Hierarchical Structure and Ordinal Features in Class-based Linear
Models

by
Wan Shing Martin Wang

B.S. Cornell University, 2018

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science
in

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)
February 2021

© Wan Shing Martin Wang, 2021

The following individuals certify that they have read, and recommend to the Faculty of Graduate and
Postdoctoral Studies for acceptance, the thesis entitled:

Hierarchical Structure and Ordinal Features in Class-based Linear Models

submitted by Wan Shing Martin Wang in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science.

Examining Committee:

David Poole, Computer Science
Supervisor

Giuseppe Carenini, Computer Science
Supervisory Committee Member

il

Abstract

In many real world datasets, we seek to make predictions about entities, where the entities are in classes
that are interrelated. A commonly studied problem, known as the reference class problem, is how to

combine information from relevant classes to make predictions about entities.

The intersection of all classes that an entity is a member of constitutes the most specific class for that
entity. When seeking to make predictions about such intersection classes for which we have not observed

much (or any) data, we would like to combine information from more general classes to create a prior.

If there is no data for the intersection, we would have to rely entirely on the prior. However, if data

exists but is scarce, we seek to balance the prior with the available data.

We first investigate a model where we assign weights to classes, and additively combine weights to make
predictions. The use of regularisation forces generalisation; the signal gets pushed up to more general
classes. To make a prediction for an unobserved intersection of classes, we would use the weights
from the individual classes that comprise the intersection. We introduce several variants that average
the predictions, as well as a probabilistic mix of these variants. We then propose a bounded ancestor
method, which balances the creation of an informed prior with observed data for classes varying amounts

of observations.

When dealing with ordinal properties, such as shoe size, we can dynamically create new classes and
subclasses in ways that are conducive to creating more informative priors. We do this by splitting the

ordinal properties. Throughout, we test on the MovieLens and UCSD Fashion datasets.

We found that a combination of the three bounded ancestor method variants resulted in the best perfor-
mance, and the best combination varied between datasets. We found that a simple model that assigns
weights to classes and additively makes predictions slightly outperformed the bounded ancestor method
for supervised classification. For the bounded ancestor method, we found that splitting ordinal properties

in different ways had minimal impact on the error metrics we used.

1ii

Lay Summary

When making predictions involving entities and relationships between them, we often want to incor-
porate prior knowledge to help us, whether from existing domain knowledge, or from entities that are
similar to the entities of interest. We investigate how to combine such data to help us make predictions
in cases where when the data we are interested in is scarce or unavailable. We propose and evaluate
several simple methods for combining data, and we test our hypotheses on a Movie prediction dataset
and two Fashion datasets. We also investigate data that has an ordering, and look at ways to structure

this data to help us make better predictions.

v

Preface

The parameter sharing model in Chapter 2 was developed in joint work with Ali Mohammad Mehr. The
parameter sharing model was designed by Dr. David Poole. In his thesis, Ali Mohammad Mehr applies
the parameter sharing model to water pollution prediction, and develops and proves several theorems

about the parameter sharing model.

This thesis focuses on classification on the MovieLens and Fashion datasets. Implementation and testing

for the experiments in this thesis were completed by the author.

The bounded ancestor model and its variants were proposed by Dr. David Poole, and implemented and
tested by the author. For the work on constructing hierarchies based on splitting ordinal properties, Dr.
David Poole suggested recursively splitting on information gain. The hierarchies and experiments for

the ordinal experiments in Chapter 5 were designed and implemented by the author.

Table of Contents

ADSEract o o i e iii
LaySummary v i i it ittt ittt ittt ettt iv
Preface @ @ i i i i i i e e e e e e e e e e e e e e e e v
Tableof Contents o i i i i it i it ittt ittt et e vi
Listof Tables o . 0 0 i i it e e e e e e e e e e e ix
Listof Figures i v i i i it it it it i et et et ottt st ossnssnsss X
Acknowledgments o i i i i ittt et e e e e e e e e e xi
1 Introduction o i i i i i ittt i ittt ettt
1.1 Hypotheses e 3
1.2 ChapterRoadmap
2 Parameter Sharing Model i i e e e e 5
2.1 Basicdefinitions. e e e e 5
2.1.1 Properties, Attributes, & Classes 5
2.2 Predictions and Parameters 7
221 Regression e e e 7
2.2.2 Error function: Sumofsquares Lo 7
2.3 Discrete outcomes (Classification)o 8
2.3.1 Binary OutCOmMEeS v v v v e e e e e e e e e e e e e e e 8
2.3.2 Three or more OUtCOMES « . v« v v v v v et e e e e 8
2.3.3 Error function: Negative log likelihood 9
24 Regularisationo e 9
3 Relational Parameter Sharing Modelttt een.s 12
3.1 Tuple Classes, Functions & Hierarchies 12
3.1.1 Tuple Classes and functionsontuples 12

Vi

3.1.2 Hierarchies e

3.2 Datasetso . e e e e e e
32.1 Movielens e e e
3.2.2 Fashiondatasets
Prior and Posterior Predictionfor Classes
4.1 Background
4.2 Bounded ancestormethod oL oL
42.1 Notation o e e e e e e e e
4.3 Bounded ancestor method fortrees oL oL
4.3.1 Mixing signals from above and below
432 Parameters e
4.4 Bounded ancestor method for graphs oL oL
4.4.1 Multipleparents e e e e e
4.42 Variant 1: Siblingdata oL
443 Variant2: Class miXing o o ot e e e
444 Variant 3: Parameteradding L oL o o
445 Numericalexample
4.5 Combination tests e e e e e e e e e e e e e e
4.5.1 Experimental setup oL
452 Error Metrics e e e e e e
453 Results e
454 Interpreting the weights
Ordinals 0 i i e e e e e e e e e e e e
5.1 Classesfromordinals
5.1.1 Simpleintervals
5.1.2 Recursive binary splitting oo
5.1.3 Subclass Hierarchies
5.2 BXPeriments oL e e e e e e e e e
5.2.1 Hierarchy construction and experiment setup
522 Results e e e e
5.2.3 Negative log likelihood lossonclasses
524 Testing valuesofk
Conclusionand Future Work ittt
6.1 Results. e
6.1.1 Hypothesis 1
6.1.2 Hypothesis2 e
6.1.3 Hypothesis3

vii

6.1.4 Futurework e

Bibliography

viii

List of Tables

Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5

Table 4.1

Table 4.2

Table 5.1
Table 5.2

Table 5.3

Example MovieLens 100K [6] data.
Example User from MovieLens 100K [6] user information.
Example movie from MovieLens 100K [6] movie information.
Example datapoint from “Renttherunway” [14]
Example datapoint from “ModCloth” [14]

Signal from below for the classes in our numerical example. Class A is (Administra-
tor, Musical), Class Ap; is Administrator, and Class Ap, is Musical.

