that possess ’t Hooft anomalies, and lend themselves to a
Haldane-like prediction of gapless excitations in certain cases.

In this chapter, we answer these two questions, ultimately classifying all SU(n) chains that
admit such a flag manifold sigma model mapping. We have already set the stage in Section 3.4,
where we classified the classical ground states for the most general representations of SU(n). In
fact, we suggest to the reader that they recall much of Chapter 3 in order to motivate the present
discussion. Here, we will begin by summarizing various facts about the flag manifold sigma models
in Section 6.2. Then we turn in Section 6.3 to the derivation of the dispersion relations of low
energy modes in generic SU(n) chains. In Chapters 2, 4, 5, these were called the dispersion relations
of flavour-wave, or Goldstone mode excitations. We will see that generically, both quadratic and
linear dispersing modes are present in these models, which is a manifestation of the ferro- and
antiferromagnetic order parameters that coexist. This phenomenon was previously observed in
Section 4.7 for SU(3) chains; now we learn that it occurs for all n. We also speculate in this section
about how such coexisting order parameters may lead to an entire hierarchy of flag manifold sigma
models, of different dimension, for a given value of n. Next, in Section 6.3, we restrict our attention
to the representations with linear dispersion only, and determine their topological angle content.
In Section 4.7, this amounted to considering the self-conjugate SU(3) chains, in addition to the
symmetric ones. For n > 3, we will see that many other families of representations also possess
this property. Then, in Section 6.4, we summarize our calculations and determine which of the
representations considered in the previous section also admit a mixed ’t Hooft anomaly. This will
allow us to extend our SU(n) version of the Haldane conjecture from the previous chapter to new
representations of SU(n). Finally, our concluding remarks can be found in Section 6.6.
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6.2 Flag Manifold Sigma Models

For concreteness, let us write down the Lagrangian for the SU(n)/[U(1)]n−1 flag manifold sigma
model, in a manner more formal than that found in previous chapters. We introduce n orthonor-
malized fields ϕα ∈ Cn, which are each invariant under a separate U(1) symmetry,

ϕα 7→ eiθϕα. (6.1)

If we denote by gαβ the (symmetric) metric on the flag manifold, and bαβ the (antisymmetric)
torsion, then the Lagrangian (5.97) can be rewritten as

L =

n∑
α,β=1

[
gαβδµν + bαβεµν

]
(ϕα · ∂µϕ∗,β)(ϕβ · ∂νϕ

∗,α) +Ltop (6.2)

where Ltop is the topological term

Ltop =

n∑
α=1

θα
2π
εµν∂µϕ

α · ∂νϕ
∗,α. (6.3)

Only n − 1 of the angles θα are independent, since the theory is invariant under shifting all angles
by the same amount. This reflects the fact that

H2(SU(n)/[U(1)]n−1) = Zn−1. (6.4)

In fact, all of the topological angles may be removed using the combined shifts

θα → θα + 2πbα + bαβ 7→ bαβ − bα − bβ (6.5)

but this hides the 2π periodicity of the θα [79]. Finally, the shift gαβ → gαβ − cα − cβ introduces the
familiar CPn−1 kinetic terms into the Lagrangian:

L → L +

n∑
α=1

cα
[
|∂µϕ

α|2 − |ϕ∗,α · ∂µϕ
α|2

]
. (6.6)

Based on this fact, it is useful to use think of the embedding

SU(n)
[U(1)]n−1 ↪→ CPn−1 × · · · × CPn−1 (6.7)

and visualize the field content as a set of orthogonal CPn−1 fields, coupled through the metric and
torsion terms. Since CPn−1 = G1,n, this embedding is a special case of (3.16).

In most cases, the tensors gαβ and bαβ will admit additional, discrete symmetries. For example,
a sigma model that arises from an SU(n) chain with a d-site unit cell in its classical ground state
will possess a Zd symmetry as a manifestation of the translation symmetry on the chain.
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However, what is also true is that in most cases, the SU(n) chain will not directly map to the
above Lorentz-invariant sigma model. There are two reasons for this. The first is that the fields ϕα

are not guaranteed to propagate with the same velocity. Indeed, for the symmetric representation
SU(n) chains, it was shown in Chapter 5 that only for a fine-tuned choice of SU(n) chain coupling
constants do these velocities become equal. However, we now know that at low enough energies,
all of the velocity differences flow to zero under renormalization. In this chapter, we will assume
that this mechanism holds more generally, so that we may identify the various velocities of the
CPn−1 fields.

The second reason for Lorentz non-invariance is more of a hindrance. It follows from a
mismatch of terms arising from the coherent state path integral construction, ultimately lead-
ing to some of the ϕα having quadratic dispersion. Mathematically, we say that the embedding
SU(n)/[U(1)]n−1 ↪→ [CPn−1]n is not Lagrangian in this case. Let us speculate a consequence of
these quadratic modes. Since Coleman’s theorem does not apply in 1+1 dimensions to modes with
quadratic dispersion, the generators associated with these modes may spontaneously order, result-
ing in true Goldstone modes with quadratic dispersion [95–97, 138]. These Goldstone bosons will
couple to the remaining linear modes, which themselves form an SU(n′)/[U(1)]n′−1 sigma model
with n′ < n. If a subgroup of the translation symmetry acts transitively on the n′ linear fields, then
it becomes possible for a novel ’t Hooft anomaly (mixed with the Zn′ subgroup) to exist in such
SU(n) chains.34 However, for now we will avoid these complications by focusing only on theo-
ries with purely linearly dispersing modes. In the following section, we determine exactly which
representations of SU(n) lead to such theories.

6.3 Dispersion Relations

In Section 3.4, we determined which SU(n) Hamiltonians were required in order to establish a
flag manifold sigma model mapping for a given representation, R. In other words, we determined
how many longer-range interaction terms had to be included in order to stabilize local zero modes.
These results are summarized in Table 3.1, which is repeated here for convenience:

With these results in hand, we now turn to the field theory mapping itself. Of course, a de-
tailed derivation for each Hamiltonian would be a very tedious undertaking, and we do not pursue
this here. Instead, we focus on particular features, namely the topological angles and possible
dispersion relations that exist in these theories, and refrain from determining the precise coupling
constants and velocities as a function of the interaction strengths Jr. Later on, we will explain how
these pieces of information, combined with a set of reasonable assumptions, will allow us to make
predictions about the ground state behaviour of certain SU(n) chains. But first, let us review the

34Note that while mixed anomalies between PSU(n) and Zn′ do exist for n and n′ sharing a nontrivial common divisor,
they will not allow for a renormalization group flow to the stable fixed point SU(n)1 [78].
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Representation Longest Interaction Translation Group Order

k = 1 Jn−1tr[S ( j)S ( j + n − 1)] n

k = n − 1 J1tr[S ( j)S ( j + 1)] 2

k = n
λ , λ < n Jλtr[S ( j)S ( j + λ)] 2λ

n = 2λ + 1, k = 2 Jλtr[S ( j)S ( j + λ)] λ(λ + 1)

n = kλ + 1, λ > 1, k > 2 Jλtr[S ( j)S ( j + λ)] lcm[2λ, (λ + 1)]

n = kλ + c, c , 1, k − 1 Jλ+1tr[S ( j)S ( j + λ + 1)] 2λ(λ + 1)

n = kλ + (k − 1) Jλ+1tr[S ( j)S ( j + λ + 1)] lcm[λ, 2(λ + 1)]

Table 6.1: Classification results of all SU(n) representations satisfying pα , pβ for all nonzero pα.

coherent state path integral construction for an arbitrary representation of SU(n). This generalizes
the discussion found in Section 4.3.1.

6.3.1 Generalizing the coherent state path integral construction

In order to construct a mapping from Hamiltonian to sigma model, we use coherent states to gener-
ate a path integral of the ground state fluctuations. These coherent states are constructed as follows.
For a representation with nonzero Young tableau rows p1, . . . , pk, we introduce k orthonormal fields
φα ∈ Cn, and k n-component creation operators aα,†. We then define [99, 100]

|Φ〉 :=
k∑

α=1

[φα · aα]pα |0〉. (6.8)

These are the coherent states of SU(n), and in order to construct a path integral, we insert them
between thin time slices of the partition function:

〈Φ(τi)|e−Hδτ|Φ(τi + δτ)〉 = 〈Φ(τi)|Φ(τi + δτ)〉e−Hδτ. (6.9)

The right hand side can be approximated using

〈Φ(τi)|Φ(τi + δτ)〉 ≈
k∑

α=1

[
1 + φ∗,α · ∂τφ

α]pα , (6.10)

which follows from

〈Φ(τ)|Φ(τ′)〉 =

k∑
α=1

(φ∗,α(τ) · φα(τ′))pα . (6.11)
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By taking the product over all time slices τi, we can then reexponentiate according to∏
i

〈Φ(τi)|Φ(τi + δτ)〉 = exp
∑

i

log〈Φ(τi)|Φ(τi + δτ)〉 ≈ exp
∑

i

∑
α

pαφ∗,α · ∂τφα. (6.12)

The Berry phase contribution to the path integral is obtained by adding up this contribution over
each site of the unit cell:

LBerry = −
1
d

d∑
j=1

k∑
α=1

pαφ∗,α( j) · ∂τφα( j). (6.13)

Here d is the size of the unit cell, and φα( j) is the field φα evaluate at site j. Since we are deriving
a field theory about a classical ground state, to lowest order φα( j) is the colour of node α at site j,
which we have been representing using ϕα.

To obtain the complete quantum field theory, one must add to LBerry a gradient expansion of
the SU(n) lattice Hamiltonian, and this is where the lengthy calculations lie. However, if one is
interested only in time-derivatives, it suffices to restrict attention to LBerry, since the Hamiltonian
is time-independent. The lowest-order expansion of LBerry, which amounts to replacing the φα( j)
with their uniform counterparts ϕβ (where β depends on α and j), will indicate how many of the
sigma model’s modes have linear dispersion. The next-order expansion, which takes into account
the spatial fluctuations of the ϕα across the unit cell, will provide the topological angle content of
the theory. It turns out that the non-uniform fluctuations of the φα, namely Lαβ as defined in (5.13),
do not contribute to the topological term, and so in the following, we may safely replace φα with
ϕα in (6.13) throughout.

Let us explain why this is the case. According to (5.13), in deriving a field theory we should
write

φα =
∑
β

Lαβϕβ +
√

1 − µ(α)ϕα, (6.14)

where Lαα = 0 (no sum), and µ(α) =
∑
β |Lαβ|2. Unlike (5.13), we absorb the ‘large representation’

parameter p−1 into the definition of the Lαβ terms. This is to avoid the notational complication of
dealing with multiple nonzero parameters pα in the expansion of the φα.

Now, this expansion formula (6.14) will be inserted both into the Hamiltonian and the Berry
phase term (6.13). What we seek to show here is that no term involving the Lαβ will contribute to
the topological terms εµν∂µϕ∗,α · ∂νϕβ upon integrating out the Lαβ. Indeed, this follows from the
Gaussian integral formula35 ∫

dLαβdL∗αβe
−L∗12wL12+uL12+vL∗12 =

π

w
euv/w, (6.15)

which we used explicitly in Chapters 2, 4, and 5. Now, any term involving one time derivative and
one space derivative on the right hand side of (6.15) will have come from expressions of the form

uL12 = aL12[∂τUU†]12 + bL12[∂xUU†]12 (6.16)

vL∗12 = aL∗12[∂τUU†]12 − bL∗12[∂xUU†]12, (6.17)
35In the following, we restrict to the case of Lαβ = L12.
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for real parameters a and b. This structure arises from the Hermitian requirement of the Hamilto-
nian, which is the source of the spatial derivative terms. Meanwhile, the time-derivative terms are
anti-Hermitian in imaginary time. This is a property generic to any integral over Lαβ appearing in
our field theory derivation. From here, it is easy to see that the cross-terms involving ∂τ and ∂x will
always be of the form

εµνtr[Λα∂µUU†Λβ∂νUU†], (6.18)

with α , β. These terms are not topological; instead, they are the so-called ‘torsion terms’, which
occur in (6.2) with coefficients bαβ (in previous chapters, we referred to them as λ-terms). There-
fore, we conclude that the Lαβ do not play a role in our discussion of topological angles below, and
we will henceforth omit them entirely.

Dispersion Relation Calculations

For each family of representations in Table 6.1, we determine the lowest-order contribution to
LBerry. For each field ϕα that is present, this indicates the presence of (n−1) quadratically dispersing
modes. Only in the case of a vanishing LBerry at this order does linear dispersion occur for each
mode of the theory. However, even in this case, Lorentz invariance is not automatic since the fields
ϕα will generically propagate with different velocities, as we saw in the previous chapter.

6.3.2 Representations with 1 row

First we consider representations with one row. The ground states are very simple in this case: one
row of n nodes, with each colour occurring once. For example, in SU(5) one such ground state is

· · · · · · . (6.19)

Therefore, we have

LBerry = −
p1

n

n∑
j=1

ϕ∗,α( j) · ∂τϕα( j) + H.O. (6.20)

where H.O. includes higher-order terms. Since each colour occurs once in the sum on the right
hand side, the sum equals tr[U†∂τU] for a unitary matrix U, which vanishes by Appendix A, and
so all modes have linear dispersion in the representations with k = 1 row.

6.3.3 Representations with n − 1 rows

Next, we consider representations with k = n − 1 rows. According to the pattern of ground states,
two of the colours occur once (in the first position of the columns), and the remaining n− 2 colours
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occur twice, with reverse-ordering. For example, in SU(5), the ground state looks like

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · · .

Therefore we have, according to (6.13),

LBerry = −
p1

2
(ϕ∗,1 · ∂τϕ1 + ϕ∗,2 · ∂τϕ

2) −
1
2

n∑
α=3

(pα−1 + pn−α+2)ϕ∗,α( j) · ∂τϕα( j). (6.21)

Using tr[U†∂τU] = 0, this can be rewritten as

LBerry = −
1
2

n∑
α=3

(pα−1 + pn−α+2 − p1)ϕ∗,α( j) · ∂τϕα( j). (6.22)

Now we have up to (n − 2) fields with quadratic dispersion. The exact number will depend on
how many of the conditions pα−1 + pn−α+2 − p1 = 0 are satisfied. Each constraint corresponds
to two fields ϕα, except for the constraint 2p(n+1)/2 = p1 when n is odd, which corresponds to a
single field. The representations that satisfy every constraint, and thus give rise to sigma models
with purely linear dispersion, correspond to the so-called self-conjugate representations of SU(n)
(that don’t have equal row lengths in their tableaux). Indeed, in SU(3), the condition is 2p2 =

p1, corresponding to the self-conjugate representations considered in Section 4.7. Similarly, in
SU(4), the condition for linear dispersion is p2 + p3 = p1, which is equivalent to the self-conjugate
condition p1 − p2 = p3.

6.3.4 Representations with row number dividing n.

Now we consider representations with k rows, with n
k = λ ∈ Z. In this case, the ground states have

order of length 2λ, with each colour occurring twice. If k = n
2 , the pattern looks like

· · · · · ·

· · · · · ·

· · · · · · .

For k < n
2 , the pattern is modified, which can be seen in (3.20). Introducing the notation

Aα := ϕ∗,α · ∂τϕ
α, (6.23)

and following these patterns as a guide, we find that

LBerry = −
1

2λ

k∑
α=1

λ∑
j=1

(pα + pk+1−α)Aα+( j−1)k), (6.24)
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which can be rewritten using tr[U†∂τU] = 0 to yield

LBerry = −
1

2λ

k−1∑
α=2

λ∑
j=1

(pα + pk+1−α − p1 − pk)Aα+( j−1)k. (6.25)

This suggests that there can be up to (k − 2)λ fields with quadratic dispersion. In order to remove
all of these modes, the representation must satisfy certain constraints. When k is even, they are

pα + pk+1−α = p1 + pk α = 2, . . . ,
k
2

(6.26)

and when k is odd, they are

pα + pk+1−α = p1 + pk α = 2, . . . ,
k − 1

2
(6.27)

2p k+1
2

= p1 + pk (6.28)

Each of the constraints (6.26), (6.27) corresponds to the dispersion of 2λ fields, and the constraint
(6.28) corresponds to the dispersion relation of λ fields. In the special case of k = 2, which
corresponds to Young tableaux with two rows, we have automatically that LBerry = 0 for all values
of p1 and p2. The simplest representation for larger k is shown below, for SU(8):

(6.29)

This diagram satisfies p1 + p4 = p2 + p3.

6.3.5 Remaining representations

Representations of SU(2λ + 1) with two rows

Let n = 2λ + 1, and consider representations with 2 rows. In this case the ground states have unit
cells of length λ(λ + 1). For example, in SU(5) with k = 2, a candidate ground state is

· · · · · ·

· · · · · · .

For all of these representations, the first row will have periodicity λ + 1, and the second row will
have periodicity λ. The Berry phase term is then

LBerry = −
p1

(λ + 1)

λ+1∑
α=1

Aα −
p2

λ

λ∑
β=1

Aβ, (6.30)
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which can be rewritten to give

LBerry = −
1

λ(λ + 1)
[
p2(λ + 1) − p1λ

] λ∑
β=1

Aβ. (6.31)

For most values of p1 and p2, the corresponding sigma model will have λ fields with quadratic
dispersion, and λ + 1 fields with linear dispersion.36 However, for the special representations
satisfying

λp1 = (λ + 1)p2 (6.32)

a theory with purely linearly dispersing modes is achieved.

Representations of SU(kλ + 1), with λ > 1, k > 2

Now we let n = kλ+ 1, with λ > 1 and k > 2, and consider representations with k rows. According
to Table 6.1, we must further specify the parity of λ:

• λ even:
The ground state unit cell has length 2λ(λ + 1) in this case. The first row has (λ + 1)-site
order, while the remaining k − 1 rows have 2λ-site order, with the coloured nodes exhibiting
reverse-ordering. Therefore, the Berry phase term is

LBerry = −
p1

(λ + 1)

λ+1∑
α=1

Aα −
1

2λ

k∑
β=2

λ∑
j=1

(pβ + pk+2−β)Aβ+ j(k−1). (6.33)

While simpler to rewrite in terms of the Aα with α > λ + 1, we will always choose to rewrite
the Berry phase in terms of the least number of fields possible. This leads to

LBerry = −
1

2λ(λ + 1)

λ+1∑
α=1

[
2λp1 − (λ + 1)(p2 + pk)

]
Aα−

1
2λ

k−1∑
β=3

λ∑
j=1

(pβ+pk+2−β−p2−pk)Aβ+ j(k−1).

