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Abstract 

Multi-axis machine tools are used to machine parts with complex, curved surfaces. With additional 

rotary axes, multi-axis machine tools have a higher risk to have collisions compared with 

traditional three-axis machine tools. Collision during machining often causes damages to the 

machine and workpiece, which in turn leads to loss of productivity and extra costs. It can occur 

between the cutter, workpiece, and machine. Machining simulation with moving machine axis 

links becomes essential to detecting collisions prior to physical machining. In order to simulate 

machine movements, it is necessary to attain the kinematic chain of a given machine tool and to 

group machine components for each link in the kinematic chain. Existing methods to group link 

components require many inputs from users and follow an error-prone and lengthy manual process. 

 

This thesis presents an automatic method to group link components for each machine axis of a 

given multi-axis machine tool. The method is able to generate the kinematic chain of the multi-

axis machine tool with only basic user inputs. As the first step, interference detection by voxel 

modeling is used to get contact relationships between components. Link-interface features between 

components are then identified and used to generate the link groups. The process of generating the 

link groups may be accompanied with uncertainties that can result in incorrect link groups. As a 

result, if there is an uncertainty, the generated link groups need to be validated to be free of link 

collision within the travel span of each axis. If there is collision, the collision is to be resolved by 

examining the uncertainty causing the specific link collision. The iterative step of validation and 

resolution continues until no link collision exists. The link collision is detected also by voxel 

modeling. The output of the automatic grouping method is the kinematic chain of the machine tool 
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and the geometric model of each link for machining simulation. The presented method has been 

implemented on five commercial Haas five-axis machine tools with varying configurations. 

Correct kinematic chains for these machine tools have been generated and ready to be used for 

simulation of machine movements. 
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Lay Summary 

 

This thesiss presents an automatic grouping method that generates kinematic chains and 

corresponding STL files of each link of multi-axis machine tools for simulation of machine 

movements. It requires only basic user inputs to avoid an error-prone and lengthy manual process. 

If necessary, validation of link groups and resolution of link collision are conducted to ensure 

correct link groups are generated. The presented method has been implemented on five commercial 

Haas five-axis machine tools with varying configurations. Correct kinematic chains for these 

machine tools have been generated and ready to be used for simulation of machine movements. 
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Chapter 1: Introduction 

 

Multi-axis (four-axis or five-axis) machine tools are widely used to machine parts with complex 

and curved surfaces. The number of axes of a machine tool refers to the number of degrees of 

freedom. A three-axis milling machine has three linear translational axes X, Y, and Z which can 

be positioned everywhere within the travel span of each axis. To increase the flexibility in possible 

tool-workpiece orientations, it can be achieved by providing rotary axes. The rotary axes are 

defined as A, B, and C axis which rotates about the X, Y, and Z axis, respectively. Figure 1.1 

shows an example of a five-axis machine tool with rotary axes in the B and C axes. Compare with 

three-axis machine tools, multi-axis machine tools offer advantages of better productivity, 

accuracy, and flexibility with additional rotary axes [1, 2].  

 

However, because of additional rotary axes, collision is prone to occur during multi-axis 

machining. Collision can bring destructive consequences like damages to tools, workpieces, and 

even the machine structure. It results in less productivity and extra costs. The collision between 

the machine head and clamping table during the 5-axis machining of a larger propeller blade is 

shown in Figure 1.2. Collision greatly affects the wide application of multi-axis machines and has 

attracted many researchers in collision detection for multi-axis machining [3-5]. 
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Figure 1.1 Example of five-axis machine tool  

 

 

 

Figure 1.2 Collision between machine head and clamping table [6] 
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In order to avoid collisions of multi-axis machine tools, it is essential to have a virtual machine 

tool (machine tool motion simulation program) [7] to detect collisions before physical machining 

[6]. Constructing a virtual machine tool requires geometric models of movable axes and the 

machine base of the given machine tool. Also, the machine kinematic chain and machining 

commands are necessary. A kinematic chain includes the information of links and joints. A link 

describes a rigid body with its geometric shape. A joint describes how two links are connected and 

how they can move relative to each other.  

 

Multi-axis machine tools are considered to be a special form of robots. Multi-axis machines have 

a limited number of configurations and robots have infinite configurations. For a five-axis machine 

tool, it contains six links representing five movable axes and the machine base. Also, it has five 

joints representing the five degrees of freedom between six links. For a four-axis machine tool, it 

consists of five links and four joints. There are many various pieces of software with good user-

friendly interfaces that assist engineers in simulating different types of robots that have different 

kinematics chains. Simulating multi-axis machine movements and generating kinematic chains of 

machines can follow the same process as robots. Robot Operating System (ROS) [8] is a set of 

open-source software libraries and tools that help engineers build robot applications. ROS uses 

Unified Robotic Description Format (URDF) which is an XML file format to describe all elements 

of a robot for simulating movements of robots in a virtual environment. URDF not only describes 

the kinematic chain of a given robot but also includes the information of the corresponding 

geometric model for each link. The geometric model of each link can be formed by a group of 

components instead of solely one component. The components that constitute a link are called the 

link components of this link. A link group indicates a set of link components that are grouped 

http://www.ros.org/wiki/urdf
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together to form a link and these link components always move together during simulating robot 

movements. For example, component 1 and component 2 in Figure 1.3 are the link components of 

this link. These two link components are grouped together to form a link group of this link. 

 

 

Figure 1.3 Link components of a link 
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1.1 Motivation 

Multi-axis machine tools that have a limited number of configurations are considered to be a 

special form of robots, so the kinematic chains of machines can be described in URDF. Obtaining 

URDF of multi-axis machine tools requires many inputs to define the properties of machines, such 

as locations and orientations of reference rotary axes of rotary links, joint types, and the 

configuration tree of links, etc. Grouping link components for each link is also required.  

 

Although assembly files of multi-axis machines have already included the pre-defined link groups, 

they are error-prone because the link components are grouped with different styles of different 

robot designers instead of following how link components should be grouped to simulate machine 

movements. Thus, it still requires grouping link components in order to generate URDF of 

machines for motion simulation. Manually grouping link components and defining the necessary 

properties to generate URDF of multi-axis machines can be done by URDF Exporter [9] that 

requires the assembly files of machines.  

 

Manually specifying all required information of a given multi-axis machine tool for exporting its 

URDF is a lengthy process. Moreover, because the necessary manual inputs and grouping rely on 

high-required machine tool knowledge leading to an error-prone process by users. It is desirable 

to have an automatic grouping method to generate URDF for multi-axis machine tools with only 

basic manual inputs. Unfortunately, there is a lack of work on grouping link components 

automatically to generate kinematic chains of multi-axis machine tools for simulation of machine 

movements. 
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1.2 Objectives 

Given the lack of work on grouping link components and generating kinematic chains for multi-

axis machine tools automatically, there is evidently room for new research in this area. The feasible 

configurations of multi-axis machine tools and methods of generating kinematic chains for robots 

are studied in order to analyze the basic inputs required from users. In comparison to existing 

methods that require many user inputs with a lengthy manual process, this thesis presents an 

automatic method to group link components for each machine axis of a given multi-axis machine 

tool with contact information using voxel modeling. It can generate kinematic chains of multi-axis 

machine tools for simulation of machine movements with only basic inputs from users.  

 

1.3 Organization 

This thesis is organized as follows: Chapter 2 is the literature review of multi-axis machine tool 

configurations, kinematic chains for motion simulation, interference detection and voxel 

modeling, and then generation of kinematic chains of multi-axis machine tools. Chapter 3 

describes the inputs and outputs of each tool used in the presented automatic grouping method. 

Also, the workflow of the method is discussed. Details of the link-component grouping, validation 

of link groups, and resolution of link collision are elaborated in Chapter 4 and Chapter 5 

respectively. The presented method has been implemented on five commercial Haas [10]  five-

axis machine tools with varying configurations, and the results are shown in Chapter 6. Finally, 

Chapter 7 presents the conclusions of the work and suggests future work that could be done to 

improve it. 
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Chapter 2: Literature Review 

 

This chapter presents and discusses the state of the art of multi-axis machine tool configurations, 

kinematic chains for motion simulation, and interference detection and voxel modeling. In 

addition, the state of the art of generation of kinematic chains of multi-axis machine tools is 

included for discussion. 

 

2.1 Multi-Axis Machine Tool Configurations 

The most common multi-axis machine tools are four-axis and five-axis machine tools. Machine 

tools that contain more than five axes are not common because five degrees of freedom are the 

minimum required to obtain maximum flexibility in tool-workpiece orientation. This means that 

the tool and workpiece can be oriented relative to each other under any angle [11].  

 

In order to represent configurations of multi-axis machine tools, Sakamoto [12] presented the 

configuration code K to represent the sequence of the relative movements of links of a machine 

tool from the beginning of the working table to the spindle as: 

K =  𝑘1𝑘2, ⋯ ,0, ⋯ , 𝑘𝑁−1𝑘𝑁 

 

where 𝑘𝑖 = x, y or z which represents the relative translation of two machine links along the X, Y, 

and Z axis directions, or 𝑘𝑖 = a, b or c, representing the relative rotation of two machine links 

about the X, Y, and Z axes; subscript 0 refers to the machine base. Because a configuration code 

only specifies the order of axes of a machine tool, it lacks the capability to describe relative 

movements or positions between axes of the machine. Mei et al. [13] used a tree-shaped chart to 
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represent the configuration of a virtual machine tool and an example of tree-shaped chart of a 

machine tool is shown in Figure 2.1. Each node in the tree-shaped chart represents the coordinate 

system of a link, and each arrow between nodes is a coordinate transformation matrix. Each link 

coordinate system in a virtual machine tool can be derived by sequentially multiplying the 

coordinate transformation matrices from the machine base to that component. As a result, using a 

tree-shaped chart to represent a virtual machine tool can describe relative movements or positions 

between axes of the machine. Also, controlling the coordinate transformation matrices between 

links can drive the motion of the virtual machine tool. 