A comparison of the variants on an example, (Administrator, Musical)

Distribution of points: Simple intervals oo
The L2 regularised parameter sharing model and the bounded ancestor method on
the test hierarchies, for “ModCloth”. For both metrics, lower is better.
The L2 regularised parameter sharing model and the bounded ancestor method on

the test hierarchies, for “Renttherunway”. For both metrics, lower is better.

ix

15
15
16
17
18

28
29

37

42

42

List of Figures

Figure 3.1

Figure 4.1
Figure 4.2
Figure 4.3

Figure 5.1
Figure 5.2

Figure 5.3

Example Hierarchy involving the pair class (Male N Administrator, Animation), used

in MovieLens[6]. We can see that the more general classes are parent classes.

We are interested in class A, which has a single parent Ap, which has parent Ag. . .
We are interested in class A, which has two parents Apy and Apy

Example subset lattice from MovieLens 100K [6]

The part of the class hierarchy for the Hip size property, if we use simple intervals.
The part of the class hierarchy for the Hip size property, if we use binary splitting.
The structure is the same for both midpoint splitting and information gain splitting.
Part of the class hierarchy for the experiments for binary splitting. The ordinal
properties are split into classes that form binary trees whose root is a child of the

globalclass.

14

22
24
30

39

40

Acknowledgments

I would like to give a huge thank you to my supervisor, Dr. David Poole, for the guidance, help and
encouragement throughout the research process and when I was writing this thesis. I would also like
to thank Ali Mohammad Mehr for his helpfulness when we worked together. I would like to thank my
family for their support.

Thanks to NSERC for providing funding to me through Professor David Poole’s discovery grant, and
thanks to Compute Canada for providing me with computing resources.

X1

Chapter 1

Introduction

We are interested in making predictions about relations involving tuples of entities, where these entities
can be categorised into a hierarchical class structure, or classes that are interrelated. Classes of entities
induce classes of tuples of entities. We consider the problem of determining how to use observed data
in prediction making for relations. This is related to the reference class problem [2], which is concerned
with selecting one or more relevant classes to use for a prediction. In the reference class problem, the
classes relevant to a prediction are known as reference classes. We are interested in the problem of not
only identifying and selecting reference classes, but also how to combine information from them to make

a prediction. In particular, we look at how to make predictions for classes with few or no observations.

One of the datasets we test on is the MovieLens 100K [6] movie prediction dataset. MovieLens 100K
data takes the form of (User, Movie, rating, timestamp) quadruples, where specific users give ratings
to specific movies, and information about users and movies. We chose MovieLens because we can
construct an interesting hierarchical class structure from the user and movie information. MovieLens is
also interesting because of the cold start problem. The cold start problem involves predicting the rating
scores for users and movies that have no rating data. Cold start is an interesting motivation because it is

related to our problem of trying to predict for entities without rating data.

Much of the existing work on MovieLens [6] focuses on collaborative filtering: making predictions
about unseen user-movie ratings based on previous ratings made by the user, and the ratings made by
other users. An example of an existing collaborative filtering work is Marlin [13]. A classic paper that
does collaborative filtering for Netflix movie predictions is Koren and Bell [9]. Collaborative filtering
methods don’t work well on the cold start problem [19]. This thesis does not deal with collaborative
filtering. Instead, we make use of MovieLens as a test case in our work on priors for classes that are
arranged hierarchically. As we discuss in the future work section, our work could be potentially be used

in conjunction with collaborative filtering.

When dealing with the cold start problem for MovieLens, we can use properties of the user and movie

entities involved. These properties are modelled in terms of classes. Deciding which properties to use

and how to combine information from those properties relates to the reference class problem, which in-
volves identifying which classes to use to make a prediction. Those classes that are used in the prediction

are the reference classes.

For example, suppose that when making a prediction about the rating a user gives a movie in MovieLens
100K [6], we know that the user is an administrator and the movie is an action film. Some reference
classes relevant to the prediction would be the set of all (user, movie) pairs, the set of such pairs where
the user is an administrator, the set of pairs where the movie is an action movie, and the set of pairs with

an administrator and an action movie.

An issue with real world datasets such as MovieLens 100K [6] is that data for certain classes can be
nonexistent or scarce. More specific classes have fewer observations. For instance, in the MovieLens
100K dataset, the class of (user, movie) pairs where the user’s occupation is administrator has 7479
members while the class of (user, movie) pairs where the user is male and an administrator and the

movie is an animation film has 128 members. (MovieLens 100K has 100,000 datapoints in total).

When making predictions about classes with highly constrained descriptions, for example male admin-
istrators and animated drama documentaries, the usefulness of the data from those classes is limited if
very few male administrators have rated animated drama documentaries. To predict for the constrained
class, we seek to combine information from more general classes, which are the reference classes for
making predictions about the class with few ratings. To do so, we seek a principled prior from the more

general classes to help us.

The scarcity problem involving classes with highly constrained descriptions can be subdivided into these

two cases.

* When there is no data for a specific class, for example, no male administrators have rated anima-
tion drama documentaries, we want to directly utilise information from more general classes for
prediction making. Examples of general classes that could be of use in obtaining a prior are the
class of (user, movie) pairs where the user is male, or the class of (user, movie) pairs where the
movie is a documentary. Since more general classes are more likely to have rating data, the goal
would be to combine information from these more general classes to create an informed prior for

the more specific class.