(6.34)

• λ odd:
In this case, the result found in (6.34) is slightly modified to

LBerry = −
1

λ(λ + 1)

λ+1∑
α=1

[
λp1 − (λ + 1)(p2 + pk)

]
Aα−

1
λ

k−1∑
β=3

λ∑
j=1

(pβ+pk+2−β−p2−pk)Aβ+ j(k−1).

(6.35)
36As mentioned below (6.40), we can rewrite LBerry to have λ + 1 fields with quadratic dispersion, and λ fields with

linear dispersion.
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Representations of SU(kλ + c) with c , 1, k − 1

Again, let k be the number of rows. The ground states in the case have unit cell order of length
2λ(λ + 1). The Berry phase contribution is

LBerry = −
1

2(λ + 1)

c∑
α=1

λ+1∑
j=1

[
pα + pc+1−α

]
Aα+( j−1)c−

1
2λ

k∑
β=c+1

λ∑
j=1

[
pβ + pk−β+c+1

]
Ac(λ+1)+(β−c)+( j−1)(k−c).

(6.36)
Using the tr[U†∂U] = 0 identity, we can only remove 2(λ + 1) fields. We are left with:

LBerry = −
1

2(λ + 1)

c−1∑
α=2

λ+1∑
j=1

[
pα + pc+1−α − (p1 + pc)

]
Aα+( j−1)c (6.37)

−
1

2λ(λ + 1)

k∑
β=c+1

λ∑
j=1

[
(λ + 1)(pβ + pk−β+c+1) − λ(p1 + pc)

]
Ac(λ+1)+(β−c)+( j−1)(k−c).

The number of independent constraints that must be satisfied in order to achieve a sigma model
with purely linear dispersion is b c

2c + b k−c
2 c.

Representations of SU(kλ + (k − 1))

The remaining representations are for n = kλ + (k − 1). In this final case, we must again split into
two subcases, based on the parity of λ:

• λ even:
According to Table 6.1, the ground state has λ(λ + 1)-site order. The first c − 1 rows of the
ground state have period 2(λ + 1), while the last row has period λ. The Berry phase term is

LBerry = −
1

(λ + 1)

k−1∑
α=1

λ+1∑
j=1

[pα + pk−α]Aα+( j−1)(k−1) −
1
λ

λ∑
β=1

pkA(k−1)(λ+1)+β (6.38)

= −
1

(λ + 1)

k−2∑
α=2

λ+1∑
j=1

[pα + pk−α − p1 − pk−1]Aα+( j−1)(k−1)

−
1

λ(λ + 1)

λ∑
β=1

[(λ + 1)pk − λ(p1 + pk−1)]A(k−1)(λ+1)+β.

• λ odd:
Now the ground state has 2λ(λ + 1) order, which changes the result in (6.38) to

= −
1

2(λ + 1)

k−2∑
α=2

λ+1∑
j=1

[pα + pk−α − p1 − pk−1]Aα+( j−1)(k−1) (6.39)
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−
1

2λ(λ + 1)

λ∑
β=1

[2(λ + 1)pk − λ(p1 + pk−1)]A(k−1)(λ+1)+β.

6.3.6 Summary of calculations

We have compiled these results in Table G.1 in Appendix G. Each row corresponds to a family of
SU(n) representations. The ‘Min #’ column counts the minimum number of Cn fields ϕα that have
linear dispersion in the corresponding SU(n)/[U(1)]n−1 sigma model. The larger, right hand column
lists the conditions that the representation parameters pα must satisfy in order for additional fields to
acquire linear dispersion. Each condition is accompanied by a number in parentheses: this dictates
how many fields ϕα become linearly dispersing when this condition is satisfied. For example, the
second row of Table G.1 corresponds to representations with n − 1 rows in their Young tableaux.
These representations will always have at least two linearly dispersing fields in their sigma model.
In order to have more linearly dispersing fields, we must start to satisfy conditions. When n is
even, these conditions are pα + pn−α+1 = p1, for α = 2, . . . , n

2 . Each satisfied condition adds 2 more
linearly dispersing fields to the sigma model. It is amusing to note that when all of these conditions
are satisfied, we obtain the set of self-conjugate representations of SU(n) (that don’t have two rows
of the same length).

It is important to note that there is some ambiguity in the number of linear vs. quadratic modes,
which follows from the trace identity tr[U†∂τU] = 0. This expression allows us to rewrite a partial
sum

∑
α∈A ϕ

∗,α · ∂τϕ
α in terms of the ϕβ that do not occur in the sum:∑

α∈A

ϕ∗,α · ∂τϕ
α = −

∑
β<A

ϕ∗,β · ∂τϕ
β. (6.40)

To be consistent, we will always choose to write the Berry phase contribution in terms of the least
number of fields possible. However, of primary interest to us in this thesis are theories that only
have linearly dispersing modes; in this case, the counting becomes uniquely defined.

6.4 Topological Angles

In addition to the dispersion relations, we may also extract the topological angle content from the
Berry phase terms. This requires taking into account the spatial variation of the fields ϕα in each
of the terms found in the previous section.

As we have already seen, each field is associated with some condition on the Young tableaux
parameters pα. When determining the set of topological angles, it will be important to keep track
of these conditions; ultimately, this will lead to a list of angles for each of the conditions appearing
in Table G.1. Our motivation for this bookkeeping is so that we can understand which topological
angles correspond to linearly dispersing fields. Since quadratic modes correspond to ferromagnetic
order parameters, it is conceivable that by ‘turning on’ a subset of the pα conditions, we may be able
to effectively reduce the symmetry of our sigma model from SU(n)/[U(1)]n−1 to SU(n′)/[U(n′)]n′−1

112



6.4. Topological Angles

for some n′ < n. It will be essential to keep track of which topological angles survive in the smaller
theory.

To begin, we recall (6.13):

LBerry = −
1
d

d∑
j=1

k∑
α=1

pαφα,∗( j) · ∂τφα( j) (6.41)

where d is the unit cell length. The lowest-order terms were analyzed in the previous section, which
amounted to replacing φα with ϕα. Now, we take into account spatial fluctuations of the φα. Again,
the non-uniform fluctuations Lαβ do not contribute at this order, so in this case, we may write the
leading order correction to (6.41) as

LBerry = · · · + εµν
1
d

d∑
j=1

( j − 1)
k∑

α=1

pα∂µϕ∗,x(α, j) · ∂νϕ
x(α, j) + H.O.. (6.42)

Here all of the terms are evaluated at the same lattice site, and · · · hides the terms from the previous
section. The notation x(α, j) reminds us that for each field in the sum, we must consult the ground
state structure (see Section 3.4), and use both the row (α) and column ( j) to determine the index x.
Using this, we may rewrite this contribution from the Berry phase term as

LBerry =
1

2πi

n∑
α=1

θαqα, (6.43)

where
qα := εµν∂µϕ

∗,α · ∂νϕ
α (6.44)

is a total derivative. From here, we are able to read off the topological angles, θα. We will carry out
this procedure for each family of SU(n) representation listed in the previous section.

6.4.1 Representations with one row

In the case of one-row representations, the Berry phase term reduces to

LBerry = εµν
p1

n

n∑
α=1

(α − 1)∂µϕ∗,α · ∂νϕα, (6.45)

so that
θα =

2πp1

n
(α − 1). (6.46)

Since there are no quadratically dispersing fields when k = 1, these angles do not correspond to a
nontrivial condition on the pα.
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6.4.2 Representations with n − 1 rows

Now we consider representations with k = n − 1 rows. Starting from (6.42), it is clear that we only
have to focus on a single column in the coloured ground state diagram:

LBerry = · · · +
1
2
εµν

n−1∑
α=1

pα∂µϕ∗,α · ∂νϕα. (6.47)

The topological angles are then
θα = πpα. (6.48)

According to the conditions in Table G.1, two fields are always linearly dispersing, corresponding
to θ1 = p1π and θn = 0. The remaining n − 2 angles correspond to fields that must satisfy condi-
tions on the pα. The exact relationship between angle and nontrivial condition is given below in
Table 6.2, making use of (6.48):

Subcase Condition Angles

n even pα + pn−α+1 = p1 θα, θn−α+1 α = 2, . . . , n
2

n odd
pα + pn−α+1 = p1

2p n+1
2

= p1

θα, θn−α+1

θ n+1
2

α = 2, . . . , n−1
2

Table 6.2: The relation between topological angles and condition on the pα, for representations of
SU(n) with n− 1 rows. For each condition, one or two fields ϕα becomes linear dispersing, and has
topological angle provided in the right-most column.

6.4.3 Representations with row number dividing n

Now we consider representations with k rows, with n
k = λ ∈ Z. In this case, the correction to LBerry

is

LBerry =
1

2λ
εµν

k∑
α=1

λ∑
j=1

[
( j − 1)pα + (λ + j − 1)pk+1−α

]
∂µϕ

∗,α, j · ∂νϕ
α, j, (6.49)

so that the topological angles are

θα, j =
π

λ
(pα + pk+1−α)( j − 1) + πpk+1−α. (6.50)
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The range of these indices can be read off from the sums in (6.49). Here we use two indices to
enumerate the fields. Since 2λ of the fields always have linear dispersion, the angles θ1, j and θk, j

are always present. Meanwhile, the remaining (k−2)λ angles are associated with certain conditions,
according to the following table Table 6.3.

Subcase Condition Angles

k even pα + pk+1−α = p1 + pk θα, j, θk−α+1, j α = 2, . . . , k
2 ; j = 1, . . . , λ

k odd
pα + pk−α+1 = p1 + pk

2p k+1
2

= p1 + pk

θα, j, θk−α+1, j

θ k+1
2 , j

α = 2, . . . , k−1
2 , j = 1, . . . , λ

Table 6.3: The relation between topological angles and conditions on the pα for representations
with k = n

λ rows in their Young tableaux.

6.4.4 Remaining representations

Representations of SU(2λ + 1) with 2 rows

Suppose n = 2λ + 1, and consider representations with 2 rows. We again refer to Table G.1. From

LBerry = εµν
p1

λ(λ + 1)

λ∑
j=1

λ+1∑
t=1

(t − 1 + ( j − 1)(λ + 1))∂µϕ∗,t · ∂νϕt (6.51)

+εµν
p2

λ(λ + 1)

λ∑
j=1

λ+1∑
t=1

( j − 1 + (t − 1)λ)∂µϕ∗, j+λ+1 · ∂νϕ
j+λ+1,

we see that there are two families of angles:

θt =
2πp1

(λ + 1)
(t − 1) + πp1(λ − 1) (6.52)

for t = 1, . . . , λ + 1, and

θ̃ j =
2πp2

λ
( j − 1) + πp2λ (6.53)

for j = 1, . . . , λ. The θt angles correspond to fields that are always linearly dispersing. The
remaining angles are associated to the single condition λp1 = (λ + 1)p2.
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Representations of SU(kλ + 1) with k > 2.

The representations of SU(n), with n = kλ + 1, may be divided into two cases, according to the
parity of λ:

• Case 1: λ even.
Since the first row of the ground state has (λ+1)-site order, and the unit cell order is 2λ(λ+1),
we may write LBerry as two parts:

LBerry = L
(1)
Berry +L

(2)
Berry. (6.54)

The first part is

L
(1)
Berry = εµν

p1

2λ(λ + 1)

λ+1∑
t=1

2λ∑
j=1

(t − 1 + ( j − 1)(λ + 1))∂µϕ∗,t · ∂νϕt, (6.55)

which gives rise to the following topological angles:

θt =
πp1

λ(λ + 1)

2λ∑
j=1

(t − 1 + ( j − 1)(λ + 1)) (6.56)

for t = 1, 2, . . . , λ + 1. These angles can be further simplified to

θt =
2πp1

(λ + 1)
(t − 1) + πp1. (6.57)

The second part of the Berry phase corresponds to the lower k−1 rows of the classical ground
state. It reads

L
(2)
Berry =

εµν

2λ(λ + 1)

k∑
α=2

λ∑
j=1

λ+1∑
t=1

[
pα( j − 1 + (t − 1)2λ) (6.58)

+ pk+2−α( j − 1 + λ + (t − 1)2λ)
]
∂µϕ

∗,α, j · ∂νϕ
α, j.

The associated topological angles are

θα, j =
π

λ(λ + 1)

λ+1∑
t=1

[
pα( j − 1 + 2λ(t − 1)) + pk+2−α( j − 1 + λ + (t − 1)2λ)

]
(6.59)

for α = 2, . . . , k and j = 1, . . . , λ. Again, the angles simplify to

θα, j =
π

λ
(pα + pk+2−α)( j − 1) + πpα, (6.60)

where we used the fact that λπpα ≡ 0 since λ is even. The correspondence between angle and
condition on the pα is provided in the following table, Table 6.4
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Subcase Condition Angles

k even
pα + pk+2−α = p2 + pk

(λ + 1)(p2 + pk) = 2λp1

θα, j,θk+2−α, j

θt

α = 3, . . . ,
k + 1

2
;

j = 1, . . . , λ; t = 1, . . . , λ + 1

k odd

pα + pk+2−α = p2 + pk

2p k+2
2

= p2 + pk

(λ + 1)(p2 + pk) = 2λp1

θα, j,θk+2−α, j

θ k+2
2 , j

θt

α = 3, . . . ,
k
2

;

j = 1, . . . , λ

t = 1, . . . , λ + 1

Table 6.4: The relation between topological angle and condition on pα for representations of SU(n),
with n = kλ + 1, with k > 2 and λ > 1 odd.

• Case 2: λ odd.
Assume λ > 1 so that this case is distinct from the representations considered previously.
Now that λ is odd, the order of the unit cell has changed to λ(λ + 1). The two parts of LBerry
from the previous subsection are modified to

L
(1)
Berry = εµν

p1

λ(λ + 1)

λ+1∑
t=1

λ∑
j=1

(t − 1 + ( j − 1)(λ + 1))∂µϕ∗,t · ∂νϕt, (6.61)

and

L
(2)
Berry =

εµν

λ(λ + 1)

k∑
α=2

λ∑
j=1

λ+1
2∑

t=1

[
pα( j − 1 + (t − 1)2λ) (6.62)

+ pk+2−α( j − 1 + λ + (t − 1)2λ)
]
∂µϕ

∗,α, j · ∂νϕ
α, j.

The angles are then

θt =
2πp1

(λ + 1)
(t − 1) (6.63)

and

θα, j =
π

λ
(pα + pk+2−α)

(
j − 1 +

λ(λ − 1)
2

)
+ πpα. (6.64)

The range of these indices can be read off from the sums in (6.62). The same correspondence
between condition and angle found in the previous case applies here as well, so long as the
slightly modified conditions for λ odd are used (which can be found in Table G.1).
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Representations of SU(kλ + c) with c , 1, k − 1

Write n = kλ+ c, for c , 1, k−1, and consider representations with k rows. In this case, the ground
state order is 2λ(λ + 1). Again, we split the Berry phase contribution into two pieces. The first c
rows contribute the following term:

L1
Berry =

εµν

2λ(λ + 1)

λ∑
j=1

λ+1∑
t=1

c∑
α=1

[
pα(t − 1 + ( j − 1)2(λ + 1)) (6.65)

= +pc−α+1(t − 1 + λ + 1 + ( j − 1)2(λ + 1))
]
∂µϕ

∗,α,t · ∂νϕ
α,t,

which gives the topological angles

θα,t =
π(pα + pc−α+1)

(λ + 1)
(t − 1) + πλpc−α+1 + π(λ − 1)pα. (6.66)

The range of these indices can be read off from the sums in (6.65). Meanwhile, the remaining k− c
rows contribute the term

L2
Berry =

εµν

2λ(λ + 1)

λ∑
j=1

λ+1∑
t=1

k∑
β=c+1

[
pβ( j − 1 + (t − 1)2λ) (6.67)

+ pk−β+c+1( j − 1 + (t − 1)2λ + λ)
]
∂µϕ̃

∗,β, j · ∂νϕ̃
β, j

which gives the topological angles

θ̃β, j =
π(pβ + pk−β+c+1)

λ
( j − 1) + π(λ + 1)pk−β+c+1 + πλpβ. (6.68)

The range of these indices can be read off from the sums in (6.67). Here, θ̃ and ϕ̃ have been used in
order to differentiate the two families of fields and topological angles, so as to simplify our notation.
The relationships between topological angle and condition on the pα are given in Table 6.5.

Representations of SU(kλ + (k − 1))

Finally, we must consider the representations with n = kλ + (k − 1), with k boxes. Here we also
have two subcases, according to the parity of λ:

• Case 1: λ odd
The ground state has 2λ(λ+ 1)-site order. The first k− 1 rows have the following Berry phase
contribution:

L
(1)
Berry =

εµν

2λ(λ + 1)

k−1∑
α=1

λ∑
j=1

λ+1∑
t=1

[
pα(t − 1 + ( j − 1)2(λ + 1))+ (6.69)

= pk−α(t − 1 + λ + 1 + ( j − 1)2(λ + 1))
]
∂µϕ

∗,α,t · ∂νϕ
α,t.
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Subcase Condition Angles

k, c even
pα + pc+1−α = p1 + pc

(λ + 1)(pβ + pk−β+c+1) = λ(p1 + pc)

θα,t, θc−α+1,t

θ̃β, j, θ̃k−β+c+1, j

α = 2, . . . ,
c
2

; t = 1, . . . , λ + 1

β − c = 1, . . . ,
k − c

2
; j = 1, . . . , λ

k odd

c even

pα + pc+1−α = p1 + pc

(λ + 1)(pβ + pk−β+c+1) = λ(p1 + pc)

2(λ + 1)p k+c+1
2

= λ(p1 + pc)

θα,t, θc−α+1,t

θ̃β, j, θ̃k−β+c+1, j

θ̃ k+c+1
2 , j

α = 2, . . . ,
c
2

; t = 1, . . . , λ + 1

β − c = 1, . . . ,
k − c − 1

2
j = 1, . . . , λ

k, c odd

pα + pc+1−α = p1 + pc

2p c+1
2

= p1 + pc

(λ + 1)(pβ + pk−β+c+1) = λ(p1 + pc)

θα,t, θc−α+1,t

θ c+1
2 ,t

θ̃β, j, θ̃k−β+c+1, j

α = 2, . . . ,
c − 1

2
; t = 1, . . . , λ + 1

β − c = 1, . . . ,
k − c − 1

2
j = 1, . . . , λ

c odd

k even

pα + pc+1−α = p1 + pc

2p c+1
2

= p1 + pc

(λ + 1)(pβ + pk−β+c+1) = λ(p1 + pc)

2(λ + 1)p k+c+1
2

= λ(p1 + pc)

θα,t, θc−α+1,t

θ c+1
2 ,t

θ̃β, j, θ̃k−β+c+1, j

θ̃ k+c+1
2 , j

α = 2, . . . ,
c − 1

2
; t = 1, . . . , λ + 1

β − c = 1, . . . ,
k − c − 1

2
j = 1, . . . , λ

Table 6.5: The relation between topological angle and condition on the pα for representations of
SU(n) with n = kλ + c, with c , 1, k − 1.

