
Online Chatter Detection using Self-Evolving Automated Machine Learning Fusion 

by 

 

MohammadHossein Rahimi 

 

B.Sc., Sharif University of Technology, 2017 

 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

 

MASTER OF APPLIED SCIENCE 

in 

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES 

(Mechanical Engineering) 

 

THE UNIVERSITY OF BRITISH COLUMBIA 

(Vancouver) 

 

March 2021 

 

© MohammadHossein Rahimi, 2021 

 

 

  



ii 

 

The following individuals certify that they have read, and recommend to the Faculty of Graduate 

and Postdoctoral Studies for acceptance, the thesis entitled: 

Online Chatter Detection using Self-Evolving Automated Machine Learning Fusion 

 

submitted by M. Hossein Rahimi in partial fulfillment of the requirements for 

the degree of Master of Applied Science 

in Mechanical Engineering 

 

Examining Committee: 

Dr. Yusuf Altintas, Mechanical Engineering 

Supervisor  

Dr. Bhushan Gopaluni, Chemical and Biological Engineering 

Supervisory Committee Member  

Dr. Xiaoliang Jin, Mechanical Engineering 

Supervisory Committee Member 

 



iii 

 

Abstract 

Computer Numerical Controlled (CNC) Milling is used to remove excess metal from a 

blank to produce the final shape of the workpiece. One limitation of high material removal rates 

with reduced cost in machining operations is self-excited vibrations called chatter. Chatter results 

in poor surface finish, damage to the workpiece and machine tool’s spindle, and causes accelerated 

tool wear. Chatter detection and prevention have been one of the major fields of study in 

manufacturing to improve the quality and productivity of machining operations. 

This research proposes a self-evolving, online method to detect and avoid chatter in milling 

operations by fusing deep learning with the knowledge of chatter theory. The process is monitored 

by collecting vibration data during machining. Windows of data are converted into Short-time 

Fourier Transforms and processed through a Convolution Neural Network to identify five 

machining states: Air cutting, entrance to and exit from the cut, stable cut, and unstable cut with 

chatter. A base state detection model is built by modifying and training AlexNet architecture using 

experimental data with known states. A specialized Deep Learning architecture is designed based 

on the base model, using an Automated machine learning process, with high state detection 

accuracy and low complexity in mind.  

In parallel to the machine learning model, chatter detection with a physics-based model is 

executed to increase the robustness and accuracy of chatter detection. The forced vibrations which 

always occur in milling are removed by Kalman filter, and the occurrence of chatter is detected 

using an energy-based method. The hybrid system detects the chatter with a 98.8% success rate. 

The system has a built-in online self-improving capability. The system stops the machining process 

and commands a new spindle speed to force the machine to operate in chatter-free zone.  



iv 

 

Lay Summary 

Computer Numerical Controlled (CNC) machines are widely used in the machining 

industry. The motion of machine along the commanded tool path and as well as the rotation of the 

spindle which carries the tool is governed by the CNC, and the final shape of the product is 

produced through metal removal.    

The cost and machining time in aerospace and die & mold are quite significant. When a 

machine experiences unstable chatter, the resulting vibrations lead to high forces and poor surface 

finish which may destroy the part, tool, spindle and costly parts.  

This thesis presents a method to detect and suppress chatter vibration by infusing the 

physics of the cutting process and Artificial Intelligence. The proposed method can detect the 

chatter and identifies the best spindle speed to avoid chatter during machining.  



v 

 

Preface 

I was the lead investigator for the work presented in Chapters 3, 4 and 5. I planned the experimental 

design, conducted experimentation, developed the algorithms, and completed results analysis. Dr. 

Yusuf Altintas was my supervisor. 

 

A version of chapters 3, 4 and chapter 5 has been presented at a conference. I presented the material 

at the British Columbia Artificial Intelligence Showcase conference. Additionally, the manuscript 

“On-line chatter detection in milling using machine learning” was written by M. Hossein Rahimi, 

Hoai Nam Huynh, and Dr. Yusuf Altintas. 

 



vi 

 

Table of Contents 

 

Abstract ......................................................................................................................................... iii 

Lay Summary ............................................................................................................................... iv 

Preface .............................................................................................................................................v 

Table of Contents ......................................................................................................................... vi 

List of Tables ................................................................................................................................ ix 

List of Figures .................................................................................................................................x 

List of Symbols ........................................................................................................................... xiii 

List of Abbreviations ................................................................................................................ xvii 

Acknowledgments .................................................................................................................... xviii 

Chapter 1: Introduction ................................................................................................................1 

Chapter 2: Literature Review .......................................................................................................7 

2.1 Dynamic of Metal Cutting .............................................................................................. 7 

2.2 Chatter Prediction and Detection using Physics-driven methods ................................. 11 

2.2.1 Online Energy-based Chatter Detection ................................................................... 12 

2.2.1.1 Identification of the Periodic Component of Machining Vibrations ................ 13 

2.2.1.2 Chatter Component Assessment ....................................................................... 16 

2.3 Machine Learning and its utilization in Industry and Machining Sciences .................. 19 

2.4 Summary ....................................................................................................................... 20 

Chapter 3: Online Cutting State Detection Using Machine Learning ....................................22 

3.1 Machine Learning Training Pipeline ............................................................................ 23 

3.2 Experiment Design, Data Collection, and Plausibility Assessment ............................. 26 



vii 

 

3.2.1 Cleaning, Denoising, and Handling Data using Comprehensive Industrial Process 

Monitoring Data Structure .................................................................................................... 29 

3.2.2 Plausibility Assessment and Setting a baseline ........................................................ 32 

3.3 Frequency Domain Conversion and Feature Extraction ............................................... 34 

3.4 Machining State Detection using Transfer Learning .................................................... 38 

3.4.1 Deep Learning Pipeline Overview ............................................................................ 39 

3.4.2 Convolutional Blocks................................................................................................ 41 

3.4.2.1 Two-dimensional Discrete Convolution Layer ................................................. 42 

3.4.2.2 Rectified Linear Unit (ReLU) ........................................................................... 46 

3.4.2.3 Local Response Normalization ......................................................................... 47 

3.4.2.4 Max Pooling ...................................................................................................... 48 

3.4.3 Artificial Neural Network Components .................................................................... 50 

3.4.4 SoftMax..................................................................................................................... 53 

3.4.5 Focal Loss Classifier ................................................................................................. 53 

3.4.6 Transfer Learning (base) Method’s Architecture Overview ..................................... 54 

3.5 Automated Convolutional Neural Network Architecture Design for Machining State 

Detection ................................................................................................................................... 58 

3.5.1 Automated CNN Architecture Design Methodology and Structure ......................... 60 

3.5.1.1 Architecture Structure and Outline ................................................................... 62 

3.5.1.2 Design Methodology ......................................................................................... 63 

3.5.2 Bayesian Optimization for Machining State Detection Architecture Design ........... 66 

3.5.3 Network Assessment and Objective Function Design .............................................. 69 

3.6 Summary ....................................................................................................................... 70 



viii 

 

Chapter 4: Machine Learning and Physics-driven Chatter Detection Fusion .......................72 

4.1 Improved Energy-Based Chatter Detection Method ..................................................... 73 

4.1.1 Chatter Energy Estimation ........................................................................................ 74 

4.2 Hybrid Model ................................................................................................................ 77 

4.2.1 Decision-making Algorithm ..................................................................................... 78 

4.2.2 Chatter Suppression .................................................................................................. 80 

4.3 Self-evolving artificial intelligence using Semi-supervised learning ........................... 81 

4.3.1 Self-evolution System ............................................................................................... 81 

4.4 Summary ....................................................................................................................... 84 

Chapter 5: Experimental Validation and Results .....................................................................85 

5.1 Data and Training Parameters ....................................................................................... 86 

5.2 Baseline ......................................................................................................................... 87 

5.3 Standalone Transfer Learning Machining State Detection Method Performance ........ 92 

5.4 Standalone Custom Designed Convolutional Neural Network Performance ............... 95 

5.5 Improved Energy-based Chatter Detection and Hybrid System (Machine Learning 

Fusion) Performance ............................................................................................................... 104 

5.6 Summary ..................................................................................................................... 107 

Chapter 6: Conclusion ...............................................................................................................109 

6.1 Future Work ................................................................................................................ 111 

Bibliography ...............................................................................................................................113 

 



ix 

 

List of Tables 

Table 1 Number of Instances and Experiments Distribution for each Dataset and each Machining 

State............................................................................................................................................... 86 

Table 2 Custom Designed Machining State Detection Model Training Hyperparameters .......... 92 

Table 3 Custom Designed Machining State Detection Model Training Hyperparameters ........ 100 

Table 4 Custom Designed Machining State Detection Model Performance tested on the Test 

Dataset......................................................................................................................................... 104 

 



x 

 

List of Figures 

 

Figure 1 Stable Cut (top) versus Chatter (bottom) Surface Quality ............................................... 1 

Figure 2 Machining Forces for a Sample Process with ωc Chatter Frequency Illustration ........... 2 

Figure 3 System Overview.............................................................................................................. 5 

Figure 4 Orthogonal Cutting a) Dynamic Scheme, b) Block Diagram........................................... 8 

Figure 5 Online energy-based chatter detection overview with a Sample Input to Illustrate the 

Process .......................................................................................................................................... 13 

Figure 6 Machine Learning Architecture Design and Algorithm Training Process Overview .... 24 

Figure 7 Experiment Setup ........................................................................................................... 26 

Figure 8 Cutting States Illustration - from left to right respectively, Air Cut, Entrance, In Cut, 

and Exit ......................................................................................................................................... 27 

Figure 9 Experiments’ Data Partitioning and Utilization Summary ............................................. 29 

Figure 10 Overview of Comprehensive Industrial Process Monitoring ....................................... 30 

Figure 11 Breaking down the data and Embedded Data Augmentation ....................................... 30 

Figure 12 Setting the Baseline Procedure ..................................................................................... 32 

Figure 13 Windowing of Vibration Signal for Calculating STFT ................................................ 35 

Figure 14 STFT for each given Instance of Vibration Signal ....................................................... 36 

Figure 15 Short-Time Fourier Transform’s Matrix Visual Representation Example ................... 37 

Figure 16 STFT Example.............................................................................................................. 38 

Figure 17 Deep Learning Training Pipeline Overview ................................................................. 40 

Figure 18 A Generic Convolutional Block’s Notation ................................................................. 41 

Figure 19 Illustration of group convolution function for a two-group, group convolution .......... 44 



xi 

 

Figure 20 Discrete Convolution Illustration with an Arbitrary Kernel Example ......................... 45 

Figure 21 Applying a Line Detector Convolution Kernel on STFT Data Example ..................... 46 

Figure 22  Example of Applying ReLU to Convolved STFT Matrix ........................................... 47 

Figure 23 Local Response Normalization implementation illustration ........................................ 48 

Figure 24 Max pooling Operation Example ................................................................................. 49 

Figure 25 Example of Max-pooling and applying it to a Convolved STFT after ReLU function 50 

Figure 26 Transfer Learning Architecture Overview ................................................................... 55 

Figure 27 Overview of Automated Cutting State Detection Network Architecture Design 

Methodology Scheme ................................................................................................................... 61 

Figure 28 Architecture Structure and Design Methodology Scheme ........................................... 66 

Figure 29 Suggested Improved Energy-based Method's Scheme ................................................. 74 

Figure 30 Chatter Peak Detection Example .................................................................................. 76 

Figure 31 Proposed Physics-driven Method Performance on a Sample Signal............................ 77 

Figure 32 Probability versus Certainty in Machining State Detection Using Machine Learning 

Output ........................................................................................................................................... 79 

Figure 33 Decision Making Algorithm Outline ............................................................................ 80 

Figure 34 Chatter Suppression based on the Analytical Stability Lobes for Sandvik R390-050022 

Tool ............................................................................................................................................... 81 

Figure 35 The tools used during data collection, from left to right Sandvik R245-12T3, Seco 

R21769-1632, Sandvik R390-050022, Seco JS452120E33R050, and Sandvik 39241014-

6340120B ...................................................................................................................................... 87 

Figure 36 Baseline Model Confusion Matrix (with normalized rows) ......................................... 88 

Figure 37 Decision Tree, Decision Criteria for machining state detection................................... 89 



xii 

 

Figure 38 Decision Tree Decision Boundaries ............................................................................. 90 

Figure 39 Normal Distribution Fitted to the Histogram of Each Machining State Experiments 

Time-domain Test Data ................................................................................................................ 91 

Figure 40 Baseline Transfer Learning method’s Training Process .............................................. 93 

Figure 41 The Output Value of Activation of the CNN Convolutional Layers for a given piece of 

Stable Frequency-domain Vibration Signal .................................................................................. 94 

Figure 42 Normalized Confusion Matrix of the Transfer Learning Model .................................. 95 

Figure 43 Automated Machine Learning Architecture Design Iterations .................................... 96 

Figure 44 Architecture Validation Accuracy, Objective Function Value, and Complexity of Each 

Bayesian Optimization Iteration with top three minimum objective function value iterations 

marked........................................................................................................................................... 97 

Figure 45 Objective function Value versus Bayesian Optimization Estimation of Objective 

Function Value During Architecture Design Process ................................................................... 98 

Figure 46 Custom Designed Machining State Detection CNN Architecture Schematic.............. 99 

Figure 47 The Output Value of Activations of the CNN Convolutional Layers for a given Piece 

of Frequency-domain Vibration Signal ...................................................................................... 100 

Figure 48 Custom Designed Architecture Training Process ...................................................... 102 

Figure 49 Trained Model of Custom Designed Architecture’s Confusion Matrix ..................... 103 

Figure 50 Improved Energy-based Chatter Detection Confusion Matrix with Normalized Rows, 

based upon the Test Data ............................................................................................................ 105 

Figure 51 Hybrid (Machine Learning Fusion) Chatter Detection System Confusion Matrix with 

Normalized Rows........................................................................................................................ 106 

 



xiii 

 

List of Symbols 

ℎ𝑗    Regenerative chip thickness for 𝑗-th tooth 

𝜃𝑗    Angular immersion angle for 𝑗-th tooth 

𝐹𝑟,𝑗, 𝐹𝑡,𝑗  Radial and tangential forces for 𝑗-th tooth 

𝑎𝑝   Depth of cut 

𝑞   Modal displacement vector 

𝐾𝑡, 𝐾𝑟   Tangential and radial cutting force coefficients 

𝑎𝑥𝑥, 𝑎𝑥𝑦, 𝑎𝑦𝑥, 𝑎𝑦𝑦 Time-varying periodic directional force coefficients 

𝑄𝑐,𝑛, 𝑄̃𝑐,𝑛  Complex coefficient vectors and their conjugates at the 𝑛-th harmonic 

𝑄   Process noise covariance matrix 

𝑋𝑝,𝑛, 𝑋𝑐,𝑛  Amplitude of 𝑛-th periodic and chatter vectors 

𝜆   Process noise to measurement noise ratio 

𝐹   Force vector 

𝐾   Kalman gain vector 

𝐻   Measurement matrix 

𝑀   Number of band-pass filters 

𝑅   Measurement noise covariance  

𝐷   Lag parameter 

𝑞̂𝑘    Estimated state vector  

𝜓    Nonlinear energy operator (NEO)  

𝜓𝑑    Nonlinear energy operator discrete form 

𝑦𝑐   Chatter component 



xiv 

 

𝑌̂𝑝   Energy of the periodic part of the signal 

𝑌̂𝑝,𝑛   Amplitude of the 𝑛-th harmonic 

𝜂   Energy integration factor 

𝜏   Time delay 

Φ   Phase 

Ψ   Non-linear energy operator 

𝐸𝑁𝑐   Chatter energy  

𝐸𝑁𝑃    Periodic energy 

𝐸𝑅   Energy ratio 

𝜔𝑡   Tooth passing Frequency 

𝜔𝑠   Spindle Frequency 

𝜔𝑐   Chatter Frequency 

𝜎   Standard Deviation 

𝜇3   Skewness 

𝑓𝑠   Sampling frequency 

𝑀   Windowing function length 

𝐿𝑤   STFT window size 

𝐿𝑜   STFT overlap size 

ReLU(𝑥)  Rectified linear unit 

𝜎𝛽   Softmax function 

𝑓   Surrogate function 

𝜇𝑄   Accusation function 



xv 

 

𝑝(𝑠𝑡𝑎𝑡𝑒)  Probability of each machining state determined by the machine learning 

algorithm 

𝑝state   Probability of each state 

𝑃𝐶   Accumulative Probability of chatter 

𝑃𝑆   Accumulative Probability of stable process 

𝐵(𝑙)   Output of 𝑙-th Convolutional Block 

𝐾(𝑙)   Weights matrix of Kernel of 𝑙-th Convolutional Block 

𝐶(𝑙)   Output of 𝑙-th Convolutional Layer 

𝑤𝑙   Weights matrix of Neural Network 𝑙-th layer 

𝑤𝑖,𝑗
𝑙    Weight of the connection of neuron 𝑖 from layer 𝑙 − 1 and neuron 𝑗 from 

layer 𝑙 

𝑏𝑙   Biases matrix of layer 𝑙 

𝑏𝑗
𝑙   Bias of layer 𝑙 and neuron 𝑗 

𝐹𝐿   Focal loss 

𝑠𝑖   Network design hyperparameters set for 𝑖-th iteration 

𝑊𝑃   Weights matrix of loss penalty 

𝑎𝑖
(𝑙)

   Activation of neuron 𝑖 of layer 𝑙 

𝐶𝑖   Convolutional block 𝑖 

𝑛𝑐   Number of Convolutional blocks 

𝑁𝑖   Neural network hidden layer 𝑖 

𝑛𝑁   Number of the neural networks hidden layers 

𝐿(𝜃)   Likelihood of 𝜃 



xvi 

 

𝑇   Number of training instances 

𝑘complexity  Complexity of network 

𝑌𝑐   Frequency-domain signal of the non-periodic part of the vibration signal 

𝑎𝑡ℎ𝑖   Peak threshold of 𝑖-th point of discrete-time 

𝑓𝑠𝑢𝑝   Suppression factor 

𝑡ℎCertainty  Certainty threshold 

𝑡ℎ𝐸𝑅   Self-evolution energy ratio certainty threshold 

𝐾𝑝   Energy-based influence factor 

𝛼   Learning rate 

𝜖   Offset denominator 

𝑚𝑖, 𝑣𝑖   Parameter gradients and their squared 



xvii 

 

List of Abbreviations 

AI  Artificial Intelligence 

ANN  Artificial Neural Network  

AutoML Automatic Machine Learning  

CNN  Convolutional Neural Network  

DDE  Delay Differential Equations 

DFT  Discrete Fourier Transform 

ESA  Energy Separation Algorithm 

FFT  Fast Fourier Transform 

FL  Focal Loss 

FRF  Frequency Response Function 

HQC  Hannan–Quinn information criterion 

IIR  Infinite impulse response  

LSTM  Long Short-term Memory 

ML  Machine Learning 

NAS  Neural Architecture Search 

NEO  Teager-Kaiser Nonlinear Energy Operator 

ODE   Ordinary differential equation  

SDOF  Single Degree of Freedom 

STD  Standard Deviation 

STFT  Short-term Fourier transform 



xviii 

 

Acknowledgments 

I would like to express my gratitude to my supervisor, Professor Yusuf Altintas, for the confidence 

he placed in me by accepting me in the Manufacturing Automation Lab and for his continued 

support and guidance throughout my master of applied science research. 

 

To my friends and peers in the Manufacturing Automation Laboratory, thank you for your 

technical and moral support and thank you for all the shared laughs and conversations. I would 

like to thank Dr. Hoai Nam Huynh for his valuable inputs during the process of writing my thesis.  

 

Finally, I would like to thank my magnificent family. I am incredibly grateful to my parents. 

Without the inspiration, drive, and support that they have given me, I might not be the person I am 

today.  



1 

 

Chapter 1: Introduction 

Machining is a subtractive manufacturing process where a cutting tool moves relative to a 

workpiece and removes material to form the desired shape. Machining processes are critical 

operations in manufacturing parts with final shapes. The productivity rates and dimensional 

accuracy of the machined parts are of great importance. Violating dimensional tolerances during 

production scraps the parts, which are costly and disruptive to the manufacturing chain in the 

factories.  

 

Figure 1 Stable Cut (top) versus Chatter (bottom) Surface Quality 

Self-excited vibrations in machining, namely the chatter, is the most important limitation for high 

material removal and dimensional accuracy of the machined parts [1]. As shown in Figure 1, an 

unstable machining process with chatter leaves vibration marks on the workpiece and results in 

poor surface quality. During chatter, the amplitude of unstable vibration may increase 

exponentially leading to excessive chip thickness hence large cutting forces.  Chatter does not only 

result in poor surface quality and excessive noise but can overload the spindle bearings and cause 

accelerated tool wear.  

Chatter can be avoided by selecting the depth of cuts and cutting speeds within the stable zone 

during process planning before the part is machined. The stable cutting conditions can be predicted 

as a function of the Frequency Response Function (FRF) of the machine at the tool-workpiece 

structures at their contact zone, material properties, and tool geometry. However, there are always 



2 

 

uncertainties in material properties and FRF of the machine structure which may change under 

operating conditions.  Therefore, an online chatter detection and avoidance system during the 

machining process is necessary to run the machine in stable conditions.  

As shown in Figure 2, the milling process commonly exhibits three primary sets of forces. The  

stable, forced vibrations occur at tooth passing frequency and its harmonics. Chatter, the unstable 

vibrations, occur close to one of the natural frequencies. There are also sidebands that are spread 

at the multiples of tooth passing frequency away from the chatter frequency. Having multiple 

vibration sources with frequencies scattered over various frequency ranges makes it difficult to 

differentiate between the stable and unstable cut. Moreover, the machining system has numerous 

states such as entry to and exit from the workpiece, which excite transient vibrations at the natural 

frequencies of the machine which resemble chatter.  

 

Figure 2 Machining Forces for a Sample Process with 𝝎𝒄 Chatter Frequency Illustration 

Data-driven methods could be used for chatter detection to account for time-varying system 

parameters and compensate for the measurement inaccuracies by processing vibration data 

collected during machining. However, it is essential to ensure the robustness and versatility of the 

data-driven method to be used for chatter detection. 

