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Abstract

The rising energy demand of buildings contributes to global resource consumption and greenhouse

gas emissions. Understanding the energy consumption habits of a building is the first and most

crucial step in order to achieve energy efficiency. Forecasting and anomaly prediction of power

demand play an essential role in the electric industry, as it provides the basis for making deci-

sions in power system planning and operation. However, there are several challenges in predictive

analytics to improve energy efficiency. For instance, the information in the forecast needs to be

interpreted by a person with domain expertise. Moreover, automated interpretation of upcoming

abnormal behaviors needs ground-truth labeling, but labels are not always available from power

meter data.

To address those problems, a novel Predictive Power Demand Analytics methodology (PPDAM)

is proposed in this thesis, based on long short-term memory neural networks and symbolic aggre-

gate approximation. The main target of PPDAM is to identify upcoming normal and anomalous

demand patterns, through mining historical power demand and temperature data, and day-ahead

power demand forecast. The PPDAM consists of two modules: power demand forecasting and

anomaly prediction. The power demand forecasting module is utilized to predict day-ahead power

profiles (time sequences), as a baseline for pattern generation and anomaly prediction. In the mod-

ule of anomaly prediction, the historical and predicted time-series profiles are first transformed

into patterns and later retrieved from a system of labeled repositories. The patterns are classified

as normal or anomalous based on their frequency of appearance in the pattern repositories.

The power demand data cover the total electrical power consumption in seven buildings at the

University of British Columbia (UBC). The experimental results indicate that a power forecast

could be mapped as different foreseeable demand patterns, each with a specific probability of oc-

currence. Classification results indicate that our method is robust and fairly accurate in predicting

anomalies despite the diversities of building types and behaviors. The outcomes of this work could
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provide building operators with a solution to derive latent information in power consumption data.

The derived information could be used to improve the working conditions of the building’s power

system.
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Lay Summary

The energy demand of buildings continues to rise, having a significant impact on global resource

consumption and greenhouse gas emissions. Energy efficiency is one of the lowest-cost methods to

reduce greenhouse gas emissions and the cleanest way to meet the increasing demand for energy.

In order to improve energy efficiency in buildings, upcoming normal and anomalous power demand

patterns need to be identifies, through mining historical power demand and temperature data, and

day-ahead power demand forecast.

The main contribution of this study lies in a new data-driven predictive analytics methodology

for the total power consumption in the non-residential building sector. The novelty of this work

includes the implementation of a new solution, based on Long Short-Term Memory (LSTM) Deep

Neural Network (DNN) and the Symbolic Aggregate Approximation (SAX) data mining method,

which offers major advantages over traditional approaches. Aligned with the current research

challenges in the field, the proposed methodology takes advantage of real-time data to predict an

activity indicator, providing accurate insight regarding the power demand of the building. This is

the first time that LSTM neural networks and SAX are integrated for accurate insights regarding

the power needs of the building, intending to support more efficient energy management.
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Chapter 1: Introduction

1.1 Background

During the past two decades (2008 to 2018), the world energy consumption increased by 83.7%

(13181 to 24738 TWh); the world carbon dioxide (CO2) emissions increased by 49.7% (22394 to

33513 Mt) [1]. Current predictions show that this growing trend will continue. The buildings and

buildings construction sectors combined are responsible for over one-third of global final energy

consumption and nearly 40% of total direct and indirect CO2 emissions.

The rapidly growing world energy use has already raised concerns over supply difficulties,

exhaustion of energy resources and heavy environmental impacts (ozone layer depletion, global

warming, climate change, etc.) [2]. The emission of greenhouse gases including CO2 in higher

layers of the atmosphere is known as the main cause of global warming phenomena [3]. Energy-

related CO2 emissions from buildings have risen in recent years. Several factors have contributed

to this rise, including growing energy demand for heating and cooling with rising air-conditioner

ownership and extreme weather events. Enormous emissions reduction potential remains untapped

due to the continued use of fossil fuel-based assets, a lack of effective energy-efficiency policies

and insufficient investment in sustainable buildings.

Among the aforementioned reduction potential, energy efficiency is one of the lowest-cost

methods to reduce greenhouse gas emissions and the cleanest way to meet the increasing demand

for energy [4]. Improved energy efficiency helps households, businesses, and institutions save

money, be more competitive, and contribute to an improved quality of life. For this reason, im-

proving energy efficiency in buildings is today a prime objective for energy policy at regional,

national, and international levels, to reduce the amount of gas emission and fossil fuel consump-

tion [2]. One most effective approach to reducing CO2 emission and energy consumption with

regards to new buildings is to consider energy efficiency at a very early design stage. On the other
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hand, efficient energy management and smart refurbishments can enhance the energy performance

of the existing stock. All these solutions entail accurate predictive analytics for understanding the

energy consumption habits of a building and optimal decision making, which is the first and most

crucial step in order to achieve energy efficiency.

1.2 Research Motivations

Predictive analytics is an area of statistics that deals with extracting information from data and

using it to predict trends and patterns [5]. Predictive analytics for building’s power demand can

improve the supervision of building operation, establish a baseline for energy consumption, track

annual progress of intensity improvements, help increase energy efficiency, and maximize energy

savings [6]. Among various data-driven predictive analytics methods for improving building en-

ergy efficiency, predicting and monitoring the power consumption with the aim of identifying ab-

normal behaviors is promising and cost-effective [7]. Forecasting consumption patterns is also one

of the most important stages for implementing energy management systems in buildings. Methods

of power demand forecasting and anomaly prediction with time-series data are reviewed and pre-

sented in detail in Chapter 2. There are several research gaps in the usage of day-ahead forecasting

for anomaly detection.

The power consumption in buildings is influenced by many factors, such as ambient weather

conditions (especially the temperature), building structure and characteristics, the operation of sub-

level components like lighting and HVAC (Heating, Ventilating, and Air-Conditioning) systems,

occupancy, and their behaviors [8]. This complex situation makes it very difficult to accurately

implement the prediction of building power consumption. First, the information contained in time

series predictions usually needs to be interpreted by a human with domain expertise. Daily load

time series can be quantified with a set of meaningful statistics. For example, the daily average

load, the minimum and maximum load, the median load and so on, all could be useful statistics

in later modeling and analysis. Besides these common descriptive statistics, other meaningful

statistics, such as near-base load, near-peak load, high-load duration, rise time and fall time, could

2



be defined to describe the load profiles, [9]. These statistics are related to load time series shape

and time and are useful for building energy management. However, the information contained in

load profiles needs to be further processed and interpreted by expertise to apply. Additionally, as

reviewed in Section 2.1 regarding power demand forecasting, it is unclear how the performance of

models is influenced by input variables and model architectures.

Anomaly prediction is the process of identifying a prediction that deviates greatly from other

observations in a data set. In the field of building energy consumption, the anomaly is equal to

abnormal energy consumption, which is generally caused by equipment faults or improper op-

eration. However, automated interpretation of upcoming abnormal behaviors needs ground-truth

labeling, but labels are not always available from power meter data [10]. For practical applications,

anomaly detection without anomaly labels is closer to the actual requirements of building opera-

tion managers, because it is expensive and time-consuming to generate labeled data for abnormal

power consumption in buildings. Therefore, a promising way to solve this dilemma is to find an

algorithmic way of labeling anomalies. If unsupervised methods were to be used to create those

labels (as reviewed in Section 2.2), those labels would have to be interpreted to describe anomalies

in consumption behaviors.

These remaining problems are motivations of seek effective methods, capable of labeling and

predicting power demand, and extracting anomalous information from those predictions. To this

end, a novel Predictive Power Demand Analytics methodology (PPDAM) is presented in this thesis

to address the aforementioned research gaps.

1.3 Research Objectives and Proposed Methodology

The main target of PPDAM is to identify upcoming normal and anomalous demand patterns,

through mining historical power demand and temperature data, and day-ahead power demand fore-

cast. Therefore, a new solution advancing the area of predictive analytics of time series data can be

provided. The power demand data are the total electrical power consumption in the building, i.e.,

the summation of the HVAC system, plug loads (computers, kettles, microwaves, etc.), lighting,

3



etc. It is measured by the main electric meter installed on the main electrical feeder into the build-

ing. The temperature data are generated by the Earth and Ocean Science (EOS) Rooftop Weather

Station at the University of British Columbia (UBC). The combination of a supervised method,

i.e., LSTM networks (part of the family of deep learning models) and an unsupervised clustering

method, i.e., SAX, are explored. The PPDAM consists of two modules: power demand forecasting

and anomaly prediction.

The power demand forecasting module is utilized to predict day-ahead power profiles (time se-

quences), as a baseline for pattern generation and anomaly prediction. Power demand forecasting

facilitates the estimation of the required electricity, in advance, to control the demand effectively

(peak shaving and load shifting) [11]. Predicted power demand sequences could be used for imple-

menting model-predictive control strategies for HVAC equipment [12]. Automation systems can

benefit from this information in order to make decisions autonomously by following energy-saving

optimization strategies.

In the module of anomaly prediction, the historical and predicted time-series profiles are first

transformed into patterns and later retrieved from a system of labeled repositories. The patterns are

classified as normal or anomalous based on their frequency of appearance in the pattern reposito-

ries. The aim of these data is to provide greater insight into how a building consumes energy and,

therefore, what improvements are likely to be most effective in reducing consumption. Because

historical consumption data containing abnormal building behavior is often ignored, information

gained from the anomaly prediction module can be used to notify building managers of issues with

minimal delay, helping to reduce energy costs.

