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Abstract

Nucleic acid molecules are vital constituents of living beings. These molecules are

also utilized for building autonomous nanoscale devices with biological and tech-

nological applications, such as toehold switches, algorithmic structures, robots,

and logic gates. Predicting the kinetics (non-equilibrium dynamics) of interacting

nucleic acid strands, such as hairpin opening and strand displacement reactions,

would assist with understanding the functionality of nucleic acids in the cell and

with building nucleic-acid based devices.

Continuous-time Markov chains (CTMC) are commonly used to predict the

kinetics of these reactions. However, predicting kinetics with CTMC models is

challenging. Because, first, the CTMCs should be defined with accurate and bio-

physically realistic kinetic models. Second, the state space of the CTMCs may be

large, making predictions time-consuming, particularly for reactions that happen

on a long time scale (rare events), such as strand displacement at room tempera-

ture.

We introduce an Arrhenius kinetic model of interacting nucleic acid strands

that relates the activation energy of a state transition with the immediate local envi-

ronment of the affected base pair. Our model can be used in stochastic simulations

to estimate kinetic properties and is consistent with existing thermodynamic mod-

els that make equilibrium predictions. We infer the model’s parameters on a wide

range of reactions by using mean first passage time (MFPT) estimates. We esti-

mate MFPTs using exact computations on simplified state spaces. We show that

our new model surpasses the performance of the previously established Metropolis

kinetic model.

We further address MFPT estimation and the rapid evaluation of perturbed
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parameters for parameter inference in the full state space of reactions’ CTMCs.

We show how to use a reduced variance stochastic simulation algorithm (RVSSA)

to estimate MFPTs. We also introduce a fixed path ensemble inference (FPEI)

approach for the rapid evaluation of perturbed parameters. These methods are

promising, but they are not suitable for rare events. Thus, we introduce the pathway

elaboration method, a time-efficient and probabilistic truncated-based approach for

addressing both mentioned tasks. We demonstrate the effectiveness of our methods

by conducting computational experiments on nucleic acid kinetics measurements

that cover a wide range of rates for different type of reactions.
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Lay Summary

Nucleic acids are vital constituents of living beings. With the advantage of hav-

ing programmable configurations and movement, nucleic acids are also utilized for

building autonomous nanoscale devices. For example, RNA biosensors can detect

viruses and DNA robots are promising tools for drug delivery in cancer therapy.

Predicting the kinetics (non-equilibrium dynamics) of reactions involving interact-

ing nucleic acid strands would assist with building such devices. In this direction,

accurate kinetic models and efficient prediction methods are desirable. We intro-

duce a kinetic model that surpasses the performance of a well-established kinetic

model and we show how to calibrate the models on various type of reactions. More-

over, we introduce a time-efficient probabilistic method for predicting the kinetics

of reactions in large state spaces. Our contributions will make it easier to design

nucleic acids with novel forms of movement, which can ultimately lead to practical

nanoscale devices.
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Chapter 1

Introduction

Nucleic acids are vital constituents of living beings, and exist in the forms of de-

oxyribonucleic acid (DNA) and ribonucleic acid (RNA). DNA molecules contain

the genetic information and instructions that enable the functioning and develop-

ment of living organisms. RNA molecules are essential for decoding the genetic

information contained within DNA. With the advantage of having programmable

binding interactions and movement in vitro and in vivo, nucleic acids are also

promising elements for building nanoscale biotechnological tools (Chen et al.,

2015; Seeman and Sleiman, 2017; Simmel et al., 2019). For example, RNA toe-

hold switches can activate gene expression (Green et al., 2014) and they can be

used for the realization of paper-based biosensors to detect viruses (Pardee et al.,

2016). As another example, DNA robots can diagnose and potentially treat cancer-

ous activity using DNA origami (Li et al., 2018). Nucleic acids can also be used

for building computing devices, such as digital circuits that compute the square

root of a number (Qian and Winfree, 2011) and neural networks that recognize

hand-written digits (Cherry and Qian, 2018).

Designers of these biotechnological and molecular programming tools must

often pay careful attention to nucleic acid kinetics, in order to ensure that the tools

work effectively. By kinetics, we mean non-equilibrium dynamics, such as the

rate of a reaction, the order in which different strands interact, or secondary struc-

tures1 that form when a system is not in thermodynamic equilibrium. Predicting

1A secondary structure refers to the hydrogen bonding state of the bases.
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Invader

Incumbent

Substrate Substrate

Incumbent

Invader

Figure 1.1: An example of a toehold-mediated three-way strand displacement re-
action. An invader strand displaces an incumbent strand in a duplex through a
strand displacement reaction.

the kinetics of reactions involving interacting nucleic acid strands would assist with

building nucleic acid-based devices. For example, toehold-mediated three-way

strand displacement reactions (Figure 1.1) are widely used for building nucleic

acid-based devices (Simmel et al., 2019; Zhang and Seelig, 2011), such as digital

circuits (Qian and Winfree, 2011), neural networks (Cherry and Qian, 2018; Qian

et al., 2011), oscillators (Srinivas et al., 2017), and DNA robots (Thubagere et al.,

2017). Other type of reactions that we use in this work (see Chapter 2) include he-

lix association and dissociation, hairpin closing and opening, and four-way branch

migration.

In this direction, developing accurate and efficient nucleic acid kinetic predic-

tion tools is an important milestone (Angenent-Mari et al., 2020; Flamm et al.,

2000; Ouldridge et al., 2011; Schaeffer et al., 2015; Šulc et al., 2012; Tang et al.,

2005; Zhang et al., 2018). These tools are desirable for building nucleic acid-

based devices whose nucleic acid sequences and experimental conditions need to

be carefully designed to control their behaviour. They would allow many, though

not all, unanticipated design flaws to be identified prior to conducting wet-lab ex-

periments, and would allow more complex molecular devices to be designed and

successfully implemented with fewer deficiencies needing to be debugged experi-

mentally. However, predicting the kinetics of reactions is challenging and depends

on the sequence of the strands and experimental conditions, making the design of

artifacts challenging.

Because of these pressing needs, there has been great progress on kinetic simu-

lators that can be used to simulate the movement of interacting nucleic acid strand

in addition to predicting other kinetic properties, such as rate constants. The simu-
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lators range from coarse-grained models that consider large rearrangements of the

base pairs2 (Tang et al., 2005) and often factor in tertiary structure, to elementary

step models that consider the forming or breaking of a single base pair (Flamm

et al., 2000; Schaeffer et al., 2015), to molecular dynamics models that follow the

three-dimensional motion of the polymer chains (Ouldridge et al., 2011; Schreck

et al., 2015; Šulc et al., 2012). Machine learning models, such as neural networks,

have also been developed that predict kinetic properties (Angenent-Mari et al.,

2020; Zhang et al., 2018). Both simulators and machine learning models need

to be trained on experimental kinetics data. Elementary step models are of interest

to us here because they are computationally more efficient than molecular dynam-

ics, yet they also can represent and thus discover unexpected secondary structures

that occur between any two possible secondary structures.

In modeling nucleic acid kinetics, continuous-time Markov chains (CTMCs)

play a central role, such as the Kinfold (Flamm et al., 2000) and the Multistrand

(Schaeffer, 2012; Schaeffer et al., 2015) kinetic simulators. A CTMC is a stochas-

tic process on a discrete set of states that have the Markov property, so that future

possible states are independent of past states given the current state. The time in a

state before transitioning to another state (the holding time) is continuous; to retain

the Markov property, holding times follow an exponential distribution with a single

rate parameter for each state-to-state transition. CTMCs are widely used in natu-

ral and physical sciences, such as for modeling nucleic acid reactions (Dykeman,

2015; Flamm et al., 2000; Schaeffer et al., 2015), protein folding (McGibbon and

Pande, 2015), chemical reaction networks (Anderson and Kurtz, 2011; Cappelletti

et al., 2020; Soloveichik et al., 2008), and molecular evolution (Liò and Goldman,

1998). Particularly, in elementary step models of nucleic acid kinetics (Dykeman,

2015; Flamm et al., 2000; Schaeffer et al., 2015), states correspond to nucleic

acid secondary structures and a transition between two states corresponds to the

breaking or forming of a base pair. The transition rates are specified with kinetic

models (Kawasaki, 1966; Metropolis et al., 1953) along with thermodynamic mod-

els that make equilibrium predictions (Andronescu et al., 2003; Bellaousov et al.,

2013; Hofacker, 2003; Zadeh et al., 2011).

2A base pair refers to when two bases bound to each other by hydrogen bonds.
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To make accurate and realistic kinetic predictions, accurate and biophysically

realistic models of nucleic acid kinetics are desirable. Even though thermodynamic

models (Andronescu et al., 2003; Hofacker, 2003; Xu and Mathews, 2016; Zadeh

et al., 2011) have been extensively calibrated to experimental data (Andronescu

et al., 2010; Mathews et al., 1999), extensive calibration of nucleic acid kinetic

models remains challenging. Thus, one focus of this work is to develop a kinetic

model that is more comprehensive than existing models and to show how to effi-

ciently calibrate kinetic models on various type of reactions.

To evaluate and calibrate kinetic models, computational predictions need to

be compared with experimental measurements. A central quantity of interest in

CTMCs, which we use in this work, is the mean first passage time (MFPT) to

reach a set of target states starting from a set of initial states. The MFPT is com-

monly used to estimate the rate of a process (Reimann et al., 1999; Schaeffer, 2013;

Singhal et al., 2004). Predicting the rate of a process is advantageous, for example

for designing devices that are controlled through rates of competing reactions. For

a CTMC with a reasonable state space size, a matrix equation can provide an exact

solution to the MFPT (Suhov and Kelbert, 2008). However, direct application of

matrix methods is not feasible for estimating MFPTs of CTMCs that have large

state spaces.

For such cases researchers may resort to stochastic simulation (Asmussen and

Glynn, 2007; Doob, 1942; Gillespie, 1977, 2007; Ripley, 2009). For CTMCs in

particular, the stochastic simulation algorithm (SSA) (Doob, 1942; Gillespie, 1977)

is a widely used Monte Carlo procedure that can numerically generate statistically

correct trajectories. In brief, the algorithm iteratively samples states based on tran-

sition rates and holding time of states. By sampling enough trajectories that reach

a target state, an estimate of the MFPT can be obtained. In turn, direct simulation

is inefficient for estimating MFPTs of reactions that happen on a long time scale

(rare events), such as reactions that involve high-energy barrier states. A number

of techniques have been developed for efficient sampling of simulation trajectories

relevant to the event of interest (Allen et al., 2009; Bolhuis et al., 2002; Escobedo

et al., 2009; Rubino and Tuffin, 2009; Shahabuddin, 1994), as will be discussed in

Chapter 2. Such sampling techniques, unfortunately, must generally be re-run if

model parameters change, which makes it costly to perform parameter scans or to

4



optimize a model.

CTMC systems may be treated by methods that truncate the state space to just

a subset of “most relevant” states, so long as those states can be identified and they

are few enough that matrix methods can compute the MFPT or other properties

of interest (Kuntz et al., 2019; Munsky and Khammash, 2006). In such truncation-

based methods, after the initial cost of enumerating states, the truncated CTMC can

be reused to compute MFPTs for mildy perturbed parameters with accuracy relying

on the truncated state space still containing the most relevant states. For example,

we can reuse truncated CTMCs to speed up parameter inference or to optimize

experimental conditions, such as the temperature, to obtain a desired functionality.

The key challenge here is to efficiently enumerate a suitable subset of states that

are sufficient for accurate estimation and also few enough that the matrix methods

are tractable.

Thus, another focus of this work is to develop a method that efficiently ad-

dresses all three challenges for CTMCs: large state spaces, rare events, and effi-

cient recomputation for perturbed model parameters.

1.1 Summary of Contributions
The contributions of this thesis are as follows:

• We curate experimentally determined reaction rate constants for nucleic acid

kinetics from the literature, to conduct computational experiments in Chap-

ters 3, 4, and 5. In Chapter 2, we describe the type of reactions that we use

in this work. In Chapters 3, 4, and 5, we give an overview of the dataset that

we curate for the experiments of the corresponding chapter.

• Chapter 3: We introduce an Arrhenius model of interacting nucleic acid

kinetics that relates the activation energy of a state transition with the im-

mediate local environment of the affected base pair. Our model can be used

in stochastic simulations to estimate kinetic properties and is consistent with

existing thermodynamic models. However, because explicit stochastic simu-

lation can be extremely costly for obtaining sufficiently small error bars, we
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employ reaction-specific simplified state spaces that enable MFPTs and reac-

tion rate constants to be computed efficiently and exactly using matrix com-

putations. The simplified state spaces are a strict subset of the full state space

of Multistrand (Schaeffer, 2013; Schaeffer et al., 2015). We infer parameters

for our model using an ensemble Markov chain Monte Carlo (MCMC) ap-

proach, in addition to a maximum a posteriori (MAP) approach, on a training

dataset with 320 DNA kinetic measurements of hairpin closing and open-

ing, helix association and dissociation, bubble closing and toehold-mediated

strand exchange. Our new model surpasses the performance of the previ-

ously established Metropolis model both on the training set and on a testing

set of size 56 composed of toehold-mediated three-way strand displacement

with mismatches and hairpin opening and closing rates: reaction rates are

predicted to within a factor of three for 93.4% and 78.5% of reactions for

the training and testing sets, respectively.

Our framework and the dataset, as well as an online appendix that has ad-

ditional experimental plots and analysis, are available at https://github.com/

DNA-and-Natural-Algorithms-Group/ArrheniusInference.

• Chapter 4: We address MFPT estimation and the rapid evaluation of per-

turbed parameters for parameter inference in the full state space of reactions’

CTMCs. We show how to use a reduced variance stochastic simulation al-

gorithm (RVSSA), which is adapted from SSA, to estimate the MFPT of a

reaction’s CTMC. To speed up parameter estimation and the rapid evalua-

tion of perturbed parameters, we introduce a fixed path ensemble inference

(FPEI) approach, that we adapt from RVSSA. We show how to estimate

model parameters in the full state of the reactions CTMCs using a gener-

alized method of moments (GMM) estimator (Hansen, 1982). We conduct

computational experiments on a dataset of 21 experimental DNA reactions

that have moderate or large state spaces or are slow. In our experiments,

FPEI speeds up parameter estimation compared to inference using SSA, by

more than a factor of three for slow reactions. Also, for reactions with large

state spaces, it speeds up parameter estimation by more than a factor of two.

We implement RVSSA and FPEI using the Multistrand kinetic simulator
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(Schaeffer, 2012; Schaeffer et al., 2015). Our framework and the dataset are

available at https://github.com/DNA-and-Natural-Algorithms-Group/FPEI.

• Chapter 5: Similar to the previous chapter, we address MFPT estimation

and the rapid evaluation of perturbed parameters in the full state space of

reactions’ CTMCs. However, we propose a method that is applicable to re-

actions that happen on a long time scale, that is rare events; Our method,

called pathway elaboration, is a time-efficient probabilistic truncation-based

approach for detailed-balance CTMCs. We demonstrate that pathway elabo-

ration is suitable for predicting nucleic acid kinetics, by conducting compu-

tational experiments on 267 measurements that cover a wide range of rates

for different types of DNA reactions, such as toehold-mediated three-way

strand displacement and helix association. These measurements include re-

actions that have more than 100 bases in their strands. We utilize pathway

elaboration to gain insight on the kinetics of two contrasting three-way strand

displacement reactions. We compare the performance of pathway elabora-

tion with the stochastic simulation algorithm (SSA) for MFPT estimation

on 237 of the reactions for which SSA is feasible. We further use pathway

elaboration to rapidly evaluate perturbed model parameters during optimiza-

tion with respect to experimentally measured rates for these 237 reactions.

The testing error on the remaining 30 reactions, which involved rare events

and were not feasible to simulate with SSA, improved comparably with the

training error.

We implement pathway elaboration on top of the Multistrand kinetic simula-

tor (Schaeffer, 2012; Schaeffer et al., 2015). Our framework and the dataset

are available at https://github.com/DNA-and-Natural-Algorithms-Group/

PathwayElaboration.

In this thesis, we only evaluate our work in the context of DNA reaction kinet-

ics. However, we believe our Arrhenius kinetic model would also apply to RNA

reaction kinetics. Moreover, even though we only evaluate the FPEI and path-

way elaboration methods to DNA kinetics, they are generally applicable to other

applications that are modeled as CTMCs, such as chemical reaction networks (An-

derson and Kurtz, 2011; Cappelletti et al., 2020; Soloveichik et al., 2008), protein
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folding (McGibbon and Pande, 2015), and molecular evolution (Liò and Goldman,

1998).

1.2 Thesis Outline
The rest of this thesis is organized as follows. In Chapter 2, we describe the prelim-

inaries and the related work for this thesis. In Chapter 3, we propose the Arrhenius

kinetic model and we give computational results. In Chapter 4, we propose the

FPEI method and we give computational results. In Chapter 5, we propose the

pathway elaboration method and we give computational results. Finally, in Chap-

ter 6, we give a summary of our contributions.
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Chapter 2

Preliminaries and Related Work

In this section, we first describe the most relevant concepts for continuous-time

Markov chains (CTMCs). Then, we describe the Stochastic Simulation Algorithm

(SSA) (Doob, 1942; Gillespie, 1977). After that, we describe the most relevant

concepts for interacting nucleic acid strands, and we describe different type of nu-

cleic acid reactions that we use in our dataset. Then, we explain how nucleic acid

kinetics are modeled with CTMCs in the Multistrand kinetic simulator (Schaeffer,

2013; Schaeffer et al., 2015). Finally, we go over other related work.

2.1 Continuous-Time Markov Chain
Continuous-time Markov chain (CTMC). We define a CTMC as a tuple C =
(S,K,π0,Starget), where S is a countable set of states, K : S ×S → R≥0 is the rate

matrix and K(s,s) = 0 for s ∈ S, π0 : S → [0,1] is the initial state distribution in

which ∑s∈S π0(s) = 1, and Starget is the set of target states. We define the set of

initial states as Sinit = {s ∈ S | π0(s) 6= 0} . For CTMCs considered here, Starget ∩
Sinit = /0. A transition between states s,s′ ∈ S can occur only if K(s,s′) > 0. The

probability of moving from state s to state s′ is defined by the transition probability

matrix P : S ×S → [0,1] where

P(s,s′) =
K(s,s′)
E(s,s)

. (2.1)
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Here E : S ×S → R≥0 is a diagonal matrix in which E(s,s) = ∑s′∈S K(s,s′) is the

exit rate. The time spent in state s before a transition is triggered is then exponen-

tially distributed with exit rate E(s,s). The generating matrix Q : S ×S → R is

given by Q = K−E.

Detailed-balance CTMC. In a detailed-balance CTMC CR = (S,K,π0,Starget,π),

also known as a reversible CTMC, a probability distribution π : S → [0,1] over the

states exists that satisfies the detailed balance condition

π(s)K(s,s′) = π(s′)K(s′,s) (2.2)

for all s,s′ ∈S. The detailed balance condition is a sufficient condition for ensuring

that π is a stationary distribution. A distribution π is called a stationary distribution

if πP= π . For a detailed-balance finite-state CTMC, π is the unique stationary dis-

tribution of the chain and is also the unique equilibrium distribution (Whitt, 2006).

Boltzmann distribution. In many Markov models of physical systems, eventually

the population of states will stabilize and reach a Boltzmann distribution (Flamm

et al., 2000; Schaeffer et al., 2015; Tang, 2010) at equilibrium. With this distribu-

tion, the probability that a system is in a state s is

π(s) =
1
Z

e−
E(s)
kBT , (2.3)

where E(s) is the energy of the system at state s, T is the temperature, kB is the

Boltzmann constant, and Z = ∑s∈S e−
E(s)
kBT is the partition function.

To ensure that at equilibrium states are Boltzmann distributed, the detailed bal-

ance conditions are
K(s,s′)
K(s′,s)

= e−
E(s′)−E(s)

KBT . (2.4)

Reversible transition. In this work, a reversible transition between states s and s′

means K(s,s′) > 0 if and only if K(s′,s) > 0, irrespective of the detailed balance

condition.
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Trajectories and paths. A trajectory (s0, t0), (s1, t1,), ..., (sm, tm,) with m tran-

sitions over a CTMC C = (S,K,π0,Starget) is a sequence of states si and hold-

ing times ti for which K(si,si+1) > 0 and ti ∈ R>0 for i ≥ 0. We define a path

s0,s1, ...,sm with m transitions over a CTMC C = (S,K,π0,Starget) as a sequence

of states si for which K(si,si+1)> 0.

Mean first passage time (MFPT). In a CTMC C = (S,K,π0,Starget), for a state

s ∈ S and a target state sf ∈ Starget, we define the MFPT τs to be the expected time

to first reach sf starting from state s. For each state s, the MFPT from s to sf equals

the expected holding time in state s plus the MFPT to sf from the next visited

state (Suhov and Kelbert, 2008), so

τs =
1

E(s,s)
+ ∑

s′∈S

K(s,s′)
E(s,s)

τs′ . (2.5)

Multiplying the equation by the exit rate E(s,s) = ∑s′∈S K(s,s′) then yields

∑
s′∈S

K(s,s′)(τs′− τs) =−1. (2.6)

Now writing t : S → R≥0 to be the vector of MFPTs for each state, such that

t[s] = τs, we find a matrix equation as

Q̃t =−1, (2.7)

where Q̃ is obtained from Q by eliminating the row and column corresponding to

the target state, and 1 is a vector of ones. If there exists a path from every state

to the final state sf, then Q̃ is a weakly chained diagonally dominant matrix and is

non-singular (Azimzadeh and Forsyth, 2016).

The MFPT from the initial states to the target state sf is found from the initial

distribution π0 as

τπ0 = ∑
s∈S

π0(s)τs. (2.8)
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If instead of a single target state sf we have a set of target states Starget, then

to compute the MFPT to Starget we convert all target states into one state sf so that

S∗=S\Starget∪{sf}. For s,s′ ∈S∗\{sf}, we update the rate matrix K∗ :S∗→R≥0

by K∗(s,sf)=∑s′′∈Starget K(s,s′′), K∗(s,s′)=K(s,s′), and K∗(sf,s) is not used in the

computation of the MFPT (see Eq. 2.7).

When the number of states of a CTMC is large, applying the matrix equations

is not computationally feasible. Therefore, we use a subset of the states over the

CTMC to build a truncated CTMC.

Truncated CTMC. Let Ŝ ⊆ S be a subset of the states over the CTMC C =

(S,K,π0,Starget) or detailed-balance CTMC CR =(S,K,π0,Starget,π) and let Ŝtarget

⊆ Ŝ. We construct the rate matrix K̂ : Ŝ × Ŝ → R≥0 as

K̂(s,s′) = K(s,s′). (2.9)

We construct the initial probability distribution π̂0 : Ŝ → [0,1] as

π̂0(s) =
π0(s)

∑s∈Ŝ π0(s)
. (2.10)

We define the truncated CTMC as Ĉ=(Ŝ,K̂, π̂0, Ŝtarget) and ĈR =(Ŝ,K̂, π̂0, Ŝtarget, π̂)

for C and CR, respectively. For a detailed-balance ĈR, π̂ : Ŝ → [0,1] defined as

π̂(s) =
π(s)

∑s∈Ŝ π(s)
, (2.11)

satisfies the detailed balance conditions in ĈR and is the unique equilibrium distri-

bution of Ŝ in ĈR (Whitt, 2006).

2.2 The Stochastic Simulation Algorithm
The stochastic simulation algorithm (SSA), which was developed by Doob (1942)

and others and was popularized by Gillespie (1977) for simulating stochastic chem-
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ical reactions, has been widely used to simulate statistically correct trajectories in

CTMCs. The probability distribution of the states built from an infinite number of

independent SSA simulations will be identical to the distribution of the states given

by the master equation. SSA provides an unbiased and consistent estimate of the

MFPT from an initial state to a target state. It estimates the MFPT as the mean of

the first passage times of sampled trajectories. In brief, to sample a trajectory and

its first passage time, SSA advances forward in two steps:

1. At a jump from the current state si, SSA samples the holding time Ti of

the state from an exponential distribution with a rate equal to the sum of

the transition rates from the state, in other words, Ti | si ∼ Exp(ksi), where

ksi = ∑s∈S ksis, S is the state space of the CTMC, ksis is the transition rate

from state si to state s, if s is not a neighbor of si then ksis = 0, E[Ti | si] = k−1
si

and Var(Ti | si) = k−2
si

.