* When rating data for a class is scarce but not nonexistent, if we only use the limited amount of
data for the class that we have, we would overfit on that data. To avoid overfitting, we could use
a hybrid approach that combines an informed prior with the data that we do observe for the class.

We need to balance the prior with the observed data, by using a mixture of both.

We first investigate a model where weights are assigned to classes, and prediction making is done by
additively combining weights. We call this the parameter sharing model. L2 regularisation can be used
when learning weights. In the parameter sharing model, we make predictions for an entity by adding the

weights of more general classes. L2 Regularisation forces classes with no observations to have weights

of zero. For example, if no data for administrators and action movies are observed, the prediction for
administrators and action movies will include the sum of the weights for only administrators and the
weights for only action movies. The weight for the class whose members are both administrators and

action movies will have a value of zero.

1.1 Hypotheses

This thesis investigates how to combine information from general classes when data for a more tightly

constrained class is scarce or nonexistent.

The simplest and obvious approach of using L2 regularisation with the parameter sharing model for

learning weights doesn’t work well for learning about classes with very few or no datapoints.

We introduce the bounded ancestor method for combining information from priors with information
from observed data. We also introduce several variants for learning about a class from more general
classes. We are interested in the effectiveness of these variants for combining data from more general

classes to get priors for a more constrained class.

1. We hypothesize that the bounded ancestor method will be more effective than L2 regularisation

for learning about classes with few or no datapoints.

2. We hypothesize that a weighted combination of these variants is more effective in creating priors

than any individual variant.

3. We hypothesize that for ordinal data, dynamically creating new classes by splitting existing classes

can help us make better predictions.

We test our hypotheses on three real world datasets: The MovieLens [6] movie prediction dataset, the
“ModCloth” [14] fashion dataset, and the “Renttherunway” [14] fashion dataset. All three datasets
involve making predictions about relations involving pairs of entities. We introduce these datasets in
Chapter 3.

1.2 Chapter Roadmap

In Chapter 2, we introduce the basic parameter sharing model. This model was developed in joint
work with Ali Mohammad Mehr [15], who proves theoretical properties about the model in his thesis,
and applies the model to water pollution prediction. We also introduce important terms and pieces of

notation regarding entities, classes, and hierarchies.

In Chapter 3, we show how the parameter sharing model can work with entities and relations involving
tuples of entities, and how when working with tuples of entities, we can work under the same framework
as the basic parameter sharing model. This is important because our three test datasets involve relations

on pairs of entities.

In Chapter 4, we investigate the first and second hypotheses. We propose the bounded ancestor method,
where we combine information from more general classes to create informed priors for more specific
unobserved classes. We then combine the prior with observed data. Using the example above, we would
combine limited observed data for male administrators and animated drama documentaries with a prior
obtained individually from male ratings, administrator ratings, animated films, and so on. A tradeoff
exists between emphasizing the prior or observed data: too much emphasis on the observed data causes

overfitting.

We take into account the importance of observed data by bounding the effect of the prior. If no data is
observed, we use the prior exclusively. As more data is observed, the data starts to take over. Building
on this method, we then introduce several variants that outline different ways to combine information
from individual classes to create a prior. We then investigate and compare their performance on several

test datasets.

In Chapter 5, we investigate the third hypothesis, by looking into different ways of creating new classes
by splitting existing classes based on ordinal properties, and we compare these splitting methods along

with the parameter sharing model and the bounded ancestor model.

Chapter 2

Parameter Sharing Model

In this chapter, we introduce the parameter sharing model. The original version, which we call the
basic version of the parameter sharing model was developed in a project with Ali Mohammad Mehr
[15]. The basic model performs regression and classification on individual entities. Regression takes
in an entity as input and produces a numerical output. Classification produces a discrete outcome as

output, and the parameter sharing model outputs the probabilities of these outcomes.

An example regression application is making predictions for water pollution, which Mohammad Mehr
investigates in his thesis [15]. In Chapter 3, we show how the parameter sharing model can be used for

relations on tuples of entities to predict discrete outcomes.

We begin this chapter by introducing key definitions about properties, attributes and classes. We then
discuss class hierarchies, and we transition to a general discussion about learning and regularisation
under the basic parameter sharing model. Since MovieLens and fashion involve tuples of entities, we

leave discussion of those datasets to the subsequent chapters when we formally introduce tuple classes.

2.1 Basic definitions

2.1.1 Properties, Attributes, & Classes

We define a property as a function that takes in an entity and outputs a value. Example properties are
“height” and “shoe size”. All the properties we work with are functions. We convert non-functional
properties to Boolean functions. For example, “Movie Genre” can have multiple outputs such as “Ac-
tion” and “Drama”. We convert these to “Genre: Action” and “Genre: Drama”, both of which are
Boolean functions with True and False as possible values. Note that relations can’t be represented like

this: they are discussed in Chapter 2.

We define an attribute as a Boolean function that compares a property to a value for an entity. An

example attribute is “height(x) > 180cm”. This attribute compares the “height” property on entity x

with the value 180 centimeters, and outputs True or False. An attribute involving equality is “shoe

size(x) = 107, where the “shoe size” property on entity X is compared with the shoe size of 10.

A class is defined as a set of entities. Classes are described by Boolean functions of attributes. Examples

arc:

* The class “height > 180cm” consists of all entities x for which the attribute “height(x) > 180cm”

returns True.

* The class “(height > 180cm) N (shoe size = 10)” consists of all entities x for which the conjunction
of attributes “(height(x) > 180cm) and (shoe size(x) = 10)” returns True.

In the basic parameter sharing model, we start with a fixed set of classes, which we call the represented
classes. An interesting problem is deciding which classes to use as the represented classes, which is
explored in Chapter 5. Central to the basic parameter sharing model is the class hierarchy. The classes

are interrelated, and the relationships between these classes forms a class hierarchy.

C is a subclass of C; if C; C C,. Cy is a proper subclass of C; if C; C C,. The inverse relationship of
a subclass is a superclass. Similarly, C; is a proper superclass of C; if C; C C)

The global class is the class containing all entities. We denote the global class using T.

The relationships between classes can be depicted as a graphical structure, which we refer to as a class

hierarchy. This is important for visualising the relationships between the classes.

