
“@alex, this fixes #9”: Analysis of Referencing Patterns in
Pull Request Discussions

by

Ashish Chopra

B.Tech. I.T., Guru Gobind Singh Indraprastha University, 2010

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

February 2021

© Ashish Chopra, 2021

The following individuals certify that they have read, and recommend to the Fac-
ulty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

“@alex, this fixes #9”: Analysis of Referencing Patterns in Pull Request
Discussions

submitted by Ashish Chopra in partial fulfillment of the requirements for the de-
gree of Master of Science in Computer Science.

Examining Committee:

Dongwook Yoon, Computer Science
Supervisor

Ivan Beschastnikh, Computer Science
Supervisory Committee Member

Sidney S. Fels, Electrical and Computer Engineering
Supervisory Committee Member

ii

Abstract

Pull Requests (PRs) are a frequently used method for proposing changes to source

code repositories. When discussing proposed changes in a PR discussion, stake-

holders often reference a wide variety of information objects for establishing shared

awareness and common ground. Previous work has not considered how the referen-

tial behavior impacts collaborative software development via PRs. This knowledge

gap is the major barrier in evaluating the current support for referencing in PRs

and improving them. We conducted an explorative analysis of ∼7K references,

collected from 450 public PRs on GitHub, and constructed taxonomies of referent

types and expressions. Using our annotated dataset, we identified several patterns

in the use of references. We found that despite a prevalent use of references in PR

discussions, GitHub’s interface lacks the support for referencing the majority of

information types. We provide qualitative descriptions of how different contextual

factors shape the use of references in discussions. We also discovered distinct ref-

erencing patterns in merged and closed PRs which signifies a potential ground for

future research to establish a relationship between reference use and PR outcomes.

These findings suggest that what is and is not referenced within a PR discussion has

an important impact on the software development process, and warrants continued

platform support and research. We conclude with design implications to support

more effective referencing in PR discussion interfaces.

iii

Lay Summary

In software development, pull request (PR) is a process of submitting and review-

ing code changes to software repositories. During the PR review, people often

reference a variety of information resources such as code-related elements (e.g.,

variables, functions, classes) and non-code artifacts (e.g., users, docs, web URLs)

in their text comments. In this research, we analyzed a dataset of 7k references col-

lected from 450 PR threads on GitHub to understand what information resources

people mention and how they are expressed. We also identified several referencing

patterns used in discussions. We found that the use of references is prevalent in

PR discussions, but GitHub interface lacks the support for referencing a majority

of information types. We described how contextual factors of PR discussion shape

people’s referencing practices. We also discovered distinct referencing patterns

in merged and closed PRs which signifies a potential ground for further research.

Based on our findings, we proposed implications for designing effective referenc-

ing support in PR discussion interfaces.

iv

Preface

This thesis is an original intellectual product of the author, A. Chopra. All of the

work presented henceforth was conducted in D-Lab, located in the department of

Computer Science in UBC, headed by Prof. Dongwook Yoon.

The research methods described in Chapter 3 was designed and conducted in

close collaboration with Prof. Dongwook Yoon, Prof. Ivan Bestchastnikh, Prof.

Sidney S. Fels, Samuel Dodson (PhD candidate), and Morgan Mo (undergraduate

research intern).

Ashish Chopra and Morgan Mo conducted the qualitative coding of PRs. Mor-

gan Mo designed and implemented the data extraction utility used for compiling

the references dataset as described in Section 3.3.1.

The Correspondence Analysis and Hierarchical Clustering described in Sec-

tion 3.3.2 was designed and implemented by Samuel Dodson.

v

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Tables . ix

List of Figures . xi

List of Supplementary Materials . xiii

Glossary . xiv

Acknowledgments . xv

1 Introduction . 1

2 Related Work . 6
2.1 Common grounding through referencing 6

2.2 Source code review . 7

2.3 Factors that affect PR outcomes 8

2.4 Taxonomies as a tool . 9

2.5 GitHub dataset as a research contribution 10

2.6 Designing code review interfaces 11

vi

2.7 Summary . 12

3 Methods . 13
3.1 Sampling PR discussions . 14

3.2 Identifying and coding references 16

3.3 Building reference taxonomies 18

3.3.1 Compiling PR references dataset 20

3.3.2 Analysing PR references 20

4 Findings . 22
4.1 Empirical Accounts of Referencing Support on GitHub 22

4.1.1 How well GitHub’s referencing feature is being used . . . 24

4.1.2 Majority of referent types are expressed in plain text . . . 26

4.1.3 Source code is frequently discussed in PR discussions, but

not supported by auto-linking 27

4.2 Contextual factors that shape the reference use 30

4.2.1 Information Type . 32

4.2.2 Information Specificity 34

4.2.3 Cultural Practices . 36

4.2.4 Social Norms . 38

4.3 Referencing patterns in PRs with different outcomes 41

4.3.1 Accepted or Rejected PRs tend to have references to the

evidence that advocates their appropriateness. 41

4.3.2 In Open PRs, developers seem to be discussing high-level

changes such as API and Compatibility issues in software

projects . 43

5 Learnings from Referencing . 44
5.1 Design Implications . 44

5.1.1 There is a need for referencing finer details in source code 45

5.1.2 Referencing UI elements in PR Discussion 46

5.1.3 Nested referencing in comments can be supported with

transclusion. 47

vii

5.1.4 There is a need for supporting references within a PR dis-

cussion thread . 47

5.1.5 Extending GitHub’s current support for auto-linking soft-

ware deliverables . 48

5.2 Referencing and discussion stages 48

5.3 Referencing and PR outcomes 49

5.4 Varying levels of platform’s support for referencing 49

5.5 General lack of referencing support 50

5.6 Summary . 50

6 Conclusion . 52

Bibliography . 54

A References Dataset Schema . 62

B Codebook for Referent Types . 65

C Codebook for Expression Types . 77

D Topic Modeling Result . 80

viii

List of Tables

Table 3.1 Diversity criteria for sampling repositories 15

Table 3.2 Taxonomy of referent types, with examples. 19

Table 3.3 Taxonomy of expression types, with examples. 20

Table 4.1 Distribution of all references by referent type (N = 6,558) . . . 23

Table 4.2 Distribution of non-generic references created using different

referencing mechanisms (N = 4,654) 24

Table 4.3 Distribution of references to Source Code sub-categories by dif-

ferent referencing mechanisms (N = 2,279) 29

Table 4.4 Distribution of PRs by SOURCE CODE and non-source code ref-

erents. 30

Table 4.5 Impact of number of comments and participants in @-mention

references in a PR (Results of Negative Binomial Regression Test) 40

Table 5.1 Summary of learnings derived from studying referencing pat-

terns in PRs. 45

Table A.1 Dataset Schema . 62

Table B.1 Referent Codes arranged by Referent Type (Sub-category) from

Taxonomy Table 3.2 . 65

Table C.1 Expression Codes arranged by Expression Type (Sub-category)

from Taxonomy Table 3.3 . 77

ix

Table D.1 List of 29 topics with their top 20 keywords as identified by

Topic Modeling algorithm. 80

x

List of Figures

Figure 1.1 This figure shows the slice of discussion from a PR to show-

case common ground failure due to absence of a reference

highlighted in red box. The grey dashed line indicates abridged

content not shown in the capture for brevity. 1

Figure 1.2 This figure shows the slice of discussion from a PR to show-

case communication breakdown due to a wrong reference shown

in red box. The grey dashed line indicates abridged content not

shown in the capture for brevity 2

Figure 3.1 A flow diagram representing the research design we used to

compile an annotated dataset of∼7K references from 450 pub-

lic PRs from GitHub. The dataset is used to analyze referential

patterns in PR discussions in Section 3.3.2. 13

Figure 3.2 An illustrated example of coded references. We assigned two

codes to each reference. For each reference (highlighted in

a yellow box), the type (i.e., top-category) and sub-category

of the referent and expression are indicated as ”Type (Sub-

category)” in a blue box. See Table 3.2 and Table 3.3 for the

full list of referents and expressions. 17

Figure 4.1 Distribution of referent sub-categories based on the number

of non-generic references (x-axis) and the proportion of those

references created using the GitHub feature (y-axis). 25

xi

Figure 4.2 Distribution of SOURCE CODE Type references (N= 2,986 as

per Table 4.1) by their sub-categories. 28

Figure 4.3 Dendrogram on principal components on the top-level referent

types generated by the correspondence analysis and hierarchi-

cal clustering. 31

Figure 4.4 Factor map on principal components on the top-level referent

types generated by the correspondence analysis and hierarchi-

cal clustering . 31

Figure 4.5 Distribution of Expression Sub-categories for COMPILATION

AND EXECUTION RESULT. 32

Figure 4.6 Distribution of expression types for non-source code referent

types. 35

Figure 4.7 Distribution of referent types by project programming language. 37

Figure 4.8 Distribution of expression sub-categories. 39

Figure 4.9 Distribution of all referent types by PR status (closed/merged). 42

xii

List of Supplementary Materials

PR references dataset.csv A compiled dataset of ∼7k references in CSV format.

xiii

Glossary

API Application Programming Interface

CSCW Computer-Supported Cooperative Work

CSV Comma-separated Values

GIF Graphics Interchange Format

GUI Graphical User Interface

HCI Human-Computer Interaction

JSON JavaScript Object Notation

PR Pull Request

QCA Qualitative Content Analysis

UI User Interface

URL Uniform Resource Locator

xiv

Acknowledgments

I wish to acknowledge my supervisor, Prof. Dongwook Yoon, and the members of

supervisory committee Prof. Ivan Beschastnikh and Prof. Sidney S. Fels for their

constant support and guidance from the time of inception to the conclusion of this

research work which enormously helped in shaping it to what it is today.

Additionally, I would like to acknowledge Samuel Dodson for providing valu-

able review on a frequent basis, and Morgan Mo for contributing hours of coding

qualitative data and developing the data extraction pipeline. I would also like to

recognize the following people for their feedback and review during various stages

of the project: Anna Offenwanger, Mint Tanprasert, Dr. Ning Ma, Prof. Kyoung-

won Seo, Joice Tang, Mohi Reza, Frances Sin, Matthew Fong, Paul Bucci, Prof.

Ido Roll.

I would also like to acknowledge the financial support provided by Huawei

and the NSERC CREATE program, Designing for People research cluster of UBC

which made this research work possible.

Finally, I would like to express my gratitude to my parents and my beloved

sister for their constant motivational support during this journey.

xv

Chapter 1

Introduction

Asatoma Sadgamaya — Brhadaranyaka Upanishad (1.3.28)

1/30/2021 [WIP] RateLimitPolicy sketch by reisenberger · Pull Request #666 · App-vNext/Polly

https://github.com/App-vNext/Polly/pull/666 2/12

Fix RateLimitRejectedException d1c7ec8
Remove unused configuration overloads 416c6ff

Introduce a factory for obtaining the preferred rate-limiter implemen… fcaf1ac

Pull some test helper methods into a common base-class ebd8a56

Add first specs on async policy syntax c7af7e4

Add full set of specs on rate-limit policies thus far a2f6566

Add tests on retryAfterFactory c92cb6b

Add tests on context passed to retryAfterFactory 1532500

Add async non-generic syntax and specs 56fea85

Improve code layout 182c635

Add sync rate-limit policies 2a1c508

Add initial rate-limit doco; bump to v7.2.0 fd609ad

Improve bulkhead doco in readme 0121b3d

Minor expressivity refinements e061d50

Neaten bulkhead tests commentary db47862

Control visibility of IRateLimiter components daa42cb

Fix non-generic rate-limit tests to be genuinely non-generic c916be5

1/30/2021 [WIP] RateLimitPolicy sketch by reisenberger · Pull Request #666 · App-vNext/Polly

https://github.com/App-vNext/Polly/pull/666 1/12

App-vNext:v722-or-v730 reisenberger:reisenberger-rateLimiterSketch

Add core RateLimiter implementations 271cfd7

Add example async TResult rate-limiter policy implementation 7d70287

Add example syntax 6aa1e2a

Make the retryAfterFactory take Timespan as an input parameter! 8354e6d

Initial LockFreeTokenBucketRateLimiterTests cba0b51

Tidy BulkheadSpecsHelper 193b356

Factor out test helpers 5496e66

Factor out common tests; add tests on lock-based rate limiter 4b17e56

Allow for slow-running on CI servers bfc3251

Add tests on full bucket capacity 8fbb193

Figure 1.1: This figure shows the slice of discussion from a PR to showcase
common ground failure due to absence of a reference highlighted in red
box. The grey dashed line indicates abridged content not shown in the
capture for brevity.

Making a pull request (PR) [1] is the primary method for proposing changes to

source code repositories [26]. GitHub reported that more than 87 million PRs were

merged on its platform between 2018 and 2019 [2]. Discussion among stakehold-

ers is often a crucial aspect of reviewing a proposed change and deciding whether

1

or not to merge a PR into a repository [26]. Previous studies of software engi-

neering suggest that code reviews serve many purposes, such as identifying issues

with proposed changes, collaborative problem-solving, clarifying, and encouraging

knowledge sharing amongst team members [5, 18, 54]. In this thesis, we studied

∼7K references made in public GitHub PRs, analyzing what types of information

objects are mentioned and how these references are expressed in PR discussions.

1/30/2021 Middleware method RequestID() modified to support X-Request-ID from HTTP header by harikb · Pull Request #367 · go-chi/chi

https://github.com/go-chi/chi/pull/367 3/4

RequestIDFromHeader() integrated into RequestID() 404c4b2

def7567 go-chi:master

1/30/2021 Middleware method RequestID() modified to support X-Request-ID from HTTP header by harikb · Pull Request #367 · go-chi/chi

https://github.com/go-chi/chi/pull/367 2/4

SetReqID()

GetReqID()

X-Request-ID

r.Use(middleware.RequestID)

// which behind the scenes does this:
reqID := r.Header.Get("X-Request-ID")
if reqID == "" {
 reqID = generateReqId()
}
setReqId(ctx, reqID)

reqID := middleware.GetReqId(ctx)

// log.With().String("requestId", reqID) // zerolog structured log example
// req.Header.Set("X-Request-ID", reqID) // HTTP calls to other services that should be aware of thi

1/30/2021 Middleware method RequestID() modified to support X-Request-ID from HTTP header by harikb · Pull Request #367 · go-chi/chi

https://github.com/go-chi/chi/pull/367 2/4

SetReqID()

GetReqID()

X-Request-ID

r.Use(middleware.RequestID)

// which behind the scenes does this:
reqID := r.Header.Get("X-Request-ID")
if reqID == "" {
 reqID = generateReqId()
}
setReqId(ctx, reqID)

reqID := middleware.GetReqId(ctx)

// log.With().String("requestId", reqID) // zerolog structured log example
// req.Header.Set("X-Request-ID", reqID) // HTTP calls to other services that should be aware of thi

Figure 1.2: This figure shows the slice of discussion from a PR to showcase
communication breakdown due to a wrong reference shown in red box.
The grey dashed line indicates abridged content not shown in the capture
for brevity

PR discussions frequently involve references to people and information objects,

such as source code and documentation. These references are the focus of our work

in this thesis. Theories of grounding in communication explain that referential

behaviors are crucial for establishing shared understanding [14, 15]. As follows,

two instances exemplify that referencing is a critical communication device for

establishing a common ground, which can delay or impoverish the code review

process upon failure. In the example shown in Figure 1.1 the submitter committed

multiple code files and provided a vague description of the feature implemented

in the PR without referencing the right files in the comment. So, the reviewer

was confused which files to review and had to write a reply asking the submitter to

provide an explicit reference (“point”) to the file. The second example in Figure 1.2

2

shows that unclear references can cause delay or misunderstanding. The reviewer

proposed an alternative API using the function name “getReqID()” which exists in

the project, but the function had the same name as another function in an existing

API. The homonym confused the PR author as expressed in their reply.

Previous studies have investigated referencing in educational discussion boards

[70], remote collaborative work [23], and video-based comment threads [13, 64].

However, there has been limited work on understanding PR discussions [66, 68],

thus, this thesis undertakes to fill this gap by describing software developers’ refer-

ential behaviors. By filling this gap in the literature, we provide a clearer picture of

PR reference behavior and pave the way for supporting PR discussions with better

tools.

Referencing can impact the quality of PR discussion, and ultimately the main-

tainability of the project source code. To reach a decision on whether or not

to merge a proposed change, references are crucial for creating a shared under-

standing of the consequences of accepting or rejecting a PR. In software engineer-

ing studies, there are many known factors that predict and impact PR outcomes

[26, 27, 59, 60, 65]. For example, Zhang et al. [68] found that references to stake-

holders through @-mentions impacts the amount of time that a PR will take to

be processed. Identifying what and how people make references in PR discussions

may lead to (1) better understanding of stakeholders’ decision-making process, and

(2) identifying the design requirements for better facilitating these discussions.

Referencing features are currently available in most online software develop-

ment platforms, such as GitHub, GitLab1, Gerrit2, Bitbucket3, and SourceForge4.

