
Pragmatic Investigations of Applied Deep Learning in
Computer Vision Applications

by

Alireza Shafaei

M.Sc., The University of British Columbia, 2015

B.Sc., Amirkabir University of Technology, 2013

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

December 2020

© Alireza Shafaei, 2020

The following individuals certify that they have read, and recommend to the Faculty
of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

Pragmatic Investigations of Applied Deep Learning in Computer Vi-
sion Applications

submitted by Alireza Shafaei in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Computer Science.

Examining Committee:

James J. Little, Computer Science, UBC
Supervisor

Mark Schmidt, Computer Science, UBC
Co-supervisor

Leonid Sigal, Computer Science, UBC
Supervisory Committee Member

Michiel van de Panne, Computer Science, UBC
University Examiner

Rabab K. Ward, Electrical and Computer Engineering, UBC
University Examiner

ii

Abstract

Deep neural networks have dominated performance benchmarks on numerous

machine learning tasks. These models now power the core technology of a growing

list of products such as Google Search, Google Translate, Apple Siri, and even

Snapchat, to mention a few. We first address two challenges in the real-world

applications of deep neural networks in computer vision: data scarcity and prediction

reliability. We present a new approach to data collection through synthetic data via

video games that is cost-effective and can produce high-quality labelled training

data on a large scale. We validate the effectiveness of synthetic data on multiple

problems through cross-dataset evaluation and simple adaptive techniques. We also

examine the reliability of neural network predictions in computer vision problems

and show that these models are fragile on out-of-distribution test data. Motivated by

statistical learning theory, we argue that it is necessary to detect out-of-distribution

samples before relying on the predictions. To facilitate the development of reliable

out-of-distribution sample detectors, we present a less biased evaluation framework.

Using our framework, we thoroughly evaluate over ten methods from data mining,

deep learning, and Bayesian methods. We show that on real-world problems, none

of the evaluated methods can reliably certify a prediction. Finally, we explore

the applications of deep neural networks on high-resolution portrait production

pipelines. We introduce AutoPortrait, a pipeline that performs professional-grade

colour-correction, portrait cropping, and portrait retouching in under two seconds.

We release the first large scale professional retouching dataset.

iii

Lay Summary

Many of the artificial-intelligence-powered products that we use daily rely on a

family of methods called “deep learning”. We study two challenges in applied deep

learning and present solutions that enable a broader and safer application of these

techniques. We also introduce a new application of deep learning for automated

portrait editing that produces professional-grade portraits within only a few seconds.

iv

Preface

This dissertation contains the results of my research while working under the

supervision of Jim Little and Mark Schmidt. I designed the projects, implemented

the solutions, executed the experimentations, and analyzed the results. While I

received feedback from colleagues and anonymous reviewers during the execution

and publication of each project, there were no other contributors. The presented

materials in Chapter 2, Chapter 3, and Chapter 5 are published as Shafaei et al.

[128], Shafaei et al. [130], and Shafaei et al. [131] respectively.

The research presented in Chapter 4 and Chapter 5 were carried out while doing

an internship at The Artona Group Inc, and later Skylab Technologies Inc. Unless

stated otherwise, the portrait images used in Chapter 4 and Chapter 5 are from The

Artona Group Inc and are used with permission.

Publications

[128] A. Shafaei, J. J. Little, and M. Schmidt. Play and Learn: Using Video

Games to Train Computer Vision Models. In BMVC, 2016.

[130] A. Shafaei, M. Schmidt, and J. Little. A Less Biased Evaluation of

Out-of-distribution Sample Detectors. In BMVC, 2019.

[131] A. Shafaei, J. J. Little, and M. Schmidt. AutoRetouch: Automatic

Professional Face Retouching. In WACV, 2021.

v

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Tables . ix

List of Figures . xi

Glossary . xviii

Acknowledgments . xix

Dedication . xx

1 Introduction . 1
1.1 Acquiring More Data . 2

1.2 Is it All About Having More Data? 3

1.3 Exploring Other Applications . 5

1.4 Summary of Contributions . 5

2 Synthetic Images for Computer Vision Applications 7
2.1 Introduction . 7

2.2 Related Work . 9

vi

2.2.1 Synthetic Data . 9

2.2.2 Dense Image Classification 10

2.2.3 Depth Estimation from RGB 11

2.2.4 Transfer Learning . 11

2.2.5 Concurrent Work . 11

2.3 Data Extraction: The GTAV Dataset 12

2.4 Real-world Datasets . 15

2.5 Dense Image Classification . 16

2.5.1 Evaluation with Fine-tuning 17

2.5.2 Cross-dataset Evaluation 22

2.6 Depth Estimation from RGB . 24

2.7 Other Computer Vision Problems 27

2.8 Research Conclusion . 27

2.9 Follow-up Developments . 30

3 Reliable Prediction in Computer Vision Applications: Detecting Out
of Distribution Samples . 31
3.1 Introduction . 32

3.2 Related Work . 35

3.3 OD-test: A Less Biased Evaluation of Outlier Detectors 38

3.4 Evaluation . 43

3.5 Results . 46

3.6 Research Conclusion . 50

3.7 Follow-up Developments . 51

4 AutoPortrait: Automatic Portrait Enhancement from Studios to Mo-
bile Phones – Portrait Cropping . 52
4.1 Introduction . 53

4.2 Overview . 54

4.3 Related Work . 56

4.4 Visually-consistent Portrait Cropping 57

4.5 Evaluation . 63

4.6 Conclusion . 66

vii

5 AutoPortrait: Automatic Portrait Enhancement from Studios to Mo-
bile Phones – Portrait Retouching 67
5.1 Related Work . 67

5.2 Flickr-Faces-HQ-Retouching (FFHQR) Dataset 69

5.3 Texture-preserving Portrait Retouching 69

5.4 Evaluation . 75

5.5 Conclusion . 86

6 Conclusions and Future Work . 87

Bibliography . 89

A OOD Detection: Formulation and Evaluation 103
A.1 Evaluation of Unsupervised Techniques 103

A.2 Implementation Details . 104

A.3 More Results . 108

B AutoPortrait Supplementary Material 110
B.1 Cropping . 110

B.1.1 From the Reference Cropping to a Specific Cropping . . . 110

B.1.2 Parameter Projection . 111

B.1.3 Evaluation . 112

B.2 Colour Correction . 112

B.3 Skin Retouching . 116

B.3.1 The Discriminator . 116

B.3.2 Multiscale Patch Sampling 116

B.3.3 User Study . 117

B.3.4 Evaluation . 117

B.3.5 FFHQR . 119

B.3.6 Studio Data . 119

viii

List of Tables

Table 2.1 Evaluation of different pre-training strategies on CamVid+ and

Cityscapes+, comparing pixel accuracy, mean class accu-

racy, and mean intersection over union (IoU). Pre-training on

synthetic data consistently outperforms the equivalent model that

is only pre-trained on real-world data. The mixed pre-training

strategy gives the most improvement. 19

Table 3.1 A summary of the datasets. The datasets are split as indicated

by the parentheses. When the dataset is used a source Ds, we

split according to the original dataset specification and the above

table. When the dataset is used as an outlier, we use the entire

set of samples. 44

Table 4.1 A comparison of aesthetic-based cropping algorithms. 60

Table 4.2 A comparison of aesthetic-based cropping algorithms. 61

Table 4.3 Baseline Comparison. For DNN Regression we use the same

MobileNetV2 [123] architecture. 64

Table 5.1 Quantitative results using PSNR and SSIM. (1) is trained on

studio data, (2) is trained on FFHQR. 83

ix

Table 5.2 Human perceptual test. In each evaluation, we asked the subjects

to chose their favourite method between two options. The par-

ticipants could skip if the images were too similar. We measure

how often a method is chosen and how long it took to make a

decision. The time column shows the median time. (1) Models

are trained and tested on FFHQR; (2) models are trained and

tested on studio data. 83

Table A.1 The classification accuracy of the trained networks on Dtrain
s us-

ing cross-entropy (CE) and K-way Logistic (KL) loss functions.

In both scenarios, the prediction is the maximum activation. Note

that because of the difference in training data, this table is not

comparable to the state-of-the-art performance on the respective

datasets. 105

x

List of Figures

Figure 2.1 A screenshot from Grand Theft Auto V (GTAV) (left), and a

screenshot from Google Street View (right). 8

Figure 2.2 Variation of lighting condition in different times of the day.

Screenshots from GTAV [1]. 12

Figure 2.3 An example from the GTAV dataset. Each sample contains an

RGB image, densely annotated groundtruth, depth image, and

the surface normals. 13

Figure 2.4 Densely labeled samples from the GTAV+ dataset. The label

space of this dataset is the same as the CamVid [20] dataset. . 14

Figure 2.5 Two random images and the corresponding annotations from

the CamVid [20] dataset. 15

Figure 2.6 Two random images with the corresponding dense annotations

from the Cityscapes [28] dataset. 16

Figure 2.7 The influence of various pre-training approaches on the CamVid

(left) and CamVid+ (right) datasets. The solid lines are the

evaluation results on the training set, the dashed lines are the

results on the validation set. 18

xi

Figure 2.8 The per-class accuracy on the test set of CamVid+ dataset. The

baseline is trained on the target dataset, the real is pre-

trained on the real alternative dataset, and the synthetic is

pre-trained on GTAV+. The Mixed approach is pre-trained on

both synthetic and the real alternative dataset. Pre-training the

baseline with the synthetic GTAV+ improves the average accu-

racy by 6%, while pre-training with the real-world Cityscapes+

improves the average by 4%. 18

Figure 2.9 The effect of various pre-training approaches on Cityscapes+.

The left image is the objective function throughout training, and

the right image is the class average accuracy. The solid lines are

the evaluation results on the training set, the dashed lines are

the results on the validation set. Pre-training on synthetic data

gives a better initialization and final local minima compared to

pre-training on a real-world dataset. 19

Figure 2.10 The influence of various pre-training approaches on the CamVid

dataset. The solid lines are the evaluation results on the training

set, the dashed lines are the results on the validation set. . . . 20

Figure 2.11 The effect of pre-training approaches on the Cityscapes

dataset. The solid lines are the evaluation results on the training

set, the dashed lines are the results on the validation set. . . . 20

Figure 2.12 The effect of various pre-training approaches on the CamVid+

dataset. The solid lines are the evaluation results on the training

set, the dashed lines are the results on the validation set. . . . 21

Figure 2.13 The effect of pre-training approaches on the Cityscapes+

dataset. The solid lines are the evaluation results on the training

set, the dashed lines are the results on the validation set. . . . 21

Figure 2.14 The per-class accuracy on CamVid (left) and Cityscapes

(right). 22

Figure 2.15 The per-class accuracy on Cityscapes+. 22

xii

Figure 2.16 The cross-dataset per-class accuracy on CamVid (left) and

Cityscapes (right). The baseline is trained on the target

dataset, the real is trained on the real alternative dataset, and

the synthetic is trained on GTAV. 23

Figure 2.17 The cross-dataset per-class accuracy on the validation set of the

Cityscapes+ dataset. The baseline is trained on Cityscapes+,

the real is trained on the CamVid+, and the synthetic is trained

on GTAV+. 24

Figure 2.18 Cross-dataset evaluation. The per-class accuracy on the test set

of the CamVid+ dataset. 25

Figure 2.19 The influence of pre-training on synthetic data for the depth

estimation task on the proposed network architecture of Zoran

et al. [164]. 26

Figure 2.20 (top left) A sample image from the Cityscapes [28] dataset,

(top right) decomposition of the RGB image to SLIC superpix-

els [11], (bottom left) the groundtruth disparity map, (bottom

right) the globalized depth output of the method presented by

Zoran et al. [164]. 26

Figure 2.21 The results of dense image captioning of Johnson et al. [62] on

the synthetic RGB domain of GTAV. 28

Figure 2.22 The results of automatic image colourization of Iizuka et al.

[59] on the synthetic RGB domain of GTAV. The left column is

the true colour image, and the right column is the output of the

method. 29

xiii

Figure 3.1 The predictions of several popular networks [54, 57, 58, 76,

138] that are trained on ImageNet on unseen data. We expect

the prediction likelihoods to be about 1
1000 , since there are 1000

classes in ImageNet and none of them are correct. However, the

reported likelihoods for incorrect classes are about 1
3 or more.

The red predictions are entirely wrong, the green predictions

are justifiable, and the orange predictions are less justifiable.

The middle image is noise sampled from N (µ = 0.5, σ =

0.25). This unpredictable behaviour is not limited to these

architectures. We show that thresholding the output probability

is not a reliable defence. 32

Figure 3.2 The OD-test. 1) A set of distributions visualized as shapes

within X . The source distribution Ds is identified in the image;

everything else is an outlier. 2) We pick one validation distribu-

tion Dv and learn a binary reject function r that partitions the

input space X based on Ds and Dv only. 3) We evaluate r on

other distributions (as Dt) and measure the accuracy. 4) The

dataset splits for each step. 39

Figure 3.3 Evaluation with two datasets versus OD-test. Evaluating OOD

detectors with only two distributions can be misleading for

practical applications. The error bars are the 95% confidence

level. The two-dataset evaluations are over all possible pairs of

datasets (n = 46), whereas the OD-test evaluations are over all

possible triplets (n = 308). 46

Figure 3.4 The average test accuracy of the out of distribution (OOD) de-

tection methods over 308 experiments per method. The error

bars are 95% confidence level. /VGG or /Res indicates the

backing network architecture. #-NN./ is the number of near-

est neighbours. A random prediction would have an accuracy

of 0.5. 47

Figure 3.5 The test accuracy over 50 experiments per bar. The error bars

are the 95% confidence level. 49

xiv

Figure 4.1 Overview of our AutoPortrait pipeline: (1) 24 MP input por-

traits, (2) portraits are cropped to a perceptually consistent size

and location, (3) portraits are colour-corrected, (4) portraits are

skin-retouched while preserving fine textures. Each block of

our pipeline can be used individually and generalizes to mobile

phone applications. 55

Figure 4.2 A comparison of geometrical landmark alignment to ours. Im-

ages (1), (5), (6), and (7) are relatively too small with geometri-

cal alignment. Our perceptual approach creates more consistent

head-sizes. 58

Figure 4.3 The red boxes are the reference cropping windows. 58

Figure 4.4 Cropping inference. Prediction error (left) and gradient norm

(right) of our cropping algorithm using three step-size strategies

with simple initialization (see text), and random initialization.

The shaded area marks one standard deviation. 64

Figure 4.5 Samples with the highest cropping error on the test set. The

top row is the groundtruth, and the bottom row is the prediction

of our model. Even though the groundtruth data is noisy, our

model has learned to produce more consistent cropping than

the data. Images are blurred for anonymization. 65

Figure 5.1 Three samples from the Flickr-Faces-HQ-Retouching (FFHQR)

Dataset. The left image is the original image from FFHQ [66],

and the right image is the retouched version in our dataset. The

figure is best viewed on a screen. 70

Figure 5.2 The scatter plot of FFHQR pixel update statistics. The y-axis is

the percent of updated pixels per image. The x-axis is the mean

absolute value of pixel updates. For the majority of images, less

than 40% of pixels change. 71

Figure 5.3 Automatic skin retouching. The left image is the original image,

the middle image is the AI-assisted retouching of BeautyPlus,

the right image is the automatically retouched image by our

method. 72

xv

Figure 5.4 Our retouching network architecture. 73

Figure 5.5 Sample end-to-end results from AutoPortrait. 76

Figure 5.6 Outputs of Pix2Pix, FFHQR model, and the studio model on the

FFHQR test set. The studio model generalizes well to FFHQR

data even though there is a considerable domain shift. The

Pix2Pix results often contain artifacts. 77

Figure 5.7 Sample outputs of our retouching model. The figure is best

viewed on a screen. 78

Figure 5.8 The output of our model versus the groundtruth retouching.

The left column is the input, the middle column is groundtruth

retouching, and the right column is our output. Our model

preserves the fine details more than the groundtruth. See appen-

dices for more images. 79

Figure 5.9 Sample input/output of retouched images captured with cell-

phones. The figure is best viewed on a screen. See appendices

for more images. 80

Figure 5.10 Our retouching model does not change unfamiliar patterns in

the image. The model appears to be only responding to known

skin imperfections. This behaviour is desirable in professional

retouching to ensure distinctive features are preserved. 81

Figure 5.11 Failure cases. Our retouching model fails when blemishes are

severe. 82

Figure 5.12 The effect of loss function on retouching. Using MSE loss

alone leads to smooth images, which is improved by adding

a perceptual loss. However, a perceptual loss still does not

preserve fine details. Adding an adversarial loss encourages the

network to make as few changes on the image as possible. The

figure is best viewed on a screen. 84

Figure A.1 The average test accuracy over 50 experiments per bar. The

error bars indicate the 95% confidence level. The figure is best

viewed in colour. 109

xvi

Figure B.1 The relationship between the reference cropping window and a

specific cropping window. The red box is the reference cropping

window, and the blue box is the user-specified cropping region.

The scale parameter is a multiplier to the 120×160 canonical

cropping window. 111

Figure B.2 Cropping over six iterations. 113

Figure B.3 The update curves with varying θ for each operation. θ = 0

corresponds to identity function for all operations. 115

Figure B.4 The user study UI. The users are shown two images in random

order, and they will decide which version they prefer. At the

bottom of the page, dynamically changing figures allow easy

comparison between the algorithms. 118

Figure B.5 The output of our model compared to the groundtruth retouch-

ing. The left column is the input, the middle column is groundtruth

retouching, and the right column is our output. Our model pre-

serves the fine details more than the groundtruth. 119

Figure B.6 Sample input/output of retouched images captured with cell-

phones. The figure is best viewed on a screen. 120

Figure B.7 Failure cases. Our retouching model fails when blemishes are

severe. 121

Figure B.8 Original photo on the left, our automatic output on the right.

Parts of the image are blurred to maintain anonymity. Skin

retouching is usually the most time-consuming step of retouching.121

Figure B.9 More samples from our new retouching dataset FFHQR. . . . 122

Figure B.10 The distribution of width, height, and area of the head-crops

extracted from the studio retouching data. The data is similar

to FFHQR in resolution. 123

xvii

Glossary

CNN convolutional neural network

DNN deep neural network

GTAV Grand Theft Auto V

ID identically distributed

IID independent and identically distributed

OOD out of distribution

SLAM simultaneous localization and mapping

xviii

Acknowledgments

I would like to thank my supervisors, Prof. Little and Prof. Schmidt, for their

continued inspiration, support, and, most importantly, their patience throughout my

doctoral journey. I am grateful for giving me the absolute freedom to explore a

variety of subjects during my studies. I am forever thankful for teaching me better

ways to think about research and presentation. While I am excited to take the next

steps in my career and life, I am also deeply saddened that our relationship has

reached its conclusion.

I am thankful to the Computer Science Department staff who have helped me in

various circumstances professionally and courteously. I have troubled Bernice Koh,

Joyce Poon, and Hazita Harun on more than a few occasions. Thank you for all

the help. I also would like to thank Paul Carter and Mike Gelbart for giving me an

excellent opportunity to teach at UBC and supporting me throughout the experience.

Thank you, Reza, Behrouz, Kamal, Sohrab, Nasim, Zeinab, Rachel, Matthew,

Shiloh, and Sharan, for your valuable friendship and support throughout the difficult

times. I am also thankful to the other fellow graduate students I had the pleasure of

knowing and working with. Thank you, Tj, MK, Michael, and John Rak, for having

me like a family member when I could not be with my own family. Thank you, Tj,

for all the support. In addition to enabling my research on high-res images, our

collaboration has been one of the turning points in my life.

And finally, my family. I would like to thank my wife, Roxana, for continually

supporting me in all the ways she can. My deepest gratitude goes to my parents,

Asghar Shafaei and Zahra Baghaei, for helping me and encouraging me to take

the difficult steps in life and career. I am eternally indebted to your never-ending

support and comfort.

xix

Dedication

xx

Chapter 1

Introduction

In the landmark paper of Krizhevsky et al. [76] in 2012, convolutional neural

networks (CNNs) were shown to be powerful machinery to learn complex visual

concepts. Although the presented techniques in Krizhevsky et al. [76] were mostly

the same as the earlier work that dates back to the ’80s [39, 78], two critical de-

velopments since then had allowed these approaches to take a significant leap in

2012. Those developments were faster computation and cheaper storage. We can

now collect and store terabytes of training data while spending less than $1000. Fur-

thermore, we can launch programs on server farms that perform more calculations

within an hour than all the available computing power in the late ’80s could carry

out in a year.1

Eight years later, CNNs and the more general family of deep neural networks

(DNNs) have become the standard baseline for a diverse set of problems in fields such

as computer vision and natural language processing. Throughout the past few years,

DNNs have enabled unrivaled improvement in tasks such as image classification [76],

image segmentation [96], image super-resolution [79], image matting [134], demo-

saicking and denoising [46], object detection [116], language modelling [21], ma-

chine translation [37], question answering [82], and common-sense reasoning [64],

to mention a few.
1According to en.wikipedia.org/wiki/FLOPS, one GFLOPs in 1984 would have cost 18.7 million

dollars (unadjusted). In contrast, a single RTX 3090 can carry out 35.6 TFLOPs. It takes 4 GFLOPs
machines in 1984, running for an entire year, to perform a comparable amount of calculation with 1
RTX 3090 running for an hour.

1

en.wikipedia.org/wiki/FLOPS

It has become clear that, with enough data, DNNs are much more effective

at leveraging the statistical relationships to make predictions than the previous

approaches. However, our theoretical understanding of DNNs has remained shallow

to the extent that using these models successfully is humorously associated with

alchemy by the theoreticians.2 As recently demonstrated by AlphaGo [137] and

GPT-3 [21], having access to more data and computation power continues to play a

significant role in the progress of DNN applications.

1.1 Acquiring More Data
DNNs shine the most in end-to-end learning of feature representation and prediction.

These learned representations, as opposed to engineered representations, are primar-

ily driven by the data. While there has been much progress in unsupervised and

semi-supervised learning, supervised learning with the “right” data is still the most

reliable strategy for learning and deploying DNN models. The supervised-learning

frameworks that learn these representations require a vast amount of labelled data

to be successful.

This need for data escalates further in settings where no prior practice or dataset

exists. Transfer learning methods aim to carry the learned knowledge from other

domains to a target domain. However, in the context of DNNs, these methods have

had limited success – transferring knowledge from a completely different task is

virtually impossible. The best results are achieved when the target domain’s data

distribution matches the training data distribution. When labelled training data from

the target domain is not available, the common practice is to borrow training data

from similar problems.

Motivated by this need for more data, we investigate the possibility of using

synthetic data to train CNNs. We find that photorealistic synthetic images that can

be extracted from popular video games such as Grand Theft Auto V (GTAV) are

sufficiently useful to (pre-)train models and use them in real-world scenarios. Syn-

thetic imagery is particularly appealing because it already contains the groundtruth

annotation as part of the rendering pipeline. Furthermore, we can quickly adjust
2See Ali Rahimi’s NIPS 2017 Test of Time Award https://www.youtube.com/watch?v=

x7psGHgatGM.

2

https://www.youtube.com/watch?v=x7psGHgatGM
https://www.youtube.com/watch?v=x7psGHgatGM

the virtual environment to match our desired data collection setting with minimal

cost. This possibility is especially useful to scenarios where data collection in the

real world may be difficult or unethical, such as car crashes with pedestrians. In

Chapter 2 we present the results. The work here is published in Shafaei et al. [128].

1.2 Is it All About Having More Data?
To train a 175-billion-parameter natural language model GPT-3 [21], we need

45 TBs of compressed plain-text data and a cluster of V100 GPUs to train a model

over 3640 petaflop/s-day [21].3 According to Kevin Lacker4, when faced with

“normal” questions, GPT-3 replies with remarkable accuracy. For this test, he

presented GPT-3 with a variety of questions. Quoting from the blog post:

Q: Which is heavier, a football player or a car?

A: A car is heavier than a football player.

Q: How many eyes does a giraffe have?

A: A giraffe has two eyes.

It is also shown that GPT-3 can write full-length articles with such plausibility

that forced OpenAI to keep the model private to save it from abuse. 5 However, as

soon as we present “unexpected” questions, GPT-3 breaks. Quoting the blog post:

Q: How many eyes does my foot have?

A: Your foot has two eyes.

Q: How many eyes does a spider have?

A: A spider has eight eyes.

Q: How many eyes does the sun have?

A: The sun has one eye.

3According to benchmarks each petaflop/s-day is equivalent to 8 V100 GPUs operating at full
efficiency for one day. That is, 1000 V100 GPUs running for 29 days.

4https://lacker.io/ai/2020/07/06/giving-gpt-3-a-turing-test.html
5technologyreview.com/2020/07/20/1005454/openai-machine-learning-language-generator-gpt-3-nlp/

3

https://lacker.io/ai/2020/07/06/giving-gpt-3-a-turing-test.html
technologyreview.com/2020/07/20/1005454/openai-machine-learning-language-generator-gpt-3-nlp/

Q: How do you sporgle a morgle?

A: You sporgle a morgle by using a sporgle.

Q: How many bonks are in a quoit?

A: There are three bonks in a quoit.

Q: How many rainbows does it take to jump from

Hawaii to seventeen?

A: It takes two rainbows to jump from Hawaii to seventeen.

Q: Do you understand these questions?

A: I understand these questions.

