
Theoretical Foundations for Optimal Control of Floating
Offshore Wind Farms

by

Ali Cherom Kheirabadi

B.Eng., Dalhousie University, 2014

M.A.Sc., Dalhousie University, 2016

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Mechanical Engineering)

The University of British Columbia

(Vancouver)

December 2020

© Ali Cherom Kheirabadi, 2020



The following individuals certify that they have read, and recommend to the Fac-
ulty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

Theoretical Foundations for Optimal Control of Floating Offshore Wind
Farms

submitted by Ali Cherom Kheirabadi in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mechanical Engineering.

Examining Committee:

Ryozo Nagamune, Mechanical Engineering
Supervisor

Rajeev Jaiman, Mechanical Engineering
Supervisory Committee Member

Guy Dumont, Electrical Engineering
University Examiner

Martin Ordonez, Electrical Engineering
University Examiner

Jan-Willem van Wingerden, Mechanical, Maritime, and Materials Engineering,
Delft University of Technology, The Netherlands
External Examiner

Additional Supervisory Committee Members:

Anasavarapu Srikantha Phani, Mechanical Engineering
Supervisory Committee Member

Bhushan Gopaluni, Chemical Engineering
Supervisory Committee Member

ii



Abstract

Due to a phenomenon termed the wake effect, wind turbines that are placed in

close proximity within wind farms interact aerodynamically. In short, each turbine

generates a wake within which wind speeds are reduced, and these wakes overlap

with the rotors of machines located downstream. This interaction diminishes power

production in wind farms by up to 60 %. Using a process referred to as wind farm

control, individual wind turbines may be operated in a manner that increases power

production from the collective.

This thesis investigates the potential of a wind farm control strategy named

yaw and induction-based turbine repositioning (YITuR) that is specifically com-

patible with floating offshore wind farms. Since floating platforms are anchored

to the seabed using slack mooring line cables, each turbine may be repositioned in

real-time using the aerodynamic forces exerted on its rotor. By relocating floating

platforms accordingly, the overlap area between the wakes generated by upstream

turbines and the rotors of downstream machines may be reduced; leading to an

increase in wind farm efficiency.

The potential of YITuR is assessed through several steps. First, a steady-state

model of floating offshore wind farms is constructed and stationary optimization

studies are carried out to determine the potential of YITuR under idealized steady

wind conditions. Major findings from this study are that wind farm efficiency may

increase by more than 40 % using YITuR over traditional wind farm operation;

however, these benefits are strongly influenced by mooring system designs. Sec-

ond, a dynamic floating wind farm model is developed to evaluate the performance

of real-time control systems. Third, due to the non-convexity of the YITuR control

problem, novel distributed economic model predictive control (DEMPC) theory is
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developed to guarantee power maximization. Existing DEMPC algorithms do not

offer such a guarantee in the presence of non-convex objective functions. Finally,

the DEMPC algorithm is evaluated using the dynamic simulation tool. Neural net-

works are used to estimate the dynamics of floating platforms in order to expedite

decision-making in DEMPC. Simulation results indicate gains of 20 % in energy

production when YITuR replaces traditional wind farm operation.
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Lay Summary

Wind turbines that are clustered in close proximity within wind farms interact aero-

dynamically. This interaction decreases the efficiency of wind farms and results in

20 to 30 % loss of annual revenue. One approach to recuperating these losses is

wind farm control. This strategy involves operating individual turbines in a man-

ner that mitigates the negative effects of aerodynamic interaction; thus increasing

wind farm efficiency.

This thesis investigates the potential of one particular wind farm control tech-

nique that is compatible with floating offshore wind farms and is referred to as

turbine repositioning. In this method, each floating wind turbine uses the aerody-

namic force of the wind to reposition itself along the ocean surface with the goal of

reducing the scale of aerodynamic interaction and increasing wind farm efficiency.

This research therefore delivers economic and environmental benefits by raising

the competitiveness of floating offshore wind farms relative to fossil fuel-based

energy generation methods.
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Chapter 1

Introduction

This thesis presents various aspects of research aimed at maximizing power pro-

duction in floating offshore wind farms. The current chapter introduces the reader

to the main problem that causes inefficiency in wind farms, and then describes the

solution approach of interest for mitigating this problem. Subsequent chapters then

describe the different steps taken to implement and assess the potential, feasibility,

and challenges of the proposed solution. Each chapter is authored such that it may

be read independently of the rest of the text. The current chapter therefore also

provides an outline of the thesis while discussing the purpose and contributions of

each chapter in the context of the overarching objective.

1.1 The wake effect
Wind turbines are clustered into wind farms to maximize energy extraction from

regions with high-resource winds. One consequence of this siting approach is

that machines that are in close proximity interact aerodynamically and experience

diminished performance. Referring to Figure 1.1, viscous interaction along the

blades of a wind turbine generates a region of airflow downstream of its rotor that

is characterized by reduced wind speeds; this region is referred to as a wake. Any

wind turbines located downstream and aligned with the wake produced by an up-

stream machine therefore produce less power than they would in the absence of

the wake. This phenomenon is termed the wake effect, and may lead to reductions
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Turbine 1 Turbine 2

Incoming free stream wind 

speed profile

Viscous interaction at the blades of 

Turbine 1 generates wake region

Wind speed is reduced 

at location of Turbine 2

Wake generated by 

Turbine 1

Reduced power output 

at Turbine 2

Figure 1.1: Schematic demonstrating the phenomenon of aerodynamic cou-
pling between wind turbines that are aligned with the wind.

of up to 60 % in the power output of downstream turbines [141], while decreasing

annual energy production by 20 to 30 % [30].

1.2 Yaw and induction-based turbine repositioning
(YITuR)

One solution to mitigating the wake effect is wind farm control, which simply

describes the process of operating individual wind turbines in a manner that raises

power production from the collective. The primary objective of this thesis is to

investigate the potential of a specific wind farm control approach that is relevant to

floating offshore wind farms and is referred to as yaw and induction-based turbine

repositioning (YITuR).

As shown in Figure 1.2, by varying the nacelle yaw angle of a wind turbine,

the direction of the aerodynamic thrust force acting on its rotor may be altered

as desired. Further, by adjusting other parameters, such as the pitch angles of the

blades and shaft rotation speed, the magnitude of the aerodynamic thrust force may

be manipulated as well. Floating offshore wind turbines that are anchored to the

seabed using slack mooring lines possess some finite range of mobility along the
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Wind direction

Thrust force

Thrust force

Anchors

Mooring line cables

The wake produced by

the upstream turbine

Repositioning the turbines reduces

the wake overlap at the location of

the downstream machine

Figure 1.2: Schematic demonstrating the use of yaw and induction based tur-
bine repositioning (YITuR) to minimize wake overlap in floating off-
shore wind farms.

ocean surface. Variations of thrust forces thus permit relocation of floating plat-

forms in real-time. The permissible range of this motion is determined by the equi-

librium established between the aerodynamic thrust forces and restoring mooring

line tensions acting on each platform. Given this repositioning mechanism, indi-

vidual floating wind turbines may be relocated in real-time to minimize the overlap

between the rotors of downstream machines and the wakes produced by upstream

counterparts.

1.3 Research question and thesis outline
The research question addressed in this thesis may be stated as follows: Does the

YITuR wind farm control technique offer sufficient economic incentive to be imple-

mented in practice? And if so, what challenges must be overcome along the road

to industrial implementation?

This question is answered through a series of steps. The efforts and results

associated with each step are outlined in subsequent chapters. An overview of

the role of each chapter is provided in Figure 1.3. The chapters are listed in the

order that is most suitable for comprehension; however, each chapter is written

without dependence on content or knowledge contained in other parts of the thesis.
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Chapter 2

Chapter 3

Chapter 4

Chapter 5 Chapter 6

Introduction

Chapter 1

Conclusion

Chapter 7

Figure 1.3: Layout of the thesis and the role of each chapter.

The reader may therefore skip specific chapters that are not of interest without

relinquishing any information that is vital for their apprehension. The purpose and

contributions of each chapter in the context of the objective of the thesis are listed

below:

• Chapter 2: The second chapter provides a comprehensive review of wind

farm control literature. The current status of the wind energy sector is first

discussed, followed by detailed descriptions of the wake effect and various

wind farm control techniques. Next, vital information from existing studies,

such as modeling methodologies and reported wind farm efficiency gains, is

accumulated in review tables while the individual studies are summarized.

Finally, the collected data are used to offer insight into the gaps in existing

research practices. This work has been published in the Journal of Wind

Engineering and Industrial Aerodynamics [102].

• Chapter 3: Prior to dedicating effort to the development of dynamic mod-

els and controllers, it is necessary to establish, using a relatively simplified

analysis, whether turbine repositioning is a beneficial wind farm control ap-

proach. The third chapter thus presents a steady-state assessment of the po-
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tential benefits of YITuR. This step involves the development of the first

steady-state floating offshore wind farm model that couples platform dis-

placement with wake aerodynamics. This simulator is name the Floating

Offshore Wind Farm Simulator (FOWFSim). Then, optimization studies

are carried out for different wind settings and mooring system design pa-

rameters to assess the efficiency gains that result from YITuR. The analy-

sis demonstrates that turbine repositioning may lead to significant gains in

power production under specific conditions, while also establishing its limi-

tations. This work has been published in Ocean Engineering [103].

• Chapter 4: In order to assess the performance of a YITuR controller in real-

time, the fourth chapter extends FOWFSim to capture floating wind farm

dynamics; hence the name FOWFSim-Dyn. To this end, the first paramet-

ric dynamic floating offshore wind farm model is developed. Parametric

wake models offer computational expediency by utilizing assumptions con-

cerning flow behaviour which simplify the governing equations of fluid flow.

The trade-off, however, is reduced accuracy in comparison to computational

fluid dynamics solvers. FOWFSim-Dyn predicts floating wind turbine mo-

tion along the ocean surface coupled with wake transport. This simulator is

also the first parametric tool to capture the effects of time-varying wind speed

and direction on wake behaviour. The model is validated under steady-state

conditions using published experimental results.

• Chapter 5: The fifth chapter develops novel theory in the field of distributed

economic model predictive control1 (DEMPC). The turbine repositioning

optimal control problem is non-convex since there exist multiple trajecto-

ries that individual turbines may follow to reduce wake overlap. One major

gap among existing DEMPC algorithms is that, due to non-convexity, they

cannot offer a guarantee that the optimal decisions made by the individual

turbines will converge. In other words, they offer no guarantee that individ-

ual floating turbines will make decisions that ultimately lead to a rise in total

power production. As a result, the development of novel DEMPC theory ca-

pable of providing such a guarantee is necessary for delivering a generalized
1The reasons for selecting DEMPC for turbine repositioning are clarified in Chapter 6.
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algorithm that implements YITuR.

• Chapter 6: The sixth chapter pieces together the contributions of Chapter 4

and Chapter 5 by using the novel DEMPC algorithm to implement YITuR

in real-time in the simulated environment of FOWFSim-Dyn. The DEMPC

algorithm maximizes wind farm power production by solving dynamic op-

timization problems at each time-step. In order to increase the speed of

decision-making, feed-forward neural networks are used to estimate the dy-

namic behaviour of floating wind turbine platforms during the optimization

process of DEMPC. These neural networks are tuned using data generated by

FOWFSim-Dyn. Therefore, an additional contribution of this chapter is the

first use of neural networks to predict floating turbine dynamics. Finally, the

performance of the DEMPC algorithm and the benefits of real-time YITuR

are assessed for different wind farm sizes and time-varying wind conditions.

