
Automated Human-in-the-Loop Assertion Generation

by

Lucas Alan Zamprogno

B.A., The University of British Columbia, 2019

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

December 2020

© Lucas Alan Zamprogno, 2020

The following individuals certify that they have read, and recommend to the Fac-
ulty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

Automated Human-in-the-Loop Assertion Generation

submitted by Lucas Alan Zamprogno in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science.

Examining Committee:

Reid Holmes, Associate Professor, Computer Science, UBC
Supervisor

Ronald Garcia, Associate Professor, Computer Science, UBC
Supervisory Committee Member

ii

Abstract

Test cases use assertions to check program behaviour. While these assertions may

not be complex, they are themselves code and must be written correctly in order

to distinguish between passing and failing test cases. I assert that test assertions

are relatively repetitive and straight-forward, making their construction well suited

to automation; and that tools can reduce developer effort (and simultaneously im-

prove the quality of the assertions in their test suites) by automatically generating

assertions that the tester can choose to accept, modify, delete, or augment.

Such a tool can fit into a developer workflow where tests are frequently written

alongside runnable source code. I examined 33,873 assertions from 105 projects

and identified twelve high-level categories that account for the vast majority of

developer-written test assertions, confirming that test assertions are fairly simple in

practice. To assess the utility of my human-in-the-loop assertion generation thesis,

I developed the AutoAssert framework, which generates typical assertions for test

cases written for JavaScript code. AutoAssert uses dynamic analysis to determine

both which assertions to generate and what values they should verify. The devel-

oper can choose to accept, modify, delete, or add to the set of generated assertions.

I compared assertions generated by AutoAssert to those written by developers and

found that it generates the same kind of assertions as written by developers 84%

of the time in a sample of over 1,000 assertions. Additionally I validated the util-

ity of AutoAssert-generated assertions with 17 developers; these developers found

that the majority of generated assertions were useful and expressed considerable

interest in using such a tool/approach for their own projects.

iii

Lay Summary

When writing software systems, developers often rely on automated tests to ensure

their software is functioning correctly. One core component of a test is the as-

sertion, which checks a programs actual behaviour against its expected behaviour.

There have been numerous approaches developed to help automate the process of

creating tests, and their assertions. This thesis presents a new prototype tool called

AutoAssert designed to fit into a developer’s normal workflow when writing tests,

enabling automatic creation of assertions based on information produced by ac-

tually running the program. The tool design was informed by an analysis of the

assertions that developers write. It was validate with an analysis of how the as-

sertions produced by this tool compare to those written by developers, and a user

study about how developers use and think about a tool like AutoAssert.

iv

Preface

The work presented in this thesis was conducted in the Software Practices Lab-

oratory at the University of British Columbia, Point Grey campus. All projects

and associated methods were approved by the University of British Columbia’s

Research Ethics Board [certificate #H20-02151]. This material is the result of on-

going research at the Software Practices Laboratory.

I was the lead investigator, responsible for all major areas of concept formation,

data collection and analysis, implementation, as well as manuscript composition.

Reid Holmes was the supervisory author on this project and was involved

throughout the project in concept formation and manuscript composition.

Joanne Atlee was an advisor for this project and contributed to study design

and manuscript edits.

Braxton Hall was a research assistant on the project, helping code the imple-

mentation behind the analysis in Chapter 2.

The material has not been published prior to this thesis.

v

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Tables . viii

List of Figures . ix

Acknowledgments . xii

1 Introduction . 1

2 Assertions in Practice . 4
2.1 Methodology . 4

2.2 Results . 6

3 Automatic Assertion Generation . 14
3.1 Design methodology . 14

3.2 Tracing Program Values . 16

3.3 Identifying Assertion Categories 17

3.4 Generating assertions . 18

3.5 Implementation . 19

vi

4 Evaluating Assertion Correctness 21
4.1 Methodology . 21

4.2 Results . 23

5 User study . 25
5.1 Methodology . 25

5.2 Results . 29

5.2.1 Pre-task survey . 29

5.2.2 AutoAssert tasks . 30

5.2.3 Post-task survey . 31

6 Discussion . 35
6.1 Improving Readability with Generated Assertions 35

6.2 Limitations and Future Work . 36

6.3 Threats to validity . 38

6.4 Related Work . 39

7 Conclusion . 41

Bibliography . 42

A Consent Forms and Surveys . 44

B User Study Tasks . 53

C Survey Results . 64
C.1 Pre-task Survey Responses . 64

C.2 Post-task Survey Responses . 70

D Assertion Generation Details . 74

vii

List of Tables

Table 2.1 Assertions encountered in practice. This shows the twelve high-

level assertion categories categorized from 33,873 assertions in

18,937 tests from 84 projects. Note: some assertions can appear

in multiple categories (e.g., expect(val).to.exist.and.be.true) re-

sulting in a total count larger than the number of assertions. Cat-

egories are based on assertion semantics and have been adjusted

to account for semantic equivalents as described in Chapter 2.2 9

Table 2.2 Analysis of the 17,189 uses of the equality assertion methods to

determine what category of assertions developers are actually

using this operator for in practice. This shows that 22.5% of

usages of the equality operator are asserting more semantically-

specific behavior. 11

Table 4.1 Breakdown of the dynamic generation results. For assertion

categories supported by AutoAssert, AutoAssert can almost al-

ways generate an assertion of the same category. 23

viii

List of Figures

Figure 2.1 Histogram showing the number of assertions per test case across

14,824 test cases with inline assertions. 6

Figure 2.2 Histogram showing the number of keywords per assertion across

20,418 assertions using the expect API 7

Figure 3.1 Process used by AutoAssert to generate assertions. While a

developer starts the assertion generation process for a specific

variable in a test case, they also review the generated assertions

to ensure both that the assertion operators are appropriate, and

that the observed values match their expectations. 15

Figure 3.2 Usage of AutoAssert through IntelliJ context menu, adding an

option to the context menu when a selection is made. 20

Figure 5.1 Usage of AutoAssert through the web interface created for the

user study, replicating the context menu behaviour from the

initial plugin version. 28

Figure 5.2 Three assertions generated by AutoAssert during a task. The

first two were removed by the participant, the final most spe-

cific assertion was kept. 31

Figure 5.3 Breakdown of participant responses to the three main Likert-

scale questions from the post-task survey. 32

Figure A.1 Consent form. 47

Figure A.2 Pre-survey. 50

Figure A.3 Post-survey. 52

ix

Figure B.1 The tutorial task in the user study, before assertion generation.

This test was created by me for the purpose of this study. . . . 54

Figure B.2 The tutorial task in the user study, after assertion generation. . 54

Figure B.3 Task 1 of 5 primary non-poison-pill tasks in the user study,

before assertion generation. This test is from the open-source

project Nock. 55

Figure B.4 Task 1 of 5 primary non-poison-pill tasks in the user study,

after assertion generation. 56

Figure B.5 Task 2 of 5 primary non-poison-pill tasks in the user study,

before assertion generation. This test is from the open-source

project Nock. 57

Figure B.6 Task 2 of 5 primary non-poison-pill tasks in the user study,

after assertion generation. 58

Figure B.7 Task 3 of 5 primary non-poison-pill tasks in the user study,

before assertion generation. This test is from the open-source

project Nock. 58

Figure B.8 Task 3 of 5 primary non-poison-pill tasks in the user study,

after assertion generation. 59

Figure B.9 Task 4 of 5 primary non-poison-pill tasks in the user study,

before assertion generation. This test is from the open-source

project Typeset. 59

Figure B.10 Task 4 of 5 primary non-poison-pill tasks in the user study,

after assertion generation. 60

Figure B.11 Task 5 of 5 primary non-poison-pill tasks in the user study,

before assertion generation. This test is from the open-source

project Typeset. 61

Figure B.12 Task 5 of 5 primary non-poison-pill tasks in the user study,

after assertion generation. 62

Figure B.13 Poison-pill task 1 of 2 in the user study, before assertion gen-

eration. This test was created by me for the purpose of this

study. 62

x

Figure B.14 Poison-pill task 1 of 2 in the user study, after assertion genera-

tion. Here users should notice that the equality assertion is not

a good fit for a result that should change every millisecond. . . 63

Figure B.15 Poison-pill task 2 of 2 in the user study, before assertion gen-

eration. This test was created by me for the purpose of this

study. 63

Figure B.16 Poison-pill task 2 of 2 in the user study, after assertion genera-

tion. Here users should notice that the equality assertion is not

a good fit for an identifier that should be unique every call via

randomness. 63

Figure D.1 JavaScript code injected into projects to log the resulting value.

Some types such as promises did not have unique implemen-

tations on the generation side at the time of writing. (1/2) . . . 77

Figure D.2 JavaScript code injected into projects to log the resulting value.

Some types such as promises did not have unique implemen-

tations on the generation side at the time of writing. (2/2) . . . 78

xi

Acknowledgments

First I must thank Reid Holmes for his support, guidance, and input through every

phase of this work, starting from encouraging me to undertake the Masters in the

first place. He always made himself available to help whenever I needed it, and I

left every meeting with my confidence higher than when it began.

I would like to thank Joanne Atlee for her guidance and expertise, and for her

continued involvement even beyond the end of her sabbatical at UBC.

I would also like to thank Braxton Hall for all his contributions, even while

working on grad school himself, as well as his friendship throughout my time at

UBC.

My appreciation to the great community and individuals of the Software Prac-

tices Lab, I wish circumstances were different and I could have seen you all in

person so much more.

I can’t thank my family enough for all their support, both practical and per-

sonal, through both this degree and everything leading up to this point. I would

never have made it this far without you.

And finally thanks to my partner Audrey Lu for her continued love, support,

and encouragement through the highs and lows of completing this degree.

xii

Chapter 1

Introduction

Automated testing continues to grow in importance in modern software systems.

