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Abstract 

 

The increasing deployment of informatics and communication systems in distribution 

systems (DS)s enables many desirable functionalities such as optimal control of distributed energy 

resources, online fault detection, online topology identification and energy theft detection. In this 

thesis, we focus on exploiting this emerging monitoring and control infrastructure to address high-

impedance faults (HIF)s. HIFs have long been recognized as a serious protection issue in DSs, 

which can adversely impact the DS safety and protection as well as its operation and profitability. 

Trees contacting overhead lines and deteriorated insulators (due to cracks, dust, humidity, ice, etc.) 

are the main triggers of HIF in DSs. Once created, HIF imposes a large impedance between two 

phases or to the ground (through a third object like a tree or the utility poles). Given its high 

impedance value, HIF usually draws a relatively small current, less than the nominal load level, 

making it undetectable for relay protection systems. However, the persistent existence of HIF 

dissipates significant electric power on the long-term, which is undesirable for DS profitability 

and operation. More importantly, the existence of such HIFs presents weak points in the DS that 

can easily deteriorate to arcing faults, raising major safety concerns. Existing literature on HIF 

detection exploit the nonlinear and transient properties of the HIF current, which depends on the 

use of measurements with high sampling rates (several kHz to MHz) to enable the extraction of 

the features corresponding to the HIF by applying appropriate signal processing techniques. As 

such, these approaches demand high-resolution measurements, which are not necessarily 

economical or available for many distribution systems. On the other hand, today’s distribution 

systems are mostly equipped with other types of measurements that are far slower than those 

required by the existing HIF detection algorithms. These measurements are however transmitted 
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to one central unit and are typically processed together for DS static state estimation. This thesis 

proposes to take advantage of this and to enable the detection of HIFs using the static DS state 

estimation. The HIF detection problem is accordingly re-defined in a static framework and the HIF 

is modeled as a parameter to be estimated from the measurements available to the central state 

estimator from different sources including SCADA, smart meters and PMU measurements. The 

distribution system state estimation model is augmented to allow for the proposed HIF detection 

functionality. The IEEE 13-bus and 123-bus systems are used to evaluate the effectiveness of the 

proposed approach. 
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Lay Summary 

 

High-impedance faults (HIF)s are faults that draw current so small for detection by the protection 

system. The negative effects of HIFs include loss of power and profitability, insulation and cable 

aging, more frequent maintenance requirements and safety concerns. Existing literature on HIFs 

detection propose using measurements with very high sampling rates (of up to MHz) to extract the 

nonlinear and transient features that correspond to the HIF. However, equipping every single line 

of the distribution system with such measurements and their corresponding data communication 

and processing systems is far from economical for today’s distribution systems. On the other hand, 

many of today’s distribution systems are already equipped with slow-rate measurements of rates 

varying from 5 × 10−4𝐻𝑧 (SCADA measurements) up to 60 𝐻𝑧 (PMU measurements), which are 

serving already in many valuable functionalities such as load prediction, distributed energy 

resources’ optimal control, system topology identification, system states and parameter 

monitoring, energy theft detection, etc. We propose using the existing measurement infrastructure 

for detection and location of the HIF, by processing the measurements from all over the system 

simultaneously at the central monitoring unit. The framework of the HIF location problem is 

formulated for this purpose and an algorithm is proposed that detects and locates the HIF in 

distribution systems. 
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Chapter 1: Introduction 

 

High-impedance faults have a unique position in the research history in the area of 

distribution systems for two reasons. First, HIF currents are in the operational range of the 

distribution system currents, which requires specific methods for its detection and treatment 

distinct from the over-current relays. Second, the HIF is not as destructive to distribution systems 

as the short-circuit faults, and many distribution systems have high-impedance faults in their 

operational conditions. Therefore, the operators tend to neglect the HIF if it does not impose any 

safety problem or damage to the human or environment. The research in this area is accordingly 

not mature enough to be applied to all distribution systems due to the significant cost of the 

proposed methods in the literature. 

In the first chapter, we specify the advancement of the existing research on the HIF in 

distribution systems and evaluate the possibility of applying these methods in the actual 

distribution systems. Then we introduce the proposed method in this thesis for HIF detection and 

location, which is based on the modern online monitoring of the distribution system that uses the 

state estimation. To do so, the existing literature on the distribution system state estimation and its 

online monitoring is reviewed briefly, which will be used to develop the proposed method. 

 

1.1 High-impedance faults in distribution systems 

Distribution system is quite exposed to the environment due to its nature. It is inevitable to 

prevent the system from the frequent faults and flaws. For example, the objects contacting the 

pole-mounted wires in the rainy days can cause short-circuit faults. The pole-mounted cables are 

more resilient to such faults, yet lightning strikes can, for instance, result in instantaneous 
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overvoltage and considerable currents passing through the cables, in addition to the vulnerability 

of their connection points to different types of faults. The underground distribution lines are safer 

compared with the pole-mounted networks, however, they suffer from the higher maintenance 

costs in case of faults, due to harder access to the underground cables by digging the earth. Thus, 

the distribution systems are designed to reduce the negative impacts of such faults and 

interruptions. For example, the relay protection system is always a very important part of the 

system design, which detects and removes the faults immediately by de-energizing the faulted 

feeder. However, the high-impedance faults (HIF) possess a special position in the distribution 

systems faults due to its special characteristic, that is, it draws the currents in the operational range 

of the system [1], which remains undetectable for the relay protection systems.  

(a) A slum in Brazil (b) Sistan, Iran

(c) San Francisco, USA (d) Allahabad, India  
Figure 1.1 HIF origins; images are taken from (a) Documentary movie “Pandora's Promise” by Robert stone, 

2013, (b) ISNA, Iranian Students’ News Agency, (c) https://www.govtech.com/ and (d) https://www.wsj.com/ 
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1.1.1 High impedance fault origins  

Contact of the pole-mounted wires to the trees, the deterioration of the insulators as a result 

of aging, surface dust or humidity, birds’ dead body, etc., are among the primal causes of the HIF, 

which are quite common in distribution systems. Some other causes of HIF in distribution systems 

in the rural areas are the human activities. For example, using the utility poles to support small 

structures or for hanging the clothes, unsafe design of the feeders close to the homes’ walls, over-

extending the existing feeders to many customers, electricity theft, etc., are among other causes of 

HIF. Figure 1.1 shows several common origins of high-impedance fault in distribution systems. 

In addition, a different type of HIF happens when one or some of the overhead wires break 

and falls on the ground. In this case, if the ground is dry enough to impose a high-impedance 

between the phase and the electrical ground, then the fault current will be in the operational range 

of the load currents, which is classified as HIF. Figure 1.2 shows examples of such high-impedance 

fault, which is usually accompanied by arcs as can be seen. 

(a) (b)  

Figure 1.2 Overhead wire breakdown and contact to ground (a) from [1] and (b) [2] 

1.1.2 Existing high impedance fault detection methods 

The impedance of HIF, as considered in the literature, varies from 400 𝛺 [3] to 15 k𝛺 [4]–

[6] depending on its origins, which is in the range of normal loads operating in the distribution 
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systems. Therefore, the current magnitude of the HIF cannot be used alone to detect the HIF. 

However, the HIF connection point is usually unstable, as can be seen in figures 1.1 and 1.2, and 

its current contains a high harmonic contents. Traditionally in the literature, the frequency-domain 

characteristics of the current or power of HIF is used for its detection. Thus, the HIF detection 

problem is traditionally defined as a feature extraction problem from the HIF current or power 

waveform. For example in [5], [6], it is concluded from simulation results that specific frequencies 

are corresponding to the HIF, which are in the range of the MHz. In order to enable extraction of 

MHz frequencies from the HIF current waveform, the current should be measured at least by 

sampling rate more than twice the desired frequencies according to Nyquist’s sampling theorem. 

However, equipping all the feeders with such high sampling rate measurements is infeasible in 

today’s distribution systems. Therefore, the HIF remained a substantial problem, which is unsolved 

as of today. On the one hand, there are many HIF in different points of many operating distribution 

systems that are undetected [1], and are causing trouble for the optimal operation of the system. 

On the other hand, due to its high-impedance, HIF does not usually impose immediate safety or 

security issues, that pushes the operators to forget about investing on the very high-cost 

measurements with high-sampling rates. As a result, HIF remained a problem that exists in 

distribution system for a long time, while there is no economically feasible solution in the actual 

systems. In theory, the feature extraction approach can successfully detect the HIF, however, this 

approach is far beyond the economical limits of today’s distribution systems. 

HIF usually progresses over time to draw a small current, which is highly non-stationary 

and non-predictable [2]. The transient and nonlinear properties of HIF are mainly used in the 

literature for its detection by different signal analysis and feature extraction techniques. A constant 

HIF without any associated arcs or disturbances is hardly investigated as an issue, despite the long-
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term aggregate power loss and safety concerns of such HIFs. In [7] and [8] a combination of anti-

parallel diodes with a variable resistance is considered as the HIF model and different signal 

processing techniques are used to extract specific HIF features from high-resolution current 

measurements. A wavelet transform, independent of system model, is used for HIF detection in 

[9]. A pattern classifier, whose inputs are the waveform energy in addition to the time-frequency 

moments, is proposed for HIF detection in [10]. The works in [11]-[12] attempted to detect HIFs 

by analyzing the harmonic content of the current measurements and detecting the harmonic 

signature typically associated with frequent arcs appearing in case of tree contact or insulator 

breakdown. The harmonic contents of the high-resolution current measurements are considered as 

states in [13] and the problem of HIF detection is formulated for Kalman filter, with magnitude of 

different harmonic content of the HIF current waveform as observations. Feature extraction is 

detailed and a systematic approach is taken for feature selection in [3]. An elaborate feature 

selection is also proposed in [14] for the same purpose. The magnetic-field measured around 

overhead lines is used in [15] to detect HIFs existence. Transferring wave equations in power lines 

are solved for the maximum likelihood of fault location with time-reversal theory in [16]. 

Considering a single line with high-resolution measurements at one end, the problem of HIF is 

formulated for estimation in [17], where measured waveforms are sampled at high sampling rates 

and the HIF distance from the end node is estimated. In addition, some field experiments have 

been conducted on different HIFs at Texas A&M University, based on which a practical device 

was built to locate HIFs [2]. 

The works surveyed so far assumed the availability of high-resolution measurement 

devices over the line where the HIF happens. In contrast with these methods, the detection schemes 

in the [4]–[6], [18], [19] are designed for HIF detection in an entire distribution system rather than 
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in a single line. A measurement architecture is proposed based on power line modems in [18], 

which are able to deliver a sampling rate in the MHz range, and a classification method is used to 

detect HIF. A wide-area estimation approach is taken in [19] based on normalized residuals for 

general fault location. DS model-based approaches attempted the evaluation of line impedances in 

presence of HIF, as in the approach presented in [5], [6] and later extended to multi-conductor 

network in [4]. This approach is based on an impulse signal injection to the system and analyzing 

the impulse response on certain frequencies which are shown to carry information about the HIF 

location. This approach is designed for medium voltage systems, whose end transformer is delta-

connected and acts as open-circuit for the studied frequencies. Even though it is a strong approach 

for HIF detection, it cannot be applied for the low-voltage where the transformer is star-connected 

with neutral connection. On the other hand, HIFs are still likely to happen in low-voltage networks 

due to less maintenance and lower height of overhead lines, especially in lines far from the main 

feeders or in rural areas. Reference [20] addresses the problem of multiple location estimation of 

HIF in DS model-based approaches. In addition, use of even harmonics is suggested for HIF 

detection in [21], where also it is proposed to modify all of the smart meters to report even 

harmonics of the node they are measuring. In this way, they could enable HIF detection over the 

entire DS, however, equipping all of smart meters with several even harmonic measurements pose 

significant cost to the monitoring system, considering all communication and computation needs. 

 

1.2 Proposed approach to HIF detection 

As explained, the existing HIF detection methods require measurements of the current 

waveforms at a very high sampling rate, which is not in the feasible economical limits of today’s 

distribution systems. On the other hand, modern distribution systems are moving toward the online 
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measurement schemes with much lower sampling rates from 1 sample per 30 minutes in old 

SCADA measurements up to 60 samples per seconds in modern PMU measurements. These 

modern measurement infrastructure provide various desirable functionalities for distribution 

systems, such as optimal control of distributed generation units, system model and parameter 

estimation and correction, load prediction, fault location, energy theft detection, etc. We propose 

a state-estimation approach that uses the existing online measurement schemes for HIF detection 

and location. 

The existing HIF detection methods [1]-[21] are mainly concerned with HIFs from a 

protection standpoint and attempt to detect those HIFs that cause safety issues due to arcs or other 

disturbances, by extracting the transient and nonlinear properties of HIF from high-resolution 

measured waveforms. Persistent high-impedances in the system, which have not yet progressed to 

arcing are however less focused on. Such high-impedances can develop in DSs in different ways, 

important among which are those due to leakage impedances. For example, [22]–[24] investigate 

the leakage impedance of insulators polluted with salty sea water, intense fog, and different surface 

pollutants, respectively. The leakage current on silicone rubber insulators under thermal and 

electrical stress is investigated in [25]. Such leakage impedances may result in flashover on the 

long-term if not resolved. The probability of flashover as a result of polluted insulators is studied 

in [26]. Although the leakage impedance may not cause immediate safety and flashover problems, 

their power loss will be considerable on the long-term, and their detection will prevent their future 

hazardous impacts. Thus, in many DSs periodical tests of insulators are routinely performed. Yet 

the surveyed papers and other research on the subject in the literature have not properly addressed 

the need for detecting these types of persistent HIFs before they develop into arcing faults. We 

propose the detection of such HIFs using DS state estimation (SE). As such, in this work the 
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problem is defined in a static framework and the HIF is modeled as a parameter to be estimated 

from the phasor measurements available in the system from different sources such as SCADA, 

smart meters, PMU measurements, etc. 

