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Abstract

Nanoscale thermal transport has been studied by scientists for decades. Low dimensional mate-

rials have shown two significant characteristics - (1) Thermal conductivity (κ) can be dependent

on the size of the system, (2) A significant reduction in κ has been observed in an array-like ar-

rangement. Thus, it is essential to understand the mechanism to tailor material properties for

different applications.

Fourier’s law is an empirical relation between average thermal flux and temperature gradi-

ent. It indicates κ is an intrinsic material property, but studies have shown that it breaks down in

low-dimensional systems. The heat flux (J) depends on the size of the system (N) by the relation

J ∝ Nα−1. Traditionally, 1D studies have mostly focused on the effect of two-body interactions

on κ . In this thesis, we study the effect of multibody interactions in the presence of two-body in-

teractions on thermal transport. We use N` (number of persistence lengths) to define system size

and study the asymptotic limit of NJ. The transition from ballistic to superdiffusive behaviour

was observed near 100 N` in the ordered systems. In contrast, disordered systems showed only

superdiffusive transport. Coherent wave patterns emerged as thermal carriers in superdiffusive

regimes. Further, modelling crowding as transverse pinning, we observe a non-monotonous

transition from superdiffusive to ballistic behaviour as we increased the crowding.

While the single chain models have been extensively studied to understand the length de-

pendence of κ , simulation studies on their bundles and forests are very few. One such example

is the experimentally observed reduced heat conduction in carbon nanotube (CNT) forests com-

pared to an isolated CNT. Here, the all-atom simulations require a significant computational

expense. Therefore, we have used a coarse-grained model to study the heat flow in molecular

forests by incorporating the concepts known from polymer physics and thermal transport to pro-

pose a generic picture of the reduction of κ . We show that a delicate balance between the bond

orientations, the persistence length of an isolated Q1DM (Quasi-one dimensional material), and

the non-bonded inter-chain interactions govern the reduction of κ .
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Lay Summary

Nanomaterials have interested scientists for decades because of their tunable properties. One

of these properties is the thermal conductivity (κ), which is constant in bulk materials. In

nanomaterials, size dependence has been observed, i.e., large systems can have higher κ . Many

models have been studied where only two-bodies can interact, like two masses connected with

a spring. Multibody interactions, which can also reduce κ , have not been explored in detail. In

this thesis, we introduce a three-body interaction and understand the size dependence of κ .

Further, it has been observed that the forest-like arrangement of these materials decreases

κ . While simulating a forest will need substantial computational resources, we propose an

equivalent model. We model millions of atoms with only a few hundreds of masses to study the

reduction of κ .
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Preface

The thesis discusses two models to study nanoscale thermal transport. Chapters 2 and 3 discuss

a simple single chain with multibody and two-body potential. In Chapter 4, we propose a coarse-

grained model for studying thermal transport in molecular forests. All the simulations have been

done using the computational facility provided by the in-house computation facility at Quantum

Matter Institute Cluster (LISA) and the Compute Canada Cluster. The description is as follows:

1. In Chapter 2, we study a single chain with multibody and two-body interactions. This

work is under preparation: “Effect of multibody forces on the thermal transport of a sin-

gle chain” by A. Bhardwaj, D. Mukherji, A. Nojeh, and A. S. Phani. Dr. Srikantha Phani

proposed the idea. Aashish Bhardwaj developed and implemented the model in MAT-

LAB, analyzed the data and produced the figures with the inputs from Dr. A. Srikantha

Phani, Dr. Alireza Nojeh and Dr. Debashish Mukherji. Aashish Bhardwaj and Dr. A.

Srikantha Phani are co-writing this draft.

2. In Chapter 3, we study a single chain with the pinning of transverse motion. Aashish

Bhardwaj conceptualized the idea, developed the MATLAB codes and analyzed the data

with inputs from Dr. A. Srikantha Phani, Dr. Alireza Nojeh and Dr. Debashish Mukherji.

3. In Chapter 4, we propose a generic coarse-grained model of the molecular forests. This

work is under review, and a copy is available on https://arxiv.org/abs/2005.10685 as:

“Thermal transport in molecular forests” by A. Bhardwaj, A. S. Phani, A. Nojeh and D.

Mukherji. Dr. Debashish Mukherji proposed the idea and wrote the manuscript. Aashish

Bhardwaj developed the input scripts for LAMMPS simulations, ran the simulations, an-

alyzed the data and produced the figures. All authors discussed the results and revised

the content of the draft. The work has been done under the primary guidance of Dr.

Debashish Mukherji, with inputs from Dr. A. Srikantha Phani and Dr. Alireza Nojeh.

The simulations have also been done using the computational facility provided by UBC

Advanced Research Computing.
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Chapter 1

Introduction

We deal with various materials in our daily life, each having a different combination of proper-

ties. A suitable combination of properties, be electrical or mechanical, is relevant to the appli-

cation. For example, a combination of high stiffness and thermal conductivity of metals can be

used for high-temperature applications. At the same time, the flexibility and insulating proper-

ties of polymers make them ideal for wearable technologies. Unfortunately, all the desired com-

binations cannot be accessed in bulk materials. 1D (1 Dimensional) and 2D (2 Dimensional)

materials promise a lot of scope from this perspective. Some of the interesting properties are

the balance between thermal conductivity (κ) and electrical conductivity, which is very relevant

to electronics. High thermal conductivity and electrical conductivity are suitable for nanochip

design, where thermal management is an issue [2]. In contrast, low thermal conductivity and

high electrical conductivity are suitable for thermoelectric devices. Thus, there is a huge interest

to tune both of these properties separately [3, 4]. Thermal conductivity (κ) in low dimension

materials has interested researchers for decades as we can tune the κ by changing the size of

the system. Fourier’s law, which is an empirical relation between the heat flux (J) and temper-

ature gradient in a system, breaks down [5–12]. The κ is found to be increasing with the size

of the system in many systems. This behaviour, being termed as anomalous, can provide new

opportunities.

It has also been observed that 1D and 2D materials generally exhibit ultrahigh thermal con-

ductivity, which is a significant deviation from their bulk behaviour [13–17]. Since κ is the

contribution of carriers like electrons, phonons, solitons, etc., it becomes necessary to under-

stand how these carriers are affected by the system’s dimensionality. In this thesis, we are only

concerned with the phononic contribution. Phonons carry energy in the form of lattice vibra-

tions. They are defined as the collective excitation of a periodic arrangement of atoms. While

phonons can carry energy in a system, they can be hindered or reflected by various scattering

sources in the system. Scattering can be due to anharmonicity, impurities, or boundaries and

play an essential role in defining the system’s behaviour. Low-dimensional systems are believed

1



to have less intrinsic scattering in the system, which leads to divergent κ . These materials have

been studied to calculate α in relation - κ ∝ Lα , where 0 < α < 1 and L is the size of the sys-

tem. Many experiments on 1D materials like carbon nanotube (CNT) [18], and Carbyne [19]

also confirm that it is not a system-specific phenomenon. Hence, tuning κ needs understanding

of the underlying mechanism. It becomes necessary to have models that can map certain proper-

ties of low dimension materials and thus have a broad application in tuning thermal conductivity

for different applications.

Various Molecular Dynamics (MD) simulations and 1D chain models have been studied

[20–22], to understand the divergence of κ . While MD simulations use complex potentials like

AIREBO, it is difficult to separate each mode’s contribution in highly non-linear regimes. Thus

it is necessary to understand the impact of different modes like longitudinal, bending and twist-

ing by having a simplified model. Simple chain models find relevance for this study. In these

models, a harmonic bond is used, and then additional scattering methods are introduced. We

can study the effect of each mechanism. Thus, many toy models of the 1D chain have been

studied. Point masses are introduced at lattice sites, which are connected by springs. A ther-

mal gradient is introduced with the help of thermal baths at the two ends of the chain. While

the literature has reported both finite and divergent κ , depending on factors like potentials or

boundary conditions, they have mostly concentrated on two-body interactions [5,6,9,23]. Only

focusing on one type of interaction can hinder the understanding as many-body potentials are

also present in a lattice. These potentials can lead to longitudinal, bending, and twisting modes

in a lattice. Bending mode is the in-plane distortion of the included angle of particles, while

longitudinal mode involves distortion of bonds. Additional modes like torsion (out of plane dis-

tortion of torsion angle) can also exist in materials. We try to study how these additional modes

will affect thermal conductivity. Our aim here is to introduce a simple multibody interaction

as a three-body flexural spring. These interactions are interesting because of their dispersive

nature as two-body interactions, or longitudinal vibrations are non-dispersive. Thus adding this

transverse degree of freedom can lead to a possible interaction between two types of waves.

This interaction can provide an additional mode of scattering, which has not been explored ex-

tensively. Many questions arise, like - will thermal conductivity still be divergent? How will it

affect the additional modes of wave scattering (like mass disorder)? We will come back to all

the questions we are trying to answer in the next sections.

In the later part of the thesis, we will try to understand how κ is affected by interchain

interactions. We have seen that these materials show interesting behaviour even when inter-
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chain interactions are not considered. Another anomalous behaviour of these low dimensional

materials show is - a significant knockdown in κ in array or forest arrangement. Some of

the interesting effects like heat trap has been observed in CNT forests. Despite the high κ of

individual CNT, the localization of heat spot was observed in a forest by [24]. The source of this

localization is yet to be understood clearly. However, the interaction of CNTs is believed to be

a contributor to the effect. Moreover, the defects such as kinks and the fusion of tubes may also

lead to additional anharmonicities which have not been understood properly. Thus it is essential

to understand how these additional scattering sources can affect the total conductivity. We first

study the effect of these interactions by modelling a single chain with restricted transverse DOF.

We comment on both the impact on κ as well as α , which has not been explored before. In our

final section, we combine concepts of multiscale modelling with polymer physics to present a

model of a forest to unveil a generic picture of κ reduction in molecular forests.

We will discuss some standard literature of the thermal conductivity and phonons as carriers.

1.1 Thermal conductivity

Thermal conductivity and thermal conductance of a material are very relevant to the discussion

of thermal transport. The definitions of these properties are derived from the famous Fourier’s

law. The law defines the relation between J (thermal flux), A (area) and dT/dx ( temperature

gradient), given by

J =−κA
dT
dx

. (1.1)

Thermal conductivity is thus defined as heat current per unit area and unit temperature gradient.

On the other hand, thermal conductance is defined as heat current per unit area per unit tem-

perature difference applied. Thermal transport is generally studied by measuring J. It is then

multiplied with system size (L) to find the behaviour of κ . This thesis assumes N lattice sites

with unit spacing and studies NJ ∝ κ with the constant temperature at two ends. Thus plotting

NJ vs. N, we can establish different regimes of our system. In log-log plots, we can assume

NJ ∝ Nα to find α , which indicates the process of thermal transport. The different processes of

thermal transport and the respective α values are described as:

1. Ballistic transport (α = 1) - The mean free path (MFP) of the phonons is very long com-

pared to the size of the system.
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2. Superdiffusive transport (1 > α > 0) - The MFP of the phonons is comparable to the size

of the system.

3. Diffusive transport (α = 0) - The MFP of the phonons is very short compared to the size

of the system. It results in finite κ in bulk materials.

4. Sub-diffusive transport (α < 0) - Extended phonon modes are localized. Thus, the system

acts as an insulator.

It is interesting to know how the theory developed in the area. Fourier’s law was proposed

in 1811, which still holds relevance to most thermal transport problems in bulk materials. It

predicts the diffusive behaviour of J as thermal conductivity in the bulk material is an intrinsic

property. The first breakthrough in understanding thermal transport came when Einstein [25]

in 1907 assumed each lattice point as an independent oscillator where atomic vibrations are

quantized. While Dulong-Petit law [26] assumed constant vibrational energy - 3kBT̃ , where kB

is the Boltzmann constant and T̃ is the absolute temperature, it was not able to address low Cv

(specific heat) at the lower temperatures. Einstien’s model was relatively successful as it was

able to achieve the Dulong-Petit limit at high temperatures. At the same time, Cv decreased

exponentially at a lower temperature. However, [27] was not able to explain the difference with

values reported by [28]. Debye [29], in 1912, modified the assumption of independent oscilla-

tors to collective vibration of atoms in a lattice (phonons). He assumed that at low temperatures,

only acoustic modes would be excited, which have different frequencies. On the other hand,

Einstien’s assumptions were more about the excitation of optical phonons, which typically have

a flat frequency curve. Thus Debye suggested a T 3 dependence at low temperature. He also

combined the concept of the Kinetic Theory of gases to propose an expression for κ [30]. Here

each phonon mode contributes to the thermal conductivity by the expression,

κ(T ) = ∑
i

1
3

CviVgΛi, (1.2)

where phonon mean free path(Λ), specific heat(Cv), and group velocity (Vg) are defined for ith

mode. This model explained the importance of the MFP of phonons in thermal conductivity.

