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Abstract

The work contained within this thesis sought to accurately classify 55 primary cancer

subtypes, 20 metastatic cancer subtypes, and 16 normal tissues using gene expression data.

The classification was done using a multiple learning task approach in which an artificial

neural network model makes four distinct classifications at varying levels of biological hi-

erarchy for each input sample. These learning tasks were the organ system of origin, the

disease state, the cancer type, and the cancer subtype. The model achieved classification

performance ranging from a macro F1-score of 0.987 within the disease state learning task

to 0.831 within the cancer subtype learning task on a test set composed of primary cancer,

metastatic cancer, and normal tissue samples.

Having shown good classification performance of the model, the second part of the thesis

focused on leveraging what the model has learned to extract biological information about the

various cancers present in the data set. A backpropagation-based tool called DeepLift was

used to generate a list of importance scores for each gene within every class of each learning

task. The list of scores was then analyzed for trends that could be utilized to infer biolog-

ical insight about specific cancer types and subtypes, and between primary and metastatic

cancers as individual groups. The lists provide a means to functionally annotate enriched

pathways and to quantify and compare the role of RNA genes and pseudogenes across various

classes and learning tasks. Some of the results output by DeepLift were validated for their

biological relevance by presenting supporting evidence from relevant scientific literature. The

ultimate product of this thesis research is a tool with which one can quantify the role of a
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variety of genes within cancers spanning both primary and metastatic cancer types. Further

analysis of the output generated by the tool could provide a better understanding of the role

of genetic expression, including RNA and pseudogenes, within a variety of different cancers.
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Lay Summary

The purpose of this thesis work was to leverage machine learning to learn about a variety

of cancers from their gene expression data. A machine learning model was created that was

able to accurately classify a variety of cancers. Once the model was validated for sufficient

accuracy and performance, a second tool was utilized to determine the importance of every

gene used by the model in determining the classification for each type of cancer. By examin-

ing which genes were indicated as important and their relative rankings, insight into the role

of different types of genes and their functions in cancer was investigated. The significance of

the genes identified was supported by relevant scientific literature. The combination of tools

utilized in this thesis and the output it produces was established as a source of data with

which we can improve our understanding of cancer biology.
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Chapter 1

Introduction

The purpose of this thesis is to attempt to create a machine learning tool that can aid in

the diagnosis of cancers from gene expression (transcriptome) data and subsequently leverage

this tool to better characterize the underlying biology. The approach taken here leverages

machine learning in a multiple learning task approach. The four learning tasks selected for

the machine learning model represent a biological hierarchy that may help the model to

better classify cancers. If a model can be trained to understand the features of cancers at

the gene expression level, we can then work to extract any insights the model has gleaned.

Ultimately, the goal of this work is to characterise and quantify (where possible) the role of

gene expression in a variety of cancers.

The focus of this research can be summarized by the three goals below:

1. Create a multi-task neural network model to accurately classify four categories of

biological interest from gene expression data:

• Organ System of Origin

• Disease State: primary cancer, metastatic cancer, or normal tissue

• Cancer Type
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• Cancer Subtype

2. Identify and extract the genes utilized by the model to determine the classification of

each category

3. Utilize the identified genes to validate and infer biological information about cancer

The following sections will introduce some important background information to motivate

this thesis work and place it in the current context of cancer research and machine learning.

1.1 Background of Cancer

Cancer is a group of diseases defined by the abnormal growth of cells [1]. This uncontrolled

growth is often caused by acquired or inherent (somatic) genetic mutations that circumvent

the normal cell life cycle resulting in the formation of abnormal tissue growth (tumours). The

abnormal growth is driven by mutations that inhibit cell growth suppressors, activate growth

factors, and/or improve cell proliferation and motility [1]. Identifying mutations responsible

for driving tumourigenesis (the creation of tumours) is the focus of many research endeavours

world-wide, including this thesis.

Cancer is the second leading cause of death in Canada and the world [1, 2]. In 2018,

it accounted for one sixth of all mortalities world-wide (9.5 million deaths) and there are

83,300 cancer-related deaths expected in Canada in 2020 [1, 2]. It is estimated that almost

half of Canadians will be diagnosed with cancer at some point in their lives, and while the

cancer mortality rates have decreased over the last 40 years, the overall number of new cases

and fatalities has been increasing along with the average age of Canadians [2, 3]. Clearly,

cancer remains a prominent health issue both in Canada and around the world. On-going

cancer research should remain a prime focus for improving the health and life-span of human

beings.
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Cancer-related death is often the result of complications caused by metastasis. In fact, 67-

90% of all cancer-related deaths are attributed to metastases (secondary tumours) which are

defined by the spread of tumour cells beyond the primary site of origin into the surrounding

tissues and/or to distant regions of the body [1, 4, 5]. Once a tumour has spread to a critical

organ, like the brain or lungs, if the growth is not stifled it ultimately results in organ failure

and death. As a result of the prominence metastasis plays in cancer deaths, we must prevent

the formation and proliferation of metastatic cancers in order to reduce the impact of this

disease.

For metastases to arise, the cells from the primary tumour must not only physically dis-

seminate from the primary site, but must adapt to the new micro-environment present at

the secondary site [6, 7]. The ability to disseminate and adapt is a key feature of metastatic

cancers. It can be postulated that there are genetic characteristics underlying these abilities.

In order to properly identify the origin of these abilities and subsequently hinder them, we

must be able to effectively characterize the underlying genetic causes of cancers [6]. Often

there are multiple genetic factors influencing the ability of tumours to spread, and the pri-

mary site of origin can predispose some tumours to higher aggression and adaptability [6].

For example, tumours of the lungs often spread widely and rapidly, whereas tumours of the

prostate and breast are typically much more docile and limited in secondary site proliferation

[8, 9]. It is partly for this reason that identifying the site of origin is a key step in diagnosing

cancer type and ultimately deciding on the most effective treatment protocol [6, 7].

Prior to the advent of genetic sequencing, we had no ability to directly characterize the

genetics of cancer and thus relied solely on morphological and immunohistochemical analysis

to determine a cancer’s site of origin and type. This approach is problematic as the accuracy

of diagnosis using these techniques can be less than ideal , particularly with metastatic

cancers [10]. A meta-analysis by Anderson and Weiss in 2010 found that only 65% of

metastatic cancers had their site of origin correctly identified through immunohistochemical

analysis compared to 82% with a mixture of primary and metastatic samples [10]. This is
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clear evidence for the need to improve our capacity to characterize cancers in new ways. In

the era of genetic sequencing, we have the ability to look at the genome of different cancers

and attempt to categorize and quantify the role of genetics in the cause and characteristics

of various cancers. By leveraging machine learning tools, as exemplified in this thesis, we

can aim to identify key genetic markers of cancers and ultimately work to improve diagnosis

and treatment.

1.1.1 The Role of Gene Expression in Cancer

The human genome contains two major genomic regions: coding and non-coding regions

[11]. Coding regions are areas of the genome comprised of genes that encode the information

necessary to build proteins from nucleic acids. The level at which protein coding genes are

transcribed into RNA is said to be the expression levels of that gene. The set of RNA

transcripts generated by both coding and non-coding regions is collectively referred to as the

transcriptome [12]. The expression levels of genes are a quantitative measure of the rate of

transcription of each gene. The rate of transcription can have an impact on the amount of

proteins generated from the RNA produced by transcription. Proteins are pivotal to life and

the overabundance or unplanned absence of them can cause a myriad of problems including

the formation of cancers [13]. For this reason, quantifying and analyzing the expression

levels of genes is a valuable resource in the cancer research space.

Numerous studies report differential expression of genes as being a potential source of

tumourigenesis [14, 15, 16, 17]. Over and underexpression of genes, particularly those

with functionality linked to cell division, propagation, and apoptosis, are hallmarks of many

cancers [16, 18, 19, 20]. This knowledge can be leveraged to detect susceptibility to and the

characteristics of cancers [16, 17, 21]. Through categorization of gene expression patterns in

cancer types, we can begin to work towards treating the causes and/or effects of differential

expression. This thesis work is in part motivated by this goal. If we can detect novel patterns

of genetic expression within cancers, we can provide more potential therapeutic targets.
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1.2 Background of Genetic Sequencing

Genetic sequencing (DNA sequencing) refers to the determination of the sequence of nu-

cleic acids within a given piece of DNA. The ultimate goal of sequencing is to rapidly and

accurately determine the entire sequence of an organism’s genome with the intention being

to understand the location, composition, and function of all of its genomic regions.

The current state of genetic sequencing arrived as a result of two major breakthroughs. The

first of which was the invention of the first-generation of sequencing technology called Sanger

sequencing [22]. Sanger sequencing was created in 1977 and utilizes radio or dye-labelled

chain terminating nucleotides in conjunction with DNA polymerase to grow fragments of the

DNA of interest that incorporate the labelled nucleotides [22]. By capturing a large enough

set of labelled fragments, we will eventually have one fragment with a labelled nucleotide at

each position in the DNA sequence of interest. We can then determine which nucleotide exists

at each location across all of the fragments and combine the information to obtain the whole

DNA sequence. In Sanger sequencing, the visualization process involves gel electrophoresis

and is limited by the number of lanes within the gel. It can only sequence one fragment

of DNA per gel and can only grow as many dyed fragments as there are lanes in the gel.

Furthermore, the labelled nucleotides used are chain-terminating nucleotides which prevents

the addition of nucleotides following the dye. Therefore, only a single position in the DNA

fragment will be labelled and read. This results in accurate but slow and costly sequencing,

particularly when concerning the sequencing of multiple DNA fragments. If one desires to

sequence multiple fragments, a gel must be prepared and run for each fragment and a dyed

fragment must be produced for each position in the DNA of interest.

The second generation of sequencing technology, also known as next-generation sequencing

(NGS), was created in 2006 by Solexa [22]. One of the most common forms of NGS today is

Illumina sequencing and is the source of all sequence data for this thesis. Illumina sequencing

addresses the limitations of Sanger sequencing by allowing multiple reversible dye-labelled
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nucleotides to be attached to a single fragment and by not relying on gel electrophoresis

to read the fragments. Instead, Illumina sequencing grows millions of DNA fragments si-

multaneously, each with many dyed nucleotides. This allows for parallel sequencing to be

conducted. To accomplish this, Illumina sequencing utilizes a flow cell with millions of wells

that can each read a dyed fragment of DNA. The features of Illumina sequencing provide

the ability to rapidly sequence an entire genome with a single prepared sample of DNA. This

significantly reduces the cost of sequencing both in preparation time and dollars per DNA

fragment. For these reasons, it is widely used in genomic studies of cancer.

1.2.1 RNA Sequencing

RNA sequencing (RNA-Seq) refers to determining the presence and order of nucleotides

found in an RNA molecule [24]. With each iteration of DNA sequencing technology, there

have been techniques developed to apply them to RNA as well. The earlier techniques such

as serial analysis of gene expression (SAGE) and cap analysis of gene expression (CAGE)

shared the limitations present in Sanger sequencing, namely high cost and low throughput

[24]. Likewise, these limitations have been mitigated significantly with the advent of the

second generation of sequencing technology. In order to perform RNA sequencing using

Illumina sequencing, the RNA sample goes through an additional sample preparation phase

to transcribe the RNA to cDNA (complimentary DNA) using a reverse transcriptase enzyme

[25]. Having been converted to cDNA, the sample can now undergo the normal Illumina

sequencing process. The reads obtained from RNA sequencing are then mapped to a reference

genome/transcriptome using one of a number of genome alignment tools such as STAR [26].

The number of reads found at each region of the genome are quantified and normalized to

determine the expression of that region of the genome.

The purpose of normalization is to overcome potential biases introduced by differing read

depth and gene lengths. Normalization to a standard format allows expression data to be

compared between studies and attempts to remove technical bias introduced by the sequenc-
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ing process [27, 28]. The three most popular normalization formats are: RPKM, FPKM and

TPM [27]. Each have slightly different ways of implementing normalization. The RPKM

format, however, is the relevant format for this thesis work as all of the data used herein

was presented as RPKM values. The RPKM value is a within-sample normalization using

the reads per kilobase per million reads mapped. It is calculated by dividing the number

of reads mapped to each gene by the total number of mapped reads multiplied by the gene

length [27].

1.3 The Role of RNA Genes in Cancer

A large fraction of the human genome is composed of non-coding regions and have histor-

ically been considered ”junk” [29, 30]. This non-coding region comprises DNA that is not

transcribed to RNA or its RNA transcripts do not code for proteins (non-coding RNAs).

In recent years, studies have begun to show the important role non-coding RNAs (ncRNA)

play in tumourigenesis and the malignancy of cancers [29, 31, 32, 33]. Non-coding RNAs

influence many cellular processes involved in cancer, such as cell growth, differentiation,

proliferation, and apoptosis [31, 32]. MicroRNAs (miRNA), a class of non-coding RNA,

play a key role in these cellular processes by binding messenger RNA (mRNA) targets and

either inhibiting or degrading their function [34, 35]. Through this functional modulation,

miRNAs are able to affect large changes in gene expression. In fact, miRNAs control nearly

one third of all human genes, and for this reason, play an important part in our growing

understanding of cancer [33]. It should be noted that in the context of cancer, miRNAs are

generally considered to be either tumour suppressors or oncomiRs depending on their target

mRNAs [36]. OncomiRs downregulate tumour suppressor genes and thus act to promote

tumourigenesis. In contrast, tumour suppressing miRNAs act to suppress the effects of genes

that promote tumours [36].

Studies have exemplified the role of miRNAs in cancer and have shown that characteriza-

tion of cancers is feasible using miRNA biomarkers [36, 37, 38]. For example, Calin et al
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(2002) showed that two miRNA genes (miR15 and miR16 ) were deleted or downregulated

in more than half of their samples of B-cell chronic lymphocytic leukemias (CLL), and thus

play a significant role in the pathogenesis of CLL [37]. Furthermore, it has been shown

that alterations in the miRNA signature between normal and malignant cells can be utilized

to accurately classify cancer types and the organ system of origin in poorly differentiated

cancers [33].

Given the key role RNA genes play in cancer, it is reasonable to expect the model utilized in

this thesis to highlight their role. Since the multi-task model used in this work is attempting

to learn patterns of expression in cancer, we would expect that some of the genes highlighted

by the model should support the findings of previous work on RNA genes in cancer.

1.4 The Role of Pseudogenes in Cancer

Pseudogenes are decayed versions of functional genes that may originate as a result of gene

duplication events such as point mutations, insertions, deletions, and/or frameshifts, among

others [39]. They have, until recently, been considered entirely non-functional regions of the

genome and looked upon as ”junk DNA” [40, 41]. In recent years, however, studies have

shown that thousands of pseudogenes are transcribed and hundreds are translated [41]. For

this reason, they are considered part of the set of RNA genes known as long non-coding RNA

genes (lncRNA). Transcribed pseudogenes can be detected through RNA-seq and have been

shown to have diagnostic power as biomarkers in some human cancers [41]. A pan-cancer

analysis of RNA-seq data has demonstrated that pseudogenes show cancer subtype-specific

expression patterns, and in some cases can be used to differentiate between subtypes [41].

In light of recent evidence surrounding the utility of pseudogenes in cancer, the implication

of pseudogene expression within the context of this thesis will be explored.
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1.5 Machine Learning

Machine learning refers to a set of computer algorithms that can independently acquire

knowledge and extract patterns from raw data [22]. These algorithms are often used to

create predictive models. The process of teaching a model to make accurate predictions

is referred to as training and requires the use of training data. Training data is a set of

data that is representative of the kind of data we wish to understand and make predictions

about. Once the model has sufficiently learned a representation of the training data, the

model is said to be trained. It can then be used to make predictions about new, unseen

data of the same format as the training data. Machine learning models can be particularly

useful for pattern recognition tasks in which the data of interest is too large or complex to be

sufficiently analyzed by human beings. One such example is the characterization of cancers

based on gene expression data, which is the focus of this thesis. There are three major types

of machine learning: supervised, unsupervised, and reinforcement learning [43]. Supervised

learning is the relevant form of machine learning for this thesis work and is described in the

following section.

1.5.1 Supervised Learning

Supervised learning is a form of machine learning that utilizes labelled data [42, 43]. This

is in contrast to unsupervised learning in which there are no labels present. Labelled data

refers to a set of data that contains not only features, but also a label (target) [42]. For

example, images that are labelled with the type of object being visualized within an image.

When the labels are discrete, they are often referred to as classes, and using machine learning

to predict classes of data can be referred to as classification. The goal of classification is to

generate a model that can accurately label the given training data and make predictions of

the labels for new, unseen data [42, 43]. In order for a machine learning model to learn to

accurately label the given data, it needs to learn (via the training process) the underlying

features that best represent the data for every possible label.
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Training a supervised learning model is an iterative process of assigning predictions for

each sample of data given in the training set, calculating the loss (error) of these predictions,

and adjusting the parameters of the model to reduce the loss, thereby improving accuracy.

This process is repeated until the loss reaches a plateau or a desired value. Once a plateau is

reached, the model is considered trained and should offer some capacity to accurately predict

labels for data previously unseen by the model. The calculation of the loss of a model is

discussed in more detail as part of the neural network section below.

In order for a model to accurately classify data, it must learn to accurately represent

the data. This requires building a function that takes the input features of the data and

transforms it to an output classification. This is the core of any machine learning model.

There are many algorithmic processes to produce a representative function and an artificial

neural network (ANN or NN) is one example of these. Neural networks are described in the

following section and is the relevant class of machine learning models for this thesis.

1.5.2 Neural Networks

A neural network model is at its core a mathematical function. It takes inputs and maps

them to outputs. It is composed of a collection of neurons (described in further detail below),

often referred to as nodes. These collections of nodes are connected by weighted edges. These

weights (along with a bias term for each neuron) are the adjustable parameters learned as

part of the training process [43]. The process of training a neural network involves iterative

updates to the model parameters (weights and biases) in order to reduce the overall error

rate (loss) of the model’s predictions. This process ultimately results in the model being

able to more accurately approximate a representative function of the training data. As the

representation improves, the loss of the model should decrease and the prediction accuracy

should increase.

10



The way in which nodes are connected together defines a neural network’s architecture

and can have a significant effect on its performance [42, 44]. The canonical example of

a neural network is a feed-forward neural network where the connections within it are all

weighted, directed and acyclic (Figure 1.1) [42, 44]. There are three standard parts to

a basic feed-forward network: the input layer, the hidden layer, and the output layer. A

layer is simply any number of nodes that exist at the same depth within the network. The

depth of a network is the number of layers it contains. The term ”deep” is used to refer to

networks that have multiple hidden layers [42]. The model developed in this thesis contains

four hidden layers and is thus considered a deep neural network.

Figure 1.1: A diagram depicting the basic structure and layering of a feed-forward neural

network model. This figure was taken from the web [45].

The input layer of a neural network is where the data is given to the model and will contain

as many nodes as there are input features. In this thesis work for example, the number of

input nodes is equal to the number of genes in each sample. In an image classification task,
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the input layer would have as many nodes as there are pixels in the image. The hidden layer

is named as such because it does not provide information in the form of the desired output

[42]. The function of the hidden layer is to provide a means with which apply nonlinear

transformations to the input. A neural network with a single hidden layer that contains

a sufficient number of nodes (width) can approximate any mathematical function [42, 44].

The output layer is the layer of the network where predictions are given. The width of the

output layer in a classification task will be such that it can represent the desired number

of labels or classes to be assigned to the input data. For example, if a neural network is

trying to decide if an image is either a car, a bus, or a truck, the output layer may have 3

nodes. One for a car, one for a bus, and one for a truck. A classification is determined by

which corresponding output node has the highest output value (activation). The class being

predicted by the model is the one in which the corresponding output node has the highest

activation.

1.5.3 Gradient Descent

There are two types of components (parameters) being learned by a neural network during

training. These components are the weights w and biases b for each neuron (see Section

1.5.5) within a neural network [42, 43]. One way that these parameters can be learned in

a feed-forward neural network is through gradient descent. Gradient descent is the process

of calculating the loss of a model followed by updating its parameters in the direction of

the negative gradient of that loss. In other-words, it is a descent in the loss of the model

through iterative steps in the direction of the negative gradient. The actual calculation of the

gradient is done using an algorithm called backpropagation (see the relevant section below)

[42]. The negative gradient for a neural network is composed of the set of partial derivatives

for each parameter and represents the direction of steepest change in the parameters required

to minimize the loss of the network. By determining the negative gradient of the model, we

can effectively update each parameter to move in the direction that minimizes the loss of

the model.
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There are two basic forms of gradient descent [42, 43]. Standard batch gradient descent

calculates the loss of the model using an average of the losses for every sample (batch) in the

training set. Stochastic gradient descent (SGD) uses a single sample selected at random to

determine the loss [43, 46]. Stochastic gradient descent can also be performed on multiple

samples (mini-batch) whose losses are averaged together [46]. This method is referred to

as mini-batch gradient descent. Regardless of the number of samples used, the negative

gradient is calculated using backpropagation and then used to update each parameter of

the model so as to minimize its loss. The formula for updating a parameter can be seen

in Equation 1.1 [42]. In this equation, x is the current value for a given parameter, x′ is

the updated value for the same parameter, α is the learning rate, and ∇f(x) represents the

gradient of parameter x.

x′ = x− α∇xf(x) (1.1)

1.5.4 Learning Rate

The learning rate used when training a neural network can have a significant effect on

the performance of the model and is often considered the most important hyperparameter

[42]. The learning rate effects how large of a step in the direction of the negative gradient

the model makes for each parameter (see Equation 1.1). The direction and magnitude of

the update is determined by the gradient as calculated via backpropagation. The learning

rate parameterizes this gradient and can be used to decrease or increase the size of the

parameter update. If the rate is too high, the model may not converge to the best solution

(minimal loss), and the loss may increase as a result of the update. If we consider the

U-shaped generalization error curve (Figure 1.2), we can think of this as overshooting the

goal (optimal capacity) [42]. If the rate is too small, the model could take a very long time

to converge or may not converge to a good solution at all [42]. Finding a good learning

rate is about balancing the training time with trying to converge as close as possible to the

optimal solution for the given architecture and problem space. One technique to balance
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these two needs of learning is to use an adaptive learning rate in which training begins with

an initial learning rate and is subsequently modified by some algorithmic approach. The

adaptation algorithm, the corresponding initial learning rate, the rate/type of reduction,

and the frequency at which the reduction rate is applied, are all aspects of the learning rate

that must be explored as part of hyperparameter tuning.