2. At a jump from the current state si, SSA samples the next state si+1 from the

outgoing transition probabilities of state si, in other words, p(si,s) =
ksis

ksi
,si 6=

s.

Let P be a trajectory of length Z from state s to state t, with holding times T1, ...,TZ−1,

obtained by using SSA with initial state s, and ending the first time that state t is

sampled. In SSA, the FPT of the trajectory is computed as

FSSA =
Z−1

∑
i=1

Ti. (2.12)

By using N independently sampled trajectories, we obtain a Monte Carlo estimator

for the MFPT of the CTMC as τ̂SSA
N = 1

N ∑
N
n=1 FSSA

n .

2.3 Interacting Nucleic Acid Strands
In this section, we first define interacting nucleic acid strands (reactions) based on

the conventions of Multistrand (Schaeffer, 2013; Schaeffer et al., 2015) and then

we describe the type of reactions that we use in this work.
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We are interested in modeling the interactions of nucleic acid strands in a

stochastic regime as in Multistrand (Schaeffer, 2013; Schaeffer et al., 2015). In

this regime, we have a discrete number of nucleic acid strands (a set called Ψ∗) in

a fixed volume V (the “box”) and under fixed conditions, such as the temperature

T and the concentration of Na+ and Mg2+ cations. This regime can be found in

systems that have a small volume with a fixed count of each molecule, and can also

be applied to larger volumes when the system is well mixed. Moreover, it can be

used to derive reaction rate constants of reactions in a chemical reaction network

that follows mass-action kinetics (Schaeffer, 2013; Schaeffer et al., 2015).

A complex is a subset of strands of Ψ∗ that are connected through base pairing.

We refer to the complex base pairs, i.e., secondary structure, as the complex mi-

crostate. A system microstate is a set of complex microstates, such that each strand

ψ ∈Ψ∗ is part of exactly one complex. A system macrostate is a nonempty set of

system microstates.

A unimolecular reaction with reaction rate constant k1 has the form

A k1−→C+D, (2.13)

and a bimolecular reaction with reaction rate constant k2 has the form

B+F k2−→ G+H. (2.14)

Each reactant and product is a complex; A, B, C and G are nonempty but D and

H may be empty complexes. For example, hairpin closing (Figure 2.1a) is a uni-

molecular reaction involving one strand, where complexes A and C are comprised

of this one strand, while D is empty. Helix dissociation (Figure 2.1b) is an exam-

ple of a unimolecular reaction where complex A has two strands while C and D

are each of one of these strands. An example of a bimolecular reaction with two

reactants and two non-empty products is three-way strand displacement reactions

(Figure 2.1d). We are interested in computing k1 and k2 for such reactions. In Sec-

tion 2.4, we describe how we can estimate them using MFPTs estimate from the

Multistrand model.
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Figure 2.1: The type of reactions that we use in our dataset. Even though all reac-
tions are reversible, in this work, we only consider the reverse reaction of hairpin
closing, that is hairpin opening, and the reverse reaction of helix association, that
is helix dissociation. In (d), a possible intermediate state is shown where the toe-
hold has fully bound. In (e), two possible intermediate states are shown, where the
toeholds have partially and fully bound.

2.3.1 Type of Reactions in Dataset

Here we introduce examples of interacting nucleic acid reactions that are of interest

in biology and nanotechnology (Chen et al., 2015; Seeman and Sleiman, 2017;

Simmel et al., 2019) and that we use in our experiments. Understanding the rates

of reactions such as these has motivated our work.

Figure 2.1 shows an overview of the type of reactions that we consider in this

work. The unimolecular reactions we consider are of the types hairpin closing and

hairpin opening (Bonnet, 2000; Bonnet et al., 1998; Kim et al., 2006), helix disso-

ciation (Cisse et al., 2012; Morrison and Stols, 1993; Reynaldo et al., 2000), and

bubble closing (Altan-Bonnet et al., 2003). The bimolecular reactions we consider

are of the types helix association (Hata et al., 2018; Morrison and Stols, 1993;
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Zhang et al., 2018), toehold-mediated three-way strand displacement (Machinek

et al., 2014; Reynaldo et al., 2000; Wetmur, 1976; Zhang and Winfree, 2009), and

toehold-mediated four-way strand exchange (Dabby, 2013). These reactions are

annotated with the temperature, the concentration of strands, and the concentration

of Na+ and Mg2+ cations in the buffer, which affect the reaction rate constants.

Hairpin closing and opening. In hairpin closing, a strand hybridizes itself and

forms a hairpin loop. In hairpin opening, the reverse reaction of hairpin closing, the

base pairs in the hairpin structure break to form a strand. Hairpin motifs are widely

used in in biotechnology, such as in realizing molecular beacon probes (Tyagi and

Kramer, 1996) and in realizing toehold switches (Green et al., 2014) and as fuels

in autonomous nucleic-acid based devices (Green et al., 2006; Muscat et al., 2011;

Venkataraman et al., 2007).

Helix association and dissociation. In helix association, two separate strands

hybridize to form a duplex. In helix dissociation, the reverse reaction of helix

association, two strands that have formed a duplex break base pairs to form two

disconnected strands. Helix association and dissociation reactions are known to be

fundamental to many cellular processes (Morrison and Stols, 1993) and are also

commonly used in biotechnological applications (Khodakov et al., 2016; Lockhart

et al., 1996).

Bubble closing. In this reaction, the bases of a bubble within a hybridized domain

bond to form a fully hybridized domain. Bubbles are important examples of con-

formational change in nucleic acids (Hanke and Metzler, 2003).

Toehold-mediated three-way strand displacement. In this reaction, one of the

strands in a duplex is replaced by an invader strand. The duplex consists of an in-

cumbent strand and a complementary strand. In addition to the hybridized domain,

the substrate strand also contains an unhybridized region called a toehold which

facilitates the reaction; the invading strand usually binds to the toehold region of

the substrate and then displaces the incumbent strand via three-way branch migra-

tion. The toehold can control the rate of the reaction by several orders of magnitude
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by varying the sequence and the length of the toehold (Zhang and Winfree, 2009).

Toehold-mediated three-way strand displacement reactions are widely used to build

autonomous DNA devices, such as robots that sort molecular cargo (Thubagere

et al., 2017), digital circuits (Qian and Winfree, 2011), oscillators (Srinivas et al.,

2017), and neural networks (Cherry and Qian, 2018).

Toehold-mediated four-way strand exchange. In this reaction, two duplexes si-

multaneously exchange strands via four-way branch migration. The duplexes also

have toehold domains that facilitate the reaction; the detached duplexes usually

bind through the toehold region and then strand exchange between the duplexes

occurs. The toeholds are known to control the reaction by several orders of mag-

nitude (Dabby, 2013). Compared to toehold-mediated three-way strand displace-

ment, toehold-mediated four-way strand exchange better prevents cross-talking be-

tween strands that are not supposed to interact (Dabby, 2013), which is desirable

for building DNA devices. Toehold-mediated four-way strand exchange reactions

have been used to implement autonomous locomotion (Venkataraman et al., 2007)

and molecular probes (Duose et al., 2012).

The reactions may also have mismatches, in which the sequences of a duplex

in an initial or a target complex are not perfectly complementary. The mismatches

may effect the rate of a reaction by several orders of magnitude (Cisse et al., 2012;

Machinek et al., 2014). Moreover, in some of the reactions, a sequence in a duplex

may have a dangling end.

K(s',s)

state s' state s state s''K(s,s') K(s'',s)

K(s,s'')

Figure 2.2: State s can transition to states s′ and s′′ by breaking a base pair. States
s′ and s′′ can transition to state s by forming a base pair.

Rare reaction. A rare reaction is a reaction that happens on a long time scale, such

as reactions in which initial states are separated from the final states by high-energy
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barriers states. For example, the dissociation of a long duplex at room temperature

could take a long time to complete.

2.4 The Multistrand Kinetic Simulator
Multistrand is a kinetic simulator (Schaeffer, 2013; Schaeffer et al., 2015) for an-

alyzing the folding kinetics of multiple interacting nucleic acid strands. It can

handle both a system of DNA strands and a system of RNA strands1. The Mul-

tistrand kinetic model is a detailed-balance CTMC CR = (S,K,π0,Starget,π) for a

set of interacting nucleic acid strands Ψ∗ in a fixed volume V (the “box”) and un-

der fixed conditions, such as the temperature T and the concentration of Na+ and

Mg2+ cations. Currently, the state space S of the CTMC corresponds to the set

of all non-pseudoknotted2 system microstates of the set Ψ∗ of interacting strands.

Transitions between states correspond to elementary steps, that is the forming or

breaking of a single base pair3. For example, in Figure 2.2, state s can transition to

states s′ and s′′ by breaking a base pair. Unimolecular transitions are distinguished

from bimolecular transitions. In a unimolecular transition, the number of strands

in each complex remains constant. There are bimolecular join moves, where two

complexes merge, and bimolecular break moves, where a complex falls apart and

releases two separate complexes. The rate at which a transition triggers is deter-

mined by a kinetic model, such as the Metropolis kinetic model (Metropolis et al.,

1953) (described in Section 2.4.1). The distribution π0 is an initial distribution over

the microstates of the reactant complexes, and the set Starget is a subset of the mi-

crostates of the product complexes, which we determine based on the type of the

reaction.

Reaction rate constant estimation. Following the conventions of Multistrand

1Currently, Multistrand does not handle a system of mixed DNA and RNA strands, though it can
be extended to handle such systems using good thermodynamic parameters.

2A pseudoknotted secondary structure has at least two base pairs in which one nucleotide of a
base pair is intercalated between the two nucleotides of the other base pair. A non-pseudoknotted
system microstates does not contain any pseudoknotted secondary structures. Currently, Multistrand
excludes pseudoknotted secondary structures due to computationally difficult energy model calcula-
tions.

3Multistrand allows Watson-Crick base pairs to form, that is A-T and G-C in DNA and A-U and
G-C in RNA. Additionally, it provides an option to allow G-T in DNA and G-U in RNA.
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(Schaeffer, 2013), we estimate the reaction rate constant k1 for a reaction in the

form of Eq. 2.13 from its corresponding CTMC as

k1 =
1

τπ0

, (2.15)

where we define τπ0 as in in Eq. 2.8. We estimate the reaction rate constant for a

reaction in the form of Eq. 2.14 from its corresponding CTMC as

k2 =
1
u

1
τπ0

, (2.16)

where u is the concentration of the reactants in the simulation. This equation is

reasonable in the limit of low concentrations (Schaeffer, 2013).

2.4.1 The Metropolis Kinetic Model

The Metropolis model (Metropolis et al., 1953) is one of the kinetic rate models

implemented in Multistrand (Schaeffer, 2012; Schaeffer et al., 2015). The Mul-

tistrand model considers a finite set of strands in a fixed volume (the “box”) and

defines the energy of a state as the sum of the standard free energy for each com-

plex and a volume-dependent entropy term. For a state s containing N strands and

M complexes, the free energy ∆G◦box(s) is

∆G◦box(s) =
M

∑
c=1

∆G◦complex(c)+(N −M)∆G◦volume, (2.17)

where ∆G◦complex(c) is the difference in Gibbs free energy4 of complex c relative to

the reference state and standard buffer conditions ([Na+] = 1 M), and ∆G◦volume =

−RT lnu is the loss of entropy resulting from fixing the position of a strand of

concentration u relative to the standard concentration (1 M).

To ensure that simulations converge to the Boltzmann distribution over the

states at equilibrium, the transition rates between any two adjacent states s and

4Calculated with thermodynamic models.
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s′ must satisfy detailed balance:

K(s,s′)/K(s′,s) = exp
{
−
(
∆G◦box(s

′)−∆G◦box(s)
)
/RT

}
, (2.18)

where K(s,s′) is the transition rate from state s to state s′, R is the gas constant, and

T is the temperature.

In the Metropolis model, unimolecular transition rates are given by

K(s,s′) =

kuni if ∆G◦box(s
′)< ∆G◦box(s),

kuni exp
(

∆G◦box(s)−∆G◦box(s
′)

RT

)
otherwise,

(2.19)

where kuni > 0 is the unimolecular rate constant (units: s−1). For bimolecular

transitions i→ j where two previously unconnected strands form a mutual base

pair, the rate is given as

K(s,s′) = kbiu, (2.20)

and the rate of dissociation for the bimolecular transition j→ i is given by

K(s′,s) = kbie−
∆G◦box(s)−∆G◦box(s

′)+∆G◦volume
RT ×M, (2.21)

where kbi > 0 is the bimolecular rate constant (units: M−1s−1). θ = {lnkuni, lnkbi}
are two free parameters in the model that are calibrated from experimental mea-

surements (Morrison and Stols, 1993; Wetmur and Davidson, 1968). We empha-

size that the rate of dissociation, Eq. 2.21, is independent of concentration u and

∆G◦volume, which follows from the definition of the free energy in a state (Eq. 2.17).

2.5 Other Related Methods

2.5.1 Kinetic Model Evaluation

Models of nucleic acid thermal stability have been extensively evaluated and cal-

ibrated to experimental data (Andronescu et al., 2010; Mathews et al., 1999) and
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enable secondary structure software such as RNAsoft, ViennaRNA, RNAstructure,

NUPACK, and mfold (Andronescu et al., 2003; Hofacker, 2003; Xu and Mathews,

2016; Zadeh et al., 2011; Zuker, 2003) to efficiently predict the equilibrium prob-

abilities of nucleic acid secondary structures. By comparison, a similar calibration

and evaluation of nucleic acid kinetic models to a broad range of measurements has

not been attempted. Of particular interest is a study by Srinivas et al. (2013) which

demonstrates that the Metropolis model of Multistrand is incompatible with obser-

vations of toehold-mediated strand displacement. Existing related work (Srinivas

et al., 2013; Zhang and Winfree, 2009) successfully uses reaction specific models

to calibrate a kinetic model. Unfortunately, reaction specific models are not easily

adapted to other kinetic models or other type of reactions. We show how we can

calibrate kinetic models on various type of reactions using rate estimates from the

Multistrand model and using sampling and optimization methods.

2.5.2 Mean First Passage Time and Reaction Rate Constant
Estimation

As explained in Section 2.1, we could compute the reaction rate constant of a

reaction using the MFPT from the initial states to the target states in the reac-

tion’s CTMC. Alternatively, we could compute the reaction rate constant directly

from measured data without modeling the reaction as a CTMC. For example, the

weighted neighbour voting prediction algorithm has been developed to successfully

predict hybridization rates (Zhang et al., 2018) from sequence, without enumerat-

ing the secondary structures of the reaction. We could also utilize neural networks,

similar to Angenent-Mari et al. (2020) in which they successfully predict toehold

switch function (Angenent-Mari et al., 2020). However, despite the accurate and

fast computational prediction of these methods, to treat unseen type of reactions

they would have to be adapted. On the other hand, the CTMC model of Multi-

strand can readily be applied to unimolecular and bimolecular reactions of inter-

acting nucleic acid strands using a well-calibrated kinetic model. Also, Multistrand

could provide unexpected intermediate states, which could be more than one, be-

tween any possible initial and target state. Using the neural networks models of

Angenent-Mari et al. (2020), which use attention maps to interpret intermediate

states, the number would be limited and the network would have to be adapted for
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different initial and target states. Moreover, compared to neural network models,

Multistrand generally has fewer free parameters5, and thus would require fewer

experimental data to be calibrated to.

As explained in Section 2.1, matrix equations can provide an exact solution to

the MFPT of a CTMC that can be explicitly represented. However, it is infeasible

to use matrix equations for CTMCs with large implicitly-represented state spaces.

Alternatively, the MFPT could be obtained with SSA. However, SSA could be time

consuming for events that happen on a long time scale, that is rare events. There

exist numerous Monte Carlo techniques (Madras, 2002; Rubino and Tuffin, 2009)

for driving simulations towards the target states or to reduce the variance of estima-

tors. For example, importance sampling techniques (Andrieu et al., 2003; Doucet

and Johansen, 2009; Hajiaghayi et al., 2014; Kuwahara and Mura, 2008; Shahabud-

din, 1994) use an auxiliary sampler to bias the simulation, after which estimates are

corrected with an importance weight. Moreover, many accelerated variants of SSA

have been developed for CTMC models of chemically reacting systems (Cao et al.,

2007; Gillespie, 2001, 2007), which can be adapted to simulate arbitrary CTMCs.

There also exists a proliferation of rare event simulation methods for molecular

dynamics (Allen et al., 2006, 2009; Bolhuis et al., 2002; Cabriolu et al., 2017; El-

ber, 2017; Weinan et al., 2002, 2005; Zuckerman and Chong, 2017). The ideas

behind these methods can more or less be adapted for CTMCs and can be used

along with SSA for more efficient computations. For example, the weighted en-

semble (WE) (Huber and Kim, 1996; Zuckerman and Chong, 2017) approach has

been used with SSA to estimate MFPTs (Donovan et al., 2013). In brief, in this

approach, a number of non-overlapping bins are defined and a number of weighted

trajectories are initiated. Within each bin the number of trajectories is held constant

at a target number. At fixed time intervals, the trajectories are examined based on

their location at that time. If a bin has fewer trajectories than the target number,

then the trajectories are replicated so that the replicates carry an equal share of their

parent’s weight. Conversely, if a bin has more trajectories than the target number,

5For example, the Metropolis kinetic model has two kinetic parameters and the Arrhenius kinetic
model that we introduce in Chapter 3 has 15 kinetic parameters. These kinetic models also depend on
thermodynamic parameters which are obtained through thermodynamic prediction software, such as
NUPACK (Zadeh et al., 2011), although they can also be treated as free parameters and be improved
using Multistrand.
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then the trajectories are pruned down to the target number and their weights are

redistributed to the remaining trajectories. Stochastic simulations are usually not

immediately reusable for the rapid evaluation of perturbed parameters and have

to be adapted. In Chapter 4, we should how to adapt SSA for this purpose. In

Chapter 5, we introduce the pathway elaboration method for successfully building

truncated state spaces from initial state to targets states within a bounded running

time.

2.5.3 Parameter Estimation and the Rapid Evaluation of Perturbed
Parameters

In order to make estimations that are in accordance with measured data, the under-

lying models for the CTMCs should be calibrated to measured data. We could use

simulation techniques that have been developed for efficient biased sampling (Allen

et al., 2009; Bolhuis et al., 2002; Daigle et al., 2012; Escobedo et al., 2009; Sha-

habuddin, 1994). However, such sampling techniques would have to be generally

re-run. Thus, we require a method which accurately and rapidly predicts the statis-

tics of interest given a perturbation to the parameters. Any such method would also

be useful for other tasks that require the rapid evaluation of perturbed parameters,

such as designing a reaction to obtain a desired function.

Coarse-graining using Markovian state models have been effective (separately)

for examining rare events (Sarich et al., 2014), but are mainly developed for molec-

ular dynamics models. For example, Singhal et al. (2004) use transition path sam-

pling (TPS) (Bolhuis et al., 2002) to build Markov state models for protein dynam-

ics and to estimate MFPTs at perturbed temperatures using matrix equations (Sing-

hal et al., 2004). In brief, in TPS an ensemble of paths are generated using a Monte

Carlo procedure. First, a single path is generated that connects the initial and target

states. New paths are then generated by picking random points along the current

paths and running time-limited simulations from the points. Paths that reach either

the initial or target state define possible new paths and the ones that do not are re-

jected. Even though we could use TPS along with SSA to simulate rare events for

CTMCs (Eidelson and Peters, 2012), it is likely that many of the simulated paths

could be rejected. For example, if the energy landscape has more than one local

maxima between the initial and target states, then paths simulated from in between
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these local maximums could require a very long simulation time to reach either the

initial or the target states.

An important related quantity that has been widely studied is the transient prob-

ability of states, that is the probability distribution of the states over time. Transient

probabilities are commonly used to calibrate CTMCs (Andrieu and Roberts, 2009;

Loskot et al., 2019; Schnoerr et al., 2017) in nucleic acid kinetics (Hajiaghayi

et al., 2014) and chemical reaction networks (Georgoulas et al., 2017; Golightly

and Wilkinson, 2011; Horváth and Manini, 2008; Lück and Wolf, 2016). However,

we use MFPT estimates since collecting a large dataset of MFPT estimates from

the literature is feasible. Transient probabilities can be computed exactly with the

master equation (Van Kampen, 1992) for CTMCs that have a feasible state space

size. An important tool that has been developed to quantify the error of transient

probability estimations for truncated CTMCs is the finite state projection (FSP)

method (Munsky and Khammash, 2006). The FSP method tells us that as the size

of the state space of the truncated CTMC grows, the approximation monotoni-

cally improves. Also, it guarantees that the approximate solution never exceeds

the actual solution and provides bounds on the solution. As the authors of the FSP

method mention, there are many ways to grow the state space, for example by iter-

atively adding states that are reachable from the state space within a fixed number

of steps. However, applying matrix computations for very large state spaces could

be time consuming. There have been many attempts to enumerate a suitable set

of of states (Dinh and Sidje, 2016). In the Krylov-FSP-SSA approach (Sidje and

Vo, 2015) an SSA approach is used to drive the FSP and adaptive Krylov meth-

ods are used to efficiently evaluate the matrix exponential. In brief, the method

starts from an initial state space and proceeds iteratively in three steps. First, it

drops low-probability states. Second, it runs SSA from each state of the remaining

state space to incorporate probable states. Third, it adds states that are reachable

within a fixed number of steps. Despite its great potential, this way of building the

state space may not be suitable for rare events. However, our pathway elaboration

method uses biased simulations to reach target states efficiently.

The idea of optimizing parameter sets by using truncated CTMCs has also

been used with the Krylov-FSP-SSA method (Dinh and Sidje, 2017). Moreover, in

related work (Georgoulas et al., 2017), an ensemble of truncated CTMCs is used to
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obtain an unbiased estimator of transient probabilities, which are further used for

Bayesian inference. Any success in building more efficient truncated CTMCs will

also be useful in ensemble approaches.

Other types of truncation-based methods that are related to our work are prob-

abilistic roadmap planning (Amato and Song, 2002; Kavraki et al., 1996; Tang,

2010; Tang et al., 2005) methods. These methods first sample a set of states ac-

cording to some criteria, such as stability, to capture potentially important features.

The states are then connected to nearby states to form a roadmap. To generate a

truncated CTMC for MFPT estimation, one could enumerate all states that satisfy

a certain criteria. For example, for nucleic acid reactions, one could enumerate all

states below a certain free energy bound. However, this approach has two draw-

backs. First, setting the boundary too low would mean the reaction pathway is

not included in the state space, while setting the barrier too high could make the

method inefficient as too many states are included. Second, this method would

sample states irrespective of the transition rates. Instead, we rely on stochastic

sampling from the initial states to the target states.
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Chapter 3

The Arrhenius Kinetic Model

In this chapter, we report the initial results of our effort to develop accurate kinetic

models for nucleic acids. We introduce the Arrhenius kinetic model.

3.1 Introduction
As explained in Chapters 1 and 2, models of nucleic acid thermal stability are

calibrated to a wide range of experimental observations (Andronescu et al., 2010;

Mathews et al., 1999), and typically predict equilibrium probabilities of nucleic

acid secondary structures with reasonable accuracy (Andronescu et al., 2003; Ho-

facker, 2003; Xu and Mathews, 2016; Zadeh et al., 2011; Zuker, 2003). In compar-

ison, a similar extensive calibration and evaluation of nucleic acid kinetic models

has not been attempted so far, despite the development of kinetic models and simu-

lation software such as Multistrand and Kinefold (Chen, 2008; Flamm et al., 2000;

Schaeffer et al., 2015; Schreck et al., 2015; Xayaphoummine et al., 2005).