1.4 Contributions and Thesis Outline

The main contribution of this study lies in a new data-driven predictive analytics methodology

for the total power consumption in the building sector. The novelty of this work includes the

implementation of a new solution, based on LSTM deep neural networks and the SAX data min-

ing method, which offers major advantages over traditional approaches. Aligned with the current
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research challenges in the field, the proposed methodology takes advantage of real-time data to

predict an activity indicator, providing accurate insight regarding the power demand of the build-

ing.

On one hand, the day-ahead power demand forecasting module, comprehending various input

combinations and LSTM model architectures, increases the adaptability to day-types and improves

the resulting accuracy by including associated last-week data. On the other hand, the anomaly pre-

diction module, based on the unsupervised SAX method, automates pattern-labeling and pattern-

retrieving of time series power consumption and eliminates the difficulty in obtaining ground truth

labels of anomalous consumption in the field of pattern detection. This is the first time that LSTM

neural networks and SAX are integrated for accurate insights regarding the power needs of the

building, intending to support more efficient energy management. Building operators could take

actions on completing building maintenance tasks according to the insights obtained.

This thesis is organized into five chapters. Chapter 1 gives the background information and

motivation of this research. This chapter also briefly introduces the novelty of the proposed pre-

dictive power demand analytics methodology and the contributions of this research. Chapter 2

gives a comprehensive literature review of existing methods, from the aspects of power demand

forecasting and anomaly detection of time series data. Engineering, statistical and machine learn-

ing methods in the field of power demand forecasting are reviewed. Statistical and machine learn-

ing methods in the field of anomaly prediction of time series data are reviewed. In Chapter 3,

the PPDAM is proposed and described in detail. The three-step application workflow of PPDAM

is introduced first to show the feasibility and potential of real-world implementation. Further-

more, the modeling of power demand forecasting and anomaly prediction modules are elaborated,

including theories of long short-term memory networks and symbolic aggregate approximation,

models training and testing, creation and labeling of pattern repositories, and the design of classifi-

cation tests. Chapter 4 presents the experimental results of the modeling of the aforementioned two

modules. Section 4.1 covers the information of seven buildings and datasets involved in the experi-

ments. The optimal model configuration (inputs and model architecture) is revealed in Section 4.2;
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labeled pattern repositories are portrayed in Section 4.3. Section 4.2 also shows the anomaly clas-

sification results of the seven buildings. Summary of the research, conclusions, limitations and

future research are drawn in Chapter 5.
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Chapter 2: Related Work

This thesis focuses on understanding how to utilize historical and predicted data to obtain the

pattern profile of power consumption in a building, and to predict normal and anomalous patterns

for the next 24 hours. Therefore, power demand forecasting and anomaly detection techniques are

reviewed in this chapter.

2.1 Power Demand Forecasting

In the methodology presented in this thesis, power demand forecasting is the foundation of pat-

tern mining. The power consumption in buildings is influenced by many factors, such as ambient

weather conditions (especially the temperature), building structure and characteristics, the oper-

ation of sub-level components like lighting and HVAC systems, occupancy, and their behaviors

[8]. This complex situation makes it very difficult to accurately implement the prediction of build-

ing power consumption. Recently developed forecasting methods include engineering methods,

Statistical methods, machine learning (ML) methods. Zhao et al. [8] and Hernandez [13] pro-

vided a comprehensive review of research work related to the modeling and prediction of building

energy consumption. Different methods are compared on the accuracy to forecast the building

load given available information on weather conditions, building structure, operation of sub-level

components, occupancy, and building use.

2.1.1 Engineering Methods

The engineering methods use very elaborate physical functions or thermal dynamics to precisely

calculate the power consumption for all components of the building with building’s and envi-

ronmental information, such as external climate conditions, building construction, operation and

HVAC equipment, as the inputs. They have been adequately developed over the past fifty years.

Touretzky and Patil [14] developed Auto-Regressive models with eXogeneous inputs (ARX)
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to forecast power demand in conjunction with existing physics-based modeling approaches. Al-

Homoud [15] reviewed two simplified engineering methods for estimating small and large build-

ings’ energy consumption, respectively. Yao and Steemers [16] developed a simple engineering

method of predicting a daily energy consumption profile for one season, for the design of a re-

newable energy system for residential buildings. They used the average consumption from large

amounts of statistical data for the modeling of each electric appliance in the building.

Although these elaborate simulation tools are effective and accurate, in practice, there are some

difficulties. Since these tools are based on physical principles, to achieve an accurate simulation,

they require details of building and environmental parameters as the input data. On one hand,

these parameters are unavailable to many organizations. For example, the information on each

classroom in a building on campus is always difficult to obtain. This lack of precise inputs will

lead to a low accurate simulation. On the other hand, operating these tools normally requires te-

dious expert work. The calculation of energy use for space heating and cooling for a building and

its components may require the knowledge of a standard developed by the ISO (International Or-

ganization for Standardization). Those expertise making engineering methods difficult to perform

and cost-inefficient. For these reasons, engineering methods are not considered in this study.

2.1.2 Statistical Methods

Statistical regression models correlate the power consumption with the influencing variables. These

empirical models are developed from historical performance data, which means that before train-

ing the models, it needs to collect enough historical data. In terms of the research problems it

solves, statistical regression models can be divided into two categories.

The first is to predict the power usage over simplified variables such as one or several weather

parameters. Ansari et al. [17] calculated the cooling load of a building by adding up the cooling

load of each component of the building envelope. Each sub-level cooling load is a simple regres-

sion function of the temperature difference between inside and outside. Dhar et al. [18] modeled

heating and cooling load in commercial buildings with outdoor dry-bulb temperature as the only
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weather variable. The second one is to estimate important parameters of power usage, such as total

heat loss coefficient, total heat capacity and gain factor, which is useful in analyzing the thermal be-

havior of a building or sub-level systems. Jiménez and Heras [19] used the Auto-Regressive model

with eXtra inputs (ARX) to estimate the U and g values of building components. Auto-Regressive

Integrated Moving Average (ARIMA) models and ARIMA with eXternal inputs (ARIMAX) mod-

els [20] have also been applied to some applications, predicting and controlling the peak electricity

demand for commercial buildings and predicting the power demand of the buildings.

2.1.3 Machine Learning Methods

Sometimes machine learning is intertwined with statistical modeling, but they are different even

though there is an overlapping. Machine Learning is the field of study interested in the development

of black-box algorithms to transform data into intelligent action without relying on rule-based pro-

gramming. In the scenario where the need for accuracy in results is higher than the interpretability

of the model, machine learning models will suffice.

In order to compare the performance of ML and statistical models in terms of accuracy and

computational requirements, Makridakis et al. [21] evaluated models across multiple forecasting

horizons using a large subset of 1045 monthly time series used in the M3 Competition. After

comparing the performance of ten ML methods with that of eight traditional statistical ones, they

found that the former are dominated across both accuracy measures used and for all forecasting

horizons examined. Moreover, it was observed that their computational requirements are consid-

erably greater than those of statistical methods.

ML approaches can be divided into supervised, unsupervised, reinforcement learning, etc.

Time series forecasting falls in the field of regression problem in supervised ML learning. Many

regression ML algorithms have been explored in the literature, which can be categorized as shal-

low ML and deep learning models. Shallow ML models include K-Nearest Neighbor regression

(KNN), CART regression trees (CART), Support Vector Regression (SVR), Gaussian Processes

(GP), etc. Zhou in [22] compared four ML-based algorithms for cooling load forecasting of a
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large-scale shopping mall, including Chaos-SVR and wavelet-SVR hybrid forecasting algorithms,

back propagation neural network and SVR forecasting algorithms.

According to Cai et al. in [23], deep learning (DL) techniques for the day-ahead building load

forecast show higher performance compared to traditional ML algorithms. It can be concluded

deep neural networks (DNNs) are much more widely used by the scientific community and the

industry due to their high efficiency, the relatively small amount of time needed to set up the

system, and their performance. A comprehensive overview of deep learning methodologies can be

found in [24]. Specifically, LSTM networks are especially suited for time series forecasts due to

their capability for learning long-term dependencies and avoiding vanishing gradients [25]. The

performance of LSTM based models to address a challenging load forecasting problem is evaluated

in [26] and [27]. By exploiting the long term dependencies in the time series, LSTM is capable

of forecasting complex univariate electric load time series with strong non-stationarity and non-

seasonality. LSTM networks are selected due to their suitability to process time-series data as well

as because of its robustness in forecasting day-ahead power demand profiles.

2.2 Anomaly Prediction of Time Series Data

Anomaly prediction in this thesis is the process of identifying a prediction that deviates greatly

from other observations in a data set. In the field of building energy consumption, the anomaly is

equal to abnormal energy consumption, which is generally caused by equipment faults or improper

operation. In recent years, data-driven approaches are widely adopted to achieve reliable and robust

anomaly detection for building energy consumption. Wang et al. [28] summarize anomalies into

two levels according to the scope of the research object: whole building level, and system and

component level. The whole building anomaly detection only focuses on the overall consumption

of the building, while system and component anomaly detection can identify and locate exactly

which component or subsystem leads to anomalous issues. This thesis focuses on whole building

anomaly detection.