The corresponding topological angles are

θt,α =
π(pα + pk−α)

(λ + 1)
(t − 1) + πpk−α. (6.70)

As before, the range of α and t can be read off from the sums in (6.69). Meanwhile, the last
row of the ground state contributes the term

L
(2)
Berry =

εµν

2λ(λ + 1)
pk

λ∑
j=1

2(λ+1)∑
t=1

[
( j − 1) + (t − 1)λ

]
∂µϕ

∗, j · ∂νϕ
j (6.71)

giving rise to the angles

θ j =
2πpk

λ
( j − 1) + pkπ, (6.72)

for j = 1, . . . , λ. The correspondence between condition on the pα and topological angle can
be found in Table 6.6.
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Subcase Condition Angles

k odd
pα + pk−α = p1 + pk−1

(λ + 1)pk = λ(p1 + pk−1)

θα,t,θk−α,t

θ j

α = 2, . . . ,
k − 1

2
;

j = 1, . . . , λ; t = 1, . . . , λ + 1

k even

pα + pk−α = p1 + pk−1

2p k
2

= p1 + pk−1

(λ + 1)pk = λ(p1 + pk−1)

θα,t,θk−α,t

θ k
2 ,t

θ j

α = 2, . . . ,
k − 2

2
;

t = 1, . . . , λ + 1

j = 1, . . . , λ

Table 6.6: The relation between topological angle and condition on the pα for representations of
SU(n) with n = kλ + (k − 1), with k boxes.

• Case 2: λ even
This is the final case. Now that λ is even, the order of the unit cell has changed to λ(λ + 1).
The two parts of LBerry are modified to

L
(1)
Berry =

εµν

λ(λ + 1)

k−1∑
α=1

λ
2∑

j=1

λ+1∑
t=1

[
pα(t − 1 + ( j − 1)2(λ + 1)) (6.73)

+ pk−α−2(t − 1 + λ + 1 + ( j − 1)2(λ + 1))
]
∂µϕ

∗,α,t · ∂νϕ
α,t

and

L
(2)
Berry =

εµν

λ(λ + 1)
pk

λ∑
j=1

(λ+1)∑
t=1

[
( j − 1) + (t − 1)λ

]
∂µϕ

∗, j · ∂νϕ
j, (6.74)

and the angles are modified to

θα,t →
π(pα + pk−α)

(λ + 1)
(t − 1) + πpk−α +

π(pα + pk−α)
2

(λ − 2) (6.75)

and
θ j →

2πpk

λ
( j − 1). (6.76)

The correspondence between angles and conditions on the pα follows the same pattern as the
previous case, with a slight modification of the conditions themselves, according to Table G.1.
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6.5. A New Generalization of Haldane’s Conjecture

Summary of calculations

In Table G.2, found in Appendix G, we collect the results of this section, by listing all possible
topological angles for each representation of SU(n). The relationships between angle and condi-
tions on the pα were provided explicitly in the various tables above.

6.5 A New Generalization of Haldane’s Conjecture

The lengthy analysis of the previous sections makes clear the fact that most representations of
SU(n) chains do not lead to linearly dispersing sigma models like those of the symmetric SU(n)
chains considered in Chapters 2,4, and 5. This is already apparent in SU(3): Any representation that
is neither self-conjugate nor completely symmetric has at least one (and at most two) CP2 fields
ϕα with quadratic dispersion. In order to achieve a purely linearly dispersing theory, a series of
constraints on the Young tableaux parameters pα must be satisfied. In the special case of represen-
tations with all pα nonzero and distinct, these constraints lead to the self-conjugate representations
of SU(n).

Here, we restrict to representations of SU(n) that satisfy the various constraints listed in Ta-
ble G.1. This ensures that the corresponding sigma models have linear dispersion only. Before
proceeding further, we must reflect on what we are hoping to achieve with this classification. Ulti-
mately, we are interested in the possible gapless phases in SU(n) chains, and how one might extend
Haldane’s conjecture to novel representations. Based on our understanding of the symmetric mod-
els, we know that this task can be recast in terms of ’t Hooft anomaly matching. The recipe is as
follows:

• Step 1: Map an SU(n) chain to a (linear-dispersing) flag manifold sigma model at low ener-
gies.

• Step 2: Identify the ’t Hooft anomalies of the sigma model. When such an anomaly is present,
we may conclude that the ground state either exhibits spontaneously broken symmetry, or
gapless excitations.

As we’ve mentioned several times already, in [78] and [79] it was shown that an ’t Hooft anomaly
may occur in the SU(n)/[U(1)]n−1 sigma model when an additional Zn discrete symmetry is present.
It is a mixed anomaly between the physical PSU(n) symmetry of the chain, and the discrete Zn

symmetry. Actually, in [78] it was shown that mixed anomalies occur between PSU(n) and Zn′

whenever n and n′ have a nontrivial common divisor. However, in this latter case, the correspond-
ing sigma model cannot be embedded into a WZW theory that flows to level k = 1. Therefore, here
we focus on chains that have this Zn symmetry only. Moreover, this symmetry must act on the n
complex fields transitively according to

Zn : ϕα 7→ ϕα+1. (6.77)

In the following chapter, this gapless property of SU(n) chains with ’t Hooft anomalies will
be reinterpreted in terms of fractional instantons. We will show that in the SU(n)/[U(1)]n−1 sigma
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6.5. A New Generalization of Haldane’s Conjecture

model, topological excitations exist that generate a finite energy gap above the ground state, much
in the same way that vortices drive the familiar Kosterlitz-Thouless transition [90, 91]. For a
certain set of topological angles {θ(◦)

α }, these excitations destructively interfere with each other and
the mass-generating mechanism breaks down, thus leading to a gapless ground state. It turns out
that when an ’t Hooft anomaly is present, the topological angle content in the sigma model is
precisely {θ(◦)

α }. Ultimately, this follows from the form of the action (6.77). Therefore, in addition
to concerning ourselves with linear dispersion, we also restrict our focus to SU(n) representations
whose translational symmetry group Zd = Zn, and acts transitively on the fields ϕα.

Of course, it is important to acknowledge this is by no means an exhaustive classification of
gapless phases in SU(n) chains. We do not attempt to classify all possible ’t Hooft anomalies in
these models, and so we are limited to the current list of known anomalies, and apply this knowl-
edge to our theories. Moreover, we must also remember that the absence of an anomaly teaches
us nothing: we are unable to predict any ground state properties when this is the case. However,
we do have the LSMA theorem (see Section 3.5.2), which predicts either a gapless ground state or
spontaneously broken symmetry for an SU(n) chain whenever the sum p :=

∑
α pα is not a multiple

of n.

6.5.1 Representations that admit transitive Zn actions

Having made these remarks, we are now in a position to seek out representations of SU(n) that
may be amenable to a generalized Haldane conjecture. We assume that all of the constraints on
the Young tableaux parameters pα have been satisfied, so that all of the n fields ϕα are linearly
dispersing. For each class of representation occurring in Table 6.1, we record when it is possible
for the translation group to equal Zn, and act transitively on the set of fields.

• Case 1: k = 1.
Since Zd = Zn, this is possible for all n.

• Case 2: k = n − 1
Since Zd = Z2, this is possible only in SU(2) (which reduces to Case 1).

• Case 3: k = n
λ , λ < n

Since d = 2λ, and λ ≤ n
2 , this is possible only when k = 2. See the ground state below for an

example in SU(4):

· · · · · ·

· · · · · · .

In other words, when n is even, Young tableaux with two rows (of differing lengths) give rise
to flag manifold sigma models with an additional Zn symmetry. According to Table G.1, such
representations are always linearly dispersing, so no other assumption on the row lengths pα
is required. Note that the angles in this case are (see Table G.2)

θα =
2π
n

(p1 + p2)(α − 1) α = 1, 2, . . . , n, (6.78)
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where we have shifted each angle by the constant πp1.

• Case 4: n = 2λ + 1, k = 2
Since n cannot equal d = λ(λ + 1), no such representations give rise to a Zn symmetry.

• Case 5: n = kλ + 1, k > 2, λ > 1.
In this case, the Zd symmetry does not act transitively on the set of n fields: Some of the fields
lie in an orbit of order λ + 1, while the remaining fields lie in orbits of size 2λ.

• Case 6: n = kλ + c, c , 1, k − 1.
Similar to Case 5, the fields do not lie in a single orbit under the action of Zd. So while it
is possible for Zd = Zn, the fields do not transform under the necessary action (6.77). The
simplest example of this is SU(12) with k = 5 rows in a Young diagram. Under the Zn action,
the fields partition into three orbits of size 6,4 and 2, and the anomaly classification is no
longer applicable.

• Case 7: n = kλ + (k − 1).
Similar to the previous two cases, the fields do not lie in a single orbit under the action of Zd.

In summary, we find only one new family of SU(n) representations that give rise to a linearly
dispersing SU(n)/[U(1)]n−1 flag manifold sigma model with the Zn symmetry (6.77). It is the set
of representations with two rows (of different lengths) in their Young tableaux, when n is even. The
corresponding topological angles in this theory are

θα =
2π
n

(p1 + p2)α α = 1, 2, . . . , n (6.79)

so that p1 + p2 plays the role of p1 in the symmetric models. This means that an ’t Hooft anomaly
is present whenever p1 + p2 is not a multiple of n. This is also consistent with the LSMA theorem,
mentioned above. Moreover, based on the classification of SU(n) WZW flows discussed in Sec-
tion 5.5.2, we may further conclude that only when (p1 + p2) is coprime with n is a stable gapless
phase possible. Otherwise, if p1 + p2 shares a nontrivial common divisor with n, then the theory is
necessarily gapped with spontaneously broken symmetry.

On the other hand, when p1 + p2 is a multiple of n (and the LSMA theorem does not apply), it
should be possible to have a unique, translationally invariant ground state with a finite energy gap.
This statement is supported by the fact that when p1 + p2 = n, it is straightforward to write down a
translationally invariant AKLT state. This is explained in Section 3.5.3.

6.6 Conclusion

In this chapter, we have attempted to classify all SU(n) chains that admit a mapping to the SU(n)/[U(1)]n−1

sigma model at low energies. Our motivation for doing so was the presence of mixed ‘t Hooft
anomalies between the physical PSU(n) = SU(n)/Zn symmetry of the sigma model, and a tran-
sitive Zn action. Such anomalies are an indicator of nontrivial low energy physics, and so by
establishing such mappings, we may uncover novel gapless phases in SU(n) chains.
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We have found that unless two rows of the Young tableaux have the same length, it seems
possible to realize such a mapping for any irreducible representation of SU(n). When two row
lengths are degenerate, the SU(n) matrices S lie in a different (partial) flag manifold that can not
easily be embedded into the (complete) flag manifold SU(n)/[U(1)]n−1.

However, even when no row lengths are degenerate, we find that the corresponding sigma
model will have complex fields with both quadratic and linear dispersion relations. One conse-
quence of this is that Lorentz invariance is likely never to emerge at low energies, as it does for the
symmetric SU(n) chains that possess only linearly dispersing fields. We have classified which rep-
resentations lead to only linearly dispersing models, and have determined the topological angles in
each case. Moreover, within this subset of representations, we have further classified which chains
also admit a Zn symmetry that acts transitively on the SU(n) fields, so that the possibility for an ‘t
Hooft anomaly exists.

In the end, we have found that only the SU(n) representations with even n and two rows in their
Young tableaux, with lengths p1 , p2, satisfy all of these properties (in addition to the symmetric
representations considered previously). As a result, we have made the following modest extension
of the SU(n) generalization of Haldane’s conjecture for even n: when p1 + p2 is coprime with n, a
gapless ground state is predicted; otherwise, a gapped ground state is expected, with spontaneously
broken symmetry if p1 + p2 is not a multiple of n. The magnitude of the gap can be predicted in the
same way as in Section 5.5.3, and should generally decrease exponentially as a function of p1 + p2.
In Table 6.7, we summarize these findings by listing which representations of SU(n) we predict to
have a gapless phase driven by topological terms.

Representation Condition

p boxes (p, n) = 1

p1 boxes
p2 boxes (p1 + p2, n) = 0 and n even

Table 6.7: The set of SU(n) representations that exhibit a gapless phase at weak coupling.
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Chapter 7

Fractional Instantons and the Haldane
Gap in SU(n) Chains

7.1 Introduction

In the past few chapters, we have followed the program of extending Haldane’s conjecture to more
and more general SU(n) chains. In the end, we have come to the conclusion that a gapless phase
should only occur for representations that admit a mapping to the SU(n)/[U(1)]n−1 sigma model
with n − 1 nontrivial topological angles. Indeed, this statement summarizes our findings for SU(2)
in Chapter 2, for SU(3) in Chapter 4, for the symmetric representations of SU(n) in Chapter 5, and
finally for the most general representations of SU(n) in Chapter 6. Here, in this final chapter, we
seek to develop an alternative argument that explains why these gapless phases arise. Instead of
making use of formal ‘t Hooft anomaly matching arguments, we will establish a physical picture
of Haldane’s conjecture in terms of a gas of interacting fractional topological excitations.

This work generalizes an old result of Affleck that interpreted Haldane’s original conjecture
in terms of interacting merons, or ‘half-instantons’ [137]. Merons behave like planar vortices far
from their centers, but lift out of the plane near their cores, and form finite action configurations
when a collection of them has net vorticity zero. Remarkably, when the CP1 sigma model has a
topological angle of π, corresponding to a half-odd integer spin chain, the merons that point up at
their origin destructively interfere with the merons that point down at their origin (also known as
anti-merons), and the mass generating mechanism of the model is no longer effective. While this
isn’t the full story, since larger-action configurations such as double-merons do not destructively
interfere at θ = π, it offers an intuitive picture in favour of Haldane’s conjecture.

In Chapters 4, 5 and 6, we have generalized this paradigm of mapping spin chains to relativistic
quantum field theories to SU(n) chains in various representations. When a transitive Zn action is
present, the corresponding sigma model has n − 1 independent topological angles θα =

2πp
n α.

Throughout, we will treat p ∈ Z+ as given, labelling a particular representation of SU(n) that
admits such topological angle content. From the previous chapters, we know that there are two
possibilities for p:

• Case 1: The SU(n) representation has one row, of length p, in its Young tableau.

• Case 2: The SU(n) representation has two rows, of lengths p1 and p2 in its Young tableau.
Then p = p1 + p2. This case is possible only for even n.

According to our generalized Haldane conjectures, these SU(n) chains have a gapless ground
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state whenever p and n are coprime: gcd(n, p) = 1. This is in accordance with the LSMA theorem
(see Section 3.5.2), which predicts either a gapless phase or spontaneously broken translation sym-
metry when p is not a multiple of n [80, 81]. A subtle feature of this result, which can only occur
for n ≥ 4, is that when p and n have a nontrivial divisor, and p is a not a multiple of n, translation
symmetry is always spontaneously broken. This follows from an ’t Hooft anomaly that forbids the
flow of the above sigma model to SU(n)1, the only stable SU(n) fixed point [115, 116].

In this chapter, we will offer an intuitive explanation of this gap dependence on p and n, based
on a mass generation mechanism due to fractionalized topological excitations. We begin by re-
viewing the Kosterlitz-Thouless transition in Section 7.2, and explain how it relates to the mass
generation mechanism in SU(2). In Section 7.3, we add anisotropic potentials to the SU(n) chain
that break the continuous global symmetry down to U(1), and classify the topological excitations
that have finite action. Next, in Section 7.4, we show how these excitations, so-called fractional
instantons which have topological charge 1

n , are responsible for generating a mass gap in the sigma
model, in a similar fashion as the vortices in the Kosterlitz-Thouless transition [90, 91]. However,
this mechanism is highly dependent on the topological angles of the model, which are determined
by the representation p of SU(n). This dependence is discussed in Section 7.5, where we ultimately
conclude that mass generation by fractional instantons occurs except when p and n are coprime, in
which case a gapless phase is possible.

7.2 Mass Generation in the O(3) Nonlinear Sigma Model

7.2.1 The Kosterlitz-Thouless transition

Since we hope to relate (the absence of) a finite energy gap in our sigma models to some form
of topological excitation, let us begin by reviewing how a similar mechanism works in a very
famous example. We are referring to the continuous phase transition in the ‘XY model’, which
was described independently by Berezinskii in 1971 [90] and Kosterlitz and Thouless in 1973 [91].
This work contributed to Kosterlitz and Thouless sharing the Nobel prize with Haldane in 2016.