1.2.1 Existing distribution system online measurement schemes 

With the increasing penetration of the renewable energy resources in the modern 

distribution systems (DS), the online monitoring and control has become of vital importance for 

optimal, secure, safe and uninterrupted operation of the DS. There are different strategies 

depending on the operators’ approach to the system operation. For example in the smart grid 

approach, the consumer side is equipped with the smart meters [27], which provide bi-directional 

communication paths to i) transfer the measurement data from the consumer side to the monitoring 

center and ii) provide the consumers with the online pricing to involve them in the optimal 

operation of the system. SCADA systems are also widely used in the distribution systems, which 

enables online measurement of the system in with a slow sampling rate pertaining to the slow 

dynamics of the traditional distribution systems [28]. In the modern distribution systems, PMU 

provide online measurement of the system at a far faster sampling rate [29] , where the dynamics 

are more critical due to the integration of distributed generation units. The sampling rate varies for 

SCADA systems between one sample per second up to one sample per several minutes, whereas 

that of PMU varies between 60 Hz down to 20 Hz in different references. 

In general, an online measurement system for distribution system involves three main parts: 

 Measurement equipment: potential transformers (PT), current transformers (CT), the 

analog/digital converters, noise filters, etc. 

 Communication routes: wireless senders and receivers, optical fibres, communication 

cables, etc. 
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 Data processing equipment: the processors that receive the measurement data, process, 

filter and encrypt them and send them to the according points of the control and monitoring 

system 

PMU-1

PMU-n

PMU-2

PDC

[V  I  f ]

[V  I  f ]

[V  I  f ]

SCADA

RTU-1

[P  Q] RTU-2

RTU-m

WAMS
[P  Q]

[P  Q]

MDMS

SM-lSM-1

[P  Q]
[P  Q]

 

Figure 1.3 A distribution system can be monitored by SCADA, PMU and Smart meters simultaneously 

PMU: Phasor measurement units; PDC: phasor data concentrators; 

SM: Smart meters; MDMS: Meter data management system 

RTU: Remote terminal unit; SCADA: Supervisory control and data acquisition 

 

The three online measurement approaches, namely, smart meters, SCADA systems and PMUs, 

differ from each other in terms of all three aspects of measurement devices used to measure the 

electrical (and rarely mechanical) quantities, communication protocols used to transfer the 

measured data, and the data gathering and processing strategies. After all, from operators’ 

standpoint, the major difference between them can be summed up as follows: 
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 Smart meter: provides bi-directional communication to involve the consumers in the 

optimal operation of distribution system by informing them of system condition and price. 

The sampling rate varies in different references. 

 SCADA: provides unidirectional communication similar to PMU, with slow sampling rate 

from a sample per 30 minutes to a sample per 1 second. Suitable for traditional distribution 

systems where the dynamics are slow.  

 PMU: provides fast sampling rate, from 20 Hz up to 60 Hz. Suitable for active distribution 

system with several distributed generation units that involve fast dynamics and require 

stability monitoring and control functions. PMUs are thus more expensive to implement 

compared with SCADA systems. 

1.2.2 Distribution system state estimation: literature review, challenges and discussion 

Even the most accurate measurement in any system contains an error compared with the 

true value it is measuring. The error has several different sources depending on the system and 

measurement infrastructure. In distribution system, the measurement errors may come from the 

measurement devices’ noise or bias (due to aging for instance), occurring in the data transmission 

due to communication interference, as a result of digitalizing/compressing the numerical values, 

etc. Generally, the errors can be categorized in two classes of noise and bias. The former is the 

zero-mean and usually small error, which is inevitable; whereas the latter, bias, is the systematic 

error of the measurement infrastructure that should be avoided. To translate the noisy and 

erroneous measurement into the most likely system state estimate, is the main task of state 

estimation, in addition to the other functionalities that are discussed in what follows. The state 

estimation uses the mathematical system model (i.e. power flow equations derived from KVL and 

KCL laws) along with the measurements to estimate the system states. The most important aspects 
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of distribution system state estimation, which have become the focus of many researches, are 

discussed in the following along with the corresponding references. The reason of the state 

estimator selected in this thesis is also explained next to the corresponding references, by providing 

cons and pros analysis. The study of power system state estimation was developed as a discrete 

topic in late 1960s, and has been an active and dynamic research area ever since. The amount of 

relevant references are enormous in this area, thus only the most important references that pinpoint 

the ongoing research directions in the state estimation area are surveyed in this section, in addition 

to those references that leads to the development of the proposed HIF detection method based on 

distribution system state estimation in the current thesis.  

1.2.2.1 State selection in distribution system state estimation 

The selection of system states is one important aspect of the state estimation. A distribution 

system can be represented by different selection of variables as states. In the literature, two major 

selection of states are advocated, which are node voltage phasors [30] and branch current phasors 

[31]. In one special case, the powers are considered as states [32]. The phasor representation of 

the variables will be discussed in chapter 2. All of the estimators considered in the literature work 

with the real values, thus the phasors are themselves represented by separate polar or Cartesian 

representation. For example, angle and magnitude of node voltages or branch currents can be 

selected as states, which are real value representation of complex values (polar form). Real and 

imaginary parts of the node voltages or branch current can be also used as the states (Cartesian 

form). Each selection of states has cons and pros compared with others, which are the focus of 

many researchers in this area. The state selection of many references are listed and compared in 

[27]. Historically, Schweppe was the first to formulate the power system equations for estimation 

in 1970 [30], who considered the node voltages in polar form (i.e. the voltage magnitudes and 
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voltage angles of all nodes, resulting in number of states equal to number of nodes times two). 

Schweppe’s model was proposed for the single-phase representation of the symmetrical power 

systems, which could be easily extended to the unbalanced three-phase systems. In 1994, Baran 

proposed use of branch-current for three-phase state estimation of distribution systems [31], where 

the main motivation was to increase the sparsity of the measurement matrix. The most significant 

step in the computations of the conventional state estimators is the inversion of the measurement 

matrix (that is the gradient/Jacobian of the measurement function). The branch-current-based state 

estimators’ measurement matrix is sparser compared with the node-voltage-base estimators, thus 

its computations could be possibly lighter. However, the branch-current-based algorithms require 

the transformation of branch currents to the node voltages at the end of each estimation iteration 

to obtain the other system’s dependent variables, and then transformation of the voltages back to 

the currents at the start of each estimation iteration in order to form the branch-current-based 

estimation. The voltage-current transformation might require much less computations compared 

with the matrix inversion depending on the system size and observability. Therefore, the branch-

current-based algorithm can have actually less computations compared with the node-voltage-

based estimators. However, one major disadvantage of the branch-current-based estimators is the 

complexity of the algorithm itself. In order to solve the system one time based on the system 

currents and then one time based on the system voltages, the topology matrices have to be saved 

and accessed actively in different forms. For example, when the distribution system is updated by 

adding one feeder, it is much harder to update the branch-current-based estimator algorithm. 

Whereas the node-voltage-based estimator only requires the admittance matrix for power flow 

equations, and which uses the topology in terms of from-to vectors of bus numbers. Thus only one 

matrix is required in the node-voltage-based estimator to represent the topology, whereas in the 
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branch-current-based estimator three different topology matrices are required that are the system 

branch-current incident matrix for the estimator, the system from-to topology matrix for power 

flow equations, and the system branch-node incident matrix for the voltage-current transformation. 

In a sufficiently small system, the branch-current-based estimator is certainly more complex and 

more time-consuming than the node-voltage-based estimator, because the time of back and forth 

transformation between currents and voltages are not compensated sufficiently by the 

improvement of matrix inversion due to more sparsity (in small systems). Therefore, for the most 

general case, the node-voltage-based estimator is used in this thesis. The branch-current-based 

formulation is not suggested unless one faces an actual barrier in terms of processor for very large 

systems. Even in that case, the branch-current-based algorithm should be coded efficiently enough 

to surpass the node-voltage-based algorithms. 

 

Figure 1.4 Research on distribution system state estimation: challenges and existing solutions 

 

1.2.2.2 State estimation algorithms 

From the distribution system formulations, the choice of weighted least squares (WLS) seems 

natural because of the very straightforward implementation on the nonlinear but static system of 

equations in the distribution systems, which was formulated in Schweppe’s work [30]. 
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Accordingly, many of the following research articles used WLS, unless they are trying to address 

other specific requirements. In general, there are three major concerns focused in this research 

area, which are i) the complexity of the estimation algorithm for computation and implementation, 

ii) the robustness and accuracy of the state estimates, and iii) system observability. 

 Accuracy of the state estimates and robustness against false data 

In order to cope with the false data in the measurement (measurement outliers) as an example, 

weighted least absolute value (WLAV) is used [33]. Alternatively, the robust M-estimators are 

used frequently for the same purpose [34], [35], which have more flexibility due to selection of 

Huber function. The M-estimators was also proposed originally in the very first days in [36]. A 

comparison between the WLS, WLAV and M-estimators is provided in [37]. Least trimmed 

squares estimator is also proposed for robustness against outliers in [38]. Others simply used the 

residual-based bad data detection to find and remove the measurement outlier directly [39]. The 

papers [33]-[39] try to deal with the measurement outliers, which are quite common in the 

distribution system due to the nature of the monitoring systems (low-measurement updating rate, 

frequent communication failure, frequent faults, voltage sag/swells or other events during which 

the measurements’ values are biased). 

 Computational requirements improvement of estimators 

On the other hand to reduce the computational burden of the distribution system state 

estimation, different algorithms are proposed. In general, there are two approaches for computation 

improvements, which are different linearization of the nonlinear equations, and parallelizing the 

solution to large systems of equations (distributed). For example, all of the variables and equations 

are extended by their first two Fourier terms around the voltages 1 and angle zero prior to be used 

in the WLS in [40], which gives a very straightforward linear SE formulation, although it might 
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result in high errors. Some other linearized formulations are proposed in [41]. State estimation is 

formulated as a linear programming problem in [42]. In order to reduce the computations, the 

parallel solutions to the measurement equation is used in [43]-[44] instead of the simultaneous 

WLS solution. In [45], the parallel computing-based algorithm is proposed to solve WLS. 

 Observability 

The main challenge in the distribution system for operators is the system observability, because 

the system has many states that are to be monitored. Thus the number of measurements has to be 

ideally greater than the number of states, which is highly costly for the operators. Alternatively, 

the statistically stable loads can be forecasted by their daily/yearly load profiles, which are called 

pseudo measurements. Originally, the observability of the static system of equations is defined as 

a binary criterion [46]. The system is observable if the measurement matrix is invertible, and it is 

unobservable otherwise. However, this definition is not enough to evaluate the degree of 

observability. Some criteria are defined in [47]-[48], which associate a value to each measurement 

and thus to the overall system of measurements, depending on the contribution of each 

measurement error in the final estimation error. The criteria proposed in [47]-[48] are intended 

originally to evaluate the security of the measurements against the intrusion, which are closely 

equivalent to the system observability. In other words, the degree of the system observability can 

be evaluated using the criteria proposed in [47]-[48]. The different (sub)optimal measurement 

placement algorithms are proposed [49]–[51] to improve the system observability, and the 

estimation robustness and accuracy in turn. To cope with the lack of sufficient observability in 

some large systems, the game-theoretic approach is proposed in [52] that generates the pseudo-

measurements from the historical data, and thus increases the accuracy of the estimates. 
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1.2.3 Proposed HIF detection based on existing online measurement schemes 

Now we can propose the HIF detection using the introduced monitoring infrastructure. 

Despite the existing HIF detection schemes that use the transient high-frequency properties of HIF, 

we only use the static properties of HIF for detection. The proposed approach, however, analyzes 

the measurements from all over the distribution system simultaneously to conclude the existence 

and location of the HIF. The basic idea comes from the fact that the measurements from all over 

system are consistent within the system model, consisting of the three-phase power flow equations 

of the system. Thus, the accurate knowledge of the distribution system model, i.e. the values of 

the three-phase feeders’ impedances, is of vital importance in successful performance of the 

proposed method. The existing and the proposed HIF detection schemes are drawn in figure 1.5. 

Proposed HIF detection

Existing HIF detection

VjVi

Feeder current including HIF
Source: https://www.power-grid.com/
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Figure 1.5 Existing and proposed HIF detection schemes 

 

Modern distribution system monitoring based on SCADA, PMU or smart meters (or a 

mixture of them) provides various functionalities, such as fault detection [53], topology 

identification [54], energy theft detection [55], operation under communication loss [56], model 
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error correction [57], etc. The measurements used in the static DS-SE are able to sense the effective 

voltage and currents and average powers regardless of their waveform. Thus, in this thesis, the 

constant impedance of the HIF is considered as a model parameter to be estimated, and is 

augmented into the state vector of the DS-SE model. The proposed framework must be viewed as 

a preventative step to the surveyed literature. In other words, while the surveyed works [1]-[21] 

are concerned with HIFs at their worst state causing arcs or safety issues; the proposed static 

framework aims at locating the points of the system with high-impedance leakage without any arcs 

or immediate safety issues, which can replace or help with the periodical insulation tests performed 

in DS. To clarify the proposed framework compared with the literature, we highlight that existing 

HIF detection methods aim at the transient nonlinear response of the HIF and use single voltage 

or current measurements with high sampling frequency (e.g. 15 to 107 kHz in [10], 10 kHz in [58], 

3.125 MHz in [9], and so on). However, the proposed method aims at the static properties of HIF 

and uses voltage phasor magnitudes and average active/reactive powers at a single time instant in 

a static framework to detect the existence of an HIF in the DS and estimate its location. DS-SE 

update rate may vary from every few seconds up to 30 minutes depending on the SE structure. 