Despite the simplicity of the aforementioned anomaly classification, a more common concern
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during anomaly detection is that whether there are explicit labels for anomalies. Therefore, existing

anomaly detection methods relevant to buildings can be divided into two categories [10]: anomaly

detection with anomaly labels and anomaly detection without anomaly labels. Essentially, the

aim of anomaly detection with anomaly labels is to obtain accurate classification models, because

the prediction needs to be classified as normal or anomalous. However, for practical applications,

anomaly detection without anomaly labels is closer to the actual requirements of building operation

managers, because it is expensive and time-consuming to generate labeled data for abnormal power

consumption in buildings. Methods of anomaly detection without anomaly labels can be divided

into statistical methods and machine learning methods.

2.2.1 Statistical Methods

When a power system is in operation, each node generates a large volume of operational data in

real-time, including power consumption, voltage, current, active power and reactive power of the

node. These data are random due to random disturbances from nonelectrical (e.g., the external en-

vironment (region, climate and human Factors)) and electrical factors (e.g., technical failure of the

internal equipment of the power grid and connections of the distributed power sources), thereby

forming random power variables (parameters). These parameters, which change with time, re-

flect the operating state of the power grid. Zhang [29] presented a theoretical high-dimensional

random matrix model approach based on big data. Simulation of massive volumes of data based

on a big data processing platform is the key to the efficiency of the proposed method. However,

power system data are still considered confidential information that belongs to the operating com-

panies. Ordinary researchers are unable to obtain the corresponding operational data for power

grids, which is a bottleneck in big data research. Thus, considering the limited data size and num-

ber of parameters (only power consumption and temperature), this method is not feasible to be

implemented in the data collected from one building.

Chou and Telaga [30] applied a two sigma rule to detect anomalies, and this rule simply classi-

fies any points outside of two standard deviations from the mean as anomalous data. Generalized
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extreme studentized deviate (GESD) algorithm has been implemented in anomaly detection in

building energy consumption and proved to be computationally efficient in handling masses of

building energy data [31]. These statistical methods have some inherent disadvantages, because

the anomaly is generally defined as a point outside of several standard deviations from the mean.

This kind of definition is straightforward and intuitive, but it may lead to the rough classification of

high energy consumption, and the complexity of electricity consumption patterns may be ignored.

Fonseca [32] presented a SAX-based statistical method to automatically cluster typical days of

energy consumption in one or several buildings. The method is based on an optimized version of

the Symbolic Aggregate approXimation (SAX) method, which is adopted to tackle the challenge

of high dimensionality in time series data. SAX is a data mining technique for clustering time

series with applications in building fault detection and building performance assessment. The

SAX process converts time-series data into a set of strings that can then be grouped together for the

purposes of clustering, motif and discord analysis, and finding anomalous behavior. The number

of clusters and accuracy of SAX highly depends on two highly sensitive input variables, i.e., the

word size and the alphabet size. One novelty of this work is the automation of parameter selection

of load profiles for different building use types. They proposed the use of the genetic algorithm

NSGA-II to optimize the number of words and alphabet size of SAX subjected to three fitness

objectives, i.e., maximize data accuracy and compression and minimize complexity. Potential

future uses of the approach include advanced studies in fault detection and calibration of urban

building performance models. Miller et al. in [33] developed a SAX-based framework for motif

and discord extraction, and clustering to detect the underlying structure of building performance

data. SAX allows discretization of time series data which facilitates the use of various motif and

discord detection algorithms. The process breaks time series data into subsequences which are

converted into an alphabetic symbol. These symbols are combined to form strings to represent the

original time series enabling various mining and visualization techniques. Infrequent daily patterns

are filtered and tagged for analysis of potential energy savings opportunities. They applied the

approach on 474 days of example data from an international school campus in a tropical climate
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and 407 days of data from an office building from a temperate European climate. Discords are

filtered resulting in 17 and 22 patterns found. Selected discords are investigated and many correlate

with specific failures and energy savings detected by the on-site operations staff.

2.2.2 Machine Learning Methods

Machine learning techniques for anomaly detection without labels can be classified into unsuper-

vised learning-based methods and regression-based methods [34]. Commonly used unsupervised

learning algorithms include principal component analysis (PCA), nearest-neighbor based tech-

niques, clustering, and association rule [35]. Miller et al. in [36] reviewed research on unsuper-

vised machine learning techniques as applied to non-residential building performance control and

analysis. Goldstein et al. evaluated 19 different unsupervised anomaly detection algorithms on

10 datasets from different application domains and revealed the strengths and weaknesses of the

different approaches [37].

PCA is one of the most popular algorithms in the field of building system fault detection. It

transforms a group of correlated variables into a new group of variables that are uncorrelated or

orthogonal to each other. The k-nearest-neighbor global unsupervised anomaly detection algorithm

focuses on global anomalies and is not able to detect local anomalies. First, for every record in

the dataset, the k-nearest-neighbors have to be found. Then, an anomaly score is computed using

these neighbors, whereas two possibilities have been proposed [38]. The clustering algorithm

divides measurements concerned into several clusters according to the geometric distances between

them. Data in a cluster have similar statistical characteristics. Data in different clusters have

quite different statistical characteristics. In general, the statistical characteristics of faulty data are

different from those of normal data. They should belong to different clusters [39]. The Association

rule algorithm is powerful in discovering relations between various measurements. The discovered

relations could reveal the system operation patterns, but it needs domain experts to further analyze

the patterns for fault detection [40].

Regression-based methods include deep learning models, support vector regression (SVR),
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etc. Deep learning techniques can be applied to build a regression model of which the output is

a continuous variable such as energy consumption, temperature and so on. Mavromatidis et al.

trained an artificial neural network to predict the energy benchmarking values for abnormal detec-

tion of supermarket energy consumption [21]. SVR finds a hyperplane that maximizes the margin

and minimizes the errors which are outside of the margins. Zhao et al. proposed an SVR-based

method to detect system-level incipient faults in HVAC systems. The support vector regression

algorithm is used to develop the reference performance index models [41].

For machine learning methods, the anomaly is generally defined as a point outside the bound-

aries based on the predicted value, and in this context, the position of the boundaries is not fixed.

However, the above methods can only judge whether the object is an outlier, while the severity of

the outlier is not evaluated. Moreover, machine learning methods rely on the training data heavily.

They could obtain a very high fault detection and diagnosis accuracy and could work in the cases

that some sensors are missing. They are feasible to be trained and applied automatically, but the

models should be trained using a large amount of normal data for fault detection and faulty data

for fault diagnosis. They cannot extrapolate beyond the range of the training data.

It can be concluded that the SAX-based statistical method is shown to be a simple but robust op-

tion for automated power profile labeling and anomaly detection. Labeling patterns can be helpful

for load condition monitoring [42]. In this thesis, SAX approach is applied to identify day-ahead

anomalous or normal power patterns, due to its calculation simplicity compared to machine learn-

ing methods, lower dependence on big data, and the capability to reduce the high-dimensionality.

The categories of tasks undertaken by SAX include clustering, novelty detection, motif and discord

detection, rule extraction, and visual analytics.
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Chapter 3: Predictive Power Demand Analytics Methodology

The proposed Predictive Power Demand Analytics Methodology (PPDAM) is thoroughly ex-

plained in this chapter. Section 3.1 introduces the overall architecture of the system, including

the workflow of data collection, power demand forecasting, and anomaly prediction modules. Sec-

tion 3.2 introduces the design of the power demand forecasting module, including theories of

LSTM and SAX, options of LSTM model architectures and inputs, and how to evaluate forecast-

ing performance. Section 3.3 introduces how to create and label pattern repositories, and classify

patterns as normal and anomalous.

3.1 The Overall Application Workflow of PPDAM

The application of PPDAM is illustrated in Figure 3.1. The overall system includes three steps:

data collection, power demand forecasting, and anomaly prediction. The power demand data cover

Figure 3.1: Workflow of the application of PPDAM

the total electrical power consumption in the building, measured by the main electric meter (MEM)

installed on the main electrical feeder into the building. The temperature data are generated by the

EOS Rooftop Weather Station (RWS) at UBC. The optimal combination of power and temperature

data (introduced in Section 3.2.2 and Section 4.2.2) is extracted from the database and sent to
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the data preprocessing unit, where raw inputs get cleaned and normalized. Processed data flow

into the optimal LSTM model, which predicts the day-ahead time-series power demand. The

predicted power demand sequence, in the form of continuous data, is converted into a discrete

power demand pattern by a SAX pattern transformer. The power demand pattern is retrieved

from labeled pattern repositories in which patterns are classified respectively as frequent patterns

(motifs) and infrequent patterns (discord, anomalies). Thus, the motif or discord label is assigned

to the predicted pattern.

3.2 Power Demand Forecasting

Figure 3.2 shows the design of the power demand forecasting module based on LSTM modeling.

Historical power and temperature data are gathered and fed into the data preprocessing unit, where

raw data are cleaned and standardized. Processed data are utilized to train and test LSTM models,

and to generate time-series predictions of electricity power for the next 24 hours. Metrics results,

e.g., Mean Squared Error (MSE), are evaluated during model testing. Power demand predictions

and historical power demand are both converted to discrete patterns by SAX pattern transformers

and the average distance between predicted and historical patterns is calculated. In order to select

the optimal LSTM model architectures and inputs, the metrics results and SAX pattern distance

need to consider and balance.

