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Abstract 

Background: Advanced prostate tumors that develop resistance to androgen deprivation therapy 

are incurable and uniformly fatal. Nonetheless, the manifestation of this lethal form, known as 

castration-resistant prostate cancer (CRPC), does not preclude most of these tumors from 

sustained dependence on the androgen receptor (AR) for growth and survival.  To inhibit AR 

pathway signaling, the strategy of all currently approved drugs ultimately converge upon the C-

terminus ligand-binding domain (AR-LBD) to target and disrupt AR activation.  Ralaniten is a 

novel, first-in-class drug which binds the AR within its N-terminal domain (AR-NTD). Due to 

this unique mechanism of action, we predicted that Ralaniten would induce a distinct global 

response compared to alternative AR-inhibitors.  This study initiates the characterization of 

Ralaniten specific gene expression profiles and unravels the mechanism of induction of an 

unexpected group of genes from the metallothionein (MT) gene family. 

Methods: In vitro experiments were performed in 4 human prostate cancer cell lines with 

experimentally useful genomic and phenotypic features. Preliminary gene expression data were 

generated by microarray. Pathway and statistical analyses revealed candidate genes for 

subsequent investigation. Transcriptional data were validated by qPCR and at the protein level 

by western blot.   Reporter assays for gene activity were conducted after transient transfection of 

plasmids.  Transient siRNA- mediated knockdown experiments assessed involvement of 

potentially relevant transcription factors.  AR NTD inhibitors included Ralaniten, EPI-7170, 

SINT-1, and LPY26, whereas AR LBD inhibitors included the antiandrogens bicalutamide and 

enzalutamide. AR transactivation was mediated using the synthetic androgen R1881. 

Results: Microarray analyses revealed the MT family to be the most abundantly induced by 

Ralaniten in the absence of androgen.  Induction was experimentally confirmed to be Ralaniten 

specific. Knockdown experiments implicate a central role for the transcription factor, MTF-1, in 

the induction of MT genes by Ralaniten, and have ruled out the requirement for the AR and the 

redox activated transcription factor, Nrf2, in this mechanism. 

Conclusions: Ralaniten induced the expression of MT genes by a mechanism independent of 

expression of AR and Nrf2. MT induction by Ralaniten is exquisitely dependent on the 

expression of the transcription factor, MTF-1. 
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Lay Summary 

 

 Proteins can be thought of as the action molecules in a cell.  The androgen receptor is a 

protein that makes most prostate tumors grow.  Blocking the activity of the androgen receptor is 

the goal of many therapies for prostate cancer.  This strategy works well for a time, but the 

cancer returns for most patients in a more aggressive form that is resistant to current treatments 

that use this approach.  For patients at this stage of the disease, there is no cure and, sadly, the 

average life expectancy is 1-2 years.  A promising new class of drugs has been developed in the 

Sadar Lab that blocks the activity of the androgen receptor in a unique way.  The purpose of this 

study was to explore how prostate cancer cells may respond differently to one of these new drugs 

in comparison to currently used drugs.  With this knowledge, more effective versions of these 

new drugs can be made and used in combination with current treatments to best help prostate 

cancer patients. 
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Chapter 1.  Introduction 

1.1 PROSTATE CANCER 

1.1.1 The Prostate  

1.1.1.1 Structure 

Prostate cancer originates from the prostate gland.  A male-specific reproductive organ, 

the prostate is an acorn-shaped and walnut-sized gland located just anterior to the rectum at the 

base of the bladder with the urethra running through its center1 (Figure 1.1). The prostate is 

exquisitely dependent on androgens, male sex hormones primarily derived from the testis, for the 

regulation of growth and maintenance of homeostasis.  Initial development occurs late in 

embryogenesis from tissue of endodermal origin and concludes with the adult gland only 

reaching full maturity during puberty as a result of the androgen imperative2.  Full-length 

androgen receptor (FL-AR) is a ligand activated transcription factor, found in both the prostate 

epithelia and stroma, that mediates the effects of androgens3.  Androgens induce the prostate to 

begin the process of budding from the urogenital sinus and influence key morphogenic steps 

including branching, canalization, and cytodifferentiation4. The epithelial compartment of the 

human prostate has three distinct zones (central, peripheral, transition) surrounded by a 

fibromuscular stroma5. The stromal compartment is abundant with fibroblasts, myofibroblasts, 

and smooth muscle cells, contains infiltrating lymphocytes and macrophages, and is both 

innervated and vascular6. Surrounded by a basement membrane, the two-layered histological 

architecture of the prostatic parenchyma is organized into acini and ducts composed of luminal, 

basal, and neuroendocrine cells7 (Figure 1.2).  The flat, cuboidal basal cells form a layer 

adhering strongly to the basement membrane. Using immunohistochemistry detection, they may 
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be marked by cytoplasmic expression of cytokeratins 5 and 14, nuclear expression of p63, and 

only express low levels of AR.  Atop this basal layer sit the pseudostratified columnar secretory 

cells that line the lumen. Immunohistochemistry distinguishes them by expression of 

cytokeratins 8 and 18, high levels of AR, and the expression of secretory proteins such as the AR 

regulated prostate specific antigen (PSA)8.  The sparse neuroendocrine cells are dispersed 

throughout the gland and do not express AR.  Though rare, these cells can be detected by their 

unique morphology and positive expression of synaptophysin, chromogranin A, and neuron-

specific enolase9. 

Prostate epithelial cells rarely undergo cell division during normal tissue homeostasis.  

Inflammation due to infection (prostatitis) or tissue injury rapidly alters the growth quiescence of 

prostate epithelia, leading to its rapid proliferation10.  The generation and maintenance of the 

apical prostate epithelium is traced to two cell lineages, basal multipotent stem cells and 

unipotent luminal progenitors11,12. Under the influence of androgenic signaling, these cells 

differentiate into columnar secretory cells which face the lumen and acquire morphological 

polarity13. Following this terminal differentiation, these cells possess a specialized metabolism 

and gene expression program to enable the production of prostatic fluid14.  The growth and 

survival of this distinct phenotype is predominantly maintained via AR signaling, and activation 

of the AR pathway is conserved subsequent to oncogenic transformation15–20.  Approximately 

95% of prostatic carcinomas begin in these well-differentiated acinar cells and are referred to as 

prostate adenocarcinoma21–23. 
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Figure 1.1 Location of the prostate 

Anatomy of the male reproductive and urinary systems showing the prostate, testicles, seminal vesicles, bladder, and 

others. Examples of regional sites within the body associated with tumor dissemination and prostate cancer 

metastasis include the lymph nodes, pelvic bones, and vertebrae.  Reproduced with permission of Terese Winslow.  

© 2005 Terese Winslow LLC, U.S. Govt. has certain rights. 
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Figure 1.2 Structure of the prostate 

(A) Anatomical overview the prostate gland with key regions and structures indicated. (B) Normal prostate 

epithelium organizes into discrete, regular shaped, well-formed tubulo-alveolar glands.  Malignancy is marked by 

abnormal, disorganized glandular architecture, luminal cell expansion, and loss of the basal cell layer. (C) General 

histological representation of the adult prostate with examples of cell types.  Basal cells, secretory luminal cells, and 

sparse intermediate and neuroendocrine cell populations comprise the epithelial compartment. Prostate epithelial 

cells rarely undergo cell division during normal tissue homeostasis. Intermediate cells are in transition and represent 

basal multipotent stem cells and unipotent luminal progenitors undergoing terminal differentiation into luminal cells.  

(A) and (C) are adapted from Figures 1 and 3 from Toivanen and Shen (2017) Development 144: 1382-1398.  

Reproduced with permission of The Company of Biologists via Copyright Clearance Company24. (B) is reproduced 

from Abate-Shen and Shen (2000) Genes and Development 14: 2410-2434 under license (CC BY-NC-ND 4.0)25. 

 

C.  Prostate Histology 

A.  Adult Human Prostate (sagittal section) B.  Normal glandular architecture 



5 

 

1.1.1.2 Functions 

As an accessory exocrine gland found solely in males, the role of the prostate is to 

produce and secrete components of the seminal fluid.  Anatomically, the position of the prostatic 

urethra distal to the bladder facilitates the prevention of retrograde ejaculation. The secretions 

produced by the prostate maintain liquefaction of the seminal plug and provide nourishment, 

protection, and lubrication for the sperm.  Synthesis of these secretory proteins and nutrients is 

primarily driven by AR regulation of gene expression and requires the maintenance of a unique 

metabolic phenotype in the luminal cells26. The evidence that functional AR is an absolute 

requirement for normal prostate development and physiology is unequivocal27. Withdrawal of 

androgen (e.g. castration) results in rapid atrophy and involution of the prostate gland, and in 

individuals with androgen insensitivity syndrome (AIS) consequent of non-functional AR, the 

prostate fails to develop altogether28,29.  Notwithstanding the indispensable role of AR in prostate 

homeostasis, its dysregulation is a main driver of prostate cancer development and progression, 

thus establishing AR as a bona fide therapeutic target and the ongoing focus of numerous 

translationally driven investigational studies30.  The exceptional sensitivity of the prostate to 

androgen deprivation is readily apparent and leads to rapid apoptosis of ~90% of luminal cells 

and a small percentage of basal cells.  In the adult prostate, these glands have the capacity to 

regenerate when androgen is restored.  Remarkably, they are able to undergo multiple cycles of 

regression-regeneration in response to androgen deprivation and androgen-restoration31. 

Application of this principle of androgen sensitivity was first employed therapeutically nearly 80 

years ago, demonstrating significant beneficial effects for patients with metastatic prostate 

cancer32.  The success of this clinical discovery led the Canadian physician Charles Huggins to 

be awarded the Nobel Prize in medicine in 1966. 
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1.1.2 Prostate Cancer 

1.1.2.1 Epidemiology 

Prostate cancer is the second leading cause of male cancer deaths in the Western world33.  

In recent decades, improved screening correlated with higher incidence rates, though earlier 

detection has been credited with a reduction in mortality34.  Roughly 1 in 7 men will be 

diagnosed with prostate cancer in his lifetime.  The current understanding of prostate cancer 

etiology is multifaceted and complex35–37. Both individual biology and lifestyle figure 

prominently38. Perhaps most remarkable, prostate cancer provides possibly the most striking 

example of age-dependent cancer development among all cancer types39.  In men under 55 years 

of age, prostate cancers arise with negligible frequency and most cases (56%) materialize in men 

over the age of 65.  Virtually all cases of prostate cancer (97%) occur in men older than age 

5040,41.  While some factors contributing to the risk of developing prostate cancer are inherent to 

the individual, others offer motivation for behavioral change42.  When considering modifiable 

risk, some of the more salient factors include diet, smoking, physical exercise, and obesity43–47.  

Of the risk factors not amenable to modification, the most well established are advanced age, 

heredity48,49, and ethnicity, with higher risk found in men of African descent, moderate risk in 

Caucasian men, and the lowest risk in Asian men50,51.  Reinforcing the prominence of dietary 

influence, Asian men who adopt a typical North American diet see their risk rise to match their 

Caucasian counterparts52–56. 
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1.1.2.2 Diagnosis 

 A long latency period is characteristic of prostatic neoplasms and many tumors may 

remain indolent57,58.  The widespread uptake and utilization of screening practices remains 

controversial due to concerns surrounding patient overtreatment59–63.  Indeed, identifying patients 

that will require treatment remains a major challenge for clinicians.  Despite 5-year survival rates 

of close to 100% following interventions for localized prostate carcinoma, treatment associated 

morbidities make the decision to pursue active surveillance highly attractive for patients with 

low risk of progression.  Early diagnosis and grading are essential as delay may have lethal 

consequences64.  Localized disease is often asymptomatic and possible indicators like changes 

during urination or sexual activity are near universal in older men and are non-specific for 

prostate malignancy.  On the other hand, more obvious and ominous signs and symptoms, such 

as bone pain, swelling, or numbness in the lower back, legs or pelvic area, are associated with 

the incurable, metastatic stage of disease. Thus, most prostate cancers are initially detected 

during screening with a prostate-specific antigen (PSA) blood test, a digital rectal exam (DRE), 

or transrectal ultrasound (TRUS)65. 

Patients who screen positive require a biopsy for diagnostic confirmation.  Transrectal 

ultrasonography–guided biopsy has been the standard protocol and, based on criteria including 

overall prostate volume, involves the removal of between 8 and 20 cores of tissue for 

evaluation66.  In recent years, studies have investigated the use of multiparametric magnetic 

resonance imaging (MRI) in suspected cases of prostate cancer to confirm the necessity of 

biopsy and report a benefit to including this approach67,68.  Furthermore, MRI-targeted biopsy 

with the use of real-time ultrasonographic guidance to select cores specifically from abnormal 
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areas noted during prior imaging was shown to improve the detection sensitivity of clinically 

significant lesions and assist discrimination between aggressive and indolent disease compared 

to standard transrectal ultrasonography–guided biopsy69,70.  Patient under- or overtreatment 

remains a challenging clinical issue and, hopefully, a salutary effect will be generated through 

evolving practical developments like these71,72. 

Biopsies of clinically suspected prostate cancer are sent for histopathologic assessment 

by a skilled pathologist that may include diagnostic immunohistochemistry73,74.  The three key 

criteria which underpin the histologic confirmation of a diagnosis of prostate adenocarcinoma 

are: hallmark loss of basal cells, atypical nuclei (nuclear enlargement, prominent nucleoli), and 

abnormal glandular architecture.  The characteristic loss of basal cells disturbs glandular 

structure and likely contributes to a disrupted stromal epithelial relationship.  Malignant glands 

may exhibit nuclear atypia as a manifestation of cellular stress, chromatin remodeling, and 

altered proliferation75–77.  Careful assessment of the abnormal growth patterns which 

predominate within the glandular architecture are fundamental to categorizing tumor 

histopathology, defined in prostate adenocarcinoma through application of the Gleason pattern 

scale78,79.  Scaled from 1 to 5, lower scores are associated with small, well formed, tightly packed 

glands. As scores increase, epithelial architecture becomes more disorganized with cells 

spreading out and forming irregular glandular structures. The final Gleason score is calculated by 

adding the score for the most dominant morphology to the next most common morphological 

pattern to produce a score from 2 to 10.  The Gleason grade provides clinicians with essential 

prognostic information, along with the radiographically determined clinical TNM stage, to 

inform treatment planning80.  
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 1.1.2.3 Treatment 

Prostate cancer is a clinically heterogeneous disease and individual patients may face 

starkly different prognoses. For physicians, minimizing overtreatment of indolent disease and 

improving outcomes for patients with aggressive disease remains a fundamental tenet of patient 

care81.  Risk stratification is an essential tool for guiding decisions regarding the appropriate 

course of disease management82.  The assessment of risk is multifaceted and includes 

consideration of both patient and tumor characteristics83. These determinations often combine 

patient age, number of positive prostate biopsies including the percentage of malignant tissue per 

core, Gleason score, serum PSA, PSA density, and clinical tumor stage84.  Based on these 

factors, the assessments are used to assign patients to one of five categories of risk: very low, 

low, intermediate, high, and very high.  Additional germline genetic testing is recommended for 

patients with high or very high risk, as well as for patients of any risk category that have either a 

positive family history of prostate cancer or had biopsy tissue displaying intraductal or cribiform 

histology.  In all but very low risk patients, molecular tumor analysis may also be considered if 

life expectancy equals or exceed ten years, as biomarker status has proven valuable for assisting 

treatment selection85–91.  Patients with intermediate risk or greater are sometimes also referred for 

further radiologic assessment to enhance screening and characterization of regional or distal 

metastases.  Prostate cancers are notable for prominent osteotropism92–94. Spread to the axial 

skeleton represents the predominant pattern of dissemination with occurrence in over 80% of 

patients with metastatic disease95–98.  In addition to bone, metastasis to lymph nodes, liver, and 

lung are common though less frequent (Figure 1.3).  Collectively, these assessments provide a 

considerable sum of information that is crucial to navigating clinical treatment guidelines for 

prostate cancer.  Integrating modern techniques for disease characterization with more traditional 
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factors such as life expectancy and risk of death from other causes has improved overall 

prognostic accuracy. 

Clinicians recommend treatment based on both predicted outcome and patient preference 

to support personalized tailoring of individual patient care99.  Clinical treatment guidelines for 

prostate cancer are comprehensive and represent a compendium of evidence-based treatment 

protocols drawn from a broad therapeutic toolbox.  For example, the Clinical Practice Guidelines 

in Oncology (2020) from the National Comprehensive Cancer Network (NCCN) exhaustively 

describes the growing armamentarium of approved prostate cancer therapies available to 

clinicians, defining the specific indications for appropriate patient selection, and meticulously 

detailing numerous multistep protocols, including contingencies, ranging from active 

surveillance alone through to multimodality treatment.  A thorough review is well beyond the 

scope of this dissertation.  A brief summary of the most current (2020) NCCN Clinical Practice 

Guidelines for prostate cancer follows below and is the primary source of all information related 

to treatments throughout this section, with additional citations added where applicable.  