Unit tests [15] can provide quick feedback for developers, integration tests [12]

can ensure components work in concert, smoke tests [3] provide rapid-high level

feedback, and all play a central role in regression testing [7]. One commonality

among all of these is that each test case needs assertion statements to verify the

behavior of the code under test.

Assertions are short segments of code that play an out-sized role in test cases [16].

They are generally short, and are somewhat repetitive. But they are the arbiter of

truth: a test case passes if all of its assertions pass; the test case fails if any of its

assertions fail. A test case comprises code that invokes a behavior and a set of

assertions that validate if that behavior is as expected. Assertions, like the test case

itself, comprise code that requires effort to create and maintain. In this thesis I

investigate how developers write assertions and develop a tool that can help them

by automatically generating assertions for their test cases as they create them.

Specifically, I aim to improve the developer test-writing experience by au-

tomating the assertion-writing process with a human-in-the-loop tool called Au-

toAssert. AutoAssert is designed to fit into a developer’s normal test-writing work-

flow, where test cases are frequently written alongside source code with developers

asserting on invocations of the newly added code. To do this, AutoAssert uses dy-

namic analysis to observe the runtime value of the variable at the specified point

in the program and determines the most appropriate assertions for the variable at

1

that program location, accounting for runtime variations that variables may exhibit

(e.g., due to non-determinism).

The human-in-the-loop aspect of the tool is important: as the developer writes

their test cases, they can select a variable instance of interest in the test case and

generate local assertions about that variable; the developer is also involved in de-

ciding which of the generated assertions to keep versus which to modify or remove.

A generated assertion can also reveal to the developer unexpected values or prop-

erties of the variable of interest. The primary research question is whether the

generated assertions are useful, despite the developer’s active role in reviewing and

possibly editing the result.

A wide body of previous research has looked at ways to automate various as-

pects of test writing. Test generation approaches such as Randoop [9] and Evo-

Suite [5] can generate entire test suites (and their assertions); while these ap-

proaches could generate an individual test case, their primary use is to generate

broad suites. In this thesis, I instead meet developers where they are and focus on

supporting the developer who is writing specific individual test cases, by investi-

gating how to ease the task of writing the test assertions.

Assertion generation approaches often leverage static analysis (e.g., UnitPlus [11]

or Obsidian [1])). These approaches have the benefit of being fast, but developers

need to verify that the generated assertions actually pass, as they are not based on

actual runtime variable values and may fail when the test case is run. To counter

this downside, dynamic approaches (e.g., Orstra [14], Eclat [8]) execute the code

under test to ensure that the generated assertions are based on values the program

produces when run. However these tools still lack a way of knowing the intentions

of the tester and without this information these approaches may create assertions

for any variable in the test file and after every time a variable is modified. While

the tests thereby acquire test assertions about the variables’ runtime values, they

also become bloated with assertions, degrading readability and the tests’ ability to

serve as documentation for expected behavior. Bloat can be partially reduced by

the use of helper methods for shared assertions, however this further reduces the

understandability of the test.

Given the somewhat repetitive nature of assertions, machine learning approaches

have also been applied to assertion generation. For example, the Atlas [13] system

2

uses a model trained on an assertion data set with hundreds of thousands of rows

to generate new assertions when given the body of a test. As with other static ap-

proaches, Atlas cannot be certain its generated assertions are actually true and may

face challenges generating more novel assertions. Since AutoAssert is dynamic

and can observe the runtime value being tested, I focused my evaluation instead on

determining if the type of assertion used was what developers might want, along

with collecting feedback about how developers interacted with the tool and whether

they found the generated assertions to be valuable.

The primary goal of this research is to investigate the feasibility of gener-
ating test assertions and the utility of these assertions for developers. To do

this, I employed the following methodology: I first performed a quantitative anal-

ysis of developer-written assertions to understand what these look like in practice

(Chapter 2). Using this understanding, I built a proof-of-concept tool called Au-

toAssert to generate the most commonly occurring assertions (Chapter 3). Using

a quantitative simulation study I compared the assertions generated by AutoAssert

to those written by developers (Chapter 4). Finally, I evaluated the utility of the

AutoAssert tool in a formative evaluation with real developers (Chapter 5).

This thesis makes the following contributions:

• An empirical study characterizing the types of test assertions that developers

write in real test cases.

• A prototype tool called AutoAssert which supports human-in-the-loop asser-

tion generation.

• An empirical analysis comparing the assertions generated by AutoAssert to

those originally written by developers.

• A formative user study examining how developers perceived the the utility

of automatically generated assertions for real test cases.

3

Chapter 2

Assertions in Practice

I first seek to understand how developers write assertions in practice to inform the

design of my assertion generation approach by investigating:

RQ1: What do test assertions look like in practice?

This research question examines the scope, complexity, and semantic variation of

developer-written assertions for real software systems. I will use the insight from

this question to guide the design of my assertion generation approach so it can

create the kinds of assertions that developers write in practice. The study could

also help others who seek to better understand developer-written assertions.

2.1 Methodology
To answer RQ1, I performed a quantitative study by statically analyzing the developer-

written test assertions present in open-source projects. I selected these projects by

examining all JavaScript and TypeScript projects published on npm1 that are de-

pendent on the Chai assertion library2 and Mocha test framework3. Mocha and

Chai are similar to other test frameworks, including those in other languages such

as JUnit. From these projects, I was interested in larger, maintained software

systems closer to those that would be found in industry (i.e. avoiding personal

1https://npmjs.com
2https://www.chaijs.com
3https://mochajs.org

4

https://npmjs.com
https://www.chaijs.com
https://mochajs.org

projects). As such I selected only those projects that link to open-source reposito-

ries on GitHub that have at least 100 stars. From these 105 open source projects,

I analyzed all 33,873 Chai test assertions from all 18,937 test cases written using

the Mocha test framework. For my test counts, I define a test case as any method

call to the Mocha framework test creation method, called it.

I created a static analysis tool, based on the TypeScript parser for TypeScript

and JavaScript source code, that parses the Mocha test files in each project’s repos-

itory and looks for AST elements that correspond to calls to the Chai expect and

assert functions, which are the core assertion statements used by the Chai asser-

tion library. The parser extracts three pieces of information from each non-trivial

test assertion4:

1. The element under test. For my data set of 33,650 non-trivial assertions,

this was most commonly either a property access on an identifier (35.8%),

an identifier referring to the result of a method call or complex expression

(31.3%), or an inline method call (18.1%).

2. The specific assertion method. This is a method from the Chai API, such as

‘equals’, ‘length’, or ‘null’ that imparts specific constraints on the variable

under test.

3. The expected value to which the variable under test is compared. In my

data set, this is most commonly a literal value such as a string or a number

(61.6%). In 24% of the cases, the expected value is embedded in the name of

the Chai method (e.g., expect(val).to.be.true, expect(val)-

.to.be.null). In the remaining cases, the expected values were identi-

fiers (12.3%), property accesses (6%), complex expressions (3.4%), or method

calls (2.7%). A single assertion may compare the variable under test with

more than one expected value, thus the percentages of the expected-value

categories add up to more than 100%.
4Where a non-trivial test assertion is one that refers to program variables, as opposed to assertions

like expect.fail(). Such trivial assertions are control flow checks (or may potentially be API
misuse), but not interact with program elements.

5

2.2 Results
I next analyzed this set of assertions to learn how many assertions are used per

test, how complex they are, what kinds of assertions developers use, and how they

construct them.

Assertion Density Developers add assertions to their test cases to validate pro-

gram behaviours; in practice I found that most test cases contain relatively few

assertions. Of the 18,937 test cases in my data set, 4,113 test cases (22%) con-

tain no test assertions5 or rely on helper functions to call the assertions (making it

difficult to attribute the assertion to the calling code).

2,500

5,000

7,500

10,000

1 2 3 4 5 6+

560274529
1,209

2,765

9,487

Figure 2.1: Histogram showing the number of assertions per test case across
14,824 test cases with inline assertions.

Figure 2.1 shows the distribution of the number of assertions per test case

among the 14,824 tests that contain at least one test assertion: the test cases have

a mean of 1.4 test assertions per test and a median of 1 assertion per test; 17.4%

5Some assertion-free tests simply check to see if the code under test throws an error, which
implicitly causes the test to fail. Alternatively they may serve as entry points for running the code to
debug or view output.

6

of the test cases have three or more assertions; and the outlying test case with the

most assertions had 183 assertions.

ô
Developers typically include only a small number of assertions per test

case; assertion generation techniques should focus on producing key

assertions.

2,500

5,000

7,500

10,000

1 2 3 4 5 6+

552
1,733

5,580

8,430

3,406

717

Figure 2.2: Histogram showing the number of keywords per assertion across
20,418 assertions using the expect API

Assertion Complexity In practice, most assertion statements are relatively straight-

forward. To examine the complexity of assertions, I counted the number of key-

words from the assertion library present in each assertion statement. Chai’s expect

API allows for building complex assert statements by chaining these tokens, so this

count can serve as a proxy for assertion statement complexity. Some examples of

keywords (bold) and counts are:

7

Assertion Statement
2 expect(save).throws(err)
3 expect(conf).to.equal(‘ICSE’)
4 expect(reviewers).to.not.include(‘r2’)

11 expect(pages).to.exist.and.
to.be.at.least(10).and.at.most(12)

Figure 2.2 shows the assertion complexity across the 20,418 assertions using

the expect assertion library I analyzed. Most assertions contain three or four

keywords, which typically corresponds to a single check (three keywords) or the

negation of a check (four keywords) in the Chai assertion library. While the last ex-

ample above shows that it is possible to write more complex compound assertions

in Chai, it turns out that developers do not seem to do this often in practice.

ô
Most developer-written assertions are simple; assertion generation

techniques should favour simple assertions over complex assertions.