3.2.1 Long Short-Term Memory Neural Networks

LSTM neural networks are a type of recurrent neural networks (RNNs). RNNs take the form of

a chain of looping modules of the neural network, which means connections between nodes form

a directed graph along a temporal sequence. Thus, RNNs can save the representation of previous

input(s) in memory while generating current output(s). LSTM neural networks also contain this

chain structure, as shown in Figure 3.3. The input of LSTM neural network X is in three dimen-

sions - (m, Tx, nx), where m is the number of data samples and Tx is the number of timesteps of

each sample. In Figure 3.3, X 〈t〉 represents the input X at the timestep t and nx is the number of
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Figure 3.2: Design of the power demand forecasting module based on LSTM modeling

input variables. For example, if one thousand samples of the last 24-hour power and temperature

data are taken as input, the input shape to the LSTM model would be (1000, 24, 2). The output

for each timestep is represented by a〈t〉. Hidden state c〈t〉 is a representation of previous inputs,

enabling the participation of inputs from previous timesteps in the estimation of current output.

The inner cell structure is illustrated in figure 3.4. For one-time forward propagation, parame-

ters are the same for each time step of input. There are three gates in LSTM cell: input gate, forget
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Figure 3.3: Chain structure of LSTM neural networks

Figure 3.4: Cell structure of LSTM networks

gate and output gate. Default activation function of these gates is sigmoid function (Eq. (3.1)).

Sigmoid(x) = σ(x) =
1

1+ e−x =
ex

1+ ex (3.1)

As shown in Figure 3.5, sigmoid function has domain of all real numbers with return value mono-

tonically increasing from 0 to 1.

Inputs of these three gates are X 〈t〉 and a〈t−1〉. what happened to inputs inside gates shows in

Eq. (3.2), (3.3) and (3.4). Outputs of these gates are naturally between zero and one: one represents

“completely keep this” while zero represents “completely get rid of this”. Therefore, three gate

outputs are taken as control signal later.

i〈t〉 = σ(Wia×a〈t−1〉+Wix×X 〈t〉+bi) (3.2)
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Figure 3.5: Activation function of sigmoid

f 〈t〉 = σ(Wf a×a〈t−1〉+Wf x×X 〈t〉+b f ) (3.3)

o〈t〉 = σ(Woa×a〈t−1〉+Wox×X 〈t〉+bo) (3.4)

Output of candidate box between input gate and forget gate is c̃〈t〉 which is candidate value of

hidden state c〈t〉.
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Figure 3.6: Activation function of tanh

tanh(x) =
ex− e−x

ex + e−x (3.5)

c̃〈t〉 = tanh(Wca×a〈t−1〉+Wcx×X 〈t〉+bc) (3.6)

After get three control signals and candidate hidden state, hidden state c〈t〉 and output for this
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timestep a〈t〉 can be calculated as Eq. (3.7) and Eq. (3.8).

c〈t〉 = i〈t〉 ∗ c̃〈t〉+ f 〈t〉 ∗ c〈t−1〉 (3.7)

a〈t〉 = o〈t〉 ∗ tanh(c〈t〉) (3.8)

The symbol “∗” in Figure 3.4, Eq. (3.7) and (3.8) represents the element-wise multiplication. Dis-

tinguished from the common matrix product, the element-wise multiplication takes two matrices

of the same dimensions and produces another matrix of the same dimension as the operands, where

each element i, j is the product of elements i, j of the original two matrices.

3.2.2 Model Inputs and Architectures Design

Four combinations of power and temperature, and three model architectures were designed to

validate the performance of the LSTM models on predicting power demand. Figure 3.7 shows a

Figure 3.7: Time spans of inputs

variety of potential time spans for inputs. The sampling time is equal to one hour. In this figure,

each circle represents the beginning of a day (12 am), and the dotted lines represent time spans.

The last week’s 24-hour realization indicates the same time span as the forecast time span but on

the previous week. For example, as shown in Figure 3.7, if the present day is Sunday and the
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current time is 11:55 pm, the forecast time span is 24 hours (the next day, Monday starting at 12

am), and the last week’s 24h realization starts on the previous Monday at 12 am.

Four input combinations are considered for the LSTM modeling:

• Input 1: last n-hour power data samples, where n ∈ {24,48,72}.

• Input 2: last n-hour power data samples combined with last n-hour temperature samples,

where n ∈ {24,48,72}.

• Input 3: last week’s 24h power data samples and last n-hour power data samples, where

n ∈ {24,48,72}.

• Input 4: last week’s 24h power data samples combined with last week’s 24h temperature

samples, and last n-hour power data samples combined with last n-hour temperature samples,

where n ∈ {24,48,72}.

Additionally, three LSTM model architectures are considered: standard architecture (Fig-

ure 3.8.a), single-encoder decoder architecture (Figure 3.8.b), and multi-encoder decoder archi-

tecture (Figure 3.8.c). Marino et al. in [43] compared the performance of standard architecture

and single-encoder decoder architecture for load forecasting. Both were trained and tested for one-

hour and one-minute timestep resolution data. The dataset [44] they used consists of four years

of one-minute resolution electric power consumption data collected from a residential customer

[45]. Marino et al. concluded that the standard LSTM architecture failed at one-minute resolution

data while performing well on the one-hour resolution data. In addition, it was concluded that the

single-encoder decoder architecture performed well in both datasets. However, to compare the ef-

fectiveness of these algorithms, the authors demonstrated that both algorithms needed to be tested

on real-world datasets, which is the reason why include these two architectures as part of the ex-

periment. Furthermore, multi-encoder decoder architecture is added to compare the performance

of LSTM models given multiple inner representations of the input.

As mentioned in Section 3.2.2, the inputs for the three architectures are 3D arrays in the shape

of (m, Tx, nx). The shape of an array is the number of elements in each dimension. In the standard
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Figure 3.8: Model architectures: (a) standard architecture, (b) single-encoder decoder archi-
tecture, (c) multi-encoder decoder architecture

model architecture, the input is compressed by the LSTM layers into a 2D array in the shape of

(m, n1), where n1 is the number of neurons in the last LSTM layer. In the three architectures, the

dense layer reshapes the dimension of the data flowing out from the last LSTM layer, to guarantee

that the output shape is as expected. The output of the standard model has the shape of (m, ndense),

where ndense is the number of neurons in the dense layer and it is set equal to Ty. Ty represents the

length of forecast time span, and it is 24h in the implementation.

In the single-encoder decoder architecture, the input is converted by the LSTM layers into a

2D inner representation of which the shape is (m, n2), where n2 is the number of neurons of the last

LSTM layer. As opposed to standard architecture, this inner representation is decoded into a 3D

tensor of which the shape is (m, Ty, n3). Next, the 3D tensor passes through a dense layer, for the

same reason as for the standard model. However, the output of the single-encoder decoder model
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is a 3D tensor in the shape of (m, Ty, 1). The last digit represents the number of output variables,

which in this research is equal to one because only power demand is being predicted.

In the multi-encoder decoder architecture, each element (the shape is (m, 24, nx)) in an input

set of size nencoder is assigned an individual LSTM encoder. As show in Figure 3.8.c, each LSTM

encoder converts the corresponding element into a 2D representation in the shape of (m, n4). Then,

all encoded 2D inner representations are concatenated, prior to being decoded. Subsequent pro-

cessing stages are similar to the single-encoder decoder architecture, as well as the output’s shape.

To select the best LSTM architecture, all models are compared under the same set of inputs and

value of n. Furthermore, to select the best configuration and set of inputs, the following analysis

was performed, under the same LSTM architectures:

• By varying the values of n for each input, one can conclude if increasing n can improve

forecasting accuracy.

• By comparing separately Input 1 and Input 2, and Input 3 and Input 4 for the same value of

n, one can conclude if adding temperature data improve predicting performance.

• By comparing separately Input 1 and Input 3, and Input 2 and Input 4, one can conclude how

the last week’s realization improves the predictability.

3.2.3 Metrics for LSTM Models Training and Testing

There are several metrics in place to update the weight values of LSTM networks, such as the

Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),

Mean Absolute Percentage Error (MAPE), etc. By minimizing the error up to a certain acceptable

threshold, the most optimal model is achieved. Zhu et al. in [7] utilized MAE and MAPE as

metrics to evaluate prediction models. Raza et al. in [46] present a methodology on how to use

MSE to train supervised learning models. Wang et al. in [47] reviewed the statistical deterministic

performance of MAE, MAPE, and RMSE for forecasting of wind speed.

Table 3.1 shows the formulas of the two figures of merit utilized in the methodology to estimate
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Table 3.1: Figures of merit for LSTM models

Name Formula Purpose

MSE 1/ny×∑
ny
i=1(yi− ŷi)

2 Loss function
MAE 1/ny×∑

ny
i=1 |yi− ŷi| Metric

the prediction accuracy of the forecasting model. In formulas, ny is the length of one predicted

power demand sequence, which is equal to 24 in this research. MSE is used as the loss function,

and MAE is used as a metric when training and testing the models. The loss function is used as

the objective function to be minimized by the optimizer in Keras [48]. In Keras a metric is used

to judge models’ performance, which is independent of the optimization process. Keras is briefly

introduced in Section 4.2.1.