 

 

Figure 2.1 Tree-shaped chart of a machine tool [13] 

 

Four-axis machine tools consist of three linear translational axes X, Y, and Z plus a machine base 

and a rotary axis, either A, B, or C axis. Therefore, the configuration code is a five-digit number 
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with 5!𝐶1
3 or 360 permutations. For five-axis machines, there are two rotary axes which can be any 

two of axes A, B, and C. Its configuration code is formed by a six-digit number comprising 

6!𝐶2
3 = 2160 permutations. It is noted that not all the configurations are feasible for four-axis and 

five-axis machine tools because the independence of three linear translational axes is compulsory. 

Hence, two configuration limitations on four-axis and five-axis machine tools are identified: 

1. For five-axis machine tools, when the fourth and fifth axes are A (or B) axis, and C 

axis respectively, C axis must be the one nearer to the working table. As for four-axis 

machine tools, the fourth axis cannot be C axis. 

2. There must not be a rotary axis between any two of the three linear translational axes 

and one linear translational axis must be attached to the machine base. 

 

Because of these limitations, there are 96 feasible configurations of four-axis machine tools and 

288 feasible configurations of five-axis machine tools [14]. 

 

There was no standard terminology available for the feasible configurations of five-axis machine 

tools and almost every relevant paper has been using different terms to refer to the same basic 

machine types [15-17]. Therefore, Tutunea-Fatan and Feng [18] grouped feasible five-axis 

machine tool configurations into three structural types in order to avoid confusion: 

1. Rotary table (RT): the two rotational movements are applied to the workpiece 

2. Spindle rotating (SR): the two rotational movements are applied to the cutting tool 

3. Hybrid (HT): one rotation is applied to the cutting tool and the other to the workpiece 
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This naming convention of feasible five-axis machine tool configurations are followed in this 

thesis. Figure 2.2 illustrates three structural types of five-axis machine tools. 

 

Figure 2.2 Three structural types of five-axis machine tools (a) Rotary table(b) Spindle rotating (c) Hybrid [16] 
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2.2 Kinematic Chains for Motion Simulation 

A robot usually consists of a series of links. These links are connected by joints with one degree 

of freedom. The pose of the end link can be calculated if all joint movements which include linear 

translation movements and rotational movements are known. Pose of a link indicates the location 

and orientation of the link. A kinematic chain contains the configuration and the relationship 

between joints and links of the given robot, so it is core information of motion simulation for 

robots. Denavit-Hartenberg (D-H) convention is widely used by roboticists to describe kinematic 

chains and calculate the pose of each link of robots [19].  

 

URDF is a file in XML format that describes a robot and it details the information of links, joints, 

dimensions, and so on. It can be used to model a robot with links connected by joints in a tree 

structure. Most industrial robots can be modeled by chains of joints with links.  URDF is a 

fundamental robot model file in ROS, which is a flexible framework for developing robot software. 

It is similar to D-H convention in many respects, but with significant additional enhancements. 

For instance, URDF does not require coordinate systems of links that can only rotate about the Z 

axis. It uses an arbitrary axis for revolute (rotary) or prismatic (translational) joints [20]. Also, D-

H convention does not specify the geometric models of robots. URDF specifies robot models using 

primarily two language elements, namely links and joints which are shown in Figure 2.3. A link 

describes a rigid body part of a robot by specifying its origin, mass, inertia, geometry, and texture, 

whereas a joint describes the connection of two links. The joint specification includes how two of 

links connected by the joint can move relative with each other and the movement limits [21]. 

Figure 2.4 illustrates an example of URDF of Link 1, Link 2, and Joint 1 in Figure 2.3. 



12 

 

 

Figure 2.3 Visualization of URDF’s basic language elements: links and joints [22] 

 

 

 

Figure 2.4 URDF example 
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URDF of a simple robot model can be manually created using an XML editor. However, it is not 

practical to work with complex models using the editor. In a literature proposed by Kang et al. 

[23],  they presented a system to automate the generation of URDF files that only requires the 

parameters of D-H convention. GUI was created to help users to insert the necessary inputs for the 

system. Nonetheless, obtaining parameters of D-H convention requires a lot of work and 

knowledge such as getting offset distance and angle difference between coordinate frames of 

robots following the convention. In addition, the presented method doesn’t use the real geometric 

model of each link. Instead, the geometry of each link is arbitrarily set to a box shape.  

 

The Solidworks [24] plugin called URDF Exporter has been developed by the ROS community. 

Solidworks which is a computer-aided design (CAD) and computer-aided engineering (CAE) 

computer program. The URDF Exporter can convert Solidworks models of robots into URDF with 

its interactive CAD environment. In [25-27], exploiting URDF Exporter to generate URDF and 

the geometric model for each link of robots for motion simulation was demonstrated. URDF 

Exporter exploits the interactive features provided by Solidworks with CAD models to help users 

export URDF. In order to generate URDF, the configuration tree of a robot, the coordinate system 

of each link, joints type, joint transforms and axes, and so on are necessary. Also, the geometric 

model of each link that might consist of multiple link components is also required. The link 

components that constitute a link and locations of rotary axes of the rotary joints can be specified 

manually in the interactive CAD environment of Solidworks. Although the interactive CAD 

environment facilitates the generation of URDF significantly, it is still a lengthy process and 

requires many inputs that need knowledge in robotics.   
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2.3 Interference Detection and Voxel Modelling 

Interference has two distinct types that the first type is coincident interference and the second one 

is collision interference. Coincident interference indicates that two objects contact each other with 

surfaces. Collision interference, on the other hand, occurs when an overlapping volume exists 

between components.  Two physical objects cannot occupy the same space at the same time but 

can share the same surface and it is the same in the virtual environment for simulating physical 

objects. Therefore, interference detection is necessary during simulation to ensure that interference 

between simulated objects is determined. Interference detection can be implemented for objects 

represented by polygons such as triangular mesh surface representation [28]. It can also be done 

for objects represented by voxels (volume pixel or the 3D analog of the 2D pixel).  

 

A voxel is the cubic unit of volume which is centered at the grid point in a given space. Volumetric 

data (x, y, z, v) represents the value v of certain property that is stored in the voxel centered at (x, 

y, z). Voxels take at regularly spaced intervals along three orthogonal axes in the space which 

means each voxel has the same height, width, and length. Since voxel is defined on a regular grid, 

a 3D array (also called voxel space) is typically used to store the values with locations of voxels 

on the grid [29, 30]. Voxelization is a process to convert geometric objects into a set of voxels in 

the voxel space. The polygonal model of the object (that use polygons to represent the surface of 

the object) is placed in the voxel space, where at the beginning the value of each voxel is set as 

empty (v = 0). In the case when polygons of the object intersect with voxels, these voxels are 

labeled as surface voxel or full (v = 1). The surface voxels form the voxel model of the object 

(Figure 2.5). 
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Figure 2.5 Voxelization Steps [31] 

 

Interference between objects occurs when there is a voxel in the voxel space is labeled as a surface 

voxel by more than one object. In order to increase the efficiency of voxelization,  Sagardia et al.  

[32] used two phases method to get surface voxels of objects. The first phase is to find the potential 

surface voxel and the second phase uses the Separating Axis Theorem, in a similar way as 

explained in [33], to detect interference between triangle and potential surface voxels. Lock et al. 

[34] mentioned that interference detection using polygon representation is computationally 

expensive and therefore slow.  The voxel-based approach for interference detection exploits 

computer memory to increase efficiency. It allows faster interference detection but requiring 

additional memory to store the occupancy information. 
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2.4 Generation of Kinematic Chains of Multi-Axis Machine tools 

Multi-axis machine tools can be considered to be a special type of robot with configuration 

constraints. It requires fewer inputs to generate kinematic chains compared with URDF Exporter 

designed for general robots with infinite configurations. In the articles of Lin et al. [35] and Suh 

et al. [36], they worked on constructing environments to simulate three-axis machine tools with 

kinematic chains. In order to generate kinematic chains, the 4 × 4 homogeneous transformation 

matrices between each pair of links are input manually. Mei et al.  [13, 37] constructed an 

environment that is able to simulate five-axis machine tools with the kinematic chains for 

machining simulation and detection of collision between links. Kinematic chains used in this work 

are represented in tree-shaped charts that are generated by transformational matrices input by 

users.  Although these works presented methods to create kinematic chains for motion simulation, 

they didn’t provide ways to help users to avoid breaking configuration constraints of multi-axis 

machine tools and to select the geometric models for each link.  