 

 
 

Fre uency

M
a
g
n
it
u
d
e

 
 
 

 
 
 

 
 
 
 
 

 
 

 
 
 
 
 

 



3 

 

This thesis presents an online chatter detection method by infusing a data-driven machine learning 

method, with a physics-driven method to achieve robustness and accuracy.  As shown in Figure 3, 

the proposed method consists of a machining state detection using convolutional neural networks 

and a chatter detection algorithm based on the physics of milling running in parallel. Both methods 

use the vibration signal as their input.  

 

The first algorithm is a self-evolving machine learning method, capable of differentiation between 

stable and unstable cut and detecting machining states, i.e. tool-workpiece engagement. The 

process of data acquisition, data handling, plausibility assessment, signal processing, signal 

features extraction, machine learning model selection, and architecture design are described. A 

substantial number of cutting experiments are performed that resulted in a database of cutting 

experiments. The experiment database is directly used for the assessment of machining state 

detection using machine learning. Furthermore, the vibration signal is used for architecture design 

and model training. 

A deep learning model called Convolutional Neural Network (CNN) is used in the thesis. The 

network architecture, corresponding to the model’s hyper-parameters, is designed using a process 

known as Automated Machine Learning (AutoML). The architecture design procedure starts with 

a transfer learning method as the initial input to the designed loop. During the designed AutoML 

algorithm's execution process, a Bayesian optimization algorithm seeks the best architecture in the 

defined search space. The resultant architecture is used for online machining state detection. The 

method uses the time-domain vibration signal as the input and converts it to the frequency domain 

to perform cutting state detection. It outputs the probability of each machining state. 



4 

 

An automatic procedure is designed to evolve the machine learning model’s performance while it 

is running online. It uses statistical methods to enhance the system's performance as it functions 

and observes more machining cases. 

 

The second simultaneously running method is an enhanced version of a previously developed 

physics-driven method, called online energy-based chatter detection. The method takes vibration 

signal as the input, as well, and output the chatter to periodic energy ratio, which is used as an 

indicator of chatter. It detects chatter by removing all the periodic components using a Kalman 

filter. Then by transforming the signal to the frequency domain and setting a statistical threshold 

to group the chatter peaks. It finds the eligible peaks based on certain criteria and calculates the 

chatter energy. It uses the ratio of the chatter energy to the accumulative chatter and stable energy. 

A higher ratio indicates a higher chance of instability. 

 

The algorithm calculates the probability of chatter from the machine learning method and the 

physics-based method's energy ratio. The cutting states detected by the machine learning algorithm 

aids the algorithm to avoid false chatter detection. When the chatter is detected, the algorithm stops 

the feed, changes the spindle speed and resumes the cutting until chatter is avoided. If the chatter 

is impossible to avoid due to violation of physical limits, the operator is alerted to stop the 

operation.   



5 

 

 

Figure 3 System Overview 



6 

 

The thesis is structured as follows. Chapter 2 discusses the state of the art literature in chatter 

detection based on both physics and data-driven methods.  It includes a brief review of the recent 

development in artificial intelligence used in the field of machining stability.  

Chapter 3 elaborates on the process of designing and training the machine learning model used for 

online machining state detection. The chapter starts with the experiment design process and data 

handling. The experimental data used to train a machine learning model is presented. The trained 

Model is used as the initial state of an automated machine learning architecture design. The 

automated design process is developed and implemented to increase the chatter detection accuracy,  

and decrease the model complexity and computing power. 

Chapter 4 presents the machine learning model's fusion with the physics-based model. The first 

section of the chapter goes over the proposed improvements to the physics-based method, which 

increases its accuracy and robustness. Furthermore, the chapter explains the algorithm to fuse the 

two methods and describes the approach taken towards making the algorithm self-evolving.  

Chapter 5 presents the experimental validation of the models. The chapter evaluates the 

performance of the methods individually, as well as accumulatively.  Chapter 6 concludes the 

thesis with final remarks and future work. 

 

  



7 

 

Chapter 2: Literature Review 

There have been numerous attempts to predict and detect chatter before and during the machining 

process. Prior art involving online chatter detection can be roughly categorized into two following 

approaches, physics-driven methods, which use metal cutting dynamics to detect chatter vibration;  

and data-driven methods, which leverage the experimental data to find patterns and detect chatter. 

This work suggests a machine learning method for machining state detection, a physics-driven 

method for chatter detection, and a method to link two methods and leverage the knowledge of 

metal cutting to improve the data-driven method's performance. 

 

In this chapter, prior research related to chatter detection, both using data-driven and physics-based 

methods, and automated machine learning architecture design are surveyed. The first section 

reviews the dynamics of metal cutting. Section 2.2 elaborates on the previous attempts on chatter 

detection and briefly explain the energy-based chatter detection method which is adopted here as 

a physics-based method. Section 2.3 presents the machine learning methods and their utilization 

in machining dynamics. Finally, section 2.4 demonstrates the conclusion derived from the 

literature and presents where this work stands among them. 

 

2.1 Dynamic of Metal Cutting 

The dynamic model of milling with relative tool-workpiece vibrations is shown in Figure 4, 

alongside a block diagram description of the system. In the below figure, 𝑥𝑤 and 𝑦𝑤 represent the 

position of the workpiece and 𝑥𝑡 and 𝑦𝑡 reperesent the position of the tool.  



8 

 

 

Figure 4 Orthogonal Cutting a) Dynamic Scheme, b) Block Diagram 

The cutting forces act at the tool and workpiece contact in the opposite direction. The forces are 

proportional to the static and regenerative chip thickness. The regenerative chip thickness is given 

by [2], 

 

ℎ𝑗(𝑡) = 𝑐 sin 𝜃𝑗(𝑡)  [𝑥(𝑡) − 𝑥(𝑡 − 𝜏)] sin 𝜃𝑗(𝑡)

 [𝑦(𝑡) − 𝑦(𝑡 − 𝜏)] cos 𝜃𝑗(𝑡) 
(1) 

Where the subscript 𝑗 ∈ ℕ is the tooth index, and 𝑐[mm/rev/tooth] is the feed rate per tooth. The 

term 𝜏[𝑠] represents the time delay and equal to the tooth passing period (60/(𝜔[rev/min])) for 

a regular pitch tool. Additionally, 𝜃𝑗[rad] is the angular immersion angle of tooth 𝑗, 

 𝜃𝑗(𝑡) =  𝜋 (
𝜔

60
𝑡  

𝑗 − 1

𝑁
) (2) 

The radial force (𝐹𝑟,𝑗) and tangential force (𝐹𝑡,𝑗) of tooth 𝑗 for cutting material with 𝐾𝑟 and 𝐾𝑡 

radial and tangential cutting coefficients, respectively, is expressed as [3], 

Feed

Tool

 orkpiece

Rotation

  

  
  ,  

  

  

 
  

       
Milling 

Dynamics

    

  

 
 

 
 

 ( )  ( )

a) b)



9 

 

 {
𝐹𝑟,𝑗(𝑡) = 𝑔𝑗(𝑡)𝜌𝑗𝑎𝑝𝐾𝑟ℎ𝑗(𝑡)

𝐹𝑡,𝑗(𝑡) = 𝑔𝑗(𝑡)𝜌𝑗𝑎𝑝𝐾𝑟ℎ𝑗(𝑡)
 (3) 

Where 𝑎𝑝 is the depth of cut, 𝜌𝑗 is the run-out factor [4], and 𝑔𝑗(𝑡) is an indicator of whether the 

tooth 𝑗 is in the cut or not as, 

 𝑔𝑗(𝑡) = {
0 ∶ If 𝑗th tooth is not in cut at time 𝑡
1 ∶ If 𝑗th tooth is in cut at time 𝑡

 (4) 

Similarly, in the x-y frame, the forces are given by, 

 [
𝐹𝑥
𝐹𝑦
] =

1

2
𝒂𝒑𝑲𝒕. [

𝑎𝑥𝑥(𝑡) 𝑎𝑥𝑦(𝑡)

𝑎𝑦𝑥(𝑡) 𝑎𝑦𝑦(𝑡)
]

⏟          
2𝐴(𝑡)

[
𝒙(𝒕) − 𝒙(𝒕 − 𝝉)

𝒚(𝒕) − 𝒚(𝒕 − 𝝉)
]  𝒂𝒑𝑲𝒕𝒄 [

𝑎𝑥𝑥(𝑡)
𝑎𝑦𝑥(𝑡)

]
⏟    
𝐴𝑝(𝑡)

⏞          
Static forces(𝐹𝑠)

  (5) 

Where 𝑎𝑥𝑥(𝑡), 𝑎𝑥𝑦(𝑡), 𝑎𝑦𝑥(𝑡), 𝑎𝑦𝑦(𝑡)  are time-varying, periodic directional force coefficients 

expressed as [3], 

 

𝑎𝑥𝑥(𝑡) = −∑𝑔𝑗(𝑡)𝜌𝑗 [sin  𝜃𝑗(𝑡)  
𝐾𝑟
𝐾𝑡
(1 − cos  𝜃𝑗(𝑡))]

𝑁𝑡

𝑗=1

 

𝑎𝑥𝑦(𝑡) = −∑𝑔𝑗(𝑡)𝜌𝑗 [1  cos  𝜃𝑗(𝑡)  
𝐾𝑟
𝐾𝑡
sin  𝜃𝑗(𝑡)]

𝑁𝑡

𝑗=1

 

𝑎𝑦𝑥(𝑡) =∑𝑔𝑗(𝑡)𝜌𝑗 [1 − cos  𝜃𝑗(𝑡) −
𝐾𝑟
𝐾𝑡
sin  𝜃𝑗(𝑡)]

𝑁𝑡

𝑗=1

 

𝑎𝑦𝑦(𝑡) =∑𝑔𝑗(𝑡)𝜌𝑗 [sin  𝜃𝑗(𝑡) −
𝐾𝑟
𝐾𝑡
(1  cos  𝜃𝑗(𝑡))]

𝑁𝑡

𝑗=1

 

(6) 

The modal displacement vector of the system, with a size equal to the total number of vibration 

modes of tool and workpiece, could be represented as the summation of its periodic component 

𝑞𝑝(𝑡) and perturbation 𝑞𝑐(𝑡) as below, 



10 

 

 𝑞(𝑡) = 𝑞𝑝(𝑡)  𝑞𝑐(𝑡) (7) 

 For a machine with a proportionally damped dynamics cutting under a stable condition, the 

equation of motion takes the following ordinary differential equation (ODE) form, 

 

𝒒̈(𝒕)  [𝟐𝝃𝝎𝒏]𝒒̇(𝒕)  [𝝎𝒏
𝟐]𝒒(𝒕)

= 𝑼𝑻𝒂𝒑𝑲𝒕𝑨(𝒕)𝑼[𝒒(𝒕) − 𝒒(𝒕 − 𝝉)]  𝑼
𝑻𝑭𝒔(𝒕) 

(8) 

Where 𝑈  is the mode shape matrix,  𝜔𝑛  is natural frequency, and 𝐹𝑠  is the static forces from 

equation (5). For a stable system with no perturbation, the steady-state vibrations as follows,  

 

𝒒̈𝑝(𝒕)  [𝟐𝝃𝝎𝒏]𝒒̇(𝒕)  [𝝎𝒏
𝟐]𝒒𝒑(𝒕) = 𝑼

𝑻𝑭𝒔(𝒕)
𝐎𝐃𝐄 𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧
→         𝒒𝒑(𝒕)

= ∑𝑸𝒑,𝒏𝒆
𝒊(𝒏𝝎𝒔𝒕)

∞

𝒏=𝟏

 

(9) 

Given equations (8) and (9), the self-excited vibrations are found from the solution of the Delayed 

Differential Equation (DDE) [5].  

 𝒒𝒄(𝒕) = 𝒒(𝒕) − 𝒒𝒑(𝒕) = ∑ (𝑸𝒄,𝒏𝒆
𝒊(𝝎𝒄+𝒏.𝝎𝒕)𝒕  𝑸̃𝒄,𝒏𝒆

−𝒊(𝝎𝒄+𝒏.𝝎𝒕)𝒕)

∞

𝒏=−∞

 (10) 

Where 𝜔𝑐[rad/s]  is the chatter frequency, and 𝑄𝑐,𝑛  and 𝑄̃𝑐,𝑛  are respectively the complex 

coefficient vectors and their conjugates at the 𝑛-th harmonic. 

Relative tool-workpiece displacement vector 𝑥(𝑡) is determined by the steady-state solution of 

equation (8) as shown below, 



11 

 

 

𝒙(𝒕) = ∑𝑿𝒑,𝒏𝐜𝐨𝐬(𝒏𝝎𝒔𝒕  𝚽𝐩,𝐧)

∞

𝒏=𝟏

 ∑ 𝑿𝒄,𝒏𝐜𝐨𝐬 ((±𝝎𝒄  𝒏𝝎𝒕)𝒕  𝚽𝒄,𝒏)

∞

𝒏=−∞

 

(11) 

Where 𝑋𝑝,𝑛 , and 𝑋𝑐,𝑛  are respectively the amplitude of 𝑛 -th periodic and chatter vectors. 

Moreover, Φ𝑝,𝑛, and Φ𝑐,𝑛 are the phase of 𝑛-th periodic and chatter vectors, respectively. 

 

2.2 Chatter Prediction and Detection using Physics-driven methods 

Chatter stability of milling has been studied extensively in the past few decades [6]. Tlusty and 

Polacek presented the stability laws requiring the frequency response function of both the machine 

tool and the workpiece, cutting coefficients of the work material, and tool geometry [7]. Their 

work resulted in stability lobes, which set a theoretical limit on the maximum stable depth of cut 

for each given spindle speed. However, the uncertainties in the frequency response function 

measurements and its corresponding variables, the system's position, and time-varying dynamics 

may still lead to chatter, even in a theoretical stable zone based on stability lobes.  

 

The difficulties in chatter prediction and the machine tool's time-varying parameters resulted in 

research in online chatter detection and suppression methods. There have been several attempts to 

detect chatter during the machining process. T. Delio et al. [8] used a microphone signal during 

the milling process and converted it to the frequency domain to detect chatter. They set a threshold 

on the power spectrum to detect chatter occurrence. In another art, T. Choi and Y.C.Shin [9] 

detected chatter online using the fractional patterns they observed in the acceleration signals. They 

utilized a wavelet-based maximum likelihood estimation algorithm. In attempting to detect chatter, 



12 

 

M. Lamraoui et al. [10] investigated the cyclo-stationary components generated by the machining 

process.  

  

2.2.1 Online Energy-based Chatter Detection 

Energy-based chatter detection [11] is an online chatter detection method that uses milling physics 

to detect instability in the cut. Despite its high potentials and robustness, false chatter detection 

happens quite often in energy-based chatter detection, especially during the transient states of cut, 

such as tool entrance into the workpiece or when it leaves the workpiece, since the machine is 

excited sue to a condition similar to impact hit and display different vibration contents and sudden 

changes in the vibration signal.  

 

Energy-based chatter detection identifies chatter by comparing energy levels in the force vibration 

components and the signal's unstable components. In the energy-based chatter detection method, 

the periodic part of the signal and its energy are identified using a Kalman filter. The periodic part 

is subtracted from the whole signal, and the chatter energy is calculated using a bandpass filter 

bank and a Teager-Kaiser Nonlinear Energy Operator (NEO). Finally, the method compares the 

two calculated energies to conclude about the stability of the machining process. 

The outline of energy-based chatter detection is presented in Figure 5 with a sample input to 

illustrate the process. 



13 

 

   

Figure 5 Online energy-based chatter detection overview with a Sample Input to Illustrate the Process 

 

2.2.1.1 Identification of the Periodic Component of Machining Vibrations   

Forces during chatter can be decoupled into periodic components due to cutting and  forces close 

to the structural mode frequency excited by regenerative chatter, which are given by equations (9) 

and (10), respectively.  



14 

 

The measured vibration signal is decoupled into the periodic part that causes forced vibrations and 

the unstable, chatter components (𝑦 = 𝑦𝑝  𝑦𝑐). The assumption is that the process is unstable 

when the energy of the self-excited vibration term (𝑦𝑐) dominates the cutting process. The 

following equation estimates the periodic part of the cutting signal,  

 𝒚𝒑(𝒌𝑻) = ∑ 𝒀𝒑,𝒏(𝒌𝑻) 𝐜𝐨𝐬(𝒏𝝎𝒔𝒌𝑻  𝝓𝒑,𝒏)
𝑵
𝒏=𝟏 , (12) 

where 𝑌𝑝,𝑛(𝑘𝑇) is the amplitude of the spindle harmonic with frequency 𝑛𝜔𝑠 (𝑛 = 1,  , … ,𝑁). 

The state variable representation of equation (12) with 𝑁 number of harmonics is shown below, 

 
𝒚(𝒕𝒌) = [𝟏 𝟎 … 𝟏 𝟎]⏟            

𝑯𝟏×𝟐𝑵

𝒒𝒌𝟐𝑵×𝟏  𝒗𝒌 
(13) 

Where 𝑞𝑘+12𝑁×1 represents the state variable representation at discrete time instance of 𝑘  1, 

has been expressed as follows, 

 
𝒒𝒌+𝟏𝟐𝑵×𝟏 = [

𝒒𝟏
𝒒𝟐
⋮
𝒒𝟐𝑵

]

𝒌+𝟏

= [

𝝓𝟏 𝟎 … 𝟎
𝟎 𝝓𝟐 … 𝟎

⋮ ⋱ ⋮
𝟎 … 𝝓𝑵

]

⏟            
𝝓𝟐𝑵×𝟐𝑵

[

𝒒𝟏
𝒒𝟐
⋮
𝒒𝟐𝑵

]

𝒌⏟    
𝒒𝒌𝟐𝑵×𝟏

 [

𝒘𝟏
𝒘𝟐
⋮
𝒘𝟐𝑵

]

𝒌⏟    
𝒘𝒌𝟐𝑵×𝟏

 
(14) 

And 𝜙𝑖 is the state transition matrix used to model 𝑖-th harmonic (𝑖 = 1,  ,  , … , 𝑁). Let the first 

and second state be 𝑞1𝑘 and 𝑞2𝑘 = 𝐴𝑘 sin(𝜔𝑡𝑘  𝜙) respectively, at the time 𝑡𝑘+1 = 𝑡𝑘  𝑇 will 

be derived as, 



15 

 

 

𝒒𝟏𝒌+𝟏 = 𝑨𝒌+𝟏 𝐜𝐨𝐬(𝝎(𝒕𝒌  𝑻)  𝝓)

= 𝑨𝒌+𝟏[𝐜𝐨𝐬(𝝎𝒕𝒌  𝝓) 𝐜𝐨𝐬(𝝎𝑻)

− 𝐬𝐢𝐧(𝝎𝒕𝒌  𝝓) 𝐬𝐢𝐧(𝝎𝑻)] 

𝒒𝟐𝒌+𝟏 = 𝑨𝒌+𝟏 𝐬𝐢𝐧(𝝎(𝒕𝒌  𝑻)  𝝓)

= 𝑨𝒌+𝟏[𝐜𝐨𝐬(𝝎𝒕𝒌  𝝓) 𝐬𝐢𝐧(𝝎𝑻)

− 𝐬𝐢𝐧(𝝎𝒕𝒌  𝝓) 𝐬𝐢𝐧(𝝎𝑻)] 

(15) 

Hence the state variable is equal to, 

 

[
𝒒𝟏𝑲+𝟏
𝒒𝟐𝑲+𝟏

] = [
𝐜𝐨𝐬(𝝎𝑻) −𝐬𝐢𝐧(𝝎𝑻)
𝐬𝐢𝐧(𝝎𝑻) 𝐜𝐨𝐬(𝝎𝑻)

] [
𝒒𝟏𝒌
𝒒𝟐𝒌
]  [

𝒘𝟏𝒌
𝒘𝟐𝒌

] ⟹ 

𝝓𝒏 = [
𝐜𝐨𝐬(𝒏𝝎𝒔𝑻) −𝐬𝐢𝐧(𝒏𝝎𝒔𝑻)
𝐬𝐢𝐧(𝒏𝝎𝒔𝑻) 𝐜𝐨𝐬(𝒏𝝎𝒔𝑻)

] 

(16) 

The state vector of the periodic signal (14) has been estimated using below Kalman filter [12], 

 

{
  
 

  
 

𝒒̂𝒌
− = 𝝓𝒒̂𝒌−𝟏

𝑷𝒌
− = 𝝓𝑷𝒌−𝟏𝝓

𝑻  𝝀𝑹⏞
𝑸

𝑲𝒌 = 𝑷𝒌
−𝑯𝑻(𝑯𝑷𝒌

−𝑯𝑻  𝑹)−𝟏

𝒒̂𝒌 = 𝒒̂𝒌
−  𝑲𝒌(𝒔𝒌 −𝑯𝒒̂𝒌

−)

𝑷𝒌 = (𝑰 − 𝑲𝒌𝑯)𝑷𝒌
−

 (17) 

Where process noise to measurement noise ratio initially is 𝜆 = 10−6.  

The chatter part of the signal has been estimated based on the estimated state vector (𝑞̂𝑘) with, 

 𝒚𝒄(𝒕𝒌) = 𝒚(𝒕𝒌) − 𝒚̂𝒑(𝒕𝒌) = 𝒚(𝒕𝒌) − 𝑯𝒒̂𝒌 (18) 

Given cos2(𝜔𝑡𝑘)  sin
2(𝜔𝑡𝑘) = 1 the amplitude of the 𝑛-th harmonic is, 

 𝒀̂𝒑,𝒏(𝒕𝒌) = √𝒒̂𝟐𝒏−𝟏𝒌
𝟐  𝒒̂𝟐𝒏𝒌

𝟐  (19) 

 



16 

 

2.2.1.2 Chatter Component Assessment 

Chatter component reconstruction consists of two major steps. First, the signal is filtered to isolate 

the frequencies in between each two consecutive tooth passing harmonics using a set of bandpass 

filters. The second step is to use Nonlinear Energy Operator (NEO) [13] and Energy Separation 

Algorithm (ESA) [14] in order to estimate a measure of the energy of the single component signal 

in the discrete-time domain.  

The signal 𝒚𝒄(𝒕𝒌) goes through a series of bandpass filters. In order to isolate the chatter part of 

the signal corresponding to each chatter frequency laying in between tooth passing harmonics, a 

bank of bandpass filters has been used. The number of filters is equal to the number of tooth 

passing harmonics(𝑁). The mentioned method results in 𝑁 output signals, each isolated 

frequencies in between one of the tooth passing. The mentioned filters have been designed using 

the Butterworth method with half-power frequencies and infinite impulse response (IIR) of order 

four. Each filter 𝑖th filter have half-power frequencies equal to (𝑖 − 1)𝜔𝑡 and 𝑖𝜔𝑡.  