Accordingly, the main contribution of this thesis compared to the state-of-the-art HIF detection is 

taking advantage of the developing smart grid monitoring infrastructure, already emerging in many 

DS, to realize the functionality of HIF detection. The proposed approach imposes almost negligible 

new investment and is applied through a simple modification of the existing DS-SE algorithm. 

Additionally, given that the proposed approach uses the static characteristics of the HIF for its 

detection, it can detect faults that do not yet exhibit any nonlinear transient behavior. This is not 

possible for other HIF detection methods, which are mainly dependent on extracting the transient 

and nonlinear properties of HIF from high-resolution measured waveforms. The proposed 
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approach can as such enable several advantages without requiring significant new installation or 

investment. The proposed approach can predict the vulnerable points in the DS and give an insight 

to the DS operators on the susceptibility to possible events; help with or replace the periodical 

insulator tests for critical areas in the DS; prevent serious safety and security issues by reporting 

potential HIF locations to the DS operators. These advantages can collectively help with reducing 

the total DS maintenance costs. Furthermore, the use of Friedland’s bias filter is proposed to solve 

the HIF-augmented SE problem. It is worth here noting that through the use of this filter the 

proposed approach does not require any additional measurements to preserve the system’s 

observability after modifying the SE to allow for HIF detection. On the other hand, using 

traditional estimators would have required additional measurements equal to the number of the 

lines suspected of having an HIF, because the HIF parameters are augmented in the states vector 

each element of which requires an independent measurement equation to stay observable. Whereas 

the proposed bias filter takes advantage of the linear dependence of the augmented HIF parameters 

to the original system states to maintain the observability of the system without requiring more 

measurements. 
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Chapter 2: Distribution system model and state estimation 

 

2.1 Overview 

The most important parameter that determines both the performance and the cost of 

implementing the distribution system online monitoring is the sampling or updating rate of the 

measurements. In the recent years, the modern approach to online monitoring of the distribution 

system is a compromise between the economic and the practical aspects of the system 

implementation, which remains within the feasible economic boundaries of the system operation 

while satisfying many of desired monitoring functionalities. The sampling rate of the 

measurements are agreed to vary from 1 sample per 30 minutes in SCADA measurements systems 

or smart-meter-based monitoring, up to 60 samples per seconds in PMU-based monitoring 

systems, where the measurements are represented in the phasor form. Many different 

functionalities are proposed that are possible by this monitoring infrastructure ranging from system 

model identification to energy theft detection. We use the same monitoring infrastructure to enable 

the HIF detection, since especially the existing HIF detection methods require an economically 

infeasible infrastructure. Hence, in this section, the existing modern distribution system monitoring 

is introduced and the mathematical requirements for system state estimation is recalled. Then the 

HIF influence is modeled inside the existing distribution system monitoring framework, which is 

compatible with PMU-, SCADA-, or smart meter based monitoring of the distribution systems. 

Finally, we also propose use of a bias filter as the state estimation algorithm, which reduces the 

number of required measurements for HIF detection compared to conventional state estimation 

approaches. 
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2.2 Distribution system mathematical model 

Before discussing the practical aspects of the proposed HIF detection approach, the 

required mathematical foundation of the distribution system model is discussed in this chapter. 

The proposed HIF detection approach analyzes the consistency of static measurements from all 

over the distribution system within the system model, to infer the existence and location of HIF. 

Therefore, the distribution system model, consisting of the power flow equations, is first 

introduced in subsection 2.1. The HIF is integrated as a static impedance parameter in the 

distribution model in subsection 2.2. Then, the system model is used to estimate the states of the 

system from the measurements. The state estimation is introduced in subsection 2.3. The states are 

assumed in this thesis to be node voltages magnitudes and angles in polar form. Some references 

used different state definitions, e.g. node voltages in rectangular form or branch current in polar or 

rectangular forms. The static state estimation approach to estimate the states of the distribution 

system allows the detection and location of HIF. The proposed HIF detection and location 

approach is developed in the next chapter. 

The phasor representation of the electrical variables allows simplified analysis of the power 

systems in static framework, which are briefly introduced here. A function of time with cosine 

waveform with the amplitude √2𝐴 and phase delay φ, √2𝐴 cos(𝜔𝑡 + 𝜑), is simply represented by 

a complex phasor 𝐴∡𝜑. For voltage and currents the effective (i.e. RMS) values are used and for 

active and reactive powers, the average values are used in the phasor representation. The effective 

value of a sinewave with the amplitude √2𝐴 is 𝐴. The more details on phasor representation are 

found in [59]. Since the proposed approach is purely based on the static framework, all the 

variables (i.e. voltages, currents, powers, impedances and admittances) are used in phasor 

representation. 
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The distribution system is modeled by assuming a subset of variables as the states and the 

rest of the variables as the dependent variables.  Different state definitions are tried in the literature 

that have cons and pros compared to each other. For example, the three-phase branch currents are 

used as the system states in [31], and the node voltages are calculated from the branch current in 

each iteration. The authors of [31] claim that the branch-current based modeling of distribution 

system results in the sparse system model matrix, which reduces the overall computations. 

However, the branch current based model requires transforming the branch currents into the node 

voltages at the end of each iteration and transforming back the voltages to the branch current at 

the start of the new iteration, which significantly adds up to the complexity of the algorithm. 

Although the overall computation time of the branch current based models could be less than node 

voltage-based model, the complexity of algorithm is itself a negative aspect that can cause troubles, 

for example, in updating the algorithm or adding new features to the model. Therefore, the node 

voltage-based model of the distribution system is still the most straightforward model as proposed 

by Shweppe et al [30], which is extended in this thesis to the three-phase model. 

Therefore, the three-phase complex node voltage phasors in the polar form are considered 

as states, from which all other variables of the distribution system can be calculated. The 

knowledge of the system model, i.e. the three-phase branch impedances, is of course assumed to 

be known by operator. The equations relating the states to the dependent variables, as well as the 

system model, are all static equations and parameters. Therefore, we obtain a static model of the 

distribution system, which allows analysis of any snapshot of the system measurements at any 

given time independent from the prior or posterior time instants. The definition of states, dependent 

variables and system model parameters, used in this thesis, are given in Table 2.1, and the notations 

are defined in Table 2.2. 
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States Dependent variables Model parameters 

𝑉𝑖
𝑎𝑏𝑐, 𝛿𝑖

𝑎𝑏𝑐 

𝑃𝑖
𝑎𝑏𝑐, 𝑄𝑖

𝑎𝑏𝑐, 𝑃𝑖𝑗
𝑎𝑏𝑐, 𝑄𝑖𝑗

𝑎𝑏𝑐 

 𝐼𝑖𝑗
𝑎𝑏𝑐, 𝛼𝑖𝑗

𝑎𝑏𝑐 

�̃�𝑖𝑗
𝑎𝑏𝑐 = 𝑅𝑖

𝑎𝑏𝑐 + 𝑗𝑋𝑖
𝑎𝑏𝑐 

�̃�𝑖𝑗
𝑎𝑏𝑐 = 𝑌𝑖𝑗

𝑎𝑏𝑐∠𝜃𝑖𝑗
𝑎𝑏𝑐 

Table 2.1 Distribution system mathematical model definitions used in this thesis 

 

Notation Definition 

𝑉𝑖
𝑎𝑏𝑐, 𝛿𝑖

𝑎𝑏𝑐 Three-phase voltage magnitude and angle of node i 

𝑃𝑖
𝑎𝑏𝑐, 𝑄𝑖

𝑎𝑏𝑐 Three-phase active and reactive injected power of node i 

𝑃𝑖𝑗
𝑎𝑏𝑐, 𝑄𝑖𝑗

𝑎𝑏𝑐 Three-phase active and reactive flow power at branch i-j 

 𝐼𝑖𝑗
𝑎𝑏𝑐, 𝛼𝑖𝑗

𝑎𝑏𝑐 Three-phase current magnitude and angle at branch i-j 

�̃�𝑖𝑗
𝑎𝑏𝑐 Three-phase impedance matrix of branch i-j 

�̃�𝑖𝑖
𝑎𝑏𝑐 Three-phase admittance of node i  

�̃�𝑖𝑗
𝑎𝑏𝑐 Three-phase mutual admittance between node i and j 

Table 2.2 Notation of variables and parameters 

 

A 4-wire distribution system can be modeled by the three-phase representation of the 

system variables using Kron’s reduction [60]. Then, the three-phase voltages, currents and powers 

are used as the system variables, which are 3 by 1 column vectors. The three-phase impedance is 

a 3 by 3 matrix, consisting of the branches series impedance on the diagonal elements and the 

mutual impedances between the branch pairs on off-diagonal elements. The three-phase 

admittance matrix should be calculated from the inverse of branch impedances and the system 

connections. Usually, the system data are provided by the branches’ impedance per length unit. 
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The formation of the three-phase admittance matrix from the branch impedances is similar to the 

single-phase representation of power system, with small differences. Therefore, the formation of 

the admittance matrix is written here explicitly for interested readers who want to implement the 

proposed algorithm. 

 �̃�𝑏𝑢𝑠 =

[
 
 
 
 
 
 
 
 
 
∑𝑌𝑖1

𝑎𝑏𝑐

𝑁

𝑖=1

−𝑌12
𝑎𝑏𝑐 ⋯ −𝑌1𝑁

𝑎𝑏𝑐

−𝑌12
𝑎𝑏𝑐 ∑𝑌𝑖2

𝑎𝑏𝑐

𝑁

𝑖=1

⋱ −𝑌𝑁2
𝑎𝑏𝑐

⋮
−𝑌1𝑁

𝑎𝑏𝑐
⋱

−𝑌𝑁2
𝑎𝑏𝑐

⋱
⋯

⋮

∑𝑌𝑖𝑁
𝑎𝑏𝑐

𝑁

𝑖=1 ]
 
 
 
 
 
 
 
 
 

 (2.1) 

 �̃�𝑖𝑗
𝑎𝑏𝑐 = (�̃�𝑖𝑗

𝑎𝑏𝑐)−1 (2.2) 

It can be seen that the equation (2.1) is quite similar to the single-phase formation of the 

admittance matrix, where only the admittance of each node and branch is replaced with the three-

phase admittance. The three-phase admittance of the branch i-j can be simply calculated as the 

inverse of the impedance of branch i-j (2.2). However, it should be noted that for the non-existing 

phases, i.e. the single- or double-phase branches, the three-phase impedance should be reduced to 

single- or double-phase prior to inversion, which puts zeros in place of the admittance of the non-

existent phases instead of infinite admittances. Therefore, the single- and double-phase branches 

should be identified and treated accordingly prior to implementation of the distribution system 

model. By having the bus admittance matrix from (2.1), the dependent variables can be written in 

terms of the states as following [60]. 

 𝑃𝑖
𝑝 = ∑ ∑ (

𝑣𝑖
𝑝𝑌𝑖𝑗

𝑝𝑡𝑣𝑖
𝑡 cos(𝛿𝑖

𝑝 − 𝛿𝑖
𝑡 − 𝜃𝑖𝑗

𝑝𝑡)

−𝑣𝑖
𝑝𝑌𝑖𝑗

𝑝𝑡𝑣𝑗
𝑡 cos(𝛿𝑖

𝑝 − 𝛿𝑗
𝑡 − 𝜃𝑖𝑗

𝑝𝑡)
)

𝑡=𝑎,𝑏,𝑐

𝑁

𝑗=1
𝑗≠𝑖

 (2.3) 
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 𝑄𝑖
𝑝 = ∑ ∑ (

𝑣𝑖
𝑝𝑌𝑖𝑗

𝑝𝑡𝑣𝑖
𝑡 sin(𝛿𝑖

𝑝 − 𝛿𝑖
𝑡 − 𝜃𝑖𝑗

𝑝𝑡)

−𝑣𝑖
𝑝𝑌𝑖𝑗

𝑝𝑡𝑣𝑗
𝑡 sin(𝛿𝑖

𝑝 − 𝛿𝑗
𝑡 − 𝜃𝑖𝑗

𝑝𝑡)
)

𝑡=𝑎,𝑏,𝑐

𝑁

𝑗=1
𝑗≠𝑖

 (2.4) 

where 𝑃𝑖
𝑝
 and 𝑄𝑖

𝑝
 are, respectively, the injected active and reactive powers into the node i at phase 

p. Similarly other dependent variables can be calculated only in terms of system states, 𝑉𝑖
𝑎𝑏𝑐 and 

𝛿𝑖
𝑎𝑏𝑐, and the system model parameters, 𝑌𝑖𝑗

𝑎𝑏𝑐 and 𝜃𝑖𝑗
𝑎𝑏𝑐, as given in equations (2.5) to (2.8). 

 
𝑃𝑖𝑗

𝑝 = 𝑣𝑖
𝑝𝑌𝑖𝑗

𝑝𝑡𝑣𝑖
𝑡 cos(𝛿𝑖

𝑝 − 𝛿𝑖
𝑡 − 𝜃𝑖𝑗

𝑝𝑡)

−𝑣𝑖
𝑝𝑌𝑖𝑗

𝑝𝑡𝑣𝑗
𝑡 cos(𝛿𝑖

𝑝 − 𝛿𝑗
𝑡 − 𝜃𝑖𝑗

𝑝𝑡)
 (2.5) 

 
𝑄𝑖𝑗

𝑝 = 𝑣𝑖
𝑝𝑌𝑖𝑗

𝑝𝑡𝑣𝑖
𝑡 sin(𝛿𝑖

𝑝 − 𝛿𝑖
𝑡 − 𝜃𝑖𝑗

𝑝𝑡)

−𝑣𝑖
𝑝𝑌𝑖𝑗

𝑝𝑡𝑣𝑗
𝑡 sin(𝛿𝑖

𝑝 − 𝛿𝑗
𝑡 − 𝜃𝑖𝑗

𝑝𝑡)
 (2.6) 

 𝐼𝑖𝑗
𝑝 = abs {

𝑃𝑖𝑗
𝑝 + 𝑗𝑄𝑖𝑗

𝑝

𝑉𝑖
𝑝∠𝛿𝑖

𝑎𝑏𝑐
} (2.7) 

 𝛼𝑖𝑗
𝑝 = angle {

𝑃𝑖𝑗
𝑝 + 𝑗𝑄𝑖𝑗

𝑝

𝑉𝑖
𝑝
∠𝛿𝑖

𝑎𝑏𝑐
} (2.8) 

It can be seen from equations (2.3) to (2.8) that once the voltage magnitudes and angles are 

estimated, then the rest of the system variables can be directly calculated from straightforward 

explicit equations. However, it is not the case when the branch currents are considered as the 

system states, where the back and forth transformation from currents to voltages are required 

between each separate relations. 