The understanding of prostate cancer biology has grown considerably in recent decades 

yet for individual men, prostate adenocarcinomas trajectories may chart a highly variable course 

due to a combination of factors such as patient age, clinical tumor stage, and comorbidities at 

diagnosis, as well as somatic and germline genomic signatures, and the effects associated with 

choice of treatment84.  Following diagnosis, a patient-tailored continuum of care is initiated that 

may last for years, is some cases over a decade, depending on these personal variables. In broad 

terms, prostate cancer treatments are given with curative intent to patients in earlier stages of the 

disease and with palliative intent for patients in advanced stages to alleviate symptoms and 
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potentially prolong survival.  Treatments may be given as monotherapies or in combination and 

include potentially curative local therapies, such as surgery and radiotherapy, which target a 

specified area and systemic therapies that include hormone therapy, chemotherapy, and 

immunotherapy100. 

If no metastases are evident at diagnosis, the treatment for men with localized disease is 

generally selected based on a patient’s life expectancy, personal wishes, and initial risk group 

(very low, low, intermediate favorable, intermediate unfavorable, high, very high, and 

regional)101.  Preferring to avoid the side effects of treatment and preserve quality of life, many 

men assessed as having a lower risk of progression decide to delay treatment when this option is 

an appropriate alternative102,103.  Patients that opt for this route are divided into two categories, 

observation or active surveillance, based on therapeutic goals. Both are closely monitored for 

symptoms or rising PSA levels that may signify progression, though active surveillance usually 

includes annual biopsies as well.  If evidence of progression is detected, patients on active 

surveillance initiate potentially curative interventions, while patients on observation convert to 

palliative ADT, sometimes delaying this for continued monitoring until symptomatic.   

For men exhibiting more aggressive disease with higher risk of progression (intermediate 

unfavorable and above), ADT is given, unless medically contraindicated, in combination with 

radiotherapy and/or surgery.  In patients of lower risk within this higher risk spectrum, 

radiotherapy is preferred over surgery.  Radical prostatectomy is indicated for higher risk 

patients, entailing complete removal of the prostate, seminal vesicles, some adjacent tissue and 

often the pelvic lymph nodes as well104.  In the highest risk patients, this surgery is generally 

followed by adjuvant radiation therapy, especially when positive surgical margins have been 
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detected105. For patients demonstrating biochemical recurrence (rising PSA) following radical 

prostatectomy, salvage radiation therapy is indicated84,106. 

Radiation therapy involves two main modalities, external beam radiation therapy (EBRT) 

and brachytherapy, used individually, concurrently or sequentially.  Delivered from sources 

outside the body, EBRT includes many possible technical approaches and dose fractionation 

strategies.  Standard EBRT, with or without dose escalation, is still commonly used though 

newer forms of EBRT that employ highly sophisticated technologies continue to be developed 

and implemented. For instance, intensity modulated radiation therapy (IMRT) involves radiation 

beams specially shaped to fit the contours of the targeted tumor, thereby enabling greater 

precision in the delivery of treatment. More of the healthy surrounding tissue is spared from 

toxicity allowing higher doses of radiation to be used. Stereotactic body radiation therapy 

(SBRT) utilizes an extremely hypo-fractionated dosing regimen delivered from a combination of 

angles to precisely sculpt the dose distribution107.  Employing radioactive sources inside the 

body, brachytherapy involves either the placement of permanent radioactive seeds which emit 

energy at a low-dose rate or the temporary insertion of catheters containing radioactive sources 

which emit energy at a high-dose rate.  Brachytherapy is more invasive than any of the ERBT 

types, in addition to requiring anesthesia.  Neoadjuvant ERBT or androgen ablation is a common 

scenario to make the surgery less invasive and more effective.  These primary treatments are 

often successful, yet 20-30% of patients will have recurrence.  Salvage brachytherapy may be 

recommended for pathologically confirmed local recurrence after previous radiotherapy108–110. 

Despite considerable progress, advanced stage prostate cancer remains lethal and 

incurable111.  Patients with evidence of metastasis at diagnosis or those with recurrence after 
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primary treatment will require systemic therapy112–116. A discussion of the chemotherapies, 

immunotherapies, radiotherapies, and bone-sparing treatments provided with palliative intent is 

beyond the scope of this thesis117,118,127–130,119–126.  Most prostate cancers are dependent on an 

active AR signaling pathway for growth and survival.  The first-line treatment for men with 

metastatic prostate cancer remains ADT to starve malignant cells of natural ligand131,132. This is 

achieved chemically using drugs or surgically via bilateral orchiectomy.  In some instances, a 

strategy termed combined androgen blockade is recommended in which second generation 

androgen inhibitors (abiraterone, enzalutamide, or apalutamide) are used in conjunction with 

ADT133–137. This profound androgen suppression induces tumor regression and results in 

significant initial response in most patients138,139.  Unfortunately, the duration of disease control 

provided lasts only 18 to 36 months on average140,141.  Following this, recurrence is inevitable as 

tumor progress to the state known as castration-resistant prostate cancer (CRPC). 
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Figure 1.3 Advanced prostate cancer (Stage IV) 

• The tumor has grown into tissues beyond the seminal vesicles, with any PSA and any Gleason score, OR 

• The tumor has spread to one or more nearby lymph nodes, without metastases, with any PSA and any 

Gleason score; OR 

• The cancer is present in the body beyond the nearby lymph nodes, in tissues like the bone or distant organs, 

with any PSA and any Gleason score 

The inset shows dissemination of cancer cells from the prostate, through the bloodstream and lymphatic system, to 

form a metastatic lesion elsewhere in the body. Reproduced with permission of Terese Winslow. © 2018 Terese 

Winslow LLC, U.S. Govt. has certain rights. 
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1.1.3 Castration-resistant prostate cancer 

CRPC emerges, as its name suggests, when tumor progression is evident following 

chemical or surgical treatment to suppress circulating androgen to castrate levels.  This defining 

feature created confusion in the past based on the mistaken belief that the AR was no longer 

playing an essential role at this stage.  Robust evidence has since overturned this 

misunderstanding by clearly establishing that CRPC remains reliant on persistent AR 

signaling142,143.  Indeed, biochemical recurrence manifests clinically as a rising titer of serum 

PSA, a hallmark AR-regulated gene, implying AR transcriptional activity continues to be a 

driver of tumor growth and survival in CRPC patients144–146.   Treating these patients with second 

generation androgen inhibitors extends survival, albeit only modestly, thus reinforcing that AR 

remains active117,147–154.  Multiple mechanisms of resistance exist which continue to exploit the 

AR signaling pathway.  These include AR overexpression, AR gain-of-function mutations, 

aberrant expression of co-regulatory factors, and the expression of truncated AR splice variants 

(AR-Vs) that are constitutively active16,18,142,155–159  Ongoing research continues to elaborate a 

more thorough biological understanding of how these mechanisms emerge and function, leading 

to novel treatments and evidence-based strategies for the sequencing of therapies20,112,168–171,160–

167.   Nonetheless, the salient conclusion evident from these treatment escape mechanisms is that 

selective pressures continually restore AR pathway signaling, thus confirming the importance of 

developing new approaches to sufficiently antagonize and sustain blockade of this crucial 

pathway in the management of CRPC. 
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1.2 ANDROGEN RECEPTOR 

1.2.1 Structure and function 

The AR (NR3C4, nuclear receptor subfamily 3, group C, gene 4) is a member of the 

steroid hormone receptor superfamily172.  Within this family, phylogenetic studies have shown a 

relationship among the AR, estrogen receptor (ER), glucocorticoid receptor (GR), progesterone 

receptor (PR) and mineralocorticoid receptor (MR)173,174.  These nuclear receptors share a high 

degree of structural and sequence homology, and are master regulators of distinct, though 

sometimes overlapping, gene transcription programs175–177.  Their cognate ligands must cross the 

plasma membrane to bind these receptors, as they predominantly reside within intracellular 

compartments, which proceeds readily by passive diffusion due to the lipophilicity of steroid 

hormones.  FL-AR is a ligand-dependent nuclear transcription factor involved in regulating the 

expression of specific genes. Similar to other nuclear hormone receptors, the structure of AR is 

comprised of four discrete domains that are functionally distinct: an amino-terminal domain 

(NTD), a DNA-binding domain (DBD), a carboxy-terminal ligand-binding domain (LBD), and a 

flexible hinge region (HR) joining the LBD and DBD178.  The AR-DBD is highly conserved, 

with roughly 80% sequence homology to the DBD of PR and GR179.  The AR-LBD shows 

approximately 50% sequence homology with the LBD of PR and GR180.  The AR-NTD shares 

less than 15% sequence homology with the NTD of PR and GR181. 

Mapping studies have revealed the single copy AR gene to reside at the Xq11-12 locus 

on the long arm of the X-chromosome182, therefore the AR is a hemizygous gene in human 

males. Spanning over 90kb of DNA, the AR gene encodes a complementary DNA (cDNA) 

sequence that contains eight canonical exons interrupted by introns of varying lengths (0.7–2.6 
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kb).  The AR gene (Figure 1.4) expresses a naturally modular 110-kDa protein translated from a 

10.6 kb mRNA transcript that results in a polypeptide approximately 919 amino acids long178.  

Amino acid sequence numbers vary due to different numbers of glycine (G) and glutamine (Q) 

repeats in the poly-G and poly-Q sequences in the NTD.  Exon 1 encodes the full NTD (a.a. 1-

558), exons 2 and 3 encode the DBD (a.a. 559-622), and exons 4 through 8 encode the LBD (a.a. 

671-919).  Encoded within exon 4 is the HR (a.a. 623-670) which shares a nuclear localization 

sequence (NLS) that overlaps the C-terminal end of the DBD183,184. 

 

Figure 1.4 AR gene and protein structure 

Detailed description follows directly in main text below.  Adapted from Figure 2 from Imamura and 

Sadar (2016). International Journal of Urology. 23(8):654-665, under license (CC BY-NC-ND 4.0)164 
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Each structural domain is responsible for different functional aspects of the AR 

protein185.  As the indispensable transcriptional engine of the AR, the NTD contains many 

regulatory regions and post-translational modification sites to augment and direct signaling 

actions186.  Activation function 1 (AF-1) includes two overlapping transcription activation units 

termed TAU-1 (a.a. 100–370) and TAU-5 (a.a. 360–528)187.  The WHTLF motif (a.a. 433–437) 

within TAU-5 and the FQNLF motif (a.a. 23–27) are nuclear receptor boxes important for 

protein-protein interactions188.  While both TAU-1 and TAU-5 are involved in mediating direct 

ligand-dependent AR transcriptional activation, the WHTLF motif is essential for constitutive 

AR activation of truncated AR-Vs that lack the LBD189.  The AR-DBD contains two α-helical 

zinc finger structures; one that connects to the hinge region allowing dimerization, stabilization, 

and DNA recognition, the other interacts with the DNA via hydrogen bonding with nucleotides 

at the binding site190.  The AR functions as a homodimer and specifically recognizes and binds 

genomic regions termed androgen response elements (AREs).  Binding of different DNA 

sequences alters the conformational structure of the DBD in ways characteristic of individual 

binding locations, thereby assisting in the modulation of receptor activity by presenting surfaces 

that favor recruitment of different co-regulatory proteins191. A canonical nuclear localization 

signal in the hinge region regulates the nuclear import of the receptor.  Unbound to ligand, the 

AR typically resides in the cytoplasm attached to cytoskeletal elements.  Agonist stimulation 

induces conformational changes in the AR leading to phosphorylation and activation of the 

receptor, thus exposing the nuclear localization sequence for recognition by importin-α to enable 

active transport of the AR to the nucleus192. The AR-LBD contains the ligand binding pocket and 

a second transcriptional regulation domain termed activation function 2 (AF-2)193.  The three-

layered architecture of the LBD takes the shape of an “α-helical sandwich” formed from the 11 
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α-helices and 2 antiparallel β-sheets of its tertiary structure.  Agonist binding induces a specific 

conformational change to the LBD, akin to closing a lid over the binding pocket, which traps and 

stabilizes the interaction with ligand and exposes the AF2 interface to facilitate regulatory 

protein-protein interactions.  To initiate the N/C interaction that results in AR homodimerization, 

a deep hydrophobic groove within AF2 preferentially binds the bulky side chains in the 

23FQNLF27 core sequence located in the NTD of a second AR molecule194.  This orientates the 

dimer in a "head-to-tail" configuration which further stabilizes bound ligand by impeding 

dissociation, thereby prolonging AR transcriptional activity.   

Androgen stimulation of the AR, in cooperation with coregulatory factors, is the classical 

pathway leading to transcriptional activity of AR target genes.  Testosterone and its metabolite 

5α-dihydrotestosterone (DHT) are the endogenous ligands of the AR.  Under regulation by 

luteinizing hormone (LH) produced in the anterior pituitary gland, testosterone is synthesized 

primarily by the Leydig cells in the testes.  Hypothalamic control of LH secretion is regulated by 

gonadotropin-releasing hormone (GnRH)195.  Pulsatile secretion of endogenous androgens into 

the general circulation trends closely with the chronobiology of circadian rhythms.  The 

hypothalamic-pituitary-gonadal (HPG) axis accounts for 90-95% of testosterone production, with 

the remainder synthesized by the adrenal glands196. The tissue availability of androgens is 

influenced by the ratio of free hormone in serum.  Virtually all circulating testosterone is protein 

bound (~98%), mostly to sex-hormone binding globulin (SHBG) or albumin.  Free testosterone 

is a relatively small, highly lipophilic molecule. It readily diffuses into prostate epithelial cells 

where high expression 5α-reductase enzymes support its metabolism into the more potent 

DHT197.  Due to a slower rate of dissociation, DHT binds the AR with a higher affinity resulting 

in ~5X the potency of testosterone198. 
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Following synthesis, the AR forms a complex with numerous heat shock proteins (HSPs) 

and immunophilins to generate and maintain a receptor with high-ligand-binding affinity.  In 

addition, the interaction with these various chaperone proteins, which include HSP70, HSP27, 

HSP40, HSP90, and HSP23, greatly helps to prevent AR degradation199–201.  The AR 

conformational changes triggered by ligand-binding which expose the NLS and AF-2 also 

promote dissociation of these chaperones.  This allows active AR translocation to the nucleus, 

homodimerization by N/C interactions, and DNA binding to AREs within the promoter or 

enhancer regions of AR target genes such as PSA and TMPRSS2.  Forming a complex with 

DNA at the ARE, the AR then directs the organization of the preinitiation transcriptional 

complex by recruiting members of the basal transcription machinery, including TATA-box-

binding protein (TBP), transcription factor IIF (TFIIF), and RNA polymerase II, as well as 

coregulators such as cAMP-response element-binding protein (CREB)-binding protein (CBP) 

and p160 proteins to either upregulate (coactivators) or downregulate (corepressors) AR 

activity202–204 (Figure 1.5).  Chromatin structure largely determines AR access to ARE binding 

sites and regulation of the AR transcriptional program requires a chromatin landscape favorable 

to AR access.  The histone-modifying enzymes p300 and CRB and the pioneer factors FOXA1, 

GATA2 and HOXB13 promote open chromatin structure in prostate cancer cells and subsequent 

AR locoregional binding205–209.  In summary, AR transcriptional regulation of gene expression is 

performed through an intricately orchestrated symphony between transcription factor action, 

chromatin accessibility, DNA sequence, and nucleosome assembly.  Modulated by fine tuning 

through myriad influences, signature patterns in prostate epithelial cells distinguish healthy, 

transformed and relapsed cells, with cistrome and transcriptome changes tracking alongside 

progressive stages of the cell cycle during proliferation as well210. 
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1.2.2 Target genes 

As a master regulator of gene expression, the AR is positioned as an intracellular 

gatekeeper placed at the threshold of a dramatic cascade of transcriptional events.  The signaling 

pathways under the control of the AR are extensive and diverse, orchestrating a panoply of 

cellular responses, unique to each cell type, in the broad range of tissues which express AR 

protein211.  Using advanced molecular techniques, the annotation of the AR transcriptome has 

grown beyond 400 genes with functions integrated throughout the complete profile of cytological 

processes, including cell growth212 (nutrient uptake, protein synthesis, lipid metabolism)213–217, 

proliferation (mitogenic signaling, cell cycle regulation, DNA repair)218–220, fate (migration, 

differentiation, senescence)221, and specialized functions (protein trafficking, secretory vesicle 

formation, transport of secretory vesicles)222,223. 