 

Nonlinear Energy Operator (NEO) has been introduced by Kaiser [13]; it has been denoted by 𝜓 

in this thesis and defined as, 

 𝝍[𝒙(𝒕)] = 𝒙̇(𝒕)𝟐 − 𝒙(𝒕)𝒙̈(𝒕) (20) 

For the below undamped SDOF system, 

 𝒎𝒙̈  𝒌𝒙 = 𝟎 ⇒ 𝒙(𝒕) = 𝑨𝐜𝐨𝐬(√𝒌 𝒎⁄ 𝒕  𝝓) (21) 

where 𝐴 and 𝜙 are the amplitude and phase angle of the harmonic motion frequency and 𝜔 =

√𝑘 𝑚⁄  is the natural frequency of the oscillation. Given 𝑘𝑥 = −𝑚𝑥̈ the total kinetic and potential 

energy of the system is given by, 



17 

 

 𝑬(𝒕) =
𝟏

𝟐
𝒎[𝒙̇(𝒕)]𝟐  

𝟏

𝟐
𝒌[𝒙(𝒕)]𝟐 =

𝒎

𝟐
𝑨𝟐𝝎𝟐 (22) 

P.Maragos and T.F.Quatieri [14], suggested the following continuous Teager-Kaiser Nonlinear 

Energy Operators (NEOs) as a measure to track the energy per half-unit mass of the source of 

oscillation, 

 

{
𝝍[𝒙(𝒕)] = 𝒙̇(𝒕)𝟐 − 𝒙(𝒕)𝒙̈(𝒕) = 𝑨𝟐𝝎𝟐

𝝍[𝒙̇(𝒕)] = 𝒙̈(𝒕)𝟐 − 𝒙̇(𝒕)𝒙⃛(𝒕) = 𝑨𝟐𝝎𝟒
⟹ 

𝝎 = √
𝝍[𝒙̇(𝒕)]

𝝍[𝒙(𝒕)]
, |𝑨| =

𝝍[𝒙(𝒕)]

√𝝍[𝒙̇(𝒕)]
 

(23) 

Hence, in the time instance of 𝑡𝑘 the corresponding frequency 𝜔(𝑡𝑘) and amplitude |𝐴𝑡𝑘| could 

be calculated as below, 

 

{
  
 

  
 𝜽(𝒕𝒌) = 𝝎(𝒕𝒌)𝑻 = 𝒂𝒓𝒄𝒄𝒐𝒔 (𝟏 −

𝝍𝒅[𝜟𝒙𝒌]  𝝍𝒅[𝜟𝒙𝒌+𝟏]

𝟒𝝍𝒅[𝒙𝒌]
)

|𝑨𝒕𝒌| = √

𝝍𝒅[𝒙𝒌]

𝟏 − (𝟏 −
𝝍𝒅[𝜟𝒙𝒌]  𝝍𝒅[𝜟𝒙𝒌+𝟏]

𝟒𝝍𝒅[𝒙𝒌]
)
𝟐

 (24) 

Given the equation (24), for the chatter frequency and amplitude of the 𝑚-th harmonic is given 

by, 

 

{
  
 

  
 𝝎𝑪𝒎 = 𝒂𝒓𝒄𝒄𝒐𝒔 (𝟏 −

𝝍𝒅[𝚫𝒚(𝒕𝒌−𝟐𝑫)]  𝝍𝒅[𝚫𝒚(𝒕𝒌−𝑫)]

𝟒𝝍𝒅[𝒚𝒄(𝒕𝒌−𝟐𝑫)]
)

|𝑨𝑪𝒎| = √

𝝍𝒅[𝒚𝒄(𝒕𝒌−𝟐𝑫)]

𝟏 − (𝟏 −
𝝍𝒅[𝚫𝒚(𝒕𝒌−𝟐𝑫)]  𝝍𝒅[𝚫𝒚(𝒕𝒌−𝑫)]

𝟒𝝍𝒅[𝒚𝒄(𝒕𝒌−𝟐𝑫)]
)
𝟐

 (25) 

Where 𝜓𝑑 is the generalized discrete form of NEO as below, 



18 

 

 

{
 

 𝝍𝒅[𝚫𝒚(𝒕𝒌−𝑫)] =
𝚫𝒚(𝒕𝒌−𝑫)

𝟐 − 𝚫𝒚(𝒕𝒌−𝟐𝑫)𝚫𝒚(𝒕𝒌)

𝑻𝟐

𝝍𝒅[𝚫𝒚(𝒕𝒌−𝟐𝑫)] =
𝚫𝒚(𝒕𝒌−𝟐𝑫)

𝟐 − 𝚫𝒚(𝒕𝒌−𝟑𝑫)𝚫𝒚(𝒕𝒌−𝑫)

𝑻𝟐

 (26) 

The difference operators for each band are as below, 

 {

𝚫𝒚(𝒕𝒌−𝑫) = 𝒚𝒄𝒎(𝒕𝒌−𝑫) − 𝒚𝒄𝒎(𝒕𝒌−𝟐𝑫)

𝚫𝒚(𝒕𝒌−𝟐𝑫) = 𝒚𝒄𝒎(𝒕𝒌−𝟐𝑫) − 𝒚𝒄𝒎(𝒕𝒌−𝟑𝑫)

𝚫𝒚(𝒕𝒌−𝟑𝑫) = 𝒚𝒄𝒎(𝒕𝒌−𝟑𝑫) − 𝒚𝒄𝒎(𝒕𝒌−𝟒𝑫)

 (27) 

Where 𝐷 is the lag parameter introduced by W. Lin [15] and equal to one-quarter of the 

corresponding 𝑚-th chatter frequency, 

 𝑫 = 𝐫𝐨𝐮𝐧𝐝(
𝟏

𝟒𝑻

𝟐𝝅

(𝒎− 𝟎. 𝟓)𝝎𝒕
) (28) 

The resultant frequencies and amplitudes of the harmonics go through a mean filter with a delay 

equal to spindle frequency.  

 

The energy ratio of the signal is given by, 

 𝐄𝐑 =
𝐄𝐍𝐜

𝐄𝐍𝐜  𝐄𝐍𝐩
 (29) 

Where 𝑬𝑵𝒑 and 𝑬𝑵𝒄 are respectively the energy of periodic and chatter part of the signal and 

could be determined by, 

 

{
 
 

 
 𝐄𝐍𝐩 = ∑(𝒀̂𝒑𝒏)

𝟐
(𝒏𝝎𝒔)

𝟐𝜼

𝑵

𝒏=𝟏

𝐄𝐍𝐜 = ∑(𝒀̂𝒄𝒎)
𝟐
(𝝎𝒄𝒎)

𝟐𝜼
𝑴

𝒎=𝟏

 (30) 

Where 𝜂 is the integration factor and determined based on the signal type and 𝒀̂𝒑𝒏 is given by 

equation (19). 



19 

 

Based on the energy ratio calculated by equation (29), the stability of the cut will be determined. 

The energy ratio is commensurate to the chatter energy from equation (30); hence, in this thesis, it 

has been used as an indicator of the chance of an ongoing unstable cut.  

In this thesis, the energy ratio has been used as a measure of the probability of the chatter 

happening. The details of energy-based chatter detection method used here are presented by 

Caliskan, Kilic and Altintas in [11]. 

 

 

2.3 Machine Learning and its utilization in Industry and Machining Sciences  

Artificial Intelligence (AI) is a field that studies the synthesis and analysis of computational agents 

that act intelligently [16]. Machine Learning (ML) is a subfield of AI concerned with developing 

automated methods to learn the patterns in a given set of data with the purpose of being used on 

future data or other outcomes of interest [17].  

 

In the literature, researchers are trying to use a variety of machine learning methods to predict or 

detect chatter. M. Postel et al. [18] used deep learning to refine the chatter stability lobes. M. 

Lamraoui et al. [19] investigated different statistical features of the envelope signal, such as 

variance, skewness, kurtosis, peak value, root mean square (RMS), clearance factor, crest factor, 

shape factor, and impulse factor. They found variance as a practical feature for chatter detection. 

In the mentioned work, a fully connected neural network is trained to detect chatter. The collected 

data for chatter detection is done by performing slot milling tests on an aluminum workpiece. Zh. 

Yao et al. [9] proposed an online chatter detection method using support vector machines (SVM) 

to determine the stability of cut based on the vibration signal’s wavelet transform features.  



20 

 

 

Automated Machine Learning (AutoML) methods reduce the amount of resources and time 

required to create a well-performing model [20]. C. White et al. [21] showed that the Bayesian 

optimization can outperform other common AutoML methods, such as random search, regularized 

evolution, and reinforcement learning, for Neural Architecture Search (NAS).  X. He et al. [20] 

reviewed the recent advancements in the AutoML and provided a literature survey. 

Machine learning models are capable of being improved by getting retrained on a new set of data. 

Ch. Rosenberg et al. [22] suggested that self-training makes it possible for the machine learning 

systems to improve over time while they are performing. P. Mitra et al. [23] investigate the 

effectiveness of Bayesian AutoML methods for Physics Emulators.  

Ch. Rosenberg [22] explored and evaluated semi-supervised learning and self-training approaches 

for training a machine learning model on weakly labelled data by conducting experiments.  

 

2.4 Summary  

In this chapter, past works of literature regarding chatter detection machine learning architecture 

design are reviewed. There have been advancements in chatter prediction, before the operation 

and during the process planning, in the past few decades. Online chatter detection is essential due 

to inaccuracies in the measurements and time-varying nature of the countless number of machine 

components.  

 

The past literature in the field is either focused on physics-based chatter detection or data-driven 

method methods. To compensate for each approach's shortcomings, machine learning combined 



21 

 

with the physics of metal cutting is preferred. However, in most machine learning chatter 

detection literature, the physics of the process is ignored. 

 Among the many online chatter detection methods in the literature, an energy-based system is 

utilized to account for the process's physics most closely [11]. In literature, different machine 

learning models are proposed for chatter detection. This work has taken an automated approach 

towards machine learning network design by proposing an automated network design scheme.  

  



22 

 

Chapter 3: Online Cutting State Detection Using Machine Learning 

This chapter proposes a machine learning pipeline for machining state detection as well as two 

machine learning models, one transfer learning and the other one custom designed architecture, 

for detecting instability in the cutting process as well as the machining state based upon its 

vibration input. A machine learning pipeline is a set of consecutive mathematical functions and 

operations that has a set of inputs, a machine learning network, and outputs of interest. Other than 

inputs, machine learning model and outputs, a machine learning pipeline commonly consists of a 

transformation function, which in this case is a signal cleaning and short-time Fourier transform 

functions. The designed pipeline uses a deep learning model, known as Convolutional Neural 

Network, for machining state and chatter detection.  Deep learning is a subspace of machine 

learning in artificial intelligence.  

In this chapter, the process of designing the deep learning method used for cutting state detection 

is explained. The outcome of this chapter is a trained deep learning architecture designed 

specifically for machining state detection. 

 

The chapter is organized as follows. The first section provides an overview of the machine learning 

pipeline, architecture design, and its training process. Section 2.2 is dedicated to the experiment 

design process and describing the process of data collection. The collected data are used for deep 

learning architecture design, training, and evaluation, as well as for parameter tuning. The 

technical details behind handling the high-volume data collected from sensors during the 

machining process, and its utilization in the designed machine learning pipeline are discussed. In 

section 2.3, the details on converting the signal to the frequency domain are discussed. Section 2.4 

starts with outlining the deep learning architecture, which is used for machining state detection 



23 

 

using transfer learning. Afterwards, each of the architecture's elements with the intuition behind  

their use for chatter detection is described. Section 2.5 proposes an approach towards automated 

CNN architecture design and elaborates on the implementation and utilization of the proposed 

method for online machining state detection. In the proposed method, a Bayesian optimization 

algorithm is used as an automated design agent, which is briefly explained in the section. The 

outcome of section 2.4 is used as the initial input to the optimization loop in this section.  

 

3.1 Machine Learning Training Pipeline 

An overview of the step taken towards designing machine learning architecture and training the 

model is given in Figure 6. It is a detailed depiction of the “Automated CNN Architecture Design” 

part of Figure 3. Training is a process during which the network parameters get tweaked in a way 

that minimizes the loss, and the final resultant network parameter could serve its goal, which is 

machining state detection, in the best way possible. This process's output is a trained machining 

state detection network capable of determining each cutting state's probability based on the 

vibration signal input.  



24 

 

 

Figure 6 Machine Learning Architecture Design and Algorithm Training Process Overview 

In general, there are four steps taken in order to construct a functioning machine learning system: 

1) Data Collection, Cleaning, Labelling, and Preparation. 

1.1) Design of a wide variety of cutting tests. 

1.2) Cleaning and Denoising the recorded data. 

1.3) Storing data in a suitable format and manually labeling them based on surface 

quality and knowledge of machining. 

1.4) Assessing the plausibility of solving the problem using Machine Learning. 

2) Feature engineering by Transforming to Frequency domain. 

3) Outlining the Base Architecture. 

3.1) Determining the machine learning method of interest based on the characteristic of 

the problem at hand. 

3.2) Outline the initial input to the Automated Architecture Design Loop. 

4) Automated Architecture Design Loop. 

             

         

              

    

           

 
           

             

          
           

Collected Data

          

       

          

        

         

             

      

              

          

      

        

      

            

          

N
etw

o
rk
 A
rc
h
itec

tu
re D

esig
n
 

U
sin

g
 B
ay
esian

 O
p
tim

izatio
n

                   

         

            

 
           

 
           

            

Labelled Data Spectrogram Machining State 

Detection using 

Transfer Learning

Training

Spectrogram

 nitial State



25 

 

4.1)  Parameterization of the Machine Learning method’s hyper-parameters and define 

the Optimization Search Space. 

4.2) Training the model corresponding to each set of hyper-parameters suggested by the 

Optimization method. 

4.3) Definition of an objective function for the evaluation of the model performance. 

The section corresponding to each of the mentioned step is denoted in Figure 6 by a circled number. 

As illustrated in Figure 6, the architecture design and training processes start with the cutting 

experiments. After each experiment, the cutting states and stability are assessed manually and 

stored alongside the signals from sensors and cutting conditions. After having the data denoised, 

the plausibility of machining state detection using machine learning gets appraised. After finding 

the cutting state detection problem plausible to be solved using statistical methods, the vibration 

signals are transferred into the frequency domain. Afterwards, a base Deep Learning network gets 

trained on the denoised and transformed data. In this step, feature engineering, i.e. setting up the 

frequency domain conversion parameters, is done. The resultant network is assessed in terms of 

performance and based on the results. Finally, network architecture gets evolved to become 

optimal for the purpose of cutting state detection. The optimization is done with the goal of 

increasing accuracy while minimizing architecture complexity. 

In this thesis, a supervised learning approach is adopted for cutting state detection, meaning that a 

prelabelled set of data, labeled by machining metrics, has been used to train the model to detect 

different machining states and determine cutting stability.  

 



26 

 

3.2 Experiment Design, Data Collection, and Plausibility Assessment 

The first step towards the fabrication of a data-driven method for chatter detection is collecting 

cutting data from machining tests. In order to have a robust, generalized, and reliable model, 

having a diverse set of data collected under different cutting conditions is necessary. Hence, a 

variety of experiments with five tools, fluted and indexed, on steel AISI 4340 and aluminum 7075, 

with various tool-paths under different cutting conditions, have been performed. It results into 

more than 1600 cutting experiments cases. In the designed experiments, vibration signals are 

recorded to identify the relative tool-workpiece engagement and detecting instability in the cutting 

process.  

Multiple sensors (including microphone, accelerometer, forces, etc.) are used to record signals 

during the machining process. The experiments are conducted on Quaser UX600 5-axis machining 

center controlled by Heidenhain TNC 640 CNC as shown in Figure 7. 

 

Figure 7 Experiment Setup 

The collected data are labelled as Air Cut, transient state of tool Entrance into the workpiece, 

Stable Cut, Chatter, and transient state of tool Exiting the workpiece, based on process knowledge 

and resulting surface quality. An example of each of the mentioned Machining States is shown in 



27 

 

Figure 8. Air Cut describes the state during which the cutter is not in contact with the workpiece. 

Entrance and Exit describe the transient states during which the cutter is not in its full engagement 

with the workpiece, and it is getting inside or getting out of the workpiece, respectively. Transient 

vibrations occur during the entrance and exit transients, with a wide variety of frequency contents, 

commonly at the same frequency as chatter, due to its similarity to an impact. Hence, there is a 

need to separate them from the chatter. Finally, Stable Cut and Chatter describe the stability of the 

cut while the cutter is fully engaged.  

 

Figure 8 Cutting States Illustration - from left to right respectively, Air Cut, Entrance, In Cut, and Exit 

For accuracy in determining each of the cutting states mentioned in the last paragraph, multiple 

factors are taken into account during the phase of manually labelling the experiment data. The 

machine’s feed rate and the G-Code are used to evaluate the precise relative tool-workpiece 

relative position. Furthermore, since chatter leaves vibration marks on the surface, the surface 

quality after the cut has been used as the criteria for cutting stability assessment, i.e. in order to 

determine whether it is chattering or not. The mentioned states and stability conditions have been 



28 

 

used during the training and automatic design process, as well as the test and performance 

evaluation process. 

 

The cutting tests have been partitioned into three subsets of Training, Validation, and Test. The 

mentioned subsets contain 76, 12, and 12 percent of the whole data, respectively. The training and 

validation subsets are similar in terms of cutting conditions. As shown in Figure 4, the training set 

has been used to tweak the model parameters during the training process. The test data consists of 

more than 30% of unseen cutting conditions to ensure that the reported performance is generalized 

and realistic and not a result of overfitting. Overfitting a machine learning model means having 

the model extrapolated to the part of the input, which does not contribute to the results. Overfitting 

commonly happens when the model attempts to get fitted to residual variation and noises 

unintentionally and makes predictions based on them. There are methods and techniques to avoid 

overfitting, which are extensively practiced in this thesis. It is further explained in this chapter and 

through the thesis. 

Moreover, the Test set remained untouched and merely used to report the model’s performance 

and its subcomponents. In other words, the test subset has not been contributed to the design, 

training, or tuning of the cutting state detection system or the models, and it has been used only 

for the evaluation of the system performance. A summary of how the experiments have been used 

during each process is presented in Figure 9. 



29 

 

 

Figure 9            ’                       U    zation Summary 

3.2.1 Cleaning, Denoising, and Handling Data using Comprehensive Industrial Process 

Monitoring Data Structure 

High-frequency reading from multiple sensors results in a high volume of data; hence, managing 

and handling the computer resources efficiently is crucial during the whole process, especially the 

training process. Moreover, it is necessary to have a data type designed to accommodate the multi-

sensor, time-series measurements’ re uirements. This data structure’s main objectives are to speed 

up the training process and increase the robustness, scalability, and versatility of the training 

pipeline.  

In Figure 10, in the designed data structure, each entry has three primary attributes: index, 

measurement source (e.g. microphone, and accelerometer), and label (e.g. air cut, entrance, stable, 

chatter, and exit) associated with each part of the signal. The three mentioned attributes are a 

unique identifier of the entry.   



30 

 

 

Figure 10 Overview of Comprehensive Industrial Process Monitoring 

Each set of synchronized signals is partitioned into smaller pieces of signal to be used in the 

training process, as illustrated in Figure 11. It provides appropriately sized training instances. 

Moreover, the designed data structure offers embedded data augmentation by breaking down each 

index into multiple sets of smaller pieces of signal with a time delay between them, similar to 

Rebai et al.[24] suggested in their paper. A scheme of the embedded data augmentation has been 

depicted in Figure 11, where the data between each consecutive pair of red or yellow dashed lines 

counts as a cutting instance. 

 

Figure 11 Breaking down the data and Embedded Data Augmentation 

The designed data structure has filtering, and feature extraction embedded, making real-time 

filtering and transformation easier. The designed data structure stores data in RAM in the form of 



31 

 

pointers to the permanent memory, which results in having each data point taking no more than a 

few bytes on RAM. The chunks of experiment measurement data could be summoned from 

permanent memory in a queue, with a shuffleable order for randomizing and avoiding overfitting, 

or it could be fetched by having its set of unique identifiers. Given that reading from the permanent 

memory into RAM is the bottleneck, the designed data structure minimizes the permanent memory 

queries by predicting the next sets of data to be summoned and read them all into RAM once. 

Moreover, the data structure can read and process the data in parallel to reduce the computation 

time by utilizing full computational capacity and multithreading. Moreover, a three-dimensional 

sorted lookup table made it possible to access the sets of data based on each combination of 

identifiers (i.e. combination of Experiment Number, Source, and Label) in 𝑂(log(𝑛)) plus the 

reading time. Each index is accompanied by a properties table that contains the other attributes of 

each experiment, such as the cutting condition and the tool properties in the use case of this thesis.  

 

In this thesis, data acquisition is made through a custom-written LabVIEW application designed 

for this purpose. The data is stored and organized in the described data structure. The label assigned 

to each entry is its machining state and determined based on the last section's mentioned method. 

Both denoising and removing the signal’s drift happens through the data structure, as well. For 

denoising, a high-pass filter at 4 Hz is used to eradicate the low-frequency noises. In order to get 

the signal drift and DC offset eliminated from the input signal, the DC blocker proposed by M. 

Nezami [25] has been used. For the purpose of training, the cleaning and denoising process 

happened after data collection. However, during online detection, it happens online during the data 

collection and through the custom data collection application designed for this purpose.  



32 

 

3.2.2 Plausibility Assessment and Setting a baseline 

A baseline is a plausibility assessment method, commonly using heuristics, summary statistics, 

and randomness measurement. Setting a baseline is usually done using a classic machine learning 

method, in contrast to deep learning methods. In machine learning problems, it is substantial to set 

a baseline to assess the plausibility of solving the problem using machine learning before getting 

started with deep learning. The outcome of this section is a machine learning model fully capable 

of chatter detection. Nevertheless, the baseline will not be used in the final system, and it is merely 

for feasibility assessment. In this section, the method of the baseline calculation is explained.  

 

As shown in Figure 12, the first step is to break down the measurements into smaller pieces, using 

the comprehensive industrial process monitoring data structure. For training, 27000 cutting 

instances labelled to five matching states, each consists of 0.2 seconds of the microphone vibration 

signal, are generated. 