 

2.3 Integrating high-impedance fault in static model of distribution system 

The possibility and validity of modeling HIF as a constant impedance will be discussed in 

the next chapter. In order to keep the required equation for implementation of the proposed 

algorithm, the constant impedance model of HIF is introduced in this subsection. 
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Figure 2.1 HIF static model in distribution system (a) actual HIF model (b) equivalent π-model 

 

HIF can happen at any point of the distribution feeder. It can be seen in figure 2.1(a) that 

to analyze the voltage and current variables of HIF, one requires defining a hypothetical node at 

the HIF location, which is primarily unknown. Therefore, using the actual T-model for analyzing 

the HIF pose more troubles than proposing a solution. Alternatively, the equivalent π-model can 

be calculated for the HIF as shown in figure 2.1(b), which is derived in what follows. 

2.3.1 Transformation between actual T-model and equivalent π-model 

As shown in Fig. 1(a), the three-phase line impedance between nodes i and j is divided by 

the HIF location, in which impedances are defined as in (1). 

 𝑍𝑖𝑗 = 𝑍𝑖𝑓 + 𝑍𝑓𝑗  (2.9) 

 𝑍𝑖𝑓 =
𝑙−𝜌

𝑙
𝑍𝑖𝑗 and 𝑍𝑓𝑗 =

𝜌

𝑙
𝑍𝑖𝑗  (2.10) 

 𝑎 =
𝑙 − 𝜌

𝜌
 (2.11) 

where l is the length of the feeder between nodes i and j and 𝜌 determines the HIF location. The 

superscripts a, b and c pointing out the phases are omitted for readability, however, it should be 

noted that the impedances in figure 2.1 and those in equations (2.9) and (2.10) are the three-phase 

impedances of the according branches. In this thesis, where the voltage, current, power, impedance 
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or admittance has no superscript, it is pointing to the three-phase according variables, which are 

the 3 by one vectors for the voltage, current and powers, and 3 by 3 matrices for the impedances 

and admittances. By this notation, Zij is thus the three-phase impedance between nodes i and j, and 

Zif  and Zfj are three-phase impedances between HIF location and the two side nodes. a is defined 

as in (2.11) to simplify the notations. Hence, Zif is a times Zfj in (2.10). 

Writing the KVL and KCL in T-model gives equations of (2.12), where the direction of Iij 

is from node i towards node j. 

 𝑉𝑖 = 𝑉𝑓 + 𝑍𝑖𝑓𝐼𝑖𝑗 (2.12) 

 𝑉𝑓 = 𝑉𝑗 − 𝑍𝑓𝑗𝐼𝑗𝑖  (2.13) 

 𝐼𝑖𝑗 + 𝐼𝑗𝑖 = 𝑌𝑓𝑉𝑓 (2.14) 

where Iij and Iji are three-phase line currents at the two nodes in opposite directions. In order to 

simplify the derivation of formulations and highlighting the difference between the impedances of 

the two sides of the HIF, we call the right-side impedance of the HIF as 𝑍𝑥 ≜ 𝑍𝑓𝑗, and we write 

the equations in terms of 𝑍𝑥. By simplifying the equations (2.12) to (2.14), one can derive the 

relation between the three-phase voltages and currents of the two nodes i and j as written in (2.15). 

 (
𝑉𝑖

𝐼𝑖𝑗
) = (

𝐴 𝐵
𝐶 𝐷

)
𝑇
(
𝑉𝑗

𝐼𝑗𝑖
) (2.15) 

 𝐴𝑇 = 𝐼 + 𝑎𝑍𝑥𝑌𝑓  

 𝐵𝑇 = −𝑍𝑥((𝑎 + 1)𝐼 + 𝑎𝑌𝑓𝑍𝑥)  

 𝐶𝑇 = 𝑌𝑓  

 𝐷𝑇 = −(𝐼 + 𝑌𝑓𝑍𝑥)  

where I stands for the identity matrix of according size (3 by 3 here). Deriving equation (2.15) 

from the KVL and KCL equations of (2.12) to (2.14) follows a simple reordering of equations. 
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Now we follow the same procedure, to find the relation between the currents and voltages 

of the two nodes in the π-model. From figure 2.1(b), the KVL and KCL equations can be written 

as follows. 

 𝑉𝑖 = 𝑍𝑓𝑗𝐼𝑙𝑖𝑛𝑒 + 𝑉𝑗 = 𝑍𝑥𝐼𝑙𝑖𝑛𝑒 + 𝑉𝑗 (2.16) 

 𝐼𝑖𝑗 = 𝐼𝑙𝑖𝑛𝑒 + 𝑌𝑖𝑉𝑖 (2.17) 

 𝐼𝑗𝑖 = −𝐼𝑙𝑖𝑛𝑒 + 𝑌𝑗𝑉𝑗 (2.18) 

where direction of Iline is assumed from node i towards node j. By simplifying the equations (2.16) 

to (2.18), one obtains the relation between the three-phase voltages and currents of the two nodes 

i and j as written in (2.19). 

 (
𝑉𝑖

𝐼𝑖𝑗
) = (

𝐴 𝐵
𝐶 𝐷

)
𝜋

(
𝑉𝑗

𝐼𝑗𝑖
) (2.19) 

 𝐴𝜋 = 𝐼 + 𝑍𝑖𝑗𝑌𝑗   

 𝐵𝜋 = −𝑍𝑖𝑗   

 𝐶𝜋 = 𝑌𝑖 + 𝑌𝑖𝑍𝑖𝑗𝑌𝑗 + 𝑌𝑗   

 𝐷𝜋 = −(𝐼 + 𝑌𝑖𝑍𝑖𝑗)  

where the line impedance Zij is (a+1) times Zx in T-model. Since the HIF admittance is relatively 

small, the equivalent admittances Yi and Yj can be found by equaling the matrices A and D in 𝜋-

model and T-model, which yields (2.20). 

 𝑌𝑖 =
1

𝑎+1
𝑌𝑓        and        𝑌𝑗 =

𝑎

𝑎+1
𝑌𝑓 (2.20) 

The admittances 𝑌𝑖 and 𝑌𝑗 obtained in equation (2.20) are equivalent HIF admittances that are 

transformed from the original T-model to the equivalent π-model. It will be seen that working with 

the equivalent π-model of the HIF is much more comfortable than the T-model. Therefore, the 

problem of HIF detection is to determine the two equivalent HIF admittance in the π-model, and 
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then transforming back the equivalent π-model to the original T-model to determine the HIF 

location. 

2.3.2 Power loss calculation at the HIF location 

The three-phase power dissipated at the HIF location can be calculated from the three-

phase complex voltage at HIF location and the HIF complex admittance, as written in equation 

(2.21). 

 𝑆𝑖𝑗
𝑓

= 𝑉𝑓 ⊙ (𝑌𝑓𝑉𝑓)
∗ (2.21) 

where 𝑆𝑖𝑗
𝑓

 is the three-phase apparent dissipated power of the HIF on the line between nodes i and 

j. The “⊙” product stands for the element-wise multiplication operator, different than normal 

matrix multiplication, and the superscript star “*” stands for the complex conjugate operator. The 

equation (2.21) is, however, written based on the T-model, whose parameters are not known. In 

fact, were we forced to use the T-model, hypothetical nodes had to be defined on each and every 

line of the system to represent the possible HIF locations to be estimated. However, by 

transforming the T-model into the π-model, we eliminated the need for additional node definition. 

In the π-model, we instead assume the transformed equivalent admittances of HIF onto the two 

side nodes of the HIF as the HIF model. In other words, an HIF on the line i-j is represented by 

two shunt admittances placed on node i and node j. Hence, the HIF’s three-phase apparent power 

can be calculated from the equivalent π-model parameters as written in (2.22). 

 𝑆𝑖𝑗
𝑓

= 𝑉𝑖 ⊙ (𝑌𝑖𝑉𝑖)
∗ + 𝑉𝑗 ⊙ (𝑌𝑗𝑉𝑗)

∗ (2.22) 

The active and reactive flow powers of the branch i-j is calculated in equations (2.5) and (2.6), 

which are for the healthy feeders without any HIF written in terms of the active and reactive powers 

in real form. For derivation of the HIF influence, we repeat those formulation in complex form 

here as equation (2.23) and (2.24) for the two opposite side flows. 
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 𝑆𝑖𝑗 = 𝑉𝑖 ⊙ 𝐼𝑖𝑗
∗ = 𝑉𝑖 ⊙ (𝑍𝑖𝑗

−1[𝑉𝑖 − 𝑉𝑗])
∗ (2.23) 

 𝑆𝑗𝑖 = 𝑉𝑗 ⊙ 𝐼𝑗𝑖
∗ = 𝑉𝑗 ⊙ (𝑍𝑖𝑗

−1[𝑉𝑗 − 𝑉𝑖])
∗ (2.24) 

Now, considering that an HIF exists on the line between the nodes i and j, the flow power equations 

must be modified to account for the influence of the HIF in the system model. In the π-model, the 

influence of the HIF will be easily added to the power equations, since the two terms in equation 

(2.22) add up to powers of the two side nodes, which are written in (2.25) and (2.26). 

 𝑆′𝑖𝑗 = 𝑉𝑖 ⊙ 𝐼𝑖𝑗
∗ = 𝑉𝑖 ⊙ ([𝑍𝑖𝑗

−1 + 𝑌𝑖]𝑉𝑖 − 𝑍𝑖𝑗
−1𝑉𝑗)

∗ (2.25) 

 𝑆′𝑗𝑖 = 𝑉𝑗 ⊙ 𝐼𝑗𝑖
∗ = 𝑉𝑗 ⊙ ([𝑍𝑖𝑗

−1 + 𝑌𝑗]𝑉𝑗 − 𝑍𝑖𝑗
−1𝑉𝑖)

∗ (2.26) 

Equations (2.23) and (2.24) are equivalent to the equations (2.5) and (2.6) after considering the 

influence of the HIF in the model. By comparing (2.25) and (2.26) to the original flow power 

equations (2.23) and (2.24), one notices that the influence of the HIF appears only as two apparent 

power terms that are added to the flow powers of its two sides. If we call the influence of HIF 

power on the equations as ∆𝑆, it can be separately calculated from the 𝑆′𝑖𝑗 − 𝑆𝑖𝑗 and 𝑆′𝑗𝑖 − 𝑆𝑗𝑖. 

Now, equations (2.27) and (2.28) clearly show how to derive the influence of HIF in the system 

model. 

 ∆𝑆𝑖𝑗 = 𝑉𝑖 ⊙ (𝑌𝑖𝑉𝑖)
∗ (2.27) 

 ∆𝑆𝑗𝑖 = 𝑉𝑗 ⊙ (𝑌𝑗𝑉𝑗)
∗ (2.28) 

In the state estimation model, equations (2.25) and (2.26) will be used. However, to see the 

influence of HIF in the power flow calculations, the admittance matrix can be simply modified as 

equation (2.29). 
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 𝑌𝑏𝑢𝑠
𝑓

= 𝑌𝑏𝑢𝑠 + ∆𝑦  where   ∆𝑦 =

[
 
 
 
 
⋱ 0
0 𝑌𝑖

⋯
0 0
0 0

⋮ ⋱ ⋮
0 0
0 0

⋯
𝑌𝑗 0

0 ⋱]
 
 
 
 

 (2.29) 

In other words, the influence of an HIF on the line between the nodes i and j can be seen in the 

power flow model as the two equivalent admittances added to the according diagonal elements of 

the bus admittance matrix. The said modification is for the power flow calculations, however, such 

modification is not sufficient for the state estimation model and equations (2.25) and (2.26) must 

be used. 

 

2.4 Distribution system state estimation 

Depending on the measurement infrastructure in distribution systems, different types of 

measurements are available. Any selection of the states or dependent variable can be used as 

measurement in distribution systems (see Table 2.1). For example, a PMU usually measures the 

complex voltage of the node it is installed on, as well as the flow complex powers of the branches 

connected to the PMU node. In SCADA measurement infrastructure, the nodes injected active and 

reactive powers are measured, as well as the voltage magnitudes. Sometimes, the PMUs provide 

the branch currents instead of the branch flow powers. State estimation is the problem of estimating 

the system states from any available measurement combination from all over the system. To do 

so, we put all of the available measurements in a vector called measurement vector z. 

 𝑧 = [𝑉𝑖
𝑎𝑏𝑐 𝛿𝑖

𝑎𝑏𝑐 𝑃𝑖
𝑎𝑏𝑐 𝑄𝑖

𝑎𝑏𝑐 𝐼𝑖𝑗
𝑎𝑏𝑐 𝛼𝑖𝑗

𝑎𝑏𝑐]
𝑇

 (2.30) 

Equation (2.30) shows an example of the measurement vector that includes many different types 

of measurements. We define the state vector as the voltage magnitudes and angles, as written in 

(2.31). 
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 𝑥 = [𝑉𝑖
𝑎𝑏𝑐 𝛿𝑖

𝑎𝑏𝑐]𝑇     ∀𝑖 = 1,… ,𝑁 (2.31) 

where N is the number of nodes in the system. Then the measurements z can be written in terms 

of the states x, using the equations provided in equations (2.3) to (2.8). One writes all of the 

measurements in terms of the states in compact form as a vector function given in equation (2.32). 

