
ON THE BARTNIK MASS OF TWO-SPHERES WITH NON-NEGATIVE CONSTANT MEAN

CURVATURE

by

ADAM MARTENS

B.Sc., The University of British Columbia, 2019

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES

(Mathematics)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

April 2021

c©Adam Martens, 2021



The following individuals certify that they have read, and recommend to the Faculty of Graduate

and Postdoctoral Studies for acceptance, the thesis entitled:

On the Bartnik mass of two-spheres with non-negative constant mean curvature

submitted by Adam Martens in partial fulfillment of the requirements for the degree of Master

of Science in Mathematics.

Examining Committee:

Albert Chau, Professor, Mathematics, UBC

Supervisor

Ailana Fraser, Professor, Mathematics, UBC

Supervisory Committee Member

ii



Abstract

We establish three new upper bounds on the Bartnik quasi-local mass of triples (S2, g,H) where

S2 is a topological two sphere, g is a Riemannian metric on S2, and H ≥ 0 is a specified (constant)

value for the initial mean curvature. We use the initial data set approach under the additional

assumptions of time-symmetry (TS) and the dominant energy condition (DEC) in which one first

constructs a collar with initial boundary sphere isometric to (S2, g) and then extends to an asymp-

totically flat (AF) 3-manifold with non-negative scalar curvature (which is the DEC under the TS

setting).

The first bound extends the main result in [13] to include the boundary case. Precisely, we show

that any metric g with non-negative first eigenvalue of the operator −∆g +Kg appears as an appar-

ent horizon (in the TS/DEC/AF setting) and that its Bartnik mass is precisely the corresponding

Hawking mass.

The second bound establishes that the Bartnik mass of the triple (S2, g,H) is bounded above by

r/2 whenever g has non-negative Gaussian curvature Kg and H > 0. This result was known when

Kg is assumed to be strictly positive (see [18]) though the methods used there do not apply when

minKg = 0.

For the last bound, given any metric g with Kg ≥ 0 and any H > 0, we give an explicit constant

C (depending only on g and H) such that the Bartnik mass of the triple (S2, g,H) is bounded above

by a quantity involving C which approaches the Hawking mass as C → 0, which happens as either

H → 0 or as g becomes round. Moreover, C remains bounded if H → ∞ or r2 minKg → 0. This

result can be extended to arbitrary metrics (that do not necessarily satisfy Kg ≥ 0) although the

resulting bound in this case is only finite if H is sufficiently large depending on g.

iii



Lay Summary

Mathematical general relativity, roughly speaking, is the study of mathematical models for our

universe which capture how matter bends spacetime. One key feature of general relativity is that

there is not a well-defined way of measuring mass since any notion of energy density is observer

dependent. Despite this, estimating the mass of a spacetime (or a portion thereof) remains important

in physics. There have therefore been many suggested notions of mass, one of which is due to Robert

Bartnik. Though it is recognized as being very physically accurate, Bartnik mass has proven to be

quite elusive as most examples in the literature provide upper bounds which are not very explicit

or use strong curvature conditions. We establish three new upper bounds on the Bartnik mass of a

sphere which are easily understood and weaken the curvature assumptions.
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Preface

Chapter 1 is mostly expository.

The remainder of this thesis (chapters 2 and 3) is collaborative research between myself and

Albert Chau. Chapter 2 consists of preliminary work that is needed in for the proofs of our main

results and is, unless otherwise stated, original intellectual property of myself.

The main results, which are presented in chapter 3, are mostly from two papers that were written

by myself and Albert Chau which have both been submitted for publication. The original idea for

section §3.2 is due to Albert Chau and the work in this section is an adaptation of [7]. The original

ideas for sections §3.3 and §3.4 were my own and the work in these sections are an adaptation of [8].
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CHAPTER 1

Background

In this chapter, we first present the notation that will be used throughout (section §1.1), then

we delve into the necessary background information that is required to understand the main results

and their framework in the wider setting of general relativity. Section §1.2 summarizes the necessary

definitions and theorems of Riemannian geometry. A primary reference of which is John Lee’s In-

troduction to Riemannian Manifolds [11]. Similarly, section §1.3 summarizes key items from general

relativity as well as their mathematical interpretations. While most of the basic definitions can be

found in Robert Wald’s General Relativity [22], many of the notions we will be discussing are more

recent and their sources will be individually referenced.
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1.1. Notation and Conventions

Notation Explanation/Definition

N Natural numbers {1, 2, 3, . . . }
R Real numbers

R>0,R≥0 Positive, non-negative real numbers

Sn Topological n-sphere

Dr,D Open disk of radius r, 1. That is {x ∈ R2 : |x| < r}, {x ∈ R2 : |x| < 1}
≡ Identically equal (reserved for functions)

≈ Diffeomorphism, diffeomorphic manifolds
∼= Isometry, isometric manifolds

LHS, RHS Left hand side, right hand side

:= Definition. LHS is given by RHS

=: Definition. RHS is given by LHS

X(M) Space of smooth vector fields on a manifold M

Ck Banach space of k-times continuously differentiable functions

Ckc Vector space of compactly supported Ck functions

Lp Banach space of functions f with
�
|f |p <∞

W k,p Banach space of functions f with f,∇f, . . . ,∇kf ∈ Lp (“Sobolev space”)

∇M,g Levi-Civita connection on (M, g). §1.2.2

∆M,g Laplace-Beltrami operator on (M, g). §1.2.3

Rm, Ric, R, K Riemannian, Ricci, scalar, Gaussian curvature. §1.2.3

Lg Linear elliptic operator −∆g +Kg. §1.3.4 and §2.2

λ1(g) First eigenvalue of Lg. §1.3.4 and §2.2

dAg, dVg Area, volume form of a metric g. §1.2.1

area(M, g) Area of (M, g). That is
�
M
dAg. §1.2.1

Met(M) Bundle of Riemannian metrics on a smooth manifold M . §1.2.1

M>0,M≥0,M=0 g ∈ Met(S2) with λ1(g) > 0, λ1(g) ≥ 0, λ1(g) = 0. §1.3.4 and §2.2

K>0,K≥0 g ∈ Met(S2) with Kg > 0, Kg ≥ 0 on S2. §1.2.3

HΣ (Scalar) mean curvature of hypersurface Σ. §1.2.4

All functions are real valued unless otherwise specified.

The authors of [13] and [7] use the notations M+ and M+ instead of M>0, M≥0 which are

favoured here. This change of notation is to maintain consistency with the other notation of R>0,

K>0.

If it is clear from context, we simplify notation by dropping subscripts and superscripts. For

example, ∆M,g may be simplified to ∆g if the manifold is understood but the metric is not or simply

∆ if both the manifold and metric are understood.
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1.2. Riemannian Geometry

In this section, we recall some basic definitions and results from Riemannian geometry. The only

proofs we present are those of Lemma 1.2.13 which will be needed in the proofs of our main results.

This section is not meant to be a complete overview of Riemannian geometry and not everything

will be re-defined here. For a more thorough treatment, we refer the reader to [11]. We henceforth

assume familiarity with the theory of smooth manifolds.

1.2.1. Metrics and Conformal Equivalence.

Definition 1.2.1.

(i) A pseudo-Riemannian metric g on a smooth manifold M is a symmetric 2-tensor field on

M that is non-degenerate and constant signature on M . We say g(p) has (k, l)-signature if

given any local coordinates xi, the matrix
(
g(p)

)
ij

has k positive and l negative eigenvalues

(counting multiplicity). If g is positive definite, it is called a Riemannian metric. We will

often write 〈X,Y 〉g or even 〈X,Y 〉 for g(X,Y ). The space of all Riemannian metrics on a

manifold M is denoted Met(M).

(ii) A pseudo-Riemannian (Riemannian) manifold is a pair (Mn, g) whereMn is a n-dimensional

smooth manifold and g is a pseudo-Riemannian (Riemannian) metric on M . In the case

n = 2, (M, g) is sometimes called a pseudo-Riemannian (Riemannian) surface.

(iii) The volume form of an oriented Riemannian manifold (Mn, g) is a smooth top dimensional

form given by dVg :=
√

det g dx. Here det g = det ((g)ij) as a matrix in local coordinates

xi. Existence of a volume form is equivalent to orientability of M . If n = 2, the volume

form is naturally called the area form and will be denoted dAg.

(iv) If (M, g) and (N,h) are Riemannian manifolds with f : M → N a diffeomorphism, then f

is called an isometry if g = f∗h (or even h = f(g)) which is shorthand for saying that

gp(u, v) = hf(p)(dfp(u), dfp(v)) for all p ∈M and u, v ∈ TpM.

If there is such an isometry, we say that (M, g) and (N,h) are isometric and we write

(M, g) ∼= (N,h) or even M ∼= N if the metrics are understood.

(v) Suppose g ∈ Met(S2). We say that (S2, g) is a round sphere (or that g is round) if there

is a natural inclusion ι : (S2, g) ↪→ (R3, δ) in which ι(S2) is a submanifold of R3 consisting

of a set of points of constant distance from a center, and ι(g) is the natural metric coming

from the ambient Euclidean metric δ. Spheres that are not round are sometimes called

squashed.

Later, we will be interested in comparing several different metrics on the same manifold that are

related. The following definition makes this notion more precise.

Definition 1.2.2. Let g, h be two Riemannian metrics on a smooth manifold M . We say that g

and h are conformally equivalent if there exists a smooth w : M → R such that h = e2wg everywhere

on M . By a slight abuse of notation, we say that the Riemannian manifolds (M, g) and (M,h) are

conformally equivalent if the metrics g and h are.

3



It is a basic exercise to show that conformal equivalence is an equivalence relation on the set

Met(M). A natural question is: What do the resulting equivalence classes look like? At least in the

case n = 2, the answer to this question is completely understood and is captured by the following

classical theorem (which we omit the proof of).

Theorem 1.2.3 (Uniformization Theorem). Every simply connected Riemannian surface is con-

formally equivalent to one of three Riemann surfaces: the Poincaré disc, the complex plane with the

Euclidean metric, or a round sphere.

An immediate corollary of the uniformization theorem is that every metric g ∈ Met(S2) is con-

formally equivalent to a round metric g∗. By further scaling by a constant factor, we may assume

that area(S2, g∗) = 4π. This fact will be used extensively throughout.

1.2.2. Connections.

One of the main goals of Riemannian geometry is to establish a notion of curvature which relates

local properties of a manifold to its global topological properties. In order to define curvature

however, we first need the notion of a connection on a manifold. Essentially, a connection is a

coordinate independent way of taking derivatives of vector fields.

Definition 1.2.4. An connection on a Riemannian manifold (M, g) is a map∇ : X(M)×X(M)→
X(M), written (X,Y ) 7→ ∇XY satisfying

(i) ∇ is linear over C∞(M) in X: For all f1, f2 ∈ C∞(M) and X1, X2, Y ∈ X(M),

∇f1X1+f2X2
Y = f1∇X1

Y + f2∇X2
Y.

(ii) ∇ is linear over R in Y : For all a1, a2 ∈ R and X,Y1, Y2 ∈ X(M),

∇Xa1Y1 + a2Y2 = a1∇XY1 + a2∇XY2.

(iii) ∇ satisfies the product rule for connections: For all f ∈ C∞(M) and X,Y ∈ X(M),

∇X(fY ) = f∇XY1 + (Xf)Y.

Some authors (e.g., [11]) use a more general definition of a connection and reserve Definition

1.2.4 to mean an affine connection. As it turns out, given any Riemannian manifold (M, g), there

is a cannonical choice (as described in Definition 1.2.5) of connection which is affine. Therefore,

whenever we write ∇, it will henceforth only refer to this natural connection.

Definition 1.2.5. Given any Riemannian manifold (M, g) the Levi-Civita connection ∇M,g (or

the gradient) is the unique connection that is symmetric and compatible with g. That is to say that

∇M,g = ∇ satisfies

∇XY −∇YX ≡ [X,Y ] for all X,Y ∈ X (M) (Symmetry)

∇X〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉 for all X,Y, Z ∈ X (M) (Compatibility)

The existence and uniqueness of the Levi-Cevita connection is often refered to as the Fundamental

Theorem of Riemannian Geometry. Given a coordinate system xi, the Christoffel symbols Γmij are

the components of ∇∂i∂j . That is, ∇∂i∂j = Γmij∂m.

4



By a slight abuse of notation, we also use ∇ to denote a differential operator of functions on a

Riemannian manifold (and not just vector fields).

Definition 1.2.6. Given a Riemannian manifold (M, g) and f : M → R is a smooth function, the

gradient of f (denoted∇f) is the vector field obtained from df by raising an index (i.e., ∇f = (df)#).

That is to say that

dfp(w) = 〈∇f |p, w〉 for all p ∈M, w ∈ TpM

or that

∇f = gij∂if ∂j

in local coordinates xi.

Another differential operator that we will be using throughout is the generalization of the Lapla-

cian to a Riemannian manifold (M, g).

Definition 1.2.7. Given a Riemannian manifold (M, g), the Laplace-Beltrami operator (or sim-

ply the Laplacian) is a map ∆M,g : C∞(M) → C∞(M), f 7→ div(∇f) which is given in local

coordinates xi by the formula

(1) ∆M,gf :=
1√

det g

∂

∂xj

(√
det g gij

∂

∂xi

)
f.

In the case of (M, g) ∼= (Rn, δ) (here δ is the Euclidean metric), equation (1) simplifies to the

well-known Laplacian

∆Rn,δ =

n∑
j=1

∂2

∂x2
j

.

The Laplace-Beltrami operator can be defined in terms of covariant derivatives, though formula (1)

is sufficient for our purposes.

Remark 1.2.8. If M ≈ S2, which is a special case of interest for us, it is evident using Green’s

identity that for any g ∈ Met(S2) and any u ∈ C∞(S2), we have�
S2

∆gu dAg = 0

and ∆gu ≡ 0 if and only if u ≡ c is identically constant. These facts will be used in Proposition

2.2.6.

1.2.3. Curvature.

Since the Levi-Cevita connection is a cannonical property of the metric g, it allows us to define

natural notions of the curvature of a Riemannian manifold. Each of the following definitions have

physical interpretations but we will not delve into those here.

Definition 1.2.9. Let (M, g) be a Riemannian manifold with its Levi-Cevita connection ∇.

(i) The Riemannian curvature tensor (or simply the curvature tensor) is a (0, 4)-tensor field

Rm given by its action on vector fields X,Y, Z,W as

Rm(X,Y, Z,W ) = 〈∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,W 〉

or in coordinates as

Rmijkl = glm

(
∂iΓ

m
jk − ∂jΓmik + ΓpjkΓmjk − ΓmijΓ

m
jp

)
.