 

Figure 12 Setting the Baseline Procedure 

The considered statistical measures that have been used for this cutting state classification problem 

are standard deviation and Skewness. Standard deviation is a measure of dispersion, and it is equal 

to the square root of the variance. A higher standard deviation indicated that the vibration signal’s 

Cutting 

 xperiments

Breaking Down 

 xperiments to 

Data Points

Skewness

  =
    

 

  1 ×   

Decision Tree

Standard Deviation

 =
     

 Machining 

State Detection 

Model

Performance 

 valuation

                      

     



33 

 

magnitude differs from the average magnitude of the signal. The standard deviation of 

𝑥1, 𝑥2, … , 𝑥𝑛, where each 𝑥𝑖 is the magnitude of the signal in an instance of discrete-time is 

determined by, 

 𝝈 = √
∑(𝒙𝒊 − 𝒙̅)𝟐

𝒏
 (31) 

Where 𝑥̅ is the mean of the 𝑥𝑖 values. 

Furthermore, skewness is a measure of asymmetry in the distribution of a set of data. Applying 

Skewness to time-domain signal measures the similarity of the measured signal amplitude to the 

normal distribution. In other words, skewness for a normally distributed set of values is equal to 

zero. For 𝑥1, 𝑥2, … , 𝑥𝑛, where each 𝑥𝑖 is the magnitude of the signal in an instance of discrete-time 

is determined by, 

 𝝁̃𝟑 =
∑(𝒙𝒊 − 𝒙̅)

𝟑

(𝒏 − 𝟏) × 𝝈𝟑
 (32) 

 

A decision tree is used as a machine learning model to classify the cutting instances to 

corresponding machining states. A decision tree is a straightforward machine learning method that 

determines a set of linear decision boundaries to perform classification, in the case of this work 

differentiating among the machining states. Each decision boundary is a threshold that assigns a 

cutting state to each measurement based on the values associated with it.  

 

For training the model, a 10-fold leave one out cross-validation scheme has been used to protect 

the model against overfitting, which means that the data points have been partitioned into ten 

disjoint subsets. For each subset 𝑙𝑖 (𝑖 = 1,  , … ,10), the model has been trained on the existing data 



34 

 

points in the other nine subsets, all together, and the model performance has been assessed based 

on the left-out subset (i.e. subset 𝑥). The rest of the subsets will go through the same procedure, 

and the final error will be calculated based on the average error of all ten subsets [26].  

Given the lower count of the data labelled as entrance and exit, in the loss function, the 

misclassification cost of the mentioned labels is ten times higher than any other misclassification. 

 

The model's accuracy is assessed based on its performance in detecting cutting states of the test 

set. The results of the method are presented in section 5.2. If the baseline shows promising 

performance, it is rational to consider using a more advanced machine learning method to solve 

the problem. In the case of this thesis, it is decided to use a deep convolutional neural network.  

 

3.3 Frequency Domain Conversion and Feature Extraction 

The signal’s fre uency domain characteristics are an indicator of the cutting state. Whether tooth 

passing frequency is being observed, in the frequency domain or not, could be an indicator of the 

tool being in or out of the cut. Moreover, in the case of chatter vibration, resonance peaks and 

associated harmonics are observed in the frequency domain.  

The frequency-domain signal is a good indicator of the cutting state. In this thesis, frequency 

domain features have been utilized to differentiate between different states of cut and detect the 

stability of cut.  

For the observation of the changes in the amplitude trends in frequency-domain features of the 

signal over time, a short-time Fourier transform (STFT) has been applied to the signal [27]. STFT 

calculates the Fourier transform during the time. STFT is commonly used to assess the frequency 

content of a nonstationary signal over time. The purpose is to use frequency-domain features to 



35 

 

differentiate between different states of cut and detect chatter. The machine learning network takes 

a duration of 0.14 seconds of vibration data as its input and extracts its frequency domain features 

using STFT. 

 

To calculate STFT the signal gets windowed, with overlap. For 0.14 seconds of vibration data, 

equivalent to 7000 sampling point with a sampling frequency of 𝑓𝑠 = 50𝑘𝐻𝑧, the windowing 

process is shown in Figure 13. Windows are overlapping over a length 𝐿𝑜 to compensate the signal 

attenuation at the window edges. The overlap provides more continuous frequency domain data 

during the time. The window size is 𝐿𝑤 = 800 and the overlap is 𝐿𝑜 = 680 in this work. The 

number of windows for each milling case of 𝑛 samples is evaluated as L = ⌊
𝑛−𝐿𝑜

𝐿𝑤−𝐿𝑜
⌋.  

 

Figure 13 Windowing of Vibration Signal for Calculating STFT 

As shown in Figure 15, the STFT of a signal is determinable by applying a Hanning window [28] 

to each windowed data of length 𝐿𝑊 and calculating the discrete Fourier transform (DFT) of the 

resultant signal. The STFT windowing method results in frequency-domain signal through 

discrete-time domain, covering the frequency components up to Nyquist frequency.  



36 

 

 

Figure 14 STFT for each given Instance of Vibration Signal 

For a given vibration signal of 𝑐𝑚(𝑘𝑇) in discrete time domain, where 𝑘 = 1, , … , 𝑛, each element 

of the STFT matrix is computed by, 

 
𝑦𝑘,𝑚 = ∑ 𝑐𝑚(𝑖𝑇)

𝐿𝑤
𝑖=1 𝑔(𝑖)𝑒

−𝑗2𝜋(
𝐿𝑤
2
−𝑘)

(𝑖−1)

𝐿𝑤   

where 1 ≤ 𝑘 ≤ 𝐿𝑤 and 1 ≤ 𝑚 ≤ 𝐿 

(33) 

Where 𝑔 is the window function of the length 𝐿𝑤. The window function in the case of this work is 

Hann window [28] determined by, 

 𝑔(𝑖) =
1

2
[1 − 𝑐𝑜𝑠 (

2𝜋(𝑖−1)

𝐿𝑤
)]   where 1 ≤ 𝑖 ≤ 𝐿𝑤 (34) 

The magnitude squared of STFT matrix elements also referred to as spectrogram, is used to detect 

chatter based upon. In Figure 15, the process of calculating the spectrogram is shown. The resultant 

STFT matrix for each 0.14 seconds of machining instance in 𝑓𝑠 = 50𝑘𝐻𝑍  is 400 by 52. 



37 

 

Additionally, the mapping of the |STFT|2 to the visual representation of the STFT of a signal is 

shown. The shown visual representation is used repeatably in this work. Each column of the STFT 

matrix corresponds to a time instance, and each row corresponds to a frequency is illustrated as a 

colour coded two-dimensional matrix.  

 

 

Figure 15 Short-Time Fourier Transform’s Matrix Visual Representation Example  

The windowing used in this work satisfies constant overlap-add (COLA) constraints [29]. Finally, 

the resultant STFT matrix is converted to a decibel scale and linearly scaled to the range of zero 

to one to avoid the bias effect of the magnitude and avoid overfitting. Since amplitudes are 



38 

 

symmetric from across the Nyquist frequency, half of the spectrogram is kept resulting in the 

spectrogram on the right-hand side. Figure 16 shows a scaled spectrogram with only the positive 

frequency range from an instance of stable cut. The matrix shows the intensity of the vibrations 

occurring at each frequency, leading to the detection of forced vibrations at the harmonics of tooth 

frequency and chatter close to one of the structural modes. 

 

Figure 16 STFT Example 

3.4 Machining State Detection using Transfer Learning 

In this section, the transfer learning method used for machining state detection and its components 

are explained. The components are used further in the next section.  

The base architecture for machining state detection is a modified version of a Convolutional Neural 

Network (CNN) called ImageNet [30]. The proposed method takes the frequency domain signal 

generated by section 3.3’s method as input and outputs the probability of each state of machining.  

The work explained in this section has four importance. First, transfer learning provides fast and 

robustness training due to being pre-trained. Hence, it provides a reliable cutting state detection 

system fully capable of detecting machining states independently. Secondly, the transfer learning 

architecture is used during the process of feature engineering, i.e. finding the right frequency 



39 

 

domain parameters. Third, the resultant trained model’s weights and biases are scaled and used as 

the initial weights and biases for training of the custom designed architecture. Most importantly, a 

modified version of this work is used as the initial input to the architecture design loop. 

 

A convolutional neural network is a deep learning architecture consisting of two major parts: a set 

of convolutional blocks and a neural network. Each convolutional block consists of a two-

dimensional discrete convolution layer followed by a number of other arithmetic layers. The first 

block has the network’s STFT input as its input. The next blocks each have their previous block’s 

output as their input and performs arithmetic processes to generate output in a chain. The 

convolutional layers extract the form attributes of the input STFT and decrease its size. The output 

of the convolutional blocks gets flattened and goes into an artificial neural network. Using 

Artificial Neural Networks (ANN), an equation gets fit to the output of the convolutional blocks. 

The output of this equation for any given vibration signal input is the probability of the signal 

being associated with each of the machining states.  

To sum up, CNN is a set of weights and biases, forming an equation. The equation gets fit to the 

machining state detection problem.  

Further through this section, the deep leaning training pipeline and its building blocks for the base 

architecture are explained. These blocks are used further in the next sections, as well. 

 

3.4.1 Deep Learning Pipeline Overview 

A pipeline is a sequential set of data flow rules among functions and models. There are training 

and execution pipelines designed in this thesis. The final resultant model of the close loop training 

pipeline is used in the chatter detection pipeline. The training pipeline is designed to train a model 



40 

 

to detect machining states based on vibration signals. The pipeline for training the base network is 

shown in Figure 17.  

 

Figure 17 Deep Learning Training Pipeline Overview 

The storage, segmentation, filtering, and transformation to frequency domain steps are elaborated 

so far. This section’s focus is on the deep learning part of the training pipeline, i.e. convolutional 

blocks and ANN. 

To have a functional machine learning model capable of machining state detection, it is crucial to 

construct a suitable learning architecture. Hence, a well-known deep learning architecture from 

ImageNet Classification with Deep Convolutional Neural Networks [30] has been adapted to 

machining state detection and used as the base architecture. In a process known as transfer 

learning, the pre-trained network is retrained in order to detect machining state and chatter stability. 

ImageNet is a relatively small/non-complex deep learning architecture. During the training 

process, the weights and biases are adjusted to make the network equation serve the goal of 

machining state detection.  

            

Reading from microphone

                                       

Applying DC blocker and high 

pass filter

                        

      

Applying STFT

            
       

Training

Validation

Test

 ach

 xperiment

M
ac
h
in
in
g
 S
ta
te
s

F
ro
m
 M

an
u
al
ly
 L
ab
el
in
g
 C
ri
te
ri
a

Time (s) Time (s) Time (s) Time (ms)

       

     

S
o
ft
m
a
x
  
 
=

1

1
 
e 
 
 
 

C
la
ss
if
ie
r

 ( ntrance)

 ( xit)

 (Stable Cut)

 (Chatter)

 (Air Cut)

 
    

  
      

 
 

 
  
  
    

 
   

    
 

 
  
  
  
               

      

       

       

 xtracted

Features



41 

 

After training the network, the trained model will be used for machining state detection. The input 

is generated online, by denoising the vibration signal and calculating the spectrogram. Afterwards, 

the model will be applied to the data in order to calculate the probability of the current vibration 

being associated with each of the five machining states. The state with the highest probability will 

be detected as the current state. 

 

The components of the mentioned deep learning architecture are convolution layers, arithmetic 

and activation functions (e.g. ReLU, Normalization, and Max pooling), and neural network layers. 

Further through these subsections, the building blocks of the deep learning method are explained, 

and the notation presented above is elaborated. 

 

3.4.2 Convolutional Blocks 

The input to deep learning architecture goes through a set of convolutional blocks. Each block 

starts with a convolutional layer followed by a set of arithmetic functions. Each convolutional 

block contributes to the discovery and isolation of the relative changes in the frequency domain 

signal amplitude during the time, which contributes to chatter or other machining states. A sample 

convolutional block with the notation convention, followed in this thesis, is shown in Figure 18, 

 

Figure 18 A Generic Convolutional Block’           



42 

 

In the figure, 𝐶ℎ
𝐶(𝑙)

×𝑤
𝐶(𝑙)

×𝑑
𝐶(𝑙)

(𝑙)
 and 𝐵ℎ

𝐵(𝑙)
×𝑤

𝐵(𝑙)
×𝑑

𝐵(𝑙)

(𝑙)
 are the output matrices of the convolutional 

layer of the 𝑙-th convolutional block and the output of the 𝑙-th convolutional block, respectively. 

𝐵ℎ
𝐵(𝑙)

×𝑤
𝐵(𝑙)

×𝑑
𝐵(𝑙)

(𝑙)
 is the output of a series of arithmetic layers, such as activation, normalization, 

and max pooling, for the input 𝐶ℎ
𝐶(𝑙)

×𝑤
𝐶(𝑙)

×𝑑
𝐶(𝑙)

(𝑙)𝑔 . Moreover, 𝐾ℎ
𝐾(𝑙+1)

×𝑤
𝐾(𝑙+1)

×𝑑
𝐾(𝑙+1)

(𝑙+1)
 is the 

convolution kernel of the 𝑙  1-th layer, which will be applied to its previous block’s convolutional 

layer. Each layer 𝑙 has a bias term of 𝑏
ℎ𝑏
(𝑙)
(𝑙)

. The equation of the 𝑙-th block is, 

 𝐶ℎ
𝐶(𝑙)

×𝑤
𝐶(𝑙)

×𝑑
𝐶(𝑙)

(𝑙)
= 𝐵̃ℎ

𝐵(𝑙−1)
×𝑤

𝐵(𝑙−1)
×𝑑

𝐵(𝑙−1)

(𝑙−1)
∗ 𝐾ℎ

𝐾(𝑙+1)
×𝑤

𝐾(𝑙+1)
×𝑑

𝐾(𝑙+1)

(𝑙+1)
 𝑏

ℎ𝑏
(𝑙)
(𝑙)

 (35) 

Where the asterisk is the convolution operator and 𝐵̃(𝑙−1) is the 𝐵(𝑙) with the padding applied to 

it. The arithmetic and activation functions get applied to the value of 𝐶(𝑙) to generate the output of 

the block (𝐵(𝑙)). 

The kernel (𝐾(𝑙)) and the bias (𝑏
ℎ𝑏
(𝑙)
(𝑙)

) term of the convolutional layer are the learnable parameters 

that are determined during the training process.  

 

In the next subsections, the convolution layer and arithmetic operations, rectified linear unit, local 

response normalization, and max pooling, occurring in the convolutional blocks are detailed. 

 

3.4.2.1 Two-dimensional Discrete Convolution Layer 

The convolution layer is the most important part of the convolutional block, as it is the only part 

of each convolutional block that gets tweaked during the training process. The two-dimensional 

discrete convolution layer consists of a set of two-dimensional matrices (which is denoted as 



43 

 

𝐾ℎ
𝐾(𝑙)

×𝑤
𝐾(𝑙)

×𝑑
𝐾(𝑙)

(𝑙)
 as a three-dimensional matrix) which will be determined during the training 

process. It gets convolved with its input ( 𝐵ℎ
𝐵(𝑙)

×𝑤
𝐵(𝑙)

×𝑑
𝐵(𝑙)

(𝑙−1)
) to generate an output 

(𝐶ℎ
𝐶(𝑙)

×𝑤
𝐶(𝑙)

×𝑑
𝐶(𝑙)

(𝑙)
). A two-dimensional convolution reduces the input size and preserves and frames 

the frequencies and the change in frequencies over time, the STFT parts, which contributes the 

most to the cutting states.   In other words, during the training process, discrete convolution kernels 

form to highlight and pick the parts of the frequency domain signal, which play a role in causing 

chatter or other states of machining. As mentioned, each convolution block starts with a 

convolution layer. 

The two-dimensional convolution layer calculates the discrete convolution between the input and 

the convolution receptive field by iterating the convolution kernel matrix over the layer’s input 

and evaluating the dot product of the input and the kernel at each point [17]. A two-dimensional 

convolution layer has a bias term that adds to each element after the convolution is applied.  

In this thesis, the first and third convolution operations are applied to their entire inputs, while the 

rest of the convolutions are two-dimensional grouped convolution. Two-dimensional grouped 

convolution divides its input into groups, in this thesis, two groups, and applies sliding convolution 

on each of them. It helps with decreasing the number of learnable parameters. 



44 

 

 

Figure 19 Illustration of group convolution function for a two-group, group convolution  

Two-dimensional grouped convolution divides its input into groups, in the case of this thesis, two 

groups, and applies sliding convolution on each of them. Two groups grouped convolution results 

in having each kernel being convolved with a number of feature maps obtained by the previous 

layers. It results in having less redundancy, in term of similarity of the weights and biases or the 

block’s outcome, for kernels.  

 

Two important terms to define when it comes to Convolutions are stride and padding. Stride is the 

step size of the convolution window and denoted by 𝑘𝑠
(𝑙)

. Padding is the rows and columns added 

to the input’s margins to give the kernel more space to cover the whole input. An example of an 

arbitrary  ×   convolution kernel being applied to the input of the CNN network with zero 

paddings and a stride of 𝑘𝑠 = 4 is illustrated in Figure 20. 



45 

 

 

Figure 20 Discrete Convolution Illustration with an Arbitrary Kernel Example 

The output of the convolution layer 𝑙 is given by 𝐶(𝑙) = 𝐵̃(𝑙−1) ∗ 𝐾(𝑙 )  𝑏𝐾
(𝑙)

, where 𝐶(𝑙) is the 

output of convolutional layer 𝑙, also referred to as the activations, 𝐵(𝑙−1) is the output matrix of 

layer 𝑙 − 1, 𝐵̃(𝑙−1) is the padded 𝐵(𝑙−1), 𝐾(𝑙) is the convolution kernel of layer 𝑙 and 𝑏𝐾
(𝑙)

 is the bias 

term of the same kernel. In this convention 𝑙 = 0 denotes the input. For a two dimensional 

convolution, each element of 𝐶𝑖,𝑗,𝑘
(𝑙)

 (𝑖 = 1,  , … , ℎ𝐶(𝑙)  , 𝑗 = 1,  , … , 𝑤𝐶(𝑙) , 𝑘 = 1,  , … , 𝑑𝐶(𝑙)) matrix 

is given by, 

 𝑪𝒊,𝒋,𝒌
(𝒍)

= ∑ ∑ 𝑩̃
(𝒊−𝟏)×𝒌𝒔

(𝒍)
+𝒂+𝟏,(𝒋−𝟏)×𝒌𝒔

(𝒍)
+𝒃+𝟏,𝒌

(𝒍−𝟏)
× 𝑲𝒂,𝒃,𝒌

(𝒍)  𝒃𝒌
(𝒍)

𝑤
𝐾(𝑙)

𝒃=𝟏

ℎ
𝐾(𝑙)

𝒂=𝟏

 (36) 

During the training process, the value of each convolution kernel and its biases change in a way to 

make the whole CNN network capable of highlighting the critical features of the spectrogram, i.e. 

the relative magnitude of the signal in each frequency, which contributes to chatter as well as other 



46 

 

machining states. From a conceptual point of view, convolution kernels determine patterns and 

changes in the amplitude of the input signal's different frequencies during the time.  

Below a sample STFT of a stable milling process with the spindle speed of  400[rev/𝑚𝑖𝑛] and a 

four inserted tool with runout is shown to illustrate the effect of a sample horizontal line detector 

kernel and showcase the potential of convolution kernels. 

 

Figure 21 Applying a Line Detector Convolution Kernel on STFT Data Example 

3.4.2.2 Rectified Linear Unit (ReLU) 

A Rectified Linear Unit is an activation function. It introduces non-linearity to the equations while 

it does not saturate. It preserves nonnegative input values and replaces the negative values with 

zero. The Rectified Linear Unit applies the below function to each element of its input matrix,  



47 

 

 𝐑𝐞𝐋𝐔(𝒙) = 𝐦𝐚𝐱(𝟎, 𝒙) (37) 

ReLU highlights the most critical parts of the frequency domain signal for machining state 

detection. 

The effect of applying the ReLU function on the data of Figure 21 is shown below. As illustrated, 

the horizontal lines, which indicate the consistent frequencies during the time, appear to get more 

prominent after applying ReLU. 

 

Figure 22  Example of Applying ReLU to Convolved STFT Matrix 

3.4.2.3  Local Response Normalization 

Each convolution layer could consist of multiple convolution kernels. Local Response 

Normalization layer performs lateral inhibition by having each high amplitude output result of 

each convolution kernel, affecting the adjacent kernels output. In other words, it carries out the 

changes in the amplitude picked up by one convolution kernel to the neighbour channels. 

Local Response Normalization performs a channel-wise local response normalization by replacing 

each element with a normalized value obtained based on its neighbours [30]. Normalizing in the 

local regions is a kind of Surround Inhibition [31]. 



48 

 

For an arbitrary input of 𝑪𝒊,𝒋,𝒌
(𝒍)

 element in the kernel k, at position (𝑖, 𝑗), the normalized response 

given by, 

 
𝑪𝑵𝒐𝒓𝒎(𝑪𝒊,𝒋,𝒌

(𝒍) ) =
𝑪𝒊,𝒋,𝒌
(𝒍)

(𝒌  𝜶∑ (𝑪𝒊,𝒋,𝒙
(𝒍)
)
𝟐𝐦𝐢𝐧(𝒅

𝑪(𝒍)
,𝒌+
𝒏−𝟏
𝟐 )

𝒙=𝐦𝐚𝐱(𝟏,𝒌−
𝒏−𝟏
𝟐
)

)

𝜷
 

(38) 

where 𝑘, 𝑛, 𝛼, and 𝛽 are hyper-parameters whose values are determined using a validation set; In 

the case of this thesis, 𝑘 =   , 𝑛 =  5, 𝛼 =  10−4, and 𝛽 =  0.75. as proposed by A.Krizhevsky 

et al.  [30]. 

To illustrate the concept, the mechanism of its implementation for a window of size five (𝑛 = 5) 

is shown in Figure 23. It is shown how each element of each matrix, highlighted in red, is replaced 

with the value of all of the highlighted elements, red and blue, going through equation (38). 

 

 

Figure 23 Local Response Normalization implementation illustration 

 

3.4.2.4 Max Pooling 

Max pooling is a method of down-sampling. The Max pooling process slides a window over its 

input matrix sub-regions and takes the maximum value in each window as each subregion 

representative.  