• Chapter 7: The final chapter concludes the thesis by summarizing the major

findings from each preceding research step. Additionally, recommendations

regarding future research steps are offered.
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Chapter 2

A Quantitative Review of Wind
Farm Control with the Objective
of Wind Farm Power
Maximization

This chapter presents a review of control strategies for maximizing power produc-

tion within wind farms. Discussions focus on three notable concepts; power de-

rating, yaw-based wake redirection, and turbine repositioning. Existing works that

have examined the potential of these concepts via optimization studies, numerical

simulation, experimentation, as well as those that have developed and evaluated

control algorithms, are reviewed thoroughly and quantitatively. Criteria for this re-

view process include the evaluation methods employed, simulated wind conditions,

controller properties such as model dependency and communication architecture,

and the resulting relative rise in wind farm efficiency. The data collected from

existing literature is then utilized to draw conclusions regarding the influence of

each of these criteria on the potential and performance of wind farm controllers.

Appropriate recommendations for future modeling and controller design research

are then offered based on these conclusions.
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2.1 Introduction
This introductory section summarizes the status of the wind energy industry and

outlines the phenomenon of aerodynamic interaction among wind turbines and its

effect on wind farm efficiency. Possible solutions for mitigating the wake effect are

discussed prior to tackling the main subject of this review, which is wind farm con-

trol. A brief overview of existing literature surveys on this subject is also presented

as build-up to the objectives of the current chapter.

2.1.1 Status of wind energy

The environmental and economic significance of wind power in the 21st century

is not only palpable to members of scientific and green-tech communities, but is

now mainstream knowledge. What is more, the initial goals and ambitions that

have propelled the wind energy industry since the start of the century are gradually

being realized. For instance, the primary incentive for investment and technologi-

cal progress in the wind energy sector has been to reduce green house gas (GHG)

emissions while continuing to meet global electricity demands [13]. From 2000 to

2016, the global share of annual electricity production from wind power increased

from 0.20 to 3.84 %1 [87, 167]. Based on electricity production methods in the

United States, the recent end of this range corresponds to 712 million metric tons

of avoided CO2 emissions [57], and accounts for 1.97 % of total global CO2 emis-

sions from 2015 [143].

In addition to mitigating environmental concerns, investment in wind energy

offers a multitude of social, political, and economic benefits; the diversification of

national energy portfolios, which strengthens energy security and prevents global

conflicts over natural resources; the reduction of poverty through greater accessibil-

ity to low-cost energy; and innovation and job creation [13]. On this final point, the

global employment count in the wind energy sector rose from 0.75 to 1.16 million

between 2012 and 2016 [89]. The global wind energy sector therefore employed

more individuals than the traditional power generation industries (i.e. coal, oil, and

gas) of the United States, which collectively employed 1.1 million individuals in

1Data on global electricity production from wind were obtained from IRENA [87]. Data on
overall global electricity production were obtained from Enerdata [167].
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Figure 2.1: Trends in installed global wind power capacity and global invest-
ment in the wind energy sector since the start of the century. Data
have been obtained from the International Renewable Energy Agency
(IRENA) [87], [90].

2016 [173].

These environmental and economic benefits, along with government mandates

and support, have generated the substantial levels of growth and investment in the

wind energy sector that are shown in Figure 2.1. Cumulative installed global wind

power capacity has increased from 16.9 to 513.5 GW from 2000 to 2017 [87].

Meanwhile, new annual global investments in the wind energy sector have risen

from 19.6 to 112.5 billion USD from 2004 to 2016 [90]. These trends are indica-

tive of the considerable efforts being made to mature and proliferate wind power

technology on a global scale.

Figure 2.1 also reveals growing interest in locating wind farms offshore, for

which the motivations are plentiful; environmental impact is limited since the con-

struction of roads for transport is unnecessary; visual and auditory concerns are

mitigated as turbines are located far from residential areas; obtaining land permits

is less problematic; and most major cities are located close to shore, which permits

shorter transmission lines [121]. Offshore wind is also stronger and less turbulent
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due to the absence of obstructions and uneven terrain [8]. Consequently, offshore

wind turbines accumulate less fatigue damage and deliver more electricity relative

to their onshore counterparts. On this final point, the global average capacity fac-

tor (the ratio of energy produced to the maximum producible amount over a given

period) for offshore wind power was 30 % greater than that of onshore wind power

in 2017 [90].

Despite these benefits, offshore wind power lacks competitiveness against on-

shore wind and fossil fuel-based alternatives due to its infancy and harsh operat-

ing conditions [30]. Investment trends and the levelized cost of energy (LCOE)

for onshore and offshore wind power are compared in Figure 2.2. In 2017, the

global average investment cost for offshore wind power per kW of installed ca-

pacity was 4,239 USD/kW, while that for onshore wind power was 65.2 % lower

at 1,477 USD/kW [88]. Likewise, the global average LCOE for offshore wind

power at this time was 0.14 USD/kWh; the LCOE for onshore wind power was

57.1 % lower at 0.06 USD/kWh [88], and that of coal-fired power plants ranged

from 0.0764 to 0.097 USD/kWh in 2015 [174]. Increased competitiveness is there-

fore imperative for the proliferation of offshore wind power, and it is a priority

within the wind energy research community [24, 161].

2.1.2 Increasing wind farm efficiency

One approach to raising the competitiveness of a wind farm is to mitigate efficiency

losses resulting from aerodynamic coupling between individual wind turbines [24].

The concept of aerodynamic coupling is depicted in Figure 2.3, which shows two

wind turbines aligned with the free stream wind. Viscous interaction between the

blades of turbine 1 and the incoming wind generates a downstream region of air-

flow that is characterized by low velocity and increased turbulence intensity [115].

This downstream region is referred to as a wake. Turbine 2, which is aligned with

the wake that is generated by turbine 1, therefore produces less power and accu-

mulates greater fatigue damage over time [115]. The overall process described

in Figure 2.3 is commonly referred to as the wake effect, and may reduce power

production from individual downstream turbines by up to 60 %, while diminishing

power production from an entire wind farm by as much as 54 % [141]. Annu-
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and offshore wind power since 2010. Data have been obtained from
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ally, the wake effect may result in cumulative revenue losses ranging from 20 to

30% [30].

Thus far, three methods have either been proposed or employed to mitigate

losses resulting from the wake effect. The first approach involves siting wind tur-

bines such that there exists appropriate spacing between two adjacent machines

in the predominant wind direction [30]. Large inter-turbine spacing permits suffi-

cient distance over which the process of turbulent mixing re-energizes wakes and

reduces velocity deficits [115]. Although this method has been widely employed

within the wind energy industry, it conflicts with the fundamental rationale behind

wind farms; that is, to cluster wind turbines in close proximity to minimize cap-

ital and operational expenses [121]. Furthermore, the 20 to 30 % annual revenue

losses alluded to earlier are observed with current industry-standard inter-turbine

spacings of seven to ten rotor diameters in the predominant wind direction [30].

There is therefore growing interest in alternative methods that will further mitigate

such losses.

The second solution for increasing wind farm power production is layout opti-
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Figure 2.3: The phenomenon of aerodynamic coupling between two wind
turbines aligned with the free stream wind.

mization. Engineering wake models are used to estimate wind farm power produc-

tion as a function of historical wind velocity data spanning the entire year [161].

Optimization algorithms are then used to determine ideal turbine siting such that

wind farm annual energy production is maximized [161]. Despite the large body

of academic work that has been dedicated to layout optimization, the largest oper-

ational offshore wind farms possess gridded layouts with appropriate inter-turbine

spacing in the predominant wind direction2. The absence of optimized wind farm

layouts within the industry may be due to the novelty of this field of research3, the

low fidelity of engineering wake models [24], or a wind farm developer’s consid-

eration of additional factors when designing wind farms, which may include elec-

trical connectivity costs, maintenance procedures, and local terrain properties [30].

The third strategy for alleviating revenue losses resulting from the wake effect,

which is the focus of the current chapter, is wind farm control. In the broadest

sense, a wind farm controller uses the available degrees of freedom of individual

wind turbines to manipulate the wind field such that a wind farm level objective

is achieved [24]. This wind farm level objective may be power maximization, or

2The reader may investigate the London Array, Greater Gabbard, Bard 1, Anholt, Walney, Thorn-
tonbank, Sheringham Shoal, Thanet, Centruica Lincs, and Horns Rev 2 wind farms.

3Research into wind farm layout optimization was initiated in 1994 by Mosetti et al. [133].
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power set-point tracking with load reduction [24]. Contrary to the aforementioned

solutions to the wake problem, wind farm control does not conflict with the design

objectives of wind farm developers as it requires no adjustment to turbine siting.

Additionally, wind farm control may be implemented within existing operational

wind farms, whether they possess a gridded or optimized layout. The demonstrated

potential of such control systems has motivated a 2.7 million USD project, man-

aged by the United Kingdom’s Carbon Trust, involving the implementation of wind

farm control trials within operational wind farms [34].

2.1.3 Objective

In 2015, Knudsen et al. [107] reviewed wind farm control literature with objectives

of power maximization and power tracking. The various optimization and control

algorithms that have been implemented in the existing literature were briefly dis-

cussed, and results related to power gains for these studies were presented. Major

challenges related to wind farm control were also highlighted. The 2017 tutorial by

Boersma et al. [24] provided greater detail regarding the wake effect, wake model-

ing, and wind farm control from a practical standpoint. Discussions covered a wide

array of topics including actuation, sensors, control strategies, and observer design

for wind farm controllers, as well as wind turbine modeling and control, and wake

model theory, applicability, and fidelity. These review articles provide adequate

information for engineers and researchers to gain familiarity with the field of wind

farm control. What is lacking in this field is a quantitative assessment and com-

parison of published studies that identifies the benefits and drawbacks of specific

control techniques and evaluation methods.

The objective of the current chapter is to provide such a quantitative review

of wind farm control literature with focus on wind farm power maximization. The

methods and results presented in existing studies are examined and compared based

on a set of relevant criteria, and then used to draw conclusions regarding the effec-

tiveness of control strategies in addition to the influence of evaluation techniques

and simulated wind conditions. Furthermore, the current chapter quantitatively

reviews recent publications involving field tests and high-fidelity simulations that

have not been covered in existing review articles. It is our intention to first pro-
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vide engineers and researchers with a readable and focused introduction to wind

farm control for power maximization, to then offer a recent and comprehensive

overview of progress in this field, and to finally present definitive conclusions re-

garding controller design and evaluation that will establish appropriate directions

for future research.

The remainder of this chapter is organized as follows; Section 2.2 provides

an introduction to various wind farm control concepts and controller properties;

Section 2.3 reviews commonly employed aerodynamic models used to simulate

wind farms; Section 2.4 represents the major contribution of the current chapter,

and provides a detailed review of wind farm control literature; Section 2.5 deliv-

ers a quantitative overview that pieces together the major findings from reviewed

works, and draws conclusions regarding the current state of research in the field;

and Section 2.6 concludes the chapter with a summary of major findings and rec-

ommendations for future paths of research in wind farm control.

2.2 Wind farm control
This section introduces various wind farm control concepts that have been pro-

posed and investigated within existing literature. Additionally, properties that have

been used to distinguish between wind farm controllers are discussed.

2.2.1 Control concepts

Three notable wind farm control concepts have thus far been proposed for mit-

igating the effects of aerodynamic coupling within wind farms. These concepts

include power de-rating, yaw-based wake redirection, and turbine repositioning;

all of which are depicted in Figure 2.4.

