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Abstract

We propose an analytically tractable Bayesian method to infer parameters in power system dynamic

models from noisy measurements of bus-voltage magnitudes and frequencies as well as active- and

reactive-power injections. The proposed method is computationally appealing as it bypasses the

large number of system model simulations typically required in sampling-based Bayesian inference.

Instead, it relies on analytical linearization of the nonlinear system differential-algebraic-equation

model enabled by trajectory sensitivities. Central to the proposed method is the construction

of a linearized model with the maximum probability of being (closest to) the actual nonlinear

model that gave rise to the measurement data. The linear model together with Gaussian prior

leads to a conjugate family where the parameter posterior, model evidence, and their gradients

can be computed in closed form, markedly improving scalability for large-scale power systems. We

illustrate the effectiveness and key features of the proposed method with numerical case studies for

a 3-bus system. Algorithmic scalability is then demonstrated via case studies involving the New

England 39-bus test system.
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Lay Summary

Power system reliability studies help to ensure the grid is functioning properly at all times. In this

regard, time-domain simulations are typically used to assess the system behaviour in many potential

what-if scenarios. The simulations require a system model with accurate parameters. Inaccurate

parameters can cause discrepancies between the simulated and actual system behaviours, leading

to inability to predict potentially undesired or damaging outcomes. The measurements we take

in the field are corrupted by noise, which makes it difficult to determine the true values of the

parameters. We use Bayes’ theorem to compute the probability distribution of parameter values

in the model that could have generated the measurement data. By assuming Gaussian prior for

parameters, we get closed-form expressions of the parameter posterior, model likelihood, and their

gradients. We further use derivatives of the measured outputs with respect to the parameters to

find a linear model which most likely resembles the measurement data.
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Chapter 1

Introduction

This chapter presents motivation, and related literature for parameter inference in power system

and Bayesian framework. Also included in this chapter are the thesis contributions and its structure.

1.1 Motivation

Online monitoring of power system operational reliability relies on a model with accurate param-

eters for the network, generators, loads, and other components. Discrepancies between the actual

system and its model, including erroneous parameter values, have contributed to major cascading

failures. For example, following the 1996 Western Interconnection outages, engineers could not

reproduce recorded disturbance measurements in simulation with the prevailing models, indicating

that previous studies to set system operating limits were likely invalid due to model mismatches [1].

Recognizing the importance of accurate models for operating studies, the North American Electric

Reliability Corporation (NERC) requires utilities to validate and calibrate models (and pertinent

parameters therein) used in system-level dynamic simulations every ten years [2, 3]. The develop-

ment of computational tools aimed at model calibration can be greatly facilitated by widespread

deployment of phasor measurement units (PMUs). Measurements available from PMUs include

magnitude, angle, and frequency of voltage and current phasors. These quantities are typically

collected at a very high speed (usually 30 measurements per second), and phasors measured at

different locations by different devices are time synchronized [4].

Model calibration generally leverages the formulation and solution of either a parameter esti-
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mation or inference problem. In the former, parameters are tuned so that behaviour predicted by

the model best matches the measurement data via, e.g., weighted least-squares estimation [5, 6],

gradient-based optimization [7], and optimization incorporating trajectory sensitivities [8]. These

approaches typically do not quantify the uncertainty in the resulting parameter estimates affected

by, e.g., the quantity and quality of measurement data. Yet, uncertainty quantification can provide

highly insightful confidence measures in decision making, so as to avoid unnecessary risk or exces-

sive engineering margins. In light of this, we pursue the latter inference approach, which computes

the entire probability distribution of parameter values that could have induced the measurement

data. In accordance with Bayes’ theorem, an initial prior distribution is determined before observ-

ing any measurements, and it is updated to a posterior distribution that represents the uncertainty

associated with the inferred model parameters conditioned on the measurement data. Under the

Bayesian framework (see, e.g., [9, 10]), we develop an analytically tractable method to compute

an approximate posterior distribution for model parameters conditioned on voltage-phasor and

complex-power measurements obtained from (possibly a subset of) generator buses.

Classical Bayesian inference uses Markov chain Monte Carlo (MCMC) algorithms (see, e.g., [11,

12]) that typically require thousands (or more) repeated simulations of the system model under

study. However, since models of large-scale power systems consist of many nonlinear differential-

algebraic equations (DAEs) describing generator and load dynamics coupled across an expansive

transmission network, MCMC can become computationally impractical, even prohibitive. Our

strategy avoids MCMC altogether by linearizing the nonlinear DAE model around a nominal system

trajectory (not a single operating point) resulting from potentially major disturbances like large-

signal load changes or faults. The linearized time-varying model comprises trajectory sensitivities

that are analytically derived by differentiating the DAEs with respect to parameters, which are

then evaluated along the nominal trajectory induced by a particular choice of parameter values [13].

A question then naturally arises: what are the parameter values that engender the best linearized

model? To address this, we employ a Bayesian model selection formalism to compute and maximize

the model evidence (or equivalently, Bayes factor), i.e., the probability of measurement data given

a candidate model [14, 15]. Although the model evidence is generally difficult to estimate [16], we

can compute its value analytically in the space of linearized models along with Gaussian conjugate

priors. We also derive the analytical gradient of model evidence along the trajectory of linearization,
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so as to facilitate gradient-based optimization methods to find the evidence-maximizing linear

model. The posteriors for all linear models considered in the procedure, including the Bayesian-

optimal one, are Gaussian due to conjugacy, where the mean and covariance can be obtained in

closed form.

1.2 Literature Review

We next provide a review of methods for power system parameter inference. Classical online

data assimilation can be derived as various approximations of the Bayesian filtering problem (see,

e.g., [17] Ch. 2 & 4), and the extended [18], unscented [19], and ensemble [20] Kalman filters

have been used to approximate posteriors for static parameters by augmenting the dynamic state

vector. However, filter-based methods are typically inefficient for updating static model parameters

because the DAE states are also filtered, and done so sequentially over time. Thus, when only

static parameters are of interest, a batch inference approach is suitable to find their posterior

conditioned simultaneously on all measurement data. For batch inference, MCMC algorithms are

commonly used to sample the posterior. MCMC is ergodic and can capture generic distributions

with complex correlation structures. However, direct MCMC with large-scale DAE models is

generally impractical, especially with higher-order dynamic models or larger parameter spaces. To

sidestep this issue, [21–23] pre-build computationally inexpensive surrogate models, via polynomial

chaos expansions (PCEs), that replace the DAE model in MCMC. Although these demonstrate

orders-of-magnitude speedups compared to MCMC with DAEs, PCEs are difficult to scale up to

high-dimensional settings. For instance, a third-order PCE for the 40-parameter example in this

thesis would entail solving for 12,341 PCE coefficients and require a large training set of offline

DAE simulations. Furthermore, a separate PCE is needed for each scalar element of the entire

observation vector. Thus, [22,23] construct distinct PCEs for individual generators while neglecting

the transmission network, and [21] demonstrates a case with only three model parameters. A

promising alternative also proposed in [21] is a Laplace approximation to the posterior enabled

by the adjoint solution to the DAE model, but the method is validated on a relatively small test

system with three parameters.
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1.3 Thesis Contribution

Our work advances over the previous by considering the full DAE model describing generator

dynamics coupled across the transmission network. The explicit inclusion of the network enables

parameter inference at buses without sufficient local measurements. We demonstrate this aspect

and other key features along with algorithmic scalability with case studies involving a 3-bus system,

the Western Electric Coordinating Council (WECC) 3-machine 9-bus, and the New England (NE)

10-machine 39-bus test system. Also distinct from previous work in this domain, we construct an

optimal linearized model that maximizes the probability of measurement data amongst candidate

linear models. The linear models enable closed-form evaluations of the posterior, model evidence,

and their gradients, so the proposed method scales Bayesian inference to higher dimensions than

PCEs. Finally, we note that the trajectory sensitivities employed in model linearization are useful

in other pertinent problems, such as parametric uncertainty assessment, transient stability analysis,

and dynamic security assessment [13,24].

1.4 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 outlines pertinent models for the

power system and noisy measurements, and it also describes the inference problem. In Chapter 3, we

present the proposed Bayesian inference computation. Chapter 4 provides numerical case studies to

demonstrate the effectiveness and scalability of the proposed method. Finally, Chapter 5 concludes

the thesis.
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Chapter 2

Pertinent Models

In this chapter, we present the power system DAE model and the associated trajectory sensitivities.

We further describe the measurement statistical model and state the Bayesian parameter inference

problem tackled in this thesis.

2.1 System DAE Model

Consider an AC transmission grid with synchronous generators serving constant-power loads over

an interconnected power network. Let x ∈ Rn collect generator dynamic state variables, such as

generator rotor angular position and speed. Also let y ∈ Rq collect stator algebraic state variables

of all generators and voltage magnitudes and phase-angles of all buses in the network. Further

let u ∈ Rd collect generator setpoints and λ ∈ Rp unknown parameters to be inferred. Then, the

system electromechanical behaviour can be described by the following DAE model:

ẋ = f(x, y, u;λ), (2.1)

0 = g(x, y;λ), (2.2)

where, for a given λ, f : Rn+q+d 7→ Rn collects system dynamic equations, and g : Rn+q 7→ Rq

collects algebraic constraints [25]. The output z ∈ Rm can be mapped from system dynamic and

algebraic state variables, as follows:

z = h(x, y;λ), (2.3)
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where, for a given λ, h : Rn+q 7→ Rm. Note that although we consider a static load model for

simplicity, dynamic loads can be easily incorporated into the DAE modelling framework in (2.1)–

(2.3) [25]. Next, we will illustrate the DAE modelling considerations with the canonical single-

machine infinite-bus (SMIB) system depicted in Fig. 2.1.

Example 1 (SMIB: DAE Model). Consider the SMIB system shown in Fig. 2.1, where the syn-

chronous generator is described by the classical model and the infinite bus is modelled as a constant

voltage source [25]. Let δ denote the angular position of the generator rotor in electrical radians,

and let ω denote the angular velocity of the rotor in per unit (p.u.). Collect dynamic state vari-

ables in x = [δ, ω]T, algebraic state variables in y = P e, which is the generator active-power output,

and the system input is u = Pm, which is the generator turbine mechanical power. Also consider

measurements in z = [ω, P e]T, and parameters λ = [H,D]T, where H is the inertia constant, and

D is the damping constant. With the above notation in place, the SMIB system can be described

by the following DAE model:

δ̇ = 120π(ω − ωs) =: f1(x, y, u;λ), (2.4)

2H

ωs
ω̇ = Pm −D(ω − ωs)− P e =: f2(x, y, u;λ), (2.5)

0 = P e − EV∞
X

sin δ =: g(x, y), (2.6)

z1 = ω =: h1(x, y), (2.7)

z2 = P e =: h2(x, y), (2.8)

where E, V∞, and X are constants [25]. The system parameter values are reported in Table 2.1.