8

Table 2.1: Assertions encountered in practice. This shows the twelve high-level assertion categories categorized from
33,873 assertions in 18,937 tests from 84 projects. Note: some assertions can appear in multiple categories (e.g.,
expect(val).to.exist.and.be.true) resulting in a total count larger than the number of assertions. Categories are based
on assertion semantics and have been adjusted to account for semantic equivalents as described in Chapter 2.2

.
Category % Count Description Representative assertions

Equality 39.3% 13,325 Exact matches of values or references. to.equal, to.eql
Boolean 14.3% 4,854 Value is true or false. to.be.true, to.be.false
Inclusion 7.1% 2,409 Element present in arrays or strings. to.include, to.have.members
Length 6.7% 2,259 Array and string length. to.have.length, to.be.empty
Existence 6.1% 2,073 Value is null or undefined. to.exist, to.be.null
Properties 4.8% 1,610 Existence and/or values of object properties. to.have.keys, to.have.property
Calls 4.0% 1,369 Method has been called, check arguments. to.be.called, to.be.calledOnce
Type 3.3% 1,101 Primitive types and class instances. to.be.a, to.be.instanceOf
Numeric 2.2% 736 Comparisons of numeric values to each other. to.be.below, to.be.at.least
Throw 2.0% 659 Function throws or returns successfully. to.throw, to.not.throw
Patterns 1.9% 645 Regular expressions and pattern matching. to.match, to.have.matches
Truthiness 1.8% 619 Value can be coerced to true or false to.be.ok, to.be.falsy

Uncategorized 6.3% 2,147 Does not fit other categories, specific plugins. to.be.fulfilled, to.have.style
Invalid 2.1% 717 API misuse. [No assertion operator]

9

Assertion Categories To understand the kinds of assertions developers were writ-

ing, I categorized all of the assertions in my data set. I grouped assertions by their

keywords as described in Chapter 2.2, discarding keywords that were only used as

modifiers (e.g., not, deep) or syntactic sugar (e.g. to, have); this left only the

keywords representing specific assertion semantics. To understand the semantics

of each keyword, I used the keyword name and the official documentation from

the assertion library to confirm the kind of behaviours validated by each assertion

keyword. I then performed an open card sort [2] on the per-keyword list to identify

categories of semantic behaviours validated by developers in practice. For exam-

ple, the keywords length, size, and empty would be grouped into the same

category Length. Specific behaviours may be different between these methods,

however they all operate on the same details of the value under test. This resulted

in twelve categories; these are shown in Table 2.1. Each category corresponds to

a kind of semantic check developers have expressed in their test cases to validate

behavioural correctness in the code under test.

ô
Developers create assertions to check a wide variety of program seman-

tics; assertion generation approaches must look beyond simple equality

to capture these behaviours.

Assertion Equivalence There are multiple semantically equivalent ways for de-

velopers to write any given assertion. Forms of equivalence generally fall into

two categories. In the first, the assertion library provides multiple assertion meth-

ods (e.g., equals and eq) as a form of syntactic sugar for performing the same

underlying check. In the second, developers make different stylistic choices that

are semantically equivalent when structuring their assertions. For instance, writing

expect(array.length).to.equal(1) instead of expect(array).to-

.have.length(1). This kind of equivalence, with one option being a specific

assertion operator and the other being framed as an equality check, was by far the

most common semantic equivalence I observed.

Before I could run my analysis of assertion equivalents, I needed to decide what

equivalents developers may write so that they can be set as targets for my static

analysis. To do so I first clustered the assertions in my data set into categories.

10

Then from each of these categories I took a random sample of 5% of each cate-

gories assertions. While a random sample of the entire dataset would likely achieve

a similar breakdown, this lowers the odds of one category of behaviour being un-

der represented. I then read through all the sampled assertions and noted down

any instances where I observed assertions that were semantically equal but stylisti-

cally different, both within or between assertion categories. Some behaviours that

were not present in the sample, but logically followed from behaviours seen in the

sample, were also added. For instance, checks on result.length for arrays

were present in the sample, however checks on result.size() for sets were

not. One notable exception to this was numeric operators, such as greater than (>)

or less than (<). To my surprise, despite these operations being present through

provided assertions methods such as above and below there were no usages of

the equivalent operators in my sample. As it was a clear opportunity for semantic

equivalence, I decided to include this category despite its absence from my sample.

Table 2.2: Analysis of the 17,189 uses of the equality assertion methods to
determine what category of assertions developers are actually using this
operator for in practice. This shows that 22.5% of usages of the equality
operator are asserting more semantically-specific behavior.

Category % Example

Length 9.0%
expect(val.length).

to.equal(0)

Boolean 8.1%
expect(val).
to.equal(true)

Calls 2.4%
expect(val.callCount).

to.equal(1)

Existence 2.2%
expect(val).

to.not.equal(null)

Inclusion 0.5%
expect(val.includes(‘foo’)).

to.equal(true)

Type 0.2%
expect(typeof val).
to.equal(‘string’)

Numeric 0.0%
expect(val < 0).
to.equal(true)

11

I examined the form of equivalence where developers use equality in place of

more semantically rich assertions in more detail, as my preliminary analysis of

assertion categories found that more than 50% of all assertions were checks on

equality. Of these, I found that at least 22.5% of the developers’ uses of equality-

based assertion operators could be written with a more specific assertion operator

(see Table 2.2).

There are two main advantages to using specific assertion operators rather than

framing them as an equality-based assertion (i.e., a call to equals). The first

advantage is that the meaning of the assertion is more directly evident from the as-

sertion statement itself; for example, the following two assertions are semantically

equivalent, but the first more clearly encodes its intent:

Ex1. expect(arr).to.contain(‘c’)

Ex2. expect(arr.indexOf(‘c’) >= 0)

.to.equal(true)

The second advantage is that when an assertion fails, if the assertion is more

specific, then its error message can be made more descriptive for the developer.

Consider the failure messages that correspond to the two previous assertions; the

more specific assertion is able to provide a more specific and meaningful error

message:

Ex1. AssertionError: expected

[‘a’, ‘b’] to include ‘c’

Ex2. AssertionError: expected

false to equal true

The results of this analysis suggest that assertion generation tools should con-

sider accommodating possible assertion equivalents and should carefully consider

generating the more specific assertion form.

ô
Developers may write assertions for the same behaviour in a variety of

ways; assertion generation approaches should be aware of these differ-

ences, but also encourage consistency.

12

RQ1 Summary
Most test cases contain relatively few assertions with a median of 1 assertion

per test. Assertions are generally simple, typically with enough tokens for a

single check and possibly a negation. Longer assertions that chain multiple

checks together in one statement are rare. While half of assertions are based

on equality, the rest have a wider variety such as checking values types,

sizes, ranges, and patterns. Semantically equivalent assertions are common,

especially with respect to checking equality; developers often choose the

equality based assertion methods and then use the arguments to express

more specific semantics.

13

Chapter 3

Automatic Assertion Generation

Using the information I learned about the nature of developer-written assertions in

Chapter 2, I created a prototype tool, called AutoAssert, that automatically gen-

erates many common kinds of assertions. Generating assertions proceeds in three

main phases, as depicted in Figure 3.1. First, the developer selects a variable in

their test case for which they wish to have assertions generated; the test case is

executed (twice) and a program trace recording the values assigned to the variable

are collected. Second, appropriate kinds of assertions are selected based on the

values assigned to the variable at runtime. Finally, the assertion text is generated

and inserted into the test case for the developer to review. Each of these steps is

described below.

3.1 Design methodology
When designing AutoAssert I examined the different categories in Table 2.1 and

noted that many categories would be straightforward to generate, while others

would be much more complicated. With a dynamic approach, the most directly

generateable assertions are from the Equality, Boolean, Length, Exist-

ence, and Type categories. These categories each have clearly observable prop-

erties that imply exact expected values they should be compared against. One more

opaque category that AutoAssert is able to support, is Throw. The convention, at

least for the Chai API, is to wrap the function call you wish to test in an anony-

14

TraceChoose
variable for
assertions

Execute
test case

(twice)

Identify
Difference
variable
values

Generate
Insert
into

test case

Create
assertion

text

Determine
assertion

kinds

Figure 3.1: Process used by AutoAssert to generate assertions. While a de-
veloper starts the assertion generation process for a specific variable
in a test case, they also review the generated assertions to ensure both
that the assertion operators are appropriate, and that the observed values
match their expectations.

mous function with no arguments. That function is then passed to the assertion

which invokes it. As such, if the value under test is a function with no arguments, I

can invoke it to determine if it throws or not and generate an assertion accordingly.

A list of all the assertions that AutoAssert generates can be found in Listing D.1.

Some categories are more challenging to support including Inclusion, Prop-

erties, Calls, Numeric, Patterns, and Truthiness. Inclusion and

Properties both rely on knowledge of which specific property, element, or sub-

string of the element under test is the important one to assert on and can not be

determined by the resulting value alone. Similarly Numeric and Patterns

assertions both involve comparisons against a broader set of values where many

15

possible ranges and patterns could be correct that AutoAssert does not have the

ability to choose between. While the Calls category could be compared against

whether a function has been called at all, how many times, or with what arguments,

it is not clear whether these are often needed. Finally, while easy to implement,

Truthiness was the least seen category and I considered it to be largely redun-

dant given checks for Boolean and Existence, and its use is also discouraged

in the Chai API documentation. As such it was intentionally excluded to avoid

bloating the generated assertions. Examples of these unsupported assertions are

provided in Listing D.5.