The AR transcriptome can be operationally defined as the full spectrum of target genes 

with expression sensitive to genomic regulation by AR via the presence of one or more AREs 

within the gene’s regulatory regions that recruit AR to modulate transcription. The application of 

modern experimental techniques such as ChIP-chip, ChIP-Seq, ChIP-exo, high-throughput RNA 

sequencing and splicing microarrays in the investigation of AR regulated gene expression have 

highlighted the complexity and versatility of the AR transcriptome224. Thousands of AREs have 

been located within the human genome and these AREs differ between genes in both 

composition and context to facilitate tissue and cell specific AR function and enable contrasting 

regulatory functions within a single nucleus225–227.  The consensus ARE driving most AR target 

genes is formed by an inverted repeat of two hexameric half-sites with 3 base pairs intervening 

(5’-AGAACAnnnTGTTCT-3’)172, and this region can also bind DBDs of other class I steroid 
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receptors (glucocorticoid, progesterone and mineralocorticoid).  Genomic data have provided 

evidence establishing that more AR-specific regulation of certain target genes relies on AR 

binding to a selective ARE consisting of a half-site of the consensus ARE.  It is believed that AR 

homodimers can bind this shortened element due to the strength of the AR dimer interface and, 

counterintuitively, less stringent sequence requirements for the 3′ hexamer228. AR binds 

predominantly to AREs found in distant enhancer elements, forms the AR–coactivator complex, 

and communicates with promoter regions proximal to the transcriptional start site (TSS) of AR-

regulated genes through chromosomal looping and RNA pol II tracking229–231. 

When describing AR function within the prostate, an important paradox must be 

acknowledged which has been described as an “AR malignancy shift 232.”  In the differentiated 

luminal epithelial cells of a healthy prostate, the cell specific role for AR includes maintenance 

of growth and proliferative quiescence233 and master regulation of the secretory phenotype.  

Without the AR acting as a growth suppressor in this context, the physiological levels of 

circulating testosterone in a non-castrate, adult male would continuously stimulate hyperplastic 

overgrowth of the gland.  During prostatic carcinogenesis, AR signaling converts from a growth 

suppressor role in normal prostate epithelial cells to acting as an oncogene in prostate cancer 

cells234–236, in part due to molecular changes that significantly increase AR protein expression 

(>5 fold) and alter reciprocal-regulating communication with transcription factors c-MYC and 

NF-kB233,237–239. Of special relevance to AR function after transformation to prostate cancer, it 

should be noted that the repertoire of genes expressed under the transcriptional control of AR has 

been demonstrated to vary in cells derived from hormone sensitive cancer as compared to cells 

derived from CRPC196,240–243, in part, reflecting the differing characteristic expression signatures 

of transcriptomes driven by FL-AR and AR-Vs244–248.  Adding further complexity, the output 
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from the AR transcriptome is highly dynamic; the transcriptional expression signatures of well 

established, canonical AR regulated genes do not remain constant across biological states in the 

prostate, often switching between induction and repression by AR in relation to contexts like 

embryological vs pubertal development, ligand and nutrient availability, environmental stresses, 

and oncogenesis vs progression249–253. 

 

1.2.2.1 Androgen receptor-induced transcriptome 

AR activity is indispensable for maintaining prostate function and much of the research 

to date has focused on investigating genes which are positively regulated by AR.  Indeed, studies 

of androgen-regulated genes report that nearly 50% are involved in the synthesis, folding, 

modification, and transit of secretory proteins222,223,254.  The AR is perhaps best known for its 

role in transcriptional activation of a prototypical AR regulated gene, KLK3 (PSA), which 

expresses a secreted protein with protease actions that maintain functional seminal fluid. Other 

examples of AR genes known for key functions in the prostate include KLK2, TMPRSS2, 

PRSS18, SLC2A3, and STEAP4254.  Interestingly, while the proteins expressed by these genes 

contribute to healthy prostate function, some may also provide support to pathological processes 

in prostate cancers.  Studies report that through its protease activity, PSA can induce cell 

migration and epithelial–mesenchymal transition to promote tumor progression255,256.  TMPRSS2 

encodes a transmembrane serine protease found to be fused to ETS family transcription factors 

(ex. ERG and ETV1) in over 50% of patient prostate cancer samples257–259 and the TMPRSS2–

ETS fusion is associated with a poor prognosis in localized prostate cancer260,261.  Many genes 

induced by AR fluctuate in expression between the pre- and post-neoplastic setting243.  Examples 
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illustrating this are genes in the polyamine biosynthesis pathway (SMS, ODC1, SAT, AMD1, 

SRM), ER-stress response pathway (HRD1, ORP150, PDIR, NDRG1), and genes associated with 

glandular development (TMEPAI, ZBTB10, NKx3.1, and ANKH)262.  Prostate cancers 

demonstrate altered lipid metabolism and AR-induced cholesterol/fatty acid biosynthesis 

pathway genes that are implicated in this process include AMACR, FASN, FAAH, SREBP2, 

LDLR, HMGCR, FDFT1, SCAP, MFGE8, APOD, APOL1, and PLA2G2A213,217.  AR can induce 

genes that promote AR activation via AR stabilization (FKBP5), and coregulator up-regulation 

(SRC-2, SRC-3, RNF14, PIAS1, NCOA4)263–266. AR induces genes implicated in numerous 

pathways and processes that drive prostate cancer progression. AR promotes growth by 

upregulation of IGF1, IGFR, VEGFA, FGF8, S100P, c-fos , Drg-1, cav-1, IL6R, RICTOR, and 

genes of the SGK family, and promotes cell proliferation via the upregulation of genes such as c-

MYC , CDKN1A, CDC2, UBE2C, CDK2, and CCND1212,267–273.  AR induces DNA damage 

response genes to assist resilience to prostate cancer therapies and maintains the survival of 

treatment resistant prostate cells by inducing an array of genes including PRKCD, RAD54B, 

XAB1, ERCC8, SEMA3C, PYCR1, GSTT2, CaMKK2, and TRPV3241,274–278.  Considering the 

myriad biological processes that AR is involved in, a complete annotation of AR induced genes 

would be lengthy and beyond the scope of this work.  This list is but a partial summary which 

reviews prominent AR induced genes that have been associated with key processes in prostate 

cancers. 
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1.2.2.2 Androgen receptor-repressed transcriptome 

An increasing number of studies describe AR functions with respect to silencing 

transcriptional programs, helping to expand the catalogue of AR-repressed genes279.  Primarily 

involving receptor domains other than the LBD, numerous inputs shape the selective regulation 

of gene expression by AR, though the precise molecular mechanisms that constitute the basis for 

the transcriptional repression function of AR remain undefined.  With the capacity to interact 

with hundreds of different proteins, AR action can be fine-tuned to align with different contexts. 

The AR-DNA transcription complex differentially recruits co-activators and co-repressors, 

though additional factors such as modification by enzymes can be involved in determining if AR 

target genes are switched on or off280.  In one study, the authors describe the influence of 

retinoblastoma protein (Rb) phosphorylation status at the point of recruitment to the AR-DNA 

transcription complex, especially at regulatory regions of cell-cycle related genes, with hypo-

phosphorylated RB implicated in mediating AR target gene repression281.  In prostate cancer 

cells, AR downregulates expression of the cell cycle inhibitor gene CDKN1B282 resulting in 

increased proliferation.  The AR repressed transcriptome includes many genes associated with 

tumor suppressor functions, such as DEPTOR283, DKK3264, and PDCD4284.  For example, the 

protein encoded by the DEPTOR gene binds to mTORC1 and mTORC2 protein kinase 

complexes to inhibit growth promoting signaling.  Epigenetic modifications contribute to 

shaping the AR transcriptome of prostate cancers as they evolve and progress by altering both 

chromatin architecture and the DNA of upstream gene regulatory regions.  Studies exploring 

these processes have established the enzyme Lysine-Specific Demethylase 1 (LSD1) as central  

protein involved in the AR-suppressed gene programs observed in CRPC285.  Investigations 

focusing on CRPC reveal important differences in the AR target genes that are repressed by 
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ligand-bound FL-AR and constitutively active AR-Vs286, with notable relevance to the emerging, 

novel inhibitors of the AR-NTD. 

 

 

 

Figure 1.5 Sequence of ligand induced FL-AR transcriptional activation 

Reprinted/adapted by permission from Springer Nature Customer Service Centre GmbH:  Springer, Androgen 

Receptor in Health and Disease by Marco Marcelli. In: Hohl A. (eds) Testosterone.287 © 2017 

https://doi.org/10.1007/978-3-319-46086-4_2 
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1.3 CLINICAL THERAPIES TARGETING THE ANDROGEN RECEPTOR 

1.3.1 Androgen-deprivation therapy 

 Starving the AR of its cognate ligands has been a mainstay of prostate cancer treatment 

for nearly 80 years.  Indeed, androgen deprivation by either pharmacological or surgical means 

remains the gold standard therapy for prostate cancer patients288.   As the Leydig cells of the 

testes are responsible for the synthesis of virtually all circulating androgens, bilateral 

orchiectomy results in elimination of testicular androgen production followed by serum PSA 

responses approaching an undetectable threshold (<0.5 ng/mL)289.  This radical surgery is 

irreversible and often patients are additionally burdened with significant physical and 

psychological morbidities290.  Chemical therapies have demonstrated the capacity to 

pharmacologically reduce circulating androgens to castrate levels and are a commonly utilized 

alternative to surgical castration291.  Strategies that target the HPG axis to achieve gonadal 

testosterone depletion rely on suppression of the release of LH from the anterior pituitary292.  

Hypothalamic regulation of pituitary LH release is dependent on pulsatile stimulation by GnRH 

through the hypophysial portal bloodstream.  Synthetic analogs of GnRH (LHRH agonists) 

provide continuous pituitary GnRH receptor stimulation which results in downregulation of these 

receptors, thus mechanistically exploiting this intrinsic negative feedback loop293.  Initiating 

treatment with LHRH agonists causes serum testosterone concentrations to initially rise, 

potentially stimulating prostate cancer growth and causing pain at metastatic sites, necessitating 

co-administration of AR antagonists to competitively block the effects of this testosterone 

flare294.  Alternatively, LHRH antagonists block the signal necessary to initiate LH release and 

do not induce a testosterone surge295.  Whether achieved medically or surgically, profound 
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androgen suppression is associated with significant morbidities which include metabolic 

dysregulation leading to cardiovascular disease or diabetes, sexual dysfunction, osteoporosis, 

muscular atrophy, hot flashes, and mood disorders (depression, anxiety)296–298.  The considerable 

clinical benefit gained from reduced tumor burden and prolonged survival outweighs these risks. 

ADT is provided with curative intent when given as a component of a comprehensive 

treatment plan to patients with localized prostate cancers at higher risk of progression, yet 

between 20-30% of these patients will experience recurrence.  When ADT is given to patients 

with disseminated disease, either those presenting with metastases at initial diagnosis or after 

recurrence following definitive local therapies, the treatment is provided with palliative intent.  

Continuous androgen starvation induces adaptive stress responses in prostate cancer cells that 

insulate against apoptosis and restore mitogenesis299–302.  Sadly, patient responses at advanced 

stages of the disease are sustained between one to two years before progression to the stage 

termed CRPC. 

 

1.3.2 Antiandrogens 

CRPC maintains dependence on signaling through the AR pathway despite systemic 

strategies which profoundly decrease levels of circulating androgens.  This implies that 

androgen-depletion by medical or surgical castration is insufficient to completely inhibit the 

receptor activity303.  Resistance to these approaches develop as prostate cancer cells acquire 

changes that include overexpression of the AR itself and upregulation of enzymes directing 

androgen biosynthesis, which restore AR activity158,304–308.  To target these resistance 

mechanisms, several novel drugs have been developed to either target the AR directly or deplete 
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extragonadal androgens production via suppression of adrenal and intra-tumoral synthesis 

pathways154.  Generally, these agents are added by clinicians to the ADT regimen for CRPC 

patients in a strategy described as combined or maximal androgen blockade (MAB)309.  Building 

on the success of first-generation antiandrogens like bicalutamide and hydroxy-flutamide, newer 

antiandrogens have emerged including enzalutamide, and more recently, apalutamide and 

darolutamide148–151,310–313.  Enzalutamide potently and selectively binds the AR-LBD to 

competitively displace T and DHT, the natural ligands of AR, and inhibits AR nuclear 

translocation to disrupt transcriptional activation of AR-regulated genes314–316.  Abiraterone 

impairs AR signaling by further deepening the suppression of androgen synthesis. Abiraterone 

inhibits both the 17α-hydroxylase and 17,20-lyase activities of the CYP17A1 enzyme, 

theoretically blocking androgen production in all body tissues including tumor317.   Providing 

treatment with either class drugs, antiandrogen or androgen synthesis inhibitor, has been 

clinically demonstrated to offer modest survival benefit for CRPC patients, though utility is 

limited when these agents are given sequentially to one another318–320.   Cross-resistance 

frequently develops between medications targeting a similar therapeutic space and the 

mechanism of both antiandrogens and androgen synthesis inhibitors ultimately converge on the 

AR-LBD to exert their effects, thereby compounding the selective pressure for AR aberration 

following orchiectomy or ADT321. 
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1.4 MECHANISMS OF RESISTANCE 

1.4.1 Overexpression of the AR gene 

Restored AR transcriptional activity drives continued dependence on the AR pathway.   

The variety of AR aberrations discovered are found almost exclusively in CRPC322,323, strongly 

suggesting that these alterations are selected for during therapy.  Several mechanisms sustaining 

AR signaling in CRPC have been described18,142,158,159,299,324. AR overexpression is a prominent 

feature of CPRC cells and a dramatic rise in AR expression may produce hypersensitive 

responses to residual androgen levels during castrate conditions305,325.  Increased levels of AR 

protein may be a consequence of genomic changes, transcriptional upregulation, reduced 

turnover and increased stability, or any combination of these factors.  Profiling of CRPC tumors 

has revealed recurrent genomic amplifications in both AR gene copy number and upstream AR 

gene enhancer sequences326–328.  A recent analysis reported that genomic amplifications of the 

AR gene and AR distal enhancers led to an increased total number of chromatin interaction 

modules spanning these regions which contributed to AR overexpression329.  Further 

compounding these genomic alterations, conditions that are characteristic of the intracellular 

environment of CRPC cells such as oxidative stress can induce the activation of transcription 

factors regulating the AR gene330,331.  Finally, the signature hyperactivation of inflammation 

associated transcription factors and cytokine signaling cascades observed in prostate cancer bone 

metastases and CRPC lesions drives upregulation of AR expression332. 
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1.4.2 Gain-of-function mutations 

Deprived of androgens and antagonized by small molecules targeting its LBD, the AR 

may develop gain-of-function mutations which generate a promiscuous receptor to restore AR 

signaling in prostate tumors333,334.  These AR mutations are rarely observed in patients with early 

stage, untreated prostate cancer though their emergence may be hastened consequent to long 

term ADT and antiandrogens exposure335,336.  Primary prostate tumors exhibit such profound 

dependence on the AR signaling pathway that AR blockade may generate sufficient selective 

pressure to promote the survival of prostate cancer cells that acquire gain-of-function mutations 

in the AR337,338.  Indeed, AR mutations are found frequently in tumor samples from patients with 

CRPC and a variety of mutant variants have been detected and described (i.e. F876L, L701H, 

W741L/W741C, V715M, and T877A)143,339,340341.  Predominantly affecting the AR-LBD, these 

mutations decrease ligand selectivity and render AR responsive to novel stimuli342–344.  AR 

transcriptional activity is enabled despite castrate conditions if the mutant AR variant is 

conferred with the capacity to bind with alternative steroid hormones (glucocorticoid, estrogen, 

progesterone, adrenal androgens) to permit AR activation342,343,345,346.  Certain mutations 

sufficiently alter the LBD to convert non-steroidal antiandrogens from AR antagonists to AR 

agonists347–349.  For example, the H875Y, T878A and T878S mutations, all detected in CRPC 

patients, confer agonist effects on the second generation, non-steroidal antiandrogens 

enzalutamide and apalutamide350.  This phenomenon of antagonist-to-agonist switch is believed 

to be responsible for the benefit observed in some patients that exhibit a withdrawal syndrome 

after cessation of antiandrogen therapies351–353.  Individual mutations may engender somewhat 

selective promiscuity to specific alternate ligands and do not generally confer pan-antagonist 

resistance. Sensitive assays have been developed to detect tumor DNA that has been shed into 
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the general circulation by dying prostate cancer cells at tumor margins350,354–356.  AR gain-of-

function mutations detected in plasma DNA may help guide physicians toward rational 

sequencing of AR pathway inhibitors for CRPC patients.  