3.2.4 SAX Distance Validation

In addition to MSE and MAE, the average error (Eq. (3.11)) between historical patterns (HPs) in

the test set and their forecasts (PPs) is considered when selecting the best model architecture and

inputs. First, to define the error between one true pattern and the prediction of it, the concept of

distance between SAX representations is utilized [49]. The distance between two SAX represen-

tations, Ĥ and P̂, requires first obtaining the distances between each pair of symbols. To calculate

the distance between the r-th symbol and s-th symbol (r,s ∈ {1,2,3,4}) in the chosen alphabet,

Eq. (3.9) is used.

dist(symbolr,symbols) =


0, i f | r− s |≤ 1

βmax(r,s)−1−βmin(r,s), otherwise
(3.9)

Table 3.2 shows a lookup table of the distance between symbols in the alphabet [‘a’, ‘b’, ‘c’,

‘d’]. The distance between two SAX representations is given by Eq. (3.10) where ĥi and p̂i are the

i-th symbols (i ∈ {1,2, ...,w}) of Ĥ and P̂.
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Table 3.2: A distance lookup table when alphabet size is 4

a b c d
a 0 0 0.67 1.34
b 0 0 0 0.67
c 0.67 0 0 0
d 1.34 0.67 0 0

MINDIST (Ĥ, P̂) =
√

n
w

√
w

∑
i=1

(dist(ĥi, p̂i))2 (3.10)

DIST (HPs,PPs) =
1
m

m

∑
j=1

(MINDIST (Ĥ j, P̂j)) (3.11)

As shown in Eq. (3.11), the average distance between Historical Patterns (HPs) and Predicted

Patterns (PPs) is the sum of the distances between each predicted and true pattern divided by the

number of predicted patterns (as well as the number of historical patterns) m. The selected optimal

model minimizes DIST (HPs,PPs) so that the accuracy of power demand pattern forecasting is

guaranteed.

3.3 Anomaly Prediction

As described in Section 3.1, a SAX pattern can be classified as a motif or discord by retrieving

this pattern from the labeled parent repositories. The labeled parent repositories are the core of the

anomaly prediction process. The creation and labeling of parent pattern repositories are described

in Section 3.3.2. A classification test designed to evaluate the anomaly prediction performance of

the PPDAM system is introduced in Section 3.3.3.

3.3.1 Symbolic Aggregate Approximation

As with most problems in computer science, the suitable choice of representation affects the ease

and efficiency of time series data mining. SAX transformation could generate concise and explicit

indicators of the power systems’ working conditions because symbolic representations allow the

labeling of patterns [33]. This section briefly introduces the basics of SAX theory.
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Figure 3.9: Process of SAX pattern transformation

SAX transforms a time series of an arbitrary length n to a string of an arbitrary number of

characters w. This transformation allows dimension reduction, given that n > w. The string takes

characters from an alphabet of length a, where a > 2. Lin et al. in [49] provide a detailed illus-

tration of the SAX method. A brief description of the SAX method is presented in the paragraphs

below.

It first requires the transformation of the standardized data into a Piecewise Aggregate Approx-

imation (PAA) representation, as shown in Figure 3.9. The main target of PAA is to reduce the time

series from n dimensions (n equals 24 for daily power profiles) to w dimensions. Thus, the data

are divided into w equal sized segments and the mean value of the data falling within a segment is

assigned to that segment. The solid black line in Figure 3.10 shows an example of the load shape

after sampled down to w segments, where w is equal to 6 and the time span for each time window

is 4 hours. Each grey line represents the mean value of the data falling within this segment.

The next stage of the SAX method is to categorize the PAA vector to obtain a discrete represen-

tation. Breakpoints are presented as a sorted list of numbers β1, ... , βa−1 such that the area under

a N(0,1) Gaussian curve from βi to βi+1 is equal to 1/a (β0 and βa are defined as −∞ and +∞,

respectively). As shown in Figure 3.10, the dashed blue, orange and black line represent β1, β2 and

β3, respectively. The distribution space of the y-axis in the figure is divided into four equiprobable
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Figure 3.10: A transformed daily profile

segments (a equal to 4). Each value of the PAA vector is mapped to a symbol corresponding to the

region in which it resides.

3.3.2 Creation and Labeling of SAX Pattern Repositories

Let’s assume that a power demand pattern could be interpreted as a statement of the working

condition of a building’s power system in a day. Thus, a collection of historical patterns could

represent working records of the power system for a building, in the same analogy. By creating

pattern repositories, the performance of a building’s power system could be tracked, predicted, and

diagnosed. The process of diagnosing the power system performance using PPDAM is not covered

in this paper and will be explored in future research.

There are two types of pattern repositories: parent and child pattern repositories. The structure

of the repositories is illustrated in Figure 3.12. These three repositories that contain all of the true

historical patterns are defined as parent repositories. Each parent repository has a certain number

of child repositories. Each child repository contains all predicted patterns from one true pattern

in a corresponding parent repository. Therefore, the number of child repositories in a specific

parent repository is equal to the number of parent patterns in this parent repository. For instance,
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Figure 3.11: Creation and labeling of parent pattern repositories

Figure 3.12: Hierarchical structure of patterns repositories

the weekday parent repository has k child repositories since there are k patterns in this weekday

parent repository. Patterns in the child repositories, also called child patterns, are the result of the

prediction using the LSTM model and the SAX representation.

The process of creating and labeling of parent pattern repositories is shown in Figure 3.11. A
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certain period of historical power demand records of the selected building in the database are data

source of the pattern repositories. Each daily power demand profile in the datasets is converted

to a SAX pattern (hereafter referred to as parent pattern). All parent patterns are categorized into

three groups according to three types of days (weekday, weekend, and holidays). By separating

patterns according to their day type, the energy use of the building can be better differentiated and

identified. As shown in Figure 3.13, each pattern in the parent repository (the table on the left)

has a value (defined as parent frequency) corresponding to the frequency of occurrence of that

pattern in the historical records. In each parent repository, the parent patterns are sorted based on

their parent frequency. After creating parent pattern repositories, predicted patterns of all historical

patterns are generated, in order to constitute child repositories. Predicted patterns generated are

grouped and sorted if they are associated with the same parent pattern and the same day type.

Figure 3.13 provides an example: a weekday parent repository, the child repository of the

pattern ‘aaaaaa’ in this weekday parent repository. All patterns in the table on the left are historical

Figure 3.13: An example of weekday repositories

true patterns, and all patterns in the child repository of ‘aaaaaa,’ the table on the right, are predicted

patterns. Each pattern in the parent repository has a value associated (defined as parent frequency),
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corresponding to the frequency of occurrence in the historical records. In the child repository, each

child pattern has a value associated (defined as child frequency), corresponding to the number

of times the parent pattern was predicted (using the LSTM model) into that child pattern. Let’s

assume the parent pattern ‘aaaaaa’ appears 80 times in history, and it belongs to the weekday

parent repository. In the child repository corresponding to ‘aaaaaa,’ the correctly predicted pattern

appears 69 times, which means that 69 out of 80 times, the pattern ‘aaaaaa’ is correctly predicted.

Thus, the accuracy of the LSTM model and the SAX model, in terms of each parent pattern,

can be illustrated by all child repositories. This thesis focuses on anomaly detection with parent

repositories and the solid functionalities of child repositories will be explored in the future study.

Motifs and discords are two key concepts to consider when applying anomaly detection to

building power demand. A motif is a typical pattern that occurs regularly within a data set [50]. A

discord is an unusual pattern within a data set that can be identified as infrequent behavior [51]. A

threshold needs to be set in order to distinguish motifs and discords. Miller et al. in [33] defined a

discord as a day-pattern with a parent frequency of less than 2% of the total count of days available.

A parent pattern is labeled as a motif if its parent frequency is greater than the threshold, or it is

labeled as a discord if its parent frequency is less than the threshold. For example, as shown in

Figure 3.13, all parent patterns are labeled as motifs or discords.

3.3.3 Pattern Retrieval and Prediction

Figure 3.14 illustrates the classification test designed to test the efficacy of the anomaly prediction

module. Classification is a process of categorizing a given set of data into classes. Thus, there are

two classes in the classification test: motif and discord. Historical power and temperature data are

extracted from the database to form the test set to predict the patterns of 500 days. For each day

in the test set, a predicted profile is estimated. For both historical and predicted profiles, a SAX

transformation is performed, considering the appropriate SAX parameters (a and w) for a desired

granularity.

As mentioned in Section 3.3.2, motif and discord labels are assigned to patterns in each parent
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Figure 3.14: Design of the anomaly classification test

repository. A SAX pattern can be classified as a motif or a discord when retrieved from the la-

beled parent repositories. Therefore, the actual class (Y ) for the classification test can be obtained

by retrieving historical patterns in the test set from the labeled repositories (e.g. Figure 3.13). In

parallel, the predicted class (Ŷ ) of patterns in the test set can be obtained by retrieving predicted

patterns from the labeled repositories. In this paper, the actual class (labels associated with histor-

ical patterns) is considered the ground truth.

The summary of the prediction results on a classification problem is recorded in a confusion

matrix, as shown in Table 3.3. The number of correct and incorrect predictions are summarized by

the count values and broken down by class. The confusion matrix gives an insight not only into

the classification errors but also into the types of errors.