Power de-rating

The oldest and most prevalent approach within existing literature, which was first

proposed in 1988 by Steinbuch [169], is power de-rating (also commonly referred

to as axial induction-based control). The axial induction factor is a measure of the

momentum deficit experienced by air flowing past a wind turbine. It is directly

related to the power and thrust coefficients of a wind turbine rotor. Referring to
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Figure 2.4: Overview of three notable wind farm control techniques proposed
for mitigating the wake effect. The schematic shows a top-view of two
wind turbines aligned with the incoming free stream wind. Green ele-
ments highlight changes in turbine operation and wake conditions asso-
ciated with each control concept.
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Figure 2.4a, de-rating turbine 1 reduces its axial induction factor, which dimin-

ishes power output and also decreases the magnitude of the overall thrust force that

is exerted on the wind by its rotor [95]. This process lessens the momentum deficit

within the wake that is generated [95]. Turbine 2, which is located further down-

stream and is aligned with this wake, is exposed to greater wind speeds as a result,

and outputs electrical energy at a higher rate in relation to a baseline scenario in

which turbine 1 had not been de-rated [95]. This concept is theoretically valid

since, with the appropriate scale of power de-rating, the power loss associated with

de-rating turbine 1 is outweighed by the power gain of turbine 2 [95].

Yaw-based wake redirection

A wind turbine operating with nacelle yaw offset deflects the downstream path of

the generated wake in the crosswind direction [93, 181]. This phenomenon re-

sults from unsteady and asymmetric aerodynamic loads that are generated along

the blades of a yawed rotor [29]. Due to misalignment of the rotor plane with the

incoming wind, blades that are located in the top and bottom halves of the rotor

plane experience different aerodynamic loads instantaneously [29]. As a result,

load projections along the rotor plane are not in balance. This imbalance imparts

forces that cause the wind to gain momentum in the crosswind direction [29]. Vor-

tices generated in the wind field by these loads have also been shown to contribute

to wake deflection [60].

The phenomenon of wake deflection forms the basis of the concept of yaw-

based wake redirection. Referring to Figure 2.4b, operating turbine 1 with nacelle

yaw offset causes the generated wake to be redirected in the direction of yaw [29].

The overlapping area between this deflected wake and the rotor of turbine 2 is

reduced as a result, and a portion of the rotor of turbine 2 is exposed to higher

speed wind that is less disturbed by the wake effect [58]. At the optimal nacelle

yaw offset, turbine 2 experiences a power output rise that exceeds the power loss

corresponding to the operation of turbine 1 with yaw misalignment [58].
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Turbine repositioning

The final notable concept that has recently begun to gain attention is reposition-

ing of floating offshore wind turbines. Regardless of the mechanism employed,

the concept of turbine repositioning involves altering the locations of individual

wind turbines within a wind farm in real-time with the aim of minimizing wake

overlap [24]. Referring to Figure 2.4c, shifting the locations of the two turbines in

opposite crosswind directions decreases the wake overlap at turbine 2, and raises

its power output due to exposure to higher speed wind [58]. While the concepts of

power de-rating and yaw-based wake redirection have received considerable atten-

tion from the wind farm control community, publications investigating the potential

of turbine repositioning are limited. This trend stems from the narrow applicability

of turbine repositioning to the floating offshore wind power sector [24], which is

yet in an early stage of development [30]. Additionally, there is currently an ab-

sence of wind farm simulation tools capable of incorporating non-stationary wind

turbines.

Active technologies that have been proposed for controlling the position of

floating offshore wind turbines include under-water thrusters, which are commonly

employed by the offshore oil and gas industry [165], winch mechanisms that are

attached to floating offshore platforms and anchored to the seabed [153], and po-

tentially thermally-actuated sewing thread artificial muscles that utilize electrical

current to alter tension within mooring lines [114]. An alternative passive solu-

tion is yaw and induction-based turbine repositioning (YITuR), which involves

using nacelle yaw and blade pitch control to manipulate the magnitude and direc-

tion of aerodynamic forces for the purpose of controlling floating platform posi-

tions [80, 81]. Due to these changes in yaw angles and thrust force magnitudes, the

wind velocity field will also be manipulated in the process. A wind farm controller

based on YITuR must therefore perform dynamic optimization in consideration of

both turbine motion and wind field changes.

Other concepts

Additional wind farm control concepts include wake redirection via individual

blade pitch control and nacelle tilt. Using nacelle tilt to redirect wakes employs
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the same underlying physics that permit yaw-based wake redirection, except wakes

are redirected in the vertical direction rather than the crosswind direction [58]. Al-

though redirecting wakes using nacelle tilt has shown greater capacity for wind

farm power maximization relative to using nacelle yaw [58], the nacelle tilt de-

gree of freedom is unavailable in modern wind turbine designs [62]. It is worth

mentioning that if an optimal nacelle tilt angle is identified across a spectrum of

potential wind speeds and atmospheric turbulence intensities, nacelle tilt actuation

may not be necessary for wind farm power maximization. Standard utility-scale

wind turbines currently possess a fixed shaft tilt offset to increases clearance be-

tween blades and the turbine tower [29]. This shaft tilt offset may be fixed at a

predetermined optimal value for maximizing wind farm power production.

Individual blade pitch control may be used to redirect wakes by generating an

uneven distribution of drag and lift forces across the area spanned by a wind tur-

bine rotor [62]. The difficulty in realizing such a controller is that individual blade

pitch control is conventionally used by turbine-level controllers for providing in-

dependent aerodynamic rotor braking and reducing asymmetrical blade loads [29].

As a result, an effective wind farm controller based on individual blade pitch con-

trol must simultaneously consider these turbine-level objectives in addition to wake

redirection for wind power maximization [62]. This requirement yields an inter-

esting yet challenging problem which has consequently subsided research on this

specific control concept.

2.2.2 Controller properties

Properties of importance when assessing and designing wind farm controllers in-

clude their closed-loop structure, which governs requisite measurements and con-

trol signals, their dependency upon analytical or estimated wake models, the al-

gorithms they use for characterizing the wind field, and the scope of permitted

communication among wind farm level control units. Understanding these proper-

ties and their effects is necessary for justifying differences in the performances of

different wind farm controllers.
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Figure 2.5: The closed-loop feedback structure of a general control system
for wind farm power maximization. Listed measurements and turbine
set-points do not encapsulate all possible signals; they are examples of
commonly used data for wind farm control.

Closed-loop structure

Based on the studies reviewed in this chapter, a general closed-loop structure for

wind farm controllers has been formulated and is presented in Figure 2.5. The

plant to be controlled is the wind farm, whose dynamic behavior is a function

of several underlying physical subsystems; wind turbine dynamics and control,

which govern the motions of individual wind turbine components in response to

aerodynamic and hydrodynamic loads; fluid-structure interaction, which influences

the magnitudes of these loads, as well as their local effects on the wind field; and

wake transport, which affects temporal and spatial changes in the wind field that

result from mass and momentum conservation within a turbulent flow field. This

flow domain contains mixing co-flowing regions and is subject to terrain effects.

The velocity and turbulence intensity of the free stream wind are regarded as

disturbances acting on the plant since these parameters are undisturbed by wind tur-

bines and are therefore considered as uncontrollable inputs. In general, wind farm

measurements include local wind velocities and magnitudes of control degrees of

freedom associated with individual wind turbines. Among studies pertaining to

wind farm power maximization, these degrees of freedom are commonly turbine
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power outputs (or axial induction factors, which are directly related to the power

coefficients of ideal actuator discs) and nacelle yaw angles, depending on the con-

trol concepts being implemented. Few studies in this research area are concerned

with turbine-level control degrees of freedom such as blade pitch angles, tip-speed

ratios, or generator torque values. It is preferential for wind farm controllers to

compute power output set-points while individual wind turbine controllers deter-

mine the optimal combinations of these turbine-level degrees of freedom that de-

liver the desired power output at minimal mechanical loading.

Regardless of specific wind turbine measurements, wind farm controllers solve

dynamic optimization problems in order to identify optimal turbine set-points that

dynamically manipulate the wind field in such a way that the wake effect is mit-

igated and power losses are minimized. These set-points, which commonly en-

compass power outputs and nacelle yaw angles of individual wind turbines, are

then tracked by wind turbine-level controllers. In addition to dynamic optimiza-

tion, wind farm control systems may encompass wind field estimation algorithms

for conditioning wind field measurements [10], correcting wake model inaccura-

cies [69], and estimating wake model parameters [72, 186]. These topics are briefly

reviewed in Section 2.2.2.

Model dependency

In solving a dynamic optimization problem, wind farm controllers may utilize

model-based or model-free approaches. In the case of model-based control, for

which the general feedback structure is shown in Figure 2.6, dynamic optimization

is performed on a wind farm model (which may be dynamic or steady) at each time

step in order to determine optimal turbine set-points. The wind farm model may be

analytically derived based on integral relations of fluid mechanics and assumptions

regarding wake expansion [98], or its parameters may be estimated using mea-

sured data [72]. Machine learning methods such as neural networks may also be

used for predicting wake behavior and wind turbine power production [132, 186].

Furthermore, model predictions may be corrected using state estimators such as

Kalman filters [49]. Model-predictive control is commonly employed for model-

based wind farm controller design due to its compatibility with constrained dy-
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Figure 2.6: The closed-loop feedback structure of a model-based wind farm
controller with wake model parameter and state estimation, and wind
field estimation functions.

namic optimization.

Contrarily, model-free control involves dynamic optimization driven purely by

measured data with no dependency on analytical or estimated wind farm mod-

els [24]. Such algorithms iteratively or continuously probe systems and compute

future control actions based on observed changes in some objective function. Com-

mon implementations within wind farm control literature include gradient-ascent

schemes, game theory, and extremum-seeking control. The rising popularity of

such controllers within the wind farm control community is often attributed to the

challenge of accurately modeling aerodynamic interaction within wind farms using

control-oriented computationally inexpensive wake models [122]. Additionally,

using higher-fidelity computational modeling techniques such as large eddy sim-

ulations (LES) is infeasible for online dynamic optimization due to the excessive

computational resources required [77]. Model-free control should not be conflated

with data-driven control. A data-driven controller, which may be model-free or

model-based, computes control actions either directly from measured data or via a
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model estimated using such data [155].

Wind field estimation algorithms

Whether a wind farm controller uses a Kalman filter to correct wake model inac-

curacies or system identification techniques to estimate wake model parameters,

accurate measurements of wind speed and direction across wind farms are nec-

essary [33]. The challenge presented here is that these measurements cannot be

used directly and require conditioning. For instance, readings from wind vanes

and anemometers mounted atop wind turbine nacelles are distorted by turbulence

and the effects of moving blades on the nearby wind field [82]. In the absence of

LiDAR technology and dedicated wind masts, appropriate algorithms are required

for estimating wind conditions at different wind farm locations [10]. These algo-

rithms are represented by the wind field estimation block in Figure 2.6. Although

not the focus of the current chapter, wind field estimation is a broad and active area

of research with significant implications in the fields of both wind turbine and wind

farm control.

One recent effort implementing wind field estimation at the wind farm level

is presented by Annoni et al. [10], who estimated the wind direction at the lo-

cation of any wind turbine within a wind farm using wind vane measurements

from the turbine itself and from those of its neighbors. Knowledge of local wind

direction is crucial for identifying which pairs of wind turbines interact aerody-

namically. Another example by Bottasso et al. [28] used blade bending moments

to estimate wind speeds within different regions along a wind turbine rotor. This

technique was then implemented experimentally in wind tunnel tests by Schreiber

et al. [158] and Campagnolo et al. [33] to estimate the centerline location of a wake

that was overlapping with a downstream turbine rotor. Estimates of this centerline

wake location may be used to tune or correct parametric wake models intended for

simulating wake redirection resulting from yaw misalignment.