 𝑧 = ℎ(𝑥) + 𝜔 (2.32) 

where 𝜔 is the measurement error vector. State estimation problem is defined as finding the most 

likely state estimates �̂� from the noisy measurements z. To do so, one requires first the linearization 

of the measurement function (2.32) by partial derivatives of all of the equations with respect to all 

of the states. By defining the Jacobian matrix 𝐻 = ∇ℎ(𝑥), as the partial derivatives of the 

measurement function h(x) w.r.t. the states, the states estimates can be found using the iterated 

weighted least squares (WLS) estimation from equation (2.33). 

 �̂�𝑘+1 = (𝐻𝑇𝑊𝐻)−1𝐻𝑇𝑊(𝑧 − ℎ(�̂�𝑘)) (2.33) 

 𝐻 = ∇ℎ(𝑥)  

where W is the weighting matrix consisting of all zeros on off-diagonal elements and weights of 

the measurements on the corresponding diagonal elements. The weight matrix is usually 

considered equal to the inverse of the measurement error covariance matrix, which results in higher 

weights for the more accurate measurements. 

2.4.1 Modeling HIF in distribution system state estimation with constant admittance 

For simplicity, only the SCADA-based measurements are assumed in the simulations of 

this thesis, which consists of the voltage magnitude measurements as well as the active and reactive 

power injections, as written in equation (2.34). 

 𝑧 = [𝑉𝑖𝑣
𝑎𝑏𝑐 | 𝑃𝑖𝑝

𝑎𝑏𝑐 𝑄𝑖𝑝
𝑎𝑏𝑐

]
𝑇

     𝑖𝑣 ∈ 𝛹 ,    𝑖𝑃 ∈ 𝛷 (2.34) 
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where 𝛹 is the set of the nodes with voltage magnitude measurements, and 𝛷 is the set of the nodes 

with power injection measurements. Now, in order to integrate the HIF detection in the state 

estimation problem, we define an augmented states and HIF parameters vectors as written in 

(2.35). 

 𝑥𝑓 = [𝑥 𝛽]𝑇 (2.35) 

where 𝑥𝑓 is the augmented state vector with the HIF parameters, and 𝛽 is the vector of the HIF 

admittance parameters defined in (2.36). 

 𝛽 = [𝑌𝑖
𝑎 𝑌𝑖

𝑏 𝑌𝑖
𝑐 𝑌𝑗

𝑎 𝑌𝑗
𝑏 𝑌𝑗

𝑐]
𝑇

 (2.36) 

We write the measurement equations now in terms of the states and the augmented parameters 𝛽 

as given in (2.37). 

 𝑧 = ℎ(𝑥) + 𝑚(𝑥, 𝛽) + 𝜔 (2.37) 

where m(.) is the measurement model adjustment vector function, which consists of all zeros for 

all of the voltage measurements as well as the power measurements of all nodes except for the 

power measurements of nodes i and j (the two side nodes of the line that has HIF). Model 

adjustment vector function due to HIF can thus be obtained from equations (2.27) and (2.28). 

Therefore, the model adjustment m(.) due to HIF can be obtained from equation (2.27) and (2.28) 

for the injection power measurements at nodes nodes i and j and zero for all other power and 

voltage measurements as in (15). It is worth noting that if the flow power measurements were 

assumed, the corresponding model adjustment function could be obtained from (2.27) and (2.28), 

where only the flow measurements of the HIF line have non-zero adjustment. In general, an HIF 

on line i-j results in non-zero model adjustments of only measurements: 𝑃𝑖
𝑎𝑏𝑐, 𝑄𝑖

𝑎𝑏𝑐, 𝑃𝑗
𝑎𝑏𝑐, 𝑄𝑗

𝑎𝑏𝑐, 

𝑃𝑖𝑗
𝑎𝑏𝑐, 𝑄𝑖𝑗

𝑎𝑏𝑐, 𝑃𝑗𝑖
𝑎𝑏𝑐 and 𝑄𝑗𝑖

𝑎𝑏𝑐, which can be obtained from equations (2.27) and (2.28). 
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Now, in the assumed measurement vector (2.34) only based on SCADA measurements, the model 

adjustment has zero elements for all of the voltage measurements, as well as all of the active and 

reactive measurements except for nodes i and j. The corresponding model adjustment vector 

function is written in equation (2.38). 

 𝑚𝑘(𝑥, 𝛽) = [⋯ 𝑅𝑒{Δ𝑆𝑘} ⋯ 𝐼𝑚{Δ𝑆𝑘} ⋯]𝑇    𝑘 ∈ {𝑖, 𝑗} (2.38) 

By substituting (2.38) in (2.37), the measurements are written in terms of the states as well as the 

hypothetical HIF parameters. It will be discussed in the next chapter that which lines should be 

selected to augment for the HIF parameters. In order to find the states and HIF parameters’ 

estimates from equation (2.37) simultaneously, one requires to linearize the two functions h(.) and 

m(.) with respect to all states and HIF parameters, which are written in (2.39) and (2.40). 

 𝐻𝑓 = [
𝜕ℎ

𝜕𝑥

𝜕ℎ

𝜕𝛽
] = [𝐻 0̅] (2.39) 

 𝑀 = [
𝜕𝑚

𝜕𝑥

𝜕𝑚

𝜕𝛽
] (2.40) 

where 0̅ is the matrix of all zeros of corresponding size. Then the augmented system of states and 

HIF parameters (2.37) can be linearized as (2.41). 

 𝑧𝑓 = 𝐻𝑓𝑥𝑓 + 𝑀𝑥𝑓 + 𝜔 (2.41) 

Adjusted measurement equation due to HIF is obtained finally as in (2.41), by adding 𝐻𝑓 

and M, called 𝐻𝑎𝑑𝑗 as (2.42), which yields the adjusted measurement equation in form of (2.43). 

 𝐻𝑎𝑑𝑗 = 𝐻𝑓 + 𝑀 (2.42) 

 𝑧𝑓 = 𝐻𝑎𝑑𝑗𝑥
𝑓 + 𝜔 (2.43) 

Note that the power equation adjustments of (2.38) is the left side of matrix M in (2.40); in other 

words, the power adjustments Δpk and Δqk are added to the model inside the adjusted Jacobian of 



34 

 

(2.42). Now, having the adjusted model of (2.43), the weighted least squares (WLS) can be 

employed to find the estimation of augmented states and parameters similar to (2.33). 

2.4.2 Modeling HIF in distribution system state estimation with constant power 

The exact impedance value of HIF, as explained, is not of interest as far as its location 

could be identified. Therefore, the HIF’s constant admittance model can be simplified to obtain a 

more convenient formulation of state estimation. It is noticed from (2.22) that the power of HIF is 

a function of its admittance and voltage magnitude, where the admittance is considered constant 

and voltage magnitude is subject to change but in a very limited range in the normal operation of 

distribution systems. Note that the HIF phenomenon still remain in the normal operation range of 

distribution system without violation. Therefore, it can be inferred from (2.22) that a constant 

power model for HIF will perform almost the same as constant admittance in the SE, while 

simplifying the formulations. Define the new parameter vector to be estimated as the active powers 

of HIF in three phases as in (2.44). 

 𝑏 = [𝑝𝑖
𝑎𝑏𝑐 𝑞𝑖

𝑎𝑏𝑐 𝑝𝑗
𝑎𝑏𝑐 𝑞𝑗

𝑎𝑏𝑐]
𝑇

 (2.44) 

where b is the parameter vector to be estimated (or biases as will be explained shortly), and 𝑝𝑖
𝑝
 and 

𝑞𝑖
𝑝
  are the active/reactive powers wasted in HIF at node i phase p. By following the similar 

procedure as the constant admittance model, we derive the adjusted estimation model due to HIF 

as following. First we augment the states with the HIF parameters b, which are now the active and 

reactive powers dissipated at the HIF location, as written in (2.45). 

 𝑥𝑓 = [𝑥 𝑏]𝑇 (2.45) 

By the new parameter definition b instead of β, the model adjustment can be calculated as (2.46). 

 𝑚(𝑥, 𝑏) = [… 𝑝𝑘
𝑎𝑏𝑐 𝑞𝑘

𝑎𝑏𝑐 …]𝑇  ∀𝑘 ∈ {𝑖, 𝑗} (2.46) 



35 

 

The partial derivatives of the adjustment vector function of (2.46) are one with respect to the 

parameters b and is zero with respect to states x. Thus, the constant power model for HIF results 

in a significant simplification of the model adjustment matrix, which is given as following. 

 𝑀 = [0̅
𝜕𝑚(𝑥, 𝑏)

𝜕𝑏
] = [0̅ 𝐷]  

where 0̅ is the matrix of all zeros, and I is the identity matrix. Comparing (2.46) to (2.40) shows 

the advantage of the simplified model (i.e., the constant power model of the HIF). This 

simplification can be appreciated the most by considering the implementation of the SE iterations, 

because it relaxes the updating of the elements inside the original measurement matrix H  (as can 

be seen in (2.46) the derivative of model adjustment is zero w.r.t. states). Now, we can replace M 

of (2.46) instead of (2.40), to form the augmented SE problem in (2.43), which can be solved 

directly using WLS. 

More importantly, by modeling as constant power, HIF appears as biases in the injected 

power measurements as derived in (2.46). Since the left-hand side of the model adjustment matrix 

M in (2.46) becomes zero for the constant power HIF model, the HIF can be modelled as 

measurement biases. Recall the measurement equation for a linear observable system with biased 

measurements as in (2.47). 

 𝑧 = 𝐻𝑥 + 𝐷𝑏 + 𝜔 (2.47) 

Modeling the HIF instead of model parameters as (2.40) requires parameters and states’ 

simultaneous estimation. However, the constant power model results in the simplified model of 

(2.47), which allows use of Friedland’s solution to the augmented system [61], as formulated for 

DS-SE in [55], [56], wherein the iterative filter equations are presented. For simultaneous states 

and parameters estimation, for a system with n states, and ns number of suspected HIF parameters, 

the augmented system has n + ns  states and parameters, which requires a number of measurements 
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m > n + ns in order to be observable. However, by using Friedland’s decomposition of states from 

biases in (2.47), m > n measurements are sufficient for full observability, where the linear 

dependence of the biases to the existing measurements is exploited to provide the observability of 

HIF-augmented system, only given the observability of original system, thus reducing number of 

measurements by ns. Friedland’s bias filter, as written in iterative equations of (2.48), is thus used 

to solve the estimation problem of (2.47). 

 �̂�𝑘 = �̃�𝑘 + 𝑉𝑘�̂�𝑘 (2.48.a) 

 �̃�𝑘+1 = �̃�𝑘 + �̂�𝑘𝑟𝑘 (2.48.b) 

 �̂�𝑘 = (𝐼 − �̂�𝑘𝑆𝑘)�̂�𝑘−1 + �̂�𝑘𝑟𝑘 (2.48.c) 

 𝑀𝑘+1
−1 = 𝑀𝑘

−1 + 𝑆𝑘
𝑇(𝐻�̃�𝑘𝐻

𝑇 + 𝑅)−1𝑆𝑘 (2.48.d) 

 𝑆𝑘 = 𝐻𝑈𝑘 + 𝐷 (2.48.e) 

 �̂�𝑘 = 𝑀𝑘+1(𝐻𝑉𝑘 + 𝐷)𝑇𝑅−1 (2.48.f) 

 𝑆𝑘 = 𝐻𝑈𝑘 + 𝐷 (2.48.g) 

 𝑟𝑘 = 𝑧𝑘 − ℎ(�̂�𝑘) (2.48.h) 

where �̂�𝑘 is the bias estimates, �̃�𝑘 is bias-blind state estimates of standard Kalman filter and �̂�𝑘 is 

corrected estimates of states after bias correction. 

 The constant admittance parameters modeling of HIF, as obtained in (2.36), is a more 

accurate model for HIF detection and location, which could be solved using the WLS. However, 

augmenting the HIF parameters to the states for being estimated by WLS requires additional 

measurement in order to prevent unobservable system. Defining the HIF powers as the parameters 

to be estimated resulted in the simplified measurement function (2.47), where the HIF parameters 

appeared as the measurement biases and allows using the bias filter (2.48), which does not require 

any additional measurements. If the original system is observable, the HIF-augmented system is 
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also observable regardless of the number of HIF power parameters augmented into the system. 

However, there is one drawback in the latter simplified model that is it cannot distinguish between 

the HIF parameters, measurement biases or even energy theft. If the possibility of such events are 

at stake, the use of the constant admittance model for HIF (2.38) is thus suggested, which requires 

additional measurements. 

The mathematical foundation of the proposed HIF detection algorithm is developed. To 

summarize the proposed approach, one models all the possible/suspected HIFs of the system as 

the constant active and reactive powers as written in (2.44), then forms the linearized measurement 

model as (2.47) by determining the H and D matrices from partial derivatives of the measurement 

function and model adjustment, respectively, with respect to states and HIF powers. Finally, the 

recursive bias filter, as given in (2.48), is used to estimate the states and the biases, which are HIF’s 

constant power parameters now. The more details on possibility and validity of the proposed HIF 

detection approach is discussed in the next chapter. 