 

Chang et al. [38] and Lin et al. [39] developed universal environments for 5-axis virtual machine 

tools that come with user interfaces to assist users in specifying configurations to avoid breaking 

configuration constraints and selecting the geometry of each link of machine tools to generate 

kinematic chains. Two user interface dialogs are shown in Figure 2.6 and Figure 2.7. The 

environments require users to input parameters of D-H conventions through the user interface for 

motion simulation.  Although their works exploit the configuration constraints of 5-axis machine 

tools to shorten the process to generate kinematic chains, obtaining parameters of D-H conventions 

requires lots of works as mentioned. Yang et al. [40] presented a generalized kinematics model 

using screw theory for configurations of all five-axis machine tools. Screw theory allows a global 



17 

 

description of rigid body motion, so that there is no need to build local coordinate frames on each 

drive module which is required by D-H conventions. Also, the built kinematic chain is easier 

adapted to other configurations. However, the geometric model of each link in these works doesn’t 

consider to be formed by multiple link components. If each link consists of multiple link 

components, it has to be grouped manually by users which is a lengthy process and requires users 

to have knowledge in machine tool design. Unfortunately, there is a lack of work that considers 

automatic grouping link components and generating kinematic chains for multi-axis machine tools. 

 

 

Figure 2.6 Configuration selection dialog [39] 

 

 

Figure 2.7 Assembly dialog [39] 
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Chapter 3: Methodology   

 

In this chapter, the purpose and required inputs of each tool used in this work are discussed. In 

addition, the workflow of the automatic grouping of link components to generate kinematic chains 

of multi-axis machine tools is presented. 

 

3.1 Required Inputs 

The flowchart shown in Figure 3.1 illustrates the required inputs and outputs of each tool used for 

link-component grouping and generating kinematic chains in this work. 

 

 

Figure 3.1 Flowchart of inputs and outputs 
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Three basic inputs for automatic grouping method are required from users which are the assembly 

file, rotary axes, and travel span of each axis of a given machine tool. These basic inputs can be 

obtained from the machine tool builder of the machine. Rotary axes and the travel span of each 

axis of a machine tool are input directly into the automatic groping method. The assembly file of 

a machine tool, on the other hand, is processed by three tools first. It is input into Solidworks which 

can read assembly files and attain geometric models and poses of components. After reading the 

assembly file, Solidworks exports two different formats to represent geometric models of the 

machine tool. These two formats are then input into two tools respectively.  

 

The first format export from Solidworks is STL format which is a triangular mesh representation 

of 3D models. STL files are then inputted in Meshmixer [41] to be offset inwards. Meshmixer is 

chosen to offset 3D models in this work because it is developed by Autodesk which is a prestigious 

company developing CAD software. It is user-friendly and provides a robust function to offset 

mesh models by a given distance. The offset models are used to distinguish coincident and collision 

interference and it is discussed in chapter 4. When the distance of offsetting inwards relatively too 

large for a triangular mesh model, it returns an empty model without any mesh after offsetting. In 

this work, if a triangular mesh exists after offsetting by Meshmixer, output the offset triangular 

mesh model into the automatic grouping method. If it is an empty model, then output the original 

triangular mesh from Solidworks alternatively. 

 

The second format is Institute for Global Environmental Strategies (abbreviated as IGES) which 

is one of boundary representation (abbreviated as B-rep) formats. Because triangular mesh models 

such as STL format use triangle mesh to represent 3D models, geometric features such as arcs and 



20 

 

lines in the models are not accessible. B-rep preserves the underlying geometry such as surfaces, 

curves, points, cylinders, and so on. Thus, it allows richer geometric operations such as finding 

cylindrical axes of cylinders in a 3D model. IGES file of each component are then input into Open 

Cascade [42]. Open Cascade is an open-source B-rep modeling toolkit and is written in C++. It 

can be easily integrated into the environment of this work. With its powerful functions of B-rep 

operation, it is one of the most popular toolkits in CAD. Open Cascade is integrated into this work 

so that it can read B-rep models and attain all cylindrical features of components. If the most 

common cylindrical axis of the cylindrical features of each component along a given direction 

exists, store them with the corresponding component. The cylindrical axis direction depends on 

what rotary axis a given machine tool has. For instance, for a five-axis machine tool that has B and 

C rotary axes, the most common cylindrical axis in Y and Z direction has to be collected for each 

component. It is important to note that in a kinematic chain, rotary axes of rotary joints are the 

essential information to indicate how links rotate relatively to each other. The cylindrical axes of 

components obtained by Open Cascade provide the information to attain the rotary axes of joints. 

Moreover, these cylindrical axes are the essential information to identify LIPs from CCPs which 

is presented in the next chapter.     
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3.2 Automatic Grouping Method 

The presented automatic grouping method incorporates three modules which are link-component 

grouping, validation of link groups, and resolution of link collision with four required inputs. The 

assembly file of a given machine tool is processed to get the information of cylindrical axes, 

original models, and offset models of components first before inputting into automatic grouping 

method. A flowchart that includes the workflow of these three modules is depicted in Figure 3.2. 

The link-component grouping module uses the contact relationship between components to get 

link groups. The contact relationship between components in this work are generated by 

interference detection using voxel modeling. Voxel modeling is chosen for interference detection 

in this work. It is because interference detection with multiple objects using triangular mesh 

modeling requires checking all triangle-triangle intersection between a pair of objects and all pairs 

of objects have to be checked. In comparison, voxel modeling exploits computer memory to store 

the occupancy of a set of voxels that are labeled as filled (surface voxel) or empty in the voxel 

space to detect interference. Only triangle-voxel intersection checking between triangles of objects 

and voxels in the voxel space (voxelization for each object) is necessary. Therefore, interference 

detection using voxel modeling has a higher potential to be faster than using triangular mesh 

modeling. 

 

After link-component grouping, it can be recognized that whether an uncertainty exists in link 

groups. Certain components can be grouped into multiple links and decisions are made to assign 

these components to one of the links. This is where the uncertainty of link-component grouping 

comes from. All the potential links that these components can be assigned to are stored and are 

used for regrouping when the link groups are incorrect.  
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Figure 3.2 Automatic grouping method flowchart 

 

If there is no uncertainty from link-component grouping, the exported link groups can be output 

directly to the kinematic chain exporter with other necessary inputs to generate the kinematic chain 

with STL file of each link of a given machine tool. If an uncertainty exists, on the other hand, the 

validation of link groups is mandatory to ensure the link groups are correct. As incorrect link 

groups result in collision between links, which is also called link collision, when each link of the 

machine tool translates or rotates within its travel span, collision information between links can be 
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used for the validation of link groups. On the condition of no link collision, the link groups can be 

exported to the kinematic chain exporter for outputting the kinematic chain with the STL file of 

each link of the machine directly. However, in the case when link collision exists, it indicates link 

groups are incorrect. Resolution of link collision is able to reassign the components, that contain 

uncertainties during link-component grouping and cause link collision, into their potential links. 

The potential links of these components are stored during link-component grouping. Reassign 

these components with different combinations to generate new link groups and go through the 

validation of link groups again. The iterative step of validation and resolution continues until no 

link collision exists.  

 

In order to generate the link groups for a given machine tool assembly and have the validation of 

link groups, it is essential to distinguish between two distinct types of interference which are 

coincident interference and collision interference. Machine Tools consist of components and these 

components must have interference with the neighbor components. The interference between 

components can only be coincident interference. Coincident interference occurs while only 

interference surfaces between components exist. It creates no interference volume between 

components when components are placed at the correct location and when two components have 

relative movements in the correct direction. For example, coincident interference always occurs 

between the bottom surface of the workpiece attached to a machine table and the top surface of the 

machine table when they are both static. If the workpiece is translated along the machine table 

surface, there is still coincident interference between them without creating interference volume.  

In the case when a component in the simulation environment has no interference with other 
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components or the virtual ground, it indicates that the machine tool assembly file exists missing 

components or the location of that component is incorrect.  

Collision interference, on the other hand, indicates that an overlapping volume exists between 

components. It occurs when components are at the incorrect location or components have relative 

movements in the wrong direction. For instance, if the workpiece is placed at the wrong location 

or when the workpiece is translated downwards which is a wrong relative movement direction, it 

causes collision interference with the appearance of interference volume.  
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Chapter 4: Link-Component Grouping 

 

In this chapter, contact-component pairs (CCPs) and link-interface pairs (LIPs) are introduced. 

They are defined by the contact relationships between components of a given machine tool and are 

the core information of link-component grouping. The algorithm of link-component grouping is 

also presented in this chapter. 

 

4.1 Contact-Components Pairs 

In order to generate link-component groups, contact relationships between components are 

essential. The assembly file of a given machine tool contains the poses of each component 

including the orientations and locations relative to the origin coordinate system. The geometric 

models of components can also be obtained from the assembly file. These can be used to obtain 

contact relationships between components with interference detection. All pairs of components 

that contact each other are collected and these pairs are called contact-component pairs (CCPs) of 

a machine tool. Figure 4.1 illustrates a CCP map formed by the CCPs of UMC-750 which is a five-

axis machine tool built by Haas. Nodes in the map represent components of the machine tool and 

edges are the CCPs between components. 

 

CCPs between components in this work are generated by interference detection using voxel 

modeling. Components of machine tools are voxelized following the method in [32]. First, place 

triangular models in the voxel space, where at the beginning each voxel is labeled as empty. For 

each triangle in a model, the voxels within the bounding box of the triangle are traversed and 

checked for intersection with the triangle. If they intersect, these voxels are labeled as surface 
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voxels. Intersection checking between triangle and voxel follows the Separating Axis Theorem 

explained in [33]. If one of the voxels in the voxel space is labeled by more than one component 

as a surface voxel, interference occurs between these components and form CCPs between them. 