Regardless of the means of obtaining wind speed and direction estimates, this

information may ultimately be used for tuning wake model parameters as sug-

gested by Gebraad et al. [72], training neural networks as performed by Yan [186],

or correcting wake model inaccuracies using state-estimators as presented by Ge-
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braad et al. [69]. Data obtained from wind field estimation may also be used for

joint parameter-state identification. Doekemeijer et al. [49] designed state and

parameter-state estimators for the medium-fidelity Wind Farm Simulator (WFSim)

using various forms of Kalman filters. These estimators corrected wind speed

predictions across the flow domain while identifying WFSim parameters. They

evaluated their algorithms by simulating a 3×3 wind farm using the high-fidelity

Simulator for Wind Farm Applications (SOWFA); the results from these simula-

tions were treated as true measurements. Upon implementing Kalman filters, they

reported convergence between wind speeds predicted by the two models within

300 sec. Beyond this point, errors between calibrated WFSim and SOWFA predic-

tions were predominantly less than 1 m/s across the flow domain through which the

free stream wind speed was 8 m/s.

Communication architecture

The final property of interest is the communication architecture of a wind farm-

level controller, which may be centralized or distributed. A comparison of these

architectures is provided in Figure 2.7. In a centralized control system, the wind

farm controller receives measured wind velocity and control degree of freedom

magnitudes from all wind turbines, and likewise transfers control set-points to all

machines [122]. In a distributed wind farm control system, there is no centralized

wind farm controller. Instead, the set-points of individual wind turbines are regu-

lated by their respective distributed control units [70]. In the specific arrangement

shown in Figure 2.7b, each turbine’s wind farm-level control unit is permitted to

communicate with those of the turbine’s immediate neighbors. Alternatively, com-

munication may be extended to an arbitrary collection of neighbors [122], or it may

be further narrowed to solely a single downstream or upstream neighbor [70].

The motivation for developing distributed wind farm controllers is to reduce

the size and complexity of the dynamic optimization problem being solved by any

given control unit. Reducing the number of optimization variables enhances com-

putational time-efficiency for each control unit; however a global optimal solution

is less likely to be reached in comparison to using centralized control systems [70].

An additional benefit to developing distributed controllers is that they deliver a
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Figure 2.7: Comparison between the closed-loop feedback structures of (a)
centralized and (b) distributed wind farm controllers.

generalized solution that may be implemented in wind farms of any size without

altering computational efficiency and structure.

2.3 Wind farm modeling
Evaluating the performance of control systems on operational or experimental wind

farms is an expensive and time-intensive task. Appropriate models for simulating

wind farm aerodynamics are therefore necessary at the early stages of controller

development [24]. Typically, such wake models are categorized along a spectrum

ranging from low to high fidelity based on their numerical accuracy in predicting

wind farm and wind turbine power outputs [24]. The intention of this section is

not to review wake modeling literature in detail, but rather to provide the reader

with sufficient knowledge regarding the simplifying assumptions, computational
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requirements, and accuracy of simulation tools that are commonly used to evalu-

ate wind farm controllers. A summary of these wake models is provided in Ta-

ble A.1. More comprehensive reviews of existing wind farm models are presented

by Boersma et al. [24], Göçmen et al. [75], and Vermeer et al. [179].

2.3.1 Low-fidelity wake models

Low-fidelity wake models are based on integral relations of fluid mechanics, where

the rates of change of fluid momentum and mass must be conserved across a spec-

ified control volume [56]. Such models are often referred to as kinematic, en-

gineering, or parametric wake models, and they are best suited for offline static

optimization and online dynamic optimization due to their simplicity and econom-

ical computational requirements [24]. The primary drawback of these models is

that they provide no detail regarding velocity and pressure gradients within control

volumes [56]. The phenomenon of wake expansion, which is the physical result of

turbulent mixing between flow regions internal and external to wakes, is dependent

upon velocity and pressure gradients within the fluid domain [115]. As a result,

wake models based on integral relations rely upon parametric assumptions con-

cerning the rate of wake expansion or the velocity distribution within wakes [24].

The earliest and simplest implementation of integral relations for constructing

a wake model was presented by Jensen [91] in 1983. The methodology and as-

sumptions inherent to this model are shown in Figure 2.8. Assuming uniformly

distributed incoming flow that is subject to a uniform axial thrust force (actuator

disc theory [121] is invoked here), the wind speed immediately downstream of the

rotor is reduced by an amount that respects linear momentum conservation across

the rotor. Upon defining a cylindrical control volume whose length spans from the

rotor to some arbitrary downstream distance and whose diameter is equal to the

wake diameter at this downstream location, the uniform wind speed at this loca-

tion may also be found via linear momentum conservation. A major assumption

necessary for this final step is a linearly expanding wake with a known expansion

constant. A second assumption is zero radial flow through the cylindrical boundary

of the control volume.

The Jensen wake model has since been modified and extended for improved
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Figure 2.8: The control volume analysis used for computing momentum con-
servation in parametric wake models that are based on integral relations
from fluid mechanics.

accuracy and the capability to capture additional aerodynamic phenomena. Katić

et al. [98] modeled the interaction of multiple wakes by assuming that the kinetic

energy deficit at any point in the wind field is equal to the sum of kinetic energy

deficits of all overlapping wakes. As a result, the velocity deficit at any point is

equal to the root-sum-square of pertinent wake velocity deficits. This extended

model was named the Park wake model. Despite its simplicity and the absence

of ground effects and wake meandering, the Park wake model has been shown to

predict experimental wind farm power production with relative errors ranging from

0.1 to 15.9 % across a range of wind directions [98].

Gebraad et al. [72] incorporated the effects of nacelle yaw on the evolution

of wakes. An analytical derivation by Jiménez et al. [93] was used to calculate

the magnitude and direction of wake centerline deflection as a function of the na-

celle yaw angle and axial induction factor. Additionally, while the Jensen wake

model assumed uniform velocity distributions within wakes, Gebraad et al. [72]

segmented wakes into three concentric zones to better predict velocity distribu-

tions. Finally, the parameters of this wake model were identified using high-fidelity

simulation results obtained from SOWFA. This newly developed simulation tool

was named the Flow Redirection in Steady-state (FLORIS) model and was re-
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cently released as standalone software by the National Renewable Energy Labo-

ratory (NREL) for controller design and evaluation research. Recent releases of

this software have incorporated Gaussian velocity profiles [17] and vorticity ef-

fects [124]. FLORIS has been shown to match wind farm power predictions from

SOWFA with relative errors ranging from 0.1 to 5.3 % across various wind direc-

tions and turbine yaw settings [72].

Gebraad and van Wingerden [67] also introduced the Flow Redirection and

Induction Dynamics (FLORIDyn) model, which extended FLORIS by including

dynamic wake transport effects. As the nacelle yaw angle or axial induction factor

of an upstream turbine are altered, and the generated wake is altered accordingly, a

certain period of time must pass before this change in wake behavior is transported

to a downstream machine. The FLORIDyn model considers this spatial and tempo-

ral delay by transporting steady-state wake solutions in the downstream direction.

The absence of partial differential equations results in a dynamic control-oriented

simulation tool for dynamic wind farm optimization.

The process of wake transport used in FLORIDyn is visualized in Figure 2.9.

Assuming that a wind turbine has been facing the free stream wind with zero na-

celle yaw for a long period of time, the steady-state wake profile will exist as shown

in Figure 2.9a. Then, assuming that the wind turbine instantaneously yaws counter-

clockwise at time t, a deflected steady-state wake profile will result. In FLORIDyn,

this deflected wake profile does not instantaneously take form downwind of the tur-

bine. Instead, the downstream region is gradually updated with the deflected wake

profile according to the distance traveled by the wake over an elapsed time-span.

The wake profiles shown in Figure 2.9b and Figure 2.9c show the distance traveled

by the deflected wake after elapsed time-spans of ∆t1 and ∆t2. Simulation tools

that utilize transport delays in such a manner are categorized as quasi-dynamic

wake models.

Gebraad [67] validated FLORIDyn against dynamic SOWFA simulations con-

ducted over a 600 sec time-span with turbine yaw settings that were adjusted mid-

simulation. FLORIDyn results deviated from SOWFA turbine power predictions

with root-mean-square error (RMSE) values ranging from 7.9 to 11.7 % across dif-

ferent wind turbines, whereas FLORIS results deviated from SOWFA’s with RMSE

values ranging from 11.1 to 14.4 %. Approximating wake dynamics by transport-
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Figure 2.9: A demonstration of steady-state solutions being transported in the
downstream direction as a simplified means of approximating dynamic
wake transport.
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ing steady-state wake solutions in the wind direction therefore reduced absolute

simulation error by as much as 6.5 %4.

Our recent work [101] extended FLORIS to model platform motion in float-

ing offshore wind farms. The modified simulation tool was named the Floating

Offshore Wind Farm Simulator (FOWFSim). The wind farm was represented by a

system of particles that were subject to aerodynamic thrust and mooring line forces.

Similar to FLORIS, aerodynamic thrust forces were computed using actuator disc

theory. Mooring line tensions were determined by solving the differential equa-

tions describing a static catenary that is either fully elevated or partially resting

along the seabed. Cable stretch and seabed contact friction were also considered

in this calculation. Finally, steady-state wake aerodynamics were captured using

FLORIS.

2.3.2 High-fidelity wake models

High-fidelity wake models rely upon differential relations of fluid mechanics. In

particular, they solve various forms of the turbulent Navier-Stokes equations, which

are a set of partial differential equations that describe fluid momentum and mass

conservation based on assumptions regarding turbulence modeling [56]. Unlike

integral relations, solutions to differential relations provide details regarding ve-

locity and pressure gradients within fluid domains [56]. As a result, phenomena

that are dependent upon this information, such as turbulent mixing, wake expan-

sion, and ground effects, are inherently captured by the partial differential equa-

tions of motion; no parametric assumptions are necessary. The primary drawback

of higher-fidelity models is increased computational cost, since simulations may

require from 103 to beyond 106 states, which render these tools less practical or

infeasible for optimization and control [24].

High-fidelity wind farm models generally employ LES, which solve tempo-

rally and spatially-filtered forms of the three-dimensional Navier-Stokes equations

that only capture eddies of relevant scale. One prominent high-fidelity simulation

tool that is commonly used for wind farm controller evaluation is SOWFA, which

is publicly available via NREL [40]. SOWFA couples an LES-based flow field

4Potential reduction in absolute simulation error was obtained from Figure 5a by calculating the
maximum reduction in RMSE obtained for any single turbine’s power production results [67].
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model with NREL’s Fatigue, Aerodynamics, Structures, and Turbulence (FAST)

code, which models flexible multi-body wind turbine dynamics using the princi-

pal of virtual power (or Kane’s method). The aerodynamic interaction between

the wind and turbine blades is modeled using actuator line potential flow theory,

which captures additional flow phenomena such as blade root and tip vortices in

comparison to LES-based tools that model turbines using actuator disc theory; al-

beit at a higher computational cost with greater mesh density requirements. Wang

et al. [182] compared SOWFA turbine power predictions to wind tunnel experi-

mentation results and calculated relative discrepancies ranging from 0.2 to 14.0 %

across various turbines with different yaw settings.