49 

 

Similar to Rectified Linear Function, max pooling has stride and padding and it puts emphasis on 

the most matched inputs. Moreover, it eliminates the elements that do not match the amplitude 

changes according to the convolution kernel. Take the first convolution block as an example; if a 

max-pooling is added immediately after the convolution layer, each convolution kernel existing in 

the convolution layer marks the frequency domain signal elements that match the convolution 

kernels changes of amplitude in different frequencies and during time by showing a high value in 

the corresponding element of the output matrix. Afterwards, if a max-pooling is added, it will 

down-sample each convolution kernel's output by preserving the amplitudes that made a better 

match by eliminating the rest of the amplitudes. 

Max pooling on 𝐶(1) in the first block of the base architecture, with a stride of two, is shown in 

Figure 24 as an example. 

 

Figure 24 Max pooling Operation Example 

The convolved STFT after applying ReLU, as shown in Figure 22, is depicted as an example of 

the max-pooling function with size of 3  and a stride of 2. In the mentioned figure, max pooling 

output (on the right) highlights the horizontal lines which were discovered by the convolution 

kernel and reinforced by ReLU. 

 



50 

 

 

Figure 25 Example of Max-pooling and applying it to a Convolved STFT after ReLU function 

3.4.3 Artificial Neural Network Components 

The output of the last convolution block is a set of matrices. These matrices are convolved and 

manipulated from the frequency domain input signal. The convolution layers are supposed to get 

trained to pick up the frequency domain measurement parts that contribute the most to the cutting 

states and discard the less/non-important parts. 

The flattened output of the last layer of convolutional blocks goes into an artificial neural network 

(ANN) to be classified into the sought states, i.e. the machining states. The ANN takes each 

element of the matrices from convolutional layers as one input variable and fits an equation to all 

the input variables. The output of this fitted algorithm will be a set of five numbers, each 

corresponds to the probability of one of the five machining states 

An ANN is a set of interconnected artificial neurons. Neurons are variables, each capable of storing 

a number. The interconnections have numbers associated with them, as well. The Interconnection 

numbers are called weights.  

There are various types of ANNs, yet the most commonly used type, due to its wide range of 

capabilities, is feedforward ANN. Feedforward ANN is an ANN wherein each neuron belongs to 



51 

 

one layer. The layers in feedforward ANN are ordinal, and each neuron is connected to one or 

more neurons from the next layer. Each neuron from the last layer is connected to a number of 

output neurons [17] and holds a value. The value of the neuron gets tweaked during the training 

process. During the cutting state detection, each neuron’s value performs as a coefficient of the 

neural network equation. 

 

The values of each neuron could be determined by, 

 ∀ 𝒋, 𝒍 𝒂𝒋
(𝒍) =∑ 𝒘𝒊,𝒋

𝒍 𝒂𝒊
𝒍−𝟏

𝒏

𝒊=𝟏
 𝒃𝒍𝒃𝒋

𝒍 (39) 

Where 𝑎𝑖
(𝑙)

 is the value of neuron 𝑖 from layer 𝑙, 𝑤𝑖,𝑗
𝑙  is the weight which connects neuron 𝑖 from 

layer 𝑙 − 1 and neuron 𝑗 from layer 𝑙, 𝑏𝑖 is the value of bias of layer 𝑙 − 1, and 𝑏𝑗
𝑙 is the bias weight 

of layer 𝑙 and neuron 𝑗. Please note that in the above notation, layer 0 is the equivalent of the input. 

Using a feedforward ANN with 3 layers, 9216 inputs and 4096 neurons in each of its two hidden 

layers, its output is given by, 

 𝒂(𝟑) = (𝒘𝟑(𝒘𝟐(𝒘𝟏𝒙  𝒃𝟏)  𝒃𝟐)  𝒃𝟑) (40) 

Where 𝑤𝑙, 𝑏𝑙, and 𝑥𝑖, the input number 𝑖, are given as, 



52 

 

 

𝒘𝟏 =

[
 
 
 
 
𝒘𝟏,𝟏
𝟏 ⋯ 𝒘𝟏,𝟗𝟐𝟏𝟔

𝟏

𝒘𝟐,𝟏
𝟏 ⋯ 𝒘𝟐,𝟗𝟐𝟏𝟔

𝟏

⋮ ⋱ ⋮
𝒘𝟒𝟎𝟗𝟔,𝟏
𝟏 ⋯ 𝒘𝟒𝟎𝟗𝟔,𝟗𝟐𝟏𝟔

𝟏
]
 
 
 
 

, 𝒘𝟐 =

[
 
 
 
 
𝒘𝟏,𝟏
𝟐 ⋯ 𝒘𝟏,𝟒𝟎𝟗𝟔

𝟐

𝒘𝟐,𝟏
𝟐 ⋯ 𝒘𝟐,𝟒𝟎𝟗𝟔

𝟐

⋮ ⋱ ⋮
𝒘𝟒𝟎𝟗𝟔,𝟏
𝟐 ⋯ 𝒘𝟒𝟎𝟗𝟔,𝟒𝟎𝟗𝟔

𝟐
]
 
 
 
 

,  

𝒘𝟑 =

[
 
 
 
 
𝒘𝟏,𝟏
𝟑 𝒘𝟏,𝟐

𝟑 ⋯ 𝒘𝟏,𝟓
𝟑

𝒘𝟐,𝟏
𝟑 𝒘𝟐,𝟐

𝟑 ⋯ 𝒘𝟐,𝟓
𝟑

⋮ ⋮ ⋱ ⋮
𝒘𝟒𝟎𝟗𝟔,𝟏
𝟑 𝒘𝟒𝟎𝟗𝟔,𝟐

𝟑 ⋯ 𝒘𝟒𝟎𝟗𝟔,𝟓
𝟑

]
 
 
 
 

, 𝒃𝒍 =

[
 
 
 
𝒃𝟏
𝒍

𝒃𝟐
𝒍

⋮
𝒃𝟒𝟎𝟗𝟔
𝒍 ]

 
 
 

, 𝒙 = [

𝒙𝟏
𝒙𝟐
⋮

𝒙𝟗𝟐𝟏𝟔

] 

(41) 

During the training process, the feed-forward ANN's weights and biases are tweaked using 

backpropagation to minimize the network error. After training the network, it is able to identify 

the state with the highest probability from the output layer. For instance, in the case of the input 

signal be a chatter signal, output values 𝑎1
(3)
, 𝑎2
(3)
, 𝑎3
(3)
, and 𝑎4

(3)
 values (probability of air cut, tool 

entrance, tool exit) will be close to zero whereas  𝑎5
(3)

 will tend to unity, i.e. the probability of 

chatter being in process is high. 

 

A regularization method called dropout, introduced in the ImageNet Classification with Deep 

Convolutional Neural Networks [30], is employed in the neural networks training implementation.  

Dropout sets t of each artificial neuron to zero with a given probability. This component increases 

the robustness of the learning by ensuring that different combination of the neurons is functioning.  

A drop out of 50% is implemented in this work. It means that in each iteration of training, dropout 

sets roughly half of the  𝑎𝑗
(𝑙)

 from equation (40) to zero. This results in a fitted equation during the 

training process in which each individual neuron (𝑎𝑗
(𝑙)

) has a meaningful contribution to the 

machining state detection since it is fit to remain relatively functional in the absence of half of the 

other neurons.  



53 

 

Moreover, the output of each neural network layer goes through ReLU. 

 

3.4.4 SoftMax 

SoftMax turns the numbers from the output of the ANN to the probabilities, scaled from zero to 

one where one is 100% probability. For each machining state, the probability of that state for a 

given input is calculated by,  

 𝒑(𝐬𝐭𝐚𝐭𝐞) = 𝐒𝐨𝐟𝐭𝐌𝐚𝐱 (𝒂𝒊
(𝑳𝐥𝐚𝐬𝐭)) =

𝒆𝒂𝒊
(𝑳𝐥𝐚𝐬𝐭)

∑ 𝒆
𝒂𝒋
(𝑳𝐥𝐚𝐬𝐭)

𝑲
𝒋=𝟏

 (42) 

Where 𝑎𝑖
(𝐿last) is the 𝑖-th neuron of the 𝑙𝑎𝑠𝑡 layer and 𝐾 = 5 is the number of machining states. 

𝐿last =   is the number of layers. 

 

3.4.5 Focal Loss Classifier 

The ANN output goes through a classifier to associate the output numbers to its corresponding 

classes’, i.e. machining states, probability. In the machining processes, usually, the time which 

tool spend in-cut is longer than the time it spends getting into or out of the cut. The training dataset 

used to train follows the same pattern. It takes the tool a short time to pass the transient state of 

entering and exiting the workpiece. Hence, the number of entrance and exit instances is less than 

the number of other instances. It is crucial to compensate for this imbalance in the count of data 

from each state of machining to avoid having a trained cutting state prediction biased against 

detecting entrance and exit states or not being fitted well enough to detect the right characteristics 

which represent the mentioned transient states. 



54 

 

The focal loss function [32] multiplies the cross-entropy function with a modulating factor. It 

increases the sensitivity of the CNN to misclassified machining state instances. 

In this thesis probability of each state of machining is denoted by 𝑝state, where “state” could be 

replaced with any of the five cutting states. 

The Focal loss (FL) for the probability of each training instance is given by, 

 𝐅𝐋 = −𝛂(𝟏 − 𝐩𝐬𝐭𝐚𝐭𝐞)
𝜸𝐥𝐨𝐠(𝒑𝐬𝐭𝐚𝐭𝐞) (43) 

Where 𝛼 =   is a constant called balancing parameter, 𝛾 = 0. 5 is a constant called focusing 

parameter that specifies the system's sensitivity to wrong machining state detection, and 𝑝state is 

the probability of the real state. The total focal loss for a set of instances is given by averaging the 

values of focal loss over all of the instances. 

 

3.4.6 Transfer Learning (base)       ’               O        

As illustrated in Figure 26, the base network consists of five convolutional blocks, and each 

incorporates a number of layers [30]. The output of each block goes through a rectified linear unit.  



55 

 

 

Figure 26 Transfer Learning Architecture Overview 

Where 𝑓𝑖  (𝑖 = 1, , … ,5) is the arithmetic and activation function of block 𝑖 and 𝑌 is the input STFT 

instance. This section explains the arithmetical and logical function of each of the architecture 

layers, as well as the, clarifies and their benefits to this specific application. As shown in Figure 

26, the input to the first block is the frequency domain signal during the time, generated by the 

method explained in section 3.3. The resultant matrix is resized to the network input size (227 by 

227) using bicubic interpolation and triplicated to accommodate the transfer learning architecture’s 



56 

 

input size. Bicubic interpolation determines each matrix element value by calculating the weighted 

average of the nearest four neighbours. In the case of a custom design network with an input size 

e ual to the feature extraction step’s output size, the last two mentioned steps are not re uired. 

Each block's input goes through a series of functions in that block, as denoted under each block 

and layer in  Figure 26. The output of one block is the input to the next block. Each layer 𝑙, has a 

bias term of 𝑏
ℎ𝑏
(𝑙)
(𝑙)

 which has not been shown in Figure 26 to avoid clutter. 

The output of the last convolutional layer is a two-dimensional matrix. The matrix gets flattened 

and goes to the ANN The output of the last convolutional block is classified into the machining 

states using three layers of ANN. The cross-entropy loss function from the original network 

architecture is replaced with a focal loss function due to an imbalance in the data. The focal loss 

function makes up for the fact that the number of the entrance and exit transient state instances is 

smaller than the other instances.  

This section goes over the arithmetic building blocks of the convolutional blocks of the deep 

learning architecture used in this thesis. The part that each component of the network takes in the 

machining state detection and classification of the form attribute of the frequency-domain signal 

is explained. The form factor attributes of the input are the trend of changes in the frequency-

domain signal amplitude in different frequencies over a period of time. 

 

The convolution blocks shown in Figure 26 consists of the following layers. The first convolution 

block consists of an 11 by 11 convolutional layer of 96 convolution kernels with a stride of 4 and 

zero padding, a linear rectified function, a cross-channel normalization, and a max-pooling of size 

3 by 3 and stride size of 2 and a zero padding. The input of the second Convolutional Block is the 



57 

 

output of the first block. It incorporates a grouped convolution layer of 2, 128 kernels with a filter 

size of 5 by 5 and a stride of one and a padding of 2, a rectified linear function, cross-channel 

normalization, and a max-pooling. The third Convolutional Block has a convolution layer of 384 

and a filter size of 3 and a stride of one and a padding of one, and a rectified linear function. The 

fourth Convolutional Block has two groups of convolution layers of 192 and a filter size of 3 and 

a stride of one and a padding of one, and a rectified linear function. The last Convolutional Block 

has a convolution layer of 256 convolution kernels, a rectified linear function and a max pooling. 

During the training stage of transfer learning, the last convolution layer has been retrained.  

The flattened output matrix of the convolutional layer goes to the ANN layers. The base model 

has a fully connected feedforward ANN. Its size input is 4096, equal to the output size of the last 

convolutional block's output. The first layer after the input has 4096 neurons as well. Input and the 

first layer are each followed by a rectified linear function as well as a dropout with a 50% 

probability. The output layer has five neurons, each corresponding to one of the states of cut. The 

outputs go through a Softmax function to give the probability of each cutting state. Input and the 

first ANN layer have dropouts, and they are followed by a rectified linear function. All the ANN 

layers have been retrained during the training process. The last layer of ANN is followed by a 

SoftMax layer. Hence, the overall architecture and the first three convolutional blocks remain as 

it is suggested in the original paper of Image Net. The last two convolutional layers and the neural 

network is retrained with the weights and biases of the image Net as their initial values. The loss 

function is changed to the focal loss to make up for the imbalance in the number of each machining 

state present in the training set. 

 



58 

 

The network is trained on the training data set using Adam [44] optimizer. Adam is a scholastic 

optimization method that uses the following moving averages to update the network parameters in 

𝑖-th iteration, Θ𝑖, and calculate Θ𝑖+1, 

 𝚯𝒊+𝟏 = 𝚯𝒊 −
𝜶𝒎𝒊

√𝒗𝒊  𝝐
 (44) 

Where 𝛼 is the learning rate, 𝜖 is the denominator offset, and  𝑚𝑖 and 𝑣𝑖 are parameter gradients 

and its squared, respectively, and are given by, 

 {
𝒎𝒊 = 𝜷𝟏𝒎𝒊−𝟏  (𝟏 − 𝜷𝟏)𝛁𝑬(𝜽𝒊)

𝒗𝒊 = 𝜷𝟐𝒗𝒊−𝟏  (𝟏 − 𝜷𝟐)[𝛁𝑬(𝜽𝒊)]
𝟐 (45) 

The performance of the trained model is presented in section 5.3. 

 

Further, during an automatic machine learning process [33], the base architecture evolves to make 

an architecture specialized in machining state detection. 

 

3.5 Automated Convolutional Neural Network Architecture Design for Machining State 

Detection 

The Architecture of Convolutional Neural Network plays a crucial role in the deep learning 

algorithm, performance, speed, and robustness. While transfer learning (introduced in section 3.4) 

offers a quick and robust network for cutting state detection, it does not essentially provide the 

best architecture in terms of being optimized for a specific purpose, in this case machining state 

detection. This section suggests a novel approach towards automated CNN design architecture 

methodology for designing a specialized CNN for machining state detection based on the 

frequency domain vibration signal. The work in this section results in a machine learning 



59 

 

architecture design for processing the vibration signals for the purpose of machining state detection 

with high accuracy and low model complexity. 

 

Transfer learning comes with limitations and shortcomings. The idea behind the proposed 

approach is to have the ImageNet [30], also known as AlexNet, architecture, used for the transfer 

learning method, as the initial state and shape it according to the machining state detection 

problem. The base network (ImageNet) is modified based on the specification of cutting state 

detection. Afterwards, the customized network is used as the initial condition for the architecture 

design algorithm. Finally, using the proposed Automated Machine Learning (AutoML) technic a 

deep learning architecture is proposed. The proposed architecture is designed with three main goals 

in mind: high accuracy in machining state detection, low architecture complexity, and high 

explainability. The output of this section, including the designed network and the trained model's 

accuracy, is presented in section 5.4. 

 

In terms of machining state detection accuracy and network performance, the automated 

architecture design uses Bayesian optimization to reach the mentioned set of goals. Moreover, a 

custom classification layer is designed to accommodate the requirements of real-world cutting.  

Regarding complexity, the automated machine learning procedure is designed to have a high 

tendency to keep the complexity of the architecture low. The complexity of a deep learning 

architecture is defined as the number of its learnable parameters. The learnable parameters of a 

deep learning algorithm are the parameters that get adjusted during the training process. More 

training parameters indicate a more complicated equation to fit the cutting state detection problem 

in hand. The low complexity of the architecture is important for several reasons. First and foremost, 



60 

 

increasing the complexity of a network increases its inclination to overfit and misclassification of 

the machining states due to redundancy of the learnable parameters. Additionally, less learnable 

parameters result in a faster network, both during training and chatter detection, and a lighter model 

with regard to occupying space on the memory. 

 

With respect to explainability, the input has not been resized since the designed CNN is specialized 

in the machining state detection need. On the contrary, in transfer learning, the input size of the 

network is given by ImageNet. Also, tooth passing frequency is used as one of the inputs to the 

network. Moreover, a custom loss function is designed to prevent overfitting and minimizing false 

positive chatter detection. 

 

There are two significant concepts in the automated machine learning architecture design proposed 

by this thesis: Architecture Design Methodology, and Objective function and Network 

Assessment. Further, in this section, each concept is explained. 

 

3.5.1 Automated CNN Architecture Design Methodology and Structure 

A scheme of the automated architecture design is presented in Figure 27. The utilized architecture 

outline is similar to the transfer learning architecture from section 3.4, with minor changes to make 

it tailored for the real-world physical problem at hand.  

A model is generated based upon a set of proposed architecture parameters during each iteration 

of the optimization algorithm. The model gets trained, and the performance of the trained model 

gets assessed. Based on the assessment, a set of parameters is generated for the next iteration of 

the optimization algorithm. 



61 

 

 

A methodology is proposed for automatically generating new architectures and modifying them to 

find a low complexity, high accuracy architecture. For each designed architecture, regardless of 

its specification, the input to the system will always be the frequency domain vibration signal as 

well as the tooth passing frequency, and the output will be the probability of each machining state. 

Based on the optimization algorithm’s output, the best performing model gets trained on the 

training data and further used as the final machining state detection. 

Below, a detailed overview of the automated architecture design is shown; each part of the 

proposed methodology is further elaborated in this section.  

 

Figure 27 Overview of Automated Cutting State Detection Network Architecture Design Methodology 

Scheme 



62 

 

3.5.1.1 Architecture Structure and Outline 

The initial architecture or the initial input (𝑠0) to the optimization algorithm is based on ImageNet 

from section 3.4. As shown in Figure 27, three slight modifications have been applied to ImageNet 

to make it suitable for cutting state detection.  

First, the input size is customized to the frequency domain features input given in section 3.3 (400 

by 52).  

 

Second, the tooth passing frequency (𝜔𝑡) is added as one of the inputs to the neural network. 

Hence, the neural network inputs are the convolutional blocks' flattened outputs alongside the tooth 

passing frequency. Having tooth passing frequency as one of the network inputs leverages our 

knowledge in machining. Tooth passing frequency contributes to the formation of the frequency 

domain signal because of the resultant peaks in the tooth passing frequency and its harmonics. It 

makes it easier for the neural network to detect the cutting state. Since tooth passing frequency is 

a cutting feature, it increases the neural network state detection’s robustness.  

 

Finally, a customized weighted cross-entropy loss function with a penalty for false chatter 

detection is designed to accommodate the machining’s particular needs. The loss function is given 

as below, 

 𝐋𝐨𝐬𝐬 = −∑𝑾𝑷
𝑻 × (𝒀. 𝐥𝐨𝐠(𝒀̂)) (46) 

Where 𝑌and 𝑌̂ are matrices of the actual state of the cutting instances, with the known state of 

machining, and the probability of each cutting state detected by the algorithm, respectively.  



63 

 

Furthermore, 𝑊𝑃 is a matrix of miss classification penalty weight. It is designed based on the 

number of experiment instances for each machining state and the importance and effect of each 

type of misclassification. The elements of the mentioned matrices correspond to air cut, entrance, 

stable, chatter, exit cutting states, respectively. Each element of the mention matrices corresponds 

to a machining state with the mentioned order. Each matrix element's value is the penalty for 

misclassifying the corresponding row’s machining state to the corresponding column state. Each 

row of the matrix is normalized in the time of utilization.  

 𝑊𝑃 =

[
 
 
 
 
0 16 10 10 10
10 0 10 10 14
 5  5 0 1  5
 5  5 1 0  5
10 16 10 10 0 ]

 
 
 
 

 (47) 

Where the rows and columns correspond to Air cut, Chatter, Entrance, Exit, and Stable, 

respectively. As it is shown, the penalty for misdetection of two transient states of entrance and 

exit, which have a smaller number of training cases, is higher than the others. Additionally, all the 

penalties associated with false detection of chatter is 16 or higher. Same applies to mistaking stable 

for chatter.  

Except for what was mentioned, the initial network which Bayesian optimization starts with the 

same topology and components as ImageNet.  

 

3.5.1.2 Design Methodology 

In the proposed architecture design methodology, each block has been considered as an individual 

entity with a set of hyperparameters. The number of the convolutional blocks and the neural 

network layers are subjected to be determined by the optimization algorithm. As shown in Figure 

27, each convolution block is denoted by Ci (i = 1,  , … , nc) where nc  is the number of the 



64 

 

convolution blocks, and the number of neurons in 𝑖-th hidden layer of neural network layer 

is denoted by 𝑁𝑖  (𝑖 = 1,  , … , 𝑛𝑁) where 𝑛𝑁 is the number of the neural networks hidden layers. 

Two nc and 𝑛𝑁 are determinant of the network topology. 

 

In iteration 𝑖 of Bayesian optimization, it comes up with a set of design hyperparameters, 𝑠𝑖 which 

includes the network topology hyperparameters as well as the convolutional blocks and neural 

network hyperparameters. Each 𝑠𝑖 is a unique identifier of a CNN architecture. The 𝑠𝑖 set consists 

of  ≤ 𝑛𝐶 as the number of convolutional blocks and the size and the number of kernels of each 

of 𝑛𝐶  convolutional blocks’ number of kernels 𝑑𝑖 and kernel size (𝑤𝑖 × ℎ𝑖) for layer 𝑖 as well as 

𝑛𝑁 as the number of hidden layers and the number of neurons in each of 𝑛𝑁 layer (𝑁𝑖). After 

having the 𝑠𝑖 defined by the optimization algorithm, the corresponding CNN structure gets formed, 

and the feasibility of the CNN structure, in terms of matrix dimensions agreements gets assessed. 