To voxelize components, triangular mesh models of components in STL format are required and 

these STL files can be obtained from Solidworks after reading the assembly file of the given 

machine tool.  

 

 

Figure 4.1 CCP map of UMC-750 

 

It is important to note that due to the nature of voxel modeling, the accuracy of voxel modeling 

relies on voxel size. False interference can appear if the voxel size is larger than the distance 

between components that do not contact each other. An example of false interference is 

demonstrated in Figure 4.2.  False interference results in false CCPs and false CCPs can increase 
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the chance that an uncertainty exists in link groups. The method to handle the uncertainty of link-

component grouping is discussed in chapter 5. 

 

 

Figure 4.2 False interference in 2D 

 

4.2 Link-Interface Pairs 

With the information about how components of a machine tool contact each other, the next step is 

to determine which CCPs are the interfaces between link groups. These CCPs are called link-

interface pairs (LIPs). LIPs are important for generating link-component groups of a machine tool 

because they specify where the boundaries of link groups are in the CCPs map. They are equivalent 

to the joints of two connected links of a machine tool. There are two types of LIPs which are: 

translational LIPs and rotary LIPs. Within translational LIPs, there are X-LIP, Y-LIP, and Z-LIP 

that represent the interfaces between link groups that can have relative translational movements in 

the direction of X, Y, and Z axis respectively. As for rotary LIPs, it consists of A-LIP, B-LIP, and 

C-LIP. They represent the interfaces between link groups that can have relative rotational 
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movements about a specific axis and this axis is aligned with X, Y and, Z axis respectively. In 

Figure 4.3, it depicts a CCP map with five LIPs of UMC-750. Red edges indicate LIPs and the 

alphabet of each red edge shows the type of LIP. 

 

 

Figure 4.3 CCP map with LIPs of UMC-750 

 

Different LIPs have distinct properties that are inherited from the corresponding joint. These 

properties can identify which CCPs are LIPs and the type of LIP by interference detection using 

voxel modeling. It is essential to distinguish coincident interference from collision interference 

and false interference because the collision interference information between two components in 

CCPs after relative movement can be used to identify LIPs from CCPs. Two components in a CCP 
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always have interference between each other, and it could be coincident interference, collision 

interference, or false interference when voxel modeling is used for interference detection.  

 

Distinguishing collision interference from others can be done by using offset-inwards voxel 

models. Offsetting voxel inwards can guarantee that interference occurs between voxel models of 

components is collision interference. To get offset voxel models of components in order to identify 

LIPs, the triangular mesh models of components are offset inwards first and then are voxelized 

into voxel models. When the size of the component is smaller than the offset distance, the 

triangular mesh model of the component disappears after offsetting. It causes a problem that this 

component cannot be voxelized for interference detection. Thus, a hybrid method for voxelization 

is used to do interference detection. If a component doesn’t disappear after offsetting, the offset 

triangular mesh model is used for voxelization, otherwise, the original triangular mesh model is 

used. 

 

The triangular mesh models are offset inwards by a distance of √3 × (Voxel size) . 

√3 × (Voxel size) is the diagonal length of a voxel and the minimum distance that guarantees the 

interference between voxel models is collision interference when at least one of the voxel models, 

that cause the interference, is offset. In order to offset triangular mesh models of components, 

Meshmixer is used to offset the triangular mesh models of components in this work. Meshmixer 

also offers the function to reduce mesh number that still well preserves shapes of geometric 

models, so fewer triangles in the triangular mesh models have to be voxelized and the 

computational time can be reduced. The triangular mesh models of components in UMC-750 

before and after offset 4√3 mm inwards by Meshmixer are shown in Figure 4.4 - Figure 4.6. They 
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demonstrate that Meshmixer is able to offset models with the given offset distance. It can be 

noticed that certain features that are smaller than the offset distance in the models disappear after 

offsetting. Therefore, the offset distance cannot be too large otherwise the collision interference 

between offset voxel models can fail when real collision between original models occurs. The 

voxel models of original and offset mesh models of components in UMC-750 following the 

voxelization method in [32] with 4 mm voxel size are demonstrated in  Figure 4.7 - Figure 4.9. 
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Figure 4.4 Original (left) and offset triangular mesh model of C-axis of UMC-750 (right)             

                 

Figure 4.5 Original (left) and offset triangular mesh model of B-axis of UMC-750 (right)        

 

Figure 4.6 Original (left) and offset triangular mesh model of machine base of UMC-750 (right) 
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Figure 4.7 Original (Left) and offset voxel model of machine of C-axis of UMC-750 (right) 

         

      
Figure 4.8 Original (Left) and offset voxel model of machine of B-axis of UMC-750 (right) 

      

   
Figure 4.9   Original (Left) and offset voxel model of machine base of UMC-750 (right)  
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Collision interference between components cannot occur in a well-designed machine tool before 

anything is added to the machine. Thus, a correct link-component grouping of the machine tool 

assembly file cannot have collision interference while each axis moves in the correct way within 

the travel span. Since LIPs are equivalent to the joints of two connected links of a machine tool, 

the collision interference information between components of each CCP can be used to identify 

LIPs from CCPs with the properties of LIPs inherited from the corresponding joint. The collision 

interference information can be obtained by moving two components in each CCPs relatively by 

five out of six movements. These six movements are listed below. The rotary axes of a machine 

are known because they are the required inputs of the presented method from users. Therefore, the 

collision interference information of only two rotational movements in the A, B, or C axis is 

necessary depended on what rotary axes the machine tool has for five-axis machine tools. For four-

axis machine tools, the Collision interference information of solely one rotational movement in 

the A, B, or C axis is necessary depended on what rotary axis the machine tool has. The collision 

interference information of a given relative movement between components is simply collision 

occurs or not after the movement.  

 

1. X axis linear translational movement 

2. Y axis linear translational movement 

3. Z axis linear translational movement 

4. A axis rotational movement 

5. B axis rotational movement 

6. C axis rotational movement 
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Collision interference detection between two components of a CCP for linear translational 

movements is done by fixing one of the components and translating the other one in both positive 

and negative direction of the given axis by the distance of 2 × (voxel size) × √3. Therefore, there 

is collision interference information in the positive and negative direction of X, Y, and Z axis. 

Since LIPs represent interfaces between link groups, both components in each LIP has coincident 

interference and 2 × (voxel size) × √3 is the distance of two offset distance. In this work, the 

components that have no offset voxel models after offsetting are assumed that they are not the 

potential components of LIPs. Also, the components that have offset voxel models after offsetting 

are assumed that the offset voxel models preserve the contact features for identifying LIPs. 

      

A rotary axis is necessary for collision interference detection with rotational movements. This 

work assumes that components of rotary LIPs must contain cylindrical features, and the most 

common cylindrical axis of these cylindrical features in the given direction is the rotary axis of the 

component. In order to get rotary axes, models of components in IGES format are used because 

IGES format preserves the underlying geometry. Cylindrical axes of cylindrical features of models 

in the given direction can be identified from IGES files by Open Cascade. 

 

Two components that are designed to have a relative rotational movement are assumed to have a 

common cylindrical axis along the axis of rotational movement. If they do not have a common 

cylindrical axis, they cannot be a rotary LIP. Therefore, it is only necessary to get collision 

interference information of rotational movements for the CCPs that both of their components 

contain a common cylindrical axis. For instance, if a five-axis machine tool that has A and C rotary 

axes, collision interference detection for rotational movement is necessary only if two components 
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in a CCP contain a common cylindrical axis in the X axis or Z axis. The angle of rotational 

movement for collision interference detection is set to an angle within both travel spans of the 

rotary axes of the given machine tool. Furthermore, the angle cannot be smaller than 10° since a 

small angle can miss the detection of real collision between components.  For example, the travel 

span of B axis of UMC-500 is 120° to -35° and the travel span of C axis is 360°. The angle of 

rotational movement for collision interference detection can be set to -35°.  After this step, all 

CCPs have 6 collision interference information of the X, Y, and Z axes in both positive and 

negative directions. For the CCPs whose two components have a common cylindrical axis, they 

have one more extra collision interference information. 

  

With the collision interference information between components in each CCP, different LIPs can 

be identified from CCPs according to the properties of the corresponding joint of a machine tool. 

The criteria of different types of LIPs are listed below: 
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Table 4-1 Criteria of translational LIPs 

X-LIP: Y-LIP: Z-LIP: 

1. No collision occurs when one of 

the components in the CCP is 

translated in the positive and 

negative direction of X axis by a 

distance of 2 × (voxel size) × √3. 

 

2. Collisions occur when one of the 

components in the CCP is 

translated in the positive or 

negative direction of Y and Z axis 

by a distance of 

2 × (voxel size) × √3. 

1. No collision occurs when one of 

the components in the CCP is 

translated in the positive and 

negative direction of Y axis by a 

distance of 2 × (voxel size) × √3. 

 

2. Collisions occur when one of the 

components in the CCP is 

translated in the positive or 

negative direction of X and Z axis 

by a distance of    

2 × (voxel size) × √3. 

1. No collision occurs when one of 

the components in the CCP is 

translated in the positive and 

negative direction of Z axis by a 

distance of 2 × (voxel size) × √3. 