In this chapter, we develop a nucleic acid kinetic model based on Arrhenius

dynamics that surpasses the performance of the well-established Metropolis ki-

netic model (Metropolis et al., 1953) (described in Chapter 2). It can be used in

stochastic simulations and is consistent with existing thermodynamic models. A

key difference of this model with the Metropolis model is the use of activation en-

ergy, which depends on the immediate local environment surrounding the affected

base pair.
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We conduct a preliminary study to assess whether the Arrhenius model is

promising for predicting DNA kinetics, and to evaluate different calibration ap-

proaches. To calibrate and evaluate the Arrhenius and the Metropolis models, we

compile a dataset of 376 experimentally determined reaction rate constants that we

source from existing publications and cover a wide range of reactions, including

hairpin closing, hairpin opening, bubble closing, helix association, helix dissocia-

tion, toehold-mediated three-way strand displacement, and toehold-mediated four-

way strand exchange (Altan-Bonnet et al., 2003; Bonnet, 2000; Bonnet et al., 1998;

Dabby, 2013; Kim et al., 2006; Machinek et al., 2014; Morrison and Stols, 1993;

Reynaldo et al., 2000; Zhang and Winfree, 2009). To efficiently infer parameters

and to obtain posterior parameter distributions, we use an ensemble Markov chain

Monte Carlo (MCMC) approach. We also use a maximum a posteriori (MAP) ap-

proach. To evaluate the likelihood, we compare predicted reaction rate constants

with experimental reaction rate constants. To estimate reaction rate constants from

mean first passage times (MFPTs), we can use the stochastic simulation algorithm

(SSA) (Doob, 1942; Gillespie, 1977) (described in Chapter 2). However, obtaining

precise predictions using explicit stochastic simulation is computationally expen-

sive, making MCMC parameter inference difficult. Instead, for each reaction, we

employ a strict subset of its full state space in the Multistrand model (Schaef-

fer, 2013; Schaeffer et al., 2015), enabling MFPTs to be computed using matrix

equations. Our simplified state spaces are based on ‘zipper models’ that were in-

vestigated previously to model DNA hybridization (Gibbs and DiMarzio, 1959).

Overall, our results are encouraging and suggest that the new Arrhenius model is

applicable to a wide range of DNA dynamic interactions and can be efficiently

trained with our framework.

The rest of this chapter is organized as follows. Section 3.2 introduces our

Arrhenius kinetic model, Section 3.3 introduces our kinetic dataset, Section 3.4

introduces our inference framework, Section 3.5 describes our results comparing

the inferred parameters to the database of experimental measurements.
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Figure 3.1: Seven type of local contexts that are model differentiates between. The
right side of the red base pair forms one half of the local context. The classification
of the half context depends on the pairing status of the two bases r1 and r2 (if
they exist) immediately to the right side of the base pair: stack means r1 and r2
form a base pair with each other, loop means that neither r1 nor r2 forms a base
pair, end means that neither r1 nor r2 exists, stack+loop means that both r1 and
r2 exist and one of the bases forms a base pair with another base while the other
does not, stack+end means that only one of r1 or r2 exists and forms a base pair,
loop+end means that only one of r1 or r2 exists and it does not form a base pair,
and stack+stack means that both r1 and r2 exist and they both form base pairs
with other bases. Stars indicate the possible continuation of the strands, which
may be connected to other starred strands, provided the resulting complex is non-
pseudoknotted.

3.2 The Arrhenius Kinetic Model
In our Arrhenius kinetic model, the activation energy of each transition depends

on the immediate context of the closing or opening base pair. Our classification

incorporates some, but not all, factors that may affect the activation energy of a

transition. For example, the activation energy might depend on the strand sequence,

but modeling this dependence would increase the number of free parameters, and

we anticipate to have insufficient experimental evidence to accurately distinguish

all relevant factors. However, we emphasize that transition rates in the model still

depend on the nucleotide sequence via the nearest neighbor model of base pair

stability that determines the free energy of a complex (see Eq. 2.19 and Eq. 2.21).

Consider a reaction where a base pair is formed or broken, and denote by

l,r ∈ C one half of the local context on either side of the base pair. Our model

differentiates between seven different half contexts

C = {stack, loop,end,stack+loop,stack+end, loop+end,stack+stack} (3.1)
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so that the set of local contexts is given by C ×C. The different half contexts are

shown in Figure 3.1. In Appendix A.1, we show how to determine the local context

of an elementary step transition, that is, the formation or breakage of a base pair.

The Arrhenius model is equal to the Metropolis model (Eq. 2.19, 2.20, 2.21),

except that we now re-define kuni : C ×C → R>0 and kbi : C ×C → R>0 by setting

kuni(l,r) = klkr kl = Al exp(−El/RT ) kr = Ar exp(−Er/RT ) (3.2)

kbi(l,r) = αkuni(l,r) (3.3)

where Al , Ar are Arrhenius rate constants, El , Er are activation energies, and α is

a bimolecular scaling constant. We treat θ = {lnAl , El | ∀l ∈ C}∪{α} as 15 free

parameters that we fit to data.

3.3 Dataset
We compile a dataset of 376 experimentally determined reaction rate constants

from the published literature for a wide range of DNA reactions, namely, hair-

pin closing, hairpin opening, helix association, helix dissociation, bubble closing,

toehold-mediated three-way strand displacement, and toehold-mediated four-way

strand exchange (Altan-Bonnet et al., 2003; Bonnet, 2000; Bonnet et al., 1998;

Dabby, 2013; Kim et al., 2006; Machinek et al., 2014; Morrison and Stols, 1993;

Reynaldo et al., 2000; Zhang and Winfree, 2009). Each data point in our dataset

is annotated with a reaction temperature and the concentration of Na+ and Mg2+

cations in the buffer. An overview of our dataset is given in Table 3.1.

As shown in Table 3.1, we partition the dataset into a training set of size 320,

which we callDtrain, and a testing set with size 56, which we callDtest. The training

set covers a wide range of observations, in terms of both reaction types and half

contexts. The testing set includes both unimolecular and bimolecular reactions.
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Table 3.1: Dataset of experimentally measured reaction rate constants. The † sign
indicates that the experiment was performed without Na+ in the buffer, in which
case our model computes the free energy as if 50 mM [Na+] is present (in addition
to Mg2+).

Dtrain
[Na+]

/M
[Mg2+]
/mM

T /◦C Source

Hairpin closing and
opening

0.1 10–49 Figure 4 of Bonnet et al. (1998)

0.1–0.5 10–49 Figure 6 of Bonnet et al. (1998)
0.25 18–49 Figure 3.28 of Bonnet (2000)

0.137 20 Figure 3 of Kim et al. (2006)

Bubble closing 0.1 25–45
Figure 4 of Altan-Bonnet et al.
(2003)

Association and
dissociation

1.0 4–68
Figure 6 of Morrison and Stols
(1993)

0.05† 4 30–55
Figure 6a of Reynaldo et al.
(2000)

Toehold-mediated
three-way strand
displacement

0.05† 4 30–55
Figure 6b of Reynaldo et al.
(2000)

0.05† 12.5 25
Figure 3b of Zhang and Winfree
(2009)

Toehold-mediated
four-way strand
exchange

0.05† 12.5 25 Table 5.2 of Dabby (2013)

Dtest

Hairpin closing and
opening

0.137 10–60 Figure 5a, b of Kim et al. (2006)

Toehold-mediated
three-way strand
displacement w/
mismatches

0.05† 10 23
Figure 2d of Machinek et al.
(2014)
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3.4 Modeling Framework
Given a parameterized kinetic model, a sufficient number of stochastic simulations

could be run to estimate the model’s prediction for an experimental reaction of in-

terest. Unfortunately, obtaining small error bars on this estimate is prohibitively

slow, and thus is not feasible within the inner loop of parameter inference pro-

cedures. To address this limitation, we developed a computational framework in

which we obtain fast, exact predictions for a feasible approximation of the full

Multistrand state space. Specifically, we use a simplified state space that is a strict

subset of the full state space, enabling sparse matrix computations of MFPTs, from

which reaction rate constants are predicted. With this computation in the inner

loop, we used two methods for training the model. The first is a maximum a poste-

riori (MAP) approach that optimizes a single set of parameters, and the second is

based on MCMC that produces an ensemble of parameter sets. In the latter case, a

posterior parameter probability density is computed.

3.4.1 Simplified State Spaces

The number of states directly affects the computational cost of inference through

the set of matrix equations (Eq. 2.6) that is solved for each reaction at each iteration

of the parameter search. Therefore, in this chapter, for each reaction we use a subset

of its full state space. For example, in this chapter, the largest simplified state space

in the training data contains 14,438 states for a toehold-mediated four-way strand

exchange reaction with more than 100 bases.

We generate a separate simplified state space Sr for each reaction r that we

wish to model (Figure 2.1). To generate our simplified state spaces we define a set

of rules as follows:

• We allow base pairs to form if and only if they occur in either the initial or

target state of our simulation. For example, during the simulation of hair-

pin closing and hairpin opening, only base pairs that are consistent with the

perfect alignment of the strand are permitted to form.

• We allow a maximum number of continuously hybridized domains for every

type of reaction. For example, the states for hairpin closing and hairpin
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opening contain at most one hybridized domain.

• We allow base pairs to form or break only at the edges of a continuous hy-

bridized domain.

• We further prune the state space for reactions that still include a large num-

ber of states with our rules defined above, such as for toehold-mediated

three-way strand displacement and toehold-mediated four-way strand ex-

change. Our additional heuristic rules for these reactions are explained in

Appendix A.2.

With respect to our rules, we define the state space of a reaction r using a number

of reaction-specific pointers 〈p0, p1, ...〉 ∈ Sr. The pointers indicate the begin and

end points of the hybridized domains and can increase and decrease to change the

size of the hybridized domain.

For states in hairpin closing and hairpin opening reactions in which we allow

at most one hybridized domain, each state is represented by a tuple 〈po, p1〉, where

0≤ p0 ≤ p1 ≤m < l/2. Here m is the length of the hybridized domain in the fully

closed position and l is the length of the strand. The tuple indicates that the bases

p0 to p1− 1 are paired with bases l− p1 to l− p0− 1, respectively, and no other

base pairs are formed. The length of the hybridized domain is given by p1− p0

and if p0 = p1 then the hybridized domain is absent in the given state. In each

transition to a neighbor state, one of the pointers is incremented or decremented.

For example, in Figure 3.2, the pointers for three states s, s′, and s′′ in hairpin clos-

ing and hairpin opening reactions are shown. Specifically, state s can transition to

state s′ by incrementing p0 and it can transition to state s′′ by decrementing p1.

Algorithm 1 shows the function NeighborStates(s) that generates the neigh-

bor states of a hairpin state s in hairpin opening and hairpin closing reactions. In

Appendix A.2, we describe NeighborStates(s) for helix association and dis-

sociation, toehold-mediated three-way strand displacement, and toehold-mediated

four-way strand exchange.

To enumerate the simplified state space for a reaction, we specify a reaction-

specific NeighborStates(s), a reaction-specific set of initial states Sinit, and a

reaction specific set of target states Starget, and we use them in Algorithm 2. This
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p0 = 1 p = 51 p0 = 0 p0 = 0 p = 41p = 51

K(s',s)

state s' state s state s''K(s,s') K(s'',s)

K(s,s'')

Figure 3.2: State s is defined by pointers 〈p0 = 0, p1 = 5〉 and can transition to
states s′ and s′′ defined by pointers 〈p1 = 0, p1 = 5〉 and 〈p0 = 0, p1 = 4〉, respec-
tively.

algorithm uses a breadth-first search approach: initially, the queue Q and candidate

state space Sinit are composed of just the initial states. For every state in the queue,

unexplored successor states are added to the candidate state space and then queued

for exploration. In this algorithm, we use the same NeighborStates(s) func-

tion for reverse reactions, however we swap the initial and the target states. For

example, in hairpin closing, the initial state (Sinit = {〈0,0〉}) has no base pairs and

the target state (Starget = {〈0,m〉}) has m base pairs. For hairpin opening we swap

these states. Note that our way of generating the simplified state spaces is semi-

automatic, since we have to define NeighborStates for every type of reaction.

3.4.2 Estimating Mean First Passage Times

Given a parameterized kinetic model, for a reaction, we are interested in estimat-

ing its mean first passage time (MFPT). To do so, instead of running simulations

that could take a long time to complete in the full state space of the reaction, we

compute the MFPT of a truncated CTMC built from its simplified state space using

Eq. 2.7. We derive the reaction rate constant of a unimolecular and a bimolecular

reaction from its MFPT using Eq. 2.15 and 2.16, respectively.

3.4.3 Estimating the Unnormalized Posterior Distribution of the
Parameters

Let θ be the set of parameters in a kinetic model. For a given experimentally

observable reaction r, the predicted reaction rate constant k̂r(θ) will deviate from

the experimental measurement kr. We define the error of the prediction to be the

log10 difference, εr = log10 kr− log10 k̂r(θ). To produce a measure of likelihood
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Algorithm 1: Generate the neighbor states of a hairpin state s = 〈p0, p1〉 (see
Figure 3.2)

Function NeighborStates(s = 〈p0, p1〉)
N ← /0
if 〈p0, p1〉= 〈0,0〉 then

for p ∈ [0,m−1] do
N ←N ∪〈p, p+1〉

else
N ←N ∪〈p0−1, p1〉∪ 〈p0 +1, p1〉∪ 〈p0, p1−1〉∪ 〈p0, p1 +1〉

foreach s′ = 〈p′0, p′1〉 ∈ N do
// The state in which no base pair has formed is

shown by 〈0,0〉
if p′0 = p′1 and p′0 6= 0 then N ← (N \ s′)∪〈0,0〉

foreach s′ ∈N do
if !AllowedState(s′) then N ←N \ s′

return N
Function AllowedState(s′ = 〈p0, p1〉)

if !(0≤ p0 ≤ p1 ≤ m) then return False
return True

Algorithm 2: Generate state space

Function GenerateStateSpace
S ← Sinit, Q←Sinit
while Q 6= /0 do
N ← /0
foreach s ∈ Q do

foreach sp ∈ NeighborStates(s) do
if sp /∈ S and sp /∈ Starget then
S ← S ∪ sp

N ←N ∪ sp

Q←N
S ←S ∪Starget
return S
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for our parameter valuation, we assume εr is normally distributed with an unbiased

mean and variance σ2, so that εr ∼ N(0,σ2). We treat σ as a nuisance parameter.

For reaction r the likelihood function is given as

P(r|θ ,σ) =
1√

2πσ2
exp
{
−
(
log10 kr− log10 k̂r(θ)

)2
/

2σ
2
}
, (3.4)

and the likelihood function over the set of training data is given as

P(Dtrain|θ ,σ) = ∏
r∈Dtrain

P(r|θ ,σ)

= exp

{
−∑r∈Dtrain

(
log10 kr− log10 k̂r(θ)

)2

2σ2 − n
2

log2πσ
2

}
, (3.5)

where n is the number of observations in Dtrain. To define the probability of the

parameters given the data we need to assume prior distributions for θ and σ . Dur-

ing preliminary fitting, a number of parameter values were found to be divergent,

which we explain as follows. For a fixed temperature T and a fixed local context

(l, r), there are many assignments of Al,El and Ar,Er that result in nearly equal

transition rates kuni(l,r) = AlAr exp{−(El +Er)
/

RT} (we expand Eq. 3.2) that re-

sult in similar model predictions k̂r(θ). This allows dissimilar valuations for E

and A to have nearly equal (log)likelihood scores (Eq. 3.5). The problem becomes

even more apparent when we consider the intrinsic measurement error on kr (for

example, a standard deviation of 22% was reported by Machinek et al. (2014)), the

limited range of temperatures (see Table 5.1) inherent to our observations, and the

relative frequency of the different half contexts appearing in each simulation. In

practice, kuni(l,r) is well constrained for many different l,r ∈ C. As is common

in data-fitting applications, we assume a regularization prior that improves the sta-

bility of the estimation. We assume that all parameters in θ are independent and

identically Gaussian distributed with mean 0 and variance 1
λ

. In our inference, we

use λ = 0.02, and the predictive quality of the model does not change for minor

adjustments to λ . For the nuisance parameter σ , we use a non-informative Jef-

freys prior (Jeffreys, 1946). Under these assumptions, the posterior distribution is
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proportional to:

P(θ ,σ |Dtrain) =
P(Dtrain|θ ,σ)P(θ)P(σ)

P(Dtrain)
∝ P(Dtrain|θ ,σ)P(θ)P(σ)

= P(Dtrain|θ ,σ)

(
2π

λ

)− |θ |2

exp
{
−λ‖θ‖2

2
2

}
1
σ
. (3.6)

In conclusion, the log of the posterior distribution is equal to the following equa-

tion, up to an additive constant not depending on the parameters

logP(θ ,σ |Dtrain)≈

−(n+1) logσ − 1
2σ2 ∑

r∈Dtrain

(
log10 kr− log10 k̂r

)2− λ

2
‖θ‖2

2 (3.7)

where the squared L2 norm in Eq. 3.7 is computed as ‖θ‖2
2 = α2 + | lnkuni|2 +

| lnkbi|2 for the Metropolis model and as ‖θ‖2
2 = α2 +∑l∈C | lnAl|2 +∑l∈C |El|2 for

the Arrhenius model. Note that |θ |= 2 for the Metropolis model and |θ |= 15 for

the Arrhenius model.

Our MAP approach seeks a unique parameter set that maximizes the normal-

ized log posterior of the dataset (Eq. 3.7). We use the Nelder-Mead optimization

method (Nelder and Mead, 1965), a gradient-free local optimizer. For MCMC, we

use the emcee software package (Foreman-Mackey et al., 2013), that implements

an affine invariant ensemble sampling algorithm.

3.5 Experiments
Here, we conduct computational experiments to evaluate the Arrhenius kinetic

model. Our framework and the dataset, as well as an online appendix that has ad-

ditional experimental plots and analysis, are available at https://github.com/DNA-

and-Natural-Algorithms-Group/ArrheniusInference.

3.5.1 Experimental Setup

We fit the Metropolis and Arrhenius kinetic models using the MAP approach to

a learn parameter set that maximizes Eq. 3.7. Using the MCMC approach, we
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maximize the same equation, but instead obtain an ensemble of parameter sets.

The MAP method is sensitive to the initial parameters, and for the Metropo-

lis model, we use kuni = 8.2× 106 s−1 and kbi = 3.3× 105 M−1s−1, following

known estimates for a one dimensional model of toehold-mediated strand dis-

placement (Srinivas et al., 2013). For the Arrhenius model, we initialize Er = 3

kcal mol−1 for all r ∈ C and we initialize α and Ar such that, at T = 23◦C, equally

kuni(l,r) = 8.2× 106 s−1 and kbi(l,r) = 3.3× 105 M−1s−1 for all local contexts

l,r ∈ C. For both models, we initialize σ = 1.

Results for the MCMC should generally depend less on the initial value of the

sets in the ensemble. To initialize the parameter assignment for each parameter set

in the MCMC ensemble, we realize random variables

Er ∼U(0,6)× kcal mol−1 Ar ∼U(0,104)× s−1/2 ∀r ∈ C
kuni ∼U(0,108)× s−1 kbi ∼U(0,108)× M−1s−1

α ∼U(0,10)×M−1
σ ∼U(0,1) (3.8)

where U(a,b) is the uniform distribution over (a,b). During the inference, the

parameters are not restricted to initialization bounds, and instead we only require

kuni,kbi,Al,α and σ to be positive.

In the emcee software (Foreman-Mackey et al., 2013), an ensemble of walk-

ers each represents a set of parameters, which are updated through stretch moves.

Given two walkers θ1 and θ2, a new parameter assignment θ ′1 for the first walker is

generated as

θ
′
1 = Zθ1 +(1−Z)θ2 g(Z = z) ∝

 1√
z if z ∈

[1
a ,a
]

0 otherwise
(3.9)

where g(z) is the probability density of Z. We use a = 2 (default value) and an

ensemble of 100 walkers. We only use the last step of each walker to make predic-

tions, which results in an ensemble of 100 parameter sets for each model.

For the MAP approach, we continue the inference until an absolute tolerance

of 10−4 is reached. For the MCMC approach, we continue the inference until 750

iterations are performed per walker.
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Table 3.2: Performance of the Metropolis and the Arrhenius models on the train-
ing and testing sets. The Mean Squared Error (MSE) is the mean of | log10 kr−
log10 k̂r(θ)|2 over r ∈ D. The Within Factor of Three metric shows the percent-
age of reactions for which | log10 kr − log10 k̂r(θ)| ≤ log10 3. Initial is the initial
parameter set of the MAP approach (Section 3.5.1). MAP is the MAP inference
method. Mode is the parameter set from the MCMC ensemble that has the highest
posterior on Dtrain. Ensemble is the MCMC ensemble method where the reaction
rate constant k̂r(θ) is averaged over all parameter sets.

Mean Squared Error Within Factor of Three
Dtrain Dtest Dtrain Dtest

Metropolis

Initial .55 1.3 69.3% 33.9%
MAP .33 .94 79.0% 41.0%
Mode .33 .95 79.0% 41.0%
Ensemble .33 .99 79.6% 37.5%

Arrhenius

Initial .59 1.3 71.2% 33.9%
MAP .14 .47 92.1% 73.2%
Mode .12 .40 92.8% 78.5%
Ensemble .12 .42 93.4% 78.5%

We implemented our framework in Python. All experiments were run on a sys-

tem with 16 2.93GHz Intel Xeon processors and 64GB RAM, running openSUSE

42.1. On this system, each iteration takes less than 6 s.

3.5.2 Results

Table 3.2 shows the performance of the Metropolis and the Arrhenius models with

the MAP and MCMC approaches. Appendix A.3 and Figure 3.3 plot the models’

fitting and prediction for our training and testing sets. For details on computational

settings for the approaches see Section 3.5.1. The Arrhenius model fits the train-

ing data better than the Metropolis model, which is unsurprising when considering

the increase of adjustable parameters in the Arrhenius model (2 vs 15). However,

the Arrhenius model also has better predictive qualities for the testing set, as evi-

denced by the MCMC ensemble mean standard deviation of
√

0.99 = 0.99 for the

Metropolis model and
√

0.42 = 0.64 for the Arrhenius model. The improvement

in the prediction of the testing set is apparent in Figure 3.3 and in Figures A.14

and A.15. In Figure 3.3, the models predict the Machinek et al. (2014) study of
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Figure 3.3: Model predictions (dashed lines) of reaction rate constants (y axis)
for toehold-mediated three-way strand displacement with mismatches, experimen-
tal data (solid lines) from Figure 2d of Machinek et al. (2014). For the MCMC
ensemble method, error bars indicate the range (minimum to maximum) of 100
predictions (see Section 3.5.1). Arrows indicate no mismatch. The mismatch in
the invading strand affects the reaction rate. The length of the toehold domain is
ten, seven, and six nucleotides long for �,  , and H, respectively.

toehold-mediated three-way strand displacement. It shows the effect of having a

mismatch between the invader and the substrate in different positions and with

different toehold domain lengths. Figures A.14 and A.15 correspond to the pre-

dictions of opening and closing rates for hairpins with short stems (1-2 nt). It is

impressive that the models, when trained on a comprehensive training dataset, can

predict the results of experiments not seen during training.

There are two reasons for the superior performance of the Arrhenius model.

First, the presence of the activation energy allows the Arrhenius model to better

calibrate to measurements at varying temperatures. On average, the reaction rate

constants kuni(l,r) double in the Arrhenius model between T = 25◦C and T = 60◦C

(this follows from the parameter values in which E[El +Er] = 3.32 kcal mol−1). A

second factor is the relation between the activation energy of a transition and the

local context. In Figure 3.4, the inferred distribution of kuni(l,r) is given for all
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Figure 3.4: Box plots of model features inferred by the MCMC ensemble method,
using a sample of 100 parameter sets. Edges of the box correspond to the first and
third quartile of the distribution. The whisker length is set to cover all parameter
values in the sample, or is limited to at most 1.5 times the box height with the
outliers plotted separately. a) kuni and kbi for the Metropolis model. b) kuni(l,r) at
25◦C for the Arrhenius model. Combinations that do not occur in the model are
not shown.

local contexts that occur in the model. Strikingly, for many local contexts, the

kuni(l,r) are narrowly distributed and often mutually exclusive, indicating that our

model captures intrinsic qualitative differences in activation energy.