The XY model describes the physics of a classical spin restricted to a two-dimensional plane
(which we can think of as corresponding to the ‘X’ and ‘Y’ directions in real space, hence the
name). Explicitly, its Hamiltonian is

H = −J
∑
〈i, j〉

~si · ~s j, (7.1)

where
∑
〈i, j〉 denotes summation over all nearest-neighbour sites in the two-dimensional lattice, and

~si ∈ R2 is the classical spin vector at site i ∈ Z2. Note that the interaction is ferromagnetic, i.e.
the prefactor of the spin-spin interaction is negative, unlike all of the SU(n) chain Hamiltonians
that we have considered thus far. If we write the spin vectors in polar coordinates according to
~si = s cos(ρi), and rescale J by s−2, we are left with

H = −J
∑
〈i, j〉

cos(ρi − ρ j). (7.2)
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In the continuum limit, the differences ρi − ρ j are replaced with partial derivatives, and we may
Taylor expand the cosine, so long as we assume the classical spins vary smoothly from site to site.
We end up with

H ≈ E0 +
J
2

∫
d2x(∇ρ)2 (7.3)

where ~x ∈ R2, and (∇ρ)2 = (∂xρ)2 + (∂yρ)2. The thermodynamics of this system is obtained from a
partition function, which may be written as a path integral as follows

Z = e−βE0

∫
D[ρ]e−β

J
2

∫
d2 x(∇ρ)2

. (7.4)

We may now identify the integrand in the exponent as a Lagrangian,

LXY =
1
2g

(∇ρ)2. (7.5)

with g = 1
βJ . This is the low temperature, or weak coupling, form of the XY model. To arrive at

it, we had to assume that higher derivatives of ρ could be ignored in the expansion of the cosine
in (7.2). Such terms do not reemerge upon renormalization, since it may be shown that all of the
higher derivative terms are irrelevant.

This rewriting (7.5) will be useful later when we approach LXY from our flag manifold sigma
models through a limit of theories, which restrict the target space from SU(n)/[U(1)]2 first down
to [U(1)]n−1, and then down to U(1). At first glance, it appears that LXY is simply a theory of a
free boson, ρ, and will thus exhibit gapless excitations for all values of β. However, Kosterlitz and
Thouless realized that this conclusion overlooks the crucial fact that ρ is a periodic variable. In
other words, the target space of ρ is U(1), which is equivalent to the circle S 1, and is topologi-
cally nontrivial. Accounting for this, they found that a finite mass will be generated for the boson
ρ at sufficiently high temperatures (equivalently, at strong enough coupling), and that this mass
generation can be explained in terms of topologically nontrivial field configurations.

To understand this mass generation, let us estimate Z using a saddle point approximation
(which is exact in the zero temperature limit). This amounts to solving the Euler-Lagrange equa-
tions for LXY , and identifying extremal configurations, ρ∗, i.e. solving

∇2ρ∗ = 0. (7.6)

Of course, the most obvious solution to these saddle point equations is the trivial configuration,
ρ∗ = const.. However, the story does not end here. Since ρ lives in U(1) � S 1, there also exist
solutions ρκ that obey the following equation:∮

Γ

dl · ∇ρ = 2πκ κ ∈ Z. (7.7)

Here Γ is a closed contour integral in the XY plane. For nonzero κ, this equation requires that ρκ has
a singularity within the contour; consequently, it cannot be continuously deformed into the trivial
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configuration, ρ∗ = const.. In other words, ρκ is a topologically distinct saddle point, and must
also be included in the path integral over all field configurations in (7.4). The integer κ is called
the topological charge of ρκ, and the simplest configurations ρ1 and ρ−1 are called the vortex, and
anti-vortex configuration, respectively.

Let us now determine the classical action of these configurations. Due to the U(1) symmetry
of the problem, ρκ should only depend on the radius, r, so that by (7.7), |∇ρ| = κ

r . Then, we have

S [ρκ] =
κ2

2g

∫
d2x

1
r2 . (7.8)

Unless κ = 0, we see that the action of ρκ exhibits both an infrared and an ultraviolet divergence.
The ultraviolet divergence can be resolved by introducing a lattice spacing a, which we will discuss
shortly, but the infrared divergence is problematic. If all topologically nontrivial configurations
have infinite action, they will not enter the saddle point approximation, and will not be responsible
for a mass generating mechanism, as predicted by KT. How then, do we proceed?

The resolution to this issue is found by considering configurations that are sums of vortices,
with net topological charge zero. To see this more easily, define the dual field ρ̃ by

εµν∂νρ̃ = ρ, (7.9)

where εµν is the antisymmetric tensor with nonzero components ε01 = −ε10 = 1. Then the topolog-
ical charge equation (7.7) can be rewritten as follows:∫

Σ

d2x∇2ρ̃κ = −2πκ. (7.10)

Here Σ is the oriented surface whose boundary is the contour Γ. This equation shows that the most
general saddle point we can write down should obey the following Poisson equation:

∇2ρ̃ = −2π
∑

j

κ jδ(~x − ~x j). (7.11)

In other words, the Euler-Lagrange equation ∇2ρ = 0 is modified by singularities on the right
hand side. Now, using (∇ρ)2 = (∇ρ̃)2, one may show that the action remains finite so long as∑

j κ j = 0, i.e. the net topological charge vanishes. In particular, the least-action configurations
that are topologically nontrivial consist of a vortex/anti-vortex pair, with separation distance R.
Using (7.8), we see that

S [ρ1 + ρ−1] =
1
2g

log
(R

a

)
< ∞. (7.12)

It is these configurations that KT used to explain the generation of a mass gap in LXY .
The simplest, and most famous explanation for this mass gap follows from energy and entropy

considerations. It can readily be shown that below temperature gc = π/2, the free energy for an
individual vortex diverges, while above this temperature, it is favourable for individual vortices to
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form.37 Thus, we expect a phase transition to occur at this temperature, in which the vortex/anti-
vortex pairs unbind, leading to so-called ‘vortex proliferation’.

To see this mechanism at play more explicitly, one may derive an effective Lagrangian that
describes fluctuations about the vortex/anti-vortex pairs in the low temperature phase. To this end,
we write ρ̃ = ρ̃c + ρ̃′, where ρ̃c solves (7.11), and ρ̃′ are small deviations. The action for ρ̃ then
reads

S [ρ̃] =
1

2g

∫
d2x

(∇ρ̃)2 + 4πiρ̃
∑

j

κ j

 , (7.13)

where on the right hand side we’ve shifted ρ̃′ → ρ̃. Now, returning to (7.4), we must sum over all
possible configurations of ρ̃, which amounts to summing over all choices of {κ j}. It is here that we
make the dilute gas approximation, allowing us to assume the individual vortices are far apart, and
do not interact with each other. Then, we may write

e−S = e−
1
2g

∫
d2 x(∇ρ̃)2 1

n!

n∏
j=1

∫
d2x je

− 2πi
g ρ̃(~x j) 1

m!

m∏
k=1

∫
d2xke

2πi
g ρ̃(~xk). (7.14)

Here j and k label vortices and anti-vortices, respectively. Now, using the dilute gas approximation,
we may sum over configurations before integrating over ρ̃. This yields

e−S = e−
1
2g

∫
d2 x(∇ρ̃)2

e
γ
2a

∫
d2 x

(
e−

2πiρ̃
g +e

2πiρ̃
g

)
, (7.15)

for some constant γ, which depends on our choice of regularization. In the context of dilute instan-
ton gases, γ is called the fugacity. This equation reveals that in the continuum limit, the XY model
is characterized by the following Lagrangian, which is known as the sine-Gordon model:

LS G =
1

2g
(∇ρ̃)2 − γa2 cos

(
2πρ̃

g

)
. (7.16)

From here, the predictions of Kosterlitz and Thouless of a vortex unbiding phase transition are man-
ifest. Indeed, at low temperatures, corresponding to g→ 0, the sine-Gordon model corresponds to
a free boson, and gapless behaviour is predicted. We should think of the vortex/anti-vortex pairs as
being tightly bound in this phase. Meanwhile, for large values of g, we may expand the interaction
term to obtain (after rescaling ρ̃)

LS G =
1
2

(∇ρ̃)2 +
2π2a2γ

g
ρ̃2 + O(g3/2), (7.17)

demonstrating that a boson mass mρ := (2aπ)2γ/g is generated. In this phase, the vortex/anti-vortex
pairs are unbound, and unpaired vortices proliferate. A transition between these two phases will
occur precisely when the scaling dimension of the interaction term turns relevant, which is known

37When discussing entropies, we set Boltzmann’s constant, kB, to 1.

129



7.2. Mass Generation in the O(3) Nonlinear Sigma Model

in the sine-Gordon model to occur at gc = π/2. This is the same temperature quoted above that
followed from an energy vs. entropy argument.

As a final observation, we stress the fact that in the low temperature (weak coupling) regime,
the XY model exhibits quasi-long range order. That is, correlation functions in the gapless phase
exhibit power-low (i.e. algebraic) decay, and the U(1) symmetry is not spontaneously broken.
This is the same kind of order that we predict for the topologically driven gapless phases of our
SU(n) chains. Of course, true long-range order, which necessitates the spontaneous breaking of the
(continuous) U(1) symmetry, would be in direct violation of Coleman’s theorem.

7.2.2 Mass generation in the CP1 sigma model

Now that we’ve reviewed the explicit mass generating mechanism of the XY model, we are ready
to relate this phenomenon to spin chains. Historically, this was first done by Affleck in the language
of the O(3) nonlinear sigma model [137]. Here, we will repeat this derivation in CP1, as this will
set the stage for our generalization to larger flag manifolds later on.

Our strategy is quite simple. Since the U(1) symmetry of the XY model can be embedded into
the larger CP1 target space of the antiferromagnet, we will introduce a potential that restricts the
fields ϕα ∈ C2 to a U(1) subspace of CP1. In the limit where this potential is infinitely large, we
have precisely the XY model, and we have an explicit mass generating mechanism at hand, namely
vortex proliferation. Then, we will weaken this potential, and see how this mechanism persists
through a family of models, all the way back to the isotropic theory of CP1.

Our starting point is

L =
1
2g

(
|∂µϕ|

2 − |ϕ∗ · ∂µϕ|
2
)

+Ltop. (7.18)

with g = 1/s. For simplicity, we first consider the case of integer spin chains, so that we may
neglect Ltop. In the following subsection, we will restore it, and see remarkably how it destroys the
mass generating mechanism, and leads to the closing of the Haldane gap.

Next, let us add to (7.18) the following potential,

V = m(|ϕ1|
2 − |ϕ2|

2)2. (7.19)

In terms of the spin vectors ~S ∈ R3, this corresponds to adding to the Heisenberg Hamiltonian the
term

∑
j S z( j)S z( j). Clearly, in the limit m → ∞, this potential restricts ~S to lie in the XY plane.

Or, to relate things to the O(3) nonlinear sigma model, parametrized by ~n ∈ S 2, it forces the form

~n =
(
cos ρ sin ρ 0

)T
, (7.20)

which relates us back to (7.5). In the complex notation, we see that V restricts ϕ to lie in a U(1)
subspace of CP1, parametrized by the angle σ:

ϕ =
1
√

2

(
1

eiσ

)
. (7.21)
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In this form, we have explicitly chosen a gauge by setting the first component of ϕ to be real and
positive. This reflects the fact that CP1 is a coset space, SU(2)/U(1).

Now, we know from the previous subsection that a mass is generated in this theory when
m → ∞, due to vortices. However, we stress that this argument necessitated the introduction of a
UV cutoff, a−1. In terms of a classical XY model on the lattice, a−1 naturally arises as the inverse
lattice spacing. But here, in the continuum CP1 sigma model, a−1 must arise from somewhere else.
It is perhaps not surprising that the UV cutoff now comes from m, the explicit (large) mass scale
that we have inserted by hand, via V .

While this observation is satisfying, it does not help us relate back to the CP1 sigma model,
which corresponds to m = 0. As we reduce m, how do we realize UV-finite vortex configurations?
The answer to this question is that the vortices become nonplanar as we reduce m. In other words,
since ~S is no longer restricted to the XY plane for finite m, it becomes energetically favourable for
a vortex configuration in ρ̃ to lift off the plane and point in the ±ẑ direction at the vortex core. In
the small-m limit, such configurations will have action

S [ρ̃]→
2π
g

log(mL), (7.22)

where L is the system length. As before, the infrared divergence associated with L→ ∞ is remedied
by considering configurations with net topological charge of zero.

Let us see what these nonplanar vortices look like in terms of the complex ϕ. Far from its core,
a configuration with topological charge +1 will have the form

ϕ =
1
√

2

(
1

eiω

)
(7.23)

where ω is the polar angle in the XY plane. In the infinite-m limit, such a configuration has a
singularity in ω at the origin. However, for finite m, this singularity may be avoided by sending one
of the two components of ϕ to zero (which corresponds to n3 → ±1 in the O(3) nonlinear sigma
model):

ϕ→

(
1
0

)
or ϕ→

(
0

eiω

)
. (7.24)

The phase remains in the second case due to our gauge choice; however, at the configuration’s core,
it can be removed by a pure gauge transformation, and thus does not lead to a true UV singularity.

Such configurations are known as ‘merons’, or fractional instantons. Specifically, we will refer
to the first as a meron, and to the second as an anti-meron. The word instanton makes reference to
the fact that one of the two spatial dimensions in the CP1 theory is actually Euclidean time. Meron
refers to the half-quantized charge of these configurations, which we now demonstrate.

Since the topological charge, Q, of ϕ is the integral of a total derivative, we may rewrite Q as
the difference of two contour integrals, one around the origin and one around infinity:

Q =
1

2πi

[∮
0

dxµϕ · ∂µϕ∗ −
∮
∞

dxµϕ · ∂µϕ∗
]
. (7.25)
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The contour is necessary to avoid any gauge singularity that may be present at the origin (see
below). For both possibilities in (7.24), the contour about infinity contributes a charge of 1

2 . Mean-
while, the contribution from the contour about the origin is trivial in the first possibility, and -1 in
the second, leading to Q = ±1

2 , which proves the half-quantized charge of the meron. At the end of
this subsection, we will comment on the gauge invariance of this topological charge.

The arguments from the previous subsection carry over directly to these nonplanar topological
configurations. As above, we may perform a dilute instanton gas summation, and arrive at a sine-
Gordon Lagrangian. Before, the coupling constant g depended on the ultraviolet cutoff, a; now, it
depends on the anisotropic parameter, m. And before, we realized the KT transition by increasing
g at fixed a. However, we may equally well increase g at a fixed bare coupling constant, by
lowering the energy scale, m. This follows from the asymptotic freedom of the parameter g, which
is manifest in the following equation [137]

geff '
g

1 + (g/2π) log(ma)
. (7.26)

Therefore, as we reduce m, we push the sine-Gordon model’s temperature closer and closer
to the transition temperature. Eventually, as m approaches zero, we will necessarily be above any
critical value of bare g, and be in the gapped phase with condensed vortex configurations. Thus,
we conclude that the CP1 sigma model, in the absence of any topological term, will be in a massive
phase for any value of g, and that this mass is generated by topological excitations with half-integer
charge.

Gauge Invariance of the Topological Charge

Before carrying on, let us reflect on the structure of (7.25). There, we rewrite the topological
charge Q as a difference of two contour integrals. It is interesting to note that while their sum is
necessarily invariant under the U(1) gauge symmetries ϕβ → eiϑβϕβ, an individual contour integral
is not. Indeed, under ϕ 7→ eiϑϕ,∮

dxµϕ · ∂µϕ∗ 7→
∮

dxµϕ · ∂µϕ∗ + i
∮

dxµ∂µϑ. (7.27)

The second term, which breaks the gauge invariance of the contour, is necessary in order to ac-
count for gauge transformations that alter the U(1) winding number of ϕ along the contour. This
feature implies that it is not meaningful to ask where the topological charge of a configuration ϕ
is localized. For instance, two gauge-equivalent versions of the SU(2) meron have the following
behaviours at infinity:

ϕ =
1
√

2

(
1

eiω

)
ϕ′ =

1
√

2

(
e−iω

1

)
. (7.28)

Their behaviour at zero is given by the first possibility in (7.24). The contour around infinity in
(7.25) equals − 1

2 for the case of ϕ, while it equals + 1
2 for the case of ϕ′. Meanwhile, the contour

around zero is trivial in the case of ϕ, and equals +1 for the case of ϕ′. The full expression
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in (7.25) yields Q = 1
2 in both cases, as it must. Finally, we note that by choosing the gauge

ϕ′ = 1√
2
(e−iω/2, eiω/2)T, the contour around infinity vanishes, which is what one finds in the O(3)

version of the meron [137].

7.2.3 The breakdown of mass generation at θ = π.

We are now in a position to interpret Haldane’s conjecture in terms of fractional instantons in the
CP1 sigma model. Let us restore the topological angle θ = π, and study how the mass generating
mechanism changes. For large m, we are in the U(1) model and the θ-term does not play a role;
rather it is not well defined. However, as m is lowered towards zero, the fugacity in the sine-Gordon
Lagrangian is modified as follows:

γ → γ cos(θ/2). (7.29)

This is because both vortices and anti-vortices are now weighted by the factor eiθ/2 if they corre-
spond to merons, and by the factor e−iθ/2 if they correspond to anti-merons. Recall that we must
sum over all possible saddle point configurations.

Thus, we see that γ vanishes at topological angle θ = π, which corresponds to half-odd integer
spin chains. This seems to suggest that the non-planar vortex/anti-vortex pairs will never unbind,
and a massless phase will persist at all temperatures. However, this is not the whole story. Higher-
order configurations, such as double vortices with κ = ±2 will have topological charge 0 or ±1, and
do not lead to a vanishing fugacity. Nonetheless, these configurations effectively raise the critical
value of g, below which occurs a gapless phase. Thus, we may at least conclude that the critical
value of m is smaller at θ = π than at θ = 0. Based on the overwhelming evidence in favour of
Haldane’s conjecture, we expect that this critical value is driven all the way to m = 0, so that a
gapless phase does indeed occur.