The GitHub PR interface [3], for example, supports automatic referencing of platform-

specific entities, such as commits, issues, PRs, and users, in addition to supporting

direct URLs. However, the CSCW and HCI research literature has not extensively

investigated the referential types and expressions that software developers make

in PR discussions, so it is not known how well referencing is supported by these

existing PR interfaces. In our analysis of PR discussions, we found that there are

1https://about.gitlab.com/
2https://www.gerritcodereview.com/
3https://bitbucket.org/product/
4https://sourceforge.net/

3

https://about.gitlab.com/
https://www.gerritcodereview.com/
https://bitbucket.org/product/
https://sourceforge.net/
https://about.gitlab.com/
https://www.gerritcodereview.com/
https://bitbucket.org/product/
https://sourceforge.net/

many types of references that are under-supported by GitHub, especially visual and

interactive information objects, such as animations and UI elements. Beyond the

context of software engineering, researchers have previously noted that features

for referencing textual and visual information objects are necessary, but lacking

[13, 23, 43, 64]. We also found that software developers use a wide range of ex-

pressions to reference information objects, hinting at a need for flexible communi-

cation in code reviews. In this thesis, we offer an empirical grounding of software

developers’ needs with respect to referencing in PR discussions. These insights

can inform designs of referencing features that satisfy the needs of discussants in

PR platforms and online communities.

We explore the following research questions:

1. What information objects do stakeholders refer to in PR discussions?

2. How are these references communicated?

3. What project attributes affect referencing behavior in code reviews and how?

4. What, if any, relationships exist between referencing and PR outcomes?

With these questions in mind, we conducted an analysis of a diverse sample

of ∼7K references from 450 public GitHub PR discussion threads. We identified

the references, including their type and expression, through a qualitative content

analysis. We examined these referential behaviors using exploratory data analysis

and hierarchical clustering on principal components. As a preview of our findings,

we found that source code elements, such as variables and functions, are the most

frequently referenced type of information; however, these did not make up the

majority of all references. We found that the GitHub referencing interface has

limited support for referencing source code. We also found that stakeholders have

different referential practices, like pointing to a specific part of a documentation,

such as READMEs as compared to external documentation. Finally, we found that

some referent types, such as bots and tests, appear more often in accepted PRs than

in open or closed PRs.

The contributions of this thesis are four-fold:

1. Two reference oriented taxonomies: one for what information is referenced

(referent type) and how this is communicated (referential expressions).

4

2. Empirical findings from 450 PRs, identifying the empirical accounts of ref-

erencing support on GitHub; various referencing patterns which influenced

by contextual factors that shape the use of references during discussion.

3. Design implications for PR discussion interfaces that are enhanced with

type-based referencing based on our analysis, and,

4. An annotated dataset of ∼7K references, from 450 public PRs on GitHub.

5

Chapter 2

Related Work

The aim of this thesis is to understand the use of references in PR discussions.

References in a discussion are useful in building the shared understanding among

discussants and thereby improve communication. In software engineering, a dis-

cussion among developers during code review tends to include references to a wide

variety of information entities. Therefore, providing references is important for

progressing a PR discussion towards a resolution. In this chapter, we present a re-

view of the past studies that highlighted the importance of references for building

common ground in communication. We also present literature that discusses how a

discussion serves as an important part of decision-making in the code review pro-

cess along with other technical and social factors. In the later part of the chapter,

we describe how the choice of research tools, such as taxonomy and dataset, have

been employed in past research studies and how these are applicable in the context

of our work. Finally, we give a brief overview of previous work designing better

tools and interfaces to improve the code review communication process.

2.1 Common grounding through referencing
Grounding in communication is when people share knowledge and beliefs and is

important for effective and efficient collaboration [15]. People frequently use ref-

erences when communicating. A reference is a relationship between two objects,

where one object connects or links to another object. Common ground allows dis-

6

cussants to identify and understand what is being referenced through their shared

knowledge and beliefs [14]. For example, demonstrative references (this, these,

that, those) with more than one potential referent can be dereferenced when com-

mon ground has been established [16]. Consequently, establishing referential iden-

tity, i.e., correctly identifying the object of a reference and the ability to dereference

it, is a crucial aspect of communication [47].

Previous research has looked into referencing in different kinds of collabora-

tive platforms [11, 13, 37, 64]. Chua et al. [13] developed an asynchronous dis-

cussion interface that supports complex non-verbal referencing to visual materials

like documents and videos to support forum-style discussions in Massive Open

Online Course environments by contextualizing the references in a thread. In a

remote collaboration setting, AlphaRead [11] helps to make and resolve references

to physical objects. Yarmand et al. [64] studied what types of information are ref-

erenced in YouTube comments, and how these referents are expressed. In addition,

they showed how common referential behavior can be facilitated with an alterna-

tive commenting interface which improved engagement.

Our findings add to the existing CSCW and HCI literature, a better understand-

ing of referencing behaviors specific to code review discussions and novel design

implications for enhancing referencing to information resources in PRs.

2.2 Source code review
Effective communication has a significant impact on the software development life

cycle. A quality modern code review process is important for ensuring the long-

term maintainability of the code base [46]. Asynchronous code review is now sup-

ported by collaborative software development tools and platforms, meaning code

feedback is often provided through PR-style discussion threads. Kononenko et

al. [33] found that developers still expect asynchronous code reviews to be clear

and thorough. Efstathiou et al. [22] evaluated the effectiveness of code review

comments based on theories of rhetoric and discourse coherence by presenting

sentence-level relationships within a comment. Similarly, Viviani et al. [63] inves-

tigated the linguistic representation of comments to study how design discussion

is embedded in code reviews and found that software developers often use forms

7

like paragraphs to express it. While there is a growing body of research assess-

ing the linguistic aspects of code review comments [20, 33, 63], little attention has

been paid to the references used in the comments, which is a key for establishing a

common ground [15].

We provide a detailed account of references developers make and how these

references are expressed in their comments. We also provide qualitative descrip-

tions of developer’s referential practices which can inform design implications for

building tools to support them.

2.3 Factors that affect PR outcomes
Given a PR, the reviewer’s task is to decide whether or not to accept the proposed

change. Discussion is often an important part of this evaluation process. Previous

research has analyzed PR discussions to identify factors that impact PR merging

[26, 27, 59, 60, 65]. Gousios et al. [26] found that PRs that propose changes to parts

of the repository that are being actively developed are more likely to be accepted.

In a follow-up study, Gousis et al. [27] conducted a large-scale survey of reviewers

and found that the presence of tests, overall code quality, and the degree to which

the code fits into a project’s technical design all influence whether a PR is accepted.

In addition to these characteristics of the suggested source code, various social

signals also play a role in whether or not a PR is merged. Tsay et al. [60] found

that the strength of connection between a PR contributor and the stakeholders con-

ducting the code review is important. Soares et al. [59] found that PR evaluators

also take into account a PR contributor’s reputation, their degree of contribution to

the source code repository, and their experience (e.g., first PR vs long-time con-

tributor). Together, these studies suggest that social factors can build trust in the

proposed contribution.

The previous work has primarily relied on easily quantifiable variables to mea-

sure how much source code and social factors affect PR outcomes, such as the

number of commits, the number of files changed, and the number of PR discussion

comments [27, 59, 60, 65]. Less attention has been paid to analyzing the infor-

mation entities that are referenced by participants in their PR discussions. Our

research fills this gap by analyzing the information resources stakeholders refer-

8

ence in their PR discussions and how these references are correlated to the PR

outcome.

2.4 Taxonomies as a tool
Analyzing comments in code review discussions is a growing area of research

[8, 21, 39, 48, 54]. To better organize the use of comments in the PR evalua-

tion process, a number of classification schemes have been created. For example,

Pascarella et al. [54] provide a classification of the information needs of developers

who review source code. Their taxonomy contains seven top-level categories and

18 sub-categories classifying needs like seeking rationale for developing correct

understanding of the code, suggesting changes, and requesting additional actions.

Ebert et al. [21] put forward a framework on the types of confusion that arises in

code reviews by analysing software developers’ comments. Both of these studies

have focused on the cohesion of the overall discussion, and did not investigate de-

veloper’s specific referential behaviors. Previous work in Information Science has

investigated in studying people’s referential behaviors and developed taxonomies

to understand the types and forms of references [6, 34, 42, 64]. Yarmand et al. [64]

is the closest to our work which classified the referent types and referential expres-

sions of the references made in YouTube comments.

The research literature has had success creating taxonomies in order to describe

the communicative behaviors of a wide range of communities which has also in-

spired the design choices of our taxonomy of references in PR discussions. For

example, we chose inheritance based relationship as the classification scheme for

our taxonomy, inspired by Ebert et al. [21] work which provided a taxonomy of

30 types of confusion by analyzing 307 review comments. Similarly, the choice

of building two distinct taxonomies for types and expressions was inspired by the

previous work by Yarmand et al. [64] which also gave two taxonomies by analyz-

ing YouTube comments. Because an additional taxonomy of expressions helped in

collecting the data and statistically analysing the referential usage patterns in depth.

Thus, we developed two taxonomies derived from the data for this purpose: one for

the information resources (referent types) that developers refer to in their discus-

sion comments, second for the referential expressions (expression types) they use

9

to communicate these resources. These taxonomies provide the basis to explore

the referential practices in PR discussions as described in Chapter 3.

2.5 GitHub dataset as a research contribution
GitHub is an online open-source software development platform. It hosts more

than 100 million repositories with more than 56 million active developers [4].

GitHub’s Pull request feature [1] integrates code reviews, discussions, bug track-

ing, and continuous integration loops within one interface which enhances the

collaboration aspect of the platform even further. Therefore, GitHub has been

the primary choice for data collection in many previous studies aimed at under-

standing pull request behaviors and open source software development in gen-

eral [27, 32, 55, 65].

There have been significant GitHub dataset contributions in the past which have

been extensively utilized by the research community. GitHub Archive Project1

is the initiative started in 2011 to compile GitHub’s data by capturing the pub-

lic event timeline using GitHub Events API2. In 2013, Guosios et al. [24] pub-

lished “GHTorrent” dataset which was similar to GitHub Archive but specifically

designed for research purposes. Along with public events on GitHub, it also cap-

tured the content associated with each event exhaustively to provide a structured

representation of the data which helps in querying the full history of projects and

developer’s actions on GitHub. In 2014, Guosios et al. [25] published a “pull-

reqs” dataset of 350,000 pull requests curated from the GHTorrent, specifically

designed to study the pull request development model on GitHub. All of these

dataset provides an offline-mirror of GitHub’s data for large-scale quantitative and

qualitative research, none of them provided a structured representation of the infor-

mation resources in the comments which can be utilized for understanding people’s

referential behaviors qualitatively or quantitatively.

In this research, we are contributing a dataset of ∼7k references identified in

450 public PRs on GitHub which is curated by manually reading each comment

annotating references in it. This dataset presents an opportunity in analyzing peo-

1https://www.gharchive.org/
2https://docs.github.com/en/rest/reference/activity#events

10

https://www.gharchive.org/
https://docs.github.com/en/rest/reference/activity#events
https://www.gharchive.org/
https://docs.github.com/en/rest/reference/activity#events

ple’s behaviors of referencing different information entities during a discussion.In

addition, it can be used to dive deeper into understanding co-occurrence patterns

of references and how other project attributes can affect referential behaviors. The

details of the dataset are shared in Appendix A.

2.6 Designing code review interfaces
The past research in code review interfaces is mostly limited to enhancing the

modality of interactions. There have been several code review tools such as Google’s

Mandarin, Facebook’s Phabricator3, CodeFlow4, and Gerrit5 which provide fea-

tures to annotate the source code directly with comments and a chat interface to

interact with others. GitHub’s pull request features a similar discussion interface

which can interleave code review comments with their discussion comments in a

single thread. However, the major mode of discussion in all these review tools is

primarily text-based. Few studies in the past extended this feature with the use of

multi-modal interactions. Begel et. al [7] introduced the concept of documenting

code comments by recording voice and embedding it in the source code. Hao et

al. [29] extended the concept by making a multimedia commenting tool (MCT)

which can record audio, video, and mouse interactions with the code and add it

to the source code which can be replayed by code reviewers. This tool is inte-

grated into the IDE which makes it useful not only for code reviewers but also for

other developers to read the code. Chen et al. [12] introduced ”Codeon”, the asyn-

chronous discussion interface which embeds code under discussion in the message

to get assistance from remote developers. Park et al. [53] prototyped a tool to

link online discussion conducted outside the programming environment within the

IDE to the code it discusses which they called post-literate programming. Henley

et al. [30] enhanced the existing code review interface integrated into an IDE by

adding a visual representation of an automated code reviewer, CFar, which helps in

identifying bugs in the code and leaves comments on the source code in a natural

language like any other user. This automated bot is considered similar to other re-

viewers in the system. In general, the past research improved the way code reviews

3https://secure.phabricator.com/
4https://www.getcodeflow.com/
5https://www.gerritcodereview.com/.

11

https://secure.phabricator.com/
https://www.getcodeflow.com/
https://www.gerritcodereview.com/.
https://secure.phabricator.com/
https://www.getcodeflow.com/
https://www.gerritcodereview.com/.

are recorded and presented by exploring different modalities.

In our research, we are focusing on the content people mention in their com-

ments in PRs which can lead to designing better interface support for code reviews.

By identifying people’s referential behaviors in their comments, we shared design

implications in Chapter 5 which satisfy the communicative needs of the PR authors

and reviewers.

2.7 Summary
Previous work suggests that common grounding is an important aspect in com-

munication and enables discussants to refer to objects and understand those refer-

ences. In the software engineering context, code review is an important process

that is frequently conducted asynchronously in text-based discussion threads. Pre-

vious work has identified a number of attributes — both source code-based and

interpersonal — that affect whether or not a proposed change is merged into a

source code repository. This thesis builds on this work by examining the refer-

ences software developers make in PR discussion, and how those references relate

to the PR decision-making process. Further, aligned with previous work, we create

two taxonomies to provide a frame to organize the types and patterns of references

in PR.

12

Chapter 3

Methods

To study the referential practices in PR discussions, we represented the types of ref-

erences that software developers use in PR discussions, and how those references

are expressed, by creating taxonomies of referent types (Table 3.2) and referential

expressions (Table 3.3) using the research design presented in Figure 3.1. These

lay the foundation for analysing referential behaviors in Section 3.3.2.

To create these taxonomies, we conducted a qualitative content analysis (QCA)

[35] on ∼7K references in ∼2K comments from 450 public GitHub PRs. QCA is

a bottom-up process that identifies themes through analysis of the data [67], and is

a useful method for generating inductive taxonomies [28, 41, 42]. For data collec-

tion, we used GitHub because it is the largest platform for open source software

TaxonomiesPR Discussions
Qualitative

Content Analysis
Reference

Dataset

3.1 Sampling PR Discussions
3.2 Identifying and Coding References +

3.3. Building Reference Taxonomies

Sampling

Cleaning

Subsampling

for diversity
Public GitHub

Repositories

∼11K Repos

∼7K Repos
1,739 Comments, 450 PRs, 75 Repos

6,558 Refs
26 Referent Types

9 Expression Types

3.4 Compiling PR References Dataset

Figure 3.1: A flow diagram representing the research design we used to com-
pile an annotated dataset of ∼7K references from 450 public PRs from
GitHub. The dataset is used to analyze referential patterns in PR discus-
sions in Section 3.3.2.

13

development. GitHub’s PR feature is similar to those provided by other platforms,

such as Bitbucket, Gerrit, and SourceForge. We conducted the QCA in three steps:

1. Sampled PR discussions: we sampled 450 PRs from GitHub, containing

1,739 comments.

2. Identified and coded references: we analyzed each PR thread to identify and

code references.

3. Built the reference taxonomies: we used affinity diagramming to catego-

rize the references into two taxonomies: 1) referent types and 2) expression

types.

3.1 Sampling PR discussions
We collected a stratified sample of 450 public PR discussion threads from GitHub.

Our sampling strategy involved five steps. First, we scraped top 10,786 reposito-

ries by stars count using GitHub GraphQL API1. This is because PR threads are

organised into huge collection of repositories on GitHub. We chose number of

stars of a repository as the selection criteria because it has been a popular choice

by researchers in many previous work for for empirical studies [9, 10, 52, 56, 58].

In the second step, we filtered out repositories in the following order:

1. We removed 823 repositories which were non-software repositories. We

used primary programming language information associated with each repos-

itory to distinguish a software repository from non-software repository like

books, documentation etc.

2. We removed 3,146 repositories which did not have a sufficient number of

PRs (minimum 2) in each of open, merged and closed state as required for

sampling.

3. From the remaining set, we removed 50 more repositories which had no

description or keywords associated with it which is required for topic mod-

elling in the next step.

1https://docs.github.com/en/graphql

14

https://docs.github.com/en/graphql
https://docs.github.com/en/graphql

Table 3.1: Diversity criteria for sampling repositories

Criteria Description

Topic Composition A 29-dimensional vector for each repository out-
put by topic modelling represents the probability
distribution of the repository according to 29 top-
ics.