In case of finding the proposed architecture not feasible, the Bayesian optimization acquisition 

function modifies its estimate using the method suggested by M. Gilbert et al. [34].  

 

For each given set of 𝑛𝑐 and 𝑛𝑁, the number of optimizable hyperparameters is a function of the 

number of layers by  nc  𝑛𝑁, since each convolutional block has two parameters for width and 

height and each ANN layer has a number layers parameter. Additionally, 𝑛𝑐 and 𝑛𝑁 are subject to 

being optimized. Considering that the Bayesian optimization optimizes a set number of variables, 

a set of optimization variables for a maximum of five extra convolutional and neural layers are 

defined. In the optimization iterations with 𝑛𝐶 < 5 or 𝑛𝑁 < 5 the hyperparameters corresponding 

to layers after the 𝑛𝑐-th layer or 𝑛𝑁-th layer becomes irrelevant. The irrelevant variables were not 

taken into account during the optimization process, as it is suggested by K. Swersky [35]. 



65 

 

 

The weights and biases associated with the first five convolutional blocks and the first two neural 

network hidden layers are initialized by resizing the weights and bias matrices of the trained 

transfer learning method, as suggested in section 3.4, using bicubic interpolation. This helps with 

faster convergence and more accuracy. For the rest of the weights and biases, the initialization 

strategy is the same as it is suggested for the last convolutional block and hidden layer of ImageNet 

[30]. The weights for the extra convolution layers are initialized from a zero-mean Gaussian 

distribution with a standard deviation of 0.01. The neuron biases of the additional convolutional 

layers and the hidden layers are set to constant one, and the neuron biases are set to constant zero.  

The number of epochs is limited to three during the optimization to minimize the architecture 

optimization time and saving computing power. Each epoch is a pass during which the whole 

training dataset is used to train the model. 

Figure 28 shows the general rules according to which the architectures are designed during the 

optimization process. Other than the architecture's overall topology and a set of rules and 

constraints mentioned in this section, the rest of the architecture can be modified during the design 

methodology. The parts denoted with red font in Figure 28, are the tweakable part of the network, 

i.e. 𝑠𝑖 contents in each iteration. 



66 

 

 

Figure 28 Architecture Structure and Design Methodology Scheme 

3.5.2 Bayesian Optimization for Machining State Detection Architecture Design  

Bayesian Optimization is a Global Function Optimization method that uses a response surface 

methodology-based approach in order to find a local minimum or maximum of an objective 

function. In this chapter, Bayesian optimization is incorporated as an approach to design a 

convolutional neural network specialized for machining state detection.  

 



67 

 

Bayesian Optimization is a proper method to be applied to the architecture design problems since 

they are particularly required to find the extrema of an objective function, which is costly, non-

convex, and we do not have access to the derivatives [38].  

Bayesian Optimization uses the Bayes theorem to form a surrogate probabilistic model of the 

objective function. The objective function is the function that is desired to be minimized or 

maximized; it encompasses the variables which contribute to the problem at hand. Since the use 

of optimization in this thesis is for the minimization of the objective function; hence, minimization 

will be the only case that will be explained in this thesis. The objective function definition is 

explained in the next subsection. 

 

Surrogate optimization attempts to balance the trade-off of exploration and exploitation. 

Exploitation is sampling, according to the surrogate model’s prediction.  xploration is the search 

for a global minimum where the surrogate model has an extremely low certainty, resulting in 

exposure to new local minima. The algorithm has been proven to converge [39].  

Bayesian optimization is used to define a surrogate function that approximates the original function 

with computational efficiency. Bayesian optimization makes use of the prior estimation of the 

surrogate function. It updates based on the samples drawn from it in order to achieve a more 

accurate approximation of the surrogate model. For a function 𝑓(𝑥), the surrogate function is 

denoted by 𝑓. Based on the fact that the defined objective function is complex, a non-parametric 

method would be appropriate to approximate the functions.  In this work, Bayesian optimization 

constructs a prior belief about how the proposed architecture, associated with 𝑠𝑖 set of network 

architecture hyperparameters, would behave. Then, in each iteration, it searches the parameter 

space by enforcing and updating that prior belief based on the current measurements. In other 



68 

 

words, a surrogate model of the problem search space, which has a size of about 1038 is formed 

using Bayesian optimization. The model gets evolved in each iteration of the optimization to make 

a more accurate picture of the search space. The search for the best architecture will be carried on 

based upon the updated surrogate function, from the previous iteration. 

For the purpose of sampling the points in the search space, Bayesian optimization uses a function 

called acquisition function, which is denoted by 𝜇𝑄(𝑥). An acquisition function maintains the 

balance between exploitation and exploration. Exploitation is searching the region in which the 

surrogate model predicts that the minimum values lay there. On the other hand, exploration is 

sampling at locations with high uncertainty.  

The Bayesian optimization procedure starts with an initial definition of the prior for the surrogate 

model. Afterwards, in each iteration 𝑖, Bayesian optimization takes three steps towards 

optimization of a given objective function 𝑓: 

1) Finding the sampling point 𝑥𝑖, based on the attributes of the posterior distribution and by 

using the acquisition function, 

 𝒙𝒊 = 𝐚𝐫𝐠𝐦𝐚𝐱𝐱𝒖(𝒙|𝑫𝟏 𝒊−𝟏) (48) 

 Where 𝑢 is the acquisition function, and 𝐷s are the samples drawn from 𝑓. 

2) Obtain a possibly noisy sample, 𝑦𝑖, from 𝑓 as below, 

 𝒚𝒊 = 𝒇(𝒙𝒊)  𝝐𝒊 (49) 

3) Augmenting the data as below and updating the Gaussian process, 

 𝑫𝟏 𝒊 = {𝑫𝟏 𝒊−𝟏, (𝒙𝒊, 𝒚𝒊)} (50) 

 

The mentioned acquisition function evaluates the goodness of fit to a specific Gaussian kernel. 

The acquisition function used in this thesis is the probability of improvement. The kernel used in 



69 

 

this work is the ARD Matérn 5/2 kernel [40]. The estimate of the goodness will be modified based 

on the approach proposed by M.A.Gelbart et al. [34]. 

 

3.5.3 Network Assessment and Objective Function Design 

The objective function evaluates two main criteria: network complexity and its ability to detect 

machining states. The objective function goal is to decrease the network complexity without 

compromising cutting state detection performance. 

The complexity of the network is defined as the number of learnable parameters of the network. 

Each block of the deep learning system has a set of weights and biases that gets tweaked during 

the training process. The training phase's final weights and biases will form an equation in the 

test/implementation phase, which output each cutting state probability. It is desirable to have a 

smaller number of learnable parameters to make the equation as simple as possible. A smaller 

equation is faster to run, i.e. results in a faster chatter detection. Moreover, a simpler equation is 

less prone to overfit. The last section's resultant trained network performs cutting state detection 

on the validation data to evaluate the network performance. The mean of the network’s loss over 

all the predictions is calculated and used as an indicator of the design network performance. Lower 

loss indicates a better performance, i.e. smaller error.  

 

Given the high volume of training samples and the fact that the objective function must account 

for network performance and its complexity, the Hannan–Quinn information criterion(HQC) [36] 

is used. The Hannan–Quinn information criterion (HQC) is given by, 



70 

 

 𝐇𝐐𝐂 = 𝑻𝐥𝐨𝐠 (
∑𝐋𝐨𝐬𝐬

𝑻
)  𝟐𝒌𝐜𝐨𝐦𝐩𝐥𝐞𝐱𝐢𝐭𝐲𝐥𝐨𝐠(𝐥𝐨𝐠(𝑻)) (51) 

Where ∑Loss is the summation of the loss function value for all of the training instances, an 

indicator of network performance, 𝑘complexity  is the number of the network parameters, i.e. 

network complexity, and  𝑇 is the number of training instances. It is common to use HQC in model 

selection and AutoML. Given the high number of training instances in deep learning, HQC is a 

proper candidate to be used [37]. Hannan–Quinn information criterion assesses the accuracy and 

complexity of the network by introducing a numeric measure. In other words, it measures the 

accuracy of the network, by evaluating the trained network on the validation data set, and adds a 

penalty for more complex networks. 

 

3.6 Summary 

In this chapter, the experiment design and machining state detection methodology are explained. 

The process of network design starts with using a statistical method for machining state detection 

to assess the plausibility of solving the problem of machining state detection using machine 

learning. A transfer learning method is used as the initial input set of the customized architecture 

design loop. An automated machine learning architecture design pipeline is proposed to design a 

specialized architecture for machining state detection with high accuracy and low complexity. It 

consists of processing vibration data and conversion to the frequency domain, as well as a machine 

learning model and constructor and Optimization components to detect machining states. During 

the architecture design process, the optimization algorithm suggests a set of architecture parameter 

of 𝑠𝑖 and a network gets constructed based on them. The network gets trained on the processed 

signal with the training dataset. The trained model is evaluated using validation data. The objective 



71 

 

function value is assessed at this point, based on the accuracy of the trained model state detection 

on the validation dataset and the network’s complexity. The best performing architecture is trained 

and used for machining state detection. 

  



72 

 

Chapter 4: Machine Learning and Physics-driven Chatter Detection Fusion 

This chapter is dedicated to amalgamating the deep learning method for machining state detection 

from Chapter 3 and a chatter detection method based on milling physics and proposing the full 

system’s pipeline. The goal is artificial intelligence and physics-driven methods infusion to reach 

a reliable approach with high accuracy.  

The physics-driven method is based on an online energy-based chatter detection. Improvements 

suggested to increase its accuracy is explained in this chapter. 

 

This chapter is organized as follows. The first section elaborates on the enhancements proposed to 

the energy-based chatter detection method proposed by Caliskan et al. [41]. The proposed 

enhancement increases the method's accuracy while it saves computing power required for 

detecting chatter. Section 2 focuses on the chatter detection pipeline and its implementation in the 

real world. A decision-making algorithm is proposed, which plays a primary role in the infusion 

process. Both deep learning and physics-based methods run simultaneously in parallel, detecting 

the machining state and stability independently. However, the decision-making module infuses the 

outcome of the mention methods. It results in a method with higher robustness and accuracy than 

the standalone machine learning method. 

Section 3 suggests a  self-evaluation loop for the machine learning algorithm, which uses the whole 

system's entropy and accuracy to retrain the model online and improve it. Lastly, section 4 

provided a summary of the work done in the chapter. 

 



73 

 

4.1 Improved Energy-Based Chatter Detection Method 

In this section, modifications are suggested to the online energy-based chatter by Hakan et al. [11]. 

The modification enhances the method by increasing the accuracy of the energy-based chatter 

detection method and speeds up the detection process. The original paper [11] provides an 

estimation of chatter and periodic frequencies based on the assumption of Kalman filter ideal 

performance. Then, it uses the estimated energy of chatter and periodic, forced vibrations, to detect 

instability in the cutting process. 

 

This thesis proposes an approach to improve the robustness of the energy-based method. The 

proposed method estimates the chatter energy based on the chatter peaks detected in between tooth 

passing harmonics using a statistical approach. The mentioned method calculates/updates the FFT 

of the Kalman filter output. It avoids multiple filters and estimates the chatter energy more 

accurately. 

As shown in Figure 29, subtracting the Kalman output from the input signal removes the input 

vibration signal's periodic part.  n the proposed method, Kalman’s output is converted to the 

frequency domain continuously. The frequency-domain of the non-periodic parts of the vibration 

signal’s peaks are detected using a statistical method. The proposed peak detection method is 

designed to ignore the possible remaining peaks at tooth passing harmonics and detect the chatter 

peaks between the tooth passing harmonics' pairs. Finally, the energy ratio is calculated and used 

to detect chatter vibration. It is unstable if the energy ratio is higher than a predetermined threshold. 

Additionally, the parameters of the Kalman filter are tuned using Bayesian optimization. 



74 

 

 

Figure 29 Suggested Improved Energy-based Method's Scheme   

4.1.1 Chatter Energy Estimation 

The input is the vibration signal, i.e. microphone in the thesis, which is passed through Kalman 

filter to predict 𝑞̂𝑘 (Figure 29) . The state vector of the periodic part of the signal [12] is, 

 

{
 
 

 
 

𝒒̂𝒌
− = 𝝓𝒒̂𝒌−𝟏

𝑷𝒌
− = 𝝓𝑷𝒌−𝟏𝝓

𝑻  𝝀𝑹

𝑲𝒌 = 𝑷𝒌
−𝑯𝑻(𝑯𝑷𝒌

−𝑯𝑻  𝑹)−𝟏

𝒒̂𝒌 = 𝒒̂𝒌
−  𝑲𝒌(𝒔𝒌 −𝑯𝒒̂𝒌

−)

𝑷𝒌 = (𝑰 − 𝑲𝒌𝑯)𝑷𝒌
−

 (52) 

where 𝑃𝑘 is the error covariance matrix, 𝐾𝑘 is the recursively updated Kalman gain matrix, 𝑅 is 

the measurement noise covariance, 𝑄 is the diagonal process matrix of the process noise, and 𝜙 is 

the phase, as suggested in the energy-based method [10]. The energy of the periodic part of the 

signal (𝑌̂𝑝) is calculated using Equation (19). 



75 

 

The Kalman filter's output is subtracted from the original signal to remove the effects of the 

periodic part of the signal at tooth passing frequency and its harmonics. The output of the Kalman 

filter is transformed into the frequency domain.  

Ideally, the resultant frequency domain signal (𝑌𝑐) should not contain any periodic part of the 

signal. However, it is observed in the experiments that in a considerable number of cases, the 

harmonics of the tooth passing frequency are not totally removed. Since the Kalman filter 

predictions are based on the current state, changes in the cutting state or sudden changes in the 

cutting conditions affect the Kalman filter’s prediction accuracy. The transient states of the tool 

entering and exiting the workpiece negatively influence the Kalman filter prediction. Hence, the 

following approach is proposed to increase the robustness of energy calculation. 

 

As shown in Figure 30, for the purpose of chatter detection, a robust chatter peak detection in FFT 

of the vibration signal is suggested. The proposed method set a threshold curve on the FFT 

magnitude based on the local mean and standard deviation of the frequency-domain signal as well 

as the average of each instance of the frequency-domain signal’s amplitude. The 𝑛 × 1 amplitude 

threshold value matrix for each of 𝑛 = 5000 points of the frequency-domain signal is given by, 

 𝑎𝑡ℎ = 𝜎(𝑌𝑐)  mean(𝑌𝑐)  𝑌𝑐̅ × 𝐽𝑛,1 (53) 

Where 𝜎() and mean() represent standard deviation and mean filter, respectively, both with a 

window size of 𝐿 = 0.004 × 𝑛 . Moreover, 𝑌𝑐̅  is the average of the whole frequency-domain 

signal, and 𝐽𝑛,1 is a unit matrix by the size of the number of FFT amplitude points. Given the 

sudden change in the mean and standard deviation, a suppression method is suggested. The 

suppression factor for each amplitude point of 𝑌𝑐𝑖 with the threshold of 𝑎𝑡ℎ𝑖 is defined as below, 



76 

 

 
𝒇𝒔𝒖𝒑 = 𝒆

𝐦𝐚𝐱(𝟎,𝒀𝒄𝒊−𝒂𝒕𝒉𝒊)

𝐦𝐚𝐱(𝒀𝒄)  
(54) 

The suggested suppression factor decreases the effect of the peaks exponentially to increase the 

robustness of the detection. The suppression factor is exponentially proportional to the difference 

between each amplitude and the corresponding threshold. After applying the suppression factor, 

by the element-wise division of 𝑌𝑐./𝑓𝑠𝑢𝑝, the threshold is recalculated using equation (53). For 

each group of FFT points with an amplitude higher than the threshold curve, i.e. each set of 

continuous points above the threshold, the point with the highest amplitude is determined as a 

candidate peak. The mentioned threshold is shown in Figure 30. 

 

Figure 30 Chatter Peak Detection Example 

An eligibility criterion is defined for each candidate to avoid the unremoved tooth passing peaks 

being counted towards chatter peaks. For each set of points higher than the threshold, its 

corresponding candidate peak is eligible if the set of the points does not cross any tooth passing 

frequency. As illustrated in Figure 30, the eligible points might appear in multiple ranges of 



77 

 

frequencies. The ranges that go through tooth pass frequencies are ignored. In each remaining 

range, the value points with the highest values determined as a chatter peak. 

 

The proposed model's performance on three states of machining, chatter, entrance, and stable cut, 

for a sample signal is shown below. The magnitude of the detected peaks for chatter is 

considerably higher than the two other states. The detected peaks for the transient and stable 

states are mostly rejected. 

 

Figure 31 Proposed Physics-driven Method Performance on a Sample Signal 

4.2 Hybrid Model 

A decision-making process is designed for making the final call on chatter detection. The decision-

making algorithm is the infrastructure of fusing the deep learning method output with the 

optimized physics-based method in order to detect chatter. If chatter is detected, the chatter 



78 

 

suppression module will get engaged and eradicate the cut's ongoing instability. The model is 

designed in a manner that it outputs the cutting state as well as the cutting stability. As shown in 

Figure 3 System Overview, the outputs of both physics-driven and machine learning methods are 

the inputs of the decision-making algorithm. Cutting state and a command to the machine tool 

controller, intended to perform chatter suppression, are the algorithm's outputs. Decision-making 

algorithm shares its inputs with the Self-evolution algorithm. 

 

4.2.1 Decision-making Algorithm 

The machine learning model output is in the form of the probability of each cutting state. The 

standalone deep learning algorithm determines the cutting state with the highest probability as the 

current cutting state. 

As illustrated in Figure 32, the detected state's certainty is defined as the difference between the 

state with the highest probability and the one with the second-highest probability. The detection is 

with low certainty if the difference between the probability of the two states with the highest 

probability is smaller than the certainty threshold (𝑡ℎcertainty = 8%). Intuitively, when the 

algorithm determines two relatively close probabilities for the top two most probable machining 

states, it means that the deep learning algorithm is agnostic about the correct state. In other words, 

low certainty shows the algorithm’s inability to differentiate between two cutting states. 



79 

 

 

Figure 32 Probability versus Certainty in Machining State Detection Using Machine Learning Output 

Energy-based chatter detection outputs the energy ratio of the signal. Based on the experimental 

results, an energy-based chatter detection algorithm has a high tendency to confuse the transient 

states of machining as chatter. 

 

The outline of the decision-making algorithm is shown in Figure 33. If the deep learning algorithm 

detects Air Cut, Entrance, or Exit with a high certainty relative to a non-transient in-cut state, it is 

the final output of the decision making algorithm.  

If the algorithm detects chatter or stable cut, the probability of the chatter and stable cut is given 

by, 

 

{
 
 

 
 𝑷𝒄 =

𝒑(𝐂𝐡𝐚𝐭𝐭𝐞𝐫)  𝑲𝒑 × 𝑬𝑵

𝑲𝒑  𝟏

𝑷𝒔 =
𝒎𝒂𝒙(𝒑(𝒔𝒕𝒂𝒕𝒆 ≠ 𝒄𝒉𝒂𝒕𝒕𝒆𝒓))  𝑲𝒑 × (𝟏 − 𝑬𝑵)

𝑲𝒑  𝟏

 (55) 

Where 𝑃𝑠 , 𝑃𝐶 are the accumulative probability output of the deep learning algorithm, 𝐾𝑝 = 0.  is 

the energy-based influence factor, and 𝐸𝑁 is the energy ratio from energy-based chatter detection. 

If 𝑃𝐶 > 𝑃𝑆 chatter is detected, and the chatter suppression procedure is initiated. Otherwise, the 

machining state will be determined as the state with the highest probability, given that it has at 

least 4 × 𝑡ℎcertainty of certainty. If it does not, the state will be determined stable. 

            

Air Cut

 ntrance

Chatter

 xit

Stable Cut

Chatter Probability

Certainty

Probability ( )



80 

 

 

Figure 33 Decision Making Algorithm Outline 

4.2.2 Chatter Suppression 

After chatter is detected, the implemented method to suppress chatter will be engaged. The chatter 

suppression module's output is a new spindle speed, which is sent to the machine tool controller 

in case of chatter being detected. 

 

In case of chatter being detected, a command is sent to the machine to zero the feed rate and change 

the spindle speed to the closest stable spindle speed, according to the stability lobes. As shown in 

Figure 34, the Sandvik tool chatters at  100 [rev/min] and  .8 mm depth of cut, despite what the 

theoretical Analytical Stability lobes suggest. Hence, the algorithm sends the command to the 

machine to zero the feed rate, set the spindle speed to 1665 [rev/min], and reactivate the feed 

rate. 

This method requires the frequency response function of both the machine tool and the workpiece, 

cutting coefficients of the work material, and tool geometry to determine the stability lobes [7] 

beforehand.  

>            
 (Air Cut)

 ( ntrance)

 ( xit)

 (Stable)

 (Chatter)

         
ma ( ) ma  ( )

Air Cut

 ntrance

 xit

  

1  R

                        

  =
 Chatter    ×   

   1

  =
ma (              )    (1   )

   1

Stable

Chatter

Chatter

Stable

No
> 4 ×            

Deep Learning 

Algorithm

 mproved  nergy based 

Chatter Detection

 

 

 



81 

 

 

Figure 34 Chatter Suppression based on the Analytical Stability Lobes for Sandvik R390-050022 Tool 

4.3 Self-evolving artificial intelligence using Semi-supervised learning 

This section aims to develop a self-evolution mechanism to make the machine learning model to 

improve over time by self-training. There are three criteria proposed for automated retraining of 

the machine learning model. The first criterion is designed based on the machine learning model’s 

attributes. The second one is designed based on machining process knowledge.  

It is essential to mention the proposed method's goal is to find out an objectively accurate detection 

of the machining state for the instances detected with low certainty. The priority is to find and 

utilize more accurate detection at the cost of compromising the number of new training cases.  

 

4.3.1 Self-evolution System 

A self-evolving artificial intelligence system is capable of improving itself during operation. A 

semi-supervised learning is used for fabricating a self-evolving deep learning algorithm. The 

algorithm uses the fusion of the physics-based method and machine learning to retrain and enhance 

the convolutional neural network in an online manner. It takes advantage of the designed hybrid 

system to improve the machine learning model. 

Unstable

Stable



82 

 

 

During the machining process, the network gets evolved while it is being used to detect the 

machining state. The system is capable of improving itself both on a pre-set criteria and with an 

operator’s feedback. 