In the context of a hierarchy, we can refer to subclasses and superclasses as descendant and ancestor

classes respectively. Additionally, we introduce parent and child classes. For two classes A and B:

* Definition: Parent class: We say that A is a parent of B, if B C A and there does not exist any
represented classes C such that C C A and B C C.

* Definition: Child class: If class A is a parent class of class B, then B is a child class of A.

Since the parent and child class definitions build on the definitions of proper superclasses and subclasses,

the class hierarchy is a directed acyclic graph (DAG).
Cities example

Consider an example about cities. Suppose we have three represented classes of cities: Western Cana-
dian City, Canadian City, and City. Here, Western Canadian City C Canadian City C City. Thus we
say that City is a parent of Canadian City which is a parent of Western Canadian City.

For classes A, B and C, A and B are sibling classes if C is a parent class of both A and B. This is
symmetric: A is a sibling class of B implies B is a sibling class of A.

2.2 Predictions and Parameters

The basic parameter sharing model can be used for both regression and classification. Regression pro-
duces a real number as the prediction, while Classification tries to predict a discrete outcome, which is
a member of a fixed set of outcomes. Mohammad Mehr [15] applies the parameter sharing model to

regression for water pollution.

A model consists of a set of classes and a parameter for each class. We write 0; as the real numbered
parameter for class C;. To make a prediction for the entity, we add up the parameters of the classes that

the entity is a member of.

For example, all predictions involving entities in the class “height > 180cm” use the parameter for
“height > 180cm”. An important property of the basic model is that parameter sharing, along with the
use of regularisation, results in generalisation in the sense that signal is being pushed up to more general

classes in the hierarchy. We discuss regularisation in Section 2.4.

2.2.1 Regression

A dataset is a set of (x,y) pairs, where x is an entity and y is a value. We refer to the training set as Drg
and the test set as Dr. Let C, be the set of classes that the entity x is a member of. We define j(x) as the
prediction for entity x by:

Fx) =Y o (2.1)

jeCx

Since every entity is a member of the global class, the global class parameter is used in the summation

of every prediction. Intuitively one can think of the global class as the most general reference class.

2.2.2 Error function: Sum of squares

To evaluate the parameters for the represented classes, we use the sum of squares error. The sum of

squares error for dataset D is:

2
SSE(D)=) <y,-—) c,-) (2.2)

(thl‘)eD jer,-

The sum of squares error function is a widely used error function in machine learning. The function
penalises the square of the difference of a prediction from the actual label: hence the name “sum of
squares”. We want to minimise equation 2.2 (specifically, to find the parameter values o; that results in

this minimum) for the test set.

2.3 Discrete outcomes (Classification)

Sometimes we want to categorise the entity into one of several discrete outcomes. For example, when

predicting whether users like movies, the outcome could be one of “dislikes” and “likes”.

2.3.1 Binary outcomes

For the binary case, we have two outcomes, for example “likes” and “dislikes”. For simplicity, we refer
to them as “0” and “1”. We want to predict the probability distribution of those outcomes. Since there
are only two outcomes, it is sufficient to maintain just the probability of just one of those outcomes, such
as p1, the probability of “likes”. Since pp 4+ p1 = 1, we can obtain pq (the probability of “dislikes”) by
subtracting p; from 1.

Prediction with two discrete outcomes is also known as binary classification. For this, we take the
standard approach (Jurafsky and Martin [8]) where we utilise a sigmoid function: For any real number
k, Sigmoid(k) = 1+17’ which “squeezes” the numerical value into a probability in the range [0,1]. As
before, we have a entity x, and Cy is the set of classes that the entity x is a member of.

Define a predictor $(x), which is the probability that the model assigns the output “1”, by:

$(x) = Sigmoid ()y oj> (2.3)

jeCx

2.3.2 Three or more outcomes

For more than two outcomes (specifically, M outcomes), a prediction consists of a vector of length M:
[Po,P1,---Pm—1]. As before, Zﬁ‘i 61 pi = 1. A classification task with multiple outcomes is known as

multi-class classification.

For two outcomes, it was possible to obtain pg through 1 — p;, since there were only two outcomes
involved. For M variables, we could obtain any one outcome’s probability from the other M-1 outcome

probabilities. We could also learn an output vector of length M, and normalise to get the probabilities.

A simple single variable linear regression with n weights produces a single numerical output using a
length n weight vector. A multiple linear regression problem [4] outputs multiple numerical values,

using a length n weight vector for each output value.

Our approach is similar to multiple linear regression [4]. For each class j, instead of a single parameter
0, we maintain a parameter vector which we call §;, where §; = [Cj0,0j1, ...Gj(M,l)]. 0j; is the nu-
merical parameter associated with the ith outcome for class j. For example, if there are three prediction

outcomes, the parameter for class A would be S4 = [G40, Oa1, O42)-

We define the Softmax function as follows [5]. Let X be a vector with M elements: X = [xq...xp—1].

The softmax function takes in this vector, and produces another vector that is normalised.

2.4)

=0 &l M1
Softmax(X) = (¢)

Zjexj) Zjexj,...zjexj

The Softmax is applied to the input vector, so that the vector becomes normalised: the components sum

up to 1. It is useful for converting regression outputs into valid probability distributions.

Utilising the Softmax, the prediction function for M classes is as follows. We effectively have several

simple linear regressions, one for each outcome class.

Po Zj:XECj 0o,

iveC. O1j
PU — Softmax Ljuxec; O1j (2.5)
Pm Zj:xeCj Om;j

2.3.3 Error function: Negative log likelihood

For discrete prediction outcomes, we use the negative log likelihood loss. We show the equation for
the binary case here: the three-outcome version is a simple extension of the two-outcome version. The

equation we use is from Jurafsky & Martin [8].

In equation 2.6, the outer summation is over all (x;,y;) datapoints in the dataset D, where y; is the
classification output for the ith datapoint. Since this is for two-outcome discrete prediction (binary

classification), y; is either O or 1.