5



(ii) The Ricci curvature tensor is a (0, 2)-tensor field Ric obtained by tracing the curvature

tensor. It is given by its action on vector fields as

Ric(X,Y ) = tr Rm(·, X, Y, ·)

or in coordinates as

Ricij = gkm Rmkijm.

(iii) The scalar curvature is a function R obtained by tracing the Ricci curvature tensor:

R = tr Ric(·, ·) = gij Ricij .

(iv) The Gaussian curvature of a Riemannian 2-manifold (M2, g) is given by

K =
〈(∇∂2∇∂1 −∇∂1∇∂2)∂1, ∂2

det g

where ∂1, ∂2 is a local coordinate frame. A well known formula for the Gaussian curvature

in an orthogonal parametrization of g (that is g = E(u, v)du2 +G(u, v)dv2) is

(2) K = − 1

2
√
EG

(
∂

∂u

Gu√
EG

+
∂

∂v

Ev√
EG

)
.

The existence of orthogonal parametrizations for any 2-manifold follows from Theorem

1.2.3 and the fact that the Poincaré disc metric (in the standard disc coodinates) and the

round sphere metric (in stereopgraphic projection coordinates) are both locally conformal

flat. That is to say that around every p ∈ M , there is a neighborhood U of p and a

smooth w : U → R such that (U, e2wg) is flat (i.e., the Riemannian curvature tensor

Rm vanishes). The class of metrics g ∈ Met(S2) with non-negative (positive) Gaussian

curvature is denoted by K≥0 (K>0).

Remark 1.2.10. Though we will not need it for this thesis, Gaussian curvature can be defined

for manifolds of dimension n ≥ 3 (see [11]). It is a fact that when n = 2, the Ricci and scalar

curvature (Ric and R respectively) are related to the Gaussian curvature K by

(3) Ric = Kg, R = 2K.

Though curvature is a local property of the metric, it was long theorized that if one understands

local properties of a manifold, then one can say something about a global property of the mani-

fold. This next theorem is, in all likelihood, the most well-known result of that flavour. It relates

the Gaussian curvature (a local property) to the Euler characteristic χ(M) (a global topological

property).

Theorem 1.2.11 (Gauss-Bonnet). Suppose M is a compact Riemannian 2-manifold. Then�
M

K dAg = 2πχ(M).

Corollary 1.2.12. If g is a round metric on S2, then Kg ≡ 4π
area(g) .

Proof. Let g be a round metric on S2 so that K is identically constant. By Theorem 1.2.11,

area(g)K =

�
S2
K dAg = 2πχ(S2) = 4π

and therefore K ≡ 4π
area(g) . �

6



One of the main themes of this thesis is utilizing the relationships of various quantities of con-

formally related metrics. The following lemma concerns those quantities that will be of utmost

importance in this thesis.

Lemma 1.2.13. Let h = e2wg be a conformal equivalence between Riemannian metrics g and h

on a 2-manifold M2. Then

(i) dAh = e2wdAg,

(ii) ∆h = e−2w∆g,

(iii) Kh = e−2w(Kg −∆gw), and

(iv) |∇hf |2h = e−2w|∇gf |2g for any f ∈ C∞(M).

Proof. Items (i) and (iv) are a straightforward application of their definitions:

dAh =
√

deth dx =
√

det(e2wg) dx =
√
e4w det g dx = e2w

√
det g dx = e2wdAg,

and

|∇hf |2h = hijfifj = (e2wg)ijfifj = e−2wgijfifj = e−2w|∇gf |2g.

To prove (ii), we simply plug in h = e2wg in equation (1):

∆h = − 1√
deth

∂

∂xj

(√
deth hij

∂

∂xi

)
= − 1√

det(e2wg)

∂

∂xj

(√
det(e2wg) (e2wg)ij

∂

∂xi

)
= −e−2w 1√

det g

∂

∂xj

(
e2w
√

det g e−2wgij
∂

∂xi

)
= −e−2w 1√

det g

∂

∂xj

(√
det g gij

∂

∂xi

)
= e−2w∆g.

To prove (iii), we use orthogonal local coordinates around p ∈M so that g = E(u, v)du2+G(u, v)dv2

and h = (e2wE)du2 + (e2wG)dv2. Using equation (2), we have

Kh = − 1

2
√

(e2wE)(e2wG)

(
∂

∂u

(e2wG)u√
(e2wE)(e2wG)

+
∂

∂v

(e2wE)v√
(e2wE)(e2wG)

)

= −e−2w 1

2
√
EG

(
∂

∂u

2wuG+Gu√
EG

+
∂

∂v

2wvE + Ev√
EG

)
= e−2wKg − e−2w 1√

EG

(
∂

∂u

wuG√
EG

+
∂

∂v

wvE√
EG

)
.(4)

Expanding the first term in the bracket yields

∂

∂u

wuG√
EG

=

√
EG(wuuG+ wuGu)− wuG 1

2
√
EG

(EG)u

EG

=
wuuG√
EG

+
wuGu√
EG
− wuGu

2
√
EG
− wuEuG

2E
√
EG

=
wuuG√
EG

+
wuGu

2
√
EG
− wuEuG

2E
√
EG

.
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The other term is symmetric. So

1√
EG

(
∂

∂u

2wuG√
EG

+
∂

∂v

2wvE√
EG

)
=
wuu
E

+
wuGu
2EG

− wuEu
2E2

+
wvv
G

+
wvEv
2EG

− wvGv
2G2

= guuwuu − gvvΓuvvwu − guuΓuuuwu + gvvwvv − guuΓvuuwv − gvvΓvvvwv

= gijwij − gijΓkij∂kw = trg(∇2w) = ∆w.

Plugging this back into equation (4), we have Kh = e−2w(Kg −∆gw) as desired.

�

1.2.4. Extrinsic Geometry.

We have discussed several different methods of measuring the curvature of a manifold but until

now, they all measure the curvature of a manifold as an intrinsic property. If we have a natural

inclusion of Riemannian manifolds ι : Σm ↪→ Mn, one may also ask the question of how Σ curves

“relative to M”. We will make this notion more precise in the special case where Σ is a hypersurface

in M (that is, m = n − 1). Henceforth, given any p ∈ Σ, we identify p with ι(p) and TpΣ as a

subspace of Tι(p)M via the pushforward dιp.

Definition 1.2.14. Let (Mn, g) be a Riemannian manifold and Σn−1 a hypersurface in M with

the induced metric h from M . Let ν be a choice of unit normal on Σ.

(i) The second fundamental form of Σ is a a map X(Σ)× X(Σ)→ Γ(NM) given by

II(X,Y ) = (∇MX Y )⊥

where Z⊥ gives the perpendicular portion of Z to Σ.

(ii) The scalar second fundamental form with respect to ν is a symmetric covariant 2-tensor

field given by its action on X,Y ∈ X(Σ) as

ρ = 〈ν, II(X,Y )〉.

Some authors refer to the scalar second fundamental form simply as the second fundamental

form but we use this notation to remain consistent with [11]. One should also note that if

ν is replaced by −ν, then ρ changes signs but it otherwise independent of all choices.

(iii) The mean curvature of Σ with respect to ν is a function on Σ defined by

H = trhρ.

Again, if ν is replaced by −ν, then H changes signs as well but is otherwise independent of

all choices. The definition of mean curvature is an unfortunate source of inconsistency. Lee

[11] defines the mean curvature with an extra factor of 1
n−1 while many papers in the field

(see [6],[13], [17]) use the definition given above. We chose this definition so our results

are more easily compared to those in the literature.
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1.3. General Relativity

In this section, we summarize the main ideas of mathematical general relativity which pertain

directly to the contents of this thesis. As in section §1.2, this is by no means intented to be a

complete overview of the subject matter. A more complete treatment can be found in [22] and [21]

and the references therein.

1.3.1. Spacetime and Einstein’s Field Equation.

A Lorentzian manifold (Ln, h) is a n-dimensional pseudo-Riemannian manifold with (n − 1, 1)

signature. That is to say, for any p ∈ L, there is some choice of coordinate xi in which the metric h

evaluated at p is given by the matrix

h(p)ij =


1 i = j < n

−1 i = j = n

0 else.

.

An immediate consequence of h not being positive definite is that not all non-zero vectors at a

particular point have positive “length”. It is natural then to decompose the tangent space as

TpL = {X ∈ TpL : 〈X,X〉h > 0} ∪ {X ∈ TpL : 〈X,X〉h = 0} ∪ {X ∈ TpL : 〈X,X〉h < 0}.

Vectors satisfying 〈X,X〉h = 0 are said to be null and form a cone called a “lightcone”. Vectors

satisfying 〈X,X〉h < 0 are those which are contained inside the lightcone (called time-like). On

the other hand, those vectors satisfying 〈X,X〉h > 0 are those which are not contained inside the

lightcone (called space-like). Submanifolds M ⊂ L with the induced metric are said to be null,

timelike, or spacelike if the tangent space of any point p ∈ M is composed of null, timelike, or

spacelike vectors respectively.

Lorentzian manifolds arise naturally in Einstein’s general theory of relativity in which spacetime

is a 4-dimensional Lorentzian manifold (L4, h). In this setting, photons travel along null curves and

massive particles travel along timelike curves (i.e. slower than light). It is sometimes useful to think

of a spacelike hypersurfaces (or spacelike slices) as being time-slices for a particular observer though

we warn the reader that this need not always be the case. One of Einstein’s assertions when he

discovered this field is that matter curves spacetime according to the equation

(5) RicL −
1

2
RLh = 8πT

which is known as Einstein’s field equation(s). Here T is the stress-energy 2-tensor representing

the matter field. The field of mathematical general relativity is the study of this non-linear wave

equation and its solutions.

1.3.2. Initial Data Sets and Assumptions.

Full solutions to equation (5) are very difficult to understand. Such a solution (L4, h) would

characterize an entire (theoretical) universe and not simply a “snapshot” of what it looks like. The
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task of finding such solutions, is therefore extremely daunting. It is much simpler to split spacetime

into a 3-dimensional spacelike hypersurface (M3, γ) and whatever extra information is required to

tell how M “evolves in time” persae. It turns out that the only extra information that is required

is the scalar second fundamental form of M inside of L (which we denote by p). Of course, not

all tuples (M3, γ, p) will result in a solution (L, h) to equation (5). In order for this to happen, we

further require (M3, γ, p) to satisfy the Einstein constraint equations:

(6)

{
16πµ = RM − |p|2M + (trMp)

2

8πJ = divMp− trMp.

Here η is a unit normal vector to M , ι : M ↪→ L is the inclusion map, µ = T (η, η) is called the

energy density, and J = ι∗(T (η, ·)) is called the energy flux density. With this in mind, we have the

following definition.

Definition 1.3.1 (Initial data sets, cf. Schoen-Yau [21]). An initial data set is a tuple (M3, γ, p)

which satisfies the Einstein constraint equations (6).

The study of 3-dimenional space-like hypersurfaces (M3, γ) is often focused on their intrinsic

Riemannian geometry, while little emphasis is placed on the ambient spacetime beyond the general

relativistic context it provides. For this reason, it is often simply assumed that p ≡ 0 in (6), which

is the so called time symmetric setting. We will also operate under this assumption for this thesis,

and will henceforth ignore p.

Even with the assumption of time-symmetry (i.e., p ≡ 0), many initial data sets (M3, γ) are not

considered very physically accurate. It is for this reason that when studying initial data sets, one

often imposes what is called an energy condition which attempts to capture the notion that “energy

should be positive”, despite the fact that this notion is not well defined (see section 1.3.3). In this

thesis, we will adopt the dominant energy condition (DEC) on our initial data sets (M,γ) which is

the requirement that −T (η, ·)# is either future-pointing or null. Physically speaking, DEC is the

condition that mass/energy cannot be observed to flow faster than light. While this assumption

satisfies our physical intuition, it is seemingly quite puzzling from a mathematical perspective. De-

spite this, one can show that under the TS assumption, the DEC is equivalent with (M,γ) having

non-negative scalar curvature (i.e., Rγ ≥ 0).

In addition to the TS and DEC assmptions, we will make the assumption that our initial data

sets (M,γ) are asymptotically flat (Definition 1.3.2). This captures the physical idea that (M,γ) is

a slice of spacetime which models an isolated system.

Definition 1.3.2 (Asymptotically flat, cf. Wald [22]). A Riemannian 3-manifold (M,γ) is said

to be asymptotically flat (AF) if it satisfies the following:

(i) There exists a compact K ⊂M such that M \K ≈ R3 \ {|x| ≤ 1},
(ii) in the coordinates coming from the diffeomorphism in (i), the metric γ satisfies

|γ − δ|+ r|∂γ|+ r2|∂2γ| ≤ Cr−1

where C > 0 and δ is the standard flat metric on R3 \ {|x| ≤ 1}, and

(iii) Rγ ∈ L1(M).
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Remark 1.3.3. In part (i) of Definition 1.3.2, one usually allows

M \K ≈ tmj=1Ej

where Ej = R3 \ {|x| ≤ 1} for all j (called the ends of M). We chose to omit this from Definition

1.3.2 as the only initial data sets we will be considering have a single end.

One trivial example of an asymptotically flat manifold is (R3, δ) which appears as initial datum

for the Minkowski space (R3 × R, δ − dt2), with T ≡ 0. We end this section with a less trivial, but

more useful example of an asymptotically flat initial data set.

Example 1.3.4 (mass-m Schwarzschild). Let g∗ denote a round metric on S2 with area 4π. The

mass-m Schwarzschild Riemannian manifold

Sm :=

(
S2 × (2m,∞), r2g∗ +

(
1− 2m

r

)−1

dr2

)
is asymptotically flat (with one end) and scalar flat (i.e., R ≡ 0). This manifold is aptly named

“mass-m” as the ADM mass (see Definition 8) is precisely equal to m. For any r0 > 2m, we call the

restriction Sm|[r0,∞) an outer Schwarzschild region. The mass-m Schwarzschild manifold appears as

a time symmetric initial data set for the Lorentzian mass-m Schwarzschild manifold(
S2 × (2m,∞)× R, r2g∗ +

(
1− 2m

r

)−1

dr2 −
(

1− 2m

r

)
dt2

)
which is a non-trivial static solution to equation (5) with T ≡ 0.

1.3.3. Measuring Mass.

One of the ways which general relativity differs from Newtonian mechanics is in the way that

mass is measured. In general relativity, energy density and energy flux density are not well defined

in the sense that they depend on the observers velocity. Because of this, there are many competing

notions of mass/energy. We will introduce several of these notions of mass here while discussing how

they compare. For the remainder of this section, (M3, γ) is always AF with one end satisfying the

DEC and TS assumptions. We warn the reader that under these conditions, some of the definitions

seen here are somewhat simplified but will be sufficient for our purposes.