Figure 1.2: A plot depicting the bias-variance trade-off, the U-shaped generalization error

curve, the optimal capacity, under-fitting, and over-fitting zones. Note: This figure was

taken from Goodfellow et al. (2016) [42].

1.5.5 Neuron

Each neuron within a neural network is at its core a mathematical function. To be more

specific, it is a nonlinear function [43]. The function that comprises a neuron is defined in

Equation 1.2 [43]. In this equation, x is the input feature vector (all the incoming connections

to the neuron), w are the weights associated with each input feature connection, b is a bias

term, and σ is an activation function applied to the output of the linear equation (w×x+b).

Also note the summation over each w×x which makes this term a weighted sum of the input
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features. The activation function σ of this equation is used to transform the output of the

contained linear combination of inputs (w × x + b) into either a value between 0 and 1 or

a value between -1 and 1 depending on the activation function used [42, 43]. The resulting

value f(x) for a neuron is considered its ”activation”.

f(x) = σ(
∑

(w × x) + b) (1.2)

1.5.6 Activation Functions

Activation functions within the nodes of a neural network serve to apply a non-linear trans-

formation to the output of the linear combination within a neuron (see Section 1.5.5) [42].

They are selected on the basis of the task at hand [43]. The two relevant activation functions

for this thesis are the hyperbolic tangent and softmax functions. These are described below.

Hyperbolic Tangent Function

The Hyperbolic Tangent (tanh) function is a mathematical function suitable for use as

an activation function with the nodes of a neural network. It has properties such that

−1 < tanh(x) < 1 and tanh(0) = 0 that make it ideal for use as an activation function

within the hidden layers of a neural network [47, 43]. The tanh formula is given below

(Equation 1.3) and a graphical representation of it can be seen in figure 1.3 [48].

tanh(x) =
(ex − e−x)

(ex + e−x)
(1.3)
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Figure 1.3: A plot of the hyperbolic tangent function. Note: This figure was taken from

MathWorld [48].

Softmax Function

The softmax function is often used in neural networks within the output layer [42]. The

softmax function effectively converts the output of the output nodes into a normalized

probability-like distribution for each class in the output [42]. The output value of each

node then corresponds to a percentage of the final classification. For example, if a three-

class model using the softmax function in the output layer has output values of 0.2, 0.2, and

0.6, the model is making a 60% classification as the third class and a 20% classification as

the first two classes. We would interpret this output as a predicted class of the third type

because the third class has the largest output value. The softmax function (σ) is defined in

Equation 1.4 below [42, 43]. In this equation, z is the score output for each output node

and K is the number of possible classes.
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σ(z)i =
ezi∑
K
j=1e

zj
for i = 1, ..., K and z = (z1, ..., zK) in RK (1.4)

1.5.7 Loss Functions

The loss function (cost function) of a model is used to determine its performance relative to

the training data. The loss is a value representative of how much error there is between the

predicted and true output of the model [49]. The choice of loss function will be dictated by

the type of learning task [42]. For this thesis work, since a multi-class classification is being

conducted, the categorical cross-entropy loss is used. This function is detailed below.

Categorical Cross-Entropy Loss

The categorical cross-entropy (CCE) loss function is the standard loss function used for

multi-class classification [43, 50]. The formula for the categorical cross entropy (CE) loss is

shown below in Equation 1.5 [43, 50]. In this formula, K is the total number of classes, N

is the number of samples, t is the target, and y is the predicted class.

CCE = −
N∑
n

K∑
c

tnk ln ynk (1.5)

1.5.8 Backpropagation

Backpropagation refers to the algorithm used for efficiently calculating the gradient of the loss

function with respect to each parameter within a neural network [42]. Since a neural network

is a function composed of other functions (each node in the network is a nonlinear function,

see Section 1.5.5), the backpropagation algorithm applies the chain rule (from calculus) in

a specific manner to efficiently compute the partial derivative for each composing function

[42]. The set of partial derivatives for each parameter results in the gradient of the network
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as a whole with respect to its loss. These partial derivatives can then be utilized as part of

gradient descent to update each parameter and minimize the loss of the network (see Section

1.5.3 for details). Further details on the use of the chain rule for backpropagation can be

found in the relevant section of the Deep Learning textbook by Goodfellow, Bengio, and

Courville (2016) [42].

1.5.9 Initialization

The weights and biases of a neural network need to be initialized to a set of values prior

to training. One method of weight initialization is to use Glorot uniform initialization. The

Glorot uniform initializer (Equation 1.6) samples from a uniform distribution between the

negative and positive limit seen in Equation 1.7 [51, 52]. The biases of a neural network

can be and are often simply set to zeros.

glorot uniform initializer = sample[-glorot limit, glorot limit] (1.6)

glorot limit =

√
6

number of input nodes + number of output nodes
(1.7)

1.5.10 Over-fitting

Over-fitting is a phenomenon in machine learning where a model will learn to represent

the training data with increasing accuracy while the accuracy of the model with predictions

made on unseen data, such as validation data, decreases [42]. There is a point at which the

model fits the training data so well that its ability to generalize to unseen data is hindered

(see the over-fitting zone in Figure 1.2). Preventing over-fitting is about striking a balance

between accurately learning the training data while maintaining an ability to generalize to

unseen data. There are many techniques used to prevent over-fitting and these methods are
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generally termed regularization methods. The application of regularization to a model is

the prevention of over-fitting by virtue of penalizing increasing model complexity [42, 53].

As model complexity goes up, the ability of the model to fit to the training data increases

and at a point, the ability to generalize goes down. Two examples of regularization used in

this thesis are early stopping and dropout. These are described in their respective sections

below.

1.5.11 Early Stopping and Patience

Early stopping refers to halting the training of a machine learning model when a desired

metric, often validation loss or accuracy, reaches a minimum or maximum respectively [42].

Early stopping is the most common form of regularization used in deep learning and is utilized

to help prevent over-fitting [42, 54]. Patience refers to the number of training epochs that

will pass before training is halted and is a hyperparameter of the early stopping process that

must be selected.

1.5.12 Dropout

Dropout is an effective and computationally inexpensive technique for the regularization

of neural networks [42, 55]. It is implemented by setting the weights of connections between

a random subset of nodes to 0 at each training step. A visualization of the effect of dropout

can be seen in Figure 1.4 [54]. Conceptually, dropout can be thought of as training multiple

models within a single network [42]. By dropping out different connections, we are essentially

creating sub-networks at each iteration and forcing the model to learn solutions that do not

rely too heavily on any single connection (or set of connections) and thus are more robust

[42]. The rate of dropout is typically a value between 0 and 1 that indicates what fraction

of the connections are set to 0 (dropped out) at any given training iteration.
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Figure 1.4: (a) A standard fully-connected neural network without dropout. (b) A sub-

network created by dropping out some of the connections in the standard neural network.

Note: This figure was adapted from Wang et al. (2018) [54].

Class Weighting

Class weighting is a method of weighting the training loss that can be used to combat

the potentially detrimental effects of training machine learning models using imbalanced

data sets [56, 57]. When class weights are appropriately applied, the effect can be to

aid in classification performance on minority classes [58]. This can be accomplished by

weighting the loss for each sample by either an arbitrary value, or by a value that bears

some relationship to the size of the class in which the sample belongs. The weight for each

class is the class weight and is the value used to weight the loss for each for each sample of

that class.

Multi-Task Learning

Multi-task learning refers to machine learning in which there are more than one learning

objective being learned in parallel. The effect of multi-task learning is that of improved

generalization performance as a result of shared parameters. However, this holds true only
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under the assumption that there exists a valid relationship between tasks [42]. Each shared

parameter is utilized for multiple objectives and therefore the associated parameters are less

likely to over-fit the variation in the data related to any singular task [42].

1.6 Deeplift

DeepLift is a backpropagation-based tool developed for the interpretation of trained neural

networks [59]. It uses a backpropagation-like algorithm to determine the effect of a selected

set of input nodes on the resulting activation of a set of selected nodes of interest (output

nodes in this case). A baseline activation level for the output nodes is established using a

reference value for each input node (the default reference is 0). The baseline activation is

established by passing the reference value through the network to the output nodes via the

selected input nodes. The activation level seen at each output node is then recorded as the

baseline activation for that node. The set of training data is then passed through the network

inputs. The difference from the reference activation value is calculated at each output node

and then propagated back through the network to each input node. The larger the difference

from the reference activation caused by a particular input node, the greater the perceived

effect of that input node is. The larger the effect of an input node, the higher the score

DeepLift will assign to it. Similarly, if an input node reduces the activation of an output

node, a negative score is returned. This is repeated for all of the training samples across

each input and output node combination. The result is a matrix of positive and negative

scores that indicate how important each input node is to the output nodes’ activation. In

the context of this thesis, we receive a set of scores for each gene in the input data that

correspond to how important they are to the classification of each of the output classes. We

have essentially asked DeepLift to determine how important each gene is in classifying each

of the classes within each learning task of the multi-task model. Further details on how

DeepLift works can be found in the DeepLift paper and accompanying videos on YouTube

[59].
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One additional consideration to the analysis of the DeepLift data for this thesis work

pertains to gene expression. Since each input feature represents a gene, we must be careful

to properly interpret positive scores assigned by DeepLift. A positive importance score for

a particular gene does not necessitate that the gene has higher than normal expression.

It simply means there is something about the expression of this gene that has a positive

influence on the model selecting the current class being examined by DeepLift. This could

be under or overexpression of a gene.
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Chapter 2

The Data and the Model

2.1 The Data

All of the data used for this thesis consists of RPKM gene expression values for 26668

genes. The genes selected were those that were found in the intersection of all of the genes

available across all of the different data sources. The list of these data sources is outlined

in Table 2.1. The data can be thought of as two separate sets. The largest set consists of a

mix of primary cancer, metastatic cancer, and normal tissue samples. The second, smaller

data set contains only metastatic cancer samples and was used only for testing the trained

machine learning model.
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Primary & Normals

TCGA

NIH-NCI non-Hodgkin lymphoma dataset including FL and DLBC

Non-cell-line GBM data from the TFRI’s Glioblastoma Multiforme project

MESO dataset from GenenTech

MB-Adult data from the GSC

Follicular lymphoma data from the GSC

CML data from the TARGET project

CLL and DLBC data from the GPH project

Metastatic

Met500

POG

Table 2.1: List of data sources for primary, normal, and metastatic data

Mixed Data Set

Within the mixed data set, the vast majority of the primary cancer samples are from

The Cancer Genome Atlas (TCGA) data set. The TCGA data was supplemented with

primary mesothelioma, glioblastoma, non-Hodgkin’s lymphoma, medulloblastoma, follicular

lymphoma, and leukemia data sets from a variety of other sources detailed in Table 2.1

[11]. There are 375 metastatic cancer samples included in the mixed set that came from the

Met500 cohort gathered by the University of Michigan. Details of this cohort can be found

in the associated paper by Robinson et al. [62]. With all of the sources combined, the large

mixed data set consists of 11588 samples of which 10493 were primary cancer samples, 715

were normal tissue samples, and 375 were metastatic cancer samples.

The mixed data set was annotated to include labels for the 4 different classification tasks

within the model architecture: organ system of origin, disease state, cancer type, and cancer
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subtype. A summary of the categories for the mixed data set can be found in Tables 2.2, 2.3,

2.4, 2.5, and 2.6. There are 3 labels for the disease state category corresponding to primary

cancer, metastatic cancer, and normal tissue samples. The other classification tasks consist

of 11 organ systems of origin, 68 cancer types, and 91 cancer subtypes. The number of

classes presented here reflect those remaining after the preprocessing/filtering steps outlined

in Section 2.1.2. Within both the cancer type and subtype labels, there are 20 metastatic

cancers and 16 normal classes. Within the organ system of origin task there are 8 classes

that have normal samples included.

Total Number of Cancer Subtypes 91

Number of Primary Subtypes 55

Number of Metastatic Subtypes 20

Number of Normal Subtypes 16

Total Number of Cancer Types 68

Number of Primary Subtypes 32

Number of Metastatic Types 20

Number of Normal Types 16

Total Number of Organ Systems of Origin 11

Number of Organ Systems with Normal Samples 8

Total Number of Tissue Types 3

Table 2.2: Number and composition of classes for each classification task

Organ System of Origin

Full Name Number of Cancer

Samples

Number of Normal

Samples

Breast 1268 112

Central Nervous System 1024 0

Endocrine 1005 59

Gastrointestinal 1756 146

Gynecologic 883 24
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Organ System of Origin

Full Name Number of Cancer

Samples

Number of Normal

Samples

Head and Neck 650 44

Hematologic 615 0

Skin 484 0

Soft Tissue 294 0

Thoracic 1436 110

Urological 2071 200

Total Number of Cancer Samples 10496

Total Number of Normal Samples 695

Total Number of Samples 11486

Table 2.3: Organ system of origin classes and frequencies within the full set of preprocessed

data (including both train and test data)

Tissue Type

Full Name Number of Samples

Primary Tumour 10496

Metastatic Tumour 295

Normal Tissue 695

Total Number of Samples 11486

Table 2.4: Tissue type classes and frequencies within the full set of preprocessed data (in-

cluding both train and test data)

Cancer Types

Abbreviation Full Name Number of Samples

ACC T Metastatic Metastatic Adrenocortical Carcinoma 8

ACC T Tumor Adrenocortical Carcinoma 79

26



Cancer Types

Abbreviation Full Name Number of Samples

ALL T Metastatic Acute Lymphocytic Leukemia 13

BLCA N Normal Bladder Tissue 19

BLCA T Metastatic Metastatic Bladder Urothelial Carci-

noma

14

BLCA T Tumor Bladder Urothelial Carcinoma 408

BRCA T Metastatic Metastatic Breast Invasive Carcinoma 56

BRCA N Normal Breast Tissue 112

BRCA T Tumor Breast Invasive Carcinoma 1100

CESC T Tumor Endocervical Adenocarcinoma 300

CHOL T Metastatic Extrahepatic Cholangiocarcinoma 19

CHOL N Normal Bile Duct Tissue 9

CHOL T Tumor Cholangiocarcinoma 36

CLL T Tumor Chronic Lymphocytic Leukemia 29

CML T Tumor Chronic Myelogenous Leukemia 102

COADREAD N Normal Colorectal Tissue 51

COADREAD T Metastatic Metastatic Colorectal Adenocarcinoma 10

COADREAD T Tumor Colorectal Adenocarcinoma 386

DLBC T Tumor Lymphoid Neoplasm Diffuse Large B-

cell Lymphoma

170

ESCA T Metastatic Metastatic Esophageal Adenocarci-

noma

9

ESCA T Tumor Esophageal Carcinoma 169

FL T Tumor Follicular Lymphoma 50

GBM T Tumor Glioblastoma 219

HNSC N Normal Head and Neck Tissue 44

HNSC T Metastatic Metastatic Head and Neck Squamous

Cell Carcinoma

9
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Cancer Types

Abbreviation Full Name Number of Samples

HNSC T Tumor Head and Neck Squamous Cell Carci-

noma

517

KICH N Normal Kidney Tissue 25

KICH T Tumor Kidney Chromophobe 66

KIRC N Normal Kidney Tissue 72

KIRC T Tumor Kidney Renal Clear Cell Carcinoma 532

KIRP N Normal Kidney Tissue 32

KIRP T Tumor Kidney Renal Papillary Cell Carcinoma 291

LAML T Metastatic Metastatic Acute Myeloid Leukemia 8

LAML T Tumor Acute Myeloid Leukemia 123

LGG T Tumor Brain Lower Grade Glioma 530

LIHC N Normal Liver Tissue 50

LIHC T Metastatic Metastatic Liver Hepatocellular Carci-

noma

7

LIHC T Tumor Liver Hepatocellular Carcinoma 373

LUAD N Normal Lung Tissue 59

LUAD T Metastatic Metastatic Lung Adenocarcinoma 9

LUAD T Tumor Lung Adenocarcinoma 518

LUSC N Normal Lung Tissue 51

LUSC T Tumor Lung Squamous Cell Carcinoma 501

MB-Adult T Tumor Medulloblastoma 275

MESO T Tumor Mesothelioma 298

OV T Metastatic Metastatic Ovarian Serous Cystadeno-

carcinoma

13

OV T Tumor Ovarian Serous Cystadenocarcinoma 308

PAAD T Metastatic Metastatic Pancreatic Adenocarci-

noma

7
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Cancer Types

Abbreviation Full Name Number of Samples

PAAD T Tumor Pancreatic Adenocarcinoma 179

PCPG T Tumor Pheochromocytoma and Paragan-

glioma

184

PRAD N Normal Prostate Tissue 52

PRAD T Metastatic Metastatic Prostate Adenocarcinoma 62

PRAD T Tumor Prostate Adenocarcinoma 498

NET T Metastatic Metastatic Neuroendocrine Tumour 6

SARC T Metastatic Metastatic Sarcoma 33

SARC T Tumor Sarcoma 261

SKCM T Metastatic Metastatic Skin Cutaneous Melanoma 12

SKCM T Tumor Skin Cutaneous Melanoma 472

STAD N Normal Stomach Tissue 36

STAD T Tumor Stomach Adenocarcinoma 415

TGCT T Tumor Testicular Germ Cell Tumors 156

THCA N Normal Thyroid Tissue 59

THCA T Tumor Thyroid Carcinoma 513

THYM T Tumor Thymoma 120

UCEC N Normal Uterine Tissue 24

UCEC T Tumor Uterine Corpus Endometrial Carci-

noma

181

UCS T Tumor Uterine Carcinosarcoma 57

UVM T Tumor Uveal Melanoma 80

Total Number of Primary Samples 10496

Total Number of Metastatic Samples 295

Total Number of Normal Samples 695

Total Number of Samples 11486
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Cancer Types

Abbreviation Full Name Number of Samples

Table 2.5: Cancer type class abbreviations and frequency within the full set of preprocessed

data (including both train and test data)

Cancer Subtypes

Abbreviation Full Name Number of Samples

ACC T Metastatic Metastatic Adrenocortical Carcinoma 8

ACC T Tumor Adrenocortical Carcinoma 79

ALL T Metastatic Acute Lymphocytic Leukemia 13

BLCA N Normal Bladder Tissue 19

BLCA T Metastatic Metastatic Bladder Urothelial Carci-

noma

14

BLCA T Tumor Bladder Urothelial Carcinoma 408

BRCA Basal T Tumor Basal Breast Invasive Carcinoma 176

BRCA HER2like Tumor HER2-like Breast Invasive Carcinoma 80

BRCA IDC T Metastatic Metastatic Invasive Ductal Breast Car-

cinoma

46

BRCA ILC T Metastatic Metastatic Invasive Lobular Breast

Carcinoma

10

BRCA LuminalA T Tumor Luminal A Breast Invasive Carcinoma 538

BRCA LuminalB T Tumor Luminal B Breast Invasive Carcinoma 207

BRCA N Normal Breast Tissue 112

BRCA T Tumor Breast Invasive Carcinoma 99

CESC CAD T Tumor Endocervical Adenocarcinoma 47

CESC SCC T Tumor Cervical Squamous Cell Carcinoma and

Endocervical Adenocarcinoma

253

CHOL EHCH T Metastatic Metastatic Extrahepatic Cholangiocar-

cinoma

10
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Cancer Subtypes

Abbreviation Full Name Number of Samples

CHOL IHCH T Metastatic Metastatic Intrahepatic Cholangiocar-

cinoma

9

CHOL N Normal Bile Duct Tissue 9

CHOL T Tumor Cholangiocarcinoma 36

CLL T Tumor Chronic Lymphocytic Leukemia 29

CML T Tumor Chronic Myelogenous Leukemia 102

COADREAD N Normal Colorectal Tissue 51

COADREAD T Metastatic Metastatic Colorectal Adenocarcinoma 10

COADREAD T Tumor Colorectal Adenocarcinoma 386

DLBC BM T Tumor Bone Marrow Lymphoid Neoplasm Dif-

fuse Large B-cell Lymphoma

11

DLBC T Tumor Lymphoid Neoplasm Diffuse Large B-

cell Lymphoma

159

ESCA EAC T Metastatic Metastatic Esophageal Adenocarci-

noma

9

ESCA EAC T Tumor Esophageal Adenocarcinoma 63

ESCA SCC T Tumor Squamous Cell Esophageal Carcinoma 93

ESCA T Tumor Esophageal Carcinoma 13

FL T Tumor Follicular Lymphoma 50

GBM T Tumor Glioblastoma 219

HNSC N Normal Head and Neck Tissue 44

HNSC T Metastatic Metastatic Head and Neck Squamous

Cell Carcinoma

9

HNSC T Tumor Head and Neck Squamous Cell Carci-

noma

517

KICH N Normal Kidney Tissue 25

KICH T Tumor Kidney Chromophobe 66
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Cancer Subtypes

Abbreviation Full Name Number of Samples

KIRC N Normal Kidney Tissue 72

KIRC T Tumor Kidney Renal Clear Cell Carcinoma 532

KIRP N Normal Kidney Tissue 32

KIRP T Tumor Kidney Renal Papillary Cell Carcinoma 291

LAML T Metastatic Metastatic Acute Myeloid Leukemia 8

LAML T Tumor Acute Myeloid Leukemia 123

LGG T Tumor Brain Lower Grade Glioma 530

LIHC N Normal Liver Tissue 50

LIHC T Metastatic Metastatic Liver Hepatocellular Carci-

noma

7

LIHC T Tumor Liver Hepatocellular Carcinoma 373

LUAD N Normal Lung Tissue 59

LUAD T Metastatic Metastatic Lung Adenocarcinoma 9

LUAD T Tumor Lung Adenocarcinoma 518

LUSC N Normal Lung Tissue 51

LUSC T Tumor Lung Squamous Cell Carcinoma 501

MB Group3 T Tumor Group 3 Medulloblastoma 39

MB Group4 T Tumor Group 4 Medulloblastoma 69

MB SHH T Tumor Sonic Hedgehog Medulloblastoma 136

MB WNT T Tumor Wingless Medulloblastoma 31

MESO T Tumor Mesothelioma 298

OV T Metastatic Metastatic Ovarian Serous Cystadeno-

carcinoma

13

OV T Tumor Ovarian Serous Cystadenocarcinoma 308

PAAD T Metastatic Metastatic Pancreatic Adenocarci-

noma

7

PAAD T Tumor Pancreatic Adenocarcinoma 179
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Cancer Subtypes

Abbreviation Full Name Number of Samples

PCPG T Tumor Pheochromocytoma and Paragan-

glioma

184

PRAD N Normal Prostate Tissue 52

PRAD T Metastatic Metastatic Prostate Adenocarcinoma 62

PRAD T Tumor Prostate Adenocarcinoma 498

PrNET T Metastatic Metastatic Pancreatic Neuroendocrine

Tumour

6

SARC DDL T Tumor Dedifferentiated Sarcoma 58

SARC LMS T Metastatic Leiomyosarcoma 9

SARC LMS T Tumor Dedifferentiated Liposarcoma 106

SARC MPNST T Tumor Malignant Peripheral Nerve Sheath Tu-

mour

10

SKCM T Metastatic Metastatic Skin Cutaneous Melanoma 12

SKCM T Tumor Skin Cutaneous Melanoma 472

STAD CIN T Tumor Chromosomal Instability Stomach

Adenocarcinoma

211

STAD EBV T Tumor EBV-positive Stomach Adenocarci-

noma

31

STAD GS T Tumor Genomically Stable Stomach Adeno-

carcinoma

70

STAD MSI T Tumor Microsatellite Instability Stomach Ade-

nocarcinoma

76

STAD N Normal Stomach Tissue 36

STAD T Tumor Stomach Adenocarcinoma 27

TGCT T Tumor Testicular Germ Cell Tumors 156

THCA N Normal Thyroid Tissue 59

THCA T Tumor Thyroid Carcinoma 513
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Cancer Subtypes

Abbreviation Full Name Number of Samples

THYM T Tumor Thymoma 120

UCEC N Normal Uterine Tissue 24

UCEC T Tumor Uterine Corpus Endometrial Carci-

noma

181

UCS T Tumor Uterine Carcinosarcoma 57

UVM T Tumor Uveal Melanoma 80

Total Number of Primary Samples 10496

Total Number of Metastatic Samples 295

Total Number of Normal Samples 695

Total Number of Samples 11486

Table 2.6: Cancer subtype class abbreviations and frequency within the full set of prepro-

cessed data (including both train and test data)

Metastatic-Only Data Set

The second data set was derived from the Personalised OncoGenomics (POG) project at

BC Cancer and contains only metastatic cancer samples. Throughout this thesis, this data

set is referred to as the external test set, the POG data set, or the metastatic-only test set.