Other three-dimensional LES-based simulators developed specifically for wind

farm applications include SP-Wind [7] and University of Texas at Dallas-Wind

Farm (UTD-WF) [123]. SP-Wind reduces the computational cost of simulations by

modeling wind turbines using actuator disc theory, whereas UTD-WF offers both

actuator disc and actuator line modeling options. Martı́nez-Tossas et al. [123] com-

pared LES-based wind farm modeling using actuator disc and actuator line models

and showed that power predictions from the two methods relatively differ by less

than 1.0 %, and that differences in velocity profiles are less pronounced in far-wake

regions. Additional general-purpose computational fluid dynamics (CFD) solvers

that have been used in wind farm control literature include EllipSys3D [166] and

STAR-CCM+ [168].

2.3.3 Medium-fidelity wake models

Medium-fidelity models solve simplified forms of the turbulent Navier-Stokes equa-

tions in order to reduce computational complexity at the cost of neglecting cer-

tain flow physics. WFSim, developed by Boersma et al. [23, 25], solves a two-

dimensional form of the unsteady turbulent Navier-Stokes equations along a hor-

izontal plane located at the hub height of the wind turbines within a wind farm.

Actuator disc theory is used to model thrust forces exerted on the wind by tur-

bine rotors, and a mixing length turbulence model is used to compute momentum

transfer via Reynolds stresses. The assumption of two-dimensional flow does not

capture ground effects and wake rotation, which has been shown to influence wake
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centerline deflection [60, 72]. Nevertheless, Boersma et al. [23, 25] validated WF-

Sim against SOWFA simulation results and showed that the medium-fidelity wake

model provides a reasonable approximation of wake centerline deflection, which

renders the tool useful for wake-redirection control studies. It was additionally

shown that WFSim predicts spatially-averaged wake velocity profiles with up to an

82.1 % variance accounted for (VAF) match to SOWFA results.

The Ainslie wake model [4] solves the steady turbulent Navier-Stokes equa-

tions in cylindrical coordinates with the primary assumption that flow within a

wake is axisymmetric with zero circumferential velocities. Additional properties

of this model include the assumption of thin shear layers, which eliminate vis-

cous terms from the momentum conservation equations, and the usage of an eddy

viscosity turbulence model. Wake meandering is also accounted for by using a cor-

rection factor. Similar to WFSim, the Ainslie model captures neither wind shear

nor wake rotation, and is not capable of modeling wake redirection due to yaw mis-

alignment. When validated against wind tunnel experimental results, this medium-

fidelity wake model predicted wake centerline velocity deficits with relative errors

ranging from 0.5 to 8.4 % across different instances in time.

FarmFlow, which was developed by the Polytechnic University of Madrid [45],

solves the parabolized form of the steady turbulent three-dimensional Navier-Stokes

equations with turbulent transport coefficients computed using the k-ε turbulence

model. A number of assumptions were made to render the flow problem parabolic,

particularly the omission of streamwise diffusion5, which eliminated the influence

of downstream fluid conditions on upstream points in the fluid domain. This type

of flow problem with one-directional influence, similar to an elementary boundary

layer problem, is solvable using a computationally-inexpensive marching proce-

dure [154]. The assumption of negligible streamwise diffusion is only valid in

flows where boundary layer separation in the streamwise direction is insignifi-

cant [154]. Upon validation against wind tunnel experimental results, FarmFlow

predicted maximum wake velocity deficits with relative errors ranging from 0.2 to

26.9 % across different tip-speed ratios and downstream distances [45].

5In the Navier-Stokes equations, streamwise diffusion refers to second-order velocity gradients
in the wind direction.
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2.4 Review of wind farm control literature
This section provides a detailed review of studies that have contributed to wind

farm control research. Each of the three notable wind farm control concepts dis-

cussed in Section 2.2.1 are reviewed separately. Furthermore, referenced works

are grouped into two categories; those that assess the steady-state potential of wind

farm control concepts by conducting static optimization studies, numerical sim-

ulations, or experiments; and those that develop dynamic wind farm controllers

capable of responding to real-time changes in wind conditions. Two subsections

are therefore dedicated to each control concept; the first section concerns its steady-

state potential, while the second details implemented controllers and dynamic op-

timization algorithms.

Summaries of all referenced studies are presented in Table A.2–Table A.6,

while only works with significant findings are reviewed in detail to maintain brevity.

These tables list properties of significance that are used to draw quantitative con-

clusions regarding controller performance and evaluation. These properties include

optimization or control algorithms, input parameters, models used for optimiza-

tion or control, models used for evaluation of optimal settings or controller perfor-

mance, simulated wind conditions, and the resulting relative increase in wind farm

power efficiency. Each listing under the Relative efficiency gain heading is accom-

panied by an endnote that highlights the origin of the result in the cited publication.

The listings in all tables are sorted in order of increasing fidelity of the model or

method used for evaluating controller performance or optimization results.

2.4.1 Steady-state potential of power de-rating

Studies evaluating the steady-state potential of power de-rating are summarized in

Table A.2. A large number of studies have used low and medium-fidelity wake

models (particularly the Park wake model) to determine optimal wind turbine set-

points for power de-rating under steady wind conditions. These works may be

distinguished based on the optimization scheme used and the turbine inputs that

are varied, which may consist of tip-speed ratios λ and/or collective blade pitch

angles β , axial induction factors a, thrust coefficients CT , power coefficients CP,

turbine power output targets P, or generator torque values Tgen. The general con-
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sensus that may be drawn from literature based on parametric modeling is that

power de-rating offers the potential to increase the instantaneous efficiency of a

wind farm by up to 25 %, with no risk of efficiency loss. As higher fidelity wake

models are employed however, and as additional aerodynamic phenomena such as

turbulence and time-varying wind velocities are considered, the range of poten-

tial wind farm efficiency gains narrows or attains negative values (i.e. wind farm

efficiency decreases relative to baseline control scenarios6).

Annoni et al. [9] delineated the discrepancies observed between results ob-

tained using steady parametric wake models and high-fidelity LES-based solvers.

They used both FLORIS and SOWFA to simulate a two-turbine wind farm subject

to constant mean wind speed; SOWFA simulations considered a turbulence inten-

sity of 6 %. A grid search optimization scheme applied to the steady Park model

was used to calculate the optimal axial induction factor for the upstream turbine.

This value was then implemented in FLORIS directly, while being converted into

collective blade pitch angle adjustments for SOWFA. Simulation results showed

that while the parametric FLORIS model predicted a wind farm efficiency gain of

24.82 %, SOWFA results indicated an efficiency loss of 9.35 %; this discrepancy

was attributed to two phenomena. First, when an upstream turbine is de-rated, the

increased kinetic power in the wind is predominantly concentrated along the wake

boundary, which lies beyond the area swept by wind turbine rotors located directly

downstream. As a result, these downstream wind turbines do not benefit when

their upstream neighbors are de-rated. Parametric wake models fail to capture this

phenomenon due to their assumption of uniform velocity distribution within sim-

ulated wake zones. Second, reducing the thrust force exerted on the wind by an

upstream wind turbine decreases the turbulence intensity within its wake, which in

turn diminishes the rates of wake expansion and momentum recovery. Parametric

wake models fail to reproduce this observation as they rely upon wake expansion

constants that are independent of turbine thrust forces.

Dilip and Porté-Agel [48] further validated the second conclusion drawn by

Annoni et al. [9]. They used an LES-based solver coupled with a rotating actua-

6The baseline control scenario that is universally used in wind farm control literature is referred to
as greedy control. This control scenario involves each turbine maximizing its own power production
locally without consideration of its effects on the wind field or its neighboring turbines.
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tor disc model to simulate a two-turbine wind farm subject to constant mean wind

speed and different turbulence intensities. The collective blade pitch angle of the

upstream turbine was varied by increments of 1 deg in the direction of both feather

and stall. It was shown that power de-rating by pitching to stall (i.e. increas-

ing thrust) was preferential over pitching to feather (i.e. decreasing thrust), since

pitching to stall increased wake turbulence and resulted in faster wake expansion

and momentum recovery further downstream. Despite this observation, conclu-

sions regarding the potential of power de-rating as a wind farm control technique

echoed those of Annoni et al. [9]. At the lower simulated turbulence intensity of

4.3 %, a maximum wind farm efficiency gain of 2.8 % was observed, while this

value reduced to 0.5 % at the higher turbulence intensity of 6.3 %. The larger level

of atmospheric turbulence offset the benefits of pitching the blades of the upstream

turbine in the direction of stall. This outcome upheld the long-established under-

standing that downstream wake behavior is primarily influenced by atmospheric

turbulence, not turbulence generated by viscous interaction [115].

Other studies employing CFD to assess power de-rating potential offer simi-

lar conclusions regarding its efficacy. Santoni et al. [156] used UTD-WF and the

steady Park model to simulate a three-turbine wind farm subject to constant mean

wind speed with an unspecified level of atmospheric turbulence. The steady Park

model was used to determine the optimal tip-speed ratios of the turbines for max-

imizing the wind farm power output. The wind farm’s performance with these

optimal set-points was then evaluated using both the steady Park model and UTD-

WF. The former parametric model predicted a wind farm efficiency gain of 5.7 %,

while a value of 0.2 % was obtained using UTD-WF. Nilsson et al. [141] used

EllipSys3D, an LES-based simulation tool that models wind turbine rotors using

actuator disc theory, to simulate power production from the Lillgrund wind farm

subject to constant mean wind speed and a turbulence intensity of 5.7 %. The wind

plant contained 48 wind turbines organized in a gridded layout. The front row tur-

bines were de-rated by altering their collective blade pitch angles by increments of

2 deg. It was shown that these adjustments resulted in wind farm efficiency losses

ranging from 2.2 to 7.7 %. Across all simulated blade pitch angles, the power

output rise of the second-row wind turbines was superseded by the power loss as-

sociated with pitching the blades of the front row turbines.
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Kazda et al. [99] used MULTI3, an in-house CFD code based on the Reynolds-

Averaged Navier-Stokes (RANS) equations and the k-ω turbulence model, to sim-

ulate aerodynamic interaction among four wind turbines within the Mont Crosin

wind farm. A steady mean wind speed was simulated with a turbulence intensity of

13 %. The four wind turbines were situated in a single row, except the two trailing

machines were shifted in the crosswind direction by an unspecified amount. This

study was then unique in the sense that not all wind turbine rotors were aligned with

the simulated wind direction. When assessing the effect of power de-rating within

the upstream pair of turbines, altering the collective blade pitch angle and tip-speed

ratio of the leading machine raised the pair’s efficiency by 2.5 %. When consider-

ing all four machines however, the wind farm efficiency increased by 9.7 %. This

large rise in efficiency may be attributed to the crosswind misalignment between

the trailing pair of turbines and the leading turbine, which offers credence to con-

clusions drawn by Annoni et al. [9]. The trailing pair of turbines benefited from

the increased kinetic power along the wake boundary of the leading turbine, since

they were not directly aligned with the rotor of this leading machine.

Similar to high-fidelity simulations, experimental wind tunnel tests using scaled

wind turbines have shown less potential for power de-rating in comparison to low-

fidelity parametric simulations. Corten and Schaak [43] examined a 3× 8 wind

farm containing scaled wind turbines with rotor diameters of 25cm subject to con-

stant mean wind speed. The effect of power de-rating was assessed by adjusting

the collective blade pitch angles of the leading two columns of turbines. A wind

farm efficiency gain of 4.6 % was produced, with the most significant rise in power

output corresponding to the second column of three turbines. Although this ef-

ficiency gain is sizable relative to predictions obtained from high-fidelity simula-

tions reviewed in this chapter, it was acknowledged that the low Reynolds number

of the blades may have inflated power output measurements. McTavish et al. [127]

showed experimentally that reduced Reynolds numbers in scaled wind tunnel tests

decrease the rate of wake expansion, which produces smaller wake diameters at

the locations of downstream turbines. Coupling this phenomenon with observa-

tions reported by Annoni et al. [9], the added kinetic power attained from power

de-rating, which is concentrated along wake boundaries, will be clustered closer

to the swept rotor areas of downstream machines. The relative efficacy of power
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de-rating is therefore likely to be overestimated in scaled wind tunnel tests.