Definition 1.3.5 (Hawking mass, cf. Hawking [9]). For a closed 2-submanifold (Σ, g) of (M3, γ),

the Hawking mass of Σ with mean curvature H is

(7) mH(Σ, g,H) :=

√
area(Σ, g)

16π

(
1− 1

16π

�
Σ

H2 dAg

)
.

Hawking mass is an example of quasi-local mass in the sense that it measures quantities defined

within a finite region of space.

The case of particular interest for us is when Σ ≈ S2 and H is constant. In which case, we may

write rg to denote the radius of g (that is rg =
√

area(S2,g)
4π ) and so equation (7) simplifies to

mH(S2, g,H) =
rg
2

(
1−

H2r2
g

4

)
.
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One physical interpretation of the Hawking mass of a 2-sphere is the measurement of the degree to

which ingoing and outgoing lightrays are bent by the mass enclosed. We remark here that, contrary

to physical intuition, the Hawking mass is not necessarily positive.

The next notion of mass we will be considering was originally formulated by Arnowitt, Deser,

and Misner in 1959.

Definition 1.3.6 (ADM mass, cf. Arnowitt-Deser-Misner [1]). Let K ⊂ M be as in Definition

1.3.2. That is to say that K is compact and M \K ≈ R3 \ {|x| ≤ 1}. Let xi be coordinates on M

coming from this diffeomorphism. The ADM mass of (M,γ) is

(8) mADM (M,γ) :=
1

16π
lim
R→∞

�
|x|=R

(∂jγij − ∂iγjj)
xj

R
dσR.

Here dσR is the area form induced by the Euclidean metric on {|x| = R} ⊂ R3.

Assuming appropriate decay conditions (such as our AF assumption), Robert Bartnik showed

(Lemma 2.1 in [2]) that the ADM mass is well-defined in the sense that the integral in (8) is

independent of the choice of coordinate. Further assuming a completeness condition, Schoen and

Yau proved that mADM (M,γ) is non-negative.

Theorem 1.3.7 (Positive mass theorem, Shoen-Yau [20, 21]). Let (M3, γ) be asymptotically

flat with non-negative scalar curvature. If (M3, γ) is complete without boundary, or with bound-

ary consisting of closed surfaces whose mean curvature vector does not point outside M , then

mADM (M,γ) ≥ 0 with equality if and only if (M3, γ) ∼= (R3, δ).

In this thesis, we will be concerned with the special case M ≈ S2 × [0,∞). The TS/DEC

conditions equate to (M,γ) having non-negative scalar curvature. If (M,γ) is asymptotically flat

and satisfies a non-degeneracy condition (see Definition 1.3.8), we can relate the ADM mass of M

to the Hawking mass of ∂M ∼= (S2, g) by the Riemannian Penrose inequality (Theorem 1.3.9).

Definition 1.3.8 (Outerminimizing, cf. Bray [5]). Let (M3, γ) be a Riemannian manifold with

M ≈ S2 × [0,∞). We say that ∂M = S2 × {0} is outerminimizing if there exists no surface Σ ⊂M
separating ∂M from infinity with less area.

Theorem 1.3.9 (Riemannian Penrose inequality, Bray [5] and Huisken-Ilmanen [10]). Let (M3 ≈
S2 × [0,∞), γ) be asymptotically flat with non-negative scalar curvature such that ∂M ∼= (S2, g) is

outerminimizing with mean curvature H with respect to the inward pointing unit normal. Then

mADM (M3, γ) ≥ mH(S2, g,H) =

√
area(S2, g)

16π

(
1− 1

16π

�
Σ

H2 dAg

)
.

Remark 1.3.10. Theorem 1.3.9 was originally proved in a much more general context: Bray

[5] proved a version in which ∂M could be a disconnected surface but only allows H = 0, while

Huisken-Ilmanen [10] proved a version for general H but requires ∂M to be connected. Since we

will be always assuming that M3 ≈ S2× [0,∞), we only state this simplified version that will suffice

for our purposes.

It is natural to wonder: given any g ∈ Met(S2) and a smooth function H on S2, is it possible to

construct a manifold (M ≈ S2 × [0,∞), γ) which satisfies the hypothesis of Theorem 1.3.9? This is

the motivation for the following definition.
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Definition 1.3.11 (Admissible extension, cf. Cabrera et al. [6]). Let g ∈ Met(S2) and let H be

(smooth) function on S2. An admissible extension of g is any asymptotically flat (M3 ≈ S2×[0,∞), γ)

such that

(i) (M,γ) has non-negative scalar curvature,

(ii) γ|{t=0} ≡ g,

(iii) ∂M has mean curvature H relative to the inward pointing unit normal, and

(iv) ∂M is outerminimizing.

It is highly non-obvious whether or not admissible extensions exist for arbitrary g ∈ Met(S2)

and H ∈ C∞(S2). If (M3, γ) is such an extension, Theorem 1.3.9 guarantees that mADM (M3, γ) ≥
mH(S2, g,H). In this case, it is natural to ask the question: “how close can mADM (M3, γ) get to its

known lower bound of mH(S2, g,H)?”. This question is the motivation for our last notion of mass

that will be discussed here.

Definition 1.3.12 (Barnik mass, Bartnik [3]). Let g ∈ Met(S2) and H ∈ C∞(S2). If admissible

extensions of g exist, then the Barnik mass of the triple (S2, g,H) is

mB(S2, g,H) := inf{mADM (M3, γ) : (M3, γ) is an admissible extension}.

An immediate corrolary to Theorem 1.3.9 is that mB(S2, g,H) ≥ mH(S2, g,H) but despite its

simple definition, finding upper bounds for the Bartnik mass has proven to be quite elusive. Not

only are admissible extensions often quite involved to construct, but the ADM mass of an arbitrary

admissible extension can be very difficult to calculate, nevermind the infemum of all such quantities.

Despite this, there have been some progress made in recent years. Mantoulidis and Schoen [13]

introduced a groundbreaking method in which they first construct a collar extension (similar to our

generic notion of a collar that is introduced in section §2.1), and then “glue” on an outer Scwarzschild

region (a more simplified version of this is gluing process is represented by Lemma 2.1.7 presented

in section §2.1 as well). Using this method, they were able to prove the following result.

Theorem 1.3.13 (Theorem 2.1 in [13]). If g ∈ Met(S2) with the property that the first eigenvalue

of the operator −∆g +Kg is positive, then

mB(S2, g, 0) = mH(S2, g, 0).

Theorem 3.1.1 in this thesis is an extension of this result to boundary case of when g is a metric

with the property that the first eigenvalue of the operator −∆g+Kg is equal to zero. The significance

of these spaces of metrics in the general relativity context will be discussed in the next subsection.

1.3.4. Horizons.

General relativity is, roughly speaking, the study of how objects with mass bend spacetime it-

self. When an objects mass is large enough compared to the objects size (commonly refered to as

its Schwarzschild radius), a black hole forms (at least theoretically). These are aptly called “black”

because around them, a boundary forms beyond which events cannot affect an observer. This bound-

ary is called the event horizon of a black hole and have been an object of great interest in physics

and pop science.
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Since an initial data set (M3, γ, p) is essentially a “cross section” of a 4-dimensional spacetime

(L4, h), a natural object for us to study is the relative cross section of an event event horizon of

a black hole. Such cross sections are typical examples of apparent horizons which are outermost

closed surfaces in the initial data set whose future outgoing null normal field have zero divergence

in the ambient spacetime. Under the DEC, Hawking’s Theorem on the topology of black holes [9]

states that an apparent horizons in an asymptotically flat (M,γ) is a topological 2-sphere. In this

case, write g for the induced metric from γ on the apparent horizon Σ ≈ S2 ⊂ M . Under the

further assumption of TS, Huisken and Ilmanen [10] showed that an apparent horizon Σ ⊂ M can

be characterized as a stable minimal 2-sphere. Here stability is the condition that

(9)

�
S2
ϕLgϕdAg =

�
S2
ϕ(−∆g +Kg)ϕdAg ≥

1

2

�
S2

(Rγ + |ρ|2)ϕ2dAg for all ϕ ∈ C∞(S2)

where ρ is the scalar second fundamental form on (S2, g) in (M,γ). Since the DEC and TS as-

sumptions imply that Rγ ≥ 0, we find that the operator Lg := −∆g + Kg is non-negative on

(S2, g) ∼= ∂M . In particular, the first eigenvalue of Lg (denoted λ1(g)) is non-negative on any

apparent horizon (S2, g). Therefore, we have the inclusion

AH ⊂ {g ∈ Met(S2) : λ1(g) ≥ 0} =: M≥0

where

AH := {g ∈ Met(S2) coming from an apparent horizon in DEC/TS/AF setting}.

While the space of apparent horizons AH is defined somewhat extrinsicly in terms of an ambient

manifold M , the space M≥0 is defined purely instrinsicly on S2. In this sense, the opposite inclusion

would provide a complete instrinsic characterization of AH, though this inclusion is far from obvious.

The proof of Theorem 1.3.13 (seen in [13]) actually proves the (partial) reverse inclusion

AH ⊃ {g ∈ Met(S2) : λ1(g) > 0} =: M>0

since in the admissible extensions they construct, ∂M ∼= (S2, g) satisfies the stability condition given

in (9). Thus, whenever g ∈ M>0, Mantoulidis and Schoen [13] proved that (S2, g) appears as

an apparent horizon with Bartnik mass precisely equal to the Hawking mass (in the AF/TS/DEC

setting). One of the main contributions of this thesis is to extend Mantoulidis’ and Schoen’s result

to include the “boundary case” of g ∈M=0. We therefore establish the following.

Theorem (Theorem 3.1.1). For any g ∈M=0, g ∈ AH and

mB(S2, g, 0) = mH(S2, g, 0).

Thus, when the results of Mantoulidis and Schoen are combined with Theorem 3.1.1, we have

the following.

Theorem 1.3.14. Apparent horizon in the AF/TS/DEC setting are precisely given by the class

of metrics M≥0. Moreover, the Bartnik mass of such a horizon is

mB(S2, g, 0) = mH(S2, g, 0) =

√
area(S2, g)

16π
.
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CHAPTER 2

Preliminaries

Since our main theorems are bounds on the Barnik mass for specific classes of metrics, their

proofs require constructing admissible extensions of metrics g on S2. To construct such an exten-

sion, we use a technique first introduced by Mantoulidis and Schoen in which we construct “collar

extensions” of a given metric, then we “glue” on an outer Schwarzschild region (as illustrated below).

Section §2.1 is devoted to the construction and the general properties of collar extensions. At the

end of section §2.1, we make precise the notion of “gluing” a collar to an outer Schwarzschild region.

Figure 1. Gluing an outer Schwarzschild region to a g-collar

We have already seen in section §1.3.4 that the class of metrics M≥0 (that is the class of metrics

g ∈ Met(S2) with non-negative first eigenvalue of the operator Lg = −∆g + Kg) arises naturally

in the study of apparent horizons in the TS/DEC/AF setting. Section §2.2 is devoted to better

understanding the operator Lg and its eigenvalues. Proposition 2.2.6 proves the existence of metrics

g ∈ Met(S2) satisfying λ1 = 0, which in particular shows that Theorem 3.1.1 is not vacuous.

In section §2.3 in this chapter, we discuss various properties of the classes of metrics M≥0 and

K≥0. Of most importance, given a metric g ∈M≥0 or K≥0 we construct g-admissible paths t 7→ g(t)

(see Definition 2.1.1) satisfying

λ1(g(t)) ≥ c t or min
S2×{t}

Kg(t) ≥ c t

respectively. These estimates play an important role in the proofs of Theorems 3.1.1 and 3.1.2.
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2.1. Collar Extensions

Definition 2.1.1. Given g ∈ Met(S2), a path of metrics t 7→ g(t) for t ∈ [0, 1] is called g-

admissible if

(i) t 7→ g(t) is smooth,

(ii) g(0) = g,

(iii) g(1) is round, and

(iv) d
dtdAg(t) ≡ 0.

Condition (iv) states that g(t) has pointwise constant area form which is equivalent with the path

t 7→ g(t) satisfying trg(t)g
′(t) ≡ 0 (which we henceforth write simply as trgg

′ ≡ 0). To see why this

is true, note that

trg(t)g
′(t) = g(t)ijg′(t)ij =

1

det(g(t))
[g(t)11g

′(t)22 + g(t)22g
′(t)11 − 2g(t)12g

′(t)12]

=
d
dt det(g(t))

det(g(t))
= 2

d
dtdAg(t)√
det(g(t))

.

So trgg
′ ≡ 0 if and only if d

dtdAg(t) ≡ 0.

If condition (iv) were excluded from Definition 2.1.1, it would be clear that such paths always

exist. Indeed, given any g ∈ Met(S2) we can write g = e2wg∗ where g∗ is round by the uniformization

theorem (Theorem 1.2.3) and the simple path e2(1−t)wg∗ would satisfy conditions (i)-(iii). Condition

(iv) however is significantly more complicated to resolve and the existence of such paths is due to

Mantoulidis and Schoen. We include their proof here for ease of reference later.

Proposition 2.1.2 (Lemma 1.2 in [13]). For any g ∈ Met(S2), g-admissible paths exist.

Proof. Fix some g ∈ Met(S2). By uniformization (Theorem 1.2.3) we may write g = e2wg∗ for

some round metric g∗ with area 4π. Fix a smooth decreasing function ζ : [0, 1]→ [0, 1] with ζ(0) = 1

and ζ(1) = 0. Then t 7→ e2ζ(t)w(x)g∗ is a smooth path from g to the round metric g∗. Define an

auxiliary function a : [0, 1]→ R as the solution to the initial value problem{
a′(t) = −ζ ′(t)

�
S2 w(x)dAe2ζwg∗

a(0) = 0.

That is to say that the path t 7→ ht := e2ζ(t)w(x)+2a(t)g∗ satisfies h0 = g and

d

dt
area(S2, e2ζ(t)w(x)+2a(t)g∗) = 0.

Now having fixed the metrics ht, for each t, let Xt be such that divhtXt = −2(ζ ′(t)w+ a′(t)). Take

φt to be the integral flow along Xt and consider g(t) = φ∗th(t). Property (iv) follows from

d

dt
dAg(t) =

d

dt
φ∗t dAh(t) = φ∗t

[
d

dt
dAh(t) + Lφ̇t

dAh(t)

]
= φ∗t

[
1

2
trh(t)ḣ(t)dAh(t) + divh(t)φ̇tdAh(t)

]
= φ∗t

[
2(a′(t) + ζ ′(t)w) + divh(t)φ̇t

]
dAh(t) = 0.