7.3 Reducing the Global Continuous Symmetry to U(1)

Now that we have reviewed in great detail how fractional instantons generate a mass gap in the
CP1 sigma model, we are ready to study how this mechanism generalizes to flag manifold sigma
models. Our strategy is the same: we break the symmetry of the flag manifold down to U(1), where
a phase transition is well understood in terms of vortex proliferation. Our complete Lagrangian is
(6.2), which we repeat here:

L =

n∑
α,β=1

[
gαβδµν + bαβεµν

]
(ϕα · ∂µϕ∗,β)(ϕβ · ∂νϕ

∗,α) +Ltop. (7.30)

As in the previous section, we will for now neglect the topological Lagrangian. It will be restored
later on, once we have established mass generation in the case of θα = 0. To this Lagrangian, we add
an anisotropic potential V1 that breaks the SU(n) symmetry down to [U(1)]n−1, while preserving
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the discrete Zn symmetry and the [U(1)]n−1 gauge structure:38

V1 = m
n∑
α=1

∑
β<γ

(
|ϕαβ |

2 − |ϕαγ |
2)2. (7.31)

This is the SU(n) generalization of adding the term
∑

j S z( j)S z( j) to the SU(2) Hamiltonian. In-
deed, for the symmetric SU(n) chains, it is straightforward to rewrite V1 in terms of the SU(n)
generators on the chain. We have

|ϕαβ |
2 =

1
p

S ββ( jα), (7.32)

so that

V1 =
m
p2

n∑
α=1

∑
β<γ

(
S ββ( jα) − S γγ( jα)

)2
. (7.33)

To obtain the corresponding lattice terms, we simply multiply the right hand side of these expres-
sions by n, and sum over j. It is interesting to note that in the case of SU(3), the potential V1 is
proportional to

3∑
α=1

[
T3( jα)T3( jα) + T8( jα)T8( jα)

]
, (7.34)

where T3 and T8 are the two diagonal generators of SU(3) in the Gell-Mann basis. Now, in the
limit m → ∞, the potential V1 restricts each of the ϕα to lie on an n − 1 torus, parameterized by
n − 1 angles, ςβ = ςβ(α):

ϕα =
1
√

n

(
eiς1 eiς2 · · · eiςn−1 eiςn

)T
. (7.35)

Throughout, we fix a gauge by choosing ϕα1 to be real and positive, for all α. Since the number of
free parameters equals the number of orthogonality constraints (both equal n(n− 1)/2)), one might
conclude that there is a unique configuration of the ϕα in this limit (up to permutations). However,
the orthogonality constraints are invariant under the following transformations,

ϕαβ → eiθβϕαβ ∀α, β, (7.36)

which are true symmetries for each of the n − 1 un-gauge-fixed directions, β = 2, 3, . . . , n. There-
fore, by introducing the potential (7.31), the continuous symmetry group of the sigma model has
been broken down to [U(1)]n−1. A typical configuration of the ϕα in this submanifold can be
constructed from the nth root of unity, ζ := ei 2π

n :

ϕαβ =
1
√

n
ζαβeiσβ σβ ∈ [0, 2π]. (7.37)

38Based on the previous chapters, we recognize how important the Zn symmetry is to generalizing Haldane’s conjec-
ture. It would be a serious matter to break it explicitly now.
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Indeed, orthonormality of these states follows from the identity
∑n
α=1 ζ

ρα = 0, which holds for all
ρ , 0 mod n. Since the Lagrangian (7.30) couples all of the n − 1 copies of U(1) together, it will
be useful to break the symmetry down further. To this end, we introduce a second potential V2,
given by

V2 = −m
n∑
α=1

n−1∑
β=2

(
(ϕα1 [ϕαβ ]∗)n − ([ϕα1 ]∗ϕαβ )n

)2
. (7.38)

In terms of the SU(n) matrices, this potential takes the form

V2 = −n
∑

j

m
p2

n∑
α=1

n−1∑
β=2

(
(S 1β( jα))n − (S β1( jα))n

)2
. (7.39)

The factors of n in the exponent are necessary in order to preserve the Zn symmetry, which corre-
sponds to translational invariance in the underlying lattice model.39 Since V2 is still minimized by
the configurations (7.37), it can be rewritten in terms of the U(1) fields, σβ, yielding

V2 = 4m
n∑
α=1

n−1∑
β=2

sin2(n(σ1 − σβ)). (7.40)

It is clear that the effect of V2 is to equate all but one of the U(1) fields. In our fixed gauge, this
amounts to setting σβ = 0 for β , n, resulting in a theory that involves σn only. This is equivalent
to the XY model. By inserting this restricted form of ϕα into (7.30), it is easy to show that the bαβ
terms vanish, and the resulting O(2) coupling constant is g, defined by

g−1 =
∑
α,β

g−1
αβ. (7.41)

7.4 Mass Generation by Fractional Instantons

In this section, we would like to extend the discussion of non-planar vortices in the CP1 sigma
model to the larger SU(n)/[U(1)]n−1 sigma model. With any luck, we should find that a similar
mass generating mechanism is at play here, and that it breaks down when particular topological
angles are restored.

Recall that a non-planar vortex, (which we’ve already referred to as a meron or a fractional
topological instanton) has the following form in terms of the CP1 field, ϕ. Far from its center, it
reads

ϕ =
1
√

2

(
1

eiω

)
. (7.42)

Meanwhile, near its center, it tends to either (1, 0)T or (0, eiω)T, in order to avoid an ultraviolet
singularity.

39Since ϕ has dimension 0 in 1+1 dimensions, an operator with arbitrarily high powers of ϕ is still renormalizable.
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Extending this calculation to SU(n) is straightforward. Now, the topological charge is a vector
Q = (Q1,Q2, . . . ,Qn), corresponding to the n fields ϕα. A configuration far from its core has
ϕαn = 1√

n
eiω for all α, and receives a contribution to the topological charge of 1

n from the contour at

infinity. Meanwhile, in order for the configuration to be UV finite at its core, the phase eiω in each
of the nth components of the ϕα must either vanish or become a pure gauge transformation. This
leads to an n-fold family of topological excitations, distinguished by which one of the ϕα tends to
(0, 0, 0, . . . , eiω)T. For that particular ϕα, a contribution of -1 is added to its topological charge from
the contour about the origin in (7.25), while the remaining n − 1 fields receive no contribution, as
they are topological trivially there. See the example below for an explicit solution in the case of
n = 3. Thus, we obtain n species of topological configuration, with charges

Qα =
1
n
(
1, 1, . . . ,

position α︷   ︸︸   ︷
−(n − 1), . . . , 1

)
. (7.43)

And so for all n, we find fractionalized topological excitations, or fractional instantons, in our
symmetry broken model.

7.4.1 Example: An explicit fractional instanton in SU(3)

Here, we prove the existence of a fractional instanton in SU(3), with topological charge Q1 =

(−2
3 ,

1
3 ,

1
3 ). While the most general complex unit vector in C3 depends on five real parameters, we

make a symmetric ansatz that reduces this number down to two, which is the minimum number of
parameters necessary to construct a fractional instanton. For our three orthogonal vectors ϕα, we
take:

ϕ1 =
1
√

2


sinϑ
sinϑ

√
2 cosϑeiω

 ϕ2 =
1
2


cosϑ + i
cosϑ − i
−
√

2 sinϑeiω

 ϕ3 =
1
2


cosϑ − i
cosϑ + i
−
√

2 sinϑeiω

 . (7.44)

Here ω is the polar angle coordinate, and ϑ ∈ [0, π/2] depends only on the radial coordinate:
ϑ = ϑ(r). Inserting this ansatz into the Lagrangian (7.30), one obtains

L =
1
g

[
(∂rϑ)2 +

1
r2 U1(ϑ) + mgU2(ϑ)

]
, (7.45)

where
U1(ϑ) = sin2 ϑ cos2 ϑ +

1
4

sin4 ϑ, (7.46)

and

U2(ϑ) =
5
2

[
cos2 ϑ −

1
2

sin2 ϑ

]2

+
1

128
cos2 ϑ(3 sin4 ϑ − 4 cos2 ϑ)2. (7.47)
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Note that there is a unique coupling constant g = g12 = g13 = g23 in the SU(3)/[U(1)]2 sigma
model, and the terms proportional to bαβ have vanished. This is the classical Lagrangian for a
particle at position ϑ at time r, in a time-dependent effective potential

Veff = −
1
r2 U1(ϑ) − mgU2(ϑ). (7.48)

Now, at radii r such that r2mg � 1, Veff is maximized by minimizing U1(ϑ) on [0, π/2], which
is achieved with ϑ = 0. On the other hand, for r → ∞, the effective potential is maximized
by minimizing U2(ϑ), which is done with ϑ = ϑ = arccos(1/

√
3). Since d

dϑU1 ≥ 0 on [0, ϑ],
and d

dϑU2 ≤ 0 on the same interval, we may conclude that a solution exists with ϑ(r) increasing
monotonically from 0 at r = 0 to ϑ at r = ∞. As expected, the vectors ϕα in (7.44) tend to (7.37),
up to a gauge transformation, as r → ∞. Moreover, as r → 0, the UV singularities eiω in ϕ2 and
ϕ3 vanish, and ϕ1 → (0, 0, eiω)T. This completes the example.

7.4.2 Multiple copies of the sine-Gordon model

While the number of such topological configurations has increased, the original argument from
CP1 for mass generation carries over to this more general case: for each species of topological
excitation in this n-fold family, we have a species of particle in the Coulomb gas formalism [137].
That is, each particle has a partition function that is represented (at large distances) by its own
sine-Gordon model,

LS G =
1
2

(∂µσ)2 + γ cos(
2π
g
σ), (7.49)

which is identical for each of the n species. As above, γ represents the fugacity of the fractional
instanton gas. Since all of the n species arise from the same action, each will have the same fugacity
and critical g, so that the above model (7.49) is merely copied n times, and the SU(2) analysis
from Section 7.2.2 can be applied directly. As m is lowered, the effective critical temperature is
increased until the topological excitations condense and a mass gap is produced. Thus, we conclude
that fractional instantons are responsible for generating a mass gap in the SU(n)/[U(1)]n−1 sigma
model (7.30), in the absence of topological angles.

7.5 Destructive Interference in the Presence of Topological Angles

We now restore the topological angles θα, and study how the mass generating mechanism changes.
As before, when m is large, our theory reduces to the U(1) sigma model where the θ-terms do not
play a role. However, as m is lowered towards zero, the fugacity γ in the sine-Gordon model is
modified to

γ

n∑
α=1

eiθ·Qα

, (7.50)
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where the sum is over the n species of fractional instanton, and θα = αθ, with θ =
2πp

n . Using
(7.43), one easily finds that this sum equals γ

∑
k ζ

pk. So long as p is not a multiple of n, this sum
vanishes. In other words, for such values of p, the fugacity of the sine-Gordon model vanishes,
suggesting that the Coulomb gas is always in its massless phase.

At first glance, this appears to be inconsistent with our results from the previous chapters, which
also predict a gap when p is not a multiple of n, but has a nontrivial shared divisor with n. This
discrepancy is resolved by considering higher-order topological excitations. Indeed, while objects
that have winding number greater than ±1 in ω have larger action, they too must be considered, and
do not necessarily lead to a vanishing fugacity. A similar calculation shows that a configuration
with winding number κ has charge Qα,κ, with

Qα,κ
β =

κ

n
− κδα,β, (7.51)

and modifies the fugacity to γ
∑

k ζ
pkκ. If κ is a multiple of n, this will lead to a nonzero fugacity.

This is also true in the case of SU(2): recall the double meron configurations discussed above.
However, the conclusion arrived at before also applies here: since these higher winding objects
have larger action, we can at least conclude that the critical value of m, above which occurs a
gapless phase, is lower at θ =

2πp
n than at θ = 0.

Now, if gcd(n, p) , 1, n, then not only do events with winding number n contribute to the
fugacity, but so do events with winding number d := n/ gcd(n, p). Since these contributions will
have a much smaller action than the n-winding events, this shows that whenever p and n have a
nontrivial common divisor, the critical value m is larger than at θ = 2π

n (although still lower than
at θ = 0). Thus, it is possible to interpret our generalized Haldane conjecture in terms of these
fractional topological excitations: When p and n are coprime, mass generation only starts to occur
for configurations that have winding number ±n. In SU(2), these events are not strong enough to
open a gap at the isotropic point m = 0, and we predict that this holds for general n. In other
words, we are claiming that the critical value of m is zero when p and n are coprime. When p and n
have a nontrivial common divisor different from n, configurations that have much less action begin
to contribute to mass generation, starting with objects that have winding number d. The simplest
example of this is in SU(4), with p = 2. In this case, configurations that have winding number ±2
successfully generate a mass gap, while for p = 1 these configurations destructively interfere, and
a mass gap is not generated by the subleading configurations, with winding ±4. Finally, when p is
a multiple of n, the least-action configurations that have winding ±1 produce a mass gap, just like
the merons in SU(2).

While we haven’t offered a rigorous argument as to why the critical value of m is indeed fixed
at zero in the case of p and n coprime, we can make the following observation. According to
the LSMA theorem, a finite energy gap above the ground state implies spontaneously broken Zn

symmetry whenever p is not a multiple of n. In the sine-Gordon model (7.49), this Zn symmetry
corresponds to the following transformation:

σ 7→ σ −
2π
n
. (7.52)
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While this transformation acts nontrivially on most fractional instantons, it has no effect on config-
urations with winding number n, which are the elementary excitations in the sine-Gordon model
when p and n are coprime. Thus, our prediction of a gapless phase in this case is perhaps not too
unreasonable, since any finite gap would necessitate the spontaneous breaking of (7.52), which acts
trivially on the Coulomb gas of n-winding events.

7.6 Conclusions

In this chapter, we have proposed a mass generating mechanism by fractional instantons in the
complete flag manifold sigma models, with target space SU(n)/[U(1)]n−1. These theories arise
naturally from SU(n) chains in particular representations, as we have seen many times throughout
this thesis. In particular, we have focused on theories with n − 1 nontrivial topological angles,
θα = 2πα

n p. These correspond to either the rank-p symmetric representations of SU(n), or the
two-row representations for even n, with p = p1 + p2.

For p a multiple of n, we have shown that topological configurations with charge 1
n produce

a finite gap above the ground state, much in the same way that vortices produce a gap in the
Kosterlitz Thouless transition of the XY model. When p and n have a nontrivial common divisor
different from n, we’ve shown that a mass gap is still produced, but now it is due to larger-action
configurations that have charge 1

gcd(n,p) . Finally, when p and n are coprime, we have argued that no
energy gap is produced by topological configurations. Together, these three results offer an intuitive
explanation of the generalizations of the Haldane conjecture to SU(n) chains that have appeared in
this thesis.
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Chapter 8

Summary and Outlook

In this thesis, we have succeeded in achieving our original goal of extending Haldane’s famous
conjecture about antiferromagnetic chains to systems with SU(n) symmetry. To summarize our
main result succinctly, we have found that there are two families of SU(n) chains that exhibit a
gapless phase at low energies. The first family consists of those chains with a completely symmetric
rank-p representation at each site, with p a positive integer whose greatest common divisor with
n is 1. In the case of n = 2, these chains are precisely those with half-odd integer spin, i.e. the
spin chains predicted by Haldane to be gapless. The second family of SU(n) chains that we have
identified are also labeled by a positive integer p satisfying the same coprime constraint with n,
but are only gapless for even n. These representations are not completely symmetric: instead, they
have two rows in their Young tableaux, of lengths p1 and p2 that sum to p. The simplest chain
corresponding to this second family has SU(4) symmetry, with the representation (p1 = 2, p2 = 1)
at each site.

While the above classification is elegant, and was the source of motivation for much of the work
appearing in this thesis, it is by no means the only noteworthy result that has been obtained. Indeed,
in our attempt to push the conceptual and technical limitations of Haldane’s original calculations,
we have made numerous discoveries that will have a lasting impact on the field of SU(n) spin
systems.

In Chapter 3, we learned early on that the nearest-neighbour Heisenberg model used by Hal-
dane is inadequate for deriving a low energy field theory of chains with larger symmetry groups.
This can be understood by considering how the Young tableau parameters pα, which generalize
the notion of spin in the antiferromagnet, determine the target space manifold of the chain’s matrix
degree of freedom, S . For SU(2), this manifold is always CP1, and one may readily derive the
familiar CP1 sigma model. But for n > 2, the space CP1 is promoted to a flag manifold, and further
care must be taken when deriving a low energy description. Throughout Chapter 3, we developed a
prescription for obtaining a well defined quantum theory, which amounted to adding longer-range
interaction terms to the Hamiltonian. These interaction terms serve to restrict the target space of
S to be an orthogonalized product of CPn−1 models. Then, by summing over the unit cell (which
is determined by the classical ground state of the chain), we obtain n orthogonalized CPn−1 mod-
els, which together constitute a sigma model whose target space is the complete flag manifold,
SU(n)/[U(1)]n−1. As a result, we were able to answer in Chapter 3 the obvious question posed by
many seeking to extend Haldane’s conjecture beyond SU(2): what is the appropriate generaliza-
tion of the CP1 sigma model that describes the antiferromagnet at low energies? It turns out that
CP1 should be promoted to the complete flag manifold of SU(n). As a tangential development in
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this chapter, we also extended the exact results of Lieb, Schultz, Mattis and Affleck (the LSMA
theorem) to the longer-range Hamiltonians that we introduced.

In Chapter 4, in deriving an explicit expression for the sigma model of the SU(3) chain in the
symmetric representation, we made three important realizations. First, unlike the CP1 Lagrangian
that is characterized by a single parameter g, for n > 2 there is an additional λ parameter that
corresponds to a two-derivative interaction term that couples the different CPn−1 sectors together.
When we interpret the Lagrangian as a metric on the flag manifold target space, this parameter
corresponds to a torsion, or antisymmetric tensor. Such terms were unanticipated, as torsion does
not exist in the simpler case of CP1. Using the renormalization group, we were able to conclude that
λ is a relevant parameter, and should be included in the low energy limit. The second realization
we made concerned the topological angle content of these theories. Since flag manifolds may be
embedded into a product of CPn−1 models, it is possible to define multiple topological charges, by
pulling back the topological term from each CPn−1 sector. Mathematically, this is seen by noting
that the second cohomology group of the flag manifold is Zn−1. In the symmetric SU(3) chains,
we found that this led to two topological angles θ1 =

2πp
3 and θ2 =

4πp
3 . Since 3 is prime, these

angles both are nontrivial so long as p is not a multiple of 3; however, we began to speculate that
for larger values of n, it might be possible for some, but not all of the topological angles to be
trivial. How would Haldane’s conjecture generalize in this case? Finally, the third realization we
made in Chapter 4 arose from considering other (non-symmetric) representations. In spin chains,
it was well understood that for translationally invariant systems, the classical model would always
exhibit antiferromagnetic order for a positive interaction strength, J. However, for n > 2, we
learned that it is possible to realize ferromagnetic and antiferromagnetic order simultaneously (in
the classical limit). This led to the fascinating consequence of having Goldstone bosons with
two types of dispersion relation: linear dispersion for those corresponding to antiferromagnetic
order, and quadratic dispersion for those corresponding to ferromagnetic order. And all of these
bosons arise from the same parent group, SU(n). We concluded this chapter by restricting to those
representations with antiferromagnetic order only. In addition to the symmetric ones, this led also
to the self-conjugate SU(3) chains. We found that these chains did not exhibit Lorentz invariance
at low energies – a surprising feature, but one that would prove to ubiquitous in the remaining
chapters of this thesis.