 

2.5 Summary 

Since the existing HIF detection approaches based on the feature extraction from the high-

resolution current or power measurements are significantly expensive for the distribution system 

operators, we proposed using the existing distribution system monitoring infrastructure to integrate 

the HIF-detection functionality. The mathematical basis for the HIF modeling in the existing 

distribution system monitoring infrastructure is developed in this section, above all. Then we also 

proposed using the bias filter instead of the WLS algorithm for state estimation, which reduces the 

required number of measurements for the detection of HIF, by taking advantage of the linear 

dependence of the HIF parameters to the system states. The mathematical frameworks enables the 
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state estimator block to integrate the HIF detection. The more practical aspects of the proposed 

approach is discussed in the next chapter. 
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Chapter 3: HIF location procedure and considerations 

 

3.1 Overview 

In practice, the proposed methodology faces several bottlenecks in the implementation, 

which are discussed in this chapter. The main bottleneck of this approach, as other functionalities 

based on the distribution system monitoring, is the limited number of measurements in the system. 

In which case, augmenting all of the lines in the estimation algorithm with HIF parameters to be 

estimated results in a significantly reduced performance. To overcome this issue, we propose 

augmenting only the more suspected lines in the estimation algorithm for HIF detection. For 

example, a conventional number in the literature is that there are measurements in the system 1.5 

times the number of states. After evaluating the proposed HIF detection approach, we compromise 

between the performance accuracy and the inclusion of different system locations by choosing 

more than half of the system branches to be observable for HIF detection. Second, the proposed 

approach has always a non-zero estimation for all of the HIF parameters. Thus, we propose a 

procedure for the distribution systems in practice to implement and calibrate the proposed 

algorithm which improves the performance of the proposed HIF detection. Finally, an 

implementation of the proposed algorithm is given, where the practical aspects are also considered. 

 

3.2 Detection of HIF existence in the system 

The HIF model and its integration into the SE is studied in the previous section. Now we 

discuss the implementation of the proposed method on a DS. In DS-SE a new state estimate is 

calculated every time-step ∆T. Typically, in DS-SE a time step varying from a few seconds to 

several minutes is considered depending on the load and generation volatility as well as the 
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acceptable computational and communication burden. On the other hand, DS-SE uses 

measurements of voltages, currents and powers collected from different nodes in the DS. These 

measurements can include measurements from SCADA units installed on the MV/LV transformer 

substations (updated every few seconds), measurements from smart meters installed at loads 

(updated every few minutes), pseudo-measurements (that can be updated as desired) or 

measurements from other types of phasor measurement units (updated from 1 to 60 times per 

second). Several research articles in the literature have already investigated detailed methodologies 

for accommodating measurements with different resolutions and for using unsynchronized 

measurements in the DS-SE [62], [63]. The integration of unsynchronized measurements and 

measurements with different resolutions in the DS-SE is beyond the scope of this work, and 

interested readers are referred to [62], [63] (and the references therein). In this work, it is assumed 

that the available measurements are already synchronized with the same time resolution. As such, 

the proposed DS-SE approach updates (i.e., calculates a new state estimate) every ∆T using 

measurements about the preceding time-step. For each update, the HIF-augmented DS-SE 

component estimates the HIF parameters, which are simplified to biases in the power 

measurements. Since all of the power measurement devices provide the average powers over the 

past time-step ∆T, the estimated HIF parameters are also the average of the dissipated power at 

the HIF location over the past time-step ∆T. If the value of the average power dissipated at the HIF 

location during the preceding ∆T is higher than the detection threshold, then the proposed 

algorithm detects it as a positive HIF event. In other words, the HIF parameters in (29) are the 

average HIF power loss over the past time-step. Accordingly, from the proposed DS-SE 

perspective, there is no difference between a HIF having a time-variable power with an average 
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�̃�𝐻𝐼𝐹 and a HIF with a constant power �̅�𝐻𝐼𝐹. This property leads to the assumption of constant 

power for the HIF, and enables us to model HIF with its average power. 

The model given in (24) provides estimation of parameters of HIF between the two known 

nodes i and j. However, the problem of HIF location is rather to find the nodes i and j in advance. 

In order to locate the HIF, i.e. finding i and j, a set of suspected nodes 𝜓 is considered. The set of 

suspected lines is generally determined based on the DS operator’s knowledge and historical 

records (maintenance and events) of the DS lines and their vulnerability to different phenomena. 

The most vulnerable lines in the DS are to be used as the suspected lines in the proposed approach. 

Practically, the determination of the most vulnerable lines is usually attained through the 

application of data analytics techniques on the maintenance and event records of the individual 

lines in the DS. Several research articles in the literature have already investigated methodologies 

for the determination of the DS’s most vulnerable lines in real time based on historical data [64]–

[66]. The determination of the DS’s most vulnerable lines based on the historical records of the 

DS is beyond the scope of this work, and interested readers are referred to [64]–[66], and the 

references therein, for detailed methodologies on how to identify the most vulnerable lines in a 

DS. Typically, the lines with higher rate of recorded events are more vulnerable to HIF. Besides, 

the long laterals located far from the main feeder are also susceptible to HIFs. In this work, we 

assume that longer feeders with smaller loads at their ends are more susceptible to HIFs and the 

set of suspected lines is selected accordingly. Here it is worth mentioning that if we do not assume 

a set of suspected lines and augment the entire system for the HIF detection, the detection 

performance will decrease due to the high ratio of states to be estimated with respect to the 

measurements. Furthermore, the augmentation of parameters at the so-called bad leverage points 
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[67] can result in a significantly deteriorated performance of the SE. The parameter vector b is 

then defined as all the possible HIF’s active and reactive powers in suspected nodes 𝜓 as in (3.1). 

 𝑏 = [𝑃𝑠
𝑎𝑏𝑐 𝑄𝑠

𝑎𝑏𝑐]𝑇    ∀𝑠 ∈ 𝜓 (3.1) 

where 𝜓 is the set of the nodes on the two sides of the lines that are suspected to have HIF. The 

number of the HIFs on different lines that can be estimated using one snapshot of the measurements 

depends on the observability degree of the system, i.e. the number and locations of the 

measurements in distribution system. Then the states are augmented with all suspected parameters 

of (3.1) and their estimation will be obtained accordingly from iterative equations of bias filter 

provided in (2.48). 

In summary, first the bias vector is defined on all of the suspected nodes 𝜓, which is 

estimated using (2.48), and the largest elements of the estimated bias vector is assumed to be 

corresponding to the HIF temporarily. Then the bias vector is reduced from including all of the 

suspected nodes to only the i and j nodes on the two sides of the HIF (i.e. the largest estimated 

bias), and the estimation problem of (2.48) is run again to find the reduced bias vector estimates. 

The norm of the reduced bias vector is used for detection of the HIF existence via the threshold 

test of (3.2). 

 𝐻𝐼𝐹 𝑒𝑥𝑖𝑠𝑡𝑒𝑛𝑐𝑒 = {
𝐹𝑎𝑙𝑠𝑒, if ‖𝑏‖ < 𝜏
𝑇𝑟𝑢𝑒, if ‖𝑏‖ > 𝜏

 (3.2) 

The same estimation of the reduced bias vector is then used to obtain the location of the 

HIF. In order to realize reliable performance in determining the location of the HIF (but not 

necessarily for the HIF existence detection) the proposed algorithm needs calibration around the 

nominal condition of the healthy system (i.e., system with no HIF) to account for the intrinsic 

parameter errors. On the other hand, the detection of the HIF-existence performs with a high 

reliability without this calibration, which can be significantly improved with the calibration. In 
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order to demonstrate and clarify what the intrinsic parameter errors represent and how these errors 

affect the performance of the proposed algorithm, in the next two subsections we first explain the 

implementation without the intrinsic error correction mechanism and then follow that by an 

explanation of the implementation with the intrinsic error correction mechanism. 

 

3.3 Without intrinsic error correction (Plan A) 

If the HIF exists in line i-j, the values for the parameters estimates at these nodes will be 

considerable values with respect to parameter estimates at other nodes. By determining the nodes 

i and j, the line i-j is detected to include HIF, which is enough information for operators in most 

of the cases, since they should inspect the line for removal of tree contacts or insulator breakdowns. 

However, in case of long lines or underground networks, the exact location of the HIF can be very 

time- and budget-saving before starting the inspection. Therefore, after finding the nodes i and j, 

other suspected parameters are omitted from parameter vector, and augmented states are built on 

solely the two estimated nodes i and j. By reducing the parameter vector size from all suspected 

nodes to only two detected nodes, an accurate estimation is obtained, which can be used to exactly 

locate the HIF. The parameter estimation approach yields the powers of the HIF, from which its 

admittance can be obtained, since the system voltages are also estimated simultaneously with the 

HIF power parameters. Thus it gives the equivalent HIF admittances in the π-model, and using 

(2.20), we find a and the HIF distance from end node x as (3.3). 

 𝑎 =
‖𝑌𝑗‖

‖𝑌𝑖‖
→ 𝜌 =

𝑙

𝑎 + 1
 (3.3) 

where l is the length of the line i-j, and ρ is the HIF distance from node j, as shown in Fig. 1. 
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Figure 3.1 HIF detection flowchart; the intrinsic error vector E is the bias estimates over the suspected nodes 

under nominal load condition of healthy system with no HIF; Plan A and Plan B are respectively without and 

with the intrinsic error correction 

 

3.4 With intrinsic error correction (Plan B) 

Ideally, if the system model is perfect, the bias estimates are all zeros for a healthy system, 

and non-zero elements directly reflect the occurrence of an HIF. However, due to model 

uncertainty and linearization, the bias estimates are not zero even in a healthy condition. In this 
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work, we denote the errors arising from model uncertainty and linearization as the intrinsic 

parameter error in the system. This means that even if we formulate the proposed parameter 

estimation problem for a healthy DS (i.e. without any HIF), HIF parameter estimates may have 

nonzero values. In this thesis, we propose to account for these intrinsic parameter errors by first 

applying the proposed parameter estimation on the healthy system (i.e., without any HIF), and 

saving the estimated HIF of all suspected nodes in the vector E. In other words, the bias estimates 

�̂� of the healthy system with no HIF is saved as E, which would consist of small values. The 

estimated values for parameters in this step do not represent any HIF, but come from intrinsic 

parameter errors inaccuracy. By saving the HIF parameters’ estimates in the healthy system 

condition, a more accurate estimation of the HIF can be obtained by subtracting vector E from our 

bias estimates in the subsequent operating conditions. In other words, the HIF parameter estimates 

in the healthy system, that are ideally zero but have non-zero values, are the intrinsic errors of the 

proposed HIF estimation, around which we propose the calibration of the DS-SE. In practice, the 

intrinsic model error can be obtained by running proposed estimation on the system when it is 

newly constructed, where the possibility of the HIF and other events are minimum and the model 

information are accurate. If the estimation is designed for an already operating DS, there is a need 

for a general inspection of the system for all possible events and errors in order to get the most 

accurate model information. Then it is time to save the intrinsic error estimates, which should be 

subtracted from the subsequent HIF estimates. If the difference between the estimated value and 

the pre-calibrated value of bias vector (3.4) exceeds the threshold, the HIF can be detected. 

 �̂�𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = �̂� − 𝐸 (3.4) 

where E is the vector of the intrinsic error correction, which consists of the bias estimates in the 

healthy system condition under nominal loading. Finally, if the estimated HIF parameters exceed 
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the detection threshold τ, it will be positively detected and its location is reported. The threshold 

is selected based on the detection performance indices shown in next section. Fig. 2 gives a 

flowchart summarizing the proposed HIF estimation methodology. 

 

3.5 Observability and Measurement Placement 

Observability is essential for different DS-SE functionalities. For example, DS 

observability is required to enable fault detection [53], topology identification [54], energy theft 

detection [55], operation under communication loss [56], etc. Measurement placement to realize 

DS observability has accordingly been extensively investigated in the literature (e.g., [68]–[70]). 

In this section, a simple exhaustive search algorithm is adopted for measurements placement for 

DS observability. The placement results realize system observability which can be used to perform 

HIF detection as well as other control and monitoring functionalities. Here it is worth reiterating 

that, as discussed in section III, the proposed HIF detection formulation does not require any 

additional measurements compared to performing DS-SE for any other purpose without allowing 

for HIFs detection. The measurement placement algorithm is based on rank of gain matrix in SE, 

in addition to its condition number. The rank of square matrix G is defined as the number of its 

linearly independent rows or columns. It is also equivalent to number of nonzero eigenvalues of 

the matrix. The condition number of a matrix G is defined [71] as in (3.5). 

 𝒦(𝐺) =
𝜎𝑚𝑎𝑥(𝐺)

𝜎𝑚𝑖𝑛(𝐺)
 (3.5) 

where σ stands for the singular values of matrix G. 

In order to find the measurement placement, we define a placement vector including power 

and voltage measurements. It is considered that when there is a voltage measurement in a node, 

voltages of all three phases are measured. Moreover, when there is a power measurement, both the 
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active and reactive powers of three-phases are measured. First, we examine all possible 

measurements that can be added to the placement vector C separately and find all corresponding 

gain matrices G. The measurement with highest rank of gain matrix is selected. If there are more 

than one measurement that result in the maximum rank, then the measurement with the lowest 

condition number is selected. We repeat the procedure for second measurement and so on. Our 

objective is to determine the least number of measurements for system observability and ability to 

detect HIF. The least number of measurements are obtained after determining the first 

measurement that makes the gain matrix full-rank, as demonstrated in Algorithm 1. 

Algorithm 1: Measurement placement 

1. Initialize placement vector C as empty 

2. Examine all possible measurements to be added to C separately and find 

all corresponding gain matrices G 

3. Select the measurement corresponding to the gain matrix with highest 

rank and lowest condition number 

4. Update the placement vector C with selected measurement 

5. If G is full-rank Break 

6. Go to 2 

 

3.6 Summary 

The proposed HIF detection approach is based on the existing distribution system 

monitoring infrastructure, which is used for various functionalities. Thus, instead of manipulating 

the existing infrastructure to enable the proposed approach, we proposed several variations in the 

proposed algorithm to be compatible with the existing infrastructure and its other functionalities. 