�
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Remark 2.1.3. In the preceeding proof, if we further require ζ to be identically constant on an

interval, then a(t) would also be constant there by its definition and consequently, the entire path

t 7→ g(t) would be constant on this interval. We will utilize this in particular when the interval in

question is a neighborhood of t = 0 or t = 1.

Associated to any g-admissible path, are two quanitities which have been discussed regularly in

the literature (e.g., [6], [14],[17]). Although our results will only use them as a method of notation

(or bookkeeping if you will), we include their definitions here for context.

Definition 2.1.4. Associated to any g-admissible path are constants α and β which are defined

as

α =
1

4
max

S2×[0,1]
|g′|2g, and β = r2 min

S2×[0,1]
Kg(t).

Here rg(t) =
√

area(g(t))
4π is the radius of the metric g(t) (which is necessarily constant since trgg

′ ≡ 0

is equivalent with dAg(t) being identically constant). It is clear that α ≥ 0 with equality if and only

if t 7→ g(t) is a constant path. Moreover, the Gauss-Bonnet theorem (Theorem 1.2.11) gives�
S2
r2Kg(t) dAg(t) = 4πr2 =

�
S2

1 dAg(t).

So 0 < β ≤ 1 with β = 1 if and only if g(t) is round for all t.

Definition 2.1.5 (Collar Extension). Given g ∈ Met(S2), a collar extension of g (or a g-collar

or simply a collar) is the manifold M = S2 × [0, 1] equipped with any Riemannian metric γ of the

form

γ = E(t)g(t) + v(x, t)2dt2

satisfying the following properties:

(i) E : [0, 1]→ R>0 and v : M → R>0 are smooth,

(ii) t 7→ g(t) is a g-admissible path,

(iii) (S2 × {0}, γ|{t=0}) is isometric to (S2, g), and

(iv) (M,γ) has non-negative scalar curvature Rγ .

We remind the reader that conditions (iii) and (iv) above are exactly conditions (i) and (ii) in the

definition of an admissible extension (Definition 1.3.11)

Remark 2.1.6. If we further require that E′ > 0 in Definition 2.1.5, then (S2 × {0}, γ|{t=0}) ∼=
(S2, g) is “outerminimizing inM” in the sense that there are no other surfaces of lesser area seperating

it from the “right” endpoint of {t = 1}. Lemma 2.1.7 will make it clear how this condition relates

to the actual definition of outerminimizing given in Definition 1.3.8.

With the convention h(t) = E(t)g(t), it is well known that the scalar curvature of a collar

extension (M,γ) is given by

(10) Rγ = 2Kh − 2v−1∆hv + v−2

[
−trhh

′′ − 1

4
(trhh

′)2 +
3

4
|h′|2h +

∂tv

v
trhh

′
]
.

It will be useful for us later to have this expression in terms of E(t) and g(t) directly instead of h(t).

So to that end, we compute

trhh
′ = E−1trg[E

′g + Eg′] = E−1E′ trgg + trgg
′ = 2E−1E′

17



and

|h′|2h = E−2|E′g + Eg′|2g = E−2[2(E′)2 + E2|g′|2g].

Using this, we have

−1

4
(trhh

′)2 +
3

4
|h′|2h = −E−2(E′)2 +

3

2
E−2(E′)2 +

3

4
|g′|2g =

1

2
E−2(E′)2 +

3

4
|g′|2g.

Proposition 1.2.13 (iii) yields Kh(t) = E(t)−1
(
Kg(t) − 1

2∆g(t) log(E(t)
)

= E(t)−1Kg(t) since E is a

function only of t. We also have

trhh
′′ = E−1trg[E

′′g + 2E′g′ + Eg′′] = 2E−1E′′ + trgg
′′

and

0 = [(trgg
′)]′ = trgg

′′ − |g′|2g =⇒ trgg
′′ = |g′|2g.

Using these simplifications in equation (10) yields

(11) Rγ = 2E−1Kg(t) + v−2

[
−2E−1E′′ − 1

4
|g′|2g +

1

2
E−2(E′)2 + 2E−1E′

∂tv

v

]
.

Given a collar extension (M,γ), consider the submanifold Σt := S2×{t} with unit normal vector

ν = − 1

v(x, t)

∂

∂t
.

We refer to Σt as the foliating sphere at time t and ν as the inward pointing unit normal. The mean

curvature of Σt as a submanifold of (M,γ) with respect ν is calculated as

ρ(t)ij = 〈ν, II(∂i, ∂j)〉γ = γabν
a((∇M∂i ∂j)

⊥)b = γttν
t((∇M∂i ∂j)

⊥)t

= γtt
1

−v(x, t)
(ΓM )tij = γtt

1

−v(x, t)
(−1

2
γttγij;t) =

1

2v(x, t)
hij;t.

Since h(t) = E(t)g(t), we have

h′ = E′(t)g(t) + E(t)ġ(t) =⇒ trhh
′ = E−1trgh

′ = 2E′(t)E−1(t).

Note that we used trg ġ ≡ 0 in the above calculation. Therefore

Ht = trh(t)ρ(t) =
1

2v(x, t)
trh(ḣ) =

E′(t)E−1(t)

v(x, t)
.

To prove our main theorems, we will take a specified g ∈ Met(S2) and a constant H ≥ 0 and we

will construct a g-collar (S2 × [0, 1], γ) such that the mean curvature of Σ0 satisfies H0 ≡ H (with

respect to the inward pointing normal). Once we have such a collar, we would like to “glue” an

outer Schwarzschild region (with controlled ADM mass) onto the right (t = 1) end of the collar.

This “gluing” idea was first introduced by Mantoulidis and Schoen [13] in 2015 who used it to

prove Theorem 1.3.13. Since that time, their method of “gluing” has been somewhat refined. The

following lemma of Cabrera et al., is one of those refinements and is the tool that we will use to

construct admissible extensions from a g-collar.

Lemma 2.1.7 (Proposition 2.1 in [6]). Consider a collar

(M = S2 × [0, 1], γ = E(t)g(t) + v(x, t)2dt2)

as in Definition 2.1.5. Suppose there exists a constant 0 < a < 1 such that

(1) E′(t) > 0 for all t ∈ [0, 1],

18



(2) v is identically constant on S2 × [a, 1],

(3) Rγ ≥ 0 with Rγ > 0 on S2 × [a, 1],

(4) g(t) ≡ g(1) which is round on S2 × [a, 1],

(5) H1 > 0, and

(6) mH(Σ1, H1) ≥ 0.

Then for any ε > 0, there exists a smooth, rotationally symmetric, asymptotically flat Riemannian

3-manifold (M̃ ≈ S2 × [0,∞), γ̃) satisfying the following properties:

(i) Rγ̃ ≥ 0,

(i) M̃ , outside a compact set, is isometric to an outer Schwarzschild region with ADM mass

m := mH(Σ1, H1) + ε,

(iii) γ̃ ≡ γ on the region S2 × [0, a+1
2 ], and

(iv) ∂M̃ ∼= (S2, g) is outerminimizing.

Given a metric g ∈ Met(S2) and a constant H ≥ 0, if we can construct a g-collar (S2 × [0, 1], γ)

satisfying conditions (1)-(6) above, then we immediately have that

mB(S2, g,H) ≤ mH(Σ1, H1)

since the resulting manifolds that Lemma 2.1.7 constructs are admissible extensions of g with ADM

mass arbitrarily close to mH(Σ1, H1). The proofs of our main theorems will therefore consist pri-

marily of said collar constructions in such a way that mH(Σ1, H1) is arbitrarily close to the given

bound.
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2.2. The Operator L and its Eigenvalues

On a Riemannian manifold (Σ, g), we define an elliptic differential operator

Lg := −∆g +Kg

so that Lgu = −∆gu + Kgu. Even though L is well-defined on any Riemannian manifold, we will

henceforth restrict our attention to the special case Σ ≈ S2. Throughout this section, we equip

S2 with an arbitrary Riemannian metric g so we will drop it from notation. Note that for any

u, v ∈ C∞(S2), we may apply Green’s identity to see that�
S2
vLu =

�
S2
−v∆u+Kuv

Green’s
=

�
S2
〈∇u,∇v〉+Kuv.

Therefore, B : C∞(S2)×C∞(S2)→ C∞(S2), (u, v) 7→ 〈∇u,∇v〉+Kuv is called the relevent bilinear

form of L. The index form of L is I(u) =
�
S2 B(u, u). A natural question one may ask is: Are there

minimizers of the index form I (after normalization of course) and if so, what form do they take?

The answer to this question is yes but it is not immediately obvious as to why this should be true.

It is obvious that in order to even make sense of I(u), we need to at least require u ∈ W 1,2(S2).

With this in mind, we have the following definition.

Definition 2.2.1. The first eigenvalue of Lg is

λ1(Lg) := inf
u∈W 1,2(S2)

u 6≡0

�
S2 B(u, u)�

S2 u
2

.

Since we are working with a fixed operator L, we will denote λ1(Lg) as λ1(g) or even just λ1 if

the metric g is understood. The following propositions (2.2.2, 2.2.3 and 2.2.4) are basic results from

the study of elliptic operators but we include their statements and (brief) proofs for completeness.

Proposition 2.2.2. Fix some metric g ∈ Met(S2) with L and λ1 as defined above. Then

(i) the infemum in Definition 2.2.1 is achieved by some minimizer u ∈W 1,2(S2),

(ii) the minimizer u is actually soooth, i.e., u ∈ C∞(S2), and

(iii) the minimizer u satisfies Lu = λ1u on S2.

Proof. Let {ui}i∈N ⊂ W 1,2(S2) be a (normalized) sequence such that
�
S2 u

2
i = 1 for all i ∈ N

and I(ui)↘ λ1 as i→∞. Since W 1,2(S2) = W 1,2
0 (S2) ↪→ L2(S2) compactly embeds, there is some

subsequence (still calling it {ui}i∈N) and some u ∈ L2(S2) such that ui → u in L2 (and consequently�
S2 u

2 = 1). Then we have

I(ui − uj) + λ1

�
S2

(ui + uj)
2 ≤ I(ui − uj) + I(ui + uj) = 2I(ui) + 2I(uj).

But as i, j →∞, 2I(ui) + 2I(uj)→ 4λ1 and

λ1

�
S2

(ui + uj)
2 → λ1

�
S2

(2u)2 = 4λ1

�
S2
u2 = 4λ1.

Therefore I(ui − uj) → 0 as i, j → ∞ and so {ui}i∈N is Cauchy in W 1,2(S2). By the completeness

of this space, u ∈W 1,2(S2) and I(u) = λ1 which proves (i). Fix some η ∈W 1,2(S2) so that

d

dt

∣∣∣∣
t=0

I(u+ tη)�
S2(u+ tη)2

= 0
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since u minimizes this quantity. Expanding out the derivative and setting t = 0 then yields(�
S2

2〈∇u,∇η〉+ 2Kuη

)(�
S2
u2

)
− I(u)

�
S2

2uη = 0

and so �
S2
ηLu =

�
S2

(−∆u+Ku)η =

�
S2
〈∇u,∇η〉+Kuη = λ1

�
S2
uη.

Thus u is a weak solution of Lu = λ1u. Elliptic regularity implies that u ∈ C∞(S2) and that u is in

fact a strong solution to Lu = λ1u. This proves (ii) and (iii). �

Now given λ1, . . . , λk−1 (and relevant eigenfunctions {ui}), we define

λk(L) := inf

{
I(u, u)�
S2 u

2
: u 6≡ 0,

�
S2
uuj = 0 whenever uj is an j’th eigenfunction for all 1 ≤ j < k

}
.

Of course, Proposition 2.2.2. can be repeated for each k to show that the infemum is achieved for

some u ∈ C∞(S2) and that Lu = λku. We call such a u a k’th eigenfunction and λk the k’th

eigenvalue. Standard theory shows that (λk)k∈N is a discrete sequence (with possible repetitions)

that tends to infinity as k →∞. The multiplicity of λk is the number of independent eigenfunctions

associated to the eigenvalue λk and the k’th eigenspace is the span of the k’th eigenfunctions. There

is more we can say about the first eigenspace.

Proposition 2.2.3. λ1 has multiplicity 1 and first eigenfunctions do not change sign.

Proof. Let u be a first eigenfunction (which is smooth by Proposition 2.2.2) so that λ1 =

I(u)/
�
S u

2. After observing that I(|u|) = I(u), we have that |u| is also a first eigenfunction. That

is, L|u| + λ1|u| = 0. Now Harnack inequality (maxu ≤ C minu) implies that min |u| > 0 since

|u| ≥ 0 and u 6≡ 0. Since u is smooth, it is continuous and so it must not change signs (otherwise it

would have a zero by the intermediate value theorem). Since first eigenfunctions are either positive

or negative, it is impossible to have �
S2
uv = 0

for any two such functions. Therefore, λ1 has multiplicity 1. �

This next proposition will be critical in the proof of Theorem 3.1.1 §3.2.

Proposition 2.2.4. Given a smooth path [0, 1]→ Met(S2), t 7→ g(t), there exists u : [0, 1]×S2 →
R>0 such that

(i) u is smooth and positive on S2 × [0, 1],

(ii) ut(·) := u(·, t) : S2 → R>0 is a first eigenfunction of Lg(t), and

(ii) ut has unit L2 norm with respect to the area form dAg(t) for all t ∈ [0, 1].

Proof. Lemma A.1 in [13] yields a smooth v : S2 × [0, 1] such that vt := v(·, t) is a first

eigenfunction of g(t). We know by Proposition 2.2.3 that each vt is never equal to 0 on S2 for all t.

Therefore, v is never 0 on S2 × [0, 1]. So by possibly replacing v with −v, we have that v > 0 on

S2 × [0, 1]. Finally, we can normalize

u(x, t) =
v(x, t)(�

S2 v(x, t)2 dAg(t)
)1/2

The resulting function is clearly positive and satisfies (ii) and (iii). u is smooth since both v and

the path t 7→ g(t) are smooth. �
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Until now, eigenvalues and eigenfunctions of L seem somewhat mysterious. The following propo-

sition shows that, at least for round spheres, the first eigenvalue and associated eigenfunctions are

well understood.

Proposition 2.2.5. If g∗ is a round metric on S2, then λ1(g∗) = 4π
area(g) with associated eigen-

function(s) identically constant(s).