The initial steady-state values are Pm(0) = 1 p.u., ω(0) = ωs = 1 p.u., P e(0) = 1 p.u., δ(0) =

sin−1
(
P e(0)X
EV∞

)
= 0.269 rad. �

Figure 2.1: One-line diagram for SMIB test system.
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Table 2.1: Parameter values for dynamic model of SMIB system shown in Fig. 2.1.

E (p.u.) V∞ (p.u.) ωs (p.u.) X (p.u.) H (s) D (p.u.)

1 1 1 0.266 1 20

2.2 Trajectory Sensitivities

Suppose the DAE system described in (2.1)–(2.3) evolves from initial conditions x(0) = x0 and

y(0) = y0 according to nominal input vector u = u? and parameter value λ = λ?, so that system

states follow nominal trajectory (x?, y?, u?;λ?). Denote by x?λ ∈ Rn×p (y?λ ∈ Rq×p) the linear

sensitivities of x (y) with respect to λ around the nominal trajectory. Note that u is assumed to

be independent of λ, so u?λ ≡ 0. Differentiation of (2.1)–(2.2) with respect to λ yields the following

linear dynamic system for trajectory sensitivities:

ẋ?λ = f?xx
?
λ + f?y y

?
λ + f?λ , (2.9)

0 = g?xx
?
λ + g?yy

?
λ + g?λ, (2.10)

where

f?x =
∂f

∂x
, f?y =

∂f

∂y
, f?λ =

∂f

∂λ
,

g?x =
∂g

∂x
, g?y =

∂g

∂y
, g?λ =

∂g

∂λ
,

are, in general, time-varying matrices evaluated along the nominal trajectory (x?, y?, u?;λ?) [8].

Similarly, differentiation of (2.3) with respect to λ yields trajectory sensitivities of output z around

the nominal trajectory, denoted by z?λ ∈ Rm×p and given by

z?λ = h?xx
?
λ + h?yy

?
λ + h?λ, (2.11)

where

h?x =
∂h

∂x
, h?y =

∂h

∂y
, h?λ =

∂h

∂λ
,
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are evaluated along the nominal trajectory (x?, y?, u?;λ?). We assume that along the nominal

trajectory, the power flow Jacobian matrix is invertible. Then we can rearrange (2.10) as

y?λ = −(g?y)
−1(g?xx

?
λ + g?λ). (2.12)

Further, substitution of (2.12) into (2.9) and (2.11) results in the following linear time-varying

system describing how the trajectory sensitivities evolve along the nominal trajectory:

ẋ?λ = A?x?λ +B?, (2.13)

z?λ = C?x?λ +D?, (2.14)

with initial condition x?λ(0) = 0n×p, and where time-varying matrices A?, B?, C?, and D? are given

by

A? = f?x − f?y (g?y)
−1g?x, B? = f?λ − f?y (g?y)

−1g?λ, (2.15)

C? = h?x − h?y(g?y)−1g?x, D? = h?λ − h?y(g?y)−1g?λ. (2.16)

A simultaneous time-domain simulation of (2.1)–(2.3) and (2.13)–(2.14) yields the output trajectory

sensitivities in z?λ evaluated along the nominal output trajectory z?.

Example 2 (SMIB: First-order Trajectory Sensitivities). In this example, we refer to the SMIB

system from Example 1 and demonstrate how first-order trajectory sensitivities z?λ are computed.

We assume that the nominal input Pm?(0) = 1 p.u. and Pm?(t) = 1.45 p.u. for t > 0 s. We evaluate

the following trajectory sensitivities along the nominal trajectory (x?, y?, u?;λ?):

f?x =

0 120π

0 −ωsD?

2H?

 , f?y =

 0

− ωs
2H?

 , f?λ =

 0 0

−ωs(Pm?−D?(ω?−ωs)−P e?)
2H?2 −ωs(ω?−ωs)

2H?

 ,
g?x =

[
−EV∞

X cos δ? 0

]
, g?y = 1, g?λ =

[
0 0

]
,

h?x =

0 1

0 0

 , h?y =

0

1

 , h?λ =

0 0

0 0

 .
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With the above in place, matrices in (2.13)–(2.14) evaluate as follows:

A? =

 0 120π

−ωsEV∞
2XH? cos δ? −ωsD?

2H?

 , B? =

 0 0

−ωs(Pm?−D?(ω?−ωs)−P e?)
2H?2 −ωs(ω?−ωs)

2H?

 ,
C? =

 0 1

EV∞
X cos δ? 0

 , D? =

0 0

0 0

 .
A simultaneous simulation of (2.4)–(2.8) and (2.13)–(2.14) with the above provides the nominal

trajectory and trajectory sensitivities evaluated around it. �

Example 3 (3-Bus System: Trajectory Sensitivities). Here, we consider the 3-bus toy system

shown in Fig. 2.2 to further illustrate how the quantity z?λ informs how variations in parameter λ

affects the output z, especially with respect to couplings between pairs of generators. The system

initially operates at steady state, and at t = 0+ s, the active-power load P3 increases by 0.5 p.u.

Simulations of the DAE system in (2.1)–(2.3) are performed in PSAT [26] using a detailed two-axis

machine model along with turbine/governor and exciter controls for each generator [25]. Parameter

values and the initial steady-state power-flow solution are reported in Appendix A.1. Suppose z

collects the terminal voltage magnitude, rotor speed, and active- and reactive-power injections

of G1 and G2, i.e., z = [V T, ωT, PT, QT]T (m = 8), where V = [V1, V2]T, ω = [ω1, ω2]T, P =

[P1, P2]T, and Q = [Q1, Q2]T. Furthermore, we are interested in sensitivities with respect to inertia

constant H = [H1, H2]T, damping constant D = [D1, D2]T, droop constant RD = [RD1, RD2]T,

and governor time constant TCH = [TCH1, TCH2]T of both generators, so λ = [HT, DT, RT
D, T

T
CH ]T

(p = 8).

We evaluate z?λ at the parameter values listed in Table A.1. In Fig. 2.3, we plot the time

Figure 2.2: One-line diagram for 3-bus test system.
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evolution of trajectory sensitivity z?i,j where i = 1, . . . ,m, j = 1, . . . , p, which corresponds to the

entry in matrix z?λ at the ith row and jth column. As an example, the plot for P ?D in Fig. 2.3j

consists of the following trajectory sensitivities:

• P ?1,D1
: Sensitivity of output P1 with respect to parameter D1 (solid dark blue trace),

• P ?1,D2
: Sensitivity of output P1 with respect to parameter D2 (solid dark orange trace),

• P ?2,D1
: Sensitivity of output P2 with respect to parameter D1 (dash-dot blue trace),

• P ?2,D2
: Sensitivity of output P2 with respect to parameter D2 (dash-dot orange trace).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2.3: Example 3: Trajectory sensitivities z?λ of the system output z with respect to λ around the nominal
trajectory.
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We next focus on outputs ω and P for illustrative purposes. The sensitivities of these outputs

with respect to H and TCH decrease as the system approaches steady state, i.e., ω?H , ω?TCH , P ?H ,

and P ?TCH approach zero as t grows, as shown in Figs. 2.3e, 2.3h, 2.3i, and 2.3l, respectively. Thus,

changing these parameters does not affect the steady-state value of the system output, which is

expected as time constants are multiplied by the time derivatives. On the other hand, sensitivities

with respect to D and RD have nonzero values at steady state, and indeed these parameters affect

the steady-state values of ω and P as follows:

∆ωi(∞) =
−∆P3

D1 + 1
RD1

+D2 + 1
RD2

, (2.17)

∆Pi(∞) = −∆ωi

(
Di +

1

RDi

)
, (2.18)

for each generator i. A visual inspection of Figs. 2.3e–h reveals that ω?λ consists of similar tra-

jectory sensitivities for each generator and parameter as the buses to which the generators are

connected are coupled through a line. Since the load increases, the angular velocity of the rotors,

ω, decreases. Positive ω?D implies increasing D would cause an increase in ω accordingly, i.e., for

this system disturbance, ∆ωi in (2.17) would become smaller when D increases. On the other

hand, increasing RD would lead to a larger drop in ω for the same disturbance. The traces for ω?D,

ω?RD in Figs. 2.3f, 2.3g and P ?D, P ?RD in Figs. 2.3j, 2.3k match the steady-state behaviour in (2.17)

and (2.18), respectively.

In Fig. 2.3j, the traces for P ?1,D1
(P ?1,D2

) and P ?2,D1
(P ?2,D2

) have the same magnitude but opposite

signs, which implies if D1 (D2) is positively correlated with P1 (P2), then D1 (D2) would be

negatively correlated with P2 (P1) to balance the generation and load in the system. This can be

observed in the trajectory sensitivities of P with respect to H, RD, and TCH in Figs. 2.3i, 2.3k,

and 2.3l, respectively. �

2.3 Output Approximation Using Trajectory Sensitivities

We can use the trajectory sensitivities obtained in (2.14) to approximate the output of a perturbed

system that results from variations in λ around λ?. To this end, let z = z? + ∆z, where ∆z results

from ∆λ = λ − λ?. Then, assuming that ∆λ is sufficiently small, we can approximate the system

11



output around the nominal trajectory as follows:

z ≈ a(λ?)λ+ b(λ?) =: z̃(λ;λ?), (2.19)

where a(λ?) = z?λ and b(λ?) = z? − z?λλ? are parameterized by the choice of λ?.

Example 4 (SMIB: Output Approximation). In this example, going back to the SMIB system from

Example 1, we approximate the system output using first-order trajectory sensitivities in (2.19).

We start at the initial steady state described in Example 1; apply disturbance by increasing Pm

from 1 p.u. to 1.45 p.u. at time t = 0+ s and plot the nominal trajectories ω? and P e? in Fig. 2.4

(solid trace). We decrease H and D by 10%, repeat the above simulation and plot the perturbed

trajectories ω and P e (dash-dot trace) in Fig. 2.4a. We use (2.19) for approximate trajectories ω̃

and P̃ e (dashed trace). We then repeat the above, but with a decrease of 20% in parameter values,

and plot the results in Fig. 2.4b.