 

3. Collisions occur when one of the 

components in the CCP is 

translated in the positive or 

negative direction of X and Y axis 

by a distance of    

2 × (voxel size) × √3. 
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Table 4-2 Criteria of rotary LIPs 

A-LIP: B-LIP: C-LIP: 

1. Both components contain a 

common cylindrical axis aligned 

with X axis 

 

2. No collision occurs when one of 

the components in the CCP is 

rotated about the common 

cylindrical axis by a given angle 

 

3. Collisions occur when one of the 

components in the CCP is 

translated in the positive or 

negative direction of X, Y, and Z 

axis by the distance of 

2 × (voxel size) × √3 

 

1. Both components contain a 

common cylindrical axis aligned 

with Y direction 

 

2. No collision occurs when one of 

the components in the CCP is 

rotated about the common 

cylindrical axis by a given angle 

 

3. Collisions occur when one of the 

components in the CCP is 

translated in the positive or 

negative direction of X, Y, and Z 

axis by the distance of 

2 × (voxel size) × √3 

 

1. Both components contain a 

common cylindrical axis aligned 

with Z direction 

 

2. No collision occurs when one of 

the components in the CCP is 

rotated about the common 

cylindrical axis by a given angle 

 

3. Collisions occur when one of the 

components in the CCP is 

translated in the positive or 

negative direction of X, Y, and Z 

axis by the distance of 

2 × (voxel size) × √3 
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Two mesh models of components of a CCP are shown in Figure 4.10. These two components of 

the CCP form a guideway feature in the X axis of the machine tool so this CCP should be an X-

LIP. The mesh models of components are offset first and voxelized using a 4 mm voxel size into 

offset voxel models in Figure 4.11. Two components before translating and collision occurs 

between two components after translating in +Y direction by the distance of 2 × (voxel size) ×

√3 are demonstrated in Figure 4.11  (a) and Figure 4.11 (b) respectively. Collision exists when 

component 2 is translated relative to component 1 in +Y, -Y, and +Z direction by the distance of 

2 × (voxel size) × √3 . Also, there is no common axis for this CCP. Therefore, the CCP is 

identified as an X-LIP according to the criterion presented above. 

 

 

Figure 4.10 Two mesh models of components of a X-LIP 
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Figure 4.11 Two offset voxel models of components of a X-LIP (a) before (b) after translating 

 

 

4.3 Generation of Link Groups 

After having CCPs and LIPs of a given machine tool, an algorithm, which is called link-component 

grouping, is presented in this work to CCPs and LIPs for grouping link components of each link 

of a machine. It includes two steps which are growing groups from the components of LIPs and 

merging groups when an overlapping component between groups exists.  The link groups are 

formed after repeating these two steps until the total group number is equal to the number of axes 

of the given machine tool plus one and no component, which has a connection to any other group, 

is left without being grouped. The total group number needs to be equal to the number of axes of 

the given machine tool plus one is because a machine consists of not only moveable axes but also 

a machine base. For each step of the presented algorithm, two rules must be followed. First, 

components in the same group are all connected which means each component should contact at 

least one component in the same group. It also indicates that each component has at least one CCP 
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connection with any component in the same group. Second, no LIP exists within any group. 

Because LIPs represent interfaces between link groups, it can only exist between link groups.   

 

The detailed steps of the presented algorithm to generate link groups of a machine tool are listed 

below. The CCPs and LIPs of UMC-500 which is a five-axis machine tool built by Hass are 

identified using 2mm voxel size and are used to create a CCP map. The CCP map of UMC-500 in 

Figure 4.12 excludes some components connected with the machine base in the assembly file and 

is used to illustrate each step of the algorithm.  

 

 

Figure 4.12 CCP map of UMC-500 example 
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Step 1: 

Create groups starting from the components of LIPs. Assign all immediate components that are 

connected to the components of LIPs into a group if and only if the connection between them is 

not a LIP. In Figure 4.13, there are 9 groups in total after step 1. 

 

 

Figure 4.13 Link-component grouping of UMC-500 example after step 1 

 

Step 2: 

Merge groups that are generated from step 1 if an overlapping component between groups exists.  

For instance, component Base 1 and Base 4 are the overlapping components between group 4 and 

group 5 in Figure 4.13. Because there is no LIP after merging these two groups, group 4 and group 

5 can be merged and form a new group. The same procedure can be used to merge group 2 and 

group 3, and group 7 and group 8 since there is no LIP in the merged group.  The new group after 
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merging can contain a LIP. If a LIP exists within a new group after merging, skip the merging 

procedure for the two groups. Two strategies are presented to handle the overlapping components 

that cause the merged group contains a LIP. The CCP map of UMC-500 after step 2 using strategy 

A is shown in Figure 4.14. 

 

Strategy A: 

Assign the overlapping component, that causes a LIP to exist in the merged group, to one of the 

overlapping groups that contains fewer components than others. If these groups have the same 

number of components, assign the overlapping components to the group which is stored in the list 

of groups earlier than others. In Figure 4.13,  component C3 is the overlapping component of group 

1 and group 2. If group 1 and group 2 are merged together, the merged group contains a LIP. 

Therefore, these two groups cannot be merged and component C3 is assigned to group 2 that 

contains fewer components than group 1. 

 

Strategy B: 

Assign the overlapping component, that causes a LIP to exist in the merged group, to one of the 

overlapping groups that contains more components than others. If these groups have the same 

number of components, assign the overlapping components to the group which is stored in the list 

of groups earlier than others. If strategy B is used in Figure 4.13, component C3 is assigned to 

group 1 that contains more components than group 2.  
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Figure 4.14 Link-component grouping of UMC-500 example after step 2 

 

Step 3: 

Repeat step 1 and 2 until the total group number is equal to the number of axes of the given machine 

tool plus one and no component that has a connection to any group is left without being grouped. 

Then, the link groups of the machine tool are generated. The link groups of UMC-500 example 

after link-component grouping is shown in Figure 4.15. 
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Figure 4.15 Final result of link-component grouping of UMC-500 example 

 

The link-component grouping presented in this work assumes the number of LIPs is equal to the 

number of axis of the given machine tool and only one LIP exists between two link groups. When 

the number of LIPs is less than the number of axis of the machine tool, it implies missing 

components in the assembly file of the machine tool exist. It is challenging to create missing 

components to generate correct LIPs. Thus, the method stops proceeding with the further process 

if the number of LIPs is less than the number of axis of the machine tool. If the number of LIPs is 

more than the number of axis of the machine tool, it is required to have a more complex algorithm 

to generate link groups. 
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Chapter 5: Validation of Link Groups and Resolution of Link Collision 

 

In chapter 4, the link-component grouping using CCPs and LIPs is discussed. The link-component 

grouping can create uncertainties to generate incorrect link groups. Thus, the validation of link 

groups is mandatory if an uncertainty exists. Link collision occurs when link groups contain 

incorrectness caused by the uncertainty from link-component grouping. The resolution of link 

collision is necessary if link collision exists to regroup the components that cause link collision.  

 

5.1 Validation of Link Groups 

There are two types of uncertainty from link-component grouping. The first type of uncertainty 

occurs while one of the two strategies, which are strategy A and strategy B discussed in session 

4.3, is used to make decisions about assigning the overlapping components between groups. The 

second type of uncertainty arises when two link groups have a CCP connection after the link groups 

are generated. Because two link groups should be separated by only a LIP, having a CCP 

connection between them indicates an uncertainty exists within the link groups. Two components, 

which are in two different link groups and have a CCP connection between them, can be grouped 

into two different link group as original grouping or be grouped together into one of the link 

groups. For instance, Y1 and Z3 in Figure 4.15 are assigned to two different link groups by link-

component grouping. However, Y1 and Z3 have a CCP connection so they both can also be 

grouped into group 5 or both be assigned into group 6.  

 

These two types of uncertainty can arise from true interference and false interference between 

components. If a smaller voxel size is used, the chance to have the uncertainty caused by false 
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interference is lower. Figure 5.1 shows a CCP map of UMC-500 when 1.3 mm voxel size is used. 

X1Y1, Y1Y3, and Y1Z3 CCPs disappear comparing to the CCP map of UMC-500 using 2 mm 

voxel size in Figure 4.12. It indicates that these three CCPs are generated by false interference. It 

also shows that using a smaller voxel size can have fewer false interference that can cause 

uncertainties. 

 

 

Figure 5.1 CCP map of UMC500-CCPs using 1.3mm voxel size 

 

When an uncertainty exists, the link-component grouping can generate incorrect link groups that 

cause link collision when each moveable link of a machine tool moves within its travel span in the 

correct direction. Thus, the validation of link groups is mandatory if an uncertainty exists. It detects 

collision interference between links within all possible link-pose combinations of a given machine 

tool to identify if the link groups are correct. If no link collision arises during the validation of the 

link groups, link groups are export to the kinematic chain exporter to generate the kinematic chain 
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and STL file for each link of the machine tool. However, the resolution of link collision is 

necessary to regroup the component that causes an uncertainty and link collision if link collision 

arises during the validation of link groups. The new link groups are checked again by the validation 

of link groups. The iterative step of validation and resolution continues until no link collision exists 

and then the link groups can be export to the kinematic chain exporter.  

 

Five-axis machine tools have six links in total which are three links of translational axes, two links 

of rotary axes and, and one link of the machine base. In this work, the original pose of each 

movable link in the assembly file of a machine tool is assumed to be zero in the corresponding 

travel span. Also, if the travel span of an axis is only specified by a distance, this work assumes 

that the axis can travel half of the travel span to the positive direction and half of the travel span 

to the negative direction of the corresponding axis from the zero. For instance, the travel span of 

the X axis of UMC-500 is 610 mm from Haas website [10]. So, the X axis can travel 305 mm to 

the positive direction and 305 mm to the negative direction of X axis from the origin pose defined 

in its assembly file. 