Proof. For any u ∈W 1,2(S2) (not identically zero), we have

I(u)�
S2 u

2
=

�
S2 |∇u|

2
g +Kgu

2�
S2 u

2
=

�
S2 |∇u|

2
g�

S2 u
2

+
4π

area(g∗)
≥ 4π

area(g∗)
.

On the other hand, u ≡ c ∈ R has I(u)/
�
S2 u

2 = 4π
area(g∗)

. Therefore λ1(g) = 4π
area(g∗)

. �

In section §3.2, we will be constructing admissible extensions of metrics in M=0 which is the

class of metrics g ∈ Met(S2) with λ1(g) = 0. Though a priori, it is not immediately obvious that

such metrics even exist. The following proposition addresses this concern.

Proposition 2.2.6. M=0 is non-empty.

Although the statement is very simple, the proof is somewhat technical. We begin with a lemma.

Lemma 2.2.7. For any p ∈ S2, there exists a coodinate chart (U, φ) containing p and v ∈W 1,2(S2)

such that

(i) v > 0 on U and v = 0 on S2 \ U ,

(ii) v is smooth on U , and

(iii) there exists some open V ⊂ U such that V ⊃ ∂U and ∆∗v > 0 on V .

Proof. Let (U0, φ0) be a coodinate chart centered at p with the property that φ0(U0) = D.

Now given (Un, φn), let Un+1 = φ−1
n (D1/2) and let φn+1 : Un+1 → R2 be defined as

φn+1(x) = 2φn(x).

Observe that (Un)n is a nested sequence of sets whose interstection is exactly p and φn(Un) = D
for all n ∈ N. Define γn := (φ−1

n )∗g so that {γn} are Riemannian metrics on D. We can further

require γ0(0)ij = δij by possibly modifying our choice of (U0, φ0). I claim that limn→∞ 22nγn = γ

in the C1 norm where γ is the standard Euclidean metric on D. To see this, fix n ∈ N, let xi be the

coordinates of (Un, φn) and let ya be the coordinates of (U0, φ0). By the way they’re defined, we

have
∂ya

∂xi
=

1

2n
δai .

For simplicity, write h for γ0. We have

(γn)ij(z) = hab(z/2
n)
∂ya

∂xi
∂yb

∂xij
= hab(z/2

n)

(
1

2n
δai

)(
1

2n
δbj

)
=

1

22n
hij(z/2

n),

and

(12) (γn)ij(z) = hab(z/2n)
∂xi

∂ya
∂xj

∂yb
= hab(z/2n)

(
2nδia

) (
2nδjb

)
= 22nhij(z/2n),

22



and

(13)

(
∂

∂xi
γn

)
(z) =

1

22n

∂

∂xi
[h(z/2n)] =

1

22n

(
∂

∂xi
h

)
(z/2n)

1

2n
.

Define

M := max

{
sup
z∈D1/2

(
∂

∂x1
h

)
(z), sup

z∈D1/2

(
∂

∂x2
h

)
(z)

}
<∞.

Whenever n ≥ 2, we have 1
2n <

1
2 and therefore

22n sup
i,z∈D

∣∣∣∣( ∂

∂xi
γn

)
(z)

∣∣∣∣ ≤ 1

2n
sup

i,z∈D1/2

∣∣∣∣( ∂

∂xi
h

)
(z)

∣∣∣∣ =
M

2n
→ 0 as n→∞.

Since h(0)ij = δij and z/2n → 0 for any z ∈ D, we have

22n(γn)ij(z) = hij(z/2
n)→ δij .

This proves that limn→∞ 22nγn = γ in the C1 norm. Note that 22nγn actually converges to γ in any

Ck norm but this is not necessary for our purposes.

Consider u : D→ R, x 7→ (1− |x|)2 which is smooth on D. Then using polar coordinates,

∆γu =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)
(1− r)2 = 2− 2(1− r)

r
.

Note that on the set Ṽ := D \ D2/3 = {z ∈ R2 : 2/3 < |z| < 1}, we have

∆γu > 2−
2
(
1− 2

3

)
2
3

= 1

Now using equations (12) and (13) in the definition of ∆γn , we have

∆γn

∣∣
z

=
1√

det γn(z)

∂

∂xi

∣∣∣∣
z

(
γijn
√

det γn
∂

∂xj

)
= ∂iγ

ij
n (z)

∂

∂xj
+
γijn (z)∂i(det γn(z))

2 det γn(z)

∂

∂xj
+ γijn (z)

∂2

∂xj∂xi

= 22n

[
∂ih

ij(z/2n)
∂

∂xj
+
hij(z/2n)∂i(deth(z/2n))

2 deth(z/2n)

∂

∂xj
+ hij(z/2n)

∂2

∂xj∂xi

]
.

As discussed above, the first two terms in the brackets converge to 0 as n → ∞. So we can find

N ∈ N large enough so that on Ṽ , we have

∂ih
ij(z/2n)

∂u

∂xj
≥ −1

4
,
γijn (z)∂i(det γn(z))

2 det γn(z)

∂u

∂xj
≥ −1

4
,

and

hij(z/2n)
∂2u

∂xj∂xi
≥ 1

2
.

Therefore ∆γN (u) > 0 on Ṽ . Now take U = UN , v : S2 → R defined as

v(x) =

u(φN (x)) x ∈ U

0 x 6∈ U.

Then v ∈W 1,2(S2) and is easily seen to satisfy conditions (i), (ii) and (iii) with V = φ−1
N (Ṽ ). This

completes the proof of the lemma.

�
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Proof of Proposition 2.2.6. Let g∗ ∈ Met(S2) be a round metric with area 4π and let

h = e2wg∗ where w : S2 → R is any non-constant smooth function. Combining Lemma 1.2.13 and

Definition 2.2.1 yields

λ1(h) = inf
u∈W 1,2(S2)

u 6≡0

�
S2 −u∆∗u+ (1−∆∗w)u2 dA∗�

S2 u
2 dAh

.

Now recall the two facts about ∆ from Remark 1.2.8:

∆∗w 6≡ 0 and

�
S2

∆∗w dA∗ = 0.

Therefore, there is some p ∈ S2 be such that ∆∗w|p > 0. Let (U, φ), N and v ∈ W 1,2(S2) be as

in Lemma 2.2.7. That is, (U, φ) is a coordinate chart containing p, v is smooth and positive on U

while vanishing on S2 \ U , and N is an open neighborhood of ∂U such that ∆∗v > 0 on N ∩ U . By

possibly shrinking U , we may further assume that ∆∗w ≥ c > 0 on U . Since v is strictly positive

and smooth on U , we have

ρ := inf
U\N

v2 > 0, and Ω := sup
U\N
| − v∆∗v| <∞

as the set U \N is compact. Let g = e2Awg∗ where

A > max

{
1

c
,

Ω + ρ

cρ

}
.

Then

λ1(g) = inf
u∈W 1,2(S2)

u6≡0

�
S2 −u∆∗u+ (1−A∆∗w)u2 dA∗�

S2 u
2 dAg

≤ 1�
S2 v

2 dAg

�
S2
−v∆∗v + (1−A∆∗w)v2 dA∗

=
1�

U
v2 dAg

�
U

−v∆∗v + (1−A∆∗w)v2 dA∗.

By construction, we have v > 0 on all of U , ∆∗v > 0 on N ∩ U and 1− A∆∗w ≤ 1− Ac < 0 on U .

Therefore

λ1(g) ≤ 1�
U
v2 dAg

�
U

−v∆∗v + (1−A∆∗w)v2 dA∗

≤ 1�
U
v2 dAg

�
U

−v∆∗v + (1−Ac)ρ dA∗

≤ 1�
U
v2 dAg

�
U\N
−v∆∗v + (1−A∆∗w)v2 dA∗

≤ 1�
U
v2 dAg

�
U\N

Ω + (1−Ac)ρ dA∗.

This final quantity is negative by our choice of A. Now for brevity, replace w with Aw. Define

gt := e2twg∗ so that g0 = g∗ and g1 = g. Let u : S2× [0, 1]→ R>0 be smooth with the property that

u(·, s) =: us(·) is a first eigenfunction of Lgs with unit L2 norm with respect to the area form dAgs .
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Then

|λ1(gt)− λ1(gs)| = |Igt(ut)− Igs(us)|

=

∣∣∣∣�
S2
−ut∆∗ut + (1− t∆∗w)u2

t dA∗ −
�
S2
−us∆∗us + (1− s∆∗w)u2

s dA∗

∣∣∣∣
≤

�
S2
|us∆∗us − ut∆∗ut|+ |∆∗w| |su2

s − tu2
t | dA∗

Since u varies smoothly in time, this quantity can be made arbitrarily small by taking |s− t| → 0.

Therefore, the map t 7→ λ1(−∆gt + Kgt) is continuous. Then since λ1(g∗) = 1 and λ1(g) < 0, we

can apply the intermediate value theorem to find some t0 such that λ1(gt0) = 0. This completes the

proof.

�
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2.3. Properties of M≥0 and K≥0

In this section, we delve into some properties of two classes of metrics: M≥0 and K≥0. We

have already seen in section §1.3 that the class of metrics M≥0 is of critical importance in general

relativity as these are exactly the metrics which appear as apparent horizons in the TS/DEC/AF

setting. The other class of metrics we will discuss here is K≥0 which is the topic of Theorems 3.1.2

and 3.1.4. We first recall our notation.

Definition 2.3.1. With λ1 as in section §2.2 and with K denoting the Gaussian curvature, let

M≥0 := {g ∈ Met(S2) : λ1(g) ≥ 0}, K≥0 := {g ∈ Met(S2) : Kg ≥ 0},

M>0 := {g ∈ Met(S2) : λ1(g) > 0}, K>0 := {g ∈ Met(S2) : Kg > 0},

M=0 := {g ∈ Met(S2) : λ1(g) = 0}, K=0 := {g ∈ Met(S2) : Kg = 0}.

Remark 2.3.2. Aside from it being useful from a compuation viewpoint, the class of metrics K>0

has been extensively surveyed in this context (e.g., [6], [16], [17]). Also computationally useful is the

slightly larger class of metrics K≥0 which, in the authors knowledge, has not been greatly studied in

this context. One reason why this class is harder to work with, is that any path t 7→ g(t) starting at

a metric g ∈ K≥0 may have β ≤ 0 which can make it challenging to ensure that corresponding collars

have non-negative scalar curvature. Our Corollary 2.3.10 is one tool which helps us get around this

possible issue.

We begin with a few basic properties.

Proposition 2.3.3. All of the classes of metrics from Definition 2.3.1 are invariant under dila-

tions.

Proof. Let g ∈ Met(S2) and let h = e2t for some t ∈ R. By Lemma 1.2.13, we have

Kh = e−2t(Kg −∆gt) = e−2tKg

so that h ∈ K≥0 (or K>0 or K=0) if and only if g ∈ K≥0 (or K>0 or K=0). Similarly,

λ1(h) = inf
u∈W 1,2(S2)

u 6≡0

�
S2 |∇

hu|2h +Khu
2 dAh�

S2 u
2 dAh

= e−2t inf
u∈W 1,2(S2)

u6≡0

�
S2 |∇

gu|2g +Kgu
2 dAg�

S2 u
2 dAg

= e−2tλ1(g).

So h ∈M≥0 (or M>0 or M=0) if and only if g ∈M≥0 (or M>0 or M=0). �

Proposition 2.3.4. K≥0 ⊂M>0.

Proof. Let g ∈ K≥0 and let f ∈ C∞(S2) be a first eigenfunction of g with unit L2 norm (with

respect to dAg). Then

λ1(g) =

�
S2
|∇gf |2g +Kgf

2 dAg ≥
�
S2
Kgf

2 dAg ≥ 0.

But f2 > 0 on S2 by Proposition 2.2.3 so λ1(g) > 0 unless Kg ≡ 0. But this is impossible by

Theorem 1.2.11 which gives �
S2
Kg dAg = 2πχ(S2) = 4π.

�
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As we have seen in section §1.3.4, the class of metrics M≥0 arises naturally in the study of

apparent horizons. Historically however, the examples of metrics g arising from horizons in the

literature often feature the stronger assumption that g ∈ K≥0 or even g ∈ K>0 (e.g., [4], [12]).

The following theorem of Mantoulidis and Schoen establishes that M>0 (and therefore also M≥0)

contains elements with arbitrarily large negative integral curvature.

Theorem 2.3.5 (Theorem 3.1 in [13]). For every c > 0, the subset{
g ∈M>0 :

�
S2

(Kg)− dAg ≥ c
}

is C1 dense in M>0. Here (Kg)− = max{0,−Kg}.

To prove theorem 3.1.1, given a g ∈M=0, we will need a g-admissible path t 7→ g(t) that remains

in M≥0. The following proposition is the first step towards this.

Proposition 2.3.6. M≥0 is path connected.

Proof. Let g ∈M≥0. By uniformization we may write g = e2wg∗ for a round metric g∗ with

area 4π. It suffices to show that the path t 7→ gt := e2twg∗ remains within M≥0. Let f ∈ C∞(S2),

f 6≡ 0. Recall from section §2.2 that the relevant bilinear form of Lgt is

Bgt(f, f) =

�
S2
|∇gtf |2gt +Kgtf

2 dAgt .

Using Lemma 1.2.13 and Corollary 1.2.12, we have�
S2
|∇gtf |2gt +Kgtf

2 dAgt =

�
S2
e−2tw|∇g∗f |2g∗ + e−2tw(Kg∗ − t∆∗w)f2 (e2twdAg∗)

=

�
S2
|∇g∗f |2g∗ + (Kg∗ − t∆∗w)f2 dAg∗

=

�
S2
|∇g∗f |2g∗ + (1− t∆∗w)f2 dAg∗ .(14)

Letting t = 0 and using Proposition 2.2.5 we have�
S2
|∇g∗f |2g∗ + f2 dAg∗ ≥ λ1(g∗)

�
S2
f2 dAg∗ =

�
S2
f2 dAg∗

and at t = 1, �
S2
|∇gf |2g +Kgf

2 dAg = λ1(g)

�
S2
f2 dAg ≥ 0

since g1 = g ∈M≥0 by assumption. Equation (14) is also linear in t, so it is positive for all t ∈ [0, 1).

Choosing f to be a first eigenfunction of gt yields the desired result. �

Proposition 2.3.6 not only shows that M≥0 is path connected, but the technique of the proof also

allows us to obtain a lower bound on the first eigenvalue of a path of conformally related metrics.

Lemma 2.3.7. Let g ∈M≥0. By uniformization we may write g = e2wg∗ for a round metric g∗

with area 4π. Let ζ : [0, 1] → [0, 1] be a smooth decreasing function with ζ(0) = 1, ζ ′(0) < 0, and

define gt := e2wζ(t)g∗ so that g0 = g, g1 = g∗. Then λ1(gt) ≥ c̃t for some c̃ > 0 and all t ∈ [0, 1].