In Chapter 5, we were forced to confront the absence of Lorentz invariance head-on. Here, our
goal was to extend our derivation of the flag manifold sigma model from the symmetric SU(3) chain
to symmetric chains with generic SU(n) symmetry. Armed with our newfound understanding from
the previous two chapters, we hoped to obtain a model with target space SU(n)/[U(1)]n−1, that
depended on two parameters g and λ. But yet again, we were confronted with the unexpected.
Instead of a single g and a single λ, we instead found b n

2c different coupling constants of each
type. We now understand that this is consistent with the underlying symmetry of the model: the
most generic metric and torsion tensors on the complete flag manifold sigma model of SU(n)
each have b n

2c free parameters. But more importantly, we also found that for n > 3, our theory
was not characterized by a single velocity v (which corresponded to the velocity of spin-waves in
the antiferromagnet). This feature of multiple velocities meant that for all values of n > 3, the
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symmetric SU(n) chain seemed not to have a Lorentz invariant low energy description. It was at
this point that we engaged in the arduous task of calculating the renormalization group flow of these
distinct velocities. Our findings, which we believe are rather consequential to the study of SU(n)
chains, were that at large length scales, these velocities all converge to a common value. As a result,
we may write down a Lorentz invariant theory for the SU(n) chain after all. This observation was
crucial in establishing an SU(n) version of Haldane’s conjecture, which relies in part on ’t Hooft
anomaly matching arguments of Lorentz invariant quantum field theories. We concluded that the
rank-p symmetric SU(n) chain corresponds to the relativistic complete flag manifold of SU(n),
with topological angle content θα =

2πpα
n for α = 1, 2, . . . , n− 1. Moreover, we concluded that only

when p and n share no common divisor, may this theory exhibit a gapless phase at weak coupling.
As we alluded to above, only in this scenario are all n − 1 topological angles nontrivial: if p and n
have common divisor q, then θn/q ≡ 0. This observation motivated our efforts in Chapter 7

Before investigating the consequence of a vanishing subset of topological angles, we saw it
appropriate in Chapter 6 to classify all remaining (i.e. nonsymmetric) SU(n) chains. Having n − 1
distinct topological angles seemed to be a necessary condition for realizing a gapless phase, and
so we set out to list all representations that would map to a sigma model with this property. It was
here that the phenomenon of linear vs. quadratic dispersion that appeared in SU(3) chains returned
in full force. Throughout this chapter, we learned that linear dispersion is in fact quite a special
property of SU(n) chains. For most choices of representation parameters pα, there will at least be
some corresponding Goldstone bosons with quadratic dispersion relations. In a series of tables, we
were able to record exactly what relations must be satisfied between the pα to guarantee that this
does not occur. Having done this, we then turned to the classification of topological angle content
for all of these purely linearly dispersing theories. Again, we were met with a surprising result: in
addition to the symmetric chains, there is only one other type of SU(n) chain that has the appropriate
dispersion relations and topological angles to allow for a mapping to the complete flag manifold of
SU(n) with θα =

2πpα
n . This type of chain occurs only for even n, and has the representation with

two rows of lengths p1 and p2 at each site, with p = p1 + p2 and p1 , p2. Using arguments similar
to those presented in Chapter 5, we concluded that when p has no nontrivial common divisor with
n, the corresponding SU(n) chain will be in a gapless phase at weak coupling.

Finally, in Chapter 7, we were able to provide a physical and intuitive argument as to why these
flag manifold sigma models exhibit a gapless phase only when all n− 1 topological angles are non-
trivial. Arguably this chapter is one of most important of this thesis, as it recasts our generalized
Haldane conjecture in the familiar Coulomb gas formalism, and explains why certain represen-
tations of SU(n) are so special. This work drew from an early result of Affleck that explained
Haldane’s original claims in terms of half-quantized topological excitations, or merons. Here,
we generalized these notions to SU(n), and promoted the merons to excitations with topological
charges ± 1

n . First, we showed that when θα = 0 for all α, the finite energy gap in the flag manifold
sigma model can be understood as being generated by a proliferation of these topological objects.
This is the same mechanism that drives a finite gap at the Kosterlitz Thouless phase transition in
the XY model when vortex pairs unbind. Then, by turning on the θα, we were able to observe how
inference effects come into play. In short, the fugacity in the Coulomb gas of topological excita-
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tions is modified by the θα, and vanishes precisely when all n − 1 values θα =
2πpα

n are nonzero!
With a vanishing fugacity, the mass-generating mechanism breaks down, so that a gapless phase
occurs. Actually, what we observed is that the fugacity vanishes at lowest order for all values of
p , n (including those with a nontrivial common divisor), but when topological excitations with
greater charge (and correspondingly greater action) are considered, only those with gcd(n, p) = 1
lead to a gapless phase. That this Coulomb gas picture correctly describes our generalized Haldane
conjecture is a very satisfying result.

Let us now close by commenting on future research directions. The most pressing issue left
unsolved by the work in this thesis has to do with SU(n) chains that admit Goldstone modes with
both linear and quadratic dispersion relations. This already occurs in SU(3) for any representa-
tion that is neither symmetric nor self-conjugate. How might one proceed in order to characterize
such chains? One idea is that according to Coleman’s theorem, quadratically dispersing Goldstone
bosons are perfectly valid in one spatial dimension (at least at zero temperature). Therefore, it is
conceivable that the subgroup of the SU(n) symmetry corresponding to ferromagnetic order might
spontaneously order, leaving true quadratic Goldstone bosons coupled to a smaller theory. For in-
stance, if only m < n of the n copies of CPn−1 have linear dispersion, then perhaps the low energy
theory of such a chain will be that of a complete SU(m) flag manifold sigma model, coupled to
n − m quadratically dispersing CPn−1 sectors. In anticipating such a possibility, already in Chap-
ter 6 we have recorded which topological angles correspond to the linearly dispersing CPn−1 fields
in such a scenario. If this description were true, then what we would have is a remarkable hier-
archy of flag manifold sigma models: For each n, by altering the number of satisfied conditions
on the pα representation labels, we could realize a nested set of flag manifold sigma models of
SU(m1), . . . ,SU(mk), with m1 < m2 < · · · < mk = n. Moreover, based on our topological Coulomb
gas picture (and likewise the ‘t Hooft anomaly matching picture), an SU(n) chain with discrete Zm

symmetry (arising from an m-site classical unit cell), might now realize a gapless phase, character-
ized by an SU(m)1 WZW point. Again, this scenario is only possible because quadratic Goldstone
bosons are not forbidden by Coleman’s theorem. This exciting possibility motivates our current
research efforts into understanding these more general SU(n) chain systems.

In addition to this direct extension of our work, there are a variety of other research avenues that
have now been opened up thanks to this thesis. In particular, it is now a major numerical challenge
to verify our generalization of the Haldane conjecture. We expect that this task will spur the devel-
opment of new techniques, just as the challenge of verifying Haldane’s original conjecture led to
great numerical progress, including the invention of the celebrated density matrix renormalization
group. Already we have seen this occur in SU(3), with Gozel et. al. establishing the existence of
a finite mass gap ∆/J ∈ (0.017, 0.044) in the symmetric SU(3) chain with p = 3 [77]. Antiferro-
magnetic SU(n) spin ladders have also been considered [139–141], as have two-dimensional SU(n)
Heisenberg models [142–144].

Furthermore, our predictions about SU(n) chains also serve to challenge the experimental
physics community. Over the past decade, cold atom physicists have continued to make advances
in optical trapping technology, with the most recent publication being [66]. Our predicted finite
energy gaps for particular representations should now be observable in such set-ups. For example,
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the p = 3 representation of SU(3) should exhibit a nondegenerate ground state with a finite gap, and
the p = 2 representation of SU(4) should exhibit a gap above two-fold degenerate ground states.
Since p > 1 in these chains, one must devise a way to achieve multiple sets of n particle species at
each site, either by trapping multiple atoms or by making use of an additional orbital degeneracy,
such as the nearly degenerate clock states of alkaline Earth atoms. Of course, such experiments
present a much greater challenge than those that originally measured the finite gap of the spin-1
chain, since in that case an actual quasi-one dimensional material was readily available.

Finally, a third research direction stemming from this thesis has to do with flag manifold sigma
models in general. While these models have always been of interest to mathematical physicists,
they have recently garnered more attention in the theoretical physics community thanks to their
applicability to SU(n) spin chains. In particular, in [145] Bykov has since investigated integrable
flag manifold sigma models, which generalize the older notions of integrability in the CP1 sigma
model put forth by the Zamolodchikov brothers, among others. In fact, we will soon publish
with Bykov and Affleck an extensive review article on flag manifold sigma models, which should
further encourage cross-disciplinary research efforts from mathematicians and physicists alike [6].
We believe that this review, combined with our thesis, will inspire additional research efforts into
the rich structure of flag manifolds themselves, ultimately bringing new insights into the SU(n)
chains that we have focused on here.
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Appendix A

Proof of tr[U∂U†] = 0

In this appendix, we prove the identity tr[U∂U†] = 0 for an arbitrary unitary matrix U. We will
make use of this identity frequently throughout this thesis. To begin, we write an arbitrary unitary
matrix U as

Uαβ = ϕαβ , (A.1)

where the ϕα are the rows of U, and are orthonormal complex vectors: ϕ∗,α · ϕβ = δαβ. We can
express the nth row-vector, ϕn, in terms of first n − 1 rows using the antisymmetric unit tensor, as:

ϕ∗,nαn
= εα1,α2...αnϕ

1
α1
ϕ2
α2
. . . ϕn−1

αn−1
. (A.2)

This follows because
ϕ∗,n · ϕβ = εα1,α2···αnϕ

1
α1
ϕ2
α2
. . . ϕn−1

αn−1
ϕ
β
αn (A.3)

and
εα1α2···αnϕ

β
αβϕ

β
αn = 0. (A.4)

for β = 1, 2, 3, . . . , n − 1. Now, we use the identity

εα1α2,...αnεβ1β2...βn−1αn =
∑

{a1,a2,...an−1}

sgn{a1, a2, . . . aan−1}δα1βa1
δα2βa2

. . . δαn−1βan−1
. (A.5)

Here the sum is over all permutations of a1, a2, . . . an−1. Now, orthogonality and (A.5) imply

|ϕn|2 = 1, (A.6)

and
ϕn · ∂ϕ∗,n = εα1α2···αnϕ

∗,1
α1
ϕ∗,2α2
· · ·ϕ∗,n−1

αn−1
εβ1β2···βn−1αn((∂ϕ1

β1
)ϕ2

β2
. . . ϕn−1

βn−1
+ · · · ). (A.7)

Here the · · · is a sum over derivatives of each factor. Now we use

εα1α2...αnϕ
∗,1
α1
ϕ∗,2α2
· · ·ϕ∗,n−1

αn−1
εβ1β2···βn−1αn(∂ϕ1

β1
)ϕ2

β2
· · ·ϕn−1

βn−1
= ϕ∗,1 · ∂ϕ1, (A.8)

which follows from orthogonality and (A.5). So

ϕn · ∂ϕ∗,n =

n−1∑
α=1

ϕ∗,α · ∂ϕα, (A.9)

which implies,
n∑
α=1

∂ϕα · ϕ∗,α = tr[∂UU†] = 0. (A.10)
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Appendix B

Low Energy Expansion of the
Symmetric SU(n) Hamiltonian

In this appendix, we provide some details from the derivation of the low energy Hamiltonian of the
SU(n) chain in the rank-p symmetric representation. These results are used both in Chapter 4 for
the SU(3) chain, and more generally in Chapter 5 for the SU(n) chain. In particular, we simplify
the following Heisenberg interaction term

tr[S ( jγ)S ( jη)], (B.1)

using (4.23). We write

tr[S ( jγ)S ( jη)] =

2∑
i=1

Xi(γ, η) +

4∑
i=3

(Xi(γ, η) + Xi(η, γ)) + O(p−2), (B.2)

with

X1(γ, η) := p2tr[U†( jγ)ΛγU( jγ)U†( jη)ΛηU( jη)] (B.3)

X2(γ, η) := tr[U†( jγ){L( jγ),Λγ}U( jγ)U†( jη){L( jη),Λη}U( jη)] (B.4)

X3(γ, η) := ptr[U†( jγ){L( jγ),Λγ}U( jγ)U†( jη)ΛηU( jη)] (B.5)

X4(γ, η) := tr[U†( jγ)L( jγ)U( jγ)U†( jη)ΛηU( jη)] (B.6)

Since the matrices U, L,L are evaluated at different sites, we Taylor expand. For example,

U( jγ) = U(n j + (γ − 1)) = U( jη) + (η − γ)∂xU( jη) +
1
2

(η − γ)2∂2
xU( jη) + · · · . (B.7)

We assume the derivative is uniform, ∂xU( jη) = ∂xU( j′λ), and consider each of the above terms
separately. Since L characterizes a fluctuation, we treat it as the same order as ∂U. Finally, we
suppress the argument jγ of each matrix throughout. Then:

• Term 1:

X1(γ, η) ≈ p2tr[ΛγΛη + (η − γ)2(U∂xU†Λγ∂xUU†Λη − ΛγΛη∂xU∂xU†)]. (B.8)

Since ΛγΛη = 0 for γ , η, this simplifies to

X1(γ, η) ≈ p2(η − γ)2tr[U∂xU†Λγ∂xUU†Λη]. (B.9)
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• Term 3:

X3(γ, η) ≈ ptr[{L,Λη}Λγ]+(η−γ)ptr[{L,Λη}U∂xU†Λγ]+(η−γ)tr[{L,Λη}Λγ∂xUU†] (B.10)

Since the first term is a product of a diagonal and an off-diagonal matrix, its trace vanishes.
What remains is a commutator:

X3(γ, η) = (η − γ)ptr
[
[{L,Λη},Λγ]∂xUU†

]
, (B.11)

which simplifies to

X3(γ, η) = (η − γ)p
(
Lγη[U∂xU†]ηγ + Lηγ[∂xUU†]γη

)
. (B.12)

Note that X3(γ, η) = X3(η, γ).

• Term 4: Since L contains two powers of L, we only have to expand U to zeroth order. We
find

X4(γ, η) = |Lγη|2 = X4(η, γ). (B.13)

• Term 2: A similar calculation shows that

X2(γ, η) = 2|Lγη|2 = X2(η, γ). (B.14)

Finally, combining the results of these five calculations, we find

tr[S ( jγ)S ( jη)] = p2(η − γ)2tr[U∂xU†Λγ∂xUU†Λη] (B.15)

+2(η − γ)p
(
Lηγ[∂xUU†]γη + Lγη[U∂xU†]ηγ

)
+ 4|Lηγ|2 + const.

which proves (4.27).
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Appendix C

Factorization of SU(n) Matrices

In this appendix, we prove a factorization identity for SU(n) matrices. Let Greek letters index the
diagonal generators of SU(n), lowercase Latin letters index the off-diagonal generators of SU(n),
and uppercase Latin letters index the full set of generators. That is,∑

A

TA =
∑

a

Ta +
∑
γ

Tγ. (C.1)

Then, given U = eiωATA ∈ SU(n), we may factorize it as follows:

U = eiωγTγeiωaTa . (C.2)

We will prove this identity to third order in the ωγ and ωa, but mention how the proof extends
to every order in perturbation theory. Using the Baker-Campbell-Hausdorff formula,

log(eXeY ) = X + Y +
1
2

[X,Y] +
1

12
([X, [X,Y]] − [Y, [X,Y]]) + · · · , (C.3)

we have

log eiωγTγeiωaTa = iωATA −
1
2
ωγωa[Tγ,Ta] −

i
12

(
ωγωβωa[Tγ, [Tβ,Ta]] − ωγωaωb[Ta, [Tγ,Tb]

)
(C.4)

to order O(ω4), which equals

= i
[
ωa − ωγωb fγbA +

1
3

(
ωγωβωb fβbC fγCA − ωγωdωb fγbC fdCA

) ]
TA + O(ω4). (C.5)

The formula for the higher-order terms occurring in (C.3) and (C.4) are quite complicated, but
always involve nested commutators. This important fact allows us to reduce every term in the
expansion to one that is linear in the generators, TA. A term that is ∼ ωn will involve n − 1 nested
commutators, leading to a contribution that is proportional to a product of n − 1 structure factors
fabc, multiplied by a single SU(n) generator TA. Therefore, order-by-order, we may construct a
mapping between the ωA and the ωa:

ωA = ωa − ωγωb fγbA +
1
3

(
ωγωβωb fβbC fγCA − ωγωdωb fγbC fdCA

)
+ O(ω4). (C.6)
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Appendix C. Factorization of SU(n) Matrices

To prove the factorization identity, we must be able to invert this formula. This is done by repeat-
edly inserting

ωa = ωA + ωγωb fγbA −
1
3

(
ωγωβωb fβbC fγCA − ωγωdωb fγbC fdCA

)
+ O(ω4). (C.7)

into each of the terms on its right hand side We find:

ωa = ωA + ωγωb fγbA +
2
3
ωγωβωb fβbe fγeA +

1
3
ωγωdωb fγbC fdCA + O(ω4). (C.8)

Thus, for any SU(n) matrix U = eiωATA , we may perform this transformation to obtain the factorized
form occurring above.
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Appendix D

Polyakov’s Renormalization of the O(n)
nonlinear Sigma Model

In this appendix, we review Polyakov’s calculation of the beta function for the O(n) nonlinear
sigma model [126]. In Section D.1, we use Polyakov’s original notation. Then in Section D.2,
we demonstrate how our calculations can equivalently be done in the SU(2)/U(1) sigma model
language.