Explanations of terms shown in Table 3.3 are as follows. Positive (P) means that the predicted

pattern is a discord. Negative (N) means that the predicted pattern is a motif. A true positive
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Table 3.3: Confusion matrix

Predicted class
Discord Motif

Actual class
Discord TP FN
Motif FP TN

(TP) means that the true pattern is a discord, and it has been predicted as a discord. A false

negative (FN) means that the true pattern is a discord, but it has been predicted as a motif. A

true negative (TN) means that the true pattern is a motif, and it has been predicted as a motif.

A false positive (FP) means that the true pattern is a motif, but it has been predicted as a discord.

Accuracy, Precision, Recall and F1 Score are used to evaluate the performance of motif and discord

detection: Accuracy = T P+T N
T P+FN+FP+T N , F1score = 2×Recall×Precision

Recall+Precision , where Precision = T P
T P+FP ,

Recall = T P
T P+FN . Accuracy is the ratio of correctly predicted observations to the total number of

observations. Precision is the ratio of correctly predicted positive observations to the total number

of predicted positive observations. Recall is the ratio of correctly predicted positive observations

to all observations with actual positive labels. F1 Score is the weighted average of Precision and

Recall. Thus, it takes both FP and FN into account to strike a balance between precision and

Recall [52].
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Chapter 4: Experimental Results

Two sets of experiments are designed to implement and test the modules of power demand forecast-

ing and anomaly prediction. Section 4.1 shows the information of seven buildings and all datasets

involved in the experiments. The results of the two experiments are presented in Section 4.2 and

Section 4.3, respectively.

4.1 Data Collection from Buildings

Seven buildings on the UBC campus are involved in the experiments. Table 4.1 shows the full

names, acronyms, mean, standard deviation (STDs) and areas of seven buildings. Power data of

year 2015 to 2019 are utilized to calculate the means and standard deviations of each building.

The models are built using the total electrical power consumption data measured by the main

electric meter in each building. The power demand data (in the unit of kilowatt) are the summation

of HVAC systems, plug loads (computers, kettles, microwaves, etc.), lighting, etc. The temperature

data (in the unit of Celsius) are generated from the Rooftop Weather Station at UBC. Power and

temperature data are collected from a SkySpark platform [53]. SkySpark is a platform utilized by

Water and Energy Services at UBC to expose meter, BACNet signals, and weather data to promote

research on building performance, all as part of the Campus as a Living Lab Initiative.

Datasets used in the experiments are introduced in this paragraph. For the experiments of

Table 4.1: Information of buildings

Building Acronym Area (m2) Mean (kW) STD
University Services Building USB 11598 138.52 59.28

Aquatic Ecosystems Research Laboratory AERL 5368 54.15 14.54
C. K. Choi Building CKC 2912 12.97 4.92

Earth Sciences Building ESB 17755 526.57 95.14
Food, Nutrition and Health Building FNH 5962 152.92 37.25

Forest Sciences Center FSC 22459 549.91 111.96
Pharmaceutical Sciences Building PSB 36138 1387.53 159.37
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power demand forecasting, the dataset of the university service building is different from the ones

used for the other six buildings. The time span of power data (in kW) for the university service

building ranges from 12 am, October 11, 2014, to 11 pm, September 1, 2019. The raw dataset

includes 42888 samples (1787 days) at a sampling time of one hour. The time span of power data

(kW) for the other six buildings ranges from 12 am, January 1, 2015, to 11 pm, December 31,

2019. Thus, 43824 samples (1826 days) are collected in the raw dataset for these six building and

the sampling time of the data is one hour. All datasets for power demand forecasting are split into

80% for training, and 20% for testing. In terms of anomaly prediction module, the power data

ranging from 12 am, January 1, 2015, to 11 pm, December 31, 2019 are used to create pattern

repositories for seven buildings. Thus, a total of 1826 days (87 holidays, 502 weekends, and

1237 weekdays) are taken into account to create the three parent repositories. The dataset used

for motif and discord classification test is different from the one for power demand forecasting

test. This is because all day-types and enough number of anomalous patterns need to cover in

the classification test. However, patterns in the power demand forecasting test set do not provide

enough true anomalous patterns. That is why a dataset for predicting the patterns of 500 days is

selected as the classification test set (as described in Figure 3.14).

4.2 Experiments on Power Demand Forecasting

In order to select the optimal LSTM model for power demand forecasting in the application of PP-

DAM, 34 LSTM models with various combinations of inputs and architectures were built based on

the power data from the university service building. The deep learning library used are introduced

in Section 4.2.1. The performance of these models is evaluated by using the MSE, MAE, and

average SAX distance. The analysis of evaluation results and the optimal combination of inputs

and model architecture are presented in Section 4.2.2.
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4.2.1 Implementation of LSTM models

The LSTM models are implemented in Python, using the deep learning library, Keras. Keras

is a high-level neural networks API, written in Python and capable of running as a frontend to

TensorFlow, CNTK, or Theano [48]. The backend for the modeling is Tensorflow. One epoch is

one cycle through which an entire dataset is passed once forward and backward through the neural

network [54]. The weights are updated in the neural network a number of times proportional to the

number of epochs, and through this process the model transforms from underfitting, to optimal,

to overfitting. To ensure the model is optimal, Callback, ModelCheckpoint and EarlyStopping in

Keras are configured to save the model with a minimum test loss in the training process, no matter

how many epochs are set to train the model. Therefore, the 34 models analyzed in this thesis

are neither underfitting nor overfitting. A detailed description of the implementation in Keras is

beyond the scope of this thesis.

4.2.2 Results of Power Demand Forecasting

Table 4.2 shows MSE, MAE and SAX distance, resulting from the test of 34 LSTM configu-

rations. In Table 4.2, there are 12 models using the standard architecture, 12 models using the

single-encoder decoder architecture, and 10 models using the multi-encoder decoder architecture.

Figure 4.1 plots bar charts of MSE, MAE and SAX distance, which clearly shows the trends of

three metrics.

The input index represents the input configuration introduced in Section 3.2.2. The value of

n refers to the last n-hour data samples. The SAX parameters a and w have been explained in

Section 3.3.1. The value of a depends on how many value-categories one prefers to divide the

power demand range into. The value of w depends on how many time windows within a day one

wants to monitor. To meet the demands, a and w are assumed to be 4 and 6, respectively.

From Table 4.2, it is possible to conclude that the SAX distance follows a trend similar to the

MSE and MAE. One can also conclude that the configurations of inputs and architecture that best

minimize the losses and reduces the SAX distance are Configs 23 and 24. Config 23 is selected
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Table 4.2: Configurations and prediction performance of LSTM models implemented on the
dataset of the university service building

Configuration
index

LSTM
Architecture

Input
Index n MSE MAE

Distance
a = 4
w = 6

1

Standard

1
24 0.4613 0.4969 0.7205

2 48 0.4394 0.4878 0.4569
3 72 0.4075 0.4564 0.4163
4

2
24 0.4457 0.4877 0.6787

5 48 0.4007 0.4548 0.3744
6 72 0.3936 0.4544 0.3368
7

3
24 0.3221 0.4144 0.2324

8 48 0.3453 0.4206 0.2853
9 72 0.3490 0.4296 0.2831
10

4
24 0.3139 0.4157 0.2355

11 48 0.3064 0.4051 0.1970
12 72 0.3205 0.4170 0.2505
13

Single-encoder
decoder

1
24 0.4406 0.4790 0.7681

14 48 0.3870 0.4444 0.3185
15 72 0.3888 0.4435 0.4118
16

2
24 0.4262 0.4608 0.6074

17 48 0.3839 0.4539 0.3648
18 72 0.3793 0.4514 0.3331
19

3
24 0.3221 0.4144 0.2859

20 48 0.3242 0.3914 0.2718
21 72 0.3301 0.4078 0.2884
22

4
24 0.3006 0.3940 0.2742

23 48 0.2762 0.3692 0.1663
24 72 0.2813 0.3828 0.1588
25

Multi-encoder
decoder

1
48 0.4295 0.4737 0.4068

26 72 0.4102 0.4476 0.4988
27

2
48 0.3996 0.4590 0.3931

28 72 0.3761 0.4377 0.4171
29

3
24 0.3233 0.3996 0.3013

30 48 0.3479 0.4171 0.2643
31 72 0.3278 0.4010 0.2900
32

4
24 0.3018 0.3936 0.3082

33 48 0.2851 0.3835 0.2798
34 72 0.2822 0.3950 0.1840
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Figure 4.1: Bar plots of models’ MSE, MAE and SAX distance

because it shows the lowest MSE and MAE, and the second-lowest SAX distance, behind Config

24. Additionally, compared to Config 24, Config 23 is selected because it has a lower complexity,

given that it requires the data from the 48 hours before the predicting time, compared to 72 hours

for Config 24, and the training time of Config 23 is 21.25% faster than Config 24.

By analyzing the results in Table 4.2, it is possible to understand how the performance of

power demand forecasting is influenced by input variables and model architectures. Comparing all

three LSTM architectures, one can conclude that single-encoder decoder models always produce

better results (lowest MSE, MAE, distance) under the same set of inputs and value n. Comparing

the standard and multi-encoder decoder architectures, the multi-encoder decoder models obtain

smaller MSE and MAE, while the standard architecture performs better at minimizing the pattern

distance.