Although more data and more computation have enabled a surprising level of

performance, the learned models’ predictions are still not reliable. In the case of

GPT-3, the model does not know when it does not know, and more importantly, we

cannot tell automatically whether the predictions are correct. This phenomenon

is not limited to language models. A similar effect can be observed in computer

vision models where the predictions are over-confident and wrong. In Chapter 3,

we focus on the reliability of the DNN predictions for real-world applications. Since

these models are increasingly adopted in consumer products, and may soon affect

people’s lives when self-driving cars become mainstream, there is an imminent need

to address these concerns.

How much can we rely on the DNN predictions inside a complex pipeline such

as self-driving cars? Without making any assumptions, we observe that prediction

errors are not bounded. However, if we make the independent and identically

distributed (IID) assumption, we can bound the error on a set of predictions. These

observations are at the core of statistical learning theory and are not particularly new

findings. However, in the application of DNNs, we can rarely guarantee the input to

be from a fixed distribution. Since we do not understand the inductive biases that

are learned using DNNs, the models cannot be reliably evaluated on samples that

are out-of-distribution. As demonstrated by the GPT-3 example, DNNs do not know

4

when they do not know. We investigate this problem within the context of several

related literatures. Furthermore, we present OD-test, a framework to evaluate and

use these models more reliably. In Chapter 3 we present the results. The work here

is published in Shafaei et al. [129].

1.3 Exploring Other Applications
We also explore new applications of DNNs in the high-resolution computational

photography domain. Over a two-year collaboration with a local photography

studio, we look at the automation of professional-grade and high-resolution colour

correction, image cropping, and skin retouching. These are laborious tasks that have

not been reliably automated for non-trivial reasons. The result of our effort is an

automatic portrait editing pipeline called AutoPortrait that we discuss in Chapter 4

and Chapter 5. AutoPortrait is already in production and has successfully processed

over 500,000 portraits over the past year. We present the problem definitions and

examine the subtleties that prevent a direct application of the previous methods. We

then develop new approaches to address the specific challenges of the application.

Finally, we present the first large-scale face retouching dataset. The results of

Chapter 5 are published as Shafaei et al. [131].

1.4 Summary of Contributions
Our contributions can be briefly summarized as follows:

• Chapter 2: We investigate how useful it is to use synthetic data in computer

vision problems. We extract synthetic training data from a video game and

show that CNNs trained on synthetic data can effectively generalize to real-

world applications. Our findings offer a far more cost-effective approach to

data collection than what was previously available.

• Chapter 3: We show that, even in the absence of adversarial inputs, the

prediction of DNNs may not be reliable on out-of-distribution samples. That

is, DNNs do not know when they do not know. We present a new less-biased

evaluation framework for out-of-distribution sample detectors. Our findings

demonstrate how fragile DNNs are in real-world applications.

5

• Chapter 4: We explore new applications of deep neural networks within a

fully automated portrait processing pipeline. In Chapter 4, we introduce

the problem of perceptual head cropping and present our novel solution.

Our method effectively saves labour in high-quality production pipelines of

photography studios.

• Chapter 5: We develop the first DNN models that can produce high-resolution

professional-grade face retouching that even outperforms our groundtruth

data in user-studies. Our method has been successfully deployed and tested

on the production of over one million portraits. We also release the first

large-scale retouching dataset.

6

Chapter 2

Synthetic Images for Computer
Vision Applications

2.1 Introduction
Training DNNs typically involves using a large body of labelled training data from

the domain of the target problem. In practice, a dataset of such scale is usually

unavailable. Furthermore, the laborious nature of data acquisition and annotation

makes data collection from scratch a last resort. On the other hand, with the recent

developments in computer graphics, it is possible to generate synthetic images

that appear realistic (see Figure 2.1). A benefit of using synthetic data is that the

groundtruth annotation can always be extracted from the imaging pipeline. A natural

question to ask is whether synthetically generated data can be used in DNN training

pipelines. Since we explore the possibilities within computer vision, we limit our

attention to a specific class of DNNs common in computer vision applications: CNNs.

In this chapter, we will investigate the following questions:

1. How useful is synthetic data in computer vision problems?

2. Do CNNs trained on synthetic data generalize to real world scenarios?

To answer these questions, we extract training data from realistic-looking video

games and experiment with them under various conditions. Video games are

7

Figure 2.1: A screenshot from GTAV (left), and a screenshot from Google
Street View (right).

a compelling source of annotated data as they can readily provide fine-grained

groundtruth for diverse tasks. We present experiments assessing the effectiveness on

real-world data of systems trained on synthetic RGB images that are extracted from

a video game. We collected over 60,000 synthetic samples from a modern video

game with similar conditions to the real-world CamVid [20] and Cityscapes [28]

datasets. We provide several experiments to demonstrate that the synthetically

generated RGB images can be used to improve the performance of deep neural

networks on both image segmentation and depth estimation. These results show

that a CNN trained on synthetic data achieves a similar test error to a network

that is trained on real-world data for dense image classification. Furthermore, the

synthetically generated RGB images can provide similar or better results compared

to the real-world datasets if a simple domain adaptation technique is applied. Our

results suggest that collaboration with game developers for an accessible interface

to gather data is potentially a fruitful direction for future work in computer vision.

Although video games generate images from a finite set of textures, there is

variation in viewpoint, illumination, weather, and level of detail which can provide

valuable augmentation of the data. In addition to full control over the environment,

video games can also provide us with groundtruth data such as dense image class

annotations, depth information, radiance, irradiance, and reflectance which may not

be straightforward, or even possible, to collect from real data. Other measures, such

8

as the precise location of the character within the environment, could be useful for

development of visual simultaneous localization and mapping (SLAM) algorithms.

We focus our attention on the RGB domain of a modern video game, Grand

Theft Auto V (GTAV), and run various experiments to gauge the efficacy of using

synthetic RGB data directly for computer vision problems. We collect over 60,000

outdoor images under conditions similar to the CamVid [20] and the Cityscapes [28]

datasets and present experiments on two computer vision problems: (i) dense image

annotation, and (ii) depth estimation from RGB. We show that a CNN trained on

synthetic data achieves a similar test error to a network that is trained on real-world

data. Furthermore, after fine-tuning, our results show a network that is pre-trained

on synthetic data can outperform a network that is pre-trained on real-world data.

2.2 Related Work
To provide the appropriate context under which this study was executed, we keep

the related work in this chapter as it was at the time of publication (2016).

We will investigate how the previous methods for dense image classification and

depth estimation can benefit from the synthetically generated data that is extracted

from a video game. The following discussion of the related work shall cover the

basis of our study.

2.2.1 Synthetic Data

Synthetic data has a successful history in computer vision. Taylor et al. [144]

present a system called ObjectVideo Virtual Video (OVVV) based on Half-life [2]

for evaluation of tracking in surveillance systems. Marin et al. [102] extend OVVV

to perform pedestrian detection with HOG [32] features.

In the recent literature, a variety of methods [14, 91, 112, 142] tackle vision prob-

lems using three-dimensional CAD models and simple rendering pipelines. Peng

et al. [112], and Sun and Saenko [142] use non-photorealistic three-dimensional

CAD models to improve object detection. Lim et al. [91], and Aubry et al. [14]

use CAD models for detection and object alignment in the image. Aubry and

Russell [13] use synthetic RGB images rendered from CAD models to analyze the

response pattern and the behavior of neurons in the commonly used deep convolu-

9

tional networks. Rematas et al. [115] use three-dimensional models to synthesize

novel viewpoints of objects in real world images. Stark et al. [140], Lim et al.

[92], and Liebelt and Schmid [90] learn intermediate geometric descriptors from

three-dimensional models to perform object detection. Butler et al. [22] present the

synthetic Sintel dataset for evaluation of optical flow methods.

Synthetic depth images are also successfully used for human pose estima-

tion [127, 135] and hand pose estimation [118, 145]. Kaneva et al. [65] study

robustness of image features under viewpoint and illumination change in a photore-

alistic virtual world.

In contrast to previous work, we take a different approach to synthetic models.

Instead of rendering simple three-dimensional CAD models in isolation, we take a

step further and collect synthetic data in a simulated photorealistic world within the

broad context of street scenes. We are specifically targeting the use of modern video

games to generate densely annotated groundtruth to train computer vision models.

2.2.2 Dense Image Classification

Deep Convolutional Networks are extensively used for dense image segmenta-

tion [96, 110, 159, 162]. The fully convolutional network of Long et al. [96] is

among the first to popularize DNN architectures that densely label input images.

Zheng et al. [162] build on top of the architecture in Long et al. [96] and integrate

CRFs with Gaussian pairwise potentials to yield a significant gain in image seg-

mentation. The current state-of-the-art methods, such as the one presented by Liu

et al. [95], use variants of fully convolutional networks as a building block on top of

which different recurrent neural networks or graphical models are proposed.

We use the basic fully convolutional architecture of Long et al. [96] as it provides

the basis of the follow-up developments in this area. While we assess the use of

synthetically generated dense annotations in our study, we would like to note that

it is also possible to learn dense segmentation models using a weaker form of

annotation such as point-level supervision [16].

10

2.2.3 Depth Estimation from RGB

One of the early studies on unconstrained depth estimation from single RGB images

is the work of Saxena et al. [124] in which the authors present a hierarchical Markov

random field to estimate the depth. More recently, Zhuo et al. [163] present an

energy minimization problem that incorporates semantic information at multiple

levels of abstraction to generate a depth estimate. Li et al. [83] and Liu et al. [94] use

deep networks equipped with a conditional random field that estimates the depth.

More recently, Eigen and Fergus [38] presented a multi-scale deep convolutional

architecture that can predict depth, normals, and dense labels. Instead of regressing

against the metric data directly, Zoran et al. [164] propose a general method to

estimate reflectance, shading, and depth by learning a model to predict ordinal

relationships. The input image is first segmented into SLIC superpixels [11] on top

of which a multi-scale neighbourhood graph is constructed. Zoran et al. [164] use

the neighbourhood graph and generate ordinal queries on its edges, and then use the

results to construct a globally consistent ranking by solving a quadratic program.

We apply the method of Zoran et al. [164] in our study and show improvement

in the depth estimation task through the use of synthetic data.

2.2.4 Transfer Learning

A closely related area of work to our study is transfer learning (see Pan and Yang

[109] for a review). The early studies of transfer learning with CNNs successfully

demonstrated domain adaptation through pre-training on source data and fine-tuning

on target data [36, 133, 158]. Further studies such as the work of Ganin et al. [43]

present more sophisticated approaches to domain adaptation through adversarial

regularization. In this work, we apply the most widely used fine-tuning approach

to domain adaptation and leave further studies on feature transferability of the

synthetic data to future work.

2.2.5 Concurrent Work

Concurrently, a number of independent studies that explore similar ideas have been

published recently. Gaidon et al. [40] present the Virtual KITTI dataset and show

experiments on multi-object tracking tasks. Ros et al. [120] present the SYNTHIA

11

Figure 2.2: Variation of lighting condition in different times of the day. Screen-
shots from GTAV [1].

dataset of urban scenes and also demonstrate improvement in dense image segmen-

tation using synthetic data. Our study on using video games complements the recent

work by providing analysis on the photorealistic output of a state-of-the-art game

engine. Furthermore, an independent study to be published by Richter et al. [117]

at the same time provides a similar analysis of using video games which we invite

the reader to review for a complete picture.

2.3 Data Extraction: The GTAV Dataset
The dataset consists of over 60,000 frames collected from GTAV. To gather this

data we use a camera on the hood of a car, similar to the configuration of the

CamVid [20] or Cityscapes [28] datasets. The weather is kept fixed at sunny and

the time of the day is fixed at 11:00 AM. This atmospheric setting was chosen

to make the synthetic data similar to the real-world data, although note that a

12

Figure 2.3: An example from the GTAV dataset. Each sample contains an RGB
image, densely annotated groundtruth, depth image, and the surface
normals.

key advantage of GTAV is that it would be easy to sample data under non-ideal

conditions (while it might be impossible to collect reliable real data under many

conditions). The image resolution of the game is 1024 × 768 with the highest

possible graphics configuration. The autonomous driver randomly drives around the

city while obeying the traffic laws. Every second, a sample data is collected from the

game. Each sample contains the RGB image, groundtruth semantic segmentation,

depth image, and the surface normals (see Figure 2.3). The groundtruth semantic

segmentation that we were able to automatically extract from the game is over the

label set {Sky, Pedestrian, Cars, Trees}. The help of the game developers is likely

to be required in order to extract more labels.

We also consider a label-augmented version of the GTAV dataset, which we call

GTAV+. To augment the label space with additional classes, we use SegNet [70],

one of the top performing methods on CamVid [20] dataset with available code and

13

Figure 2.4: Densely labeled samples from the GTAV+ dataset. The label space
of this dataset is the same as the CamVid [20] dataset.

data, to classify the images of the GTAV. We then refine the labels with the true

labels of the GTAV dataset and clean-up the data automatically using the depth and

the surface normals. See Fig. 2.4 for samples.

Note that, unlike the groundtruth dense annotations of GTAV, the groundtruth

label space Y in GTAV+ is noisy and may partially exhibit the biases of the Seg-

Net [70]. However, the input space X remains the same. Consequently, the results

that are derived from GTAV+ are weaker but still can provide us with useful insight

as the input synthetic RGB is intact. In principle, it should be possible to auto-

matically collect the groundtruth dense annotation of all the objects in the game.

14

Figure 2.5: Two random images and the corresponding annotations from the
CamVid [20] dataset.

2.4 Real-world Datasets
CamVid [20]. The CamVid dataset contains 701 densely labelled images collected

by a driving car in a city (see Fig. 2.5). The label set is {Sky, Building,

Pole, Road Marking, Road, Pavement, Tree, Sign Symbol, Fence,

Vehicle, Pedestrian, Bike}. The data is split into 367, 101, and 233 images

for training, validation, and test respectively.

Cityscapes [28]. The Cityscapes dataset offers 5000 finely annotated images and

20,000 coarsely annotated images of urban street scenes over 33 labels collected

in cities in Germany and Switzerland. In addition to the dense and coarse image

annotations, the dataset also includes car odometry readings, GPS readings, and

the disparity maps that are calculated using the stereo camera. See Fig. 2.6 for

pixel-level annotation examples. The densely annotated images are split into sets

of 2975, 500, and 1525 for training, validation, and test. With the exception of

15

Figure 2.6: Two random images with the corresponding dense annotations
from the Cityscapes [28] dataset.

Road Marking, all the other 11 classes of CamVid are present in Cityscapes.

The groundtruth for the test set is kept private for evaluation purposes, thus, we

perform the Cityscapes evaluations on the validation set.

To align our datasets with respect to the label space, we define two subsets

of the data. The datasets CamVid, Cityscapes, and GTAV refer to a varia-

tion in which the label space is limited to {Pedestrian, Cars, Trees, Sky,

Background}. In this setting, the label space of the GTAV is precise and automat-

ically extracted from the game. The second variation CamVid+, Cityscapes+,

and GTAV+ refers to the setting in which the label space is the full 12 classes of the

original CamVid dataset and the labels in the synthetic GTAV+ is noisy. When we

are evaluating on Cityscapes+ we omit the missing Road Marking class.

2.5 Dense Image Classification
For this task we use the fully convolutional network (FCN) of Long et al. [96]. More

specifically, we use the FCN8 architecture on top of a 16-layer VGG Net [138].

FCN8 is a simple architecture that only uses convolution and deconvolution to

perform classification, and provides a competitive baseline for dense image clas-

sification. All of the networks will be trained with the same settings: SGD with

momentum (0.9), and pre-defined step sizes of 10−4, 10−5, and 10−6 for 50, 25,

and 5 epochs. We use the MatConvNet [146] library.

To compare the effect of using synthetic data vs. real data we train a FCN8 with

three different approaches: (i) train on real data only, (ii) train on synthetic data

only, and (iii) train on synthetic data and then fine-tune on real data by running the

16

optimization initialized from the model learned on synthetic data.

2.5.1 Evaluation with Fine-tuning

To measure the effect of using synthetic data, we look at the performance in a

domain adaptation setting in which we perform fine-tuning on the target dataset. In

this approach we successively train our dense classifier on different datasets and then

examine the performance. In the first experiment we focus on the CamVid+ dataset.

We train four different networks and evaluate their performance on CamVid+ to an-

alyze the influence of our synthetic data. Each model is pre-trained on an alternative

dataset(s) before training on the target dataset. For instance, the experiment with

name Synthetic means that the network has been pre-trained on the synthetic

GTAV dataset first, and then fine-tuned on the target dataset (see Fig. 2.8). The

Real counterpart is the network that is pre-trained on the alternative real-world

dataset first. The Mixed approach is when we pre-train on both synthetic and

real-world data first.

As Fig. 2.7 shows, pre-training on the synthetic GTAV helps us with finding a

better local minima in the optimization in comparison to the baseline training (the

blue colour). pre-training the network on the Cityscapes dataset gives even a

better initialization, but the gap with the previous pre-training closes in the long-run.

In terms of validation, however, pre-training on Cityscapes yields slightly better

results than the network pre-trained with GTAV on CamVid. In CamVid+, pre-

training on real or synthetic data gives the same improvement. The fourth network

is pre-trained on both GTAV and Cityscapes and the results are slightly better

than just pre-training on the Cityscapes from an optimization perspective.

Figure 2.8 compares our training strategies with respect to the per-class accuracy.

Pre-training on GTAV+ improves the average accuracy more than pre-training on

Cityscapes+ does, 79% vs. 77%. The most improvement is for the class ‘Sign

Symbol’ where pre-training with GTAV+ improves the accuracy by 20%. The

highest improvement is achieved when we pre-train on both real and synthetic

datasets. Table 2.1 shows a summary of our results.

We can also analyze the efficacy of using this synthetic data from an optimiza-

tion perspective. Figure 2.9 shows the objective value and the class average accuracy

17

0 20 40 60 80
Epoch

100

L
o

ss

Objective Value (Cross-Entropy Loss)

Baseline-train
Baseline-valid
Real-train
Real-valid
Synthetic-train
Synthetic-valid
Mixed-train
Mixed-valid

0 20 40 60 80
Epoch

100

L
o

ss

Objective Value (Cross-Entropy Loss)

Baseline-train
Baseline-valid
Real-train
Real-valid
Synthetic-train
Synthetic-valid
Mixed-train
Mixed-valid

Figure 2.7: The influence of various pre-training approaches on the CamVid
(left) and CamVid+ (right) datasets. The solid lines are the evaluation
results on the training set, the dashed lines are the results on the validation
set.

Sky

Build
in

g
Pole

Road
 M

ar
kin

g
Road

Pav
em

en
t

Tre
e

Sig
n S

ym
bol

Fen
ce Car

Ped
es

tri
an

Bicy
cli

st

Ave
ra

ge
0.2

0.4

0.6

0.8

1

Class Accuracy on CamVid+

0.
90

0.
91

0.
91

0.
91

0.
69

0.
68 0.

73
0.

73

0.
53 0.

58
0.

58 0.
60

0.
83 0.
84 0.

87
0.

88

0.
81

0.
81

0.
79

0.
80 0.

84
0.

84
0.

94
0.

94

0.
80 0.

83
0.

80 0.
82

0.
45 0.

51
0.

65
0.

57

0.
65

0.
79 0.

82 0.
84

0.
85 0.

91
0.

91
0.

91

0.
75

0.
83

0.
82 0.

85

0.
68 0.

72
0.

70 0.
75

0.
73 0.

77 0.
79

0.
80

Baseline
Real
Synthetic
Mixed

Figure 2.8: The per-class accuracy on the test set of CamVid+ dataset. The
baseline is trained on the target dataset, the real is pre-trained
on the real alternative dataset, and the synthetic is pre-trained on
GTAV+. The Mixed approach is pre-trained on both synthetic and
the real alternative dataset. Pre-training the baseline with the synthetic
GTAV+ improves the average accuracy by 6%, while pre-training with
the real-world Cityscapes+ improves the average by 4%.

of Cityscapes+ during the last optimization stage. Pre-training on the GTAV+

datasets yields better results on train and validation in comparison to both the base-

line, and the pre-trained version on the real-world CamVid+ dataset. Pre-training

on the GTAV+ data provides a better initialization and final local minima in the

training procedure. In both of the results, the synthetic data provides improvement

over the baseline, and helps as much or more than pre-training on the real data.

18

CamVid+ Cityscapes+

Model Pixel Acc. Class Acc. Mean IoU Pixel Acc. Class Acc. Mean IoU

Baseline 79% 73% 47% 83% 77% 50%
Real 80% 77% 51% 83% 77% 50%
Synthetic 82% 79% 52% 84% 79% 51%
Mixed 82% 80% 53% 84% 79% 52%

Table 2.1: Evaluation of different pre-training strategies on CamVid+ and
Cityscapes+, comparing pixel accuracy, mean class accuracy, and
mean intersection over union (IoU). Pre-training on synthetic data con-
sistently outperforms the equivalent model that is only pre-trained on
real-world data. The mixed pre-training strategy gives the most improve-
ment.

0 20 40 60 80
Epoch

0.6

0.8

1

1.2

L
o

ss

Objective Value (Cross-Entropy Loss)

Baseline-train
Baseline-valid
Real-train
Real-valid
Synthetic-train
Synthetic-valid
Mixed-train
Mixed-valid

0 20 40 60 80
Epoch

0.6

0.65

0.7

0.75

0.8

0.85

A
cc

u
ra

cy

Class Average Accuracy

Baseline-train
Baseline-valid
Real-train
Real-valid
Synthetic-train
Synthetic-valid
Mixed-train
Mixed-valid

Figure 2.9: The effect of various pre-training approaches on Cityscapes+.
The left image is the objective function throughout training, and the right
image is the class average accuracy. The solid lines are the evaluation
results on the training set, the dashed lines are the results on the validation
set. Pre-training on synthetic data gives a better initialization and final
local minima compared to pre-training on a real-world dataset.

Additional Results

Figures 2.10, 2.11, 2.12, and 2.13 compare the behavior of our trained networks

during training. We present the objective value, pixel classification accuracy, class

average accuracy, and mean intersection-over-union for CamVid, Cityscapes,

CamVid+, and Cityscapes+ datasets. Pre-training on synthetic data consis-

tently improves the initialization and the final solution, and in most cases also

outperforms pre-training on real-world data.

19

0 20 40 60 80
Epoch

100

L
o

ss
Objective Value (Cross-Entropy Loss)

Baseline-train
Baseline-valid
Real-train
Real-valid
Synthetic-train
Synthetic-valid
Mixed-train
Mixed-valid

0 20 40 60 80
Epoch

0.65

0.7

0.75

0.8

0.85

0.9

0.95

A
cc

u
ra

cy

Pixel Classification Accuracy

Baseline-train
Baseline-valid
Real-train
Real-valid
Synthetic-train
Synthetic-valid
Mixed-train
Mixed-valid

0 20 40 60 80
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

Io
U

Mean IoU

Baseline-train
Baseline-valid
Real-train
Real-valid
Synthetic-train
Synthetic-valid
Mixed-train
Mixed-valid

0 20 40 60 80
Epoch

0.6

0.7

0.8

0.9

1

A
cc

u
ra

cy

Class Average Accuracy

Baseline-train
Baseline-valid
Real-train
Real-valid
Synthetic-train
Synthetic-valid
Mixed-train
Mixed-valid

Figure 2.10: The influence of various pre-training approaches on the CamVid
dataset. The solid lines are the evaluation results on the training set, the
dashed lines are the results on the validation set.

0 20 40 60 80
Epoch

0.2

0.3

0.4

0.5

0.6

L
o

ss

Objective Value (Cross-Entropy Loss)

Baseline-train
Baseline-valid
Real-train
Real-valid
Synthetic-train
Synthetic-valid
Mixed-train
Mixed-valid

0 20 40 60 80
Epoch

0.82

0.84

0.86

0.88

0.9

0.92

A
cc

u
ra

cy

Pixel Classification Accuracy

Baseline-train
Baseline-valid
Real-train
Real-valid
Synthetic-train
Synthetic-valid
Mixed-train
Mixed-valid

0 20 40 60 80
Epoch

0.5

0.55

0.6

0.65

0.7

Io
U

Mean IoU

Baseline-train
Baseline-valid
Real-train
Real-valid
Synthetic-train
Synthetic-valid
Mixed-train
Mixed-valid

0 20 40 60 80
Epoch

0.84

0.86

0.88

0.9

0.92

0.94

A
cc

u
ra

cy

Class Average Accuracy

Baseline-train
Baseline-valid
Real-train
Real-valid
Synthetic-train
Synthetic-valid
Mixed-train
Mixed-valid

Figure 2.11: The effect of pre-training approaches on the Cityscapes
dataset. The solid lines are the evaluation results on the training set, the
dashed lines are the results on the validation set.

20

0 20 40 60 80
Epoch

100

L
o

ss
Objective Value (Cross-Entropy Loss)

Baseline-train
Baseline-valid
Real-train
Real-valid
Synthetic-train
Synthetic-valid
Mixed-train
Mixed-valid

0 20 40 60 80
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

Pixel Classification Accuracy

Baseline-train
Baseline-valid
Real-train
Real-valid
Synthetic-train
Synthetic-valid
Mixed-train
Mixed-valid

0 20 40 60 80
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

Io
U

Mean IoU

Baseline-train
Baseline-valid
Real-train
Real-valid
Synthetic-train
Synthetic-valid
Mixed-train
Mixed-valid

0 20 40 60 80
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

Class Average Accuracy

Baseline-train
Baseline-valid
Real-train
Real-valid
Synthetic-train
Synthetic-valid
Mixed-train
Mixed-valid

Figure 2.12: The effect of various pre-training approaches on the CamVid+
dataset. The solid lines are the evaluation results on the training set, the
dashed lines are the results on the validation set.