3.2 Tracing Program Values
While a variety of approaches could be used to determine the values of variables

under test, AutoAssert takes a dynamic approach of executing individual test cases

and recording the values assigned to variables at runtime.

i t ("Should generate v1 with options" , function () {
const opt ions = {

node : [0 x01 , 0x23 , 0x45 , 0x67 , 0x89 , 0xab]
} ;
const uuid = UUIDUti l . generate ("v1" , op t ions) ;

}) ;

Listing 3.1: An example test case. A developer would generate assertions by
selecting uuid and invoking AutoAssert.

For example, for the test case in Listing 3.1, the developer can right click on the

uuid variable and invoke AutoAssert. The tool invisibly injects tracing code into

the individual test case, immediately after the statement containing the variable

instance selected; executes the test case twice; and records the values assigned to

uuid. After the test case is executed, the tracing code is removed.1

Listing 3.2 shows the recorded values of variable uuid for the two execu-

1For TypeScript projects, the project is incrementally compiled after injecting the tracing code,
but before the test is run.

16

tions. Running each test case twice2 provides an opportunity to detect when the

two recorded values differ (e.g., when assigned a timestamp or a randomly gener-

ated value like a UUID). Knowing which properties of a variable change between

executions decreases the probability that AutoAssert will generate assertions that

are too strong. In this case, I can see that the runtime values of uuid are strings

in both test-case executions and have the same length but different values. If the

two recorded values are identical (which is the norm, rather than the exception),

the value is recorded only once. For more complex variables (e.g., for objects), the

value property will contain the serialized object. To increase the options for gen-

erated assertions on instances of classes, AutoAssert includes with the serialized

value of an object all method names as well as all property names and values3.

[{
type : "string" ,
value : "8b839680-e0e9-11ea-b5a6-0123456789ab" ,
l eng th : 36

} ,
{

type : "string" ,
value : "232ab3a0-e0cd-11ea-b840-0123456789ab" ,
l eng th : 36

}]

Listing 3.2: An example of a final value recording, showing the identified
type and value. In this case, the variable’s values differ in the two exe-
cutions. Further examples regarding results from running the test twice
can be found in Appendix D.

3.3 Identifying Assertion Categories
Once a variable has been traced and recorded, the next step is to identify which

kinds of assertions are applicable given the variable’s runtime values. My main

goal here is to identify several categories of assertion that make sense for the invari-

2I hypothesized that non-deterministic tests will either be fully random, or have their potential
differences determined by external factors such as time, platform, or environment variables. Under
this assumption running more than twice would be unlikely to produce any new variations, and this
chance would not be worth the increase in runtime

3Note that JSON’s standard serialization of objects (stringify()) does not serialize method
names.

17

ant portion of the recorded value and order these categories in increasing strength.

While this often results in ‘extra’ assertions, the additional assertions increase the

specificity of the resulting error messages. For example Listing 3.3 shows three

assertions for a simple object4. The first checks that the object val exists (e.g., is

not undefined or null). The second ensures that val has the right type. The

final check validates that val has the expected value. While only the last check is

required (as a non-existent or wrongly-typed value would fail the equality check),

the initial checks would produce more specific and easier to understand error mes-

sages should an assertion fail in a future test run, making it easier for the developer

to diagnose the fault. Developers could also easily delete any assertion they deem

redundant or too strict to suit their personal preference.

cont va l = db . getPaper ("thesis") ;
expect (va l) . to . e x i s t ;
expect (va l) . to . be . an ("object") ;
expect (va l) . to . equal ({ author : "Lucas" , year : "2020"}) ;

Listing 3.3: An example set of Chai assertions generated after a line of test
code that returns a simple object.

If the developer selects a variable of interest that does not have a clear value

such as a function, then only existence and type checks (and no equality check)

are generated. Wherever possible, the more specific assertion categories from Ta-

ble 2.1 are used over equality to ensure the resulting error messages are as specific

as possible. With respect to equality checks, strict-value equality checks are gener-

ated for primitives whereas objects and arrays are checked for deep equality5. The

outcome of this step is a list (ordered by increasing strength) of assertion categories

that make sense for the object’s values observed for two execution traces.

3.4 Generating assertions
The process of generating the assertion text is straightforward once the assertion

categories and order of generated assertions are determined. The generated text is a

4Additional examples of generated assertions can be seen in Appendix B.
5Deep equality checks values of nested properties and elements, instead of memory address equal-

ity.

18

multi-line string that is injected into the developer’s test code immediately follow-

ing the program statement that contains the variable instance on which AutoAssert

was invoked. To help developers understand the rationale for the generated as-

sertions, a short inline comment can be optionally appended to the end of each

assertion explaining what behaviour the assertion is checking. Since AutoAssert is

designed to be a human-in-the-loop system, I expect developers will do their due

diligence in reviewing generated code, accepting (leaving unchanged), rejecting

(removing), or modifying assertions.

3.5 Implementation
My initial implementation of AutoAssert supports JavaScript and TypeScript. Any

language that supports dynamic variable introspection is amenable to this approach

however. These languages are well suited to the generation of test assertions as in-

specting the values of objects is relatively straightforward. The JavaScript ecosys-

tem supports a large number of assertion libraries; I opted to support the Chai as-

sertion library for its clean syntax variety of assertion options, although any library

could have been chosen.

To embed AutoAssert into a developer’s normal workflow, it was implemented

as an extension to the IntelliJ IDEA Ultimate6 because of its strong support for

extensions, its wide user-base, and its support for both JavaScript and TypeScript.

Figure 3.2 shows what AutoAssert looks like within IntelliJ. A full demonstration

of AutoAssert in use is available online7.

The user interface is a simple context menu option “Generate Assertions” that

appears whenever a developer right-clicks on a variable in a test case in the IDE.

The plugin then creates a run configuration to execute only the test that the target

variable is found in8. It then adds a before run task to invisibly inject the log-

ging code, and triggers the run configuration to execute. As IntelliJ does not to

my knowledge provide a way to get a callback once a run completes, AutoAssert

6https://www.jetbrains.com/idea/
7https://youtu.be/w1MoeZxfJko
8This is to make the execution timely, however it does mean that AutoAssert may not work

correctly for tests that are not proper unit tests, and require state set up by prior tests. This is a design
decision for the plugin however, not a requirement of the approach more broadly

19

https://www.jetbrains.com/idea/
https://youtu.be/w1MoeZxfJko

Figure 3.2: Usage of AutoAssert through IntelliJ context menu, adding an
option to the context menu when a selection is made.

instead watches the output directory for the expected logging file. As soon as the

file appears, the original file without the logging code is restored and assertions are

inserted. The time required for this process depends on the how long it takes to

run the test case itself through IntelliJ; the tool itself has no meaningful overhead.

The most computationally expensive steps of running AutoAssert itself should be

the disk operations associated with reading and writing the logging file, though no

thorough performance analysis was performed.

20

Chapter 4

Evaluating Assertion Correctness

To evaluate the quality of the assertions generated by the prototype AutoAssert

tool, I performed an empirical simulation comparing my generated assertions against

those included in real software projects.

RQ2: Can my approach generate assertions similar to those written by devel-
opers?

The goal of this simulation is to see how consistently AutoAssert can generate an

assertion in the same category a developer did for the same input value. Being able

to consistently produce assertions in the same category developers want is crucial

for making an assertion generation tool that developers will use and trust.

4.1 Methodology
To perform my empirical simulation, I selected 10 open source projects with developer-

written programmatically-executable test suites. Projects were selected using my

final list of candidate projects from Chapter 2.1, sorted by stars. I then chose the

first 10 projects whose test suites I was able to programmatically execute. I stati-

cally analyzed each project to find all developer-written assertions in the project1.

This resulted in 1,335 assertions across the 10 projects. For each of these assertions

I extracted the element under test, the left-hand side of the assertion, and used this

as input to trigger assertion generation with AutoAssert. For each of these, Au-

1Each test was executed and those that failed were excluded.

21

toAssert generated one to four assertions.

After the assertions were generated they were compared to those written by

developers. I considered two assertions to be equivalent if they belonged to the

same category (accounting for equivalent forms as described in Chapter 2.2). This

evaluation did not try to compare the exact assertion text, as that would require

either using an exact text match as the metric for success, or knowledge of the code

under test to judge whether the generated assertion was equivalent to the original

assertion.

Listing 4.1 shows an instance of a category match. In this case one of the

generated assertions happens to be identical, but this would also be considered a

match if any other equality-based assertion method were used. Listing 4.2 shows a

category miss, where the original assertion was intending to do a type based check,

however my assertion checked that the value was going to be exactly null as this

was the value error actually had assigned to it when the test executed.

// Original assertion:
expect (data) . to . deep . equal (["test1" , "test2"]) ;
// Generated assertions:
expect (data) . to . e x i s t ;
expect (data) . to . be . a ("array") ;
expect (data) . to . have . leng th (2) ;
expect (data) . to . deep . equal (["test1" ,"test2"]) ;

Listing 4.1: Example of generated assertions containing the same category
(equality) as the original. This is considered a hit.

// Original assertion:
expect (e r r o r) . to . not . be . instanceof (E r ro r) ;
// Generated assertion:
expect (e r r o r) . to . be . nul l ;

Listing 4.2: Example of generated assertions that did not contain the same
category (type) as the original assertion. This is considered a miss.

22

Table 4.1: Breakdown of the dynamic generation results. For assertion cate-
gories supported by AutoAssert, AutoAssert can almost always generate
an assertion of the same category.

Category Count % of Sample % Hit

Equality 804 60.22% 99.00%
Boolean 101 7.57% 100.00%
Existence 101 7.57% 100.00%
Type 65 4.87% 98.46%
Length 59 4.42% 96.61%
Throw 9 0.67% 100.00%

Numeric 118 8.84% 0.00%
Truthiness 58 4.34% 0.00%
Properties 10 0.75% 0.00%
Inclusion 8 0.60% 0.00%
Calls 1 0.07% 0.00%
Patterns 1 0.07% 0.00%

Total 1335 100.00% 84.49%

4.2 Results
For the assertion types AutoAssert supports, if the developer wrote an assertion of

that kind, AutoAssert generated an assertion of the same kind in at least 96% of

cases. For categories AutoAssert does not support, no equivalent assertion could

be generated. Since AutoAssert supports many of the most commonly-used kinds

of assertions (Table 4.1), the tool was able to generate assertions in the correct

category 84.5% of the time.