Number of Stars The number of times the repository has been
starred.

Number of Contributors The number of contributors who submitted code
commits in the repository.

Number of PRs The number of Pull requests that have been sub-
mitted to the project.

Main Language The main programming language used in the
source code of the repository identified by the
GitHub platform.

The filtering left us with 6,767 repositories.

In the third step, we identified the application domain of these repositories us-

ing the Latent Dirichlet Allocation topic modelling. Application domain is the

primary diversity criteria for sampling PRs for our study to balance out the domain

specific concerns in our collected samples. Topic models that we used are the fam-

ily of algorithms which extract topics from unstructured text. These algorithms

do not infer the meaning of the words in the text, instead they identify the list of

words that occur in statistically meaningful ways and cluster them into different

topics. Using description and keywords associated with each repository, we rep-

resented them as a corpus of text documents and ran the LDA algorithm multiple

times with number of topics parameter ranging from [5,50] with a step size 3 i.e.,

{5,8,11,....,50}. The number of iterations parameter was set to 1000, and built-in

hyper-parameter optimization was enabled with ‘optimize-interval’ parameter set

to 10. For other parameters, we used default values set in MALLET2 library. In

total, we ran topic modelling 13 times on these repositories. The output of each

execution was a set of topics represented by top ranked list of keywords and a topic

composition (i.e., the probability distribution) of these topics for each repositories

2http://mallet.cs.umass.edu/topics.php

15

http://mallet.cs.umass.edu/topics.php
http://mallet.cs.umass.edu/topics.php

in our collection. To identify the right number of topics for our repositories, we

manually analysed each execution result to find one which has maximum number

of coherent topics. Therefore, we selected 29 topics to be an optimum number

to categorize the repositories collection. The list of 29 topics identified by topic

modeling is provided in Appendix D.

In the fourth step, we used Nagappan et al.’s [49] sample coverage measure

to create a representative sample of 75 distinct repositories from the collection of

6,767 repositories, accounting for the five diversity criteria as mentioned in Ta-

ble 3.1. Our sample of 75 repositories covered 40.8% of the total variance.

In the final step, we randomly sampled 450 PRs from 75 repositories. To this

end, we downloaded 21,786 PRs from 75 repositories and removed 1,805 PRs

without comments. From remaining collection of 19,981 PRs, we randomly sam-

pled two merged, two closed, and two open PRs from each of the 75 repositories,

resulting into the dataset of 450 PRs (2 PRs × 3 Statuses × 75 Repos = 450 PRs).

The final PR dataset contained 2,189 comments including 1,739 threaded messages

and 450 PR titles. This sampling pipeline was executed on 18 November, 2019.

3.2 Identifying and coding references
We identified and coded all the references within the 450 PRs, and classified the

referent and expression types. A reference is a word or phrase used in a PR dis-

cussion comment to signal an information object. A reference is comprised of two

components:

• Referent: A referent is an information resource that is mentioned by a PR

discussant. For example, a referent could be a variable, function, file, com-

mit, documentation, URL, etc. It could also be an abstract concept (for ex-

ample, JSON format, async tests, etc). These can be singular, plural, or a

collective.

• Expression: A referential expression is how the information resource is en-

coded in discussion, for example, “@reisenberger”, “#236”, and “Reading

label is not responsive”. Here a name, id, or description is used to encode

the referent.

16

Add some tests & update docs #381
on Nov 12, 2016

Conversation 5 Commits 27 Checks 0 Files changed 24

Merged nyanp merged 27 commits into master from feat/more-test-and-docs

nyanp commented on Nov 6, 2016

Add tests for serializers to confirm #356

Update docs

Fix serialization for concat-layer

Referent: VC Platform (Issue)
Expression: Named (Unique)

Referent: Source Code (Code Containers)
Expression: Named (Unique)

Referent: Documentation (Project Doc.)
Expression: Named (Generic)

nyanp added 20 commits on Nov 6, 2016

edgarriba commented on Nov 12, 2016

@nyanp why is autodoc.py needed?

Referent: Actor (Stakeholder)
Expression: Named (Unique)

Figure 3.2: An illustrated example of coded references. We assigned two
codes to each reference. For each reference (highlighted in a yellow
box), the type (i.e., top-category) and sub-category of the referent and
expression are indicated as ”Type (Sub-category)” in a blue box. See
Table 3.2 and Table 3.3 for the full list of referents and expressions.

Two of the project collaborators performed QCA, and the process was dis-

cussed among all collaborators to resolve conflicts. To identify references, we

looked into the words or concrete phrases used to reference an information object,

and then coded the reference’s referent as well as the expression used to encode the

object. In total, we identified 6,558 references, which we analyzed in Chapter 4.

The coders worked together on 25% of the dataset for training. During the

training phase, a code book was co-authored by the coders in three iterations. We

developed codes for both referent type and referential expression until we reached

17

saturation, and refined the codes during this phase by discussing with all members

of the research team. The final code book contains 196 codes for referent types

and 33 codes for expression types. An illustrated example of coded references is

shown in Figure 3.2 where each reference is highlighted and is assigned two codes,

one for referent type, one for expression. It took a total of 560 hours per coder to

code 450 PR discussion threads in which the training phase took 40% of the time.

The code books for referent type and expression types are available in Appendix B

and Appendix C respectively. We used NVivo for this analysis.

Once the code book was established, the coders independently coded 74% of

the PRs (N = 334). We tested inter-coder reliability on 482 references identified

in these 334 PRs. The Cohen’s Kappa scores [17] were 0.76 for the Referent

Taxonomy and 0.72 for the Expression Taxonomy. These scores indicate a strong

agreement between the coders [45]. The disagreement instances were categorized

into 12 notable cases and resolved after an hour-long discussion between the two

coders.

3.3 Building reference taxonomies
We iteratively built and refined our taxonomy to classify 196 referent codes identi-

fied during the previous step into 6 top-level categories and 26 sub-categories that

make up the referent taxonomy (Table 3.2). The process of building taxonomies

took 400 hours in total over four iterations by the lead collaborator who discussed

with all other project collaborators for evaluation and refinement. To make the clas-

sification generalizable, we organized these codes by the inheritance relationship.

Codes which exhibit an is-a relationship are grouped under the same category. For

example, a variable, function, class is-a SOURCE CODE; a user, organisation, bot

is-an ACTOR. The SOURCE CODE category in the taxonomy consists of a va-

riety of source code information objects, including variables, functions, classes,

libraries, packages, and so on. The other categories in the taxonomy such as AC-

TOR, VC PLATFORM, COMPILATION AND EXECUTION RESULT, DOCUMENTA-

TION, and DEV TOOLS AND ENVIRONMENT collectively contain non-source code

entities. In the last iteration, we added few additional new codes generated dur-

ing the last batch of coding in the final taxonomy. Similarly, 33 expression codes

18

Table 3.2: Taxonomy of referent types, with examples.

Type Sub-category Definition Example(s) from Dataset

SOURCE CODE Code Containers A container unit which contains the source code, typ-
ically a file.

Only change in abstractclientbase.js is this...

Code Elements The building blocks that make up the source code,
such as symbols, keywords and various constructs.

.doesNotThrow() is currently not matching the error
message...

Inputs and Values Any literal value or data specified in the source code If you accidentally pass a None or False value, it will
return without check.

Code Libraries A collection of non-volatile resources used by the
source code.

In the development of a script to periodically send
statistics of performance of three.js examples...

Test A source code written specifically for testing pur-
poses.

The build is failing because we need to update the
snapshot test for this component.

API A source code written to be used by other code or
project.

We are trying to keep the surface API as consistent
as possible

Assets Other artifacts in the project which accompanies the
source code.

Updated AWS icons.

ACTOR Stakeholder People or groups affected by the software project
lifecycle.

@reisenberger thanks for the tag!

Agent A software program that acts for a user in PR discus-
sion to automate tasks.

And Travis CI broke for unrelated issues that I need
to investigate.

Organisation A larger body of people who have stakes in the soft-
ware project.

Pending assignment with
my open source review board internally. I’ll
follow up.

VC PLATFORM Version-Control Enti-
ties

Entities related to the version control system of the
software like branches, hooks, merge conflicts etc.

Otherwise this branch is a great starting point for you
to work on the update.

Repo A global container of project related resources and
artifacts.

@bordeo this repo is actually dead.

Issue A bug or feature raised by stakeholders related to the
software project.

A possible fix of the issue #48

PR Code submission request raised by contributors in
the project.

I like the simplicity of this solution, which also has
no executional overhead versus PR #248...

Comment The information expressed by stakeholders in the
discussion of the PR.

I am still thinking about the last comment regarding
async behavior though.

DEV TOOLS AND
ENVIRONMENT

Software Development
Tools

Tools used by people to develop the software project. This enables some new warnings, as recommended
by Xcode.

Automation Tools Tools used to automate lifecycle tasks of the software
development process.

In the last commit, I upgrade Gradle to the 3.0.0-
beta2...

Programming Lan-
guage

The language used to express the source code. I know that semicolons are optional in JS.

Environment A virtual environment where the software is Exe-
cuted.

This is very noticeable on the iPhone simulator with
slow animations enabled.

Platform An environment where the software is executed. Seems it’s only broken on android btw, iOS works
correctly.

COMPILATION
AND EXECUTION
RESULT

Warning Messages that indicate some issue with source code
after compilation or execution, without halting the
activity.

fix compilation warnings on older Python versions

Error A result obtained as an outcome of unsuccessful
compilation or execution of the source code.

Also, I wasn’t able to run gradlew build, it gave me
some Javadoc errors which I’m not sure how to fix.

Output A result obtained as an outcome of successful execu-
tion of the source code.

Made the following changes to make logs look more
like Eclipse/Studio logcat...

Application A runtime instance of the source code after success-
ful execution.

The app seemed to behave the same before/after this
change.

DOCUMENTATION Client Documentation End-user documentation of a project. If this is the most important factor, it would be great
to have the README reflect it then.

Project Documentation Project development lifecycle related documents
used by stakeholders.

Please refer to our
pull request process documentation to help your
PR have a smooth ride to approval.

Reference Documenta-
tion

Third Party documentation which are referred by
stakeholders to conduct their activities.

Extend the openapi validator to allow the examples
field, see https://swagger.io/docs/

19

Table 3.3: Taxonomy of expression types, with examples.

Type Sub-category Definition Example(s) from Dataset

NAMED Unique/Distinct A unique attribute of the referent ReflectUtils has an overload that takes the cxtor...
Generic General/collective word or phrase to identify referent Let me know why you created this pull request, closing it for

now.

CONTENT-
BASED

Descriptive An expression which serves to describe the referent
in text.

Now they’re colored too (if colored nicknames option is en-
abled).

Verbatim An expression which uses the exact same represen-
tation of the referent’s content.

Below that you can add
stats.fps = (frames * 1000) / (time - prevTime);

LOCATIVE Absolute An expression which uses the exact location of a ref-
erent.

The loop function in src/native/utils/game-loop.js has been
changed from arrow function to regular function...

Relative An expression which uses the location of a referent
relative to the current location where the expression
is used.

@smurching Never mind my comment above.

TEMPORAL Absolute An exact point in time Thanks @filbertteo ! Released in react-game-kit@1.0.6
Relative Relative to current point of time Thanks for your contribution! We will work on releasing

new version soon.
Range Interval of time The change has to be made in a way that supports both

Butterknife 7 and older versions.

were classified into 4 top-level categories and 9 sub-categories in our expression

taxonomy (Table 3.3). The full directory of referent and expression codes of these

taxonomies is provided in Appendix B and Appendix C respectively.

3.3.1 Compiling PR references dataset

We have compiled a dataset of ∼7K coded references from 450 PR discussion

threads in CSV format and have made it available publicly. The schema of the

dataset is available in Appendix A. Each row in the dataset represents a reference

identified from a PR and is described by 26 columns of information related to the

repository, PR, and the assigned referent and expression codes, categories and sub-

categories. Also, each reference contains the comment from which it was extracted,

marked with the location of the reference within the comment. It took 360 hours in

total to develop, test and execute the data extraction pipeline to compile the dataset

from the coded PR threads. We used this dataset for our exploratory data analysis

of referential behaviors, which we present in Chapter 4.

3.3.2 Analysing PR references

We used the dataset to identify referential behaviors in PR discussions, and how

these behaviors are impacted. Prior work has suggested various factors which im-

pacts the PR evaluation process [26, 27, 59, 60, 65]. Building on this work, we

20

formulated three guiding principles that we applied in analyzing referential behav-

iors in PR discussions:

1. We determine the commonly referenced referent types and expressions and

their relationships.

2. We consider how project attributes like application domain, programming

language impact the use of references in the discussion.

3. We also investigate the relationship between referent types and the PR out-

come.

To this end, two of the project collaborators conducted an exploratory data

analysis [62] to identify patterns in the references dataset. We used a mixed ap-

proach which includes inductive and deductive inquiry of the data. Using the guid-

ing principles mentioned above, we plotted frequency distribution of the references

and generated 34 distinct patterns. And then, we performed qualitative reading of

the samples in PR discussions to confirm the relevance of these patterns. These

patterns were discussed with four other project collaborators to reach an agree-

ment. The two collaborators spent around 400 hours in total in analyzing the PR

references.

To explore the co-occurrence relationships between the referent types, we per-

formed cluster analysis. We created a matrix of PRs by the counts of each referent

type in the PR with 450 rows, one for each PR, and six columns, one for each

referent type. We used principal component methods, specifically correspondence

analysis [61], as a preprocess for clustering. We then used hierarchical clustering

on principal components to identify the relationships between the top-level referent

types. We used the single linkage method, which calculates the minimum distance

between a pair of observations, to cluster through a bottom-up, agglomerative ap-

proach. The resulting dendrogram (Figure 4.3) was cut at the partition with the

higher relative loss of variance, which yielded three clusters. We plotted these

clusters on the factor map provided by the correspondence analysis, as suggested

by [31] (see Figure 4.4). The relevant analysis of co-occurring referent types is

presented in Chapter 4.

21

Chapter 4

Findings

Overall, referencing information resources is prevalent in PR discussions. There

are 6,558 references in 2,189 comments. 93.5% of the comments referred to at

least one information entity or more. On average, a comment has 2.99 references

(SD = 3.15 , Min = 0, Max = 59). Here, when we say “comments” they include not

only threaded messages of the PRs but also their titles. A PR, on average, has 4.86

comments (SD = 4.33, Min = 2, Max = 54).

Referencing is critical communication device for establishing a common ground.

As shown in Figure 1.1 and Figure 1.2, discussants in a PR misunderstood another

or got confused about other’s comments due to the breakdown of reference to in-

formation resources. Therefore, having correct and unambiguous references are

also crucial for successful code review discussion.

The following sections document our findings on how well the current inter-

faces support referencing in PR, how people use references, and how referencing

patterns might indicate different PR outcomes.

4.1 Empirical Accounts of Referencing Support on
GitHub

PR discussants in GitHub referred to information resources in three ways. GitHub’s

auto-link feature [3] detects a reference prefixed with a special character (e.g.,

“#456”, “@reisenberger”) and automatically converts it into a link. However, auto-

22

Table 4.1: Distribution of all references by referent type (N = 6,558)

Referent Type Total Count of References GitHub Auto-link and
URL-link References

SOURCE CODE 2986 (45.5%) 76 (1.2%)
VC PLATFORM 1733 (26.4%) 424 (6.5%)
ACTOR 607 (9.3%) 362 (5.5%)
DOCUMENTATION 544 (8.3%) 156 (2.4%)
DEV TOOLS AND ENVIRONMENT 364 (5.6%) 4 (<0.1%)
COMPILATION AND EXECUTION RESULT 324 (4.9%) 11 (<0.1%)
Total 6,558 (100%) 1,033 (15.8%)

linking currently works for a handful of referent types presented in our referent

taxonomy such as VC PLATFORM (issues, PRs, and commits), and ACTOR (stake-

holders). GitHub’s interface can also detect URL strings in comments and convert

them into hyperlinks, which we refer to as URL-link, to differentiate it from auto-

links. For information entities that auto-links don’t support nor are URLs, writing

plain text description of the reference is the only option (e.g., “paperFontButton”,

“flake8 issues“, “IE 11”). In this section, we focus on providing empirical ac-

counts of to which extent the existing interface features support different types of

references or leave certain types unsupported.

Among all reference instances in our dataset, the majority was in plain text

while only 15.8% were either auto-links or URL links (Table 4.1). The plain text

references were overrepresented, because, when referring to a collective class of

referents or an established reference that appeared early in the thread, discussants

tend to use generic terms such as pronouns, adjectives, common nouns, and col-

lective nouns (for e.g., “issues”, “unit tests”, ’“this PR”, “the function”, “it”, etc.).

These references do not establish any referential identity; they assume that the ref-

erential identity of the information resource is already established. To count direct,

specific references only, we removed 1,904 of these second-degree references that

are expressed in the generic terms (i.e., NAMED-Generic types in our expression

taxonomy Table 3.3). In the remaining 4,654 references the proportion of auto-

links and URL links went up as shown in Table 4.2.