Considering the value of n (comparing models with the same LSTM architecture), as the length

of the last n-hour data increases (Models 1 to 6, 13 to 18, and 25 to 28), the loss (MSE) gradually

decreases for models with Inputs 1 and 2 but not for Inputs 3 and 4. Therefore, it is possible to

conclude that increasing the length of the historical data can improve the accuracy of the models

when the previous week data is not included. For models with the same LSTM architecture and

the same value of n, comparing Input 1 and Input 2, and comparing Input 3 and Input 4, one

can conclude that adding temperature data improves the predicting performance. Additionally,

comparing Input 1 and Input 3, and comparing Input 2 and Input 4, it can be determined how the
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last week’s realization improves predictability.
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Figure 4.2: Predictions for first 336 hours in the test set of Config 17
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Figure 4.3: Predictions for first 336 hours in the test set of Config 23

The power demand predictions from Config 17 and Config 23, for the first 336 hours in the

test set, are plotted in Figure 4.2 and Figure 4.3, respectively. Blue lines represent true power data,

and orange lines indicate predicted power data. Comparing Figure 4.2 and Figure 4.3, one can

conclude that Config 17 cannot predict the weekends’ power demand, especially power demand

on Saturday, as accurately as Config 23. This is because Config 23 uses the Input 3, which includes
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Table 4.3: Prediction performance of the best models implemented on seven buildings

Configuration
Index

Model
Architecture Building MSE MAE

Distance
a = 4
w = 6

23
Single-encoder

decoder

USB 0.2762 0.3692 0.1663
AERL 0.1126 0.2345 0.0220
CKC 0.1282 0.2446 0.0059
ESB 0.1576 0.2972 0.0251
FNH 0.0934 0.2145 0.0127
FSC 0.1634 0.2645 0.0199
PSB 0.1962 0.3288 0.0011

the last week’s 24h realization. With this information, Config 23 is able to infer if the next day is a

weekday or a weekend. Since the loss of models with Inputs 3 and 4 is always lower than 0.35, it

can be concluded that these models perform better than models with Inputs 1 and 2 because of the

last week’s 24h realization data.

After select the optimal configuration of the LSTM models, i.e. Config 23, models in the

optimal configuration were built for the other six building on UBC campus. The dataset for each

building is split into 80% for training, and 20% for testing. As recommended by Water and Energy

Services department at UBC, it might not be able to identify the changes too well on the university

service building. Buildings which might work particularly well and have decent changes to point

at could include PSB, FSC, and ESB. Buildings that have been pretty steady are AERL, CKC and

FNH. The results (MSE, MAE, and SAX distance) of the seven building are shown in Table 4.3.

The results shows that evaluation errors of the university service building is the highest.

4.3 Experiments on Anomaly Prediction

To implement the test for pattern retrieval and prediction (described in Section 3.3.3), the SAX

representations of all the parent (historical) patterns corresponding to the data from seven buildings

were estimated. Moreover, the SAX representations were classified and labeled as “motifs” and

“discords.” The creation and labeling of parent repositories is described in Section 4.3.1. The

performance of pattern retrieval and prediction is evaluated in Section 4.3.2.
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4.3.1 Labeled Pattern Repositories

As mentioned in Section 3.3.2, two levels of repositories are created: three parent pattern reposi-

tories (weekday, weekend, holiday), and the child repository for each parent pattern (all possible

predicted patterns, for each parent pattern in each parent repository). The dataset ranging from

12 am, January 1, 2015, to 11 pm, December 31, 2019 was used to create pattern repositories for

seven buildings. Thus, a total of 1826 days (87 holidays, 502 weekends, and 1237 weekdays) are

taken into account to create the three parent repositories.

Table 4.4: The number of patterns in each parent repository

Building Weekday Weekend Holiday
USB 114 92 46

AERL 76 55 35
CKC 72 59 34
ESB 220 156 39
FNH 90 80 35
FSC 96 93 30
PSB 113 90 42

By converting historical power consumption to SAX patterns, one can get the number of pat-

terns in each parent repositories created for seven buildings, which is shown in Table 4.4. Higher

the number of patterns is, more diverse the building behaviors are. For instance, Figure 4.4 shows

the frequency distribution for the holiday repository (Figure 4.4.a), the weekend repository (Fig-

ure 4.4.b), and the weekday repository (Figure 4.4.c) of the university service building. 252 pat-

terns were identified in total. The repositories contain 46, 92, and 114 patterns, respectively. The

frequency distribution of a pattern differs among the three parent pattern repositories. It is impor-

tant to observe that the frequency distribution of a pattern can be different among the three parent

patterns repositories. For example, for pattern ‘aaaaaa,’ the frequency is 14.94% (13 out of 87)

in holidays; 11.75% (59 out of 502) in weekends; and 0.57% (7 out of 1237) in weekdays. This

shows that the energy consumption of a building is different depending on the type of day.

In terms of the university service building, the composition of the child repository of a pattern,

e.g., ‘aaaaaa,’ is also different in each of the three parent repositories, as shown in Tables 4.5,
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Figure 4.4: Frequency distribution of (a) holiday parent repository, (b) weekend parent repos-
itory, (c) weekday parent repository of the university service building
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4.7, and 4.6. Child repositories reflect the forecast accuracy of selected Config 23 regarding each

corresponding parent pattern. The forecast accuracy is 76.9% for holidays; 75% for weekdays; and

91.5% for weekends, regarding the parent pattern “aaaaaa” of the university service building.

Table 4.5: Child repository of ‘aaaaaa’ in holiday parent repository

Predicted pattern Child frequency
aaaaaa 10
abcbba 1
aacbaa 1
aababa 1

Table 4.6: Child repository of ‘aaaaaa’ in weekend parent repository

Predicted pattern Child frequency
aaaaaa 54
aaaaba 3
aababa 2

Table 4.7: Child repository of ‘aaaaaa’ in weekday parent repository

Predicted pattern Child frequency
aaaaaa 6
aabbaa 1
bbaaaa 1

As mentioned in Section 3.3.3, Miller et al. in [33] suggest that a day-pattern with a frequency

of less than 2% of the total count of days available can be considered as a discord. Table 4.8 shows

the number of daily profiles in each parent repository and the threshold determined for each of

the parent repositories. For instance, a SAX pattern of the university service building appeared 15

times on weekdays is labeled as discord, because its frequency, 15, is less than weekdays threshold,

25. This distinction results in discord tags for 31 days in holiday repository, 125 days in weekend

repository, 304 days in weekday repository, which is 31.6%, 28.5% and 26.6% of the total count

of days in the three repositories of the university service building, respectively. The number and

percentage of anomalous days of all seven buildings are shown in Table 4.9. The percentages of

anomalous weekdays and weekends in ESB are more than a half ( 55.35% and 53.98%), which are

the highest among the seven buildings. It implies the highest diversity of building behaviors.
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Table 4.8: Thresholds of three parent repositories

Repository Total days Threshold
Holidays 87 2
Weekends 502 10
Weekdays 1237 25

Table 4.9: Number and percentage of anomalous days for seven buildings

Building
Anomalous

weekday
Anomalous

weekend
Anomalous

holiday
#Days Percentage #Days Percentage #Days Percentage

USB 304 24.58% 125 24.90% 31 35.63%
AERL 293 23.69% 99 19.72% 30 34.48%
CKC 275 22.23% 128 25.50% 30 34.48%
ESB 660 53.35% 271 53.98% 37 42.53%
FNH 438 35.41% 137 27.29% 37 42.53%
FSC 450 34.86% 175 36.38% 26 29.89%
PSB 410 33.14% 179 35.65% 36 41.38%

4.3.2 Results of Anomaly Prediction

A motif and discord classification test is designed in order to validate the anomaly prediction per-

formance of the selected model configuration (Config 23). The dataset used for motif and discord

classification test is different from the one for power demand forecasting. This is because all day-

types and enough number of anomalous patterns need to cover in the classification test. However,

patterns in the power demand forecasting test set do not provide enough true anomalous patterns.

That is why a dataset for predicting the patterns of 500 days was selected as the classification test

set (as described in Figure 3.14).

Power demand data of these 500 days are extracted to generate true patterns that are taken as

ground-truth labels. In this test set, true patterns of half of these 500 days are motifs, and the other

half are discords. The model in Config 23 for each building generates the predicted pattern of each

true pattern, and these 500 predicted patterns are classified as motifs and discords.