 

If each movable link has N sampled poses for the validation of link groups, the travel span is 

divided by N evenly to get each pose of the movable link. In total, there are 𝑁5 different link-pose 

combinations that need to be checked for collision interference. As a five-axis machine tool 

contains six links, in total 6𝑁5 triangular mesh models need to be voxelized for six links at all 

sampled poses for the validation of link groups. However, when the link-pose combination is 

changed from one to the other in some cases, it is not necessary to voxelize all links again. It is 

because some links do not change their poses. For instance, regardless of how the link-pose 
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combination of a given machine tool changes, the pose of the base link never changes. It only 

needs to be voxelized once in order to check all link-pose combinations of the machine tool. 

Another example is that while changing the pose of the end link, which is the last link in the 

kinematic chain and only connect with one link, other links are not required to be voxelized again 

because their poses have no change. Therefore, it is not necessary to voxelize 6𝑁5  times for 

validating all different poses of all links.  

 

There are two different types of voxelization that are used in this thesis. The first type called 

triangle voxelization converts a triangular mesh model into a voxel model. The other one is shifting 

the existing voxel model in the voxel space to get a new voxel model at a different location with 

the same orientation and it is called shifting voxelization. Shifting voxelization only requires 

utilizing the existing voxel models and shift them in the voxelspace to generate new voxel models. 

It takes less computational time than triangle voxelization that requires looping through all 

triangles of triangular mesh models and checking triangle-voxel intersection to generate voxel 

models. However, shifting voxelization can only generate new voxel models by translating the 

existing voxel models without changing their orientation. If the orientation of the model change, 

only triangle voxelization can be applied to get the new voxel model.  

 

The voxel models created by triangle voxelization are called parent voxel models. Parent voxel 

models can generate child voxel models through shifting voxelization at different sampled 

locations with the same orientation. According to [5], there must not be a rotary axis between any 

two of the three linear translational axes. Linear translational axes of a machine tool only change 

their location without changing their orientation. Also, voxels in the voxel space are fixed, 
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orthogonal, and align with the X, Y, and Z axis. For all translational axes of the machine, only one 

parent voxel model for each axis is needed and they can generate all their child voxel models at 

different sampled locations. Yet, for rotary links, triangle voxelization is necessary to generate 

parent voxel models for all different sampled orientations. These parent voxel models of different 

sampled orientations then can generate child voxel models at different sampled locations using 

shifting voxelization. By using shifting voxelization, the number of triangle voxelization which 

takes a longer computational time can be cut down dramatically in order to do collision 

interference detection for 𝑁5different link-pose combinations of five-axis machine tools.  

 

The number of necessary parent voxel models depends on the structural type and the configuration 

type of a machine tool. There are three structural types for five-axis machine tools which are table-

rotating, spindle-rotating, and hybrid [18]. Also, five-axis machine tools can have three 

configuration types which are 5-0, 4-1, and 3-2.  A five-axis machine tool has five axes plus one 

machine base in series and the machine base cuts the kinematic chain into two ends which are the 

spindle end and workpiece end. 5-0 configuration type indicates that five axes are in series in the 

same end. 4-1 configuration type has one axis in one end and four axes in series in the other end. 

Two axes are in one end and the other three axes are in the other end for 3-2 configuration type. 

Three configuration types are illustrated using tree diagrams in Figure 5.2. In Figure 5.2, T 

represents a translational axis (can be X, Y, or Z) and R represents a rotary axis (can be A, B or 

C).  
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Figure 5.2 Example of configuration types of five-axis machine tool (a) 5-0 (b) 4-1 (c) 3-2 

 

Each configuration type can have three different structural types of a five-axis machine except 5-

0 configuration type that can only have table-rotating and spindle-rotating structure type. The 

number of necessary voxelization including triangle voxelization and shifting voxelization for 

checking 𝑁5different link-pose combinations depends on different the configuration types of a 

given machine tool. Following the naming conventions of each link in each configuration type in 

Figure 5.2, the base only requires one voxelization for machine tools with all combinations of 

configuration types and structure type since it is always static. Starting from the base, the link next 

to the previous link requires N times of voxelization if each link requires N sampled poses for 

validation. For instance, T1 of a machine with 5-0 configuration type and table-rotating structure 

type requires N voxelizations. For each sampled pose of T1, the next link of T1, which is T2, 
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requires N voxelizations for N sampled poses of T2. Therefore, 𝑁2 voxelizations are necessary for 

T2 to do the validation for all poses. The process is the same for the next link and so on. Therefore, 

T3, R1, and R2 requires 𝑁3, 𝑁4, and 𝑁5voxelizations respectively for the validation. 

 

The number of required parent voxel models to check 𝑁5different link-pose combinations depends 

on the combination of configuration types and structure type of a given machine tool. For instance, 

the machine example with 3-2 configuration type and table-rotating structure type in Figure 5.2  

requires only one parent voxel model for the base, T1, T2, and T3. These four parent voxel models 

can generate all link-pose combinations of these four links. Since shifting voxelization can only 

be used to generate new voxel models by translating the existing voxel models without changing 

their orientation, the triangle voxelization of rotary links is necessary to generate parent voxel 

models for all different sampled orientations. These parent voxel models of different sampled 

orientations then generate child voxel models at each sampled location using shifting voxelization. 

Therefore, R1 needs N parent voxel models for N different orientations. N parent voxel models of 

R2 are necessary for each orientation of R1 so there are 𝑁2 parent voxel models required for R2.  

 

The number of required parent voxel models for the machine tool with other combinations of 

configuration type and structure type can be calculated with the same concept. Four-axis machine 

tools can also use the same concept to calculate the number of required voxelizations and the 

number of required parent voxel models. The number of required voxelizations and the number of 

required parent voxel models for each combination of configuration types and structure type of 

five-axis machine tools are shown in Table 5-1.
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Table 5-1  Summary of required voxelization and parent voxel model number for five-axis machine tools 

 5-0 configuration type 4-1 configuration type 3-2 configuration type 

 

Table-rotating or 

spindle-rotating 

structure type 

Table-rotating or 

spindle-rotating 

structure type 

Hybrid 

structure type 

Table-rotating or 

spindle-rotating 

structure type 

Hybrid 

structure type 

The required 

voxelization 

number 

1 (Base) + N (T1) + 
N2 (T2) + N3 (T3) + 
N4 (R1) + N5 (R2) 

N (T1) +1 (Base) + 
N (T2) + N2 (T3) + 
N3 (R1) + N4 (R2) 

N (R2) +1 (Base) + 
N (T1) + N2 (T2) + 
N3 (T3) + N4 (R1) 

N2(R2) + N (R1) + 

1 (Base) + N (T1) + 

N2 (T2) + N3 (T3) 

N2(R1) + N (T1) + 

1 (Base) + N (T1) + 

N2 (T2) + N3 (R2) 

The required 

parent voxel 

model 

number 

1 (Base) + 1(T1) + 

1 (T2) + 1(T3) + 

N (R1) + N2 (R2) 

1(T1) + 1 (Base) + 

1 (T2) + 1(T3) + 

N (R1) + N2 (R2) 

N (R1) + 1 (Base) + 

1 (T1) + 1 (T2) + 

1(T3) + N (R2) 

1 (T1) +1 (T2) + 

1 (Base) + 1(T3) + 

N (R1) + N2 (R2) 

N (R1) + 1 (T1) +  

1 (Base) + 1 (T2) + 

1(T3) + N (R2) 
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5.2 Resolution of Link Collision 

Incorrect link groups that result in link collision are caused by the uncertainty from the link-

component grouping. The resolution of link collision is necessary only and only if link collision is 

detected during the validation of link groups. The first type of uncertainty occurs when one of the 

two strategies is used to determine how the overlapping components should be assigned. The 

possible groups that these overlapping components can be assigned to are stored. For the second 

type of uncertainty that arises when two link groups have a CCP connection, it is determined after 

the link groups are generated. These link groups are also collected. 

 

A component collides with the other component in another link group can be detected during the 

validation of link groups. If the collided component is the component that causes the first type of 

uncertainty, assign the component using the other grouping strategy. If link collision due to this 

component still exists, assign the component to the other possible group stored during link-

component grouping and do the validation of link groups until the component doesn’t cause link 

collision. In the case when there are more than one component that cause link collision and the 

first type of uncertainty, assign these components with all possible combinations to the possible 

groups and do the validation of link groups until no link collision occurs. Using the link-component 

grouping example with strategy A in chapter 4, component C3 in Figure 5.4 is assigned to group 

1 because group 1 contains fewer components. If component C3 causes link collision during the 

validation of link groups, regroup it to group 2 which is stored during link-component grouping 

and do the validation again. 
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Figure 5.3 Link-component grouping of UMC-500 example after step 1 

 

If the collided component is the component that results in the second type of uncertainty, group 

this component and the other component in the same CCP together into one of the groups which 

is connected by this CCP. In the case when link collision still exists in the new link groups, group 

these two components into the other groups that is connected by the CCP. Component Y1 and 

component Z3 in Figure 5.4 are assigned to two different link groups by link-component grouping 

but they are connected by a CCP. If one of these two components leads to link collision during the 

validation of link groups, group both of them to group 5 or group 6 and do validation again. If link 

collision still exists, group them into the other group. 
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Figure 5.4 Final result of link-component grouping of UMC-500 example 

 

It is possible that link collision still exists after trying all possible grouping for components that 

cause link collision and uncertainties when the voxel size is too big relative to the components. 