3.6 Summary and Directions for Future Improvements
In this chapter, we propose the Arrhenius kinetic model for interacting nucleic acid

strands. The Arrhenius model is equal to the Metropolis model, except that transi-

tion rates depend on local contexts and activation energies. We show how to cal-

ibrate the model on various type of reactions using MFPT estimates. To facilitate

MFPT estimation with matrix equations, we design simplified state spaces for var-

ious type of reactions with a semi-automatic approach. We conduct computational

experiments on a dataset of a wide range of experimentally determined reaction
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Figure 3.5: The Arrhenius model parameters inferred by the MCMC ensemble
method. a) Box plots of the half context parameters. Edges of the box correspond
to the first and third quartile of the distribution. The whisker length is set to cover
all parameter values in the sample, or is limited to at most 1.5 times the box height
with the outliers plotted separately. b) The Pearson correlation coefficients Ri j =
cov(θi,θ j)

σθi σθ j
, where cov(X ,Y ) =E[(X−E[X ])(Y−E[Y ])] and σX =

√
E[(X−E[X ])2].

(Color figure available online.)

rate constants to calibrate and evaluate the Arrhenius kinetic model. We show that

the proposed Arrhenius kinetic model outperforms the Metropolis kinetic model.

A common problem for Arrhenius models in biophysics is that the limited

range of temperatures in experimental data can result in ambiguous parameter in-

ference, and this is indeed the case for our model with the current data set. De-

spite the generally narrow bands for the transition rates (Figure 3.4b), the inferred

A and E parameters are poorly constrained, as is evident from the wide range in

the parameter posterior probability distribution and correlation matrix (Figure 3.5).

Mathematically, measurements at a single temperature only restrict lnAl +
−El
RT

rather than Al and El independently, and a significant fraction of the measurements

were performed at constant temperature. If further mining of the existing exper-

imental literature does not resolve the issue, one solution would be to develop

customized experiments to calibrate the model further. Interestingly, the relative
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lack of correlation between the parameters for different half contexts suggests that

there could be benefit in subdividing the half context categories further.

We envision further improvements to the model by adjusting the state space

and the thermodynamic energy model. For the state space, the requirement for

hybridizing strands to only engage in perfectly aligned base pairing is not real-

istic, and methods such as pathway elaboration (introduced in Chapter 5) could

alleviate these problems. Our simulation depends on the model of thermal stabil-

ity implemented in the NUPACK software (Zadeh et al., 2011) and adjustments

to the thermodynamic model also could improve the quality of our predictions.

For example, hairpin closing rates are known to depend on the loop sequence,

as open poly(A) loops are more rigid than poly(T) loops (Aalberts et al., 2003).

The current thermodynamic model does not incorporate this effect, and we avoid

comparing the model to measurements on poly(A) loop hairpins. Similarly, the

initiation of branch migration is known to have a significant thermodynamic cost,

with one study measuring a cost of 2.0 kcal mol−1 at room temperature (Srinivas

et al., 2013). This initialization cost is not yet incorporated in NUPACK.

Finally, although our current analysis focuses on DNA, we believe our model

and approach would also apply to RNA reaction kinetics.
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Chapter 4

The Fixed Path Ensemble
Inference Method

In the previous chapter, we compared estimated MFPTs with experimental MFPTs

to calibrate kinetic models. To enable matrix computations for estimating MFPTs,

we use a semi-automatic approach for obtaining simplified state spaces. However,

this approach has two drawbacks: 1) The rules we defined, such as the requirement

for hybridizing strands to only engage in perfectly aligned base pairing, may not be

realistic; the MFPT of a reaction in its simplified state space may be noticeably dif-

ferent from the MFPT of the reaction in its full state space. 2) The simplified state

spaces are customized for each type of reaction, making it difficult to generalize to

other type of reactions. In this chapter, we seek a general approach that enables the

rapid evaluation of perturbed parameters in parameter inference and also provides

accurate MFPT estimates in the full state space of the reactions’ CTMCs.

4.1 Introduction
In accurately predicting the MFPT of a reaction in the full state space of its CTMC,

there are two challenging tasks. The first task is to estimate the MFPT of a reac-

tion’s CTMC, given a calibrated kinetic model. The second task is to calibrate

parameters of kinetic models. These tasks are challenging because when nucleic

acid strands interact, they are prone to the formation of many metastable secondary
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structures due to stochastic formation and breakage of base pairs. The number of

possible secondary structures nucleic acids can form may be exponentially large

compared to the number of nucleotides the strands contain. Therefore, usually it

is impossible to use exact matrix computations in the full state space. Moreover,

to make accurate estimations with sampling methods, many sampled trajectories

might be required, which might be time-consuming to obtain.

In this chapter, we address these tasks for reactions in their full state space of

CTMCs. To estimate the MFPT of a reaction’s CTMC, we show how to use a

reduced variance stochastic simulation algorithm (RVSSA), a Rao-Blackwellised

version (Lehmann and Casella, 2006) of SSA. In SSA, the variance of MFPT es-

timates arises for two reasons. First, the path to a target state affects the MFPT.

Second, the holding time in each state affects the MFPT. RVSSA removes the

stochasticity in the holding times by using expected holding times of states. We

prove that RVSSA produces a lower variance estimator of the MFPT compared

to SSA. Moreover, we show in our experiments that RVSSA has a lower variance

than SSA in estimating the MFPT of a reaction’s CTMC, when in the sampled

paths there exists states that have large expected holding times. One interesting

example that we identify is the association of poly(dA) and poly(dT) sequences in

low concentrations (see Figure 4.1b).

To estimate parameters for nucleic acid kinetics modeled as CTMCs based on

MFPTs, we show how to use a generalized method of moments (GMM) (Hansen,

1982) estimator. More importantly, we show how to use a fixed path ensemble

inference (FPEI) approach that speeds up parameter estimation compared to a ref-

erence method that uses SSA directly during inference (SSAI). The GMM method

is widely used in econometrics and has also been used in other fields including

chemical reaction networks (Lück and Wolf, 2016). The GMM method can be

used when a maximum likelihood estimate or a maximum a posteriori estimate is

infeasible, as is the case with CTMCs that have very large state spaces. The GMM

method minimizes a weighted norm of moment conditions obtained from samples.

The moment conditions are functions of model parameters and the dataset such that

the expectation of the moment conditions is zero at the true value of the parameters.

To minimize the squared norm of the moment conditions, we use the Nelder-Mead

direct-search optimization algorithm (Nelder and Mead, 1965), which has been fre-
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quently used in optimization problems that have small stochastic perturbations in

function values (Barton and Ivey Jr, 1996).

To speed up parameter estimation, we introduce and use FPEI. In this method,

we first generate paths with SSA and then condense paths, where for every path, we

compute the set of states and the number of times each state is visited. Rather than

generating new trajectories with SSA for every parameter set variation (the SSAI

method), in FPEI we use fixed condensed paths to speed up parameter estimation.

For example, in this work, the length of the longest path is more than 1× 108,

whereas the number of unique states and transitions of the path is approximately

3.8× 105 and 1.4× 106, respectively. In FPEI, we use RVSSA to estimate the

MFPT of the fixed paths given a new parameter set. Since the MFPT estimates

obtained with fixed paths are biased, we alternate between minimizing the error of

prediction on fixed paths, and resampling new paths and restarting the optimization

method.

To implement RVSSA and FPEI, we augment the Multistrand kinetic simula-

tor (Schaeffer, 2012; Schaeffer et al., 2015) (see Chapter 2). We conduct com-

putational experiments on a dataset of 21 experimental DNA reactions that have

moderate or large state spaces or are slow. The dataset consists of hairpin closing,

hairpin opening, helix association, and helix dissociation with and without mis-

matches (Bonnet et al., 1998; Cisse et al., 2012; Hata et al., 2018; Wetmur, 1976).

We compare the performance of RVSSA with SSA for MFPT estimation and FPEI

with SSAI for parameter estimation. Results for our example data are encourag-

ing, showing that FPEI speeds up parameter estimation compared to using SSAI,

by more than a factor of three for slow reactions. Also, for reactions with large

state spaces, it speeds up parameter estimation by more than a factor of two.

In Section 4.2, we describe the RVSSA method and introduce the FPEI method.

In Section 4.3, we first describe the kinetic dataset that we use. Then we show

how RVSSA performs for MFPT estimation and how FPEI works for parameter

estimation.
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4.2 Methodology

4.2.1 Mean First Passage Time Estimation

In SSA, the variance of MFPT estimates arises for two reasons. First, the path to

a target state affects the MFPT. Second, the holding time in each state affects the

MFPT. Hordijk et al. (1976) show how to obtain a reduced variance estimate of

a steady-state measure of an irreducible and positive recurrent CTMC. Their con-

stant holding-time method eliminates the variability in the random holding time of

states and instead uses expected holding times. To estimate the MFPT of a reac-

tion’s CTMC, we formulate a Rao-Blackwellised version (Lehmann and Casella,

2006) of SSA, which similar to Hordijk et al. (1976) also eliminates the variabil-

ity in the random holding times of states. However, the CTMC is not restricted

to be irreducible or positive recurrent and the MFPT estimate is not necessarily a

steady-state measure. We call this method the reduced variance stochastic simula-

tion algorithm (RVSSA). Similar to SSA, RVSSA also produces a consistent and

unbiased estimator of the MFPT when used within a Monte Carlo estimator, but

has a smaller variance in predicting MFPTs compared to SSA1.

In brief, in RVSSA, instead of sampling a random holding time for each state,

we use an estimator based on the expected holding time. The algorithm proceeds

as follows.

1. At a jump from the current state si, compute the expected holding time T i

before jumping to the next state, in other words, T i = k−1
si

= (∑s∈S ksis)
−1.

Note that E[T i | si] = k−1
si

and Var(T i | si) = 0.

2. Step 2 of SSA (exactly as in Section 2.2): At a jump from the current state

si, SSA samples the next state si+1 from the outgoing transition probabilities

of state si, in other words, p(si,s) =
ksis

ksi
,si 6= s.

Let P be a path of length Z from state s to state t, with expected holding times

T 1, ...,T Z−1, obtained by using RVSSA with initial state s, and ending the first

1For our purpose here, we are only interested in the MFPT, so the smaller variance is good. In
other contexts, the full distribution of FPTs will be of interest, and for that purpose only SSA, but
not RVSSA, will be appropriate.
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time that state t is sampled. In RVSSA, we compute the MFPT of the path as

Y RVSSA =
Z−1

∑
i=1

T i. (4.1)

By using N independently sampled paths, we obtain a Monte Carlo estimator for

the MFPT of the CTMC as τ̂RVSSA
N = 1

N ∑
N
n=1Y RVSSA

n .

Theorem 1. The estimator of the MFPT from state s to state t produced by RVSSA

has a lower variance than the estimator produced by SSA.

Proof. Let P denote a random path from state s to state t. We have E[FSSA | P] =
E[Y RVSSA | P], and consequently

Var(E[FSSA | P]) = Var(E[Y RVSSA | P]). (4.2)

Also, E[Var(FSSA | P)]> 0, and E[Var(Y RVSSA | P)] = E[Var(∑Z−1
i=1 T i | P)] = 0 be-

cause T i are constants and independent given P. Based on the law of total variance

Var(Y RVSSA) = E[Var(Y RVSSA | P)]+Var(E[Y RVSSA | P])by Eq. (4.2)
=

E[Var(Y RVSSA | P)]+Var(E[FSSA | P]) = Var(E[FSSA | P])<
E[Var(FSSA | P)]+Var(E[FSSA | P]) = Var(FSSA).

(4.3)

Therefore, it can be concluded that Var(τ̂RVSSA
N )=Var( 1

N ∑
N
n=1Y RVSSA

N )= 1
N Var(Y RVSSA)<

1
N Var(FSSA) = Var(τ̂SSA

N ).

For an unbiased estimator, the expected mean squared error (MSE) of the es-

timator is equal to the variance of the estimator (Wackerly et al., 2014). Conse-

quently, RVSSA has a smaller MSE than SSA and requires fewer sampled paths to

estimate the MFPT,

E[(τ̂RVSSA
N − τ)2] =

1
N

Var(Y RVSSA)<
1
N

Var(FSSA) = E[(τ̂SSA
N − τ)2]. (4.4)
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4.2.2 Parameter Estimation

In Section 4.2.1, we assume that the underlying parameters of the CTMCs are

known. Here, we focus on estimating the underlying parameters of the transition

rates when they are not known a priori.

To estimate model parameters, we formulate a generalized method of moments

(GMM) (Hansen, 1982) objective function based on experimental and predicted

MFPTs. The GMM estimators have desirable statistical properties under suitable

conditions, such as consistency and asymptotic normality. The GMM method min-

imizes a weighted norm of moment conditions. The moment conditions are func-

tions of model parameters and observed values such that the expectation of the

moment conditions is zero at the true value of the parameters. Given a column

vector g of moment conditions and its transpose gT, the GMM method seeks the

true parameter set θ ∗ as

θ
∗ = argmin

θ

g(θ)TWg(θ), (4.5)

where W is a positive-definite matrix that controls the variance of the estimator.

For optimally chosen weights, which depend on the covariance of the moment

conditions at the true parameter set θ ∗, the estimator has the smallest possible

variance for the parameters. Since the true parameter set is unknown, there exist

several approaches to deal with this issue. For example, the two-step GMM esti-

mator (Hansen et al., 1996) uses the identity matrix in the first step to estimate a

parameter set. In the second step, it uses the estimated parameters to produce the

weighting matrix and reestimates the parameters. In our experiments, we only use

the identity weighting matrix, which produces a consistent and asymptotic normal

GMM estimator, and leave other options to future work.

Let θ be a parameter set for a kinetic model that parameterizes the CTMC

of reactions, and let θ ∗ be the true parameter set. For reaction r, based on the

experimental MFPT τr and an unbiased estimator of the MFPT τ̂r, we can define

a moment condition as gr(θ) = τ̂r(θ)− τr. However, since reactions occur at

timescales that cover many orders of magnitude, from slow reactions, such as helix

dissociation, to faster reactions, such as hairpin closing, and since we are using an
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identity matrix, we use log10 differences instead; we define a moment condition as

gr(θ) = log10 τ̂
r(θ)− log10 τ

r, (4.6)

where we approximate E[gr(θ ∗)] = E[log10 τ̂r(θ ∗)]− log10 τr ≈ 0 for the true pa-

rameter set θ ∗ (if one exists). This approximation is reasonable for an unbi-

ased and low variance estimator of the experimental MFPT τr. The Taylor ex-

pansion of E[log10 τ̂r(θ ∗)] around log10E[τ̂r(θ ∗)] = log10 τr is E[log10 τ̂r(θ ∗)] ≈
E
[
log10 τr + 1

τr (τ̂r− τr)− 1
2(τr)2 (τ̂

r− τr)2
]
= log10 τr− Var(τ̂r(θ ∗))

2(τr)2 , where the sec-

ond term disappears. Also, note that based on Eqs. 2.15 and 2.16, instead of Eq. 4.6

we equivalently use gr(θ) = log10 τ̂r(θ)− log10 τr = log10 kr− log10 k̂r(θ), which

is commonly used in related work (Zhang et al., 2018; Zolaktaf et al., 2017). Based

on the entire reactions of the dataset D, we define the GMM estimator as

θ
∗ = argmin

θ
∑

r∈D

(
log10 kr− log10 k̂r(θ)

)2
. (4.7)

This can be recognized as the least mean squared error (MSE) parameter set.

In our experiments (described in Section 4.3.3), we seek a parameter set that

minimizes the GMM estimator. However, we also considered using the negative

of Eq. (14) from our previous work (Zolaktaf et al., 2017), where gr(θ) is defined

to be normally distributed with an unbiased mean and variance σ2, and a small

L2 regularization term is also defined. With this objective function, the predictive

quality of the fixed path ensemble inference (FPEI) approach, which we describe

later on, only slightly changes for our dataset.

To minimize the objective function, we use the Nelder-Mead direct-search op-

timization algorithm (Nelder and Mead, 1965). To approximate a local optimum

parameter set θ with size |θ |, the algorithm maintains a simplex of |θ |+1 param-

eter sets. The algorithm evaluates the function value at every parameter set of the

simplex. It proceeds by attempting to replace a parameter set that has the worst

function value with a parameter set reflected through the centroid of the remaining

|θ | parameter sets in the simplex with expansion and contraction as needed. The

algorithm uses only the ranks of the function values to determine the next parame-

ter set, and therefore has been frequently used in optimization problems that have
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small stochastic perturbations in function values (Barton and Ivey Jr, 1996). This

robustness is essential for its use in SSAI.

In SSAI, during the optimization, to obtain an unbiased estimate of τr for every

parameter set variation, we use SSA. However, obtaining new trajectories for every

parameter set is computationally expensive. One reason is that transitions might be

repeatedly sampled. Therefore the length of a trajectory could be much larger than

the number of unique states and transitions of the trajectory (see Section 4.3.3).

We propose to use FPEI which uses an ensemble of fixed paths, with an efficient

data structure, to speed up parameter estimation. In FPEI, for every reaction, we

build a fixed set of paths with an initial parameter set θ0. For a new parameter

set θm, we use the fixed paths to estimate the MFPT. To speed up computations,

we condense paths; for every path, we compute the set of states and the number of

times each state is visited. We compute the holding time of a state in a path as if the

path is regenerated in the full state space. To compute the holding time of a state

under a new parameter set, we need to compute the total outgoing transition rate

from the state under the new parameter set. Therefore, we also store information

about the outgoing neighbors of the states that affect the outgoing transition rate.

Alternatively, depending on memory and storage limitations, similar to SSA and

RVSSA, we could repeatedly compute the outgoing neighbors of the states on the

fly. Given this data, as the parameter set is updated to θm, we compute the MFPT

of path P according to RVSSA as

Y FPEI(θm) =
Z−1

∑
i=1

T i(θm), where T i(θm) =
1

ksi(θm)
, (4.8)

where the transition rates of the CTMC depend on the parameter set θm and the

path is obtained with θ0. Because of the condensed representation, this formula

is not literally computed, but rather a mathematically equivalent one with fewer

terms is computed. Given N fixed paths obtained with θ0, we estimate the MFPT

of the CTMC that is parameterized with θm as τ̂FPEI
N (θm) =

1
N ∑

N
n=1Y FPEI

n (θm).

With fixed paths, the MFPT estimates are biased and the learned parameter

set might not perform well in the full state space where other paths are possible.

Therefore, to reduce the bias and to ensure that the ensemble of paths is a fair
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Algorithm 3: SSAI

θ ← θ0 // Choose initial parameter set θ0
Initialize the simplex in the Nelder-Mead algorithm using θ and its
perturbations

while stopping criteria not met do
// See Section 4.3.3 for our stopping criteria
θ ← Retrieve a parameter set from the Nelder-Mead algorithm
Update the free parameters of the kinetic model with θ

foreach reaction r ∈ dataset D do
foreach n=1,2,...,N do

Sample a trajectory Pn using SSA and calculate its FPT using
Eq. 2.12

Calculate the MFPT of the reaction using the FPTs of the trajectories
Calculate the GMM function in Eq. 5.11 using the MFPT of the reactions
Update the simplex in the Nelder-Mead algorithm based on the GMM
function

sample with respect to the optimized parameters, we alternate between minimizing

the error of prediction on fixed paths, and resampling new paths and restarting the

optimization method. An overview of our parameter estimation framework using

SSAI and FPEI, with a GMM estimator and the Nelder-Mead algorithm, is given

in Algorithm 3 and Algorithm 4, respectively.

We also considered a normalized importance sampling approach (Doucet and

Johansen, 2009), to obtain consistent estimators of the MFPTs using fixed paths.

In this approach, we also compute the set of traversed transitions and how often

each of those transitions occur in the path. We weigh the estimated MFPT of each

path P by the relative likelihood of the path given the new and the initial parameter

sets L̃(θm) =
L(θm)
L(θ0)

, where L(θm) is the likelihood of P under parameter assignment

θm. For RVSSA, L(θm) = ∏
Z−1
i=1

ksisi+1 (θm)

∑s∈S ksis(θm)
e−∑s∈S ksis(θm)T i(θm), and we estimate the

MFPT as τ̂FPEI
N (θm) =

1
∑

N
n=1 L̃n(θm)

∑
N
n=1 L̃n(θm)Y FPEI

n (θm). In our experiments, this

alternate normalized importance sampling approach performed poorly, since the

effective sample size of the relative likelihoods was small.
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Algorithm 4: FPEI

θ ← θ0 // Choose initial parameter set θ0
while stopping criteria not met do

// See Section 4.3.3 for our stopping criteria
Update the free parameters of the kinetic model with θ

foreach reaction r ∈ dataset D do
foreach n=1,2,...,N do

Sample a path Pn using RVSSA
Condense path Pn for the reaction

Initialize the simplex in the Nelder-Mead algorithm using θ and its
perturbations

while stopping criteria not met do
θ ← Retrieve a parameter set from the Nelder-Mead algorithm
Update the free parameters of the kinetic model with θ

foreach reaction r ∈ dataset D do
foreach n=1,2,...,N do

Calculate the MFPT of path Pn using Eq. 4.8
Calculate the MFPT of the reaction using the MFPTs of the paths

Calculate the GMM function in Eq. 5.11 using the MFPT of the
reactions

Update the simplex in the Nelder-Mead algorithm based on the GMM
function

4.3 Experiments
Here, we conduct computational experiments to evaluate the RVSSA and FPEI

methods. We implement FPEI on top of the Multistrand kinetic simulator. Our

framework and the dataset are available at https://github.com/DNA-and-Natural-

Algorithms-Group/FPEI.

4.3.1 Dataset

We use 21 experimentally determined reaction rate constants published in the liter-

ature for DNA reactions of hairpin closing, hairpin opening, helix association, and

helix dissociation with and without mismatches (Bonnet et al., 1998; Cisse et al.,

2012; Hata et al., 2018; Wetmur, 1976). Each reaction of the dataset is annotated

with a temperature and the concentration of Na+. The dataset is summarized in
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Figure 4.1: The MFPT and 95% confidence interval of SSA and RVSSA, where
the kinetic model is parameterized with θ0. In both (a) and (b), RVSSA and SSA
are using the same sampled paths. In (a), RVSSA and SSA have similar variance.
The average computation time per sampled path, defined as the total computation
time divided by the total number of sampled paths, is 3×102 s. In (b), RVSSA has
a lower variance than SSA. The average computation time per sampled path is 0.5
s.

Table 4.1.

For a hairpin opening reaction, we define the initial state to be the system mi-

crostate in which a strand has fully formed a duplex and a loop. We define the

target state to be the system microstate in which the strand has no base pairs. Hair-

pin closing is the reverse reaction, where a strand with no base pair forms a fully

formed duplex and a loop. For a helix dissociation reaction, we specify the initial

state to be the system microstate in which two strands have fully formed a helix.

We define the set of target states to be the set of system microstates in which the

strands have detached and there are no base pairs within one of the strands. Helix

association is the reverse bimolecular reaction. We define the target state to be the

microstate in which the duplex has fully formed.

4.3.2 Mean First Passage Time Estimation

Figure 4.1a and Figure 4.1b show the performance of RVSSA compared with SSA

for helix association reactions no. 16 and 20, respectively. To sample paths and
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Figure 4.2: Histogram of the length of 100 random paths obtained with RVSSA for
(a) reaction no. 16 and (b) reaction no. 20. Histogram of the number of bimolecular
join transitions of the random paths for (c) reaction no. 16 and (d) reaction no. 20.
Snapshot of the i-th state visited, dot-parentheses notation and jump times for a
random path obtained with RVSSA for (e) reaction no. 16 and (f) reaction no. 20.
The jump time at the i-th state is equal to the jump time at the (i−1)-th state plus
the holding time of the (i− 1)-th state. The green highlighting indicates where a
bimolecular step occurs.
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Table 4.1: Dataset of experimentally determined reaction rate constants. The con-
centration of the strands is set to 1× 10−8 M, 5× 10−8 M, and 1× 10−8 M, for
reactions no. 1-15, 16-19, and 20-21, respectively.