Results of the seven tests are summarized in Table 4.10. For instance, in terms of the university

service building, there are 208 T P, 42 FN, 18 FP, and 232 T N in the results. As introduced in

Section 3.3.3, accuracy, precision, recall and F1 score are used to evaluate the performance of
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Table 4.10: Confusion matrix of seven buildings

Predicted class
Discord Motif

Actual
class

USB
Discord 208 42
Motif 18 232

AERL
Discord 223 27
Motif 19 231

CKC
Discord 229 21
Motif 13 237

ESB
Discord 215 35
Motif 23 227

FNH
Discord 222 28
Motif 12 238

FSC
Discord 234 26
Motif 14 226

PSB
Discord 237 23
Motif 16 224

Table 4.11: Motif and discord classification results

Building Accuracy Precision Recall F1 score
USB 0.8800 0.9200 0.8320 0.8738

AERL 0.9080 0.9215 0.8920 0.9065
CKC 0.9320 0.9463 0.9160 0.9309
ESB 0.8840 0.9034 0.8600 0.8812
FNH 0.9200 0.9487 0.8880 0.9173
FSC 0.9200 0.9435 0.9000 0.9212
PSB 0.9160 0.9368 0.9115 0.9240

motif and discord detection. Accuracy, Precision, Recall and F1 score of models implemented on

seven buildings are shown in Table 4.11. The results show that the anomaly prediction modules

work well on seven buildings, no matter pattern composition and diversity of building repositories.
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Chapter 5: Conclusions

5.1 Summary of Contributions

The rapidly growing world energy use has already raised concerns over supply difficulties, exhaus-

tion of energy resources and heavy environmental impacts (ozone layer depletion, global warming,

climate change, etc.). Those serious issues stress the need for seeking effective energy-efficiency

methods. Improving energy efficiency in buildings is today a prime objective for energy policy at

regional, national, and international levels, to reduce the amount of gas emission as well as fossil

fuel consumption. Among various data-driven predictive analytics methods for improving building

energy efficiency, predicting and monitoring the power consumption with the aim of identifying

abnormal behaviors is promising and cost-effective. However, the information contained in time

series predictions usually needs to be interpreted by a human with domain expertise. For instance,

meaningful statistics, such as near-base load, near-peak load, high-load duration, rise time and fall

time, could be defined to describe the load profiles. These statistics are useful for building energy

management but need to be further processed and interpreted by expertise to apply. Moreover,

an algorithmic way of labeling anomalies needs to be explored because for practical applications,

anomaly detection without anomaly labels is closer to the actual requirements of building operation

managers since it is expensive and time-consuming to generate labeled data for abnormal power

consumption in buildings.

Therefore, this research intends to fill up the gap by proposing a novel predictive power demand

analytic methodology that is capable to identify upcoming normal and anomalous demand patterns,

through mining historical power demand and temperature data, and day-ahead power demand fore-

cast. The power demand data explored in the study are the total electrical power consumption in

the building. That is the summation of heating, ventilating and air-conditioning system load, plug

load, lighting, etc. It is measured by the main electric meter installed on the main electrical feeder
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into the building on the campus of the University of British Columbia. The temperature data are

generated by the Earth and Ocean Science Rooftop Weather Station at the University of British

Columbia.

This data-driven methodology comprises two modules, i.e., the power demand forecasting

module and the anomaly prediction module. The integration of two modules can derive latent

information from historical and predicted power data, and provide an intuitive and effective way

to identify typical (motif) and atypical (discord) behaviors by using Long Short-Term Memory

neural networks and Symbolic Aggregate Approximation. This is the first time that LSTM neural

networks and SAX are integrated for accurate insights regarding the power needs of the building,

intending to support more efficient energy management.

The power demand forecasting module can predict time-series power demand for the next

24 hours, which is a baseline for pattern generation and anomaly prediction. In order to figure out

how the performance of models is influenced by input variables and model architectures, this study

explores how the forecasting performance is influenced by power and temperature inputs, and three

LSTM model architectures. Two of the architectures (the standard and the single-encoder decoder

architectures) have been utilized in the literature, while the multi-encoder decoder architecture

is suggested for the first time. Based on the experimental results presented in the thesis, it can

be concluded that single-encoder decoder models present a better performance than standard and

multi-encoder decoder architectures. The optimal forecasting module is characterized by power

and temperature inputs, including the last week’s 24h realization and last 48h data.

In the module of anomaly prediction, the historical and predicted time-series profiles are first

transformed into patterns and later are retrieved from a system of labeled repositories. The patterns

are classified as normal or anomalous based on their frequency of appearance in the pattern repos-

itories. The limitation that the information contained in time series predictions usually needs to be

interpreted by a human with domain expertise is addressed since the anomaly prediction module

can automatically identify the pattern from the time-series forecasts. Moreover, automated inter-

pretation of upcoming abnormal behaviors in the anomaly prediction module avoids ground-truth
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labeling, which provides an unsupervised method when labels are not available from power meter

data. The performance of the anomaly prediction module is evaluated by classification tests im-

plemented on seven buildings on the campus of the University of British Columbia. The method

obtains a minimum accuracy of 88%, a maximum accuracy of 93.20%, a minimum F1 score of

87.38%, and a maximum F1 score of 93.09%.

5.2 Limitations and Future Research

This thesis shows that data-driven predictive approaches provide a promising way for power de-

mand monitoring, which is cost-effective, accurate, robust, and scalable. However, there are also

some limitations to the research. The challenges and the potential future studies for the research in

this thesis are discussed as follows.

Since the approaches used in this study highly rely on the data, high-quality data are required

to well implement these methods. Hence, future studies could focus on the design of more efficient

and economic data collection strategies. Besides, the data used in the modeling was collected from

the University of British Columbia, which may not be available in some situations and applications.

Transfer learning may thus need to be further researched so that the models developed for buildings

on the UBC campus could be reused as the starting point for a model on other tasks. Moreover,

the condition of the building may also change due to renovations and the data collected from the

building can get affected. Therefore, the sensitivity of the prediction models needs to be explored

with transfer learning when the regular patterns of source data change.

The concept of child pattern repositories is introduced in the thesis, but the concrete function-

alities of it are not included. The pattern distribution in the child pattern repositories indicates

the historical forecast performance of the LSTM models upon each corresponding parent pattern.

Thus, In building research, further work could also include monitoring strategies for building op-

erators to obtain insights on potential faults, by analyzing the pattern distribution in child pattern

repositories. Labeling SAX patterns as normal or anomalous behaviors by comparing pattern fre-

quency with a threshold may limit the classification accuracy. In order to improve the accuracy of
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anomaly classification, more classifying algorithms applied upon patterns need to explore. Given

that SAX words are associated with predicted patterns, the anomaly detection strategy could be

augmented by utilizing methods related to natural language processing. In order to involve the

forecast results in a real-world control system, another topic to explore could be how a predicted

power demand pattern could be used as a set-point to control a building management system.

To conclude, this research provides accurate insights regarding the power needs of the building,

intending to support more efficient energy management. Building operators could take actions on

completing building maintenance tasks according to the insights obtained. In order to improve the

accuracy and feasibility of the approach, future studies could focus on the design of more efficient

and economic data collection strategies, transfer learning of trained models, analyzing the pattern

distribution in child pattern repositories and more efficient classifying algorithms.
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artificial intelligent techniques and continuous time simulation modelling. Practical
predictive analytics for energy efficiency and failure detection,” Computers in Industry,
vol. 115, p. 103164, 2020. → page 2

[7] J. Zhu, Y. Shen, Z. Song, D. Zhou, Z. Zhang, and A. Kusiak, “Data-driven building load
profiling and energy management,” Sustainable Cities and Society, vol. 49, p. 101587, 2019.
→ pages 2, 23

[8] H. Zhao and F. Magoulès, “A review on the prediction of building energy consumption,”
Renewable and Sustainable Energy Reviews, vol. 16, no. 6, pp. 3586–3592, 2012. → pages
2, 7

[9] J. L. Mathieu, P. N. Price, S. Kiliccote, and M. A. Piette, “Quantifying changes in building
electricity use, with application to demand response,” IEEE Transactions on Smart Grid,
vol. 2, no. 3, pp. 507–518, 2011. → page 3

[10] C. Xu and H. Chen, “A hybrid data mining approach for anomaly detection and evaluation
in residential buildings energy data,” Energy and Buildings, vol. 215, p. 109864, 2020. →
pages 3, 11

[11] M. Kim, W. Choi, Y. Jeon, and L. Liu, “A hybrid neural network model for power demand
forecasting,” Energies, vol. 12, no. 5, p. 931, 2019. → page 4

49

https://www.iea.org/fuels-and-technologies/electricity
https://www2.gov.bc.ca/gov/content/industry/electricity-alternative-energy/energy-efficiency-conservation
https://www2.gov.bc.ca/gov/content/industry/electricity-alternative-energy/energy-efficiency-conservation


[12] E. Sala-Cardoso, M. Delgado-Prieto, K. Kampouropoulos, and L. Romeral, “Activity-aware
HVAC power demand forecasting,” Energy and Buildings, vol. 170, pp. 15–24, 2018. →
page 4

[13] L. Hernandez, C. Baladron, J. M. Aguiar, B. Carro, A. J. Sanchez-Esguevillas, J. Lloret, and
J. Massana, “A survey on electric power demand forecasting: Future trends in smart grids,
microgrids and smart buildings,” IEEE Communications Surveys and Tutorials, vol. 16,
no. 3, pp. 1460–1495, 2014. → page 7

[14] C. R. Touretzky and R. Patil, “Building-level power demand forecasting framework using
building specific inputs: Development and applications,” Applied Energy, vol. 147,
pp. 466–477, 2015. → page 7

[15] M. S. Al-Homoud, “Computer-aided building energy analysis techniques,” Building and
Environment, vol. 36, no. 4, pp. 421–433, 2001. → page 8

[16] R. Yao and K. Steemers, “A method of formulating energy load profile for domestic
buildings in the UK,” Energy and Buildings, vol. 37, no. 6, pp. 663–671, 2005. → page 8

[17] F. Ansari, A. Mokhtar, K. Abbas, and N. Adam, “A Simple Approach for Building Cooling
Load Estimation,” American Journal of Environmental Sciences, vol. 1, no. 3, pp. 209–212,
2005. → page 8

[18] A. Dhar, T. A. Reddy, and D. E. Claridge, “Modeling hourly energy use in commercial
buildings with fourier series functional forms,” Journal of Solar Energy Engineering,
Transactions of the ASME, vol. 120, no. 3, pp. 217–223, 1998. → page 8
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