Since link collision is detected by using the offset voxel models. If the voxel size is relatively too 

big, the triangular mesh models might have empty triangular mesh models after offsetting because 

the offset distance is larger than the components. So, the original triangular mesh models are used 

to get voxel models for validation of link groups. Because voxel size is relatively big and the 

original triangular mesh models are voxelized to get voxel models, false collision can happen 

during the validation of link groups. False collision causes link collision to keep existing no matter 

how the resolution of link collision regroups the components to generate the new link groups and 

it fails to generate link groups to export into the kinematic chain exporter.  
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Chapter 6: Implementation Results 

 

Five commercial Haas five-axis machine tools with varying configurations have been implemented 

using the presented method. Haas is the largest machine tool builder in the western world. They 

build a complete line of CNC vertical machining centers, horizontal machining centers, and CNC 

lathes. Haas provides assembly files of certain products on the website [10] for customers working 

on shop layout or figuring out how CAD-modeled parts will fit into their machines. Eight assembly 

files of five-axis machine tools are provided on Haas website with the travel span of each axis for 

each machine. Five of these machine tools were used for this work because the other three 

assembly files of machine tools have obvious missing components. The implementations were 

performed on a PC equipped with a 64-bit Intel i7 CPU (2.9 GHz) and 8 GB of RAM.  

 

Among the five Haas five-axis machine tool, VF-2TR has a trunnion that is mounted directly to 

the machine’s table to provide additional rotary axes in A and C axes. UMC-500 is a five-axis 

machine tool that has two rotary axes in B and C axes. UMC-750 is a larger version of UMC-500 

with longer travel spans in X, Y, and Z axis. UMC-1600H is a five-axis horizontal mill with rotary 

axes in A and C axes. These four five-axis machine tools are 3-2 configuration type and table-

rotating structural type. VR-8 is a five-axis machine tool with a dual-axis spindle head. It has two 

rotary axes in A and C axes and is 3-2 configuration type and spindle-rotating structural type. 

 

Session 6.1 demonstrates the results that use single-level voxel size for the link-component 

grouping and the validation of link groups for these machine tools. In order to increase the 

efficiency of the whole process, two-level voxel size that uses different voxel sizes for the link-
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component grouping and the validation of link groups is implemented, and the results are shown 

in session 6.2. 

 
6.1 Single-Level Voxel Size 

Single-level voxel size indicates that the link-component grouping and the validation of link 

groups use the same voxel size Table 6-1 to Table 6-10 show the computational times of using 

five different voxel sizes with two different strategies for the five machines. Each movable link 

has 5 sampled poses for the validation of link groups. When an uncertainty exists, the validation 

of link groups is mandatory. “-“ in the tables indicates no resolution is applied to the corresponding 

type of uncertainty. The kinematic chains in URDF and STL files of each link of machines 

generated by the presented method are input to ROS. ROS is used because it can read URDF, 

visualize links according to the URDF, and move each link within its travel span manually. To 

demonstrate the movements of axes of machines within travel spans with the generated kinematic 

chains and STL files, the neural pose and the poses after moving each moveable link of four 

machine tools with the coordinate frame of each link in ROS environment are shown in  Figure 

6.1 to Figure 6.4. As enclosures block the view to see links of machine tools move, they are 

excluded for the demonstration purpose in this session. UMC-750 is not demonstrated since it is 

similar to UMC-500 but with longer travel spans. 
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Table 6-1 Results of VF-2TR using strategy A (Single-level voxel size) 

VF-2TR 

(Strategy A) 

2mm  

voxel size 

3mm  

voxel size 

4mm  

voxel size 

5mm  

voxel size 

6mm  

voxel size 

Contains 

uncertainty? 

Type1 Type2 Type1 Type2 Type1 Type2 Type1 Type2 Type1 Type2 

No Yes Yes Yes Yes Yes Failed Failed 

Validation of 

link groups 

Necessary Necessary Necessary Failed Failed 

Number of 

resolution 

- 0 1 0 1 0 Failed Failed 

Computational 

Time [minute] 

405.6 79.7 47.4 Failed Failed 

 

 

Table 6-2 Results of VF-2TR using strategy B (Single-level voxel size) 

VF-2TR 

(Strategy B) 

2mm  

voxel size 

3mm  

voxel size 

4mm  

voxel size 

5mm  

voxel size 

6mm  

voxel size 

Contains 

uncertainty? 

Type1 Type2 Type1 Type2 Type1 Type2 Type1 Type2 Type1 Type2 

No Yes Yes Yes Yes Yes Failed Failed 

Validation of 

link groups 

Necessary Necessary Necessary Failed Failed 

Number of 

resolution 

- 0 0 0 0 0 Failed Failed 

Computational 

Time [minute] 

404.8 51.9 29.9 Failed Failed 
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Table 6-3 Results of UMC-500 using strategy A (Single-level voxel size) 

UMC-500  

 (Strategy A) 

2mm  

voxel size 

3mm  

voxel size 

4mm  

voxel size 

5mm  

voxel size 

6mm  

voxel size 

Contains 

uncertainty? 

Type1 Type2 Type1 Type2 Type1 Type2 Type1 Type2 Type1 Type2 

Yes Yes Yes Yes Yes Yes Yes Yes Failed 

Validation of 

link groups 

Necessary Necessary Necessary Necessary Failed 

Number of 

resolution 

0 0 0 0 0 0 1 0 Failed 

Computational 

Time [minute] 

290.1 69.3 21.7 30.5 Failed 

 

 

Table 6-4 Results of UMC-500 using strategy B (Single-level voxel size) 

UMC-500  

 (Strategy B) 

2mm  

voxel size 

3mm  

voxel size 

4mm  

voxel size 

5mm  

voxel size 

6mm  

voxel size 

Contains 

uncertainty? 

Type1 Type2 Type1 Type2 Type1 Type2 Type1 Type2 Type1 Type2 

Yes Yes Yes Yes Yes Yes Yes Yes Failed 

Validation of 

link groups 

Necessary Necessary Necessary Necessary Failed 

Number of 

resolution 

1 0 2 0 2 0 2 0 Failed 

Computational 

Time [minute] 

542.3 187.0 57.6 43.4 Failed 
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Table 6-5 Results of UMC-750 using strategy A (Single-level voxel size) 

UMC-750  

 (Strategy A) 

2mm  

voxel size 

3mm  

voxel size 

4mm  

voxel size 

5mm  

voxel size 

6mm  

voxel size 

Contains 

uncertainty? 

Type1 Type2 Type1 Type2 Type1 Type2 Type1 Type2 Type1 Type2 

No No No No No No No No Failed 

Validation of 

link groups 

Unnecessary Unnecessary Unnecessary Unnecessary Failed 

Number of 

resolution 

- - - - - - - - Failed 

Computational 

Time [minute] 

59.6 27.3 6.9 2.2 Failed 

 

 

Table 6-6 Results of UMC-750 using strategy B (Single-level voxel size) 

UMC-750  

 (Strategy B) 

2mm  

voxel size 

3mm  

voxel size 

4mm  

voxel size 

5mm  

voxel size 

6mm  

voxel size 

Contains 

uncertainty? 

Type1 Type2 Type1 Type2 Type1 Type2 Type1 Type2 Type1 Type2 

No No No No No No No No Failed 

Validation of 

link groups 

Unnecessary Unnecessary Unnecessary Unnecessary Failed 

Number of 

resolution 

- - - - - - - - Failed 

Computational 

Time [minute] 

59.2 27.6 6.7 2.3 Failed 
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Table 6-7 Results of UMC-1600H using strategy A (Single-level voxel size) 

UMC-1600H 

(Strategy A) 

2mm  

voxel size 

3mm  

voxel size 

4mm  

voxel size 

5mm  

voxel size 

6mm  

voxel size 

Contains 

uncertainty? 

Type1 Type2 Type1 Type2 Type1 Type2 Type1 Type2 Type1 Type2 

No No No Yes Yes Yes Failed Failed 

Validation of 

link groups 

Unnecessary Necessary Necessary Failed Failed 

Number of 

resolution 

- - - 0 1 0 Failed Failed 

Computational 

Time [minute] 

57.8 677.4 176.7 Failed Failed 

 

 

Table 6-8 Results of UMC-1600H using strategy B (Single-level voxel size) 

UMC-1600H 

(Strategy B) 

2mm  

voxel size 

3mm  

voxel size 

4mm  

voxel size 

5mm  

voxel size 

6mm  

voxel size 

Contains 

uncertainty? 

Type1 Type2 Type1 Type2 Type1 Type2 Type1 Type2 Type1 Type2 

No No No Yes Yes Yes Failed Failed 

Validation of 

link groups 

Unnecessary Necessary Necessary Failed Failed 

Number of 

resolution 

- - - 0 0 0 Failed Failed 

Computational 

Time [minute] 

57.5 676.8 92.5 Failed Failed 
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Table 6-9 Results of VR-8 using strategy A (Single-level voxel size) 

VR-8  

(Strategy A) 

2mm  

voxel size 

3mm  

voxel size 

4mm  

voxel size 

5mm  

voxel size 

6mm  

voxel size 

Contains 

uncertainty? 