23

Table 4.2: Distribution of non-generic references created using different ref-
erencing mechanisms (N = 4,654)

Referent Type Auto-linked
References

URL linked
References

Plain Text Ref-
erences

SOURCE CODE 0 76 (3.3%) 2203 (96.7%)
VC PLATFORM 368 (41.5%) 56 (6.3%) 461 (52.1%)
ACTOR 332 (62.9%) 30 (5.7%) 166 (31.4%)
DOCUMENTATION 0 156 (38.5%) 249 (61.5%)
DEV TOOLS AND ENVIRONMENT 0 4 (1.2%) 318 (98.8%)
COMPILATION AND EXECUTION RESULT 0 11 (4.7%) 224 (95.7%)
Total 700 (15%) 333 (7.2%) 3621 (77.8%)

4.1.1 How well GitHub’s referencing feature is being used

GitHub’s auto-linking and URL links were popular modes of referencing when the

interface supported the type of referents. The majority of ACTOR (62.9%) and a

significant portion of VC PLATFORM (41.5%) were auto-linked references. URL

linking was a popular way to link DOCUMENTATION. However, plain text took

the majority in most of the other referent types, especially dominating SOURCE

CODE (96.7%), DEV TOOLS AND ENVIRONMENT (98.8%), and COMPILATION

AND EXECUTION RESULT (95.7%).

Auto-linked referencing feature is most frequently used for platform-related
referent types

We found that GitHub platform’s resources such as Issue, PR, and Stakeholder are

the most frequently referenced types using auto-linked referencing interface (see

Figure 4.1). These information resources are native to the GitHub platform and

have built-in support by the auto-linking mechanism in the interface. For example,

a developer can auto-link an issue or a PR by writing a prefix “#”, as in “This

fixes #9.” Similarly, a user can be referenced in the comment by writing a prefix

“@” with username as in “@reisenberger thanks for the tag!”. The prevalent use

of these references in comments is likely due to the auto-complete which fires up

as soon as a user types the special characters (#, @) within the authoring interface

which makes it easy to search and link references while commenting.

24

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

Agent

Organisation

Stakeholder

Application

Error
Output

Warning

Automation Tools

Environment
Platform

Programming Language
Software Development Tools

Client Documentation

Project Documentation

Reference Documentation

API

Assets Code Containers

Code Elements
Code Libraries

Inputs and Values

Test

Comment

Issue
PR

Repo

Version Control Entities

0.0

0.2

0.4

0.6

0.8

16 128 1024

References (Log scale)

P
ro

po
rt

io
n

of
 R

ef
er

en
ce

s
m

ad
e

us
in

g
G

itH
ub

 r
ef

er
en

ci
ng

 F
ea

tu
re

referent_category
●a
●a

●a
●a

●a
●a

Actor
Compilation and Execution Result

Dev Tools and Environment
Documentation

Source Code
VC Platform

Figure 4.1: Distribution of referent sub-categories based on the number of
non-generic references (x-axis) and the proportion of those references
created using the GitHub feature (y-axis).

At present auto-linked referencing feature caters only to platform-specific en-

tities, however, it does not provide full coverage. Repositories and Issue/PR com-

ments, for example, are currently outside its support. We found that discussants use

plain text referencing for 80% of references to other repositories on GitHub such

as dependent library projects and forked repositories. For example, in one of the

PRs, the submitter referenced another repository in his comment by linking URL

as in “I made this from combining parts of the ipython/ipython and jupyter/jupyter

Dockerfiles”.

Linking standard URLs in comments is sparsely used by developers

GitHub’s interface also supports creating hyperlinks to URLs. When a user pro-

vides a URL in the comment text, it renders into a clickable link. We found that

7.2% of references made on GitHub are URLs (Table 4.2). Reference Documenta-

25

tion which are outside GitHub such as external web pages and forum threads are

majorly referenced by auto-linking URLs (see Reference Documentation in Fig-

ure 4.1). However, other types such as Agents, Client Documentation, and Project

Documentation used it sparsely. A possible reason for sparse usage of linking

URLs is because it is time-consuming for discussants to locate, copy, and paste

the URL of the resource in the comment text. It is also sometimes an overkill for

resources which are intrinsic to the project such as project docs, readme, bots, CI

services, code files, therefore, these are primarily mentioned in plain text.

4.1.2 Majority of referent types are expressed in plain text

We found that the majority of references (77.8%) were written in plain text with

no link (Table 4.2). The higher number of plain text references in PR discussion

is mainly because of the lack of support of many referent types through GitHub’s

auto-linked referencing interface. Therefore, plain text is employed as the fallback

option. For example, SOURCE CODE, which is a highly discussed information in

PRs, has no support on the referencing interface and is majorly discussed in plain

text (Table 4.2). Since plain text lacks the ability to link to the referent, it takes

longer to express the referent information, for example, a reviewer has to explain

the variable value in a long sentence as “The fontSize for paperFontButton is 14”.

Similarly, a PR in UI project has a comment as “Made box shadow color of white

color option a darker shade of gray for better visibility” in which properties and

values in the source code is explained in long text. It becomes even more challeng-

ing when the discussion involves Application referents such as runtime instances

of source code as in this comment “Click on menu1, then menu2, then menu1

again → JS error is occurred.” Here, the UI navigation is described in writing to

reproduce the issue which is difficult to dereference.

On the other hand, the plain text is an appropriate choice of expression for some

referent types such as DEV TOOLS AND ENVIRONMENT, COMPILATION AND EX-

ECUTION RESULT, and DOCUMENTATION. For example, Software Development

Tools such as automation tools, code editors, browsers, execution platforms are

mainly presented in text as in this PR comment “Fixes issue with m.route in IE 11,

caused by this line. history.state can be null and the Object.assign polyfill does not

26

handle it.” This is because references to tools like “IE 11”, “chrome”, “windows”,

“android”, “JVM”, etc. are commonly used jargons in software engineering which

appear quite frequently in discussion and can be easily understood in plain text.

We found that ∼19% of plain text references express the referents verbatim.

For example, compilation/runtime Errors, and console Outputs are generally pro-

vided as-is by copying the output log in the comments (Figure 4.1). This is likely

because Errors cannot be easily understood by other reference handles such as er-

ror codes only, therefore, the whole stack trace logs are useful in conveying the

error in the discussion. However, producing verbatim text references by copying

and pasting is time-consuming. Also, referencing and dereferencing a part of the

verbatim text in subsequent comments also takes effort in writing to point to it.

On the other hand, some plain text references use descriptive phrases to refer-

ence information such as API, Warnings, and Test Cases (Figure 4.1). For example,

in one of the PR comment, the reviewer suggested a new API as “it would be great

to have a ”should retry” callback somewhere that will decide if the retry is still rele-

vant at the time it can execute”, which was picked up in the thread and used as a ref-

erence handle while discussing the use case scenario by other discussants. Similar

practices have also been observed with Tests, Warnings and Issues which are given

short descriptive titles (for e.g., “coroutine test”, “peer dependency warnings”, “flake8 issues”,

“typescript bug”, etc.) which served as the reference handle for discussion in the

thread.

4.1.3 Source code is frequently discussed in PR discussions, but not
supported by auto-linking

There are many references to source code in PR discussion despite these not be-

ing supported by the interface. We found that 45.5% of total references in our

dataset are to SOURCE CODE referent types (Table 4.1). Code Elements and Code

Containers are the most prevalent of these (54.9% and 22.5% respectively, see

Figure 4.2). However, only 3.3% of total SOURCE CODE references were created

using GitHub referencing interface, primarily by linking URLs (Table 4.2). Here

we present referencing patterns in the two major source code types below.

27

n= 69

(2.31%)
n= 21

(0.70%)

n= 673

(22.54%)

n= 1639

(54.89%)

n= 202

(6.76%)

n= 263

(8.81%) n= 119

(3.99%)

0

500

1000

1500

2000

API Assets Code
Containers

Code
Elements

Code
Libraries

Inputs and
Values

Test

Source Code Sub−categories

N
um

be
r

of
 R

ef
er

en
ce

s

Figure 4.2: Distribution of SOURCE CODE Type references (N= 2,986 as
per Table 4.1) by their sub-categories.

Plain text-based referencing to Code Elements can be time-consuming.

Code Elements (for e.g., variables, functions, classes, etc.) is the most frequently

referenced (54.9%) SOURCE CODE type in PR discussions (Figure 4.2). 99% of

Code Elements references are made using plain text in comments. Since there is

no direct URL for code constructs like variables, functions, and classes, they are

referred manually Table 4.3. For example, a PR contributor describes the content

of the PR by referencing functions implemented in the class as plain text in this

comment “Implements a new tracing support for uvloop adding the pair methods

start tracing and stop tracing that allows the user to start or stop the tracing.”. Fur-

ther, the contributor also references classes in the PR discourse as “MetricsSpan,

CounterSpan and TimingSpan controversial, this PR only implements a generic

28

Table 4.3: Distribution of references to Source Code sub-categories by dif-
ferent referencing mechanisms (N = 2,279)

Sub-category Auto-linked
References

URL-linked
References

Plain Text Ref-
erences

API 0 1 (1.6%) 59 (98.3%)
Assets 0 2 (13.3%) 13 (86.7%)
Code Containers 0 56 (10.6%) 471 (89.4%)
Code Elements 0 12 (1.0%) 1217 (99%)
Code Libraries 0 3 (1.6%) 179 (98.3%)
Inputs and Values 0 1 (<1%) 231 (99.5%)
Test 0 1 (2.9%) 33 (97.0%)
Total 0 76 (3.3%) 2203 (96.7%)

Span that is a timing one”. Referencing these resources becomes challenging in

large repositories containing classes and functions with same names located into

different files and folders. Often times developers try to resolve this ambiguity by

mentioning the fully qualified name of the class in text as “when internally a new

span is created using the TracedContext.start span under the hood the parent span

is passed to the Tracer.create span, so allowing to the tracer to fetch some context

information from this”, which is time-consuming and error-prone. Sometimes, de-

velopers workaround this limitation by inserting the URLs for lines of code where

the function or class is located in the file but it involves context switching by mov-

ing the developer away from the discussion interface. Also, dereferencing source

code references in plain text is tedious for readers of the PR and requires a bit

of switching to different web pages to find the source file and location where the

referent is situated, in order to follow the discourse.

Developers can reference code containers in PR discussions by linking URLs
but it is rarely used.

Code Containers, such as code files, folders, and lines of code, are the second-

most referenced type (22.5%) of SOURCE CODE (Figure 4.2). GitHub interface

allows developers to reference lines of code and code files by inserting URLs in

the comments. However, we found that the majority of Code Containers references

29

Table 4.4: Distribution of PRs by SOURCE CODE and non-source code refer-
ents.

Referent Type(s) Count of PRs

SOURCE CODE only 34 (7.5%)
SOURCE CODE and Non-source code 356 (79.1%)
Non-source code only 60 (13.3%)
Total 450 (100%)

(89.4%) are made in plain text while only 56 out of 527 (10.6%) were created us-

ing URL-links Table 4.3. For example, a discussant mentioned a line of code by

specifying the line numbers in text form as in “Can we wrap the try started on

line 97 in a single try/catch”. Similarly for the code files as in “It would be help-

ful to have ICombinedSimpleModel interface be in the main.ts”. This is possibly

because typing the name of the file, or the line number is easier and quicker for

comment authors than manually searching and inserting the URL. However, it is

burdensome for readers to dereference these resources to build a common under-

standing of the context.

4.2 Contextual factors that shape the reference use
PR discussions is an activity to evaluate submitted changes to the code repository

to make a decision to merge or reject. During the discourse, developers make ref-

erences to various information resources relevant to the context of the discussion.

These references are indexical in nature which are generally understood by know-

ing the associated context attached to them. The context also shapes how these

references are made. Traditionally, a context is not readily considered as a static

entity; rather, context is constructed and reconstructed through interaction during

discourse. Courtright et al. [19] published several factors that play a key role in

shaping the context in information practices which are applicable in PR discussions

setting as well. In this chapter we present a qualitative description of how the use

of references are shaped by these different contextual factors.

30

Documentation

Dev Tools and Environment

Source Code

Compilation and Execution

VC Platform

Actor

−0.10.00.10.2
Height

Dendrogram

Figure 4.3: Dendrogram on principal components on the top-level referent
types generated by the correspondence analysis and hierarchical clus-
tering.

Dev Tools and Environment

Source Code

Compilation and Execution VC Platform

Actor

Documentation−0.5

0.0

0.5

1.0

1.5

−0.5 0.0 0.5 1.0
Dim1 (25.8%)

D
im

2
(2

2.
8%

)

Factor Map

Figure 4.4: Factor map on principal components on the top-level referent
types generated by the correspondence analysis and hierarchical clus-
tering

31

4.2.1 Information Type

The type of information resource being referenced influences the use of references

in the PR discussion. Some referent types can affect how a reference is expressed.

Whereas, some referent types affect the use of other referent types in the discourse.

For instance, we found that source code types frequently co-occur with non-source

code types (Table 4.4). The cluster analysis shows that the source code references

specifically co-occur with the ACTOR, VC PLATFORM, and COMPILATION AND

EXECUTION RESULT referent types, but tend not to with DEV TOOLS AND ENVI-

RONMENT, and DOCUMENTATION (see Figure 4.4). Our detailed findings on how

information type shapes the reference usage in a discussion are presented below.

3

16

31

7

1

1

16

28

5

27

7

54

25

27

31

3

27

3

3

1

0%

25%

50%

75%

100%

Warning Application Error Output

Sub−categories

P
ro

po
rt

io
n

of
 R

ef
er

en
ce

s Expression Sub−categories

Absolute−Locative
Absolute−Temporal
Descriptive
Generic
Relative−Temporal
Unique Identifier
Verbatim

Figure 4.5: Distribution of Expression Sub-categories for COMPILATION

AND EXECUTION RESULT.

32

Developers tend to express compilation errors verbatim and warnings
descriptively

COMPILATION AND EXECUTION RESULT referent types such as Errors are refer-

enced verbatim, either by copying and pasting the error text or with a screenshot

image. Warnings, on the other hand, are expressed using descriptive titles or names

only. From all the references to errors in our dataset, 34% are expressed verba-

tim. Similarly, 42% of references to warning messages are descriptively mentioned

(Figure 4.5). In software development, errors are more technical in nature and can

block the software development and execution activities as compared to warnings.

Therefore, to diagnose the problem, one needs complete error information (e.g., a

stack trace). This is why verbatim expressions are preferred for errors.

PRs that discuss source code mostly contain references to non-source code
references such as issues and other PRs

81% of SOURCE CODE discussions contain at least one reference to VC PLAT-

FORM types, such as Issues and PRs. Issues on GitHub also have a discussion

thread of their own. Therefore, referencing issues in the PR discussion provides

evidence of the rationale behind the decisions made by the contributor in the pro-

posed change. Reviewers also often reference related or similar PRs in the discus-

sion which is impacted by the current change to fast-forward the evaluation pro-

cess, for example, “A possible fix of the issue #48 and Fixes #425”. Also, in our

qualitative exploration, we found that these references appear in different places in

the PR. For example, some contributors mention them in the PR description, but

other contributors or reviewers bring it into the discussion during the review pro-

cess. Referencing issues and PRs not only helps in the evaluation process of the

PR, but also helps others to track similar efforts, either in the space of issues, PRs,

or commits.

Source code-only PRs tend to be specific and short

A small fraction of PRs (7.5%) only refer to SOURCE CODE (Table 4.4). These

PRs tend to include atomic changes in the code with restricted impact like changing

variable names, adding arguments, updating properties and so on. Therefore, these

33

PRs tend to reference many Code Elements in their comments and their discussion

threads typically contain fewer than three comments.

4.2.2 Information Specificity

Apart from the type of information resource being referenced, the granularity or

specificity of the information being referenced also influences the choice of refer-

ences to be used during PR discussion. Based on the situation, developers tend to

adjust the degree of specificity, for example, in detailed discussion related to code

changes, they tend to discuss the specific line of code in a source code file, in other

situations while discussing the overall impact on the class, they tend to refer to the

source code file directly. For other types such as documentation and build releases

developers tend to reference the specific part of the resource in their discussion.

The PR discussion interfaces can be enhanced to support referencing and derefer-

encing these nested information types by changing the degree of specificity. Some

of these practices which have been observed in our data are presented below.

Documentation references tend to include additional information along with
URLs to denote specificity

DOCUMENTATION references, developers often point to a specific section of the

referent. They tend to augment a written description to denote the exact location

in their reference for readers to focus on. For example, a developer referring to a

subsection of a document in a comment as “...the third section of README.md”.

Apart from referring to specific structural organisation of the document, developers

also reference a specific content item in a project file such as “ copyright year in

License.md”. These references are majorly expressed as plain text because nested

sections of the information resource might not be located by a URL. Sometimes,

developers combine plain text with links by augmenting additional textual infor-

mation with document URLs. This saves the other discussants’ time in locating the

information and also prevents misunderstanding.