D.1 Renormalization in the Real-Space Vector Language

In this section, we start with the following Lagrangian

L =
1
2g
|∂µ~n|2. (D.1)

The idea is to construct a ‘slow’ unit vector ~ns out of ~n’s momentum modes below b−1Λ, where
Λ is a reduced cutoff, and b & 1. The remaining modes of ~n can then be written in terms of an
orthonormal basis {~ea}, orthogonal to ~ns:

~n = ~ns(1 − φ2)1/2 +

n−1∑
i=1

φi~ei, (D.2)

where φ2 =
∑n−1

i=1 φ
2
i . The fields φi consist entirely of ‘fast’ modes, with momentum lying in the

Wilson shell [b−1Λ,Λ). Integration over the shell is then equivalent to integrating out the fields φi.
Inserting this expansion (D.2) into L gives (to quadratic order in φi)

2gL = (∂µ~ns)2(1 − φ2) + (∂µφi)2 + φiφ j∂µ~ei · ∂µ~e j + 2φi∂µφ j∂µ~ei · ~e j − 2φi∂
2
µ~ns · ~ei . (D.3)

A naive argument would claim that the term linear in φi can be neglected, since ~ns and ~ei contain
slow modes only. However, their product will generically have modes lying in the Wilson shell;
a better argument is presented in Section 4.5.2. Dropping linear terms, we are left to evaluate the
Gaussian integral∫
D[φ] exp

(
−

1
2g

∫
d2x

(
(∂µ~ns)2(1 − φ2) + (∂µφi)2 + φiφ j∂µ~ei · ∂µ~e j + 2φi∂µφ j∂µ~ei · ~e j

) )
. (D.4)
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D.1. Renormalization in the Real-Space Vector Language

Using ∫
D[φ] =

∫ ∏
b−1Λ<k<Λ

Dφ(k)Dφ(−k), (D.5)

the effective Lagrangian is

2gLeff = (∂µ~ns)2 + g tr
[
log

(
δi j −Gi jδi j(∂µ~ns)2 + Gi j∂µ~ei · ∂µ~e j + 2∂µGi j∂µ~ei · ~e j

)]
, (D.6)

where Gi j(x) is the Green’s function of the fields φi. Since terms involving more than two deriva-
tives of slow fields are irrelevant, we can expand the trace-logarithm:

tr
[
log(δi j −Gi jδi j(∂µ~ns)2 + Gi j∂µ~ei · ∂µ~e j + 2∂µGi j∂µ~ei · ~e j)

]
(D.7)

= −

∫
d2x Gi j(0)δi j(∂µ~ns)2 +

∫
d2x Gi j(0)(∂µ~ei · ∂µ~e j) + 2

∫
d2x ∂µGi j(0)∂µ~ei · ~e j

−
1
2

4
∫

d2xd2y ∂µG(x − y)[∂µ~ei · ~e j](x), ∂νG(y − x)[∂ν~e j · ~ei](y) + irrelevant,

where we defined G(x) by Gi j(x) = δi jG(x).) The third term vanishes since

∂µG(0) = −i
∫

d2k
(2π)2

kµ
k2 = 0. (D.8)

Rewriting G(0) =
∫

b−1Λ<k<Λ
d2k

(2π)2
δi j

k2 , the expansion in (D.7) reduces to

=

∫
b−1Λ<k<Λ

d2k
(2π)2

1
k2

∫
d2x

(
− (N − 1)(∂µ~ns)2 + (∂µ~ei · ∂µ~ei)

)
(D.9)

− 2
∫

d2kd2q
(2π)4

kµ
k2

(q + k)ν
(q + k)2 [∂µ~ei · ~e j](q)[∂ν~e j · ~ei](−q) + irrelevant,

where we Fourier transformed the last term, and both ~k and ~k + ~q lie in the Wilson shell [b−1Λ,Λ).
Now we expand ∫

b−1Λ<|~q+~k|<Λ

(q + k)ν
(q + k)2 (D.10)

in powers of q, and keep the zeroth order term only, since terms with more powers of q will
correspond to irrelevant operators:∫

d2kd2q
(2π)4

kµ
k2

(q + k)ν
(q + k)2 =

∫
d2kd2q
(2π)4

kµkν
k4 + irrelevant =

1
2

∫
d2kd2q
(2π)4

1
k2 + irrelevant. (D.11)

Inserting this expansion into (D.9), and integrating over k, the effective Lagrangian becomes

2gLeff = (∂µns)2 −
g log b
π

[
(n − 1)(∂µ~ns)2 − ∂µ~ei · ∂µ~ei + (∂µ~ei · ~e j)2

]
. (D.12)
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D.2. Renormalization in the Flag Manifold Language

Finally, we insert a complete set of states to obtain the identity

(∂µ~ei)2 = (∂µ~ei · ~e j)2 + (∂µ~ns)2 (D.13)

since ~ns · ~ei = 0. Thus,

Leff =
1
2g

(∂µ~ns)2
[
1 − g

(n − 2)
2π

log b
]
. (D.14)

From this, we conclude

β(g) =
dg

d log b
=

(n − 2)
2π

g2. (D.15)

D.2 Renormalization in the Flag Manifold Language

In the previous section, the renormalization calculation relied on an expansion of the field ~n in
terms of ‘slow’ and ‘fast’ components:

~n = ~ns(1 − φ2)1/2 +

2∑
i=1

φi~ei. (D.16)

We would like to generalize this notion to matrix field theories, by writing

U = U f Us (D.17)

for U,U f ,Us ∈ SU(2) , where U f contains the fast modes of U, and Us the slow modes. Rewriting
the O(3) nonlinear sigma model in terms of SU(2) matrices,

~n · ~σ = U†σzU U ∈ SU(2), (D.18)

we prove that (D.17) is equivalent to (D.2) in the SU(2) case. We expand the fast matrix as

U f = I + iωaσa − ωaωbσaσb + O(ω3), (D.19)

and only keep terms up to quadratic order in ω (higher-order terms will correspond to diagrams
beyond one loop). Now

U†σzU = U†s

(
I − iωaTa −

1
2
ωaωbTaTb

)
σz

(
I + iωaTa −

1
2
ωaωbTaTb

)
Us (D.20)

= U†sσzUs − ωaωbU†sσzTaTbUs + iωaU†s [σz,Ta]Us −
1
2
ωaωbU†s {TaTb, σz}Us (D.21)

= U†SσzUs(1 − 2ω2) + −2ωxU†sσyUs + 2ωyU†sσxUs. (D.22)

Defining

~e1 = tr
1
2
~σU†sσyUs, ~e2 =

1
2

tr~σU†sσxUs, (φ1, φ2) = (2ωy,−2ωx), (D.23)
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D.2. Renormalization in the Flag Manifold Language

we find
~σ · ~n = ~σ · ~ns(1 −

1
2
φ2) + φ1U†sσyUs + φ2U†sσxUs. (D.24)

To read off the components of ~n, we use

ni =
1
2

tr[σi~σ · ~n] =
1
2

tr[σiU†σzU]. (D.25)

Applying 1
2 tr[σ] to the above expression, we find

~n = ~ns(1 −
1
2
φ2) + φ1

1
2

tr[~σU†sσyUs] + φ2
1
2

tr[~σU†sσxUs] = ~ns(1 − φ2)1/2 + φi~ei + O(φ3). (D.26)

Finally, we check that we’ve found an orthonormal basis:

~e1 · ~e2 =
1
2

tr[(~e1 · ~σ)(~e2 · ~σ)] =
1
2

tr[U†sσyUsU†sσxUs] = 0, (D.27)

~ns · ~ei =
1
2

tr[(σ · ~ns~σ · ~ei)] =
1
2

tr[U†sσzUsU†sσiUs] = 0. (D.28)

Therefore, our expansion (D.17) is equivalent to Polyakov’s expansion (D.2).
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Appendix E

Identities Involving fABC and TA in
SU(3)

In this appendix, we prove various identities involving the SU(3) generators TA, and their structure
factors fABC . We label the 8 generators of SU(3), the so-called Gell-Mann matrices, according to

T1 =

0 1 0
1 0 0
0 0 0

 T2 =

0 −i 0
i 0 0
0 0 0

 T3 =

1 0 0
0 −1 0
0 0 0

 T4 =

0 0 1
0 0 0
1 0 0

 (E.1)

T5 =

0 0 −i
0 0 0
i 0 0

 T6 =

0 0 0
0 0 1
0 1 0

 T7 =

0 0 0
0 0 −i
0 i 0

 T8 =
1
√

3

1 0 0
0 1 0
0 0 −2


These matrices obey the su(3) algebra

[TA,TB] = 2i fABCTC (E.2)

for completely antisymmetric fABC . Explicitly, the nontrivial values of fABC are

f123 = 1 f345 = f376 = f147 = f156 = f257 =
1
2

f458 = f678 =

√
3

2
. (E.3)

Throughout we use the following index notation: Lowercase Latin letters index the off-diagonal
Gell-Mann matrices, lowercase Greek letters index the diagonal Gell-Mann matrices, uppercase
Latin letters index all eight matrices, and repeated indices are summed over. By construction, the
Gell-Mann matrices satisfy

tr[TATB] = 2δAB, (E.4)

as well as the completeness relation

[TA]i j[TA]kl = 2δilδk j −
2
3
δi jδkl. (E.5)

E.1 Structure Factor Identities

In this section, we first prove two specific identities involving the fABC that we will require in our
RG calculations in Chapter 4. Then we define the following composite objects, given a unitary
matrix U:

MA = U†TAU Nµ = ∂µUU†. (E.6)
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E.1. Structure Factor Identities

With these new objects, we prove six additional identities.

E.1.1 Identity 1

Here we prove
fcγa fcγb = δab. (E.7)

We first write
fcγa fcγb = fc3a fc3b + fc8a fc8b. (E.8)

Then using the explicit values of fABC given in (E.3), we see the first term equals

fc3a fc3b = δa2δb2 + δa1δb1 +
1
4
δa5δb5 +

1
4
δa4δb4 +

1
4
δa6δb6 +

1
4
δa7δb7 (E.9)

and the second term equals:

fc8a fc8b =
3
4

(δa5δb5 + δa4δb4 + δa6δb6 + δa7δb7) . (E.10)

Adding (E.9) and (E.10) completes the proof.

E.1.2 Identity 2

Here we prove

fabC fabD =

δCD if C = c is off diagonal,
3δCD if C = γ is diagonal.

(E.11)

First, we establish
fABC fABD = 3δCD. (E.12)

Using (E.4), we have

tr
[
[TA,TB][TA,TC]

]
= tr

[
2TATBTATC − T 2

ATCTB − T 2
ATBTC

]
= −8 fABD fACD. (E.13)

Then using (E.5) on the middle term, this becomes

tr
[
2TATBTATC − T 2

ATCTB − T 2
ATBTC

]
= 2[TA]i j[TB] jk[TA]kl[TC]li − [TA]i j[TA] jk[TCTB + TBTC]ki

= −
4
3

tr[TBTC] − 6tr[TCTB + TBTC] +
2
3

tr[TCTB + TBTC]

= −12tr[TBTC]

= −24δBC , (E.14)

where in the last step we used (E.4). This proves (E.12). Now we expand it as follows:

3δCD = fABC fABD = fabC fabD + 2 faβC faβD. (E.15)

If C = γ is a diagonal index, the second term vanishes, and the second case of (E.11) follows. If
C is off-diagonal, the second term gives 2δCD according to (E.7), which proves the first case of
(E.11).
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E.1. Structure Factor Identities

E.1.3 Identity 3

Here we prove ∑
A

tr[(∂µMA)2] = −6
∑

A

(tr[NµTA])2. (E.16)

Using (E.5), we have

[MB]i j[MB]kl = [U†s ]in[TB]nm[Us]m j[U†s ]kp[TB]pq[Us]ql (E.17)

= [U†s ]in[Us]ql[Us]m j[U†s ]kp

(
2δnqδpm −

2
3
δnmδpq

)
= 2δilδk j −

2
3
δi jδkl.

Also, using (4.92), we have

tr[MB∂µMA] = 2i fBACtr[∂µUsU†s TC]. (E.18)

Now, we use these two expressions to simplify the following equation in two different ways. On
one hand, we have∑

A,B

(tr[MB∂µMA])2 =
∑
A,B

[MB]i j[∂µMA] ji[MB]kl[∂µMA]lk (E.19)

=
∑

A

[∂µMA] ji[∂µMA]lk

(
2δilδk j −

2
3
δi jδkl

)
= 2

∑
A

tr[(∂µMA)2] −
2
3

(tr[∂µMA])2

= 2
∑

A

tr[(∂µMA)2]

since tr[∂µMa] = ∂µtr[Ta] = 0. On the other hand,∑
A,B

(tr[MB∂µMA])2 = −4
∑

A,B,C,D

fBAC fBADtr[NµTC]tr[NµTD] = −12
∑

C

tr[(∂µUsU†s TC)2]. (E.20)

This proves (E.16).

E.1.4 Identity 4

Here we prove
−2

∑
c

(tr[NµTc])2 =
∑
γ

tr[(∂µMγ)2]. (E.21)
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We repeat the proof of (E.16), but reduce the summation over A to a summation over diagonal
Gell-Mann matrices only. On the one hand,∑

γ,B

(tr[MB∂µMγ])2 =
∑
γ,B

[MB]i j[∂µMγ] ji[MB]kl[∂µMγ]lk (E.22)

=
∑
γ

[∂µMγ] ji[∂µMγ]lk

(
2δilδk j −

2
3
δi jδkl

)
(E.23)

= 2
∑

A

tr[(∂µMγ)2] −
2
3

(tr[∂µMγ])2 = 2
∑
γ

tr[(∂µMγ)2]. (E.24)

On the other hand,∑
γ,B

(tr[MB∂µMγ])2 = −4
∑

γ,B,C,D

fBγc fBγdtr[NµTc]tr[NµTd] = −4
∑

c

(tr[∂µUsU†s Tc])2 (E.25)

where we used (E.7). This proves (E.21).

Identity 5

Here we prove

tr[NνTa (T3TbT8 − T8TbT3)] = 2itr[NνTa ( f3bcTcT8 − f8bcTcT3)]. (E.26)

This follows directly from:

T3TaT8 = [T3,Ta]T8 + TaT3T8 = 2i f3acTcT8 +
1
√

3
TaT3. (E.27)

Identity 6

Here we prove

f3bctr[Nν(TaTcT8 − T8TaTc)] + f8bctr[Nν(T3TaTc − TaTcT3)] (E.28)

+ f3actr[Nν(T8TbTc − TbTcT8)] + f8actr[Nν(TbTcT3 − T3TbTc)]

= 2itr[NνTdTc] ( f3bc fa8d + f8bc f3ad + f3ac f8bd + f8ac fb3d) .

First, we rewrite the left hand side of (E.28) as

f3bctr
[
Nν[TaTc,T8]

]
+ f8bctr

[
Nν[T3,TaTc]

]
+ f3actr

[
Nν[T8,TbTc]

]
+ f8actr

[
Nν[TbTc,T3]

]
(E.29)

which can further be rewritten as

f3bctr
[
Nν (Ta[Tc,T8] + [Ta,T8]Tc)

]
+ f8bctr

[
Nν ([T3,Ta]Tc + Ta[T3,Tc])

]
(E.30)

+ f3actr
[
Nν ([T8,Tb]Tc + Tb[T8,Tc])

]
+ f8actr

[
Nν (Tb[Tc,T3] + [Tb,T3]Tc)

]
.
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E.1. Structure Factor Identities

Replacing commutators with structure constants gives

2i
[
f3bctr[Nν (Ta fc8dTd + fa8dTdTc)] + f8bctr[Nν ( f3adTdTc + Ta f3cdTd)] (E.31)

+ f3actr[Nν ( f8bdTdTc + Tb f8cdTd)] + f8actr[Nν (Tb fc3dTd + fb3dTdTc)]
]
,

which can be reorganized into

2i
[
f3bc fc8dtr[NνTaTd] + f3bc fa8dtr[NνTdTc] + f8bc f3adtr[NνTdTc] + f8bc f3cdtr[NνTaTd] (E.32)

+ f3ac f8bdtr[NνTdTc] + f3ac f8cdtr[NνTbTd] + f8ac fc3dtr[NνTbTd] + f8ac fb3dtr[NνTdTc]
]
.

Now, terms of the form f3bc fc8d vanish unless b = d. This means the first and fourth terms cancel.
Likewise, the sixth and seventh terms cancel. What remains is

2i
[
f3bc fa8dtr[NνTdTc] + f8bc f3adtr[NνTdTc] + f3ac f8bdtr[NνTdTc] + f8ac fb3dtr[NνTdTc]

]
,

which proves (E.28).

Identity 7

Here we prove

εµνtr[NνTdTc]
(

fabEtr[NµTE] + fabγtr[NµTγ]
)(

f8bc f3ad + f3ac f8bd
)

(E.33)

= −εµν
√

3
(
tr[NµT1]tr[NνT2] − tr[NµT4]tr[NνT5] + tr[NµT6]tr[NνT7]

)
. (E.34)

To begin, we check explicitly that the term

fabE
(

f8bc f3ad + f3ac f8bd
)

(E.35)

vanishes unless E is diagonal. In fact, it is either zero or ±
√

3
4 . We find the left hand side of (E.33)

equals

=

√
3

4
εµν

(
tr[NµT1]tr[Nν({T4,T7} − {T5,T6})] + tr[NµT2]tr[Nν({T4,T6} + {T5,T7})] (E.36)

+ tr[NµT4]tr[Nν({T1,T7} + {T2,T6})] + tr[NµT5]tr[Nν({T2,T7} − {T1,T6})]

+ tr[NµT6]tr[Nν({T2,T4} − {T1,T5})] + tr[NµT7]tr[Nν({T1,T4} + {T5,T2})]
)
.