0 20 40 60 80
Epoch

0.6

0.8

1

1.2

L
o

ss

Objective Value (Cross-Entropy Loss)

Baseline-train
Baseline-valid
Real-train
Real-valid
Synthetic-train
Synthetic-valid
Mixed-train
Mixed-valid

0 20 40 60 80
Epoch

0.7

0.75

0.8

0.85

0.9

A
cc

u
ra

cy

Pixel Classification Accuracy

Baseline-train
Baseline-valid
Real-train
Real-valid
Synthetic-train
Synthetic-valid
Mixed-train
Mixed-valid

0 20 40 60 80
Epoch

0.35

0.4

0.45

0.5

0.55

Io
U

Mean IoU

Baseline-train
Baseline-valid
Real-train
Real-valid
Synthetic-train
Synthetic-valid
Mixed-train
Mixed-valid

0 20 40 60 80
Epoch

0.6

0.65

0.7

0.75

0.8

0.85

A
cc

u
ra

cy

Class Average Accuracy

Baseline-train
Baseline-valid
Real-train
Real-valid
Synthetic-train
Synthetic-valid
Mixed-train
Mixed-valid

Figure 2.13: The effect of pre-training approaches on the Cityscapes+
dataset. The solid lines are the evaluation results on the training set, the
dashed lines are the results on the validation set.

21

Backg. Sky Car Pedes. Trees Average

0.6

0.8

1

Class Accuracy on CamVid

0.
89

0.
90

0.
89 0.
90 0.

94
0.

94
0.

94
0.

94

0.
83

0.
91

0.
90 0.
91

0.
89 0.

93
0.

93 0.
94

0.
89 0.

92
0.

91 0.
93

0.
89 0.

92
0.

91 0.
92

Baseline
Real
Synthetic
Mixed

Backg. Sky Car Pedes. Trees Average

0.6

0.8

1

Class Accuracy on Cityscapes

0.
88

0.
88

0.
88

0.
88

0.
98

0.
98

0.
98

0.
98

0.
89

0.
90 0.
92

0.
92

0.
92

0.
91 0.
93

0.
93

0.
93

0.
93

0.
93

0.
93

0.
92

0.
92

0.
93

0.
93

Baseline
Real
Synthetic
Mixed

Figure 2.14: The per-class accuracy on CamVid (left) and Cityscapes
(right).

Sky

Build
in

g
Pole

Road

Pav
em

en
t

Tre
e

Sig
n S

ym
bol

Fen
ce Car

Ped
es

tri
an

Bicy
cli

st

Ave
ra

ge
0.2

0.4

0.6

0.8

1

Class Accuracy on Cityscapes+

0.
96

0.
97

0.
97

0.
97

0.
71

0.
70 0.
72

0.
72

0.
55

0.
56 0.
58

0.
59

0.
92

0.
92

0.
93

0.
93

0.
82

0.
83

0.
84

0.
84

0.
81

0.
81

0.
81

0.
81

0.
72

0.
71

0.
72

0.
72

0.
70

0.
69 0.

73
0.

73

0.
83

0.
83 0.
86

0.
86

0.
77

0.
77 0.
79

0.
80

0.
68

0.
67 0.

72
0.

69

0.
77

0.
77 0.
79

0.
79

Baseline
Real
Synthetic
Mixed

Figure 2.15: The per-class accuracy on Cityscapes+.

Figure 2.14 compares the per-class accuracy of each training strategy on the test

set of CamVid and the validation set of Cityscapes. Using synthetic data yields

a consistent improvement over the baseline. On CamVid, pre-training on real data

leads to a better model than pre-training on synthetic data, but the mixed approach

has the best accuracy. On Cityscapes, however, pre-training on synthetic data

has a higher average accuracy than pre-training on real-world data. Figure 2.15

shows the per-class accuracy on the Cityscapes+ dataset. Similar to the previous

experiments using synthetic data results in more improvement than using real-world

data. Combining synthetic and real data gives the highest performance boost in

these experiments.

2.5.2 Cross-dataset Evaluation

We also evaluate the models in a cross-dataset setting in which the network is

tested on a dataset other than the one it was trained on. We train three dense image

classifiers on each dataset and examine the cross-dataset accuracy of these classifiers.

22

Backg. Sky Car Pedes. Trees Average
0.2

0.4

0.6

0.8

1

0.
89

0.
89

0.
87 0.

94
0.

87
0.

68

0.
83 0.

87
0.

87 0.
90

0.
91

0.
67

0.
89

0.
79

0.
46

0.
89

0.
86

0.
71

Class Accuracy on CamVid

Baseline
Real
Synthetic

Backg. Sky Car Pedes. Trees Average
0.2

0.4

0.6

0.8

1

0.
88 0.

92
0.

71

0.
98

0.
88

0.
59

0.
89

0.
76

0.
73

0.
92

0.
59 0.

64

0.
93

0.
71 0.

74

0.
92

0.
77

0.
68

Class Accuracy on Cityscapes

Baseline
Real
Synthetic

Figure 2.16: The cross-dataset per-class accuracy on CamVid (left) and
Cityscapes (right). The baseline is trained on the target dataset,
the real is trained on the real alternative dataset, and the synthetic is
trained on GTAV.

The purpose of this experiment is to see how much the domain of our synthetic data

differs from a real-world dataset in comparison to another real-world dataset.

Figure 2.16 shows the cross-dataset accuracy on CamVid and Cityscapes.

The first observation, as anticipated, is that the domain of a real-world dataset is

more similar to the domain of another real-world dataset on average. Even though

the GTAV network has been only trained on synthetic data, in ‘pedestrian’, ‘car’,

or ‘trees’, it competes or even in two cases outperforms the network trained on

real data. Although the GTAV network does not outperform the real counterpart on

average, the small gap indicates that the network with synthetic data has learned

relevant features and is not overfitting to the game specific textures that can be an

obstacle to generalization to the real-world domain.

Figure 2.17 shows the per-class accuracy for each network on Cityscapes+.

Similar to the previous results, the domain of CamVid+ is more similar to the

Cityscapes+ than the synthetic GTAV+ dataset is. However, GTAV+ gives

better results for pole, tree, sign symbol, fence, and bicyclist. On

average, the network that is trained on CamVid+ gives a 60% accuracy, and the

network obtained from synthetic data gives a similar 56% accuracy. The similarity

in performance suggests that for the training of computer vision models the synthetic

data provides a reasonable proxy to the real world images.

23

Sky

Build
in

g
Pole

Road

Pav
em

en
t

Tre
e

Sig
n S

ym
bol

Fen
ce Car

Ped
es

tri
an

Bicy
cli

st

Ave
ra

ge
0.2

0.4

0.6

0.8

1 0.
96

0.
87

0.
66 0.

71
0.

69
0.

60

0.
55

0.
38

0.
39

0.
92

0.
91

0.
53

0.
82

0.
70

0.
56

0.
82

0.
64

0.
76

0.
72

0.
27

0.
36

0.
70

0.
51

0.
64

0.
83

0.
69

0.
57

0.
77

0.
46

0.
39

0.
72

0.
43

0.
64

0.
77

0.
60

0.
56

Class Accuracy on Cityscapes+

Baseline
Real
Synthetic

Figure 2.17: The cross-dataset per-class accuracy on the validation set of the
Cityscapes+ dataset. The baseline is trained on Cityscapes+,
the real is trained on the CamVid+, and the synthetic is trained on
GTAV+.

Additional Results

In the cross-dataset setting, we train one network on each dataset and evaluate the

accuracy of each network on the other datasets. The purpose of this experiment is

to measure and compare the generalization power of the networks that are trained

on synthetic or real data only.

Figure 2.18 shows the per-class accuracy for evaluation on the Camvid+ dataset.

The Baseline network is directly trained on the target dataset, while the Real

network is trained on the alternative real dataset, and the Synthetic network is

trained on synthetic data only. Without domain adaptation, both of the Real and

Synthetic networks have a lower accuracy than the Baseline. The network

that is trained on real data has a better accuracy than the network that is trained

on synthetic data only. Even though the Synthetic network is only trained on

synthetic data, it outperforms the real network on ‘Building’, ‘Pole’, and ‘Fence’.

While the Synthetic network does not exceed the accuracy of the Real network

on average, the small gap indicates that the network with synthetic data is relying

on relevant features and is not merely overfitting to the game specific textures.

2.6 Depth Estimation from RGB
The Cityscapes dataset also provides the disparity images which we will be using

in this setting. For this problem we use the method of Zoran et al. [164], in which

24

Sky

Build
in

g
Pole

Road

Pav
em

en
t

Tre
e

Sig
n S

ym
bol

Fen
ce Car

Ped
es

tri
an

Bicy
cli

st

Ave
ra

ge
0

0.2

0.4

0.6

0.8

1
Class Accuracy on CamVid+

0.
90

0.
81

0.
65 0.
69

0.
59 0.

64

0.
53 0.

60
0.

69

0.
92

0.
90

0.
76

0.
85 0.
88

0.
87

0.
80

0.
66

0.
47

0.
44

0.
70

0.
68

0.
65

0.
77 0.

85

0.
85 0.

91
0.

89

0.
75 0.
77

0.
51

0.
66

0.
21

0.
19

0.
73

0.
71

0.
65

Baseline
Real
Synthetic

Figure 2.18: Cross-dataset evaluation. The per-class accuracy on the test set
of the CamVid+ dataset.

the underlying deep network is queried with two points in the image and has to

decide which one is closer to the camera. This method is more attractive than the

other techniques because it only relies on the ordinal relationships and not on the

measurement unit in the target dataset. This is useful for our experiments because

the depth images of the video game is tailored to improve the visualization effects

in the rendering pipeline and is not directly comparable to the measurement units of

the real-world datasets.

We use the same deep network architecture as Zoran et al. [164]. The images

are first decomposed into superpixels, the center of which is defined as nodes of a

graph. Adjacent superpixels are connected on this graph in a multiscale fashion.

The two end-points of each edge is then used to query a deep network that classifies

the relative depth of two input patches as {=, >,<}. A global ranking of the pixels

is then generated based on these queries by solving a quadratic program. Depending

on the target ordinal relationships we can estimate the depth, shading, or reflectance.

We apply this method for depth estimation and train the underlying deep network

on the Cityscapes and the GTAV datasets.

While the networks in the previous experiments focused on high-level visual

cues and abstractions, the network in this problem is concerned with the mid-level

visual cues, which provides further insight to the quality of the synthetic data.

In Figure 2.19 we look at the influence of pre-training the network on the GTAV

dataset vs. directly learning from the real dataset Cityscapes. Similar to the

previous experiments we observe that pre-training with the synthetic data gives

25

Epoch
0 20 40 60 80

L
o

ss

0.55

0.6

0.65

0.7

0.75

0.8
Objective Value (Cross-Entropy Loss)

Baseline-train
Baseline-valid
Synthetic-train
Synthetic-valid

Epoch
0 20 40 60 80

A
cc

u
ra

cy

0.66

0.68

0.7

0.72

0.74

0.76

0.78
Classification Accuracy

Baseline-train
Baseline-valid
Synthetic-train
Synthetic-valid

Figure 2.19: The influence of pre-training on synthetic data for the depth
estimation task on the proposed network architecture of Zoran et al.
[164].

Figure 2.20: (top left) A sample image from the Cityscapes [28] dataset,
(top right) decomposition of the RGB image to SLIC superpixels [11],
(bottom left) the groundtruth disparity map, (bottom right) the global-
ized depth output of the method presented by Zoran et al. [164].

us a consisent improvement in initialization and the final local minima, in both

validation and training. The final patch classification accuracy on the validation set

is improved from 75% to 76%. Figure 2.20 shows the groundtruth depth and the

predicted depth image of a sample input from the Cityscapes dataset.

26

2.7 Other Computer Vision Problems
We perform a qualitative evaluation of the synthetic RGB images by examining the

behavior of existing networks that are trained on real data only. The purpose of

this experiment is to assess the gap between real-world data and our synthetic RGB

images. In Fig. 2.21 we present the results of the dense captioning technique of

Johnson et al. [62]. The dense captioning technique automatically chooses bounding

boxes and generates a relevant description for each box. The description of each

bounding box is written with the same colour as the bounding box underneath each

picture. The technique of Johnson et al. [62] generates reasonable bounding boxes

and descriptions on our synthetic data.

In Fig. 2.22 we qualitatively evaluate the performance of the network of Iizuka

et al. [59], in which the authors present a deep convolutional network to colourize

grayscale images automatically. The left column is the groundtruth image, and the

right column is the output of this method. In the first row, the network correctly

detects the ocean, but it decides to colour it as blue. The more interesting case is the

behavior of this method for the second row and the third row where the same image

is captured in daylight and night time. In the grayscale image, there are subtle cues

that indicate the night time or the day time, and the method correctly recognizes

these cues and colourizes the image accordingly.

2.8 Research Conclusion
As video games progress towards photorealistic environments, we can also use them

to train computer vision models at no extra cost. We delivered a proof of concept

by exploring the use of synthetic RGB images that we extracted from Grand Theft

Auto V. Our approach goes beyond the use of simplistic three-dimensional CAD

models as we collect a synthetic dataset that encompasses the broad context of street

scenes.

We presented several experiments to compare our synthetic dataset with the

existing real-world ones. Our experiments show that in a cross-dataset setting, the

deep neural networks that we trained on synthetic RGB images have a similar gen-

eralization power as the networks that we trained on real-world data. Furthermore,

with a simple domain adaptation technique such as fine-tuning, pre-training on

27

Figure 2.21: The results of dense image captioning of Johnson et al. [62] on
the synthetic RGB domain of GTAV.

synthetic data consistently yielded better results than pre-training on real data. We

think one reason for the observed improvement over using real-world data is the

abundance of realistic synthetic data. We further suspect the pre-training mecha-

nism that we applied has had a regularization effect during the training stage and

has also helped with learning a better representation of the output space. We leave

further investigation of this subject to future work.

Furthermore, we showed that pre-training on synthetic data resulted in a better

initialization and final local minima in the optimization. On a network that classifies

28

Figure 2.22: The results of automatic image colourization of Iizuka et al. [59]
on the synthetic RGB domain of GTAV. The left column is the true
colour image, and the right column is the output of the method.

29

the ordinal relationship of image patches, we also observed how pre-training on

synthetic data leads to improvement in optimization and final performance.

The evidence suggests that RGB images collected from video games with

photorealistic environments are potentially useful for a variety of computer vision

tasks. Video games can offer an alternative way to compile large datasets for direct

training or augmenting real-world datasets.

2.9 Follow-up Developments
We published this work concurrently with Richter et al. [117], who also used

GTAV to extract synthetic data to train computer vision models. Since the initial

publication, there have been over 600 follow-up studies on various video game

applications. The most popular follow-ups involved reinforcement learning of

autonomous drivers using only visual data. Most notable of these developments was

OpenAI’s DeepDrive1 project that was later shut down by Take-Two Interactive, the

publisher of GTAV. Today, there are several open-source and commercial video game

universes [3–10] developed with the specific goal of providing realistic training data

for AI applications.

1http://web.archive.org/web/20170111195314/https://openai.com/blog/GTA-V-plus-Universe/

30

http://web.archive.org/web/20170111195314/https://openai.com/blog/GTA-V-plus-Universe/

Chapter 3

Reliable Prediction in Computer
Vision Applications: Detecting
Out of Distribution Samples

Using synthetic data as a proxy to real-world data continues to be a successful

approach to train complex DNN models. However, relying on training data that is

different from the data that we would encounter in real-world applications raises

new problems. The theoretical framework of statistical learning theory tells us that

the learned models may behave unpredictably under distribution change. Note that

the distribution change does not only apply to the differences between synthetic and

real-world data. In object detection, for instance, encountering objects from a novel

viewpoint could also constitute a distribution change. As a result, there is a growing

concern among practitioners about the safety of deploying deep learning models in

sensitive applications such as self-driving cars or medical applications.

Next, we study the effects of distribution change on deep learning models. We

show that even in the absence of adversarial inputs, the behaviour of DNNs cannot

be reliably predicted. In simplified terms, our results demonstrate that DNNs do not

know when they do not know.

31

Cardigan 12% Theater Curtain 3%AlexNet (2012) T-shirt 16% Dust Cover 22% Coho 37%
Sweatshirt 46%Dust Cover 44%Binder 51%VGG 19 (2014) Chest 11%Window Screen 5%

Chain Mail 29%Envelope 40% Dust Cover 52%Pacifier 33%ResNet 152 (2015) Sweatshirt 25%
SqueezeNet (2016) Suit 21%Balance Beam 18% Jean 30%Poncho 32%Binder 43%

Tench 36%Chest 37%Chainlink Fence 31%Balance Beam 52%Envelope 31%DenseNet 161 (2017)

Figure 3.1: The predictions of several popular networks [54, 57, 58, 76, 138]
that are trained on ImageNet on unseen data. We expect the prediction
likelihoods to be about 1

1000 , since there are 1000 classes in ImageNet
and none of them are correct. However, the reported likelihoods for
incorrect classes are about 1

3 or more. The red predictions are entirely
wrong, the green predictions are justifiable, and the orange predictions
are less justifiable. The middle image is noise sampled from N (µ =
0.5, σ = 0.25). This unpredictable behaviour is not limited to these
architectures. We show that thresholding the output probability is not a
reliable defence.

3.1 Introduction
If we pass a natural image of an unknown class to the currently popular deep

neural network that is trained to discriminate ImageNet [121] classes, we will get a

prediction with a high (softmax) probability of an arbitrary class (see Fig. 3.1). With

English speaking phone assistants, if we talk in another language, it will generate an

English sentence that most often is not even remotely similar to what we have said.

The silent failure of these systems is due to an implicit assumption: the input to the

ImageNet classifier will be from the same ImageNet distribution, and the user will

be speaking in English. However, in practice, any automation pipeline that involves

a deep neural network will have a critical challenge:

Can we trust the output of a neural network?

One solution is to add a None class to the models to account for the absence of

other classes. The first challenge is defining the None class. Would None mean

all other image vectors or only vectors of natural images? Another challenge is

capturing the diversity of None class with a finite sample set to use for training,

which is not trivial. The third and the most prohibitive problem is that we have

32

to significantly increase the complexity of our models to capture the diversity of

the None class. Despite these challenges, we might be able to achieve reasonable

results on low dimensional problems [56], but as the input dimension grows, so

does the severity of intractability.

When we assume the samples are i.i.d (independently and identically dis-

tributed), we expect the train and test examples to be drawn from a fixed population

distribution. However, this condition cannot be easily enforced in deployed appli-

cations. More precisely, measuring the expected risk of a learned model ĥ ∈ H in

terms of empirical risk Remp(ĥ) that is defined over a finite set D = {(xi, yi)}mi=1

sampled from the population distribution D and a loss function l as

E(x,y)∼D[`(ĥ(x), y)] ≈ Remp(ĥ) =
1

m

m∑
i=1

`(ĥ(xi), yi),

is a standard result in learning theory of supervised learning which entails an IID

assumption [103]. When the IID assumption is not satisfied in test data, the expected

risk can no longer be reliably related to the empirical risk of the test set through

this approximation. This implies that a low error on one distribution cannot provide

an estimate of performance on another distribution by itself: without any further

assumptions, the outputs on out of distribution (OOD) samples can be arbitrarily

bad. The OOD samples violate the identically distributed (ID) assumption. Thus,

as long as we rely on the empirical risk alone to train and evaluate deep neural

networks, the first condition for making a reliable prediction (with bounded error)

on any input would be whether the ID assumption is satisfied. When we a priori

expect to change the underlying distribution, the traditional applicable frameworks

are transfer learning, multitask learning, and zero-shot learning. In our setting, we

only wish to detect out-of-distribution samples.

In real life deployment of products that use complex machinery such as deep

neural networks (DNNs), we would have very little control over the input. In the

absence of extrapolation guarantees, when the IID assumption is violated, the be-

haviour of the pipeline may be unpredictable. From a quality assurance perspective,

it is desirable to detect and prevent these scenarios automatically. A reliable pipeline

would first determine whether it can process a given sample, then it would use the

33

prediction of the target neural network. Successful detection of such violations

could also be used in active learning, unsupervised learning, learning with noisy

data, or simply be a condition to invoking transfer learning strategies.

We would like to emphasize that any learned complex model for which we have

no reliable characterization of the inductive biases (deep neural networks) that is

trained to approximate the performance of a target system will also heavily rely

on the IID assumption. Therefore, the behaviour of these learned models may be

unpredictable on the unseen data as well.

In this work, we are interested in evaluating mechanisms that detect OOD sam-

ples. While problems of similar nature have been studied in a variety of domains (to

be reviewed in Section 3.2), there has been a recent surge of interest in specifically

OOD sample detection with deep neural networks [17, 55, 77, 89, 125]. Given

that the problem is still in its infancy, there is an imminent need to standardize the

problem and properly define a benchmark that is both realistic and principled to

compare the previous and future approaches reliably.

Our contributions are as follows:

1. We introduce a new outlier detection test (OD-test), an abstract formulation

of the task that offers a clear vision of applicable methods.
2. We establish a new benchmark to evaluate the existing techniques for OOD

detection exhaustively and reliably.
3. We study the performance of several previously proposed methods under OD-

test and highlight shortcomings and potential future directions for research.

Furthermore, we demonstrate that the performance of current techniques

quickly approaches the random prediction baseline as we make a transition to

realistic high-dimensional images, highlighting the gap between the current

state-of-art and what is required in practice.
4. We release our PyTorch [111] implementation to replicate all the results

easily and also speed up progress on the presented problem. It is available at

https://github.com/ashafaei/OD-test.

34

https://github.com/ashafaei/OD-test

3.2 Related Work
The violation of the ID assumption is not the only way to wreak havoc on deep

learning pipelines. Adversarial example [143] attacks are worst-case crafted signals

in otherwise innocent-looking images that fool the neural networks into misclas-

sification. These perturbations can be constructed in such a way that they break a

variety of architectures trained on different datasets, with a high probability [104].

While the OOD detection is a model-independent problem, adversarial images exploit

inductive bias in the model families. We limit our attention to the OOD detection

problem.

To provide the appropriate context under which this study was executed, we

keep the related work in this chapter as it was at the time of publication (2018).

The previous work on similar problems can be categorized into: (i) uncertainty

estimation, (ii) prediction with abstention, (iii) anomaly detection, and (iv) novelty

detection.

The Uncertainty View An uncertainty measure could be directly applied to reject

OOD samples as we would expect the uncertainty to be high on such inputs. The

MC-Dropout [41] approach is a feasible uncertainty estimation method for a

variety of applications [41, 42, 69]. Lakshminarayanan et al. [77] show an ensemble

of five neural networks (DeepEnsemble) trained with an adversarial-sample-

augmented loss is sufficient to provide a measure of predictive uncertainty. We

evaluate DeepEnsemble and MC-Dropout.

The Abstention View If we allow our models to abstain from prediction at the cost

of a penalty, we end up with the abstention view. The purpose of abstention is to

incur a lower cost than the cost of misclassification when possible. The pair (h, r)

consists of the predictive hypothesis h ∈ H and a reject function r : X → {0, 1}.
The reject function makes the abstention choice and could be a threshold on the

magnitude of the prediction [15] or chosen from a reject-hypothesis setR [30, 31].

The task is to find a pair (h, r) that minimizes an abstention-augmented loss. The

reject function aims to detect when h would make a wrong prediction. The binary

reject function gives us more flexibility on the choice of the reject classR compared

35

to the possible continuous formulations1. However, the reliability of r is still

contingent on evaluation on a fixed distribution. If we encounter an OOD sample,

we do not know a priori if r would reject it. Our formulation is inspired by the

abstention view with key differences that we will discuss in Section 3.3. We show

that all the prior work on OOD detection can be reduced to an abstract problem of

learning a reject function within a specific classR.

The Anomaly View Density estimation-based techniques assume that low mea-

sure samples are outliers. These approaches tend to work well mostly within

low-dimensional or well-defined distributions. PixelCNN++ [122] is an auto-

regressive model with a tractable likelihood that could be used within a density

estimation scheme. Note that density estimation is not equivalent to the binary OOD

detection: a perfect density estimator can solve the outlier detection problem, but a

perfect outlier detector does not necessarily have the information needed to solve the

density estimation problem. Proximity-based methods use a distance measure and

the training data to flag anomalies. A simple strategy is to threshold the distances

of the K-nearest neighbours for a given input – we learn the threshold with SVM

and call it K-NNSVM (see Appendix A.2 for more information). Clustering methods

reject points that do not conform to any of the identified clusters. The one-class

SVM [126] with a radial basis function learns a conservative region that covers the

train data. Goldstein and Uchida [48] show that the proximity-based approaches

are empirically the most effective outlier detectors over a range of datasets. Recon-

struction-based methods learn to reconstruct the train data, then try to reconstruct

each given input. The samples that cannot be reconstructed well are then flagged as

anomalies. We use an autoencoder with a reconstruction threshold to test this idea

(AEThreshold).

The Novelty View Open-set recognition and novelty detection study the detection

of anomalies at a semantic level. These methods are typically concerned with

recognition of unseen classes, e.g., , new objects in the scene. This is a special

case of OOD detection where the OOD samples explicitly differ by the semantic
1It subsumes the class of functions that can be used for continuous (uncertainty) estimation by

adding a threshold.