The two major aspects that were proposed to make the proposed approach practical, was first 

reducing the set of HIFs from all possible HIF in the system to only those HIF on the suspected 

branches of the system, and second calibrating the proposed algorithm around the HIF estimates 
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in non-HIF condition of the system. The other practical aspects of the proposed approach is also 

discussed in this chapter, such as inclusion of different types of measurements. 
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Chapter 4: Simulation results 

 

4.1 Overview 

In order to investigate the performance of the methodology proposed in this paper, two 

IEEE test systems are selected; namely, the IEEE 13-bus and 123-bus systems [46]. The results of 

the measurement placement algorithm are first presented to realize system observability and enable 

HIF detection. Random HIF cases are studied, differing in HIF impedance, line and phase 

containing HIF and HIF distance from sending end. The influence of load variation is also 

considered by choosing random load factors for different loads, which are assumed to work 

between 25% below and 15% above their nominal load. The simulation validation of the proposed 

location procedure consists of three main parts. First the existence of HIF is detected. Then the 

line with HIF is identified, and finally its distance from the sending end is estimated. In this work, 

it is assumed that longer feeders with smaller loads at their ends are more susceptible to HIFs and 

the set of suspected lines is selected based on this criterion to include 7 lines in 13-bus system and 

70 lines in the 123-bus system, corresponding to 32 and 218 HIF parameters in 13-bus and 123-

bus systems, respectively. Here it is worth mentioning, that the proposed algorithm is augmented 

with all of the HIFs on suspected lines. However, after positive detection of one HIF line (when 

its estimated value exceeds the threshold), the DS-SE start over and is augmented only with the 

HIF on the detected line. The latter step helps with the estimation of the HIF location more 

accurately.  In order to compare the proposed methodology to existing work in the literature, the 

comprehensive literature review provided in [1], comparing the different HIF detection 

methodologies, is used. Specifically, the survey in [1] reports the accuracy of 21 references, and 

we used the average accuracy of the reported references to benchmark our results. The 
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measurement error is generated by random Gaussian noise with zero mean and variance 0.01 p.u. 

for all measurements in all cases. 

The proposed algorithm is based on the DS-SE, which is dependent on the placement of 

the measurements throughout the system. Therefore, a simple placement algorithm is used as 

discussed in previous chapter, whose results are provided for IEEE 13-node and 123-node feeders 

in this chapter before simulating the other case studies. Then, the performance of the proposed 

algorithm is evaluated first in terms of detection of HIF existence in system (which is itself a 

valuable knowledge for operators), and then in terms of the HIF location identification of the 

algorithm. The proposed algorithm performs differently on different feeders of the system, which 

depends on the system connections and model accuracy. Therefore, at the end of this chapter, a 

performance criteria is defined and all of the suspected line for having HIF (7 and 70 branches in 

13-node and 123-node feeder systems) are evaluated using the defined performance criteria. 

 

4.2 Measurement placement 

Results of the proposed measurement placement algorithm are presented for the IEEE 13-

bus and 123-bus systems in Tables 1 and 2, respectively. It is noticed that the 13-bus system is 

reduced to 10 nodes after removing the switch buses and merging their terminal nodes. Among the 

10 nodes, there exists three-phase as well as single- and double-phase loads and lines. The states 

pertaining to non-existing phases are removed from the state vector leaving the 13-bus system to 

be modeled with 43 states. Similarly, the 123-bus system is modeled with 497 states. In the 13-

bus system, there are 8 measured nodes, among which nodes #5 and #10 are double-phase and 

node #6 is single-phase; the total number of measured values are 49. Similarly, there are 80 

measured nodes in 123-bus system, and the total number of measured values are 529 including 
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voltage magnitudes, active and reactive power measurements. In addition, 2 and 41 pseudo-

measurements are assumed in the 13-bus and 123-bus systems, respectively, with error variance 

of 30%. 

13-bus system measurement placement results (measured nodes) 

Power 632 633 646 652 671 675 680 684 

Voltage 632 671 675 

Table 4.1 Measurement placement results for the 13-node feeder 

 

123-bus system measurement placement results (measured nodes) 

Power 
1 2 3 4 5 6 7 8 9 12 13 18 19 21 23 25 26 27 28 29 30 35 36 37 38 40 42 44 45 47 48 49 

50 51 52 53 54 55 56 57 60 61 62 63 64 65 66 67 68 72 76 77 78 79 80 81 82 83 86 87 88 89 90 

91 93 94 95 96 97 98 100 101 105 108 110 135 149 160 197 250 

Voltage 1 13 21 25 35 47 56 60 65 67 76 80 85 88 93 98 105 111 113 150 151 250 450 

Table 4.2 Measurement placement results for the 123-node feeder 

 

4.3 Detection of HIF existence 

To evaluate the detection performance of the proposed scheme, 10,000 cases are generated, 

half of which is the system in healthy condition (no HIF) in different load conditions, and the rest 

include 5000 random HIFs in different loading condition of the systems. The value of HIF 

considered in the literature vary from 400 𝛺 [3] up to 15 k𝛺 [4]-[6], depending on the type of HIF. 

The more details can be found in [3] and the references therein, where the HIF impedances are 

discussed for different contacts and surfaces for broken and unbroken conductor cases, 

respectively.  In current setup, the HIFs are all considered as single-phase to ground, characterized 

by four random values that are impedance, line, phase and distance from the end node. The HIF 
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power values considered in the literature varies from 0.011 (for 15 k𝛺) to 0.43 p.u. (for 400 𝛺), 

where the base power and base voltage are 100 kVA and 4.16 kV in both 13- and 123-bus test 

systems. On the other hand, the individual power measurement errors in DS do not exceed 1% (or 

0.01 p.u.) according to [72], and the deployed Kalman filter is the sovereign remedy for this 

measurement error, so the error of estimated values are far less than the individual measurement 

errors. Thus, if we assume the 0.01 p.u. as detection threshold, it is highly unlikely that the 

measurement errors in normal conditions exceed it to result in the false alarm, while it is still less 

than the least assumed HIF power in the literature (i.e. 0.011 p.u.). 

 

System Plan Accuracy Security Safety Dependability 

13-bus 

A* 95.87 92.85 99.26 99.31 

B** 99.75 99.50 100 100 

123-bus 

A 96.39 93.65 98.87 98.93 

B 99.60 99.20 100 100 

Table 4.3 HIF existence detection performance in 13-node and 123-node feeders 

*A: without intrinsic error correction 

**B: with intrinsic error correction 

 

There are four typical performance indices for detection evaluation: accuracy, security, 

safety and dependability, that are different ratios of true and false alarms for positive and negative 

events as precisely defined in [1], which are recalled here in equations 34(a)-(d). 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (4.1) 

 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (4.2) 
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 𝑆𝑎𝑓𝑒𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (4.3) 

 𝐷𝑒𝑝𝑒𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4.4) 

where TP and FP refer to true positive and false positive alarms, and TN and FN refer to true 

negative and false negative alarms. The four performance indices of the proposed method are 

reported in Table 3. In the state and parameter estimation literature, two metrics are widely used 

to evaluate the detection performances that are detection probability and false positive alarm (see 

[48]-[50] for example). The detection probability can be inferred from the dependability and 

accuracy, while the false alarm rate can be interpreted to security and safety. It can be seen from 

Table 3 that if the intrinsic error correction is implemented, the detection of HIF existence is very 

accurate. The results of HIF existence detection is also reliable even without the intrinsic error 

correction. 

 

4.4 HIF line identification 

In this section, we investigate the capability of the proposed approach to correctly identify 

the lines containing the HIF. To this end, several possible values of the HIF impedance are 

considered (varying from 400 𝛺 to 15 k𝛺). A 1000 runs of simulation are performed with each 

value of the HIF impedance, where in each run a line is selected randomly from the set of suspected 

lines to include an HIF. The statistics of successful identification for the different HIF impedance 

values (computed over each 1000 runs), are then reported under the base load case in tables 4 and 

5, for the 13-bus and 123-bus systems, respectively. Subsequently, in order to also assess the 

capability of the proposed approach to accurately identify the line with an HIF at off-nominal load 

conditions (i.e., when the system loads are not at their nominal values), different cases are 
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considered wherein individual loads are multiplied by different random load factors in each run. 

Two different ranges of load factors are considered (i.e., [-15%, +10%] and [-25%, +15%]), and 

additional runs are performed for each of these load factor ranges. In the proposed model, HIFs 

can be more easily detected if the system is close to no-load conditions, e.g. during night, because 

of higher influence of the HIF in the measurements. On the other hand, the nominal loads in the 

DS are the maximum desired loads, exceeding from which may lead the system to its stability 

limits, thus the loads variation range is selected not to exceed more than 15% above and reduced 

below 25% the nominal load. The statistics of successful identification for the different HIF 

impedance values (computed over each 1000 runs) are then reported in tables 4 and 5, for the 13-

bus and 123-bus systems, respectively. The consideration of random load variation, enables us to 

test the validity of the proposed HIF detection approach under practical load variations, due to the 

unknown nonlinearity of the system model with respect to load variations. The simulation results 

confirm such nonlinearity showing decreased performance for larger load variations. Yet in the 

assumed range of load variations, the algorithm gives acceptable detection of the HIF.  

Besides, the influence of load balancing is also considered to test the detection algorithm. 

In the 13-bus system, the nodes 645 and 646 have single-phase load while they are fed through 

double-phase lines. Node 675 has a significantly unbalance load with 485 kW, 68 kW and 290 kW 

on phases a, b and c, which can also be divided equally between the three-phases if the required 

switching equipment are deployed. Although the loads of node 671 are unbalance, they are 402 

kW, 451 kW and 672 kW for a, b and c phases, and also this node is upstream feeder of the nodes 

611, 652, 684, 680 and 675, and the cumulative loads for the three-phases is approximately balance 

at this node. Therefore, load balancing is considered only at the nodes 675, 645 and 646 in the 13-

bus system. Similarly, there are 80 single phase loads in the 123-bus system, among which 28 



55 

 

nodes are connected to a three-phase feeder and two of them connected to double-phase feeders. 

The load-balancing is assumed only on the 28 nodes, in each run a percentage of these nodes are 

randomly selected, and their loads are equally divided between the three-phases. In other words, 

in each run a percentage of the single phase loads are selected and their loads are divided between 

their three phases equally. Two cases are assumed here that are 33% and 67% of the nodes (with 

single-phase load) are subject to load-balancing. Additionally, line outage and re-energization may 

happen frequently in DS due to faults or maintenance. It was discussed that the transient behavior 

of such events might have negative influence on the DS-SE but only for the results of the 

measurement interval during which the events happened. Besides, the line outage event deviates 

the system model from the original model around which the bias estimates are calibrated in the 

proposed approach. Therefore, the influence of a single line outage is also assumed in the 

simulation, where one line is removed from the network in each run. The influence of single line 

outage on the proposed HIF detection is also reported in Tables 4 and 5 for the 13-bus and 123-

bus systems, respectively. 

Load Plan 400 𝛺 800 𝛺 1.2 k𝛺 5 k𝛺 15 k𝛺 

Base load 
A 87.9 82.9 73.2 63.2 55.8 

B 99.8 99.6 99.6 98.8 98.2 

V
ar

ia
ti

o
n

 

(%
) 

(
−15
+10

) 
A 88.6 71.8 67.2 53.1 56.6 

B 99.7 99.0 98.3 97.1 93.4 

(
−25
+15

) 
A 80.9 68.5 51.6 28.3 13.3 

B 99.3 98.6 97.7 96.3 95.3 

B
al

an
ce

 (
%

)*
 

33 

A 86.0 79.5 75.2 62.1 54.4 

B 99.3 99.2 98.6 97.1 96.6 

A 85.5 77.3 73.6 57.1 48.4 

B 97.7 97.3 95.3 92.4 91.6 

One feeder outage 
A 81.7 72.9 66.2 62.6 51.4 

B 95.3 94.6 94.4 93.8 94.2 

Table 4.4 HIF line identification in 13-node feeder in different conditions 
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Load plan 400 𝛺 800 𝛺 1.2 k𝛺 5 k𝛺 15 k𝛺 

Base load 
A 96.9 91.4 77.4 64.7 64.4 

B 96.4 94.8 95.4 95.3 95.9 

V
ar

ia
ti

o
n

 

(%
) 

(
−15
+10

) 
A 95.4 94.9 66.1 58.4 56.6 

B 94.9 94.3 94.3 94.3 93.4 

(
−25
+15

) 
A 91.7 86.1 49.2 33.9 21.5 

B 92.8 93.3 93.3 92.3 91.8 

B
al

an
ce

 (
%

)*
 

33 
A 94.4 93.7 76.1 58.4 52.6 

B 92.8 93.3 93.3 92.3 91.8 

67 
A 94.4 93.3 71.0 55.2 49.1 

B 95.2 94.9 94.3 93.7 94.1 

One feeder outage 
A 88.8 91.4 72.4 58.1 52.7 

B 93.7 93.8 91.2 92.3 89.0 

Table 4.5 HIF line identification in 123-node feeder in different conditions 

*Blance: 33% of the single-phase loads are balanced to see the influence of load-balancing on the proposed HIF 

detection method 

 

The two location approaches proposed in section 4, which are with and without intrinsic 

error correction, are evaluated on all aforementioned cases; i.e., 1000 runs are performed with 

intrinsic error correction and another 1000 runs are performed without intrinsic error correction 

for each case (marked in tables 4 and 5, as Plan A: without intrinsic error correction, and Plan B: 

with intrinsic error correction). The results generally demonstrate that the proposed approach 

performs reliably if the DS-SE model is calibrated by subtracting the intrinsic error of different 

bias estimates at their nominal value (i.e. at the nominal loads and generation).  The results in 

tables 4 and 5 show that when the intrinsic error estimation has been saved according to the 

proposed procedure, the results of the location algorithm are fairly reliable compared to the 

reported literature average accuracy of 97.1%, while unlike other methods in the literature, the 

proposed method does not require separate measurements with high sampling rates. However, if 

the intrinsic error is not saved, the detection is less reliable. It is also observed that the intrinsic 
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error correction gives considerably accurate HIF line estimations in 123-bus system and has 

slightly more error in 13-bus system. The results of normal SE (without intrinsic error correction), 

on the contrary performs better in 13-bus than 123-bus system. This is mainly due to the large 

dimension of the suspected parameters ψ of (29) in 123-bus system. It is worth highlighting again 

that the intrinsic errors of bias estimates is saved only one time under the nominal loads at all buses 

without any HIF with only measurement errors (which are filtered by the estimator). 