While Debye’s theory was able to justify low-temperature dependence, it could not describe

the decrease in κ at high temperatures. Peierls [31] in 1929 introduced the concept of the

Brillouin zone to thermal transport. He presented how anharmonicity of the lattice can result
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in the scattering of elastic waves. Further mentioning that two conservation laws have to be

followed by phonons in a lattice:

}ω1 +}ω2 = }ω3, (1.3)

}q1 +}q1 = }q1 +β}G, (1.4)

where ωi and qi is the frequency and wave vector of a phonon with wavelength λi. G is the

reciprocal lattice vector where β will be non-zero if the resultant wavevector of phonon-phonon

interaction is outside the first Brillouin zone. The interaction results in the reversal of phonon

momentum, thus hindering thermal transport. The process is termed as Umklapp or U-process,

while in Normal or N-process, there is no momentum reversal. The process is shown in Fig-

ure 1.1. Thus N-processes do not hinder thermal transport, but a chain of N-processes can

generate wave vectors, leading to U-process. U-processes dominance at higher temperature was

thus able to explain the decrease in κ at higher temperatures. The process is known as scattering.

Phonon scattering is the resistance in the path of phonon. The resistance causes reflection

resulting in decrease in transmitted energy and thus decrease of κ . One mode of this resistance

is when more than one phonons start interacting with each other as in U-process. It leads to a

decrease of the mean free path and thus a reduction in κ . Other modes of scattering include

boundary scattering, isotope scattering, etc. Matthiessen’s rule is used to define the total resis-

tance due to these additional modes of scattering.

Another contributor to the decrease in thermal conductivity can be the localization of ex-

tended modes. Mode Localization or Anderson localization happens when extended modes start

localizing in the presence of disorder. Thus disorder results in localized vibrations, which do not

contribute significantly to the thermal current. Generally, short wavelengths or high frequency

are localized in disordered systems [32, 33]. For this study, we consider randomly perturbed

masses as the disorder in the system.

1.2 Anomalous thermal transport in low dimensions

Fourier’s law is an empirical local relation connecting the macroscopic heat flux to the spa-

tial temperature gradient. However, the validity of Fourier’s law is not universally guaranteed

[34], particularly when one probes thermal transport in the nanoscale regime [8, 9]. The proof

of Fourier’s law has not been established mathematically. It is still an open problem in non-

equilibrium statistical physics [35]. In bulk materials, κ is expected to be finite; thus, J has
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Figure 1.1: This schematic describes the two types of phonon-phonon interaction possible in a lattice (a)
Normal scattering (N-process) (b) Umklapp scattering (U-process). Here q1 and q2 represent the incident
wavevectors. q3 is the resultant wavevector, which is in N-process is still inside the Brillouin zone. In
U-process the q3 has been mapped back to the first Brillioun zone by shifting it by a reciprocal lattice
vector (G). As a result, N-process conserves total phonon momentum, while U-process does not.

a diffusive behaviour. On the other hand, a wide range of simulations and experiments have

shown that diffusive behaviour is not visible in many low dimensional systems. Fourier’s law

breaks down, where the mean free path of phonons is comparable to the characteristic length of

the system [36]. It has been shown in both 1D lattices [23, 32, 37, 38] and quasi 1D materials

such as polymers that thermal transport is superdiffusive or anomalous.

To understand the anomalous transport, we have to start with a 1D harmonic chain with no

transverse motion. The thermal transport is ballistic - J ∝ (TH −TC), where TH and TC are the

temperatures of the hot and cold reservoirs. There is no scattering source in the system, and no

temperature gradient is established. Also, conductivity cannot be defined. When there is scatter-

ing in the system but is insufficient to lead to diffusive behaviour, we can see a superdiffusive or

anomalous behaviour. In these systems, the increase in the chain’s size leads to the participation

of additional long-wavelength modes, resulting in divergence. While 1D systems with 2 body

potentials have been studied extensively, multibody potentials have not been explored. Only one

set of studies is available for multibody potentials [39, 40]. We will brief the 1D literature (also

summarized in Table 1.1) to emphasize the gap that is existing between the study of the effect

of these 2 potentials on thermal conductivity.

Several studies have been done to understand if there is a particular property of the system

or interaction that causes this divergence in a 1D model with 2 body interactions. Momentum

conservation, integrability, onsite pinning, and non-linearities have been studied to a great ex-

tent. Among these properties, non-integrability was expected to lead to diffusive behaviour as

phase space restrictions are removed from the system. However, it turned out to be necessary
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but not a sufficient condition. Similarly, non-linearity or anharmonicity was also studied to

understand if it can lead to a diffusive behaviour. Non-linear lattices like FPUT (Fermi-Pasta-

Ulam-Tsingou) [5,41–44] lattices, diatomic Toda [45] lattices have shown anomalous behaviour

while Toda lattices [46] have ballistic behaviour. [42] further showed that any 1D non-linear lat-

tice where the acoustic branch is present would show anomalous transport. The behaviour can

be different in the presence of optical phonons. Thus, literature has focused on other properties

and have resulted in three broad observations:

1.2.1 Chaos is not a necessary but sufficient condition for diffusive transport

Chaos or unpredictable trajectories in a system leads to the exploration of additional phase space,

leading to diffusion. While chaos was initially believed as responsible for diffusive behaviour

[47], systems like Triangle Billiard Gas channels [48] showed that systems with zero Lyapunov

exponents can also show Fourier behaviour. It showed that chaos is sufficient for Fourier’s

behaviour. However, not a necessary condition as mixing can be possible due to other factors,

like disorder. Triangle Billiard Gas channels showed mixing at irrational angles in which Fourier

like behaviour was observed.

1.2.2 Momentum conservation is not necessary for anomalous transport

Momentum conservation or translation invariance has shown to prevent the diffusive transport

in [5, 41–45]. On the other hand, many non-momentum conserving lattices like [49–51] have

shown a finite conductivity. Some authors probed the underlying physics, and Levy walk distri-

bution for energy correlation was observed in momentum conserving lattices rather than Gaus-

sian distribution for diffusive behaviour [52]. In one of the cases, [53] replaced the onsite poten-

tial by harmonic interactions. There despite momentum conservation, we see a finite conductiv-

ity. Some other exceptions, like rotor models [54, 55], have momentum conservation but show

finite conductivity. One of the most common lattices studied under this category is the FPUT

lattice. Several studies have been done [5,41,41–44] where α = 1/3 to 0.4, have been reported.

Renormalization group theory [23] also has predicted α = 1/3 for these lattices. While there

have been many exponents debated for these non-linear potentials, there seems to be a generic

exponent depending on the type of non-linearity in the system. It has been shown that [44] using

Mode Coupling Theory (MCT) α = 1/3 is expected when the leading non-linearity is cubic, and

α = 2/5 can be expected for quartic one.
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1.2.3 Non-Integrability is necessary but not a sufficient condition for diffusive
transport

Non-Integrability of a dynamical system can expand the limited phase space of a system re-

sulting in diffusive transport. While other properties have been explored, the system’s non-

integrability has proved to be a necessary but not a sufficient condition. [56] studied φ 4 and

FPUT lattices, both of which are non-integrable. While the former has finite conductivity, the

latter has divergent behaviour. It was observed that in φ 4 lattices, site potential leading to non-

momentum conservation was causing scattering, sufficient enough for diffusive transport. On

the other hand, in FPUT lattice, the interaction of solitary waves is not enough, and momen-

tum conservation enforces divergent behaviour. Thus, non-integrability is necessary to have

a thermal gradient in the system but not necessarily leads to diffusive transport. Some other

exceptions with non-integrability and anomalous behaviour are diatomic lattices [43, 45] and

disordered lattices [10, 57].

1.2.4 Onsite pinning is not necessary for diffusive transport

As we have mentioned earlier, non-integrability is a necessary condition for diffusive transport;

the nature of pinning can affect the system’s integrability. It is well known that a harmonic chain

with harmonic pinning is completely integrable and thus shows anomalous behaviour. This

system prevents momentum conservation but still holds anomalous behaviour. [62] has studied

Toda lattice both at high and low temperatures as well as harmonic and quartic pinnings. It has

been observed that Toda lattice shows the transition from anomalous to finite conductivity from

low to high temperatures. It is because Toda lattice is approximated as a harmonic chain at low

temperatures. Ultimately it is the integrability of the system that directs the behaviour, not onsite

pinning. Similar behaviour can be observed for Sine-Gordon lattice [61], which is integrable

and shows anomalous behaviour despite the presence of onsite pinning. Sinh-Gordon [61], on

the other hand, being non-integrable shows finite conductivity.

From this discussion, we can observe that there is no concrete property that can help us

indicate if the lattice will show diffusive behaviour. For 1D chain with transverse motion the

problem has not been explored. The literature is quite vacant there. Since all these studies have

been done with a 1D chain and 1 DOF (degree of freedom), the interaction of only one type

(longitudinal) of waves has been studied in detail. We add a slow-moving flexural wave with

quadratic dispersion relation; thus, it differs from the very nature of longitudinal non-dispersive
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Potential
Boundary
condition

Method Bath α Ref.

Double Well�◦ Pinned NESS Langevin 0.5, 0.33 [41]
1D fluids�◦ RG theory 0.33 [23]

FPU β �◦ Periodic Green-Kubo
Nosé
Hoover

0.4 [5]

FPU α �◦ Periodic MCT 0.33 [44]
FPU β �◦ Periodic MCT 0.4 [44]
Harmonic�◦4F Pinned NESS Langevin -0.5 [6]
Harmonic�◦4F Free NESS Langevin 0.5 [6]

Diatomic toda�◦
Maxwell/
periodic

Green Kubo
Maxwell/
Langevin

0.35 [45]

Diatomic 1D gas�◦ Maxwell 0.35 [43]
1D hard point gas �◦ Maxwell 0.2 [58]
MCDL�◦ Periodic Langevin 0 [53]
Lorentz Gas �• Maxwell 0 [47]
Triangle Billiard �• Maxwell 0 [48]
Alternate mass-core�•4

hard potential channel
Maxwell 0 [59]

Ding-a-Ling�•4 Green Kubo Maxwell 0 [50]

1D Rotor�◦ Pinned Green-Kubo
Nosé
Hoover

0 [54]

1D Rotor �◦ with peri-
odic potential

Pinned Green Kubo Langevin 0.26,0 [55]

Frenkel Kontorova�•
Nosé
Hoover

0 [51]

φ 4 �• Independent
Nosé
Hoover

0 [56, 60]

Sinh-Gordon�•4 Free Free Green Kubo Langevin 0 [61]
Sine-Gordon�•4 Free Free Green Kubo Langevin >0 [61]
Toda�•4 Pinned NESS Langevin > 0,0 [62]

Table 1.1: A literature review of 1D lattices with two-body potentials. Methods have been categorized
as Non-Equilibrium Stationary State simulations (NESS), Green Kubo calculation, and Mode Coupling
Theory (MCT). Here open square and open circular markers are for integrability and momentum conser-
vation in a lattice, respectively. Filled markers represent the opposite. Triangular markers represent onsite
pinning, and star markers represent mass disordered systems. It can be observed that non-integrability
is necessary for normal transport but not a sufficient condition. All the other properties do not show
any conclusive results. Here, we have only presented literature of 1D models. Despite being extensively
studied, understanding the reason of anomalous thermal transport is still a challenge. This problem is
relatively less explored for multibody interactions with only one set of study available [39,40]. Thus, it is
necessary to explore the multibody interactions. These interactions are an integral part of the real systems
and their presence can affect the thermal transport.
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waves. The presence of such slow flexural waves has been recently shown to give rise to four-

phonon interactions in Graphene [63], and other material systems [64,65]. These interactions in

a 1D chain can lead to additional scattering. Thus ballistic behaviour cannot be expected in the

thermodynamic limit. To explore this interaction [39, 40] added a bending potential to the 1D

chain and reported α = 0.4 for weak coupling and α = 1/3 for strong coupling. While several

combinations of k̃θ (bending energy), TC (the temperature at the cold end) and TH (the temper-

ature at the hot end) have been considered, α = 0.5 and logarithmic divergence were also ob-

served at some parameters. They have observed different exponents in superdiffusive behaviour

when size is defined by the length of chain. We try to understand if there exists an asymptotic

behaviour of κ with respect to the additional length scale - Persistence length (`p), that enter as

parameters. `p is a measure of flexibility of the chain and is defined as the length over which the

correlation in the direction of tangent is lost. Thus, for a piece of a system smaller than `p sytem

acts like a beam for longer sizes, it can be described statistically or three dimensional random

walk. Additionally, we probe the effect of mass disorder, which has not been explored in these

models. We simulate a chain with pinned boundary conditions and a temperature range, which

removes the requirement of any additional smoothing potentials. Large longitudinal fluctuations

can result in a collision and will necessitate the use non-linear potentials near such singularity.