One of the challenging scenarios for correct generation is when developers

make assertions about what a value is not. Listing 4.2 shows an example of a de-

veloper written assertion that a variable should not be instantiated with an Error

object. Assertions such as these are challenging, as the space of what a value is not

is infinitely large. To understand the prevalence of negated assertions, I checked

my results for the presence of the not modifier or methods such as notEquals.

Of successful generations of equality assertions, only in 17 cases did the original

equality assertions contained a not. There were also 23 existence assertions with

23

not modifiers, however AutoAssert is able to generate these correctly so this is

not a concern for this category. No other category had more than one not in the

original assertion. Another failure mode was assertions where the element under

test is equal to a certain named function, such as:
expect(global[methodName]).to

.equal(ORIGINAL DSL[methodName])
This would require being able to identify the name of the function returned and

the proper scoping to reference it in an assertion. One additional detail that could

complicate assertion generation is when the value under test may be different on

different test runs. In my sample 40 tests (3%) had elements under test that were

different when the test was run a second time.

While this evaluation showed that for most assertions, AutoAssert could gener-

ate assertions of the appropriate category, it did not check for exact matches of the

assertion value, although since this is observed at runtime it is guaranteed to pass, if

not be identical to the assertion the developer wrote themselves. This consistency

is important because in the context of a developer invoked tool, if a developer

lacks confidence that the tool can produce the type of assertion they want, they

may forego using the tool altogether. It also reaffirms the concept that a reasonable

portion of assertions can be generated by AutoAssert.

RQ2 Summary
Using a heuristic-based dynamic approach to assertion generation, Au-

toAssert can consistently produce assertions in the same category as those

originally written by developers. Across over 1,000 developer-written as-

sertions, AutoAssert reproduced the original assertion category 96% to

100% of the time in supported categories, for an overall accuracy of 84%

when considering all categories. The most challenging scenarios for this

generation approach in assertion categories I target were those involving

saved references to functions, and assertions on what a value is not.

24

Chapter 5

User study

With AutoAssert able to generate appropriate assertions for 84% of cases, I next

performed a formative user study with developers to learn how they perceive the

assertions generated by AutoAssert. Specifically, I sought to answer the following

two research questions:

RQ3: How do developers write assertions in practice?

RQ4: Do developers find the assertions generated by AutoAssert valuable?

This research investigates whether the assertions generated by AutoAssert are con-

sidered valuable by real developers. While there is a wide range of possible asser-

tion generation tools and kinds of assertions that could be generated for developers,

I hope that examining the strengths and weakness of AutoAssert will help guide

the development of future assertion generation tooling.

5.1 Methodology
Participants for my user study were recruited primarily through various software

development related forums on Reddit1. 23 individuals, 21 men and 2 women,

participated in the study in some capacity, with 17 completing all the tasks and

both surveys. The study took 20–30 minutes to complete and 4 of the developers

won $50 gift cards through a raffle at the study conclusion.

The study was completely browser-based and began with a pre-task survey, the

1https://www.reddit.com/

25

participants then used a web-based version of AutoAssert to generate assertions for

eight test cases, and concluded with a post-task survey. This online format was not

my preferred modality, but in response to COVID-19 I decided this was the prudent

way to move forward and engage engineers.

Pre-task survey The pre-task survey collected participant consent, gathered rel-

evant demographic information along with years of experience programming pro-

fessionally, years of experience writing tests, and familiarity with JavaScript. The

goal of the pre-task survey was to answer RQ3 and learn about the processes par-

ticipants follow as they write their tests and assertions; participants were asked the

following questions:

1. Do your tests include (a) no assertions, (b) assertions for pre-conditions, (c)

assertions for post-conditions, (d) both pre- and post-conditions.

2. What process do you follow when writing assertions?

3. Do you use any external tools for test or assertion generation?

The pre-task survey materials can be viewed in full in Appendix A. At the

conclusion of the pre-survey, participants were automatically forwarded to my

browser-based version of AutoAssert.

AutoAssert tasks To answer RQ4 I sought to have participants use AutoAssert

and evaluate the assertions it generated for real test cases taken from real systems.

The browser-based AutoAssert is based on the same code backend as the IDE ver-

sion of the tool, but with the code editor2 hosted in the browser instead of an IDE.

The UI for the tool was otherwise the same: participants could view the test and

associated source file, invoke AutoAssert with a context menu by clicking on the

variables they wanted assertions for, and these assertions would be injected into

the browser-based editor for them to manipulate as they saw fit. The UI for the

browser-based AutoAssert is shown in Figure 5.1.3

2Based on Ace https://ace.c9.io
3The browser-based AutoAssert implementation and all experimental tasks can be found at

https://se.cs.ubc.ca/AutoAssert/index.html.

26

https://ace.c9.io
https://se.cs.ubc.ca/AutoAssert/index.html

The task component of the study has participants use AutoAssert to generate

assertions for a series of test cases. Once they have generated assertions, they can

delete, modify, or add any assertions they want until they feel they are appropriate

for the test. Participants can also leave any comments they want in the code itself if

there is anything they would like to note about the assertions. There is one training

task and seven experimental tasks that participants must complete. The training

task was a very simple test case along with comments that showed the participant

how to invoke AutoAssert and guided them through a sample task. Additionally

instructions were also always present in a header at the top of the page.

Five of the seven experimental tasks were taken from two open source projects:

Typeset4 is a string manipulation library for replacing ASCII characters with more

visually appealing Unicode characters. Nock5 is a server test mocking framework.

Each task consisted of a real test case selected from one of these projects but with

the assertions removed. To allow them to concentrate on understanding the test

code instead of the product code, I added a short comment to each test case sum-

marizing the intended functionality being tested. Project order was randomized, as

was test order within a project, however tests from the same project always appear

alongside each other so users do not need to recall what a prior project was about.

I also included two ‘poison pill’ tasks that appeared in between the two ran-

domized blocks of tasks. These tasks generated assertions that were intentionally

poor to evaluate how developers reacted to poor automation. Specifically, these

tests generated strict equality checks on code that generated unique results on ev-

ery run (running twice to check for differences was purposefully disabled here).

For this task I want to make sure that participants modified the generated asser-

tions or commented on the challenges in the post-survey. This ensures that they are

reading and thinking about the assertions as intended, and not immediately mov-

ing to the next task to finish the study faster. For all tasks the browser-based tool

recorded the state of the code editor after each generation as well as when they pro-

gressed to the next task (by tapping ‘next’ in a bar on the bottom of their screen).

After completing all eight tasks participants were automatically forwarded to the

post-task survey. All tasks as well as the assertions generated when users interact

4https://github.com/davidmerfield/Typeset
5https://github.com/nock/nock

27

https://github.com/davidmerfield/Typeset
https://github.com/nock/nock

with them are provided in Appendix B.

Figure 5.1: Usage of AutoAssert through the web interface created for the
user study, replicating the context menu behaviour from the initial plu-
gin version.

Post-task survey The post-task survey acted as a debrief for the AutoAssert tasks.

Participants were asked the following questions:

1. Would you use a tool like AutoAssert if it were integrated with your devel-

opment environment?

2. How did you find AutoAssert’s runtime performance?

3. In terms of assertion quality, how were the generated assertions compared

with those you would write manually?

4. How were the automatically generated assertions better or worse from what

you would normally write?

5. Can you foresee scenarios where assertion generation may fail?

6. Do you have any suggestions to improve automatically-generated assertions?

The first three questions were based on a Likert scale while the rest were free-

response. The post-task survey materials can also be viewed in full in Appendix A.

These questions seek to gain further insight into RQ4 in addition to data recorded

about how developers performed the AutoAssert tasks previously.

28

5.2 Results
In this section I discuss the results from my user study, including the pre-survey

about test development behavior, behavior during the assertion generation tasks,

and post-survey feedback about AutoAssert.

5.2.1 Pre-task survey

23 participants completed my pre-survey (91% male). 74% identified themselves

as professional engineers, and had an average of 11.7 years of development ex-

perience. 74% of participants said they were at least moderately familiar with

JavaScript. 17 participants completed the AutoAssert tasks and post-survey in full.

Assertion writing process. Two participants (9%) stated they did not typ-

ically include assertions in their tests, beyond the tests’ built in ability to detect

thrown errors. 11 (48%) included assertions as post-conditions while 10 (43%) use

assertions as both pre- and post-conditions in their test cases.

Participants employed a wide variety of processes when creating their test cases

and assertions. While for simple unit tests developers may have some assertions

in mind when starting their test case, for more complex test cases one participant

developers mentioned that, “If [the code under test] is something more complex, I

run the code and then verify that the result makes sense before writing assertions.”

This notion of checking the output before writing the assertions arose frequently,

“I would run the code inspect the output and then write assertion against it”, “I

inspect the output before writing my assertions”, and “inspect the actual output

after running the test”.

Ultimately, while most participants (91%) mentioned they often knew which

assertions they would write in advance of creating a test case, a surprising number

(65%) mentioned running the code and inspecting its output in one form or other.

Taken together, these comments fit well with the process AutoAssert embodies

as it suggests these developers often have (at least initial) implementations before

writing their test cases.

Existing tools. No participants reported using any existing test generation or

assertion generation tools. One concern with such a tool was the overhead associ-

ated with learning how to use such a tool. Another concern was around whether

29

the assertions would actually be accurate for the code under test.