36

content. However, the notion of OOD is more granular: an unseen viewpoint of a

specific object violates the ID assumption, but it does not necessarily constitute a

novelty. The notion of novelty is often underspecified in practice and results are

limited to particular assumptions and problem definitions. Bendale and Boult [17]

present OpenMax, a replacement for the softmax layer that detects unknown classes

through evaluation against a representative neural activation of each class.

Deep Learning Literature The previous related work in deep learning can be

categorized into two broad groups based on the underlying assumptions: (i) in-

distribution techniques, and (ii) out-of-distribution techniques.

In-Distribution These methods focus primarily on the performance of the network

on the in-distribution inputs to either calibrate the predictions or abstain from predic-

tion. Guo et al. [52] observed that modern neural networks tend to be overconfident

in their predictions. They show that temperature scaling in the softmax operator,

also known as Platt scaling, can be used to calibrate the output probabilities of

a neural network to empirically align the accuracy of a prediction with its prob-

ability. Their efforts fall under the uncertainty estimation approaches. Geifman

and El-Yaniv [44] present a framework for selective classification with deep neural

networks that follows the abstention view. A selection function decides whether to

make a prediction or not. For the choice of selection function, they experiment with

MC-Dropout and the softmax output. They provide an analytical trade-off between

risk and coverage within their formulation.

Hendrycks and Gimpel [55] investigate OOD sample detection within computer

vision, natural language processing, and speech recognition. They demonstrate that

it is possible to detect OOD samples by simply thresholding the output softmax

probabilities. We call this method PbThreshold. More recently, Liang et al.

[89] present ODIN, a method based on (i) temperature rescaling and (ii) input

perturbation to detect OOD samples. Temperature rescaling, in light of the previous

work [52], provides the means of confidence calibration. They further posit that

the predictive function, as represented by the deep neural network, would have a

different behaviour around the in-distribution samples as opposed to OOD samples.

37

Therefore, the input perturbation serves as a way to assess how the network would

behave nearby the given input. When the temperature is 1 and the perturbation

step is 0 we simply recover the PbThreshold method. ODIN, the state-of-the-

art at the time of this writing, is reported to outperform the previous work [55]

by a significant margin. We also assess the performance of ODIN in our work.

Further extensions rely on statistics of hidden representations [81, 113], construct

classifier ensembles with subsets of data [147], or perform regression on word

embeddings [132].

Wang et al. [149] present a “safe” classification paradigm based on generative

adversarial networks (GANs) [49]. They train a generator per class, and during

test, find the best approximate input to all the generators and use the distance of

the generated samples from the input as a measure for prediction and uncertainty.

There are also other ideas that rely on GANs [33, 74, 80, 125]2 to detect anomalies

or novelty in the data. These methods provide an abstract idea which depends on

the successful training of GANs. To the best of our knowledge, training GANs [49]

is an active area of research, and it is not apparent what design decisions would be

appropriate to implement these ideas in practice. Furthermore, some of these ideas

are prohibitively expensive to execute at the time of this writing. We are therefore

unable to evaluate these ideas fairly at this time.

All the previous studies primarily focus on low-dimensional MNIST [78],

SVHN [107], and CIFAR [75] datasets. We evaluate several previously proposed so-

lutions in controlled experiments on datasets with varying complexity. We show that,

in such low-dimensional spaces, simple anomaly detection methods work as well,

thus stressing that a more comprehensive evaluation is necessary for assessments of

the current and future work.

3.3 OD-test: A Less Biased Evaluation of Outlier
Detectors

In this section, we present a less biased evaluation scheme for outlier detectors. We

then evaluate and compare the performance of the top outlier detectors under the

traditional binary evaluation scheme and OD-test in Sec. 3.5.
2Note that some of the most recent work is not yet peer-reviewed.

38

1

3

2

Train

Valid

Test Test

1

Valid

2

3

4

Figure 3.2: The OD-test. 1) A set of distributions visualized as shapes within
X . The source distribution Ds is identified in the image; everything else
is an outlier. 2) We pick one validation distributionDv and learn a binary
reject function r that partitions the input space X based on Ds and Dv

only. 3) We evaluate r on other distributions (as Dt) and measure the
accuracy. 4) The dataset splits for each step.

Let us define the source distribution Ds to be our input distribution. The

objective is to decide whether a given sample belongs to Ds. We define a reject

function r : X → {0, 1} that makes this binary decision. Note that this decision can

be made independently from the ultimate prediction task. While in the abstention

view we reject the samples that the hypothesis h is likely to mislabel, here we reject

the samples that do not belong to the source distribution Ds, hence decoupling the

reject function r and the predictive hypothesis h.

If the reject function r flags an input, then the sample does not belong to the

source distribution; thus, the output of the pipeline may not be reliable. On the

other hand, if the function accepts an input, we can continue the pipeline with the ID

assumption. This form of rejection is more relaxed than the previous formulations.

In addition to the previous methods, we can study new approaches that operate in

the input space directly (e.g., K-NNSVM, or AEThreshold).

39

The r function is a binary classifier, the classes are in-distribution vs. out-

of-distribution. To learn the classifier, we might adopt the supervised learning

assumptions and use a datasetDv as a representative of the OOD samples (supervised

outlier detection). Unfortunately, this approach may be misleading because the

learned models can be biased by Dv. A high accuracy in this scenario may not yield

an accurate model in practice in many settings where the outliers may not look like

samples from Dv. The actual OOD samples are beyond our direct reach and our

models can easily overfit in distinguishing Ds from Dv (we verify this empirically).

We present a less optimistic evaluation framework that prevents scoring high through

overfitting.

Specifically, we introduce a third “target” distribution Dt to measure whether

a method can actually detect outliers that are not only outside of Ds but that also

might be outside of Dv. The idea is to treat the problem as a binary classification

involving three different datasets. Similar to the supervised outlier detection, we

begin by learning a reject function to distinguish Ds from Dv. But, for evaluation,

we use a third unseen distributionDt instead ofDv (see Fig. 3.2). Dt represents OOD

examples that were not encountered during training – a more realistic evaluation

setting for uncontrolled scenarios. The spectrum of choices for Ds, Dv, and Dt

allows for a rigorous evaluation of the r functions. The pseudocode of the evaluation

procedure is outlined in Alg. 1.

When Dv=Dt, we recover the evaluation of the previous work in the deep

learning literature. However, we specifically requireDv 6=Dt to ensure the evaluation

is not biased by Dv. Analogous to supervised learning, Dv is a validation set (we

do not care about our performance at this task) and Dt is the test set (we care about

our performance at this task).

If the method M successfully learns a density function for Ds, it would be

capable of scoring very high in this evaluation. With a density function, we only

would have to pick a single threshold to reject OOD samples. Methods that yield a

confidence estimate can be used similarly. A typical binary classification method

is also not sufficient to score high on this benchmark since we change the second

distribution during the test stage. In Section 3.5 we show how a traditional binary

classifier would fall short. The methods that learn conservative boundaries around

Ds will have a higher chance of success. All the existing approaches can be

40

Algorithm 1: OD-test

input :Ds = (Dtrain
s ,Dvalid

s ,Dtest
s) the source dataset.

input :D = {Di} a set of non-overlapping datasets with the source Ds.
input :M : D → R the method under evaluation.

1 begin
2 A←− {}

/* Generate a reject-hypothesis class R using
Dtrain

s . */
3 R ←−M(Dtrain

s)
4 for Dv ∈ D do

/* Find the best binary classifier in R. */

5 r ←− train(R, {Dvalid
s : 0,Dv : 1})

6 for Dt ∈ D\{Dv} do
/* Evaluate accuracy of r. */

7 acc←− eval(r, {Dtest
s : 0,Dt : 1})

8 add acc to A

9 return mean(A)

implemented within this framework (see Appendix A.2 for more information).

Example – PbThreshold

This method’s idea is that if we threshold the maximum probability of a

discriminative neural network, we should detect outliers. To test this idea,

we need to train a deep neural network on a Ds dataset and then find the

probability threshold to reject outliers.

Input

Ds Let us assume Ds is the MNIST dataset, which is already split into a

train, validation, and a test set.

{Di} is the outlier set. Let us assume we have CIFAR 10 and FashionMNIST

as the outliers. None of these outlier sets have any classes in common

with Ds.

41

M method produces a reject hypothesis classR for outlier detection. In

the case of PbThreshold, the class consists of a pre-trained neural

network and a free threshold parameter τ . During the training of

our outlier detection, we will choose τ , and therefore, pick a specific

member r ∈ R.

Evaluation
1. We first train a deep neural network on MNIST to discriminate the image

classes (line 3). The hypothesis classR returned on line 3 will have a single

free parameter τ , the threshold to use on the underlying classifier. However,

at this point in the evaluation, we have not committed to a specific threshold

yet. We will be usingR in the next step to find the threshold. Note that as

we change Ds the corresponding reject class R will also change since the

underlying neural network will be different.

2. Now we pick the first outlier dataset Dv from the outlier dataset set. Let

us assume we choose CIFAR10.

3. We must learn the optimal threshold τ in the next step. On line 5, we

pick the best threshold τ to discriminate between MNIST and CIFAR10.

OD-test does not specify the “best” threshold or how we should learn the

best threshold. The practitioner must decide what measure and learning

method are appropriate for the application. We can find the optimal threshold

with a simple 1-dimensional search if we use classification accuracy as the

evaluation measure. After picking the threshold τ , we have committed to a

specific reject function r, which we chose fromR. Next, we evaluate how

robust our reject function is to a new set of outliers.

4. After finding the best threshold τ on line 5, we evaluate the learned reject

function on MNIST and the other outlier dataset FashionMNIST (on line 7).

5. In the next iteration of the main loop, we will choose FashionMNIST as

the first outlier dataset Dv and test the resulting threshold on CIFAR10 (Dt).

6. We average all the results and return a single value.

42

For unsupervised OOD detection methods the evaluation is a single loop over Dt

(see Appendix A.1).

In the density estimation problem the only important factor is the intrinsic

complexity of Ds. However, our formulation of the problem is controlled by several

factors. The similarity between Ds, Dv, and Dt would control the difficulty of

the problem. If Ds and Dv, the source and the validation, are too similar, a high

accuracy would require learning more complex boundaries; therefore it would be

a more difficult problem. Using our scheme, we can gradually make the problem

harder and harder and improve our methods until they are satisfyingly accurate.

Note that we can empirically assess the difficulty of separation without having

an explicit notion of similarity. What we empirically observe is that separating

low-level statistics is much easier than separating high-level concepts. If Dv and

Dt, the validation and the target, are too similar, the learned reject function r could

yield good results due to overfitting. We cycle through mutually exclusive datasets

in our evaluation and aggregate the results to reduce the potential biases in the

performance estimate.

3.4 Evaluation
There are several evaluation metrics used in the previous work [55, 89]. These

metrics, in conjunction with the possible combination of the evaluation datasets,

lead to large tables that make the interpretation and reliable comparison of the

results difficult. Measuring progress under such circumstances could be misleading

and overly optimistic. To simplify the evaluation procedure, we equalize the binary

classes and only measure accuracy. Furthermore, we require the methods to pick the

optimal parameters such as the threshold. This simplification allows straightforward

aggregation and analysis of the results and provides a simple baseline of random

prediction. We can meaningfully average over multiple experiments and robustly

compare methods in a variety of conditions.

We can also incorporate the prior knowledge on abundance and the risk associ-

ated with the OOD samples into the evaluation by modifying the implicit objective

on line 5 and 7 similar to the traditional supervised learning settings. We leave

the proper choice of application-dependent schemes to the practitioner and focus

43

Ds – Source Outliers

Train Valid Test All dim(X) |Y|

MNIST (50 k 10 k) 10 k 70 k 784 10
FashionMNIST (50 k 10 k) 10 k 70 k 784 10
NotMNIST 18.6 k 784 10
CIFAR10 (40 k 10 k) 10 k 60 k 3072 10
CIFAR100 (40 k 10 k) 10 k 60 k 3072 100
TinyImagenet 100 k 10 k 10 k 110 k 12,288 200
STL10 5 k (4 k 4 k) 13 k 27,648 10

Table 3.1: A summary of the datasets. The datasets are split as indicated by
the parentheses. When the dataset is used a source Ds, we split according
to the original dataset specification and the above table. When the dataset
is used as an outlier, we use the entire set of samples.

on assessing the discriminative power of the methods in the fixed 50/50 scenario

without any prior knowledge. Through this constraint, we ensure that the methods

that rely on the prior likelihood cannot perform better than random prediction.

We extend the previous work by evaluating over a broader set of datasets with

varying levels of complexity. The variation in complexity allows for a fine-grained

evaluation of the techniques. Since OOD detection is closely related to the problem of

density estimation, the dimensionality of the input image will be of vital importance

in practical assessments. As the input dimensionality increases, we expect the

task to become much more difficult. Therefore, to provide a more accurate picture

of performance, it is crucial to evaluate the methods on high dimensional data.

Table 3.1 summarizes the datasets that we use. We also evaluate with uniform and

Gaussian noise for outliers. For a given Ds we filter out the conflicting classes to

ensure there is no overlap between the corresponding distributions.

We evaluate the following methods:

• BinClass. A traditional binary classifier that is directly trained on Ds vs.

Dv.
• PbThreshold. A threshold on the softmax.
• ScoreSVM. An SVM [29] classifier on the logits.
• LogisticSVM. Similar to ScoreSVM, but the underlying classifier is

44

trained with logistic loss.
• ODIN. A threshold on the scaled softmax outputs of the perturbed input.
• K-NNSVM. A linear SVM on the sorted Euclidean distance between the input

and the k-nearest training samples. Note that a threshold on the average

distance is a special case of K-NNSVM.
• AEThreshold. A threshold on the autoencoder reconstruction error of the

given input. We train an autoencoder with binary cross-entropy (BCE) and

mean squared error (MSE).
• K-MNNSVM, K-BNNSVM. A K-NNSVM applied on the learned hidden repre-

sentations of an autoencoder with MSE or BCE.
• K-VNNSVM. Similar to the previous, except we use the learned representation

of a variational autoencoder [73].
• MC-Dropout. A threshold on the entropy of average prediction of 7 evalua-

tions per input.
• DeepEnsemble. Similar to MC-Dropout, except we average over the

predictions of 5 networks that are trained independently with adversarial-

augmented loss.
• PixelCNN++. A threshold on the log-likelihood of each input.
• OpenMax. Similar to ScoreSVM, but we use the calibrated output of the

OpenMax module that also includes a probability for an unknown class.

We use two generic architectures: VGG-16 [138] and Resnet-50 [54] and

reuse the same networks for all the methods to provide a fair and meaningful

comparison. We train these architectures with cross-entropy loss (CE), and k-way

logistic loss (KWL). CE loss enforces mutual exclusion in the predictions while

KWL loss does not. We test these two loss functions to see if the exclusivity

assumption of CE hurts the ability to predict OOD samples. CE loss cannot make a

None prediction without an explicitly defined None class, but KWL loss can make

None predictions through low activations of all the classes.

Note that our formulation of the problem separates the target task from the

OOD sample detection. Thus, it is plausible to use, for OOD detection, a different

predictive model from the actual predictive model of the target problem if there is

an advantage. We tune the hyper-parameters of these methods following the best

practices and the published guidelines in the respective articles. The implementation

details, a discussion of evaluation cost, and the performance statistics of the above

45

Bi
nC

la
ss

/V
GG

Bi
nC

la
ss

/R
es

Lo
g.

SV
M

/R
es

Sc
or

eS
VM

/R
es

Sc
or

eS
VM

/V
GG

Lo
g.

SV
M

/V
GG

1-
BN

NS
VM

1-
M

NN
SV

M

AE
Th

re
./B

CE

OD
IN

/R
es

1-
NN

SV
M

OD
IN

/V
GG

1-
VN

NS
VM

AE
Th

re
./M

SE

Op
en

M
ax

/V
GG

De
ep

En
s./

VG
G

Op
en

M
ax

/R
es

M
C-

Dr
op

ou
t

Pb
Th

re
sh

/V
GG

Pb
Th

re
sh

/R
es

De
ep

En
s./

Re
s

Pi
xe

lC
NN

++

Method

0.5

0.6

0.7

0.8

0.9

1.0
M

ea
n

Te
st

 A
cc

ur
ac

y Two Datasets
OD-Test

Figure 3.3: Evaluation with two datasets versus OD-test. Evaluating OOD
detectors with only two distributions can be misleading for practical
applications. The error bars are the 95% confidence level. The two-
dataset evaluations are over all possible pairs of datasets (n = 46),
whereas the OD-test evaluations are over all possible triplets (n = 308).

methods are in Appendix A. The PyTorch implementation with the pre-trained

models is available on https://github.com/ashafaei/OD-test.

3.5 Results
We evaluate the methods in a controlled regime against the datasets in Tab. 3.1.

We run over 10,000 experiments on all combinations of Ds, Dv, and Dt. First we

analyze the aggregated results, then we look at the breakdown of the accuracy per

source dataset.

Figure 3.3 and Figure 3.4 show the average accuracy. Each method under OD-

test is tested over the same set of 308 experiments consisting of all non-overlapping

triplet of datasets. The two-dataset evaluations are averaged over 46 experiments

(all possible pairs). See the project page for the list of experiments.

Figure 3.3 compares the mean test accuracy of methods within OD-test and

the two-dataset setting. Methods that perform well in distinguishing two datasets

fail when a third dataset is introduced. The gap in relative performance within

each evaluation highlights the importance of having a more realistic assessment in

practice. The general trend of the evaluation indicates that the methods that have

46

https://github.com/ashafaei/OD-test

Op
en

M
ax

/R
es

Pi
xe

lC
NN

++
Op

en
M

ax
/V

GG
1-

VN
NS

VM
De

ep
En

s./
Re

s
8-

VN
NS

VM
2-

VN
NS

VM
4-

VN
NS

VM
Bi

nC
la

ss
/V

GG
Lo

g.
SV

M
/R

es
Bi

nC
la

ss
/R

es
Sc

or
eS

VM
/R

es
Pb

Th
re

sh
/R

es
AE

Th
re

./M
SE

2-
M

NN
SV

M
4-

M
NN

SV
M

8-
M

NN
SV

M
1-

M
NN

SV
M

1-
BN

NS
VM

2-
BN

NS
VM

8-
BN

NS
VM

4-
BN

NS
VM

8-
NN

SV
M

Pb
Th

re
sh

/V
GG

4-
NN

SV
M

De
ep

En
s./

VG
G

2-
NN

SV
M

1-
NN

SV
M

M
C-

Dr
op

ou
t

AE
Th

re
./B

CE
Lo

g.
SV

M
/V

GG
OD

IN
/R

es
Sc

or
eS

VM
/V

GG
OD

IN
/V

GG

method

0.5

0.6

0.7

0.8

0.9

1.0
M

ea
n

Te
st

 A
cc

ur
ac

y

58
.4

4%
60

.7
4%

62
.3

1%
65

.1
6%

65
.6

8%
65

.7
8%

66
.0

0%
66

.5
4%

68
.8

1%
68

.9
8%

69
.0

6%
69

.8
8%

70
.4

8%
70

.6
3%

71
.1

5%
71

.2
6%

71
.3

1%
71

.4
2%

71
.7

9%
71

.8
2%

71
.8

9%
72

.0
9%

72
.6

2%
72

.6
3%

72
.6

4%
72

.8
4%

72
.9

5%
73

.3
7%

73
.4

7%
74

.4
3%

74
.6

8%
76

.9
9%

77
.1

7%
78

.6
6%

Figure 3.4: The average test accuracy of the OOD detection methods over 308
experiments per method. The error bars are 95% confidence level. /VGG
or /Res indicates the backing network architecture. #-NN./ is the
number of nearest neighbours. A random prediction would have an
accuracy of 0.5.

a higher degree of freedom in the space characterized byR (such as BinClass)

are the most susceptible ones to overestimating accuracy within the traditional

evaluation approach. This observation is consistent with the bias-variance tradeoff

in learning theory.

BinClass, the direct binary classifier, achieves a near-perfect accuracy on the

train and validation of the same datasets, however, once tested on a third dataset

that it has not seen before, the average accuracy drops to 68% for both VGG and

Resnet. This example demonstrates why we need to adopt a new evaluation

scheme. The classifier overfits to the two distributions (Ds and Dv) effortlessly, but

it cannot distinguish a third distribution (Dt). Because of the diversity in the OOD

samples, we may always encounter new input that we have not seen before.

MC-Dropout and DeepEnsemble, the two uncertainty techniques, do not

seem to provide a strong enough signal to distinguish the two classes compared

to the simpler ScoreSVM. Interestingly, MC-Dropout has a higher accuracy

than DeepEnsemble. Considering the training cost of DeepEnsemble, using

MC-Dropout is a more favourable choice.

VGG-backed and Resnet-backed methods significantly differ in accuracy. The

gap indicates the sensitivity of the methods to the underlying network architectures.

47

PbThreshold, ScoreSVM, and ODIN all prefer VGG over Resnet even though

Resnet networks outperform the VGG variants in the underlying image classifi-

cation on average. This means that the image classification accuracy may not be

the only relevant factor in performance of these methods. ODIN is less sensitive

to the underlying network. Furthermore, training the discriminator networks with

KWL loss consistently reduces the accuracy of OOD detection methods on average.

ScoreSVM/VGG and ScoreSVM/Res both outperform LogisticSVM/VGG,

and LogisticSVM/Res respectively. Similarly, the autoencoders that were

trained with BCE loss (AEThre./BCE) outperform the ones trained with MSE

loss (AEThre./MSE). Note that we are comparing identical architectures.

Within the nearest-neighbour methods, #-NNSVM, #-BNNSVM, #-MNNSVM,

and #-VNNSVM, the number of the nearest neighbours does not significantly im-

pact the accuracy on average. However, performing the nearest-neighbour in

the input space directly outperforms nearest-neighbour in the latent representa-

tions of autoencoders (BNNSVM, and MNNSVM) and VAE (VNNSVM). Interestingly,

1-NNSVM has a higher accuracy than thresholding the probability (PbThresh)

and DeepEnsemble on average. For #-NNSVM, if the reference samples fit the

GPU memory, a naive implementation could be faster than a forward pass on the

neural networks of large datasets like TinyImagenet.

PixelCNN++, the method that estimates the log-likelihood, has a surprisingly

low accuracy on this problem on average. We suspect the auto-regressive nature of

the model, specifically when coupled with the IID assumption, may be the reason

for its failure. The network approximates the likelihood only in the vicinity of the

training data. If we evaluate the model on points that are far from the training data,

the estimates are not reliable anymore.

Next, we break down the performance and study these methods on each Ds.

Figure 3.5 shows the average test accuracy across each source dataset Ds. For

the full figure, see appendices. Our quantification of performance shows that

all the methods have a much lower accuracy on high-dimensional data than the

low-dimensional data.

In low-dimensional datasets, K-NNSVM performs similarly or better than the

other methods. In the high-dimensional case, however, the accuracy approaches

the random baseline quickly. Interestingly, K-NNSVM performs better on STL10

48

MNIST FashionMNIST CIFAR10 CIFAR100 TinyImagenet STL10
s

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

ea
n

Te
st

 A
cc

ur
ac

y

Random Baseline

Method
BinClass/Res
DeepEns./VGG
1-NNSVM
Log.SVM/VGG
MC-Dropout
ODIN/VGG
ODIN/Res
PixelCNN++
PbThresh/VGG
PbThresh/Res
AEThre./BCE
ScoreSVM/VGG
ScoreSVM/Res

Figure 3.5: The test accuracy over 50 experiments per bar. The error bars are
the 95% confidence level.

(96× 96) than TinyImagenet (64× 64) which might be due to the higher diversity

in TinyImagenet compared to STL10. Given the high accuracy of K-NNSVM in

784 dimensions, it might be feasible to learn an embedding for high-dimensional

data, or learn a kernel function, to replace the original image space and enjoy a high

accuracy. Going from CIFAR10 to CIFAR100, the dimensionality and the dataset

size remains the same, the only changing factor is the diversity of the data and that

seems to make the problem as difficult as the higher dimensional datasets. Except

for K-NNSVM, the accuracy of other methods drops significantly in this transition.

AEThreshold has a near perfect accuracy on MNIST, however, the perfor-

mance drops quickly on complex datasets. AEThreshold also outperforms the

density estimation method PixelCNN++ on all datasets. We did not explore other

autoencoder architectures – more research on better architectures or reconstruc-

tion constraints for AEThreshold may potentially have a high pay-off. The

top-performing method, ODIN, is influenced by the number of classes in the

dataset. Similar to PbThreshold, ODIN depends on the maximum signal in

the class predictions, therefore the increased number of classes would directly affect

both of the methods. Furthermore, neither of them consistently prefers VGG over

Resnet within all datasets. Overall, ODIN consistently outperforms others in high-

dimensional settings, but all the methods have a relatively low average accuracy in

the 60%-78% range.

We can summarize the main observations as follows:

1. Outlier detection with two datasets yielded overly optimistic results with VGG

49

and Resnet.
2. The MC-Dropout and DeepEnsemble uncertainty methods were not

reliable enough for OOD detection.
3. A more accurate image classifier did not lead to a more accurate outlier

detector on average.
4. KWL loss did not yield a better-calibrated model than CE loss for OOD

detection.
5. The autoencoders worked better with BCE loss than MSE loss for OOD

detection.
6. The nearest neighbour methods were competitive in low-dimensional settings,

both in computational cost and accuracy. However, the latent representa-

tions of vanilla (variational)-autoencoders were not useful for this task when

combined with nearest neighbour methods.
7. The state-of-the-art auto-regressive density estimation method had a surpris-

ingly low accuracy, performing worse than the random prediction baseline in

some settings.
8. The number of the classes in a dataset (a proxy to diversity) affected the

accuracy more than the dimensionality of the data in our experiments.
9. Although ODIN outperforms other methods in realistic high-dimensional

settings, its average accuracy is still below 80%.