They could introduce a potential scattering source. Thus, reducing the clarity in understanding

of the effect of multibody interactions. Further, we introduce transverse pinning to study the

effect of crowding in these systems, which has not been explored yet.

We can make a few observations and identify a few gaps in the literature of a single chain

with multibody potential. They are listed as below:

1. What is the difference in the frequency-dependent contribution of flexural and longitudi-

nal modes to thermal transport in the harmonic limit? Disordered systems have not been

studied for a chain with multibody potential.

2. In the presence of persistence length, is it possible to define a new length scale - N`

(number of persistence lengths in the system) to study the asymptotic limit? How will the

scaling change in the system with ordered and disordered masses?

3. What will be the effect of crowding on κ of a single chain with multibody potential? How

significant is the effect on the divergence of thermal conductivity?

Thus, we observe that the effect of multibody potentials have not been understood in detail.
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We will try to address some of the gaps.

1.3 Thermal transport in crowded environment1

Understanding heat transport in quasi-one dimensional materials (Q1DMs) is a scientifically

major problem [67, 68], and becomes even more challenging when dealing with arrays of

Q1DMs, such as forests [24, 69–72], bundles [73], sheets [74], and fibers [21, 75]. Here, the

complex molecular structure of an array introduces entropic disorder and thus controls its phys-

ical properties. One such intriguing phenomenon is strong heat localization in CNT forests [24]:

while a single CNT exhibits κ|| > 103 Wm−1K−1 [14, 18, 76], CNT forests show a drastic re-

duction in κ||. Here, κ|| is the thermal conductivity along the molecular backbone. This “heat

trap” effect was observed at a very high temperature of T > 103 K. However, room temper-

ature experiments have also yielded relatively low values, such as κ|| ' 0.5− 1.2 Wm−1K−1

for CNT forests [72], κ|| ' 100 Wm−1K−1 for CNT bundles [73] or κ|| ' 43 Wm−1K−1 for

CNT sheets [74]. We note that the observed influence of crowding on κ|| in CNT forests and

sheets may not be a system specific phenomenon. Here, the other examples include nanowire

(NW) arrays [70, 71, 77], polyethylene (PE) fibers [75], crystalline-like assemblies of PE [21]

and poly-3,4-ethylenedioxythiophene (PEDOT) [78], and composite materials [79].

The heat transport in an isolated Q1DM has been studied extensively [67,68,80–82]. More-

over, a few studies have also investigated the effects of crowding on κ , where individual molecules

are randomly orientated in a sample [83–86]. These studies have modelled junctions that lack

the full picture of kinks and interfaces that can form in a forest. In these studies, the non-bonded

van der Waals (vdW) contacts between different Q1DMs strongly influence their thermal be-

haviour, especially when the molecular lengths are smaller than the sample dimensions. This

vdW-based interaction also leads to a low κ [83]. Another study by [87] simulated cross-linked

functionalized polyethylene chains to single-walled and double-walled CNTs. They reported

a significant decrease in κ by increasing the number of pinned sites and weight percentage of

functional groups. In the case of double-walled CNTs, sensitivity was less. This simulation was

done for individual CNTs. However, a molecular forest is inherently anisotropic where many

types of interactions can arise that are difficult to predict. In these forests, a delicate balance

between the bonded interactions and molecular entanglements dictate κ|| along the molecular

1A version of this text is available online [66]. [Bhardwaj, A.], Phani, A. S., Nojeh, A., & Mukherji, D. (2020).
“Thermal transport in molecular forests”. arXiv preprint arXiv:2005.10685.
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orientations. In the lateral directions, κ⊥ is dominated by the weak vdW interaction. Generally,

κ between pure bonded neighbours is about 50−100 times larger than that between the non-

bonded neighbours [75]. Therefore, it is rather challenging to predict a priori how crowding can

account for a drop in κ|| [21, 24, 70, 71, 74, 78].

Thus, a scheme to understand the decrease in κ in a forest is absent in the literature.

1.4 Summary

This chapter briefly reviewed the anomalous behaviour of κ in low dimensional materials and

the decrease in thermal transport in a crowded environment.

Fourier’s law breaks down in these materials and κ can be length dependent. While many

properties of the system like non-linearity, momentum conservation, integrability, and onsite

have been considered, there is still no conclusive answer to this anomalous behaviour. Non-

linear systems like FPUT show anomalous behaviour, while Toda lattices show ballistic be-

haviour. Momentum conservation also is not a strong driver for anomalous behaviour as ex-

ceptions such as rotor lattices exist. The non-integrability of the system, also seems to be a

necessary but not a sufficient condition. While non-integrability leads to the temperature gra-

dient in the system, lattices like FPUT still show anomalous behaviour. Onsite potentials also

can affect the integrability of the system. Here, we have only presented literature of 1D models.

Despite being extensively studied, understanding the reason for anomalous thermal transport is

still a challenge. This problem is relatively less explored for multibody interactions with only

one set of study available [39, 40]. The asymptotic limit of the model with persistence length

as length scale has not been explored. Moreover, the effect of pinning and disorders have also

not been explored. Thus, raising the necessity to explore the multibody interactions. These

interactions are an integral part of the real systems and can affect the thermal transport.

We further discuss the thermal transport in molecular forests. We saw that a decrease in κ‖

has been reported in the literature in crowded environments. This knockdown is the result of

additional interactions like vdW forces, which scatter the phonons. Although some simulations

have been done in literature where random networks of CNTs have been studied, they have

been limited to studying junctions. A model that can simulate whole forest still lacks in the

community. This model can help in understanding the thermal transport in molecular forests.

This thesis uses a coarse-grained model that gives insight into some of the complex issues of

bond orientations and density in a forest.
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1.5 Objectives and outline

After a comprehensive review of the literature, the following gaps have been addressed:

1. In Chapter 2, we make a non-dimensionalized model with multibody and two-body forces.

We first understand the difference in frequency wise contribution of each mode to thermal

current in the harmonic limit. We further extend our analysis with Non-Equillibrium

simulations to explore the effect of the coupling of modes on the divergence of κ .

2. In Chapter 3, we modify the model developed in Chapter 2 to include transverse pin-

ning. We use transverse pinning to understand the effect of density and defects on the

divergence of thermal transport in a crowded environment.

3. In Chapter 4, we use a coarse-grained model for simulating molecular forests using the

Kremer-Grest model of a polymer. We study the effect of crowding on κ as a function of

the forest’s density.

4. In Chapter 5, we list important findings and directions for future work.
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Chapter 2

Anomalous thermal transport in single
chain with multibody forces

In this chapter, in Section 2.1, we will describe a non-dimensionalized model with multibody

forces that we will be using for our analysis. Then in Section 2.2, we will try to understand the

difference in transmittance function (frequency spectrum) of longitudinal and flexural modes in

the harmonic limit. We observe that longitudinal modes have a higher contribution from high

frequencies. In contrast, flexural modes have symmetric contribution centred at half of the max-

imum frequency. With this insight, we further probe the effect of disorder in the spectrum. As

the disorder is expected to localize high frequencies, longitudinal modes are observed to localize

at a shorter system size than flexural modes. In the next half of this chapter, in Section 2.3, we

explore the effect of anharmonicity and non-linearities. We analyze the 1D chain model with

Non-Equilibrium simulations. Langevin baths being stochastic, have been used to excite thermal

vibrations and achieve Non-Equilibrium Stationary States (NESS). NJ vs. N plots, which have

been useful for two-body interactions, have been scaled to NJ∗ vs. N` plots. These plots were

observed to transition from ballistic to superdiffusive behaviour in the asymptotic limit. Disor-

dered systems were also observed to have superdiffusive behaviour in the range of parameters

in our simulations. We observe coherent patterns emerging as energy carriers in superdiffusive

limit by observing the magnitude of the longitudinal and transverse displacements.
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2.1 Modelling of 1D chain with both flexural and longitudinal
modes

As we are interested in the interaction of multibody and two-body interactions, we start by

considering a Hamiltonian with a stretching and a (non-linear) bending energy term:

H̃ =
N

∑
i=1

{ p̃i.p̃i

2m̃i
+

1
2

k̃r(|r̃i− r̃i+1|− ã)2 + k̃θ (cosθi +1)
}

(2.1)

where k̃r is the axial stiffness, k̃θ is the bending energy and ã is the lattice spacing. Bending term

is obtained from unit vectors of two adjacent bonds connecting a particle with its neighbours as:

cosθi =−ei−1 · ei ei =
∆ri

|∆ri|
, ∆ri = ri+1− ri. (2.2)

In the above equation, the bond vector ∆ri between the particles i and i+ 1 is shown in

Figure 2.1. Bending is common in many structural and biological problems [88–90]. Note that

using 1+ cosθi, like in [88,89], one recovers the bending energy of a classical Euler-Bernoulli

beam for small θi−π . Thus, the bending energy is proportional to the square of the change in

the angle between adjacent bonds in that limit.

With transverse motion in 1D chain, bending energy introduces additional length scales of

lattice spacing and persistence length (`p). These scales can be relevant to thermal conductivity

as thermal excitation can be significant at these length scales. Thus it is useful to re-scale the

dimensional Hamiltonian. To non-dimensionalize the equation (2.1), we take k̃rã2 as the energy

Δr  H
C

+ -

Figure 2.1: Schematic of a single chain model with both axial and flexural springs and Langevin thermal
baths at the two ends. Here i ∈ [0,N + 1] where the two end particles are pinned. Langevin baths have
been added at i = 1 and i = N with temperatures TH and TC respectively. θi represents the relative angle
made by two links at one common chain site (i). ∆ri represents the vector along the link from ith site to
i+1th site.
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scale,
√

m̃i
k̃r

as the time scale, m̃i asthe mass scale. Dividing (2.1) by energy scale, we can get a

dimensionless Hamiltonian (H) as:

H =
N

∑
i=1

{pi.pi

2
+

1
2
(|ri− ri+1|−1)2 +

1
λ
(cosθi +1)

}
(2.3)

where

λ =
k̃rã2

k̃θ

. (2.4)

Slenderness ratio (λ ) is thus introduced. It allows us to move from an extremely low bending

energy (rope like) regime to extremely high bending energy (rod like) regime. The value of

λ as a parameter will determine the persistence length ( ˜̀p) in the system depending on the

temperature (T̃ ). Thus we first define ( ˜̀p) as:

˜̀p =
k̃θ a
kBT̃

. (2.5)

Further non-dimensionalizing ˜̀p, we get:

`p =
˜̀p

ã
=

1
λT

(2.6)

where

T =
T̃

k̃r ã2

kB

(2.7)

is the non-dimensional temperature. We will proceed with λ as a parameter and `p as an addi-

tional length scale in the system for our analysis.