RQ3 Summary
Developers often write their test cases and assertions after developing their

code under test. While creating assertions they frequently run their test

and inspect the values returned by the code under test while creating and

debugging their assertions, even if they had an idea of what the result should

be ahead of time. Assertions were often used as both pre-condition and

post-condition checks in test code.

5.2.2 AutoAssert tasks

17 participants completed all AutoAssert tasks. 14 of the 17 noted that ‘poison pill’

tasks had problems (either by changing the tests or making inline comments), sug-

gesting a high level of engagement with the AutoAssert output; I exclude the three

developers who did not notice these problems below (for a total of 14 participants).

Five participants left the assertions generated by AutoAssert in place for the

five good tasks, suggesting they agreed the assertions generated by AutoAssert

were appropriate. For the nine participants who changed the assertions, the most

common behavior (six participants) was to remove the less strict existence and type

checking assertions in places where they believed (correctly) that an equality check

would also catch these faults.

Two participants left comments on tests involving server responses noting they

would create assertions for both the response code and body instead of one or

the other. This reflected the structure of the task (setup to evaluate the response

code but not body) rather than the tool itself. One participant deleted the strict

equality check from the string manipulation tasks, leaving the existence and type

checks. One participant extracted a literal value that appeared in both the test setup

and generated assertion into a variable for cleaner code. Three participants made

changes to the expected values that did not match the program behavior in at least

one test, presumably misunderstanding the intended behavior of the code under

test.

AutoAssert task summary. Ultimately, the 14 engaged participants generated

30

Figure 5.2: Three assertions generated by AutoAssert during a task. The first
two were removed by the participant, the final most specific assertion
was kept.

a combined 210 total assertions using AutoAssert for the 75 non-poison-pill tasks

they performed. Of these assertions, they “approved” that 174 (83%) were correct

and “rejected” 36 (17%) by removing or modifying them. Figure 5.2 shows an

instance of a participant removing two of the three assertions generated during a

task.

5.2.3 Post-task survey

After using AutoAssert for eight tasks, participants provided a wealth of feed-

back. Quantitatively, 15/17 (88%) of participants expressed an interest in using

a tool like AutoAssert, if it were available to them. The runtime performance of

a tool like AutoAssert can be a concern given the tight feedback loop develop-

ers perform while iterating on their tests. 16 (94%) of respondents found the tool

performance to be acceptable or better. Naturally, I was most interested in how

developers perceived the quality of the assertions. Only 4 (24%) of participants

found AutoAssert’s automatically-generated assertions to be somewhat worse than

those they would write themselves. More details about these responses can be seen

31

in Figure 5.3.

Figure 5.3: Breakdown of participant responses to the three main Likert-scale
questions from the post-task survey.

AutoAssert assertion quality. As previously mentioned, only 4 participants

found AutoAssert’s assertions worse than they would have written in their own

test cases. Participants who felt that the assertions could be improved were split

in opposite viewpoints as to what ‘better’ means for assertion quality. Some par-

ticipants suggested that as earlier less strict assertions were functionally captured

by the later more strict assertion, they were unnecessary and should be removed.

Other participants appreciated the increased descriptiveness of the less strict as-

sertions, and worried that the most strict assertions might be overly specific and

preferred to remove them. For example, one participant noted that “They do cover

cases that I might miss (e.g., the exists checks)” where another stated that “I found

the exists and type assertions redundant. I like that they might help debug the cause

of a bug but the diff given when the test fails should make those cases obvious to

spot with the value assertion alone.” This suggests that a one-size-fits-all Assertion

Generation approach might not be feasible and that some kind of personalization

to account for these two philosophical viewpoints might be warranted.

Participants did note that AutoAssert did produce assertions that they might not

have created themselves but that they thought were valuable, “It would generate

assertions that I might be too lazy to write my self.” and “They were very thorough,

which encouraged me to include more of them”.

32

Unsurprisingly, many participants commented on the poison-pill tasks.6 These

participants noted that assertion generation would not be appropriate for cases with

randomness or change. Fortunately, the real AutoAssert tool does handle these sit-

uations (in at least a basic way) that would not have failed for these two tasks if

it were enabled. Participants also expressed concern about other scenarios not in-

cluded in the tasks. JavaScript allows for return values of any type, which one user

noted would invalidate type checks. Another participant noted that it would be hard

to handle cases where only a substring of a result (part of the Inclusion category)

was the only important part of the return value. Multiple participants noted the fact

that deep equality checks would be decreasingly appropriate as objects or arrays

under test became larger.

Improving assertion generation. Many participants had suggestions for im-

proving assertion generation tools in general. For example, having an explicit con-

figuration option for adjusting the strictness of the generated assertion, suggesting

having the choice between “deep equals vs. some elements are equal vs. lengths

are equal vs. length is at least vs. length is non-zero”. Multiple participants felt

that the generated assertions should try to adhere to the code base’s coding style

and conventions (e.g., for quotes, line lengths, and indentation). One participant

suggested starting from the code under test rather than the test case: they wanted

to identify values in the code that they would like assertions to be generated for in

the test case. One participant, rightly, was worried that automated assertion gener-

ation “may offer the developer a false sense of security”. I fully agree: this is why

I think it is important that these systems be human-in-the-loop so the developer

can carefully examine the automatically generated assertions and ensure the values

they check are actually correct (i.e. that the assertions test the right behavior, not

create passing assertions for incorrect behavior).

6Note: Participants did not know that these were intentionally ‘poor’ tasks.

33

RQ4 Summary
Developers found the assertions created by AutoAssert to be broadly useful

at validating program behavior for the test cases they evaluated, with only

4 of 17 saying the assertions produced were worse than what they would

write. Additionally 15 of 17 developers noted they would be interested in

using a tool like AutoAssert in their development environment. Preferences

were mixed among those who suggested improvements, with some appreci-

ating the inclusion of less strict assertions and concerned about over-fitting,

and others finding the less strict assertions superfluous. I hypothesize that

additional personalization (e.g., for strictness and style) could address the

majority of concerns developers identified with the generated assertions.

34

Chapter 6

Discussion

Here I describe some implications for future assertion generation approaches, fu-

ture work for AutoAssert, and threats to validity. In this thesis I have confirmed

that most automated test cases have few assertions and those assertions do not tend

to be too complicated (Chapter 2). I have also found that Assertion generation can

fit within developer testing workflows and that they respond positively to generated

assertions (Chapter 5). There is also a clear space for improving personalization

and configuration options for generated assertions, along with balancing the strict-

ness of a behavioral check with the brittleness of that check over time.

6.1 Improving Readability with Generated Assertions
While not the focus of this study, reading through large numbers of sampled and

generated assertions lead to observations about how using assertion generation

tools could improve test readability. One problem observed in my sampled asser-

tions was a surprising number of instances where developers had written assertions

“backwards”. That is, the value under test is placed as the expected value, and vice

versa. For example assertions such as expect(true).to.equal(result).

While the functional correctness is often maintained in these cases, readability suf-

fers. Generated assertions would not make this mistake, and would further improve

readability through consistency. While there are many different assertions methods

and semantically equivalent forms for the same functionality, generated assertions

35

would be consistent in their selection of assertion for a given behaviour. Addition-

ally when multiple assertions are produced they will always be produced in the

same order. When assertions are consistently produced in this fashion it is much

easier to understand the expected behaviour at a glance. Much like clean code is

desirable to allow for easier understanding and maintenance, clean assertions can

have similar benefits for test code.

6.2 Limitations and Future Work
I know of a few areas where the heuristic approach for generating assertions and

implementation of AutoAssert could be improved.

Adapting to project style Given that developers can write assertions in many

different ways, AutoAssert should try to increase the probability that the generated

assertions will match developer expectations by choosing the equivalent assertion

form that best matches those used by a given project. For example, even a simple

assertion to check for null can be written three different ways (Listing 6.1). While

the first of these is the most specific and would be preferred in the absence of

any other input, an option should be provided to allow the developer’s project to

be statically scanned to see if they have a preference among different equivalent

assertions for any assertion category.

The tool would statically analyze all of the test cases in a project to determine

the most common equivalent form for different kinds of assertions. This process

would only need to be done once, but could be re-run at any time to get up to

date data. Selecting project-specific equivalent forms would not be required; if the

static analysis has not been run on the project (or there are not yet any test cases

in the project), AutoAssert would select the most common form that I identified in

my initial empirical study (Chapter 2.2). Additional user options could allow for

customization features such as producing only the strongest assertion possible for

the test and suppressing the more verbose checks, or user created equivalent forms.

Properties within complex objects. One common usage scenario for asser-

tions is to make a method call that returns a complex object, then the developer

makes an assertion on a specific property in that object. While a developer could

choose to instead save that specific property in a variable and then assert, it would

36

expect (va l) . to . be . nul l ;
expect (va l) . to . be . a ("null") ;
expect (va l) . to . equal (nul l) ;

Listing 6.1: Semantically equivalent assertions for checking whether value
is null.

be more natural for their workflow if a tool could suggest or determine the correct

property. One extension I aim to examine is adding interactive support allowing

users to explore and choose which property to assert on for languages with static

class definitions. This would improve the selection of assertion targets and the

specificity of the assertion methods.

Support additional assertion categories. Currently AutoAssert supports as-

sertion categories like existence, type, and equality well. However categories such

as ranges and inclusion are currently not supported. Expected values for these

categories are not directly inferrable from observed values as they could require

isolating a particular sub-element of interest, or extrapolating a range of permis-

sible values. Improvements in this area would likely require stepping out of the

bounds of simple heuristics. One direction could be to combine the observed run-

time values with a learning approach like used by Watson et al. [13]. Additionally

project-specific static analysis could be used to identify what assertion methods are

being used for a given data type or API name. If other assertions predominantly

use inclusion or range methods, the tool could pivot to suggesting those kinds of

assertions.