Other experiments have yielded similar efficiency gains. Machielse et al. [118]

performed experiments on the same wind tunnel setup with a single row of seven

scaled wind turbines. A maximum wind farm power gain of 3.46 % was obtained

by pitching the blades of the leading two turbines by 2.5 deg in the direction of

feather. Adaramola and Krogstad [2] performed wind tunnel experiments on a

two-turbine wind farm containing scaled wind turbines with rotor diameters of

90 cm subject to constant mean wind speed. Maximum wind farm efficiency gains

of 3.26 and 3.81 % were attained by increasing the tip-speed ratio and collective

blade pitch angle of the upstream turbine, respectively. The Reynolds number

based on blade chord length was an order of magnitude lower than typical values

present among utility-scale wind turbines.

Campagnolo et al. [31] experimented with a wind farm containing three wind-

aligned scaled turbines with rotor diameters of 1.1 m subject to constant mean wind

speed with a turbulence intensity of 2 %. They reported a wind farm efficiency

gain of 0.9 % when considering only the leading two turbines, and no improve-

ment when including the third turbine in their calculations. The poor performance

of the third wind turbine was attributed to possible wall interference. Bartl and Sæ-

tran [16] conducted wind tunnel experiments using two scaled wind turbines with

rotor diameters of 90 cm subject to constant mean wind speed and turbulence in-

tensity that decayed from 10 to 5 % across the flow domain. They observed no im-

provement in wind farm efficiency when power de-rating was implemented using

either tip-speed ratio or blade pitch adjustments. These findings were attributed to

the observation reported by Annoni et al. [9] regarding the concentration of added

kinetic power beyond the rotor swept area of the downstream turbine.

Schepers and van der Pijl [157] and Boorsma [26] conducted field tests on

two 2.5 MW wind turbines located in a research wind farm operated by the En-

ergy Research Center of the Netherlands (ECN). The former study examined the

effects of noise reduced operation on the total power output of two machines. This

method of operation decreased the collective blade pitch angle and tip-speed ra-

tio of the upstream turbine, which reduced its axial induction factor, albeit not by

an amount that was optimal for wind farm efficiency gains. Results showed that

power losses from the upstream turbine were recovered by the downstream ma-
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chine, which validated power de-rating as a control concept, yet no demonstrable

rise in wind farm power output was observed. The latter work varied the collective

blade pitch angle of the upstream machine to simulate a reduction in axial induc-

tion, yet also produced inconclusive results. The absence of efficiency gains was

attributed to several challenges in conducting field tests; varying wind direction,

which rendered power de-rating ineffective as a wind farm control concept when

two turbines were not nearly aligned with the wind; data collection from different

periods in time, which introduced errors resulting from differing atmospheric con-

ditions; and time-varying wind conditions that introduced transience in power and

velocity measurements, despite the partitioning of data into bins based on wind

speed and direction.

2.4.2 Controllers developed for power de-rating

A list of studies that have developed wind farm controllers based on the concept

of power de-rating is provided in Table A.3. Abbes and Allagui [1], Gionfra et

al. [73], Heer et al. [83], Kim et al. [106], and Kazda et al. [100] developed model-

based power de-rating controllers that solved static offline optimization problems

using low and medium-fidelity wake models. These controllers were then evalu-

ated using similar wake models. Static optimization algorithms were implemented

at specific wind speeds and directions to compute optimal wind farm set-points,

which were then transferred to and dynamically tracked by individual wind tur-

bine controllers. These control systems increased wind farm efficiency by up to

4% across simulations considering turbulence and time-varying wind velocities.

These efficiency gains are substantially lower than the potential gains predicted by

static optimization studies discussed in Section 2.4.1, which reached 25% and also

employed low and medium-fidelity wake models. Furthermore, Kim et al. [106]

demonstrated that substantial levels of atmospheric turbulence could yield effi-

ciency losses of up to 2.88%. Therefore, in addition to the shortcomings of power

de-rating reviewed in Section 2.4.1, the dynamic tracking of optimal set-points by

individual wind turbine controllers further deteriorates the potential of this wind

farm control concept, even with the presumption that these optimal turbine set-

points are known for all wind speeds and directions without the need for online
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optimization.

Alternatively, model-free controllers have also been implemented to compute

optimal wind farm set-points using real-time dynamic optimization. Marden et

al. [122] developed a centralized game-theoretic dynamic optimization algorithm

for power de-rating. At each time-step, this algorithm perturbed the axial induction

factors of individual wind turbines relative to preassigned baseline values using

some probability distribution function. If the wind farm power output increased in

response to these perturbations, then the baseline power output set-points were set

equal to the perturbed values; otherwise, the baseline values were maintained. A

distributed game-theoretic algorithm was also implemented in which each control

unit had limited access to information from neighboring turbines only. This algo-

rithm assigned moods of either content or discontent to each turbine, and optimum

operation was reached when all turbines were content. In order for any turbine to

maintain a content mood, it would have to sustain high power production, while its

neighbors also remained content. The centralized controller was evaluated by sim-

ulating the Horns Rev wind farm (8×10) using the steady Park wake model. Un-

der steady wind conditions and no turbulence, this controller increased the relative

wind farm efficiency by 34.05%. At least 103 iterations were necessary however,

which is indicative of the limitations that such an algorithm will encounter under

time-varying wind conditions. A wind-aligned row of three turbines was also op-

timized using both controllers, and it was observed that the distributed controller

required on the order of 105 iterations, while the centralized algorithm required

only several hundred.

Zhong and Wang [188] developed distributed discrete adaptive filtering algo-

rithms for power de-rating. These algorithms were fundamentally similar to the

game-theoretic algorithms proposed by Marden et al. [122] in that they randomly

perturbed wind turbine axial induction factors based on some probability distribu-

tion function and updated baseline axial induction factors only if the perturbations

increased the power output of a cluster of turbines. The difference between the

algorithms was that Zhong and Wang [188] updated probability distribution func-

tions using an adaptive filtering step that rejected noise and disturbances. For a sim-

ulated 5× 5 wind farm subject to constant mean wind speed, wind directions that

varied every 200 iterations, and added noise for modeling turbulence, the proposed
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algorithm raised the wind farm efficiency by 3.87% in 200 iterations. Simulations

were conducted using the steady Park wake model and the effects of time-varying

wind speed and dynamic wake transport were therefore not considered. In com-

parison, the game-theoretic algorithm proposed by Marden et al. [122] was also

examined by Zhong and Wang [188], and resulted in an efficiency loss of 5.92%,

which was attributed to sensitivity of this algorithm to environmental disturbances.

Gebraad and Wingerden [70] developed a distributed gradient-ascent maxi-

mum power-point tracking controller for power de-rating. This controller opti-

mized the axial induction factor of each turbine by considering only the power out-

put fluctuations of the turbine itself plus that of its immediate downstream neigh-

bor. Specifically, iterative measurements were used to numerically estimate the

gradient of the power output of a pair of turbines with respect to the axial induc-

tion factor of the leading machine. Appropriate adjustments in this axial induction

factor were then calculated based on the estimated gradient. A distributed quasi-

Newton maximum power-point tracking algorithm was additionally developed to

improve convergence. Simulations of the Princess Amalia wind farm (6×10) were

conducted using the dynamic Park wake model (i.e. the steady Park wake model

with time delay added for wake transport effects). With mean wind speeds varying

between 8 and 10m/s, the gradient-ascent controller raised the wind farm effi-

ciency by an average of 4%; the effect of turbulence was not considered however.

Simulations were also conducted with constant mean wind speed to compare the

proposed algorithms to the centralized game-theoretic controller presented by Mar-

den et al. [122]. Results showed that the gradient-ascent and quasi-Newton con-

trollers reached optimal solutions in approximately 30 minutes, while the game-

theoretic approach required over 80 hours to achieve the same outcome. This

finding is unsurprising since the game-theoretic controller randomly varied axial

induction factors, while the maximum power-point tracking methods relied upon

computed gradients.

Ahmad et al. [3] presented a centralized multi-resolution simultaneous pertur-

bation stochastic approximation control algorithm for power de-rating. A standard

simultaneous perturbation stochastic approximation algorithm randomly and si-

multaneously perturbs all wind turbine axial induction factors to determine wind

farm power output gradients, and then updates the axial induction factors using

39



a gradient ascent scheme. The proposed multi-resolution controller implemented

this standard algorithm repeatedly with wind turbines being clustered into smaller

groups after each iteration. These groups were referred to as resolutions, with

larger groups being designated lower resolution values, and vice-versa. The solu-

tion obtained from optimizing at a lower resolution then served as the initial guess

for optimization at a higher resolution. The performance of this controller was as-

sessed by simulating the Horns Rev wind farm (8× 10) using the dynamic Park

wake model. Over the course of a ten-hour simulation, the mean wind speed and

direction were varied using a series of step functions. That is, the simulated wind

was steady for hour-long intervals, and was instantaneously altered at the end of

each interval. The proposed algorithm monotonically raised wind farm efficiency

by 32% over the first eight hours of the simulation. It is important to note how-

ever that adjusting wind conditions in such a stepwise fashion is not tantamount to

simulating stochastic time-varying wind behavior that is encountered in the field.

All algorithms reviewed thus far must therefore be evaluated under more realistic

turbulent wind conditions with varying direction.

Johnson and Fritsch [94] offered insight into the effects of stochastic time-

varying wind conditions on the efficacy of wind farm control. They developed a

centralized extremum seeking controller for power de-rating. The controller per-

turbed wind turbine axial induction factors with a continuous periodic signal in or-

der to observe changes in wind farm power production. Depending on whether the

variation in wind farm power output was in or out of phase with perturbation sig-

nals, the mean values of the axial induction factors were raised or lowered toward

their optimal values. This controller was evaluated by simulating a wind-aligned

row of three wind turbines using the dynamic Park wake model. Under steady mean

wind conditions and a turbulence intensity of 2%, the extremum seeking controller

increased wind farm efficiency by 3.8%. Increasing the turbulence intensity to

8% then generated a 13.2% loss in wind farm efficiency. Yang et al. [187] im-

plemented a nested-loop extremum seeking controller for power de-rating, where

optimal generator torque values were calculated consecutively starting from the

most downstream turbine to the leading machine. Simulations were conducted on

a wind-aligned row of three wind turbines using the dynamic SimWindFarm simu-

lation tool. Under steady mean wind conditions with a turbulence intensity of 5%,
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the extremum seeking controller increased wind farm efficiency by 1.3%. These

studies did not consider the effects of time-varying mean wind speed and direc-

tion. Nonetheless, the meager gains predicted in these studies highlight the fact

that adapting to stochastic time-varying wind conditions is a major challenge for

wind farm controllers.

Ciri et al. [41] developed a nested extremum seeking controller for power de-

rating similar to that implemented by Yang et al. [187]. Key differences between

the two studies were that Ciri et al. [41] used a discrete-time version of extremum

seeking control with faster convergence, and they used the high-fidelity simulation

tool UTD-WF with rotating actuator disc theory for controller evaluation. A wind-

aligned row of three wind turbines was simulated under constant mean wind speed

and a turbulence intensity of 8%, and a relative wind farm efficiency gain of 7.8%

was reported. Ciri et al. [41] also tested an individual extremum seeking controller

with the objective of maximizing turbine power outputs locally. Even though this

algorithm did not constitute a wind farm controller, it interestingly raised wind farm

efficiency by 7.6% relative to a greedy scenario wherein generator torques were

fixed at ideal design values. It was explained that these ideal design torque values

were intended for non-waked wind turbine rotors, and that individual extremum

seeking control was able to tune generator torque values for optimal local operation

in the presence of rotor wake overlap.