N. Fazakis et al.[42] showed that using Semi-supervised learning improves machine learning 

algorithm performance merely by retraining the model on its predictions. Since the combination 

of the physics-based and deep learning algorithms have higher accumulative robustness and 

accuracy, the cutting-state instances detected with a high accumulative probability and accuracy 

using both methods are reliable sources of new training cases to retrain the machine learning 

model.  

 

The goal is to retrain the machine learning model on the vibration signal instances that the machine 

learning model either misclassifies or correctly classifies with low certainty. 

According to the defined criterion, each machining vibration measurement instance should meet 

at least one of the following three conditions to be qualified to be used for retraining and evolving 

the machine learning model.  

First, if both physics-driven and machine learning methods have the matching stability detection, 

i.e. both detect chatter or physics-driven model detects stable cut while the deep learning model is 

detecting anything but chatter the certainty will be used to measure the reliability of the detection. 

Regardless of the certainty of the machine learning model’s detection, if the energy ratio (𝐸𝑁) is 

higher than the defined 𝑡ℎ𝐸𝑅𝐶 threshold, the detection is chatter, data alongside the detected state 

will be used to retrain the model. If the detected state is stable and the EN is smaller than 𝑡ℎ𝐸𝑅𝑆, 

the data alongside stable detection will be used to retrain the model. The 𝑡ℎ𝐸𝑅𝐶 and 𝑡ℎ𝐸𝑅𝑆 are the 



83 

 

energy ratio threshold for chatter and stable detection, respectively. The mentioned thresholds are 

determined by averaging the to 10% of chatter and the bottom 10% stable cases by the improved 

energy-based method. 

This criterion becomes highly important and influencing when the certainty of the machine 

learning method’s detection is low, i.e. the ML system is highly agnostic about its correct detection 

of machining state.  

 

Secondly, each part of a tool path plan starts with air cut followed by an entrance of the tool to the 

workpiece. It continues to cut through the workpiece, either as stable or in the presence of chatter, 

and ends with the tool exiting from the workpiece. Knowing this typical characteristic of 

machining operations, if both systems detect chatter in one instance while it is surrounded by high 

certainty detection of chatter by the machine learning algorithm, higher than 𝑡ℎCertainty, as well as 

non- contradictory detection, the data alongside the chatter label will be used for retraining the 

model. In this context, surrounded is defined as having a hundred sampling before and after of the 

instance, meeting a particular criterion. Moreover, non-contradictory detection is when there is no 

disagreement between the physics-based method and the machine learning method detections. 

Moreover, suppose the physics-driven method detects stable cut while the deep learning algorithm 

detects one of the machining states, other than chatter, either surrounded by the same state or the 

states that match the order mentioned in this paragraph. In that case, it will be used to retrain the 

model.  

Finally, the machine’s operator’s feedback will be used as a way to retrain the algorithm.  

 



84 

 

4.4 Summary 

In this chapter, proposes improvements to the energy-bases chatter detection and suggests an 

approach towards chatter detection by amalgamating the the physic-based and machine learning 

method. The proposed method is a fusion of the machine learning machining state detection model, 

designed and trained in the previous chapter, and a physics-driven chatter detection model based 

on H. Caliskan et al. [11] work with fundamental enhancements proposed at the beginning of this 

chapter. 

The chapter starts by elaborating on the physics-driven chatter detection method suggested in this 

work and proceeds with the approach taken towards the infusion of the mentioned method with 

machine learning. The infusion method is proposed with robustness and accuracy in mind.  Finally, 

a set of criteria is suggested to be used for fine-tuning the machine learning model as it is being 

used for state detection. 

  



85 

 

Chapter 5: Experimental Validation and Results 

In this chapter, the experimental outcomes of each method, elaborated in chapters 3 and 4, are 

presented, and the functionality of the suggested model is verified based on experimental data. 

 

The machining state detection machine learning models, improved energy-based chatter detection 

model, and the hybrid-system are validated with experimental data. The experiments used for 

reporting the model's performance is from a new set of data associated with the measurements and 

experiments that have not been used during the model design or training. Formerly, in this thesis, 

referred to them as the test data set. It consists of cutting tests with a wide variety of cutting 

conditions, including cutting conditions different from what is used for model training and design. 

The data consists of cutting experiments that follow the theoretical linear stability laws presented 

by Y.Altintas [6] and those that contradict them, i.e. chatter in the theoretical stable zone and vice 

versa. 

 

Each section of this chapter represents a fully-working original model for chatter detection. The 

chapter is organized as follows. It starts with an overview of the performed experiments. In the 

second section, the set baseline and its accuracy are shown. Section 5.3 explores the capability of 

the model resulted from the transfer learning method introduced in section 3.4. Section 5.4 

evaluates the performance of the designed machine learning model in section 3.5. Section 5.5 

presents the enhancements caused by the improvements applied to the energy-based method, as 

suggested in 4.1, and validates the final hybrid model's performance, introduced in section 4.2. 

Finally, section 5.7 summarizes the outcomes of this chapter. 

 



86 

 

5.1 Data and Training Parameters 

The first step towards having a robust model and avoiding overfitting is to have a diverse dataset. 

For this purpose, more than 1600 experiments from about 500 continuous cutting tests, consist of 

various cutting conditions, tool paths, tools, and materials, are performed. The data is acquired 

with 𝑓𝑠 = 50𝑘𝐻𝑧 sampling frequency and resulted in 53,884 training instances. The cutting 

instances were extracted and labelled to five machining states manually based on the process 

output and surface quality.  

Table 1 Number of Instances and Experiments Distribution for each Dataset and each Machining State 

 

Training 

Instances 

Validation 

Instances 

Test 

Instances 
Total (%) 

Experiments 

(%) 

Air cut 14,110 1,200 4,048 19,358 (35.90%) 464 (28.10%) 

Entrance 540 112 130 782 (1.50%) 286 (17.32%) 

Stable 16,364 1,280 1,272 18,916 (35.10%) 358 (21.68%) 

Chatter 9,806 1,966 2,292 14,064 (26.10%) 218 (13.20%) 

Exit 480 182 102 764 (1.40%) 325 (19.69%) 

Total  

(%) 

41,300 4,740 7,844 53,884    

(76.60%) (8.80%) (14.60%)     

Experiments  

(%) 

1256 190 205     

(76.08%) (11.51%) (12.42%)     

The cutting experiments differentiated in parameters such as workpiece material, tool, and cutting 

conditions. The workpieces’ materials used are aluminum 7075 and steel. In terms of tools, as 

shown in Figure 35, Six different tools have been used during the data collection as follows, 

Sandvik R245-12T3, Seco R21769-1632, Sandvik R390-050022, Seco JS452120E33R050, and 

Sandvik 39241014-6340120B. The Seco R21769-1632 tool is used for cutting steel, and the rest 

of the tools are tools used to cut aluminum workpieces.  

The data collected from chattering and stable cuts have been conducted at various depths of cuts, 

feed rate, and spindle speed. All of the tools were tap tested to identify their Frequency Response 



87 

 

Functions (FRF) while they were mounted on a warmed up machine. The tap test data further used 

to determine the analytical stability lobes [6] and to plan the experiments accordingly. For each 

tool, several pairs of depth of cut and spindle speed are measured from each of the four following 

categories, unstable cut in theoretically stable zone, unstable cut in theoretically unstable zone, 

stable cut in theoretically unstable zone, and stable cut in theoretically stable zone. The tests cover 

the predicted stability, unpredicted stability, predicted chatter, and unpredicted chatter conditions. 

The mentioned statement applies to all of the tools, except Sandvik R245-12T3 and Seco R21769-

1632.  

 

Figure 35 The tools used during data collection, from left to right Sandvik R245-12T3, Seco R21769-1632, 

Sandvik R390-050022, Seco JS452120E33R050, and Sandvik 39241014-6340120B  

5.2 Baseline 

The baseline is set in section 3.2.2 to assess the machining state detection problem's plausibility 

using statistical methods. The output model is a machine learning model, capable of machining 

state detection independently. 



88 

 

For the goal of machining state detection, a binary decision tree is utilized. The tree uses Gini’s 

diversity index as its split criterion [43]. As mentioned before, cross-validation with ten folds is 

used on 0.2 seconds pieces of training data. 

The method resulted in 85.46% test accuracy in cutting state detection. The Confusion Matrix of 

the trained model is shown in Figure 36, demonstrating the misclassifications of each cutting state. 

The Green and red colour scale in the confusion matrix indicate the correspondence class 

prediction accuracy, where green is an indicator of high accuracy, and red is an indicator of low 

accuracy. To make the matrix more readable, each row of the matrix represents the percentage 

regarding the true class of the corresponding row.  

 

Figure 36 Baseline Model Confusion Matrix (with normalized rows) 

                

 
  
 
  
  
  
  
  
 
 
  
  
  
 

Air Cut   .    .    .    .    .     .    .   

Chatter   .     .    .    .    .     .     .   

 ntrance   .    .     .     .     .     .     .   

 xit   .    .    .    .     .    .     .   

Stable   .     .    .    .     .     .     .   

Air Cut Chatter  ntrance  xit Stable True

Positive

(Recall)

False

Negative
                           

  .     .     .     .     .   
Positive Predictive Value

(Precision)

 .     .     .     .     .   False Discovery Rate



89 

 

The model shows promising results in terms of chatter detection. The model is not well trained for 

detecting entrance and exit of the tool in the workpiece, yet, it rarely mistakes entrance and exit 

states with chatter. In other words, the model shows substantial results in chatter detection as well 

as machining state detection. The algorithm performance in detecting entrance and exit is relatively 

low, however it has about 10% higher accuracy than a random detector in detecting entrance..  

In Figure 37, the trained decision tree is depicted, and the range of statistical variables indicating 

each machining state is shown where𝜎 indicates standard deviation, and 𝜇3 stands for Skewness. 

For each split, the left arm represents the case in which the variable in the corresponding box on 

the top of the branch has a smaller value than the number indicated in the box. Similarly, the right 

arm leads to where the variable, i.e. Standard deviation or Skewness as specified in the box, is 

bigger or equal to the stated number in the same box. Starting from the top of the tree, the value 

of the standard deviation and skewness of the vibration signal is compared to the value in the 

corresponding box and navigates its way to one of the end nodes, which are the machining states. 

 

Figure 37 Decision Tree, Decision Criteria for machining state detection 

<  

<  <  

<  
<  

<  <  <  

<  

 <>      

 <>      

         <>      

  <>       

           

 <>      

            

 <>      

 <>      

  <>      

     <>      

            

      

       



90 

 

The resultant tree indicates that the chatter signal magnitude tends to have more dispersion from 

the mean. It shows that the skewness is a good differentiator between the machining states. 

Meanwhile, the standard deviation is a better discriminator for chatter versus stable and out of 

the cut. 

In order to depict the decision boundaries of the trained decision tree, Figure 38 is drawn. The 

algorithm detects chatter in most cases when the standard deviation is higher than 0.103, and if it 

is equal or smaller than 0.04, it detects transient state or air cut. Moreover, it appears that the 

decision tree is using skewness, mostly, as a discriminator between different non-chatter 

machining state. 

 

Figure 38 Decision Tree Decision Boundaries 

The histogram of each machining state's magnitude for all the training data is shown in Figure 39. 

The histograms are drawn with 100 bins. A normal distribution is fitted to each histogram. As 

demonstrated, the stable cut vibration data magnitude’s distribution has a small deviation with a 

small skewness towards the left, while the chatter cut distribution is farthest from the normal 

distribution and with a higher skewness. Also, the similar value of standard deviation in air cut, 

Air Cut

 ntrance

Stable

Chatter

 xit

                        



91 

 

entrance and exit and the considerably different skewness value in the mentioned machining states 

supports the findings about the fitted decision tree split strategy. 

As evident from histogram of data in Figure 39,  and the decision boundaries of the machine 

learning model given in Figure 38, the main difference between the entrance and exit signal is that 

the exit signal is mostly right-skewed. In contrast, the entrance signal is significantly left skews in 

most cases. Moreover, the air cut vibration signal has a small deviation. 

 

Figure 39 Normal Distribution Fitted to the Histogram of Each Machining State Experiments Time-domain 

Test Data 

Even though the confusion matrix suggests that the model performs poorly on the detection of exit 

and entrance, the model's overall accuracy is promising and an indicator of the plausibility of 

solving this problem with machine learning, since it provides reasonable accuracy for real-world 

implementation. Needless to say, as it is apparent in Figure 36, entrance and exit states are mostly 

mistaken with air cut and stable, which is harmless for our goal of chatter detection and avoiding 

the confusion between chatter and transient states of cut. 

 



92 

 

5.3 Standalone Transfer Learning Machining State Detection Method Performance 

This section presents the performance of the proposed standalone machining state detection 

method introduced in section 3.4. The method is capable of detecting machining state based on the 

machine's vibration signal. 

Table 2 Custom Designed Machining State Detection Model Training Hyperparameters 

Hyperparameter Value 

Solver Adam (Adaptive Moment Estimation) [44] 

Initial Learning Rate  .0𝑒 − 4 

Learning Rate Drop Factor 0.08 

Denominator Offset (𝜖) 1.0𝑒 − 8 

Gradient Decay Factor (𝛽1) 0.9 

Squared Gradient Decay Factor (𝛽2) 0.999 

L2 Regularization(𝜆) 1.0𝑒 − 4 

Mini Batch Size  56 

Number of Epochs 30 

The learning rate is the step size for updating the learnable parameters of the machine learning 

model in each iteration. The learning rate has been multiplied by the Learning Rate Drop Factor 

after each epoch to fine-tune the machine learning model. It results in searching for a wider space 

at the beginning to find an estimation of the local minimum area; as it proceeds with iterations, the 

learning rate drops, which results in a more refined search.  

The learning is multiplied by the Learning Rate Drop Factor after each epoch. The data is shuffled 

before training to ensure that the order of data does not play a role in the process of machining 

state detection and the model performance, i.e. it does not overfit. Training of the model takes 60 



93 

 

minutes on the NVIDIA® Quadro® P4000 GPU with 8 gigabytes of GPU memory. The 

architecture’s complexity, i.e. the number of trainable parameters, is e ual to 5.7 × 107 . The 

training process is shown in Figure 40. 

 

 

 

Figure 40 Baseline Transfer Learning method’  Training Process 

After the 4th epoch, the validation accuracy remained constant, which indicates that the model 

found the local minima. It is worthwhile to mention that the validation accuracy and loss are shown 

in Figure 40 to showcase the model training process. 



94 

 

For a sample given piece of stable cut vibration’s frequency-domain signal input, the output of 

each convolutional layer’s filter is shown in Figure 41 to illustrate the progress of input through 

the trained model, 

 

Figure 41 The Output Value of Activation of the CNN Convolutional Layers for a given piece of Stable 

Frequency-domain Vibration Signal 

The trained model has 88.97% test accuracy and 95. 4% training accuracy in machining state 

detection. Each prediction using the trained model requires 0.14 seconds of vibration data and the 

computation time takes approximately nine milliseconds.  

The confusion matrix shown in Figure 42 presents the performance of the transfer learning model. 

Each row of the matrix is normalized to the true state corresponding to the row; accordingly, the 

matrix's diagonal cells represent the Recall Value, and the summation of the percentages presented 

in each row is equal to 100%.  



95 

 

 

Figure 42 Normalized Confusion Matrix of the Transfer Learning Model 

The confusion matrix indicates that the model performs well in detecting chatter cases, though it 

has a high tendency to misclassify non-chatter cases as chatter. The model performs better than 

the one suggested in the previous section, both in terms of chatter detection and machining state 

detection. 

 

5.4 Standalone Custom Designed Convolutional Neural Network Performance 

In this section, the process of the machining state detection architecture design suggested in section 

3.5 is elaborated, and the numeric results of the proposed method are shown. Moreover, the 

performance of the mentioned method is evaluated. The results of both architecture design and 

training of the designed architecture are interpreted in this section. 

 



96 

 

The architecture design is done through 600 iterations of Bayesian Optimization, searching in 

search space of 1038, by design, training, and evaluation of one CNN architecture per iteration. 

The training process is done on an NVIDIA® Quadro® P4000 with 8 gigabytes of GPU memory 

in 4.2 GPU days.  

The architecture design process is shown below. 

 

Figure 43 Automated Machine Learning Architecture Design Iterations 

The objective function is a combination of complexity and accuracy, as presented by Equation 

(51). Figure 43 provides another representation of the change of accuracy and complexity during 

the optimization iterations. It depicts the validation accuracy, and the complexity is compared with 

the objective function value, middle graph. As shown in Figure 43, the algorithm converges 

towards points with lower complexity architectural complexity and higher validation accuracy.  

Figure 44 depicts the value of the objective function versus Validation accuracy and network 

complexity in each iteration of the network design process.  



97 

 

 

Figure 44 Architecture Validation Accuracy, Objective Function Value, and Complexity of Each Bayesian 

Optimization Iteration with top three minimum objective function value iterations marked 

The estimated objective value by Bayesian optimization versus the real value of the objective 

function during the optimization is explained as follows, 



98 

 

 

Figure 45 Objective function Value versus Bayesian Optimization Estimation of Objective Function Value 

During Architecture Design Process 

The periodic exploration and exploitation process is apparent in Figure 45. The best objective 

function values are shown in Figure 45. Despite that the lowest objective function value is 

determined in the 77th iteration, the second-best architecture resulted in the 138th iteration is used 

as the final model for machining state detection. The reason is the slightly better performance of 

the second-best architecture after manual hyperparameter tuning, 0.5% improvement in accuracy, 

and its extremely low complexity. In other words, after tuning the initial learning rate, and learning 

rate drop factor, and having it get trained for more number of epochs, the second-best architecture 

showed a better performance than what the first one shown after fine-tuning. 

As shown in Figure 46, the best architecture consists of three convolutional blocks and two nueral 

network hidden layers. The first block is a set 100, 1 × 4 convolution kernels with a stride of 4 

followed by a ReLu, a cross normalization with a channel size of 5 and 𝛼 = 1𝑒 − 4 and 𝛽 = 0.75 

suceeded by a  ×   pooling layer with two strides and zero paddings. The second convolution 



99 

 

block consists of 72, 8 ×   grouped convolution with two groups and two as paddings, and after 

that, a ReLu followed by a cross normalization with a channel size of 5 and 𝛼 = 1𝑒 − 4 and 𝛽 =

0.75 suceeded by a  ×   pooling layer with two strides and zero paddings. The convolutional 

blocks' output goes into a two layers fully connected neural network followed by a ReLu and a 

drop out layer. The neural network has 1744 neurons in its hidden layer and five neurons in its 

output layer, each corresponding to one machining state’s probability. 

The architecture’s complexity, i.e. the number of trainable parameters, is equal to 4.19𝑒7 which 

is  1%  less complex than the transfer learning method, and the architecture proposed by A. 

Kerizhevsky [30] while it detects machining states with higher accuracy.  

 

Figure 46 Custom Designed Machining State Detection CNN Architecture Schematic  

For a sample given piece of frequency-domain signal input, the output of each convolutional 

layer’s filter is shown below to illustrate the progress of input through the trained model, 



100 

 

 

Figure 47 The Output Value of Activations of the CNN Convolutional Layers for a given Piece of Frequency-

domain Vibration Signal 

After the architecture design process, the training hyperparameters are manually tuned for the 

designed architecture using the validation data. The resultant model is trained using the following 

training hyperparameters shown in Table 3, 

Table 3 Custom Designed Machining State Detection Model Training Hyperparameters 

Hyperparameter Value 

Solver Adam (Adaptive Moment Estimation) [44] 

Initial Learning Rate 

During Optimization: 5.0𝑒 − 5 

During Training:  .0𝑒 − 4 

Learning Rate Drop Factor 

During Optimization: 0.05 

During Training: 0.67 

Denominator Offset (𝜖) 1.0𝑒 − 8 

Gradient Decay Factor (𝛽1) 0.9 

  
 
 
 

C
o
n
v
o
lu
ti
o
n

R
eL

u

C
ro
ss
 

N
o
rm

al
iz
at
io
n

M
ax
 P
o
o
li
n
g

G
ro
u
p
ed
 

C
o
n
v
o
lu
ti
o
n

R
eL

u

C
ro
ss
 

N
o
rm

al
iz
at
io
n

M
ax
 P
o
o
li
n
g

C
o
n
v
o
lu
ti
o
n

R
eL

u       

        

  

  .  

  .  

  .  

  

N
o
rm

al
iz
ed
 M

ag
n
it
u
d
e

Time

F
re
 
u
en
cy



101 

 

Squared Gradient Decay Factor (𝛽2) 0.999 

L2 Regularization(𝜆) 1.0𝑒 − 4 

Mini Batch Size 51  

Number of Epochs 

During Optimization: 3 

During Training: 30 

 

The learning is multiplied by the Learning Rate Drop Factor after each epoch. The data gets 

shuffled before training to ensure that the order of data does not play a role in the process of 

machining state detection and the model performance, i.e. it does not overfit. Training of the model 

takes 55 minutes on the GPU mentioned above. This network's training time is roughly equal to 

the training time of the transfer learning method because of its smaller size. The training process 

is shown in Figure 48, 



102 

 

 

Figure 48 Custom Designed Architecture Training Process 

The validation dataset is merely used during the architecture design process to evaluate each 

designed and trained network's performance. The validation data is not used during the training 

process, yet, it is used in Figure 48 for illustration.  

The designed architecture showed 94. 8% test accuracy, 94.81% validation accuracy, and 

96.64% training accuracy in the detection of machining states. By disregarding the machining 

states and using the system merely for cutting stability detection, i.e. considering any state other 

than chatter as stable, the trained model's test accuracy is equal to 98.88%.  

Each prediction using the trained model requires 0.07 seconds of vibration data and the 

computation time takes approximately three milliseconds. The trained model occupies 154 MB on 

the memory to store its weights and biases. The closeness of training, validation, and test accuracy 



103 

 

suggests that the model is well trained and not overfitted. It is worthwhile to mention that the 

validation accuracy and loss are shown in Figure 48 merely to showcase the training process.  

The model has 5. 1% more accuracy in machining state detection in comparison with the transfer 

learning model, while it is  1% less complex and provides faster training and three times faster 

prediction.  