Extensive details of the POG project can be found in the paper by Pleasance et al. [60]. A

summary of its composition as utilized in this thesis can be found in Tables 2.7, 2.8, and 2.9.

There are 461 metastatic cancer samples that span 15 cancer subtypes, 13 cancer types, and

10 organ systems of origin. The 461 samples were selected from a larger set of POG data

and were chosen on the basis that each of their labels for all four classification tasks were

also present in the training data.
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Organ System of Origin

Full Name Number of Samples

Breast 134

Endocrine 6

Gastrointestinal 163

Gynecologic 34

Head and Neck 5

Hematologic 2

Skin 14

Soft Tissue 56

Thoracic 44

Urological 3

Total Number of Organ Systems 11

Total Number of Samples 461

Table 2.7: Organ system of origin classes and frequencies within the the POG dataset

Cancer Types

Abbreviation Full Name Number of Samples

ACC T Metastatic Metastatic Adrenocortical Carcinoma 6

BRCA T Metastatic Metastatic Breast Invasive Carcinoma 134

CHOL T Metastatic Metastatic Cholangiocarcinoma 3

COADREAD T Metastatic Metastatic Colorectal Adenocarcinoma 85

HNSC T Metastatic Metastatic Head and Neck Squamous

Cell Carcinoma

5

LAML T Metastatic Metastatic Acute Myeloid Leukemia 2

LIHC T Metastatic Metastatic Liver Hepatocellular Carci-

noma

3

LUAD T Metastatic Metastatic Lung Adenocarcinoma 44
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Cancer Types

Abbreviation Full Name Number of Samples

OV T Metastatic Metastatic Ovarian Serous Cystadeno-

carcinoma

34

PAAD T Metastatic Metastatic Pancreatic Adenocarci-

noma

72

PRAD T Metastatic Metastatic Prostate Adenocarcinoma 3

SARC T Metastatic Metastatic Sarcoma 56

SKCM T Metastatic Metastatic Skin Cutaneous Melanoma 14

Total Number of Cancer Types 13

Total Number of Samples 461

Table 2.8: Cancer type class abbreviations and frequency within the POG dataset

Cancer Subtypes

Abbreviation Full Name Number of Samples

ACC T Metastatic Metastatic Adrenocortical Carcinoma 6

BRCA IDC T Metastatic Metastatic Invasive Ductal Breast Car-

cinoma

125

BRCA ILC T Metastatic Metastatic Invasive Lobular Breast

Carcinoma

9

CHOL IHCH T Metastatic Metastatic Intrahepatic Cholangiocar-

cinoma

3

COADREAD T Metastatic Metastatic Colorectal Adenocarcinoma 85

HNSC T Metastatic Metastatic Head and Neck Squamous

Cell Carcinoma

5

LAML T Metastatic Metastatic Acute Myeloid Leukemia 2

LIHC T Metastatic Metastatic Liver Hepatocellular Carci-

noma

3

LUAD T Metastatic Metastatic Lung Adenocarcinoma 44
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Cancer Subtypes

Abbreviation Full Name Number of Samples

OV T Metastatic Metastatic Ovarian Serous Cystadeno-

carcinoma

34

PAAD T Metastatic Metastatic Pancreatic Adenocarci-

noma

72

PRAD T Metastatic Metastatic Prostate Adenocarcinoma 3

SARC LMS T Metastatic Metastatic Leiomyosarcoma 11

SARC T Metastatic Metastatic Sarcoma 45

SKCM T Metastatic Metastatic Skin Cutaneous Melanoma 14

Total Number of Cancer Subtypes 15

Total Number of Samples 461

Table 2.9: Cancer subtype class abbreviations and frequency within the POG dataset

The POG data class labels were annotated using the same class labels that were found in

the training data and correspond to the TCGA naming convention. The most appropriate

TCGA label was determined as part of the analysis conducted for the POG project and

considered genomic, pathological, and clinical factors [61, 62].

2.1.1 Training and Test Sets

The mixed held-out data set described above was divided into training and test sets. The

training set used to train the model(s) was generated by utilizing 85% of the whole mixed

data set and contained 9763 samples. The remaining 15%, 1723 samples, constitutes the

held-out test data set and contains primary, metastatic, and normal samples in proportions

equal to those found in the training data set (ie. it is stratified). This held-out data was

excluded from all aspects of training including cross-validation.
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The POG data as described above was utilized in its entirety for testing only. The resulting

test set is 461 metastatic cancer samples. The value of this data set as a test set is that all of

its samples were processed at a facility that is different from any of the metastatic samples

in the training and held-out test set. This should add some objectivity to the testing results.

2.1.2 Data Preprocessing: Validation

The RPKM values of the data were ranked and normalized to lie between 0 and 1 using

the rank function from the pandas Python package [63]. Samples were then filtered out

based on whether or not they were part of a cancer subtype class that contained at least

6 samples. Since the intention was to utilize five-fold cross-validation for model validation

and optimization, it was important to keep this minimum number of samples to ensure class

ratios remained the same across all folds.

Following the filtering of samples, 15% of the data was separated into a held-out test set

using the train test split function found in the scikit-learn Python package [64]. The option

to stratify the classes was enabled to ensure proper class representation. The remaining

85% of the data not used for the held-out test set was then divided into five folds for use

in cross-validation. The StratifiedKFold function from the scikit-learn package was used to

generate the folds and maintain class ratios. The result of the data splitting is that at least

one sample of each subtype was present in the test set and five samples were equally split

among the five folds generated for cross-validation.

2.1.3 Data Preprocessing: Testing

The preprocessing steps for testing differ slightly from those of validation outlined in

Section 2.1.2. Since the model has been validated using cross-validation, multiple training

folds is no longer necessary for training the final model. The advantage of this is that more

data can be used for training the model as a validation set is not needed. Therefore, the
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preprocessing for testing excludes splitting the data for cross-validation but still includes

normalization and ranking via the rank function within the pandas Python package. The

result is a held-out test set containing 15% of the mixed data and a single training data set

containing the remaining 85%. The metastatic-only test data (derived from POG) underwent

the same ranking and normalization described above.

2.2 The Model

The model used in this thesis is a fully-connected feed-forward artificial neural network.

The model is a multi-task model in that it has four classification output layers used to make

classifications within four distinct tasks. A visualization of the model can be seen in Figure

2.1. These four classification tasks are:

1. Organ System of Origin

2. Disease State

3. Cancer Type

4. Cancer Subtype

39



Figure 2.1: High level diagram of the multi-task neural network

Each classification task in the neural network model has a hidden layer directly connected

with it. Each hidden layer connects to a classification task output layer as well as the next

hidden layer (with the exception of the final hidden layer). Each hidden layer is a fully

connected (dense) layer. The effect of this network architecture is that as information moves

from the first hidden layer (associated with the organ system of origin classification) to the

final hidden layer (associated with the cancer subtype classification), the model has more

hidden layers to utilize in making the classification. For example, with the organ system of

origin classification there is only a single hidden layer available to encode information, but

at the cancer subtype classification there are four. By having more hidden layers for learning

tasks that are more complex (cancer subtype being more complex than organ system), we

are providing the model with a greater learning capacity for these more complex tasks.

The rationale behind using a model with this multi-task architecture is four fold. These

are described below.

The first rationale is that the multiple task setup forces the model to learn increasing

granular features of the data. The first dense layer must encode all of the information
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necessary to accurately classify an organ system of origin. The effect of this is that in

subsequent layers (down-stream from the organ system layer), the model is encouraged to

learn features that will help to distinguish the disease state, and can, at least in part, ignore

features needed to distinguish the organ system of origin.

The increasing granulation of feature learning described above contributes to the second

rationale behind this architecture: mitigating tissue bias. A single learning task that requires

a model to only classify cancer types and seeks to do so with cancers from different organ

systems will, at least in part, learn features that define the organ system. This is tissue bias.

We can imagine trying to distinguish stomach cancer from brain cancer. During training,

the model can increase its baseline classification accuracy if it can learn what makes a

brain different from a stomach. This does not necessarily require learning anything about

cancer specifically. The background gene expression levels of the relevant organ systems

can be leveraged in distinguishing brain cancer from stomach cancer and may be enough

information to accurately classifying some samples. Thus, the model is encouraged to identify

the expression patterns of the organ system of origin. By forcing the model to learn to

distinguish organ systems with the first layer of the multi-task model, we are providing a

mechanism of encouragement for it to learn patterns of expression specific to cancers in

subsequent learning tasks.

The third rationale behind this multi-task architecture is that we are imbuing a biological

hierarchy into the decision making process. The order of classification tasks is such that

it follows a biological hierarchy. The model first questions what organ system is involved,

then if this is normal or cancerous tissue, then what type of cancer it is, followed by what

subtype. This is a biologically relevant series of decisions and may help to improve the

classification ability of the model. In fact, convolutional neural networks used for image

recognition are thought to show improved performance as a result of the hierarchical nature

of their structure and learning [65]. It is reasonable to attempt to utilize this approach in

the domain of this thesis work.
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The fourth and final rationale for this multi-task model is simply the volume of output.

The more tasks we have, the greater the wealth of data being output. This is an advantage

when conducting post-classification analysis of the trained model as it provides access to more

decision levels of the model and may provide a means with which to ask more interesting

biological questions.

2.2.1 Model Settings and Hyperparameters

The optimization of the model’s hyperparameters was done using five-fold cross-validation

and a combination of manual search and limited grid search. The performance on the mean

of all five validation sets was examined to determine the hyperparameter values of the model.

The hyperparameters experimented with included the number of nodes in the hidden layers

of the model, the learning rate, optimizer, dropout rate, batch sizes and various learning

rate decay schedules. Ultimately, the hyperparameter settings seen in Table 2.10 were the

best values found for this particular model architecture and problem space.

Hyperparameter Value

Number of Nodes in Hidden Layers 2000

Optimizer Mini-Batch Gradient Descent

Batch size 32

Learning Rate (reduce on plateau) 0.001

Learning Rate Reduction Factor 0.95

Learning Rate Reduction Patience 20

Early Stopping Patience 40

Dense Layer Activation Function Tanh

Dropout (every dense layer) 0.2

Class Weighting True

Table 2.10: Hyperparameter settings
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Initilization

The weights were initialized using the glorot uniform (also known as the Xavier uniform)

initializer as implemented in the Keras Python package [51]. The biases were initialized to

zeros.

Mini-Batch Gradient Descent

Mini-batch gradient descent was used as the optimizer for the model. The implementation

used was the one found in the Keras Python package [51]. This is simply the SGD optimizer

with the batch size set to 32.

Learning Rate Reduction

For this work, the validation loss on the cancer subtype classification task was used as

the observed metric for learning rate reduction patience. The initial learning rate was set

to 0.001, the reduction factor to 0.95, and the reduction patience to 20 (Table 2.10). The

learning rate reduction was implemented using the ReduceLROnPlateau callback from the

Keras Python package [51].

Early Stopping and Patience

When determining if training should be stopped at any given epoch due to a lack of

improvement in the validation loss, a patience of 40 was utilized. This means that the

model would allow 40 epochs to complete without an improvement in the validation loss

before halting the training. The EarlyStopping callback from the Keras Python package was

utilized to achieve early stopping and patience for the models used in this thesis [51].
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Activation Function

The hyperbolic tangent function was used as the activation function for each node within

the hidden layers of all of the models presented in this thesis. The softmax activation

function was used for each node in the output layers. Both activation functions were used

as implemented in the Keras Python package [51].

Loss Function

The categorical cross-entropy loss was utilized for the models in this thesis. The imple-

mentation used was the standard one found in the Keras Python package [51].

Dropout

A dropout rate of 0.2 or 20% was used for the models in this thesis and was implemented

using the Dropout layers from the Keras Python package [51].

Class Weighting

Class weighting was implemented for the models in this thesis using the compute class weight

and compute sample weight functions from the scikit-learn Python package [16]. Due to lim-

itations of the Keras package in a multi-task environment, it was not possible to directly

apply the class weights during training. As a workaround, the compute class weight function

was used to calculate the proper weight values and then they were applied on a per-sample

level at training time using the compute sample weight function. The weights were chosen

to reflect the relative sizes of the classes. The largest class was given a weight of 1 and all

other classes were given a weight corresponding to the difference in their sizes compared to

the largest class. For example, if a minority class had half the number of samples as the

majority class, it was assigned a weight of 2.
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2.2.2 Evaluating the Effect of Multiple Tasks on Classification

Performance

The classification performance of the multi-task model was evaluated against models con-

taining fewer learning tasks and one model using just a single task (cancer subtype only).

The evaluation of the models was conducted as part of the cross-validation process and thus

the results presented here are an average of the performance across five validation folds. The

validation folds contained normal tissue, primary cancer, and metastatic cancer samples as

described in Section 2.1. The validation folds were used to ensure that the test sets remained

untouched during the validation stage. The following sections will present the validation re-

sults for each of the learning tasks: organ system of origin, disease state, cancer type, and

cancer subtype.

Organ System of Origin

The F1-scores presented in Figure 2.2 range from 0.981639 for the ”All Tasks” model to

0.984891 for a multi-task model containing organ system of origin, disease state, and cancer

subtype and not containing a cancer type learning task (”No Cancer Type”). This represents

a performance reduction of 0.003252 for the ”All Tasks” model versus the best performing

set of tasks. The variation in performance seen between models is largest between the ”All

Tasks” model and the other three models. We note that the smallest standard deviation is

seen with the ”No Disease State” model and the largest with the ”No Cancer Type” model .
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Figure 2.2: The macro F1-scores of various models using validation sets containing both

primary and metastatic samples from different organ systems of origin.

Disease State

The F1-scores presented in Figure 2.3 range from 0.978703 for a model with the cancer type

task removed and 0.981184 for a model missing the organ system of origin learning task (”No

Organ System”). This represents a performance reduction of 0.002481. The performance

of the ”All Tasks” model sits in between the other two with an F1-score of 0.979349. The

standard deviation is largest with the ”No Cancer Type” model and smallest with the ”No

Organ System” model.
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Figure 2.3: The macro F1-scores of various models on validation sets containing both primary

and metastatic samples at the disease state classification level

Cancer Type

The F1-scores presented in Figure 2.4 range from 0.861412 for the ”All Tasks” model

to 0.862186 for a multi-task model containing organ system of origin, cancer type, and

cancer subtype, and not containing a disease state learning task (”No Disease State”). This

represents a performance improvement of 0.000774 over the ”All Tasks” model, which had the

poorest performance of the models tested. Note, however, that the ”All Tasks” model had

the smallest standard deviation. The variation in performance seen between models is much

smaller for cancer type classification when compared with the cancer subtype classifications.
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Figure 2.4: The macro F1-scores of various models on validation set data containing both

primary and metastatic cancer type samples.

Cancer Subtype

The F1-scores presented in Figure 2.5 range from 0.80281 for the single task (”Subtype

Only”) model to 0.812746 for a multi-task model missing the disease state learning task (”No

Disease State”). This represents a performance improvement of 0.009936 over the single task

model. The performance of the ”All Tasks” model is approximately in the middle of the

other models with an F1-score of 0.806287. The performance decrease between the ”All

Tasks” model and the best performing model is 0.006459. Note that the ”All Tasks” model

had the largest standard deviation and the ”No Cancer Type” model had the smallest.
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Figure 2.5: The macro F1-scores of various models on validation set data containing both

primary and metastatic cancer subtype samples.

Discussion of Task-Dependent Performance

While the ”All Tasks” model did not provide the best performance in any of the clas-

sification categories, relatively speaking, the difference in performance was small. In each

classification category, the ”All Tasks” model’s mean performance was within an F1-score

of 0.001 of the best performing set of tasks. The inclusion of all four tasks within the ”All

Tasks” model provides a greater opportunity to leverage more fine-grained information in

down-stream analyses than it would if tasks were removed. Given that the classification

performance is similar between all sets of tasks, it can be justified that the additional infor-

mation gained from including all of the learning tasks is worth the slight loss of potential

performance, and thus the ”All Tasks” model can be used for further analysis.
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Chapter 3

Classification of Cancers from

Transcriptome Data

The following results were obtained from a single trained model. The first section presents

the results from the mixed primary, metastatic and normal data that comprises the held-out

test set as described in Chapter 2. The second section presents results using the external

metastatic-only data set derived from POG data. Where F1-score is reported, it is the macro

F1-score in which each class is weighted equally in the calculation of the score regardless of

class size.

3.1 Results: Mixed Held-Out Test Set

3.1.1 Organ System of Origin

The organ system of origin classification scores can be seen in Table 3.2 and graphically

in Figure 3.1. The classification performance was above 0.95 for all organ systems with

the poorest performer being the soft tissue class. The soft tissue class was misclassified

as thoracic and gastrointestinal at rate of approximately 2% and 3% respectively. The
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misclassification of organ systems can be seen in Figure 3.2.

Organ System of Origin Precision Recall F1-score Support

Breast 1 1 1 190

Central Nervous System 1 1 1 154

Endocrine 0.993 0.993 0.993 151

Gastrointestinal 0.996 0.992 0.994 261

Gynecologic 0.97 0.985 0.978 133

Head and Neck 0.98 0.99 0.985 98

Hematologic 0.978 1 0.989 91

Skin 1 0.986 0.993 73

Soft Tissue 0.976 0.932 0.953 44

Thoracic 0.986 0.986 0.986 216

Urologic 0.987 0.984 0.986 312

accuracy 0.99 0.99 0.99 0.99

macro avg 0.988 0.986 0.987 1723

weighted avg 0.99 0.99 0.99 1723

Table 3.2: The precision, recall, F1-score, and support for each organ system of origin class

with testing conducted using the mixed held-out test set.
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Figure 3.1: The macro F1-scores of each organ system of origin when testing on the held-out

test set containing primary cancer, metastatic cancer, and normal tissue samples. Classes

are ordered from left to right by the number of training samples available with colours

representing bins of 20 samples.
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Figure 3.2: A confusion matrix depicting the organ system of origin classification perfor-

mance on the held-out test set containing primary cancer, metastatic cancer, and normal

tissue samples.

3.1.2 Disease State

The disease state classification scores can be seen in Table 3.4 and graphically in Figure 3.3.

Each disease state had F1-scores above 0.95 with the poorest performer being the normal
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class. Referring to Figure 3.4, we can see that the normal class was misclassified as the

primary cancer class at rate of approximately 5%.

Disease State Precision Recall F1-score Support

Metastatic 1 1 1 41

Normal 0.98 0.934 0.957 106

Primary 0.996 0.999 0.997 1576

accuracy 0.995 0.995 0.995 0.995

macro avg 0.992 0.978 0.985 1723

weighted avg 0.995 0.995 0.995 1723

Table 3.4: The precision, recall, F1-score, and support for each disease state class with

testing conducted using the mixed held-out test set.
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Figure 3.3: The macro F1-scores of each disease state when testing on the held-out test set

containing primary cancer, metastatic cancer, and normal tissue samples. Classes are ordered

from left to right by the number of training samples available with colours representing bins

of 20 samples.
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Figure 3.4: A confusion matrix depicting the disease state classification performance on the

held-out test set containing primary cancer, metastatic cancer, and normal tissue samples.

3.1.3 Cancer Type

The classification performance of the cancer type task resulted in a total F1-score of 0.885

and an accuracy of 96.5% across all 68 types. The F1-scores for the classification of the

primary, metastatic, and normal types individually were 0.964, 0.683, and 0.925 respectively
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(see Figure 3.5).

Figure 3.5: The macro F1-scores comparing the classification performance of cancer type

and cancer subtype samples broken down by disease state as tested on the held-out mixed

test set.