Updating assertions in failed tests. Maintaining test suites requires consid-

erable developer effort [6]. AutoAssert could help developers update their tests to

account for new dynamic behavior by allowing them to automatically update the

value of existing failed assertions in their test suites when assertions start failing

and need to be updated. While this is not currently supported, the current tool could

be adapted to support this use case.

37

6.3 Threats to validity
My experimental design leads to several threats to validity that should be consid-

ered.

External validity. The nature of the assertions developers write may be in-

fluenced by my choice of language and framework and my focus on JavaScript/-

TypeScript may not generalize. The same can be said for the projects I selected

my AutoAssert user study test cases from and performed my quantitative study on:

these projects and tasks may not be representative of all test suites and test cases. I

expect that the strongest impact of language and framework choice would be on the

breakdown of categories shown in Table 2.1. For example I would expect the per-

centage of type checks to be substantially lower in statically typed languages such

as Java, compared to the dynamically typed JavaScript where developers do not

have built-in type checking at compile time. However I do not believe language or

library selection weakens the rest of the work in other contexts, and that the motiva-

tions behind developer-in-the-loop dynamic assertion generation are still broadly

applicable. AutoAssert’s generated assertions are also molded by the language I

chose to support. JavaScript is well suited to creating and comparing literal values,

and concepts like member visibility (e.g., private, protected) cannot hide data from

being evaluated by assertions. Prior work has shown how these limitations can be

overcome: Tao Xie’s work [14] has shown how static analysis can find appropriate

observer methods to view private class fields, and suggest sequences of method

calls to create class objects for use as expected values.

Internal validity. The AutoAssert tasks my participants completed were based

on projects and tests that they were not familiar with; this is unusual as test-writers

are typically familiar with the code they are validating. As such, participants may

be more deferential to automated tools than they might otherwise be. Since the

user study focus was on the assertions themselves rather than the test outcome,

participants might have behaved differently if they were running the test cases in

their own familiar environments; unfortunately, pivoting online was a consequence

of COVID-19 I felt had to be made.

38

6.4 Related Work
A variety of past approaches have investigated generating assertions using static,

dynamic, and machine-learning based approaches.

The recent Atlas system by Watson et al. applies machine learning to the as-

sertion generation problem [13]. Atlas is trained on the JUnit tests of thousands

of Java projects containing hundreds of thousands of assertions. These tests are

also abstracted to improve pattern finding. The system was evaluated by remov-

ing assertions from a sample of tests excluded from the training corpus and seeing

if Atlas can recreate the original assertion. They achieved a 31% accuracy of re-

creating the original assertion on the first assertion generated, with a nearly 50%

of re-creating the assertion in the top five generations. Atlas has the benefit of

achieving reasonably high accuracy without the runtime associated with a dynamic

analysis. However without runtime information it cannot be guaranteed that gen-

erated values are accurate to underlying behaviour.

Song, Thummalapenta, and Xie developed UnitPlus, a tool for recommend-

ing test and assertion code for developer selected methods [11]. UnitPlus does a

static analysis of the class under test to determine which methods from the class

are state-modifying and which are observers. By observing which methods modify

or observe the same fields, it can recommend appropriate observer methods for a

state-modifying method selected by the developer. UnitPlus can then potentially

use a string of state-modifying method calls to set up an object for use in an asser-

tion. Similar to AutoAssert, UnitPlus is a developer-in-the-loop solution in which

the developer selects an element under test to produce assertion code. However

without dynamic information any non trivial expected value would be needed to

provided by the developer.

Xie combines the state-modifying and observer method analysis with dynamic

runtime information for the Orstra test generation tool [14]. With a focus on au-

tomatically generated test suite, Orstra executes tests and collects all object and

observer method states within the test as it runs. As a result Orstra will insert

assertions after object creations and updates using appropriate observer methods.

What differentiates AutoAssert from Orstra is the time and method of applica-

tion. Orstra is used over a whole test suite and adds a large number of applicable

39

assertions after most lines present in the test, without developer involvement. Au-

toAssert however is designed to be invoked by developers as they work on a test,

augmenting the process they would normally follow.

Eclat by Pacheco and Ernst leverages invariant detection to generate assertions

[8]. Using the underlying invariant detection system Daikon [4], Eclat observes

runtime pre-conditions and post-conditions over a series of test executions. These

invariants can then be used as pre-condition and post-condition assertions in future

tests. The tool ZoomIn by Pastore and Mariani also leverages Daikon to identify

assertions suited to locating faults, and noting assertions that may be faulty [10].

Additionally invariants may inform future developer written tests. For example if

an invariant appears to be unexpectedly restrictive, this may be indicative of an

insufficient variety of test inputs. Unlike AutoAssert, assertions generated by Eclat

will be generalized to all executions of the method under test, and not tailored to

the specific invocation in the test.

Fraser and Arcuri produced EvoSuite which does complete test suite gener-

ation [5]. Test body code is created through a mix of methods including sym-

bolic execution and an evolutionary approach. With full access to the tests and all

the return values, the problem for assertion generation becomes cutting down the

space of possible assertions. EvoSuite uses mutation testing to select the assertions

that are most likely to reveal faults. Generating assertions this way provides high

quality assertions at the cost of the long runtime associated with mutation test-

ing. EvoSuite’s comprehensive test generation but high runtime makes it suitable

as a possible replacement for developer involved testing. AutoAssert looks to fill

a different use category by assisting developers who are engaging in manual test

writing.

Obsidian by Bowring and Hegler is another instance of a developer-in-the-loop

system to support developers in test and assertion writing [1]. Obsidian can set up

test cases and structure the test cases with helper methods, leaving the developer

to specify specific values. Some values can be guessed by statically accessible

defaults, such as specific constructor fields, to provide some tests with functional

generated assertions. This provides complementary functionality to AutoAssert,

providing static test setup but requiring developers to inspect or run the test to

determine correct assertion values.

40

Chapter 7

Conclusion

Test case assertions play a fundamental role in automated testing as they check

that code under test is behaving as expected. While assertions are numerous, they

are also somewhat repetitive and have well-understood structures making them

amenable to automatic generation. In this thesis, I investigate how assertions are

used in practice through a large empirical study and introduce AutoAssert, a tool

to help developers generate assertions for their test cases. AutoAssert is a human-

in-the-loop system: developers can explicitly invoke the tool to generate assertions

for a variable they want validated in a test case; they can then use their expertise to

ensure both that the generated assertions are what they want, and that the asserted

values match their expectations. In an empirical study of over 1,000 assertions,

AutoAssert was able to generate assertions similar in purpose to those written by

developers for the same variable 84% of the time. Through a user study I found that

developers found the generated assertions broadly useful and many participants

wished to continue to use the tool for their own projects.

41

Bibliography

[1] J. Bowring and H. Hegler. Obsidian: Pattern-Based Unit Test
Implementations. Journal of Software Engineering and Applications, 2014,
Feb. 2014. ISSN 1945-3124. doi:10.4236/jsea.2014.72011. → pages 2, 40

[2] J. M. Corbin and A. Strauss. Grounded theory research: Procedures, canons,
and evaluative criteria. Qualitative Sociology, 13(1):3–21, March 1990. →
page 10

[3] J. Delplanque, S. Ducasse, G. Polito, A. P. Black, and A. Etien. Rotten green
tests. In Proceedings of the International Conference on Software
Engineering (ICSE), pages 500—511, 2019. doi:10.1109/ICSE.2019.00062.
→ page 1

[4] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The Daikon system for dynamic detection of likely
invariants. Science of Computer Programming, 69(1-3):35–45, Dec. 2007.
ISSN 01676423. doi:10.1016/j.scico.2007.01.015. → page 40

[5] G. Fraser and A. Arcuri. EvoSuite: Automatic test suite generation for
object-oriented software. In Proceedings of the Joint Meeting on
Foundations of Software Engineering (ESEC/FSE), page 416, 2011.
doi:10.1145/2025113.2025179. → pages 2, 40

[6] A. Labuschagne, L. Inozemtseva, and R. Holmes. Measuring the cost of
regression testing in practice: A study of Java projects using continuous
integration. In Proceedings of the Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), pages 821—830, 2017.
doi:10.1145/3106237.3106288. → page 37

[7] A. K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma. Regression
testing in an industrial environment. Communications of the ACM (CACM),
41(5):81–86, May 1998. doi:10.1145/274946.274960. → page 1

42

http://dx.doi.org/10.4236/jsea.2014.72011
http://dx.doi.org/10.1109/ICSE.2019.00062
http://dx.doi.org/10.1016/j.scico.2007.01.015
http://dx.doi.org/10.1145/2025113.2025179
http://dx.doi.org/10.1145/3106237.3106288
http://dx.doi.org/10.1145/274946.274960

[8] C. Pacheco and M. D. Ernst. Eclat: Automatic Generation and Classification
of Test Inputs. In Object-Oriented Programming (ECOOP), volume 3586,
pages 504–527. 2005. doi:10.1007/11531142 22. → pages 2, 40

[9] C. Pacheco and M. D. Ernst. Randoop: Feedback-directed random testing
for Java. In Companion to the 22nd ACM SIGPLAN Conference on
Object-Oriented Programming Systems and Applications Companion, pages
815–816, Oct. 2007. ISBN 978-1-59593-865-7.
doi:10.1145/1297846.1297902. → page 2

[10] F. Pastore and L. Mariani. ZoomIn: Discovering Failures by Detecting
Wrong Assertions. In Proceedings of the International Conference on
Software Engineering (ICSE), pages 66–76, Florence, Italy, May 2015.
IEEE. ISBN 978-1-4799-1934-5. doi:10.1109/ICSE.2015.29. → page 40

[11] Y. Song, S. Thummalapenta, and T. Xie. UnitPlus: Assisting developer
testing in Eclipse. In Proc. ETX, pages 26–30, Jan. 2007.
doi:10.1145/1328279.1328285. → pages 2, 39