 

1.4.3 Aberrant expression of co-regulatory factors 

The canonical pathway to trigger AR transcriptional activity at AR target genes via 

androgen stimulation may be augmented by changes in co-regulatory factor expression and 

availability202,204,357.  After progression to CRPC, the expression levels for several AR co-

regulators are notably increased in malignant cells, including SRC-1, TIF2, RAC3, p300, CBP, 

Tip60, MAGE-11, and ARA 70358–364.  AR coactivator SRC-2 is amplified and the AR 

corepressors TRAC-1 and SMRT are aberrantly expressed in primary and metastatic 

disease357,365.  The altered expression of co-regulatory factors in relapsed prostate cancers is 

associated with aggressive features and poor outcomes.  Providing a mechanism of resistance to 

ADT and antiandrogens, they enhance AR transactivation of target genes to support AR 

hypersensitization to depleted androgen availability366–368.  Demonstrating value as therapeutic 

targets, investigations are underway to explore methods to antagonize these effects369–372.   

 

1.4.4 Constitutively active truncated splice variants of AR 

Constitutively active, truncated AR variants which lack the AR-LBD are commonly 

detected in CRPC cell lines and patient tissues164,373–375.  These are thought to be generated by 

aberrant regulation of mRNA processing leading to alternative splicing of AR transcripts that 
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translate into AR-Vs376–382.   In trying to discern the molecular collaborators involved in driving 

the production of AR-Vs, studies have implicated epigenetic modifiers, various transcription 

factors, such as c-MYC, AURKA, and NF-kB, and other proteins (ex. YB-1, Lin28) that play 

contributing roles383–392.  As an adaptive mechanism to circumvent androgen ablation, many of 

these truncated AR isoforms maintain transcriptional function despite loss of the ligand-sensitive 

AR-LBD to support androgen-independent expression of AR target genes and androgen-

independent growth of CRPC cells. A variety of AR-Vs have been detected and characterized393 

and, of these,  AR-V7 is shown to be the most commonly expressed394.  Clinical studies reveal an 

association between AR-V7 expression in CRPC and resistance to second generation AR 

inhibitors which have mechanisms targeted to suppression of AR-LBD activation171,244,324395.  

The AR-V regulated transcriptome encompasses a distinct expression signature enriched for the 

upregulation of cell-cycle genes and the downregulation of tumor suppressor genes286,396,397. The 

emergence of AR-V protein isoforms does not preclude advanced prostate cancers from 

continued expression of FL-AR398–400.  Indeed, the activation of AR-FL signaling appears to 

somewhat suppress the AR-Vs transcriptional signature401. 

Crosstalk between the AR and various cytoplasmic signaling cascades, including those 

induced by growth factors and cytokines, can enhance transactivation of AR regulated genes 

through post-translational modification at numerous sites within the AR-NTD186,402–405.  This 

mechanism for receptor stimulation is particularly consequential for truncated AR-Vs, as it 

contributes to the protein stability of these isoforms and ensures robust constitutive 

transcriptional activity406–409.   
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Techniques for the isolation and characterization of anoikis-resistant circulating tumor 

cells that have migrated and intravasated to the bloodstream are gaining wider clinical utilization 

for the management of advanced prostate cancer patients.  Utilizing AR-V status in prostate 

cancer cells as a biomarker, these assays are proving helpful in guiding treatment selection and 

assist prognostication86,410–416.  Next-generation sequencing and immunohistochemistry analysis 

of CRPC metastases revealed co-expression of AR-V3, AR-V7 and AR-V9, highlighting the value 

of AR-NTD inhibitors which suppress AR function by targeting regions common to all AR-

Vs417,418.  

 

1.5 ANTAGONISTS OF THE AR-NTD 

Repeated restoration of signaling through the AR pathway by acquisition of mechanisms 

to subvert AR antagonism reaffirms the importance of AR action in CRPC to motivate discovery 

of alternative approaches to block AR function.  To date, the basis of all major clinical successes 

toward AR inhibition strategically converge to singularly disrupt ligand-dependent AR activation 

and the resistance mechanisms briefly summarized above enable malignant prostate cells to 

circumvent all of them.  With every currently approved endocrine treatment inhibiting either 

ligand production or ligand action, significant therapeutic value clearly exists in the development 

of drugs that do not mechanistically function through the AR-LBD and which are able to block 

transactivation of the receptor both in the presence and absence of androgen.  The AF-1 

subdomain of the AR-NTD is indispensable for both ligand-dependent and ligand-independent 

transcriptional activity and antagonists directed at this region would be efficacious against the 

many clinically relevant AR mutants or constitutively active structural variants commonly 
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detected in CRPC.  Targeting the AR AF-1 therapeutically is a challenge, due to its intrinsically 

disordered nature and lack of enzymatic activity or rigid binding clefts, though substantial 

progress towards this goal has yielded promising results419.  Fruitful interrogations of natural 

compound libraries have confirmed the probative value of high-throughput screening systems 

when rational drug design is precluded by the absence of a definitive crystal protein structure420. 

Reports describing the discovery and pre-clinical development of the first AR-NTD targeted 

small molecule inhibitors (EPI-002 and SINT1, Figure 3.2) have provided proof-of-concept that 

this approach has the potential to overcome the resistance pathways driven by the AR.  In 

recognition of compounds which possess this novel mechanism of action, AR-NTD inhibitors 

have been assigned a distinct nomenclature to distinguish them from the non-steroidal 

antiandrogens of the ‘-lutamide’ stem class that inhibit the AR-LBD.  The USAN council 

appointed EPI-002 with the generic name Ralaniten and designated the new stem class ‘-aniten’ 

for drugs that specifically target and bind the AR-NTD.  

 

1.5.1 Sintokamides 

Sintokamides are bioactive chlorinated peptides isolated and purified from the marine 

sponge Dysidea sp. that were identified as potential therapeutic candidates by high-throughput 

screening of a library of natural marine extracts for inhibitory activity against the AR-NTD421. 

Sintokamide A (SINT1) emerged as a leading compound for further study and 

characterization420.  SINT1 demonstrated the ability to block transactivation of the AR NTD in 

reporter gene-based assays, reduce expression of the AR-regulated gene PSA, and inhibit AR-

dependent proliferation of prostate cancer cells in vitro and was shown to impair the growth of 
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CRPC xenografts in vivo422.  Mechanistic studies suggest SINT1 antagonizes the transcriptional 

activities of both FL-AR and AR-Vs and binds to AF-1 in the AR-NTD at a discrete location 

from ralaniten423.  The AR directly engages with ~200 distinct proteins and the NTD is rich with 

sites for post-translational modification and protein- protein interactions186,202.  Most of these 

processes enhance the transcriptional function and stability of the AR-NTD402,424–428.  Different 

inhibitors may bind unique regions of the AR-NTD, thereby blocking stimulatory pathways 

associated with the specific binding site of each inhibitor.  Thus, the binding location of an 

individual inhibitor within the NTD can be inferred by mapping the disrupted pathway to its 

associated site of action.  A study by Banuelos et al. (2016) reported that SINT1 has the capacity 

to block transactivation of AR NTD induced by stimulation of the PKA pathway, but had no 

effect on IL-6-induced transactivation of AR NTD422.  Reflecting on the additive effect observed 

by combination SINT1-ralaniten treatment, the authors suggested that SINT1 and ralaniten bind 

to different regions of AF-1, noting that previous investigations demonstrated that ralaniten is 

capable of inhibiting IL-6 induced transactivation429.  Further pre-clinical development of SINT1 

included extensive investigation of the structure-activity relationship, yielding the synthetic 

analogue LPY26 as a potential drug lead.  LPY26 was selected from 29 synthetic 

analogues/precursors based on the most promising in vitro biological activity430.  

 

1.5.2 Ralaniten and analogs 

Ralaniten is a novel, first-in-class drug which binds the AR-NTD and represents the 

vanguard in clinical development of the EPI family of compounds (Figure 1.4).  Nearly 500 EPI 

analogs have been methodically evaluated by the Sadar Lab for potential clinical utility, 
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predominantly for therapeutic application but also as a radiographic tool431.  The original of these 

compounds, EPI-067 was isolated from the marine sponge Geodia lindgreni and identified by 

screening a library of natural marine extracts in search of antagonists of the AR-NTD423.  Closely 

resembling the chemical structure of bisphenol A diglycidic ether (BADGE), an epoxy resin of 

industrial provenance, EPI-067 may constitute the biotransformation product of a synthetic 

contaminant166.  Of the EPI analogs, the efficacy against AR demonstrated by the racemic 

mixture referred to as EPI-001 was particularly promising, reinforced by the negligible cross-

reactivity toward GR or PR evident in reporter assays. The two chiral carbons contained within 

the structural scaffold of EPI-001 yield four bioactive stereoisomers; EPI-002 (2R, 20S), EPI-

003 (2S, 20R), EPI-004 (2R, 20R), and EPI-005 (2S, 20S).  Following a structure-activity 

analysis to determine the most potent candidate for further development, ralaniten (the EPI-002 

isoform) was selected based on a marginally lower IC50 than the three alternative stereoisomers 

in addition to demonstrating the least toxicity in mouse xenograft studies165.  In multiple studies, 

ralaniten inhibited gene expression of the canonical AR-regulated genes PSA, FKBP5, 

TMPRSS2.  Reinforcing its status as a bona fide AR-NTD antagonist, ralaniten inhibited 

expression of signature genes of the AR-V driven transcriptome (UBE2C, AKT1, and CDC20) 

that were unaffected by treatment with bicalutamide and enzalutamide.  Pre-clinical in vivo 

studies revealed that ralaniten significantly reduced the growth of FL-AR driven LNCaP 

xenografts, as well as AR-V expressing VCaP and LNCaP95 xenografts that model CRPC.  

Ralaniten was shown to antagonize the transcriptional activities of both FL-AR and AR-Vs by 

binding to AF-1 in the AR-NTD and blocking the necessary protein-protein interactions required 

for transactivation165,166,432–438.  Data from an investigation that utilized nuclear magnetic 

resonance to analyze the ralaniten-AR interaction confirmed that ralaniten binds AF1 in the AR-
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NTD within amino acids 354-448 of TAU-5439.  In 2015, Ralaniten acetate, an orally active 

prodrug of ralaniten, entered phase I clinical trials for evaluation in men with end-stage 

metastatic CRPC (NCT02606123).   Inclusion criteria limited patient selection to men who had 

progressed after enzalutamide or abiraterone and may have had one line of prior chemotherapy.  

Despite a heavily pretreated patient cohort, ralaniten was well tolerated and responses were 

evident in patients on higher dosages.  Modest declines in serum PSA were observed in some 

patients and several patients maintained stable disease while continuing ralaniten treatment past 

one year.  Due to poor pharmacokinetics, sustaining plasma concentrations of ralaniten within 

the target therapeutic window proved challenging and the clinical trial was terminated due to 

excessive pill burden. Nonetheless, ralaniten served to establish proof-of-concept and validated 

the feasibility of this novel therapeutic approach.  Ongoing research and development of more 

potent and metabolically stable ralaniten analogs with improved pharmacokinetic profiles 

continues to yield promising new compounds.  The next-generation analog of ralaniten, EPI-

7386, has entered Phase I clinical trials in 2020.  The unique mechanism provided by small 

molecule inhibitors of the AR-NTD enriches the clinicians toolbox and offers myriad 

possibilities for strategic combination with existing treatments.  Indeed, preliminary 

investigations to this effect have reported synergistic results163,435,437. 
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Figure 1.5 Ralaniten and analogs (EPI compounds) have a novel mechanism of action 

All currently approved drugs targeting the AR signaling pathway converge in their ultimate site of action at the C-

terminus ligand-binding domain (LBD), i.e. enzalutamide.  Ralaniten, a novel first-in-class drug, binds the TAU-5 

region within activation function-1 of the receptor’s N-terminal domain (NTD).  This unique mechanism confers 

ralaniten with the ability to inhibit FL-AR (A), as well as the AR isoforms (B) and (C)  that become expressed with 

resistance to inhibitors of AR LBD (e.g., enzalutamide), such as AR that has acquired gain-of-function mutations 

and AR with structural alterations that yield constitutively active truncated AR splice variants (AR-Vs). Adapted 

from Figure 1 from Antonarakis et al. (2016) The Oncologist 21: 1427-1435.  Reproduced with permission of 

AlphaMed Press via Copyright Clearance Company440. 
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1.6 METALLOTHIONEIN FAMILY 

1.6.1 Structure and Function 

Metallothioneins (MT) are very small (6-7kDa), highly conserved intracellular proteins 

that are ubiquitously expressed in living organisms.  Responsive to a broad range of inducers, 

they are non-enzymatic, multifunctional participants in a host of cellular processes and 

homeostatic control mechanisms441,442.  DNA mapping studies report the chromosome 16q13 

region to encompass the loci of human MT genes.  These encode polypeptide sequences varying 

in length from 61-68 amino acids that contain 20-21 cysteines and are devoid of any aromatic or 

histidine residues443.  Eleven functional MT proteins have been identified and organized into four 

isoform groups: MT-1 (MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1M, and MT1X), MT-

2 (known as MT2A), MT-3, and MT-4444.  Present in all tissue types, the MT-1 and MT-2 

isoforms are both basally expressed and highly inducible by many factors such as metal ions, 

glucocorticoids, cytokines, and oxidative stress.  MT-3 is predominantly detected within the 

CNS (neurons, astrocytes in the cortex, hippocampus) where it is a constitutively expressed 

growth inhibitory factor with limited inducibility445,446.  Historically considered a tissue specific 

isoform, MT3 has more recently also been detected in additional tissues including heart and 

kidney447, and notably in prostate epithelia after malignant transformation448,449.  MT-4 shows 

relatively restricted tissue expression as well. MT-4 is detected in cells of squamous epithelium 

(mouth, upper gastrointestinal track, skin) and constitutively expressed independently of signal 

changes450,451.  MT levels detected in malignant tissues are observed to be highly variable and 

expression patterns that have emerged following numerous investigation reveal a close 
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association to tumor type452.  Based on those findings, MTs have been explored as potential 

biomarkers for cancer diagnosis and prognosis453–455. 

 In the differentiated luminal secretory cells of healthy prostate epithelia, the expression 

of MT1 and MT2 isoforms are required to support both general and specialized functions. 

Composed of nearly one third cysteines, MTs contain an exceptionally high thiol content that 

serves to facilitate their main functions, which include the detoxification of heavy metals, 

buffering oxidative stress, and the storage and inter-protein transfer of zinc456–461.  These thiol 

clusters enable individual MT molecules to each complex with up to 12 monovalent or up to 7 

divalent heavy metal ions462 and are the primary repository for labile intracellular zinc.  MT 

bound zinc atoms are easily displaced by other more toxic metals to sequester them and facilitate 

excretion.  Furthermore, the exceptionally low redox potential of the zinc-thiolate bonds 

contained within MT proteins render them easily disrupted by redox disturbances and oxidative 

challenges, thereby releasing zinc in the process to restrain inflammation, activate antioxidant 

programs, and induce transcription of MT genes. 

Persistent and sustained oxidative stress is a well characterized feature of prostate 

tumors463–466.  Acting directly as an antioxidant, sulfhydryl-rich MT may trap electrophiles in a 

similar manner to reduced glutathione (GSH).  MT proteins are 50X more potent than GSH on a 

molar basis and are exceptional buffers of redox disturbances467–469.  MTs can be rapidly 

oxidized by diverse circumstances.  These range from interactions with constitutive, mild pro-

oxidant factors such as glutathione disulfide (GSSG) or selenium compounds, to more highly 

reactive metals and alkylating agents, metabolically generated free radicals, and non-radical 

oxidative stresses.  As the stability of the zinc/sulfur network in MT and the relative mobility of 
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zinc is intrinsically tied to the reducing power of the cell, zinc is released from the thiolate 

clusters consequent to any of these events. 

In the healthy prostate, the differentiated luminal cells express high levels of MT to 

coordinate the function and storage of accumulated zinc essential to the specialized metabolism 

and secretory functions of these cells.  During oncogenic transformation, malignant prostate cells 

uniformly lose this distinctive feature of zinc accumulation and, as would be expected, a 

concomitant loss of MT expression is observed, especially in advanced prostate cancers448,452,470–

473.  Exacerbating this, patterns of hypermethylation commonly observed in prostate cancer cells 

further reduce expression of specific MT isoforms474–476.  MT has been shown to demonstrate 

tumor suppressive activity in prostate cancers477.  MT can inhibit the activation of pro-

inflammatory cytokines and transcription factors associated with treatment failure and 

metastasis, such as IL-6, IL-12, TNF-α and NF-kB478–480.  One meta-analysis found that the loss 

of the protective effects of MT leads to an escalation of pathogenic processes and 

carcinogenesis452. 