Reaction Type No. Sequences T
/◦C

[Na]+

/M log10 kr Source

Hairpin closing 1-5 CCCAA-(T )30-TTGGG 14.4-
29.8

0.1
3.53-
3.69

Figure 4 of Bonnet
et al. (1998)

Hairpin opening 6-10 CCCAA-(T )30-TTGGG 14.4-
29.8

0.1
2.14-
3.30

Figure 4 of Bonnet
et al. (1998)

Helix dissociation
(with a mismatch)

11-15
AGGACTTGT + ACAAGACCT
AGGACTTGT + ACAAGTGCT
AGGACTTGT + ACAAGTCGT
AGGACTTGT + ACAAGTCCA

AGGACTTGT†

37 0.2
0.19-
0.92

Figure S4 of Cisse
et al. (2012)

Helix association 16-19 GCCCACACTCTTACTTATCGACT†

GCACCTCCAAATAAAAACTCCGC†

CGTCTATTGCTTGTCACTTCCCC†

ACCCTTTATCCTGTAACTTCCGC†

25 0.195
5.71-
6.68

Table 1 of Hata
et al. (2018)

Helix association 20-21 25-mer Poly(dA)†

25-mer Poly(dG)†

48-
78

0.4 -
Table 1 of Wetmur

(1976)

† The complement of the demonstrated sequence is also a reactant.

trajectories, we parameterize the kinetic model with the Metropolis initial parame-

ter set (Srinivas et al., 2013; Zolaktaf et al., 2017), in other words, θ0 = {kuni =

8.2× 106 s−1, kbi = 3.3× 105 M−1s−1}. In both Figure 4.1a and Figure 4.1b,

RVSSA and SSA have the same paths, but the algorithms generate different hold-

ing times for the states of the paths. In Multistrand’s implementation of SSA, the

effort needed to sample the holding time in the current state is small when com-

pared to the task of computing outgoing transition rates. In Figure 4.1a, RVSSA

and SSA perform the same, whereas in Figure 4.1b, RVSSA has a lower variance

than SSA, consistently. To understand the discrepancy between the two figures, we

analyze the experiments, described below.
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In Figure 4.2a and Figure 4.2b, the average length of the paths for both reac-

tion no. 16 and reaction no. 20 is large. Also, in Figure 4.2c and Figure 4.2d,

both reactions have a small number of bimolecular transitions on average. In Fig-

ure 4.2e, for reaction no. 16, the state where two strands are disconnected has a

small holding time, because the state has many fast unimolecular transitions be-

tween complementary bases within a strand in addition to the slow bimolecular

transitions. However, in Figure 4.2f, for reaction no. 20, the state where the two

strands are disconnected has a large holding time, since there are no complemen-

tary bases within a poly(dA) or poly(dT) strand and the only transitions are slow

bimolecular transitions. RVSSA has a significantly lower variance for reaction

no. 20 compared to SSA, because in the sampled paths, there exists states that

have large expected holding times. SSA has a large variance in generating holding

times for these states. Overall, in our experiments with parameter set θ0, RVSSA

has a lower variance than SSA for reactions no. 20 and 21, but performs similar to

SSA for other reactions in Table 4.1.

4.3.3 Parameter Estimation

Figure 4.3 shows the MSE, defined as the mean of | log10 kr− log10 k̂r(θ)|2 on dif-

ferent reactions, of FPEI and SSAI over various iterations, where the methods are

learning parameters for the Arrhenius kinetic model (Zolaktaf et al., 2017). Also,

it shows the average computation time per iteration, defined as the total compu-

tation time divided by the total number of iterations. Figure 4.4 shows the MSE

and average computation time per iteration when the entire dataset is used. Reac-

tions no. 20-21 are excluded in parameter estimation because of our uncertainty

in our interpretation of the reported measurements. For reactions no. 1-15, FPEI

and SSAI use 200 paths and 200 trajectories, respectively. For reactions no. 16-19,

where simulations are more time-consuming, FPEI and SSAI use 20 paths and 20

trajectories, respectively.

We conduct distinct experiments by starting with two sets of initial parameters,

where paths and trajectories are generated in a reasonable time. In one group of ex-

periments (Figs. 4.3a, 4.3c, 4.3e, 4.3g, and Figure 4.4a), we initialize the simplex in

the Nelder-Mead algorithm with the Arrhenius initial parameter set (Srinivas et al.,
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(d) Reactions no. 6-10 (hairpin opening)
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(e) Reactions no. 11-15 (helix dissociation)
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(f) Reactions no. 11-15 (helix dissociation)
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(g) Reactions no. 16-19 (helix association)
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Figure 4.3: The MSE of SSAI and FPEI on different types of reactions from Ta-
ble 4.1. The average computation time per iteration is shown in the label of each
method. The FF markers show the MSE when trajectories are rebuilt from scratch
using the learned parameter set from FPEI. In Figs. 4.3e- 4.3h, the SSAI traces
stop at earlier iterations than the FPEI traces, even though SSAI was allocated
more time than FPEI. 57
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Figure 4.4: As in Figure 4.3, but reactions no. 1-19 are all used as the dataset.

2013; Zolaktaf et al., 2017), in other words, θ ′0 = {Al = 468832.1058 s−1/2,El =

3 kcal mol−1 | ∀l ∈ C}∪{α = 0.0402 M−1} and its perturbations (in each pertur-

bation, a parameter is multiplied by 1.05). In FPEI, we also use θ ′0 to generate fixed

paths. In another set of experiments (Figs. 4.3b, 4.3d, 4.3f, 4.3h, and Figure 4.4b),

we adapt parameter set θ ′′0 = {Al = 468832.1058 s−1/2,El = 2 kcal mol−1 | ∀l ∈
C}∪ {α = 0.0402 M−1} from θ ′0 to increase the initial MSE in all experiments.

We initialize the simplex in the Nelder-Mead algorithm with θ ′′0 and its perturba-

tions (in each perturbation, a parameter is multiplied by 1.05). In FPEI, we also

generate fixed paths with θ ′′0 . In SSAI, we run the optimization until a limit on

the number of iterations is reached or until a time limit is reached, which ever

comes first. We also use this as the first stopping criteria in FPEI. In FPEI, to re-

duce the bias and to ensure that the ensemble of paths is a fair sample with respect

to the optimized parameters, occasionally, the fixed paths are rebuilt from scratch

and the optimization restarts. To this end, we set the second stopping criteria in

FPEI to 200 iterations or 200 function evaluations of the Nelder-Mead algorithm,

whichever comes first. Note that this empirical value is subject to change for dif-

ferent experiments. We could improve the method, by investigating a more robust

way of when to update the paths. For example, we could compare the performance

of SSA with the fixed paths in shorter intervals and update the fixed paths when

their predictive quality diverges from SSA. During the optimization, we use an in-

finite value for parameter sets that have rates that are too slow or too fast; we bound

downhill unimolecular and bimolecular rates (Eq. (7) and Eq. (8) of (Zolaktaf et al.,

2017)) in [1×104,1×109] s−1 and in [1×104,1×109] M−1s−1, respectively.
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In Figs. 4.3d-4.3h, FPEI reaches a minimal MSE more quickly than SSAI;

consider the average computation time per iteration multiplied by the number of

iterations to reach a minimal MSE. However, in Figs. 4.3a-4.3c, SSAI reaches a

minimal MSE more quickly than FPEI. This is because in Figs. 4.3d-4.3h, the

number of unique states is significantly smaller than the length of the paths. For

example, in Figure 4.3h, in the first set of fixed paths, the average length of a path

is more than 2.3× 107, whereas the average number of unique states and transi-

tions is less than 1.5×105 and 5.6×105, respectively. In Figure 4.3a, the average

length of a path is 4.6×102, whereas the average number of unique states and tran-

sitions is 1.3×102 and 2.4×102, respectively. In Figs. 4.3e-4.3f, which are slow

dissociation reactions, compared to SSAI, FPEI speeds up parameter estimation by

more than a factor of three. In Figs. 4.3g-4.3h, compared to SSAI, FPEI speeds

up parameter estimation by more than a factor of two. Also, the speed of FPEI in

all the figures could be improved with a better implementation of the method; in

our implementation, in the first iteration, computing neighbor states of all states in

a fixed condensed path is slow, whereas the later iterations which reuse the fixed

condensed paths are much faster than SSAI.

In Figure 4.4a and Figure 4.4b, where reactions no. 1-19 are all used in the

optimization, FPEI speeds up parameter estimation, by more than a factor of two

compared to SSAI. In Figure 4.4a, FPEI reaches an MSE of 0.15 in 1.2× 106 s,

whereas SSAI reaches an MSE of 0.39 in the same time. In Fig 4.4b, FPEI reaches

an MSE of 0.43 in 1.3×106 s, whereas SSAI reaches an MSE of 3.72 in the same

time.

4.4 Summary and Directions for Future Improvements
In this chapter, we show how to use RVSSA to estimate the MFPT of a reaction’s

CTMC. In our experiments, RVSSA has a lower variance than SSA in estimating

the MFPT of a reaction’s CTMC, when in the sampled paths there exists states that

have large expected holding times. Furthermore, we show how to use FPEI along

with a GMM estimator and the Nelder-Mead algorithm to estimate parameters for

nucleic acid kinetics modeled as CTMCs. In FPEI, we use RVSSA instead of SSA,

since the MFPT estimator produced by RVSSA has a lower variance. In FPEI, we
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use fixed condensed paths because sampling new paths for every parameter set is

computationally expensive. Since using fixed paths leads to biased estimates, we

alternate between minimizing the error of prediction on fixed paths, and resampling

new paths and restarting the optimization method. FPEI speeds up computations

when the number of unique states is significantly smaller than the length of sam-

pled paths. In our experiments on a dataset of DNA reactions, FPEI speeds up

parameter estimation compared to using SSAI, by more than a factor of three for

slow reactions. Also, in our experiments, for reactions with large state spaces, it

speeds up parameter estimation by more than a factor of two.

We used MFPT estimates obtained from FPEI to find a local optimimum pa-

rameter set. Alternatively, to approximate the posterior distribution of parameters,

we could use MFPT estimates obtained from FPEI along with an Approximate

Bayesian Computation (ABC) (Jennings and Madigan, 2017; Marin et al., 2012)

approach to likelihood-free inference.

FPEI can be applied to reactions modeled as CTMCs, when the fixed paths can

be produced in a timely manner. Generating paths for FPEI could be computa-

tionally expensive for rare reactions, such as helix dissociation from Morrison and

Stols (Morrison and Stols, 1993). The runtime also depends on the kinetic model

and its parameterization. It would be helpful to make FPEI applicable for such

reactions, by speeding up the generation of the fixed paths.

Finally, we evaluated FPEI in the context of DNA reactions. It would be useful

to adopt and evaluate FPEI in other CTMC kinetic models, and other domains that

require estimating MFPTs in CTMCs, such as protein folding.
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Chapter 5

The Pathway Elaboration
Method

In the previous chapter, we addressed MFPT estimation and the rapid evaluation

of perturbed parameters in the full state space of reactions’ CMTCs. However, the

methods investigated are not suitable for reactions that happen on a long time scale,

that is rare events, in large state spaces. The reason is that the paths are generated

according to SSA which could be time-consuming. Therefore, in this chapter, we

propose a time-efficient probabilistic approach which can be used to estimate the

MFPT of reactions in large state spaces, including rare events, and also enables the

rapid evaluation of perturbed parameters.

5.1 Introduction
The speed at which nucleic acids interact is difficult to predict in their full state

space of CTMCs. The number of secondary structures interacting nucleic acid

strands may form is exponentially large in the length of the strands. For example,

in the dissociation of a duplex consisting of a 25-mer poly(C) strand and a 25-

mer poly(G) strand there are at least Ω(225) secondary structures that can occur.

Typical to interacting nucleic acid strand reactions are high energy barriers that

prevent the reaction from completing, meaning that long periods of simulation time

are required before successful reactions occur. Consider reactions that occur with
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rates lower than 10 s−1 or 10000 M−1 s−1 such as dissociation of long duplexes

and three-way strand displacement at room temperature (see Table 5.1). These

types of reactions are slow to simulate not because the simulator takes longer to

generate trajectories for larger molecules, but the slowness is instead a result of

the energy landscape: at low temperatures, duplexes simply are more stable, and

require longer simulated time until their dissociation is observed.

Here we are interested in a method that successfully addresses all three chal-

lenges for CTMCs which we described in the Chapter 1: large state spaces, rare

events, and efficient recomputation for perturbed model parameters. We explore

this possibility by developing a method which uses biased and local stochastic

simulations to build truncated state spaces relevant to a (possibly rare) event of

interest. We demonstrate that our method is suitable for predicting nucleic acid

kinetics.

We propose the pathway elaboration method for estimating MFPTs of detailed-

balance CTMCs. Pathway elaboration is a time-efficient probabilistic truncation-

based approach which can be used for MFPT estimation of rare events and also

enables the rapid evaluation of perturbed parameters. In pathway elaboration, we

first construct a pathway by biasing SSA simulations from the initial states to the

targets states. The biased simulations are guaranteed to reach the target states in

expected time that is linear in the distance from initial to target states. Then, we ex-

pand the pathway by running SSA simulations for a limited time from every state of

the pathway, with the intention of increasing accuracy by increasing representation

throughout the pathway. Finally, we compute all possible transitions between the

sampled states that were not encountered in the previous two steps. For the result-

ing truncated CTMC, we solve a matrix equation to compute the MFPT to the target

state (or states). Since solving matrix equations could be slow for large CTMCs,

pathway elaboration includes a δ -pruning step to efficiently prune CTMCs while

keeping MFPT estimates within predetermined upper bounds. In this way, solv-

ing the system for other parameter settings becomes faster. Figure 5.1 illustrates a

conceptual figure of the pathway elaboration method and its applications.

To evaluate pathway elaboration, we focus on prediction of nucleic acid kinet-

ics. We implement the method using the Multistrand kinetic simulator (Schaeffer,
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(a) Pathway construction
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F

(b) State elaboration
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F

(c) Transition construc-
tion

I

D

(d) δ -pruning

I

D

(e) Updating perturbed
parameters

(f) Parameter estimation (g) Perturbed temperature

Figure 5.1: The pathway elaboration method and its applications. Pathway elabo-
ration makes possible MFPT estimation of rare events and the rapid evaluation of
perturbed parameters. Here, in the underling detailed-balance CTMC, boxes in a
square grid represent states of the CTMC, with transitions between adjacent boxes,
initial state I at bottom left and target state F at top right. (a) From state I, sample
paths that are biased towards the target state F. Three sampled paths are shown with
blue, pink and purple dotted lines. (b) From each sampled state found in the pre-
vious step, run short unbiased simulations to fill in the neighborhood. Simulations
from two states are shown with green dashed lines. The green states and transi-
tions are sampled. (c) Include all missing transitions between the states that were
sampled in steps a and b. The red transitions are included. (d) Prune states that
are expected to reach the target state quickly by redirecting their transitions into a
new state. (e) For perturbed model parameters, keep the topology of the truncated
CTMC, but update the rates of the transitions and the probability distribution of the
states. (f) We can use truncated CTMCs for perturbed parameters. For example,
we can use them for estimating model parameters. (g) As another example, we can
use them to predict forward (k+) and reverse (k−) reaction rate constants as the
temperature changes.
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2013; Schaeffer et al., 2015) (see Chapter 2). The challenges of large state spaces,

rare events, and handling perturbed parameters all arise for nucleic acid kinetics.

Since the number of secondary structures may be exponentially large in the length

of the strands, applying matrix equations is infeasible. Also, SSA often takes a

long time to complete for rare nucleic acid reactions. Moreover, to calibrate the

underlying kinetic model or to obtain a desired functionality the rapid evaluation

of perturbed parameter is required (see Figures 5.1f and 5.1g). We conduct com-

putational experiments on a dataset containing 267 experimentally determined ki-

netics of interacting nucleic acid strands (Bonnet et al., 1998; Cisse et al., 2012;

Hata et al., 2018; Machinek et al., 2014; Zhang et al., 2018). The dataset consists

of various types of reactions – namely, hairpin opening, hairpin closing, helix dis-

sociation with and without mismatches, helix association, and toehold-mediated

three-way strand displacement with and without mismatches – for which experi-

mentally measured rate constants vary over 8.6 orders of magnitude. We partition

the 267 reactions into two sets, 237 where SSA is feasible for MPFT estimation,

i.e., completes within two weeks, and the remaining 30 for which SSA is not fea-

sible.

In our experiments, first we use pathway elaboration to gain insight on the ki-

netics of two contrasting strand displacement reactions from Machinek et al. (Ma-

chinek et al., 2014), one being a rare event. Then, to evaluate the estimations of

pathway elaboration, we compare them with estimations obtained from SSA for

the 237 feasible reactions that were feasible with SSA. We use SSA since obtain-

ing MFPTs with matrix equations is not possible for many of these reactions and

SSA provides statistically correct trajectories. We find that for the settings we use,

the mean absolute error (MAE) of the log10 reaction rate constant (or equivalently

the MAE of the log10 MFPT) is 0.13. This is a reasonable accuracy since the log10

reaction constant predictions of SSA vary over 7.7 orders of magnitude (see Fig-

ure 5.6). In our experiments, pathway elaboration is on average 5 times faster than

SSA on these reactions. We further use pathway elaboration to rapidly evaluate

perturbed model parameters during optimization of Multistrand kinetic parame-

ters. We use the same 237 reactions for training the optimizer and the remaining

30 as our testing set. Using the optimized parameters, pathway elaboration esti-

mates of rate constants on our dataset are greatly improved over the estimates using
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non-optimized parameters. For the training set, the MAE of the log10 reaction rate

constants of pathway elaboration with experimental measurements reduces from

1.43 to 0.46, that is, a 26.9-fold error in the reaction rate constant reduces to a

2.8-fold error on average. The MAE over the 30 remaining reactions – which in-

volve rare events and require large state spaces – reduces from 1.13 to 0.64, that

is, a 13.4-fold error in the reaction rate constant reduces to a 4.3-fold error on av-

erage. On average for these 30 reactions, pathway elaboration takes less than two

days, whereas SSA is not feasible within two weeks. The entire optimization and

evaluation takes less than five days.

In Section 5.2 we present the pathway elaboration method. Afterwards in Sec-

tion 5.3, we evaluate pathway elaboration for nucleic acid kinetics.We start by

describing our kinetic dataset and our experimental setup that is common in all of

our experiments. Then, we analyze and compare a truncated CTMC for a toehold-

mediated three-way strand displacement reaction with a truncated CTMC for a

toehold-mediated three-way strand displacement reaction with a mismatch, where

we build the truncated CTMCs with pathway elaboration. After that, we compare

the performance of pathway elaboration with SSA on a wide range of reactions. Fi-

nally, we use pathway elaboration for the rapid evaluation of perturbed parameters

in parameter estimation.

5.2 Methodology
We are interested in the efficient simulation of rare events in detailed-balance

CTMCs and also the rapid evaluation of mildly perturbed parameters. Our ap-

proach is to create a reusable in-memory representation of CTMCs, which we

call a truncated CTMC, and to compute the MFPTs through matrix equations (see

Eqs. 2.7 and 2.8).

We propose the pathway elaboration method for building a truncated detailed-

balance CTMC ĈR for a detailed-balance CTMC CR. We call this approach the

pathway elaboration method as we build a truncated CTMC by elaborating an en-

semble of prominent paths in the system. The method has three main steps to build

a truncated CTMC, and an additional step for the rapid evaluation of perturbed

parameters.
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Algorithm 5: The pathway elaboration method.

Function PathwayElaboration(CR,N,β,K,κ,π ′)
(S,K,π0,Starget,π) = CR

S0← ConstructPathway(CR,N,β,π ′)
Ŝ ← /0
for s ∈ S0 do
S ′ ← ElaborateState(s,CR,K,κ) // Run SSA
K times from s with a time limit of κ and
return the visited states.

Ŝ ← Ŝ ∪S ′
K̂← Construct rate matrix from Ŝ and K // Eq. 2.9.

return ĈR = (Ŝ,K̂, π̂0, Ŝtarget, π̂) // For π̂0 and π̂, see
Eq. 2.10 and Eq. 2.11, respectively.

Function ConstructPathway(C,N,β,π ′)
(S,K,π0,Starget) = C
S0← /0
for n = 1 to N do

Sample s∼ π0
S0←S0∪{s}
Sample sb ∼ π ′

for t =1,2, ... do
if s = sb then break
Sample z∼ Uniform(0,1)
if z < β then // Bias simulations towards sb
using Eq. 5.1.

Sample s′|s∼ P(·|Xt−1 = s)
else

Sample s′|s∼ P̆sb(·|Xt−1 = s)
S0←S0∪ s′

s← s′

return S0
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1. The first step, “pathway construction”, uses biased simulations to find an

ensemble of short paths from the initial states to the target states. This step is

inspired by importance sampling (Andrieu et al., 2003; Doucet and Johansen,

2009; Hajiaghayi et al., 2014; Madras, 2002; Rubino and Tuffin, 2009) and

exploration-exploitation trade-offs (Sutton and Barto, 2018).

2. The second step, “state elaboration”, uses SSA from every state in the path-

way to add additional states to the pathway, with the intention of increasing

accuracy. This step is inspired by the string method (Weinan et al., 2005).

3. The third step, “transition construction”, creates a matrix of transitions be-

tween every pair of states obtained from the first and second steps.

4. The fourth step, “δ -pruning”, prunes the CTMC obtained from the previous

steps to enable the rapid evaluation of perturbed parameters.

These steps results in a t truncated detailed-balance CTMC ĈR = (Ŝ,K̂, π̂0, Ŝtarget, π̂),

where π̂0 and π̂ are obtained via renormalization from π0 and π . Figure 5.1, parts

(a) through (d), illustrates the key steps of the pathway elaboration method, and

Algorithm 5 provides high-level pseudocode. We next describe these steps in de-

tail.

Pathway construction. We construct a pathway by biasing N SSA simulations

towards the target states. We bias a simulation by using the shortest-path distance

function d : S ×Starget → R≥0 from every state s ∈ S to a fixed target state sb ∈
Starget (Hajiaghayi et al., 2014; Kuehlmann et al., 1999). For every biased path, we

can use a different sb. Therefore, in general, we can sample sb from a probability

distribution π ′ over the target states. Given sb, we use an exploitation-exploration

trade-off approach. At each transition, the process randomly chooses to either

decrease the distance to sb or to explore the region based on the actual probability

matrix of the transitions.

Let Dsb(s) be the set of all neighbors of s whose distance with sb is one less

than the distance of s with sb, and let P(s,s′) be as in Eq. 2.1. Instead of sampling

states according to P, we use P̃ : S ×S → R≥0 where
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P̃(s,s′) =P(s,s′) = K(s,s′)
∑s′′∈S K(s,s′′) 0≤ z≤ β ,

P̆sb(s,s
′) =

K(s,s′)111{s′∈Dsb (s)}
∑s′′∈S K(s,s′′)111{s′′∈Dsb (s)}

β < z≤ 1.

(5.1)

Here z is chosen uniformly at random from [0,1], β is a threshold, and 111{.} is an

indicator function that is equal to 1 if the condition is met and 0 otherwise. When

β = 1, then P̃(s,s′) = P(s,s′).

Proposition 1. Let dmax be the maximum distance from a state in a CTMC to target

state sb. Then when 0≤ β < 1/2, the expected length of a pathway that is sampled

according to Eq. 5.1 is at most dmax
1−2β

.

Proof. Based on the distance of states with sb, we can project a biased path that

is generated with Eq. 5.1 to a 1-dimensional random walk R, where coordinate

x = 0 corresponds to sb and coordinate x > 0 corresponds to all states s 6= sb with

d(s,sb) = x. From the definition of P̃ and since all states have a path to sb by a

transition to a neighbor state that decreases the distance by one, at each step, the

random walk either takes one step closer to x = 0 with probability at least 1−β

or one step further from x = 0 with probability at most β . If we let E(R,k) denote

the expected time for random walk R to reach 0 from k, then we have that when

0≤ β < 1/2,

E(R,k)≤ k
1−2β

, (5.2)

which follows from classical results on biased random walks—see Feller XIV.2

(Feller, 1968). Therefore, if 0≤ β < 1/2, the proposition holds, and the state space

built with N biased paths from the initial state s0 to a target state sb has expected

size

E[|Ŝ|]≤ N ·d(s0,sb)

1−2β
≤ N ·dmax

1−2β
. (5.3)

If for each biased path, the initial state is sampled from π0 and the target state is

sampled from π ′, then we sum over the N sampled (initial state, target state) pairs,

and the total expected state space size is still bounded by N·dmax
1−2β

.

68



For efficient computations, we should be able to compute the shortest-path dis-

tance efficiently. For elementary step models of interacting nucleic acid strands,

we can compute d(s,sb) by computing the minimum number of base pairs that

need to be deleted or formed to convert s to sb. Multistrand provides a list of base

pairings for every complex microstate in a system microstate (state) and we can

calculate the distance between two states in a running time of O(b), where b is the

total number of bases in the strands.