 

4.5 HIF distance estimation from the nodes 

After determining the HIF line, the estimated values of biases can be used to find the 

location of HIF. Distribution systems are typically characterized by short lines, therefore 

identifying the faulty line is usually sufficient for DS operators in most of the cases, and an 

inspection will be conducted on the detected line. However, in case of long, or more importantly, 

underground lines, the accurate estimation of the HIF location may save a lot of time and costs for 

inspection. The proposed estimation approach to HIF location also provides an estimation of the 

HIF distance from the end node. In this subsection, results of the HIF distance estimation from the 

end node is presented. To this end, 99 HIFs are considered on uniformly increasing distances from 

end node of line 684-652 of 13-bus system as well as the line 57-60 of 123-bus system. The 

location procedure is performed 100 times for each of the 99 HIF cases, then the mean value and 

variance of estimation (of 100 runs at each distance) is plotted for each system in Fig. 3 (a) and 

(b). The HIF distance estimation on the other lines also exhibit the same behavior as those in Fig. 

3, with least error in the middle of line and most error on two sides, because the defined parameter 

a in (1.c) is either zero or infinite on the two sides of the line. 
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Figure 4.1 HIF distance estimation error in lines (a) 684-652 in 13-bus system with 800 ft. length and (b) 57-60 

in 123-bus system with 750 ft. length 

 

4.6 Individual HIF simulation 

Subsections 4.2 shows the reliable performance of the detection for HIF existence, and 

subsection 4.3 shows the overall performance of the HIF line identification statistically, where it 

was observed the proposed approach is quite reliable. Now we take a look in the details of the 

results that was reported statistically in previous sections. We assume the HIF on the middle of the 

individual lines, and then we examine different impedance values for the HIF to evaluate the 

detection performance. The mathematical expectations are reported in this subsection by setting 

the measurement noise equal to zero deterministically. 

 HIF location: line 632-633 phase a 

HIF 

detection 

plan 400 𝛺 800 𝛺 1.2 k𝛺 5 k𝛺 15 k𝛺 

A* 632a-633a 632a-633a 632a-671a 632a-671a 671c-680c 

B** 632a-633a 632a-633a 632a-633a 632a-633a 632a-633a 

Table 4.6 Individual HIF line identification results: HIF on line 632-633 phase a 
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 HIF location: line 671-675 phase b 

HIF  

detection 

plan 400 𝛺 800 𝛺 1.2 k𝛺 5 k𝛺 15 k𝛺 

A* 671b-675b 671b-675b 671b-680b 671b-680b 671c-680c 

B** 671b-675b 671b-675b 671b-675b 671b-675b 671b-675b 

Table 4.7 Individual HIF line identification results: HIF on line 671-675 phase b 

 HIF location: line 671-680 phase b 

HIF  

detection 

plan 400 𝛺 800 𝛺 1.2 k𝛺 5 k𝛺 15 k𝛺 

A* 671b-680b 671b-680b 671b-680b 671b-680b 675c-680c 

B** 671b-680b 671b-680b 671b-680b 671b-680b 671b-680b 

Table 4.8 Individual HIF line identification results: HIF on line 671-680 phase b 

 HIF location: line 632-633 phase c 

HIF  

detection 

plan 400 𝛺 800 𝛺 1.2 k𝛺 5 k𝛺 15 k𝛺 

A* 632c-633c 632a-633a 632c-633c 632c-633c 632c-633c 

B** 632c-633c 632c-633c 632c-633c 632c-633c 632c-633c 

Table 4.9 Individual HIF line identification results: HIF on line 632-633 phase c 

 HIF location: line 632-645 phase c 

HIF  

detection 

plan 400 𝛺 800 𝛺 1.2 k𝛺 5 k𝛺 15 k𝛺 

A* 632c-645c 632c-645c 632c-645c 632c-645c 632c-645c 

B** 632c-645c 632c-645c 632c-645c 632c-645c 632c-645c 

Table 4.10 Individual HIF line identification results: HIF on line 632-645 phase c 
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 HIF location: line 632-671 phase c 

HIF  

detection 

plan 400 𝛺 800 𝛺 1.2 k𝛺 5 k𝛺 15 k𝛺 

A* 632c-671c 632c-671c 632c-671c 632c-671c 632c-680c 

B** 632c-671c 632c-671c 632c-671c 632c-671c 632c-671c 

Table 4.11 Individual HIF line identification results: HIF on line 632-671 phase c 

 

4.7 Determining the HIF location performance on different nodes of the system 

It was observed from the results of previous subsection that the performance of the 

proposed algorithm varies for HIFs on different feeders. Therefore, we define a performance 

criterion to evaluate the certainty of the located HIFs. Following the same logic of the previous 

subsection, we define three conditions: i) the HIF is located correctly (green), ii) the HIF is located 

at a neighboring feeder (yellow) and iii) HIF is located completely wrong (red). We give a score 

of +1 to the correctly located HIF, 0 to the HIFs located at neighboring feeders and -1 to the wrong 

location results. Then we evaluate different HIFs in the range of 400 𝛺 to 15 k𝛺, from which we 

obtain a performance criterion for each possible HIF on different nodes of the system. 

Mathematically speaking, we define a performance criterion η at each line, which is obtained from 

the following procedure. First, the HIF values are selected to be increasing from 400 𝛺 to 15 k𝛺. 

Because the power of the HIF is used in the algorithm, which is related to impedance inversely, 

the steps are chosen to be increasing via the reciprocal function, i.e. HIFs are selected on the points 

shown in the figure 4.2. 

In other words, we apply the HIFs as shown in the figure 4.2 to each feeder of the systems 

individually, which include 25 different HIF values. Then we associate +1 score to the location 
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performance if it locates the HIF correctly, 0 score if it locates a neighboring feeder to the actual 

HIF, and -1 score if it locates the HIF wrong. Finally, the score of the HIF location algorithm at 

each feeder is the sum of the 25 different HIF values, according to the equations (4.2.a) and (4.2.b). 

 𝜂 = ∑𝑠(𝐻𝐼𝐹𝑖)

25

𝑖=1

 (4.2.a) 

  𝑠(𝐻𝐼𝐹𝑖) = {
+1 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡
0 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑓𝑒𝑒𝑑𝑒𝑟
−1 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑤𝑟𝑜𝑛𝑔

 (4.2.b) 

 

Figure 4.2 The steps of changing the HIF to evaluate the HIF location criteria of all feeders 

 

The performance criteria 𝜂 is plotted for the HIFs on different feeders of the 13-bus system 

in figure 4.3 as a heat-map where the criteria 𝜂 is represented by the color of branches. Note that 

the two branches 632-645 and 684-652 are not considered as suspected nodes for having HIF, thus 

the performance criteria are not associated with these two branches. The performance criteria is 

+1 if it is able to locate all of the HIFs varying from 400 𝛺 to 15 k𝛺, and it is -1 if does not locate 

any of the HIFs in the specified range. After considering the set of suspected HIF branches as 

discussed, the defined performance criteria η is always positive in all of the branches of 13-node 

and 123-node feeders. Therefore, we mapped the “autumn” color map on η in range of zero to +1 
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to distinguish between different values of η. Similarly, 70 branches of the 123-node feeder are 

assumed as HIF-suspected feeders. The performance criteria of each of the 70 branches are plotted 

using the heat-map in the figure 4.4. Although the performance criteria has the range from -1 to 

+1, the colors are mapped on the range of η=0 to η=1 in order to distinguish between the η values. 

It is because after considering the suspected HIF branches as discussed, the performance criteria 

is always greater than 0 for all of the considered branches. 

 

 

Figure 4.3 Performance criteria (4.2) for HIF line identification in 13-node feeder 

 

Figure 4.4 Performance criteria (4.2) for HIF line identification in 123-node feeder 
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4.8 Computational specification of the state estimation 

The original state estimation, as discussed, is usually based on the WLS, to which the 

computational requirement of the proposed algorithm is compared, as reported in Table 4.12. The 

simulations are performed on a computer with a core-i5 CPU with 1.8 GHz frequency and 16 GB 

of installed memory (RAM) with a 64-bit windows operating system. Three estimators are 

considered to clarify the computational requirements of the proposed algorithm: i) WLS is used to 

estimate the original DS states, ii) Kalman filter is used to estimate the original DS states, and iii) 

bias filter is used to estimate the original states and the HIF parameters simultaneously. It can be 

seen in Table 4.12 that the most significant computational efforts are due to using the Kalman filter 

instead of the WLS; whereas adding the HIF parameters to the states does not increase the 

computations too much, considering the proposed HIF estimator is based on the bias filter, which 

is a variation of Kalman filter. Therefore, it can be concluded that not the augmentation of the HIF 

parameters, but rather the use of Kalman filter is the reason for the increased computational 

requirement. It can be also noticed that the computational requirement in the proposed estimator 

does not exceed 1.5 times that of the original WLS. Therefore, it can be concluded that 

computational requirement should not be an obstacle in front of applying the proposed method.  

 

Estimator WLS Kalman filter Proposed HIF estimator 

13-bus 36 μsec 49 μsec 52 μsec 

123-bus 4410 μsec 6280 μsec 6800 μsec 

Table 4.12 Computational specification of the proposed HIF estimation method compared with WLS 
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4.9 Summary 

Different case studies are simulated on the IEEE 13-node and 123-node feeder systems, to 

evaluate the performance of the proposed algorithm. In general, the detection performance of the 

proposed algorithm is proved to be very reliable, as evident from the literature. The location 

performance of the algorithm is, however, more complex. If DS-SE is augmented with all possible 

HIF parameters from all of the system branches, then the location performance would not be 

reliable. Therefore, it was suggested that only the more suspected lines are augmented for HIF 

location in the DS-SE algorithm. Accordingly, 7 and 70 branches were augmented in DS-SE 

algorithm in 13-node and 123-node feeder systems, respectively, for which the location 

performance is proved to be reliable. Besides, the proposed algorithm performs differently for the 

HIFs on different branches of the systems. Therefore, a location performance criterion is defined, 

which is evaluated for all of the considered branches of the two systems under study, which shows 

sufficiently reliable results for the location performance of the proposed algorithm. 
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Chapter 5: Conclusion 

 

5.1 Summary 

High-impedance fault possess a special position in the study and research on distribution 

systems, because they impose many negative effects on the operation of the system, yet the existing 

methods to deal with the HIF are far more expensive than the economical feasibility of the existing 

distribution systems. On the other hand, the negative effects of the HIF is not as severe as short-

circuit faults, hence, the HIF remained as a less noticed area in the distribution system study and 

research. The existing HIF detection methods require equipment of the system with very high-

resolution measurement devices up to MHz, however, modern distribution systems are moving 

towards being monitored using the SCADA measurements or Smart Meters, which have much less 

sampling rates around one sample per several minutes, or using PMU devices that have at most 60 

samples per second. It is shown in different areas of the distribution system research that the 

existing monitoring infrastructure (based on SCADA, PMU, Smart meters or combination of them) 

are able to provide many various desired functionalities, such as distributed energy resources 

control, system model identification, energy theft detection, etc. In this regard, we proposed using 

the existing distribution system monitoring infrastructure to detect and locate the high-impedance 

fault. HIF is thus modeled as static impedance and augmented in DS-SE model. The proposed 

algorithm is absolutely compatible with all other functionalities of the existing DS monitoring 

infrastructure, hence, it imposes no additional cost other than software update costs as proposed in 

this thesis. The main limitation of the proposed method is the lower accuracy in case of the very 

high-impedance values of HIF, which can be alleviated using the more measurement devices. 
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5.2 Future work 

The proposed idea, as shown in the simulation, is not able to identify and locate the HIFs 

from the entire system at once. It requires prior knowledge about the feeders, which can be 

obtained from the historical maintenance data as the best source. However, if such data are not 

available, the simulations and online measurement data can be insightful for the selection and 

exclusion of feeders from the system feeders. Therefore, evaluating the proposed algorithm on a 

real distribution system with available historical data would be significantly valuable. Especially, 

if the historical maintenance data are available, the economic benefits of the proposed algorithm 

can be evaluated in long-term operation of the distribution system. Hence the following works are 

suggested to be further studied: 

 The actual data from distribution system is required for validating the proposed method. 

 The proposed method is vulnerable to the errors in the system model parameters (network 

impedances), so its performance should be evaluated under actual model parameter errors. 

 The distribution system state estimator generates some consistent erroneous estimates for 

some special nodes, which is referred to by Zhao and Mili as leverage points. Prior 

knowledge of these erroneous estimates can solve the problem of HIF estimation in those 

nodes. 

 System-specific estimator design can indeed improve the performance of the state 

estimator and the HIF locator in turn; e.g. identifying the suspected HIF feeders, pre-

calibrating the HIF parameters’ estimates, weighting the measurements and state estimates 

by system-specific covariance matrix design, etc. 
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