To perform supervised OOD sample detection in practice, we have to pick a

method and choose a training outlier set Dv. Assuming that Dv may not represent

the full spectrum of anomalies, we should pick methods that do not overfit to Dv.

OD-test tells us which methods are less likely to overfit to a chosenDv and therefore

be more reliable in the face of an unseen OOD sample. Our results show that a

two-dataset evaluation scheme can be too optimistic in identifying the best available

method. OD-test is a more realistic evaluation of OOD sample detectors. In practice,

the outlier set Dv should contain the largest variety of anomalies that we can use,

and the method should be the one that is more accurate and less likely to overfit.

3.6 Research Conclusion
By detecting OOD samples, we can ensure the deep learning pipelines operate

as expected. While similar problems are studied in various domains of artificial

50

intelligence, none of them adequately address this problem. We introduced OD-

test, a new formulation of the problem that provides a realistic assessment of the

OOD detection methods. We further presented a new benchmark for OOD sample

detection within image classification pipelines. We showed that the traditional

supervised learning approach to OOD detection does not always yield reliable results

– the previous assessments of the OOD detectors are potentially too optimistic to

be practical in many scenarios. We presented a comprehensive evaluation of a

diverse set of approaches across a wide variety of datasets for the OOD detection

problem. Furthermore, we showed that none of the methods is suitable out-of-the-

box for high-dimensional images. We believe any progress on this problem could

influence other areas such as active learning or unsupervised learning. We release

the open-source PyTorch project with the pre-trained models to replicate the results

of our study. Furthermore, we invite the machine learning community to tackle the

outlined challenges outlined in this work.

3.7 Follow-up Developments
Ever since the initial publication [129, 130], the interest in out-of-distribution

detection has grown significantly. According to Google Scholar, there are 172

papers on “out-of-distribution detection” published by the research community in

2018, 656 in 2019, and 810 by August of 2020. Our work is primarily cited in the

literature for the results on the unreliability of the existing methods within practical

applications.

As of August 2020, the published work on OOD detection within the major

machine learning venues continues to evolve with the traditional overly-optimistic

binary evaluation schemes.

51

Chapter 4

AutoPortrait: Automatic Portrait
Enhancement from Studios to
Mobile Phones – Portrait
Cropping

In the previous chapters, we studied practical issues that arise in the application

of DNNs. Next, we focus on the application of DNNs in computational photography

within real-world workflows. During a two-year internship with a local photography

studio, we studied three specific problems: portrait colour correction, portrait crop-

ping, and portrait face retouching. The result of our work on these three problems

created the AutoPortrait pipeline. AutoPortrait addresses all three problems. In this

chapter, we present our novel approach to portrait cropping while Chapter 5 presents

our novel approach to face retouching. For colour correction, we use off-the-shelf

techniques with minor adjustments that we describe in Appendix B.2. The material

presented in the following chapters is the result of the author’s work at The Artona

Group and Skylab Technologies. Unless stated otherwise, the images we present in

Chapter 4 and Chapter 5 belong to Artona and are used with permission.

52

4.1 Introduction
Phone cameras have reached an unprecedented level of image quality and resolution.

Huawei, Xiaomi, and Apple products now exceed a level of detail that was once

exclusive to high-end single-lens reflex (SLR) cameras.1 With the advance of

these consumer-level products, demand for image enhancement software has also

increased significantly. Software enhancement features such as DeepFusion, Night

Sight, and artificial Bokeh now exist in virtually all high-end consumer phone

cameras. Post-processing beautification products such as Meitu have surpassed a

hundred million active users each month.2 Further improvement of phone cameras

will only increase the demand for high-quality software enhancement.

On the other side, photography studios process thousands of high-quality por-

traits a day. In the USA alone and within the niche market of school day photography,

studios process over 56 million photos annually. A minimal production pipeline

includes at least three laborious tasks: head cropping, colour correction, and face

retouching. Surprisingly, these tasks are still not automated in the largest studios in

North America that we could reach. Most studios that we surveyed were not happy

with the quality of existing automation products, instead, relying on human labour.

The most common comments we received expressed the following concerns:

1. Automatic colour-correction workflows are not adaptive to the studios’ pro-

duction style.

2. Automatic head cropping applications do not yield consistent head sizes.

3. Automatic retouching destroys the image with “plastic skin” outputs.

We show that the previous work does not adequately address the practical

requirements. Furthermore, the lack of publicly-available datasets has stifled the

development of practical solutions. We take a close look at these tasks, discuss

our findings, present our novel solution inspired by the most recent developments

in computer vision and machine learning, and show that average-consumers and

professionals can benefit from our pipeline. Finally, we release the first large-scale

face retouching dataset with our baseline.
1dxomark.com
2markets.businessinsider.com/news/stocks/meitu-inc-announces-2018-annual-results-1028045640

53

dxomark.com
markets.businessinsider.com/news/stocks/meitu-inc-announces-2018-annual-results-1028045640

Figure 4.1 shows an overview of our AutoPortrait pipeline. Since we are

developing a practical solution for real-world applications, we require the pipeline’s

output to be impeccable – the output image should not be deformed or degraded in

any way. Furthermore, since we process high-resolution images, we need to design

resource-sensitive models: a 24-megapixel image uncompressed in floating-point

precision occupies over 250 MB memory. We first present the problems and discuss

the subtleties that prevent a direct application of the existing methods. Then, we

develop new strategies to address the specific challenges of the application. Our

contributions are:

1. Chapter 4: We introduce the problem of perceptual head cropping. We

describe a novel aesthetic-based head-cropping technique that is robust to

noisy groundtruth. Our method efficiently finds the optimal cropping window

with first-order optimization techniques. We generate perceptually consistent

cropping and can incorporate custom cropping preferences while detecting

failures automatically.

2. Chapter 5: We present a carefully-designed and validated fast face retouching

neural architecture with a low memory footprint that preserves the skin’s

distinctive features while removing imperfections. Our solution enables quick

and high-quality automated face retouching for the first time, producing output

that is more aesthetically pleasant than the groundtruth data. We compare our

method with previous related work qualitatively and quantitatively. We show

that our method generalizes across datasets and is useful for mobile phone

applications.

3. Chapter 5: We release the first large-scale professional face retouching dataset

Flickr-Faces-HQ-Retouched (FFHQR) with our baseline to encourage more

research on this problem.

4.2 Overview
Photography studios usually process a large volume of images during each season.

Each image must go through a photo editing pipeline before it is delivered to the

customers. A basic portrait editing pipeline consists of three steps:

54

1

Input

2

Cropped

3

Colour-Corrected

4

Retouched

Before After

H
ea

d
C

ro
pp

in
g

C
ol

ou
r C

or
re

ct
io

n

Fa
ce

 R
et

ou
ch

in
g

Estimate
Correction

Update

Differentiable
Parametric Colour
Correction Curve

Downsampled
…………….

……………..…
……………..…
…………..…

Convolutional
Neural Network

Figure 4.1: Overview of our AutoPortrait pipeline: (1) 24 MP input portraits,
(2) portraits are cropped to a perceptually consistent size and location, (3)
portraits are colour-corrected, (4) portraits are skin-retouched while pre-
serving fine textures. Each block of our pipeline can be used individually
and generalizes to mobile phone applications.

Head Cropping is adjusting the scale and translation of the head to ensure consis-

tency among all the images within a batch. (Sec. 4.4)

Colour Correction is the process of adjusting the colour distribution within an

image to ensure maximum print quality. There is no standard among the

photography studios on how the image should be colour-corrected. We will

need to learn the subjective preferences of each studio. (Appendix B.2)

Portrait Retouching is the process of removing imperfections (wrinkles, blem-

ishes, eye-bags, etc.) to improve the general aesthetics of a portrait. (Chap-

ter 5)

We will provide a more rigorous definition of each task later. Our pipeline

(Fig. 4.1) mirrors the same steps. Currently, human professionals perform all of

these tasks. As a result of human involvement, the pipelines do not scale and cannot

handle a large volume of images. All of these tasks are laborious. Although some

of these problems appear to be trivial to solve with off-the-shelf methods, we show

that each task comes with unique requirements that the existing techniques fail to

satisfy. Furthermore, for tasks such as skin retouching, there is no prior established

55

academic work. To address these problems, we present our novel approaches that

successfully address (most of) the requirements and perform a careful comparative

study on the alternative methods. In this chapter, we focus on the cropping problem.

4.3 Related Work
Image cropping has an extensive body of research for applications ranging from

thumbnail generation for small displays [25, 26, 100, 141] to phone camera enhance-

ment [99]. The relevant image cropping strategies are broadly (i) landmark-based, or

(ii) aesthetic-based. Landmark-based methods extract target key-points in the image

and perform geometric alignment to determine the cropping window. This approach

can be useful when we target a specific and constrained domain. However, as we

discuss later, the geometric approach does not adequately address our problem.

The aesthetic-based cropping uses an aesthetic function A(x) that measures

the quality of the cropped image x [101, 148]. The early methods for aesthetic

assessment used hand-picked features based on composition rules or image quality

assessment methods [34, 68, 98, 156, 161]. The most recent techniques estimate

the subjective aesthetic function directly from labelled training data. Learning the

aesthetic function has been enabled by the availability of large-scale in-the-wild

datasets such as AVA [105] and CUHKPQ [98].

Given a cropping transformation Tσ(x) parameterized by σ, we can assess

the aesthetic value of a cropping window as A(Tσ(x)). Let us assume σ∗x is

the most aesthetically pleasant cropping window of an image x under A, i.e.,

σ∗x ∈ arg maxσA(Tσ(x)). One way to approach this problem is to learn the best

cropping window estimator g(x) → σ∗x directly as a regression problem. For

instance, Guo et al. [53] use gradient boosting for regression. We will use direct

regression as a baseline for our method.

Li et al. [85] frame the cropping task as a sequential decision-making process

under a reinforcement learning framework within which an agent chooses to adjust

the cropping proposal σ with the goal of maximizing the aesthetic value A(Tσ(x)).

Zeng et al. [160] restrict the search space of cropping windows σ to speed up

aesthetic cropping. Since we cannot easily get individuals to quantify quality, we

usually do not have calibrated samples to learn A. Furthermore, searching over σ to

56

find the highest scoring window [85, 108, 148, 160, 161] is a combinatorial search

that is both expensive and does not guarantee an optimal result. Our approach is a

novel aesthetic-based formulation for cropping that exploits the constraints of the

portrait domain. Specifically, we construct a quadratic upperbound of A, and find

the optimal σ∗ efficiently using first-order optimization techniques within only a

few iterations.

4.4 Visually-consistent Portrait Cropping
Producing visually-consistent head cropping is desirable in several scenarios ranging

from aesthetics improvement to quality assurance. Any software or online service

that displays thumbnails of faces (e.g., Google Photos), can aesthetically improve

with a visually consistent head cropping. Furthermore, within the production

pipeline of professional portraits, we need to ensure all the photos are consistently

cropped to maintain product consistency across the users. The inconsistency of

previous head cropping strategies can be best demonstrated on a grid of portrait

photos (Fig. 4.2). In real-world scenarios where the aesthetic aspect of a portrait

product is important, at least two iterations of human labour is needed to crop and

compare the final images.

At first glance, a geometrical facial landmark-based approach to image cropping

seems sufficient [67, 161]. However, as shown in Figure 4.2, facial landmarks alone

are not sufficient to create visually consistent portraits. A fixed pattern of landmark

locations results in an inconsistent head sizing as variations between the individuals

affect the scaling. In Fig. 4.2, we align the facial landmarks to the most similar

landmarks in the training groundtruth data. The results do not appear harmonious,

most noticeably in the scale. The perceptual judgment appears to dominate any

geometrical arrangement when it comes to faces [139, 157]. Perceptual factors

such as head shape, face tilt, shoulder size, perceived age and gender, clothing, and

glasses all contribute to consistent-looking cropping.

We need to capture the subjective perception of head size to create consistent-

looking portraits. We call this problem perceptual head-cropping (PHC) to empha-

size the role of perception in the cropping problem. Although the general cropping

problem is studied in the computer vision literature, to the best of our knowledge,

57

Pe
rc

ep
tu

al
 (o

ur
s)

1 2 3 4 5 6 7 8

G
eo

m
et

ric
al

Figure 4.2: A comparison of geometrical landmark alignment to ours. Images
(1), (5), (6), and (7) are relatively too small with geometrical alignment.
Our perceptual approach creates more consistent head-sizes.

Figure 4.3: The red boxes are the reference cropping windows.

the perceptual head-cropping problem has been overlooked.

In the general cropping problem: (i) there could be several distinct cropping

windows with equally high aesthetic value, and (ii) the problem is generally not too

sensitive to the scaling of the window – a slightly larger or smaller window than the

groundtruth is still acceptable. However, in the perceptual head cropping problem,

there is only one globally optimal window at every scale. Unlike previous work, we

do not learn an explicit aesthetic function. We exploit the uniqueness property of

the portrait cropping problem and learn a gradient estimator of a proxy aesthetic

function with respect to the cropping parameters (we will discuss this at length

shortly). This modelling assumption allows a straightforward mechanism to find

58

the optimal σ∗ with first-order optimization techniques.

Given the image x and the current cropping window σ, our model predicts

how the cropping window can be aesthetically improved. To find the optimal

cropping, we run gradient descent: we iteratively follow the predictions starting

from an initial configuration. If the aesthetic function A is concave in σ, this

approach yields the optimal cropping – the stationary point is the optimal point

by definition. Although the function A may be quasi-concave in σ for portrait

cropping, we can construct a concave lower-bound to find σ∗. Therefore, we can

use convex optimization methods to efficiently find σ∗ instead of expensive search

strategies [86, 150, 152, 160].

Formulation

Let us define f(σ, x) := −A(Tσ(x)). f gives the negative aesthetic value of

cropping x with a window parameterized by σ – we take this step so that the

inference problem becomes a minimization of f with a cleaner, more familiar,

notation. Recall that σ∗x is the optimal cropping parameter for image x. We can

construct a convex upper-bound proxy f̃ over σ as follows:

f(σ, x) ≤ f̃(σ, x) :=
1

2
‖σ − σ∗x‖22 + f(σ∗x, x), (4.1)

where the first term is an `22 error on the distance from the optimal σ∗x, and the second

term is the optimal aesthetic value. Note that at the optimal point σ∗x the proxy

and the true function touch: f̃(σ∗x, x) = f(σ∗x, x). We chose `22 error to make f̃ a

strongly-convex function with respect to σ. Since we will be using gradient descent

for inference, a strongly-convex function can help us with faster convergence. The

interesting aspect of this formulation is the simple structure of the gradient with

respect to σ:

∇σf̃(σ, x) = σ − σ∗x (4.2)

The above gradient returns the negative direction and magnitude to improve a given

σ on image x. To train a model, we learn to estimate ∇σf̃(σ, x) through regression

using a deep neural network with groundtruth from Eq. 4.2. For inference, we rely

on first-order convex optimization techniques.

59

Method Inference Inference with Constraint Failure Detection Require Aesthetic Func.

A2-RL [85] Reinforcement Learning 7 7 3

CCR [53] Direct Regression 7 7 3

EIC [160] Grid Search 3 7 3

MARS [87] Direct Regression 7 7 7

Ours Gradient Descent 3 3 7

Table 4.1: A comparison of aesthetic-based cropping algorithms.

Our approach can be viewed as a generalization of the previous work. If we had

chosen an `1 error in Eq. 4.1 we would have arrived at the discretized reinforcement

learning (RL) of Li et al. [85] as a special case. The gradient of an `1 error is the

sign function, the possible values of which corresponds to the action space described

in Li et al. [85]. Since we do not rely on reinforcement learning our results are

easily reproducible. Furthermore, our approach is much faster in training (because

we do simple regression) and inference (in Sec 4.5 we show that our model finds σ∗

in fewer than 10 iterations).

Alternatively, our method can also be interpreted as a variation of the gradient

boosting approach of Guo et al. [53], where we (re)use a single neural network for

regression and run a variable number of iterations while incorporating cropping

constraints. As a result, our method is faster in training (because it is not sequential),

smaller in size (because we use a single model), and more flexible (because we

can incorporate projection and a variable number of iterations without breaking the

assumptions of the model). Furthermore, we can automatically detect failures (see

Sec. 4.5). None of the previous work is able to detect failures automatically.

Table 4.1 and Tab. 4.2 show a comparison with other state-of-art methods for

the general cropping problem. Since we are making specific assumptions about the

optimal cropping (uniqueness and existence of quadratic upperbound), our method

cannot be evaluated in the general aesthetic-based cropping domain. We also could

not find any implementations of the previous work for comparison in our domain.

For comparative evaluation, we will be comparing against optimized baselines of

direct regression and landmark-alignment-based approaches.

60

Method Inference General Purpose Sensitive to Scale Multi-window Support

A2-RL [85] Reinforcement Learning 3 7 3

CCR [53] Direct Regression 3 7 7

EIC [160] Grid Search 3 7 3

MARS [87] Direct Regression 3 7 7

Ours Gradient Descent 7 3 7

Table 4.2: A comparison of aesthetic-based cropping algorithms.

Reference Cropping

We first crop the images into a perceptually-consistent reference window. Since

all the portraits are consistent in the reference view, we can create arbitrarily

desired cropping windows post-inference through an affine update of the cropping

parameters (see appendices for more details). We define the reference cropping

as a 120× 160 image. Figure 4.3 shows the reference cropping window on input

portraits. We chose this representation because it is large enough to contain the

crucial information for perceptual cropping and small enough to hide away irrelevant

patterns. We also experimented with 100 × 140 windows and achieved similar

quantitative results. The exact window size of the reference view does not seem to

matter as long as consistently-cropped training data is available.

Parametrization

We define the parameter space σ = [log(ts), tx, ty]
T, where ts is the scaling factor,

and tx, ty are the top-left corner of the reference cropping window. Note that

the reference cropping window has a fixed aspect ratio (100 × 140). Therefore,

we can represent all the cropping configurations with three parameters. Since a

neural network approximate of ∇σf̃(σ, x) is noisy, during the optimization we may

walk into a region of the parameter space that is not feasible on the input image.

Furthermore, the image may not have enough margin around the subject for the

reference cropping window to be viable. In both of these cases, we need a projection

step into the feasible σ set. The projection is implemented as a QP-program under a

weighted `2 norm (see appendices). We use the MobileNetV2 [123] architecture to

approximate∇σf̃(σ, x).

61

Training

The data consists of 16,458 training samples {(xi, σ∗i)} provided by a photography

studio (see Fig. 4.3). We split the dataset to 13,166, 1645, and 1647 for train,

validation, and test. To train the model on each iteration, we sample a cropping

σ and use Eq. 4.2 to compute the groundtruth gradient vector. We then train

the neural network in a supervised fashion using (Tσ(x),∇σf̃(σ, x)). We use

PyTorch [111], and Adam [72] on mean squared error (MSE) with learning rate

10−3 for optimization. We train for 2000 epochs with batch-size 128 in 4 hours on

an RTX 2080Ti. We use the model with lowest validation error.

Inference

Now we have a neural network function that approximates ∇σf̃(σ, x). We can use

this function to infer the optimal σ∗x. For inference, we apply the projected gradient

algorithm using our gradient estimator. In Sec. 4.5, we experiment with several

initialization methods and learning-step strategies. We show that our formulation

allows the detection of failures automatically. We terminate the procedure when the

norm of the gradient mapping falls below a threshold τ (Def. 2.2.3 Nesterov [106]):

1

γt
‖σt −Πc[σt − γt∇σf̃(σ, x)]‖2 < τ, (4.3)

where σt is the estimate at iteration t, Πc is projection to the feasible set c derived

from the feasibility constraints on the original image (see appendices), and γt is the

step-size. When the optimal cropping window σ∗ is feasible, this definition reduces

to a threshold on the gradient norm.

Unlike previous work, we do not learn an explicit aesthetic function. We learn a

gradient estimator of a proxy aesthetic function over the cropping parameter instead.

This modelling assumption yields an efficient mechanism to find σ∗ with first-order

optimization techniques. In Sec. 4.5, we show that our method also converges

quickly to a more accurate estimate than the baselines.

62

4.5 Evaluation
For evaluation we use the 1647 held-out test set for image cropping. Mean inter-

section over union (mIoU) and `2 distance are the common evaluation measures

in image cropping. We use the `2 distance to the groundtruth to report our results.

For initialization of inference in our experiments we (i) scale the image so that the

smallest dimension matches a 120× 160 window. This operation corresponds to

initialization of σ0 = [log(s), 0, 0]T, where s is the downscaling factor (we call this

simple initialization), and (ii) initialize σ0 with uniformly random translation and a

Gaussian random scale centred around 2 ∗ s with a variance of 0.2 ∗ s (we call this

random initialization).

We experiment with three step-size strategies from the stochastic gradient

descent literature: (i) constant step-size γ, (ii) decreasing step-size γ√
t
, and (iii) γt ,

where t is the iteration and γ is a constant. Note that a constant step-size strategy

will be sufficient with inexact gradient estimates from a theoretical standpoint. This

experiment is meant to provide more insight into the behaviour of the model.

Figure 4.4 shows the results for γ = 1. The error is measured using the

groundtruth values σ∗i . Running the optimization from the same initial point, all

three step-size strategies converge to a stationary point with the same error. The

behaviour of the function described by our gradient estimator is consistent across

the three paths. A constant step-size reaches close to the stationary point within five

iterations on our test set on average.

Based on Fig. 4.4, the gradient-norm also drops below 1.0 whenever the opti-

mization has converged, which indicates a natural termination criterion could be

the norm of the estimated gradient. Note that a gradient norm of 1.0 indicates a

sub-pixel translation update, which does not affect the output image because of

spatial discretization. Both random initialization and simple initialization converge

to the same average error. Although our approximation of∇σf̃(σ, x) is noisy, the

inference procedure makes progress in the correct direction on every iteration.

In Fig. 4.5 we examine the top-5 errors on the test set. The error appears to

be the accumulation of groundtruth noise in the data. Based on the results, we use

constant step-size γ = 1 and terminate the inference when the gradient mapping

norm is less than one for the remainder of the experiments.

63

1 2 3 4 5 10 50 100
Iteration (log)

1

2

3
4
5

10

15

2
er

ro
r

(l
og

)

Simple Initialization
Method
const (1)
1/sqrt(t)
1/t

1 2 3 4 5 10 50 100
Iteration (log)

1

2
3
4
5

10
15

||
f|

| 2
 (

lo
g)

Simple Initialization
Method
const (1)
1/sqrt(t)
1/t

1 2 3 4 5 10 50 100
Iteration (log)

1

2
3
4
5

10
15

2
er

ro
r

(l
og

)

Random Initialization
Method
const (1)
1/sqrt(t)
1/t

1 2 3 4 5 10 50 100
Iteration (log)

1

2
3
45

10
15

||
f|

| 2
 (

lo
g)

Random Initialization
Method
const (1)
1/sqrt(t)
1/t

Figure 4.4: Cropping inference. Prediction error (left) and gradient norm
(right) of our cropping algorithm using three step-size strategies with
simple initialization (see text), and random initialization. The shaded
area marks one standard deviation.

Method Mean `2 Error

Landmark Alignment [67, 161] 11.71
DNN Regression 4.76

Ours 3.10

Table 4.3: Baseline Comparison. For DNN Regression we use the same Mo-
bileNetV2 [123] architecture.

64

G
ro
un

dt
ru
th

Pr
ed

ic
tio

ns

Figure 4.5: Samples with the highest cropping error on the test set. The top
row is the groundtruth, and the bottom row is the prediction of our model.
Even though the groundtruth data is noisy, our model has learned to
produce more consistent cropping than the data. Images are blurred for
anonymization.

Table 4.3 compares the performance of our method with two baselines. Direct

regression with the same network architecture yields a mean `2 error of 4.76,

whereas our model reaches 3.10 mean error after only five iterations. A landmark

alignment strategy where 68 facial key-points are aligned to the average location of

groundtruth landmarks yields an error of 11.71.

To determine whether the model always converges to the same stationary point,

we run 20 inferences with random initialization. For each image in the test set, we

calculate the `2 distance between all 20 final predictions and take the maximum

value. The average maximum prediction distance over the entire test set is 1.523.

On average, all the predictions reach a stationary sphere with a radius of 0.76.

One of the current challenges in deploying neural-network-backed systems is

automatic failure detection [35, 114, 130]. Our method allows automatic failure

detection. To demonstrate this, we rotate half of the test set by randomly chosen

[90◦, 180◦, 270◦] so that correct cropping may not be achievable. After 20 iterations,

the maximum gradient norm of the correctly oriented images is 1.78, whereas the

minimum gradient norm of the rotated images is 5.35 – we can detect failure in this

65

scenario with 100% accuracy. Running the inference longer does not reduce the

gradient of the anomalous results. We detect the failure when the inference has

failed to reach a stationary point after a fixed number of iterations.

4.6 Conclusion
We presented the perceptual cropping component of AutoPortrait. We reviewed the

deficiencies of the previous work and presented a novel method to address those

weaknesses. Our method generates perceptually consistent cropping of portraits

within a few iterations and detects failures automatically. During the past year, our

cropping method has been used successfully in the production pipeline of more than

500,000 professional portrait photos.