State elaboration. By using Eq. 5.1, a biased path could have a low probability of

reaching a state that has a high probability of being visited with SSA. For example,

in some helix association reactions from Zhang et al. (Zhang et al., 2018), intra-

strand base pairs are likely to form before completing hybridization. However, the

corresponding states do not lie on the shortest paths from the initial states to the

target states. Let c be the minimum number of transitions from s0 that are required

to reach s but which increase the distance to sb. Now, let the random walk R be

defined as the previous section. Let P1 denote the probability of reaching sb before

reaching s for this random walk. Following classical results on biased random

walks (Feller, 1968), for β 6= 1/2,

P1 ≥
( β

1−β
)c−1

( β

1−β
)dsb (s0)+c−1

. (5.4)

In the extreme case if β = 0, then P1 = 1 and the probability of reaching s will be

0.

Not including states that are likely to be visited with SSA could lead to in-

accurate MFPT estimates. For example, assume for three states s, I and F , there

exists reversible transitions between I and F and between I and s but there are no

transitions between s and F . Let π be a probability distribution over the states that

satisfies the detailed balance conditions with the rate matrix K : S×S →R≥0. As-

sume π(I) is low, whereas π(F) = π(s) are high. Also, assume K(I,s) =K(I,F) is

large, and that K(s, I) = K(F, I) is small. Therefore, in the actual CTMC, starting

from I the process has an equal chance of transitioning to either s or F . Upon tran-

sition to s it is expected to have a large holding time, which increases the MFPT to

69



F . However, if we use β = 0 for generating a biased path from I to F , it will never

reach s and the MFPT to F will be an underestimate of the actual MFPT.

Therefore, for detailed-balance CTMCs, we elaborate the pathway to possibly

include states that have a high probability of being visited with SSA but were not

included with our biased sampling. Here, we use SSA to elaborate the pathway;

we run K simulations from each state of the pathway for a maximum simulation

time of κ , meaning that a simulation stops as soon as the simulation time becomes

greater than κ . By simulation time we mean the expected time of a SSA trajectory,

not the wall-clock time. K and κ are tuning parameters that affect the quality of

predictions. The running time of elaborating the states in the pathway with this

approach is O(|Ŝ|Kκkmax), where Ŝ is the state space of the pathway and kmax is

the fastest rate in the pathway. An alternate approach is to run each simulation for

a number of transitions instead of a simulation time. Another approach is to add

all states that are within distance r of every state of the pathway. However, with

this approach, the size of the state space could explode, whereas by using SSA the

most probable states will be chosen.

Note that any elaboration which stops before hitting the target state might be

problematic for non-detailed-balance CTMCs. Trajectories that stop while visiting

a state for the first time might effectively be introducing a spurious sink into the

enumerated state space. Without reversibility that last transition of the elabora-

tion might be irreversible. Sink states that are not a target state make the MFPT

to the target states infinite. For example in Figure 5.2, assume in the elaboration

step, the simulation finds s and s′ but not s′′ (or any other neighbor of s′). Then

without the reversible transition, s′ will be a sink state and the MFPT to the target

state F will be infinite. Moreover, having reversible transitions that do not obey

the detailed balance condition may make MFPT estimations large. For example,

in Figure 5.2 assume that the reversible transitions between s and s′ do not obey

detailed balance. Also, assume π(s) and π(s′) are both high, and that K(s,s′) is

large whereas K(s′,s) is small. Therefore, if the elaboration stops at s′ it will make

the MFPT large. However, in the full state space, s′ might quickly reach F through

a fast transition to s′′. Thus, the state elaboration step may not be suitable for non-

detailed-balance CTMCs.
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Figure 5.2: In the elaboration step, the simulation finds s and s′ but not s′′. Without
detailed balance, a slow transition from s′ to s could make the MFPT to F large.
However, in the full state space, s′ might quickly reach F through a fast transition
to s′′.

Transition construction. After the states of the pathway are elaborated, fast tran-

sitions between the states of the pathway could still be missing. To make computa-

tions more accurate, we further compute all possible transitions in Ŝ that were not

identified in the previous two steps. In related roadmap planning work (Kavraki

et al., 1996; Tang et al., 2005; Thomas et al., 2013), states are connected to their

nearest neighbors as identified by a distance metric. We can include all missing

transitions by checking whether every two states in Ŝ are neighbors in O(|Ŝ|2) or

by checking for every state in Ŝ whether its neighbors are also in Ŝ in O(|Ŝ|m}),
where m is the maximum number of neighbors of the states in the original CTMC.

δ -pruning. Given a (truncated) CTMC in which we can compute the MFPT from

every state to the target state, one question is: which states and transitions can

be removed from the Markov chain without changing the MFPT from the initial

states significantly? This question is especially relevant for the rapid evaluation of

perturbed parameters, where MFPTs need to be recomputed often.

Given a CTMC C = (S,K,π0,Starget) and a pruning bound δ , let τs denote the

MFPT from state s to Starget and let τπ0 denote the MFPT from the initial states

to Starget. Let Sδ p = {s ∈ S | τs < δτπ0 and π0(s) = 0} be the set of states that

are δ -close to Starget and that are not an initial state. We construct the δ -pruned

CTMC Cδ = (Sδ ,π0,Kδ ,{sd}) over the pruned set of states Sδ = S \Sδ p∪{sd},
where sd is the new target state. For s,s′ ∈ Sδ \ {sd}, we update the rate matrix
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Kδ : Sδ → R≥0 by Kδ (s,sd) = ∑s′∈Sδp
K(s,s′) and Kδ (s,s′) = K(s,s′). Note that

Kδ (sd ,s) is not used in the computation of the MFPT (see Eq. 2.7), so we can

simply assume Kδ (sd ,s) = 0. Alternatively, to retain detailed-balance conditions,

we can define the energy of sd as E(sd) =−RT log∑s′′∈Sδ p
e−

E(s′′)
RT (see Eqs.7.1 and

7.2 from Schaeffer (2013)) and define Kδ (sd ,s) = e−
E(s)−E(sd )

RT Kδ (s,sd).

For the pruned CTMC Cδ = (Sδ ,π0,Kδ ,{sd}), let the MFPT τδ
π0

be given as

usual (Eq. 2.8). Then by construction

τ
δ
π0
≤ τπ0

1+δ
. (5.5)

We can calculate the MFPT from every state to the target states by solving

Eq. 2.7 once for CTMC C. Therefore, the running time of δ -pruning depends on

the running time of the matrix equation solver that is used for Eq. 2.7. For a CTMC

with state space S , the running time of a direct solver is at most O(|S|3). Recently,

nearly-linear time algorithms have been developed for directed Laplacian systems,

which are applicable to the generative matrices of CTMCs (Cohen et al., 2018). For

iterative solvers the running time is generally less than O(|S|3). After the equation

is solved, the CTMC can be pruned in O(|S|) for any δ . Note that for a given bound

δ , the runtime for solving Eq. 2.7 for the pruned CTMC Cδ might still be high. In

that case, a larger value of δ is required. To set δ in practice, it could be useful to

consider the number of states that will be pruned for a given δ , that is |Sδ p|.

Updating perturbed parameters. We are interested in rapidly estimating the

MFPT to target states given mildly perturbed parameters. Our approach is to reuse

a truncated CTMC for mild perturbations. The MFPT estimates will be biased in

this way. However, we could have significant savings in running time by avoiding

the cost of sampling from scratch. We would still have to solve Eq. 2.7, but with ef-

ficient solvers (Virtanen et al., 2020) the cost could be less than the cost of sampling

from scratch. For example in Table 5.2, on average, solving the matrix equation is

faster than SSA by a factor of 47 and is faster than building the truncated CTMC by

a factor of 10. Moreover, it might be possible to reduce the cost of solving matrix

equations by reusing calculations from previous equations (Brand, 2006; Bunch

and Nielsen, 1978; Parks et al., 2006). We do not take advantage of these methods
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for solving matrix equations in this work, but we still obtain significant speed-ups

by reusing truncated CTMCs.

A perturbed thermodynamic model parameter affects the energy of the states.

Therefore, to update the transition rates, we would also have to recompute the en-

ergy of the states. A perturbed kinetic model only affects the transition rates. A

perturbed experimental condition could affect both the energy of the states and the

transition rates. Therefore, assuming the energy of a state can be updated in a con-

stant time, the truncated CTMC can be updated in O(|Ŝ|+ |Ê |), where Ê is set of

transitions of the truncated CTMC. For nucleic acid kinetics the energy of a state

can be computed from scratch in O(b) time, or in O(1) time using the energy cal-

culations of a neighbor state which differs in one base pair (Schaeffer, 2013).

Quantifying the error. After we build truncated CTMCs, we need to quantify the

error of MFPT estimates when experimental measurements are not available. It

would help us set values for N, β , K and κ for fixed model parameters, and also

evaluate when a truncated CTMC has a high error for perturbed model parame-

ters. For exponential decay processes, one possible approach is to adapt the finite

state projection FSP (Munsky and Khammash, 2006) method that is developed to

quantify the error of truncated CTMCs for transient probabilities. We adapt it as

follows. We combine all target states into one single absorbing state sf. We project

all states that are not in the truncated CTMC into an absorbing state so and we

redirect all transitions from the truncated CTMC to states out of the CTMC into

so. Then we use the standard matrix exponential equations to compute the full

distribution on the state space at a given time. However, we only care about the

probabilities that sf and so are occupied. We search to compute the half-completion

time t1/2 with bounds by

tmin s.t. p(sf ; tmin)+ p(so ; tmin) =
1
2
, (5.6)

and

tmax s.t. p(sf ; tmax) =
1
2
, (5.7)

where p(s ; t) is the probability that the process will be at state s at time t starting
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from the set of initial states. Since sf and so are the only absorbing states, then

there exists a solution to Eq. 5.6 and clearly tmin ≤ t1/2. Based on FSP, p(sf ; tmax)

is an underestimate of the actual probability at time tmax, if it exists. A possible

way to determine if a solutions exists is to determine the probability of reaching

state sf compared to state so from the initial states, which can be calculated by

solving a system of linear equations (see Eq. 2.13 from Metzner et al. (Metzner

et al., 2009)). If the probability is greater or equal to 1
2 then a solutions exists. If

a solution does not exist for the given statespace, then based on FSP the error is

guaranteed to decrease by adding more states and we can eventually find a solution

to Eq. 5.7. The search for tmax can be completed with binary search. Thus, the true

t1/2 is guaranteed to satisfy tmin ≤ t1/2 ≤ tmax. For exponential decay processes,

the relation between the half-completion time and the MFPT is (Cohen-Tannoudji

et al., 1977; Simmons, 1972)

t1/2 =
ln2
λ

and τ =
1
λ
→ τ =

t1/2

ln2
, (5.8)

where λ is the rate of the process. Thus, tmin
ln2 ≤ τ ≤ tmax

ln2 .

A drawback of this approach is that we might need a large number of states

to find a solution to Eq. 5.7, which might make the master equation or the linear

system solver infeasible in practice. Efficiently quantifying the error of MFPT esti-

mates in truncated CTMCs for exponential and non-exponential decay processes is

beyond the scope of this work. It might also be possible to use some other existing

work to evaluate a truncated state space (Backenköhler et al., 2019; Kuntz et al.,

2019; Metzner et al., 2009).

In Section 5.4, we discuss some practical approaches to tune the parameters of

pathway elaboration.

5.3 Experiments
Here, we conduct computational experiments to evaluate the pathway elaboration

method. We implement pathway elaboration on top of the Multistrand kinetic sim-

ulator. Our framework and the dataset are available at https://github.com/DNA-

and-Natural-Algorithms-Group/PathwayElaboration.
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5.3.1 Dataset

We curate a dataset of 267 experimentally determined reaction rate constants from

the published literature for hairpin closing, hairpin opening, helix association, helix

dissociation with and without mismatches, and toehold-mediated three-way strand

displacement, (Bonnet et al., 1998; Cisse et al., 2012; Hata et al., 2018; Machinek

et al., 2014; Zhang et al., 2018). The dataset covers a wide range of slow and fast

unimolecular and bimolecular reactions where the reaction rate constants vary over

8.6 orders of magnitude. The reactions are annotated with the temperature and the

buffer conditions. Table 5.1 shows a summary of our dataset.

In datasets No. 1-6 from Table 5.1, we consider reactions that are feasible with

SSA with our parameterization of Multistrand, given two weeks computation time,

since we compare SSA results with pathway elaboration results. We indicate these

reactions asDtrain since we also use them as training set in our parameter estimation

experiment. The reactions in datasets No. 7-8 are not feasible with SSA within two

weeks. We indicate these reactions as Dtest since we use them as testing set in our

parameter estimation experiment.

To set π0 for unimolecular reactions, we use particular complex microstates.

For a bimolecular reaction, when the bimolecular transitions are slow enough be-

tween the two complexes, it is valid to assume the complexes each reach equilib-

rium before bimolecular transitions occur and therefore are Boltzmann distributed

(Schaeffer, 2013). Given a volume and complex B therein, let CM be the set of all

possible complex microstates of B. A distribution πb is Boltzmann distributed with

respect to complex B if and only if

πb(c′) =
e−∆G(c′)/RT

∑c∈CM e−∆G(c)/RT
(5.9)

for all complex microstates c′ ∈ CM. In a bimolecular reaction of the form in

Eq. 2.14, for a system microstate s that has complex microstates c and c′ cor-

responding to complexes B and F , we define the initial distribution as π0(s) =

πb(c)×πb(c′). For all other states, we define π0(s) = 0.

For reactions in which we define only one target state, in the pathway construc-

tion step, we bias the paths towards that state. For reactions in which we define a
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Table 5.1: Summary of the dataset of 267 experimentally determined reaction
rate constants. The initial concentration of the reactants is denoted as u and k is the
experimental reaction rate constant.

Dataset
No.

Reaction type & source
# of re-
actions

Mean
# of

bases

[Na+]
(M)

T (◦C) u (M) log10 k

Dtrain



1
Hairpin opening (Bonnet

et al., 1998)
63 25 0.1–0.5 10–49 1×10−8 1.41–4.55

2
Hairpin closing (Bonnet

et al., 1998)
62 25 0.1–0.5 10–49 1×10−8 3.36–4.76

3
Helix dissociation w/

mismatch (Cisse et al.,
2012)

39 18 0.01–0.2 23–37 1×10−8 −1.19–
0.93

4
Helix association (Hata

et al., 2018)†† 43 46 0.195 25 5×10−8 4.01–6.68

5
Helix association (Zhang

et al., 2018)†† 20 72 0.75 37–55 1×10−5 4.43–7.41

6

Toehold-mediated
three-way strand
displacement w/

mismatch (Machinek
et al., 2014)††

10 102 0.05† 23 5×10−9–
1×10−8

5.33–6.78

Dtest



7
Helix association (Hata

et al., 2018)†† 4 46 0.195 25 5×10−8 4.01–4.98

8

Toehold-mediated
three-way strand
displacement w/

mismatch (Machinek
et al., 2014)††

26 100 0.05† 23 5×10−9–
1×10−8

2.71–6.33

† The experiment was performed without Na+ in the buffer. We compute the free energy as if
50 mM [Na+] is present.
†† A bimolecular reaction. For bimolecular reactions, kr has units M−1s−1. For unimolecular
reactions, kr has units s−1.
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set of target states, in this work, we bias paths towards only one target state, so that

π ′(sb) = 1 for one state and π ′(s) = 0 for all other states. For a hairpin opening

reaction, we define the initial state to be the system microstate in which a strand

has fully formed a duplex and a loop. We define the target state to be the system

microstate in which the strand has no base pairs. Hairpin closing is the reverse reac-

tion, where a strand with no base pair forms a fully formed duplex and a loop. For

a helix dissociation reaction, we specify the initial state to be the system microstate

in which two strands have fully formed a helix. We define the set of target states to

be the set of system microstates in which the strands have detached and there are

no base pairs within one of the strands. We bias paths towards the target state in

which there are no base pairs formed within any of the strands. Helix association

is the reverse bimolecular reaction, but we Boltzmann sample the initial reacting

complexes in which the strands have not formed base pairs with each other. We de-

fine the target state to be the microstate in which the duplex has fully formed. In a

three-way strand displacement, an invader strand displaces an incumbent strand in

a duplex, where a toehold domain facilitates the reaction. We Boltzmann sample

initial reacting complexes in which the incumbent and substrate form a complex

through base pairing and the invader forms another complex. We define the set of

target states to be the set of microstates where the incumbent is detached from the

substrate and there are no base pairs within the incumbent. We bias paths towards

the target state in which the substrate and invader have fully formed base pairs and

there are no base pairs within the incumbent.

5.3.2 Experimental Setup

Experiments are performed on a system with 64 2.13GHz Intel Xeon processors

and 128GB RAM in total, running openSUSE Leap 15.1. An experiment for a re-

action is conducted on one processor. Our framework is implemented in Python, on

top of the Multistrand kinetic simulator (Schaeffer, 2013; Schaeffer et al., 2015).

To solve the matrix equations for estimating MFPTs in truncated CTMCs, we use

the sparse direct solver from SciPy (Virtanen et al., 2020) when possible1. Oth-

erwise we use the sparse iterative biconjugate gradient algorithm (Fletcher, 1976)

1The implementation we used allowed the sparse direct solver to use only up to 2GB of RAM
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from SciPy.

In all of our experiments, the thermodynamic parameters for predicting the

energy of the states are fixed and the energies are calculated with Multistrand.

Each reaction uses its own experimental condition as provided in the dataset. For

all experiments except for the Parameter Estimation section, we fix the parameters

of the Multistrand kinetic model to the Metropolis Mode parameter set, that is

θ1 = {kuni ≈ 2.41× 106 s−1,kbi ≈ 8.01× 105 M−1s−1}. This parameter set has

been obtained by calibrating the model on various types of reactions using semi-

automatic truncated CTMCs (Zolaktaf et al., 2017). To obtain MFPTs with SSA,

we use 1000 samples, except for three-way strand displacement reactions in which

we use 100 samples, since the simulations take a longer time to complete.

5.3.3 Case Study

Here we illustrate the use of pathway elaboration, to gain insight on the kinetics of

two contrasting toehold-mediated strand displacement reactions from Machinek

et al. (2014).

Figures 5.3a and 5.4a show the two reactions that we consider (Machinek et al.,

2014). In the reaction in Figure 5.3a, the invader and substrate are complementary

strands in the displacement domain. In the reaction in Figure 5.4a, there is a mis-

match between the invader and the substrate in the displacement domain. The rate

of toehold-mediated strand displacement is usually determined by the time to com-

plete the first bimolecular transition, in which the invader forms a base pair with

the substrate for the first time. However, the rate could be controlled by several

orders of magnitude by altering positions across the strand, such as using mis-

match bases (Machinek et al., 2014). The reaction in Figure 5.4a is approximately

3 orders of magnitude slower than the reaction in Figure 5.3a. For the reaction in

Figure 5.3a, log10 k = 6.43, log10 k̂PE = 6.62, log10 k̂SSA = 6.75, |Ŝ| = 4.3× 105,

the computation time of pathway elaboration is 1.4× 105 s, and the computa-

tion time of SSA is 3.9× 105 s. For the reaction in Figure 5.4a, log10 k = 3.17,

log10 k̂PE = 3.59, |Ŝ| = 7× 105, the computation time of pathway elaboration is

2.7×105 s, and SSA is not feasible within 1×106 s.

In Figures 5.3b-5.3d and Figures 5.4b-5.4d, we illustrate different properties
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of the truncated CTMCs for the reactions in Figures 5.3a and 5.4a, respectively.

Comparing Figure 5.3b with Figure 5.4b, we see that many states are sampled

midway in Figure 5.4b due to the mismatch. In Figures 5.3c and 5.4c, we compare

the energy barrier (increase in free energy) while moving from the beginning of the

x-axis towards the end of the x-axis. In Figure 5.3c, we can see a noticeable energy

barrier in the beginning. However, in Figure 5.4c, we can see two noticeable energy

barriers, one in the beginning and one midway. Figures 5.3d and 5.4d show states

that are δ -close to the target states. These figures show that with δ -pruning, states

that are further from the initial states and closer to the target states will be pruned

with smaller values of δ , compared to states that are closer to the initial states

and further from the target states. Comparing Figure 5.3d with Figure 5.4d, the

states quickly reach the target states after the first several transitions in Figure 5.3d

(after the energy barrier). However, in Figure 5.4d, the states do not quickly reach

the target states until after the second energy barrier. Figure 5.3e and 5.4e show

the free energy landscape and some of the secondary structures for a random path

from an initial state to a target state for the reactions in Figures 5.3a and 5.4a,

respectively. For the reaction in Figure 5.3a, the barrier is near the first transition.

For the reaction in Figure 5.4a, there is a noticeable barrier after several base pairs

form between the invader and the substrate, presumably near the mismatch.

5.3.4 Mean First Passage Time and Reaction Rate Constant
Estimation

To evaluate the estimations of pathway elaboration, we compare its estimations

with estimations obtained from SSA for the reactions in Dtrain. Note that for many

of these reactions the size of the state space is exponentially large in the length of

the strands. Therefore, exact matrix equations is not possible for them. Instead we

use SSA since it can generate statistically correct trajectories. We also compare the

wall-clock computation time of pathway elaboration with SSA for these reactions.

We evaluate the estimations of pathway elaboration based on the mean absolute

error (MAE) with SSA. We define the MAE of pathway elaboration with SSA over
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Figure 5.3: Results of truncated CTMCs built with pathway elaboration (N = 128,
β = 0.6, K = 1024 and κ = 16 ns) for (a) a toehold-mediated three-way strand dis-
placement reaction that has a 6-nt toehold and a 17-nt displacement domain (Ma-
chinek et al., 2014). In Figures 5.3b, 5.3c, and 5.3d, the x-axis corresponds to the
number of base pairs between the invader and the substrate, and the y-axis corre-
sponds to the number of base pairs between the incumbent and the substrate. (b)
At coordinate (x,y), |Sx,y| is shown, where Sx,y is a system macrostate equal to the
set of states with coordinate (x,y). (c) At coordinate (x,y), the free energy ∆Gx,y

is shown, which is defined as ∆Gx,y =−RT ln∑s∈Sx,y e
−∆G(s)

RT (Schaeffer, 2013). The
free energy of the path in Figure 5.3e is also shown with the ◦ marker in Fig-
ure 5.3c. (d) At coordinate (x,y), the value of δx,y = ∑s∈Sx,y

wsδ (s)
∑s∈Sx,y ws

is shown,

where δ (s) = E[τs]/τπ0 and ws = e
−∆G(s)

RT . For ease of understanding, the green
“halfway line” separates coordinates where δx,y is greater than 0.5 from coordi-
nates where δx,y is less than 0.5. (e) The free energy landscape of a random path
built with pathway elaboration (N = 1, β = 0, K = 0 and κ = 0 ns) and the initial
and the final states and some states near the local extrema are illustrated.
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Figure 5.4: As in Figure 5.3, results of truncated CTMCs built with pathway elab-
oration (N = 128, β = 0.6, K = 1024 and κ = 16 ns) for a toehold-mediated three-
way strand displacement reaction that has a 6-nt toehold, a 17-nt displacement
domain, and a mismatch exists between the invader and the substrate at position 6
of the displacement domain (Machinek et al., 2014).

a dataset D as

MAE =
1
|D| ∑r∈D

| log10 τ̂
r
SSA− log10 τ̂

r
PE|=

1
|D| ∑r∈D

| log10 k̂r
SSA− log10 k̂r

PE|,
(5.10)

where τ̂r
PE and τ̂r

SSA are the estimated MFPTs of SSA and pathway elaboration for
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reaction r, respectively, and k̂r
SSA and k̂r

PE are the estimated reaction rate constants

of SSA and pathway elaboration for reaction r, respectively. The equality follows

from Eqs. 2.15 and 2.16. We use log10 differences since the reactions rate constants

cover many orders of magnitude. Note that we could use other metrics instead of

the MAE to compare pathway elaboration with SSA. However, the MAE is con-

ceptually easy to understand and since we are using the MAE of the log10 values,

we can understand on average how off the results are. For example, an MAE of 1

means on average the predictions are off by a factor of 10. In the rest of this section,

we first look at the trade-off between the MAEs and the size of the truncated state

space set Ŝ, with regards to different parameter settings of the pathway elaboration

method. Then we look at the trade-off between the MAE and the computation time.