The F1-scores, precision, and recall of each cancer type can be seen in Table 3.6, and the

class-wise F1-scores are presented graphically in Figure 3.6. The classification performance

decreases along with the number of training samples. There are no outliers from the trend

observed in Figure 3.6 like we saw with the subtype classes. However, there are four cancer

types with an F1-score of 0.0. The cancer type classification accuracy and the predicted

classes of misclassified types can be seen in the confusion matrix in Figure 3.9. The four

cancer types with F1-scores of 0 and the source of their misclassifications are presented

below:
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ESCA T Metastatic

The ESCA T Metastatic type was completely misclassified as CHOL T Metastatic. Note

that only a single test sample was available for this class.

HNSC T Metastatic

The HNSC T Metastatic type was completely misclassified as PAAD T Metastatic. Note

that only a single test sample was available for this class.

LIHC T Metastatic

The LIHC T Metastatic type was completely misclassified as CHOL T Metastatic. Note

that only a single test sample was available for this class.

NET T Metastatic

The NET T Metastatic type was completely misclassified as PRAD T Metastatic. Note that

only a single test sample was available for this class.

Cancer Type Precision Recall F1-score Support

ACC T Metastatic 1 1 1 1

ACC T Tumor 1 1 1 12

ALL T Metastatic 1 0.5 0.667 2

BLCA N Normal 1 1 1 3

BLCA T Metastatic 1 1 1 2

BLCA T Tumor 0.951 0.951 0.951 61

BRCA N Normal 1 1 1 17

BRCA T Metastatic 1 1 1 8
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Cancer Type Precision Recall F1-score Support

BRCA T Tumor 1 1 1 165

CESC T Tumor 0.907 0.867 0.886 45

CHOL N Normal 1 1 1 1

CHOL T Metastatic 0.5 1 0.667 2

CHOL T Tumor 0.714 1 0.833 5

CLL T Tumor 1 1 1 4

CML T Tumor 1 1 1 15

COADREAD N Normal 1 1 1 8

COADREAD T Metastatic 1 1 1 1

COADREAD T Tumor 1 0.966 0.982 58

DLBC T Tumor 1 1 1 26

ESCA T Metastatic 0 0 0 1

ESCA T Tumor 0.92 0.92 0.92 25

FL T Tumor 0.875 1 0.933 7

GBM T Tumor 0.97 0.97 0.97 33

HNSC N Normal 0.875 1 0.933 7

HNSC T Metastatic 0 0 0 1

HNSC T Tumor 0.973 0.936 0.954 78

KICH N Normal 0.667 1 0.8 4

KICH T Tumor 0.769 1 0.87 10

KIRC N Normal 1 0.909 0.952 11

KIRC T Tumor 0.951 0.963 0.957 80

KIRP N Normal 1 0.8 0.889 5

KIRP T Tumor 0.95 0.864 0.905 44

LAML T Metastatic 0.5 1 0.667 1

LAML T Tumor 1 1 1 18

LGG T Tumor 0.988 0.988 0.988 80

LIHC N Normal 1 1 1 7
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Cancer Type Precision Recall F1-score Support

LIHC T Metastatic 0 0 0 1

LIHC T Tumor 1 0.964 0.982 56

LUAD N Normal 0.8 0.889 0.842 9

LUAD T Metastatic 1 1 1 1

LUAD T Tumor 0.927 0.974 0.95 78

LUSC N Normal 0.857 0.75 0.8 8

LUSC T Tumor 0.932 0.92 0.926 75

MB-Adult T Tumor 1 1 1 41

MESO T Tumor 1 1 1 45

NET T Metastatic 0 0 0 1

OV T Metastatic 1 1 1 2

OV T Tumor 1 1 1 46

PAAD T Metastatic 0.5 1 0.667 1

PAAD T Tumor 0.964 1 0.982 27

PCPG T Tumor 1 1 1 28

PRAD N Normal 0.7 0.875 0.778 8

PRAD T Metastatic 0.9 1 0.947 9

PRAD T Tumor 0.986 0.96 0.973 75

SARC T Metastatic 1 1 1 5

SARC T Tumor 1 0.974 0.987 39

SKCM T Metastatic 1 1 1 2

SKCM T Tumor 1 0.986 0.993 71

STAD N Normal 1 0.8 0.889 5

STAD T Tumor 0.954 0.984 0.969 63

TGCT T Tumor 1 1 1 23

THCA N Normal 1 1 1 9

THCA T Tumor 1 1 1 77

THYM T Tumor 1 1 1 18
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Cancer Type Precision Recall F1-score Support

UCEC N Normal 1 1 1 4

UCEC T Tumor 0.862 0.926 0.893 27

UCS T Tumor 0.889 0.889 0.889 9

UVM T Tumor 1 1 1 12

accuracy 0.965 0.965 0.965 0.965

macro avg 0.879 0.905 0.885 1723

weighted avg 0.966 0.965 0.965 1723

Table 3.6: The precision, recall, F1-score, and support for each cancer type class with testing

conducted using the mixed held-out test set.

Referring to Figure 3.7, we can see that the majority of types were accurately classified with

a few exceptions. The most poorly performing classes are noted above, however, as with the

cancer subtype classes we again observe misclassifications within the normal lung and kidney

tissue subtypes. We can also see some significant misclassifications of ALL T Metastatic and

STAD N Normal.

ALL T Metastatic

ALL T Metastatic consisted of only two test samples. One of these samples was misclassified

as LAML T Tumor.

STAD N Normal

STAD N Normal was misclassified as ESCA T Tumor in 20% of the samples.
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Figure 3.6: The macro F1-scores of each cancer type when testing on the held-out test set

containing primary cancer, metastatic cancer, and normal tissue samples. Classes are ordered

from left to right by the number of training samples available with colours representing bins

of 20 samples.
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Figure 3.7: A confusion matrix depicting the cancer type classification performance on the

held-out test set containing primary cancer, metastatic cancer, and normal tissue samples.

3.1.4 Cancer Subtype

The classification performance of the cancer subtype task resulted in a total F1-score of

0.885 and an accuracy of 93.3% across all 91 subtypes. The F1-score for the classification

of the primary, metastatic, and normal subtypes individually was 0.851, 0.704, and 0.927
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respectively (see Figure 3.5). The F1-scores, precision, and recall of each subtype can be

seen in Table 3.8, and the class-wise F1-scores are presented graphically in Figure 3.8.

Cancer Subtype Precision Recall F1-score Support

ACC T Metastatic 1 1 1 1

ACC T Tumor 1 1 1 12

ALL T Metastatic 1 1 1 2

BLCA N Normal 1 1 1 3

BLCA T Metastatic 0.667 1 0.8 2

BLCA T Tumor 0.952 0.967 0.959 61

BRCA Basal T Tumor 0.852 0.885 0.868 26

BRCA HER2like Tumor 0.818 0.75 0.783 12

BRCA IDC T Metastatic 0.857 0.857 0.857 7

BRCA ILC T Metastatic 0 0 0 1

BRCA LuminalA T Tumor 0.819 0.951 0.88 81

BRCA LuminalB T Tumor 0.724 0.677 0.7 31

BRCA N Normal 1 1 1 17

BRCA T Tumor 0.667 0.267 0.381 15

CESC CAD T Tumor 1 0.571 0.727 7

CESC SCC T Tumor 0.921 0.921 0.921 38

CHOL EHCH T Metastatic 0 0 0 1

CHOL IHCH T Metastatic 0.5 1 0.667 1

CHOL N Normal 1 1 1 1

CHOL T Tumor 0.714 1 0.833 5

CLL T Tumor 1 1 1 4

CML T Tumor 1 1 1 15

COADREAD N Normal 1 1 1 8

COADREAD T Metastatic 1 1 1 1

COADREAD T Tumor 1 0.983 0.991 58

DLBC BM T Tumor 1 1 1 2
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Cancer Subtype Precision Recall F1-score Support

DLBC T Tumor 1 0.958 0.979 24

ESCA EAC T Metastatic 0 0 0 1

ESCA EAC T Tumor 0.889 0.889 0.889 9

ESCA SCC T Tumor 0.824 1 0.903 14

ESCA T Tumor 0 0 0 2

FL T Tumor 0.778 1 0.875 7

GBM T Tumor 1 0.97 0.985 33

HNSC N Normal 0.875 1 0.933 7

HNSC T Metastatic 0 0 0 1

HNSC T Tumor 0.974 0.949 0.961 78

KICH N Normal 0.8 1 0.889 4

KICH T Tumor 0.75 0.9 0.818 10

KIRC N Normal 1 1 1 11

KIRC T Tumor 0.939 0.963 0.951 80

KIRP N Normal 1 0.8 0.889 5

KIRP T Tumor 0.95 0.864 0.905 44

LAML T Metastatic 1 1 1 1

LAML T Tumor 1 1 1 18

LGG T Tumor 0.988 1 0.994 80

LIHC N Normal 1 1 1 7

LIHC T Metastatic 1 1 1 1

LIHC T Tumor 1 0.964 0.982 56

LUAD N Normal 0.778 0.778 0.778 9

LUAD T Metastatic 1 1 1 1

LUAD T Tumor 0.938 0.974 0.956 78

LUSC N Normal 0.75 0.75 0.75 8

LUSC T Tumor 0.958 0.92 0.939 75

MB Group3 T Tumor 1 1 1 6
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Cancer Subtype Precision Recall F1-score Support

MB Group4 T Tumor 1 1 1 10

MB SHH T Tumor 1 1 1 20

MB WNT T Tumor 1 1 1 5

MESO T Tumor 1 1 1 45

OV T Metastatic 0.667 1 0.8 2

OV T Tumor 1 1 1 46

PAAD T Metastatic 1 1 1 1

PAAD T Tumor 1 1 1 27

PCPG T Tumor 1 1 1 28

PRAD N Normal 0.7 0.875 0.778 8

PRAD T Metastatic 0.9 1 0.947 9

PRAD T Tumor 0.986 0.96 0.973 75

PrNET T Metastatic 0 0 0 1

SARC DDL T Tumor 0.857 0.667 0.75 9

SARC LMS T Metastatic 1 1 1 1

SARC LMS T Tumor 0.722 0.813 0.765 16

SARC MFS T Tumor 0.5 0.75 0.6 4

SARC MPNST T Tumor 0 0 0 1

SARC Synovial T Tumor 1 1 1 1

SARC T Metastatic 1 1 1 4

SARC UPS T Tumor 0.333 0.25 0.286 8

SKCM T Metastatic 1 1 1 2

SKCM T Tumor 1 0.986 0.993 71

STAD CIN T Tumor 0.813 0.813 0.813 32

STAD EBV T Tumor 0.714 1 0.833 5

STAD GS T Tumor 0.692 0.818 0.75 11

STAD MSI T Tumor 0.75 0.818 0.783 11

STAD N Normal 1 0.8 0.889 5

66



Cancer Subtype Precision Recall F1-score Support

STAD T Tumor 0 0 0 4

TGCT T Tumor 1 1 1 23

THCA N Normal 1 1 1 9

THCA T Tumor 1 1 1 77

THYM T Tumor 1 1 1 18

UCEC N Normal 1 1 1 4

UCEC T Tumor 0.893 0.926 0.909 27

UCS T Tumor 1 1 1 9

UVM T Tumor 1 1 1 12

accuracy 0.933 0.933 0.933 0.933

macro avg 0.826 0.846 0.831 1723

weighted avg 0.929 0.933 0.929 1723

Table 3.8: The precision, recall, F1-score, and support for each cancer subtype class with

testing conducted using the mixed held-out test set.
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Figure 3.8: The macro F1-scores of each cancer subtype when testing on the held-out test set

containing primary cancer, metastatic cancer, and normal tissue samples. Classes are ordered

from left to right by the number of training samples available with colours representing bins

of 20 samples.

The observed trend is that the F1-scores decrease as the number of training samples

per class decreases (from left to right in Figure 3.8). The classification performance is

generally better with a larger number of training samples. The largest outliers from this

trend are the primary breast carcinoma (BRCA T Tumor) and primary undifferentiated

pleomorphic sarcoma (SARC UPS T Tumor) subtypes with F1-scores of 0.381 and 0.286

respectively. There are eight subtypes with F1-scores of 0.0, each of which had fewer than 20

training examples. The cancer subtype classification accuracy and the predicted classes of

misclassified subtype can be seen in the confusion matrix in Figure 3.9. The eight subtypes

with F1-scores of 0 and the source of their misclassifications are presented below:
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STAD T Tumor

STAD T Tumor was misclassified completely with the model predicting STAD CIN T Tumor,

STAD GS T Tumor, and STAD MSI T Tumor instead. Nearly half of the STAD T Tumor

samples were misclassified as STAD CIN T Tumor.

ESCA T Tumor

ESCA T Tumor was misclassified in half the samples as ESCA SCC T Tumor and the other

half as STAD EBV T Tumor.

SARC MPNST T Tumor

SARC MPNST T Tumor was misclassified completely as LUAD T Tumor. Note that there

is only a single test sample for this subtype.

BRCA ILC T Metastatic

BRCA ILC T Metastatic was completely misclassified as BRCA IDC T Metastatic. Note

that there is only a single test sample for this subtype.

CHOL EHCH T Metastatic

CHOL EHCH T Metastatic was misclassified completed as CHOL IHCH T Metastatic. Note

that there is only a single test sample for this subtype.
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ESCA EAC T Metastatic

ESCA EAC T Metastatic was misclassified completely as OV T Tumor. Note that there is

only a single test sample for this subtype.

HNSC T Metastatic

HNSC T Metastatic was misclassified completely as BLCA T Metastatic. Note that there

is only a single test sample for this subtype.

PrNET T Metastatic

PrNET T Metastatic was misclassified completely as PRAD T Metastatic. Note that there

is only a single test sample for this subtype.
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Figure 3.9: A confusion matrix depicting the cancer subtype classification performance on the

held-out test set containing primary cancer, metastatic cancer, and normal tissue samples.

Referring to Figure 3.9, we can see that the majority of cancer subtypes were accurately

classified, with a few exceptions. The most poorly performing classes are noted above,

however, there was also misclassifications observed within the normal lung and kidney tissues

and the sarcoma, stomach adenocarcinoma, and breast adenocarcinoma subtypes.
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Normal Tissues

The normal tissues for the lungs and kidneys all see some misclassifications between their

respective, related normal counterparts. For example, normal LUAD is misclassified as

normal LUSC and normal LUSC is misclassified as normal LUAD.

STAD Subtypes

The primary stomach adenocarcinoma without a subtype annotation (STAD T Tumor) re-

sulted in the largest error rate. The model completely misclassified all four test samples as

either the GS, CIN, or MSI primary cancer subtypes. There were other misclassifications

between STAD subtypes that can be observed in Figure 3.9. One notable observation is

that the normal STAD subtype had one of five (20%) test samples incorrectly classified as

ESCA SCC T Tumor. This is one of two normal classes that had a misclassification as a

primary cancer, with the other misclassification being PRAD (one sample called as primary

PRAD).

BRCA Subtypes

The largest primary cancer offender was the primary breast cancer class without a sub-

type annotation (BRCA T Tumor). It consisted of 15 test samples and was misclassified

75% of the time as a mixture of the other primary cancer subtypes. As mentioned above,

BRCA ILC T Metastatic was classified incorrectly as BRCA IDC T Tumor for every test

sample.

SARC Subtypes

Sarcoma subtypes had misclassifications observed within the primary LMS, DDL, MFS, and

MPNST subtypes. As mentioned above MPNST was completely misclassified. The UPS

72



subtype was the only subtype in which the majority of its samples were classified incorrectly.

All of the other subtypes had fewer than half of their samples misclassified.

ESCA Subtypes

The primary ESCA subtypes generally had much better classification performance than the

BRCA, STAD, and SARC subtypes. The poorest performer was again the class without a

subtype annotation. Primary ESCA EAC had a single sample misclassified as STAD CIN

and the Metastatic ESCA EAC was completely misclassifed (as mentioned above).

MB Subtypes

The medulloblastoma subtypes were all classified with perfect accuracy and F1-scores.

3.2 Discussion: Held-out Test Set Classification

All of the misclassifications that occurred within the held-out test set remained within the

same disease type. We do not see any primary cancer samples classified as metastatic cancers

and vice versa. Even when a sample is classified to a subtype in a completely different organ

system, like with the DLBC T Metastatic subtype, it is misclassified as another metastatic

cancer. This implies that model has learned to distinguish differences in the expression

patterns of metastatic samples when compared to primary one. We will see, however, that

this does not hold true for samples from the POG test set.

3.2.1 Normal Tissue

Cross-calling was observed within the normal lung and kidney classes in both the cancer

type and subtype tasks. Cross-calling in this context refers to two or more classes that
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are misclassified as each other in at least some of the samples. This cross-calling was ex-

pected behaviour within the normal classes and serves as a sanity check of sorts. The normal

kidney and lung classes are labelled based on the adjacent tumour type/subtype. For ex-

ample, a patient with a primary LUSC tumour (LUSC T Tumor) would have their tumour

adjacent normal lung sample labelled as LUSC N Normal. A patient with primary LUAD

(LUAD T Tumor) would have their lung normal sample labelled as LUAD N Normal. So,

while these patients’ normal lung samples have different labels, they are both normal lung

tissue and could have been given identical class labels. Keeping these labels separate by

type/subtype allows us to confirm that the model is indeed learning the underlying biology

of the samples. Seeing cross-calling between normals of the same tissue (ie. lung or kidney)

indicates that the model has learned what characterizes these tissues and is interchanging

their labels as a result.

3.2.2 Complete Misclassifications

The misclassifications of the largest concern are those that were completely misclassified

and have no apparent biological underpinning (see Sections 3.1.4 and 3.1.3). We saw exam-

ples of these using both the held-out and external test sets on the cancer type and cancer

subtype learning tasks. In the held-out test set on the cancer type task, we saw four ex-

amples of total misclassifications. Each of these examples were metastatic cancer types and

all only consisted of a single sample. The small sample sizes make these results potential

aberrations and are not conclusive enough to be considered total faults of the learning task.

At the cancer subtype task, however, we had more test samples with which to conclude

the poor performance of the model. We did again see metastatic subtypes that contained

only single samples, so I will exclude these from further discussion. I will also exclude the

SARC MPNST T Tumor subtype as there was also only a single test sample for this class.

The two remaining multi-sample complete misclassifications (STAD T Tumor and ESCA T Tumor)

were for subtypes that did not have a subtype annotation. It is not entirely clear what sub-
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type would be the correct annotation for these samples as TCGA subtyping excludes some

samples in some cases and in others does not assign a subtype based on not matching entirely

with the subtype annotations they defined [66, 67, 68, 69]. Further in depth analysis of

each sample and the TCGA subtyping protocols may reveal further information pertaining

to these samples and may help to clarify the model’s performance on them.

3.2.3 Cancer Type and Subtype Performance Comparison by Dis-

ease State

Figure 3.5 illustrates that primary cancers were better classified within the cancer type task

than within the cancer subtype task. The metastatic cancers were classified better within

the cancer subtype task, and the normal samples were classified with similar performance

in both tasks. It is important to note that there are very few metastatic subtypes when

compared to primary subtypes. As a result, the class sizes decrease more within the primary

cancers when moving from cancer type to subtype and may have contributed to the reduced

classification performance seen for the primary cancers within the subtype task.

3.3 Results: Metastatic-Only External (POG) Test Set

3.3.1 Organ System of Origin

The classification F1-scores of the model can be seen in Table 3.2 and Figure 3.10. A

confusion matrix depicting the rate and subject of classification errors can be seen in Figure

3.11.

Overall, the performance of the organ system classifications on the POG test set resulted

in an F1-score that is 0.095 less than we saw with the held-out test set. The F1-scores

range from 0.6 to 1.0 (Figure 3.10. The poorest performing class is head and neck, and
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the two best (F1-scores of 1.0) performing classes are endocrine and hematologic. The head

and neck class was misclassified approximately 20% of the time as either gynecologic or soft

tissue (Figure 3.11).

Organ System of Origin Precision Recall F1-score Support

Breast 0.964 1 0.982 134

Endocrine 1 1 1 6

Gastrointestinal 0.988 1 0.994 163

Gynecologic 0.962 0.735 0.833 34

Head and Neck 0.6 0.6 0.6 5

Hematologic 1 1 1 2

Skin 0.933 1 0.966 14

Soft Tissue 0.959 0.839 0.895 56

Thoracic 0.889 0.909 0.899 44

Urologic 0.6 1 0.75 3

macro avg 0.889 0.908 0.892 461

weighted avg 0.958 0.948 0.951 461

Table 3.10: The precision, recall, F1-score, and support for each organ system of origin class

with testing conducted using the metastatic-only external (POG) test set.
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Figure 3.10: The macro F1-scores of each organ system of origin when testing on the

metastatic-only external (POG) test set. Classes are ordered from left to right by the number

of training samples available with colours representing bins of 20 samples.
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Figure 3.11: A confusion matrix depicting the organ system of origin classification perfor-

mance on the metastatic-only external (POG) test set.

3.3.2 Disease State

The classification performance of this learning task was the greatest of the four tasks. Out

of the 495 test samples, 461 were correctly classified correctly and resulted in an F1-score

of 0.886 (see Table 2.8. This is a decrease in the F1-score of 0.114 when compared to the
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metastatic classification performance with the mixed held-out test set.

Disease State Precision Recall F1-score Support

Metastatic 1 0.796 0.886 461

macro avg 1 0.796 0.886 461

weighted avg 1 0.796 0.886 461

Table 3.12: The precision, recall, F1-score, and support for each disease state class with

testing conducted using the metastatic-only external (POG) test set.

Figure 3.12: The macro F1-scores of each disease state when testing on the metastatic-only

external (POG) test set. Classes are ordered from left to right by the number of training

samples available with colours representing bins of 20 samples.
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Figure 3.13: A confusion matrix depicting the disease state classification performance on the

metastatic-only external (POG) test set.

3.3.3 Cancer Type

The classification performance of the models on the metastatic-only test set resulted in

an overall F1-score of 0.761 (Table 3.6. The F1-scores, precision, and recall of each class can

be seen in Table 3.16 and the F1-scores are presented visually in Figure 3.16. A confusion
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matrix presenting the predicted classes can be seen in Figure 3.15. Overall, the classification

performance on the cancer type learning task using the metastatic-only test set resulted in an

F1-score that was lower by 0.124 when compared to the results obtained using the held-out

set. We also observe no easily observed downward trend of classification performance as a

function of training class size like we saw with the held-out test set (Figures 3.14 and 3.14).