34

6

28

55

10

212

485

68

56

98

110

22

77

1

11

76

20

17

3

38

43

1

33
52

7

30

854

3

92

32

64

52
15

250

1019

703

3

12
26

217

39

18

165

6

2
3

43

15

4

8

96

21

61

16

1

44

Documentation VC Platform

Actor Compilation and Execution Result Dev Tools and Environment

Reference
Documentation

Project
Documentation

Client
Documentation

Version
Control
Entities

Comment Repo Issue PR

Organisation Agent Stakeholder Warning Application Error Output Environment Automation
Tools

Software
Development

Tools

Programming
Language

Platform

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Referent Sub−Types

P
ro

po
rt

io
n

of
 R

ef
er

en
ce

s

Expression Types Named Expression Content Based Expression Locative Expression Temporal Expression

Figure 4.6: Distribution of expression types for non-source code referent
types.

Developers tend to use temporal information for Build Release and Execution
Output

Another pattern of using specific information for referencing is observed in refer-

ences having temporal attributes like revision history. Many referent types such

as COMPILATION AND EXECUTION RESULT and VC PLATFORM are expressed

using their version number. For instance, one PR has a comment “The change is

made in a way to support both Butterknife 7 and older versions”, which refers to

the release version of the software. This temporal information is useful to refer to a

specific release of the software which is useful in evaluating the impact of changes

submitted in the PR on backward and forward compatibility with the software. 85

out of 174 (48.9%) references to Output artifacts like build releases explicitly em-

ploy temporal expressions to increase their degree of specificity (see Figure 4.6).

Knowing temporal information of these referent types is necessary for reviewers to

gauge the impact on the code base and helps in prioritizing PRs.

35

4.2.3 Cultural Practices

The software engineering culture and practices influence the referencing patterns

in the PR discussion. For example, the project type, programming language used

in the project impacts the software development practices of the project such as

development, testing, reporting issues. It ultimately influences the discussion and

the references used in the discussion as well. These cultural factors can inform

the design of PR discussion interfaces to be customizable to allow referencing and

dereferencing resources based on the type of the project under discussion.

Developers tend to refer to internal documentation by name and external
documentation by URL

76 out of 107 (71%) references to the Reference Documentation which are external

to the project environment (e.g., third-party web pages, forum threads, specification

websites) are generally referenced by locative expressions (i.e. using URLs) (see

Figure 4.6). These information resources exist outside the shared context of the

discussion, therefore, to ground them for every participant in the thread, a URL link

to the referent is shared in the comments. On the other hand, discussants reference

daily-use documents that are internal to the project such as Project Documentation

and Client Documentation majorly by names. An explicit link to these resources is

not provided as they are already part of the shared understanding.

UI references are common in projects which have user interface components

Projects such as Android, iOS, and web development frequently reference a lot of

UI elements. 6.3% of references in these projects are related to UI referent types as

compared to other projects which contain only 0.7% UI related references. We also

found that these referents are expressed using descriptive names or short phrases.

For example, in one PR discussion referencing a button in the GUI, participants

referred to it by its screen name “show more button” Also, to express transient

information (e.g., UI effects, states, and transitions) which cannot be pointed like

a button in the above example, participants use GIFs or images in pairs to show

before and after scenarios.

36

21

5
7

13

53

3

55

34

8
8

28

124

9

41

11

10

7

27

5

14

56

13
15

40

251

6

118

52

37

26

43

258

6

140

221

109

171

250

1100

56

792

5

6

6

5

21

16

31

13

18

10

149

6

42

13

22

21

58

5

28

107

57

71

82

532

28

256

35

17

25

81

7

52

2
2

6

30

2

12

7

40

7

18

15

15
3

10
7

141

2

44

7

10

11

6

48

90

0%

25%

50%

75%

100%

Rust CSS Jupyter
Notebook

Shell PHP C# Ruby TypeScript Swift C++ Objective−
C

Go Java Python JavaScript

Programming Language

P
ro

po
rt

io
n

of
 R

ef
er

en
ce

s

Referent Types
Actor

Compilation and Execution Result

Dev Tools and Environment

Documentation

Source Code

Suggested Referents

VC Platform

Figure 4.7: Distribution of referent types by project programming language.

Reference usage is correlated with the programming language of the project

We found that there is a significant relationship between a programming language

and referent types, χ2(70,n= 6558)= 648.25, p< .001. A programming language

is assigned to each repository by GitHub, which we collected during the sampling

process. The amount of DEV TOOLS AND ENVIRONMENT references in PR dis-

cussions of projects using popular languages (e.g., JavaScript and Python) is more

frequent as compared to less popular languages (e.g., Ruby and Rust) (see Fig-

ure 4.7). The popularity of a language is based on surveys conducted by GitHub1

and Stackoverflow2. For example, PRs on JavaScript projects, reference build tools

and IDEs. Various Environments are also referenced, like operating systems and

web browsers to discuss compatibility issues.

1https://octoverse.github.com/
2https://insights.stackoverflow.com/survey/2020

37

https://octoverse.github.com/
https://insights.stackoverflow.com/survey/2020
https://octoverse.github.com/
https://insights.stackoverflow.com/survey/2020

Developers commonly use suggested references in projects of web-based
programming languages

There is another dimension of referents that we identified in PR discussions, refer-

ences to information resources that do not yet exist in the software. We call these

Suggested Referents. Any referent type in our taxonomy Table 3.2 can be a sug-

gested referent. We found that suggested referents are commonly used in projects

with primary language as JavaScript, CSS, PHP and Python (see Figure 4.7). For

example, in one PR in a CSS project, a reviewer commented “If you could update

this to data-balloon-* attributes instead of classes, I would be glad to accept this

PR”. data-balloon-* is a suggested property in the comment. A web-based pro-

gramming language such as CSS offers many ways to implement the same feature

in a relatively few lines of code, we suspect that the expressive nature of CSS is

responsible for the pattern we observed. The increase in suggested referents also

indicates that developers tend to have longer discussions in such projects related to

alternative solutions and suggestions. Also, the number of suggested referent types

are found more in closed PRs as compared to merged PRs which indicates that the

discussion has led to re-work in the PR submission.

4.2.4 Social Norms

PR discussion is a social activity which involves collaborative discussion carried

out by users of the platform to reach to a conclusion. The references are influenced

by the social norms of the population group which are carrying the discussion. For

example, users are referenced in the discussion for a variety of reasons such as to

question, to reply, to seek clarification, to add them into the discussion thread, or

for informational purposes only. Similarly, the group of users carrying the discus-

sion also use generic references to refer to resources in the discourse which is an

acceptable social norm. These findings are discussed in detail below.

Developers frequently use generic terms to reference information scoped
within the discussion thread

We found that 30.2% of the references in our dataset are expressed using generic

terms such as pronouns, adjectives, and collective nouns (Figure 4.8). These refer-

38

n= 2362 (37.51%)

n= 1904 (30.24%)

n= 821 (13.04%)

n= 686 (10.89%)

n= 386 (6.13%)

n= 73 (1.16%)

n= 48 (0.76%)

n= 17 (0.27%)Relative−Locative

Relative−Temporal

Absolute−Temporal

Absolute−Locative

Verbatim

Descriptive

Generic

Unique Identifier

0 1000 2000 3000
Number of References

E
xp

re
ss

io
n

S
ub

−
ca

te
go

rie
s

Expression Types
Named Expression Content Based Expression

Locative Expression Temporal Expression

Figure 4.8: Distribution of expression sub-categories.

ences are used for various purposes. Once a reference is introduced in a comment,

it is re-referenced in the discourse repeatedly using generic terms like pronouns (it,

this, etc.). For example, after introducing a class by its name “EnhancedFactory-

Data”, it was expressed in the discourse using pronouns, such as “it” and “this”.

This works because the mutual understanding of the referential identity is already

established, there is no need to reference it by its name again, therefore pronouns

like “this” can be used. In other scenarios, when the referent is obvious in the

discussion, such as the PR itself or the issue under discussion, generic terms like

demonstrative adjectives (i.e., “This PR”, “This issue”) are used. For example, a

submitter referenced the self PR in a comment as “This fixes #9”. Also, when the

discussant points to a collective group rather than to a specific referent, for exam-

ple, referring to the “contributors” instead of a specific user, collective nouns are

used as generic expressions. All these social norms of using language impacts how

the references are made in the PR discussion. References with generic terms may

39

Table 4.5: Impact of number of comments and participants in @-mention ref-
erences in a PR (Results of Negative Binomial Regression Test)

Estimate Standard Error p-Value

Intercept -2.09 .163 <.001∗∗∗

comments count .24 .017 <.001∗∗∗

participants count .07 .046 .108

work well for those who are following the discussion but may pose a problem for

new readers, who need to re-read the discussion from the top to understand the

generic reference. Also, having multiple referents expressed with generic words in

the same discussion may lead to misunderstanding.

Stakeholder references (@-mentions) are prevalent in long PR discussions

References to ACTOR, especially Stakeholders (i.e., contributors, reviewers, partic-

ipants), tend to increase with the number of the comments in the PR. To test this hy-

pothesis, we used Negative Binomial Regression as it is suitable for over-dispersed

count variables (see Table 4.5). We chose number of comments and number of par-

ticipants in a PR as the predictor variables because these factors can increase the

likelihood of referencing users (@-mention) in a discussion thread. Out of these

two factors, we found that there is a significant relationship between number of

comments and number of @-mentions in a PR discussion (see Table 4.5). With the

increase in the number of comments, the number of @-mention references tend to

increase in a thread. This result adds inferential evidence to a similar observation

reported in the previous work [68].

By closely reading the PRs, we found that stakeholders are referenced for var-

ious purposes in comments using @-mention. The most common reason for ref-

erencing users is to discuss the content of the PR such as replying to other user’s

comments, directing questions to a user, appreciating a user’s response or contribu-

tion. For example, in one PR comment, a reviewer is asking for the rationale of the

new API as “Hi @georgiosd. Can you describe the use case/real-world scenario

for ”should retry” in more detail, so that I can better understand? Thanks!” Other

times, we found that @-mentions are used for tagging users for administrative pur-

40

poses such as requesting a review, inviting a user to participate in the discussion,

and tagging a user for information purposes only. For example, a user was tagged

for notification purposes in the discussion by commenting “/cc @mabrahamde”.

Also, people express their agreement and disagreement on the suggested solutions

during the discussion such as “I agree with @st0le’s way as well”. Since most of

the purposes are covered by @-mention in comments, but there are some reasons

for which developers do not use @-mentions. For example, to reference a user

who is not on GitHub, the name or email address of the user is mentioned. And, to

refer to the group of users collectively, such as all the contributors in the project,

developers mention them in plain text as in this comment “This way contributors

don’t have to waste time in setting up the development environment and getting the

dependencies installed.”

4.3 Referencing patterns in PRs with different outcomes
At the end of the day, a successful PR is either merged or closed because reaching a

conclusion quickly is important for efficiency in the software development process.

Therefore, the essence of the discussion process in the PR is to evaluate the con-

tribution and reach an outcome. The use of references in a PR discussion can help

in advancing the discussion process so that the PR progresses towards conclusion.

We start this section with an analysis of referencing patterns observed in merged

and closed PRs, because these two statuses are conclusive while the open status is

indefinite, where things are left to be decided. In the second subsection, we briefly

share our high-level observations from open PRs.

4.3.1 Accepted or Rejected PRs tend to have references to the
evidence that advocates their appropriateness.

References to Tests, Agents, and Issues are more frequently found in merged than

closed PRs (see Figure 4.9). These referent types indicate that the participants in

the discussion may have taken steps to ensure that the changes in a PR do not im-

pact the project negatively or the changes are important for maintaining the quality

of the main repository. For example, references to unit tests and test suites can

signify the presence of tests and testing code, which make it easy to verify the cor-

41

2838

324

1715
87

3110

9963

209239

596482

8660

6548

710

2422

11279

92116

63

8253

4731

317185

2531

5967

3728

9361

2513

177129

3049

11957

41
API

Warning

Automation Tools

Version Control Entities

Organisation

Software Development Tools

PR

Client Documentation

Output

Repo

Platform

Code Libraries

Inputs and Values

Stakeholder

Comment

Reference Documentation

Code Elements

Assets

Application

Error

Project Documentation

Code Containers

Programming Language

Issue

Agent

Environment

Test

0% 25% 50% 75% 100%

Proportion of References

R
ef

er
en

t S
ub

−
ca

te
go

rie
s

PR Status CLOSED MERGED

Figure 4.9: Distribution of all referent types by PR status (closed/merged).

rectness of the pull request. The presence of Agent references can indicate the use

of a bot or third party service for running CI loops, calculating code coverage, and

so on, which provides further evidence that the PR has been reviewed for quality.

For example, a kubernetes-prow-bot has been used in the ”Kubernetes” project in

our dataset; it can run test suites, add labels to the PR, and merge the code based on

users’ commands. Similarly, the ”CLAassistant” bot is used to ensure contributors

have signed the contributor license agreement. Although, Environment references

are also higher in merged PRs than closed, we refrain from making strong claims

from them due to the small sample size with only 17 instances.

References to Automation Tools and Version Control Entities are more than

twice likely to be found in closed PRs than merged PRs (see Figure 4.9). These

pattern indicates that the discussion may have taken place regarding the source code

management aspect of software development such as using a wrong branch, merge

42

conflicts, build related issues, or redundant fixes. Automation Tools references

in closed PR discussions may indicate the negative outcomes of a build system

on a given PR [69]. Similarly, Version Control Entities references may appear to

indicate duplicate fixes or pending issues in the submission which is preventing

a proposed change from being merged. All these factors are indicative of how

certain referent types are more frequently found in closed PRs than others. We

also found that majority of API-heavy PRs end up closing (N = 32) than merging

(N = 4) because such discussions tend to be contentious and could easily lead to

rework in most cases (see Figure 4.9). However, we found that a similar number

of API references (N = 33) are also present in open PRs which are yet to reach

a conclusion which indicates that these PRs tend to remain inconclusive before

closing. Therefore, we present our observations on open PRs separately in the next

section.

4.3.2 In Open PRs, developers seem to be discussing high-level
changes such as API and Compatibility issues in software
projects

We found that relatively high proportion of API-level changes in the software or

compatibility issues are found in open PRs (33 out of 69 API instances) than the

other two types (4 in merged, 32 in closed). These PRs generally involve discussion

about how the proposed changes may affect the entire project, for example, with

regards to backward compatibility and support for running on different platforms.

This is difficult to appraise. For example, a sampled PR3 in the “gRPC” repository

proposed an API for client interceptors in which discussion carried onto discussing

its compatibility on different runtime platforms and API design in detail amongst

the four discussants. The discussion ended without any decision around the time

we sampled this PR, and 5 months later the PR was closed with a message that

the proposed changes were in conflict with the long-term API goals of the project.

Such PRs are more likely to remain in an open state, because consensus is difficult

to reach.

3https://github.com/grpc/grpc-web/pull/558

43

https://github.com/grpc/grpc-web/pull/558
https://github.com/grpc/grpc-web/pull/558

Chapter 5

Learnings from Referencing

Our thesis provides insights into developer’s referencing practices in PR discus-

sions; however, consolidating our findings establishes two major takeaways for the

design and research community. First, many prevalent referencing practices gener-

ate design implications for supporting rich referencing in PR discussion interfaces

which are discussed in Section 5.1. Second, the study of referencing patterns in

PRs opens up new possibilities for further research to explore its impact on the

flow of discussion and ultimately on the discussion outcome which we elaborate in

Section 5.2 and Section 5.3. Finally, we end the chapter with a discussion of how

prevalent is the lack of referencing support in communication occurring beyond

the context of PRs. Table 5.1 summarizes the key design implications and research

opportunities derived from the findings in this thesis.

5.1 Design Implications
We identified various referencing patterns in PR discussions that are not supported

by GitHub’s auto-linked referencing interface. For example, source code which is a

frequent object of discussion in PRs, is primarily discussed in plain text. Similarly,

there is no support for referencing UI elements, nested content in the documen-

tation, build releases, and certain resources that appear within the scope of the

discussion thread itself. In this section, we discuss the implications for design gen-

erated through the referencing practices observed in PR discussions to better sup-

44

Table 5.1: Summary of learnings derived from studying referencing patterns
in PRs.

Design Implications

1 In-situ code editing for source code referencing.
2 Built-in live app-emulation for UI referencing in PRs.
3 Referencing nested content in docs using transclusion.
4 Auto-detection of references generated within PR thread.
5 Referencing build releases, and project docs with auto-linking.

Research Opportunities

6 Exploring the relationship between referencing and PR outcomes.
7 Exploring the use of references to impact the stage of discussion.
8 Extending the support of referencing to discussions beyond software engineering domains.

port referencing and dereferencing various underrepresented referent types through

GitHub’s PR discussion interface.