Now we have clearly defined our model parameters. We will study the model in the har-

monic limit first and then move to the Non-Equillibrium simulations in the next section.

2.2 Flexural and longitudinal modes in the Harmonic limit

As we have seen in the previous section, it will be interesting to understand how these two

phonons will affect the system. However, before moving to the complexity of interactions, we
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should first compare some of the characteristics of both modes in the harmonic limit. Longi-

tudinal modes are non-dispersive with the constant group velocity. At the same time, flexural

waves are dispersive, and group velocity depends on the wavenumber. Here with the harmonic

limit, we emphasize that the |ri− ri+1| ≈ 1 in the (2.3). This can only be possible at low tem-

peratures or with high stiffness. Changes in length are not significant to introduce geometric

non-linearities. In other words, `p→∞. Both modes will be uncoupled in this limit, and we can

analyze them separately for each system. For our analysis, we have taken two systems - Ordered

and Disordered Harmonic chain.

Ordered Harmonic chain

For an ordered harmonic system, J(N) has been worked out by [91] for two-body harmonic

potential, where J(N) ∝ (TH − TC) for N → ∞. Thus the thermal current scales linearly with

temperature difference. This behaviour is ballistic, as no temperature gradient is visible in the

system. The system’s temperature profile is constant at value - TC+TH
2 throughout the chain

except at the ends. The profile also changes exponentially near the ends due to applied thermal

baths. As a result, thermal conductivity cannot be defined for these systems.

Since the expression is independent of mass and stiffness matrices, its independence on N

can be expected for longitudinal and flexural modes. Thus we will focus more on disordered

systems to compare these two modes.

Disordered Harmonic Chain

In a periodic system, when the disorder is introduced, the extended modes can localize. This

phenomenon is also known as Anderson localization. Thus in a disordered system, all modes

will not be able to contribute to thermal current. It has been shown by [7, 33, 92, 93] that in

the presence of disorder, short wavelengths start localizing and thus reduce J. The disorder is

not relevant for long wavelengths, and thus these modes can continue contributing to thermal

transport. The study for disorder in these simple toy models is only available for two-body

interactions. Literature is not available for simple multibody potentials.

To understand the localization of longitudinal and flexural modes, we will start with a more

general expression of J, which can be used for both in the harmonic limit. The expression has

been given by [94] . In this model, the lattice of N + 2 beads is pinned at two ends and the

Langevin baths have been applied at the two ends, with the coupling strength γ . The expression
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for J is given as:

J(N) = γ
TH −TC

π

∫ +∞

−∞

ω
2|Z(ω)−1

1,N |
2︸ ︷︷ ︸

I(ω)

dω (2.8)

where,

Z(ω) = KN×N−ω
2MN×N− iωMN×NL and (2.9)

Lii = γ(δi1 +δiN). (2.10)

Here I(ω) in (2.8) is known as the transmittance function, which we can use to understand

the frequency-wise contribution of each mode to thermal transport. Since this expression is

applicable to any harmonic system, we will use it to study the spectrum of both modes. In

the harmonic limit we will define respective M and K matrices. The bending force (f b
i ) and

axial spring force (f a
i ) are calculated for the net force fi. Linearizing (2.3), we separate x and y

motions for longitudinal and flexural modes, respectively for the pinned boundary condition.

Longitudinal mode

We linearlize the longitudinal motion form (2.3) as:

f a
i =−(xi− xi−1)+(xi− xi+1), (2.11)

f a
i =−xi−1 +2xi− xi+1. (2.12)

Rearranging the coefficients, it can be transformed into the stiffness matrix K give as:

K =



2 −1 0 . . .

−1 2 −1 0 . .

0 −1 . . . .

. 0 . . −1 0

. . 0 −1 2 −1

. . . 0 −1 2


. (2.13)
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Flexural mode

For bending energy, we define third term in (2.3) as Vi. We neglect the higher order terms in the

expansion of cosθ term for analyzing the flexural mode. Thus we expand Vi as:

Vi =−cos(θi−π)+1 =−cos(∆θi)+1 = ∆θ
2
i +∆θ

2
i−1 +∆θ

2
i+1............. (2.14)

Converting angles to transverse displacements, we get:

Vi = [(2yi−1− yi− yi−2)
2 +(2yi−2− yi−1− yi−1)

2 +(2yi+1− yi− yi−1)
2]+ ..... (2.15)

f b
i = [yi−2−4yi−1 +6yi−4yi+1 + yi+2]. (2.16)

Finally we rearrange the terms considering pinned boundary conditions to get a stiffness matrix

as:

K =



5 −4 1 . . .

−4 6 −4 1 . .

1 −4 . . . .

. . . . −4 1

. . 1 −4 6 −4

. . . 1 −4 5


(2.17)

We will use the respective K matrices for calculation using (2.8), where M will be a diagonal

matrix with each value as the mass corresponding to that site.

2.2.1 Flexural vs longitudinal modes - Transmittance function

To understand the spectrum of frequencies contributing to J in both modes, we must understand

the transmittance function. We start by plotting the transmittance function for both longitudinal

and flexural modes. Here we have used equation (2.3) with all the parameters as unity for the

ordered chain. While for the disordered system, we have varied the masses independently as -

∆m from a uniform distribution [−0.2,0.2] with zero mean and unit variance. The mass of each

site is thus 1+∆m. The spectrum has been plotted in Figure 2.2.
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Ordered system

In an ordered system, it can be noted that for longitudinal vibrations, the distribution has higher

contribution from higher frequencies of its spectrum (Figure 2.2). However, flexural modes have

a symmetrical spectrum centred around half of the maximum frequency. Besides, we observe

that longitudinal modes contribute in frequency range – 0 < ω ≤ 2, which can be related to

the dispersion curve of a monoatomic chain as ω = 2
√

sin(k/2), where k is the wavenumber.

Longitudinal modes have high density of states at higher wavenumber. The decrease in group

velocity is compensated resulting in high contribution. On the other hand, flexural modes with

dispersion curve as ω =
√

6−8cos(k)+2cos(2k)) have – 0 < ω ≤ 4 as contributors. The

modes have low group velocity and high density of states at small wavenumber but vice-versa at

large wavenumber. Thus leading it to a more symmetric contribution. It highlights the difference

Figure 2.2: Transmittance function I(ω) showing the contribution of each frequency to total thermal
conductivity κ in the harmonic limit for a) Longitudinal and b) Flexural modes. Both disordered and
ordered cases have been plotted. The ordered chain spectrum is independent of system size, and thus N
value has not been shown. Localization of high-frequency waves can be observed in both modes where
longitudinal modes start localizing at smaller system sizes.
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in characteristics of both modes and we can scale these frequencies to tailor total spectrum when

both modes are present (Figure 2.3).

Disordered system

On observing closely, in both longitudinal and flexural modes, disorder localizes the higher fre-

quencies or short wavelengths. The effect of disorder is more prominently visible in longitudinal

mode than the flexural mode (Figure 2.2). We see a significant localization at N = 50 in longitu-

dinal mode, while flexural modes start deviating at higher lengths. As longitudinal modes have

a heavily weighted contribution from higher frequencies, it becomes apparent that these modes

are more sensitive to disorder. However, flexural modes have a symmetric contribution in or-

dered case. This characteristic makes flexural mode less sensitive to disorder than longitudinal

modes. We have to be very cautious as this spectrum is still in the harmonic limit and is only to

understand the different characteristics these modes have. It might not be accurate to expect the

Figure 2.3: Mode-wise frequency contribution of longitudinal and flexural modes to J, according to (2.8)
for λ = 10 in the harmonic limit . Here AD

H and FD
H represents the I(ω) or transmittance function of the

longitudinal and flexural modes in a system with the mass disorder. This highlights that the presence of
both modes can help us in exploiting different frequency ranges to tailor thermal properties.
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same behaviour when non-linearities take over. Thus, as a summary, we establish that the two

modes have different thermal transport characteristics in the harmonic limit.

2.3 Effect of coupling of longitudinal and flexural modes -
Non-Equilibrium Simulations

In the previous section, we saw that within the harmonic limit, i.e., ∆ri ≈ 1, the modes are

linearly independent. In this limit, fluctuations are not significant, and the contour length (lc)≈
N. This independence does not provide additional interaction between these modes. If we have

suitable parameter values in the Hamiltonian (2.3), then there is a possible interaction between

these modes. It can lead to scattering by the transfer of energy from flexural to longitudinal

modes and vice versa. Thus we can expect a deviation from ballistic behaviour even without

the disorder. The coupling is related to the transverse motion, which depends on the slenderness

ratio (λ ). In this section, by using N` as a measure of the system’s size, we can observe a

superdiffusive behaviour in the asymptotic limit for both ordered and disordered systems. We

set a temperature gradient in the system with Langevin baths at TC = 0.008, TH = 0.01 for

different λ and calculate J when Non-Equilibrium Stationary State (NESS) is reached. Thus we

will start by discussing the implementation of the model.

2.3.1 Non-Equillibrium simulations

This section will discuss the simulation set up for a single chain multibody and two-body forces.

We will also discuss the implementation of Langevin baths and the calculation of J. As we

discussed in Section 2.1, we have a chain with both bending and stretching potentials. The

model with Langevin baths at two ends of the chains is shown in Figure 2.1. As a summary,

dimensional parameters - k̃r, k̃θ , ã, ˜̀p, M̃, T̃ condense to λ (∼ 1−100), `p(≥ 1), T (∼ 10−2), N`

as non-dimensional (ND) parameters in our model. The code has been written in MATLAB and

both model and langevin bath implementation have been validated as shown in Section A.1.

2.3.1.1 Force calculation

We know that a particle will be experiencing forces due to 2 types of potentials in this system

- Two-body potential and Three-body potential. The bending force (f b
i ) and axial spring force

(f a
i ) are calculated for the net force fi. For the calculation of these forces, the bond orientations
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are calculated at each time step. Thus the vectors ∆ri and θi has been computed at each step.

Two-body interactions are easy to calculate as they involve the nearest neighbors. Changing

bond direction causes force along both longitudinal and transverse directions. We calculate the

forces as:

f a
i = (|∆ri|−1).ei− (|∆ri−1|−1).ei−1. (2.18)

For three-body interaction, we use the bending energy Vi denfined in last chapter as:

Vi =
1
λ
(cosθi +1)

. Now differentiating the above equation with relation to θ we get the moment:

dVi

dθi
= Mi =

−sin(θi)

λ
. (2.19)

With these expressions, we use the same methodology developed in [95]. We will scale the

moment by respective lengths to get the force on each connected link. The direction of the force

will be perpendicular to the link on i−1th and ith link. Thus the two internal forces will become:

f b
i−1 =

Mi

|∆ri−1|
, (2.20)

f b
i+1 =

Mi

|∆ri|
. (2.21)

Since, both of these forces are internal forces, we place an equal and opposite force on ith bead

i.e.:

f b
i =−f b

i−1− f b
i+1, (2.22)

resulting in total force as fi = f b
i + f a

i .

2.3.1.2 Velocity Verlet method

Once the forces have been calculated, we integrate the equations of motion by Velocity Verlet

method [96]. where force on each particle is given by:

mi
d2ri

dt2 = fi. (2.23)
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The steps for integrating the equations of motion have been implemented in the N body simula-

tion as follows:

ri(t +∆t) = ri(t)+vi(t)∆t +
f(t)
2mi

∆t2, (2.24)

vi(t +∆t/2) = vi(t)+
∆t fi(t)

2mi
, (2.25)

fi(t +∆t) = fi(ri(t +∆t)), (2.26)

vi(t +∆t) = vi(t +∆t/2)+
∆t fi(t +∆t)

2mi
, (2.27)

where fi and vi are the force and velocity vectors of each particle and ∆t is the time step.