The F1-scores ranged from 0.0 to 1.0 with LAML T Metastatic being completely misclas-

sified and the ACC T Metastatic and PRAD T Metastatic classes being completely accu-

rately classified. Referring to Figure 3.15, we observe that seven primary tumour and one

normal class were incorrectly predicted. The LUAD T Metastatic class is observed to have

the largest number of incorrectly predicted classes, though still maintained an F1-score of

0.725.

We can also observe a large portion of gastric cancers being misclassified as another gastric

cancer. PAAD T Metastatic samples were predicted with high frequency as CHOL T Metastatic

or ESCA T Metastatic and COADREAD T Metastatic was frequently predicted incorrectly

as ESCA T Metastatic.

Cancer Type Precision Recall F1-score Support

ACC T Metastatic 1 1 1 6

BRCA T Metastatic 0.978 0.993 0.985 134

CHOL T Metastatic 0.176 1 0.3 3

COADREAD T Metastatic 0.957 0.788 0.865 85

HNSC T Metastatic 0.8 0.8 0.8 5

LAML T Metastatic 0 0 0 2

LIHC T Metastatic 0.75 1 0.857 3

LUAD T Metastatic 1 0.568 0.725 44

OV T Metastatic 1 0.824 0.903 34

PAAD T Metastatic 0.822 0.514 0.632 72

81



Cancer Type Precision Recall F1-score Support

PRAD T Metastatic 1 1 1 3

SARC T Metastatic 0.94 0.839 0.887 56

SKCM T Metastatic 0.875 1 0.933 14

macro avg 0.792 0.794 0.761 461

weighted avg 0.933 0.803 0.852 461

Table 3.14: The precision, recall, F1-score, and support for each cancer type class with

testing conducted using the metastatic-only external (POG) test set.

Figure 3.14: The macro F1-scores of each cancer type when testing on the metastatic-only

external (POG) test set. Classes are ordered from left to right by the number of training

samples available with colours representing bins of 20 samples.
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Figure 3.15: A confusion matrix depicting the cancer type classification performance on the

metastatic-only external (POG) test set.

3.3.4 Cancer Subtype

The classification performance of the models on the metastatic only data set resulted in

an F1-score of 0.683 and an accuracy of 67.0%. The F1-scores, precision, and recall of each

class can be seen in Table 3.16 and the F1-scores are presented visually in Figure 3.16.
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Cancer Subtype Precision Recall F1-score Support

ACC T Metastatic 1 1 1 6

BRCA IDC T Metastatic 0.897 0.696 0.784 125

BRCA ILC T Metastatic 0 0 0 9

CHOL IHCH T Metastatic 0.158 1 0.273 3

COADREAD T Metastatic 0.941 0.753 0.837 85

HNSC T Metastatic 0.667 0.8 0.727 5

LAML T Metastatic 0 0 0 2

LIHC T Metastatic 1 1 1 3

LUAD T Metastatic 1 0.636 0.778 44

OV T Metastatic 0.966 0.824 0.889 34

PAAD T Metastatic 0.889 0.444 0.593 72

PRAD T Metastatic 1 1 1 3

SARC LMS T Metastatic 0.643 0.818 0.72 11

SARC T Metastatic 0.824 0.622 0.709 45

SKCM T Metastatic 0.875 1 0.933 14

macro avg 0.724 0.706 0.683 461

weighted avg 0.879 0.67 0.75 461

Table 3.16: The precision, recall, F1-score, and support for each disease state class with

testing conducted using the metastatic-only external (POG) test set.
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Figure 3.16: The macro F1-scores of each cancer subtype when testing on the metastatic-only

external (POG) test set. Classes are ordered from left to right by the number of training

samples available with colours representing bins of 20 samples.

In contrast to the held-out test set results, there appears to be no downward trend be-

tween the number of training samples and classification performance. However, eight of

the 15 classes have fewer than 20 training samples with two of three of the worst perform-

ing classes being in this category (depicted in dark blue in Figure 3.16). The majority

of classes (12 of 15 subtypes) achieved F1-scores between 0.593 and 1.0, with the exception

BRCA ILC T Tumor, LAML T Metastatic, and CHOL IHCH T Metastatic which obtained

F1-scores of 0.0, 0.0, and 0.273 respectively. However, there were two subtypes that had per-

fect classification accuracy: ACC T Metastatic, LIHC T Metastatic, and PRAD T Metastatic.
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Looking at the predicted classes in Figure 3.17, we see a number of misclassifications

that span disease types. There are 15 primary tumour subtypes called and one normal.

The largest offending class for misclassifying samples as primary cancer subtypes was the

SARC T Metastatic class with 5 primary subtypes called.

Figure 3.17: A confusion matrix depicting the disease state classification performance on the

metastatic-only external (POG) test set.
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Figure 3.17 also shows a much higher incidence of gastric cancers being classified as other

gastric cancers than we observed in the held-out test set. We can see COADREAD T Metastatic

was called as ESCA T Tumor and PAAD T Metastatic called as CHOL IHCH T Metastatic,

CHOL EHCH T Metastatic, ESCA EAC T Metastatic, and PAAD T Tumor cancer.

Generally, the overall classification performance observed with the external, metastatic-

only test set is worse than the performance seen with the mixed held-out test set. The

spread of subtype misclassications also generally spans more incorrect subtypes with greater

frequency and variety than the misclassifications within the held-out set.

3.4 Discussion: POG Test Set Classification

Aside from the decrease in classification performance using the metastatic-only test set

when compared to the held-out test set, there are two other aberrations. The first is the

number of predictions of classes outside the same disease type as the true class. The sec-

ond aberration is that there is a larger range of incorrect classes predicted per test class

than testing on the held-out set. On the POG test set, the cancer subtype learning task

had 15 primary tumour classes predicted and one normal, whereas on the held-out test set

we saw no classifications of metastatic cancers as primary or normal classes. To the sec-

ond point, the metastatic-only test set had classes that predicted 9 or 10 different classes

(SARC T Metastatic and BRCA IDC T Metastatic) whereas the held-out set only had at

most 2 predicted classes within the metastatic subtypes (BRCA IDC T Metastatic). These

two aberrations are significant because they indicate the uncertainty with some samples

was so great that it overcame the information learned by the model at upstream learning

tasks. For example, we can observe in Figure 3.17 that approximately one quarter of the

metastatic LUAD samples were misclassified as primary LUAD. This same classification er-

ror is repeated at the cancer type level. However, the amount of misclassification seen within

the disease state task does not seem to indicate the same level of confusion as fewer than

7% of all samples were classified as primary cancer. This implies that the model was able
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to correctly identify many samples as metastatic, but that in downstream learning tasks,

the level of uncertainty was high enough to outweigh the information passed from upstream

layers. This is an effect not seen using the held-out test set even within the metastatic

samples.

What these aberrations imply is that there is something about the external test set that

is making it more difficult for the model to make accurate predictions. A potential cause for

this is that the external test set data was derived at a different facility than the data used

in training. There are differences in the preparation and sequencing process that may have

produced variations in the output [60, 62]. It is possible the model is suffering the negative

consequences of batch effect. There are two ways to potentially mitigate this effect in the

context of metastatic samples. The first would be to include a larger variety of training

samples from different facilities and sequencing protocols and the second would be to apply

batch correction to the data prior to training. Essentially the model is, at least to some

extent, fitting to noise in the data produced by the sequencing process (ie. batch effect).

3.5 Discussion: Summary

As the granularity of the classification task increases with respect to biological complexity,

we do see a coinciding decrease in classification performance of the model. As such, the cancer

subtype learning task resulted in the poorest classification performance. In addition to the

increased complexity of this learning task relative to the other tasks, the model is also faced

with smaller class sizes for each subtype. The class size reduction is a result of increasing

label granularity while maintaining the size of the training data. The combination of these

two factors produce smaller classes and thus reduce the training data size for the affected

classes. In general, with all things being equal and over-fitting being carefully managed, a

smaller training data set will always result in poorer performance when compared to a larger

data set. We can speculate that having access to more subtype data could mitigate the effect

of increased classification task complexity.
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The ability of the model to learn each task and each class was not uniform. As we saw

above, some classes, particularly within the cancer type and subtype tasks, were classified

with complete accuracy, while others were entirely misclassified. One contributing factor to

this outcome is the class distribution. The training data ranges from classes of size 6 (Primary

PrNET) to classes of size 532 (Primary KIRC). The impact of class distribution is well-

studied in machine learning and there are techniques to overcome this [70, 71, 72]. However,

these are often not able to fully mitigate the effect of class imbalance and in the domain of

thesis, was further impacted by the high-dimensionality of the data. High-dimensionality in

machine learning is defined as having a much larger set of input features than the number

of input samples for a given data set [73]. The effect of high-dimensionality as it relates to

machine learning often hinges on the complexity of the model. Complex models, like large

neural networks, that perform well in a high-dimensional domain quite often are in fact

over-fitting to certain features of the data and suffer a reduced ability to generalize during

prediction when compared with simpler models [73, 74]. By coupling high-dimensionality

and large class imbalances together, we have two factors that play a significant part in the

poor performance of the model on learning the minority classes. Further experimentation

with techniques that address class imbalance and feature selection may provide improved

performance for this model going forward. If feature selection is considered, however, we

would have to carefully consider the impact of this on post-classification analysis.

Within the held-out test set results, the majority of subtypes had the bulk of their sam-

ples correctly classified. With the exception of medulloblastomas, the model shows room

for improvement among subtype classifications. We saw particularly poor performance in

the cancer subtype task with the classes that lacked subtype annotations. The TCGA data

set excludes subtype annotation for samples for a number of reasons including sample du-

plication, unknown subject identity, low DNA/RNA yield, unacceptable histology, or failed

pathology review among others [67]. This criteria is not fully explained and may differ

between cancer types. The ambiguous nature of the underlying biology of these classes, cou-

pled with their mixed classifications, suggests that the model may be improved by excluding

these classes in future iterations of training in order to better train the model to recognize

89



subtypes. By excluding these classes in the future, we would remove one source of ambiguity

for the model as well as improve our ability to analyse the model’s true subtype learning

performance.

The classification performance of the model is generally satisfactory across all learning

tasks in both mixed and metastatic-only domains. There is absolutely room for improve-

ment, but the classification performance is higher than we would expect to see using random

class assignment. Metastatic cancers being the form of cancer suffering from the highest

misdiagnosis rates and poorest classification performance using the neural network model

in this thesis, this is a good metric to determine the model’s efficacy compared to current

diagnostic practices. Studies have indicated that the misdiagnosis rates of metastatic can-

cers using standard pathological analysis can range from 45% to 94% [61, 74]. The model

used in this thesis has shown performance that improves upon this misdiagnosis rate and

achieves an F1-score of 0.724 at its poorest performing classification task (cancer subtype

using the external test set). Furthermore, according to a 2010 literature review by Ander-

son and Weiss, correct tissue identification from metastatic-only samples was 65.6% using

immunohistochemical analysis [75]. Again, the performance of the neural network model

exceeds this achieving an F1-score of 1.0 on a similar diagnostic task (organ system of origin

classification from metastatic-only samples).

The model’s overall classification performance indicates that we can, with some confidence,

state that it has learned to represent the biology of and predict the correct class for a variety

of cancers. With sufficient performance established, it is viable to utilize the trained model

to extract and analyze the important features learned by the model in search of biological

insights. This is the focus of the remainder of this thesis beginning at Chapter 4.
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Chapter 4

Deeplift Analysis

4.1 Methods

4.1.1 DeepLift

After creating the fully-trained multi-task neural network model described in the previous

chapters, DeepLift was run on the model to obtain a sample-gene importance score matrix.

DeepLift was run sample-wise on each classification task separately. The samples provided

to DeepLift were simply all of the samples in the training set used to train the model. This

data is described in Section 2.1. Since DeepLift computes scores for each gene on each

sample on each class within a single classification task, the resulting output is n matrices

for each classification task where n is the number of classes within that classification task.

For clarity, there were 91 matrices created for the cancer subtype task because there are 91

cancer subtypes as possible output classifications of the model. Each matrix is of size s ∗ g

where s is the number of samples and g is the number of genes. In this case, s = 9736 and

g = 26668 resulting in matrices of size 9736 ∗ 26668. In total, DeepLift produced 3 sets of

9736 ∗ 26668 matrices for the disease state task, 11 for the organ system of origin, 68 for the

cancer type, and 91 for the cancer subtype task.
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Due to the stochastic nature of neural network training (SGD and weight initialization),

as well as the complexity of both the problem domain and the models themselves, training

multiple iterations of the same model with the same data would most likely produce differing

solutions for the classification tasks outlined in this thesis. For this reason, to further improve

the robustness of the results from DeepLift, five models were trained and DeepLift was run

on each. Each model was trained using the same set of training data and hyperparameters

as outlined in Section 2.2, and DeepLift was run on each model in the fashion described

above. This resulted in five sets (one for each model) of matrices corresponding to each

classification task with each matrix containing per-sample importance scores. These scores

were then averaged within each matrix across all samples to obtain five sets of matrices with

single average values within them. Each averaged matrix was then averaged across all five

models. The final result being a single set of importance scores for each gene for each of

the classes across each classification task that is derived from across five models. The final

format of the data is 11, 3, 68, and 91 vectors of length 26668 corresponding to the organ

system of origin, disease type, cancer type, and cancer subtype learning task classes. In

other words, we have importance scores for each gene that reflects how important that gene

is for a positive classification of each class across all of the classification tasks.

4.1.2 Interpreting Gene Lists

For the following results and discussion, the list of the important genes for each class

excludes genes with importance scores at or below 0. This means that for each class, we

are only considering the genes that were influential in making a positive classification of the

class in question.

In order to gain insight into the functionality of gene lists, annotation of functionally

enriched pathways was conducted using DAVID [76, 77]. The default settings were used

in all cases. When considering enrichment scores in the results presented below, pathways

or clusters were considered significant if they had an enrichment score > 1.3, as that is
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equivalent to a p-value < 0.05 [76].

4.1.3 Over and Underexpression Calculation

In the subsections to follow, some results are presented on the over and underexpression

of genes. A gene was considered overexpressed when its mean RPKM value within the

class in question was greater than two standard deviations above the mean RPKM value

across all other classes within the same classification task. Similarly, a gene was considered

underexpressed if its mean RPKM value was lower than two standard deviations below the

mean across all other classes in the same task. The mean and standard deviation were

calculated using the pandas Python package mean and std functions [63].

4.2 Results and Discussion

The results presented here were taken from the average, positively scored genes (identified

by DeepLift) as described in the preceding section. It is important to note that the scale of

the data available for analysis is large and the analysis conducted here is far from exhaustive.

This section will focus primarily on larger trends with some examples within specific classes.

In addition to this, the results are divided into subsections and are interleaved with their

relevant discussion for better readability.

The results have been examined in five different ways. Each of these ways exemplifies one

aspect of the data that can be challenged and studied in further depth in future work. The

first is examining how many important genes were identified for each class. The second is

looking for any patterns of over or underexpression of genes within the identified important

genes. The third is to examine the functionality of highly enriched pathways within differ-

ent classes. The fourth and fifth analyses involve quantifying the role of RNA genes and

pseudogenes within the important genes for various tasks and classes.
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4.2.1 Validation of Results: Normal Tissues

It is important to ensure that the model is indeed finding genes that accurately reflect

the biology of the included classes. One way we can do this is to leverage the normal tissue

classes embedded in each classification. We can examine the important genes for classifying

normal breast tissue, for example, and look for genes involved in lactation. By doing this

for a few tissues with specialized functions, we can offer some validity to the results as they

pertain to the cancer classes and further increase our confidence in the DeepLift results. To

obtain the functional annotations, the DAVID functional annotation tool was used and the

functional annotation chart was examined for relevant pathways [76].

It is important to note that the secreted, signal, signal peptide, and extracellular region

pathways are highly enriched in the normal tissue classes as identified using DAVID on the

disease state important genes for the normal class. For the results to follow I will exclude

discussing these pathways as being significant because they are not tissue specific and are

likely used by the model to distinguish normal classes from cancer classes.

Thyroid

The first normal class examined was normal thyroid tissue: THCA. Since the thyroid

performs a small set of very specific functions, the genes used to identify it should, at least

in part, reflect this functionality. The important genes from the cancer type classification

task were used to validate if the model is identifying genes of biological relevance. The cancer

type class was selected because its the first task that forces the model to identify thyroid

tissue explicitly. In theory, it is here that the model will need to distinguish thyroid genes.

The functions for the top 10 (ordered by descending p-value) enriched pathways can be seen in

Figure 4.1. DAVID identified 4 out of the 123 important genes identified by DeepLift as being

a part of a thyroid hormone generation pathway with a highly significant p-value of 3.8E-

5. There are two other notable indications of thyroid tissue. The first is the neuropeptide

hormone activity pathway. A number of neuropeptides are found within the thyroid and thus
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can be indicative of thyroid tissue [78]. The second is the olfactory transduction pathway. A

cursory search through the genes involved in this pathway (according to KEGG) were shown

to be highly expressed in the thyroid by the Genotype-Tissue Expression (GTEx) Project

[79, 80, 81]. The significance of these pathways according to DAVID is indicative of the

identified genes having biological relevance to thyroid tissue.

Figure 4.1: A screen capture of the top 10 functional annotations (ordered by descending p-

value) as determined by the DAVID functional annotation tool using the important positive

genes for the normal thyroid tissue class within the cancer type classification task.

Lung

The second normal class examined was lung tissue: LUSC and LUAD. Again the DAVID

functional annotation tool was utilized. The genes for the LUSC and LUAD normal classes

were taken from the cancer type results and combined. For these results the functional anno-

tations were clustered and produced 71 functional clusters. The reason for using clustering

in this case was because much of the top annotations in the annotation chart were related to

keratinization. Keratinization is a by-product of lung distress and is common in the pathol-

ogy of lung cancer patients. Since this lung tissue was all obtained from tumour-adjacent

normal tissue, the presence of keratinization is expected here. Of the 71 clusters identified

by DAVID, 24 of them were significantly enriched. Within these significant clusters four of

them were directly related to lung function. These clusters pertained to gaseous exchange,

oxygen binding, oxygen transport, and saposin proteins (involved in the pulmonary surfac-

tant complex) [82]. Each of these are clear indications of the function of lung tissue and
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serve to validate the results found by the model.

Breast

The third and final tissue examined was normal breast tissue. Again the DAVID anno-

tation tool was used to produce an annotation chart. The top 14 results are presented in

Figure 4.2. Fourteen results were included here because the pathways ranked between 9th

and 14th are significant in normal breast tissue. The obvious pathway of significance is the

one pertaining to milk proteins. A literature search revealed that keratin is also significant

[83, 84]. A study conducted in 1989 revealed that: ”The luminal and basal epithelial cells

in the human mammary gland can be distinguished in tissue sections on the basis of the

pattern of keratins they express” [83]. Finally, the Iroquois-class homeobox proteins have

been shown to be detected in breast tissue [85, 86]. It should be noted that pathways for

lactation and prolactin signalling were also identified by DAVID as significant, though not in

the top 14 annotations. These results support that the model is able to learn genes relevant

to breast tissue and its function.
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Figure 4.2: A screen capture of the top 14 functional annotations (ordered by descending p-

value) as determined by the DAVID functional annotation tool using the important positive

genes for the normal thyroid tissue class within the cancer type classification task.

4.2.2 Number of Important Genes

Number of Important Genes Results

The results presented here focus on the number of positive scoring genes for each class.

See Figures 4.3, 4.4, 4.5, and 4.6. Each of these figures illustrates how many genes (in blue)

the model considered important for the classification of each class. The F1-scores (in red) for

each class is also presented, though it is scaled by the total number of genes (26668 genes)

for the sake of visualization.
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Figure 4.3: A plot showing the number of important positive genes for each class within the

organ system of origin classification task in blue and the F1-score of each class in red.

98



Figure 4.4: A plot showing the number of important positive genes for each class within the

disease state classification task.
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Figure 4.5: A plot showing the number of important positive genes for each class within the

cancer type classification task.
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Figure 4.6: A plot showing the number of important positive genes for each class within the

cancer subtype classification task.

The first notable observation from the above figures is that there appears to be three

distinct plateaus in the number of important genes within the disease state, cancer type,

and cancer subtype plots (Figures 4.4, 4.5, and 4.6). We see that the number of important

genes is generally much higher in the primary classes (left) compared to the metastatic and

normal classes (center and right respectively). The second observation is that we do not see

an obvious correlation between the performance (in red) of each class and the number of

important positive genes (in blue). If there was a relationship between these two values we

would expect the F1-scores to also produce three tiers to reflect the tiers seen in the number

of genes.
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If we unpack these results further into different tasks (as seen in the above figures), we

note that for the disease type classification, the primary cancer classification considers al-

most all of the genes as important. When compared to the approximately 2400 genes for

metastatic cancers and fewer than 100 genes for normal tissues, this is a significant differ-

ence. In the cancer type task, the highest concentration of genes is around 19000 genes for

primary cancers, 7500 genes for metastatic cancers and around 0 for normal tissues. A sim-

ilar observation can be made at the cancer subtype level. However, the range of important

genes for primary cancer subtypes increases. Notably, we see the appearance of six primary

cancer subtypes that have fewer than 7000 important genes, which is much closer to the

values seen within the metastatic subtypes.

The single gene with the highest importance among all classes were RPL19P12,

LYVE1, PGA4, and SFTA3 in the Soft Tissue, Normal, STAD N Normal, and LUAD N Normal

classes of the organ system, disease state, cancer type, and cancer subtype tasks respectively.

The associated scores were 0.001563, 0.009981, 0.026148, and 0.075350. These scores indicate

the percentage of the classification made using each gene for their respective classes.

Number of Important Genes Discussion

These observations beg the question of what fewer important genes mean in this context.

Firstly, fewer positively important genes indicates a greater number of negatively important

genes. The model has 26668 genes to consider and if it deems only 1000 as positively

important for a particular class, that means there are 25668 genes that are pushing the

model to not classify a sample as that class. If we consider that the performance of each

class is not directly related to the number of positive important genes and the classification

performance is acceptable (as we have seen in Chapter 3), then we must conclude that fewer

genes indicates a sufficient compressed representation of the class for each of the specified

classification tasks. In biological terms, this could mean that either fewer genes are involved,

that each of the genes identified plays a more significant role than the others, or that some

genes have tumour suppressing properties. As we have seen in the section on the validation of
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results using normal tissues, it does appear as though the model and DeepLift have identified

genes of biological relevance. This further supports the idea that the model is able to learn

genes of value. Being able to classify cancers using fewer genes suggests that these cancers

have a more distinct expression pattern and that some of the identified genes likely play an

important role in these cancers. Through further analysis of the identified genes, we could

validate existing oncogenes and potentially identify new therapeutic targets.