5.1.1 There is a need for referencing finer details in source code

Our findings in Section 4.1.3 indicate that Code Elements in the SOURCE CODE

have been the major part of a discussion in PRs. However, developers are mak-

ing these references by typing text which is tedious and error-prone. Especially in

review comments, typing correct variables names, or correct signature of the func-

tion is important because that is the only index to the actual code in the file. Al-

though GitHub renders the code differently from the regular text in the comments

which provides a visual distinction, it does not support developers in authoring

code within comments. This suggests the need for in-situ code editing capabilities

within the PR interface which can assist developers to reference and dereference

various code elements in the source code within the repository. Like a code editor,

the interface will provide content assist (aka code completion) to write code faster

and efficiently. When a developer types in the first few letters, it provides a list of

matching code elements (variables, functions, classes, etc.) pulled from the source

code within the project environment. The developer can make a selection from

the list and the interface will automatically add a link to the referent in the source

code file in the repository. It allows developers to type code with few keystrokes as

45

well as maintain accuracy. It is even more convenient when functions and variables

with the same name exist in different code files as it links to the right definition.

These auto-linked code references can be dereferenced in many ways. By hovering

over the reference (e.g. a function name) in the comment, the interface displays its

function definition in a tooltip right within the PR thread. Or by clicking the ref-

erence, one can navigate to its location in the code file. The in-situ code-editing

capabilities within the commenting interface of PR discussion can speed up coding

authoring within comments and improves efficiency by reducing typos and other

common mistakes.

5.1.2 Referencing UI elements in PR Discussion

We found that projects with interface elements reference various resources such as

UI elements, layouts, colors, positioning in their text comments. These resources

require long text to describe as well as their description style varies from one per-

son to another. It becomes even more difficult to reference information like state

changes, animations, background effects that cannot be pointed out on the inter-

face. Developers interleave screenshot images with a text description in their com-

ments which is unnecessarily time-consuming. To reproduce issues, or demon-

strate the implemented changes, developers reference links to the running instance

of the app on cloud IDEs such as StackBlitz1, Gitpod2. The reviewer can browse

these hosted apps to interact with the live application. However, these are situated

outside the PR’s discussion environment and require context switching. This sug-

gests there is a need for built-in UI emulation with referencing and dereferencing

capabilities within the PR discussion interface. The emulator runs the app next to

the discussion thread in the PR and allows users to access different UI elements in

the app. For example, to reference a button in the app, the user can select the but-

ton on the UI and drag it into the commenting interface which will automatically

add a link to it in the text comment. Developers can also take the screenshot of

the UI right within the PR interface which prevents them from context switching.

These linked UI references in the comments can be dereferenced by clicking the

link which loads the UI in the emulator next to it.
1https://stackblitz.com/
2https://gitpod.io/workspaces/

46

https://stackblitz.com/
https://gitpod.io/workspaces/
https://stackblitz.com/
https://gitpod.io/workspaces/

5.1.3 Nested referencing in comments can be supported with
transclusion.

We found that references were often made to specific elements of information ob-

jects. For example, references to documentation, code files, web pages, often in-

clude a location within the larger information object. For example, “The third

section of readme.md” specifies a section in a document. In previous work on hy-

pertext, there have been calls for transclusions [38, 51]. Transclusion is a method

of including all or part of an information object into another, which eliminates the

need to dereference. However, more recent work has highlighted challenges for

readers making sense of these types of links because key context can be missing in

transclusions [36, 44]. This implies that tools should support forms of transclusion

appropriate to the granularity of the content with particular contexts, such as text

sections and code snippets, found in PR discussions. Chua et al. [13] suggested

one of few solutions to the nested referencing for varying degrees of specificity,

addressing the specific case for documents in the online learning context.

5.1.4 There is a need for supporting references within a PR
discussion thread

We found that various references are being generated within the scope of the dis-

cussion thread itself. For example, developers introduce issues, APIs, and features

with short titles like “typescript bug”, “flake8 issue”, “Timing API”, etc. These

references once introduced in the scope of discussion are continued to be used by

other people in their replies. However, there is no mechanism to trace the location

where these are initially created. Therefore, users who are not actively involved in

the discussion need to read the complete thread from the beginning to trace the defi-

nition of these references. These references become even more difficult to decipher

when one comment of the PR is cross-referenced into another PR. This suggests a

need for an auto-detection feature within the PR discussion interface that can auto-

matically highlight these references in the discussion thread and link the comment

in which it was introduced. The user can navigate directly to the comment where

the reference was introduced by clicking the reference without needing to read the

whole thread.

47

5.1.5 Extending GitHub’s current support for auto-linking software
deliverables

We noted in Section 4.2.2 that developers make text references to software deliv-

erables such as build releases, project documents in their comments during dis-

cussion. Although, there has been a way to link URLs to these resources by

copy-pasting it in the text, but it has not been used effectively because it is time-

consuming and requires context switching. Since GitHub’s auto-linking feature

already supports referencing many platform-specific entities such as Issues, PRs,

and users. It can be easily extended to support other resources that are intrinsic

to projects such as build releases, project files, etc. To reference a build release,

a user can type a prefix character which invokes quick navigation within the au-

thoring interface. The quick navigation provides the list of releases published by

this repository on GitHub. The user can navigate the list and make a selection

and a linked reference to the release is added in the text comments. This feature

enhances a common linking feature provided by GitHub to autolink any external

resources3. The reference includes an embedded link to the release page which can

be dereferenced by the readers from the discussion interface directly.

5.2 Referencing and discussion stages
During a code review process, the PR discussion goes through different discussion

stages. Referencing can act as a benchmark to the stage of discussion. For exam-

ple, the title and description provided by the submitter in the PR sets the grounds

for reviewers to start the discussion. Based on the references given in the descrip-

tion, a reviewer can decide the next course of action to either continue with the

code review or ask for additional information from the submitter. Similarly, in

case of disagreement with the submitted change, a reviewer may suggest an alter-

native change to the code, or decide to reject it. In these scenarios, a discussion

moves into different stages and the people in the discussion make different refer-

ences in the comments over time. These references in the discussion can orient

the flow of the PR discussion in a specific direction. Therefore, it is interesting

to explore what set of references can impact the PR discussion to progress in a

3https://docs.github.com/en/github/administering-a-repository/configuring-autolinks-to-reference-external-resources

48

https://docs.github.com/en/github/administering-a-repository/configuring-autolinks-to-reference-external-resources
https://docs.github.com/en/github/administering-a-repository/configuring-autolinks-to-reference-external-resources
https://docs.github.com/en/github/administering-a-repository/configuring-autolinks-to-reference-external-resources

forwarding direction. This kind of study can also reveal many commonly occur-

ring behaviors in these conversations, as well as well-established norms that can

have many utilitarian implications. For example, what kind of references people

make in their comments to come to an agreement can inform the design of an au-

tomated bot which can facilitate the decision-making process by making similar

comments. Also, knowing the stage of discussion, we can build predictive models

to predict when a PR can reach a conclusion which will be effective in managing

the efficiency of software development process.

5.3 Referencing and PR outcomes
Our findings indicate various referencing patterns found in PRs with different out-

comes. This observation suggests that analysing referencing is an important yet

understudied aspect of code review discussion. Discussions that use references in

different ways may lead to different, correlated outcomes, depending on the con-

text. For example, Yarmand et al. [64] showed that referencing timestamped video

snippets in comments can increase the number of “likes” and replies on YouTube.

Similarly, Liu et al. [40] found that messages that reference multimedia content on

Twitter receive more re-tweets. On StackOverflow, answers with references receive

more ”up” votes [50]. Note that having certain references in a PR may not at all

ensure that it will be accepted because many technical and social factors impact the

PR outcome [26, 27, 59, 60, 65]. References can reduce the cognitive workload in

a discussion which helps to reach a conclusion faster. Therefore, it is interesting to

see in future work how references can influence a certain outcome over time. This

can be done by building a sophisticated statistical model that can predict the PR

outcome based on various factors including the references. Together, the findings

across this and previous work hint at the importance of studying and improving the

referencing and dereferencing capabilities of our software to better support collab-

oration and discussion.

5.4 Varying levels of platform’s support for referencing
GitHub is an evolving platform. Over time, new referencing features have been

added to its interface. For example, in 2011, GitHub introduced auto-linking users

49

using @-mention in their PR interface [3]. Similarly, in 2019, GitHub introduced

a custom prefix feature that enables the users to enable a hyperlink to new referent

types, but the feature is available for the enterprise tier users only [57]. In Chap-

ter 4, we only captured referencing behaviors that took place when the users were

given only a type of referencing feature set. One of the potential future work is to

study how different levels of platform’s interface support may impact the way peo-

ple refers to information resources in their discussions by comparing people’s ref-

erencing behaviors before and after GitHub’s auto-linking feature was introduced.

Another study can focus on practices for creating and using different custom pre-

fixes. Therefore, referencing feature set could become an another sampling criteria

in data collection for future studies.

5.5 General lack of referencing support
While we have established that referencing is an important tool for effective com-

munication and that rich referencing is occurring in PR discussions, we also found

that support for it is limited. Fewer than 16% of the references in our dataset are

supported by the GitHub platform. Despite lacking support, developers are intro-

ducing textual references to e.g., a shared codebase, other repositories on GitHub,

various third-party websites, suggesting the importance of references in establish-

ing common ground. Since GitHub’s referencing interface already supports VC

PLATFORM, therefore, support for other platform-entities like repositories can be

easily extended. Similarly, other studies have also found that general support for

referencing is lacking in contexts beyond code review. Yarmand et al. [64], for

example, found that most referencing behaviors are unsupported on YouTube. We

suspect that this is a concern for other Q&A platforms, such as StackOverflow and

Quora, where users lack the same degree of shared context as on GitHub. In these

contexts referencing support could be crucial for effective communication [50].

5.6 Summary
In summary, the study of referencing patterns in PR discussions have many impli-

cations for the design and the research community in general. We discussed design

ideas to support referencing in PR discussion interfaces which facilitate effective

50

communication during the code review process. We also discussed how the study

of referencing has promising potential to explore as another influencing factor for

PR outcomes. We believe the work of understanding PR referencing behavior has

just begun. Future work, for example, could analyze how the use of references ma-

neuver the flow of discussion which can generate more design guidelines for the

community. In the end, we highlighted the general scarcity in supporting referenc-

ing in discussions beyond PR settings as well.

51

Chapter 6

Conclusion

In this thesis we examined software developers’ referential behaviors in code re-

views through an analysis of ∼7K annotated references from 450 public PRs sam-

pled from GitHub. We provided an analysis of the patterns of what people re-

fer to (type) and how they refer it (expression). We provided the detailed em-

pirical accounts of how well the referencing is supported by GitHub. We found

source code is the most frequently referenced type of information, even though it

is under-supported by GitHub’s referencing interface. We found information type,

information specificity, cultural practices, and social norms are the four contextual

factors that shape the use of references in PR discussions. We presented several

referencing practices shaped by these factors. Finally, we found distinct referential

behaviors in merged, closed and open PRs. Based on consolidating our analyses,

we provided design implications to support effective referencing in PR discussion

interfaces. We also discussed some more general insights about referencing be-

haviour in PR discussions and reflected on how it promises potential for further

research.

This study has several limitations. With regards to the taxonomy, we focused

only on referent types and referential expressions. Other important aspects of the

referencing behaviors fall outside the scope of the current study. We collected a

diversified sample of PR discussions from popular repositories on GitHub, based

on star ratings. Future work could prioritize other repository attributes, such as

number of contributors. Our dataset does not contain PR discussions from private

52

repositories on GitHub, leaving questions about the referencing practices within

closed-source projects from our analysis.

This study created a data-driven taxonomy of references stakeholders make in

PR discussions, analyzed the existing referencing support provided by GitHub and

observed several patterns of referential behaviors in practice. Through the artic-

ulation of the PR reference behavior in this paper, better software tools can be

designed to accommodate the rich nature of referencing in stakeholder PR discus-

sions to improve source code design, implementation, management and, ultimately,

trustworthiness.

53

Bibliography

[1] Features. Code Review. GitHub, 2019. URL
https://github.com/features/code-review/. Accessed May 5, 2019. → pages
1, 10

[2] The state of the Octoverse: An overview on community and platform
growth, 2019. URL https://octoverse.github.com/2019/. Accessed Nov. 6,
2019. → page 1

[3] Autolinked references and URLs - GitHub Docs, 2020. URL https://docs.
github.com/en/github/writing-on-github/autolinked-references-and-urls.
Accessed Oct 29, 2020. → pages 3, 22, 50

[4] GitHub: Where the world builds software, 2021. URL https://github.com/.
Accessed Feb. 15, 2021. → page 10

[5] A. Bacchelli and C. Bird. Expectations, outcomes, and challenges of modern
code review. In 2013 35th International Conference on Software
Engineering (ICSE), pages 712–721. IEEE, 2013. → page 2

[6] L. Baron, J. Tague-Sutcliffe, M. T. Kinnucan, and T. Carey. Labeled, typed
links as cues when reading hypertext documents. Journal of the American
Society for Information Science, 47(12):896–908, 1996. → page 9

[7] A. Begel. Program commenting by voice, 2002. → page 11

[8] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens. Modern code reviews
in open-source projects: Which problems do they fix? In Proceedings of the
11th Working Conference on Mining Software Repositories, MSR 2014,
page 202–211. Association for Computing Machinery, 2014. ISBN
9781450328630. → page 9

[9] H. Borges and M. T. Valente. What’s in a github star? understanding
repository starring practices in a social coding platform. Journal of Systems
and Software, 146:112–129, 2018. → page 14

54

https://github.com/features/code-review/
https://octoverse.github.com/2019/
https://docs.github.com/en/github/writing-on-github/autolinked-references-and-urls
https://docs.github.com/en/github/writing-on-github/autolinked-references-and-urls
https://github.com/

[10] H. Borges, A. Hora, and M. T. Valente. Predicting the popularity of github
repositories. In Proceedings of the The 12th International Conference on
Predictive Models and Data Analytics in Software Engineering, pages 1–10,
2016. → page 14

[11] Y.-C. Chang, H.-C. Wang, H.-k. Chu, S.-Y. Lin, and S.-P. Wang. Alpharead:
Support unambiguous referencing in remote collaboration with readable
object annotation. In Proceedings of the 2017 ACM Conference on
Computer Supported Cooperative Work and Social Computing, pages
2246–2259, 2017. → page 7

[12] Y. Chen, S. W. Lee, Y. Xie, Y. Yang, W. S. Lasecki, and S. Oney. Codeon:
On-demand software development assistance. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems, pages
6220–6231, 2017. → page 11

[13] S. H. Chua, T.-J. K. P. Monserrat, D. Yoon, J. Kim, and S. Zhao. Korero:
Facilitating complex referencing of visual materials in asynchronous
discussion interface. Proceedings of the ACM on Human-Computer
Interaction, 1(CSCW):1–19, 2017. → pages 3, 4, 7, 47

[14] H. Clark. Using Language. Cambridge University Press, Cambridge, United
Kingdom, 1996. → pages 2, 7

[15] H. Clark and S. E. Brennan. Grounding in communication. 1991. → pages
2, 6, 8

[16] H. Clark, R. Schreuder, and S. Buttrick. Common ground at the
understanding of demonstrative reference. Journal of Verbal Learning and
Verbal Behavior, 22(2):245–258, 1983. → page 7

[17] J. Cohen. A coefficient of agreement for nominal scales. Educational and
Psychological Measurement, 20(1):37–46, 1960. → page 18

[18] V. Cosentino, J. L. C. Izquierdo, and J. Cabot. Findings from github:
methods, datasets and limitations. In 2016 IEEE/ACM 13th Working
Conference on Mining Software Repositories (MSR), pages 137–141. IEEE,
2016. → page 2

[19] C. Courtright. Context in information behavior research. Annual review of
information science and technology, 41(1):273–306, 2007. → page 30

55

[20] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik. Communicative intention
in code review questions. In 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 519–523. IEEE, 2018.
→ page 8

[21] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik. Confusion in code
reviews: Reasons, impacts, and coping strategies. In 2019 IEEE 26th
International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 49–60, 2019. → page 9

[22] V. Efstathiou and D. Spinellis. Code review comments: language matters. In
Proceedings of the 40th International Conference on Software Engineering:
New Ideas and Emerging Results, pages 69–72, 2018. → page 7

[23] S. R. Fussell, R. E. Kraut, and J. Siegel. Coordination of communication:
Effects of shared visual context on collaborative work. In Proceedings of the
ACM Conference on Computer Supported Cooperative Work, pages 21–30,
2000. → pages 3, 4

[24] G. Gousios. The ghtorent dataset and tool suite. In 2013 10th Working
Conference on Mining Software Repositories (MSR), pages 233–236. IEEE,
2013. → page 10

[25] G. Gousios and A. Zaidman. A dataset for pull-based development research.
In Proceedings of the 11th Working Conference on Mining Software
Repositories, pages 368–371, 2014. → page 10

[26] G. Gousios, M. Pinzger, and A. v. Deursen. An exploratory study of the
pull-based software development model. In Proceedings of the 36th
International Conference on Software Engineering, ICSE 2014, page
345–355, New York, NY, USA, 2014. Association for Computing
Machinery. ISBN 9781450327565. → pages 1, 2, 3, 8, 20, 49