[12] C. Vassallo, S. Proksch, H. C. Gall, and M. Di Penta. Automated reporting
of anti-patterns and decay in continuous integration. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 105–115,
2019. doi:10.1109/ICSE.2019.00028. → page 1

[13] C. Watson, M. Tufano, K. Moran, G. Bavota, and D. Poshyvanyk. On
Learning Meaningful Assert Statements for Unit Test Cases.
arXiv:2002.05800 [cs], Feb. 2020. doi:10.1145/3377811.3380429. →
pages 2, 37, 39

[14] T. Xie. Augmenting Automatically Generated Unit-Test Suites with
Regression Oracle Checking. In D. Thomas, editor, Object-Oriented
Programming (ECOOP), pages 380–403, 2006. doi:10.1007/11785477 23.
→ pages 2, 38, 39

[15] T. Xie, N. Tillmann, and P. Lakshman. Advances in unit testing: Theory and
practice. In Proceedings of the International Conference on Software
Engineering (ICSE), pages 904–905, 2016. → page 1

[16] Y. Zhang and A. Mesbah. Assertions are strongly correlated with test suite
effectiveness. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering - ESEC/FSE 2015, pages 214–224, Bergamo, Italy,
2015. ACM Press. ISBN 978-1-4503-3675-8.
doi:10.1145/2786805.2786858. → page 1

43

http://dx.doi.org/10.1007/11531142_22
http://dx.doi.org/10.1145/1297846.1297902
http://dx.doi.org/10.1109/ICSE.2015.29
http://dx.doi.org/10.1145/1328279.1328285
http://dx.doi.org/10.1109/ICSE.2019.00028
http://dx.doi.org/10.1145/3377811.3380429
http://dx.doi.org/10.1007/11785477_23
http://dx.doi.org/10.1145/2786805.2786858

Appendix A

Consent Forms and Surveys

This appendix includes the consent form given to participants prior to their partic-

ipation in the study, and both the pre-task and post-task surveys taken.

44

45

46

Figure A.1: Consent form.

47

48

49

Figure A.2: Pre-survey.

50

51

Figure A.3: Post-survey.

52

Appendix B

User Study Tasks

This appendix includes all the tasks users would interact with during the user study,

including the tutorial task and poison-pill tasks. The before screenshot is the task

as it first appears to the user, after shows assertions generated by running the tool

against the target variable. The screenshots after generate also serve as additional

examples of the assertions generated by AutoAssert.

53

Figure B.1: The tutorial task in the user study, before assertion generation.
This test was created by me for the purpose of this study.

Figure B.2: The tutorial task in the user study, after assertion generation.

54

Figure B.3: Task 1 of 5 primary non-poison-pill tasks in the user study, before
assertion generation. This test is from the open-source project Nock.

55

Figure B.4: Task 1 of 5 primary non-poison-pill tasks in the user study, after
assertion generation.

56

Figure B.5: Task 2 of 5 primary non-poison-pill tasks in the user study, before
assertion generation. This test is from the open-source project Nock.

57

Figure B.6: Task 2 of 5 primary non-poison-pill tasks in the user study, after
assertion generation.

Figure B.7: Task 3 of 5 primary non-poison-pill tasks in the user study, before
assertion generation. This test is from the open-source project Nock.

58

Figure B.8: Task 3 of 5 primary non-poison-pill tasks in the user study, after
assertion generation.

Figure B.9: Task 4 of 5 primary non-poison-pill tasks in the user study, before
assertion generation. This test is from the open-source project Typeset.

59

Figure B.10: Task 4 of 5 primary non-poison-pill tasks in the user study, after
assertion generation.

60

Figure B.11: Task 5 of 5 primary non-poison-pill tasks in the user study, be-
fore assertion generation. This test is from the open-source project
Typeset.

61

Figure B.12: Task 5 of 5 primary non-poison-pill tasks in the user study, after
assertion generation.

Figure B.13: Poison-pill task 1 of 2 in the user study, before assertion gener-
ation. This test was created by me for the purpose of this study.

62

Figure B.14: Poison-pill task 1 of 2 in the user study, after assertion genera-
tion. Here users should notice that the equality assertion is not a good
fit for a result that should change every millisecond.

Figure B.15: Poison-pill task 2 of 2 in the user study, before assertion gener-
ation. This test was created by me for the purpose of this study.

Figure B.16: Poison-pill task 2 of 2 in the user study, after assertion genera-
tion. Here users should notice that the equality assertion is not a good
fit for an identifier that should be unique every call via randomness.

63

Appendix C

Survey Results

This appendix contains all the raw data analyzed in the user study. Note that some

questions included on the surveys were not used in the final analysis and were

not included in the results presented here. All data addressed in this thesis, either

summarized or directly, is present.

C.1 Pre-task Survey Responses

64

65

66

67

68

69

C.2 Post-task Survey Responses

70

71

72

73

Appendix D

Assertion Generation Details

This appendix includes examples of assertions generated, and not generated, by

AutoAssert as well as the code injected to perform the logging step of generation.

expect (r e s u l t) . to . be . nul l ;
expect (r e s u l t) . to . be . undef ined ;
expect (r e s u l t) . to . e x i s t ;
expect (r e s u l t) . to . throw ;
expect (r e s u l t) . to . not . throw ;
expect (r e s u l t) . to . equal (value) ;
expect (r e s u l t) . to . deep . equal (value) ;
expect (r e s u l t) . to . have . leng th (value) ;
expect (r e s u l t) . to . be . a (value) ;
expect (r e s u l t) . to . be . true ;
expect (r e s u l t) . to . be . fa lse ;

Listing D.1: All assertion forms potentially generated by AutoAssert

74

[{ // Result 1
type : ’number’ ,
value : 42

} ,
{ // Result 2

type : ’number’ ,
value : 42

}]

// Generated assertions
expect (r e s u l t) . to . e x i s t ;
expect (r e s u l t) . to . be . a ("number") ;
expect (r e s u l t s) . to . equal (42) ;

Listing D.2: A typical double run where the value is the same on both runs.
All appropriate assertions will be generated.

[{ // Result 1
type : ’number’ ,
value : 42

} ,
{ // Result 2

type : ’number’ ,
value : −1

}]

// Generated assertions
expect (r e s u l t) . to . e x i s t ;
expect (r e s u l t) . to . be . a ("number") ;

Listing D.3: A double run where the value is different. In this case the
assertions for existence and type are kept from the typical scenario,
but the exact equality check is removed.

[{ // Result 1
type : ’number’ ,
value : 42

} ,
{ // Result 2

type : ’string’ ,
value : "foo"

}]

// No assertions generated

Listing D.4: A double run resulting in completely different types. In this
instance an exist check could still apply, but I decided that if even the
type is variable it is safer to assume it could be anything.

75

Numeric
Value : 4
Asser t ion : expect (index) . to . be . above (−1) ;
Problem : Cannot determine appropr ia te range
and comparison values from a s i n g l e value .

I n c l u s i o n (Array)
Value : ["Canada" , "Australia" , "New Zealand" , "United Kingdom"]
Asser t ion : expect (coun t r i es) . to . i nc lude ("Canada") ;
Problem : Cannot i n f e r which element i s the one of importance .

I n c l u s i o n (S t r i n g)
Value : "www.ubc.ca"
Asser t ion : expect (u r l) . to . i nc lude (".") ;
Problem : Cannot i n f e r which subs t r i ng i s the one of importance .

Proper ty
Value : A la rge ob jec t o f f i l e metadata (too b ig to l i s t)
Asser t ion : expect (f i l e) . to . have . p roper ty ("lastModified") ;
Problem : Cannot i n f e r which proper ty i s the one of importance .

Tru th iness
Value : "hunter2"
Asser t ion : expect (password) . to . be . ok ;
Problem : Tru th iness i s a messy met r i c compared to e q u a l i t y
and boolean checks . Chai i t s e l f recommends aga ins t i t s use .

Ca l l s
Value : function addOne (x) {return x+1}
Asser t ion : expect (func) . to . have . been . c a l l e d . with (1) ;
Problem : Requires i d e n t i f y i n g the value as a function
before runt ime , and ins t rument ing t h a t as we l l .

Pat te rns
Value : "Hello world"
Asser t ion : expect (g ree t i ng) . to . match (/ ˆ He l lo /) ;
Problem : Cannot determine appropr ia te pa t t e rn .

Listing D.5: The categories not support by AutoAssert, examples values and
associated assertion, and the problems with each category that lead to
it not being supported.

76

Figure D.1: JavaScript code injected into projects to log the resulting value.
Some types such as promises did not have unique implementations on
the generation side at the time of writing. (1/2)

77

Figure D.2: JavaScript code injected into projects to log the resulting value.
Some types such as promises did not have unique implementations on
the generation side at the time of writing. (2/2)

78

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	1 Introduction
	2 Assertions in Practice
	2.1 Methodology
	2.2 Results

	3 Automatic Assertion Generation
	3.1 Design methodology
	3.2 Tracing Program Values
	3.3 Identifying Assertion Categories
	3.4 Generating assertions
	3.5 Implementation

	4 Evaluating Assertion Correctness
	4.1 Methodology
	4.2 Results

	5 User study
	5.1 Methodology
	5.2 Results
	5.2.1 Pre-task survey
	5.2.2 AutoAssert tasks
	5.2.3 Post-task survey

	6 Discussion
	6.1 Improving Readability with Generated Assertions
	6.2 Limitations and Future Work
	6.3 Threats to validity
	6.4 Related Work

	7 Conclusion
	Bibliography
	A Consent Forms and Surveys
	B User Study Tasks
	C Survey Results
	C.1 Pre-task Survey Responses
	C.2 Post-task Survey Responses

	D Assertion Generation Details