4.2.3 Expression Levels

This section considers if the model has identified any trends in the levels of gene expression

for different cancers. Over and underexpression was determined as described in the methods

section above.

Expression Levels Results

The following figures and tables show the number of over and underexpressed genes within

the positive important genes for each classification task. The number of important genes,

overexpressed genes, and underexpressed genes are presented in black, red, and blue respec-

tively.
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Figure 4.7: A stacked bar plot showing the number of important positive genes and the

number of over and underexpressed genes for each class within the organ system of origin

classification task.

Organ System

of Origin

Number of Im-

portant Positive

Genes

Number of Over-

expressed Genes

Number of Un-

derexpressed

Genes

Breast 2563 341 1

Central Nervous

System

4178 2306 11

Endocrine 3215 420 3

Gastrointestinal 4402 509 10

Gynecologic 2389 207 1
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Organ System

of Origin

Number of Im-

portant Positive

Genes

Number of Over-

expressed Genes

Number of Un-

derexpressed

Genes

Head and Neck 2012 394 3

Hematologic 4476 3500 34

Skin 1691 434 1

Soft Tissue 1620 234 0

Thoracic 5777 456 2

Urologic 5145 332 8

Table 4.2: A table listing the number of positive important genes identified by DeepLift

for the organ system of origin classes along with how many of those genes are over and

underexpressed.
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Figure 4.8: A stacked bar plot showing the number of important positive genes and the

number of over and underexpressed genes for each class within the disease state classification

task.

Disease State Number of Im-

portant Positive

Genes

Number of Over-

expressed Genes

Number of Un-

derexpressed

Genes

Primary 26156 2137 1307

Metastatic 2060 2060 0

Normal 166 115 2

Table 4.4: A table listing the number of positive important genes identified by DeepLift for

the disease state classes along with how many of those genes are over and underexpressed.
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Figure 4.9: A stacked bar chart showing the number of important positive genes and the

number of over and underexpressed genes for each class within the cancer type classification

task.

Cancer Type Number of Im-

portant Positive

Genes

Number of Over-

expressed Genes

Number of Un-

derexpressed

Genes

ACC T Tumor 18092 364 123

BLCA T Tumor 19575 62 9

BRCA T Tumor 18635 87 163

CESC T Tumor 12770 126 9
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Cancer Type Number of Im-

portant Positive

Genes

Number of Over-

expressed Genes

Number of Un-

derexpressed

Genes

CHOL T Tumor 18023 110 29

CLL T Tumor 8281 1684 20

CML T Tumor 17766 3787 628

COADREAD T Tumor 17277 222 53

DLBC T Tumor 24610 2266 466

ESCA T Tumor 18819 156 73

FL T Tumor 8048 2564 0

GBM T Tumor 18124 661 17

HNSC T Tumor 10588 298 15

KICH T Tumor 17595 704 263

KIRC T Tumor 23246 210 38

KIRP T Tumor 18252 241 34

LAML T Tumor 15919 1938 950

LGG T Tumor 17713 1059 205

LIHC T Tumor 17242 501 244

LUAD T Tumor 20840 46 5

LUSC T Tumor 20762 125 7

MB-Adult T Tumor 9744 2009 1

MESO T Tumor 26178 1311 81

OV T Tumor 15269 223 21

PAAD T Tumor 19016 119 2

PCPG T Tumor 18688 774 128

PRAD T Tumor 18903 365 39

SARC T Tumor 11971 22 3

SKCM T Tumor 18430 206 24

STAD T Tumor 15087 134 15

108



Cancer Type Number of Im-

portant Positive

Genes

Number of Over-

expressed Genes

Number of Un-

derexpressed

Genes

TGCT T Tumor 16356 890 171

THCA T Tumor 21425 277 30

THYM T Tumor 20287 343 128

UCEC T Tumor 17689 81 37

UCS T Tumor 8040 151 6

UVM T Tumor 13141 790 139

ACC T Metastatic 6771 640 0

ALL T Metastatic 5476 831 0

BLCA T Metastatic 7372 523 0

BRCA T Metastatic 3340 133 0

CHOL T Metastatic 5022 124 0

COADREAD T Metastatic 6943 445 0

ESCA T Metastatic 6670 239 0

HNSC T Metastatic 2439 229 0

LAML T Metastatic 1970 309 0

LIHC T Metastatic 743 116 0

LUAD T Metastatic 6655 333 0

NET T Metastatic 3904 232 0

OV T Metastatic 7783 289 0

PAAD T Metastatic 1000 217 0

PRAD T Metastatic 6436 258 0

SARC T Metastatic 6487 159 0

SKCM T Metastatic 7987 342 0

BLCA N Normal 160 33 0

BRCA N Normal 354 97 0

CHOL N Normal 179 107 0
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Cancer Type Number of Im-

portant Positive

Genes

Number of Over-

expressed Genes

Number of Un-

derexpressed

Genes

COADREAD N Normal 128 79 0

HNSC N Normal 212 130 0

KICH N Normal 169 62 0

KIRC N Normal 454 93 0

KIRP N Normal 303 115 0

LIHC N Normal 94 78 0

LUAD N Normal 110 53 0

LUSC N Normal 771 117 0

PRAD N Normal 182 63 0

STAD N Normal 42 14 0

THCA N Normal 132 61 0

UCEC N Normal 121 29 0

Table 4.6: A table listing the number of positive important genes identified by DeepLift for

the cancer type classes along with how many of those genes are over and underexpressed.
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Figure 4.10: A stacked bar chart showing the number of important positive genes and the

number of over and underexpressed genes for each class within the cancer subtype classifi-

cation task.

Cancer Subtype Number of Im-

portant Positive

Genes

Number of Over-

expressed Genes

Number of Un-

derexpressed

Genes

ACC T Tumor 18931 389 149

BLCA T Tumor 19870 69 164

BRCA Basal T Tumor 18312 79 21

BRCA HER2like Tumor 15877 93 10

BRCA LuminalA T Tumor 17415 144 164

BRCA LuminalB T Tumor 22827 162 44
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Cancer Subtype Number of Im-

portant Positive

Genes

Number of Over-

expressed Genes

Number of Un-

derexpressed

Genes

BRCA T Tumor 18096 37 1

CESC CAD T Tumor 15584 76 21

CESC SCC T Tumor 14633 183 21

CHOL T Tumor 18615 118 26

CLL T Tumor 11088 2150 192

CML T Tumor 21014 3833 939

COADREAD T Tumor 18196 199 56

DLBC BM T Tumor 11562 4224 178

DLBC T Tumor 25123 1954 455

ESCA EAC T Tumor 14650 149 47

ESCA SCC T Tumor 14587 333 21

ESCA T Tumor 17074 89 59

FL T Tumor 8038 2320 0

GBM T Tumor 22553 588 40

HNSC T Tumor 14119 305 148

KICH T Tumor 18276 765 300

KIRC T Tumor 24190 242 208

KIRP T Tumor 20279 296 49

LAML T Tumor 18362 1888 1626

LGG T Tumor 19417 1023 490

LIHC T Tumor 18558 549 296

LUAD T Tumor 21219 49 156

LUSC T Tumor 22062 135 163

MB Group3 T Tumor 10754 1823 11

MB Group4 T Tumor 10149 2249 10

MB SHH T Tumor 8905 1523 0
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Cancer Subtype Number of Im-

portant Positive

Genes

Number of Over-

expressed Genes

Number of Un-

derexpressed

Genes

MB WNT T Tumor 8838 1210 0

MESO T Tumor 26434 1117 62

OV T Tumor 18123 195 22

PAAD T Tumor 19057 101 0

PCPG T Tumor 19645 755 180

PRAD T Tumor 19308 358 193

SARC DDL T Tumor 476 13 0

SARC LMS T Tumor 16773 113 20

SARC MFS T Tumor 1520 45 0

SARC MPNST T Tumor 21674 59 8

SARC Synovial T Tumor 10513 395 33

SARC UPS T Tumor 2800 44 0

SKCM T Tumor 19016 204 175

STAD CIN T Tumor 18355 119 22

STAD EBV T Tumor 16224 108 47

STAD GS T Tumor 650 53 0

STAD MSI T Tumor 5089 107 0

STAD T Tumor 3432 167 0

TGCT T Tumor 18825 858 237

THCA T Tumor 21175 295 186

THYM T Tumor 20496 362 141

UCEC T Tumor 18618 83 47

UCS T Tumor 16603 119 42

UVM T Tumor 19136 801 423

ACC T Metastatic 5757 490 0

ALL T Metastatic 5825 729 0
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Cancer Subtype Number of Im-

portant Positive

Genes

Number of Over-

expressed Genes

Number of Un-

derexpressed

Genes

BLCA T Metastatic 6172 409 0

BRCA IDC T Metastatic 4517 84 0

BRCA ILC T Metastatic 1453 227 0

CHOL EHCH T Metastatic 2830 156 0

CHOL IHCH T Metastatic 4955 152 0

COADREAD T Metastatic 6747 352 0

ESCA EAC T Metastatic 8244 300 0

HNSC T Metastatic 2704 225 0

LAML T Metastatic 3093 409 0

LIHC T Metastatic 1345 134 0

LUAD T Metastatic 7609 320 0

OV T Metastatic 7270 223 0

PAAD T Metastatic 1422 227 0

PRAD T Metastatic 6544 202 0

PrNET T Metastatic 4117 213 0

SARC LMS T Metastatic 3537 208 0

SARC T Metastatic 7531 193 0

SKCM T Metastatic 7957 306 0

BLCA N Normal 62 14 0

BRCA N Normal 64 34 0

CHOL N Normal 287 150 2

COADREAD N Normal 65 39 0

HNSC N Normal 156 117 0

KICH N Normal 91 37 0

KIRC N Normal 443 87 0

KIRP N Normal 243 118 0
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Cancer Subtype Number of Im-

portant Positive

Genes

Number of Over-

expressed Genes

Number of Un-

derexpressed

Genes

LIHC N Normal 72 66 0

LUAD N Normal 59 38 0

LUSC N Normal 977 112 0

PRAD N Normal 126 56 0

STAD N Normal 3 0 0

THCA N Normal 147 67 0

UCEC N Normal 31 11 0

Table 4.8: A table listing the number of positive important genes identified by DeepLift for

the cancer subtype classes along with how many of those genes are over and underexpressed.

Within the disease state task, the most notable observation regarding the gene expression

levels of the genes identified by the model pertains to the metastatic cancer and normal

tissues. If we look at Figure 4.8 and Table 4.4, we see that the model has selected 2060 genes

as important for metastatic cancers and that all of them are overexpressed. Similarly, the

vast majority of genes within the normal tissue class are considered overexpressed.

Within the cancer type and subtype tasks, the majority of genes across all primary classes

are categorized as neither over or underexpressed. The metastatic and normal classes all

utilized only overexpressed genes with the excpetion of the CHOL N Normal subtype in

which 2 genes were underexpressed.
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Expression Levels Discussion

The results above suggests that the model has found the overexpression of genes to be

more informative in the context of metastatic and normal classes than of primary ones. The

caveat to this is that the metastatic and normal classes both utilize many fewer genes than

the primary ones and make up the minority of classes in the data set. Since the expression

categories were determined using the mean expression values across all samples, the mean

will be skewed towards the majority classes’ gene values. So while the resultant gene lists

would remain the same, redefining the boundaries of over and underexpression individually

for each class would likely reveal better insight into the relevant expression levels. This

becomes particularly important when trying to connect expression levels with expected gene

functionality. For example, if a gene is a known tumour suppressor, carefully determining

its expected expression level for a given class would allow insight into whether or not it is

being underexpressed and thus driving the growth of a particular class of cancers. Given this

caveat, the only real conclusion we can make of the results is that genes that are expressed

above the majority of classes tend to have high importance and may contribute to needing

fewer genes for classification. Until a better defined methodology for calculating the true

mean expression values on a class-wise level is developed, a biological interpretation of these

results should be reserved.

4.2.4 Enriched Pathways: Metastatic Cancer Disease State

DAVID Functional Annotation Chart Results

Figure 4.4 and Table 4.4 show that the disease state task identified 2060 genes contribute

positively to the classification of metastatic cancers by the model. These genes were input

into the DAVID functional annotation tool to identify enriched functional pathways [76, 77].
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The DAVID functional annotation chart returned 163 records and the top 10 results are

presented in Figure 4.11. This figure is ordered by descending p-value.

Figure 4.11: A screen capture of the top 10 functional annotations (ordered by descending p-

value) as determined by the DAVID functional annotation tool using the important positive

genes for the metastatic class within the disease state classification task.

DAVID Functional Annotation Chart Discussion

The first observation to note is that within the top annotations we see ’MicroRNAs in

cancer’. According to KEGG, the pathway highlighted here corresponds to ’a cluster of small

non-encoding RNA molecules of 21 - 23 nucleotides in length, which controls gene expression

post-transcriptionally either via the degradation of target mRNAs or the inhibition of protein

translation’ [79, 80, 81]. This corresponds with the information presented in Chapter 1

about the role of microRNA in tumourigensis. Furthermore, studies have suggested that

specific miRNAs play a role in metastatic cancers [87, 88]. The fact that this is a highly

enriched pathway for this class is a promising result that is supported by the literature.

Through further in depth analysis, we may be able to identify metastatic-specific miRNA

genes that could make suitable therapeutic targets.
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The second observation to note is that four of the top 10 functional annotations are

related to the ribosome in some way. Studies have indicated that changes in the regulation

of ribosomal proteins can be associated with poor prognosis for cancer patients [89, 90, 91,

92]. Additionally, increased expression of ribosomal RNAs have been correlated with the

development of some cancer types and in some cases poor prognosis and/or metastasis. [89,

93, 94, 95, 96]. The prevalence of genes related to ribosomal function further supports the

evidence presented in the literature and further validates the biological significance of the

identified genes. Ribosomal function plays a key role in the development of cancers and the

through careful examination of the genes identified here, ribosomal genes could be further

explored as therapeutic targets [97, 98].

Finally, the top four annotations strongly suggests that immunoglobulin (IG) is important

to classifying metastatic cancers. In particular, the V-set of immunoglobulin is listed twice

with the highest p-values. This set of immunoglobulin has been found to be overexpressed in

and indicative of poor prognosis for patients with advanced gastric cancers [99]. If evidence

suggests increased expression of V-set IG is found to prognosticate advanced cancers, then

IG should be explored for causal links to metastatic cancers, as they are themselves are an

advanced form of the disease. Furthermore, a second study also validates the importance of

the IG family of genes (which includes the V-set) and found that dysregulated expression

of IG shows prognostic value for breast cancers [100]. We can speculate that the model

has learned to detect changes in the expression of IG genes and utilizes it to inform the

classification of metastatic cancers.

DAVID Functional Annotation Clustering Results

The DAVID functional annotation clustering tool was used to cluster the functional anno-

tations for the metastatic cancer genes within the disease state task and returned 53 clusters.

Of the 53 clusters only nine had a significant enrichment score (above 1.3) [76]. The top

three enriched pathways include groups involving immunoglobulin, ribosomal translation,
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and mitchondrial translation/mitochondrial ribosome pathways with enrichment scores of

12.58, 5.79, and 2.71 respectively.

DAVID Functional Annotation Clustering Discussion

The clustering results further support the important role of IG and ribosomes discussed

in the preceding subsection. The role of mitochondria was not discussed earlier in this thesis

but has been shown to play a role in the formation of cancers and metastases [101]. In

particular, a number of mitochondrial ribosomal proteins (mitoribosomal proteins or MRPs)

have been implicated in the development of various metastatic cancers [101, 102]. The

presence of all three of these annotation groups, both in the cancer literature and in the

results presented here, are excellent further indicators of the ability for the model to identify

important biological features of metastatic cancer. The implication of each of these pathways

should be investigated further.

Summary of Enriched Pathways for Metastatic Cancer in the Disease State

The results presented above have indicated that immunoglobulin, microRNA, and the

ribosome play significant roles in the classification of metastatic cancers within the disease

state task. Furthermore, the scientific literature seems to indicate that there is some validity

to this observation made by the model. The value of this insight is that it was made within

the disease state task and thus applies across multiple metastatic cancer types. The list

of pathways identified within this task could be further examined and exploited to try and

better understand common characteristics of metastatic cancers as a whole. One caveat to

consider with these results is the implication of batch effect as a result of all the metastatic

cancers being from a single data source external to the bulk of the training data (see the

section on batch effect below).
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4.2.5 Enriched Pathways: Primary Cancer in the Disease State

Task

The genes identified as important for the primary cancer class contains almost all of the

total available genes (26668 genes). In this case, it would be uninformative to use the

full gene list for enriched pathway analysis. However, since each gene is given a score, it

is possible to rank the importance of each gene as a percentage of the total classification

decision. Therefore, enriched pathway analysis results are presented using the top 25% of

genes ranked by descending importance score. Note that individual cancer type and subtype

results will not be presented but rather the focus will remain on the more general categories

of primary and metastatic cancers.

DAVID Functional Annotation Chart Results

The top 25% of important genes for primary cancer within the disease state task consists

of 2780 genes. These genes were input into DAVID and the functional analysis chart tool

was utilized to generate the results presented in Figure 4.12.

Figure 4.12: A screen capture of the top 10 functional annotations (ordered by descending

p-value) as determined by the DAVID functional annotation tool using the top 25% of

important positive genes for the primary class within the disease state classification task.
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DAVID Functional Annotation Chart Discussion

Looking at the results in Figure 4.12, we see that the most significant pathway listed

is cancer-related. The cancer/testis antigens are a group of proteins that are normally

expressed only in testicular germ cells but are found to be expressed in numerous cancers

[103]. These antigens include a number of other types of genes including GAGE, MAGE,

and BAGE [103]. GAGE genes were found to also be significant within the primary cancer

results and are discussed below in the context of functional annotation clustering. Another

notable result in the top 10 enriched pathways presented in Figure 4.12, is the V-type IG-like

pathway. We have seen that the V-set IG pathway was important for the metastatic cancer

class (see above) and the results presented here, along with the literature presented above,

support the significance of this pathway in cancers in general.

DAVID Functional Annotation Cluster Results

The DAVID functional annotation clustering tool returned 13 significant clusters out of

198 identified functional clusters. The top three clusters had enrichment scores of 5.31, 3.41,

and 2.94 corresponding to functional pathways involving DNA repair/damage, G antigens

(GAGE), and putative proteins (see Figure 4.13).
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Figure 4.13: A screen capture of the top 3 functional annotation clusters (ordered by de-

scending enrichment score) as determined by the DAVID functional annotation cluster tool

using the top 25% of important positive genes for the primary class within the disease state

classification task.

DAVID Functional Annotation Cluster Discussion

The first functional cluster identified by the clustering tool pertains to DNA repair and

damage. This result is somewhat difficult to reconcile. Numerous studies report that the

underexpression of DNA repair genes is associated with an increased likelihood of tumourge-

nesis as a result of increased genomic instability [104, 105, 106]. However, underexpression

of DNA repair genes in patients already afflicted with cancer is associated with poorer prog-

noses and treatment outcomes [106]. The consensus seems to contradict the results shown

here. We would expect to see overexpression of DNA repair genes in the context of primary

cancers and underexpression, if at all, in the metastatic cancers.
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The second functional cluster pertains to G antigens (GAGE). GAGE genes have been

found to be upregulated across numerous cancers and support the importance placed on

this functional cluster by the model [107, 108, 109]. They are expressed in response to

epigenetic dysregulation in cancer cells but are otherwise inactive [107, 108, 109, 110]. The

only exceptions to this are during the developmental period and within testicular germ cells

[107, 108, 109, 110]. The exact mechanism by which GAGE genes impact tumourigenesis

is unclear but they are being are explored as potential therapeutic targets [107, 108, 109,

110]. It should be noted that GAGE genes are within the same category of genes as the

cancer/testis antigens discussed above, further encouraging their relevance within the model.

The third functional cluster involves a set of putative proteins. By nature of being putative,

we cannot speculate on the value or function of these genes. However, these genes could be

noted for future experimentation to determine their functionality where possible.

Summary of Enriched Pathways for Primary Cancer in the Disease State Task

Generally, the list of functional annotations for primary cancers was less informative of

the underlying biology than within the metastatic cancer class. This outcome was expected

given that the model utilized almost all of the genes to make a primary cancer classification

within the disease state task. The high gene usage results in each gene’s contribution being

significantly reduced and thus having weaker importance. This increased gene contribution

confounds the resulting functional annotations as 75% of the genes identified were excluded

from the results presented here. Using only 25% of genes is effectively an arbitrary cut-off

point and may not have any real underlying biological significance. Given the vast number

of genes used, these are simply genes ranked slightly above the others.
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4.2.6 RNA Genes

The results presented in this section serve to quantify and present the role that RNA

genes play in different cancers. The majority of the discussion that follows will focus on

the disease state and cancer type classification tasks as the trends remain similar within the

cancer subtype task. These tasks sufficiently exemplify the larger trends across cancers. It

should be noted that there are 2890 RNA genes in the full set of genes available to the model

and that this comprises 10.8% of the available genes.

Organ System of Origin Task Results

Figure 4.14 presents the proportion of RNA genes identified as important within each class

of the disease state task.
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Figure 4.14: A scatter plot showing the proportion of RNA genes within the positive impor-

tant genes identified for the organ system of origin classes.

We note that the highest RNA gene proportion is found in the central nervous system,

hematologic, thoracic and soft tissues classes with values of 0.26, 0.17, 0.13, and 0.095

respectively. The other classes have values ranging from 0.025 to 0.053.

Organ System of Origin Task Discussion

The two highest RNA gene proportions are found in the central nervous system and

hematologic classes. When we consider the RNA gene proportions of cancer types with the

highest proportions (see sections below) we find that the top three are within cancer types
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of the central nervous system and hematologic organ systems (CLL, FL, and MB). Since

these organ systems already include higher RNA gene proportions in their important genes,

it may have contributed to the high RNA gene proportion found in the related cancer types.