The confusion matrix of the trained model is presented in Figure 49 based on the test data, with 

each row normalized, 

 

Figure 49 Trained Model of Custom Design               ’                   

The trained model has great dexterity in differentiating chatter, and stable cuts as the percentage 

of the chatter cases being detected as stable is 0.09% and the accumulative stable and chatter 

confusion percentage is less than 0.1%. Moreover, it displays that the model is capable of detecting 

the transient state with a reasonable degree of certainty. The most confusions are in differentiation 

between the transient states and stable cut, which is justifiable by the fact that there are similar 



104 

 

significances in the stable cut frequency-domain signal, such as tooth passing frequency 

magnitude, which presents in both transient input and the stable cut. Additionally, in this thesis, 

the machining states are used to compensate for the energy-based method incapability in 

distinguishing chatter and transient tool entrance and exit states, which means mistaking transient 

state with stable cut does not cause disruption in the hybrid system. The precision, recall, and F1-

Score of the model for each machining state are given in the below table. The below values indicate 

the high preciseness and robustness of the suggested model in the detection of cutting states and 

air cut, according to the F1-score. 

Table 4 Custom Designed Machining State Detection Model Performance tested on the Test Dataset 

Performance Metric Air Cut Chatter Entrance Exit Stable 

Recall 90.04% 96.64% 54.62% 74.51% 88.87% 

Precision 96.61% 99.51% 42.77% 53.52% 88.83% 

F1-Score 0.968 0.981 0.705 0.623 0.878 

 

5.5 Improved Energy-based Chatter Detection and Hybrid System (Machine Learning 

Fusion) Performance 

This section presents the results and experimental validation of the physics-driven improved 

energy-based method, introduced in section 4.1 and the combination of it with the machine 

learning method introduced in 3.5, i.e. the hybrid method introduced in section 4.2. 

 

The improved energy-based chatter detection system suggested in section 4.1 results in a chatter 

detection system with 9 .51%  accuracy. The confusion matrix of the mentioned model is 

presented below.  



105 

 

 

Figure 50 Improved Energy-based Chatter Detection Confusion Matrix with Normalized Rows, based upon 

the Test Data 

The presented confusion matrix is normalized to its rows. The energy-based system is merely 

capable of detecting chatter and it is desired to have all other machining states be detected as stable. 

Hence, the predictions are limited to chatter and stable cuts. In this case, it is desired to detect any 

machining state other than chatter as stable. The confusion matrix's colour coded accordingly. The 

improved energy-based method has an accuracy of 93.51% in chatter detection. It is 33.93% more 

accurate than the original energy-based model, proposed by Caliskan [45]. It shows considerable 

improvement in the misclassification of entrance and exit as chatter, 77.36% and 17.03% 

improvement, respectively. Besides, the proposed model has a 56.51% improvement in detecting 

chatter.  

 

Combining the machine learning system and energy-based chatter detection is fused using the 

method suggested in section 4.2.1. The mentioned system is implemented with 𝑡ℎCertainty = 0.8 



106 

 

and 𝐾𝑝 = 0. . It resulted in a machining state detection with 94. 6% test accuracy in machining 

state detection and 98.90% in chatter detection. The hybrid model shows 5. 9% more accuracy 

than the standalone improved energy-based chatter detection. Moreover, it performs slightly more 

accurate (0.0 %) than the stand-alone custom CNN architecture. However, its primary importance 

is its higher robustness, given the fact that it is infusing the data-driven method with the physics 

of milling. The row normalized the confusion matrix of the hybrid method is presented below, 

 

Figure 51 Hybrid (Machine Learning Fusion) Chatter Detection System Confusion Matrix with Normalized 

Rows 

The confusion matrix shows that the model rarely mistakes the transient states with Chatter. The 

most confusion is in stable cut and transient, entrance and exit, states. It does not affect the chatter 

detection and suppression process. Moreover, the high confusion percentage of entrance and exit 

instances with air cut and stable is justifiable because the corresponding data to entrance and exit 

both include the instances with the tool having slight engagement with the workpiece, i.e. the first 

instances of entrance and last instances of exit, and the tool being almost fully engaged with the 



107 

 

workpiece, i.e. last instances of the entrance and first instances of exit. The mentioned cases make 

some of the entrance and exit instances hard to differentiate from air cut and stable cut. The F1-

scores for air cut, chatter, entrance, exit, and stable are 0.97, 0.98, 0.62, 0.64, and 0.88. 

 

5.6 Summary 

The training and validation of the models presented in sections 3.2.2, 3.4, 3.5, and 4.2 are shown 

in this chapter. The accuracy of the baseline machine learning method suggested that it is plausible 

to solve the problem of online machining state detection using data-driven methods. The transfer 

learning model showed higher accuracy than the baseline model. The other significance of this 

model is its three times faster response time. The baseline model’s network architecture provided 

the initial state of Bayesian optimization used to design and fabricate the custom CNN architecture. 

The designed architecture showed a good performance both in chatter detection and machining 

state detection.  

 

The online physics-driven chatter detection method suggested in 4.2 is validated in this chapter 

using experimental data. Furthermore, the final system, which consists of the custom CNN 

architecture and the proposed energy-based chatter detection method, is validated. 

It is shown that the custom automated designed machine learning architecture and the hybrid 

model are essentially showing the same results both in terms of chatter detection and machining 

state detection. Nevertheless, the hybrid model offers more robustness due to accounting for 

milling physics, which adds significant value to the design.  

Moreover, it provides a reliable platform for the machine learning model to evolve when it comes 

to low certainty detections. The small lead of the hybrid system in chatter detection and the small 



108 

 

lead of the custom CNN model in the machining state detection is due to the fact that the physics-

driven method is merely designed with the goal of chatter detection in mind.  

  



109 

 

Chapter 6: Conclusion 

This research aimed to detect the machining states and suppress instability in the machining 

process online. The approach taken towards differentiating between the five states of machining, 

air cut, entrance, stable cut, chatter, and exit, is to amalgamate a data-driven machine learning 

method with the machining process's physics in order to detect chatter without compromising the 

robustness. The outcome of this work is a self-evolving machining state detection system. The 

data-driven models are trained on a vast, diverse set of data, and the performance of each individual 

system, as well as the final product, are evaluated and reported based upon an untouched collection 

of experiments with both similar and different cutting conditions.  

 

This work consists of three machine learning models, each capable of detecting machining states 

as well as cutting instability. The first suggested model provides a simple data-driven solution to 

machining state detection based on the time-domain vibration signal’s dispersion and skewness 

and using decision trees. The model shows 85.46% accuracy in machining state detection and 

97.11% accuracy in chatter detection. The model is used merely as a proof of concept and an 

indicator of the possibility of solving machining state detection problems with data-driven 

methods. 

Furthermore, a transfer learning approach is taken towards machining state detection using 

machine learning. The method uses a CNN architecture introduced by A. Krizhevsky[30] and 

modifies and partially retrains the architecture on the machining frequency-domain signal. A 

pipeline is designed to prepare the data and direct the data flow. The pipeline encapsulates filtering, 

conversion to the frequency domain, using STFT, and training, as well as utilization of the trained 



110 

 

model for machining state detection. The trained model has an 88.97% accuracy in machining state 

detection and 97.97% accuracy in chatter detection. 

As the final deep learning model, an automated machine learning architecture design scheme is 

created to construct a CNN architecture specialized in machining state detection. The scheme uses 

Bayesian optimization to tweak the network parameters with the goal of lowering the complexity 

and increasing the accuracy of the model in the machining state detection. The custom-designed 

architecture takes the frequency-domain machining vibration signal as well as the tooth passing 

frequency as its input and outputs the probability of each state of cut. It uses the same pipeline for 

its data flow as the one designed for the transfer learning method, except it does not require resizing 

the input. The method developed an architecture providing higher accuracy than the transfer 

learning architecture, while it has a lower complexity. The trained model showed 94.28% accuracy 

on machining state detection and 98.88% accuracy in chatter detection, based on examination on 

the test dataset. 

 

The physics-driven online chatter detection method is based upon online energy-based chatter 

detection introduced by  Caliskan [11]. The method is improved by suggesting a new approach to 

calculate the chatter energy. In this work, the energy-based chatter detection is tuned, and its 

chatter energy estimation module using Teager-Kaiser Nonlinear Energy Operator is replaced. The 

new proposed chatter energy estimation method uses the statistical measures of the FFT of the 

non-periodic parts of the vibration signal alongside the tooth passing frequency to provide a robust 

estimation of the chatter energy. The designed system shows 93.51% accuracy in chatter detection 

with   .    improvement over Caliskan’s algorithm while minimizing the false detection caused 

by air cuts.  



111 

 

 

Both outputs of CNN custom architecture and the enhanced energy-based models are considered 

together through a decision-making algorithm to form a hybrid machining state detection and 

chatter suppression system. The hybrid system has 94.26% accuracy in machining state detection 

and 98.90% accuracy in chatter detection. 

The system gets evolved by retraining the machine learning model based on its low certainty 

detections that have high accumulative probability measured by the hybrid system judgment. 

 

 

6.1 Future Work 

The research can be extended by having a central machine learning model shared among multiple 

machine tools. Given the small size of the trained machine learning model and its self-evolution 

capability, it could be shared among multiple machine tools in an industry 4.0 setup. For each 

retraining instance, the corresponding signal can be uploaded to the server and queued to retrain 

the model.  Then other machines in the setup can download the updated model from the server to 

have a model with higher accuracy and avoid repetition of the same issue on other machines. The 

interconnected machine setup could be both local or connected through the internet. 

 

Additionally, a machine learning model could be trained to perform online chatter prediction. It 

could predict chatter by being trained on the transient entrance signal that results in a chatter cut, 

as well as the transient signal when the stable cuts start to become unstable, for instance, in slope 

cuts, i.e. ramping operation, when the depth of cut increases to the point of chattering. 

 



112 

 

In terms of the chatter detection algorithm, the model could be pre-trained on simulated data before 

training it on the experiment data. The primary constraint is to provide simulated data for the 

transient entrance and exit states as well as the chatter signal. 

Furthermore, time-domain series machine learning methods, such as Long Short-term Memory 

(LSTM) methods, could be considered to be replaced with CNNs recommended in this thesis. 

 

Moreover, after chatter detection, the same stability lobes from the beginning of the machining 

process is used for determining the new stable spindle speed. It is suggested to update the stability 

lobes in case of encountering chatter and before choosing the new spindle speed based on it. 

 

 



113 

 

Bibliography 

[1] Y. Altintas, G. Stepan,  . Budak, T. Schmitz, and Z. M. Kilic, “Chatter Stability of 

Machining Operations,” J. Manuf. Sci. Eng., vol. 142, no. November, pp. 1–46, 2020. 

[2]  . Budak and Y. Altintas¸, “Analytical Prediction of Chatter Stability in Milling—Part I: 

General Formulation,” J. Dyn. Syst. Meas. Control, vol. 120, no. 1, pp. 22–30, Mar. 1998. 

[3] Altintas  Y , Author and Ber  AA , Reviewer, “Manufacturing Automation: Metal Cutting 

Mechanics, Machine Tool Vibrations, and CNC Design,” Appl. Mech. Rev., vol. 54, no. 5, 

pp. B84–B84, Sep. 2001. 

[4] T.  nsperger, B. P. Mann, T. Surmann, and G. Stépán, “On the chatter frequencies of 

milling processes with runout,” Int. J. Mach. Tools Manuf., vol. 48, no. 10, pp. 1081–

1089, 2008. 

[5] T. Insperger, G. Stépán, P. V Bayly, and B. P. Mann, “Multiple chatter fre uencies in 

milling processes,” J. Sound Vib., vol. 262, no. 2, pp. 333–345, 2003. 

[6] Y. Altintas, G. Stepan, D. Merdol, and Z. Dombovari, “Chatter stability of milling in 

frequency and discrete time domain,” CIRP J. Manuf. Sci. Technol., vol. 1, no. 1, pp. 35–

44, 2008. 

[7] J. TLUSTY, “CHAPT R   - THE THEORY OF CHATTER AND STABILITY 

ANALYS S,” in Machine Tool Structures, F. KOENIGSBERGER and J. TLUSTY, Eds. 

Pergamon, 1970, pp. 133–177. 

[8] T. Delio, J. Tlusty, and S. Smith, “Use of audio signals for chatter detection and control,” 

J. Manuf. Sci. Eng. Trans. ASME, vol. 114, no. 2, pp. 146–157, 1992. 

[9] T. Choi and Y. C. Shin, “On-line chatter detection using wavelet-based parameter 

estimation,” J. Manuf. Sci. Eng. Trans. ASME, vol. 125, no. 1, pp. 21–28, 2003. 



114 

 

[10] M. Lamraoui, M. Thomas, and M.  l Badaoui, “Cyclostationarity approach for monitoring 

chatter and tool wear in high speed milling,” Mech. Syst. Signal Process., vol. 44, no. 1, 

pp. 177–198, 2014. 

[11] H. Caliskan, Z. M. Kilic, and Y. Altintas, “On-Line Energy-Based Milling Chatter 

Detection,” vol.    , no. November     , pp.  –12, 2019. 

[12] R. G. Brown, P. Y. C. Hwang, and others, Introduction to random signals and applied 

Kalman filtering, vol. 3. Wiley New York, 1992. 

[13] J. F. Kaiser, “On a simple algorithm to calculate the ‘energy’ of a signal,” in International 

Conference on Acoustics, Speech, and Signal Processing, 1990, pp. 381–384 vol.1. 

[14] P. Maragos, S. Member, J. F. Kaiser, and T. F. Quatieri, “Application to Speech Analysis 

S :, s :,” October, vol. 41, no. 10, pp. 3024–3051, 1993. 

[15]  . Lin, C. Hamilton, and P. Chitrapu, “Generalization to the Teager-Kaiser energy 

function & application to resolving two closely-spaced tones,” in ICASSP, IEEE 

International Conference on Acoustics, Speech and Signal Processing - Proceedings, 

1995, vol. 3, no. 3, pp. 1637–1640. 

[16] D. L. Poole and A. K. Mackworth, Artificial Intelligence: foundations of computational 

agents. Cambridge University Press, 2010. 

[17] K. P. Murphy, Machine Learning: A Probabilistic Perspective. MIT Press, 2012. 

[18] M. Postel, B. Bugdayci, and K.  egener, “ nsemble transfer learning for refining 

stability predictions in milling using experimental stability states,” Int. J. Adv. Manuf. 

Technol., vol. 107, no. 9–10, pp. 4123–4139, 2020. 

[19] M. Lamraoui, M. Barakat, M. Thomas, and M.  l Badaoui, “Chatter detection in milling 

machines by neural network classification and feature selection,” JVC/Journal Vib. 



115 

 

Control, vol. 21, no. 7, pp. 1251–1266, 2015. 

[20] X. He, K. Zhao, and X. Chu, “AutoML: A survey of the state-of-the-Art,” arXiv, no. Dl, 

2019. 

[21] C.  hite, R. Ai, and  . Neiswanger, “Neural Architecture Search via Bayesian 

Optimization with a Neural Network Model,” no. Neur PS, pp. 1–11, 2019. 

[22] C. Rosenberg, M. Hebert, and H. Schneiderman, “Semi-supervised self-training of object 

detection models,”     . 

[23] P. P. Mitra and D. P. Schmidt, “On the  ffectiveness of Bayesian AutoML methods for 

Physics Emulators,” no. October, pp. 1–11, 2020. 

[24] I. Rebai, Y. BenAyed, W. Mahdi, and J.-P. Lorré, “ mproving speech recognition using 

data augmentation and acoustic model fusion,” Procedia Comput. Sci., vol. 112, pp. 316–

322, 2017. 

[25] M. K. Nezami, “Performance assessment of baseband algorithms for direct conversion 

tactical software defined receivers: I/Q imbalance correction, image rejection, DC 

removal, and channelization,” in MILCOM 2002. Proceedings, 2002, vol. 1, pp. 369–376. 

[26] A. Celisse, “Optimal cross-validation in density estimation with the L2-loss,” Ann. Stat., 

vol. 42, no. 5, pp. 1879–1910, 2014. 

[27] M. Stojćev, “Digital Signal Processing: A Computer Based Approach. Sanjit K. Mitra. 

McGraw-Hill, New York, 1998, hardcover, 864pp., £68.99 ISBN 0-07-042953- ,” 

Microelectronics Journal, vol. 30, no. 8. p. 807, 1999. 

[28] A. V Oppenheim, Discrete-time signal processing. Pearson Education India, 1999. 

[29] J. B. ALL N, “Short Term Spectral Analysis, Synthesis, and Modification by Discrete 

Fourier Transform,” IEEE Trans. Acoust., vol. 25, no. 3, pp. 235–238, 1977. 



116 

 

[30] A. (University of T. Krizhevsky, I. (University of T. Sutskever, and G. (University of T. 

E. Hinton, “ mageNet Classification with Deep Convolutional Neural Networks,” Curran 

Assoc. Inc., pp. 1097–1105, 2012. 

[31] N. FUJIMOTO, T. YUMIBAYASHI, M. ONOUE, M. SUGAMOTO, and A. 

SUGAMOTO, “Surround  nhibition Mechanism by Deep Learning,” Proc. Annu. Conf. 

JSAI, vol. 2019, no. Jsai 2019, pp. 2H3J201-2H3J201, 2019. 

[32] T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal Loss for Dense Object 

Detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 2, pp. 318–327, 2020. 

[33] M. S. Abdelfattah, Ł. Dudziak, T. Chau, R. Lee, H. Kim, and N. D. Lane, “Best of Both 

 orlds: AutoML Codesign of a CNN and its Hardware Accelerator,”     . 

[34] M. A. Gelbart, J. Snoek, and R. P. Adams, “Bayesian optimization with unknown 

constraints,” Uncertain. Artif. Intell. - Proc. 30th Conf. UAI 2014, pp. 250–259, 2014. 

[35] K. J. Swersky, “ mproving Bayesian Optimization for Machine Learning using  xpert 

Priors,”     . 

[36] S. Journal, R. Statistical, and S. Series, “The Determination of the Order of an 

Autoregression Author ( s ):   . J . Hannan and B . G . Quinn Published by : Blackwell 

Publishing for the Royal Statistical Society Stable URL : 

http://www.jstor.org/stable/       ,” vol.   , no.  , pp.    –195, 2009. 

[37] G. Claeskens and N. L. Hjort, “A comparison of some selection methods,” in Model 

Selection and Model Averaging, Cambridge University Press, 2008, pp. 99–116. 

[38]  . Brochu, V. M. Cora, and N. de Freitas, “A Tutorial on Bayesian Optimization of 

Expensive Cost Functions, with Application to Active User Modeling and Hierarchical 

Reinforcement Learning,”     . 



117 

 

[39] H. M. Gutmann, “A Radial Basis Function Method for Global Optimization,” J. Glob. 

Optim., vol. 19, no. 3, pp. 201–227, 2001. 

[40] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian Optimization of Machine 

Learning Algorithms,” in Advances in Neural Information Processing Systems 25, F. 

Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 

2012, pp. 2951–2959. 

[41] Z. Yao, D. Mei, and Z. Chen, “On-line chatter detection and identification based on 

wavelet and support vector machine,” J. Mater. Process. Technol., vol. 210, no. 5, pp. 

713–719, 2010. 

[42] N. Fazakis, S. Karlos, S. Kotsiantis, and K. Sgarbas, “Self-Trained LMT for 

Semisupervised Learning,” Comput. Intell. Neurosci., vol. 2016, p. 3057481, 2016. 

[43] L. Jost, “ ntropy and diversity,” Oikos, vol. 113, no. 2, pp. 363–375, 2006. 

[44] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv Prepr. 

arXiv1412.6980, 2014. 

[45] H. Caliskan, Z. M. Kilic, and Y. Altintas, “On-line energy-based milling chatter 

detection,” J. Manuf. Sci. Eng. Trans. ASME, vol. 140, no. 11, pp. 1–12, 2018. 

 

 


	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Symbols
	List of Abbreviations
	Acknowledgments
	Chapter 1: Introduction
	Chapter 2: Literature Review
	2.1 Dynamic of Metal Cutting
	2.2 Chatter Prediction and Detection using Physics-driven methods
	2.2.1 Online Energy-based Chatter Detection
	2.2.1.1 Identification of the Periodic Component of Machining Vibrations
	2.2.1.2 Chatter Component Assessment


	2.3 Machine Learning and its utilization in Industry and Machining Sciences
	2.4 Summary

	Chapter 3: Online Cutting State Detection Using Machine Learning
	3.1 Machine Learning Training Pipeline
	3.2 Experiment Design, Data Collection, and Plausibility Assessment
	3.2.1 Cleaning, Denoising, and Handling Data using Comprehensive Industrial Process Monitoring Data Structure
	3.2.2 Plausibility Assessment and Setting a baseline

	3.3 Frequency Domain Conversion and Feature Extraction
	3.4 Machining State Detection using Transfer Learning
	3.4.1 Deep Learning Pipeline Overview
	3.4.2 Convolutional Blocks
	3.4.2.1 Two-dimensional Discrete Convolution Layer
	3.4.2.2 Rectified Linear Unit (ReLU)
	3.4.2.3  Local Response Normalization
	3.4.2.4 Max Pooling

	3.4.3 Artificial Neural Network Components
	3.4.4 SoftMax
	3.4.5 Focal Loss Classifier
	3.4.6 Transfer Learning (base) Method’s Architecture Overview

	3.5 Automated Convolutional Neural Network Architecture Design for Machining State Detection
	3.5.1 Automated CNN Architecture Design Methodology and Structure
	3.5.1.1 Architecture Structure and Outline
	3.5.1.2 Design Methodology

	3.5.2 Bayesian Optimization for Machining State Detection Architecture Design
	3.5.3 Network Assessment and Objective Function Design

	3.6 Summary

	Chapter 4: Machine Learning and Physics-driven Chatter Detection Fusion
	4.1 Improved Energy-Based Chatter Detection Method
	4.1.1 Chatter Energy Estimation

	4.2 Hybrid Model
	4.2.1 Decision-making Algorithm
	4.2.2 Chatter Suppression

	4.3 Self-evolving artificial intelligence using Semi-supervised learning
	4.3.1 Self-evolution System

	4.4 Summary

	Chapter 5: Experimental Validation and Results
	5.1 Data and Training Parameters
	5.2 Baseline
	5.3 Standalone Transfer Learning Machining State Detection Method Performance
	5.4 Standalone Custom Designed Convolutional Neural Network Performance
	5.5 Improved Energy-based Chatter Detection and Hybrid System (Machine Learning Fusion) Performance
	5.6 Summary

	Chapter 6: Conclusion
	6.1 Future Work


	Bibliography