A small number of studies have developed dynamic optimization algorithms

that are model-based. Vali et al. [175] designed a centralized linear adjoint-based

model predictive controller7 for power de-rating that used WFSim to simulate wake

aerodynamics. The term adjoint-based refers to additional steps taken to efficiently

estimate the gradient of wind farm power output with respect to axial induction fac-

7An explanation of model predictive control is provided for readers who are unfamiliar with
the topic. Traditional regulators such as proportional-integral-derivative control rely upon past and
present information and measurements to determine control inputs at the current time-step. If one
possesses a model of the system that is being controlled, then the future behavior of this system in
response to any hypothetical future control input may be simulated. With this capability, a dynamic
optimization problem may be solved over some future time horizon to determine the optimal future
response of the system, as well as the corresponding future control signals. This process describes
the basic principle of model predictive control, according to which a dynamic optimization problem
is solved online at each time-step in order to determine optimal future control inputs. The objective
of optimization may involve maximizing or minimizing an objective function with or without con-
straints; hence the relevance of model predictive control in maximizing wind farm power production.
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tors. Lagrange multipliers were used to remove constraints from the optimization

problem, while WFSim was linearized around an appropriate operating point at

each time-step. The performance of the controller was assessed by simulating a

2× 3 wind farm, again using WFSim. With constant mean wind speed and step

changes in wind direction, the model predictive controller raised wind farm effi-

ciency by up to 23.59% during major portions of the 30-minute simulation, even

though there existed roughly a three-minute period directly after specific wind di-

rection changes where wind farm efficiency was reduced by a maximum of 3.6%.

This study did not consider the effects of turbulence nor varying wind speed.

Shu et al. [164] developed a centralized nonlinear model predictive controller

for power de-rating with dynamic wind farm aerodynamics modeled by combin-

ing the Frandsen [64] and Larsen [110] wake models. Similar to the dynamic

Park wake model, these wake models are based on integral relations from fluid

mechanics; however they also consider wind shear effects and wake meandering

due to atmospheric turbulence. A wind speed estimator was also designed to cor-

rect for mismatch between measured power outputs and those predicted by the

wake model. The model predictive controller was validated by simulating a wind-

aligned row of ten wind turbines using the same combined wake model that was

used for model predictive control. Over the course of a four-minute simulation,

during which the mean wind speed varied between 7 and 12m/s, the controller

raised wind farm efficiency by an average of 1.96%. This study did not consider

the effects of turbulence or time-varying wind direction. It is important to keep

in mind the limitations of model predictive controllers that rely upon low fidelity

wake models. As indicated in Section 2.4.1, these simulators tend to overestimate

efficiency gains resulting from power de-rating due to inherent simplifications re-

garding velocity distributions and rates of wake expansion. Such model predictive

controllers must therefore be evaluated using higher-fidelity wake models in order

to ensure their effectiveness.

Goit and Meyers [76], Goit et al. [77], and Munters and Meyers [138] devel-

oped centralized model predictive controllers for power de-rating that solved dy-

namic optimization problems using SP-Wind, an LES-based CFD tool that models

wind turbine rotors as actuator discs. The performance of their controllers was

also evaluated using SP-Wind. These studies were unique in the sense that they
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utilized a high-fidelity simulation tool to dynamically compute optimal wind farm

set-points. All other studies cited in this chapter made use of either low or medium-

fidelity simulators, or relied upon model-free dynamic optimization algorithms.

Large wind farm efficiency gains of up to 21.19% were computed; however it was

indicated in all cases that the computational cost of running LES is impractically

high for online dynamic optimization. Instead, the authors observed patterns in the

optimized flow field and proposed open-loop dynamic induction controllers that

would replicate these patterns without the need for online dynamic optimization.

Specifically, Munters and Meyers [138] proposed sinusoidal variations in the thrust

coefficients of upstream turbines in order to replicate vortex rings that were shed by

rotors within the optimized flow field. This dynamic induction controller increased

power output from a 4×4 wind farm subject to turbulent wind with constant mean

speed by a maximum of 5%.

Van der Hoek et al. [176] recently conducted field tests of a power de-rating

controller on two wind-aligned rows of five wind turbines and one wind-aligned

row of six machines at the Goole Fields wind farm. Optimization studies were car-

ried out offline using FarmFlow to determine optimal blade pitch angle set-points

for different wind directions. These set-points were tracked by the collective blade

pitch controllers of the turbines during field experiments. Data was collected over a

year-long period during which optimal blade pitch settings were only implemented

when the wind direction was near alignment with the rows of turbines. Upon ap-

plying various filters and corrections, including the imposition of limits on wind

direction, blade pitch angle, and yaw angle variability, efficiency gains ranging

from −15.9 to 11.1% were reported for a single row of five turbines across a spec-

trum of wind speeds. Using measured wind speed distribution data, an increase of

3.3% in annual energy production was predicted.

The results reported by van der Hoek et al. [176] indicate greater potential

for power de-rating than was demonstrated in previous field tests by Schepers and

van der Pijl [157] and Boorsma [26]; however a few factors may have inflated

measured gains. First, wind turbines in a single row were not exactly aligned;

therefore downstream wind turbines may have benefited from added kinetic power

concentrated along the boundaries of the leading turbine’s wake. This phenomenon

was discussed when reviewing the work of Kazda et al. [99]. Second, the wind
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turbines were spaced between 2.3 and 3.1 rotor diameters apart. These distances

are less that half the typical spacing of seven diameters that is used in numerical

studies. A shorter distance between adjacent wind turbines decreases the scale of

wake recovery; wind farm control strategies are therefore rendered relatively more

effective. Important sources of error were reported by van der Hoek et al. [176];

FarmFlow is less accurate at inter-turbine spacings of five rotor diameters; despite

data-filtering, wind turbines spent a substantial portion of ten-minute time intervals

operating with yaw offset; and changes in turbulence intensity resulting from wind

farm control affect wake recovery in ways that are not captured by wake models.

All of these factors may have served to underestimate potential gains associated

with power de-rating in field tests.

2.4.3 Steady-state potential of yaw-based wake redirection

A list of studies that have evaluated the steady-state potential of yaw-based wake

redirection is provided in Table A.4. Several works have used parametric wake

models (chiefly, modified versions of the FLORIS wake model) to perform static

optimization studies that demonstrate the potential of this control concept. These

studies may be distinguished based on the optimization algorithms used, and the

specific modification made to the FLORIS wake model. The turbine parameter

that is varied in these studies has universally been the yaw angle γ . The resulting

wind farm efficiency gains that have been predicted range from 2.85 to 17.7%,

which represents a slight improvement relative to the potential of power de-rating

evaluated using low and medium-fidelity wake models. Unlike the case with power

de-rating however, higher-fidelity simulations and experiments have shown large

potential for yaw-based wake redirection.

Fleming et al. [58] used SOWFA to simulate a two-turbine wind farm subject

to constant mean wind speed and direction, a hub-height turbulence intensity of

4.9% [40], and wind shear. Upon modeling several scenarios with the yaw angle

of the upstream turbine being varied by increments of 5deg, it was observed that

a counter-clockwise yaw misalignment of 25deg generated a wind farm efficiency

gain of 4.6%. Yawing the upstream nacelle clockwise by 25deg resulted in an

efficiency loss of 4.0%. Gebraad et al. [72] attributed this asymmetry to the phe-
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nomenon of wake rotation. A clockwise spinning rotor exerts a counter-clockwise

torque on the incoming wind, which causes the wake immediately downstream to

rotate counter-clockwise. Rotation of the wake causes lower speed wind closer to

the ground, which exists due to wind shear, to deflect in the crosswind direction.

Hence, even in the absence of yaw misalignment, a spinning rotor generates asym-

metric bias in the wind field that supplements wake deflection in one direction, and

curtails it in another.

More recently, Fleming et al. [60] extended upon the above findings of Ge-

braad et al. [72]. Using SOWFA simulations of a single wind turbine, they showed

that asymmetry in wake redirection is also substantially influenced by vortices gen-

erated due to yaw misalignment. Moreover, when a second turbine was introduced

further downstream, its wake was deflected even with zero yaw offset. This phe-

nomenon was referred to as secondary steering, and was attributed to two pro-

cesses; the interaction between the rotating wake of the second turbine and the

vortex generated by the first turbine; and the fact that yawing the upstream tur-

bine generated partial overlap along the rotor of the second machine. Simulations

were then conducted involving three rows of four wind turbines aligned with con-

stant mean speed wind with a turbulence intensity of 6%. Implementing yaw off-

set on the leading turbine in each row resulted in a wind farm efficiency gain of

12.5%. This improvement relative to previous work by Fleming et al. [58] leads

to two major conclusions; wake redirection is relatively more beneficial in larger

wind farms; and vortices generated by the leading turbines combine as they are

transported downstream to have profitable impact on trailing machines. This study

also indicated that the low-fidelity FLORIS wake model actually underestimated

the benefits of wake steering by not capturing vortex-related phenomena. This an

interesting distinction between wake redirection and power de-rating, for which

low-fidelity wake models tend to overestimate efficiency gains.

Churchfield et al. [39] used a dynamic LES-based CFD tool to simulate a single

row of five turbines within the Fishermen’s Atlantic City Wind Farm. Constant

mean wind speed and direction, wind shear, and a turbulence intensity of 5% were

modeled. In addition to a baseline scenario with no yaw offsets, three simulations

were performed during which the yaw angles of the four leading turbines were set

to 15, 20, and 25deg. At the largest yaw offset, a relative efficiency gain of 13.77%
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was observed, with diminishing returns apparent in the trend of reported data. This

benefit was accompanied with a penalty of increased blade-root flap-wise bending

moment fluctuations however. While the leading turbine experienced a reduction

of 50% in the root-mean-square (RMS) value of its blade bending moments, this

RMS value increased by 15 to 45% for the remaining turbines, with the largest

value corresponding to the trailing turbine with no yaw-offset. These observations

were attributed to the fact that yaw-based wake redirection causes partial wake

overlap along the rotors of downstream turbines, which generates fluctuations in

aerodynamic loads as individual blades traverse the rotor swept area. It was also

suggested that individual blade pitch control would be an effective approach for

mitigating this drawback.

Miao et al. [130] used the commercial CFD package STAR-CCM+ to simu-

late a two-turbine wind farm by solving the unsteady RANS equations with the

k-ω turbulence model. Unlike CFD solvers designed specifically for wind farm

applications, which use either actuator disc or line theories to model rotor aerody-

namic loads, this study considered three-dimensional wind turbine blade geome-

tries within the fluid domain and solved for aerodynamic forces directly via the

equations of fluid motion. The vicinity of each wind turbine rotor was therefore

discretized using a high-density rotating mesh, and a sliding mesh technique was

used to link data transfer between rotating and stationary mesh regions. With con-

stant mean wind speed and direction, wind shear, and turbulence intensity ranging

from approximately 3 to 23% across the fluid domain, yawing the upstream tur-

bine by 30deg yielded a wind farm efficiency gain of 2.11%. The triviality of this

efficiency gain relative to predictions by other simulators was attributed to the ten-

dency of the k-ω turbulence model to predict excessive turbulence dissipation. This

condition resulted in faster wake recovery, which would have reduced the relative

benefit of any wind farm control strategy.