 

1.6.2 Transcriptional regulation 

The expression of MT genes is controlled primarily at the level of transcription. The 

upstream DNA region on the 5ˈ end of MT-1 and MT-2 genes contains a TATA box core 

promoter element and numerous cis-acting response elements within the proximal promoter 

region450,481–483.  The number of copies and configuration of the promoter response elements vary 

according to the MT isoform to allow sensitive, fine-tuned regulation by trans-acting factors 

carrying signals from the cellular environment.  In general, all MT genes contain multiple copies 



43 

 

of a metal-response element (MRE) which binds MTF-1483,484; glucocorticoid-response elements 

(GRE) to which GR binds481; and redox (antioxidant)-response elements (RRE) that are binding 

sites for Nrf1 and Nrf2485–488 within the regions upstream of the transcriptional start site, and may 

also include cAMP responsive elements, STAT3 responsive elements, tissue plasminogen 

activator-responsive elements, and interferon responsive elements489,490.  Despite the dependency 

of the prostate on AR function as a master regulator of critical transcriptional programs, the 

regulation of MT1 and MT2 has not been shown to rely on androgen, at least not directly.  

Investigations exploring a possible role for androgen regulation of MT3 following the reports 

that observed an association between prostate cancer and MT3 thus far have failed to 

conclusively define the relationship due to opposing results491,492. 

 

1.7 Summary and Research Objectives 

1.7.1 Rationale 

          Prostate cancer is the second leading cause of male-related cancer deaths in the Western 

world, and with a rapidly aging population, incidence rates are expected to rise significantly.  

Localized treatments for early stage prostate cancers are often successful, yet between 20 to 40 

percent of patients will have recurrence after radical prostatectomy or radiation therapy.  Cancer 

that has disseminated from the primary site requires initiation of systemic therapies to treat the 

metastatic lesions.  Most prostate cancers are dependent on AR for growth and survival, and the 

AR remains a validated therapeutic target for all stages of disease.  Full-length AR (FL-AR) is a 

ligand activated transcription factor that mediates the effects of androgen and controls a vast 

transcriptional network. The standard care for advanced prostate cancer is ADT by chemical or 
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surgical castration.  ADT induces disease regression in most patients but is not curative.  

Unfortunately, clinical responses are temporary, and progression manifests in the lethal form 

known as CRPC.  Additional treatment with chemotherapeutics or second generation 

nonsteroidal anti-androgens such as enzalutamide may provide a brief window of efficacy before 

the inevitable emergence of treatment resistance.  The discovery and development of additional 

therapeutic tools to care for these patients represents a major unmet clinical need.  All currently 

approved drugs targeting the AR signaling pathway converge in their ultimate site of action at 

the C-terminus ligand-binding domain (LBD), i.e. enzalutamide.  Ralaniten, a novel first-in-class 

drug, binds the TAU-5 region within activation function-1 of the receptor’s N-terminal domain 

(NTD).  This unique mechanism confers ralaniten with the ability to inhibit FL-AR, as well as 

the AR isoforms that become expressed with resistance to inhibitors of AR LBD (e.g., 

enzalutamide), such as AR that has acquired gain-of-function mutations and AR with structural 

alterations that yield constitutively active truncated AR splice variants (AR-Vs).  The remarkable 

results consistently reported during extensive pre-clinical study of ralaniten merited approval for 

evaluation in humans.  Two analogs of ralaniten have reached first-in-human clinical trials with 

EPI-7386 currently in phase 1 trials in the USA and Canada for CRPC. Here we investigate the 

gene expression profile in prostate cancer cells in response to ralaniten to aid in determining 

potential combination therapies, resistance mechanisms, and off-targets. 

 

1.7.2 Hypothesis and Specific Aims 

Due to a unique mechanism of action, we predict that ralaniten will induce a distinct 

global transcriptional profile compared to non-steroidal antiandrogens.  This study initiates 
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characterization of the ralaniten molecular profile to develop a comprehensive understanding of 

the cellular responses following treatment with AR-NTD inhibitors, and how this differs from 

existing AR-LBD inhibitors, in the hope that these insights will be of value for developing the 

next generation antagonists of the AR-NTD and combination therapies.  The aims of this 

investigation were: 

 

1. Identify genes that are uniquely expressed in response to ralaniten 

2. Determine the role of AR in regulating the expression of these unique genes  

3. If the mechanism is not dependent on AR, elucidate a possible mechanism 
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Chapter 2: MATERIALS & METHODS 

2.1 Materials 

2.1.1 Cell Culture 

 LNCaP cells were from Dr. Leland Chung (Cedars-Sinai Medical Center, Los Angeles, 

CA) and maintained in phenol red-free RPMI 1640 medium supplemented with 5% FBS (VWR, 

Radnor, PA, USA).  LNCaP95 (LN95) cells were provided by Dr. Stephen Plymate (University 

of Washington, Seattle, Washington) and were maintained in phenol red-free RPMI 1640 

medium supplemented with 10% dextran-coated charcoal-stripped FBS.  DU145 cells were from 

Dr. Victor Ling (BC Cancer Research Institute, Vancouver, BC) and maintained in DMEM 

(Invitrogen, Carlsbad, California) with 10% FBS and supplemented with 2 mM L-glutamine and 

1 mM of sodium pyruvate.  PC-3 cells were purchased from the American Type Culture 

Collection (Manassas, Virginia) and maintained in DMEM with 5% FBS and supplemented with 

2 mM L-glutamine and 1 mM of sodium pyruvate. All cells used in the experiments were 

maintained in a humidified incubator at 37℃ with 5% CO2 and passaged in our laboratory not 

more than 5 to 10 times after resurrection.  LNCaP, PC3, and DU145 cells were authenticated by 

short tandem repeat analysis and tested to ensure that they were mycoplasma free by DDC 

Medical (Fisher Scientific, Ottawa, Ontario) in September 2013.  LNCaP95 cells were not 

authenticated in our laboratory.  Cell lines were routinely tested with the Venor™ GeM 

Mycoplasma Detection Kit (Sigma-Aldrich) to ensure that they were mycoplasma-free. 

LNCaP prostate adenocarcinoma cells were isolated from needle aspiration biopsy derived from 

a left supraclavicular lymph node metastasis from a 50-year-old Caucasian male in 1977.  They 
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express FL-AR that contains a T877A mutation in its ligand binding domain, rendering it more 

promiscuous in response to stimulation by steroid hormones other than androgens493,494. 

LNCaP95 cells express functional FL-AR, AR-V7, and potentially other AR splice variants. 

Growth of the LNCaP95 cell line is androgen-independent and was developed from long-term 

continuous culture of LNCaP cells in androgen-depleted conditions495. 

PC3 cells were derived from a bone metastatic lesion from a grade IV prostatic adenocarcinoma 

of a 62-year-old Caucasian male in 1976.  These cells are androgen-insensitive and do not 

express functional AR.  PC3 cells have deletion of the PTEN gene.  PC3 cells have prostatic 

neuroendocrine carcinoma features493,496,497. 

DU145 cells are adenocarcinoma cells of prostatic origin from a 69-year-old white male derived 

from a brain metastasis removed during a parieto-occipital craniotomy 498.  They do not express 

AR or KLK3 (PSA) and test negative for neuroendocrine markers493,499. 

 

2.1.2 Compounds and Reagents 

 Ralaniten was provided by NAEJA (Edmonton, AB, Canada). EPI-7170 and LPY-26 

were synthesized by Dr. Raymond Andersen (University of British Columbia).  SINT1 is a 

natural compound extracted and purified by Dr. Raymond Anderson (UBC).  Enzalutamide was 

purchased from OmegaChem (Lévis, QC, Canada).  Bicalutamide was a gift from Dr. Marc 

Zarenda (AstraZeneca, Cambridge, England).  The synthetic androgen metribolone (R1881) was 

purchased from AK Scientific (Mountainview, CA, USA).  All other chemicals including 
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BADGE-H2O2 were purchased from Sigma Aldrich (St. Louis, MO, USA) unless stated 

otherwise. 

 

2.2 Methods 

2.2.1 Microarray and analysis 

 LNCaP cells were seeded in 6-well culture plates (1.5x105 cells/well) in phenol red-free 

RPMI 1640 with 5% FBS and incubated for 24 hours to allow attachment.  After reaching 60-

70% confluence, the cells were serum-starved for 24 hours. Next, cells were treated with 

enzalutamide, bicalutamide, ralaniten, or DMSO vehicle.  Concentrations employed were based 

upon the IC50s reported for each compound to block AR transcriptional activity  Enzalutamide 

was used at 50X(5 uM) its IC50 (~100 nM), bicalutamide at 50X(10 uM) its IC50 (~200 nM), 

and the poorly soluble ralaniten compound was limited to 3X(35 uM) its IC50 (~10 uM).  After 

24 hours treatment, total RNA was extracted, reverse transcribed, and cDNA generated was 

hybridized to the GeneChip Human Transcriptome Array 2.0 from Affymetrix. Completion of 

the RT-PCR, cDNA hybridization and chip reading were carried out at CDRD's Target 

Validation Division at the University of British Columbia (Vancouver, BC, Canada; 

www.cdrd.ca).  The raw signal output was analyzed using GeneSpring software (version 13.1) as 

recently described by Banuelos et al500.  Briefly, hierarchical clustering of the data was 

performed by conducting a 2-way ANOVA with the significance threshold set at 0.05.  The 

Benjamini-Hochberg correction was applied to reduce the false discovery rate (FDR).  GSEA 

version 7.0 software (http://software.broadinstitute.org/gsea/msigdb/index.jsp) was utilized to 

interrogate differential expression levels between vehicle and drug treatment for each gene, with 
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analysis based upon the Molecular Signatures Database Set H (Hallmark gene sets, 

h.all.v7.1.symbols.gmt).  Statistical significance was limited to those enrichment gene sets 

revealed by GSEA as exhibiting a nominal p < 0.05 and FDR < 0.05.  A pathway analysis was 

applied to cluster these genes common function or within specific cellular pathways.  The 

inclusion cutoff was set at a minimum of 5 genes per pathway and the determination of 

significance (p ≤0.05) was calculated based on both the number of genes which appeared in the 

screen and the magnitude of expression change observed.  Next, genes identified by the 

microarray were ranked by fold change and the top 10 genes were listed individually. 

 

2.2.2 Plasmids and transfections 

  The MT1G-Luciferase and pGL3-Basic reporter plasmids encoding firefly luciferase 

were from Dr. Antoine Galmiche (Université de Picardie Jules Verne, Amiens, France) with 

permission from Dr. Shinichiro Takahashi (Tohoku Medical and Pharmaceutical University, 

Japan).  The pMT1F-Luciferase, pMT2A-Luciferase, and pGL2‐Basic reporter plasmids 

encoding firefly luciferase were from Dr. Carl Séguin (Université Laval, QC, Canada). The 

MT1G-Luciferase plasmid contains a DNA fragment of the MT1G gene encompassing 5ˈ 

flanking promoter sequences up to nucleotide –416 upstream of the transcription starting site. 

The pMT1F-Luciferase plasmid contains a DNA fragment of the MT1F gene encompassing 5ˈ 

flanking promoter sequences up to nucleotide –1843, whereas the pMT2A-Luciferase plasmid 

contains MT2A gene 5ˈ flanking promoter sequences up to nucleotide –293.  All three MT-gene 

reporter plasmids have been previously described elsewhere484,501,502.  Pooled siRNA against AR, 

Nrf2, MTF-1, and non-targeting control were purchased from Dharmacon Research (Lafayette, 
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CO, USA).  Transfections for targeted gene knock-down used Lipofectamine RNAiMAX 

(Invitrogen) to transfect either 10 nM (AR), 15 nM (Nrf2), or 15 nM (MTF-1) of the siRNA, or 

matched equimolar concentration of non-targeting control, into cells in Opti-MEM serum free 

media (Thermo Fisher Scientific).  For reporter assays, transfections were performed in serum-

free media with Fugene6 or FugeneHD (Promega, Madison, Wisconsin).  LNCaP cells seeded in 

24-well plates were co-transfected with one of the luciferase reporters (0.25 μg/well) and the 

corresponding empty vector (0.5 μg/well). 

 

2.2.3 Endogenous gene expression: qRT-PCR assays 

For all experiments, after cells were harvested, the extraction of total RNA from the 

lysate was completed using the RNeasy Micro Kit (Qiagen).  These samples were then cleaned 

from nucleic acid contamination using DNase I Kit, Amplification grade (MilliporeSigma) and 

reverse transcribed using the High-Capacity RNA-to-cDNA Kit (ThermoFisher Scientific).  

Diluted cDNA and Platinum SYBR Green qPCR SuperMix-UDG with ROX (Invitrogen) were 

combined with gene specific primers.  Transcripts were measured by qRT-PCR QuantStudio 6 

Flex Real-Time PCR System (Applied Biosystems by Life Technology) and gene expression was 

normalized to the specified housekeeping genes. The gene specific primer sequences are 

provided below in Table 2.1. 
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2.2.4 Western blot analyses 

For whole cell analysis, lysates were harvested in RIPA buffer (50 mM Tris pH 7.5, 150 

mM NaCl, 1% IGEPAL CA630, 0.1% SDS, 0.5% deoxycholate) containing cOmplete Mini 

EDTA-free Protease Inhibitor Cocktail TabletsTM (Roche) and PhosSTOP Phosphatase 

Inhibitor Cocktail TabletsTM (Roche, Laval, Quebec).  Using a syringe with a 28-gauge needle, 

cells were homogenized, and the lysates were then cleared by centrifugation at 15,000 g for 15 

minutes.  

For separation of cytoplasmic and nuclear fractions, cells were washed in ice cold 

phosphate-buffered saline (PBS) and resuspended in a hypotonic lysis buffer (10 mM Tris-HCl 

pH 7.5, 10 mM KCl, 3 mM MgCL2, 0.5% IGEPAL CA-630) with cOmplete EDTA-free 

protease inhibitor and PhosStop phosphatase inhibitor (Roche). The lysates were incubated for 

15 minutes on ice and the nuclei were separated by centrifugation at 500 g for 10 minutes. The 

pelleted fraction resuspended in RIPA buffer with cOmplete EDTA-free protease inhibitor and 

PhosStop phosphatase inhibitor and homogenized using a syringe with a 28-gauge needle. 

Lysates were incubated for 30 minutes at 4°C on a rotating rack and then cleared by 

centrifugation at 15,000 g for 15 minutes.  The concentration of protein was quantified by using 

a BCA Protein Assay Kit (Thermo Scientific Inc., Rockford, USA).  Equal amounts of denatured 

proteins were separated by 10% SDS-PAGE.  Protein was transferred to nitrocellulose (GE 

Healthcare Life Sciences) or PVDF membrane (Millipore LTD, Cork, IRL) and blocked for 1 

hour in 5% weight/volume (w/v) nonfat milk in phosphate-buffered saline (pH 7.4) containing 

0.05% Tween-20 (PBST) prior to incubation with primary antibody. Relevant information 

regarding specific antibodies are given below in Table 2.2.  Antibodies were diluted in PBST 
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with 5% skim milk and membranes were incubated overnight at 4°C with primary antibody.  The 

following day, membranes were washed three times with PBST, and then incubated with a 

secondary antibody conjugated to horseradish peroxidase for 1-2 hours at room temperature. 

After four washes with PBST, chemiluminescence was detected with ECL Prime Reagent (GE 

Healthcare Life Science, Mississauga, ON). Western blot images were captured using the 

ChemiDoc MP Imaging System (Bio-Rad Laboratories, Hercules, California). 

 

2.2.5 Comparison of AR-NTD inhibitors 

 LNCaP cells were seeded in 24 well culture plates (3.0x104 cells/well) in phenol red-free 

RPMI 1640 with 5% FBS and incubated for 24 hours to allow attachment.  At 60-70% 

confluence, the cells were transfected with the reporter plasmid pMT1F-Luciferase, pMT1G-

Luciferase, or pMT2-Luciferase.  After 16 hours, cells were treated with SINT1 (35 μM), LPY-

26 (35 μM), BADGE-2H2O (35 μM), Ralaniten (35 μM) or DMSO vehicle.  After 24 hours of 

treatment, cells were harvested and lysed using passive lysis buffer (Promega, Madison, 

Wisconsin). Luciferase activity was measured for 10 seconds with the Luciferase Assay System 

(Promega) and the data were normalized to total protein concentration determined by Bradford 

assay. 

 

2.2.6 Dose response studies 

 For the reporter assays, LNCaP cells were seeded in 24 well culture plates (3.0x104 

cells/well) in phenol red-free RPMI 1640 with 5% FBS and incubated for 24 hours. At 60-70% 
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confluence, the cells were transfected with the reporter plasmid pMT1F-Luciferase, pMT1G-

Luciferase, or pMT2-Luciferase.  After 16 hours, cells were treated with increasing 

concentrations of ralaniten or DMSO vehicle.  Following 24 hours of treatment, cells were 

harvested and lysed using passive lysis buffer (Promega, Madison, Wisconsin). Luciferase 

activity was measured for 10 seconds with the Luciferase Assay System (Promega) and the data 

were normalized to total protein concentration determined by Bradford assay. 