[27] G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen. Work practices
and challenges in pull-based development: The integrator’s perspective. In
Proceedings of the 37th International Conference on Software Engineering -
Volume 1, ICSE ’15, page 358–368. IEEE Press, 2015. ISBN
9781479919345. → pages 3, 8, 10, 20, 49

[28] D. Greyson, H. O’Brien, and S. Shankar. Visual analysis of information
world maps: An exploration of four methods. Journal of Information
Science, 46(3):361–377, 2020. → page 13

56

[29] Y. Hao, G. Li, L. Mou, L. Zhang, and Z. Jin. Mct: A tool for commenting
programs by multimedia comments. In 2013 35th International Conference
on Software Engineering (ICSE), pages 1339–1342. IEEE, 2013. → page 11

[30] A. Z. Henley, K. Muçlu, M. Christakis, S. D. Fleming, and C. Bird. Cfar: A
tool to increase communication, productivity, and review quality in
collaborative code reviews. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, pages 1–13, 2018. → page 11

[31] F. Husson, J. Josse, and J. Pagès. Principal component methods-hierarchical
clustering-partitional clustering: Why would we need to choose for
visualizing data?, 2010. → page 21

[32] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian. The promises and perils of mining github. In Proceedings of the
11th working conference on mining software repositories, pages 92–101,
2014. → page 10

[33] O. Kononenko, O. Baysal, and M. W. Godfrey. Code review quality: how
developers see it. In Proceedings of the 38th International Conference on
Software Engineering, pages 1028–1038, 2016. → pages 7, 8

[34] R. W. Kopak. Functional link typing in hypertext. ACM Computing Surveys
(CSUR), 31(4es):16–es, 1999. → page 9

[35] K. Krippendorff. Content Analysis: An Introduction to Its Methodology.
SAGE, Los Angeles, CA, 2019. → page 13

[36] H. Krottmaier and H. A. Maurer. Transclusions in the 21st century. Journal
of Universal Computer Science, 7(12):1125–1136, 2001. → page 47

[37] A. Kunert, A. Kulik, S. Beck, and B. Froehlich. Photoportals: shared
references in space and time. In Proceedings of the 17th ACM conference on
Computer supported cooperative work & social computing, pages
1388–1399, 2014. → page 7

[38] G. Landow. Hypertext 3.0: Critical Theory and New Media in an Era of
Globalization. Johns Hopkins University Press, Baltimore, MD, 2006. →
page 47

[39] Z.-X. Li, Y. Yu, G. Yin, T. Wang, and H.-M. Wang. What are they talking
about? analyzing code reviews in pull-based development model. Journal of
Computer Science and Technology, 32(6):1060–1075, 2017. → page 9

57

[40] Z. Liu, L. Liu, and H. Li. Determinants of information retweeting in
microblogging. Internet Research, 2012. → page 49

[41] A. Madden, I. Ruthven, and D. McMenemy. A classification scheme for
content analyses of youtube video comments. Journal of Documentation, 69
(5):693–714, 2013. → page 13

[42] E. E. Marsh and M. D. White. A taxonomy of relationships between images
and text. Journal of Documentation, 59(6):647–672, 2003. → pages 9, 13

[43] C. Marshall. Toward an ecology of hypertext annotation. In Proceedings of
the Ninth ACM Conference on Hypertext and Hypermedia, pages 40–49,
New York, NY, 1998. ACM. → page 4

[44] H. Maurer and J. Kolbitsch. Transclusions in an html-based environment.
Journal of Computing and Information Technology, 14(2):161–173, 2006.
→ page 47

[45] N. McDonald, S. Schoenebeck, and A. Forte. Reliability and inter-rater
reliability in qualitative research: Norms and guidelines for cscw and hci
practice. Proceedings of the ACM on Human-Computer Interaction, 3
(CSCW):1–23, 2019. → page 18

[46] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. An empirical study of
the impact of modern code review practices on software quality. Empirical
Software Engineering, 21(5):2146–2189, 2016. → page 7

[47] M. Mühlpfordt and M. Wessner. Explicit referencing in chat supports
collaborative learning. 2005. → page 7

[48] M. V. Mäntylä and C. Lassenius. What types of defects are really discovered
in code reviews? IEEE Transactions on Software Engineering, 35(3):
430–448, 2009. → page 9

[49] M. Nagappan, T. Zimmermann, and C. Bird. Diversity in software
engineering research. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, pages 466–476, New York, NY, 2013.
ACM. → page 16

[50] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns. What makes a good code
example?: A study of programming q&a in stackoverflow. In 2012 28th
IEEE International Conference on Software Maintenance (ICSM), pages
25–34. IEEE, 2012. → pages 49, 50

58

[51] T. Nelson. Computer Lib/dream Machine. Tempus Books of Microsoft
Press, Redmond, WA, 1987. → page 47

[52] R. Padhye, S. Mani, and V. S. Sinha. A study of external community
contribution to open-source projects on github. In Proceedings of the 11th
Working Conference on Mining Software Repositories, pages 332–335,
2014. → page 14

[53] S. Park, A. X. Zhang, and D. R. Karger. Post-literate programming: Linking
discussion and code in software development teams. In The 31st Annual
ACM Symposium on User Interface Software and Technology Adjunct
Proceedings, pages 51–53, 2018. → page 11

[54] L. Pascarella, D. Spadini, F. Palomba, M. Bruntink, and A. Bacchelli.
Information needs in contemporary code review. Proc. ACM Hum.-Comput.
Interact., 2(CSCW), Nov. 2018. → pages 2, 9

[55] M. M. Rahman and C. K. Roy. An insight into the pull requests of github. In
Proceedings of the 11th Working Conference on Mining Software
Repositories, pages 364–367, 2014. → page 10

[56] B. Ray, D. Posnett, V. Filkov, and P. Devanbu. A large scale study of
programming languages and code quality in github. In Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 155–165, 2014. → page 14

[57] L. Schneider. Save time linking resources with autolink references, 2019.
URL https://github.blog/2019-10-14-introducing-autolink-references/.
Accessed Oct 29, 2020. → page 50

[58] A. Sharma, F. Thung, P. S. Kochhar, A. Sulistya, and D. Lo. Cataloging
github repositories. In Proceedings of the 21st International Conference on
Evaluation and Assessment in Software Engineering, pages 314–319, 2017.
→ page 14

[59] D. M. Soares, M. L. de Lima Júnior, L. Murta, and A. Plastino. Acceptance
factors of pull requests in open-source projects. In Proceedings of the 30th
Annual ACM Symposium on Applied Computing, SAC ’15, page 1541–1546,
New York, NY, USA, 2015. Association for Computing Machinery. ISBN
9781450331968. → pages 3, 8, 20, 49

[60] J. Tsay, L. Dabbish, and J. Herbsleb. Influence of social and technical
factors for evaluating contribution in github. In Proceedings of the 36th

59

https://github.blog/2019-10-14-introducing-autolink-references/

International Conference on Software Engineering, ICSE 2014, page
356–366, New York, NY, USA, 2014. Association for Computing
Machinery. ISBN 9781450327565. → pages 3, 8, 20, 49

[61] L. R. Tucker. Intra-individual and inter-individual multidimensionality. In
S. Messick and H. Gulliksen, editors, Psychological Scaling: Theory and
Applications, pages 155–167. Wiley, New York, NY, 1960. → page 21

[62] J. Tukey. Exploratory Data Analysis. Addison-Wesley, Reading, MA, 1977.
→ page 21

[63] G. Viviani, C. Janik-Jones, M. Famelis, and G. Murphy. The structure of
software design discussions. In 2018 IEEE/ACM 11th International
Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE), pages 104–107. IEEE, 2018. → pages 7, 8

[64] M. Yarmand, D. Yoon, S. Dodson, I. Roll, and S. S. Fels. “can you believe
[1:21]?!”: Content and time-based reference patterns in video comments. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems, pages 489:1–489:12, New York, NY, 2019. ACM. → pages
3, 4, 7, 9, 49, 50

[65] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu. Wait for it:
Determinants of pull request evaluation latency on github. In 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories,
pages 367–371, 2015. → pages 3, 8, 10, 20, 49

[66] F. Zampetti, L. Ponzanelli, G. Bavota, A. Mocci, M. Di Penta, and
M. Lanza. How developers document pull requests with external references.
In 2017 IEEE/ACM 25th International Conference on Program
Comprehension, pages 23–33, Piscataway, NJ, 2017. IEEE. → page 3

[67] Y. Zhang and B. Wildemuth. Qualitative analysis of content, pages 318–330.
Libraries Unlimited, Santa Barbara, CA, 2 edition, 2017. → page 13

[68] Y. Zhang, H. Wang, G. Yin, T. Wang, and Y. Yu. Exploring the use of
@-mention to assist software development in github. In Proceedings of the
7th Asia-pacific Symposium on Internetware, pages 83–92, 2015. → pages
3, 40

[69] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu. The impact of
continuous integration on other software development practices: A
large-scale empirical study. In IEEE/ACM International Conference on

60

Automated Software Engineering, pages 60–71, Piscataway, NJ, 2017. IEEE.
→ page 43

[70] S. Zyto, D. Karger, M. Ackerman, and S. Mahajan. Successful classroom
deployment of a social document annotation system. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages
1883–1892, New York, NY, 2012. ACM. → page 3

61

Appendix A

References Dataset Schema

This chapter contains the schema for the annotated dataset of∼7k references com-

piled and analyzed in this project. The dataset in CSV format is available in sup-

plementary materials along with this thesis.

Table A.1: Dataset Schema

Column Name Description
uid A unique ID given to each reference row.

repo name Name and owner information of the repo on

GitHub from which PR is sampled for the refer-

ence.

repo primary language The primary language of the repository on

GitHub.

repo pr count Total number of PRs in the repository at the time

of sampling.

repo open pr count Number of open PRs in the repository.

repo closed pr count Number of closed PRs in the repository.

repo merged pr count Number of merged PRs in the repository.

repo contributor count Total number of contributors in the repo.

repo star count Number of stars given to the repo.

uid A unique ID given to each reference row.

62

Column Name Description
repo name Name and owner information of the repo on

GitHub from which PR is sampled for the refer-

ence.

repo issue count Number of issues raised in the repo.

repo fork count Number of forks of the repo.

repo watchers count Number of watchers subscribed to the repo.

pr number The PR ID assigned to the PR from which the ref-

erence is identified.

pr url The URL of the PR.

pr comments count Total number of comments in the PR including

the first comment by the contributor.

pr participants count Total number of participants in the PR discussion

as provided by GitHub API.

pr created at The date and time in ISO format at which the PR

was created.

pr ended at The date and time in ISO format at which the PR

was merged or closed. Blank for open PRs.

pr status Status assigned to the PR (OPEN, MERGED,

CLOSED) at the time of sampling.

reference The reference (word or phrase) coded in the PR.

ref code The referent code assigned to the reference. All

referent codes are available in codebook.

ref sub category The referent sub-category assigned to the refer-

ence.

ref category The top-level referent category assigned to the

reference.

exp code The expression code assigned to the reference.

All expression codes are available in codebook.

exp sub category The expression sub-category assigned to the ref-

erence.

exp category The top-level expression category assigned to the

reference.

63

Column Name Description
comment The annotated comment from which reference is

extracted. The location of reference is marked

with <<>>

domain topics The comma separated list of domain keywords as-

signed to the repository based on the topic mod-

eling and manual reading of the repository.

64

Appendix B

Codebook for Referent Types

This chapter is the collection of 196 codes generated for referent types identified

in the PR discussions. These codes are organised by their referent type and sub-

category.

Table B.1: Referent Codes arranged by Referent Type (Sub-category) from
Taxonomy Table 3.2

Codes Description

Source Code (Code Elements)
REF-Arguments Arguments provided to the function in source

code.

REF-Artifact A machine learning construct.

REF-Attribute The properties specified in HTML tags

REF-Class Class construct of source code

REF-Class Constant Variable The constant variable defined

inside class

REF-Class Name The name of the class not the class body.

REF-Class Object The instance object of the class.

REF-Code Annotations Annotations used in the source code with @-

REF-Code Comment Comments in the source code file.

REF-Code Style of Submitted

Fix in Self PR

The style of code of submitted code in commits

in PR.

65

REF-Coding Style The style of the code written in the source code

files.

REF-Component Web equivalent of a class.

REF-CSS Backgorund Effect Transition property to modify background effects

during animation.

REF-CSS Class Name Class Name in CSS language.

REF-CSS Property Properties that are being referred in discussion

REF-CSS Selector CSS Selectors like id based, class based etc.

REF-Data Structure Any data structure under discussion like lists,

maps, arrays etc.

REF-Data Type Type of data like integer, string etc.

REF-Function A function in the source code.

REF-Function Name The name of the function in the source code file.

REF-Function Parameter The parameters of the function in the source code

file.

REF-Function Signature The signature of the function with name, parame-

ter and return type in the source code file.

REF-HTML Element The HTML tags

REF-Interface The interface construct in the source code.

REF-Keyboard Event The event fired when keyboard keys are interacted

with.

REF-Keywords Any reserved word which is part of the progrram-

ming language used in the source code.

REF-Package The folder in which classes are grouped in source

code.

REF-Property Name The name of the property(variable).

REF-Struct A programming language construct.

REF-Submitted Fix in Self PR The change submitted in the PR in terms of Code.

REF-Symbols The symbol used in the programming language

like []*/ etc.

REF-UI Element A user interface component like button, drop

down etc.

66

REF-UI Element Property The property of UI element like color, event,

name etc.

REF-UI Event An event raised when user interacts with UI com-

ponents in the running application.

REF-URLs Any URL mentioned in the discussion which is

not classified in any other category.

REF-Variable A variable in the source code file.

REF-HTTP Protocol Terms The network protocol related references.

Source Code (Code Libraries)
REF-Data Visualization library External library for data visualization.

REF-Dependent Library External libraries used in the source code.

REF-Framework Library The external library used as the framework within

the source code like Angular, react etc.

REF-Library Version The version of the code library under discussion.

REF-Third Party Library Any third party library used with the software

project.

REF-Third Party testing library A testing library used within the software

Source Code (Code Containers)
REF-Build Script The code used to build and compile the source

code.

REF-ChangeLog Document Document containing change history of the soft-

ware.

REF-Code Fragment in File A piece of code from source code file comprises

of more than 1 LOC.

REF-Contribution Guideline File Contribution guideline file in the repo.

REF-File Any file resource in the source code repository.

REF-File Extension The extension of the files.

REF-File Location The location and specific path of the file being

referred as referent.

REF-Files The collection of files

REF-Folder The folder containing the files.

67

REF-Fragment in Build Script The codesnippet from the build script file.

REF-Fragment in Doc File The snippet from the documentation file.

REF-Fragment of Build File The code snippet from the build file.

REF-Line of Code A single line of code from the source code file.

REF-Literal Value A value given to any variable, property etc.

REF-Machine Learning Models A model designed and trained in Machine learn-

ing algorithms.

REF-Multiple Lines of Code More than one line of code from source code file.

REF-Script A source code written with scripting language.

Source Code (Inputs and Values)
REF-CMD Command The commands used in command line.

REF-Color Color specified in source code under discussion.

REF-Configurable Options Properties or variables used to configure the sys-

tem or software.

REF-Console Command Tags Additional Parameters provided to console com-

mands.

REF-Cookie Additional file content saved in web browser.

REF-password A string of characters given to access a resource

REF-Property Value The value of the property.

REF-UI Element State The state of UI like hidden, visible etc.

REF-Variable Value The value given to the variable in the source code

file.

Source Code (Test)
REF-Test Suite A collection of test cases.

REF-Benchmark Test Case A kind of test case

REF-Test Case A test case code file

REF-Unit Tests A test that checks the low-level functionality of a

source code, for example, testing the function.

Source Code (Asset)
REF-Attachments A resource uploaded in the PR comment.

REF-Icons The assets used in the project.

REF-Image The snapshot of the referent in graphical format.

68

REF-Software License Keys The license key used by users to activate the fea-

tures of the software to use.

Source Code (API)
REF-API API used in the code

Actor (Stakeholder
REF-Application User The user who use the application under develop-

ment in the PR.

REF-Committers in Self PR Committers in the PR who submitted the com-

mits, mostly the author of PR.

REF-GitHub Account The user account on GitHub.

REF-Twitter Handle Twitter user ID

REF-User The user on the GitHub platform mentioned in the

discussion.

REF-User Email The email address of the user mentioned in the

discussion.

Actor (Agent)
REF-Bot A automated program act as a user in the PR dis-

cussion.

REF-Bot Command Command used to invoke bot actions.

REF-Third Party CI Service Online CI service used to run DevOps of the soft-

ware development.

REF-Third party Services Any online services used like CI, code coverage,

bots etc.

Actor (Organisation)
REF-Company Any organisation mentioned in the comment like

Google, Apple etc.

REF-Company which owns the

repo

The organization that fathers the repo on GitHub.

REF-Review Committee of a

company

The committee setup to review the code in PR.