The perturbed trajectory for 20% change in parameter values in Fig. 2.4b is unsurprisingly

farther away from the nominal trajectory than the perturbed one with 10% parameter variation in

Fig. 2.4. The first-order trajectory sensitivities provide sufficiently accurate approximation of the

actual perturbed trajectory with lower parameter variations. We next provide further justification

(a) ∆λ = −0.1λ? (b) ∆λ = −0.2λ?

Figure 2.4: Example 4: Actual and approximate trajectories of active-power generation and rotor speed due
to parameter variations.
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for the accuracy of the first-order approximation using the 3-bus test system from Example 3. �

Example 5 (3-Bus: Output Approximation). We revisit the 3-bus test system from Example 3

and illustrate the modelling concepts introduced in this chapter. The system initially operates at

steady state and then responds to an increase of 10% in the active-power load at bus 3 at time

t = 15 s. Simulations of the DAE system in (2.1)–(2.3) are performed in PSAT [26] using a detailed

two-axis machine model along with turbine/governor and exciter controls for each generator [25].

Parameter values and the initial steady-state power-flow solution are reported in Appendix A.1.

Suppose z collects the G1 terminal voltage magnitude, its rotor speed, and active- and reactive-

power injections, i.e., z = [V1, ω1, P1, Q1]T. In Fig. 2.5, the nominal trajectory for G1 terminal

voltage V ?
1 and reactive power Q?1 resulting from the load disturbance and nominal parameter

values are plotted as the solid blue trace. Next, suppose that, just after time t = 0 s, exciter

parameters for both generators collected in λ increase by 15%. The red dash-dot trace in Fig. 2.5

depicts the new V1 and Q1 trajectory with the perturbed parameter values. For comparison,

the black dashed trace represents the trajectory Ṽ1, Q̃1 approximated by (2.19) with perturbed

parameter values, where z?λ is obtained via custom MATLAB code that implements time-domain

simulations of (2.13)–(2.14) along the nominal trajectory. The output trajectory approximated by

trajectory sensitivities indeed closely matches the actual nonlinear system behaviour. �

(a) (b)

Figure 2.5: Example 5: Actual and approximate trajectories of (a) G1 terminal voltage magnitude and (b)
reactive power due to exciter parameter variations.
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2.4 Measurement Model and Problem Statement

In our setting, we assume PMUs provide synchronized measurements of terminal voltage and current

phasors, as well as rotor speeds of (possibly a subset of) generators. If generator rotor speed

measurements are not readily available, measurements of the voltage phasor frequency at the bus

connected to the generator provide sufficient estimates [27]. Let z[k] denote the actual system output

(in our case studies, this is supplied by a time-domain simulation of the DAE model furnished

with the true parameter values) collected at time t = k∆t, k = 0, 1, 2, . . . ,M , ∆t > 0, i.e.,

z[k] = z(k∆t). Also let ẑ[k] denote the measurement of system output at time t = k∆t. Considering

noisy measurements, ẑ[k] can be modelled as

ẑ[k] = z[k] + ξ[k] ≈ a[k]λ+ b[k] + ξ[k] =: z̃[k] + ξ[k], (2.20)

where ξ[k] ∈ Rm denotes additive Gaussian noise associated with PMU measurements, and the

approximation is obtained by substituting (2.19). In (2.20), z̃[k] is linear with respect to λ, and

the linear- and constant-term coefficients a[k] and b[k] depend on the choice of λ?. Specifically, a[k]

and b[k] are constructed with z?[k] and z?λ,[k], which are obtained by observing discrete data points

in a time-domain simulation of (2.1)–(2.3) and (2.13)–(2.14) with nominal parameter value λ?.

Furthermore, the entries in ξ[k] are independent and identically distributed under a joint Gaussian

distribution with zero mean and covariance Σξ, i.e., ξ[k] ∼ N (0m,Σξ), where Σξ ∈ Rm×m is diagonal

with each diagonal entry reflecting the corresponding measurement precision. Finally, we collect,

in {ẑ[k]}, the set of M + 1 available measurements of the system output, ẑ[0], . . . , ẑ[M ].

Using the models established in this chapter, we tackle two interrelated but distinct problems.

The first is to identify the best λ? where the approximate linear model in (2.20) most likely re-

sembles the measurement-generating nonlinear system. Second, we infer the parameter λ from

measurements ẑ[k], given a linearized model constructed around the nominal output trajectory re-

sulting from a particular choice of λ?. We approach both problems under a Bayesian framework,

where λ? and λ are treated as random variables, as detailed next in Chapter 3.
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Chapter 3

Bayesian Approach

In this chapter, we first describe the solution strategy for the inference of λ given a linearized model

constructed with a particular choice of λ?. We then outline the proposed optimization approach to

find the best λ? choice.

3.1 Inference on λ

The model in (2.20), which is linear in λ, is obtained by linearizing the DAE model along the

nominal trajectory induced by a particular choice of λ?. Treating the unknown parameter λ as a

random variable, its prior represents the uncertainty in λ before making any observations through

measurements, and the posterior represents the updated uncertainty after observing measurement

data collected in {ẑ[k]}. We make the reasonable assumption that the prior of λ is independent of the

trajectory of linearization, so the prior probability density function (PDF) f(λ|λ?) = f(λ) irrespec-

tive of λ?. Further denote the posterior PDF of λ conditioned on measurements by f(λ|{ẑ[k]}, λ?).

Then, direct application of Bayes’ theorem for conditional probability yields

f(λ|{ẑ[k]}, λ?) =
f({ẑ[k]}|λ, λ?)f(λ)

f({ẑ[k]}|λ?)
, (3.1)

where f(λ) is the prior PDF for λ, f({ẑ[k]}|λ, λ?) is the likelihood function, and f({ẑ[k]}|λ?) is

the model evidence (a λ-independent normalization constant for the posterior PDF). Solving the

Bayesian inference problem entails characterizing the posterior (e.g., sampling from or calculating

its PDF). We can typically evaluate the prior and likelihood, but not the model evidence. However,
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we next describe a conjugate formulation to compute the posterior analytically.

We prescribe Gaussian prior λ ∼ N (µ◦,Σ◦) to represent the initial uncertainty in λ. The

likelihood then follows from the linearized measurement model in (2.20):

f({ẑ[k]}|λ, λ?) =

M∏
k=0

(2π)−
m
2 |Σξ|−

1
2 · exp

(
− 1

2
(ẑ[k] − z̃[k])

TΣ−1
ξ (ẑ[k] − z̃[k])

)
, (3.2)

where z̃[k] represents discrete data points taken from (2.19) as the approximate system output for

a given parameter value λ with the linearized model constructed from nominal parameter value

λ?. Note that we drop the dependence of z̃[k] on λ and λ? in (3.2) to contain notational burden.

The combination of linear model together with Gaussian prior and likelihood leads to a conjugate

system, where the posterior is also Gaussian:

(λ|{ẑ[k]}, λ?) ∼ N (µπ,λ? ,Σπ,λ?), (3.3)

with the mean and covariance in closed form given by

µπ,λ? = Σπ,λ?

(
Σ−1
◦ µ◦ +

M∑
k=0

aT
[k]Σ

−T
ξ (ẑ[k] − b[k])

)
, (3.4)

Σπ,λ? =
(

Σ−1
◦ +

M∑
k=0

aT
[k]Σ

−1
ξ a[k]

)−1
, (3.5)

respectively. See Appendix B.1 for the derivation of (3.2), (3.4), and (3.5). Above, the subscript π

indicates posterior and the subscript λ? reminds us that the mean and covariance of the posterior

depend on the choice of λ? for linearization.

Example 6 (SMIB: Prior and Posterior of λ). We utilize the SMIB system from Example 1 to

demonstrate how the posterior mean and covariance is computed. We measure output signals

collected in z = [ω, P e]T (m = 2) and infer the parameters collected in λ = [H,D]T (p = 2). We

run a time-domain simulation for t = 1 s and record samples every 0.0333 s which provides 30 sets

of measurements (M = 30). The initial guess for λ? is set as λ?(0) = 0.9λtrue, where λtrue denotes the

true measurement-generating parameter values in the nonlinear DAE. We prescribe Gaussian prior

λ ∼ N (µ◦,Σ◦) regardless of the value taken by λ?(`), where µ◦ = 1.4λtrue, and Σ◦ = 0.52diag(λtrue)2.
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We assume Gaussian measurement noise with 0 mean and 0.01% standard deviation for ω and

0.1% for P e. These values are consistent with measurement uncertainty associated with PMU

technology [28,29]. With this, we get

λtrue =

 1

20

 , λ?(0) =

0.9

18

 , µ◦ =

1.4

28

 ,
and the covariance matrices

Σ◦ =

0.52 0

0 102

 , Σξ =

10−8 0

0 10−6

 .
We then substitute the above values into (3.4) and (3.5) to get the posterior mean and covariance.

The prior and posterior mean with one standard deviation for parameters H and D are plotted in

Fig. 3.1a and Fig. 3.1b, respectively. The posterior distribution is conditioned on the measurements,

and it is associated with much lower uncertainty than the initial prior distribution, indicating the

effectiveness of Bayesian inference. �

3.2 Choice of λ?

The process of finding the best linearized model requires three main ingredients: i) formulating the

optimal model selection problem, including the metric that evaluates the “goodness” of candidate

(a) (b)

Figure 3.1: Example 6: Prior and posterior of (a) H and (b) D.

17



models, ii) computing the value of this metric for a given candidate model, and iii) proposing new

candidate models within the optimization routine.