For any dataset D:

Loss(D) = ——— ¥ [ilogs(x) + (1) log(1 - 5(x))] (2.6)

1D (xi,yi)€D

Note that we divide by the number of datapoints in the test set to obtain a normalised value. We want to

minimise Equation 2.6 on the test dataset Dr.

2.4 Regularisation

Regularisation is a technique commonly employed in machine learning to combat overfitting. Overfit-
ting occurs when a model over-learns on the training data, resulting in a poor ability to generalise to the
test set. A model that is “memorizing” training data is an extreme example of an overfitting model. For
example, a linear model that considers each datapoint to be its own singleton class could then have a

weight for each such class.

Implementation-wise, recall that we sought to obtain parameters that minimised the error function on

the test set. We did so by minimising the same error function but on the training set, to obtain parameters

that could be generalised to the test set. Regularisation adds an extra term to the training error function.
A popular regulariser for simple linear models is the L2 regulariser, also known as ridge regression
when combined with a linear model. We use L2 regularisation in the parameter sharing model. For

more details on L2 regularisation, see James et al: [7].

In his thesis, Mohammad Mehr [15] states and proves several theorems regarding the effects of L2
regularisation on the simple linear model. Here, we show how to add a L2 regulariser to the sum of

squares and negative log likelihood functions.

Adding a L2 regularisation term to equation 2.2, we get: (Let D7g represent the training set).

2
Regularised SSE(Drg) = | Y, <y,-— Y c,-) +1 Y o 2.7)
(x1,yi)EDTR JeCy JEC\{T}

This function is trained (minimised) on the training set, to enable generalisation to the test set. The
test set error function is still equation 2.2 (page 7). Here A is a regularisation parameter, which controls
how large the regularisation effect is. The regularisation summation is over all classes except the global
class. We denote this by the set of classes C\ {T }. Since we are seeking to minimise equation 2.7, the

extra term is a penalty on the size of the class parameters.

To minimise the regularised sum of squares, we take the derivative with respect to the parameters o;.
Notice that the error function is quadratic. Since the derivative of a quadratic is linear, the optimisation
problem that arises from minimising equation 2.2 (page 7) results in finding the zeros of a linear system,
enabling one to use fast solvers like QR decompositions or other numerical linear algebra tools. For an

overview of linear system solvers, see Wright and Nocedal [17].

For discrete outputs, we add the same term to the loss function. We show the binary output case here.

All variables are the same as in equation 2.6.

1

Regularised Loss(Drg) = [Z (yilogfz(x) + (1 —y;)log(1 —)A’(x))ﬂ +2 Z sz

[Dr| (xi.yi)€DTR JEC\{T}
(2.8)
Just like in regression, the regularisation acts as a penalty term that prevents overfitting, and reduces the

size of the parameters.

In the context of the basic parameter sharing model, we see that by virtue of the class hierarchy and pa-
rameter sharing, signal gets pushed up the hierarchy to more general classes if we use L2 regularisation.

To see how generalisation in the parameter sharing model works, consider the following example.

Suppose there is a parent class A, with with three disjoint child classes: By, By, B3. Since the parent

class is a superclass of each child class, an entity who is a member of By, B,, B3 will also be a member

10

of A. Since prediction involves adding the parameters associated with each class, a prediction sum that

includes og1,08) or og3 will also include 4.

If we decrease a child class parameter by an arbitrary constant d, and increase the parent class parameter
by &, the prediction for an entity that is a member of both classes remains unchanged. For example, if
we decrease op; by 6 and increase 04 by 0, the sum of the two will still be 6 + 04. Intuitively, L2

regularisation forces information to be pushed towards the superclasses.

Mohammad Mehr’s thesis [15] introduces several important theorems regarding the effects of L2 regu-
larisation. In particular, Theorem 2.1 [15] of Mohammad Mehr’s thesis shows that in an L2 regularised
parameter sharing model (fully trained), for any parent class with children, the parent’s parameter is
equal to the sum of the child parameters. This is true for all parent classes with children apart from the

global class T. We don’t regularise the global parameter T.

In this chapter, we introduced the basic parameter sharing model, that performs regression and classifi-
cation on simple entities by adding parameters that are assigned to classes. In the next chapter, we show
how the model works with pairs of entities because pairs are also entities. We also introduce our test

datasets.

11

Chapter 3

Relational Parameter Sharing Model

The previous chapter introduced the basic parameter sharing model for entities. The parameter sharing
model can also be applied to tuples of entities, since a tuple of entities is also an entity. The first part of
this chapter shows how the parameter sharing model works with tuples of entities. We then introduce
the test datasets, MovieLens [6] and Fashion [14].

3.1 Tuple Classes, Functions & Hierarchies

3.1.1 Tuple Classes and functions on tuples

Definition: Tuple class: A tuple class is a tuple of classes. A tuple of entities (E}, E;...) is a member of

a tuple class (Cy,C,...) if entity E; is a member of class C; for all i.
We start with a fixed set of tuple classes.

A function on tuples is defined as a function that takes in a tuple of entities, and outputs a value. This
extends the definition of relations to have a more general range, where a relation is a function from
tuples to Booleans, or equivalently, a set of tuples [3]. Both of our test datasets, MovieLens [6] and

Fashion[14], involve functions from pairs to discrete values.

* For MovieLens [6], for a user entity U, and a movie entity M, we are interested in the function
likes(U,M), where likes(U,M) = True means that the rating user U gives movie M is greater than

3, and likes(U,M) = False means that user U gives movie M a rating of 3 or less.

* For Fashion [14], for a user entity U, and a clothing item entity I, we are interested in the function
Fit(U,1), where Fit(U,I) gives one of three possible outcomes depending on how well clothing

item I fits user U: “Small”, “Fit”, or “Large”.

An example tuple class is (Male, Action): consisting of pairs of user entities and movie entities, where

the user is Male and the movie is an Action film. We can write this in set notation as:

12

(Male, Action) = {(U,M) : U € Male N M € Action} 3.1

For instance, let Bob, Brian, and John be two users that are Male, and “Superman” and “Avengers” be
two examples of action movies. Then, (Bob, Avengers), (Brian, Superman), (Bob, Superman), (Brian,

Avengers), (John, Avengers), (John, Superman) are all members of the pair class (Male, Action).