For the qRT-PCR assays, LNCaP cells were seeded in 6 well culture plates (1.5x105 

cells/well) in phenol red-free RPMI 1640 with 5% FBS and incubated for 24 hours to allow 

attachment.  After reaching 60-70% confluence, the cells were serum starved for 24 hours and 

then treated with increasing concentrations of ralaniten or DMSO vehicle.  After 24 hours of 

treatment, cells were harvested in 1 mL TRIzol reagent (Invitrogen) and mRNA transcripts were 

isolated and quantified relative to the housekeeping gene SDHA. 

 

2.2.7 Comparison of gene expression responses across cell lines 

LNCaP, LNCaP95, PC3, and DU145 cells were seeded separately in 6 well culture plates 

(1.5x105 cells/well) each in their respective media specified above including serum and 

incubated for 24 hours to allow attachment.  Media was then removed, switched with serum free 

media, and cells were serum starved for 24 hours prior to treatment.  Cells were treated with 

enzalutamide, ralaniten, EPI-7170 or DMSO vehicle. For the MT isoforms experiment, 

enzalutamide was used at 5 uM and 20 uM, ralaniten at 5 uM and 35 uM and its more potent 

analog, EPI-7170 at ~5X (5 uM) its IC50 (~1 uM).  For the Nrf2 and Nrf2-regulated genes 

experiment, cells were treated with enzalutamide (5 μM), ralaniten (35 μM), EPI-7170 (5 μM) or 
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DMSO vehicle.  After 24 hours of treatment, cells were harvested in 1 mL TRIzol reagent 

(Invitrogen) and mRNA transcripts were isolated and quantified relative to the housekeeping 

gene SDHA. 

 

2.2.8 Nrf2 nuclear translocation 

 LNCaP cells were seeded in 10cm culture plates (1.0x106 cells/plate) in phenol red-free 

RPMI 1640 with 5% FBS and incubated for 24 hours to allow attachment.  After reaching 60-

70% confluence, the cells were serum starved for 24 hours.  Next, cells were pre-treated for 1 

hour with ralaniten (35 uM), enzalutamide (5 uM), bicalutamide (10 uM) or DMSO vehicle 

before stimulation with 1 nM androgen (R1881) or EtOH control. After 24 hours, cells were 

harvested, and cytoplasmic and nuclear fractions prepared as described in section 2.2.4.  Levels 

of proteins were determined by immunoblot using antibodies to Nrf2, PSA(KLK3), Lamin, and 

B-actin. 

 

2.2.9 Targeted gene knock down studies 

For the qRT-PCR experiments, LNCaP and LNCaP95 cells were seeded in 6 well culture 

plates (1.5x105 cells/well) each in their respective media specified above including serum.  After 

incubating for 24 hours to allow attachment, cells were transfected with siRNA or non-targeting 

control.  At 24 hours post transfection, cells were pre-treated with enzalutamide (5 μM), ralaniten 

(35 μM), EPI-7170 (5 μM) or DMSO vehicle for 16 hours prior to addition of 1 nM R1881 or 

EtOH vehicle control.  After 24 hours of treatment, cells were harvested in 1 mL TRIzol reagent 
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(Invitrogen) and mRNA transcripts were isolated and quantified relative to the housekeeping 

gene SDHA. 

 For the protein expression analysis, LNCaP and LNCaP95 cells were seeded in 10 cm 

culture plates (1.0x106 cells/plate) each in their respective media specified above including 

serum.  Following a 24-hour incubation period to allow attachment, cells were transfected with 

siRNA or non-targeting control.  At 24 hours post transfection, cells were pre-treated with 

enzalutamide (5 μM), ralaniten (35 μM), EPI-7170 (5 μM) or DMSO vehicle for 16 hours prior 

to addition of 1 nM R1881 or EtOH vehicle control.  After 24 hours of treatment, cells were 

harvested and prepared as described above.  Protein expression was determined by immunoblot 

using antibodies to AR, Nrf2, and B-actin. 

 

2.2.10 Statistical analysis A One- or Two-Way ANOVA statistical test was used to determine 

significance for all comparisons unless otherwise stated (GraphPad Prism, version 8.0). p-value 

corrections were applied for all multiple comparisons (Tukey, Sidak or Dunnett as appropriate), 

and a p-value < 0.05 was considered statistically significant. 
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 Table 2.1 Gene-specific primer sequences for qRT-PCR experiments. 

 

Target Direction Sequence 

 

AR 

FWD 

REV 

5'-AGGAACTCGATCCTATCATTGC-3' 

5'-CTGCCATCATTTCCGGAA-3'  

 

AR-V7 

FWD 

REV 

5'-CCATCTTGTCGTCTTCGGAAATGTTAT-3' 

5'-TTTGAATGAGGCAAGTCAGCCTTTCT-3' 

 

FKBP5 

FWD 

REV 

5'-CGCAGGATATACGCCAACAT-3' 

5'-GAAGTCTTCTTGCCCATTGC-3' 

 

PSA 

FWD 

REV 

5'-TCATCCTGTCTCGGATTGTG-3' 

5'-ATATCGTAGAGGGGGTGTGG-3' 

 

MT1F 

FWD 

REV 

5'-ACAGAGAGACATGTACAAACCTGG-3' 

5'-GAATGTAGCAAATGGGTCAAGGTG-3' 

 

MT1G 

FWD 

REV 

5'-ATAGAGTGACCCGTAAAATCCAGG-3' 

5'-TAGCAAAGGGGTCAAGATTGTAGC-3' 

 

MT1X 

FWD 

REV 

5'-GTGTTTTCCTCTTGATCGGGAACTC-3' 

5'-TCCATTTCGAGGCAAGGAGAAG-3' 

 

MT2A 

FWD 

REV 

5'-AGATGTAAAGAACGCGACTTCCAC-3' 

5'-AATATAGCAAACGGTCACGGTCAG-3' 

 

MTF1 

FWD 

REV 

5'-CACCCTGTACGTTATCTTCTAGCTC-3' 

5'-CAGTTTCCTTACCACCTCCTAAGTC-3' 

 

SDHA 

FWD 

REV 

5'-CAGCATGTGTTACCAAGCTGT-3' 

5'-CGTGTCGTAGAAATGCCACCT-3' 
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Table 2.2 Antibody sources and working concentrations (optimized) 

Target Species Supplier Concentration 

    

AR  Rabbit pAb Abcam 1:1,000 

PSA/KLK3  Rabbit mAb Cell Signaling 1:1,000 

Nrf2  Rabbit pAb Abcam 1:1,000 

Lamin A/C  Mouse mAb BD Biosciences 1:1,000 

β-Actin  Mouse mAb Sigma-Aldrich 1:5,000 

α-mouse  Horse mAb Cell Signaling 1:10,000 

α-rabbit Goat mAb Cell Signaling 1:10,000 
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Chapter 3.  RESULTS 

3.1 Identification of genes that are uniquely expressed in response to ralaniten 

Ralaniten directly binds to AF-1 in the AR-NTD to block essential protein interactions 

required for transactivation that include the basal transcriptional machinery. Antiandrogens 

compete with androgen for the C-terminal LBD and interfere with formation of the AF-2 

interface for interaction with coactivators to mediate transcriptional activity. One essential 

interaction blocked by antiandrogens is N/C interaction required for androgen-dependent 

transactivation. Thus, ralaniten acts via a different mechanism to achieve inhibition of AR 

signaling compared to antiandrogens.  Differences between these two classes of inhibitors on 

gene expression in the absence of androgen has not previously been reported, thus warranting 

characterization. 

   

3.1.1 In the absence of androgen, ralaniten has a distinct gene expression signature 

compared to antiandrogens 

To measure differential changes in global gene expression, we employed a whole 

transcriptome microarray on cDNA isolated from LNCaP cells and compared the effects of 

ralaniten with the AR-LBD inhibitors, ENZ and BIC, relative to the vehicle control, DMSO 

(Figure 3.1A).  Modeling the typical patient status when treating cases of advanced disease, we 

focused specifically within the context of therapeutic castration; hence, the experiment was 

conducted in androgen-free conditions.  In addition, this would preclude confounding the data 

with potential masking effects due to the presence of androgen.  Samples were analyzed using 
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Affymetrix microarray, and hierarchal clustering revealed a subset of genes robustly induced by 

ralaniten compared to vehicle. Notably, the expression of these genes was not observed to be 

elevated in samples treated with BIC or ENZ suggesting that this effect was unique to treatment 

with ralaniten. 

Exploring the biological significance of these data further, a pathway analysis determined 

that these genes clustered within specific cellular pathways or had common functions (Figure 

3.1B).  Setting an inclusion cut-off at a minimum of 5 genes per pathway, the determination of 

significance (p ≤0.05) was calculated based on both the number of genes which appeared in the 

screen and the magnitude of expression change observed. As might be expected of an inhibitor of 

AR, significant changes were observed in the expression of AR pathway genes. However, the 

most significantly altered cluster involved genes comprising elements of the MT-Heavy Metal 

Pathway.   

When genes identified by the microarray were ranked by fold-change and listed 

individually, members of the MT-Heavy Metal pathway comprised a majority within the top 10 

candidate genes (Figure 3.1C).  The data revealed that for ralaniten within the top 10 most highly 

induced levels of expression of genes, 6 were isoforms from the MT1 and MT2 branches of the 

MT family.  All 6 isoforms were upregulated by orders of magnitude in comparison to the 

treatment conditions with DMSO, BIC, or ENZ.  These results revealed that ralaniten uniquely 

induced expression of MT1 and MT2. 
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Figure 3.1 Expression of MT isoforms is positively correlated with ralaniten treatment 

(A) Heatmap showing differentially regulated genes in LNCaP cells following treatment with BIC (10 µM), ENZ (5 

µM), RAL (35 µM) or DMSO vehicle.  Data show two biological replicates per treatment group and are normalized 

to vehicle.  (B)  Pathway analysis showing genes clustered within specific cellular pathways or with common 

functions.  Inclusion cut-off (≥5 genes/pathway), significance calculated based on both the number of genes which 

appeared in the screen and the magnitude of expression change observed (p ≤0.05).  (C) List ranking the top 10 

genes which positively correlate with ralaniten treatment.  Five genes cluster within the MT family, show significant 

enrichment, and are specifically associated with ralaniten treatment. 
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3.2 Induction of MT genes is unique to ralaniten 

AR-LBD inhibitors ENZ and BIC have no effect on MT gene expression. To investigate 

whether the induction of expression of MT1 and MT2 by ralaniten was unique to ralaniten or a 

general effect common to AR-NTD inhibitors, we tested SINT-A and LPY-26 which bind to a 

unique site on the AR-NTD but have no structural similarity to ralaniten, plus BADGE-2H2O, a 

structural analog of ralaniten with no AR activity (Figures 3.2A and 3.2B).  Three reporter gene 

constructs (pMT1F-luc, pMT2-luc, and pMT1G-luc) were evaluated in transiently transfected 

LNCaP cells. These constructs contain the promoter regions of these genes with common 

binding sites for Sp1, NF1, GR, Nrf2, MTF-1, and AP-1 transcription factors and are inducible 

by metals, hypoxia, oxidative stress, steroid hormones, xenobiotics, and inflammatory cytokine 

signaling 481,484,490,501–504 (also discussed in Methods section). At equimolar concentrations set to 

35 µM for all compounds, only ralaniten induced the activities of these reporters (Figure 3.2C).  

Neither of the alternate AR-NTD inhibitors nor BADGE-2H2O had any significant activity.  

Thus, induction of expression of MT genes was not a shared effect amongst all AR-NTD 

inhibitors and instead it was unique to ralaniten. These reporter gene data suggest a mechanism 

of increased transcription of these genes by ralaniten rather than stabilization of their mRNA.  

To validate the induction of expression of MT genes shown in the array data, qPCR was 

performed using cDNA generated by reverse transcription of the total mRNA harvested from 

LNCaP cells from three independent experiments. Concentrations employed were based upon the 

IC50s reported for each compound to block AR transcriptional activity. Enzalutamide was used 

at 50X and 200X its IC50 (~100 nM).  Ralaniten concentrations were limited due to poor 

solubility at 0.5X and 3X its IC50 (~10 µM) and its more potent analog, EPI-7170 at ~5X its 
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IC50 (~1 µM). ENZ did not induce expression of MT1 and MT2 genes at either the high or low 

concentration (Figure 3.2D).  EPI-7170 induced some minimal transcript expression which was 

not statistically significant.  Only ralaniten at 35 µM significantly induced expression of MT1 

and MT2 genes whereas at a lower concentration of 5 µM had no effect.  In addition, primers for 

the MT3 isoform were included to determine whether ralaniten induced all or a subset of 

metallothionein genes. This induction was unique to MT1 and MT2 isoforms with ralaniten 

having no effect on expression of the MT3 isoform. Overall, these data validate that the gene-

specific upregulation of MT1 and MT2 families was unique to ralaniten at concentrations 

required to block AR-transcriptional activity yet did not induce expression of MT3. 
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Figure 3.2 Induction of MT gene expression is unique to ralaniten 

(A) Illustration of the AR region targeted by the various compounds tested.  BADGE-2H2O is inactive and does not 

inhibit the AR.  Antagonists of similar class are grouped together.  (B) Depiction of the chemical structure for each 
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compound.  (C) LNCaP cells transfected with the various MT1/2-luciferase reporters.  Cells were subsequently 

treated with DMSO, BADGE-2H2O (35 μM), RAL (35 μM), SINT1 (35 μM), or LPY-26 (35 μM) for 24 hrs.  Data 

presented as mean ± SEM and analyzed by one-way ANOVA with Dunnett's test applied post hoc, n=3 independent 

experiments. (D) Transcript levels of MT1F, MT1G, MT1X, MT2A and MT3 normalized to SDHA from LNCaP cells 

treated with ENZ (5 and 20 µM), RAL (5 and 35 µM), EPI-7170 (5 μM) or v/v DMSO.  Data presented as mean ± 

SEM and analyzed by two-way ANOVA with Sidak's test applied post hoc, n=3 independent experiments (*p<0.05; 

**p<0.01; ***p<0.001; # p<0.0001; n.s., not significant). 

 

 

 

 

 

 

3.2.1 Ralaniten induction of MT gene expression is concentration dependent 

A concentration dependent relationship between ralaniten and MT gene expression was 

investigated using LNCaP cells transiently transfected with MT-luciferase reporter gene isoform 

constructs. These experiments showed that increasing concentrations of ralaniten yielded 

increasing induction of reporter activities (Figure 3.3A). Measurement of endogenous gene 

expression by qPCR yielded consistent results to the reporter gene constructs. At 25 µM 

ralaniten, significant induction of MT1F, MT1G, MT1X, and MT2A were measured and 35 µM 

further increased these levels (Figure 3.3B).  Regarding gene expression, these data support that 

ralaniten induction of these isoforms trends with elevating concentrations. 
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Figure 3.3 Ralaniten dose-response studies 

(A) LNCaP cells transfected with MT1-luciferase or MT-2-luciferase reporters.  Cells were subsequently treated 

with DMSO or increasing concentrations of EPI-002 (0.5-35 μM) for 24 hours. Data presented as mean ± SEM and 

analyzed by one-way ANOVA with Dunnett's test applied post hoc, n=3 independent experiments. (B) Transcript 

levels of MT1F, MT1G, MT1X, and MT2A normalized to SDHA from LNCaP cells treated with DMSO or increasing 

concentrations of RAL (0.5-35 μM) for 24 hours. Data presented as mean ± SEM and analyzed by two-way 

ANOVA with Dunnet's test applied post hoc, n=3 independent experiments. 

(*p<0.05; **p<0.01; ***p<0.001; **** p<0.0001; n.s., not significant). 
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3.3 Induction of MT gene expression by ralaniten in cells that express AR 

 Despite sharing the same therapeutic target as ralaniten, other inhibitors of the AR did not 

affect expression of MT genes (Figure 3.2).  To determine if expression of AR impacted ralaniten 

induction of MT1 and MT2 isoforms, a battery of prostate cancer cell lines that differ in 

expression and dependence upon the AR were examined. In AR-negative DU145 and PC3 

prostate cancer cells, ralaniten was generally a poor-inducer of MT1 and MT2 gene expression. 

Statistically significant induction in these cells was only measured for MT1F in PC3 cells 

whereas for AR-positive LNCaP95 cells three of the four isoforms were significantly induced 

(Figure 3.4). Consistent with what was measured for LNCaP cells (Figure 3.2D), neither 

enzalutamide nor EPI-7170 had any significant effects (Figure 3.4).  These data suggest that the 

induction of MT genes by ralaniten was not unique to LNCaP cells but also included LNCaP95 

cells. Both of these cells express functional AR.  Poor induction of expression of MT genes by 

ralaniten in AR-negative cells suggested that the mechanism may involve AR or alternatively a 

sensitivity of the parental LNCaP cells and its subline LNCaP95. 
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Figure 3.4 MT induction occurs in cell lines with functional, full-length AR 

(A) Transcript levels of MT1F, MT1G, MT1X, MT2A and MT3 normalized to SDHA from LNCaP95, DU145 (B), 

and PC3 (C) cells treated with ENZ (5 and 20 µM), RAL (5 and 35 µM), EPI-7170 (5 μM) or v/v DMSO. Data 

presented as mean ± SEM and analyzed by two-way ANOVA with Sidak's test applied post hoc, n=3 independent 

experiments, (*p<0.05; **p<0.01; ***p<0.001; # p<0.0001; n.s., not significant). 
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3.3.1 Induction of MT gene expression by ralaniten is by a mechanism independent of AR 

To determine whether the AR played a central role in the mechanism of ralaniten 

induction of MT gene expression, AR-targeted knock-down using siRNA was employed in both 

LNCaP and LNCaP95 cells.  ENZ (5 μM) and EPI-7170 (5 μM) were included as controls. 