3.2.1 Evaluation Metric and Problem Formulation

Continuing under the Bayesian framework, we adopt the methods of Bayesian model selection (or

equivalently, Bayes factors) [14, 15]. When considering a finite number of models, application of

Bayes’ theorem given candidate model Φi yields the following model-posterior probability mass

function:

Pr(Φi|{ẑ[k]}) =
f({ẑ[k]}|Φi)Pr(Φi)

f({ẑ[k]})
, (3.6)

which is the probability of model Φi being (closest to) the true measurement-generating model

as supported by, i.e., conditioned on, measurement data in {ẑ[k]}. Since our problem deals with

a continuous spectrum of models (parameterized by λ? that is treated as a continuous random

variable), we consider the continuous analogue of (3.6) given by

f(λ?|{ẑ[k]}) =
f({ẑ[k]}|λ?)f(λ?)

f({ẑ[k]})
. (3.7)

Therefore, we evaluate the “goodness” of different linearized models by comparing their model-

posterior f(λ?|{ẑ[k]}) in (3.7).1 The best candidate λ? thus maximizes this quantity (equivalently,

its logarithm), as follows:

λ?opt = arg max
λ?

ln f(λ?|{ẑ[k]}). (3.8)

In (3.7), f({ẑ[k]}) is a constant normalization factor that does not depend on λ?. Furthermore,

assuming a uniform model-prior (i.e., f(λ?) remaining constant regardless of the choice of λ?), (3.8)

is equivalent to

λ?opt = arg max
λ?

ln f({ẑ[k]}|λ?). (3.9)

In other words, here the maximum a posteriori (MAP) λ? value in (3.8) is identical to the maximum

likelihood estimator (MLE) of λ? in (3.9). We thus seek to solve (3.9).

1Bayes factor differs slightly by focusing on the (ratios of) model likelihood f({ẑ[k]}|λ?) instead of the model-
posterior. However, they are equivalent when the model-prior is uniform. We will invoke this shortly.
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3.2.2 Computing the Metric

The key to solving (3.9) is recognizing that the model likelihood f({ẑ[k]}|λ?) is precisely the model

evidence (i.e., the denominator) in (3.1). The model evidence is generally very challenging to

compute and, for this reason, the task of computing it is typically avoided in Bayesian inference.

However, we can obtain it in closed form owing to the analytical posterior in (3.3)–(3.5). Rear-

ranging (3.1) and taking the logarithm of the resultant, we get

ln f({ẑ[k]}|λ?) = ln f({ẑ[k]}|λ, λ?) + ln f(λ)− ln f(λ|{ẑ[k]}, λ?). (3.10)

We then substitute into (3.10) the closed-form expressions for the prior PDF λ ∼ N (µ◦,Σ◦) and

posterior PDF (λ|{ẑ[k]}, λ?) ∼ N (µπ,λ? ,Σπ,λ?) along with the likelihood function in (3.2). We then

arrive at the following analytical closed-form expression for the log-evidence:

ln f({ẑ[k]}|λ?) = −p
2

ln(2π)− 1

2
ln |Σ◦| −

1

2
(λ− µ◦)TΣ−1

◦ (λ− µ◦)−
m(M + 1)

2
ln(2π)

− M + 1

2
ln |Σξ| −

1

2

M∑
k=0

(ẑ[k] − z̃[k])
TΣ−1

ξ (ẑ[k] − z̃[k]) +
p

2
ln(2π)

+
1

2
ln |Σπ,λ? |+

1

2
(λ− µπ,λ?)TΣ−1

π,λ?(λ− µπ,λ?), (3.11)

where z̃[k], µπ,λ? , and Σπ,λ? depend on the value of λ?. Note that (3.11) holds for any value of λ.

3.2.3 Update Strategy

Various optimization algorithms (e.g., gradient-based, quasi-Newton, and derivative-free methods)

can be employed to iteratively select candidates for λ? toward the optimizer λ?opt of (3.9). For

example, adopting gradient-ascent leads to the following update formula:

λ?(`+1) = λ?(`) + γ(`)∇λ? ln f({ẑ[k]}|λ?)|λ?(`) , (3.12)

where γ(`) is a learning rate (gradient-ascent step size) and ∇λ? ln f({ẑ[k]}|λ?)|λ?(`) is the gradient

of the objective ln f({ẑ[k]}|λ?) evaluated at λ?(`). A major advantage of the proposed framework

is that the objective function in (3.9) and its gradient can be computed in closed form, enabling

greater scalability. Particularly, we completely bypass all numerical approximations of the gradient
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involving, e.g., finite differences, which would be computationally impractical for high-dimensional

λ?. Next, we discuss details with respect to analytical computation of the gradient and iterative

updates of candidate models.

Remark 1 (Analytical Gradient Computation). The ith entry of the gradient vector in (3.12) can

be computed analytically by differentiating (3.11) with respect to λ?i as

∂

∂λ?i
ln f({ẑ[k]}|λ?) =

1

2

M∑
k=0

z̃T
λ?i ,[k](Σ

−1
ξ + Σ−T

ξ )(ẑ[k] − z̃[k])−
1

2
Tr

(
Σπ,λ?

∂Σ−1
π,λ?

∂λ?i

)

− (λ− µπ,λ?)TΣ−1
π,λ?

∂µπ,λ?

∂λ?i
+

1

2
(λ− µπ,λ?)T

∂Σ−1
π,λ?

∂λ?i
(λ− µπ,λ?), (3.13)

where z̃λ?i ,[k] is obtained by observing the derivative of (2.19) with respect to λ?i at time instant k,

given by

z̃λ?i ,[k] = aλ?i ,[k]λ+ bλ?i ,[k]. (3.14)

with

aλ?i ,[k] = z?λλ?i ,[k], bλ?i ,[k] = −z?λλ?i ,[k]λ
?. (3.15)

The expression for bλ?i ,[k] is derived by applying the product rule and recognizing that z?λ?i ,[k] =

z?λ,[k]ei, where ei is the ith basis vector. Also, z?λλ?i ,[k] represents discrete data points of zλλ?i , the

partial derivative of z?λ with respect to λ?i , at time instant k. See Appendix C.2 for details on how

to obtain z?λλ?i
. Furthermore, we can differentiate (3.4) and the inverse of (3.5) with respect to λ?i

to get

∂µπ,λ?

∂λ?i
= Σπ,λ?

( M∑
k=0

∂aT
[k]

∂λ?i
Σ−T
ξ (ẑ[k] − b[k])−aT

[k]Σ
−T
ξ

∂b[k]

∂λ?i

)
+
∂Σπ,λ?

∂λ?i
Σ−1
π,λ?µπ,λ? , (3.16)

∂Σ−1
π,λ?

∂λ?i
=

M∑
k=0

∂aT
[k]

∂λ?i
Σ−1
ξ a[k] + aT

[k]Σ
−1
ξ

∂a[k]

∂λ?i
. (3.17)

Finally, recognizing that

∂Σπ,λ?

∂λ?i
= −Σπ,λ?

∂Σ−1
π,λ?

∂λ?i
Σπ,λ? , (3.18)

we can substitute (3.17) into (3.18) and use the resultant to further simplify (3.16). �

Remark 2 (Normalized Quantities). In our problem setting, the inferred parameters and associated
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gradients may differ by several orders of magnitude. In order to promote numerical stability, we

make use of normalized parameters and gradients defined as, respectively,

λ
?
(`)=Σ

− 1
2◦ (λ?(`) − µ◦), (3.19)

∇λ? lnf({ẑ[k]}|λ?)|λ?(`)=Σ
− 1

2◦ ∇λ? lnf({ẑ[k]}|λ?)|λ?(`) , (3.20)

in updating λ? through a given optimization solver, e.g., gradient ascent in (3.12). �

Example 7 (SMIB: Second-order Trajectory Sensitivities). In this example, we refer to the SMIB

system from Example 1 and demonstrate how second-order trajectory sensitivities z?λλ?i ,[k] in (3.15)

are computed at time instant k. We obtain the second-order trajectory sensitivities of f(x, y, u;λ)

along the nominal trajectory (x?, y?, u?;λ?) by using (C.6), where

f?yx? =
∂f?y
∂x?

, f?yy? =
∂f?y
∂y?

, f?yλ?i =
∂f?y
∂λ?i

, (3.21)

f?xx? =
∂f?x
∂x?

, f?xy? =
∂f?x
∂y?

, f?xλ?i =
∂f?x
∂λ?i

, (3.22)

f?λx? =
∂f?λ
∂x?

, f?λy? =
∂f?λ
∂y?

, f?λλ?i =
∂f?λ
∂λ?i

, (3.23)

and each derivative term above evaluates as

f?yδ? = f?yω? = f?yP e? = f?yD? =

0

0

 , f?yH? =

 0

ωs
2H?2

 ,
f?xδ? = f?xω? = f?xP e? =

0 0

0 0

 , f?xH? =

0 0

0 ωsD?

2H?2

 ,
f?xD? =

0 0

0 − ωs
2H?

 , f?λδ? =

0 0

0 0

 ,
f?λP e? =

 0 0

ωs
2H?2 0

 , f?λω? =

 0 0

ωsD?

2H?2 − ωs
2H?

 ,
f?λD? =

 0 0

ωs(ω?−ωs)
2H?2 0

 , f?λH? =

 0 0

ωs(Pm?−D?(ω?−ωs)−P e?)
H?3

ωs(ω?−ωs)
2H?2

 .
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We obtain the following second-order trajectory sensitivities of g(x, y) along the nominal trajectory

(x?, y?, u?;λ?) by using (C.7), where

g?xx? =
∂g?x
∂x?

, g?xy? =
∂g?x
∂y?

, g?xλ?i =
∂g?x
∂λ?i

, (3.24)

g?yx? =
∂g?y
∂x?

, g?yy? =
∂g?y
∂y?

, g?yλ?i =
∂g?y
∂λ?i

, (3.25)

g?λx? =
∂g?λ
∂x?

, g?λy? =
∂g?λ
∂y?

, g?λλ?i =
∂g?λ
∂λ?i

, (3.26)

which evaluate as follows:

g?xδ? =

[
EV∞
X sin δ? 0

]
, g?xω? = g?xP e? = g?xH? = g?xD? =

[
0 0

]
,

g?yδ? = g?yω? = g?yP e? = g?yH? = g?yD? = 0,

g?λδ? = g?λω? = g?λP e? = g?λH? = g?λD? =

[
0 0

]
.

We obtain the following second-order trajectory sensitivities of h(x, y) along the nominal trajectory

(x?, y?, u?;λ?) by using (C.5), where

h?xx? =
∂h?x
∂x?

, h?xy? =
∂h?x
∂y?

, h?xλ?i =
∂h?x
∂λ?i

, (3.27)

h?yx? =
∂h?y
∂x?

, h?yy? =
∂h?y
∂y?

, h?yλ?i =
∂h?y
∂λ?i

, (3.28)

h?λx? =
∂h?λ
∂x?

, h?λy? =
∂h?λ
∂y?