VC Platform (Version Control Entities)
REF-Code Version The version of the code under discussion.

69

REF-Commit Author Author of commit.

REF-Commit Comment A message given to the commit.

REF-Commit in Other Repo A commit from different repo in GitHub.

REF-Commit in Self PR A commit from the same PR under discussion

REF-Commit in Self Repo Commit in the repo in which PR is raised.

REF-Git Branch The branch of Git under discussion

REF-Git Hooks Hooks being implemented in Git configuration

for the repo.

REF-Git Merge Conflicts The code conflict arise in the Git during merging

process.

REF-Git Tag Message The description given during the time of tagging

in Git.

REF-GitHub UI Compare Diff

Screen

The GitHub UI screen where code diff is shown.

VC Platform (Issue)
REF-Issue An issue raised on GitHub.

REF-Issue in other Repo An Issue from another repo on GitHub.

VC Platform (PR)
REF-GitHub PR A PR feature on GitHub.

REF-Github PR Label The label assigned to the PR on GitHub.

REF-Other PR by same contrib-

utor

PR on GitHub raised by same contributor of the

current PR.

REF-Other PR in Other Repo A PR raised in another repository on GitHub.

REF-Other PR in same repo A PR raised in same repository on GitHub.

REF-PR in Other Repo A PR raised in another repository on GitHub.

REF-Self PR The current PR under discussion.

VC Platform (Repo)
REF-Forked Repo The forked version of a repo on GitHub.

REF-Other Repo An another repository on GitHub.

REF-Self Repo The repo in which the current PR which is under

discussion resides.

70

VC Platform (Comment)
REF-An External comment

quoted in current comment

A comment from other PR or Issue on GitHub

platform.

REF-Comment in Issue Comments in the Issue in GitHub.

REF-Comment in other PR

thread

Comments in other PRs in GitHub.

REF-Comment in Other Repo’s

issue

Comment in issue of another repo on GitHub.

REF-Email Notification Quoted

in the same comment

Email notification message referred in the com-

ment.

REF-Footnote Referring to something which is already men-

tioned in the comment and have additional info

given in footnote.

REF-Phrase or Term used in pre-

vious comment

A phrase used in previous comment in PR thread.

REF-Phrase or term used in same

comment

A phrase used in the same comment in the PR

thread.

REF-Phrase used in Title A phrase used in the title of the PR.

REF-Previous Comment in

Same Thread

A comment in the same thread.

REF-Previous comment quoted

in the same comment

A previous comment copied in the current com-

ment while answering.

REF-Reference used in previous

comment

Any reference used in previous comment in the

same PR thread.

Dev Tools and Environment (Software Development Tools)
REF-Dev Tools Tools that are used by developers for software de-

velopment like console tools, inspection tools.

REF-IDE The software development tool for editing the

source code.

REF-Online IDE An online tool used to edit source code

REF-Plugin An additional component added to the tools to en-

hance its features.

71

Dev Tools and Environment (Automation Tools)
REF-Build Tools Tools and libraries like compiler etc, used to build

source code.

REF-Compiler The tool used to compile source code into exe-

cutable.

REF-Dev Dependency Library External libraries which are not part of the code,

but used for managing Software development

REF-Linter A library used to check the code styling issues.

REF-Source Code Platform Version control systems like GitHub, Source-

Forge, BitBucket etc.

REF-Third Party package man-

agement

A tool used to manage the dependent libaries like

NPM etc.

REF-Third Party Version Con-

trol Software

VCS software like Git, CVS, Mercurial etc.

Dev Tools and Environment (Environment)
REF-Command Line Platform Command line platform like CMD, bash, shell

etc.

REF-Emulator A software program used to run the code to see

the output, like web server.

REF-Environment Configuration Configuration related to libraries and settings

needed to setup the execution platform.

REF-Virtual OS Software An OS like Linux etc installed on Virtual Ma-

chines.

Dev Tools and Environment (Platform)
REF-Hardware The hardware on which the code will be executed.

REF-Mobile OS Platform Mobile OS like Android, iOS under discussion.

REF-OS Platform Any System OS like Windows, Mac etc.

REF-Runtime Platform The platform on which the source code is exe-

cuted, for example, OS, web server etc.

REF-Software Platform Software based platform like Java Runtime, .NET

CLI etc.

72

REF-Web Browser A software used to access web pages on Internet.

Dev Tools and Environment (Programming Language)
REF-Markup Language The declarative language like HTML, XML.

REF-Programming Language The language use to code the software.

Compilation and Execution Result (Error)
REF-Compilation Error The error received during the compilation of

source code.

REF-Network Error Error received on Network.

REF-Runtime Error An error occurred during the execution of the

source code.

REF-Test Case Execution Error The error received after running the test case.

REF-UI Error The error received in UI code execution.

REF-Unit Test Error Error received while running the unit tests.

Compilation and Execution Result (Warning)
REF-Compilation Warning The warning message received during the compi-

lation of source code.

Compilation and Execution Result (Output)
REF-Build Output given by compiling the code.

REF-Console Output The output of the console commands.

REF-Execution Output The output of any execution of the code like com-

pilation, execution, function execution etc.

REF-Part of Execution Output A snippet from execution output, for example,

part of compilation error

REF-Release Version The version of the release build of the software

under consideration.

REF-REPL Output The command line execution output for example

Python console output.

REF-Github Release The release of the build published on GitHub

website.

73

REF-Test Case Execution Out-

put

The output received after running the test case

successfully.

Compilation and Execution Result (Application)
REF-Application Project Runtime instance of the software project. For ex-

ample a running version of web app code.

REF-Application Status

REF-Runtime Instance The instance of the source code represented as

app.

Documentation (Client Documentation)
REF-API Documentation Documentation of the API under discussion.

REF-Documentation Any documentation that is being referred ab-

stractly in the discussion.

REF-Documentation File in

Other Repo

Documentation of other repository on GitHub.

REF-Release Notes The notes detailing the features, bug fixes etc for

each release of the software

REF-Sample Usecase A use case of the feature under discussion.

REF-Usage Example The example mentioned related to the use of the

source code, especially for API projects.

Documentation (Project Documentation)
REF-Blog Link A link to the external web page, specifically

blogs.

REF-Contributor License Agree-

ment

CLA agreement requirement in the software

project.

REF-Feature The software requirement that is being developed

and under discussion.

REF-License The license given to the software project for shar-

ing the source code.

REF-Use Case The use case of the feature under developmennt

or discussion.

Documentation (Reference Documentation)

74

REF-Dependent Library Web

Page

The official web page of Dependent libraries.

REF-External Web page Any external web resource.

REF-GitHub Help Webpage GitHub help and support web pages.

REF-Language Specification The documentation which provides the rules and

standards of the programming language.

REF-Specification Any standards document that tells the rules of a

language or API.

REF-StackOverflow Thread The discussion forum for developers to question

and answer about issues.

REF-Third-Party Website Any website link

REF-Web Page A resource which is being accessed by a URL on

Internet.

Suggested Referents
REF-Suggested Code Snippet A code snippet mentioned in the discussion as

suggestion.

REF-Suggested Example An example mentioned in the discussion as a sug-

gestion.

REF-Suggested Fix An alternative fix mentioned in the discussion as

a suggestion.

REF-Suggested Fix in previous

comment

An alternative fix mentioned in the previous com-

ment of discussion as a suggestion.

REF-Suggested Issue An issue mentioned in the discussion as a sugges-

tion.

REF-Suggested LOC A Line of code mentioned in the discussion as a

suggestion.

REF-Suggested PR A PR mentioned in the discussion as a suggestion.

REF-Suggested Release Version A release version mentioned in the discussion as

a suggestion.

REF-Suggested Variable A variable mentioned in the discussion as a sug-

gestion.

75

REF-Suggested Variable Value The value of a variable mentioned in the discus-

sion as a suggestion.

76

Appendix C

Codebook for Expression Types

This chapter is the collection of 33 codes generated for referent types identified

in the PR discussions. These codes are organised by their referent type and sub-

category.

Table C.1: Expression Codes arranged by Expression Type (Sub-category)
from Taxonomy Table 3.3

Codes Description

Named Expression (Unique Identifier)
EXP-By @Username Name of the user mentioned using @-mention

EXP-By Abbreviation Use of Abbreviation for a referent.

EXP-By Commit ID and Mes-

sage

Using commit ID and message.

EXP-By Email Using Email address of the referent.

EXP-By File Extension File Extension used in the referent expression.

EXP-By Filepath Using only file path (location) of the referent.

EXP-By Function Name Call

Syntax

Function name with calling syntax, for example

”function()”

EXP-By Function Parameter

Type

Function Parameter Types like int, double etc,

used.

EXP-By ID# Unique ID given to the referent.

77

EXP-By Name Name of the referent.

Named Expression (Generic)
EXP-By Pronoun Word Using pronoun words like it, this, that etc.

EXP-By Collective Noun Word Word used to refer to the collective referent, for

example, issue, PR etc.

EXP-By Common Noun or

Name

Using commonly used term for the referent. For

example, ”the issue” etc.

EXP-By Demonstrative Adjec-

tive

Using demonstrative adjective, for example, ”this

PR”, ”my issue” etc.

Content Based Expression (Descriptive)
EXP-By Descriptive Name Using Description to give a name to the referent.

EXP-By Descriptive Short

Phrase

Using longer description to give an identifier to

the referent.

EXP-By Descriptive Title Using descriptive title for referent for example,

for a feature or issue.

Content Based Expression (Verbatim)
EXP-By GIF Graphical animated image used for the referent.

EXP-By Image Image or screenshot of the referent.

EXP-By LOC A complete line of code verbatim.

EXP-By Verbatim Code Exact copy of the code.

EXP-By Verbatim Copy Exact copy of the textual referent like errors, log

trace etc.

EXP-By Verbatim Text Exact copy of the textual referent like comments

etc.

Locative Expression (Absolute)
EXP-By Line # Line number at which referent is located, typi-

cally for source code.

EXP-By Named URL Link Using a URL link with a name.

EXP-By URL Link Using a URL link only.

Locative Expression (Relative)
EXP-By index number Number given in the footnote.

78

EXP-By Using above word Keyword ”above” to refer to the referent.

Temporal Expression (Absolute)
EXP-By Verbatim Versioning Proper semantic versioning to specify Version

number.

EXP-By Version # with specifc

range

Version number with specific versioning range,

for example, Butterknife 2.3.x - Butterknife 3.0.0

Temporal Expression (Relative)
EXP-By old new last latest etc

keywords

using keywords like old, new, last, latest to de-

scribe the referent properties like versions.

EXP-By Version # and vague

range

Version number with loose range for example,

Butterknife 7 and older versions.

Compound Expression
EXP-By Filename + Extension File extension and file name both present for the

referent.

EXP-By Filename + Extension +

Filepath

Filename, file extension and location(path) used

for the referent.

EXP-By Name + Version Using the name and version of the referent.

79

Appendix D

Topic Modeling Result

Table D.1: List of 29 topics with their top 20 keywords as identified by Topic
Modeling algorithm.

Topic Name Top Keywords
Web Backend Related ruby rails code style linter chat static php static-analysis

bot tool slack formatter analysis coding eslint facebook

activerecord javascript messaging

Programming Languages language programming javascript compiler python book

scala functional learn emulator haskell design li-

brary programming-language swift arm cpp guide code

functional-programming

CMS php git github laravel documentation repository generator

package wordpress cms code official python api manage-

ment markdown static version blog site

Web Frontend Libraries javascript css html jquery editor markdown plugin text li-

brary pdf responsive wysiwyg font svg beautiful create

editing simple sass web

Gaming Engines & Libraries game engine c-plus-plus webgl opengl javascript graph-

ics library games cross-platform open game-engine cpp

source open-source canvas vulkan rendering gamedev

game-development

80

Topic Name Top Keywords
Data Science learning python machine-learning tensorflow deep-

learning deep machine pytorch neural neural-network

nlp data-science computer-vision models keras natural-

language-processing artificial-intelligence detection im-

plementation jupyter

Web Frontend Frameworks vue bootstrap angular design material vuejs components

vue.js admin based theme javascript webpack material-

design template component css ui-kit html framework

Platform terminal cli shell command-line command line bash

python tool zsh console linux git interface files vim in-

teractive utility environment windows

Cloud java apache serverless aws cloud spring distributed

lambda jvm spark framework kafka mirror scala platform

mqtt microservices messaging reactive hadoop

Database database sql mysql postgresql sqlite golang orm redis data

mongodb postgres distributed driver key-value iot nosql

realtime high-performance migrations store

Documentation awesome list security curated awesome-list python

resources collection software libraries scanner tools

analysis golang frameworks framework wifi reverse-

engineering security-tools hacking

DevOps docker kubernetes containers aws container applications

api golang swagger tool management openapi service in-

frastructure system security microservices cloud devops

services

Libraries framework web fast library simple python javascript easy

performance api application lightweight php applications

server powerful building java high http

Web Frontend related image javascript images library jquery plugin video sup-

port simple camera lightweight gif slider android html

processing esp responsive multiple file

81

Topic Name Top Keywords
Distributed Computing grid data library task job queue drag list distributed drop

drag-and-drop lists utility based scheduler cron tasks jobs

background sort

Data Visualization data visualization javascript python monitoring library

svg algorithms charts algorithm metrics graph chart can-

vas interview interactive structures dashboard analytics

data-visualization

Web API python library api crawler twitter instagram bitcoin writ-

ten trading facebook social google flask telegram bot

scraping profiler wrapper asyncio humans

Multimedia vim audio video player music browser firefox webrtc

streaming emacs chrome youtube ide extension ffmpeg

neovim based editor html media

.NET Libraries source open net platform free core dotnet c-sharp web

framework open-source dotnet-core based system ecom-

merce csharp code software built community

Network http server client proxy library golang websocket protocol

networking php grpc security logging websockets https

email fast tls request oauth

Mobile Frameworks android ios mobile apps app framework wechat web li-

brary code ethereum deprecated cross-platform project

sdk development tools flutter native devices

Web Backend Related javascript nodejs nodejs node browser typescript graphql

api json parser express library implementation module

validation client schema standard middleware modules

Platform windows linux macos electron desktop cross-platform

mac gui manager app editor package c-plus-plus visual

window studio application code wpf platform

Java android java kotlin library rxjava google app spreadsheet

compression notifications files write excel json push mvp

reading clean android-library maps

82

Topic Name Top Keywords
Android Development android library view ios animation easy material app bar

display animations calendar design menu date simple nav-

igation custom views easily

Distributed File Sharing Related file client search bittorrent storage elasticsearch pri-

vacy data system decentralized distributed filesystem files

cloud web encryption backup self-hosted requests google

iOS Development swift ios objective-c cocoapods macos framework written

xcode carthage tvos simple library iphone mac data re-

placement app animation customizable notification

Front-End Frameworks react javascript native redux component react-native com-

ponents webpack angular web apps typescript reactjs

forms built framework state universal boilerplate build

Testing Frameworks testing test automation javascript tests framework tool

nodejs tdd continuous mock chrome bdd continuous-

integration mocking run unit headless coverage jenkins

83

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Supplementary Materials
	Glossary
	Acknowledgments
	1 Introduction
	2 Related Work
	2.1 Common grounding through referencing
	2.2 Source code review
	2.3 Factors that affect PR outcomes
	2.4 Taxonomies as a tool
	2.5 GitHub dataset as a research contribution
	2.6 Designing code review interfaces
	2.7 Summary

	3 Methods
	3.1 Sampling PR discussions
	3.2 Identifying and coding references
	3.3 Building reference taxonomies
	3.3.1 Compiling PR references dataset
	3.3.2 Analysing PR references

	4 Findings
	4.1 Empirical Accounts of Referencing Support on GitHub
	4.1.1 How well GitHub’s referencing feature is being used
	4.1.2 Majority of referent types are expressed in plain text
	4.1.3 Source code is frequently discussed in PR discussions, but not supported by auto-linking

	4.2 Contextual factors that shape the reference use
	4.2.1 Information Type
	4.2.2 Information Specificity
	4.2.3 Cultural Practices
	4.2.4 Social Norms

	4.3 Referencing patterns in PRs with different outcomes
	4.3.1 Accepted or Rejected PRs tend to have references to the evidence that advocates their appropriateness.
	4.3.2 In Open PRs, developers seem to be discussing high-level changes such as API and Compatibility issues in software projects

	5 Learnings from Referencing
	5.1 Design Implications
	5.1.1 There is a need for referencing finer details in source code
	5.1.2 Referencing UI elements in PR Discussion
	5.1.3 Nested referencing in comments can be supported with transclusion.
	5.1.4 There is a need for supporting references within a PR discussion thread
	5.1.5 Extending GitHub’s current support for auto-linking software deliverables

	5.2 Referencing and discussion stages
	5.3 Referencing and PR outcomes
	5.4 Varying levels of platform's support for referencing
	5.5 General lack of referencing support
	5.6 Summary

	6 Conclusion
	Bibliography
	A References Dataset Schema
	B Codebook for Referent Types
	C Codebook for Expression Types
	D Topic Modeling Result