Note that the set of tuples of classes (sets) is more restrictive than the set of tuples. For example, a pair

of classes cannot represent the set of ratings where the user is male or the movie is an action film.

3.1.2 Hierarchies

The subclass and superclass properties defined for classes of entities also hold for classes of entity
tuples. Similarly, the definitions for parent, child and sibling classes are the same. The tuple (A;,A;...)
is a subclass of (By,B;...) iff A; is a subclass of B; for all i.

All entities are members of the global class: T. For tuple classes, the global class is the tuple (T, T...T).
For example, all the (User, Movie) pairs (2-tuples) are members of the global class (T, T), since by
definition, all Users are in T and all Movies are in T. In subsequent sections, we abbreviate tuples

involving T. For example, (Administrator, T) is abbreviated to Administrator.

We show the lattice that can be constructed using the hierarchy formed from the relationships between

the tuple classes in an example.

Consider an example of male Administrators rating animation movies. In the notation of tuple classes,

(User, Movie) tuples with these properties would be in the following pair:

(Male N Administrator, Animation) (3.2)
A (user, item) pair in this class would have the user be a member of Male N Administrator, and the item
be a member of Animation.
The pair class described in Equation 2 is 3.2 is a child class of:
e (Male N Administrator, T)
e (Male , Animation)
* (Administrator, Animation)

(Male N Administrator, T) is a child class of (Male, T) and (Administrator, T). (Male, Animation) is a
child class of (Male, T) and (T, Animation). (Administrator, Animation) is a child class of (Adminis-

trator, T) and (T, Animation).

The classes (Male, T), (Administrator, T), and (T, Animation) are all child classes of (T, T).

13

We illustrate the hierarchical relationships between these classes in Figure 3.1.

Male, T T, Animation

Administrator, Animation

Male N Administrator, T

Male N Administrator, Animation

Figure 3.1: Example Hierarchy involving the pair class (Male N Administrator, Animation), used
in MovieLens[6]. We can see that the more general classes are parent classes.

3.2 Datasets

We use the MovieLens 100K dataset as the binary outputs test set, and the Fashion datasets as the

multi-output test set.

3.2.1 MovieLens

MovieLens [6] consists of several movie prediction datasets where users assign rating scores to movies.
The datasets range in magnitude from 100,000 datapoints to 25 million datapoints. We use the Movie-
Lens 100K and 1M datasets, which consists of 100,000 and 1 million datapoints respectively. We chose
MovieLens 100K and 1M because these datasets contain information about the properties of users,

whereas the 25 million sized dataset does not.

In MovieLens 100K and 1M, the data is provided in raw form as (User, Movie, Rating, Timestamp)
quadruples. Properties of Users and Movies are also provided: Age, Gender, Occupation and Zip code

14

for users, and movie title, release date, whether the film was released for video, IMDB URL, and Genre
information for Movies (IMDB is a website containing information about movies). Table 3.1 gives

example quadruples, and Tables 3.2 and 3.3 gives examples of user and movie properties.

The rating score is a number in the set {1,2,3,4,5}, with 1 being the lowest score and 5 being the highest
score. MovieLens is commonly used for testing recommendation systems, a class of model that tries to
optimally recommend items to users. As mentioned in the introduction, this thesis does not deal with
collaborative filtering: instead, it introduces methods that can be used in conjunction with, and as a prior

for collaborative filtering.

Since there are 5 rating scores, we convert them into two outcomes: we denote scores of > 3 as “likes”
and scores of < 3 as “dislikes”. We do this because we want to use MovieLens as a test set for two

outcome (binary classification) prediction.

The timestamp denotes the time at which the rating was made. Since in real life, customers buy products
and watch movies in real time, models that want to take this into account could utilise the timestamp. In

our experiments, we don’t utilise the timestamp.

In Table 3.1, we show some example data, randomly selected from MovieLens 100K [6].

User ID | Item ID | Rating | Timestamp
275 473 3 880313679
896 73 3 887159368
629 276 5 880116887
394 658 3 880889159
856 310 3 891489217
892 238 4 886608296
279 166 4 879572893

Table 3.1: Example MovieLens 100K [6] data.

In Table 3.2, we show a randomly selected user from the user information for MovieLens 100K.

Property Value

User ID 6
Age 42
Gender M

Occupation | Executive
Zip code 98101

Table 3.2: Example User from MovieLens 100K [6] user information.

15

In Table 3.3, we show a randomly selected movie from the movie information for MovieLens 100K.
The rows ”Unknown” through to "Western” indicate genre: 1 indicates that the movie is of the genre,
and O indicates that it is not. The URL property is not shown here, since it provides an IMDB link and
is not used in this thesis.

Property Value
Movie ID 899
Movie Title | Winter Guest, The (1997)
Release date 01-Jan-1997
Video release NaN
URL

Unknown

Action

Adventure

Animation
Children’s
Comedy

Crime

Documentary

Drama

Fantasy
Film-Noir

Horror

Musical

Mystery

Romance
Sci-Fi
Thriller
War

Western

el ol ol ol ol ol ool ol el S k=l =l =l Nl Nl Nl Nl e}

Table 3.3: Example movie from MovieLens 100K [6] movie information.

3.2.2 Fashion datasets

The “fashion datasets” consist of two datasets: the “ModCloth”, and “Renttherunway” datasets. Both
were compiled by a team from UCSD (University of California, San Diego), and involve predicting the
fit of articles of clothing, based on information about the user (for example, height, feet size), and the
item of clothing. Three outcomes are possible: {Small, Fit, Large}. The fashion datasets are discussed

in more detail in the creators’ original paper [14]. “ModCloth” contains around 82,000 datapoints, while

16

Renttherunway contains around 192,000 datapoints.

In raw form, each fashion dataset is given as a JSON file with a dictionary for each datapoint. Each
dictionary contains property value pairs. The first entry in the dictionary is “fit”, the output label. In
both fashion datasets, properties are sometimes not reported for certain datapoints. For example, in the
“ModCloth” dataset, of the 82790 datapoints, only 27914 of them have Shoe size specified.