2.3.1.3 Stochastic thermostat - Langevin bath

To simulate the system with a temperature gradient, we apply a thermostat on two ends of our

chains. This temperature is established by enforcing the kinetic energy of the particles to be

equal to:

Ti = mi
v2

i

2
. (2.28)

A friction factor γ is inserted, which increases or decreases the particle’s kinetic energy at

each step. Different thermostats calculate this friction factor in different ways. The most com-

mon are Nosé Hoover and Langevin thermostat. While Nosé Hoover is deterministic and easy

to implement, but literature has shown that it fails to excite all the modes in the harmonic sys-

tem [97, 98] in some systems. Thus, stochastic Langevin baths, have been used. The equations

are written as:

mi
d2ri

dt2 = fi− γmivi +

√
2kBT γ

∆t
ζi(t), (2.29)

where

< ζi(t)>= 0, (2.30)

and

< ζ̃i,α ζ̃i,β (t)>= δα,β . (2.31)

ζ̃i(t) is a vector with both components as a Gaussian random variable having zero mean and one
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variance. We have implemented these forces in MATLAB with the same algorithm that is used

in the LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). The equations

have been combined with velocity verlet for particles with bath as:

vi(t +
∆t
2
) = vi(t)−

∆t
2

(−fi

mi
+ γvi(t))

)
+

√
∆tkBT γ

mi
ζ̃i, (2.32)

ri(t +∆t) = ri(t)+vi(t +∆t/2)∆t,and (2.33)

vi(t +∆t) = vi(t +∆t/2)− ∆t
2
(
−fi

mi
+ γvi(t +∆t/2)+

√
∆tkBT γ

mi
ζ̃i. (2.34)

Here we have to generate random vector ζ̃i for each particle at each integration step.

2.3.1.4 Heat flux calculation

For multibody potential, the relation has been simplified to Ji =
d
dt (riHi) by [39]. To simplify it

for N body simulation, we rewrite the local energy Hi again as used by [39] as:

Hi =
1
4
(|(∆ri−1−1)2 +(∆ri−1)2))+

1
λ
(cosθi +1)+

pi.pi

2mi
, (2.35)

and write the flux calculation as:

m̃iJi =−(∆ri(pi +pi+1).g(i))

− (∆ri−1(pi +pi−1).g(i−1))

+(∆ri−1(pi.w(i−2, i−1, i−1)))

+(∆ri(pi.w(i+1, i+1, i)))+piHi.

(2.36)

Here, g(i) = 1
4(|∆ri|−1)ei, w(i, j,k) = 1

λ
(ei + ek cosθ j/|∆rk|), and ei is the unit vector. We use

this expression to calculate the heat flux in this paper. We can observe from this expression that

each term in Ji is scaled by density. Since the vibrations at a higher temperature will introduce

density variation between sites, this current will be different from what we can expect with the

expression given in [7].

Finally, we use λ = 5, 10, 15, 20, 80, 100 to compare the effect of slenderness on power
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law. We restrict our analysis to λ = 100 as it corresponds to `p = 1 for our temperature range.

Due to computational limitations, we only go to N = 8192. With a time step of ∆t = 0.1, the

system was stabilized for 108−3×108 time steps to reach a Non-Equilibrium Stationary State.

J is < |J| > where |J| is averaged over 108 time steps and < . > is the time average with units

(k̃3
r/m̃)1/2ã2. Finally, NJ vs. N has been plotted in Figure 2.4 and Figure 2.5 where the error is

smaller than the size of markers.

2.3.2 Effect of slenderness ratio on coupling

Ordered systems

As we know, the thermal current will depend on the magnitude of longitudinal vibrations and

transverse fluctuations. If we keep the temperature constant, transverse fluctuations are only

governed by λ . A higher value of λ leads to large transverse fluctuation amplitude. It leads

to coupling between longitudinal and flexural modes and thus leads to scattering. Thus we can

expect more deviation from ballistic behaviour, with an increase in λ .

On plotting NJ vs. N, in Figure 2.4(a) we observe that with the increase is λ , a decrease in

NJ is observed. Also, the plot starts deviating from Ballistic behaviour. Transition to superdiffu-

sive behaviour becomes evident when we measure the system size with `pas length scale rather

than ã as unit length. N is divided by each system’s persistence length to define a new system

size given by N`. In Figure 2.4(b), NJ values have been normalized by an arbitrary number and

plotted against N`. An exponent α is observed as different curves in Figure 2.4(a) collapse to

a master curve. We fit a straight line with the last 4 data points for λ = 100 and extend that

line to lower N` values. For clear representation, we have drawn a parallel line in the plot. This

helps us in comparing two extremes of our system - rod and rope regimes (λ = 5, N = 128 and

λ = 100, N = 8192). Near rod regime, we see that exponent is very close to α = 1, which is the

ballistic regime. On the other hand, in the rope regime (N` > 100), the system is asymptotically

approaching a subdiffusive regime. We cannot simulate for all N` at each λ . However, there

seems to be a smooth transition region, supporting a collapse to the same exponent. The tran-

sition from ballistic to superdiffusive behaviour is also visible in the temperature profile plotted

in Figure 2.6 where the thermal gradient develops in the rope limit. No logarithmic divergence

is visible here, which has been observed by [40] in one of the cases. Thus, we can get a su-

perdiffusive behaviour with a multibody potential in a single chain. We can expect the system

to asymptote to a power law with exponent α , provided we have enough persistence lengths in
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(a)

(b)

Figure 2.4: (a) Shows the divergence of NJ with the size of system in a mass ordered system with
Langevin baths and unit spacing. (b) The X axis has been scaled as the number of persistence lengths in
the system (N`), while Y axis has been scaled by different numbers to find a master curve for power law.
The line has been fitted using the last four points for λ = 100 and has been extended to lower N` values.
For clear representation, a parallel line has been drawn and a superdiffusive behaviour can be seen with
transition around N` = 100 from ballistic behaviour. TH = 0.01, TC = 0.008.
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the system.

Disordered systems

Since we have seen the effect of multibody potential in an ordered system, we want to further

study the power law in the presence of mass disorder. The disorder can localize extended modes

in a system, leading to an insulating chain. While [1] observed a perfect insulator with only

two-body interactions, the localization was destroyed in the presence of non-linearity. As we are

interested in NJ at the asymptotic limit where geometric non-linearities take over, delocalization

of modes is possible. Thus, we introduce an independent mass disorder to the system like in

Section 2.2. The two plots have been plotted similarly as in the ordered case. We can observe

from Figure 2.5 that the magnitude of NJ is an order less than the ordered system. This is

expected as we have an additional source of scattering. Apart from that in Figure 2.5, the

exponent is similar through all the values of N` explored. We do not see a transition region

from ballistic to superdiffusive regime. These features are also visible in the temperature profile

plotted in Figure 2.6 where the thermal gradient is present in the system in both rod and rope

limit. It can be possible that the transition region has shifted to short system sizes because

of additional scattering, or mass disorder is a dominant source of scattering for our range of

parameters. The exponents that we get are slightly lower than the ordered case. However, the

superdiffusive behaviour with N` in the asymptotic limit seems to exist.

2.3.2.1 Displacement amplitude projection

As the asymptotic limits show signs of a superdiffusive behaviour in both ordered and disordered

systems, we try to understand the physics behind it. Since this is an extremely non-linear regime,

plotting modal projections or understanding Eigenvalues might not give an accurate perspective.

Thus, we plot the magnitude of longitudinal(|X|) and transverse displacements (|Y|) for each

chain site (i) along with the normalized time (t∗). Here i = 1 corresponds to the hot end and

i=N corresponds to the cold end. The positions have been recorded after the system has reached

NESS. Time (t∗) has been recorded for 2×104× N
128 steps for both rope limit (N = 128, λ = 5)

and rod limit (N = 6000, λ = 100). It can be observed from Figure 2.7(a) that as we move

from rod to rope regime, |Y| show coherent wave packets travelling from one end to the other.

This pattern is recurring, and we believe that the shift in types of waves carrying energy leads

to superdiffusive behaviour. These patterns have to be investigated further and are outside the
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(a)

(b)

Figure 2.5: (a) NJ vs N plot showing divergence of NJ with the size of the system in a mass disordered
system with Langevin baths and unit spacing. (b) The X-axis has been scaled as number of persistence
lengths in the system(N`), while Y-axis has been scaled arbitrarily to find a master curve for power law.
No transition region has been observed and the system is superdiffusive throughout the range of the
simulations. TH = 0.01, TC = 0.008. 29
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Figure 2.6: Temperature profiles of the ordered and disordered systems in the rod (N = 128, λ = 5) and
rope limit (N = 6000, λ = 100). Here i is the chain site. For both systems we see a well developed tem-
perature gradient in the system. Except rod limit of ordered system all other systems have a temperature
gradient showing deviation from ballistic behaviour. TH = 0.01, TC = 0.008.

scope of this thesis. Moreover, this recurring pattern is also visible when there is a mass disorder

in the system in Figure 2.7(b) for both rod and rope regime. Since these patterns exist in all three

regimes of ordered and disordered cases where superdiffusive behaviour is visible, we believe

these are correlated. Further investigation is needed.

2.4 Summary

In this chapter, we have first characterized both flexural and longitudinal modes in the harmonic

limit using transmittance function. In longitudinal modes, a significant contribution was found

to be observed from higher frequencies, while flexural modes had symmetrical contributions

centred around half of the maximum frequency. Since, the disorder can localize higher fre-

quency, we observed that the contribution of longitudinal modes to the J decreased at shorter

system sizes compared to the flexural mode.
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Figure 2.7: Projected longitudinal(|X|) and transverse displacements(|Y|) of (a) Ordered system (b)
Disordered system in the rod and rope limit. Here i represents the chain site, where i = 1 is the hot end
and i = N is the cold end. The positions have been recorded after the system has reached NESS for
2× 104× N

128 time units for both rope limit(N = 128,λ = 5) and rod limit (N = 6000,λ = 100). Here
t∗ = 0 and t∗ = 1 corresponds to the starting and ending time of recording. Coherent patterns are visible
in |Y| of all 3 regimes showing super diffusive behaviour (rope limit of the ordered system and both limits
of the disordered system). 31



For the analysis in the non-linear regime, we use NESS simulations. We have analyzed a

non-dimensionalized Hamiltonian with multibody forces and pinned boundary conditions. Both

ordered and disordered mass systems have been studied to establish a superdiffusive behaviour

in the system. N` as a measure of system size has been used to study the asymptotic limit of NJ

and characterize the behaviour of our chain for both systems. While there is a visible transition

around N` = 100 for an ordered system from ballistic to superdiffusive behaviour, the disordered

system has shown a continuous superdiffusive behaviour. This can be due to the dominance of

the mass disorder as a scattering source for our range of parameters in the multibody system.

Displacement amplitude plots were used to get insight into superdiffusive behaviour. Recurring

patterns of wave reflection from one to the other end are visible in all three regions (ordered

and disordered systems) where superdiffusive behaviour is seen. These coherent patterns reflect

a change in the energy carriers when the behaviour changes from ballistic to superdiffusive

behaviour. We believe that this change of the carriers is responsible for imposing superdiffusive

behaviour.
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Chapter 3

Effect of pinning transverse motion on
thermal transport of a single chain
having multibody potential

In this chapter, we study the effect of transverse pinning on a single chain with multibody

potential. While studies have been available for two-body interactions, literature for simple

multibody potential with pinning is missing. We use the concept of transverse pinning to model

the effect of crowding in an array or forest-like arrangement on κ .

We briefly discuss the literature showing reduction of κ in Section 3.1. In Section 3.2,

we discuss the computational limitations of modelling an array with multibody potential. We

describe our model shown in Figure 3.1 in the same section. In section Section 3.3, we discuss

the effect of pinning on ordered and disordered systems. The ordered systems show up to

70% decrease in κ with only ∼ 0.3% of pinned points. On the other hand, no considerable

effect was visible in the presence of mass disorder. Finally, in Section 3.4, we study the tradeoff

between increasing scattering points and decreasing non-linearity in a single chain by increasing

TH TC

Figure 3.1: Schematic of single chain model in a crowded environment, modelled as the pinning of
transverse motion. Here i ∈ [0,N +1] where the two end particles are pinned. Langevin baths have been
added at i = 1 and i = N with temperatures TH and TC respectively. Additional springs with stiffness - ν .
are added to restrict the transverse motion.
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the number of pinning sites. We observe a non-monotonous trend from superdiffusive to the

ballistic regime. It indicates that a critical density can exist in arrays, leading to a transition

from a superdiffusive to a ballistic behaviour.