, h?λλ?i =
∂h?λ
∂λ?i

, (3.29)

are evaluated as follows:

h?xδ? = h?xω? = h?xP e? = h?xH? = h?xD? =

0 0

0 0

 ,
h?yδ? = h?yω? = h?yP e? = h?yH? = h?yD? =

0

0

 ,
h?λδ? = h?λω? = h?λP e? = h?λH? = h?λD? =

0 0

0 0

 .
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We then substitute these derivatives into (C.9)–(C.10) and obtain the second-order sensitivities of

the nominal trajectories with respect to λ?i collected in z?λλ?i
. �

Example 8 (SMIB: Optimization Algorithm to Compute λ?opt). Continuing from Example 7 above,

we demonstrate the application of the optimization algorithm described in Section 3.2. We further

visualize the results. Once we compute µπ,λ? and Σπ,λ? using (3.4) and (3.5), respectively, as

explained in Example 6, we choose an arbitrary λ = 1.25λtrue and evaluate the objective function

in (3.11) and the gradient in (3.13). MATLAB native fminunc function uses the negative objective

function from (3.11), the choice of λ
?
(`) from (3.19), and the normalized gradient from (3.20) to

compute the next λ
?
(`+1). We quit iterating once the stopping criterion ||λ?(`+1) − λ

?
(`)|| < 10−6 is

met.

The algorithm converges to the optimal nominal parameter value of λ?opt after 17 iterations, and

in even fewer iterations if the termination criterion is relaxed. In Fig. 3.2a, we plot the trajectory

taken by λ?(`) to reach the optimal value λ?opt. Note that we do not expect convergence to true

parameter values listed in Table 2.1 due to inherent model discrepancy [30] as the optimization

routine explores the space of approximate linearized models whereas the measurement data arise

from a nonlinear system. In Fig. 3.2b, we plot the convergence of objective function towards its

maximum value. Its value does not change much in the last 5 iterations as we approach λ?opt. In

Fig. 3.2c, we plot the gradient vector approaching zero as we reach the maximum of the objective

(a) Convergence of λ? to λ?opt. (b) Convergence of objective function. (c) Convergence of gradient vector.

Figure 3.2: Example 8: Optimization trajectory for nominal parameter value λ?.
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function, which is the expected behaviour at an extremum. In Fig. 3.3a, we plot the trajectory

taken by µπ,λ? and its associated Σπ,λ? . The mean value converges towards the true parameter

value λtrue. The diagonal insets in Fig. 3.3b show the marginal PDF for λ posterior with λ? = λ?opt.

The bottom left inset shows the pairwise marginal PDF for λ posterior with λ? = λ?opt. In this

example, the acquired measurements lead us to conclude that the inferred parameters H and D

are nearly uncorrelated. In Chapter 4, we will present numerical results that demonstrate various

levels of correlation amounts different parameter pairs in a larger test system with higher-order

dynamic models. �

Example 9 (SMIB: Effect of Different Number of Measurements and Noise Level on Posterior).

Here, we repeat the simulation setup in Example 8 with different number of measurements M and

observe the corresponding effect on parameter inference. We run a time-domain simulation for

t = 1, 2, and 4 s to get M = 30, 60, and 120, respectively. We run the optimization algorithm for

these three cases and show the pairwise marginal and marginal posterior PDFs for λ in Fig. 3.4a.

Changing M does not have a significant impact on the posterior mean or covariance as all three

posterior marginal PDFs share similar characteristics.

Next, we repeat the simulation setup in Example 8 with different noise levels and observe their

effect on parameter inference. Let ξ◦ ∼ N (0m,Σξ) denote the reference noise from Example 6.

We reduce the standard deviation of noise to half, i.e., ξ = 0.5ξ◦ ∼ N (0m, 0.25Σξ) and run the

optimization algorithm. Then we double the noise level, i.e., ξ = 2ξ◦ ∼ N (0m, 4Σξ) and repeat the

(a) Convergence of µπ,λ? to µπ,λ?
opt

. (b) Pairwise marginal and marginal PDFs for λ posterior with λ? = λ?opt.

Figure 3.3: Example 8: Optimization trajectory for λ posterior.

24



process. We plot the pairwise marginal and marginal PDFs for the λ posterior in Fig. 3.4b. The

uncertainty associated with the inferred parameters increases as the noise level increases. �

(a) (b)

Figure 3.4: Example 9: Pairwise marginal PDFs and marginal PDFs for λ posterior for different (a) number
of measurements M and (b) noise level ξ.
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Chapter 4

Case Studies

This chapter demonstrates the effectiveness of the proposed Bayesian inference approach along

with the modelling framework via numerical case studies involving the 3-bus test system from

Example 3, the WECC 9-bus and the NE 39-bus test system (see, e.g., [26]). The 3-bus case

study details results of the proposed approach, and the NE case study demonstrates scalability.

Time-domain simulations of the DAE model in (2.1)–(2.3) that include dynamics arising from two-

axis generators, governors, and exciters are performed using PSAT [26]. Synthetic measurements

are collected from the simulation at discrete intervals of ∆t = 0.0333 s, within the capability of

current measurement technology [4]. In accordance with [28,29], we assume that measurements of

bus-voltage magnitudes, rotor frequency, and active- and reactive-power injections are subject to

additive Gaussian noise with 0.05%, 0.01%, and 0.1% standard deviation, respectively, and all with

zero mean.

4.1 3-Bus Test System

For each generator i = 1, 2 in the system shown in Fig. 2.2, we infer its inertia constant Hi, damping

constant Di, droop constant RDi, and governor time constant TCHi. Suppose the load at bus 3

increases from 2.35 p.u. to 2.85 p.u. just after time t = 0 s and then decreases to 2.1 p.u. at time

t = 4 s. Measurements are acquired from t = 0 s to t = 8 s. We assume measurements of generator

terminal voltage magnitude Vi, rotor speed ωi, and active- and reactive-power injections Pi and Qi

are available at: i) bus 1 only with output vector z = [V1, ω1, P1, Q1]T (m = 4), and ii) both buses

1 and 2 with output vector z = [V1, V2, ω1, ω2, P1, P2, Q1, Q2]T (m = 8).

26



4.1.1 Choice of λ?

We minimize the negative of the objective in (3.9) with the MATLAB native fminunc function,

which uses a quasi-Newton method. The initial λ? is set as λ?(0) = 0.9λtrue, where λtrue denotes

the true measurement-generating parameter values in the nonlinear DAE. In each iteration `, the

optimization routine provides an updated candidate λ?(`), with which we perform time-domain sim-

ulation of (2.1)–(2.3), (2.13)–(2.14), and (C.9)–(C.10). The value of the objective is evaluated

analytically in each iteration ` via (3.11) in conjunction with the posterior mean and covariance

in (3.4) and (3.5), respectively, as well as the approximate output z̃ resulting from the simula-

tion. Also, instead of relying on fminunc to approximate the gradient vector via numerical finite

differences, we compute its value analytically using (3.13) along with pertinent trajectories and

trajectory sensitivities provided by the simulation. We then pass the gradient vector to fminunc

so as to inform the direction for the next update λ?(`+1). The optimization routine searches for

the optimizer until the stopping criterion ||λ?(`+1) − λ?(`)|| < 10−6, and at this point, we return

λ?opt = λ?(`+1). Both measurement scenarios converge within 24 iterations, and in even fewer itera-

tions if the termination criterion is relaxed. Fig. 4.1 shows updates in nominal parameters. Note

that we do not expect convergence to true parameter values listed in Table A.1 due to inherent

model discrepancy [30] as the optimization routine explores the space of approximate linearized

models whereas the measurement data arise from a nonlinear system. Fig. 4.2 shows the analytical

gradient values in (3.13), which are close to zero. Although they are non-zero at λ?opt, the change

in parameters is small enough to warrant exiting the optimization algorithm. In the top-right inset

of Fig. 4.3b, we plot the convergence of the objective function in (3.9) for the two measurement

scenarios. The objective function increases very little, indicating we are close to a maximum.

4.1.2 Inference on λ

We prescribe Gaussian prior λ ∼ N (µ◦,Σ◦) regardless of the value taken by λ?(`), where µ◦ =

1.5λtrue, Σ◦ = 0.52diag(λtrue)2. In Fig. 4.3a, we plot pairwise prior marginal PDF contours of λ

and the marginal PDF of each parameter to be inferred; there is no correlation between the param-

eters. The time-domain simulation of (2.1)–(2.3) and (2.13)–(2.14) with each updated candidate

λ?(`) yields trajectories of a(λ?(`)) and b(λ?(`)), with which we construct the approximate output

z̃(λ, λ?(`)) in (2.19). We then take the value of z̃ at each time instant k = 0, . . . ,M to compute the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.1: 3-bus test system: convergence of λ? to λ?opt

mean µπ,λ?
(`)

and covariance Σπ,λ?
(`)

of the posterior in closed form via (3.4) and (3.5), respectively.

In Fig. 4.3b, we plot pairwise posterior marginal PDF contours of λ and the marginal PDF of

each inferred parameter, with λ? = λ?opt, for the two measurement scenarios. We observe that the

m = 8 scenario yields narrower posteriors (i.e., lower uncertainty), which is expected since the

measurements for the m = 8 scenario contain those for the m = 4. The true parameter values are

within 3 standard deviations of µπ,λ?opt for all parameters in both cases. We also observe differ-

ent degrees of correlation amongst different parameter pairs. For example, {RD1, D1}, {RD2, D2},
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.2: 3-bus test system: convergence of gradient vector ∇λ? lnf({ẑ[k]}|λ?)|λ?
(`)

.

{TCH1, D1}, and {TCH1, RD1} appear to have strong positive correlations; {D1, H1} and {RD1, H1}

carry strong negative correlations; and {TCH2, H1}, {TCH2, D1}, and {TCH2, RD1} are nearly un-

correlated. When compared to the prior standard deviations, the posterior marginal PDFs achieve

2 to 3 orders of magnitude reduction of uncertainty for both the m = 4 and m = 8 scenarios as

a result of inference from the noisy measurements. We also note that some true parameter values

are quite close to the centres of the corresponding posterior marginal Gaussian distributions, but
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(a) Lower left triangle: pairwise marginal PDFs for λ prior with µ◦ = 1.5λtrue; Diagonal: marginal PDF for λ prior with
µ◦ = 1.5λtrue.