Disease State Task Results

Figure 4.15 presents the proportion of RNA genes identified as important within each class

of the disease state task.

Figure 4.15: A scatter plot showing the proportion of RNA genes within the positive impor-

tant genes identified for the disease state classes.
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Figure 4.15 illuminates a significant difference between the number of RNA genes deemed

important for metastatic classes when compared to primary and normal ones. We note that

the RNA gene involvement is approximately three times as high in the metastatic class as

in the primary one with proportions of 0.32 and 0.11 respectively. We also note that RNA

gene importance is approximately 0.02 within the normal class.

Disease State Task Discussion

The small number of RNA genes utilized in the normal class coincides with the small

number of important genes seen in Section 4.2.2. This suggests that the model has learned

to ignore the majority of genes, RNA or otherwise, for normal tissues. In fact, the model

has deemed most genes as an indication of non-normal classes. This implies that there are

very few genes that are not important to the classification of cancer within the context of

this model.

With regards to RNA genes in the primary cancer class, it is important to remember that

the model has deemed almost all of the genes available (see Figure 4.4) as important. As

a result, the number of RNA genes closely reflects the number available within the entire

gene set (10.8% RNA genes). While this fact reduces the value of examining the RNA gene

proportion within the primary class, the opposite is true of the metastatic class.

Given the otherwise high gene exclusion rate within the metastatic class, the fact that the

model has elected to deem such a high proportion of RNA genes as important is significant.

This suggests that RNA genes have a very strong impact on the classification of metastatic

samples within the context of the disease state learning task and accounts for almost one

third of a classification decision. When conducting further analysis on the genes highlighted

for metastatic cancers special attention should be made to consider the interaction between

RNA and non-RNA (such as miRNA) genes. It may be possible to look for correlations

between the expression patterns of RNA genes and their related coding genes.
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It is worth noting here that the disease state task has the highest potential for being

negatively affected by batch effect. Since all of the metastatic cancers are from a single

and different data source than the bulk of the training data (TCGA), batch effect can

pose a serious issue for biological interpretation. At this level of classification task, the

susceptibility to learning how to simply differentiate data sources is high and thus any

biological interpretation of results should consider this implication. Batch effect is discussed

in more detail in Section 4.3.

Cancer Type Task Results

Figure 4.16 presents the proportion of RNA genes identified as important within each class

of the cancer type task.
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Figure 4.16: A scatter plot showing the proportion of RNA genes within the positive impor-

tant genes identified for the cancer type classes.

In Figure 4.16, we see that the proportion of RNA genes utilized in the metastatic cancer

types range from 0.23 to 0.37 and are spread relatively evenly throughout this range. The

range for primary cancer types is 0.025 to 0.275 with the vast majority having an RNA

proportion of approximately 0.03. When comparing these two proportions, the vast majority

of primary cancers use 7 times fewer RNA genes than metastatic cancers. The normal tissue

classes share a similar range to that of the primary cancers with proportions from near 0.0

and 0.245. The KIRC normal presents as the largest outlier with an RNA gene proportion

of 0.25.
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The metastatic cancer types with the lowest and highest proportion of RNA genes are

LAML and OV respectively. As a whole, the metastatic cancer types proportions compose

one cluster. Within the primary cancers, there are three classes whose RNA gene proportions

are within the range of metastatic cancers, making them outliers within the primary class.

These classes are CLL, FL, and MB, and they have RNA proportions of 0.265, 0.29, and

0.25 respectively.

Cancer Type Task Discussion

Given that the total gene set available to the model contains 10.8% RNA genes, the fact

that the majority of normal and primary cancer type classes rely on fewer than 4% RNA genes

suggests that RNA genes were selected against. Within metastatic cancer classifications we

saw the opposite effect with high proportions of RNA gene involvement. We therefore have

not only evidence of RNA gene importance in metastatic classes, but evidence of RNA gene

aversion in primary and normal ones. Combined, these observations strongly suggest that

RNA genes play a much more significant role in the classification of metastatic cancers when

compared to primary cancers and normal tissues.

Regarding the normal tissues, there is no easily observable correlation between the number

of RNA genes utilized for the corresponding primary cancer type. For example, we see that

the two lung normal classes, LUAD and LUSC, have both the highest and lowest RNA

gene usage within the normal classes. Their corresponding primary cancers both show only

slightly elevated RNA gene usage with proportions just above 0.05. This indicates that the

model is able to detect and learn the differences in RNA expression patterns between normal

and primary cancer tissues. We can go one step further and speculate that, since the normal

classes are defined by their adjacent cancer types, perhaps the RNA expression patterns differ

between lung tissues that have developed adenocarcinoma verses squamous cell carcinoma.

One study by Shi et al. (2014) has found 2961 microRNAs that are differentially expressed

between lung cancers and normal lung tissue [111]. Following up on this work, another
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study by Venugopal et al. (2019) detected fundamental differences in the gene expression

patterns between lung adenocarcinoma and squamous cell carcinoma [112]. It is plausible

that given the high number of microRNA genes implicated in lung cancer and the differential

gene expression between lung cancer types, that at least some of these changes in expression

are driven by non-coding genes. Further functional analysis of the RNA genes identified in

each class may serve to validate this speculation.

There are two aspects of these results that should be further analyzed. The first aspect is

what the increased RNA presence in metastatic cancers means in terms of biology, and the

second involves examining the RNA proportions for the outlying primary cancers. These

will be discussed in the subsections below.

Cancer Type Task Discussion: RNA Genes in Metastatic Cancers

The high level of RNA gene importance in metastatic cancer types indicates that these

genes play a significant role in differentiating metastatic cancers from primary ones. The

question is whether or not there is biological significance to this. Scientific evidence is begin-

ning to suggest that non-coding RNA plays an important role in regulating the developmental

transitions of cells [113]. In particular, the epithelial to mesenchymal transition (EMT) is a

key developmental transition that is indicated at the start of metastasis. EMT is the mech-

anism by which cells can reactivate embryonic morphogenesis and ultimately contributes

to the ability of cells to propagate and migrate to distant organ systems [113]. Non-coding

RNA, as they pertain to cancer, are also implicated in the disruption of the cellular signalling

pathways involved in the proliferation, migration, and survival of cells [113, 114, 115].

There are two main types of RNA genes that are most often cited in relation to cancer:

long non-coding RNAs (lncRNA) and microRNAs (miRNA) [116]. It should be noted that

work has also been done on the role of circular non-coding RNA in cancer but these have been

excluded from this thesis [117, 118]. The presence of relevant lncRNAs and microRNAs

131



will be briefly discussed below.

Recent studies looking into lncRNA have found several genes that are implicated in the

metastasis of breast cancers (HOTAIR), lung/cervical cancers (MALAT1 ), and prostate can-

cers (PRNCR1 and PCGEM1 ) [116]. Examining the DeepLift results revealed that indeed

HOTAIR was identified in metastatic BRCA and PCGEM1 was identified in metastatic

PRAD. Note that MALAT1 was not found by the model within the metastatic BRCA can-

cer type. The model’s results correlate with the literature and suggest that the model has,

at least in part, the ability to detect useful biological insight from lncRNA genes, as well

as coding genes. The inclusion of more lncRNA in the data set might provide a means

for which to further expand the knowledge-base surrounding the role of lncRNA in various

cancer types. Furthermore, the examples listed here are a subset of lncRNA genes available

for study and simply show that this a feasible line of inquiry for further analysis.

With regards to microRNAs, there are a number that have been implicated across multiple

cancers (discussed in Chapter 1) and have been shown to play a role in metastasis [116,

119]. To reiterate, studies have found that miRNAs influence metastasis in a wide range

of ways including by targeting oncogenes and/or tumour suppressors, modulating cancer

stem cell properties, regulating EMT, and by influencing changes in the microenvironment.

Furthermore, genes involved in the regulation of miRNA biogenesis have been implicated in

cancer as well, adding an additional layer by which miRNAs themselves can be dysregulated

[119]. Given the variety of ways in which miRNAs have been shown to influence metastasis

(also see Chapter 1), the results obtained from the model seem to reflect this influence. With

such a large number of cellular functions being affected by miRNA expression and such a

high proportion of RNA gene utilization in the model, we can speculate that there are RNA

expression patterns that can be learned to classify and potentially prognosticate metastatic

cancers. In depth analysis of each cancer type’s identified RNA genes and their functional

annotations could be conducted to further glean biological insights.
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Cancer Type Task Discussion: RNA Genes in Primary Cancer Types

It should be noted that all of the primary cancer types, with the exception of LAML, that

are part of the organ systems that showed elevated RNA gene proportions (see the organ

system of origin section above) have at least slightly elevated RNA gene proportions (above

0.03) at the cancer type level. The cancer types that are a part of the thoracic, hematologic,

central nervous system, and soft tissue organ systems are as follows: CLL, CML, DLBC,

FL, LUAD, LUSC, MB, MESO, and PCPG. We can speculate that some of the RNA genes

identified as important within these cancer types are reflective of the organ systems from

which they came.

Cancer Type Task Discussion: RNA Genes in Outlying Primary Cancer Types

There are three primary cancer types (Figure 4.16) that show high levels of RNA gene

involvement consistent with the levels seen in metastatic cancers (between 23% and 37%

RNA genes): CLL, FL, and MB. These RNA proportion values are high enough to be

considered outliers from the rest of the primary cancer types. There are an additional 9

primary cancer types that have at least two times the RNA involvement when compared to

the primary cancer types as a whole. These types can be seen in Figure 4.17. To validate

the significance of these findings, there are two metrics that should be considered. The first

is the classification performance (F1-score) and the second is the total number of important

genes identified by the model. It is important to see if these cancer types differ from the

other primary cancers in terms of either metric as the significance of the increase in RNA

gene proportions may be related.

133



Figure 4.17: A scatter plot showing the proportion of RNA genes (black) within the positive

important genes identified by DeepLift and the corresponding F1 classification scores (red)

for primary cancer types whose proportions were greater 0.06

Figure 4.17 illustrates the RNA gene proportions in conjunction with the F1-scores for a

subset of primary cancer types. The average RNA gene proportion across all primary cancer

types is approximately 0.03. The subset of cancer types presented in Figure 4.17 was selected

on the basis of having an RNA gene proportion of at least 0.06 (two times the average value

for primary cancer types). The figure shows that the F1-scores for each of the primary cancer

types listed remains close to 1.0. This seems to indicate that the RNA proportions are not a

contributing factor on the classification performance. If this were the case, we would expect

that cancer types with higher RNA gene usage would have poor performance relative to the
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others.

To observe the impact of the total number of important genes on the RNA proportions

reported, we need to look a bit more carefully at the results in Figure 4.16. Specifically,

MESO and DLBC utilize nearly all of the available 26668 genes and as such, the proportion

of RNA genes identified closely reflects the total number of RNA genes available within the

data set (2890 genes or 10.8%). This effectively eliminates the significance of what appears

to be higher RNA gene involvement for these two classes. As a result, we should exclude

them from further analysis pertaining to RNA gene significance.

Having identified CLL, FL, and MB as primary cancer outliers, when we consider Figure

4.16, we note that they make up the primary cancer types with the lowest number of identified

important genes, each with fewer than 10000. When compared to the bulk of the primary

cancer types, which have approximately 18000 genes, this is a significant decrease. This

suggests that perhaps the proportion of RNA genes is specific to these cancer types and may

reflect the underlying biology. It also suggests that patterns of gene expression involving

RNA genes are more easily learned by the model with the use of fewer genes. This also

indicates that RNA gene expression patterns are more informative for classification than

non-RNA genes.

The following sections will examine the biological underpinnings of RNA gene involvement

for CLL, FL, and MB. As we will see below, each of these cancer types have literature to

support that RNA genes, particularly miRNAs, play a significant role. It should be noted

that miRNAs have been more widely studied and thus the literature and model results

presented lean heavily towards miRNAs and away from other types of RNA genes (like long

non-coding or circular).
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Cancer Type Task Discussion: RNA Genes in Follicular Lymphoma (FL)

The involvement of RNA genes in lymphomas has been studied over the past decade and

have been shown to have prognostic value [120-127]. Specifically, miRNA expression can be

utilized to produce unique miRNA signatures that have indications with regards to treatment

response for lymphomas [120, 121, 122, 123]. A number miRNAs have been indicated in

the development of follicular lymphomas through the regulation of BCL2 with miR-15 and

miR-16, hematopoesis with miR-150 and miR-155, and tumour development with miR-

210, miR-10a, miR-17-5P and miR-145 [120, 125, 126, 127]. The genes identified by the

model for FL contain examples from each of these regulatory categories and include mir-15,

miR-16, miR-150, and miR-210. This illustrates the model’s ability to learn some of the

underlying miRNA signatures of FL. Note that there has been at least one long non-coding

RNA gene (RP11-625 L16.3 ) identified as playing a pathogenic role in FL, but this gene

was not present in the set of genes available to the model [128].

Cancer Type Task Discussion: RNA Genes in Chronic Lymphocytic Leukemia

(CLL)

MicroRNA expression profiles have been shown to be of value in assessing the prognosis,

progression, and drug resistance of CLL [129]. The following have been identified as the

most deregulated miRNAs in CLL: miR-15/16 cluster, miR-34b/c, miR-29, miR-181b, miR-

17/92, miR-150, and miR-155. The model identified miR-15b, miR16-1/2, miR-34b/c, miR-

29b2, miR1-81b1/2, and miR-150 as being significant RNA genes in CLL [128, 129]. These

identified genes correspond well with the deregulated miRNAs from the literature on CLL and

support the ability of the model to identify known, relevant RNA genes. Further analysis

could seek to determine the expression levels of the relevant microRNA. Note that there

exists some long non-coding RNA and circular RNA that may be implicated in CLL but

none identified in the literature were found by the model [128].
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Cancer Type Task Discussion: RNA Genes in Medulloblastoma (MB)

Recent studies have begun to establish the role of RNA genes in the development of

medulloblastomas. One such study identified that MB can be differentiated from normal

brain tissue using the expression profiles of the miR-9 and miR-125a microRNA genes [131].

The model in this thesis supported the importance of these miRNAs and selected both of

them for use in classifying MB. There are a number of other miRNAs that have been identified

as either tumour suppressing or oncogenic and can be found in papers by Mollashahi et al.

(2019), Cho et al. (2010), and Joshi et al. (2019) [130, 131, 132]. For example, Mollashahi

et al. (2019) identified miR-125b, miR-324-5p, and miR-32 as tumor suppressors within

MB and indicated their dysregulation contributes to the development of MB [130]. Joshi et

al. (2019) discuss the role of long non-coding RNA in MB and indicate that they are key

regulators of cell proliferation and differentiation and that their dysregulation contributes

to the development of many other cancers as well [132]. While data on lncRNA in MB is

limited, the Joshi et al. (2019) paper lists 8 lncRNA genes implicated in MB. The model

selected for 3 of the 8 genes and the results are presented in Table 4.9 below.

RNA Gene Type RNA Genes Found

Oncomir miR-30b/d, miR-10b, miR-367, miR-106b

Tumour Suppressor Mi-

croRNA

miR-193, miR-32, miR-124, miR-199b, miR-

324, miR-326, miR-125a/b, miR-218, miR-31,

miR-135a, miR-494, miR-221

Long Non-Coding RNA CRNDE, LOXL1-AS1, NKX2-2AS1

Table 4.9: List of RNA genes found by the model that are also implicated in Medulloblastoma

Cancer Type Task Discussion Summary: RNA Genes in Outlying Primary Can-

cers

Given the results presented in the preceding sections, it is clear that the model is learning

something about the role of RNA genes within primary CLL, FL, and MB. It is encouraging
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that the results span multiple types of RNA genes (lncRNA, oncomirs, and tumour sup-

pressing miRNAs) and has overlap with genes identified in the relevant scientific literature.

We may be able to identify key functions that are disrupted in each of the cancer types as

a result of dysregulation within the identified RNA genes. It would also be interesting to

compare and contrast the identified RNA genes with those found in the metastatic cancer

types.

Further analysis of these outliers should look into the correlation between RNA type

and expression levels to determine if the patterns match what is to be expected from a

biological perspective. For example, we would expect to see oncomirs being overexpressed

and tumour suppression miRNAs being underexpressed. This will require refining how the

gene expression categories are defined.

Cancer Subtype Task Results

Figure 4.18 presents the proportion of RNA genes identified as important within each class

of the cancer subtype task.
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Figure 4.18: A scatter plot showing the proportion of RNA genes within the positive impor-

tant genes identified for the cancer subtype classes.

In Figure 4.18, we see that the proportion of RNA genes utilized in the metastatic cancer

subtypes range from 0.23 to 0.37 and are spread relatively evenly throughout this range.

This is very similar to the results seen at the cancer type level as there are only 3 metastatic

cancer types with subtype annotations.

The range for primary cancer types is 0.025 to 0.29 with the vast majority having an

RNA proportion of approximately 0.03. When comparing the metastatic and primary sub-

type proportions, the majority of primary cancers again use 7 times fewer RNA genes than

metastatic cancers. When comparing the cancer type and subtype proportions for primary
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cancers, we note that the proportions have risen in approximately half of the subtypes mak-

ing their values 0.05 or above. We also note that in addition to the three outlier cancer types

(MB, CLL, and FL) seen in the previous section, at the subtype level, DLBC BM should

now be considered an outlier as well. DLBC BM has an RNA gene proportion of 0.22, up

from the DLBC proportion of 0.10 at the cancer type level.

The normal tissue classes remain identical to the proportions seen in the cancer type

results.

Primary DLBC Bone Marrow Discussion

One notable oberservation of RNA gene involvement within cancer subtypes was the high

RNA gene proportion for the primary DLBC BM subtype. There is more than two times

the RNA gene proportion in DLBC with bone marrow involvement (DLBC BM) than in the

DLBC subtype without. If we look more carefully at the number of genes involved (see Figure

4.6) we see that the number of genes utilized by DLBC is double that of DLBC BM. So while

DLBC BM utilizes fewer genes, it retains the same number of RNA genes. This suggests

two things about DLBC BM. First, that it is easier to classify, as it requires fewer genes.

Second, non-RNA genes were excluded in favour of RNA genes, implying an important role

for RNA genes in bone marrow involvement of DLBC. According to the literature regarding

DLBC, there are several miRNAs identified as being responsible for B cell development in

bone marrow [135]. The first of these found was miR-181a and was indeed highlighted by

the model as important [135]. The literature presents a thorough understanding of B cell

development and how it correlates with miRNA expression. Further investigation into the

miRNAs identified in the literature and those found within the DLBC subtypes by the model

could provide further insight into the effect of differential expression on the progression of

DLBC from a functional perspective. This would allow linking our understanding of normal

and abnormal B cell development to the expression patterns of RNA genes.
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Cancer Subtype Task Discussion

RNA Expression Summary

The results presented in the above sections attempt to validate the increased RNA gene

importance seen in some primary and all metastatic cancer types. We have seen clear

evidence that the model has uncovered significant differences in the contribution of RNA

genes between metastatic cancers and the majority of primary ones. While the analysis

given is far from exhaustive, it serves to show the potential for this line of research. We

have identified a number of RNA genes across a variety of functions and cancer types that

correlate, at least in part, with the relevant scientific literature. This has shown the capacity

of the machine learning pipeline developed as part of this thesis to identify patterns in genes,

coding or not, and that these genes may be biologically relevant.

There is an important caveat to consider when analyzing the RNA gene importance. All

of the cancer classes (primary and metastatic) with the highest RNA gene proportions are

classes in which the data has come from sources outside of the TCGA data set. Since TCGA

data composes the bulk of the training data, it is possible that these results reflect some

artifacts in the data that exist as a result of sequencing protocol (ie. batch effect). If this

is the case, determining the true biological significance of increased RNA gene proportions

requires careful further analysis of the results and the methods of data generation for each

source. The implication of batch effect is discussed in more detail its own section below.

4.2.7 Pseudogenes

The results presented in this section serve to quantify the role that pseudogenes play in

different cancers. The majority of the discussion that follows will, as with the RNA genes,

focus on the disease state and cancer type classification tasks as the trends remain similar

within the cancer subtype task. These classification tasks should sufficiently exemplify the
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larger trends across cancers. It should be noted that there are 5280 pseudogenes in the full

set of genes available to the model and that this comprises 19.8% of the available genes.

Organ System of Origin Task Results

Figure 4.19 presents the proportion of pseudogenes identified as important within each class

of the organ system of origin task. We note that, as in the RNA gene results, the central

nervous system, hematologic, and thoracic classes have the highest proportion of pseudogenes

important for classification. We also note that these three classes are outliers from the

other organ system classes with at least two and a half times the number of pseudogene

involvement.

Figure 4.19: A scatter plot showing the proportion of pseudogenes within the positive im-

portant genes identified for the classes within the organ system of origin task.
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Disease State Task Results

Figure 4.20 presents the proportion of pseudogenes identified as important within each class

of the disease state task. We note again that, as in the RNA gene results, the metastatic

class has the highest proportion. The metastatic class utilizes more than two times the

number of pseudogenes in classification when compared to the primary class. Normal class

classifications use very few pseudogenes.

Figure 4.20: A scatter plot showing the proportion of pseudogenes within the positive im-

portant genes identified for the classes within the disease state task.
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Cancer Type Task Results

Figure 4.21 presents the proportion of pseudogenes identified as important within each class

of the cancer type task. We observe that the metastatic classes utilize significantly more

pseudogenes than most primary and normal classes. The bulk of the metastatic classes

have pseudogene proportions between 0.5 and 0.55. The majority of primary cancer types

have a pseudogene proportion of approximately 0.045. There are some notable exceptions

to the primary cancer types. The CLL, FL, and MB classes are outliers with pseudogene

proportions of 0.55, 0.585, and 0.48 respectively. There are another 11 primary cancer types

that show at least two times the number of pseudogenes as the majority. These primary

cancer types are as follows: CML, DLBC, ESCA, GBM, KIRC, LGG, LUAD, LUSC, MESO,

PCPG, THCA, and THYM.
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Figure 4.21: A scatter plot showing the proportion of pseudogenes within the positive im-

portant genes identified for the classes within the cancer type classes.