66

Chapter 5

AutoPortrait: Automatic Portrait
Enhancement from Studios to
Mobile Phones – Portrait
Retouching

In this chapter, we go through the face retouching problem and present our so-

lution. Face retouching is one of the most time-consuming steps in professional

photography pipelines. The existing automated approaches blindly smooth the

skin, destroying the delicate texture of the face. We present the first automatic

face retouching approach that produces high-quality professional-grade results in

less than two seconds. Unlike previous work, we show that our method preserves

textures and distinctive features while retouching the skin. We demonstrate that

our trained models generalize across datasets and are suitable for low-resolution

cellphone images. Finally, we release the first large-scale, professionally retouched

dataset with our baseline to encourage further work on the presented problem.

5.1 Related Work
To the best of our knowledge, very little prior work exists for face retouching.

Lin et al. [93] present an exemplar-based freckle retouching technique using a

67

small dataset of cosmetic laser therapy. In the commercial domain, there is Visage

Lab, BeautyPlus, Meitu, and Facetune, to mention a few. All of the available

products provide face retouching and beautification tools, but none of them are

fully automatic. Furthermore, none of these tools can provide high-quality, high-

resolution face retouching even when all the parameters are carefully tuned. The

existing methods apply “blind” smoothing, where moles and freckles disappear, and

fine skin-texture is destroyed (see Fig. 5.3). Our method preserves the identifying

features of skin while removing imperfections at a high-resolution. We also release

the first large-scale retouching dataset with our baseline to encourage further work

on this problem (see Fig. 5.1).

A natural starting point for skin texture synthesis during retouching is through

generative adversarial networks (GANs) [49]. GANs are a broad class of generative

models within which two neural networks, a generator and a discriminator, compete

against each other. During the training, the generator G produces samples from a

fake distribution D̃ while the discriminator D tries to detect whether the incoming

samples are from the target distribution D, i.e., , if the image is real or fake. The

objective of GANs is to learn a generator G such that the real distribution and the

fake distribution are approximately equal, i.e., , D̃ ≈ D. Over the previous years, the

research community has focused on improving the training time, stability, quality,

and analysis of samples generated by GANs [12, 18, 51], while simultaneously

identifying new applications [60, 66, 136].

One of the major developments based on GANs is the image-to-image transla-

tion method Pix2Pix [60]. Pix2Pix uses a conditional GAN loss plus `1 loss to learn

a mapping x→ y. The authors use a U-Net [119] generator and a PatchGAN [84]

discriminator. The PatchGAN discriminator model assumes independence between

pixels separated by more than the patch window width. The authors present several

use cases of Pix2Pix applications with impressive results. Our approach is similar

to Pix2Pix [60] in the way that we learn a mapping function from original images to

retouched images. However, our (i) network architectures, (ii) training loss function,

and (iii) data augmentation schemes are different and demonstrably necessary to

perform professional face retouching. We will further discuss the differences in

Sec. 5.3 and will provide comparisons in Sec. 5.4.

68

5.2 Flickr-Faces-HQ-Retouching (FFHQR) Dataset
Before discussing our method, we first introduce a new face retouching dataset

based on the Flickr-Faces-HQ (FFHQ) dataset [66]. The original FFHQ dataset

consists of 70,000 1 MP face-aligned images that are collected from Flickr. We

chose FFHQ as the basis of our new dataset because of the variety of ages, ethnicity,

lighting conditions, and the large number of images that could benefit from face

retouching. To create the new dataset, we hired a team of professional image editors

to retouch the images. See Fig. 5.1 for samples of our dataset. To the best of our

knowledge, FFHQR is the first publicly available retouching dataset.

One of the key features of professional retouching is that the image updates

are sparse – most of the pixels do not change. This attribute is unlike the result

of commonly used blurring in the commercial applications where the entire skin

is smoothed to remove blemishes. The FFHQR dataset reflects this professional

retouching style. Figure 5.2 shows a scatter plot of the percentage of pixel change

versus the mean absolute value of pixel updates (range [0, 255]). In the majority

of images, less than 40% of the pixels are edited. Furthermore, most pixel value

changes are in the [100, 200] range. This observation has implications in model

design: the retouching methods should facilitate learning a function that preserves

the input values strictly.

We also experiment with studio data and measure cross-dataset performance.

We present more information about the studio in the next section. The FFHQR

dataset and the evaluation scripts are available at https://github.com/skylab-tech/

ffhqr-dataset.

5.3 Texture-preserving Portrait Retouching
The final step of our AutoPortrait pipeline is skin retouching. Professionally re-

touched images must retain moles, freckles, and other distinctive features. Fur-

thermore, the output must preserve the colour tone of the original image (colour-

correction is a separate task in professional photography). The model must distin-

guish the features of the image that must be retained and the features that must be

removed. Skin smoothing, which is the common algorithm in existing applications,

will not preserve the identifying features. Furthermore, a blind smoothing alters

69

https://github.com/skylab-tech/ffhqr-dataset
https://github.com/skylab-tech/ffhqr-dataset

Figure 5.1: Three samples from the Flickr-Faces-HQ-Retouching (FFHQR)
Dataset. The left image is the original image from FFHQ [66], and the
right image is the retouched version in our dataset. The figure is best
viewed on a screen.

70

Figure 5.2: The scatter plot of FFHQR pixel update statistics. The y-axis is
the percent of updated pixels per image. The x-axis is the mean absolute
value of pixel updates. For the majority of images, less than 40% of
pixels change.

the delicate texture of the original skin (see Fig. 5.3). Therefore, a desirable and

practical retouching model needs to:

1. Preserve the image structure.

2. Preserve the image texture while also performing skin retouching.

3. Generalize to a variety of skin tones and lightings.

To address these concerns, we carefully build a fully convolutional neural

network that filters the input image. For (2), a safe strategy is to train models

that only retouch known imperfections. Since we need to process high-resolution

images, even the slightest error will be visible. We empirically verify that our final

model only removes the known skin imperfections and preserves everything else.

Furthermore, we show that our method performs automatic face retouching while

preserving the natural quality of the image. Interestingly, we present empirical

results that indicate that our final model produces a more aesthetically pleasant skin

retouching than the training data.

71

Figure 5.3: Automatic skin retouching. The left image is the original image,
the middle image is the AI-assisted retouching of BeautyPlus, the right
image is the automatically retouched image by our method.

Architecture

In our experiments, we observed that downscaling the image tensors to a factor

smaller than half leads to slight pixel displacement and loss of the original texture

in the output space. This observation eliminates most of the typical architectural

choices such as U-Net [119] in Pix2Pix [60] since there are usually several levels

of down-sampling in the architecture. We limited the downscaling in our network

architecture search to preserve fine details.

Furthermore, we observed that incorporating additive skip-connection shortcuts

decreases the random jitters in the output. Since we expect the majority of the pixels

to remain unchanged, the skip connections also allow for more direct transfer of the

input to the output.

Since we do not perform much downscaling, the depth of the architecture and

the number of kernels would typically become limited by the available GPU memory.

72

C
on

v
(7
×7

)
3→

64
 S

tri
de

 2

C
on

v
(7
×7

)
3→

64

Le
ak

yR
eL

U
+

15×

C
on

v
(3
×3

)
12

8→
12

8

Le
ak

yR
eL

U

Ba
tc

hN
or

m

C
on

v
(3
×3

)
12

8→
12

8

Le
ak

yR
eL

U

Ba
tc

hN
or

m

+

C
on

v
(3
×3

)
12

8→
64

U
ps

am
pl

e
N

ea
re

st
 x

2

Le
ak

yR
eL

U

C
on

v
(3
×3

)
64
→

3

IN
PU

T

O
U

TP
U

T

Figure 5.4: Our retouching network architecture.

However, face retouching is mostly a local operation – the correction of any pixel

does not depend on far away pixels. This feature is unlike typical Pix2Pix-like

applications, where the network takes the global context of the input image into

account to generate the output. This problem structure enables a sliding-window

strategy that we exploit with convolutional architectures [96]. Without loss of

generality, we utilize more kernels and deeper architectures by limiting the input to

a large-enough w × w sub-window.

Given that we limit our network’s receptive field, the resulting models are not

statistically dependent on the entire image – this provides more robustness to out-of-

distribution test images, which enables a broader application than just the training

image distribution. Combined with our data augmentation schemes, we show that

our models can generalize across datasets with substantial domain shift. See Fig. 5.4

for our final generator architecture. We use the same discriminator architecture as

Pix2Pix [60].

Training

The loss function that we use for training consists of (i) Relativistic Average GAN

loss [49, 63], (ii) perceptual loss [61], and (iii) direct mean squared-error (MSE):

LG = α · LGragan + β · Lperceptual + γ · Lmse (5.1)

We set α = 10−3, β = 6 · 10−3, γ = 0.5 in our experiments. For the Relativistic

Average GAN, we use a running estimate of 300 previous predictions. For the

perceptual loss, we use mean squared-error on the output features of the 14th layer

73

in the 19-layer VGG model [138].

We experimented with the original GAN [49] as well as other variants such as

WGAN [12]. Overall, we were able to achieve the best results using RAGAN [63].

We also experimented with `1 loss, but we found that the model with mean-squared-

error loss converges much faster. Similar to Pix2Pix [60] we combine traditional loss

functions with GAN-type loss functions. However, we (i) specifically use RAGAN,

we (ii) also include a perceptual loss function, and (iii) use mean-squared-error

instead of `1 loss. In Sec. 5.4, we do an ablation study to show how much each term

of the loss function contributes to the output retouching quality. Our results indicate

that each term contributes to the overall performance, and the synergy of the loss

functions creates a strong baseline for automated professional face retouching. We

show that our final model yields retouching results that are qualitatively better than

the groundtruth data.

We repeatedly perform one gradient descent step on D and one gradient descent

step on G to train our models. We train the studio data model for approximately two

weeks on three 2080 Ti GPUs and one 1080 Ti. We train a model on the FFHQR

dataset in just five days. We run the training for 500 epochs and set w = 150 px.

We set the batch-size to 75, the learning rate of Adam [72] to 2 · 10−4 for our model

and 10−4 for RAGAN discriminator.

Data Preprocessing

We use before-after professionally retouched image pairs for the training. We sample

w × w image patches from the training data and perform mirror augmentation and

colour perturbation during the training. To encourage scale-invariance, we randomly

downscale the images before sampling. Since there are quadratically more w × w
windows in larger images than the spatially smaller ones, uniformly random scaling

under-represents the patches in the larger images. To fix the under-representation,

we first take a random scaling factor s ∼ Unif(smin, 1), where smin is the smallest

acceptable image scale cubed, and downscale the image to s
1
3 . This change of

variable ensures all windows in all image scales are equally likely (see appendices).

We evaluate our model using both the newly presented FFHQR dataset and

also studio data. The FFHQR data consists of 70,000 image pairs of original and

74

retouched images. We use 56,000 images for training, 7000 images for validation,

and 7000 images for testing. The studio data contains 203,725 image pairs of

original and retouched images. We split the studio data into 158,683, 22,409, and

22,633 for train, validation, and test. Following the same procedure as Karras et al.

[66] (FFHQ), we pre-process the studio data by cropping the images to the head.

While FFHQR is free-form in-the-wild photos of faces, the studio data is captured

in strictly controlled, well-lit conditions with DSLR cameras.

The code to reproduce our results is publicly available at https://github.com/

skylab-tech/autoRetouch.

5.4 Evaluation
Figure 5.5 shows sample outputs of the AutoPortrait pipeline.

Portrait Retouching

Portrait retouching evaluation presents a similar set of challenges as the super-

resolution (SR) literature. While the assessments in the SR literature primarily rely

on reproducible measures such as PSNR and SSIM [151], Blau et al. [19] show

that none of these metrics translate into a better perceptual result beyond a certain

accuracy. In face retouching, this issue is more severe. Since professional retouching

mostly produces sparse image updates, the before and the after images are already

very similar before any processing. As a result, both of these metrics yield very

high values, with only a slight variation across experiments. Our evaluation results

on face retouching also confirm the findings of Blau et al. [19]: neither PSNR nor

SSIM are reliable performance indicators for high-quality face retouching methods.

An alternative assessment in the SR literature is the subjective mean-opinion-

score (MOS), where human subjects compare the perceptual quality of images

generated with multiple algorithms. The MOS score is generally regarded as not

reproducible and expensive to obtain. However, this approach can perceptually

validate and compare different methods to produce reliable rankings.

To the best of our knowledge, there is no scalable and objective measure of

quality for our application at the time of writing. We provide quantitative PSNR and

SSIM comparisons as well as user-oriented studies. To perform the user study, we

75

https://github.com/skylab-tech/autoRetouch
https://github.com/skylab-tech/autoRetouch

Figure 5.5: Sample end-to-end results from AutoPortrait.

76

Figure 5.6: Outputs of Pix2Pix, FFHQR model, and the studio model on the
FFHQR test set. The studio model generalizes well to FFHQR data even
though there is a considerable domain shift. The Pix2Pix results often
contain artifacts.

present professional retouchers with two methods’ outputs and ask them to either

choose the best output or skip if the images are too similar. We capture their choices

and the time that it takes to make a decision. See appendices for more details of our

setup.

For evaluation, we use a single RTX 2080Ti GPU. For Pix2Pix [60], we use the

provided code and the recommended configuration by the authors. Figure 5.6 shows

the output of our method when trained on FFHQR and the studio data. The studio

model is only trained with the controlled studio data, whereas the FFHQR model is

directly trained on FFHQR. Both of our models perform retouching well. However,

Pix2Pix [60] fails to perform retouching and degrades the image. Figure 5.7 shows

the test samples of retouched image patches based on our trained model on the

studio data. Our model consistently preserves the moles and other identifying

features while removing imperfections.

77

Original
Automatically
Retouched Original

Automatically
Retouched

Figure 5.7: Sample outputs of our retouching model. The figure is best viewed
on a screen.

78

Input Groundtruth
Automatically
Retouched

Figure 5.8: The output of our model versus the groundtruth retouching. The
left column is the input, the middle column is groundtruth retouching,
and the right column is our output. Our model preserves the fine details
more than the groundtruth. See appendices for more images.

79

Input
Automatically
Retouched Input

Automatically
Retouched

Figure 5.9: Sample input/output of retouched images captured with cellphones.
The figure is best viewed on a screen. See appendices for more images.

Figure 5.8 compares the retouching output of our model with the groundtruth

patches on the studio data. Notice that our model preserves the fine texture better

than the groundtruth images. We suspect this happens because, in real-life retouch-

ing, the professionals may use large brushes for correction that inadvertently affects

areas of the image that do not require retouching. Our model, however, operates at

the pixel level and can preserve details at no extra cost. Furthermore, in Sec. 5.4, we

perform ablation studies on the effect of each term in the loss function. We observe

that adding the RAGAN loss term encourages the model to preserve the input as

much as possible. The preservation of the details produces retouching models that

produce better images than the groundtruth retouching data. We observe the same

trends in our user study.

We also test our studio retouching model on lower-resolution smartphone camera

images. The images are captured with iPhone 6 or iPhone X. Figure 5.9 shows

sample outputs from our tests. Although the studio model is not trained on cellphone

images, it generalizes to lower-resolution and noisy images.

In Fig. 5.10, we test if the retouching network corrects unfamiliar patterns in

the image. We manually add brush strokes of different colours and brush sizes with

80

Original Modified

In
pu

t
R
et
ou

ch
ed

Figure 5.10: Our retouching model does not change unfamiliar patterns in
the image. The model appears to be only responding to known skin
imperfections. This behaviour is desirable in professional retouching to
ensure distinctive features are preserved.

varying opacity to an image and process it using our model. Fig. 5.10 shows that our

model did not change the added brush strokes. This behaviour is a desirable feature

in professional face retouching since we wish to preserve the distinctive features as

much as possible – it is safer for the model to retouch only known imperfections

that require correction.

Figure 5.11 shows some of the failure cases of our retouching model. The images

that our model fails to correct usually contain severe skin blemishes. Although our

model improves the output image, it does not eliminate the blemishes.

Ablation Study

We perform a qualitative and quantitative ablation study to compare the effect of

each term in Eq. 5.1. We run the following experiments on the loss function L:

81

Input
Automatically
Retouched Input

Automatically
Retouched

Figure 5.11: Failure cases. Our retouching model fails when blemishes are
severe.

1. Only mean squared error (MSE) (α = β = 0).

2. MSE and Perceptual (α = 0).

3. MSE, Perceptual, and RAGAN.

For this evaluation, we run the experiment on a subset of 7905, 950, and 988 studio

images for train, validation, and test, respectively. On FFHQR, we train on the entire

training data. We run the training for 300 epochs and leave the other parameters as

the original experiment. The training of each configuration takes 19 hours on studio

data and three days on FFHQR. For each configuration, we use the model with the

lowest validation loss.

Table 5.1 shows the quantitative results. Since the before and after images are

almost identical (except for the sparsely retouched regions), both PSNR and SSIM

metrics will be too high. While in the super-resolution literature the best PSNR

≈ 25, and SSIM ≈ 0.75 [97], the “no edit” baseline already achieves PSNR = 45

and SSIM = 0.99 on FFHQR. Except for one case, the numerical results indicate

that adding more terms to the mean-squared error (MSE) hurts the performance

in terms of PSNR and SSIM. However, our user study reveals that the addition of

perceptual loss and RAGAN improves the quality of retouching by a large margin

82

Studio Data FFHQR

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

No edit (input→ output) 39.12 0.9807 45.58 0.9938

(1)

MSE 39.58 0.9858 40.53 0.9876
MSE + Perc. 39.41 0.9875 39.04 0.9889
MSE + Perc. + RAGAN 41.04 0.9865 44.82 0.9944
Pix2Pix [60] 28.12 0.8893 29.58 0.9224

(2)

MSE 40.01 0.9844 45.88 0.9949
MSE + Perc. 39.88 0.9851 45.00 0.9952
MSE + Perc. + RAGAN 39.65 0.9849 44.92 0.9952
Pix2Pix [60] 30.29 0.9152 33.45 0.9585

Table 5.1: Quantitative results using PSNR and SSIM. (1) is trained on studio
data, (2) is trained on FFHQR.

Voted 1 ↑ Voted 2 ↑ Undecided

Method 1 Method 2 % Time (s) % Time (s) % Time (s) n

(1)
Ours MSE 50.1% 28.0 17.9% 24.0 32.0% 26.3 730
Ours MSE+Perc. 28.3% 30.9 22.9% 30.3 48.8% 26.1 791
Ours Pix2Pix [60] 100.0% 1.9 0% - 0% - 508

(2)

Ours MSE 94.6% 12.2 4.4% 19.5 1.0% 19.6 802
Ours MSE+Perc. 95.7% 9.8 3.4% 17.5 0.9% 15.7 898
Ours Pix2Pix [60] 99.9% 1.3 0.1% 0.9 0% - 1008
Ours Groundtruth 76.3% 8.4 18.7% 12.0 5.0% 19.0 672

Table 5.2: Human perceptual test. In each evaluation, we asked the subjects to
chose their favourite method between two options. The participants could
skip if the images were too similar. We measure how often a method is
chosen and how long it took to make a decision. The time column shows
the median time. (1) Models are trained and tested on FFHQR; (2) models
are trained and tested on studio data.

(see Tab. 5.2 and Fig. 5.12). This observation is consistent with Blau et al. [19] – a

higher PSNR or SSIM does not necessarily translate into higher perceptual quality.

Figure 5.12 shows the qualitative results of our ablation study. While MSE

yields impressive results in retouching, it is easy to see the output of this network

is smoothed, and sometimes fine textures (e.g., freckles) are removed. Although

83

Input MSE MSE+Perceptual MSE+Perceptual
+RAGAN

Figure 5.12: The effect of loss function on retouching. Using MSE loss alone
leads to smooth images, which is improved by adding a perceptual loss.
However, a perceptual loss still does not preserve fine details. Adding
an adversarial loss encourages the network to make as few changes on
the image as possible. The figure is best viewed on a screen.

84

the images may appear pleasant at a low resolution, they do not possess the level

of quality that is essential to professional high-resolution production. Adding

perceptual loss improves the output by sharpening the image, but the network still

does not preserve the input’s delicate texture at all times. When we add the RAGAN

loss, the network (seemingly) learns to minimize the output space changes, which

results in minimal retouching that preserves the input details as much as possible.

This quality leads to a better retouching than the groundtruth data (see Fig. 5.8).

Table 5.2 shows a summary of our user study results. We present the users with

randomly ordered images of two test methods and ask them to pick the best photo.

See appendices for a complete description of the setup. We run this experiment

on both studio data and FFHQR, comparing against Pix2Pix [60] and models

produced by our ablation study. Our proposed loss combination is favoured over the

alternative more frequently across all the experiments. The preference gap between

our method and the two alternatives is much larger on the studio data than for the

FFHQR dataset. Furthermore, it took the users much longer to pick the best output

on FFHQR than studio data. This gap is due to the higher quality imaging of the

studio data compared to the in-the-wild FFHQR. While our proposed method still

outperforms the alternatives, the difference is much more evident in the higher

quality photos.

We also compare the output of our method with the groundtruth on the studio

data. Since the studio images contain more details in perfect lighting, it is much

easier to compare and perceive the difference. The skin-quality of our method

is more frequently favored over the groundtruth data. Pix2Pix is seldom chosen,

mainly because of the visible artifacts in the image. It took the users an average

of two seconds to determine which output is better on both of the experiments

that involved Pix2Pix models. Our proposed method perceptually outperforms

alternative design choices despite having a slightly lower PSNR and SSIM.

We also have validated our automatic retouching model in real-world appli-

cations. Over the past year, our workflow has assisted professional retouching of

over 1,000,000 portraits. Typical failures that we have encountered (< 2%) are

when the image patches require a substantial amount of change, or the skin blemish

is atypical. This usually happens when an extended region of the skin is covered

in hard blemishes, and the natural colour of the skin is no longer apparent (see

85

Fig. 5.11). In these cases, the model removes the blemishes most often, but the area

remains slightly red.

Our retouching model is only 20 MB and requires 2580 MB GPU RAM to

process an input image of 1024 × 1024 in 1.1 s on a Titan RTX 2080Ti, or 1.9 s

on a 1080Ti. The processing window size could be optimized according to the

available resources down to a w × w sub-window at a time, while still producing

an identical image. In contrast, the Pix2Pix [60] model is 208 MB and occupies

1340 MB memory while processing each image in 1.82 s on a 1080Ti.

5.5 Conclusion
We presented the AutoPortrait pipeline for automatic portrait enhancement. Our

pipeline performs perceptual cropping, subjective colour correction, and face re-

touching. We explained the subtleties of each subproblem, discussed the shortcom-

ings of the previous work, and introduced our novel solutions to address the specific

challenges. Furthermore, we compared our cropping and retouching models with

several baselines and highlighted the improvements. We release the first large-scale

retouching dataset FFHQR and invite the community to improve upon the presented

work.

86

Chapter 6

Conclusions and Future Work

Future Work

The research on synthetic data has been a fruitful path that has progressed much

farther than our early work presented in Chapter 2. One aspect of synthetic data

that might be worth investigating for future work is the possibility of controlled

modification of rendering quality and dataset size while measuring the models’

performance. The results could help us understand the factors that affect the

predictions and the generalization power of DNNs.

The problem of making reliable predictions with DNNs that we presented in

Chapter 3 is potentially one of the most exciting research directions in machine

learning. Achieving high accuracy on OD-test will be an interesting challenge for

the community to tackle. We outlined several directions for future work on this

problem in Chapter 3. One simple additional problem that we can formulate for

further work is this:

Is it possible to build a cat vs. not-cat classifier?

Note that this problem is different from cat vs. dog because both cat and

dog are not as heavy-tailed in distribution as the class of non-cats. While a

finite set of samples might roughly represent the class of cats or dogs, a finite set

of samples for non-cats is unlikely to represent its class well. Therefore, a direct

87

supervised learning approach to this problem may not yield the desired results with

proper prediction guarantees.

For future work of the research on automatic portrait editing that we presented

in Chapter 4 and Chapter 5, we believe the following areas could be improved: (i)

creating a more reliable/scalable evaluation metric for retouching, (ii) designing

more accurate retouching models with even better generalization properties, (iii)

designing models with smaller memory footprint, (iv) and building faster models.

Conclusion

In the first part of our work, we looked at two significant challenges that arise in the

application of DNNs: data scarcity and prediction reliability. We showed that using

photorealistic synthetic data to train computer vision models can be a viable strategy

to address data scarcity. We then examined the prediction reliability of DNNs and

showed that DNNs might be too fragile for sensitive applications. We presented

OD-test, a less biased evaluation framework for out-of-distribution sample detectors.

We evaluated methods from various domains and concluded that none could reliably

certify a prediction from large-dimensional input spaces.

In the second part, we introduced AutoPortrait: a fully automated pipeline for

colour-correction, portrait cropping, and portrait retouching. We presented the

perceptual head cropping problem and discussed our solution. Furthermore, we

showed that our retouching results exceed the quality of the training data. We

showed that our models generalize to low-resolution images. Finally, we presented

the first large-scale retouching dataset.

Final Words

I hope you enjoyed reading my dissertation as much as I enjoyed working on it.

88

Bibliography

[1] Grand Theft Auto V. URL https://www.rockstargames.com/V/. → pages
xi, 12

[2] Half-Life 2. URL https://half-life.com/en/halflife2. → page 9

[3] Synthetic Datasets for ADAS and Autonomous Driving, . URL
https://www.cognata.com/datasets/. → page 30

[4] Apollo Game Engine, . URL https://apollo.auto/gamesim.html.