(b) Orange-coloured traces correspond to measurement scenario i) with z = [V1, ω1, P1, Q1]T (m = 4), and blue-coloured
traces correspond to scenario ii) with z = [V1, V2, ω1, ω2, P1, P2, Q1, Q2]T (m = 8). Upper right inset: demonstrating
convergence of objective function; Lower left triangle: pairwise marginal PDFs for λ posterior with λ? = λ?opt; Diagonal:
marginal PDF for λ posterior with λ? = λ?opt.

Figure 4.3: 3-bus test system: pairwise marginal PDFs and convergence of objective function.

others appear further away. This is unsurprising due to two factors: i) inference is conducted with

only a finite number of noisy measurements, and ii) there exists inherent model discrepancy [30,31]

with the approximate linearized model.

To further demonstrate the accuracy of the inferred parameter values, we sample λ from the
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resulting Gaussian posterior N (µπ,λ?opt ,Σπ,λ?opt
) and perform time-domain simulation of (2.1)–(2.3)

100 times for the m = 4 scenario. We plot the trajectories resulting from each set of parameters

sampled from the posterior PDF along with the actual output induced by the true parameter values

as well as the recorded noisy measurement data in Fig. 4.4. The simulated output generated from

the posterior closely matches the actual output without the noise, providing strong evidence that

the inferred parameters are accurate in that they could have induced the measurement data.

Remark 3 (Computational Burden). In each iteration `, with the updated nominal parameter

value λ?(`), the proposed Bayesian framework performs a single time-domain simulation of (2.1)–

(2.3) and (2.13)–(2.14) to obtain the approximate linearized model around the nominal trajectory

induced by λ?(`), with which we compute the posterior mean and covariance in closed form. In this

way, we completely bypass MCMC sampling of the nonlinear DAE model or surrogates thereof. �

4.2 WECC 9-Bus Test System

For each generator i = 1, 2, 3 in the WECC 9-bus system shown in Fig. 4.5, we infer parameters

Hi, Di, RDi, and TCHi assuming measurements Vi, ωi, Pi, and Qi are available for all generators.

Figure 4.4: 3-bus test system: comparison amongst output trajectories that are obtained from noisy mea-
surements, simulation of nonlinear DAE model with the true parameter values, and simulations of the
nonlinear DAE model with parameters sampled from the posterior PDF.
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Figure 4.5: One-line diagram for WECC 9-bus test system.

A uniform increase in all loads of 20% is applied just after t = 0 s, and synthetic measurements are

acquired from t = 0 s to t = 3 s. We utilize the same procedure as detailed in Section 4.1 to obtain

the optimal nominal parameter value of λ?opt after 52 iterations. Given λ?opt and Gaussian prior

N (1.5λtrue, 0.52diag(λtrue)2), we compute the Gaussian posterior N (µπ,λ?opt ,Σπ,λ?opt
) via (3.4)–(3.5).

In Table 4.1, we report the true measurement-generating parameter values and the mean of the

posterior marginal PDF corresponding to each parameter.

Fig. 4.6 shows the nominal parameters λ? converging to λ?opt. The sudden change in parameter

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.6: WECC 9-bus test system: convergence of λ? to λ?opt.
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Figure 4.7: WECC 9-bus test system: convergence of objective function.

Figure 4.8: WECC 9-bus test system: pairwise parameter correlation.

values correspond to the increase in in the objective function in Fig. 4.7. In Fig. 4.8, we make use

of the posterior covariance matrix Σπ,λ?opt
to visualize the degree of pairwise correlation between

different parameters. While most parameter pairs are weakly correlated, we observe strong positive

correlation for {D2, H1}, {RD1, D1}, and {TCHi, Di} for each generator i; and strong negative cor-

relation for {D1, H1}, {D2, H2}, {TCH2, RD1}, and {TCH3, RD1}. In Fig. 4.9a, we plot a histogram

Table 4.1: WECC 9-bus test system: true parameter values λtrue and posterior mean µπ,λ?
opt

.

Generator i
Hi (s) Di (p.u.) RDi (p.u.) TCHi (s)

λtrue µπ,λ?opt λtrue µπ,λ?opt λtrue µπ,λ?opt λtrue µπ,λ?opt
1 23.64 23.5706 10 9.7951 0.03 0.0300 1 0.9528
2 6.4 6.3908 10 10.3993 0.03 0.0298 1 1.0437
3 3.01 3.0046 10 10.2817 0.03 0.0305 1 0.9755
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(a) (b)

Figure 4.9: WECC 9-bus test system: histograms illustrate the number of parameters out of a total of 12 for
which (a) normalized posterior marginal standard deviations and (b) the number of standard deviations
between the posterior mean and the respective true parameter values, lie within certain ranges.

of the standard deviations of the posterior marginal PDFs normalized with respect to the corre-

sponding mean values, demonstrating low posterior uncertainty. Also, Fig. 4.9b shows a histogram

of the number of standard deviations between the posterior mean and the respective true parameter

values. We observe reasonably good agreement between the posterior coverage compared to λtrue,

again keeping in mind finite noisy observations as well as the linearized model approximation.

4.3 New England 39-Bus Test System

For each generator i = 1, . . . , 10 in the NE test system shown in Fig. 4.10, we infer parameters Hi,

Di, RDi, and TCHi assuming measurements Vi, ωi, Pi, and Qi are available for all generators. A

uniform increase in all loads of 10% is applied just after t = 0 s, and synthetic measurements are

acquired from t = 0 s to t = 2 s. We utilize the same procedure as detailed in Section 4.1 to obtain

the optimal nominal parameter value of λ?opt after 11 iterations. Given λ?opt and Gaussian prior

Figure 4.10: One-line diagram for NE 39-bus test system.
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Table 4.2: NE 39-bus test system: true parameter values λtrue and posterior mean µπ,λ?
opt

.

Generator i
Hi (s) Di (p.u.) RDi (p.u.) TCHi (s)

λtrue µπ,λ?opt λtrue µπ,λ?opt λtrue µπ,λ?opt λtrue µπ,λ?opt
1 0.1114 0.11095 10 10.002 0.04 0.039976 0.5 0.49960
2 0.08035 0.07964 10 9.9964 0.04 0.039984 0.5 0.50088
3 0.09495 0.093523 10 10.014 0.04 0.040001 0.5 0.50166
4 0.07585 0.075475 10 10.003 0.04 0.039990 0.5 0.50073
5 0.06895 0.068751 10 9.9825 0.04 0.039936 0.5 0.50175
6 0.0923 0.091737 10 10.013 0.04 0.039985 0.5 0.50198
7 0.07005 0.06902 10 9.9844 0.04 0.040013 0.5 0.49974
8 0.06445 0.064233 10 9.9774 0.04 0.039948 0.5 0.50009
9 0.0915 0.090849 10 9.9861 0.04 0.039931 0.5 0.50065
10 1.3263 1.3255 10 10.045 0.04 0.040058 0.5 0.49558

N (1.5λtrue, 0.52diag(λtrue)2), we compute the Gaussian posterior N (µπ,λ?opt ,Σπ,λ?opt
) via (3.4)–(3.5).

In Table 4.2, we report the true measurement-generating parameter values and the mean of the

posterior marginal PDF corresponding to each parameter. Fig. 4.11 shows the objective function

increases by a very small value when λ? converges to λ?opt.

In Fig. 4.12a, we plot a histogram of the standard deviations of the posterior marginal PDFs

normalized with respect to the corresponding mean values, demonstrating low posterior uncer-

tainty. Also, Fig. 4.12b shows a histogram of the number of standard deviations between the

posterior mean and the respective true parameter values. We observe reasonably good agreement

between the posterior coverage compared to λtrue, again keeping in mind finite noisy observations

as well as the linearized model approximation. In Fig. 4.13, we make use of the posterior covariance

matrix Σπ,λ?opt
to visualize the degree of pairwise correlation between different parameters. While

most parameter pairs are weakly correlated, we observe strong positive correlation for {Di, TCHi}

Figure 4.11: NE 39-bus test system: convergence of objective function.
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(a) (b)

Figure 4.12: NE 39-bus test system: histograms illustrate the number of parameters out of a total of 40 for
which (a) normalized posterior marginal standard deviations and (b) the number of standard deviations
between the posterior mean and the respective true parameter values, lie within certain ranges.

and {Di, RDi} for each generator i. Strongly correlated parameters are often associated with iden-

tifiability challenges (e.g., both parameters can simultaneously increase/decrease and still appear

plausible as the measurement-generating setting). In our problem context, it may suggest the need

for additional measurement data or observation under different disturbance scenarios.

Figure 4.13: NE 39-bus test system: pairwise parameter correlation.
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Chapter 5

Conclusions

This thesis proposes a method to find accurate power system parameters for model calibration. In

particular, we focus on parameter inference, where we compute the entire probability distribution

of parameter values that could have induced the measurement data. The proposed analytically

tractable Bayesian framework infers dynamic power system parameters conditioned on noisy mea-

surements obtained at generator terminals. In Chapter 2, we outlined pertinent models for the

power system and noisy measurements, and also described the inference problem. In Chapter 3, we

found the best linearized model by formulating the optimal model selection problem, computing

the value of this metric for a given candidate model, and proposing new candidate models within

the optimization routine. The DAE modeling, first- and second-order trajectory sensitivities, and

Bayesian concepts were demonstrated with SMIB examples throughout Chapter 2 and Chapter 3.

In Chapter 4, we applied the proposed Bayesian framework to two benchmark test systems—the

WECC 9-bus 3-machine and the NE 39-bus 10-machine systems—to demonstrate the effectiveness

and scalability of the proposed method.

Existing parameter inference methods in the literature, such as MCMC and PCE surrogate

modelling, are computationally impractical for large-scale power systems models consisting of many

nonlinear DAEs. Our work advances over the previous by considering the full DAE model describing

generator dynamics coupled across the transmission network. The explicit inclusion of the network

enables parameter inference at buses without sufficient local measurements. We demonstrated this

aspect and other key features along with algorithmic scalability with case studies involving a SMIB,

a 3-bus system, the WECC 9-bus, and the NE 39-bus test system. The posterior marginal PDFs
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achieve 2 to 3 orders of magnitude reduction of uncertainty when compared to the prior standard

deviations as a result of inference from the noisy measurements.