Cancer Type Task Discussion

The results presented here show that pseudogenes play a large role in classifying metastatic

cancer. In fact, at or near 50% of a classification decision is made using pseudogenes for all

metastatic cancers. This value exceeds that of the RNA gene proportions seen in the previous

section. Studies have suggested that the diagnostic and prognostic power of pseudogenes is

in some cases higher than that of miRNAs [136]. They have also found that there are

specific signatures of pseudogenes that correlate with poor survival and as a result could

suggest a predisposition to metastasis [136, 137]. The implications of these studies support

the results presented above for all of the metastatic cancers. In other words, the model has
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placed a high importance on pseudogenes for differentiating metastatic from primary cancers

and may prove useful in future work for determining a predisposition for metastasis.

Similar to the caveat placed on the RNA gene results, we must consider the implication of

the data source on the pseudogene content of cancer type classifications. We again see that

the metastatic proportions and the proportions for the largest primary cancer outliers (CLL,

FL, and MB) are all cancer types that come from non-TCGA datasets. The implication of

this is that there may be some batch effect occurring. This consideration somewhat dimin-

ishes the reliability of the trends shown in these results and requires further investigation

to alleviate. However, when we examine the batch effect (see the relevant section) based on

the data sources, we note that the metastatic cancers appear to be the most problematic.

We also note that there are 11 other primary cancers (see above) that show at least two

times the pseudogene proportions of the majority of primary cancers. Of these 11 cancer

types, eight of them were sourced from TCGA. This suggests that while batch effect may

play a role in pseudogene importance, there are a number of examples where this is not the

case and patterns of pseudogene expression may be strictly a result of underlying biological.

Further in depth analysis of the genes identified for the eight TCGA cancer types with high

pseudogene importance could serve to better support the biological relevance of pseudogene

expression.

Cancer Subtype Task Results

Figure 4.22 presents the proportion of pseudogenes identified as important within each class

of the cancer subtype task. Generally, the observed trends seen here are very similar to

those found within the cancer type task. The metastatic classes all have significantly higher

pseudogene proportions than the bulk of the primary ones, with values ranging from 0.405

to 0.57. The outlier primary cancer subtypes correspond to the outlier primary cancer types,

with CLL, FL, and MB subtypes composing this group. There are, however, more classes

that show higher levels (above 0.045) of pseudogene involvement than we saw at the cancer
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type level. We note that 24 of the 55 primary cancer subtypes have values close to 0.045

and the range of value when compared to the cancer type results is much more varied.

This means the majority of subtypes show some elevated levels of pseudogene involvement

compared to their corresponding cancer types. The significance of this is that some subtypes

show elevated pseudogene involvement when compared to their related subtypes (ie. within

the same type). For example, Luminal B BRCA has 3 times higher pseudogene involvement

than the other BRCA subtypes and this elevated pseudogene involvement was not visible

at the cancer type level. We again see this in the STAD subtypes with STAD EBV and

STAD MSI being elevated and in ESCA with ESCA SCC being elevated.

Figure 4.22: A scatter plot showing the proportion of pseudogenes within the positive im-

portant genes identified for the classes within the cancer subtype task.
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Cancer Subtype Task Discussion

We noted similar trends in the cancer subtype pseudogene proportions to those seen at

the cancer type level. The implication for metastatic cancers is still that pseudogenes play

an important role in their classification. We again have the caveat that the influence of

data sources should be considered because some of the subtypes with elevated pseudogene

importance are from non-TCGA data sources.

The most noteworthy change seen in the results from cancer type to subtype pertains

to the elevated pseudogene levels of one or more subtypes where the other related subtype

proportions remain low. One clear example of this is with the primary Luminal B BRCA

subtype. Luminal B BRCA shows 3 times the level of pseudogene usage when compared

to the other primary BRCA subtypes. One study has supported the use of pseudogenes

for discerning breast cancers from normal tissue and other breast cancer subtypes [138].

This study suggests that pseudogenes are a valid line of inquiry for discerning breast cancer

subtypes [138]. Given that the primary BRCA subtypes all comes from the same data set

and that there is a marked change in one subtype compared to both the related cancer type

and subtypes, this is a strongest indication for a biological interpretation of the impact of

pseudogenes. Couple these facts with supporting evidence of the value of pseudogenes in

cancer diagnosis from the literature, and pseudogene analysis seems to be a viable avenue

for which to further characterize and diagnose cancers. Continued analysis of the role of

pseudogenes on cancer diagnosis and the characterization of cancer subtypes should focus on

the kinds of examples where individual subtypes differ from their related subtypes in order

to remove batch effect implications.

4.3 The Implications of Batch Effect

This section will present and discuss the implications of batch effect on the biological

interpretation of the above results. Figure 4.23 presents a t-SNE of the transcriptome data
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from the full training data set.

Figure 4.23: A t-SNE plot of the transcriptome data for the full training data set coloured

by data cohort.

Given the results shown by Figure 4.23, there appears to be a potential issue with batch

effect within the training data set. In order to understand the implication of possible batch

effect, we must look at the cancer types within each data cohort. Table 4.10 shows the

relevant data.
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Data Cohort Cancer Type

GPH CLL T Tumor & DLBC T Tumor

NIH FL T Tumor & DLBC T Tumor

MET500 All Metastatic Cancer Types

GenenTech MESO T Tumor

TARGET CML T Tumor

TFRI GBM T Tumor

MAGIC MB-Adult T Tumor

Table 4.10: List of cancer types and the non-TCGA data cohorts from which they came.

4.3.1 Batch Effect Implications on the Interpretation of Metastatic

Cancers

When we consider Table 4.10, we see that batch effect is potentially a serious problem

for the metastatic cancers (MET500). All of the cancer types group together based on data

cohort. This observation has a negative implication on the ability to interpret any biological

features of metastatic cancers within the disease state task. Within this task, the model

would likely be able to accurately classify metastatic cancers on the basis of features present

within the data source alone. The interpretation of metastatic cancer results within the

disease state classification task should consider these effects carefully.

The batch effect is such that the shared trend of high RNA gene and pseudogene impor-

tance across all metastatic cancers may not be a reliable source for biological interpretation.

The implication is not that all of the important genes found for each metastatic cancer

type are biologically irrelevant, but rather that a portion of them may be shared among all

metastatic types and result as an artifact of the data set. The advantage to having multiple

learning tasks, however, is that we are able to follow the important genes from the disease

state (covering all metastatic cancers at once) down into the cancer type and subtype levels
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and potentially filter out common features whose presence may exist due to batch effect.

Also, since the model is encouraged to learn disease state features upstream of cancer type

and subtype classifications, the important genes within the cancer type and subtype classes

are genes used to differentiate between not only metastatic and primary cancers as a group,

but also between individual metastatic cancers. This means that for interpretation pur-

poses we can still expect the model to learn some unique features of each metastatic cancer

type and subtype. However, we must be careful in considering overall trends seen across all

metastatic cancers because as a whole, some of their important genes will be artifacts of the

data source from which they came.

To support the conclusion that some of the biological features of metastatic cancers can be

learned at the cancer type level, we can visualize the metastatic samples separately from the

primary ones. Figure 4.24 is a t-SNE plot of only the metastatic samples from the training

data and is coloured according to cancer type. This figure illustrates that there is at least

some grouping together of cancer types in the metastatic domain. This suggests that there

may be some common features for the model to learn within each cancer type and that the

data is not entirely useless. Figure 4.25 is a t-SNE plot of only the primary cancer samples

from the training data and is also coloured according to cancer type. Comparing Figures 4.24

and 4.25, we see that the metastatic cancer types are much less well defined and have greater

overlap between types than the primary cancer types seen in Figure 4.25. It is possible that

if we had more metastatic samples from each cancer type we would have better established

groupings within the metastatic cancers. Given the results shown here with the current data

set, we would expect worse classification performance on the metastatic cancers than the

primary ones. This is, in fact, what is observed throughout this thesis and can partially be

explained by batch effect and the feature set contained within the data.
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Figure 4.24: A t-SNE plot of the transcriptome data for the metastatic cancer types from

the training data set coloured by cancer type.
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Figure 4.25: A t-SNE plot of the transcriptome data for the primary cancer types from the

training data set coloured by cancer type.

4.3.2 Batch Effect Implications on the Interpretation of Primary

Cancers

For the primary cancers from TCGA-external data sources, we must also consider the

possible implications of batch effect. The cancer types listed in Table 4.11, with the exception

of DLBC T Tumor, are all predisposed to suffering from batch effect. The reason for this is

that they are each sourced from single data sources that are unique to their cancer type. This

offers the machine learning model an opportunity to identify and leverage features present in

the data stemming from the source as opposed to features relevant to the underlying biology.
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Looking at Figure 4.26, we can exclude DLBC T Tumor from batch effect as it has multiple

data sources in which to encourage the model to identify biologically representative features.

Data Cohort Cancer Subtype

TCGA DLBC T Tumor

GPH DLBC T Tumor

NIH DLBC BM T Tumor

Table 4.11: List of DLBC cancer subtypes and the data cohorts from which they came.

Figure 4.26: A t-SNE plot of the transcriptome data for the DLBC cancer type coloured by

data cohort.
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We can also identify a correlation between single data sources for primary cancers and the

outlier types identified within the RNA gene and pseudogene results. CLL, FL, and MB each

have a single data source and may have elevated importance of these gene types as a result

of their data source. In light of this, future analysis of the RNA gene and pseudogene trends

seen within primary cancer types should focus on those cancer types that do not appear to

suffer from batch effect (ie. those from within TCGA). There were 11 other cancer types

that showed elevated RNA gene and/or pseudogene importance, with eight of them being

from within the TCGA data set.

4.3.3 Batch Effect Conclusion

The overall conclusion is that batch effect is potentially a problem within this data set.

The nature of having limited and unique data sources for some cancer types has implications

on the ability to interpret the biological implications of the results presented in this thesis.

There are techniques that could be applied to the training data to try and mitigate these

effects. For example, ComBat-seq is a recently published (January, 2020) tool for mitigating

batch effect on RNA-seq data [139]. The model used for this thesis could be trained on

batch corrected data and the results re-evaluated. Barring batch correction and retraining,

the multi-task nature of the model provides a mechanism by which the filtration of gene

results can be conducted and the significance of genes biologically interpreted. This could

be done by leveraging the features identified within the disease state against the cancer type

and subtype task results. Finally, the inclusion of at least two data sources for each cancer

of interest could help to mitigate batch effect by encouraging the model to find common

features between the sets.

The feature set (genes) is another aspect to consider as part of the batch effect analysis.

The feature set for this thesis work contains the intersection of genes that are found within

all of the data cohorts combined. Given the results presented in Figure 4.24 and 4.25, we can

see that primary cancers types are better defined by the present feature set when compared

155



to the metastatic types. The metastatic types may need to include a different set of genes

in order to be better differentiated from each other. By restricting the set of genes for the

data set to the intersecting genes from each data source, we are almost certainly disposing

potentially useful information. It may be the case that the metastatic cancers suffered a

greater loss of information than the primary ones as a result of the gene exclusion conducted

to generate the data set for this thesis.

4.4 Summary

The results presented in Chapter 4 were given in five sections. First, the biological validity

of the gene results were examined using the normal tissue classes. The list of genes for some

normal classes were functionally annotated using DAVID to identify enriched pathways that

are indicative of the expected biological functions of the classes in question. Thyroid tissue

showed enrichment of pathways involved in neuropeptide hormone production, lung tissue

showed enrichment of gas exchange and oxygen binding/transport pathways, and breast

tissue showed enrichment of pathways involved in milk and keratin production.

Following the biological validation of normal tissues, the number of important genes iden-

tified by the model for each class was presented. We noted that the number of important

genes used for classification was significantly smaller for the metastatic and normal classes

than for the primary ones. These results suggest that metastatic and normal tissues had

more distinct patterns of expression and thus required fewer genes to identify. These results

also suggest that as a whole, metastatic cancers have unique expression signatures that dif-

ferentiate them from primary cancers. Whether or not this is biologically significant will

require addressing the batch effect noted in the previous section.

The expression levels of the identified important genes was also evaluated. We noted that

the model favoured genes with high expression levels in metastatic and normal classes within
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the disease state task. We again saw this trend at the cancer type and subtype level. We

concluded here that further analysis of the implication of the expression levels of important

genes would require redefining of the over and underexpression categories on a per-class basis

in order to confirm the biological impact of expression levels. The only conclusion that can

be made from these results is that the model seems to need fewer genes for classification

when those genes have expression levels far above the mean (over two standard deviations).

Whether this is the result of biological or computational factors remains to be determined.

After identifying the number of important genes and their expression levels, some insight

into the functionality of the important genes for the non-normal classes were examined.

DAVID was again used for the functional annotation of enriched pathways. Here we cor-

related the enrichment of particular functional pathways (the top 10 most enriched) within

metastatic and primary classes of interest with scientific literature that supports the function

and presence of these pathways within each class.

Significant enrichment of microRNAs were found in the enriched pathways of the metastatic

class within the disease state task. This prompted further analysis of the RNA gene content

of each classes’ important genes. The role of RNA genes was quantified and presented. We

noted that there was a significant increase in the number of RNA genes identified as im-

portant within all metastatic cancers and three primary cancer types (CLL, FL, and MB).

The role of RNA genes in each specific primary cancer type was discussed and shown to

have support from the relevant scientific literature. The role of RNA genes in metastatic

cancers was also discussed and the foundation for future research in this area was laid. The

overall conclusion was that the model elected to make approximately 30% of a metastatic

cancer classifications using RNA genes. This suggests that RNA genes play a large enough

role in metastatic cancers when compared to primary ones to elicit a recognizable pattern

of expression. This pattern can be effectively leveraged by a machine learning model and

further analysis of the genes involved could result in novel insights on the progression of

metastatic cancers. We noted the caveat that sequencing protocol and data generation may
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have impacted the apparent important role of RNA genes in classification (ie. batch effect).

While this caveat does not negate the presence of the particular RNA genes noted in the

discussion, it could impact the perceived strength of the correlation between cancer type and

the number of RNA genes present in the important genes listed for each class.

Finally, the role of pseudogenes in classification was presented. We noted a similar trend

to the one found in RNA genes. The model elected to identify metastatic and normal classes

with a high proportion of pseudogenes relative to both coding and RNA genes. This suggests

that there is an expression pattern within pseudogenes that is of higher importance in clas-

sifying metastatic cancers than in primary ones. However, as with RNA gene importance,

the biological significance of this needs to be further elucidated while carefully considering

the implications of batch effect.

These five ways of examining the model’s results have provided some examples of the

kinds of data contained within the model’s output. The value of these results lies in the

large amount of data being output and that it appears to have some biological significance.

Further study of the model’s output should provide a means with which to gain insight

into the biological functionality of genes within and across a variety of both metastatic and

primary cancers.
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Chapter 5

Conclusion

5.1 Summary of Findings

The first goal of this thesis research was to demonstrate the ability to classify with rea-

sonable accuracy a set of normal, primary cancer, and metastatic cancer samples using gene

expression data. Chapter 2 presented detailed information on the data set utilized for this

work along with the methodology used to generate the machine learning model to be used

for this task. This chapter also presented the results of model validation using five-fold

cross-validation and a set of multi-task models with different combinations of learning tasks

including organ system of origin, disease state, cancer type, and cancer subtype. We noted

that the performance was relatively similar between the different models and since the even-

tual goal of this thesis was to produce and analyze the largest amount of data with as much

granularity as possible, a multi-task model (referred to in Chapter 2 as the ”all task” model)

that included all four listed learning tasks was deemed appropriate for further use.

Having validated the model architecture and set of learning tasks in Chapter 2, Chapter

3 was focused on presenting the results of classification using a model trained on the full

training data set. The classification performance was evaluated across each of the learning
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tasks using two test sets. The test sets included one held-out data set composed of normal,

primary cancer, and metastatic cancer samples, and an external test set (POG) composed

of only metastatic samples. The overall trend was such that as the learning task increased

in complexity and biological granularity (ie. from organ system to cancer subtype), the

classification performance declined on both test sets. The model also performed worse on

metastatic cancer classification than on primary cancer. This can be, at least in part, ex-

plained by batch effect. We noted that a t-SNE plot of the metastatic cancers does not

differentiate as well into cancer type as primary cancers do. In addition, the training data

set contains a large class imbalance that most certainly contributes to the reduction in per-

formance on the metastatic classes, as they are in the minority. Furthermore, as the learning

tasks increase in biological granularity (ie. from organ system to cancer subtype) the class

sizes decrease by virtue of now having more classes with a data set that remains the same.

Overall, while there were some exceptions noted, the majority of classes within each learning

task were classified reasonably well. We determined that the classification performance was

sufficient to warrant further downstream analysis of the model using DeepLift.

Chapter 4 of this thesis focused on extracting biological information from the trained

multi-task model in an attempt to glean insight about the characteristics of various cancers.

This task was accomplished using a backpropagation-based tool called DeepLift. DeepLift

is designed to query the impact of input features on the output of a trained neural network.

In the context of this thesis, it provided a mechanism to query what importance each gene

plays on the classification of each class within each learning task. Using DeepLift, we were

able to score the importance of each gene on the classification of cancers and use these scores

to examine five aspects of the results.

The first aspect was to examine the number of important genes used for the positive

classification of each class and it was determined that metastatic cancers had many fewer

genes involved. This suggests that they have a unique pattern of expression that easily

differentiates them from primary cancers. This may simply be the result of batch effect,
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particularly within the disease state task.

The second aspect of the DeepLift results examined were the expression values of important

genes selected by the model. We noted that when differentiating metastatic cancers within

the disease state level the model selected to use only overexpressed genes. The caveat of this

observation was that the definition of mean gene expression was skewed towards primary

cancers and should be redefined to further refine the analysis of these results.

The third aspect of the DeepLift results investigated were the functional annotations

of enriched pathways for some classes of interest. Three normal tissue types were used

to validate the results of the functional annotations and the genes selected by the model.

Following this, the enriched pathways within the primary and metastatic classes from the

disease state task were presented and discussed.

The fourth analysis of the results looked at RNA gene importance for each class across

every learning task. The results indicated that all metastatic and three outlier primary

cancer types (CLL, FL, and MB) had significantly increased RNA importance assigned by

the model when compared to the bulk of the primary and normal classes. A literature search

was conducted to try and validate some of the RNA genes identified for metastatic cancers

in the disease state task and the three outlier primary types in the cancer type task outputs.

We noted that the model identified a number of microRNA genes within each of the cancers

investigated and had literature supporting their role in each type. We did, however, observe

that there was an apparent correlation between increased RNA gene importance and classes

whose data came from non-TCGA sources. The implication of this is that there is some

batch effect going on. These results should be further examined to determine if the model

is truly learning biologically relevant trends in RNA gene involvement or simply learning to

differentiate something in the sequencing process that is representative of the source of the

data.
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Finally, the results were examined for pseudogene importance in each class across each

learning task. As with the RNA genes, we observed that all metastatic and three outlier

primary cancer types (CLL, FL, and MB) had significantly increased pseudogene importance

when compared to the bulk of the primary and normal classes. We again saw a correlation

between non-TCGA data sources and an increase in pseudogene usage. This trend again

raises concerns about batch effect. However, we also noted that there were 11 cancer types

(excluding CLL, FL, and MB) that showed at least two times the pseudogene importance of

most of the primary cancers. Within these 11 cancer types, there were eight that came from

the TCGA data set and thus would be a good place to begin further analysis into the value

of pseudogene characteristics. By focusing on these eight TCGA-sourced cancer types, we

could get around some of the negative implications of batch effect and be more comfortable

in making a biological interpretation of pseudogene and RNA gene trends.

5.2 Future Work

There are many avenues available for future work related to aspects of this thesis work. The

first avenue to explore would be trying to batch correct the data. ComBat-seq was released

in January of 2020 and may prove to be a useful tool for correcting the training data [145].

Following this, we should iterate on and improve the model used for classification. There

may be changes to hyperparameters or architecture that could provide improved performance

given the batch corrected data.

Following this, the way in which learning tasks interact within the model could be explored.

For example, each non-terminal learning task’s prediction could be included as an input

feature to the downstream tasks’ corresponding layers. The effect of this would be such that

within each learning task, the model would be informed of the previous task’s classification.

This may help to mitigate compounded errors caused by having kept each learning tasks

prediction separate. In other words, the model would have the ability to correct upstream

learning task classification errors in downstream tasks by learning the relationship between
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accuracy and the previous task’s prediction.

Finally, the utility of the learning tasks could be further interrogated. For example, we

saw that in some cases, including all learning tasks performed worse than a model missing

the cancer type task. Depending on the intended use and desired output of the DeepLift

data, we may benefit from excluding particular learning tasks and obtaining better accuracy

on fewer tasks.

The bulk of the DeepLift results are left to be further investigated. There is an opportunity

to conduct an in-depth review of the important genes for each cancer type and subtype. This

thesis noted some larger trends that separate primary and metastatic cancers, but these

results may be confounded by batch effect. Regardless, there remains numerous lists of

genes available for each cancer type and subtype in which the negative implications of batch

effect should be mitigated. Functional annotation of the important genes for each cancer

type and subtype can and should be investigated for existing and novel pathways that may

prove to be cancer driving.

Another avenue of research may be to try and differentiate metastatic and primary cancers

at the disease state level using subsets of the gene types. We could attempt to classify the

same cancers using only coding genes or only non-coding genes and compare the results to

gain a more granular understanding of the impact of each gene type. Given that the genes

used for each metastatic cancer classification were at least 24% RNA genes and at least 40%

pseudogenes, there is reason to believe these types of genes encode a significant amount of

information that can be used to differentiate these cancers. However, by focusing on these

types of genes independently, we would be encouraging the model to learn more complex

expression patterns within these genes. We may also be able to use these new results to

better observe the implication of batch effect on the current set of results
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Finally, for post-classification analysis it may be valuable to separate the primary and

metastatic cancer classifications into separate models. This would encourage the model to

learn more unique features of each cancer type as the broad, significant differences seen

between primary and metastatic cancers, such as RNA and pseudogene expression, could

not be as easily leveraged. In the current state, the model is able to use broad categories of

genes such as pseudogenes to make the bulk of a classification decision for metastatic cancers,

as it is vastly different from the primary ones. It would be interesting to see the impact on

the results when the model is forced to choose between cancer types that are more closely

related as far as non-coding genes are concerned. This would also mitigate issues related to

batch effect.
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