[5] Precise Synthetic Image and LiDAR (PreSIL) Dataset for Autonomous
Vehicle Perception, . URL
https://uwaterloo.ca/waterloo-intelligent-systems-engineering-lab/projects/
precise-synthetic-image-and-lidar-presil-dataset-autonomous.

[6] CVEDIA, . URL https://www.cvedia.com/.

[7] Deep Vision Data, . URL https://synthetictrainingdata.com/.

[8] Data Gen, . URL https://www.datagen.tech/.

[9] The Hive, . URL https://thehive.ai/.

[10] Lexset AI, . URL https://www.lexset.ai/. → page 30

[11] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk. SLIC
Superpixels Compared to State-of-the-art Superpixel Methods. TPAMI, 2012.
→ pages xiii, 11, 26

[12] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. arXiv preprint
arXiv:1701.07875, 2017. → pages 68, 74

[13] M. Aubry and B. C. Russell. Understanding Deep Features with
Computer-generated Imagery. In ICCV, 2015. → page 9

89

https://www.rockstargames.com/V/
https://half-life.com/en/halflife2
https://www.cognata.com/datasets/
https://apollo.auto/gamesim.html
https://uwaterloo.ca/waterloo-intelligent-systems-engineering-lab/projects/precise-synthetic-image-and-lidar-presil-dataset-autonomous
https://uwaterloo.ca/waterloo-intelligent-systems-engineering-lab/projects/precise-synthetic-image-and-lidar-presil-dataset-autonomous
https://www.cvedia.com/
https://synthetictrainingdata.com/
https://www.datagen.tech/
https://thehive.ai/
https://www.lexset.ai/

[14] M. Aubry, D. Maturana, A. A. Efros, B. C. Russell, and J. Sivic. Seeing 3D
Chairs: Exemplar Part-based 2D-3D Alignment using a Large Dataset of
CAD Models. In CVPR, 2014. → page 9

[15] P. L. Bartlett and M. H. Wegkamp. Classification with a Reject Option using
a Hinge Loss. JMLR, 2008. → page 35

[16] A. Bearman, O. Russakovsky, V. Ferrari, and L. Fei-Fei. What’s the Point:
Semantic Segmentation with Point Supervision. In ECCV, 2016. → page 10

[17] A. Bendale and T. E. Boult. Towards Open Set Deep Networks. In CVPR,
2016. → pages 34, 37

[18] D. Berthelot, T. Schumm, and L. Metz. BeGAN: Boundary Equilibrium
Generative Adversarial Networks. arXiv preprint arXiv:1703.10717, 2017.
→ page 68

[19] Y. Blau, R. Mechrez, R. Timofte, T. Michaeli, and L. Zelnik-Manor. 2018
PIRM Challenge on Perceptual Image Super-resolution. In ECCV
Workshops, 2018. → pages 75, 83

[20] G. J. Brostow, J. Fauqueur, and R. Cipolla. Semantic Object Classes in
Video: A High-definition Ground Truth Database. Pattern Recognition
Letters, 2009. → pages xi, 8, 9, 12, 13, 14, 15

[21] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, and Others. Language
Models are Few-shot Learners. arXiv preprint arXiv:2005.14165, 2020. →
pages 1, 2, 3

[22] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A Naturalistic Open
Source Movie for Optical Flow Evaluation. In ECCV, 2012. → page 10

[23] J. Chen, S. Paris, and F. Durand. Real-time Edge-aware Image Processing
with the Bilateral Grid. In ACM Transactions on Graphics (TOG), 2007. →
page 114

[24] J. Chen, A. Adams, N. Wadhwa, and S. W. Hasinoff. Bilateral Guided
Upsampling. ACM Transactions on Graphics (TOG), 2016. → page 114

[25] L.-Q. Chen, X. Xie, X. Fan, W.-Y. Ma, H.-J. Zhang, and H.-Q. Zhou. A
Visual Attention Model for Adapting Images on Small Displays. Multimedia
systems, 9(4):353–364, 2003. → page 56

90

[26] G. Ciocca, C. Cusano, F. Gasparini, and R. Schettini. Self-adaptive Image
Cropping for Small Displays. IEEE Transactions on Consumer Electronics,
53(4):1622–1627, 2007. → page 56

[27] A. Coates, A. Ng, and H. Lee. An Analysis of Single-layer Networks in
Unsupervised Feature Learning. In AISTATS, 2011. → page 105

[28] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele. The Cityscapes Dataset for Semantic
Urban Scene Understanding. In CVPR, 2016. → pages
xi, xiii, 8, 9, 12, 15, 16, 26

[29] C. Cortes and V. Vapnik. Support-vector Networks. Machine learning, 20
(3):273–297, 1995. → pages 44, 105

[30] C. Cortes, G. DeSalvo, and M. Mohri. Learning with Rejection. In
International Conference on Algorithmic Learning Theory (ALT), 2016. →
page 35

[31] C. Cortes, G. DeSalvo, M. Mohri, and S. Yang. On-line Learning with
Abstention. ArXiv e-prints, 2017. → page 35

[32] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human
Detection. In CVPR, 2005. → page 9

[33] L. Deecke, R. Vandermeulen, L. Ruff, S. Mandt, and M. Kloft. Anomaly
Detection with Generative Adversarial Networks, 2018. → page 38

[34] Y. Deng, C. C. Loy, and X. Tang. Image Aesthetic Assessment: An
Experimental Survey. IEEE Signal Processing Magazine, 34(4):80–106,
2017. → page 56

[35] A. R. Dhamija, M. Günther, and T. Boult. Reducing Network
Agnostophobia. In NIPS, 2018. → page 65

[36] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell. DeCAF: A Deep Convolutional Activation Feature for Generic
Visual Recognition. In ICML, 2014. → page 11

[37] S. Edunov, M. Ott, M. Auli, and D. Grangier. Understanding
Back-translation at Scale. arXiv preprint arXiv:1808.09381, 2018. → page 1

[38] D. Eigen and R. Fergus. Predicting Depth, Surface Normals and Semantic
Labels with a Common Multi-Scale Convolutional Architecture. In ICCV,
2015. → page 11

91

[39] K. Fukushima and S. Miyake. Neocognitron: A Self-organizing Neural
Network Model for a Mechanism of Visual Pattern Recognition. In
Competition and cooperation in neural nets, pages 267–285. Springer, 1982.
→ page 1

[40] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig. Virtual Worlds as Proxy for
Multi-Object Tracking Analysis. In CVPR, 2016. → page 11

[41] Y. Gal and Z. Ghahramani. Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning. In ICML, 2016. → page
35

[42] Y. Gal and Z. Ghahramani. A Theoretically Grounded Application of
Dropout in Recurrent Neural Networks. In NIPS, 2016. → page 35

[43] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,
M. Marchand, and V. Lempitsky. Domain-Adversarial Training of Neural
Networks. JMLR, 2016. → page 11

[44] Y. Geifman and R. El-Yaniv. Selective Classification for Deep Neural
Networks. In NIPS. 2017. → page 37

[45] M. Gharbi, Y. Shih, G. Chaurasia, J. Ragan-Kelley, S. Paris, and F. Durand.
Transform Recipes for Efficient Cloud Photo Enhancement. ACM
Transactions on Graphics (TOG), 2015. → page 114

[46] M. Gharbi, G. Chaurasia, S. Paris, and F. Durand. Deep joint demosaicking
and denoising. ACM Transactions on Graphics (TOG), 2016. → page 1

[47] M. Gharbi, J. Chen, J. T. Barron, S. W. Hasinoff, and F. Durand. Deep
Bilateral Learning for Real-time Image Enhancement. ACM Transactions on
Graphics (TOG), 2017. → page 114

[48] M. Goldstein and S. Uchida. A Comparative Evaluation of Unsupervised
Anomaly Detection Algorithms for Multivariate Data. PloS one, 11(4), 2016.
→ pages 36, 114

[49] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative Adversarial Nets. In NIPS,
2014. → pages 38, 68, 73, 74

[50] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing
Adversarial Examples. In ICLR, 2015. → page 107

92

[51] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville.
Improved Training of Wasserstein GANs. In NIPS, 2017. → page 68

[52] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On Calibration of Modern
Neural Networks. ICML, 2017. → page 37

[53] G. Guo, H. Wang, C. Shen, Y. Yan, and H.-Y. M. Liao. Automatic Image
Cropping for Visual Aesthetic Enhancement using Deep Neural Networks
and Cascaded Regression. IEEE Transactions on Multimedia, 20(8):
2073–2085, 2018. → pages 56, 60, 61

[54] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image
Recognition. In CVPR, 2016. → pages xiv, 32, 45

[55] D. Hendrycks and K. Gimpel. A Baseline for Detecting Misclassified and
Out-of-Distribution Examples in Neural Networks. ICLR, 2017. → pages
34, 37, 38, 43, 105

[56] D. Hendrycks, M. Mazeika, and T. Dietterich. Deep Anomaly Detection
with Outlier Exposure. ICLR, 2019. → page 33

[57] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely
Connected Convolutional Networks. In CVPR, 2017. → pages xiv, 32

[58] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer. Squeezenet: Alexnet-level Accuracy with 50x Fewer Parameters
and < 0.5 MB Model Size. ArXiv e-prints, 2016. → pages xiv, 32

[59] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Let there be Color!: Joint
End-to-end Learning of Global and Local Image Priors for Automatic Image
Colorization with Simultaneous Classification. ACM Transactions on
Graphics (TOG), 2016. → pages xiii, 27, 29

[60] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image Translation
with Conditional Adversarial Networks. In CVPR, 2017. → pages
68, 72, 73, 74, 77, 83, 85, 86, 116

[61] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual Losses for Real-time Style
Transfer and Super-resolution. In ECCV, 2016. → page 73

[62] J. Johnson, A. Karpathy, and L. Fei-Fei. DenseCap: Fully Convolutional
Localization Networks for Dense Captioning. In CVPR, 2016. → pages
xiii, 27, 28

93

[63] A. Jolicoeur-Martineau. The Relativistic Discriminator: a Key Element
Missing from Standard GAN. ICLR, 2019. → pages 73, 74

[64] Y. Ju, F. Zhao, S. Chen, B. Zheng, X. Yang, and Y. Liu. Technical Report on
Conversational Question Answering. arXiv preprint arXiv:1909.10772,
2019. → page 1

[65] B. Kaneva, A. Torralba, and W. T. Freeman. Evaluation of Image Features
using a Photorealistic Virtual World. In ICCV, 2011. → page 10

[66] T. Karras, S. Laine, and T. Aila. A style-based Generator Architecture for
Generative Adversarial Networks. In CVPR, 2019. → pages
xv, 68, 69, 70, 75

[67] V. Kazemi and J. Sullivan. One Millisecond Face Alignment with An
Ensemble of Regression Trees. In CVPR, 2014. → pages 57, 64

[68] Y. Ke, X. Tang, and F. Jing. The Design of High-level Features for Photo
Quality Assessment. In CVPR, 2006. → page 56

[69] A. Kendall and Y. Gal. What Uncertainties Do We Need in Bayesian Deep
Learning for Computer Vision? In NIPS, 2017. → pages 35, 106

[70] A. Kendall, V. Badrinarayanan, and R. Cipolla. Bayesian SegNet: Model
Uncertainty in Deep Convolutional Encoder-Decoder Architectures for
Scene Understanding. ArXiv e-prints, 2015. → pages 13, 14

[71] B. Kim, J. Ponce, and B. Ham. Deformable Kernel Networks for Joint
Image Filtering. ArXiv e-prints, 2018. → page 114

[72] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization.
arXiv preprint 1412.6980, 2014. → pages 62, 74

[73] D. P. Kingma and M. Welling. Auto-encoding Variational Bayes. In ICLR,
2014. → page 45

[74] M. Kliger and S. Fleishman. Novelty Detection with GAN. ArXiv e-prints,
2018. → page 38

[75] A. Krizhevsky and G. Hinton. Learning Multiple Layers of Features from
Tiny Images. 2009. → pages 38, 105

[76] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet Classification with
Deep Convolutional Neural Networks. In NIPS, 2012. → pages xiv, 1, 32

94

[77] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and Scalable
Predictive Uncertainty Estimation using Deep Ensembles. In NIPS, 2017. →
pages 34, 35, 106, 107

[78] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based Learning
Applied to Document Recognition. Proceedings of the IEEE, 86(11):
2278–2324, 1998. → pages 1, 38, 105

[79] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang, and Others. Photo-realistic Single
Image Super-resolution using a Generative Adversarial Network. In CVPR,
2017. → page 1

[80] K. Lee, H. Lee, K. Lee, and J. Shin. Training Confidence-calibrated
Classifiers for Detecting Out-of-Distribution Samples. In ICLR, 2018. →
page 38

[81] K. Lee, K. Lee, H. Lee, and J. Shin. A Simple Unified Framework for
Detecting Out-of-distribution Samples and Adversarial Attacks. In NeurIPS,
2018. → page 38

[82] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler,
M. Lewis, W.-t. Yih, T. Rocktäschel, and Others. Retrieval-augmented
Generation for Knowledge-intensive NLP Tasks. arXiv preprint
arXiv:2005.11401, 2020. → page 1

[83] B. Li, C. Shen, Y. Dai, A. van den Hengel, and M. He. Depth and Surface
Normal Estimation from Monocular Images using Regression on Deep
Features and Hierarchical CRFs. In CVPR, 2015. → page 11

[84] C. Li and M. Wand. Precomputed Real-time Texture Synthesis with
Markovian Generative Adversarial Networks. In ECCV, 2016. → page 68

[85] D. Li, H. Wu, J. Zhang, and K. Huang. A2-RL: Aesthetics Aware
Reinforcement Learning for Image Cropping. In CVPR, 2018. → pages
56, 57, 60, 61

[86] D. Li, H. Wu, J. Zhang, and K. Huang. Fast A3RL: Aesthetics-Aware
Adversarial Reinforcement Learning for Image Cropping. IEEE
Transactions on Image Processing, 28(10):5105–5120, 2019. → page 59

[87] D. Li, J. Zhang, and K. Huang. Learning to Learn Cropping Models for
Different Aspect Ratio Requirements. In CVPR, 2020. → pages 60, 61

95

[88] Y. Li, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep Joint Image Filtering.
In ECCV, 2016. → page 114

[89] S. Liang, Y. Li, and R. Srikant. Enhancing The Reliability of
Out-of-distribution Image Detection in Neural Networks. ICLR, 2018. →
pages 34, 37, 43, 105

[90] J. Liebelt and C. Schmid. Multi-view Object Class Detection with a 3d
Geometric Model. In CVPR, 2010. → page 10

[91] J. J. Lim, H. Pirsiavash, and A. Torralba. Parsing IKEA Objects: Fine Pose
Estimation. In ICCV, 2013. → page 9

[92] J. J. Lim, A. Khosla, and A. Torralba. Fpm: Fine pose parts-based model
with 3d cad models. In ECCV. 2014. → page 10

[93] T.-Y. Lin, Y.-T. Tsai, T.-S. Huang, W.-C. Lin, and J.-H. Chuang.
Exemplar-based Freckle Retouching and Skin Tone Adjustment. Computers
& Graphics, 78:54–63, 2019. → page 67

[94] F. Liu, C. Shen, and G. Lin. Deep Convolutional Neural Fields for Depth
Estimation From a Single Image. In CVPR, 2015. → page 11

[95] Z. Liu, X. Li, P. Luo, C.-C. Loy, and X. Tang. Semantic Image Segmentation
via Deep Parsing Network. In ICCV, 2015. → page 10

[96] J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional Networks for
Semantic Segmentation. In CVPR, 2015. → pages 1, 10, 16, 73

[97] A. Lugmayr, M. Danelljan, and R. Timofte. Ntire 2020 Challenge on
Real-world Image Super-resolution: Methods and Results. In CVPR
Workshops, 2020. → page 82

[98] W. Luo, X. Wang, and X. Tang. Content-based Photo Quality Assessment.
In ICCV, 2011. → page 56

[99] M. Ma and J. K. Guo. Automatic Image Cropping for Mobile Device with
Built-in Camera. In First IEEE Consumer Communications and Networking
Conference, pages 710–711. IEEE, 2004. → page 56

[100] L. Marchesotti, C. Cifarelli, and G. Csurka. A Framework for Visual
Saliency Detection with Applications to Image Thumbnailing. In ICCV,
2009. → page 56

96

[101] L. Marchesotti, F. Perronnin, D. Larlus, and G. Csurka. Assessing the
Aesthetic Quality of Photographs using Generic Image Descriptors. In ICCV,
2011. → page 56

[102] J. Marin, D. Vázquez, D. Gerónimo, and A. M. López. Learning Appearance
in Virtual Scenarios for Pedestrian Detection. In CVPR, 2010. → page 9

[103] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine
Learning. MIT press, 2012. → page 33

[104] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. Universal
Adversarial Perturbations. In CVPR, 2017. → page 35

[105] N. Murray, L. Marchesotti, and F. Perronnin. AVA: A Large-scale Database
for Aesthetic Visual Analysis. In CVPR, 2012. → page 56

[106] Y. Nesterov. Introductory lectures on convex programming volume I: Basic
course. Lecture notes, 3(4):5, 1998. → page 62

[107] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng. Reading
Digits in Natural Images with Unsupervised Feature Learning. In NIPS
Workshops, 2011. → page 38

[108] M. Nishiyama, T. Okabe, Y. Sato, and I. Sato. Sensation-based Photo
Cropping. In Proceedings of the 17th ACM international conference on
Multimedia, pages 669–672. ACM, 2009. → page 57

[109] S. J. Pan and Q. Yang. A Survey on Transfer Learning. IEEE Transactions
on Knowledge and Data Engineering, 2010. → page 11

[110] G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille. Weakly- and
Semi-Supervised Learning of a Deep Convolutional Network for Semantic
Image Segmentation. In ICCV, 2015. → page 10

[111] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer. Automatic Differentiation in
PyTorch. NIPS Workshops, 2017. → pages 34, 62

[112] X. Peng, B. Sun, K. Ali, and K. Saenko. Learning Deep Object Detectors
from 3D Models. ICCV, 2015. → page 9

[113] I. M. Quintanilha, R. de M. E. Filho, J. Lezama, M. Delbracio, and L. O.
Nunes. Detecting Out-Of-Distribution Samples Using Low-Order Deep
Features Statistics, 2018. → page 38

97

[114] S. Rabanser, S. Günnemann, and Z. C. Lipton. Failing Loudly: An
Empirical Study of Methods for Detecting Dataset Shift. arXiv preprint
arXiv:1810.11953, 2018. → page 65

[115] K. Rematas, T. Ritschel, M. Fritz, and T. Tuytelaars. Image-based Synthesis
and Re-synthesis of Viewpoints Guided by 3d Models. In CVPR, 2014. →
page 10

[116] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks. In NIPS, 2015. → page 1

[117] S. R. Richter, V. Vineet, S. Roth, and V. Koltun. Playing for Data: Ground
Truth from Computer Games. In ECCV, 2016. → pages 12, 30

[118] G. Rogez, J. S. S. III, and D. Ramanan. First-Person Pose Recognition using
Egocentric Workspaces. In CVPR, 2015. → page 10

[119] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional Networks for
Biomedical Image Segmentation. In MICCAI. Springer, 2015. → pages
68, 72

[120] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez. The
SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic
Segmentation of Urban Scenes. In CVPR, 2016. → page 11

[121] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. IJCV, 2015. → page 32

[122] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma. PixelCNN++:
Improving the PixelCNN with Discretized Logistic Mixture Likelihood and
Other Modifications. ICLR, 2017. → page 36

[123] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen.
MobilenetV2: Inverted Residuals and Linear Bottlenecks. In CVPR, 2018.
→ pages ix, 61, 64, 116

[124] A. Saxena, S. H. Chung, and A. Y. Ng. 3-D Depth Reconstruction from a
Single Still Image. IJCV, 2008. → page 11

[125] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs.
Unsupervised Anomaly Detection with Generative Adversarial Networks to
Guide Marker Discovery. In International Conference on Information
Processing in Medical Imaging, 2017. → pages 34, 38

98

[126] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. C. Platt.
Support Vector Method for Novelty Detection. In NIPS, 2000. → page 36

[127] A. Shafaei and J. J. Little. Real-Time Human Motion Capture with Multiple
Depth Cameras. In CRV, 2016. → page 10

[128] A. Shafaei, J. J. Little, and M. Schmidt. Play and Learn: Using Video Games
to Train Computer Vision Models. In BMVC, 2016. → pages v, 3

[129] A. Shafaei, M. Schmidt, and J. J. Little. Does Your Model Know the Digit 6
Is Not a Cat? A Less Biased Evaluation of Outlier Detectors. ArXiv e-prints,
2018. → pages 5, 51

[130] A. Shafaei, M. Schmidt, and J. Little. A Less Biased Evaluation of
Out-of-distribution Sample Detectors. In BMVC, 2019. → pages
v, 51, 65, 114

[131] A. Shafaei, J. J. Little, and M. Schmidt. AutoRetouch: Automatic
Professional Face Retouching. In WACV, 2021. → pages v, 5

[132] G. Shalev, Y. Adi, and J. Keshet. Out-of-distribution Detection using
Multiple Semantic Label Representations. In NeurIPS, 2018. → page 38

[133] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. CNN Features
Off-the-Shelf: An Astounding Baseline for Recognition. In CVPR
Workshops, 2014. → page 11

[134] X. Shen, X. Tao, H. Gao, C. Zhou, and J. Jia. Deep Automatic Portrait
Matting. In ECCV, 2016. → page 1

[135] J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio,
R. Moore, P. Kohli, A. Criminisi, and A. Kipman. Efficient Human Pose
Estimation from Single Depth Images. TPAMI, 2013. → page 10

[136] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb.
Learning from Simulated and Unsupervised Images through Adversarial
Training. In CVPR, 2017. → page 68

[137] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot,
and Others. Mastering the Game of Go with Deep Neural Networks and
Tree Search. nature, 529(7587):484–489, 2016. → page 2

99

[138] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for
Large-scale Image Recognition. ArXiv e-prints, 2014. → pages
xiv, 16, 32, 45, 74

[139] V. Slaughter, V. E. Stone, and C. Reed. Perception of Faces and Bodies:
Similar or Different? Current directions in psychological science, 13(6):
219–223, 2004. → page 57

[140] M. Stark, M. Goesele, and B. Schiele. Back to the Future: Learning Shape
Models from 3D CAD Data. In BMVC, 2010. → page 10

[141] B. Suh, H. Ling, B. B. Bederson, and D. W. Jacobs. Automatic Thumbnail
Cropping and its Effectiveness. In Proceedings of the 16th annual ACM
symposium on User interface software and technology, pages 95–104. ACM,
2003. → page 56

[142] B. Sun and K. Saenko. From Virtual to Reality: Fast Adaptation of Virtual
Object Detectors to Real Domains. In BMVC, 2014. → page 9

[143] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus. Intriguing Properties of Neural Networks. In ICLR, 2014. →
page 35

[144] G. R. Taylor, A. J. Chosak, and P. C. Brewer. OVVV: Using Virtual Worlds
to Design and Evaluate Surveillance Systems. In CVPR, 2007. → page 9

[145] J. Tompson, M. Stein, Y. Lecun, and K. Perlin. Real-time Continuous Pose
Recovery of Human Hands using Convolutional Networks. ACM
Transactions on Graphics (TOG), 2014. → page 10

[146] A. Vedaldi and K. Lenc. MatConvNet – Convolutional Neural Networks for
MATLAB. In Proceeding of the ACM Int. Conf. on Multimedia, 2015. →
page 16

[147] A. Vyas, N. Jammalamadaka, X. Zhu, D. Das, B. Kaul, and T. L. Willke.
Out-of-distribution Detection using an Ensemble of Self Supervised
Leave-out Classifiers. In ECCV, 2018. → page 38

[148] W. Wang and J. Shen. Deep Cropping via Attention Box Prediction and
Aesthetics Assessment. In ICCV, 2017. → pages 56, 57

[149] W. Wang, A. Wang, A. Tamar, X. Chen, and P. Abbeel. Safer Classification
by Synthesis. ArXiv e-prints, 2017. → page 38

100

[150] W. Wang, J. Shen, and H. Ling. A Deep Network Solution for Attention and
Aesthetics Aware Photo Cropping. TPAMI, 41(7):1531–1544, 2018. → page
59

[151] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image Quality
Assessment: from Error Visibility to Structural Similarity. IEEE
transactions on image processing, 13(4):600–612, 2004. → page 75

[152] Z. Wei, J. Zhang, X. Shen, Z. Lin, R. Mech, M. Hoai, and D. Samaras. Good
View Hunting: Learning Photo Composition from Dense View Pairs. In
CVPR, 2018. → page 59

[153] H. Wu, S. Zheng, J. Zhang, and K. Huang. Fast End-to-End Trainable
Guided Filter. In CVPR, 2018. → page 114

[154] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: A Novel Image Dataset
for Benchmarking Machine Learning Algorithms. ArXiv e-prints, 2017. →
page 105

[155] L. Xu, J. Ren, Q. Yan, R. Liao, and J. Jia. Deep Edge-aware Filters. In
ICML, 2015. → page 114

[156] J. Yan, S. Lin, S. Bing Kang, and X. Tang. Learning the Change for
Automatic Image Cropping. In CVPR, 2013. → page 56

[157] R. K. Yin. Looking at Upside-down Faces. Journal of experimental
psychology, 81(1):141, 1969. → page 57

[158] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How Transferable are
Features in Deep Neural Networks? In NIPS. 2014. → page 11

[159] F. Yu and V. Koltun. Multi-Scale Context Aggregation by Dilated
Convolutions. In ICLR, 2016. → page 10

[160] H. Zeng, L. Li, Z. Cao, and L. Zhang. Reliable and Efficient Image
Cropping: A Grid Anchor based Approach. In CVPR, 2019. → pages
56, 57, 59, 60, 61

[161] M. Zhang, L. Zhang, Y. Sun, L. Feng, and W. Ma. Auto Cropping for Digital
Photographs. In ICME, 2005. → pages 56, 57, 64

[162] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du,
C. Huang, and P. Torr. Conditional Random Fields as Recurrent Neural
Networks. In ICCV, 2015. → page 10

101

[163] W. Zhuo, M. Salzmann, X. He, and M. Liu. Indoor Scene Structure Analysis
for Single Image Depth Estimation. In CVPR, 2015. → page 11

[164] D. Zoran, P. Isola, D. Krishnan, and W. T. Freeman. Learning Ordinal
Relationships for Mid-Level Vision. In ICCV, 2015. → pages
xiii, 11, 24, 25, 26

102

Appendix A

OOD Detection: Formulation and
Evaluation

A.1 Evaluation of Unsupervised Techniques

Algorithm 2: OD-test – the evaluation procedure for an unsupervised
methodM.

input :Ds = (Dtrain
s ,Dvalid

s ,Dtest
s) the source dataset.

input :D = {Di} outlier set.
input :M : D → R the method under evaluation.