We constructed an optimal linearized model that maximizes the probability of measurement

data amongst candidate linear models. The linear models enable closed-form evaluations of the

posterior, model evidence, and their gradients, so the proposed method scales Bayesian inference

to higher dimensions than PCEs. Although the model evidence is generally difficult to estimate,

we computed its value analytically in the space of linearized models along with Gaussian conjugate

priors. We also derived the analytical gradient of model evidence along the trajectory of lineariza-

tion, so as to facilitate gradient-based optimization methods to find the evidence-maximizing linear

model. The posteriors for all linear models considered in the procedure, including the Bayesian-

optimal one, are Gaussian due to conjugacy, where the mean and covariance can be obtained in

closed form.
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[27] M. Lewandowski,  L. Majka, and A. Świetlicka, “Effective estimation of angular speed of
synchronous generator based on stator voltage measurement,” International Journal of
Electrical Power & Energy Systems, vol. 100, pp. 391–399, 2018. (→) page14

[28] “Phasor measurement unit (PMU) datasheet,” VIZIMAX Inc., Longueuil, QC, Canada,
Sept. 2017. [Online]. Available: https://blob.opal-rt.com/medias/L00161 0917.pdf
(→) pages17, 26

[29] “Balancing and frequency control,” NERC, Princeton, NJ, USA, Jan 2011. [Online].
Available: https://www.nerc.com/comm/PC/Model%20Validation%20Working%20Group%
20MVWG/MV%20White%20Paper Final.pdf (→) pages17, 26

[30] M. C. Kennedy and A. O’Hagan, “Bayesian calibration of computer models,” Journal of the
Royal Statistical Society: Series B (Statistical Methodology), vol. 63, no. 3, pp. 425–464,
2001. (→) pages23, 27, 30
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Appendix A

3-Bus Test System

A.1 System Parameters

Transmission Lines. The line impedance z12 = 0.01+j0.085, z23 = 0.02+j0.161, z13 = 0.01+j0.092.

The shunt admittance ysh
12 = j0.088, ysh

23 = j0.153, and ysh
13 = j0.079.

Initial Steady State. V1∠θ1 = 1.04∠0◦, V2∠θ2 = 1.025∠ − 0.148◦, V3∠θ3 = 0.994∠ − 7.65◦,

S1 = 1.597 + j0.452, S2 = 0.791− j0.279, S3 = −2.35− j0.5.

Parameters related to the machine, turbine-governor, and excitation system are reported in

Table A.1. The saturation function SE(Efd) = 0.0039e1.555Efd for both generators.

Table A.1: Parameter values for dynamic model of 3-bus system shown in Fig. 2.2.

Machine Data

T ′d0 T ′q0 H D Xd Xq X ′d X ′q Rs
Bus 1 8.96 0.31 8 10 0.146 0.0969 0.0608 0.0608 0
Bus 2 5.89 0.60 3.01 10 1.3125 1.2578 0.1813 0.1813 0
Unit s s s p.u. p.u. p.u. p.u. p.u. p.u.

Turbine/Governor Data Excitation System Data

TCH TSV RD TA TE TF KA KE KF

Bus 1 0.5 0 0.04 0.2 0.314 0.35 200 1 0.063
Bus 2 0.5 0 0.04 0.2 0.314 0.35 200 1 0.063
Unit s s p.u. s s s p.u. p.u. p.u.

42



A.2 Model Details

The dynamic state variables for each machine i are

xi =
[
E′qi E′di δi ωi Efdi Rfi VRi TMi

]T
,

and algebraic state variables are

y = [Id1 Id2 Iq1 Iq2 V1 V2 V3 θ1 θ2 θ3]T ,

and inputs are

u = [ωs PC1 PC2 Vref1 Vref2]T .

The differential equations f(x, y, u;λ) for each generator i = 1, 2 are

T ′d0iĖ
′
qi = −E′qi − (Xdi −X ′di)Idi + Efdi,

T ′q0iĖ
′
di = −E′di + (Xqi −X ′qi)Iqi,

δ̇i = 120π(ωi − ωs),

2Hi

ωs
ω̇i = TMi − (X ′qi −X ′di)IdiIqi − E′qiIqi − E′diIdi −Di(ωi − ωs),

TEiĖfdi = − (KEi + SE(Efdi))Efdi + VRi,

TFiṘfi = −Rfi +
KFi

TFi
Efdi,

TAiV̇Ri = −VRi +KAiRfi −
KAiKFi

TFi
Efdi +KAi(Vrefi − Vi),

TCHiṪMi = PCi − TMi −
1

RDi
(ωi − ωs) .

The algebraic constraints g(x, y, u;λ) include the stator algebraic equations for generator i = 1, 2:

0 = E′di − Vi sin(δi − θi)−RsiIdi +X ′qiIqi,

0 = E′qi − Vi cos(δi − θi)−RsiIqi −X ′diIqi,
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the network algebraic equations for generator i = 1, 2:

0 = IdiVi sin(δi − θi) + IqiVi cos(δi − θi) + Pi −
3∑

k=1

ViVkYik cos(θi − θk − αik),

0 = IdiVi cos(δi − θi)− IqiVi sin(δi − θi) +Qi −
3∑

k=1

ViVkYik sin(θi − θk − αik),

and the network algebraic equations for the load bus i = 3:

0 = Pi −
3∑

k=1

ViVkYik cos(θi − θk − αik),

0 = Qi −
3∑

k=1

ViVkYik sin(θi − θk − αik),

where Y = |Ybus|, α = ∠Ybus and Ybus is the admittance matrix.
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Appendix B

Bayesian Conjugacy for

Linear-Gaussian Models

In Appendices B.1 and B.2, we simplify the notation and use a[k], b[k], µπ, and Σπ, but with the

understanding that they all depend on a particular given nominal trajectory λ?.

B.1 Linear-Gaussian Posterior Mean and Covariance

Consider a linear model calibration problem:

ẑ[k] = a[k]λ+ b[k] + ξ[k], (B.1)

where ẑ[k] ∈ Rm is the vector of noisy measurements at observation time j, λ ∈ Rp is the model

parameter, a[k] ∈ Rm×p and b[k] ∈ Rm result for a given linearized model (i.e., created from a given

λ?), and ξ[k] ∈ Rm is an assumed additive Gaussian noise ξ[k] ∼ N (0m,Σξ)) with Σξ ∈ Rm×m

being a diagonal noise covariance matrix for the measurements at time k (we assume noise to

be independent across components of ξ[k] and across k). When Gaussian prior λ ∼ N (µ0,Σ0) is

employed (here µ0 ∈ Rp and Σ0 ∈ Rp×p), then we have a conjugate system where the posterior is

also Gaussian:

f(λ|{ẑ[k]}) ∝ f(λ)f({ẑ[k]}|λ)

= (2π)−
p
2 |Σ0|−

1
2 exp

{
−1

2
(λ− µ0)TΣ−1

0 (λ− µ0)

}
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×
M∏
k=0

(2π)−
m
2 |Σξ|−

1
2 exp

{
−1

2
(ẑ[k] − a[k]λ− b[k])

TΣ−1
ξ (ẑ[k] − a[k]λ− b[k])

}

∝ exp

{
−1

2
(λ− µ0)TΣ−1

0 (λ− µ0)− 1

2

M∑
k=0

(ẑ[k] − a[k]λ− b[k])
TΣ−1

ξ (ẑ[k] − a[k]λ− b[k])

}

= exp

{
− 1

2

[
λTΣ−1

0 λ− 2λTΣ−1
0 µ0 + µT

0 Σ−1
0 µ0

+
M∑
k=0

(
(ẑ[k] − b[k])

TΣ−1
ξ (ẑ[k] − b[k])− 2(ẑ[k] − b[k])

TΣ−1
ξ a[k]λ+ λTaT

[k]Σ
−1
ξ a[k]λ

)]}

∝ exp

{
−1

2

[
λTΣ−1

0 λ− 2λTΣ−1
0 µ0 +

M∑
k=0

(
−2(ẑ[k] − b[k])

TΣ−1
ξ a[k]λ+ λTaT

[k]Σ
−1
ξ a[k]λ

)]}

= exp

{
−1

2

[
λT

(
Σ−1

0 +

M∑
k=0

aT
[k]Σ

−1
ξ a[k]

)
λ− 2λT

(
Σ−1

0 µ0 +

M∑
k=0

aT
[k]Σ

−1
ξ (ẑ[k] − b[k])

)]}
,

(B.2)

where the first equality is the product of Gaussian prior and Gaussian likelihood PDFs, the second

proportionality omits the constants in front of the exponentials and turns the product of expo-

nentials into sum of its arguments, the second equality then expands out the products, the third

proportionality omits the new multiplying constants that resulted from the constant terms inside

the exponential, and the last equality factors the λ’s to arrive at a quadratic and linear term (of λ)

inside the exponential (note that (ẑ[k] − b[k])
TΣ−1

ξ a[k]λ = λTaT
[k]Σ

−1
ξ (ẑ[k] − b[k]) since the transpose

of a scalar is equal to itself, and Σ−1
ξ is symmetric). Without having extracted the mean and

covariance, we already see this is a Gaussian PDF since it is an exponential of a quadratic.

Knowing the posterior is a Gaussian, we can write out its PDF in terms of its mean µπ and

covariance Σπ:

f(λ|{ẑ[k]}) = (2π)−
p
2 |Σπ|−

1
2 exp

[
−1

2
(λ− µπ)TΣ−1

π (λ− µπ)

]
∝ exp

[
−1

2

(
λTΣ−1

π λ− 2λTΣ−1
π µπ + µT

πΣ−1
π µπ

)]
∝ exp

[
−1

2

(
λTΣ−1

π λ− 2λTΣ−1
π µπ

)]
. (B.3)
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Comparing (B.2) and (B.3), matching the quadratic term yields

Σπ =

(
Σ−1

0 +
M∑
k=0

aT
[k]Σ

−1
ξ a[k]

)−1

, (B.4)

and matching the linear term yields

µπ = Σπ

[
Σ−1

0 µ0 +
M∑
k=0

aT
[k]Σ

−T
ξ (ẑ[k] − b[k])

]
. (B.5)

B.2 Linear-Gaussian Log-Evidence

The log-evidence is

ln f({ẑ[k]}) = ln

[
f(λ)f({ẑ[k]}|λ)

f(λ|{ẑ[k]})

]
= ln f(λ) + ln f({ẑ[k]}|λ)− ln f(λ|{ẑ[k]})

= −p
2

ln(2π)− 1

2
ln |Σ0| −

1

2
(λ− µ0)TΣ−1

0 (λ− µ0)− m(M + 1)

2
ln(2π)

− M + 1

2
ln |Σξ| −

1

2

M∑
k=0

(ẑ[k] − a[k]λ− b[k])
TΣ−1

ξ (ẑ[k] − a[k]λ− b[k])

+
p

2
ln(2π) +

1

2
ln |Σπ|+

1

2
(λ− µπ)TΣ−1

π (λ− µπ). (B.6)

This expression should hold true for any choice of λ; one natural choice is to use λ = λ?.
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Appendix C

Log-Evidence Gradient for Linearized

DAE

In Appendices C.1 and C.2, we make all the λ? notation explicit.