Knockdown of AR protein was achieved in LNCaP cells both in the absence and presence of 

androgen (R1881) and each of the inhibitors (Figure 3.5A). At the transcript level, qPCR 

experiments confirmed knock down of AR mRNA and consistent with previous reports that these 

cells do not express significant levels of AR-V7 (Figure 3.5B).  Knockdown of AR protein levels 

were sufficient to block androgen-induced levels of two well-characterized AR target genes, 

KLK3 (PSA) and FKBP5. Knockdown of AR protein had no inhibitory effects on ralaniten-

induction of MT isoforms (Figure 3.5C). Similarly, in LNCaP95 cells, knockdown of levels of 

AR and AR-V7 proteins (Figure 3.5D) and mRNAs (Figure 3.5E) were achieved that were 

sufficient to block androgen-induction of expression KLK3/PSA and FKBP5 genes. Decreasing 

levels of AR had minimal effect on ralaniten induced expression of MT genes (Figure 3.5F).  

Together these findings suggest that AR expression was not required to mediate the upregulation 

of MT genes by ralaniten thereby revealing that this is potentially an off-target effect. 
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Figure 3.5 MT induction by ralaniten occurs independently of full-length AR 

(A) Western blots of AR levels in LNCaP and LNCaP95 (B) cells transfected with control or AR targeting siRNA 

(10 nM) for 24h and treated with DMSO in the presence or absence of R1881 (1 nM), ENZ (5 μM), RAL (35 μM), 

or EPI-7170 (5 μM). (C) Transcript levels of AR, AR-V7, PSA, and FKBP5 normalized to SDHA from LNCaP and 

LNCaP95 (D) cells treated with DMSO in the presence or absence of R1881 (1 nM), ENZ (5 μM), RAL (35 μM), or 

EPI-7170 (5 μM). Expression of androgen responsive genes are reduced following treatment with siRNA targeting 

the AR.  Data presented as mean ± SEM and analyzed by two-way ANOVA with Sidak's test applied post hoc, n=3 

independent experiments.  (E) Transcript levels of MT1F, MT1G, MT1X, and MT2A normalized to SDHA from 
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LNCaP and LNCaP95 (F) cells treated with DMSO in the presence or absence of R1881 (1 nM), ENZ (5 μM), RAL 

(35 μM), or EPI-7170 (5 μM).  Expression of MT isoforms are unaffected following treatment with siRNA targeting 

the AR.  Data presented as mean ± SEM and analyzed by two-way ANOVA with Sidak's test applied post hoc, n=3 

independent experiments, (*p<0.05; **p<0.01; ***p<0.001; **** p<0.0001; n.s., not significant). 

 

3.4 Ralaniten impacts the NRF2 pathway 

MT genes are transcriptionally regulated by multiple transcription factors including Nrf2. 

Since each of the MT reporter gene constructs that was induced by ralaniten contain binding sites 

for Nrf2 (Figures 3.2C and 3.3A), we examined if ralaniten treatment impacted the Nrf2 

pathway.  Western blot analyses of LNCaP cells showed that ralaniten (35 μM), ENZ (5 μM), 

and BIC (10 μM) all blocked androgen-induced levels of PSA but only ralaniten increased levels 

of Nrf2 protein and Nrf2 nuclear accumulation (Figure 3.6A). Levels of Nrf2 mRNA were not 

altered by ralaniten or any of the other treatments (Figure 3.6B).  Expression of Nrf2-regulated 

genes were also significantly increased with ralaniten treatment, but not with ENZ.  Ralaniten 

significantly induced the expression of heme oxygenase-1 (HMOX1) and SLC7A11 (Figure 

3.6B).  Interestingly, EPI-7170 (5 μM) also induced levels of SLC7A11 transcript in LNCaP 

cells. To build further insight into the cell line responses observed in Figure 3.4, levels of Nrf2 

transcript and expression of some Nrf2 target genes were measured in response to ralaniten, 

ENZ, and EPI-7170.  In response to ralaniten, there were significant increases in levels of Nrf2 

mRNA in both LNCaP95 and PC3 cells, whereas in DU145 cells there was no significant effect 

(Figure 3.7).  Levels of expression of Nrf2 target genes were significantly increased by ralaniten 

in LNCaP95 cells (SLC7A11) and PC3 cells (HMOX1, NQO1, and SLC7A11). Consistent with 

ralaniten having no effect on levels of Nrf2 mRNA in DU145 cells, nor were there any 

significant effects on expression of Nrf2 target genes (Figure 3.7B). In PC3 cells, the results 
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measured for ralaniten induced expression of Nrf2 and its target genes (Figure 3.7C) do not 

correlate with the findings that MT1G, MT1X and MT2A genes are not significantly induced by 

ralaniten in these cells (Figure 3.4C). 

 

Figure 3.6 Ralaniten impacts the NRF2 pathway 

(A) Western blots of NRF2 and PSA levels in LNCaP cells treated with DMSO, RAL (35 μM), ENZ (5 μM), or BIC 

(10 μM) in the presence or absence of R1881 (1 nM).  All inhibitors blocked androgen-induced levels of PSA but 

only RAL increased NRF2 levels and NRF2 nuclear translocation.  (B) Transcript levels of NRF2 and the NRF2-

regulated genes HMOX1, NQO1, and SLC7A11 normalized to SDHA from LNCaP cells treated with ENZ (5 µM), 

RAL (35 µM), EPI-7170 (5 μM) or v/v DMSO.  Data presented as mean ± SEM and analyzed by two-way ANOVA 

with Sidak's test applied post hoc, n=3 independent experiments, (*p<0.05; **p<0.01; n.s., not significant). 
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Figure 3.7 NRF2 pathway responses to ralaniten vary in prostate cancer cell lines 

(A) Transcript levels of NRF2, HMOX1, NQO1, and SLC7A11 normalized to SDHA from LNCaP95, DU145 (B), 

and PC3 (C) cells treated with ENZ (5 µM), RAL (35 µM), EPI-7170 (5 μM) or v/v DMSO.  Data presented as 

mean ± SEM and analyzed by two-way ANOVA with Sidak's test applied post hoc, n=3 independent experiments, 

(*p<0.05; **p<0.01; ***p<0.001; n.s., not significant). 
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3.4.1 Induction of MT gene expression by ralaniten is independent of NRF2 

To determine whether Nrf2 played a central role in the mechanism of ralaniten induction 

of MT gene expression, Nrf2-targeted knock-down using siRNA was employed in both LNCaP 

and LNCaP95 cells.  Knockdown of Nrf2 protein was achieved in LNCaP cells both in the 

absence and presence of androgen (R1881) and each of the inhibitors (Figure 3.8A).  At the 

transcript level, qPCR experiments confirmed specific knock down of Nrf2 mRNA and no effect 

on levels of Nrf1 mRNA (Figure 3.8B).  Furthermore, knockdown of Nrf2 levels adequately 

blocked the expression levels of Nrf-2 target genes, NQO1 and SLC11A7, induced by EPI-7170 

and ralaniten.  Importantly, knockdown of Nrf-2 expression had no inhibitory effects on 

ralaniten-induction of MT isoforms (Figure 3.8C).  Similarly, in LNCaP95 cells, sufficient 

knockdown of Nrf-2 protein (Figure 3.8D) and mRNA (Figure 3.8E) levels were achieved to 

block ralaniten and EPI-7170 induced expression of Nrf-2 target genes (Figure 3.8E). The impact 

of decreasing levels of Nrf-2 had no inhibitory effect on ralaniten induced expression of MT 

genes (Figure 3.8F).  Together these findings suggest that Nrf-2 expression was not required to 

mediate the upregulation of MT genes by ralaniten. 
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Figure 3.8 MT induction by ralaniten occurs independently of NRF2 

(A) Western blots of NRF2 levels in LNCaP and LNCaP95 (D) cells transfected with control or NRF2 targeting 

siRNA (15 nM) for 24h and treated with DMSO in the presence or absence of R1881 (1 nM), ENZ (5 μM), RAL (35 

μM), or EPI-7170 (5 μM). (B) Transcript levels of NRF1, NRF2, NQO1, and SLC7A11 normalized to SDHA from 

LNCaP and LNCaP95 (E) cells treated with DMSO in the presence or absence of R1881 (1 nM), ENZ (5 μM), RAL 

(35 μM), or EPI-7170 (5 μM). Expression of NRF1 is unaffected and transcripts of NRF2 and NRF2-responsive 

genes are reduced following treatment with siRNA targeting NRF2.  Data presented as mean ± SEM and analyzed 
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by two-way ANOVA with Sidak's test applied post hoc, n=3 independent experiments.  (C) Transcript levels of 

MT1F, MT1G, MT1X, and MT2A normalized to SDHA from LNCaP and LNCaP95 (F) cells treated with DMSO in 

the presence or absence of R1881 (1 nM), ENZ (5 μM), RAL (35 μM), or EPI-7170 (5 μM).  Expression of MT 

isoforms are unaffected following treatment with siRNA targeting NRF2.  Data presented as mean ± SEM and 

analyzed by two-way ANOVA with Sidak's test applied post hoc, n=3 independent experiments, 

(*p<0.05; **p<0.01; ***p<0.001; **** p<0.0001; n.s., not significant). 

 

 

 

 

3.5 Induction of MT gene expression by ralaniten is dependent on MTF1 

To determine whether the transcription factor MTF1 played a central role in the 

mechanism of ralaniten induction of MT gene expression, MTF1-targeted knock-down using 

siRNA was carried out in LNCaP and LNCaP95 cells.  In both the absence and presence of 

androgen (R1881) and each of the inhibitors, MTF-1 mRNA levels were adequately suppressed 

in each cell line following treatment with targeted siRNA (Figure 3.9C).  To demonstrate 

specificity, siRNA treatments targeting either the AR or Nrf-2 demonstrated no effect on MTF-1 

transcripts as expected (Figure 3.9A, B). Strikingly, induction of expression of all MT isoforms 

by ralaniten tested in either cell line was significantly reduced by treatment with siRNA targeting 

MTF-1 (Figure 3.9D, E).  These results strongly suggest that ralaniten induced MT isoforms by a 

mechanism that was dependent on MTF-1 and independent of AR. 
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Figure 3.9 MT induction by ralaniten is dependent upon MTF-1 

Transcript levels of MTF-1 normalized to SDHA from LNCaP and LNCaP95 cells treated with siRNA (15 nM) 

targeting the AR (A), NRF2 (B), or MTF-1 (C) with subsequent treatment of DMSO in the presence or absence of 

R1881 (1 nM), ENZ (5 μM), RAL (35 μM), or EPI-7170 (5 μM).  siRNA targeting the AR or NRF2 had no effect 

upon MTF-1 expression. Data presented as mean ± SEM and analyzed by two-way ANOVA with Sidak's test 

applied post hoc, n=3 independent experiments. (D) Transcript levels of MT1F, MT1G, MT1X, and MT2A 

normalized to SDHA from LNCaP and LNCaP95 (E) cells treated with DMSO in the presence or absence of R1881 

(1 nM), ENZ (5 μM), RAL (35 μM), or EPI-7170 (5 μM). Expression of MT isoforms are significantly reduced 

following treatment with siRNA targeting MTF-1. Data presented as mean ± SEM and analyzed by two-way 

ANOVA with Sidak's test applied post hoc, n=3 independent experiments, 

(*p<0.05; **p<0.01; ***p<0.001; **** p<0.0001; n.s., not significant). 

A B C 

D E 
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4.0 DISCUSSION 

4.1 Summary and implications 

Most if not all advanced prostate cancer will develop resistance to androgen deprivation 

therapies with the patient succumbing to metastatic CRPC.  For most CRPC patients their 

disease is still dependent on AR signaling for growth and survival despite castration.  The 

addition of potent second-generation hormonal therapies deepens the suppression of AR activity, 

yet while initially effective, clinical benefit is of limited duration and resistance soon develops.  

A myriad of resistance mechanisms exist which contribute to this phenomenon. Salient examples 

include hyperactivation of AR by mechanisms that include gene amplification or overexpression, 

the emergence of gain-of-function AR-LBD mutations, and constitutively active AR-Vs which 

lack the LBD.  The AR functions as a master regulator of a vast compendium of genes.  To 

inhibit AR pathway signaling, the strategy of all currently approved drugs ultimately converge 

upon the AR-LBD to target and disrupt AR activation.  Unlike the AR-LBD, the AR-NTD is 

essential for AR function, and is required to drive the transcriptional activity of FL-AR, AR-Vs, 

and AR that have acquired LBD gain-of-function mutations.   

Ralaniten is a novel, first-in-class drug that suppresses AR activity through binding the 

AR-NTD.  This contrasting approach to inhibition of the molecular target may impact the overall 

cellular response by interfering with downstream signaling in unique ways.  The discrete binding 

site location of individual inhibitors has the potential to drive drug specific differences in co-

activator or co-repressor interactions or may alter post-translational modifications which 

augment the activity or stability of the AR.  Due to its novel mechanism of action, we predicted 

that ralaniten would induce a distinct global expression profile compared to alternative AR-



78 

 

inhibitors.  Here we initiated the characterization of ralaniten specific gene expression profiles 

which help to define the molecular changes that occur following ralaniten exposure. 

We commenced by looking for a ralaniten-specific gene expression signature. Data 

generated from the microarray analysis were used to identify differences between AR 

antagonists.  Hierarchal clustering, pathway analysis, and fold-change ranking of upregulated 

genes from the microarray data distinguished a group of MT isoforms and suggested a potential 

ralaniten-specific effect when compared to AR-LBD targeting antiandrogens.  Utilizing MT-

luciferase DNA plasmids that were selected as models based on their promoter sequence 

concordance with MT isoforms drawn from our ranked list, reporter assays demonstrated that 

induction of MT genes was not simply a shared effect among all AR-NTD inhibitors,  

Furthermore, it could not be explained as a basic feature of molecular structure, as BADGE-

H2O2 did not induce expression of the MT reporters.  These data strongly suggested that 

ralaniten induction of MT gene expression was unique.  In addition, dose-response studies 

demonstrated a robust concentration dependent relationship between ralaniten and MT gene 

expression.  Having deciphered an unexpected group of genes from the MT gene family as 

forming part of a ralaniten gene signature, we set out to begin unravelling the mechanism of 

induction. 

The MT promoters that were induced by ralaniten contain binding sites for numerous 

transcription factors that include: multiple copies of a metal-response element (MRE) which 

binds MTF-1; glucocorticoid-response elements (GRE) to which GR binds481; and redox 

(antioxidant)-response elements (RRE) that are binding sites for Nrf1 and Nrf2485,486. Ralaniten 

binds the AR-NTD.  Thus, investigating AR involvement in MT expression by ralaniten was a 
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natural starting point due to the presence of a GRE within MT gene promoters and known 

promiscuous binding by the AR to some GREs505–508.  Many steroid receptors show a high 

degree of homology, particularly in the DNA-binding domain, with phylogenetic studies 

demonstrating a close relationship between the AR and GR.  Indeed, evidence has revealed that 

the AR and GR share the same chromatin binding sites.  Considering that recent studies, notably 

those focusing specifically on advanced prostate cancer, have demonstrated a GR capacity to 

regulate genes considered to be AR pathway-specific509, it is reasonable to surmise that AR too 

may be capable of affecting GR regulated genes. This provides one possible explanation for MT 

gene expression by ralaniten to occur through an AR-dependent mechanism. 

To determine an absolute requirement for any potential AR-dependent mechanism, we 

contrasted the effect of ralaniten treatment across a panel of prostate cancer cell lines with 

differing AR expression profiles (Fig. 3.2D, Fig. 3.4).  These studies showed that in cells that 

lacked functional FL-AR, ralaniten was a poor inducer of MT genes.  These data suggested a 

possible reliance on AR activity, or potentially a specificity for cells expressing functional FL-

AR.  To definitively test this hypothesis, knockdown of AR expression demonstrated that 

ralaniten was capable of increasing MT mRNA even when the AR was significantly decreased 

(Fig. 3.5E-F).  These data implied that ralaniten induced MT gene expression by an AR-

independent mechanism. 