MAE versus |Ŝ|. Figure 5.5 shows the MAE versus |Ŝ| of pathway elaboration

for different configurations of the N, β , K, and κ parameters. Figure B1 and B2

from the Appendix represent Figure 5.5 by varying only two parameters at a time.

The figures show that generally as N and β increase, the MAE decreases. This is

because for a fixed N as β → 1 the ensemble of paths will be generated by SSA.

As N→ ∞, the truncated state space becomes larger and is more likely to contain

the most probable paths from the initial states to the target states.

Comparing the MAE of configurations where K = 0 and κ = 0 with other set-

tings where K > 0 and κ > 0, shows that the elaboration step helps reduce the

MAE (in the Appendix, compare Figures B1a-B1d with Figures B1i-B1l). Particu-

larly, the elaboration step is useful for dataset No. 4, helix association from Zhang

et al. (2018) where intra-strand base pairs can form before completing hybridiza-

tion. The plots show that the elaboration step is more useful when β is small (in

the Appendix, compare Figures B2a-B2d with Figures B2i-B2l). This could be

because elaboration helps find rate determining states that were not explored due

to the biased sampling. When β → 1 the pathway elaboration method will perform

as SSA and rate determining states can be found without elaboration.

Furthermore, the figures show that as K increases, the MAE decreases. How-

ever, with a large value for κ and a small value of K the performance could be

diminished (such as in Figure B2c of the Appendix). In particular, consider that

the K and κ might involve simulations that go on excursions outside the “main”
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densely-visited parts of the enumerated state space, and they might even terminate

out there. Such excursions might very well introduce significant local minima into

the enumerated state space - even when no significant local minima exist in the

original full state space. For example, consider an excursion that goes off-path

down a wide slope, perhaps toward the target state. If it terminates before reaching

a target state, then a hypothetical simulation in the enumerated state space could

get stuck, needing to climb back up the slope to the point where the excursion be-

gan. The expected hitting time in the enumerated state space will account for such

wasted time, thus leading to an over estimation of the MFPT. Therefore, κ should

be tuned with respect to K.

MAE versus computation time. Table 5.2 illustrates the MAE and compu-

tation time of pathway elaboration for when N = 128, β = 0.4, K = 256, and

κ = 16 ns compared with SSA. We use this parameter setting here because it pro-

vides a good trade-off between accuracy and computational time for the larger

reactions. For the smaller reactions, we could achieve the same MAE with less

computational time (by using smaller values for the parameter setting). Figure 5.6

further shows the prediction of pathway elaboration for this parameter setting com-

pared to the prediction of SSA for individual reactions. In Table 5.2, the MAE for

unimolecular reactions is smaller than 0.05, whereas for bimolecular reactions it is

larger than 0.29. This is because the CTMCs for the bimolecular reactions in our

dataset are naturally bigger than the CTMCs for the unimolecular reactions in our

dataset, and require larger truncated CTMCs. The MAE can be further reduced

by changing the parameters (as shown in Figure 5.5). With our implementation of

pathway elaboration, the computation time of pathway elaboration for datasets No.

3, No. 4, and No. 6 are 2 times, 20 times, 3 times smaller than SSA, respectively.

The computation time of SSA for datasets No. 1, No. 2, and No. 5 is smaller than

the computation time of pathway elaboration. This is because pathway elaboration

has some overhead, and in cases where SSA is already fast it can be slow. However,

as we later show in the experiments, even for these type of reactions, pathway elab-

oration could still be useful for building truncated CTMCs for the rapid evaluation

of perturbed parameters. The computation time for pathway elaboration could be

significantly improved with more efficient implementations of the method.
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Figure 5.5: MAE vs |Ŝ| for different values of N, β , K and κ . (a) datasets No. 1,2,
and 3, (b) dataset No. 4, (c) dataset No. 5, and (d) dataset No. 6. The configuration
of N, β , K, and κ corresponding to the truncated CTMCs which have the minimum
and maximum MAE are shown on each plot.

5.3.5 δ -Pruning

Figure 5.7 shows how δ -pruning affects the quality of the log10 reaction rate con-

stant estimates, the size of the state spaces, and the computation time of solving

the matrix equations, for dataset No. 6. The MFPT estimates satisfy the bound

given by Eq. 5.5 whilst δ -pruning reduces the computation time for solving the

matrix equations by an order of magnitude for δ = 0.6. Using larger values of

δ we can further decrease the computation time. If we reuse the CTMCs many

times, such as in parameter estimation, δ -pruning could help reduce computation
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(a) (b)

(c) (d)

Figure 5.6: The log10 k̂SSA and log10 k̂PE (N = 128, β = 0.6, K = 256, and κ =
16 ns) for (a) datasets No. 1,2, and 3, and (b) dataset No. 4, (c) dataset No. 5, and
(d) dataset No. 6. The reactions are ordered along the x-axis by their predicted
log10 k̂SSA. The pathway elaboration experiments are repeated three times. For
each reaction, log10 k̂PE is calculated by the average of the three experiments. The
error bars for pathway elaboration indicate the range (minimum to maximum) of
the three experiments. The error bars for SSA indicate the 95% percentile bootstrap
of the log10 k̂SSA.
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Table 5.2: The statistics of pathway elaboration (N = 128, β = 0.6, K = 256, and
κ = 16 ns) versus SSA. All statistics are averaged over the ’# of reactions‘. MAE
refers to the Mean Average Error of pathway elaboration with SSA (see Eq. 5.10).
|Ŝ| is the size of the truncated state space set.

Dataset
No.

Reaction type & source
# of
reac-
tions

MAE

Mean |Ŝ|
for

pathway
elabora-

tion

Mean matrix
equation

computation
time (s) for

pathway
elaboration

Mean
computation
time (s) for

pathway
elaboration

Mean
computa-
tion time

(s) for
SSA

1
Hairpin

opening (Bonnet et al.,
1998)

63 0.04 5.7×102 4.5×10−3 1.0×103 2.7×101

2
Hairpin closing (Bonnet

et al., 1998)
62 0.03 1.8×103 1.5×10−2 1.0×103 1.2×101

3
Helix dissociation w/

mismatch (Cisse et al.,
2012)

39 0.04 5.3×102 6.8×10−3 1.6×103 3.8×103

4
Helix association (Hata

et al., 2018)
43 0.29 8.1×104 3.0×101 2.1×104 4.9×105

5
Helix

association (Zhang
et al., 2018)

20 0.51 3.8×105 2.3×104 1.6×105 3.7×104

6

Three-way strand
displacement w/

mismatch (Machinek
et al., 2014)

10 0.31 3.0×105 1.3×103 1.3×105 3.8×105

All reactions 237 0.13 6.0×104 2.0×103 2.4×104 1.1×105

time significantly.

5.3.6 Parameter Estimation

In the previous subsections, the underlying parameters of the CTMCs were fixed.

In this subsection, we assume the parameters of the kinetic model of the CTMCs

are not calibrated and we use pathway elaboration to build truncated CTMCs that

we reuse to rapidly evaluate perturbed parameter sets during parameter estimation.
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(a) (b)

(c)

Figure 5.7: The effect of δ -pruning with different values on truncated CTMCs
that are built with the pathway elaboration method (N = 128, β = 0.6, K = 1024,
κ = 16 ns) for dataset No. 6. δ = 0 indicates δ -pruning is not used. (a) The log10 k̂.
(b) The size of the truncated state space |Ŝ|. (c) The computation time for solving
the matrix equation in Eq. 2.7.
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We use the 237 reactions indicated as Dtrain in Table 5.1 to optimize an initial

parameter set. We use the 30 rare event reactions indicated as Dtest in Table 5.1

to show that given a calibrated parameter set of the CTMC model, the pathway

elaboration method can estimate MFPTs and reaction rate constants of reactions

close to their experimental measurement.

To optimize the parameter set, we use a similar approach to the fixed pathway

ensemble inference (FPEI) method (Zolaktaf et al., 2019). We seek the parameter

set that minimizes the mean squared error (MSE) as

θ
∗ = argmin

θ

1
|Dtrain| ∑

r∈Dtrain

(log10 τ
r− log10 τ̂

r
PE(θ))

2 =

argmin
θ

1
|Dtrain| ∑

r∈Dtrain

(
log10 kr− log10 k̂r

PE(θ)
)2
,

(5.11)

which is a common cost function for regression problems. We use the Nelder-Mead

optimization algorithm (Nelder and Mead, 1965; Virtanen et al., 2020) to minimize

the MSE. The equality follows from Eqs. 2.15 and 2.16. We initialize the simplex

in the algorithm with θ2 = {kuni = 5× 104 s−1,kbi = 5× 104 M−1s−1} in which

we choose arbitrarily and two perturbed parameter sets. Each perturbed parameter

set is obtained from θ2 by multiplying one of the parameters by 1.05, which is

the default implementation of the optimization software. For every reaction, we

also initialize the Multistrand kinetic model with θ2. We build truncated CTMCs

with pathway elaboration (N = 128, β = 0.4, K = 256, κ = 16 ns). Whenever the

matrix equation solving time is large (here we consider a time of 120 s large), we

use δ -pruning (here we use δ values of 0.01− 0.6) to reduce the time. During

the optimization, for a new parameter set we update the parameters in the kinetic

model of the truncated CTMCs and we reuse the truncated CTMC to evaluate the

parameters. Similar to FPEI, to reduce the bias and to ensure that the truncated

CTMCs are fair with respect to the optimized parameters, we can occasionally

rebuild truncated CTMCs from scratch.

Although we use the MSE of pathway elaboration with experimental measure-

ments as our cost function in the optimization procedure, the MAE of pathway

elaboration with experimental measurements also decreases. Figure 5.8 shows how

the parameters, the MSE, and the MAE change during optimization. The markers
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are annotated with the MSE and the MAE of Dtrain, dataset No. 7, and dataset No.

8 when truncated CTMCs are built from scratch. The MAE ofDtrain with the initial

parameter set θ2 is 1.43, but the algorithm finds θ ∗ = {kuni ≈ 3.61×106 s−1,kbi ≈
1.12×105 M−1 s−1} and reduces the MAE of Dtrain to 0.46. The MAE of dataset

No. 7 and dataset No. 8, which are not used in the optimization, reduce from 2.00

to 0.73 and from 1.00 to 0.63, respectively.

For a fixed setting of the pathway elaboration method parameters and the pa-

rameter set of the CTMC model, given an estimate of the MAE of pathway elab-

oration with SSA (MAED
PE,SSA) and an estimate of the MAE of pathway elabora-

tion with experimental measurements (MAED
PE,Experiments), we can obtain an upper

bound on the MAE of SSA with experimental measurements (MAED
SSA,Experiments)

as

MAED
SSA,Experiments ≤MAED

PE,SSA +MAED
PE,Experiments, (5.12)

which follows from the triangle inequality of the L1 norm. Given an upper bound

on MAED
PE,SSA that does not depend on the parameter set of the CTMC model,

we can tighten this inequality by decreasing MAED
PE,Experiments. Although we do

not currently have an analytical upper bound on MAED
PE,SSA, in Table 5.2 and Fig-

ures 5.5 and 5.6, we numerically showed that we can achieve a reasonable value

for MAED
PE,SSA with a good parameter setting for pathway elaboration.

Overall, the experiment in this subsection shows that pathway elaboration en-

ables MFPT estimation of rare events. It predicts their MFPTs close to their ex-

perimental measurements given an accurately calibrated model for their CTMCs.

Moreover, it shows that pathway elaboration enables the rapid evaluation of per-

turbed parameters and makes feasible tasks such as parameter estimation which

benefit from such methods. On average for the 30 reactions in the testing set, path-

way elaboration takes less than two days, whereas SSA is not feasible within two

weeks. The entire experiment in Figure 6 takes less than five days parallelized on

40 processors. Note that clearly our optimization procedure could be improved, for

example by using a larger dataset or a more flexible kinetic model (Zolaktaf et al.,

2017). However, the experiment in this subsection is only a preliminary study;

we leave a rigorous study on calibrating nucleic acid kinetic models with pathway

elaboration and possible improvements to future studies.
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Figure 5.8: Results of parameter estimation using pathway elaboration (N = 128,
β = 0.4, K = 256, κ = 16 ns). The optimization uses 237 reactions fromDtrain. (a)
The parameters are optimized from an initial simplex of θ2 and its perturbations to
θ ∗ = {kuni ≈ 3.61× 106 s−1,kbi ≈ 1.12× 105 M−1 s−1}. (b) The parameters are
optimized using Dtrain, shown with a line graph, and evaluated on dataset No. 7
and No. 8. The markers are annotated with the MSE and MAE of Dtrain, dataset
No. 7, and dataset No. 8 when the truncated CTMCs are built from scratch and
parameterized with θ2 and θ ∗.

5.4 Summary and Directions for Future Improvements
In this chapter, we address the problem of estimating MFPTs of rare events in

large CTMCs, and also the rapid evaluation of perturbed parameters. We propose

the pathway elaboration method for detailed-balance CTMCs, which is a time-

efficient probabilistic truncation-based approach for MFPT estimation. We conduct

computational experiments on a wide range of experimental measurements to show

pathway elaboration is suitable for estimating the rates of nucleic acid rare events.

In summary, our results are promising, but there is still room for improvement.

Using pathway elaboration, in the best possible case, the sampled region of

states and transitions is obtained faster than SSA, but without significant bias in

the collected states and transitions. The sampled region may however qualitatively

differ from what would be obtained from SSA, which may compromise the MFPTs

estimated via this method. Moreover, reusing truncated CTMCs for significantly

perturbed parameters could lead to inaccurate estimation of the MFPT of the origi-
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nal CTMC. In Section 5.2, for exponential decay processes, we introduce a method

that could help us quantify the error of the MFPT estimate. However, since we have

to search for the bounds, it might be slow in practice. So how can we efficiently

tune these parameters in practice? Similar to SSA, for a fixed β and when K = 0

and κ = 0, we could increase N until the estimated MFPT stops changing signif-

icantly (based on the law of large numbers it will converge). Note that for K = 0

and κ = 0 we could compute the MFPT by computing the average of the biased

paths without solving matrix equations. As shown in Proposition 1, if we set β

to less than 1/2, then biased paths will reach target states in expected time that is

linear in the distance from initial to target states. For setting K, one possibility is to

consider the number of neighbors of each state. A reaction where states have a lot

of neighbors requires a larger K compared to a reaction where states have a smaller

number of neighbors. κ should be set with respect to K. As stated in Section 5.3,

a large value of κ along with a small value of K could result in excursions that do

not reach any target state and lead to overestimates of the MFPT. One could set κ

to a small value and then increase K until the MFPT estimate stops changing, and

could repeat this process while feasible.

In the pathway elaboration method, we estimate MFPTs by solving matrix

equations. Thus, its performance depends on the accuracy and speed of matrix

equation solvers. For example, applying matrix equation solvers may not be suit-

able if the initial states lie very far from the target states, since the size of the

truncated CTMCs depends on the shortest-path distance between these states. Al-

though solving matrix equations through direct and iterative methods has pro-

gressed, both theoretically and practically (Cohen et al., 2018; Fletcher, 1976;

Parks et al., 2006; Virtanen et al., 2020), solving stiff (multiple time scales) or

very large equations could still be problematic in practice. More stable and faster

solvers would allow us to estimate MFPTs for stiffer and larger truncated CTMCs.

Moreover, it might be possible to use fast updates for matrix decomposition al-

gorithms (Brand, 2006; Bunch and Nielsen, 1978). So if we require to compute

MFPT estimates with matrix equations as we monotonically grow the size of the

state space, the total cost for solving all the linear systems would be the same cost

as solving the final linear system from scratch.

We might be able to improve the pathway elaboration method to relieve the
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limitations discussed above. For example, it might be possible to use an ensemble

of truncated CTMCs to obtain an unbiased estimate of the MFPT (Georgoulas

et al., 2017). To avoid excursions that lead to overestimation of the MFPT in the

state elaboration step, we could run the pathway construction step from the last

states visited in the state elaboration step. This would also relax the constraint

of having reversible or detailed balance transitions. Presumably, an alternating

approach of the two steps would make the approach more flexible. Moreover,

currently we run the state elaboration step from every state of the pathway for

a fixed setting. However, it might not be necessary to run the elaboration from

all states with the same setting. Efficiently running the state elaboration step as

necessary, could reduce the time to construct the truncated CTMC in addition to

the matrix equation solving time.

Finally, we evaluated the pathway elaboration method for predicting the MFPT

of interacting nucleic acid strands. However, the method is generally applicable to

detailed-balance CTMC models. Thus, it would be useful to evaluate it for other

applications, such as protein folding, chemical reaction networks, and molecular

evolution.
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Chapter 6

Summary

In this thesis, we introduced a new elementary step kinetic model of interacting

nucleic acid strands. We also addressed MFPT estimation and the rapid evaluation

of perturbed parameters in the full state space of reactions’ CTMCs, in order to

efficiently make kinetic estimations and to calibrate kinetic models.

In Chapter 3, we reported the initial results of our effort to develop accurate

kinetic models for nucleic acids. We introduced the Arrhenius kinetic model.

Our model is derived from the Metropolis model, but its transition rates depend

on activation energy and on the immediate local environment surrounding the af-

fected base pair. To calibrate and evaluate these models, we compiled a dataset

of 376 experimentally determined reaction rate constants that we sourced from

existing publications and cover a wide range of reactions, including hairpin clos-

ing, hairpin opening, bubble closing, helix association, helix dissociation, toehold-

mediated three-way strand displacement, and toehold-mediated four-way strand

exchange (Altan-Bonnet et al., 2003; Bonnet, 2000; Bonnet et al., 1998; Dabby,

2013; Kim et al., 2006; Machinek et al., 2014; Morrison and Stols, 1993; Rey-

naldo et al., 2000; Zhang and Winfree, 2009). We showed how to infer model

parameters using an ensemble Markov chain Monte Carlo (MCMC) approach and

a maximum a posteriori (MAP) approach. To evaluate the likelihood, we computed

MFPTs and reaction rate constants using exact matrix computation on simplified

state spaces for the reactions in our dataset. Overall, our results are encouraging

and suggest that the new Arrhenius kinetic model, calibrated sufficiently, outper-
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forms the Metropolis kinetic model. Our framework and the dataset are available

at https://github.com/DNA-and-Natural-Algorithms-Group/ArrheniusInference.

In Chapter 4, we addressed MFPT estimation and the rapid evaluation of per-

turbed parameters for parameter inference in the full state space of reactions’

CTMCs. We showed how to use a reduced variance stochastic simulation algo-

rithm (RVSSA) to estimate MFPTs faster than SSA. We introduced the fixed path

ensemble inference (FPEI) method to speed up parameter inference. We showed

how to estimate model parameters in the full state of the reactions CTMCs using a

generalized method of moments (GMM) estimator (Hansen, 1982). We conducted

computational experiments on a dataset of 21 experimental DNA reactions that

have moderate or large state spaces or are slow. The dataset consists of hairpin

closing, hairpin opening, helix association, and helix dissociation with and with-

out mismatches (Bonnet et al., 1998; Cisse et al., 2012; Hata et al., 2018; Wetmur,

1976). Overall, our results are encouraging and show that RVSSA may be useful

for estimating MFPTs for some reactions and that FPEI speeds-up parameter infer-

ence, although the methods are currently not applicable to reactions that happens

on a long time scale (rare events). Our framework and the dataset are available at

https://github.com/DNA-and-Natural-Algorithms-Group/FPEI.

In Chapter 5, similar to Chapter 4, we addressed MFPT estimation and the rapid

evaluation of perturbed parameters in the full state space of reactions’ CTMCs.

However, we proposed a method, called pathway elaboration, which is applicable

to reactions that happen on a long time scale, that is rare events. We conducted

computational experiments on a dataset of 267 reactions covering different type

of reactions, namely, hairpin opening, hairpin closing, helix dissociation with and

without mismatches, helix association, and toehold-mediated three-way strand dis-

placement with and without mismatches (Bonnet et al., 1998; Cisse et al., 2012;

Hata et al., 2018; Machinek et al., 2014; Zhang et al., 2018). The dataset covers

a wide range of reaction rate constants and includes reactions that have more than

100 bases in their strands. Overall, our extensive computational experiments, in-

cluding a case study, show that pathway elaboration may be useful for efficiently

estimating the kinetics of nucleic acids that are modeled as CTMCs, including rare

event reactions in large state spaces. Our framework and the dataset are available

at https://github.com/DNA-and-Natural-Algorithms-Group/PathwayElaboration.
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All in all, we believe this thesis could improve the prediction of kinetics for

interacting nucleic acid strands modeled as CTMCs and could facilitate the design

of nucleic acid-based devices. Although our results are promising, they could be

improved as discussed at the end of each chapter. In brief, we need to compre-

hensively calibrate the Arrhenius kinetic model in the full state space of reactions.

In this direction, the dataset needs to be expanded to complete the evaluation of

kinetic models, including considering RNA strands. There are also some possibil-

ities for further improvement of the FPEI and the pathway elaboration methods.

After the Arrhenius model is sufficiently calibrated, similar to our case study in

Chapter 5 and using the pathway elaboration method, it might be possible to pre-

dict and analyze the kinetics of some interacting nucleic acid strands that are used

in nucleic acid-based devices, such as toehold switches (Green et al., 2014) and

oscillators (Srinivas et al., 2017).

Finally, the FPEI and the pathway elaboration methods are not specific to nu-

cleic acid kinetics and are generally applicable to other applications that are mod-

eled as CTMCs, such as protein folding (McGibbon and Pande, 2015), chemical

reaction networks (Anderson and Kurtz, 2011; Cappelletti et al., 2020; Soloveichik

et al., 2008), and molecular evolution (Liò and Goldman, 1998). It would be useful

to possibly adapt and evaluate these methods for such applications of CTMCs.
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Appendix A

Supplementary for Chapter 3

A.1 Local Context
Here we describe how to determine the local context of an elementary step transi-

tion, that is, the formation or breakage of a base pair. We use 0-based numbering

for numbering bases. That is, in a multi-strand complex, for each strand of length l,

the first nucleotide at the 5’ end of the strand is numbered 0 and the last nucleotide

at the 3’ end of the strand is numbered l−1.

The local context of a base pair forming or breaking is a pair (l,r), where l

and r are the half-contexts on the left and right sides of the base pair forming

or breaking, respectively. Each half context is one of seven possibilities: stack,

loop, end, stack+loop, stack+end, loop+end, stack+stack. Right half contexts are

illustrated in Algorithm 6. Algorithm 6 finds the half contexts, and Algorithm 7

uses Algorithm 6 to find the local context. These algorithms use dot-parens-plus-

mult notation to represent a secondary structure (state), which is obtained from

the dot-parens-plus notation. The dot-parens-plus notation uses the symbols ‘(’,

‘)’, ‘.’, ‘+’, and ‘ ’. Matching parentheses represent bases which have formed a

base pair, a dot represents a free base pair, and a plus represents a break between

strands. For example, ‘((((((+))))))’ means that bases 0, 1, 2, 3, 4, and 5 of the first

strand are paired with bases 5, 4, 3, 2, 1, and 0 of the second strand, respectively.

When all base pairs between strands break, we replace the plus sign by a space. For

example, ‘...... .......’ means that no base pair is formed. The dot-parens-plus-mult
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Algorithm 6: Find the half context on one side of a base pair forming or
breaking

The seven possible right half contexts are illustrated in the graphic below.
stack loop end stack+loop

loop+endstack+end stack+stack

r1
r1 r1 r1 r1

r1 r1 r1

r2 r2

r2

r2 r2

r2r2
r2 r2

Function HalfContext(d, f1, f2)
Input: d is a dot-parens-plus-mult notation, f1 and f2 are either the

indices l1, l2 that determine the left half context or the indices r1,
r2 that determine the right half context.