C.1 Log-Evidence Gradient with respect to Nominal Trajectory
λ?

Consider the gradient operator ∇λ∗ =
[
∂
∂λ?1

, ∂
∂λ?2

, . . . ∂
∂λ?p

]T
, the kth component of ∇λ∗ ln f({ẑ[k]}|λ?)

is then

∂

∂λ?i
ln f(ẑ[k]|λ?) =

∂

∂λ?i

[
− 1

2

M∑
k=0

(
ẑ[k] − z̃[k](λ;λ?)

)T
Σ−1
ξ

(
ẑ[k] − z̃[k](λ;λ?)

)
− 1

2
ln |Σ−1

π,λ? |

+
1

2
(λ− µπ,λ?)TΣ−1

π,λ?(λ− µπ,λ?) + C

]

=
1

2

M∑
k=0

(
∂z̃[k]

∂λ?i

)T

(Σ−1
ξ + Σ−T

ξ )(ẑ[k] − z̃[k]

(
λ;λ?)

)
− 1

2
Tr

(
Σπ,λ?

∂Σ−1
π,λ?

∂λ?i

)

+
1

2
λT
∂Σ−1

π,λ?

∂λ?k
λ− λT

∂Σ−1
π,λ?

∂λ?k
µπ,λ? − λTΣ−1

π,λ?
∂µπ,λ?

∂λ?k

+
1

2

∂µT
π,λ?

∂λ?k
Σ−1
π,λ?µπ,λ? +

1

2
µT
π,λ?

∂Σ−1
π,λ?

∂λ?k
µπ,λ? +

1

2
µT
π,λ?Σ

−1
π,λ?

∂µπ,λ?

∂λ?k

=
1

2

M∑
k=0

(
∂z̃[k]

∂λ?i

)T

(Σ−1
ξ + Σ−T

ξ )(ẑ[k] − z̃[k](λ;λ?))− 1

2
Tr

(
Σπ,λ?

∂Σ−1
π,λ?

∂λ?i

)

+
1

2
(λ− µπ,λ?)T

∂Σ−1
π,λ?

∂λ?k
(λ− µπ,λ?)− (λ− µπ,λ?)TΣ−1

π,λ?
∂µπ,λ?

∂λ?k
, (C.1)
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where in the first equality we substituted the log-PDF expressions similar to (B.6) but used

−1
2 ln |Σπ,λ? | = 1

2 ln |Σ−1
π,λ? |. From here, the needed derivative calculations are the partial derivatives

of z̃[k], Σ−1
π,λ? , and µπ,λ? with respect to λ?i : from (3.14),

∂z̃[k]

∂λ?i
= z̃λ?i ,[k] = aλ?i ,[k]λ+ bλ?i ,[k] = z?λλ?i ,[k]λ− z

?
λλ?i ,[k]λ

?,

from (B.4),

Σ−1
π,λ? = Σ−1

0 +

M∑
k=0

aT
[k]Σ

−1
ξ a[k]

∂Σ−1
π,λ?

∂λ?i
=

M∑
k=0

∂aT
[k]

∂λ?i
Σ−1
ξ a[k] + aT

[k]Σ
−1
ξ

∂a[k]

∂λ?i
, (C.2)

and from (B.5)

µπ,λ? = Σπ,λ?

[
Σ−1

0 µ0 +
M∑
k=0

aT
[k]Σ

−T
ξ (ẑ[k] − b[k])

]
∂µπ,λ?

∂λ?i
=
∂Σπ,λ?

∂λ?i

[
Σ−1

0 µ0 +

M∑
k=0

aT
[k]Σ

−T
ξ (ẑ[k] − b[k])

]

+ Σπ,λ?

[
M∑
k=0

(
∂aT

[k]

∂λ?i
Σ−Tξ (ẑ[k] − b[k])− aT

[k]Σ
−T
ξ

∂b[k]

∂λ?i

)]

=
∂Σπ,λ?

∂λ?i
Σ−1
π,λ?µπ,λ?

+ Σπ,λ?

[
M∑
k=0

(
∂aT

[k]

∂λ?i
Σ−Tξ (ẑ[k] − b[k])− aT

[k]Σ
−T
ξ

∂b[k]

∂λ?i

)]
(C.3)

where

∂Σπ,λ?

∂λ?i
= −Σπ,λ?

∂Σ−1
π,λ?

∂λ?i
Σπ,λ? (C.4)

can leverage (C.2).
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C.2 Evaluating z?λλ?i

In this section, we compute z?λλ?i ,[k] at each time instant k = 0, . . . ,M . To obtain the second-order

trajectory sensitivity z?λλ?i
, we will find it useful to define x?λλ?i

and y?λλ?i
as the partial derivatives of

x?λ and y?λ, respectively, with respect to λ?i . Then, applying chain rule to differentiate (2.14) with

respect to λ?i , we get

z?λλ?i = (h?xx?x
?
λei + h?xy?y

?
λei + h?xλ?i )x

?
λ + h?xx

?
λλ?i

+ (h?yx?x
?
λei + h?yy?y

?
λei + h?yλ?i )y

?
λ + h?yy

?
λλ?i

+ h?λx?x
?
λei + h?λy?y

?
λei + h?λλ?i , (C.5)

where, in general, the notation h?ab refers to the partial derivative of gradient vector h?a with respect

to the vector or scalar variable b, and ei is an appropriate sized basis vector with 0s in all entries

except the ith one with 1. The partial derivatives in (C.5) can all be computed in analytical closed

form. Furthermore, we have nominal trajectories x?λ and y?λ resulting from nominal parameter value

λ?. Thus, to evaluate (C.5), we need only to solve for sensitivity trajectories x?λλ?i
and y?λλ?i

. To do

so, we take the derivative of (2.9) and (2.10) with respect to λ?i to get

ẋ?λλ?i = (f?xx?x
?
λei + f?xy?y

?
λei + f?xλ?i )x

?
λ + f?xx

?
λλ?i

+ (f?yx?x
?
λei + f?yy?y

?
λei + f?yλ?i )y

?
λ + f?y y

?
λλ?i

+ f?λx?x
?
λei + f?λy?y

?
λei + f?λλ?i , (C.6)

0 = (g?xx?x
?
λei + g?xy?y

?
λei + g?xλ?i )x

?
λ + g?xx

?
λλ?i

+ (g?yx?x
?
λei + g?yy?y

?
λei + g?yλ?i )y

?
λ + g?yy

?
λλ?i

+ g?λx?x
?
λei + g?λy?y

?
λei + g?λλ?i , (C.7)

where, in general, the notation f?ab (g?ab) refers to the partial derivative of gradient vector f?a (g?a)

with respect to the vector or scalar variable b. We further rearrange (C.7) to get

y?λλ?i = −(g?y)
−1
(
(g?xx?x

?
λei + g?xy?y

?
λei + g?xλ?i )x

?
λ + g?xx

?
λλ?i

+ (g?yx?x
?
λei + g?yy?y

?
λei + g?yλ?i )y

?
λ

+ g?λx?x
?
λei + g?λy?y

?
λei + g?λλ?i

)
, (C.8)
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where we have persisted with the assumption that the power-flow Jacobian matrix g?y is invertible

along the nominal trajectory. Finally, by substituting (2.12) and (C.8) into (C.6) and (C.5), we get

the following linear time-varying system describing the evolution of z?λλ?i
:

ẋ?λλ?i = F1x
?
λλ?i

+ F2x
?
λ + F3, (C.9)

z?λλ?i = G1x
?
λλ?i

+G2x
?
λ +G3, (C.10)

where

F1 = f?x − f?y (g?y)
−1g?x = A?, (C.11)

F2 = f?xx?x
?
λei + f?xy?y

?
λei + f?xλ?i

− (f?yx?x
?
λei + f?yy?y

?
λei + f?yλ?i )(g

?
y)
−1g?x

− f?y (g?y)
−1(g?xx?x

?
λei + g?xy?y

?
λei + g?xλ?i )

+ f?y (g?y)
−1(g?yx?x

?
λei + g?yy?y

?
λei + g?yλ?i )(g

?
y)
−1g?x, (C.12)

F3 = f?λx?x
?
λei + f?λy?y

?
λei + f?λλ?i

− f?y (g?y)
−1(g?λx?x

?
λei + g?λy?y

?
λei + g?λλ?i )

− (f?yx?x
?
λei + f?yy?y

?
λei + f?yλ?i )(g

?
y)
−1g?λ

+ f?y (g?y)
−1(g?yx?x

?
λei + g?yy?y

?
λei + g?yλ?i )(g

?
y)
−1g?λ, (C.13)

G1 = h?x − h?y(g?y)−1g?x = C?, (C.14)

G2 = h?xx?x
?
λei + h?xy?y

?
λei + h?xλ?i

− (h?yx?x
?
λei + h?yy?y

?
λei + h?yλ?i )(g

?
y)
−1g?x

− h?y(g?y)−1(g?xx?x
?
λei + g?xy?y

?
λei + g?xλ?i )

+ h?y(g
?
y)
−1(g?yx?x

?
λei + g?yy?y

?
λei + g?yλ?i )(g

?
y)
−1g?x, (C.15)

G3 = h?λx?x
?
λei + h?λy?y

?
λei + h?λλ?i

− h?y(g?y)−1(g?λx?x
?
λei + g?λy?y

?
λei + g?λλ?i )

− (h?yx?x
?
λei + h?yy?y

?
λei + h?yλ?i )(g

?
y)
−1g?λ

+ h?y(g
?
y)
−1(g?yx?x

?
λei + g?yy?y

?
λei + g?yλ?i )(g

?
y)
−1g?λ. (C.16)
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Simultaneous time-domain simulation of (2.1)–(2.3), (2.13)–(2.14), and (C.9)–(C.10) yields the

nominal trajectories taken by the system outputs collected in z?, their sensitivities to parameters

collected in z?λ, as well as their second-order sensitivities with respect to λ?i collected in z?λλ?i
, which

is acquired at time instant k to help evaluate (3.14).
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