1 begin
2 A←− {}

/* Generate a rejection hypothesis r using
Dtrain

s . */
3 r ←−M(Dtrain

s)
4 for Dt ∈ D do

/* Evaluate the accuracy of r. */
5 acc←− eval(r, {Dtest

s : 0,Dt : 1})
6 add acc to A

7 return mean(A)

Algorithm 2 outlines the steps of evaluation for an unsupervised methodM.

Note that in this settingM returns a single binary classifier r. To make the perfor-

103

mance of supervised and unsupervised methods comparable, we use the same splits

of the datasets to guarantee fairness of evaluation. In this work, we do not evaluate

any unsupervised method. This additional information is provided for clarity and

completeness.

A.2 Implementation Details
For each training procedure, we randomly separate 80% and 20% of the (sub-)data

for training and testing respectively. We return the model that has the highest perfor-

mance on the test (sub-)subset. For classification tasks, we measure the performance

by classification accuracy while for other tasks such as AEThreshold we measure

the performance through the respective loss value on the test set.

VGG, Resnet We train two popular and generic classifier architectures VGG-16

and Resnet-50 on Dtrain
s to perform the corresponding classification task within

the datasets. The network architectures slightly differ across datasets to account for

the change in the spatial size or the number of classes. We apply our modifications

to the reference implementations available in PyTorch’s torchvision package.

These trained networks are subsequently used in PbThreshold, ScoreSVM,

ODIN, Log.SVM, and DeepEnsemble. For MC-Dropout we only use the VGG

variant, as the Resnet variants do not have dropouts. Table A.1 shows the summary

of the networks’ classification accuracies on the entire Dtrain
s set.

Data Augmentation We only allow mirroring of the images for data augmentation.

We apply data augmentation on all the datasets except MNIST for which mirror

augmentation does not make sense. We explicitly instantiate mirrored samples, as

opposed to implicit on-air augmentation, to ensure methods such as K-NNSVM are

not at disadvantage. We do not apply any other data augmentation. We initially ex-

perimented with no data augmentation. Without any augmentation, the performance

of all the methods reduces by 3− 4%, but the relative ranking stays the same.

BinClass A binary classifier that is directly trained on Ds and Dv. We use the

reference Resnet or VGG architectures with an additional linear layer to transform

104

VGG Resnet

CE-Accuracy KL-Accuracy Size CE-Accuracy KL-Accuracy Size

MNIST [78] 99.89% 99.91% 19 MB 99.89% 99.91% 70 MB
FashionMNIST [154] 98.82% 98.36% 19 MB 98.75% 98.73% 70 MB
CIFAR10 [75] 97.63% 97.34% 159.8 MB 97.75% 97.51% 94.3 MB
CIFAR100 [75] 91.40% 91.87% 161.3 MB 92.05% 91.82% 95.1 MB
TinyImageneta 69.71% 72.23% 162.9 MB 89.59% 65.95% 95.9 MB
STL10 [27] 93.62% 95.18% 201.7 MB 92.32% 93.34% 94.3 MB

Mean 91.84% 92.48% 95.05% 91.21%

Table A.1: The classification accuracy of the trained networks on Dtrain
s using

cross-entropy (CE) and K-way Logistic (KL) loss functions. In both
scenarios, the prediction is the maximum activation. Note that because
of the difference in training data, this table is not comparable to the
state-of-the-art performance on the respective datasets.

ahttps://tiny-imagenet.herokuapp.com/

the output of the network to a one-dimensional activation. We train the network

with a binary cross-entropy loss on (Dtrain
s +Dvalid

s :0, Dv:1) to ensure the method

has access to the same data as the other methods. The networks typically achieve

near-perfect accuracy after only a few epochs.

PbThreshold [55] One threshold parameter on top of the maximum of softmax

output. The cost of the evaluation is a single forward pass on the network. We reuse

the trained reference VGG or Resnet architectures for this.

ScoreSVM A natural generalization of PbThreshold is to train an SVM [29]

classifier on the pre-softmax activations. The cost of evaluation is a single forward

pass on the network with the additional SVM layer. We reuse the trained reference

VGG or Resnet architectures for this. We set the weight-decay regularization to
1
m , where m is the size of the training set.

ODIN [89] A threshold on the softmax outputs of the perturbed input. The cost

of the evaluation is two forward passes and one backward pass. We do a grid

search over the ε, the perturbation step size, and γ, the temperature of the softmax

operation. The range for grid search is the same as the suggested range in [89]. We

105

reuse the trained reference VGG or Resnet architectures for this.

K-NNSVM A linear SVM on the sorted Euclidean distance between the input and

the k-nearest training samples. Note that a threshold on the average distance is

a special case of K-NNSVM. The cost of the evaluation is finding the k-nearest

neighbours in the training data. We use the Dtrain
s as the reference set, and tune the

parameters with (Dvalid
s , Dv).

K-MNNSVM, K-BNNSVM, K-VNNSVM The same as K-NNSVM, except we use the

low dimensional representations of an autoencoder trained with MSE, BCE, or the

VAE.

AEThreshold A threshold on the autoencoder reconstruction error of the given

input. The evaluation cost is a single forward pass on the autoencoder. We train the

autoencoder on Dtrain
s and train the threshold parameters with (Dvalid

s ,Dv). We use

the binary cross-entropy loss with continuous targets1 or mean squared error to train

and measure the reconstruction error of a given input. The bottleneck dimensionality

varies between 32 and 1024. Our decision rule given a reconstruction error ex for an

input x is r(x) = (ex−µ)2 > τ , where τ is the threshold and µ is the center around

which we are thresholding with τ . If we set µ = 0, this decision function reduces

to a basic threshold operator. We found that this simple decision rule improves

the final accuracy of the model. The reconstruction errors of the in-distribution

samples tend to stay more or less similar, whereas the reconstruction error for

OOD samples could either be too low or too high. This decision rule is meant to

utilize this observation. The network architectures are procedurally generated. See

https://github.com/ashafaei/OD-test/blob/master/models/autoencoders.py for the

models.

MC-Dropout A threshold on the entropy of average predictions of 7 evaluations

per input. The dropout probability is p = 0.5. This approach follows the work

of [77] and Kendall and Gal [69]. We did not evaluate this approach on Resnet
1See http://pytorch.org/docs/0.3.1/nn.html#bcewithlogitsloss.

106

https://github.com/ashafaei/OD-test/blob/master/models/autoencoders.py
http://pytorch.org/docs/0.3.1/nn.html#bcewithlogitsloss

because the original structure does not have a dropout; therefore, it is not trivial to

identify where the dropouts should be located without sabotaging the performance

of Resnet. We reuse the trained reference VGG architecture for this.

DeepEnsemble Similar to MC-Dropout, except we average over the predic-

tions of 5 networks that are trained independently with the adversarial strategy

of [77]. In this approach, we augment the original loss function with a similar

loss function on the adversarially-generated examples of the same batch. The

adversarially-generated samples are generated through the fast gradient-sign method

(FGSM) [50].

PixelCNN++ We use the implementation from https://github.com/pclucas14/

pixel-cnn-pp. We train the models using Ds until plateau on the test (sub-)subset,

then learn a threshold parameter with Dv. Our models achieve a 0.89 BPD for

MNIST, 2.65 BPD for FashionMNIST, 2.98 BPD for CIFAR10, 3.01 BPD for

CIFAR100, 2.70 BPD for TinyImagenet, and 3.59 BPD for STL10 on the test (sub-

)subset. Because of the auto-regressive nature, these models are prohibitively expen-

sive to train. The PixelCNN++ authors note that they have used 8 Titan X GPUs

for five days to achieve state-of-the-art performance for CIFAR102 (2.92 BPD). For

TinyImagenet, and STL10 we process a downsampled version to 32-pixel width

to be able to train and evaluate the models. Our experiments with AEThreshold

indicate that the downsampled versions of TinyImagenet, and STL10 are easier

problems. However, even with this simplification, the PixelCNN++ does not

perform up to expectations.

OpenMax This method is a replacement for the softmax layer after the training

has finished. It fits a Weibull distribution on the distances of logits from the

representatives of each class to reweight the logits and provide probabilities for

encountering an unknown class. The output of the OpenMax is similar to softmax,

except with the addition of the probability for an unknown class. We learn the MAV

vectors and the Weibull distribution on the Ds. We use the Dv to learn the reject
2https://github.com/openai/pixel-cnn

107

https://github.com/pclucas14/pixel-cnn-pp
https://github.com/pclucas14/pixel-cnn-pp
https://github.com/openai/pixel-cnn

function on the calibrated probability outputs.

You can access all the results on https://github.com/ashafaei/OD-test where you

will find the full list of evaluations for OD-test (n = 34× 308 = 10,472) and the

two-dataset evaluation scheme (n = 22× 46 = 1012).

A.3 More Results
Figure A.1 shows the average performance of all the methods per source dataset Ds.

108

https://github.com/ashafaei/OD-test

MNIST FashionMNIST CIFAR10 CIFAR100 TinyImagenet STL10
s

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
Te

st
 A

cc
ur

ac
y

Random Baseline

Method
1-BNNSVM
BinClass/VGG
BinClass/Res
DeepEns./VGG
DeepEns./Res
1-NNSVM
Log.SVM/VGG
Log.SVM/Res
MC-Dropout
1-MNNSVM
ODIN/VGG
ODIN/Res
OpenMax/VGG
OpenMax/Res
PixelCNN++
PbThresh/VGG
PbThresh/Res
AEThre./BCE
AEThre./MSE
ScoreSVM/VGG
ScoreSVM/Res
1-VNNSVM

Figure A.1: The average test accuracy over 50 experiments per bar. The error bars indicate the 95% confidence level.
The figure is best viewed in colour.

109

Appendix B

AutoPortrait Supplementary
Material

B.1 Cropping

B.1.1 From the Reference Cropping to a Specific Cropping

We described how we crop a portrait into the reference cropping form where all input

images are consistently cropped first. In the application, however, we wish to have

the freedom to perform cropping to any desired configuration. To achieve this, we

first find the σ∗ cropping for a given image, then we perform a fixed transformation

on the σ∗ to generate a desired cropping σ̂. Since we apply a fixed transformation

on all the images, the resulting crop σ̂ is also going to be a consistent cropping.

To specify the desired cropping we will need the output width and height, as

well as the relative scale of the head and its coordinates x, and y. We define these

parameters in relation to the reference cropping window. See Fig. B.1 for a visual

description of these parameters. We first infer the reference cropping form (σ∗)

using the described method. Let us assume σ∗ = [ts, tx, ty]
T is the configuration to

achieve reference cropping. Recall that ts is in the log-space. We can simply update

110

Width

H
eight

x
y

Scale

Figure B.1: The relationship between the reference cropping window and
a specific cropping window. The red box is the reference cropping
window, and the blue box is the user-specified cropping region. The
scale parameter is a multiplier to the 120× 160 canonical cropping
window.

σ∗ → σ̂ = [t̂s, t̂x, t̂y]
T as follows:

t̂x := tx −
x

ets
(B.1)

t̂y := ty −
y

ets
(B.2)

t̂s := ts + log(scale) (B.3)

Once we have σ̂ we resample the selected window into a width×height image.

B.1.2 Parameter Projection

We write the projection as a quadratic program (QP) under a weighed `2 norm. For

this step, we transform ts to the linear-space first. After the projection, we transform

ts to the log-space again. Assuming tw, th are the output width and height of a

cropping window, and Iw, Ih are the width and the height of the input image, the

111

projection constraints are:

ts, tx, ty ≥ 0 (B.4)

tx + ts ∗ tw ≤ Iw (B.5)

ty + ts ∗ th ≤ Ih (B.6)

Equation B.4 comes from the fact that the scale and the translation variables must

remain positive. Equation B.5, and Equation B.6 are the upper-bound of the transla-

tion variables as controlled by the scaling variable ts. These requirements directly

translate into linear inequality constraints of our QP projection. When a target

cropping is not feasible, we will have to adjust translation and scale variables. The

following objective controls the amount of adjustment:

1

2
(σ̃ − σ)TW (σ̃ − σ), (B.7)

where σ is the point to be projected, and σ̃ = [ts, tx, ty]
T is the projection. W is

the diagonal weight matrix that controls the rate at which the variables are adjusted

to satisfy the constraints. We set W to diag([1000, 1, 10]) to emphasize that we are

less tolerant to change in ts, and ty, compared to tx. This weighting scheme comes

from our goal to generate consistently scaled images, even if it is at the expense of

slight mistranslation.

B.1.3 Evaluation

Figure B.2 shows the evolution of cropping on nine sample images over six iterations.

The estimates do not change significantly after the sixth iteration.

B.2 Colour Correction
During this step, colour analysts adjust the image’s colour distribution according to

the studio’s production style. The analysts visually inspect the images on calibrated

screens in dark rooms and tune parametric colour curves to adjust the image. Factors

such as the amount of emitted light by the equipment or the camera’s colour

sensitivity can significantly affect the images. The amount of correction applied

112

Figure B.2: Cropping over six iterations.

113

also depends on several contextual factors, such as the clothing and the background.

It should be noted that:

• What constitutes a good looking image is entirely subjective.

• Not all the colour analysts tend to agree on the same final image.

Not only the goal of colour correction is not well-defined, but it also appears

that there is no unique answer. To perform colour correction on each image, the

colour analysts apply six global updates to the image:

Density The amount of brightness change in the image.

R, G, B The amount of shift in the red, green, and blue channels.

Contrast The amount of contrast change in the image.

Gamma The amount of gamma correction in the image.

While the classical mathematical models of these operations are linear, modern

image processing toolboxes use non-linear parametric curves to update the image.

The exact form of these parametric curves tends to differ from software to software

and is usually not openly documented. The professional colour analysts are trained

distinguish even the smallest change in the five major dimensions mentioned.

Following the successful previous work [23, 24, 45, 47, 47, 71, 88, 153, 155],

we also predict image correction parameters based on a downsampled version

of the image and apply the resulting correction function on the high-resolution

image. However, instead of using an unrestricted high-dimensional bilateral grid

of affine functions for each pixel [47], we (i) restrict the possible function space

by introducing a parametric and differentiable colour correction model that is (ii)

low-dimensional in degrees of freedom, yet adequate for the task, (iii) updates the

image with explainable operations, and is (iv) more amenable to quality control for

automatic failure detection considering that there are several effective methods for

anomaly detection in low-dimensional spaces [48, 130].

Specifically, we approximate typical colour operations such as contrast adjust-

ment, or brightness update, using polynomial transfer functions of this form:

fw(x, θ) = [x3θ, x2θ2, x2θ, xθ2, xθ, θ2, θ]Tw + x, (B.8)

114

Figure B.3: The update curves with varying θ for each operation. θ = 0
corresponds to identity function for all operations.

where w is a vector encoding the operation, and the function maps a pixel-channel

value x ∈ [0, 1] to a new value using the correction parameter θ ∈ R. Although we

initially experimented with more complex multi-channel functions, we have found

this simpler functional structure to be sufficient to approximate the typical colour

adjustment operations up to the sRGB colour quantization levels. The function

fw is specifically structured so that θ controls the amount of operation with θ = 0

amounting to a no-op.

In our experiments, we model the colour adjustment behaviour of Kodak Profes-

sional Digital Print that is popular for studio production pipelines. To learn the w of

each operation, we first collect training data from the software by generating images

with various adjustments. Then, we optimize w to generate transfer curves that

match the output of the software. See Fig. B.3 for a visualization of our operations

with varying θ.

We compose gamma correction, R, G, B, brightness, and contrast updates,

followed by clamping to [0, 1] into a single function F (x,Θ), where Θ is the

concatenation of all the intermediate correction parameters θi. F is smooth in

x ∈ (0, 1) and θi ∈ [−1, 1] allowing a properly initialized network to be trained

with backpropagation. Given an image x and adjusted image y, we can find the Θ̂

such thatF (x, Θ̂) ≈ y by minimizing Θ over ‖F (x,Θ)−y‖22 with backpropagation.

The resulting Θ̂ is both explainable in terms of specific operations applied, and also

transferable to our target software for further colour analysis.

Given an image x, we estimate g(x) = Θ, and return the colour-corrected

115

image with F (x,Θ). We estimate Θ from a downsampled image using deep neural

networks and perform end-to-end learning by penalizing error on the high-resolution

image output. We use the MobileNetV2 [123] architecture to predict Θ.

B.3 Skin Retouching

B.3.1 The Discriminator
For the discriminator we use the following sequential architecture from Patch-
GAN [60].

(0): Conv2d(3, 64, kernel_size=(4, 4),

stride=(2, 2), padding=(2, 2))

(1): LeakyReLU(negative_slope=0.2, inplace)

(2): Conv2d(64, 128, kernel_size=(4, 4),

stride=(2, 2), padding=(2, 2))

(3): InstanceNorm2d(128, eps=1e-05, momentum=0.1,

affine=False)

(4): LeakyReLU(negative_slope=0.2, inplace)

(5): Conv2d(128, 256, kernel_size=(4, 4),

stride=(2, 2), padding=(2, 2))

(6): InstanceNorm2d(256, eps=1e-05, momentum=0.1,

affine=False)

(7): LeakyReLU(negative_slope=0.2, inplace)

(8): Conv2d(256, 512, kernel_size=(4, 4),

stride=(1, 1), padding=(2, 2))

(9): InstanceNorm2d(512, eps=1e-05, momentum=0.1,

affine=False)

(10): LeakyReLU(negative_slope=0.2, inplace)

(11): Conv2d(512, 1, kernel_size=(4, 4),

stride=(1, 1), padding=(2, 2))

B.3.2 Multiscale Patch Sampling

The number of w × w patches in the image increases quadratically with respect to

the scale of the image. We wish to augment the training data by downsampling the

images. If we choose a down-scaling parameter at uniform, it will under-represent

the w × w patches in the spatially larger images. Therefore we should be sampling

higher-resolution images quadratically more often to make all the patches equally

116

likely. The cumulative distribution function of a quadratically increasing density

function is cubic. Using the inverse transform sampling method we can simply

use s
1
3 as the scaling factor, where s ∼ Unif(0, 1). This sampling procedure

is approximate because we also have a minimum scale that truncates the density

function. If we set a minimum scale smin, the scaling factor becomes (s(1−s3min))
1
3 ;

however, since we are using high-resolution images, the minimum scaling factor

cubed s3min will become small enough (< 10−3) that the difference is negligible.

However, if the training data is not high-resolution, omitting the extra term could

still produce unbalanced samples.

B.3.3 User Study

To perform the user study, we developed the UI in Fig. B.4. Each time, we show

the user the output of two algorithms in random order and ask them to pick their

favourite. At the bottom of the page, we show the user a zoomed-in version of the

original image and the two outputs and an image highlighting the differences. As the

users move the mouse cursor over the original image, they can visually inspect and

compare a zoomed version of all the images. To conduct our user studies, we hired

three professional retouchers. We run several experiments under this evaluation

framework and present the results in the thesis.

For FFHQR evaluations, we pick 1000 images from the test set. More specifi-

cally, we use the images from 63000 to 63999. Similarly, for the studio data, we

pick 1000 images from the test set. Each user sees the 1000 evaluations in random

order. We ran seven experiments, collected over 5400 votes, while spending 48 hrs

in total.

B.3.4 Evaluation

Figure B.5 compares the retouching output of our model with the groundtruth

patches. Our model preserves the fine texture better than the groundtruth data. In

the thesis we perform ablation studies on the effect of each term in the loss function.

We observed that adding RAGAN loss term encourages the model to preserve

the input as much as possible. Preservation of the details produces retouching

models that perform better than the groundtruth retouching data. We suspect this

117

Figure B.4: The user study UI. The users are shown two images in random
order, and they will decide which version they prefer. At the bottom of
the page, dynamically changing figures allow easy comparison between
the algorithms.

happens because, in real-life retouching, the professionals may use large brushes for

correction that inadvertently affects areas of the image that do not require retouching.

Our model, however, operates at the pixel level and can preserve details at no extra

cost.

We also test our retouching model on lower-resolution smartphone camera

images. The images are captured with iPhone 6 or iPhone X. Figure B.6 shows

sample outputs from our tests.

Figure B.7 shows the failure cases of our retouching model. The images that our

118

Input Groundtruth
Automatically
Retouched Input Groundtruth

Automatically
Retouched

Figure B.5: The output of our model compared to the groundtruth retouching.
The left column is the input, the middle column is groundtruth retouch-
ing, and the right column is our output. Our model preserves the fine
details more than the groundtruth.

model fails to correct usually contain severe skin blemishes. Although our model

improves the output image, it does not fully eliminate the blemishes.

Figure B.8 shows the output of our model on full-faces.

B.3.5 FFHQR

See Fig. B.9 for more samples of our new retouching dataset.

B.3.6 Studio Data

Figure B.10 shows the distribution of the head-crop images that we extracted from

the studio training data to train our models.

119

Input
Automatically
Retouched Input

Automatically
Retouched

Figure B.6: Sample input/output of retouched images captured with cell-
phones. The figure is best viewed on a screen.

120

Input
Automatically
Retouched Input

Automatically
Retouched

Figure B.7: Failure cases. Our retouching model fails when blemishes are
severe.

Figure B.8: Original photo on the left, our automatic output on the right. Parts
of the image are blurred to maintain anonymity. Skin retouching is
usually the most time-consuming step of retouching.

121

Original Groundtruth Original Groundtruth

Figure B.9: More samples from our new retouching dataset FFHQR.

122

Width Height Area

Pixels Pixels Pixels

C
ou

nt

C
ou

nt

C
ou

nt

Figure B.10: The distribution of width, height, and area of the head-crops
extracted from the studio retouching data. The data is similar to FFHQR
in resolution.

123

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgments
	Dedication
	1 Introduction
	1.1 Acquiring More Data
	1.2 Is it All About Having More Data?
	1.3 Exploring Other Applications
	1.4 Summary of Contributions

	2 Synthetic Images for Computer Vision Applications
	2.1 Introduction
	2.2 Related Work
	2.2.1 Synthetic Data
	2.2.2 Dense Image Classification
	2.2.3 Depth Estimation from RGB
	2.2.4 Transfer Learning
	2.2.5 Concurrent Work

	2.3 Data Extraction: The GTAV Dataset
	2.4 Real-world Datasets
	2.5 Dense Image Classification
	2.5.1 Evaluation with Fine-tuning
	2.5.2 Cross-dataset Evaluation

	2.6 Depth Estimation from RGB
	2.7 Other Computer Vision Problems
	2.8 Research Conclusion
	2.9 Follow-up Developments

	3 Reliable Prediction in Computer Vision Applications: Detecting Out of Distribution Samples
	3.1 Introduction
	3.2 Related Work
	3.3 OD-test: A Less Biased Evaluation of Outlier Detectors
	3.4 Evaluation
	3.5 Results
	3.6 Research Conclusion
	3.7 Follow-up Developments

	4 AutoPortrait: Automatic Portrait Enhancement from Studios to Mobile Phones – Portrait Cropping
	4.1 Introduction
	4.2 Overview
	4.3 Related Work
	4.4 Visually-consistent Portrait Cropping
	4.5 Evaluation
	4.6 Conclusion

	5 AutoPortrait: Automatic Portrait Enhancement from Studios to Mobile Phones – Portrait Retouching
	5.1 Related Work
	5.2 Flickr-Faces-HQ-Retouching (FFHQR) Dataset
	5.3 Texture-preserving Portrait Retouching
	5.4 Evaluation
	5.5 Conclusion

	6 Conclusions and Future Work
	Bibliography
	A OOD Detection: Formulation and Evaluation
	A.1 Evaluation of Unsupervised Techniques
	A.2 Implementation Details
	A.3 More Results

	B AutoPortrait Supplementary Material
	B.1 Cropping
	B.1.1 From the Reference Cropping to a Specific Cropping
	B.1.2 Parameter Projection
	B.1.3 Evaluation

	B.2 Colour Correction
	B.3 Skin Retouching
	B.3.1 The Discriminator
	B.3.2 Multiscale Patch Sampling
	B.3.3 User Study
	B.3.4 Evaluation
	B.3.5 FFHQR
	B.3.6 Studio Data