Proof. Since ζ : [0, 1] → [0, 1] is smooth, we can write ζ(t) = 1 + ζ ′(0)t + O(t2). Let u :

[0, 1] × S2 → R>0 be as in Proposition 2.2.4. That is, u is smooth and us(·) := u(·, s) is a first

eigenvalue of gs with unit L2 norm (with respect to the area form dAgs). Using the linearity of
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equation (14), we have

λ1(gt) =
I(ut)�
u2
t dAgt

=

�
|∇gtut|2gt +Kgtu

2
t dAgt

= ζ(t)

�
|∇g0ut|2g0 +Kg0u

2
t dAg0 + (1− ζ(t))

�
|∇g1ut|2g1 +Kg1u

2
t dAg1

= ζ(t)

�
|∇gut|2g +Kgu

2
t dAg + (1− [1 + ζ ′(0)t+O(t2)])

�
|∇∗ut|2∗ + u2

t dA∗

≥ ζ(t)λ1(g)

�
u2
t dAg + [−ζ ′(0)t+O(t2)])λ1(g∗)

�
u2
t dA∗

≥ [−4πζ ′(0)λ1(g∗) min
x
ut(x)2]t+O(t2)λ1(g∗)

�
u2
t dAh.

Since u : [0, 1] × S2 → R is smooth, minx ut(x)2 ≥ minx u0(x)2/2 for all t small enough. We also

have ∣∣∣∣O(t2)λ1(h)

�
u2
t dAh

∣∣∣∣ ≤ [−2πζ ′(0)λ1(g∗) min
x
ut(x)2]t

for all 0 < t� 1. Therefore

(15) λ1(gt) ≥ [−2πζ ′(0)λ1(h) min
x
u0(x)2]t for all 0 < t� 1.

The bracketed term is strictly positive since λ1(g∗) = 1 by Lemma 2.2.5, ζ ′(0) < 0, and minx u
2
0 > 0

since u0 is strictly positive on a compact set. By possibly shrinking the constant in inequality (15),

we can improve the interval to all of [0, 1] since t 7→ λ1(gt) is continuous (by the proof of Proposition

2.2.6) λ1(gt) > 0 on (0, 1] and λ1(g1) = 1. �

Lemma 2.3.8. For any g ∈ M≥0, there exists a g-admissible path t 7→ g(t) with the property

that g(t) ≡ g(1) for all t ∈ [1/2, 1] and such that

(16) λ1(g(t)) ≥ c t for all t ∈ [0, 1] for some c > 0.

Remark 2.3.9. If g ∈ M>0, then Lemma 1.2 in [13] constructs a g-admissible path t 7→ g(t)

remaining in M>0 satisifying

min
t∈[0,1]

λ1(g(t)) > 0

which is a stronger condition than (16). We will therefore assume that g ∈M=0 and follow a similar

construction.

Proof of Lemma 2.3.8. Fix g ∈M=0. Proposition 2.1.2 gives a g-admissible path

t 7→ g(t) = φ∗t

(
e2ζ(t)w(x)+2a(t)g∗

)
.

By further requiring ζ ≡ 0 on [1/2, 1], we have g(t) ≡ g(1) on [1/2, 1] by Remark 2.1.3. Note that

t 7→ e2ζ(t)w(x)g∗ remains in the space M≥0 by Proposition 2.3.6. If ζ ′(0) < 0, then by Proposition

2.3.7, there exists some c̃ > 0 such that

λ1(e2ζ(t)w(x)g∗) ≥ c̃ t for all t ∈ [0, 1]

Since M≥0 is invariant under dilations it follows that t 7→ h(t) := e2ζ(t)w(x)+2a(t)g∗ ∈M≥0 too, with

λ1(h(t)) ≥ c̃ e−2a(t)t for all t ∈ [0, 1].
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Note that λ1(g(t)) = λ1(h(t)) since g(t) is obtained from h(t) by a series of isometries. Lastly, since

a : [0, 1]→ R is smooth, it achieves its supremum. Therefore, taking c = e−2 max a(t)c̃ completes the

proof. �

As we saw section §1.3, the space M≥0 arises naturally in the context of apparent horizons. But

only one of our main results (Theorem 3.1.1) pertains to this space. We therefore turn to a space of

metrics with non-negative Gaussian curvature (denoted K≥0) that is marginally easier to understand

and is the setting of interest in other main results (Theorem 3.1.2 and 3.1.4). The following corollary

follows immediately from the proof of Lemma 2.3.8 but include a full proof here as it will be useful

in the proof of Theorem 3.1.2.

Corollary 2.3.10. For any g ∈ K≥0, there exists a g-admissible path t 7→ g(t) such that

g(t) ≡ g(1) for all t ∈ [1/2, 1] and

min
x∈S2

Kg(t) ≥ c t for all t ∈ [0, 1] for some c > 0.

Proof. Let g ∈ K≥0 so that g ∈ M>0 by Proposition 2.3.4. Applying Lemma 2.3.8 yields a

g-admissible path

t 7→ g(t) = φ∗t

(
e2ζ(t)w(x)+2a(t)g∗

)
satisfying g(t) ≡ g(1) for all t ∈ [1/2, 1]. By the properties of φt, we have

min
x∈S2

Kg(t) = min
x∈S2

Kh(t).

Now using Lemma 1.2.13 part (iii), we have

Ke2ζ(t)w(x)+2a(t)g∗ = e−2a(t)Ke2ζ(t)w(x)g∗

= e−2a(t)−2ζ(t)w(x)(Kg∗ − ζ(t)∆∗w)

= e−2a(t)−2ζ(t)w(x)(1− ζ(t)∆∗w).

Plugging in t = 0 and using that g ∈ K≥0 yields ∆∗w ≤ 1 on S2. Since ζ(t) ∈ [0, 1] for all t ∈ [0, 1],

we subsequently have Kh(t) ≥ 0. Let B = minS2×[0,1] e
−2a(t)−2ζ(t)w(x) so that

Kg(t) ≥ B(1− ζ(t)) = B(1− (1 + ζ ′(0)t+O(t2)) ≥ 1

2
Bζ ′(0)t for all 0 ≤ t� 1.

Combining this with the fact that, away from t = 0, Kg(t) is uniformly from below by a positive

constant gives

min
x∈S2

Kg(t) ≥ c t for all t ∈ [0, 1] for some c > 0.

�
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CHAPTER 3

Main Results

This chapter is devoted to the statements and the proofs of our main results. In section §3.1, we

state the results, define the relevant constants, and discuss how the results compare to each other

and to the preceeding literature. Each of our theorems takes a metric g ∈ Met(S2) satisfying a

certain property, a non-negative specified constant H and produces an upper bound on the Bartnik

mass of the triple (S2, g,H). These theorems are summarized below for convenience.

Theorem (Theorem 3.1.1). Let g ∈M=0 and H = 0. Then g ∈ AH and

mB(S2, g,H) ≤ mH(S2, g,H).

Theorem (Theorem 3.1.2). Let g ∈ K≥0 and H > 0. Then

mB(S2, g,H) ≤
√

area(g)

16π
=
rg
2
.

Theorem (Theorem 3.1.4). Let g ∈ K≥0 and H > 0. Then

mB(S2, g,H) ≤ max

{
rg
√

1 + C

2

(
1−

r2
gH

2

4(1 + C)

)
, 0

}
where C = C(g,H)→ 0 as either H → 0+ or as g becomes round.

The proofs of these are presented in sections §3.2, §3.3, and §3.4 respectively. The final theorem

we give is similar to Theorem 3.1.4 except that it does not require the given metric g to be non-

negatively curved.

Theorem (Theorem 3.1.6). Let g ∈ Met(S2) and H > 0. Then

mB(S2, g,H) ≤ max

{
rg
√

1 +D

2

(
1−

r2
gH

2

4(1 +D)

)
, 0

}
.

The downside of not requiring g ∈ K≥0 is that the associated constant D = D(g,H) no longer

has a closed form expression and is not necessarily finite for an arbitrary pair (g,H). When it is

finite however, the proof is nearly identitcal to the proof of Theorem 3.1.4 and will be discussed

briefly in section §3.4.
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3.1. Statement of Results

The setting and significance of our first theorem was already discussed in section §1.3.4. As men-

tioned there, when paired with the results of Mantoulidis and Schoen [13], this theorem establishes

that every g ∈M≥0 appears as an apparent horizon in the TS/DEC/AF and that the Bartnik mass

of such horizons is bounded above by the Hawking mass.

Theorem 3.1.1. Let g ∈M=0 and H = 0. Then

mB(S2, g,H) ≤ mH(S2, g,H).

Moreover, in the admissible extensions we construct, ∂M ∼= (S2, g) satisfy the stability given in (9).

Therefore, we also have

M=0 ⊂ AH

where AH is as defined in section §1.3.

Mantoulidis and Schoen [13] proved the same bound given in Theorem 3.1.1 when g ∈ M>0.

Their proof however, relies on the fact that λ1(g) > 0, and thus does not extend to the case g ∈M=0.

In either case, when this bound is coupled with the Riemannian Penrose inequality (Theorem 1.3.9),

we have equality

mB(S2, g, 0) = mH(S2, g, 0)

for any g ∈ M≥0. Our next two results pertain to the case of when H > 0 is constant and g has

non-negative Gaussian curvature.

Given a constant H > 0 and a metric g ∈ K>0 such that mH(S2, g,H) > 0, there have been

several works which give a bound of the form

mB(S2, g,H) ≤ C(g,H)mH(S2, g,H)

where C(g,H) is a constant depending only on g and H. In [6], this factor satisfies C(g,H) → 1

as H → 0+ or as g becomes round while C(g,H) → ∞ as min r2
gKg → 0 or as H approaches

a finite upper bound determined by g. In [16], estimates for C(g,H) were obtained satisfying

these same properties, except that H could be arbitrarily large. In this case however, C(g,H)

would be arbitrarily large as well. The methods in the works above are all comparable, based on

an interpolation between the conformal factors of g and a round metric, a corresponding collar

construction on S2 × [0, 1], and a gluing of the collar to an exterior Schwarzchild region. Using

different methods an estimate for C(g,H) was obtained in [12] using the longtime solution to the

Ricci flow on S2 starting from g, where in particular C(g,H)→ 1 as g becomes round. In Theorem

3.1.2 below, we obtain an upper bound for the Bartnik mass of any pair (g,H) with g ∈ K≥0 which

depends only on the area of g (and not on H). In particular, the bound does not degenerate as

min r2
gKg → 0 or H →∞.

Theorem 3.1.2. Let g ∈ K≥0 and H > 0. Then

mB(S2, g,H) ≤
√

area(g)

16π
=
rg
2
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Remark 3.1.3. In [18], assuming the stronger condition that g ∈ K>0, Miao and Xie adapted

the method in [19] and its variation in [15] to show that

mB(S2, g,H) ≤ rg
2

for any strictly postivive smooth function H. Their technique however, is considerably different than

ours and does not include the case g ∈ K=0.

Although the bound given in Theorem 3.1.2 does not degenerate as min r2
gKg → 0+ or H →∞,

it is inadequate in the sense that the bound is not improved when H → 0+ or as g becomes round.

Our next result is comparable to Theorem 3.1.2 in the sense that it has the same hypothesis but is

an improvement in the sense that the given bound approaches mH(S2, g,H) if either H → 0+ or g

becomes round while still remaining bounded even if min r2
gKg → 0 or H →∞.

Theorem 3.1.4. Let g ∈ K≥0 and H > 0. Then with C = C(g,H) as in Definition 3.1.8, we

have

mB(S2, g,H) ≤ max

{
rg
√

1 + C

2

(
1−

r2
gH

2

4(1 + C)

)
, 0

}
.

Moreover, C → 0+ as either H → 0+ or as g becomes round.

Remark 3.1.5. As mentioned above, Theorem 3.1.2 and Theorem 3.1.4 have the same hypothesis

that g ∈ K≥0 and H > 0. We can therefore compare the results to see which gives the better upper

bound. We have

rg
√

1 + C

2

(
1−

r2
gH

2

4(1 + C)

)
<
rg
2
⇐⇒ H >

2

rg

√
1 + C −

√
1 + C

Before defining the constant C(g,H), we state a more general version of Theorem 3.1.4 which

applies to any smooth metric on S2 and not just those with non-negative Gaussian curvature.

Theorem 3.1.6. Let g ∈ Met(S2) (possibly with points of negative Gaussian curvature) and

H > 0. Then with D = D(g,H) as in Definition 3.1.7, we have

mB(S2, g,H) ≤ max

{
rg
√

1 +D

2

(
1−

r2
gH

2

4(1 +D)

)
, 0

}
.

Theorem 3.1.6 is intimately related to Theorem 3.1.4 in the sense that applying it to a metric

g ∈ K≥0, the resulting bound is actually an improvement to the bound given in Theorem 3.1.4. We

choose to state these results seperately, as for an arbitrary metric g ∈ Met(S2), the constant D is

not easily understood. When g ∈ K≥0 however, we can bound the constant D(g,H) from above

by C(g,H) which is expressed as the infemum of a definitive quantity. The constants D and C are

given in Definition 3.1.7 and Definition 3.1.8 respectively.

Definition 3.1.7 (The constant D(g,H)). Let g ∈ Met(S2) and H > 0. Given any g-admissible

path ξ = (g(t)), we say that d > 0 is a (ξ,H)-good constant if

min
S2×[0,1]

[
4d2

H2
Kg(t)(1 + d

√
t)− 2t|g′|2g(1 + d

√
t)2 + d2

]
> 0.

We then define the constant D(g,H) as

D(g,H) := inf
ξ,d
{d such that ξ is a g-admissible path and d is a (ξ,H)-good constant}
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with the convention that inf ∅ = +∞.

For an arbitrary g ∈ Met(S2) and H > 0, it need not be the case that D(g,H) <∞. A necessary

condition for D(g,H) to be finite is clearly

min
S2

Kg > −
H2

4

though this is far from sufficient. As it turns out, given any g ∈ Met(S2), we can choose H > 0

sufficiently large to ensure that D(g,H) <∞. For a treatment of this, we direct the reader to [8].

In the case that g ∈ K≥0, any constant d > 0 satisfying

(17)
4d2

H2
Kg(t) − 2t|g′|2g(1 + d

√
t)2 + d2 ≥ 0 on S2 × [0, 1]

is a (ξ,H)-good constant (except for possibly at t = 0 but we will see in the proof of Theorem 3.1.4,

this will not matter). Condition (17) is equivalent with

d2

(
4Kg(t)

H2
+ 1

)
≥ (1 + d

√
t)22t|g′|2g on S2 × [0, 1].