In both “ModCloth” and “Renttherunway”, “fit” is the most common target outcome. In “ModCloth”,
68.6 % of datapoints have “fit” as the label, and 73.7 % of datapoints in “Renttherunway” have “fit” as
the label.

In Table 3.4 we show an example datapoint from the ‘“Renttherunway” dataset. The review text property

is not shown due to its length: it consists of a review paragraph that isn’t used in this thesis.

Property Value
Fit Fit
User ID 420272
Bust size 34d
Item ID 2260466
Weight 1371bs
Rating 10
Rented for Vacation
Review text -
Body type hourglass
Review summary | “ So many compliments!”
Category romper
Height 5’8
Size 14
Age 28
Review date April 20 2016

Table 3.4: Example datapoint from “Renttherunway” [14]

The user_id” indicates the user, and ”item_id” indicates the item entity. As part of our pre-processing,
we identify which properties belong to the item and which properties belong to the user. There are a few
properties that don’t belong to either, and we put them under “other properties”. The properties are as

follow:
» User Properties: User ID, Age, Body type, Bust size, Height, Weight.
* Item Properties: Item ID, Category, Size.

* Other Properties: Rating, Rented for, Review date, Review summary, Review text.

17

Similarly, we show in Table 3.5 an example datapoint from “ModCloth”. The username property is

omitted since we don’t use it in this thesis.

Property Value
Item ID 123373

Waist 27
Size 11
Cup size c
Hips 41
Bra size 36

Category New
Length Just right
Height S5ft4in

User name -
Fit small
User ID 162012

Table 3.5: Example datapoint from “ModCloth” [14]

Just as in “Renttherunway”, we pre process by extracting the user, item, and “other” properties. The

properties are as follows:

» User Properties: User ID, user name, Bust, Bra Size, Cup size, Height, Shoe size, Shoe width,

waist.
 Item Properties: Category, Length, Quality.
* Other Properties: Review summary, review text.

Notice that the example datapoint in Table 3.5 has several properties missing, for example “shoe size”
and “shoe width”.

In this chapter we described how since tuples of entities are also entities, the basic parameter sharing
model applies. Learning and regularisation are the same as in the basic parameter sharing model. In the

next chapter, we introduce the bounded ancestor method.

18

Chapter 4

Prior and Posterior Prediction for Classes

This chapter investigates the first and second hypotheses from the introduction.

* For the first hypothesis, we introduce and explore the bounded ancestor method for combining
priors with observed data. We then introduce three variants for combining multiple parents, and
we compare these methods on the fashion datasets. The results of the comparison are shown in
Chapter 5.

* For the second hypothesis, we conduct a grid-search experiment on examples of multiple par-
ents from all three datasets, to determine whether a weighted combination of the three variants

produces a better prior than an individual variant.

4.1 Background

When we observe few or no datapoints for a class, we want to obtain a prior for the class. If known
information is from related or more general classes, we want to use information from these general
classes to create an informed prior. We then want to combine the prior with information from observed

data to get a posterior for a class. Having a prior is important to avoid overfitting when data is scarce.

In Bayesian statistics the prior probability for a random variable represents the prior knowledge about it.
The prior probability is combined with information from the observed data through multiplication with
the likelihood function. If we haven’t observed any data about the random variables we are interested
in, we use the prior probability for inference. As the amount of observed data increases, the data starts
to dominate the prior. For an introduction to Bayesian statistics in the context of machine learning, see
Murphy [16].

When dealing with classes of entities or classes of entity pairs, sometimes all we know about an entity
is that it is in a particular class. It would be very helpful to have a prior for that class. If there are no
observations for that class, the prior for is all we have. As the amount of data for the class increases, the

effect of the data should take precedence.

19

Our two test datasets, MovieLens 100K [6] and Fashion [14] both involve discrete target outcomes. We
are interested in a probability distribution over these outcomes. A sensible choice of distribution to use

as the prior for the probability of the target outcomes is the Dirichlet distribution [1].

w
p(ufa) o< [Tu (4.1)
i=1

Here, y; are random variables that have real values between 0 and 1, and YV, u; = 1. The y; random
variables are mutually exclusive, representing a set of probabilities of W outcomes of a single random
variable Y. For each outcome i of the random variable Y, u; is a random variable representing the

probability of that outcome.

The «; are the parameters of the Dirichlet distribution. There are two ways of parameterising a Dirichlet

distribution.
* A positive real number ¢ assigned to each outcome i. For W target outcomes we write [Q] ...Qyy].

* A probability p; associated with each outcome i, together with a positive number N. For W target
outcomes, we write [p;...py| and N.
To map between the two parameterisations, we can do: [10]

(241 O
W oW
Yl o ’ Yl o

* To get to the second parameterisation from the first, [py...pw] = |] and the positive

: w
numberis N =Y., ;.
* To get to the first parameterisation from the second, ¢; = p;N for all i.

In this thesis, we use the second parameterisation for Dirichlet distributions. We refer to the real numbers

[@)...a] and N as pseudocounts when dealing with Dirichlet distributions.

4.2 Bounded ancestor method

We use the bounded ancestor method for binary and multi-target classification. The bounded ancestor
method outputs a probability distribution over the target outcomes. For instance, in Chapter 3, we said
that each MovieLens 100K [6] entity pair is also an entity, and we defined a function that mapped each
such entity to a target outcome: “dislikes” or “likes”. The bounded ancestor method gives a probability

distribution over [“dislikes”, “likes”].

The bounded ancestor method combines an informed prior with observed data about entities in particular
classes to get posterior distributions over the target outcomes for those classes. Both the prior and

posterior distributions are in the form of Dirichlet distributions.

4.2.1 Notation

For a class A, the signal from below is information from observed data about entities in class A.

20

* For a target outcome v, p} (v) is the probability that an entity in class A has target outcome v, for

the signal from below. That is, pI\ is a function that takes in a target outcome and outputs the

probability of that outcome.
. NZ denotes the total number of entities in class A.
The signal from above is information from the prior for class A.

* For a target outcome v, pf‘ (v) is the probability that an entity in class A has target outcome v, for

the signal from above. That is, pj is a function that takes in a target outcome and outputs the

probability of that outcome.
. Ni denotes the total number of entities assumed in the signal from above for class A.