MT genes are inducible by oxidative stress and their promoter regions contain redox 

(antioxidant)-response elements (RRE) that bind Nrf1 or Nrf2 with comparable affinity to 

activate transcription461,485–488,510.  Nrf1 is a constitutively active transcription factor that 

contributes to MT gene regulation through the maintenance of basal MT expression levels511,512.  
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In contrast, Nrf2 is an inducible transcription factor that readily responds to stimuli upon 

activation by translocating from cytoplasm to nucleus and inducing target genes to coordinate 

cellular responses to manifold environmental conditions513,514.  With tightly regulated basal 

protein levels and high turnover, Nrf2 is maintained in the cytoplasm in an inactive state bound 

to its repressor Keap1, an E3 ubiquitin ligase adaptor protein, that continuously targets Nrf2 for 

proteasomal degradation unless appropriate stimuli activate Nrf2 by causing its release from 

Keap1515–517.  Ralaniten treatment produced evidence of Nrf2 pathway responses demonstrated 

by Nrf2 protein nuclear translocation (Fig. 3.6A) and elevated transcript expression of Nrf2 

regulated genes (Fig. 3.6B, Fig. 3.7). Despite this, Nrf2 silencing experiments were ineffective at 

abrogating MT gene induction by ralaniten (Fig. 3.8).   

The proximal promoter region of MT genes contains multiple MREs that bind MTF-1 to 

induce gene expression.  Gene knock down experiments reduced the transcript levels of all MT 

isoforms tested after MTF-1 silencing and revealed that the mechanism of MT gene induction by 

ralaniten to be MTF-1 dependent.  The transcriptional activity of MTF-1 can be induced in 

response to three main cellular stresses: heavy  metal load (Zn2+, Cu+, Cd2+, Pb2+, Ag+, Co2+, 

Ni2+, Hg2+ and Bi2+), hypoxia, and oxidative conditions461,518–521.   As effects from the presence 

of any of these metals on MTF-1 transactivation of MT genes has been well characterized, it 

should be noted that ralaniten was cleaned of any heavy metals used in its synthesis.  Studies 

suggest a convergent mechanism mediating oxidative, hypoxic, or metal stress induction of 

MTF-1 transcriptional activity, with zinc transducing the signal in each case through direct 

binding to zinc responsive regions within MTF-1450,456,520–526,457,460,461,467,482,484,518,519.  

Considering these findings, additional elaboration is contained in Future Direction section. 
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The potential consequences in prostate cancer of elevated MT expression have not been 

conclusively defined. The clinical significance of MT expression is context specific with 

considerable variation in relevance to treatment response and patient outcome across tumor 

types453,454,527.  In some human cancers, MT levels are positively associated with malignancy, 

tumor grade and progression, and may play a role in radio- and drug resistance452,528–531.  This 

relationship appears reversed in other cancer types532–536 and prostate cancer especially, with the 

observation that for many MT isoforms, expression is significantly downregulated or lost in 

advanced disease471,472,475,537.  This trend may represent a survival and growth advantage for 

prostate malignancies; thus, upregulation of MT genes may negate this pro-tumorigenic feature.  

Interestingly, the specific MT isoforms shown to be most responsive to induction by ralaniten 

treatment may be predicted to offer therapeutic value for prostate cancer patients.  MT1F has 

been shown to be oncosuppressive538 and low expression levels in malignant prostate tumors is 

associated with perineural invasion and metastasis472.  MT1G is suppressed in CRPC via 

epigenetic downregulation, loss of heterozygosity, or in response to low zinc levels, portending 

aggressive disease and a poor prognosis475.  Expression of the MT1G isoform has been 

associated with reduced proliferation and enhanced apoptosis. Mechanistic studies suggested 

MT1G indirectly increased TP53 stability and directly enhanced TP53 transactivation of p21 and 

BAX, leading to cell cycle arrest and apoptosis, respectively539. The MT2A isoform has been 

shown to attenuate NF-kB activation540 with an associated sensitization to clinically relevant 

chemotherapeutics for CRPC such as docetaxel.  Furthermore, high MT2A levels may impair the 

metabolic signature of malignant prostate cells, noted for their reverse-Warburg phenotype in 

which the capacity for oxidative phosphorylation and citrate oxidation is restored following m-

aconitase disinhibition.  MT2A was shown to affect cell respiration by suppressing the 
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expression of protein subunit II found within Complex IV of the mitochondrial respiratory 

chain541. Downregulation of the MT1X isoform is considered a biomarker associated with 

advanced stage prostate cancer471.  Ultimately, the upregulation of these MT genes may add 

therapeutic benefit. 

Still, whether ralaniten induction of MT genes in prostate cancer ultimately results in 

salutary or deleterious effects on the intended therapeutic goal of AR inhibition remains 

uncertain. Firstly, do these effects have an impact on ralaniten therapy itself?  This study has 

demonstrated that ralaniten inhibition of AR and ralaniten induction of MT genes occur 

independently.  Nonetheless, ralaniten may theoretically bind MT directly, as many cysteines 

within MT are able to react with relatively weak redox partners542, possibly via transient 

interactions.  Were this to be occurring, this would provide a resistance mechanism to prostate 

cancer cells via pharmacokinetic interference since ralaniten would be diverted away from its 

intended target, the AR-NTD.  Consequently, higher dosages of ralaniten would be required to 

maintain therapeutic levels at the pharmacologically relevant concentration. In previous studies, 

considerable effort has been expended to define emergent resistance mechanisms to ralaniten 

after extended treatment543.  Those studies report that the main resistance mechanisms to 

ralaniten which develop in prostate cancer cells involve the upregulation of glucoronidating drug 

metabolism enzymes specific to phase II conjugation, namely members the UGT family of 

genes.  Therefore, direct MT binding by ralaniten is not predicted to be a major contributor to the 

development of ralaniten resistance.  However, molecular interactions between ralaniten and MT 

may occur to some degree. 
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By inducing MT genes, ralaniten may indirectly enhance suppression of AR pathway 

signaling.  Distinct from the direct AR inhibition achieved via binding the AR-NTD, factors 

driving both the overexpression of AR and ligand-independent induction of AR transcriptional 

activity may be countered as a result of MT expression.  Chronic states of oxidative stress and 

inflammation manifest in most prostate cancers465,466,544–547, especially at more advanced stages 

following the development of therapeutic resistance.  Indeed, they share highly interconnected 

biological processes and their joint effects cooperate in maintaining pathological AR 

signaling239. Oxidative stress induces AR overexpression by activating numerous transcription 

factors known to regulate the AR gene332,385,548–553 and inflammation has been associated with the 

emergence of AR-Vs383,390,391,554.  Persistent pro-inflammatory signaling, in particular through 

the IL-6/JAK/STAT pathway555–558, is frequently observed in prostate cancers558–561 resulting in 

increased ligand-independent activation and stabilization of AR through interactions and post-

translational modifications of the AR-NTD.  MT can counter both inflammation and oxidative 

stress, thus providing additional clinical utility for AR pathway suppression. 

Prostate cancer therapies are frequently combined to produce more complete tumor 

responses.  In certain contexts, MT has been associated with radio- and chemoresistance, and the 

impact of MT on the efficacy of other hormonal therapies has not been well studied.  Concerns 

regarding the co-application of ralaniten in multimodal approaches to prostate cancer treatment 

have thus far been shown to be unwarranted.  Indeed, exploratory investigations of ralaniten 

combination with other therapies have produced positive findings, even suggesting potential 

synergistic effects in some cases163,435,437,562. 
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The investigations contained herein establish a foundation for the characterization of 

ralaniten specific expression profiles.  Specifically, they show that: 

1) Ralaniten induction of MT gene isoforms was distinct from other AR antagonists. 

2) Ralaniten induced the expression of MT genes by a mechanism independent of 

expression of AR and Nrf2. 

3) MT induction by ralaniten was dependent on the expression of the transcription 

factor, MTF-1. 
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Chapter 5. CONCLUDING REMARKS 

5.1 Study Limitations 

 This study initiates the characterization of ralaniten-specific expression profiles in 

prostate cancer cells.  While this work expands upon current knowledge to better understand the 

molecular profile of ralaniten, additional work is necessary to elaborate and ultimately 

comprehend the implications of the findings.  A more comprehensive proteomic analysis, 

especially protein immune-detection of MTF-1 and MT isoforms, would address some of the 

current study limitations.  Use of a broader panel of cell lines, and perhaps mouse xenografts as 

well, would enhance the ability to generalize the findings presented herein and predict the 

potential clinical relevance for patient populations. This issue, in part, stems from a dearth of 

established and well characterized cell lines which exist for prostate cancer research relative to 

some other tumor types.   This study employed the three most widely utilized human prostate 

cancer cells (LNCaP, PC3, DU145) and a LNCaP subline (LNCaP95) to explore ralaniten 

induction of MT gene expression in cells with varying AR and AR variant status.  Additional 

insight would be garnered from including other cell lines (e.g. VCaP), and even primary patient 

samples, though the latter possibility engenders considerable technical and ethical complexities 

that are somewhat prohibitive for an exploratory investigation such as this one. 

 

5.2 Future Directions 

This study is the first to contrast the global transcriptional profile of ralaniten with 

existing non-steroidal antiandrogens to identify genes that are uniquely expressed in prostate 
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cancer cells in response to ralaniten.  The investigations revealed that ralaniten induction of MT 

gene isoforms was distinct from other AR antagonists, occurred independently of AR, and was 

dependent on the expression of the transcription factor, MTF-1.  While the effect of ralaniten on 

the transcription of MT genes was mediated through MTF-1, it remains uncertain whether this is 

via direct or indirect interaction.  Ralaniten did not induce expression of MTF-1 mRNA (Fig. 

3.9C).  The transcriptional activity of MTF-1 is believed to predominantly involve post-

translational processes including metal sensing (primarily zinc ions), nuclear translocation, 

DNA-binding, and transcriptional coactivators interactions.  The induction of MTF-1 target 

genes has been extensively reviewed elsewhere518.  Findings from numerous studies point to a 

convergent mechanism mediating oxidative, hypoxic, or metal stress induction of MTF-1 

transcriptional activity.  The response by MTF-1 to these stresses is most likely indirect, with 

zinc released from MT transducing the signal in each case through direct binding to zinc 

responsive regions within MTF-1450,456,520–526,457,460,461,467,482,484,518,519.   MTF-1 activation is 

extremely sensitive to shifts in the availability of free intracellular zinc ions to enable finely 

tuned gene regulatory responses563. 

Concluding that MT gene induction by ralaniten is MTF-1 dependent, the critical role 

played by zinc in the balance between MT and MTF-1482 raises several pertinent questions. First, 

do intracellular levels of unbound zinc increase in prostate cancer cells following ralaniten 

treatment?  Employing sensitive free zinc detection assays that utilize fluorescence in intact cells 

or colorimetric analysis of cell lysates to quantify unbound intracellular zinc ions following 

ralaniten treatment would contribute helpful data in this regard564,565.  Second, is zinc required to 

transduce the signal mediating the indirect interaction between ralaniten and MTF-1?  This could 

be tested in zinc chelation experiments that employ luciferase transcription reporter assays using 
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the MT-luciferase reporter constructs already described herein and investigating whether 

chelation of zinc inhibits ralaniten induced transcription of these MTF-1 regulated plasmids566.  

Third, if a requirement for zinc is confirmed, does the expression of MT genes following 

ralaniten treatment reflect an increase in the absolute quantity of intracellular zinc, or merely 

result from ralaniten induced zinc dissociation from MT causing higher free zinc concentrations 

to activate MTF-1 transcription? The former scenario would require ralaniten to trigger an influx 

of zinc, and this seems unlikely as the microarray data did not indicate any elevated expression 

of genes coding for members of the plasma membrane zinc importer protein (ZIP) family upon 

ralaniten exposure.  Conversely, upon revisiting the analysis of the microarray (data not shown), 

the results pointed to the opposing trend.  The ZIP10 gene was significantly repressed by 

ralaniten while the main plasma membrane zinc exporter ZnT1 was notably upregulated, thereby 

suggesting overall cellular efflux of zinc.  On reflection, this is an intuitive result as both genes 

are also regulated by MTF-1.  Taken together, these findings would be consistent with the latter 

possible scenario mentioned above.  Namely, ralaniten triggers a disruption of the zinc-thiolate 

clusters in MT leading to zinc release and MTF-1 activation, resulting in MT and ZnT1 gene 

upregulation and ZIP10 gene downregulation, as a rapid and specific response to the escalation 

in unbound intracellular zinc522,567,568. 

If the availability of free zinc to activate MTF-1 was driven by this proposed mechanism, 

how specifically does ralaniten disrupt the zinc-thiolate bonds in MT proteins to cause zinc 

release?  It is possible ralaniten may interact directly with cysteines of the MT polypeptide via its 

chlorohydrin moiety.  However, in reports from multiple studies, performed in vitro, in vivo, and 

using patient samples, ralaniten did not appear to be generally reactive or demonstrate alkylation 

of glutathione422,431,543,569.  It is important to note here that the chemical structure of the ralaniten 
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analog EPI-7170 also contains this chlorohydrin group.  Though, unlike ralaniten, treatment with 

EPI-7170 did not affect the expression of MT genes.  Investigations of structure-function 

relationships for ralaniten and its analogs revealed that the chlorohydrin group was required for 

efficacy against the AR165,166,434,439.  Ralaniten compounds lacking this functional group were 

unable to inhibit AR activity, nor bind the AF-1 region, in prostate cancer cells.  Thus, while the 

chlorohydrin moiety is essential for ralaniten compounds to interact with AR, it remains 

questionable whether the induction of MT gene expression by ralaniten is reliant on this 

component of molecular structure. Reflecting on their individual potencies against AR, a 

comparison of the IC50 values of ralaniten (~10 μM) and EPI-7170 (~1 μM) suggests that 

structural differences between these analogs may influence the affinity of the chlorohydrin group 

for AR.  Perhaps these intrinsic molecular features are also impacting the affinity of the 

chlorohydrin group for MT, albeit in an inverse relationship.  Alternatively, if the affinity of the 

chlorohydrin group for MT is the same for ralaniten and EPI-7170, ralaniten induction of MT 

gene expression could simply be a concentration dependant effect.  Experiments utilizing 

biotinylated ralaniten or radio-labeled ralaniten could be undertaken to determine whether a 

direct MT-ralaniten interaction was occurring. 

Redox disturbances to the intracellular milieu may be generated by oxidative stress 

elsewhere in the cell upon ralaniten treatment, ultimately causing zinc dissociation from MT.  

Ralaniten metabolism within prostate cells has the potential to generate oxidative stress that 

indirectly causes the dissociation of zinc from MT.  Metabolic processing and detoxification of 

numerous endo- and xenobiotics, especially drugs and lipophilic molecules, often involves 

enzymatic pathways localized to the lumen of the endoplasmic reticulum (ER)570.  To facilitate 

clearance and prevent interactions that may result in toxicities, these compounds are sequestered 
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within the ER lumen.  As prior studies have defined the prominence of UGT enzymes in 

ralaniten metabolism543, it is particularly noteworthy that these proteins are known to reside in 

the ER anchored to the luminal membrane. Elevated ralaniten concentrations in the ER may 

disrupt redox homeostasis and alter the overall reducing capacity of the cell, thereby 

destabilizing the zinc/sulfur network within MT to cause zinc release and activation of MTF-1.   

In some cases, xenobiotic metabolism creates sufficient ER stress to trigger the unfolded protein 

response (UPR) through one of three UPR sensors (ATF6, IRE1, PERK) leading to activation of 

associated pathways571.  Indeed, evidence from the microarray and gene ranking list clearly 

suggested that ralaniten induced the PERK pathway. Two non-MT, downstream PERK genes 

(SLC7A11, FAM129A) were found to rank among the top 10 for increased expression following 

ralaniten treatment (Fig. 3.1C).  The SLC7A11 gene is positively regulated by the transcription 

factors ATF4 and Nrf2, each mediating a signaling branch of the UPR PERK pathway572,573.  

The FAM129A gene is induced by ATF4 downstream of PERK activation574.  Collectively, these 

data support the involvement of an indirect mechanism mediating MT zinc release by ralaniten.  

To confirm if ralaniten induces activation of the ER PERK pathway, phosphorylation levels of 

PERK could be detected by immunoblot using a phospho-specific PERK antibody, as PERK 

undergoes trans-autophosphorylation upon ER stress.  To determine if the mechanism for 

ralaniten induction of MT gene expression is dependent on the generation of oxidative stress to 

release zinc from MT and activate MTF-1, experiments could be undertaken in which cells were 

pre-treated with a redox inhibitor such as N-acetylcysteine before addition of ralaniten. 

Overall, the next steps in future studies may continue to build on the foundation provided 

here.  Continued investigation of the distinct cellular responses to ralaniten and its analogs will 
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assist researchers with discovery and clinicians with the development of strategies and treatment 

combinations to maximize synergistic effects for the ultimate benefit of prostate cancer patients. 
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