Taking the square root of both sides and grouping the d terms gives

(18) d

(√
4Kg(t) +H2

H2
−
√

2t2|g′|2g

)
≥
√

2t|g′|2g on S2 × [0, 1].

If we further assume that
4Kg(t) +H2

H2
> 2t2|g′|2g on S2 × [0, 1],

then condition (18) is equivalent with

d ≥ max
S2×[0,1]

√
2t|g′|2g√

4Kg(t)+H2

H2 −
√

2t2|g′|2g
.

This is the motivation for the following definition.

Definition 3.1.8 (The constant C(g,H)). A g-admissible path t 7→ g(t) is called (g,H)-

admissible if it satisfies

min
S2×[0,1]

(
4Kg(t) +H2

H2
− 2t2|g′|2g

)
> 0.

In Proposition 3.4.2, we will show that (g,H)-admissible paths exist for any pair (g,H) where

g ∈ K≥0 and constant H > 0. For any such pair (g,H), we define the constant C(g,H) as

C(g,H) := inf
(g,H)-admissible paths

 max
S2×[0,1]

√
2t|g′|2g√

4Kg(t)+H2

H2 −
√

2t2|g′|2g

 .

Note that C(g,H) is necessarily finite and non-negative by the definition of a (g,H)-admissible

path. If g is close to a round metric, one can construct (g,H)-admissible paths such that√
2t|g′|2g,

√
2t2|g′|2g � 1
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and therefore C(g,H) � 1. Furthermore, it will be clear in Proposition 3.4.2 that g-admissible

paths exist satisfying

max
S2×[0,1]

2t2|g′|2g ≤ 1.

If ξ = (g(t)) is such a path, then ξ is a (g,H)-admissible path for any H > 0 since

max
S2×[0,1]

2t2|g′|2g ≤ 1 < min
S2×[0,1]

4Kg(t) +H2

H2
.

Thus, taking H → 0+ for such a path ξ, we see that

max
S2×[0,1]

√
2t|g′|2g√

4Kg(t)+H2

H2 −
√

2t2|g′|2g
→ 0

and therefore C(g,H)→ 0+. This proves the claims that C → 0+ as either H → 0+ or as g becomes

round.

The proofs of each of the theorems presented in this will depend heavily on Lemma 2.1.7 which

originally appeared (in a slightly different form) in Cabrera et al. [6]. This Lemma (repeated

below for ease of reference) takes a collar S2 × [0, 1] with certain specified properties and produces

an admissible extension with ADM mass arbitrarily close to the Hawking mass of the rightmost

foliating sphere of the collar. Therefore, in each of the proofs, we will construct collar extensions

in which the rightmost foliating sphere has Hawking mass arbitrarily close to the given bound for

mB(S2, g,H). Henceforth, given a collar S2 × [0, 1], we will write Σt for the foliating sphere at time

t (that is Σt := S2 × {t}) and Ht for the mean curvature of Σt with respect to the inward pointing

unit normal.

Lemma (Lemma 2.1.7). Consider a collar

(M = S2 × [0, 1], γ = E(t)g(t) + v(x, t)2dt2)

as in Definition 2.1.5. Suppose there exists a constant 0 < a < 1 such that

(1) E′(t) > 0 for all t ∈ [0, 1],

(2) v is identically constant on S2 × [a, 1],

(3) Rγ ≥ 0 with Rγ > 0 on S2 × [a, 1],

(4) g(t) ≡ g(1) which is round on S2 × [a, 1],

(5) H1 > 0, and

(6) mH(Σ1, H1) ≥ 0.

Then for any ε > 0, there exists a smooth, rotationally symmetric, asymptotically flat Riemannian

3-manifold (M̃ ≈ S2 × [0,∞), γ̃) satisfying the following properties:

(i) Rγ̃ ≥ 0,

(i) M̃ , outside a compact set, is isometric to an outer Schwarzschild region with ADM mass

m := mH(Σ1, H1) + ε,

(iii) γ̃ ≡ γ on the region S2 × [0, a+1
2 ], and

(iv) ∂M̃ ∼= (S2, g) is outerminimizing.
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3.2. Proof of Theorem 3.1.1

In this section, we prove the first of our three main theorems presented in section §3.1. We state

it again here:

Theorem (Theorem 3.1.1). Let g ∈M=0 and H = 0. Then

mB(S2, g,H) ≤ mH(S2, g,H) =
rg
2
.

We begin by fixing g ∈M=0 and a path t 7→ g(t) as constructed in Lemma 2.3.8. That is to say

t 7→ g(t) is a g-admissible path such that g(t) ≡ g(1) on [1/2, 1] and

λ1(g(t)) ≥ c t for all t ∈ [0, 1] and some c > 0.

Let u : S2 × [0, 1] → R>0 be smooth such that ut(·) := u(·, t) is a first eigenfunction of g(t) with

unit L2 norm with respect to the area form dAg(t). See Proposition 2.2.4 for the existence of such

a function u. To prove Theorem 3.1.1, we will construct collar extensions of g which satisfy Lemma

2.1.7 with the Hawking mass of Σ1 arbitrarly close to
rg
2 .

Lemma 3.2.1 (Collar Construction). There exists A0 � 1 such that for all 0 < ε ≤ 1, A ≥ A0,

the topological cylinder S2 × (0, 1] endowed with the metric

γ = (1 + εt2)g(t) + Φ(t)2u(t, ·)2dt2

has the following properties:

(i) Rγ > 0 with Rγ → 0 uniformly as t→ 0,

(ii) Ht > 0 for all t ∈ (0, 1] and Ht → 0 uniformly as t→ 0,

(iii) mH(Σ1, H1)→ rg
√

1+ε
2 as A→∞.

Here Φ(t) : (0, 1]→ R+ is defined as

Φ(t) =


A√
t

: t ∈ (0, 1
4 ]

ϕ(t) : t ∈ ( 1
4 ,

1
2 ]

2A− 1 : t ∈ ( 1
2 , 1]

Here ϕ is a smooth, decreasing, convex function chosen so that Φ ∈ C∞((0, 1]).

Remark 3.2.2. The presumed singularity at t = 0 is superficial; In the new coordinate s =
√
t

on S2 × (0, 1/4), we have

γ = (1 + εs4)g(s2) + 4A2u(s2, ·)2ds2

which extends smoothly to the closed manifold S2 × [0, 1]. Moreover, since mean curvature is

coordinate invariant and continuous along the foliating spheres in S2 × (0, 1], we obtain that the

boundary sphere {s = 0} is minimal in S2 × [0, 1] relative to the extension by part (ii) of the

Lemma. In fact, Lemma 3.2.1 could have been stated and proved for this simpler parametrization

as well, but we chose to use the parameter t in the proof for ease of reference to Lemma 1.3 in

[13] (from which this construction is motivated) and to stay consistent with Lemma 2.2 in [7] (from

which this construction first appeared).

Proof of Lemma 3.2.1. Write E(t) = 1 + εt2, h(t) = E(t)g(t), and vt(x) := v(x, t) =

Φ(t)u(x, t). From section §2.1, we have

(19) Rγ = 2Kh(t) − 2v−1∆hv + v−2

[
−2E−1E′′ − 1

4
|g′|2g +

1

2
E−2(E′)2 + 2E−1E′

∂tv

v

]
.
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Since ut is a first eigenfunction of g(t) with eigenvalue λ(t), we have that vt is a first eigenfunction

of h(t) with eigenvalue E−1λ1(t). Using this and the definitions of E and v, we simplify equation

(19) to

Rγ = 2(1 + εt2)−1λ1(t) + Φ(t)−2u−2

[
−4ε(1 + εt2)−1 − 1

4
|g′|2g + 2t2ε2(1 + εt2)−2 + 4ε(1 + εt2)−1 ∂tv

v

]
≥ Φ(t)−2u−2(1 + εt2)−1

[
2λ1(t)Φ(t)2u2 − 4ε− 1

4
|g′|2g + 4ε

∂tΦ

Φ
+ 4ε

∂tu

u

]
.

Since Φ and u are both positive functions, if we want to establish the bound Rγ > 0, it suffices to

show that the bracketed quantity is positive for all t ∈ (0, 1]. To that end, we note that minu2 > 0

and max |∂t log u| <∞ since u is smooth and positive on the larger set S2 × [0, 1] which is compact.

So it suffices to prove the weaker condition

(∗) := 2Φ(t)2λ(t) min
S2×[0,1]

u2 − 4ε− α− 4ε max
S2×[0,1]

|∂t log u| − 4εt
∂tΦ(t)

Φ(t)
> 0 for all t ∈ (0, 1].

Here α = max 1
4 |g
′|2g as in Definition 2.1.4. Then using

4εt
∂tΦ(t)

Φ(t)
≥ −2εt

A/t3/2

A/t1/2
= −2ε,

we have

(∗) ≥ 2A2c min
S2×[0,1]

u2 − 6ε− α− 4ε max
S2×[0,1]

|∂t log u|.

This final quantity is positive for all A ≥ A0 for some large enough A0. The claim that Rγ → 0

uniformly as t→ 0 follows from the fact that for t ≤ 1/4, Φ(t)−2 = t/A2 → 0 as t→ 0. This proves

(i).

For (ii), recall that the mean curvature of a foliating sphere Σt with respect to the inward

pointing unit normal is

(20) Ht =
2εt(1 + εt2)−1

v(t, ·)
=

2εt(1 + εt2)−1

Φ(t)u(t, ·)
.

In particular, Ht > 0 for all t ∈ (0, 1] and Ht → 0 uniformly as t→ 0+.

For (iii), we first note that since g(t) ≡ g(1) for all t ∈ [1/2, 1] and g(1) is round, we know by

Proposition 2.2.5 that ut ≡ T for all t ∈ [1/2, 1]. This constant T is easy to calculate since the path

t 7→ g(t) has constant area form and ut has unit L2 norm. For t ∈ [1/2, 1], We have

1 =

�
S2
u2
t dAg(t) = area(S2, g(t))T 2 = 4πr2

gT
2 =⇒ T =

1

2rg
√
π
.

Therefore, the mean curvature of Σ1 is

H1 =
4rg
√
π(1 + ε)−1

2A− 1

and the Hawking mass of Σ1 is

rg
√

1 + ε

2

(
1− 1

16π

�
Σ1

H2
1

)
which converges to

rg
√

1+ε
2 as A→∞. �
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The inequality part of Theorem 3.1.1 is now immediate: By taking ε small and A sufficiently

large (depending on ε), we construct a collar satisfying Lemma 2.1.7 with mH(Σ1) arbitrarily close

to
rg
2 . This then yields admissible extensions of g with ADM mass arbitrarily close to

rg
2 so we are

left with the inequality

mB(S2, g, 0) ≤ rg
2
.

This therefore establishes that if g ∈M=0, then

mB(S2, g, 0) ≤ rg
2

= mH(S2, g, 0)

but we have not yet established that g ∈ AH. Recall that Σ0 is stable if�
S2
ϕ(−∆g +Kg)ϕdAg ≥

1

2

�
S2

(Rγ + |ρ|2)ϕ2dAg for all ϕ ∈ C∞(S2).

In our constructions, Rγ → 0 uniformly as t → 0 and the scalar second fundamental form of Σt

(denoted as ρ(x, t)) with t ∈ (0, 1/4] is calculated as

ρ(x, t) =
h′(t)

2v(x, t)
=
√
t

(
(1 + εt2)g′(t) + 2εtg(t)

2Au(x, t)

)
with the bracketed term remaining bounded for all t. Therefore, simply by continuity, we have ρ ≡ 0

on and Rγ ≡ 0 on Σ0. On the other hand, g ∈M=0. So�
S2
ϕ(−∆g +Kg)ϕdAg ≥ λ1(g)

�
S2
ϕ2 dAg = 0

for any test function ϕ ∈ C∞(S2). Therefore, our admissible extensions satisfy the stability condition

which establishes the inclusion

M=0 ⊂ AH

and completes the proof.
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3.3. Proof of Theorem 3.1.2

In this section, we prove the second of the three main theorems listed in section §3.1. We state

it again here:

Theorem (Theorem 3.1.2). Let g ∈ K≥0 and H > 0 a constant. Then

mB(S2, g,H) ≤ rg
2
.

We begin by fixing g ∈ K≥0 and a path t 7→ g(t) as in Corollary 2.3.10. We then proceed in sim-

ilar fashion as section §3.2 by constructing collars satisfying Lemma 2.1.7 with mB(Σ1) arbitrarily

close to
rg
2 . Though they appear similar, the collars constructed here vary significantly from those

in the previous section.

Lemma 3.3.1 (Collar Construction). Fix H > 0 and ε > 0. There exists A0 � 1 such that for

all A ≥ A0, the cylinder M ≈ S2 × [0, 1] endowed with the metric

γ = (1 + εt)g(t) + Φ(t)2dt2

has the following properties:

(i) Rγ > 0,

(ii) Ht > 0 is constant for all t ∈ [0, 1] with H0 = H, and

(iii) mH(Σ1, H1)→ r
√

1+ε
2 as A→∞.

Here Φ(t) : (0, 1]→ R>0 is defined as

Φ(t) =


At+ ε

H : t ∈ [0, 1
4 ]

ϕ(t) : t ∈ ( 1
4 ,

1
2 ]

A
4 + ε

H + 1 : t ∈ ( 1
2 , 1]

where ϕ is a smooth, increasing, concave function chosen so that Φ ∈ C∞([0, 1]).

Proof. Write E(t) = 1 + εt and h(t) = E(t)g(t). Section §2.1 gives

Rγ = 2E−1Kg(t) + Φ−2

[
−2E−1E′′ − 1

4
|g′|2g +

1

2
E−2(E′)2 + 2E−1E′

∂tΦ

Φ

]
= 2(1 + εt)−1Kg(t) + Φ−2

[
−1

4
|g′|2g +

1

2
ε2(1 + εt)−2 + 2ε(1 + εt)−1 ∂tΦ

Φ

]
≥ 2(1 + εt)−1Φ−2

[
2Kg(t)Φ

2 − 1

4
|g′|2g + 2ε

∂tΦ

Φ

]
.

Recall that Kg(t) ≥ c t by construction. In order to show Rγ > 0, it suffices establish

(∗) := 2c tΦ2 − 1

4
|g′|2g + 2ε

∂tΦ

Φ
> 0 on S2 × [0, 1].