3.1 Reduction in κ of a Q1DM in an array-like arrangement

We have observed that an additional vibration mode can lead to a transition from superdiffusive

to ballistic behaviour in a single chain. The motion in the transverse direction is the only source

of non-linear coupling in a single chain. Heat transfer also is only along the backbone in an

isolated chain. When multiple chains are placed side-by-side, the heat can also transfer in

the transverse direction. The heat transfer to surrounding chains can be due to non-bonded

interactions like vdW forces or fusing of two chains during manufacturing. These interactions

can introduce a coupling between adjacent chains, resulting in scattering and heat leakage. Some

interesting results have been observed by [24] where a knockdown in κ , has been observed.

They observed that heat gets localized in a CNT forest despite individual CNT’s high thermal

conductivity along the axis. This phenomenon is intriguing as κ even along the chain’s backbone

is decreased. The inter-chain interaction we have discussed before can be observed in these

forests. The CNTs are not perfectly aligned, and interactions like fusion and entanglement can

be observed. It can also lead to kinks or bends along the backbone, which can decrease κ .

A decrease in thermal conductivity due to crowding has also been reported in other literature

[24,70–72,77]. Thus, this inter-chain interaction is not limited to CNT forests. It has to be noted

that there is no model with a simple two-body and three-body interaction that can study the effect

of crowding on power law. Thus it becomes interesting to understand how these interactions can

affect the system.

3.2 Modelling of inter-chain interactions as transverse pinning

As we have seen, two body potentials have been studied for power law and thermal conductivity.

The analysis can be limited by the computational power [99] in the case of 2D networks as the

number of sites increases as N×M, for M number of chains. It is computationally expensive

to go to larger system sizes, which is necessary to observe power law. Thus we model this

interaction as pinning of transverse DOF of a single chain. We add harmonic springs with
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Figure 3.2: Representation of interaction of a single chain in a crowded environment, like forest. Zoomed
view of a single chain shows the cylindrical wall potential.

pinning strength of ν in the Hamiltonian, (2.3) as:

H =
N

∑
i=1

{pi.pi

2
+

1
2
(|ri− ri+1|−1)2 +

1
λ
(cosθi +1)+νiy2

i

}
(3.1)

The number of pinning sites (q) can be related to the forest’s density, where chains interact with

the surroundings. In this model, pinning sites were equally spaced. Thus this simple model can

give an insight into the thermal transport of a single chain in a cylindrical potential as shown

in Figure 3.2. The figure shows a chain in the influence of nearby chains where few sites are

close enough to be in cutoff radius for interaction. The potential due to neighbouring tubes

has been represented as wall potential. Here we can vary the value of ν to probe two extremes

possibilities of the interaction. ν = 0.01 can represent a weak interaction, while ν = 1 can be a

fusion of two chains while manufacturing. A simplified model has been shown in the Figure 3.1.

The system’s size - N was fixed as 4096. This size was chosen as we observed deviation from

ballistic behaviour at this system size in the last chapter. Moreover, it saves the computational

cost required for larger system sizes.
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3.3 Effect of pinning on thermal transport in ordered and
disordered systems

Adding pinning to the system destroys translational invariance as well as introduces band gaps

in the system. Thus it can affect the magnitude as well as divergence of κ in the system. The

pinning has been studied of two-body interactions by [7] in a disordered system of harmonic

axial interactions. It has been shown that when all the sites are pinned, the J can decrease

exponentially with the system’s size, depending on the pinning strength. Our system is quite

different as there are two DOF in our system, and we are pinning only one DOF. Thus we start

by analyzing the effect of the increasing number of pinning sites for both ordered and disordered

systems in Figure 3.3. It can be seen that in an ordered system, the κ decreases by more than

70% for strong pinning and about 20% for weaker pinning. It has to be noted that we have

pinned only ∼ 0.3% of the total sites. Disordered case, on the other hand, is less sensitive to

pinning. Since there is already a huge reduction in κ due to disorder, additional pinning does not

Figure 3.3: Comparison of the decrease in the thermal conductivity for the ordered (empty markers) and
disordered systems (filled markers) with increase in the q (number of pinned points). These pinned sites
are equally spaced. Ordered systems show up to 70% drop in NJ with only∼ 0.3% of the number of sites
pinned. Disordered systems are less sensitive as the mass disorder is a dominant source of scattering.
λ = 10, TH = 0.01, TC = 0.008, N = 4096
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affect the system. In a nutshell, we can see that an ordered system is more sensitive to pinning

than a disordered mass system. The mass disorder seems to be a dominant scattering source for

this system.

3.4 Effect of the number of pinning points on κ

In the previous section, we have seen that transverse pinning decreases the κ in a chain with

multibody and two-body interactions. It has to be noted that the number of pinning points were

∼ 0.3% of the sites available. Thus the effect of pinning sites can be quite significant. The

addition of pinning sites is also interesting as it introduces two opposite drivers. On the one

hand, we are increasing scattering sites in the system. On the other hand, we are arresting one

degree of freedom, thus reducing the transverse fluctuation. It can reduce non-linearity in the

system. This effect can lead to the decoupling of axial and flexural modes. Thus, under these

conditions, we can expect anomalous behaviour. In such a case, despite adding a scattering

mechanism, we can see a transition to the ballistic regime. It should be a non-monotonous

behaviour, as we can see from Figure 3.4. The κ first decreases when the number of scattering

sites increases but increases when more than 25% sites are pinned. This behaviour is quite

visible in Figure 3.5 where the temperature gradient first increases from q = 1 to q = 13, while

at q = N, we see a flat profile corresponding to ballistic transport. This observation indicates a

possibility of a transition region in a crowded environment where the behaviour can shift from

anomalous to ballistic.

Here ν = 0.01 is a very weak interaction. It can be analyzed as the effect of vDW forces

(∼ kBT̃ ), which are approximately two orders less than a C-C bond (∼ 80kBT̃ ). On the other

hand, ν = 1 can be analyzed as the fusion of two chains. It can be observed that fusion can

have a more drastic effect on NJ than vDW interactions. We also would like to highlight that

our chains are pinned at two ends, which can be different from the chains grafted on a surface

(forests). One free end can lead to additional kinks and transverse interactions and thus lead to

additional scattering. It can lead to an additional reduction of NJ with fusion, which is already

showing a huge reduction.
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3.5 Summary

In this chapter, we studied the effect of pinning of transverse motion of a single chain with

multibody potential on κ . The model can be used to study the crowding of chains in a forest-

like environment. We observed that even 0.25% pinned sites can lead to a 70% decrease in κ of

an ordered chain. This effect is not significant in the presence of mass disorder, which itself is a

dominating scattering source in reducing the transport. We further studied the impact of adding

pinning points in an ordered system. It leads to two counter effects in the system; we are adding

scattering sources as well as decreasing the transverse motion of the chain. It has been observed

that the decrease in κ is thus non-monotonous from superdiffusive to ballistic transport with an

increase in the number of pinned sites. This transition is visible in the temperature profiles for

the respective number of pinning. It seems possible to observe a transition from superdiffusive

to ballistic behaviour in a crowded environment.

Figure 3.4: Non-monotonic behaviour of the thermal conductivity from superdiffusive to ballistic trans-
port with increasing q (number of pinned points). There is an interplay of the addition of scattering sites
and the straightening of the chain backbone which leads to this transition. λ = 10, TH = 0.01, TC = 0.008,
N = 4096
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Figure 3.5: Temperature profiles showing the non-monotonous transition from superdiffusive to ballistic
behaviour with an increase in q (pinned points). Here i is the site. λ = 15, TH = 0.01, TC = 0.008,
N = 4096. Increasing q adds scattering points but also removes non-linearity due to the flexibility of the
system. Thus, leading to a non-monotonous behaviour.
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Chapter 4

Thermal transport in molecular
forests2

In this chapter, we study the anisotropic heat flow in molecular forests using a multiscale molec-

ular simulation approach. For this purpose we devise a generic scheme to map the nanoscale

physics onto a coarse-grained (CG) model in Section 4.1. We discuss the effect of crowding on

reduction of κ‖ of a single chain in Section 4.2. Finally, we develop a microscopic understand-

ing of the reduced heat transport in molecular forests in Section 4.3. We thus, show how a broad

range of materials can be modelled within one unified physical concept. To achieve the above

goals, we combine molecular dynamics simulations of a generic polymer brush model [100]

with known theoretical concepts from polymer physics [101] and thermal transport [77, 102].

4.1 Modelling

We consider a Q1DM as a linear polymer chain, where the inherent flexibility is dictated by its

persistence length ˜̀p. For example, a linear molecule behaves as a rigid rod when the contour

length ˜̀c ' ˜̀p, while it follows a self-avoiding random walk statistics for ˜̀c >> ˜̀p [101]. In

this context, a recent experiment has measured that ˜̀p of an isolated single wall CNT is about

50−60 µm for a CNT diameter of D ' 1.0 nm [103]. Furthermore, ˜̀p ' 5 µm for a NW with

D ' 1.0 nm [104], ˜̀p ' 0.65 nm for PE [105] and ˜̀p ' 1.0 nm for PEDOT [106]. Using these
˜̀p estimates, we can now analyze different molecular forests. For example, the typical heights

H of CNT forests or arrays of NWs range within 0.1− 2 mm [24, 107], while in some cases

can also be 6 mm [72]. Furthermore, for the bundles of PE [75] or PEDOT [78], H ' 100

nm. Therefore, it is evident that H ' 2− 200 ˜̀p in most cases. This observation provides an

2A version of this chapter is available online [66]. [Bhardwaj, A.], Phani, A. S., Nojeh, A., & Mukherji, D.
(2020). “Thermal transport in molecular forests”. arXiv preprint arXiv:2005.10685.
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important length scale in our simulations and suggests that a long Q1DM can be modelled as a

flexible polymer chain, and hence a molecular forest as a polymer brush (Figure 4.1).

Here it is important to note that the bonded monomers along an isolated chain backbone im-

part almost crystalline-like structure, while a polymer brush is amorphous-like in all directions.

This is very similar to the situation in molecular forests [21, 24, 70, 71, 74, 78]. It should be

emphasized that, while a simple polymer model is certainly not appropriate to describe all the

complex properties of Q1DMs, our aim is to investigate if a CG model can explain the anoma-

lies in thermal behavior observed in experiments [24, 73, 74]. Furthermore, CNTs and NWs

have rather large ˜̀p ' 5− 50 µm even when their D ≈ 1.0 nm. Here, we map one ˜̀p onto a

monomer bead. This simple mapping scheme is chosen to capture the molecular bending for
˜̀c ≥ ˜̀p, which is essential in dictating the phonon mean-free path and thus κ|| in the molecular

forests.

For this study, we employ the Kremer-Grest polymer model [100]. In this model, individual

(c)(b)

Figure 4.1: (a-c) show simulation snapshots for Γ = 0.13 (green), Γ = 0.21 (red) and Γ = 0.65 (black),
where Γ is the ratio of the total area occupied by all tethered monomers and the surface area of the plane.
d is the length scale in reduced LJ units. The bottom panels of the snapshots are the enlarged views
of brushes between 100d < h < 200d and the top panels show the top layer for h > 340d. The arrow
at the right corner points at the direction of brush height h. We can observe the variation in height of
equillibrated configurations where h increases with Γ. The visualization is done using VMD package
[108].
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monomers interact with each other via a repulsive 6−12 Lennard-Jones potential with a cutoff

distance rc = 21/6d. VLJ = 0 for r > rc. The bonded monomers in a chain interact with an

additional finitely extensible nonlinear elastic (FENE) potential:

ULJ = 4ε

((d
r

)12−
(d

r

)6
)
+ ε (r < 2

1
6 d) (4.1)

UFENE =−33.75ε log

[
1− (

r
1.5d

)2

]
, (4.2)

which is also shown in (Figure 4.2).

Figure 4.2: Weeks-Chandler-Andersen (WCA), Finite Extensible Non-Linear Elastic (FENE) potential
and WCA+FENE potential (Kremer-Grest model).

The results are presented in the unit of LJ energy ε , LJ distance d and mass m of individual

monomers .