Type1 Type2 Type1 Type2 Type1 Type2 Type1 Type2 Type1 Type2 

No No No No No No No No Failed 

Validation of 

link groups 

Unnecessary Unnecessary Unnecessary Unnecessary Failed 

Number of 

resolution 

- - - - - - - - Failed 

Computational 

Time [minute] 

54.8 23.4 8.2 6.2 Failed 

 

 

Table 6-10 Results of VR-8 using strategy B (Single-level voxel size) 

VR-8  

(Strategy B) 

2mm  

voxel size 

3mm  

voxel size 

4mm  

voxel size 

5mm  

voxel size 

6mm  

voxel size 

Contains 

uncertainty? 

Type1 Type2 Type1 Type2 Type1 Type2 Type1 Type2 Type1 Type2 

No No No No No No No No Failed 

Validation of 

link groups 

Unnecessary Unnecessary Unnecessary Unnecessary Failed 

Number of 

resolution 

- - - - - - - - Failed 

Computational 

Time [minute] 

54.2 23.3 8.4 6.1 Failed 
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Figure 6.1 Kinematic chain demonstration of VF-2  

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 



64 

 

 

 

Figure 6.2 Kinematic chain demonstration of UMC-500 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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Figure 6.3 Kinematic chain demonstration of UMC-1600H 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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Figure 6.4 Kinematic chain demonstration of VR-8 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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From the results of these five five-axis machine tools above using 5 different voxel sizes and two 

different strategies, the presented automatic grouping method that uses single-level voxel size with 

basic user inputs can successfully group components for links of machine tools and generate 

correct kinematic chains. The correct kinematic chains and STL file of each link for these machine 

tools have been generated and can be used for simulation of machine movements. 

 

It can be observed that using a smaller voxel size leads to fewer uncertainty. Also, if an uncertainty 

exists, using a smaller voxel size requires a fewer number of resolutions. It is because a smaller 

voxel size causes fewer false CCPs created by false interference. With fewer false CCPs, it has a 

lower chance to have an uncertainty from link-component grouping and a lower chance to generate 

incorrect link groups that cause link collision. However, due to the nature of a smaller voxel size, 

using a smaller voxel size requires more memory and computational time. 2 mm is the smallest 

voxel size used in this work because it is the smallest voxel size within the computer memory limit 

to implement the presented method on the five five-axis machine tools. 

 

While a larger voxel size is used, it causes the presented method to fail to generate the desired 

results. It is because contact features that can be used to identify LIPs from CCPs could disappear 

after models are offset with a larger offset distance and it leads to the number of LIPs is fewer than 

the number of axis of the machine tool. Further steps of the method are terminated and the method 

fails to generate the kinematic chain and STL files of the machine. Therefore, despite a shorter 

computational time is taken by using a larger voxel size, the voxel size cannot be too big, 

otherwise, the presented method could fail.  



68 

 

It is important to note that when a smaller voxel size is used, most of the computing time is taken 

by the validation of link groups if it is necessary, the link-component grouping only takes a small 

portion of the total computing time. Using a smaller voxel size is preferred for the link-component 

grouping since it has a lower chance of having an uncertainty leading to the necessity for the 

validation of link groups. Also, it generates less false CCPs that could require a greater number of 

the resolution of link collision. On the other hand, the grouping validation doesn’t require a smaller 

voxel size. It can use a bigger voxel size to increase the efficiency of the whole process to generate 

kinematic chai of machines with less computing time. Thus, a method using two-level voxel size 

is presented in the next session. 
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6.2 Two-Level Voxel Size 

Since a smaller voxel size is better for link-component grouping to have fewer false CCPs that can 

cause incorrect link groups, two-level voxel size is presented to use 2 mm voxel size for the link-

component grouping and 3 different larger voxel sizes for the validation of link groups. Each 

movable link has 5 sampled poses for the validation of link groups. The results of using two-level 

voxel size are shown in Table 6-11 to Table 6-14. Only UMC-500 and VF-2TR using two-level 

voxel size are shown as there is no uncertainty from other machines using 2mm voxel size for link-

component grouping. No uncertainty indicates it is unnecessary to have the validation of link 

groups and resolution of link collision. Therefore, two-level voxel size cannot improve efficiency 

and have similar results of using single-level voxel size for the other four machines. 

 

Table 6-11 Results of VF-2TR using strategy A (two-level voxel size) 

VF-2TR 

 (Strategy A) 

5 mm voxel 

size 

6 mm voxel 

size 

8 mm voxel 

size 

Contains 

uncertainty? 

Type1 Type2 Type1 Type2 Type1 Type2 

No Yes No Yes No Yes 

Validation of 

link groups 

Necessary Necessary Necessary 

Number of 

resolution 

- 0 - 0 - 0 

Computational 

Time [minute] 

31.6 27.7 25.4 
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Table 6-12 Results of VF-2TR using strategy B (two-level voxel size) 

VF-2TR 

 (Strategy B) 

5 mm voxel 

size 

6 mm voxel 

size 

8 mm voxel 

size 

Contains 

uncertainty? 

Type1 Type2 Type1 Type2 Type1 Type2 

No Yes No Yes No Yes 

Validation of 

link groups 

Necessary Necessary Necessary 

Number of 

resolution 

- 0 - 0 - 0 

Computational 

Time [minute] 

31.2 27.8 25.1 

 

 

Table 6-13 Results of UMC-500 using strategy A (two-level voxel size) 

UMC-500  

 (Strategy A) 

5 mm voxel 

size 

6 mm voxel 

size 

8 mm voxel 

size 

Contains 

uncertainty? 

Type1 Type2 Type1 Type2 Type1 Type2 

Yes Yes Yes Yes Yes Yes 

Validation of 

link groups 

Necessary Necessary Necessary 

Number of 

resolution 

0 0 0 0 Failed 

Computational 

Time [minute] 

43.1 40.5 Failed 
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Table 6-14 Results of UMC-500 using strategy B (two-level voxel size) 

UMC-500  

 (Strategy B) 

5 mm voxel 

size 

6 mm voxel 

size 

8 mm voxel 

size 

Contains 

uncertainty? 

Type1 Type2 Type1 Type2 Type1 Type2 

Yes Yes Yes Yes Yes Yes 

Validation of 

link groups 

Necessary Necessary Necessary 

Number of 

resolution 

1 0 1 0 Failed 

Computational 

Time [minute] 

57.8 50.6 Failed 

 

From the results above, using two-level voxel size reduces computational time significantly to 

generate correct kinematic chains and group link components for machines compared to single-

level voxel. Despite that using a bigger voxel size for the validation of link groups can decrease 

computational time, a bigger voxel size can cause mesh models of components to disappear after 

offsetting because a bigger voxel size indicates a larger offset distance. The original mesh models 

then need to be used for voxelization and interference detection. The validation of link-groups 

using voxel models voxelized from original mesh models can lead to false link collision. As a 

result, the method cannot generate the kinematic chain as the false link collision cannot be solved 

by the resolution of link collision. 8mm voxel size in the tables are the cases that the method fails 

to generate kinematic chains because false link collision exists during the validation of link groups 

and it cannot be resolved. 
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Chapter 7: Conclusions and Future Works 

 

7.1 Conclusions  

In this work, an automatic method to group link components to generate kinematic chains and the 

STL file of each link of multi-axis machine tools for motion simulation has been presented. The 

method requires only the assembly file, axes and travel span of each link of the given machine tool 

to avoid an error-prone and lengthy manual process. Since the uncertainty of link-component 

grouping could lead to incorrect link groups, the validation of link groups is necessary when an 

uncertainty exists. If no link collision caused by incorrect link groups occurs, the generated link 

groups can be exported directly to the kinematic chain exporter to generate the kinematic chain 

and STL file of each link of the given machine. Otherwise, the resolution of link collision is used 

to regroup the component that leads to an uncertainty and link collision. The new link groups need 

to go through the iterative step of validation and resolution until no link collision exists. 

 

The presented method has been implemented on five commercial Haas five-axis machine tools 

using single-level voxel size. The results of kinematic chains and computational times for different 

voxel sizes showed that the ability to generate correct kinematic chains and STL files with only 

basic inputs for simulation of machine movements. Because most of the computational time is 

taken by the link-components grouping which requires a smaller voxel size and the validation of 

link groups doesn’t require a smaller voxel size, two-level voxel size was presented to use a smaller 

voxel size for the link-component grouping and a bigger voxel sizer for the validation of link 

groups. The result showed that the computational time is significantly reduced by using two-level 

voxel size to generate the same kinematic chains as single-level voxel size. 
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7.2 Future Works 

An improvement to the work presented in this thesis is to develop a more efficient voxelization 

method for the link-component grouping. Although the current method using two-level voxel size 

exhibited a reasonable degree of efficiency, in order to reduce the chance of causing the uncertainty 

from link-component grouping, the method requires using voxel size as smaller as possible which 

increases computational time and burden of computer memory to store voxel information. 

Developing a voxelization method for link-component grouping which is more efficient than the 

current method could improve the accuracy of interference detection and a lower chance to 

generate uncertainties and incorrect link groups. 

 

The automatic grouping method presented in this thesis can generate kinematic chains and STL 

files only when the number of LIPs is equal to the number of axis of the given machine tool and 

only one LIP can exist between two link groups. If this work considers the scenario of the number 

of LIPs is larger than the number of axis of the given machine tool and there can be more than one 

LIP between two link groups, it would require a more comprehensive link-component grouping 

and the strategy to handle the uncertainty from grouping. 
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