Using

{T5,T6} = −{T4,T7} = T2, {T4,T6} = {T5,T7} = T1, (E.37)

{T1,T7} = {T2,T6} = T5, {T1,T6} = −{T2,T7} = T4, (E.38)

{T1,T5} = −{T2,T4} = T7, {T1,T4} = {T5,T2} = T6, (E.39)
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E.2. A Rewriting of the Sigma Model Lagrangian

the left hand side of (E.33) becomes

=

√
3

2
εµν

(
− tr[NµT1]tr[NνT2] + tr[NµT2]tr[NνT1] + tr[NµT4]tr[NνT5] − tr[NµT5]tr[NνT4] (E.40)

− tr[NµT6]tr[NνT7] + tr[NµT7]tr[NνT6]
)
.

The εµν tensor allows us to combine these terms, proving (E.33).

Identity 8

Finally, we prove in this subsection that

εµν
(
tr[NµT1]tr[NνT2] − tr[NµT4]tr[NνT5] + tr[NµT6]tr[NνT7]

)
= −i

√
3tr[NµT8NνT3]. (E.41)

First note that

tr[NµT1] = [Nµ]i j[T1] ji = [Nµ]21 + [Nµ]12, (E.42)

tr[NνT2] = [Nν]i j[T2] ji = −i[Nν]21 + i[Nν]12, (E.43)

so

εµνtr[NµT1]tr[NνT2] = iεµν
[
[Nµ]21 + [Nµ]12

]
[−[Nν]21 + [Nν]12] (E.44)

= iεµν
(
[Nµ]21[Nν]12 − [Nµ]21[Nν]21 + [Nµ]12[Nν]12 − [Nµ]12[Nν]21

)
(E.45)

= 2iεµν[Nµ]21[Nν]12. (E.46)

Similar results hold for T4,T5,T6,T7. Therefore the left hand side of (E.41) is

2iεµν
[
[Nµ]21[Nν]12 − [Nµ]31[Nν]13 + [Nµ]32[Nν]23

]
= 2iεµν

3∑
α=1

tr[NµΛαNνΛα+1]. (E.47)

Finally, using the results of Appendix E.2, we see that this equals

−i
√

3εµνtr[NµT8NνT3], (E.48)

which proves (E.41).

E.2 A Rewriting of the Sigma Model Lagrangian

In this section, we obtain an equivalent form of the SU(3)/[U(1)]2 sigma model’s Lagrangian. We
rewrite Λα in terms of T3,T8 and I, and expand each term occurring in (4.42) separately.
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E.2. A Rewriting of the Sigma Model Lagrangian

Real part:

We start with

L = −

3∑
α=1

tr[∂µUU†Λα∂µUU†Λα+1]. (E.49)

This can be rewritten as

L = −(1/2)
3∑
α=1

tr[∂µ(U†ΛαU)∂µ(U†Λα+1U)] (E.50)

since tr[∂µU∂µU†ΛαΛα+1] = 0. Note that

6Λ1 =
√

3T8 + 2I + 3T3, (E.51)

6Λ2 =
√

3T8 + 2I − 3T3, (E.52)

3Λ3 = I −
√

3T8, (E.53)

where I is the identity matrix. Substituting this into (E.50), we may drop the I terms since
∂µ(U†U) = 0. Thus

36L = − (1/2)tr[∂µ(U†(
√

3T8 + 3T3)U)∂µ(U†(
√

3T8 − 3T3)U)] (E.54)

− tr[∂µ(U†(
√

3T8 − 3T3)U)∂µ(U†(−
√

3T8)U)] (E.55)

− tr[∂µ(U†(−
√

3T8)U)∂µ(U†(
√

3T8 + 3T3)U)]. (E.56)

Collecting terms, we find
L = (1/8)tr[∂µ(U†TγU)∂µ(U†TγU)]. (E.57)

This result doesn’t depend on how we choose the diagonal Gell-Mann matrices. Note that the
diagonal matrix elements of the two diagonal Gell-Mann matrices together with

√
2/3I form a

complete orthogonal set of real vectors with norm
√

2. Thus:∑
γ

[Tγ]ii[Tγ] j j = 2δi j −
2
3
, (E.58)

and we may also write:
L = (1/8)∂µ([U†]i j[U] jk)∂µ([U†]k j[U] ji). (E.59)

The 2/3 term can be dropped because it gives a term containing ∂µ(U†U). The same result is ob-
tained with any basis of diagonal Gell-Mann matrices which obey the same completeness condition
and the same normalization.
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E.2. A Rewriting of the Sigma Model Lagrangian

Imaginary part:

We start with

−εµν

3∑
α=1

tr[∂µUU†Λα∂νUU†Λα+1] (E.60)

and define Nµ := ∂µUU†. Then we have

36tr[NµΛ1NνΛ2] = tr[Nµ(
√

3T8 + 2I + 3T3)Nν(
√

3T8 + 2I − 3T3)] (E.61)

= 2
√

3tr[NµNνT8] + 3
√

3tr[NµT3NνT8] + 2
√

3tr[NµT8Nν] (E.62)

+ 6tr[NµT3Nν] − 3
√

3tr[NµT8NνT3] − 6tr[NµNνT3] (E.63)

= − 12tr[NµNνT3] − 6
√

3tr[NµT8NνT3] (E.64)

and

36tr[NµΛ2NνΛ3] = 2tr[Nµ(
√

3T8 + 2I − 3T3)Nν(I −
√

3T8)] (E.65)

= 2
√

3tr[NµT8Nν] − 6tr[NµT3Nν] (E.66)

− 4
√

3tr[NµNνT8] + 6
√

3tr[NµT3NνT8] (E.67)

= 6tr[NµNνT3] − 6
√

3tr[NµNνT8] − 6
√

3tr[NµT8NνT3] (E.68)

and

36tr[NµΛ3NνΛ1] = 2tr[Nµ(I −
√

3T8)Nν(
√

3T8 + 2I + 3T3)] (E.69)

= 6
√

3tr[NµNνT8] + 6tr[NµNνT3] − 6
√

3tr[NµT8NνT3]. (E.70)

Taking the sum of all three, we find

36εµν
3∑
α=1

tr[∂µUU†Λα∂νUU†Λα+1] = −18
√

3tr[∂µUU†T8∂µUU†T3]. (E.71)
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Appendix F

Two Identities Involving SU(n)
Structure Factors

In this appendix, we prove two identities involving the SU(n) structure factors.

F.1 Identity 1

Here we prove
gche(µ)

ge
face fbce = δab

n−1∑
i=1
i,t

hi(µ)
gi

g|t−i| (F.1)

where t := |α − β|
∣∣∣∣
Iαβ3a

and gx := gx mod n for x > n. Since a, c, e all correspond to off-diagonal

generators, face will vanish unless
Ia , Ic , Ie , Ia. (F.2)

Moreover, for a and e fixed, there is a unique value of c such that face , 0. Calling this value c∗,
we then have

gche(µ)
ge

face fbce =
1
4
δab

gc∗he(µ)
ge

(no sum over e) (F.3)

since fbc∗e = 0 unless a = b, and all purely off-diagonal structure factors in SU(n) have magnitude
1
2 . Moreover, one can verify explicitly that for a ∈ Iαβ and e ∈ Iγδ, with Iαβ ∩ Iγδ = ∅,

gc∗ = δαγg|β−δ| + δαδg|β−γ| + δβγg|α−δ| + δβδg|α−γ|. (F.4)

Note that if {α, β}∩ = {γ, δ} = ∅, [Ta,Te] = 0. Therefore, writing
∑

e =
∑
γ<δ

∑
e∈Iγδ , the left hand

side of (F.1) is

gche(µ)
ge

face fbce =
1
4
δab

n∑
γ<δ

he(µ)
ge

∑
e∈Iγδ
e<Iαβ

[
δαγg|β−δ| + δαδg|β−γ| + δβγg|α−δ| + δβδg|α−γ|

]
(F.5)

=
δab

2

n∑
γ<δ

Iγδ,Iαβ

h|δ−γ|(µ)
g|δ−γ|

[
δαγg|β−δ| + δαδg|β−γ| + δβγg|α−δ| + δβδg|α−γ|

]
.
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F.2. Identity 2

We simplify each of these four terms. Let t := β−α > 0 (we assume without loss of generality that
α < β). Then:

•
n∑
γ<δ

Iγδ,Iαβ

h|δ−γ|(µ)
g|δ−γ|

δαγg|β−δ| =
n∑

δ=α+1
δ,β

h|δ−α|(µ)
g|δ−α|

g|β−δ| =
n−α∑
i=1
i,t

hi(µ)
gi

g|t−i| (F.6)

•
n∑
γ<δ

Iγδ,Iαβ

h|δ−γ|(µ)
g|δ−γ|

δαδg|β−γ| =
α−1∑
γ=1

h|α−γ|(µ)
g|α−γ|

g|β−γ| =
n−1∑

i=n−α+1

hi(µ)
gi(µ)

g|i−t| (F.7)

•
n∑
γ<δ

Iγδ,Iαβ

h|δ−γ|(µ)
g|δ−γ|

δβγg|α−δ| =
n∑

δ=β+1

h|δ−β|(µ)
g|δ−β|

g|α−δ| =
n−β∑
i=1

hi(µ)
gi

g|t+i| (F.8)

•
n∑
γ<δ

Iγδ,Iαβ

h|δ−γ|(µ)
g|δ−γ|

δβδg|α−γ| =
β−1∑
γ=1
γ,α

h|β−γ|(µ)
g|β−γ|

g|α−γ| =
n−1∑

i=n−β+1
i,n−t

hi(µ)
gi

g|i+t| (F.9)

where it is understood that gx := gx mod n for x > n. In (F.7) and (F.9), we used the fact that gi = gn−i

and hi = hn−i in the last equations. Combining these results, we have

gche(µ)
ge

face fbce =
1
2
δab


n−1∑
i=1
i,t

hi(µ)
gi

g|t−i| +

n−1∑
i=1

i,n−t

hi(µ)
gi

g|t+i|

 . (F.10)

Finally, replacing i → n − i in the second sum, we see that these two terms are in fact equal.
Therefore, we arrive at

gche(µ)
ge

face fbce = δab

n−1∑
i=1
i,t

hi(µ)
gi

g|t−i|, (F.11)

which completes the proof.

F.2 Identity 2

Here we prove

gc fbcE facE =
1
2
δab

ga +
1
2

∑
c

gc

 . (F.12)
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F.2. Identity 2

We first write

gc fbcE facE =

n∑
γ<δ

∑
c∈Iγδ

gc fbcE facE . (F.13)

If c ∈ Ia, then fbcE facE vanishes unless b = a, and in this case equals

δab

∑
E

[
faāE

]2
= δab, (F.14)

where ā is the unique index satisfying ā ∈ Ia with ā , a. Indeed, for a, ā ∈ Iαβ, we have

[Ta, T̄a] = ±2i(Λα − Λβ). (F.15)

Since Λα−Λβ generate the traceless diagonal Hermitian matrices, we may take them as the diagonal
SU(n) generators. In this case, faāE = 0 unless E corresponds to (Λα−Λβ), where it equals 1. Now,
if c < Ia, then facE will vanish except for a unique value e∗, with e∗ < Ia ∪ Ic. The term fbce forces
a = b, too. Since | fabc| =

1
2 for purely off-diagonal generators, we have

gc fbcE facE = δabga +
1
4
δab

∑
c<Ia

gc. (F.16)

Finally, noting that
1
2

ga +
1
4

∑
c<Ia

gc =
1
4

∑
c

gc (F.17)

completes the proof.
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Appendix G

Dispersion Relations For SU(n) Chains

In this appendix, we record the results of Section 6.3 and Section 6.4 in two tables.

G.1 Dispersion Relations

The following table lists the possible dispersion relations for any SU(n) representation satisfying
pα , pβ for all nonzero pα. The second column counts the minimum number of complex fields ϕα

that will have linear dispersion in the corresponding sigma model. The third column lists conditions
that the pα must satisfy in order to achieve maximal linear dispersion (all n complex fields). Each
condition is paired with a number in parentheses, (x), indicating how many fields become linear
dispersing when that condition is satisfied. Additional comments are also included on the right
hand side of the third column.

Representation Min # Conditions
k = 1 n none

k = n − 1 2

pα + pn−α+1 = p1 (2) n even; α = 2, . . . , n
2

pα + pn−α+1 = p1 (2)

2p n+1
2

= p1 (1) n odd; α = 2, . . . , n−1
2

n = kλ 2λ

pα + pk+1−α = p1 + pk (2λ) k even; α = 2, . . . , k
2

pα + pk+1−α = p1 + pk (2λ)

2p k+1
2

= p1 + pk (λ) k odd; α = 2, . . . , k−1
2

n = 2λ + 1, k = 2 λ + 1 λp1 = (λ + 1)p2 (λ)

Continued on next page
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G.1. Dispersion Relations

n = kλ + 1
2λ

pα + pk+2−α = p2 + pk (2λ)

(λ + 1)(p2 + pk) = 2λp1 (λ + 1) k odd; α = 3, . . . , k+1
2

λ = even, k > 2

pα + pk+2−α = p2 + pk (2λ)

2p k+2
2

= p2 + pk (λ)

(λ + 1)(p2 + pk) = 2λp1 (λ + 1)
k even; α = 3, . . . , k

2

n = kλ + 1
2λ

pα + pk+2−α = p2 + pk (2λ)

(λ + 1)(p2 + pk) = 2λp1 (λ + 1) k odd; α = 3, . . . , k+1
2

λ = odd, k > 2

pα + pk+2−α = p2 + pk (2λ)

2p k+2
2

= p2 + pk (λ)

(λ + 1)(p2 + pk) = λp1 (λ + 1)
k even; α = 3, . . . , k

2

n = kλ + c

c = even

c , k − 1

k > 1

2(λ + 1)

pα + pc+1−α = p1 + pc (2(λ + 1))

(λ + 1)(pβ + pk−β+c+1) = λ(p1 + pc) (2λ)

2(λ + 1)p k+c+1
2

= λ(p1 + pc) (λ)

k odd

α = 2, . . . ,
c
2

β − c = 1, . . . ,
k − c − 1

2

pα + pc+1−α = p1 + pc (2(λ + 1))

(λ + 1)(pβ + pk−β+c+1) = λ(p1 + pc) (2λ)

k even;α = 2, . . . ,
c
2

β = c + 1, . . . , c +
k − c

2

Continued on next page
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G.2. Topological Angles

n = kλ + c

c = odd

c , k − 1

k > 1

2(λ + 1)

pα + pc+1−α = p1 + pc (2(λ + 1))

2p c+1
2

= p1 + pc (λ + 1)

(λ + 1)(pβ + pk−β+c+1) = λ(p1 + pc) (2λ)

2(λ + 1)p k+c+1
2

= λ(p1 + pc) (λ)

k even

α = 2, . . . ,
c − 1

2

β − c = 1, . . . ,
k − c − 1

2

pα + pc+1−α = p1 + pc (2(λ + 1))

2p c+1
2

= p1 + pc (λ + 1)

(λ + 1)(pβ + pk−β+c+1) = λ(p1 + pc) (2λ)

k odd;α = 2, . . . ,
c − 1

2

β = c + 1, . . . , c +
k − c

2

n = λk + (k − 1)
2(λ + 1)

pα + pk−α = p1 + pk−1 (2(λ + 1))

(λ + 1)pk = λ(p1 + pk−1) (λ) k odd;α = 2, . . . , k−1
2

λ even

pα + pk−α = p1 + pk−1 (2(λ + 1))

(λ + 1)pk = λ(p1 + pk−1) (λ)

2p k
2

= p1 + pk−1 (λ + 1)
k even;α = 2, . . . , k−2

2

n = λk + (k − 1)
2(λ + 1)

pα + pk−α = p1 + pk−1 (2(λ + 1))

(λ + 1)pk = λ(p1 + pk−1) (λ) k odd;α = 2, . . . , k−1
2

λ odd

pα + pk−α = p1 + pk−1 (2(λ + 1))

2(λ + 1)pk = λ(p1 + pk−1) (λ)

2p k
2

= p1 + pk−1 (λ + 1)
k even;α = 2, . . . , k−2

2

G.2 Topological Angles

The following table lists the possible topological angles for various representations of SU(n) chains.
The index j runs from 1 to λ and the index t runs from 1 to λ + 1. These angles can often be
simplified by using the freedom of shifting each angle by the same constant. For the relationships
between angle and conditions on the pα, refer to Section 6.4 in the main text.
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G.2. Topological Angles

Representation Topological Angles

k = 1 θα =
2πp1

n (α − 1) α = 1, 2, . . . , n

k = n − 1 θα = πpα α = 1, 2, . . . , n

k = n
λ θα, j =

π(pα+pk+1−α)
λ ( j − 1) + πpk+1−α α = 1, . . . , k

n = 2λ + 1, k = 2

θt =
2πp1

λ + 1
(t − 1) + πp1(λ − 1)

θ̃ j =
2πp2

λ
( j − 1) + πp2λ

n = kλ + 1, k > 2

λ = even, λ > 1

θα, j =
π(pα + pk+2−α)

λ
( j − 1) + πpα

θt =
2πp1

λ + 1
(t − 1) + πp1

α = 2, . . . , k

n = kλ + 1, k > 2

λ = odd, λ > 1

θα, j =
π(pα + pk+2−α)

λ
( j − 1) + πpα +

π(pα + pk+2−α)
2

(λ − 1)

θt =
2πp1

λ + 1
(t − 1) α = 2, . . . , k

n = kλ + c, c , 1, k − 1

θα,t =
π(pα + pc−α+1)

λ + 1
(t − 1) + πλpc−α+1 + π(λ − 1)pα

θ̃β, j =
π(pβ + pk−β+c+1)

λ
( j − 1) + π(λ + 1)pk−β+c+1 + πλpβ

α = 1, . . . , c

β = c + 1, . . . , k

n = kλ + (k − 1)

λ = odd

θα,t =
π(pα + pk−α)

λ + 1
(t − 1) + πpk−α

θ j =
2πpk

λ
( j − 1) + pkπ

α = 1, . . . , k − 1

n = kλ + (k − 1)

λ = even

θα,t =
π(pα + pk−α)

λ + 1
(t − 1) + πpk−α +

π(pα + pk−α)
2

(λ − 2)

θ j =
2πpk

λ
( j − 1) α = 1, . . . , k − 1
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