This leads to a time unit of τ = d(m/ε)1/2. We consider chains of length N = 500. Note

that ˜̀p of the fully flexible polymer model is about one bead, thus in our case N ' 500 ˜̀p. Here

the bond length `b ' 0.97d. Furthermore, the first monomer of every chain is tethered randomly

onto a square plane with lateral dimensions Lx = Ly ' 36.5d and the chains are oriented normal

to the surface, in the z direction. The surface coverage Γ is varied up to 0.65. Here, Γ is

calculated as the ratio of the total area occupied by all tethered monomers and the surface area of
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the plane. Γ values chosen here are much larger than the critical grafting density defined as Γ∗ =(
d/2Rg

)2 with Rg being the radius of gyration of the chain. Periodic boundary conditions are

applied in the x and y directions. One set of single chain simulations have also been performed

where the chain is tethered at both ends forming a fully stretched configuration.

4.1.1 System details

The polymer brush configurations are generated by randomly tethering the first monomer of

each chain onto a plane with lateral dimensions Lx = Ly ' 36.5d and then chains are created

normal to the plane, i.e., along the z direction. Here, it is important to note that our protocol

to generate a brush configuration reasonably mimics the experimental reality of synthesizing a

CNT forest [24,72], gradually grown upward starting from catalyst nanoparticles on a substrate

and normal to the substrate, using the process of chemical vapor deposition. The striking simi-

larity between the original system [24, 72] and the model system presented here is highlighted

by the presence of kinks along the molecular backbone that effects heat propagation along the

chain. Once the chains are grown normal to the substrate, the excluded volume interaction be-

tween the non-bonded monomers are increased from 0d to 1d with a step of 0.01d during a

warmup stage. During each stage of warmup, system is equilibrated for 104 MD steps with

and time step of δ t = 0.01τ . This protocol generates a sample without any unphysical particle-

particle overlap, while also ensuring that the system is equilibrated (Figure 4.1). We have chosen

a chain length of N = 500 and five different grafting densities Γ. The details of these system

sizes are presented in Table 4.1. All Γ values are much larger than the critical grafting density

Γ∗ of a polymer chain of N = 500 onto a plane. Here, Γ∗ = (d/2Rg)
2, i.e., one chain grafted

within an area of πR2
g and defines the transition from mushroom to brush regime. For an isolated

chain of N = 500, the gyration radius Rg ' 18.0d. The brush height H is calculated based on

the monomer density profile ρ shown in Figure 4.3.

4.1.2 Stress and thermal conductivity calculations

The virial stress is calculated using the standard subroutine in LAMMPS [109] as:

σi j =
1
V

(
1
2

n=Np

∑
n=1

(r1iF1 j + r2iF2 j)+
1
2

n=Nb

∑
n=1

(r1iF1 j + r2iF2 j)

)
(4.3)
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Γ Γ/Γ∗ Ng NNg H

0.06 77.8 100 50000 350d
0.13 168.5 225 112500 360d
0.21 272.3 361 180500 380d
0.29 375.8 484 242000 420d
0.65 842.4 1089 544500 460d

Table 4.1: A table listing the system size details used for the simulations. For this purpose a chain length
of N = 500 is chosen. We give details of the grafting density Γ, the critical grafting density Γ∗, the number
of grafted chains Ng, the total number of particles NNg, and the brush height H .
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Figure 4.3: Monomer number density ρ as a function of height h along the z−direction. Data is shown
for three different surface coverages, Γ. We observe that with the increase in Γ, the brush height increases.

where Np and Nb are the total number of particles with pairwise and bonded interactions of an

atom. F1 and F2 are forces on particle 1 and 2 due to each other and V is the volume. Height

h dependent stress profile is calculated by dividing the brush height H into different slabs of

width 50d, see Figure 4.6(b).

For the calculation of the anisotropic thermal conductivity coefficients κ , we have used the

Kubo-Green formalism [110] implementation in LAMMPS [109]. The equation of motion are

integrated in the microcanonical ensemble, while an estimate of the heat flux autocorrelation

function,

C(t) = 〈J́(t) · J́(0)〉, (4.4)
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Figure 4.4: Normalized heat flux autocorrelation function C(t)/C(0). Data and shown for two different
surface coverages Γ and for both components. Here we have considered a slab centered on 125d.

is obtained by sampling the system’s heat flux vector J́(t) over simulation time. Here we choose

a sampling period of 10−3τ to determine the correlation function over a time frame of 0≤ t ≤
2× 103τ , which is one order of magnitude larger than the typical de-correlation time. During

a total simulation of 2× 105τ , we accumulate correlation data and compute a running average

of the heat flux correlation function C(t). In Figure 4.4 we show the typical C(t) data for a

couple of our simulation runs. Finally, κ values are calculated by taking the plateau value of the

Green-Kubo integral for the component along the chain,

κ|| =
V

kB T́ 2

∫
∞

0
〈J́z(t) · J́z(0)〉dt, (4.5)

and in the lateral directions, i.e., x or y−directions,

κ⊥(t) =
V

2kBT́ 2

∫
∞

0

[
〈J́x(t) · J́x(0)〉+ 〈J́y(t) · J́y(0)〉

]
dt. (4.6)

For the single chain and single chain in brush data, we have used V of a single chain, see

Figure 4.5. Furthermore, for the calculation of slab-wise κ , v is taken as the volume of a slab

with thickness 50d.

Simulations are carried out in two stages: the initial equilibration and the thermal transport
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Figure 4.5: Normalized thermal conductivity along a chain backbone κ || = κ||(Γ)/κ||(0) as a function of
surface coverage of polymers Γ. κ||(0) corresponds to the single chain data (i.e., Γ→ 0), where the chain
is tethered at both ends. For the simulations under crowded environments, we have only calculated κ|| of
a single chain in a brush configuration, such that a chain experiences a cylinder-like confinement. Note
that normalization volume in the Kubo-Green formula is taken as the volume of one chain, i.e., v = vmN
with vm being the volume of one monomer. The gray line is a polynomial fit to the data that is drawn to
guide the eye.

calculations. Initial equilibration is performed under the canonical ensemble with a time step

of δ t = 0.01τ for 2× 107 MD time steps. The equations of motion are integrated using the

velocity Verlet algorithm [96]. The system is thermalized via a Langevin thermostat with a

damping constant γ́ = 1τ−1 and T́ = 1ε/kB, where kB is the Boltzmann constant. After this step,

the components of κ are calculated using the Kubo-Green method in microcanonical ensemble

[110].

4.2 Effect of crowding on κ‖ of a single chain

In Figure 4.5 we summarize the normalized thermal conductivity along a chain backbone κ || =

κ||(Γ)/κ||(0) as a function of Γ. Here, κ||(0) corresponds to the single chain data (i.e., Γ→
0). Note that for the calculation of κ|| in a brush we only consider one chain in the crowded

environment. It can be seen that, within the range 0.05 < Γ < 0.30, κ|| reduces by a factor

of 25−30 in a brush compared to a single chain. This sharp decrease is reminiscent of the

reduced κ|| in CNT forests [24, 73] and sheets [74]. What causes such a dramatic decrease
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in κ||? It is particularly puzzling given that Γ >> Γ∗ in all cases (Table 4.1) and therefore

individual chains in a brush are expected to stretch significantly [101]. Here, κ|| is expected

to be dominated by the bonded interactions. In this context, a closer investigation reveals that

a monomer of a chain in a crowded environment has two different modes of heat dissipation:

(a) two covalently bonded neighbors and (b) n non-bonded neighbors governed by the vdW

interactions. Furthermore, the vdW interaction strength is less than kBT̃ , while the bonded

interactions can be typically of the order of 80kBT̃ (a number representative of a C-C covalent

bond) [111, 112]. The stronger bonded interaction also leads to about two orders of magnitude

higher stiffness [113, 114]. Moreover, given that κ is directly related to the stiffness (we will

come back to this point later) [77, 102], we will now investigate how a 25−30 times reduction

in κ|| is observed in Figure 4.5 and in experiments [24, 72–74]. For this purpose, we will now

investigate the influence of microscopic chain conformation on κ||.

4.3 Effect of microscopic chain conformation on κ||.

We start by calculating the second Legendre polynomial P2 of the bond orientation vector using

P2 =
(
3
〈
cos2(φ)

〉
−1
)
/2. Here, φ is the angle of a bond vector with the z axis and 〈·〉 represents

the averages over all bonds and the simulation time. Here, P2 = 1.0 when all bonds are oriented

along the z axis, P2 = 0.0 when bonds are randomly oriented and P2 = −1/2 when all bonds

are perpendicular to the z axis. In Figure 4.6(a) we show the variation of P2 with the forest

height h for three different values of Γ. It can be seen that P2 ' 0.92 for a single polymer with

about 5% fluctuation. This is expected given that a single chain is fully stretched and all bonded

monomers are arranged in an almost perfect one-dimensional crystalline-like structure along the

z axis. This is also consistent with a large κ|| value for a single chain ( Figure 4.5).

For Γ = 0.13 and Γ = 0.21 in Figure 4.6(a), it can be seen that P2 decreases rather sharply

with h, as known from the structure of polymer brushes [115]. This is consistent with the

tethering constraint that the chains are significantly more stretched near the tethered points and

become more randomly oriented as h increases, see also simulation snapshots in Figure 4.1.

Furthermore, the individual chain end-to-end distances are Rz
ee ' 370d (for Γ = 0.13) and Rz

ee '
380d (for Γ = 0.21) (Table 4.1 and Figure 4.3), and thus are only about 75% of the chain

contour length ˜̀c = N`b ' 485d for N = 500. This incompatibility between Rz
ee and ˜̀c indicates

a significant chain bending (via the flexural vibrations) and introduces kinks along the chain

contour, as shown in the lower panels of the simulation snapshots in Figure 4.1. With increasing

47



(b)

Figure 4.6: (a) shows the second Legendre polynomial of the bond orientation vector P2 as a function
of the brush height h along the z axis. Data is shown for a single chain and for three different surface
coverage concentration - Γ = 0.13 (green), Γ = 0.21 (red) and Γ = 0.65 (black). (b) is the stress along
the chain backbone σB

|| . The lines are drawn to guide the eye. We can observe that orientation of bonds is
changing in parallel direction which is also reflected in the stress.

h, chain bending (or kinks) become more-and-more prominent, see the upper panels of the

simulation snapshots in Figure 4.1. In this context, it is important to note that in a fully stretched

chain (as in our case of the single chain), phonon-like wave propagation carries a heat current

along the chain backbone because of the periodic arrangement of monomers. When kinks appear

along a chain backbone due to the flexural vibrations dictated by ˜̀p (as in the cases of Γ =

0.13 and 0.21), the longitudinal phonon propagation is impacted. Here, each kink acts as a

scattering center for phonon propagation and thus reduces the phonon mean free path. The

larger the number of kinks for a given N, the higher the resistance to heat flow, i.e., the lower

κ|| (Figure 4.5). This observation is consistent with the recent simulation study of a single PE

chain, where it has been shown that increasing the number of kinks also decreases κ [116]. For

Γ = 0.65, bonds are significantly more oriented and also the chains are more stretched with

Rz
ee ' 450d ( Figure 4.6), resulting in an approximately three fold increase of κ|| in comparison

to Γ = 0.13 or 0.21, see Figure 4.5

Chain bending also reduces the longitudinal chain stiffness and thus κ . Therefore, to achieve

a better quantitative relationship between P2 (or an estimate of bending), local stiffness, and κ ,

we will now look into how P2 can be related to stiffness (or stress). For this purpose, we have

calculated the h dependent bonded contribution to the virial stress σB
|| . The data is shown in

Figure 4.6(b). It can be seen that the data for Γ = 0.13 and 0.21 not only show a rather large
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variation with h, consistent with the variation of P2 in Figure 4.6(a), but that this is significantly

lower than σB
|| ' 5.0εd−3 for Γ = 0.65, see Figure 4.6(b). We highlight that the monomer

arrangements in our model system of forests are amorphous in all directions (as evident from the

Figure 4.6 and Figure 4.3), while it is periodic for an isolated single chain. The amorphous-like

structures ordinate due to the molecular kinks along the z−direction (i.e., the direction of chain

orientation). This is reflected in the variation of κ|| with temperature T in Figure 4.7, which does
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Figure 4.7: The parallel κ|| and perpendicular κ⊥ components of the thermal conductivity coefficients as
a function of temperature T́ . The data are shown for the surface coverage concentration Γ = 0.13. The
lines are power law fits to the data that are drawn to guide the eye.

not show a T́−1 scaling reminiscent of the standard heat transport in crystals [31,36]. Instead we

observe an increase of κ|| with T́ , as known for amorphous materials [76] where heat propagates

because of the local fluctuations. Furthermore, while phonons carry a heat current in crystalline

materials [31, 36], such a compact phonon picture is absent in amorphous materials [117, 118]

as in the case of molecular forests. In this context, a forest with the typical height much larger

than the ˜̀p of a Q1DM, such as CNT or NW, will also exhibit kinks and thus lead to amorphous

like arrangements.