As in Definition 2.1.4, write α = max 1
4 |g
′|2g and let δ = min

{
1
4 ,

ε
α

}
. Using the facts that Φ is

non-decreasing and δ ≤ 1
4 , we have

∂tΦ(t)

Φ(t)
≥ A

Φ(δ)
=

A

Aδ + ε
H

≥ A

A ε
α + ε

H

=
(α
ε

) A

A+ α
H

for all t ∈ [0, δ].

So whenever A > α/H and t ∈ [0, δ], we have

A

A+ α
H

>
A
2 + α

2H

A+ α
H

=
1

2
=⇒ ∂tΦ

Φ
≥ α

2ε
=⇒ 2ε

∂tΦ

Φ
> α.
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So if A > α/H, then (∗) > 0 on [0, δ]. Now if we also require A ≥
√

α
2cδ3 , then for t ∈ [δ, 1],

2ctΦ(t)2 ≥ 2ctΦ(δ)2 = 2ct
(
Aδ +

ε

H

)2

> 2cδ3A2 ≥ α.

So whenever A is large enough (as described), we have (∗) > 0 on [0, δ] ∪ [δ, 1] = [0, 1] and thus

Rγ > 0 on M which shows (i).

For (ii), recall that the mean curvature of a foliating sphere Σt with respect to the inward

pointing unit normal is

(21) Ht =
ε(1 + εt)−1

Φ(t)

which satisfies Ht > 0 (and constant) for all t ∈ [0, 1] and H0 = ε
Φ(0) = ε

ε/H = H.

For (iii), note equation (21) evaluated at t = 1 yields

H1 =
ε(1 + ε)−1

A
4 + ε

H + 1
.

So for any fixed ε > 0, taking A→∞ makes H1 → 0 and therefore

mH(Σ1) =

√
|Σ1|
16π

(
1− 1

16π

�
Σ1

H2
1

)
−→ rg

√
1 + ε

2
as A→∞.

�

To finish the proof of Theorem 3.1.2, let ε > 0 and take A � 1 sufficiently large so that

mH(Σ1, H1) is no larger than say
rg
√

1+2ε
2 . Lemma 2.1.7 then allows us to construct admissible

extensions of g with ADM mass satisfying

rg
√

1 + 2ε

2
< mADM ≤

rg
√

1 + 3ε

2
.

Taking ε→ 0+ yields the desired bound

mB(S2, g,H) ≤ rg
2
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3.4. Proof of Theorem 3.1.4

In this section, we present the proof of our final main theorem. Here it is again:

Theorem 3.4.1 (Theorem 3.1.4). If g ∈ K≥0 and H > 0 then

mB(S2, g,H) ≤ max

{
rg
√

1 + C

2

(
1−

r2
gH

2

4(1 + C)

)
, 0

}
where C = C(g,H) is defined in Definition 3.1.7

Unlike in the proof of Theorems 3.1.1 and 3.1.2, where we used explicit use of the fact that we

were working with paths t 7→ g(t) such that g(t) = g(1) for in a neighborhood of t = 1, in the

definition of (g,H)-admissible paths, this condition is notably absent. With that in mind, we have

the following lemma.

Lemma 3.4.2. For any g ∈ K≥0 and constant H > 0, there exists a (g,H)-admissible path

ξ = (g(t)). Furthermore, for any ε > 0, we may choose ξ = (g(t)) such that

(22) max
S2×[0,1]

√
2t|g′|2g√

Kg(t)+H2

H2 −
√

2t2|g′|2g
≤ C(g,H) + ε

and g(t) ≡ g(1) for all t ∈ [1− θ, 1] for some θ > 0.

Proof. For the remainder of the proof, we will drop the x argument for brevity. By Proposition

2.1.2 and Remark 2.1.3, there exists a g-admissible path t 7→ h(t) satisfying h(t) = g for all t > 0

sufficiently small. Fix such a path and consider the modified path of metrics hc(t) for t ∈ [0, 1],

defined as

hc(t) =

g 0 ≤ t ≤ e− 1
c

h(c log t+ 1) e−
1
c ≤ t ≤ 1

First note that t 7→ hc(t) is smooth for any c > 0 since h(t) is assumed to be constant in a

neighborhood of t = 0. By the facts that h(t) itself is g-admissible, and that hc(t) is just a re-

parametrization of h(t) we see that hc(t) is also g-admissible. We may further shrink c if necessary

so that

0 < c <

√
mint∈[0,1] 4Khc(t) +H2

2H2 maxs∈[0,1] |h′(s)|2h(s)

which gives

max
t∈[0,1]

2t2|h′c(t)|2hc(t) = max
t∈[e−1/c,1]

2t2|h′c(t)|2hc(t) = max
s∈[0,1]

c22|h′(s)|2h(s) <
mint∈[0,1] 4Khc(t) +H2

H2

making t 7→ hc(t) an (g,H)-admissible path.

Now let ε > 0 be given and consider a (g,H)-admissible path t 7→ g(t) satisfying

(23) max
t∈[0,1]

√
2t|g′|2g√

4Kg(t)+H2

H2 −
√

2t2|g′|2g
≤ C(g,H) + ε/2

We will construct a family of (g,H)-admissible paths gθ(t) satisfying gθ(t) = gθ(1) for t ∈ [1− θ, 1]

and also inequality (22) for sufficiently small θ. For each θ ∈ (0, 1/3), we consider a smooth auxilary

40



function σθ : [0, 1]→ [0, 1] satisfying
σθ(t) = t

1−2θ , ∀ t ∈ [0, 1− 3θ]

σθ(t) = 1, ∀ t ∈ [1− θ, 1]

0 ≤ σ′θ(t) ≤ 1
1−2θ , ∀ t ∈ [0, 1].

Such a function can be constructed by mollification as discussed in [6]. Then the path t 7→ gθ(t)

given by gθ(t) := g(σθ(t)) satisfies gθ(t) = g(1) for all t ∈ [1− θ, 1]. For all t ∈ [0, 1], we have

2t2|g′θ(t)|2gθ(t) ≤
1

(1− 2θ)2
2t2|g′(σθ(t))|2gθ(t)

≤ 1

(1− 2θ)2
2(σθ(t))

2|g′(σθ(t))|2g(σθ(t))

≤ (1− c)
(1− 2θ)2

(
4Kg(σθ(t)) +H2

H2

)
for some c > 0 using the fact that g(t) is (g,H)-admissible. In particular, for all θ > 0 sufficiently

small we have

(24) 2t2|g′θ(t)|2gθ(t) ≤
(

1− c

2

) 4Kgθ(t) +H2

H2

for t ∈ [0, 1], where we have used the fact that Kg(σθ(t)) = Kgθ(t), and thus gθ(t) is (g,H)-admissible.

On the other hand, we have

|g′θ(t)|2gθ(t) = σ′θ(t)
2|g′(σθ(t))|2g(σθ(t)),

and thus

2t|g′θ(t)|2gθ(t) = 2tσ′θ(t)
2|g′(σθ(t))|2g(σθ(t))

=
σ′θ(t)

2t

σθ(t)
(2σθ(t)|g′(σθ(t))|2g(σθ(t)))

≤ t

σθ(t)(1− 2θ)2
(2σθ(t)|g′(σθ(t))|2g(σθ(t)))

Also, as t/σθ(t)
(1−2θ)2 → 1 uniformly for t ∈ [0, 1] as θ → 0, it follows from inequality (24) that for

sufficiently small θ we have(
t/σθ(t)

(1− 2θ)2

)2

2t2|g′θ(t)|2gθ(t) ≤
4Kgθ(t) +H2

H2
for all t ∈ [0, 1].
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Combining these estimates and letting s = σθ(t), we may then estimate as follows for θ > 0 suffi-

ciently small

max
t∈[0,1]

√
2t|g′θ(t)|2gθ(t)√

4Kgθ(t)+H
2

H2 −
√

2 t2|g′θ(t)|2gθ(t)

≤ max
s∈[0,1]

t/s
(1−2θ)2

√
2s |g′(s)|2g(s)√

4Kg(s)+H2

H2 − t2/s
(1−2θ)2

√
2 s2|g′(s)|2g(s)

≤ max
s∈[0,1]

t/s
(1−2θ)2

√
2s |g′(s)|2g(s)√

4Kg(s)+H2

H2 − t/s
(1−2θ)2

√
2 s2|g′(s)|2g(s)

≤ C(g,H) + ε

where we have used the fact that t ≤ 1 in the second last inequaltiy, and for the last inequality we

have used equation (22) and the fact that t/σθ(t)
(1−2θ)2 → 1 uniformly for t ∈ [0, 1] as θ → 0. �

Lemma 3.4.3 (Collar Construction). Let g ∈ K≥0, H > 0 a constant and let ξ = (g(t)) be a

(g,H)-admissible path. The topological cylinder M = S2 × (0, 1] endowed with the metric

γ = (1 + c
√
t)g(t) +

c2

4H2t
dt2

has the following properties:

(i) Rγ > 0,

(ii) Ht = H
1+c
√
t

for all t ∈ (0, 1],

(iii) mH(Σ1, H1) =
rg
√

1+c
2

(
1− r2H2

4(1+c)

)
.

Here c > 0 is any constant satisfying

c ≥ Cξ := max
S2×[0,1]

√
2t|g′|2g√

4Kg(t)+H2

H2 −
√

2t2|g′|2g
.

Remark 3.4.4. Like in the proof of Theorem 3.1.1, the presumed singularity at t = 0 is superfi-

cial. Changing cooridnates to s =
√
t for t ∈ (0, 1] gives

γ = (1 + 2Hs)g

(
Hs2

2c

)
+ ds2

which is no longer singular and can therefore be extended to the closed manifold S2 × [0, 1]. Since

scalar and mean curvature are coordinate invariant quantities, we choose to work in the t-coordinates

for ease of calculation and to stay consistent with [8] from which this lemma first appeared.

Proof of Lemma 3.4.3. Write E(t) = 1 + c
√
t and Φ(t) = c

2H
√
t
. Notice that

−2E−1E′′ + 2E−1E′
∂tΦ

Φ
= E−1

[
−2
(
− c

4
t−3/2

)
+ 2

(
1

2
ct−1/2

)(
−t−3/2

2t−1/2

)]
≡ 0.

Then by our calculations in section §2.1, we have

Rγ = Φ−2

[
2E−1Kg(t)Φ(t)2 − 1

4
|g′|2g +

1

2
E−2(E′)2

]
= Φ−2

[
2(1 + c

√
t)−1Kg(t)

(
c

2H
√
t

)2

− 1

4
|g′|2g +

1

2
(1 + c

√
t)−2

(
c

2
√
t

)2
]
.
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So in order to ensure Rγ > 0 on M (and consequently Rγ ≥ 0 on M̃ = S2 × [0, 1] in the new

s-coordinates as in Remark 3.4.4), it suffices to require the (strictly) stronger condition

(1 + c
√
t)−2Kg(t)

c2

2H2t
− 1

4
|g′|2g +

1

8t
(1 + c

√
t)−2c2 ≥ 0 on M̃

or equivalently
4c2

H2
Kg(t) − 2t|g′|2g(1 + c

√
t)2 + c2 ≥ 0 on M̃.

But we saw in section §3.1 that because ξ is a (g,H)-admissible path, this is equivalent with

c ≥ max
S2×[0,1]

√
2t|g′|2g√

4Kg(t)+H2

H2 −
√

2t2|g′|2g

which is true by the definition of Cξ. This proves (i).

The mean curvature of Σt is

Ht =
E′(t)

Φ(t)E(t)
=

c
2
√
t

( c
2H
√
t
)(1 + c

√
t)

=
H

1 + c
√
t

which gives (ii). Property (iii) is then immediate from the definition of Hawking mass. �

Proof of Theorem 3.1.4. Let g ∈ K≥0, H > 0 and ε > 0. If H < 2
√

1+C
rg

, then by Lemma

3.4.2, we can find a (g,H)-admissible path ξ = (g(t)) with Cξ such that Cξ < C+ ε and 2
√

1+C
rg

≥ 0.

We can apply Lemma 3.4.3 to the (g,H)-admissible path ξ which satisfies the hypothesis of Lemma

2.1.7. Taking ε→ 0+ yields

mB(S2, g,H) ≤ rg
√

1 + C

2

(
1−

r2
gH

2

4(1 + C)

)
.

Now suppose that H ≥ 2
√

1+C
rg

and thus

c :=
H2r2

g(1 + ε)

4
− 1 > C ≥ 0.

By Lemma 3.4.2, we can find a (g,H)-admissible path ξ = (g(t)) such that

c ≥ Cξ > C ≥ 0.

We can then apply Lemma 3.4.3 to the (g,H)-admissible path ξ and the constant c. The resulting

collar again satisfies the hypothesis of Lemma 2.1.7 with

mH(Σ1, H1) =
rg
√

1 + c

2

(
1−

r2
gH

2

4(1 + c)

)
=
rgε
√

1 + c

2(1 + ε)
.

Assuming ε ≤ 1, this yields

mB(S2, g,H) ≤ rgε
√

1 + c

2(1 + ε)
≤ ε

r2
gH

2
√

2

Taking ε→ 0+ yields

mB(S2, g,H) ≤ 0.

�
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Though we have been exclusively dealing with the case g ∈ K≥0, the proof featured above only

needs a slight modification to prove Theorem 3.1.6. For this, we state a version of Lemma 3.4.3 for

the more general case of when g is not necessarily in K≥0.

Lemma 3.4.5 (Collar Construction). Let g ∈ Met(S2) and let H > 0 be a large enough constant

so that the set

{d such that ξ is a g-admissible path and d is a (ξ,H)-good constant}

is non-empty. Let d be such a constant with ξ = (g(t)) the associated g-admissible path. Then the

topological cylinder M = S2 × (0, 1] endowed with the metric

γ = (1 + d
√
t)g(t) +

d2

4H2t
dt2

has the following properties:

(i) Rγ > 0,

(ii) Ht = H
1+d
√
t

for all t ∈ (0, 1],

(iii) mH(Σ1, H1) =
rg
√

1+d
2

(
1− r2H2

4(1+d)

)
.

Proof. Items (ii) and (iii) are analogous to the respective proofs in Lemma 3.4.3. To prove

item (i), recall that the scalar curvature of γ is

Rγ =
4H2t

d2

[
2(1 + d

√
t)−1Kg(t)

(
d

2H
√
t

)2

− 1

4
|g′|2g +

1

2
(1 + d

√
t)−2

(
d

2
√
t

)2
]

which is necessarily positive on all of S2 × (0, 1] since d is a (ξ,H)-good constant. �

The proof of Theorem 3.1.6 is now analogous to the proof of Theorem 3.1.4.
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