Output: The half context appearing in positions f1 and f2.
c1← d[ f1]
c2← d[ f2]
if c1 = ‘(’ and c2 = ‘)’ then

counter← 0
for k in [ f1, f2] do

if d[k] = ‘(’ then counter← counter + 1
else if d[k] = ‘)’ then counter← counter - 1
if counter = 0 then

if k = f2 then return stack
else return stack+stack

else if (c1 = ‘(’ and c2 = ‘(’ ) or (c1 = ‘)’ and c2 = ‘)’ ) or (c1 = ‘)’ and
c2 = ‘(’ ) then return stack+stack

else if ( c1 = ‘(’ and c2 = ‘.’ ) or ( c1 = ‘)’ and c2 = ‘.’ ) or ( c1 = ‘.’ and
c2 = ‘)’ ) or ( c1 = ‘.’ and c2 = ‘(’ ) then return stack+loop

else if c1 = ‘(’ and c2 = ‘*’ ) or ( c1 = ‘)’ and c2 = ‘*’ ) or ( c1 = ‘*’ and
c2 = ‘)’ ) or ( c1 = ‘*’ and c2 = ‘(’ ) then return stack+end

else if ( c1 = ‘.’ and c2 = ‘*’ ) or ( c1 = ‘*’ and c2 = ‘.’ ) then return
loop+end

else if c1 = ‘*’ and c2 = ‘*’ then return end
else if c1 = ‘.’ and c2 = ‘.’ then return loop

110



notation, inserts ‘*’ at the start and end of a dot-parent-plus notation and before and

after all ‘+’ signs and spaces in the dot-parent-plus notation. Thus, ‘((((((+))))))’

and ‘...... .......’ change to ‘*((((((*+*))))))*’ and ‘*......* *.......*’, respectively. If

two states s1 and s2 differ by a single base pair, their dot-parens-plus-mult notation

differs at exactly two positions, say e1 and e2. The left half context is determined

by positions l1 = e1−1 and l2 = e2 +1, while the right half context is determined

by positions r1 = e1 +1 and r2 = e2−1.

Algorithm 7: Find the local context of a base pair forming or breaking

Function LocalContext(si,s j)
Input: States si and state s j, which differ by exactly one base pair. (Either

of the states can have an extra base pair compared to the other.)
Output: 〈l,r〉, which is the local context of the base pair breaking or

forming in transition from state si to state s j.
di← dot-parens-plus-mult notation of si

d j← dot-parens-plus-mult notation of s j

e1← the first position where di and d j differ
e2← the second position where di and d j differ
l← HalfContext (di,e1−1,e2 +1) // Algorithm 6
r← HalfContext (di,e1 +1,e2−1)
return 〈l,r〉

A.2 Simplified State Spaces
Here we describe NeighborStates(s) for a state s in helix association and dis-

sociation, toehold-mediated three-way strand displacement, and toehold-mediated

four-way strand exchange. It is used in Algorithm 2 and returns the neighboring

states for a state s. In Chapter 3, we describe NeighborStates(s) for hairpin

closing and opening.
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Figure A.1: Examples of simplified state spaces for different type of reactions. (a)
Hairpin state s= 〈p0, p1〉. (b) Helix state s= 〈p0, p1〉. (c) Bubble state s= 〈p0, p1〉.
(d) Toehold-mediated three-way strand displacement state s = 〈p0, p1, p2, p3〉. (e)
Toehold-mediated three-way strand displacement state s = 〈p0, p1, p2, p3〉 that has
a mismatch between the invader and the substrate. (f) Toehold-mediated four-way
strand exchange state s = 〈p0, p1, p0′ , p1′ , p2, p3〉.
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A.2.1 Helix Association and Dissociation

Let l be the length of a strand in the helix. Each state corresponds to a partial

opening of the helix from the left and/or right ends, and is represented by a tuple

〈p0, p1〉, where 0≤ p0 ≤ p1 ≤ l. The tuple indicates that all bases numbered p0 to

p1−1 in one strand are paired with bases numbered l− p1 to l− p0−1 in the other

strand, respectively, and there are no other base pairs in the state. Algorithm 8

generates and returns the set of neighbors of a helix state s. We use the same

NeighborStates(s) function for helix association and dissociation, however

the initial and target states are swapped for these reactions. In helix association, the

initial state (Sinit = {〈0,0〉}) has no base pairs. The target state (Starget = {〈0, l〉})
has l base pairs.

Algorithm 8: Generate the neighbor states of a helix state s = 〈p0, p1〉 (see
Figure A.1b)

Function NeighborStates(s = 〈p0, p1〉)
N ← /0
if 〈p0, p1〉= 〈0,0〉 then

for p in [0, l−1] do
N ←N ∪〈p, p+1〉

else
N ←N ∪〈p0−1, p1〉∪ 〈p0 +1, p1〉∪ 〈p0, p1−1〉∪ 〈p0, p1 +1〉

foreach s′ = 〈p′0, p′1〉 ∈ N do
// The state in which no base pair has formed is

shown by 〈0,0〉
if p′0 = p′1 and p′0 6= 0 then N ← (N \ s′)∪〈0,0〉

foreach s′ ∈ N do
if !AllowedState(s′) then N ←N \ s′

return N
Function AllowedState(s′ = 〈p0, p1〉)

if !(0≤ p0 ≤ p1 ≤ l) then return False
return True
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A.2.2 Bubble Closing

Let l be the length of the hairpin strand, m < l/2 be the length of the stem in the

fully closed position, and f be the position where a bubble is formed. Each state

corresponds to a partial opening of the bubble from the middle, and is represented

by a tuple 〈p0, p1〉, where 0 < p0 ≤ f ≤ p1 < m. The tuple indicates that all bases

numbered 0 to p0−1 are paired with bases numbered l− p0 to l−1, respectively,

and all bases numbered p1 to m− 1 are paired with bases numbered l−m to l−
p1− 1, respectively, and there are no other base pairs in the state. Algorithm 9

generates and returns the set of neighbors of a bubble closing state s. In the initial

state (Sinit = {〈 f , f +1〉}), all base pairs in the hairpin stem have formed except for

a bubble of size 1 in the stem at position f . In the target state (Starget = {〈 f , f 〉}),
all base pairs have formed.

Algorithm 9: Generate the neighbor states of a bubble state s = 〈p0, p1〉 (see
Figure A.1c)

Function NeighborStates(s = 〈p0, p1〉)
N ← /0
N ←N ∪〈p0−1, p1〉∪ 〈p0 +1, p1〉∪ 〈p0, p1−1〉∪ 〈p0, p1 +1〉
foreach s′ = 〈p′0, p′1〉 ∈ N do

// The state in which all base pairs have formed

is shown by 〈 f , f 〉
if p′0 = p′1 and p′0 6= f then N ← (N \ s′)∪〈 f , f 〉

foreach s′ ∈ N do
if !AllowedState(s′) then N ←N \ s′

return N
Function AllowedState(s′ = 〈p0, p1〉)

if !(0 < p0 ≤ f ≤ p1 < m) then return False
return True
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A.2.3 Toehold-Mediated Three-Way Strand Displacement

Let l be the length of the substrate. For simplicity, let l also be the length of

the invader, m be the toehold length, and l−m be the length of the incumbent.

Each state is represented by a tuple 〈p0, p1, p2, p3〉, where 0 ≤ p0 ≤ p1 ≤ p2 ≤
p3 ≤ l and p2 ≥ m. The tuple indicates that all bases numbered p0 to p1− 1 in

the substrate are paired with bases numbered l− p1 to l− p0− 1 in the invader,

respectively, all bases numbered p2 to p3−1 in the substrate are paired with bases

numbered l− p3 to l− p2−1 in the incumbent, respectively, and there are no other

base pairs in the state. Algorithm 10 generates and returns the set of neighbors

of a toehold-mediated three-way strand displacement state s. In the initial state

(Sinit = {〈0,0,m, l〉}), the substrate is completely attached to the incumbent, but

completely detached from the invader. In the target state (Starget = {〈0, l, l, l〉}),
the substrate is completely detached from the incumbent, but completely attached

to the invader. Algorithm 11 adapts algorithm 10 for toehold-mediated three-way

strand displacement with mismatches between the invader and the substrate. In the

algorithm, mp is a pointer to the mismatch position in the displacement domain.

Note that in algorithms 10 and 11, to efficiently obtain mean first passage times

with sparse matrix computations, we further heuristically prune the state space of

each reaction (described in the algorithms).

A.2.4 Toehold-Mediated Four-way Strand Exchange

Let complex be the first helix and complex1 and complex2 be the two strands in

this helix. Let reporter be the second helix and reporter1 be the strand in this helix

that is complementary to complex1 and reporter2 be the strand in this helix that

is complementary to complex2. Let l be the length of the helices excluding their

toehold. For simplicity, let m be the toehold length of complex1 and reporter1 and

let n be the toehold length of complex2 and reporter2. Each state is represented

by a tuple 〈p0, p1, p0′ , p1′ , p2, p3〉. The tuple indicates that all bases numbered p0

to p0′ − 1 in complex1 have paired with bases numbered l +m− p0′ to l +m−
p0− 1 in reporter1, respectively, all bases numbered 0 to p2− 1 in complex1 are

paired with bases numbered l + n− p2 to l + n− 1 in complex2, respectively, all

bases numbered p1 to p1′ −1 in reporter2 are paired with bases numbered l +n−
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Algorithm 10: Generate the neighbor states of a toehold-mediated three-way strand displacement
state s = 〈p0, p1, p2, p3〉 (see Figure A.1d)

Function NeighborStates(s = 〈p0, p1, p2, p3〉)
N ← /0
if p0 = p1 then

// If the invader and the substrate are detached, they can form a

base pair

for p in [0, p2−1] do
N ←N ∪〈p, p+1, p2, p3〉

else
// The invader and substrate can form/break a base pair

N ←N ∪〈p0−1, p1, p2, p3〉∪ 〈p0 +1, p1, p2, p3〉∪ 〈p0, p1−1, p2, p3〉∪ 〈p0, p1 +1, p2, p3〉
// The incumbent and substrate can form/break a base pair

N ←N ∪〈p0, p1, p2−1, p3〉∪ 〈p0, p1, p2 +1, p3〉∪ 〈p0, p1, p2, p3−1〉∪ 〈p0, p1, p2, p3 +1〉
foreach s′ = 〈p′0, p′1, p′2, p′3〉 ∈ N do

// States in which the substrate and invader are detached are shown

by 〈0,0, p′2, p′3〉
if p′0 = p′1 and p′0 6= 0 then N ← (N \ s′)∪〈0,0, p′2, p′3〉
// States in which the substrate and incumbent are detached are

shown by 〈p′0, p′1, l, l〉
if p′2 = p′3 and p′2 6= l then N ← (N \ s′)∪〈p′0, p′1, l, l〉

foreach s′ ∈ N do
if !AllowedState(s′) then N ←N \ s′

return N
Function AllowedState(s′ = 〈p0, p1, p2, p3〉)

if !(0≤ p0 ≤ p1 ≤ p2 ≤ p3 ≤ l and p2 ≥ m) then return False
// Heuristically, further prune the state space

if p0 = p1 and p2 = p3 then return False
// Disallow the complex to dissociate into three strands

if (p2− p1 > 1 or p0 6= 0) and (0 < m < p2) then return False
if p2− p1 > m+2 then return False
return True
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Algorithm 11: Generate the neighbor states of a toehold-mediated three-way strand displacement
state s= 〈p0, p1, p2, p3〉 that has a mismatch between the invader and the substrate (see Figure A.1e)

Function NeighborStates(s = 〈p0, p1, p2, p3〉)
N ← /0
if p0 = p1 then

// If the invader and the substrate are detached, they can form a

base pair

for p in [0, p2−1] do
if p 6= m+mp−1 then
N ←N ∪〈p, p+1, p2, p3〉

else
// The incumbent and substrate can form/break a base pair

N ←N ∪〈p0, p1, p2−1, p3〉∪ 〈p0, p1, p2 +1, p3〉∪ 〈p0, p1, p2, p3−1〉∪ 〈p0, p1, p2, p3 +1〉
// The invader and substrate can form/break a base pair

if p0−1 6= m+mp−1 then N ←N ∪〈p0−1, p1, p2, p3〉
else N ←N ∪〈p0−2, p1, p2, p3〉
if p0 +1 6= m+mp−1 then N ←N ∪〈p0 +1, p1, p2, p3〉
else N ←N ∪〈p0 +2, p1, p2, p3〉
if p1−1 6= m+mp−1 then N ←N ∪〈p0, p1−1, p2, p3〉
else N ←N ∪〈p0, p1−2, p2, p3〉
if p1 +1 6= m+mp−1 then N ←N ∪〈p0, p1 +1, p2, p3〉
else N ←N ∪〈p0, p1 +2, p2, p3〉

foreach s′ = 〈p′0, p′1, p′2, p′3〉 ∈ N do
// 〈0,0, p′2, p′3〉 means the substrate and invader are detached

if p′0 = p′1 and p′0 6= 0 then N ← (N \ s′)∪〈0,0, p′2, p′3〉
// 〈p′0, p′1, l, l〉 means the substrate and incumbent are detached

if p′2 = p′3 and p′2 6= l then N ← (N \ s′)∪〈p′0, p′1, l, l〉
foreach s′ ∈ N do

if !AllowedState(s′) then N ←N \ s′

return N
Function AllowedState(s′ = 〈p0, p1, p2, p3〉)

if !(0≤ p0 ≤ p1 ≤ p2 ≤ p3 ≤ l and p2 ≥ m) then return False
// Heuristically, further prune the state space

if p0 = p1 and p2 = p3 then return False
// Disallow the complex to dissociate into three strands

if (p2− p1 > 5 or p0 6= 0) and (0 < m < p2) then return False
if p2− p1 > m+4 then return False
return True
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p1′ to l + n− p1− 1 in complex2, respectively, all bases numbered 0 to p3− 1 in

reporter2 are paired with bases numbered l +m− p3 to l +m− 1 in reporter1,

respectively, and there are no other base pairs in the state. Algorithm 12 generates

and returns the set of neighbors of a toehold-mediated four-way strand exchange

state s. In the initial state (Sinit = {〈l +m, l + n, l +m, l + n, l, l〉}), complex1 and

complex2 are completely bound except in their toeholds (have formed the complex

helix), reporter1 and reporter2 are completely bound except in their toeholds (have

formed the reporter helix), and no base pairs have formed between the complex

helix and the reporter helix. Hence, each helix has two complementary strands

except for their toeholds. In the target state (Starget = {〈0,0, l +m, l + n,0,0〉}),
the reporter and complex helices have completely exchanged strands and two new

helices, which have complementary strands, are formed.

Note that in algorithm 12, to efficiently obtain mean first passage times with

sparse matrix computations, we further heuristically prune the state space of each

reaction (described in the algorithm).
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Algorithm 12: Generate the neighbor states of a toehold-mediated four-way strand exchange state
s = 〈p0, p1, p0′ , p1′ , p2, p3〉 (see Figure A.1f)

Function NeighborStates(s = 〈p0, p1, p0′ , p1′ , p2, p3〉)
if p0 = p0′ then // If complex1 and reporter1 are detached, they can form a base
pair

for p in [max{p2, p3}, l +m−1] do
N ←N ∪〈p, p1, p+1, p1′ , p2, p3〉

else // complex1 can form/break a base pair with reporter1
N ←N ∪〈p0−1, p1, p0′ , p1′ , p2, p3〉∪ 〈p0 +1, p1, p0′ , p1′ , p2, p3〉∪ 〈p0, p1, p0′ −1, p1′ , p2, p3〉∪ 〈p0, p1, p0′ +

1, p1′ , p2, p3〉
if p1 = p1′ then // If reporter2 and complex2 are detached, they can form a base
pair

for p in [max{p2, p3}, l +n−1] do
N ←N ∪〈p0, p, p1, p+1, p2, p3〉

else // reporter2 can form/break a base pair with complex2
N ←N ∪〈p0, p1−1, p0′ , p1′ , p2, p3〉∪ 〈p0, p1 +1, p0′ , p1′ , p2, p3〉∪ 〈p0, p1, p0′ , p1′ −1, p2, p3〉∪
〈p0, p1, p0′ , p1′ +1, p2, p3〉

if (p0 6= p0′ or p1 6= p1′) or (m = 0 or n = 0) then
// If complex1 and reporter1 are attached or complex2 and reporter2 are
attached or a toehold does not exist, then complex1 and complex2 can
form/break a base pair

N ←N ∪〈p0, p1, p0′ , p1′ , p2−1, p3〉∪ 〈p0, p1, p0′ , p1′ , p2 +1, p3〉
// If complex1 and reporter1 are attached or complex2 and reporter2 are
attached or a toehold does not exist, then reporter1 and reporter2 can
form/break a base pair

N ←N ∪〈p0, p1, p0′ , p1′ , p2, p3−1〉∪ 〈p0, p1, p0′ , p1′ , p2, p3 +1〉
foreach s′ = 〈p′0, p′1, p′0′ , p′1′ , p′2, p′3〉 ∈N do

// States in which complex1 and reporter1 are detached are shown by
〈l +m, p′1, l +m, p′1′ , p′2, p′3〉

if p′0 = p′0′ and 0≤ p′0 < l +m then N ← (N \ s′)∪〈l +m, p′1, l +m, p′1′ , p′2, p′3〉
// States in which reporter2 and complex2 are detached are shown by
〈p′0, l +n, p′0′ , l +n, p′2, p′3〉

if p′1 = p′1′ and 0≤ p′1 < l +n then N ← (N \ s′)∪〈p′0, l +n, p′0′ , l +n, p′2, p′3〉
foreach s′ ∈N do

if !AllowedState(s′) then N ←N \ s′

return N
Function AllowedState(s′ = 〈p0, p1, p0′ , p1′ , p2, p3〉)

if !(p3 ≤ p0 and p3 ≤ p1 and p2 ≤ p0 and p2 ≤ p1 and 0≤ p2 ≤ l and 0≤ p3 ≤ l and 0≤ p0 ≤ p0′ ≤ l +m and 0≤
p1 ≤ p1′ ≤ l +n) then return False
// Heuristically, further prune the state space

if (p0 = p0′ or p1 = p1′) and (p2 = 0 or p3 = 0) then return False
// Disallow the complex to dissociate into three or four complexes

if (m = 0 or n = 0) and (p0 = p0′ or p1 = p1′) and (l− p2 > 3−m/3 or l− p3 > 3−n/3) then return False
if (m 6= 0 and n 6= 0) and (p0 = p0′ or p1 = p1′) and (p2 < l−1 or p3 < l−1) then return False
if p0′ < l or p1′ < l then return False
if (p0 6= p0′ and p1 6= p1′) and (|p0− p3|+ |p0− p2|+ |p1− p3|+ |p1− p2|> 8−n/3−m/3) then return False
return True
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A.3 Experimental Plot Reproduction
The following plots show the performance of the Metropolis and the Arrhenius

models on the training and testing datasets. Dashed lines indicate model fits and

predictions and solid lines indicate experimentally determined values. For the

MCMC ensemble method, error bars indicate the range (minimum to maximum)

of predictions.

A.3.1 Training Set (Dtrain)
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Figure A.2: Model fitting (dashed lines) of reaction rate constants (y axis) for hair-
pin closing (solid) and opening (open) with sequence 5′-CCCAA-(T )n-T T GGG-3′

where n is 12,16, 21, or 30, experimental data (solid lines) from Figure 4 of Bonnet
et al. (1998).
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Figure A.3: Model fitting (dashed lines) of reaction rate constants (y axis) for hair-
pin closing (solid) and opening (open) with sequence 5′-CCCAA-(T )21-T T GGG-3′

at different salt concentrations, experimental data (solid lines) from Figure 6 of
Bonnet et al. (1998). Figure 6 of Bonnet et al. (1998) wrongfully notes the use of a
poly-A instead of a poly-T hairpin loop, which becomes evident in comparison to
Figure 5 of the same work (private communication with the authors).
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Figure A.4: Model fitting (dashed lines) of reaction timescales (y axis) for hairpin
closing with sequence 5′-CCCAA-(T )n-T T GGG-3′ where n is 12,16, 21, or 30,
experimental data (solid lines) from Figure 3.28 of Bonnet (2000).
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Figure A.5: Model fitting (dashed lines) of reaction timescales (y axis) for hairpin
opening with sequence 5′-CCCAA-(T )n-T T GGG-3′ where n is 12,16, 21, or 30,
experimental data (solid lines) from Figure 3.28 of Bonnet (2000).
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Figure A.6: Model fitting (dashed lines) of reaction rate constants (y axis) for
hairpin opening with sequence F-(dC)y-(dT )x-(dG)y (x ranging from 3 to 9) as a
function of dC-dG pairs (y ranging from 1 to 2), experimental data (solid lines)
from Table 1 (Figure 3b) of Kim et al. (2006).
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Figure A.7: Model fitting (dashed lines) of reaction rate constants (y axis) for
hairpin closing with sequence F-(dC)y-(dT )x-(dG)y (x ranging from 3 to 9) as a
function of dC-dG pairs (y ranging from 1 to 2), experimental data (solid lines)
from Table 1 (Figure 3b) of Kim et al. (2006).
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Figure A.8: Model fitting (dashed lines) of reaction timescales (y axis) for bubble
closing with sequence M18, experimental data (solid lines) from Figure 4 of Altan-
Bonnet et al. (2003).
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Figure A.9: Model fitting (dashed lines) of reaction rate constants (y axis) for helix
association (solid) and disassociation (solid), experimental data (solid lines) from
Figure 6 of Morrison and Stols (1993). 10mer and 20mer are variation in the length
of the strand.
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Figure A.10: Model fitting (dashed lines) of reaction rate constants (y axis) for he-
lix disassociation, experimental data (solid lines) from Figure 6 of Reynaldo et al.
(2000). 12nt, 14nt, and 16nt are variations in the length of the strand.
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Figure A.11: Model fitting (dashed lines) of reaction rate constants (y axis) for
toehold-mediated three-way strand displacement, experimental data (solid lines)
from Figure 6 of Reynaldo et al. (2000). 12nt, 14nt, and 16nt are variations in the
length of the strand.
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Figure A.12: Model fitting (dashed lines) of reaction rate constants (y axis) for
toehold-mediated three-way strand displacement, experimental data (solid lines)
from Figure 3b of Zhang and Winfree (2009). The toehold is varied between strong
(ss), regular (s) and weak (sw) binding strength by varying the G/C content of the
toehold sequence.
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Figure A.13: Model fitting (dashed lines) of reaction rate constants (y axis) for
toehold-mediated four-way strand exchange, experimental data (solid lines) from
Table 5.2 of Dabby (2013). m (shown on the legend) and n (shown on the x-axis)
are variations in the length of the toehold domains (see Appendix A.2.4).
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A.3.2 Testing Set (Dtest)
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Figure A.14: Model predictions (dashed lines) of reaction rate constants (y axis)
for hairpin closing (solid) and opening (open), experimental data (solid lines) from
Figure 5a of Kim et al. (2006).
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Figure A.15: Model predictions (dashed lines) of reaction rate constants (y axis)
for hairpin closing (solid) and opening (open), experimental data (solid lines) from
Figure 5b of Kim et al. (2006).
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Figure A.16: Model predictions (dashed lines) of reaction rate constants (y axis)
for toehold-mediated three-way strand displacement with mismatches, experimen-
tal data (solid lines) from Figure 2d of Machinek et al. (2014). Arrows indicate
no mismatch. The mismatch in the invading strand affects the reaction rate. The
length of the toehold domain is ten, seven, and six nucleotides long for �,  , and
H, respectively.
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Appendix B

Supplementary for Chapter 5

B.1 The Mean Absolute Error of the Pathway
Elaboration Method for Nucleic Acid Kinetics

Figures B1 and B2 represent Figure 5.5 from the main text by varying only two

parameters at a time. See the main text for the explanation of these figures.
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In (a-h), K = 256 and κ = 16 ns are fixed.
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Figure B1: The effect of pathway construction with different values of N and β

and fixed values of K and κ . MAE for (a) datasets No. 1,2, and 3, (b) dataset No.
4, (c) dataset No. 5, and (d) dataset No. 6. |S| for (e) datasets No. 1,2, and 3, (f)
dataset No. 4, (g) dataset No. 5, and (h) dataset No. 6. For the missing settings,
pathway elaboration did not finish within two weeks computation time.

131



+ + +

+
TS

3

S

4

+ TS

3

S

4

In (a-h), N = 128 and β = 0.0 are fixed.
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Figure B2: The effect of state elaboration, with different values of K and κ and
fixed values of N and β . N = 0 indicates that the states of the pathway are not
elaborated. (a), (e), (i), and (m) correspond to datasets No. 1,2, and 3. (b), (f),
(j), and (n) correspond to dataset No. 4. (c) (g), (k), and (o) correspond to dataset
No. 5. (d), (h), (l), and (p) correspond to dataset No. 6. For the missing settings,
pathway elaboration did not finish within two weeks computation time.
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