Figure 4.6 also suggest that there is an inherent h dependent anisotropy in the chain ori-

entation, i.e., the chains are more stretched very close to h→ 0 due to tethering and become

more random with increasing h [101, 115]. Consequent anisotropy is reflected in κ||/κ⊥ in

Figure 4.8, where κ⊥ is the thermal conductivity along the x & y directions. For Γ = 0.13
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Figure 4.8: κ||/κ⊥ as a function of the brush height h. Here, κ|| and κ⊥ are the parallel and the perpen-
dicular components of the thermal conductivity, respectively. Data are shown for three different surface
coverage concentrations Γ. The lines are drawn to guide the eye.

we observe that heat flow is: highly anisotropic for h < 200d (κ||/κ⊥ ' 50− 60), moderately

anisotropic for 200d < h < 350d (κ||/κ⊥ ' 10− 40), and weakly anisotropic for h > 350d

(κ||/κ⊥ < 10). With increasing Γ, the relative anisotropy in κ||/κ⊥ decreases (see the red

and black data sets in Figure 4.8). The values of κ|| and κ⊥ are plotted in Figure A.3. The

anisotropy trend is predominantly because of the increased particle number density ρ that in-

duces a faster increase in κ⊥ than κ|| with ρ (Figure 4.3). Here, considering that ˜̀p ' 1d in

our model, this also gives a comparable estimate of the relevant length scales (in terms of ˜̀p)

that are needed to make a direct experimental comparison. In this context, most experiments on

CNT forests deal with Γ ≤ 0.10, 1 < D < 10 nm (can even be several 10 nm in some cases)

and also relatively small H ≤ 2 mm [24]. Therefore, the conditions typically fall within the

range when H varies from a few ˜̀p to about 40 ˜̀p (i.e., for D ' 1.0 nm and H ' 2 mm) [103].

This will then lead to a rather anisotropic regime [24, 74]. Here, experiments on CNT forests

yielded a κ||/κ⊥ ' 10− 100 [24, 72], for CNT sheets κ||/κ⊥ ' 500 [74], and for PE fibers

κ||/κ⊥ ' 1000 [75], Furthermore, our simulations show κ||/κ⊥ ' 10− 60 for h < 200 ˜̀p and

with varying Γ, see Figure 4.8. This further suggests that our simple CG model captures the

relevant physics of the problem.

Lastly, we would like to investigate the dependence of κ|| on the material’s stiffness [77].

Figure 4.9 shows κ|| as a function of an estimate of the elastic modulus along the direction of
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Figure 4.9: The parallel component of the thermal conductivity κ|| as a function of an estimated elastic
modulus along the chain orientation σB

|| /E . Here, σB
|| and E are the longitudinal bonded components of

the stress and strain, respectively. Data are shown for three different surface coverage concentrations Γ.

the chain orientation σB
|| /E . Note that the elastic modulus is directly related to the sound wave

velocity. Here, E is strain. We estimate E from the stretching of the bond vector along the

z direction, which is only about 1.0% for Γ = 0.13, 1.1% for Γ = 21 and 3.0% for Γ = 0.65.

These small E values are expected given that a bond is rather stiff [100]. It can be appreciated

that the data in Figure 4.9 is constant with an understanding that κ is directly related to the

stiffness [77, 102].

4.4 Summary

In conclusion, combining molecular dynamics simulations with known concepts from poly-

mer physics and thermal conductivity, we have studied the microscopic, generic behavior of

anisotropic thermal conductivity in molecular forests. As a model system, we have used a

generic coarse-grained polymer brush. We provide a possible explanation for the reduced ther-

mal conductivity in molecular forests, i.e., the observation that, while a single linear molecule

can have very large thermal conductivity along the molecular backbone κ||, the same molecule

in a forest shows a drastic reduction in κ||. Typical experimental systems include nanotube and

nanowire forests and macromolecular fibers. Our analysis reveals that the reduced κ|| is due to
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the lateral chain bending and vdW interactions with other chains hinders the longitudinal heat

flow along the molecular backbone. These results point to a general principle of flexible tuning

of κ by changing density, molecular flexibility and forest height. Therefore, they may pave the

way towards the design of advanced functional materials with tunable thermal properties.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis investigates the effect of multibody potential and crowding on nanoscale thermal

transport. We studied two different models - single chain with multibody potential and molecu-

lar forests. The first model gives us an insight into the effect of multibody forces. Divergence of

κ of a single chain in an isolated environment and a crowded environment has been studied in

Chapter 2 and Chapter 3, respectively. In Chapter 4, we propose a multiscale simulation method

to study thermal transport in molecular forests. The significant findings are:

1. In the harmonic limit, longitudinal and flexural modes have different frequency spec-

trum (transmittance function) of contribution to thermal transport. This behaviour can be

expected, as both modes differ fundamentally. Longitudinal modes have a higher contri-

bution from higher frequencies. In contrast, flexural modes have symmetric contributions

centred around half of the maximum frequency. Hence, disorder leads to the localization

of longitudinal modes at a shorter system size. Thus, flexural and longitudinal modes

differ fundamentally on frequency-wise contribution to thermal transport in the harmonic

limit.

2. A single chain with multibody and two-body interactions show deviation from ballistic

behaviour at large system sizes. Additional length scale - ` introduced due to multibody

potential, has been used to measure system size as - N`. In the asymptotic limit, su-

perdiffusive behaviour is observed. The phenomenon is thus independent of the system

parameters, given sufficient N` in the system. Mass-disordered systems also show the

same superdiffusive behaviour. It is different from chains with only longitudinal motion

and 1DOF, which are insulators. Finally, from longitudinal and transverse displacements,

we observe coherent wave patterns in superdiffusive regimes. We believe that change in

carriers is responsible for superdiffusive behaviours. Thus, we establish that the pres-
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ence of multibody potential introduces superdiffusive behaviour, given sufficient N` in the

system. A change of carriers was observed in the superdiffusive regime.

3. Pinning transverse motion of a single chain with multibody potential shows 70% knock-

down of κ by ∼ 0.3% of pinned sites. This result can be useful in understanding the

decrease in κ of forests. While the decrease is significant in ordered systems, disor-

dered systems are less sensitive. Moreover, we observe a non-monotonous transition

from superdiffusive to ballistic transport on increasing the number of pinned points. It

is because of the tradeoff between the increase in scattering points and straightening of

the chain backbone to decrease nonlinearity. It highlights that a critical density can exist

in a crowded environment where a similar transition can be observed. Thus, we estab-

lish a non-monotonous transition from superdiffusive to ballistic transport by increasing

crowding around a single chain. Significant knockdown in κ was observed in the ordered

system. However, the mass disorder was a dominant scattering source than pinning for

our range of parameters.

4. A coarse-grained model has been used combining the concepts of polymer physics and

thermal transport. Using the Kremer-Grest model for molecular chains, we propose a

possible explanation of κ‖ knockdown in forests. We observe that lateral chain bending

results in phonons’ interaction, decreasing heat flow along the molecular backbone. The

results highlight the role of density in introducing anisotropy in the system, thus proposing

a way to simulate forests with millions of atoms at a fraction of computational cost.

5.2 Future work

While we were able to study various aspects of thermal transport successfully, there are still

many directions that we could not explore here:

1. Single chain with multibody potential has only been studied at a constant temperature.

Increase in temperature can introduce additional scattering which can lead to the transition

to superdiffusive regime at shorter system sizes. Though there is one set of simulations

available in Section A.2, the effect on α with change in temperature has also not been

studied.

54



2. Single chain with multibody potential has two DOFs. Additional modes like twisting

can be introduced when three DOFs are considered. Twisting modes can couple with the

bending modes, and the effect on κ can be studied on Q1DM like CNTs.

3. Single chain with multibody potential is a phenomenological model. It cannot be mapped

directly to a real system.

4. Coherent patterns emerging in the superdiffusive regimes have not been studied in detail.

These carriers have to be studied to characterize them and understand their emergence.

5. We have qualitatively observed the non-monotonous transition from superdiffusive to the

ballistic regime with pinning of transverse mode. The divergence exponent (α) can be

calculated for each value of q, and transition can be verified.

6. In the molecular forest model, we have not studied the time evolution of energy when

a spot is heated. It can help us understand the evolution of the temperature profiles in

the ”heat trap” effect [24]. The effect of disorder and fusion of two chains can also be

explored to simulate the defects in a real forest.
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Appendix A

A.1 Code validation

A.1.1 Force calculation validation

The single chain model has been validated by comparing the frequencies of the first four modes

of a beam calculated by the equation:

ρA
∂ 2w
∂ 2t

=−EI
∂ 4w
∂ 4x

, (A.1)

where E = 2000 GPa, I = 2.08e−09 m4, A = 2.5e−04 m2, L = 50 mm and ρ = 1000 kg/m2.

In the model, an impulse is given at one point the displacements have been recorded at the other

point. Fast Fourier Transform has been done to find the first four frequencies and the values are

compared with the analytical expression for nth mode, which is given by:

ωn = n2

√
EI

ρAL4 . (A.2)

Calculated 2.55 10.25 23 40.08
Analytical Expression 2.56 10.25 23.06 41.01

Percentage error 0.39 0 0.29 0.51

Table A.1: Comparison of analytically and numerically calculated frequency (Hz) of first four modes.
The error is less than 1% and thus validates the force calculation in our model.

A.1.2 Langevin bath’s implementation validation

The NJ values have been compared with [1] for different anharmonicities in a 1 DOF mass

disordered system. Here µ is the parameter for the quartic anharmonicity given in [1]. The

calculated values have been plotted in: which are in good aggreement as in [1]. This validates

the Langevin bath implementation.
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Figure A.1: Calculated NJ for different strength of anharmonicity (µ) in a single chain with 1 DOF and
mass disorder. The values and trend is in good agreement as in [1].

A.2 Effect of temperature in the single chain model
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Figure A.2: Dependence of thermal conductivity on temperature with both axial and flexural modes (2.3)
in an ordered system. Increasing temperature leads to the decrease in thermal conductivity of the chain
as expected. Since Figure 2.4 was already showing a transition from the ballistic to the superdiffusive
regime, the transition is more apparent at higher temperatures. λ = 10, TH = 0.01, TC = 0.008, a = 1

Since we have analyzed the effect of flexibility in the system, we know that the coupling of
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these modes will deviate the system from ballistic behavior. This coupling can be expected to be

stronger at higher temperatures in the Hamiltonian given in (2.3). As the coupling scales with

the instantaneous length of the links, high temperatures will amplify the vibration amplitudes,

thus increasing coupling. Thus we expect a decrease in NJ which is visible from Figure A.2

A.3 Variation of thermal conductivity within a brush

(a)

Figure A.3: The parallel κ|| (a) and perpendicular κ⊥ (b) components of the thermal conductivity coeffi-
cients as a function of height h along the z direction. Data is shown for three different surface coverage
concentrations Γ. We can see that κ|| is two orders of magnitude higher for the largest Γ compared to the
lowest value of Γ. The decrease in κ|| with increase in h is due to change in bond orientations. Higher
density leads to increased chain alignment throughout the height of the brush, leading to a flat profile of
κ|| vs. h. On the other hand we see an increase in κ⊥ with increase in h. This is because, the brush
in less anistropic at the top than at the bottom. The thermal transport due to bonds is increasing in the
perpendicular direction.
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