To get the posterior distribution for class A, we mix the signals from above (pj, Nj) and below (pj\, NZ).

The mixing is a standard mixing of two Dirichlet distributions.

* Let p4 be the posterior probability distribution for class A. For target outcome v,

PAVNS + ph (VN
N{+N|

pa(v) = (4.2)

e Let Ny be the combination of the number of entities in class A and the number of entities assumed

from the signal from above. For class A, Ny = Nj + NZ

4.3 Bounded ancestor method for trees

We first illustrate how the bounded ancestor method works for trees. In a tree hierarchy, each class

(except the global class T) has exactly one parent.

Suppose we are interested in the distribution over target outcomes for a class A. Since we are in a tree,
class A has a single parent which we call Ap. Class A can also have number of sibling nodes, who share
the same parent Ap. This structure is illustrated in Figure 4.1. We first need to obtain the signals from

above and below for class A.

21

Figure 4.1: We are interested in class A, which has a single parent Ap, which has parent Ag.

The signal from below is a pair of two items pj‘ and NX, both of which can be obtained directly from
the members of class A. We obtain them by counting all the members of class A. The total number of
members of A is NX' ij maps from the set of target outcomes to the proportion of members of A with

those outcomes.

The signal from above is the prior. This is also a pair of two items: pﬁ and Ni. We get this prior by
looking at the posterior for the class of entities that are in the A’s parent but not in A. These are entities
in the set Ap — A, consisting of the set of all the entities not in A but in A’s parent. For a tree structured

class hierarchy, we write:

Ph = Pap-a 4.3)

N =k (4.4)

k is a numerical constant called the bounding constant. In Equations 4.3 and 4.4, ps,—4 and Ng,_4
represents the posterior for the class Ap — A. class Ap — A consists of the entities that are in A’s parent
but not in class A. As the amount of observed data for a class increases, we want to use the observed
data and not rely too much on the prior. We try to achieve this by limiting the effect of the prior by

bounding N ! by k. This bounding is where the name “bounded ancestor model” comes from.

The prior for the global class T always consists of a uniform probability distribution along with k

22

1

7] and N# = k. For all classes A,

pseudocounts. For W target outcomes, the prior would be p# =

we use a fixed pseudocount of & for the prior of A.

4.3.1 Mixing signals from above and below

Once we have the signal from above and the signal from below for a class, we “mix” these two signals

to get a posterior distribution for that class.

At this point, we’ve computed the prior pj, Nj, and the signal from below pj1 and NX. The posterior
distribution consists of a direct mix of the signals from above and below. We use Equation 4.2 (page

21), which is a standard mixing of Dirichlet distributions. For a target outcome v:

PR (VNS + ph (VN
Ni+N|

pa(v) =

The posterior count is obtained by adding the pseudocounts from above, and the number of observed

counts.

Na=N{+N] 4.5)

Before proceeding, there are two things worth mentioning about the method.

* Since the global parameter has no siblings or parent, the “downward” count for the global class is
a user-defined prior. We choose a uniform prior consisting of a uniform probability distribution

along with a pseudocount of k.

* We conjecture that the bounding constant k should be chosen to be relatively small, on the order
of 0-100. This is because in our test datasets such as MovieLens 100K [6], there are examples
of classes with very few observations (less than 100). Since we want the data to be emphasized
over the prior, k should be limited. If & is too large, the prior instead pulls the prediction towards

information from other classes. We test this conjecture in Chapter 5.

4.3.2 Parameters

By mixing the signals from above and below, we obtained the posterior for a class A, which we denoted

using ps and Ny.

From the posterior for a class A, we can get the parameter for the class. For a class A, let o4 be the

parameter for the class. 04 is a function that takes in a target outcome, and outputs a real number.

To obtain the parameter 64 for a class A, we apply an inverse softmax function to A’s posterior proba-

bility p4, and then subtract the parameters of all the superclasses of A.

23

4.4 Bounded ancestor method for graphs

4.4.1 Multiple parents

In many real-world class hierarchies such as the one constructed from MovieLens 100K [6], classes
can have multiple parents. For a class in a tree, we showed how the signal from above is obtained
by considering entities that are in the parent class but not in the class of interest. If the class we are
interested in has multiple parents, we want ways to combine information from these parents to get the

signal from above.

As a motivating example, consider the hierarchy shown in Figure 4.2, which we will return to throughout
this chapter. Now, instead of class A having a single parent Ap, class A now has two parents, Ap; and
Ap.

Previously when A had a single parent Ap, we used the posterior of the set Ap — A. For two parents, we

want to use information from the sets Ap; —A and Ap, — A in some way.
* Ap; — A is the set of entities that are in A’s first parent but not in A.
* Apy —A is the set of entities that are in A’s second parent but not in A.

Note that the sets Apy —A and Apy — A don’t have any common entities. This is because A is the
intersection of Ap; and Apy. For an entity to be in both Ap; —A and Ap, — A, it would have to be in the

intersection of Ap; and Ap,, and not in A, which is impossible.

Figure 4.2: We are interested in class A, which has two parents Ap; and Ap,

We now present three variants that combine information from multiple parents to get the signal from

above. We show how they work with M parents. For two parents, we can set M = 2.

24

4.4.2 Variant 1: Sibling data

In this variant, we use data from entities that are in parents of A but not in A. We call these siblings
because they typically come from siblings of A. If any entities are in A but not in A’s children, we can

construct a dummy class of those entities.

If A has M parents, Ap;...Apy, then this variant combines information from the posteriors of Ap; — A,
Apy — A, up to Apy —A. Just like in the tree case, when working out the posteriors of Ap; — A for all
parents i, the signal from below excludes the entities in A, while the prior for Ap; — A is the prior for Ap;,

since excluding entities in Ap; also excludes entities in A.
pﬁ would be, for a target outcome v:

Z?il (pAPi*A (V)NAPi*A)
Z?il NAPi_A

ph(v) = (4.6)

Like in the tree structured case, because we use a uniform prior with k pseudocounts for the global class,

the total number of entities in A’s prior is just the bounding cons