Adaramola and Krogstad [2] and Campagnolo et al. [31], whose wind tunnel

experimental works on power de-rating were reviewed in Section 2.4.1, also inves-

tigated the potential of yaw-based wake redirection. Adaramola and Krogstad [2]

used the same two scaled wind turbines with rotor diameters of 90cm. After yaw-

ing the upstream rotor from 0 to 40deg, they measured a peak efficiency gain of

12% at a yaw angle of 30deg. Campagnolo et al. [31] conducted their wake redi-
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rection experiments on two scaled wind turbines with rotor diameters of 1.91m

subject to constant mean wind speed and a turbulence intensity of 8%. The yaw

angle of the upstream turbine was varied from−20 to 20deg, while the downstream

turbine was simultaneously displaced in the crosswind direction. They observed a

wind farm efficiency gain of 7.0% when the upstream rotor was yawed by−20deg

and the two turbines were aligned with the wind. When the downstream turbine

was displaced by 0.45 rotor diameters, the efficiency gain increased to 25.5%,

since repositioning the downstream turbine further contributed to reducing wake

overlap. This result may be interpreted as a promotion for turbine repositioning.

Bastankhah and Porté-Agel [19] conducted wind tunnel experiments on wake

redirection wherein the objective was to examine the effects of yaw angle distribu-

tion across a wind farm on overall power production. The wind farm consisted of a

wind-aligned row of five scaled devices with rotor diameters of 15cm. In a brute-

force fashion, different combinations of yaw offsets ranging from 0 to 30deg were

implemented, and a maximum wind farm efficiency gain of 17% was observed.

This peak corresponded to a distribution in which the yaw offset was greatest at

the leading turbine, while gradually dropping to zero at the trailing machine. An

analytical wake model was also used to ascertain the effects of turbine spacing

and turbulence intensity on the benefits of wake redirection. The results were in

agreement with others presented in this review. Increasing turbine spacing allowed

for more time and space for wakes to re-energize; thus reducing the relative gains

obtained from wake redirection. Greater turbulence intensity values yielded the

same outcome since larger turbulent kinetic energy quickened turbulent diffusion

and wake recovery.

Wagenaar et al. [181] conducted field tests on a single row of three 2.5MW

wind turbines located at ECN’s experimental wind farm. Incremental clockwise

yaw offsets of the upstream turbine ranging from 0 to 16deg were introduced,

while only measured data pertaining to the wind direction aligned with the row of

turbines were gathered and averaged. Analysis showed that the wind farm perfor-

mance was highly scattered and sensitive to data selections, particularly to wind

speed. At 4deg of yaw offset, wind farm efficiency gains of 32.9 and 11.1% were

observed corresponding to wind speeds of 4 and 8m/s, respectively, while a 16deg

yaw offset resulted in efficiency losses of 26.3 and 11.7% at the same wind speeds,
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respectively. Additionally, efficiency results corresponding to a reference row of

turbines without any yaw offset showed variability across different wind speeds

and yaw angle offsets of the leading turbine. In light of these features of the col-

lected data, no conclusions were drawn regarding the potential of yaw-based wake

redirection.

Howland et al. [86] performed wake redirection field tests on a row includ-

ing five 1.8 MW Vestas V80 wind turbines and one 2.0MW model. An analytical

wake steering model based on Prandtl’s lifting line theory [163] was calibrated

using five years of data obtained from the test site. This model was then used to

solve an analytical gradient ascent optimization problem to obtain the set of op-

timal yaw angles for maximizing farm efficiency. Data collected over a ten-day

period showed a maximum relative efficiency gain of 47% at wind directions close

to alignment with the row of turbines. In these cases, operation without wind farm

control resulted in partial overlap along the rotors of downstream machines. Intro-

ducing wake redirection then virtually eliminated the wake effect and resulted in

substantial power gains. Conversely, when the incoming wind was directly aligned

with the row of turbines, a smaller relative efficiency gain of 7% was reported.

Implementation of the optimal yaw angles also served to decrease the variability

(i.e. the standard deviation in one-minute averaged data) of power measurements

by 73%. This outcome was attributed to the fact that wake redirection reduced the

likelihood of downstream wind turbines operating below cut-in speeds as a result

of the wake effect. Reducing power output variability was noted to contribute to

reduced intermittency and improved reliability of wind energy in the power grid.

2.4.4 Controllers developed for yaw-based wake redirection

Studies that have developed wind farm controllers based on the concept of yaw-

based wake redirection are summarized in Table A.5. Gebraad et al. [72] imple-

mented a model-based version of the centralized game-theoretic algorithm pre-

sented by Marden et al. [122]. The developed controller was model-based in the

sense that the game-theoretic algorithm was not driven by measured data, but rather

by the steady FLORIS wake model. At each time-step, the algorithm used the

steady FLORIS model to determine the optimal set of nacelle yaw angles across

48



the wind farm for maximizing power production given the immediate wind speed

and direction. This controller was evaluated using SOWFA by simulating two rows

of three turbines that were subject to constant mean speed wind with wind shear

and a turbulence intensity of 6%. A relative wind farm efficiency gain of 13.03%

was reported for a scenario in which the wind was aligned with the turbine rows.

For this wind condition, it was also shown that fatigue damage, computed via dam-

age equivalent loading (DEL), generally decreased for the leading two turbines in

each row (i.e. the turbines whose rotors were subject to yaw misalignment). Blade

flap-wise bending DEL was reduced by 11.2 to 18.4% for different machines, for

instance. Of the two trailing turbines, the machine toward which wakes were redi-

rected experienced minor changes in DEL. The other trailing turbine experienced

significant rise in fatigue damage; 12.7% for blade flap-wise bending DEL, 18.0%

for low-speed shaft torsional DEL, and 19.1% for yaw bearing moment DEL.

Gebraad et al. [69] used the FLORIDyn wake model to develop a nonlinear

model predictive controller for yaw-based wake redirection. A Kalman filter was

introduced in order to account for sensor noise and power fluctuations resulting

from turbulence; the Kalman filter would also correct mismatch between predic-

tions from FLORIDyn and measured data. The controller was evaluated by sim-

ulating a wind-aligned row of two wind turbines using FLORIDyn. Under steady

wind conditions, the model predictive controller produced an increase of 0.19% in

the wind farm efficiency. Such a small relative power gain was associated with the

large spacing between the modeled wind turbines; this spacing was ten rotor diam-

eters, as opposed to the more commonly simulated seven rotor diameter spacing.

Increasing turbine spacing allows for more time and space over which wakes are

re-energized by the free stream wind [115], which diminishes the relative benefits

of any wind farm control strategy. The use of the Kalman filter generated sub-

stantial reductions in RMSE values between turbine power outputs predicted by

SOWFA and FLORIDyn. RMSE values ranged from 13.4 to 18.4% without the

filter, and from 7.6 to 11.5% upon inclusion. This result promotes the capability of

dynamic control-oriented wake models to adapt to time-varying wind conditions.

Park and Law [146] developed a cooperative game-theoretic controller for

combined power de-rating and yaw-based wake redirection using Bayesian-ascent

dynamic optimization. The Bayesian-ascent controller operated in a fashion sim-
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ilar to previously described game-theoretic controllers, where axial induction fac-

tors and yaw angles were perturbed, and the measured wind farm power output

influenced decisions at the next iteration. One major modification was that a Gaus-

sian process (a non-parametric, probabilistic machine learning approach) was used

to construct an approximated objective function (i.e. an approximated model that

predicted wind farm power production) in real-time based on measured data. This

approximated objective function was then used to solve a real-time optimization

problem at each time-step to determine optimal axial induction factors and yaw

angles for future time-steps. The controller was evaluated by simulating a 10×10

wind farm using a newly derived steady wake model8. Under steady wind con-

ditions with measurement noise, the cooperative controller raised wind farm effi-

ciency by 24.5% after 50 iterations.

Park et al. [148] later tested this control algorithm in wind tunnel experiments

consisting of a 2×3 layout of scaled turbines with rotor diameters of 1.5m. At con-

stant mean wind speed, the controller monotonically increased the wind farm effi-

ciency by 33.22% after 40 iterations. Campagnolo et al. [32] also performed exper-

imental wind tunnel tests during which they implemented the gradient-ascent max-

imum power-point tracking algorithm presented by Gebraad and Wingerden [70];

except this algorithm was applied to the concept of yaw-based wake redirection

rather than power de-rating. Experiments were conducted on a wind-aligned row

of three scaled wind turbines with rotor diameters of 1.1m subject to constant

mean wind speed. Implementation of the control algorithm increased the average

wind farm efficiency by approximately 20% after 200 seconds of operation. These

two studies represent the only experimental evaluations of model-free wind farm

control systems to date, and their results are encouraging. Nonetheless, these algo-

rithms must be evaluated using larger scaled models with Reynolds numbers based

on blade chord length that are representative of utility-scale wind turbines.

Similar to their studies of power de-rating, Munters and Meyers [137, 139]

developed centralized model predictive controllers for combined power de-rating

8Similar to the Park wake model, this newly derived model relied upon momentum integral re-
lations from fluid mechanics. However, rather than assuming uniform velocity distribution within
wakes, this new model computed the radial velocity distribution using a Gaussian exponential func-
tion and performed numerical integration to determine the effective wind speed at some downstream
wind turbine rotor.
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and yaw-based wake direction. They used the LES-based CFD tool SP-Wind to

perform online dynamic optimization, which rendered their controller impractical

for real-world implementation. As with their earlier work however, they utilized

observed patterns in the optimized flow field to propose open-loop controllers that

would replicate such flow patterns. Specifically, Munters and Meyers [139] pro-

posed two simplified open-loop controllers; one involving steady yaw offset that

would deliver mean deflections of wake centerlines, and one implementing dy-

namic wake steering that would engender wake meandering. Upon implementing

these open-loop controllers on a 4× 4 wind farm subject to turbulent wind with

constant mean wind speed, a relative efficiency gain of 14% was obtained using

the steady yaw offset open-loop controller, while a relative loss of 2% was ob-

served using dynamic wake steering.

Fleming et al. [59] conducted field tests of wake redirection at the Longyuan

Rudong Chaojiandai offshore wind farm, which consists of 25 4MW wind turbines

arranged in a gridded layout. For the purposes of this study however, wake steering

was only implemented via a single turbine that shadowed one out of three other ma-

chines at any given time depending on the immediate wind direction. The FLORIS

wake model was used in conjunction with an optimization algorithm to compute a

lookup table of optimal yaw angles as a function of wind direction. These lookup

tables established the set-points that were tracked by the yaw controller of the regu-

lated turbine. Based on collected data corresponding to the wind direction aligned

with a pair of two turbines that were spaced seven rotor diameters apart, a wind

farm efficiency gain of 5.56% was reported. Meanwhile, over a 60deg range of

variation in the wind direction, efficiency gains ranged from −12.16 to 19.96%,

with losses occurring at a minority of wind directions. These are promising re-

sults given the inconclusive outcomes that have typically been reported from field

tests. Even more encouraging is the fact that the optimal yaw angles implemented

in these field tests were calculated using an engineering wake model, the use of

which would lead to highly efficient model-based wind farm control.

More recently, Fleming et al. [61] examined the performance of the above con-

troller on two wind turbines within an unspecified commercial wind farm. Across

an 80deg spectrum of wind directions surrounding alignment with the row, wind

farm efficiency gains ranging from −7.9 to 10.2% were reported. The follow-
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ing additional difficulties associated with field testing were pointed out; biases in

yaw angle set-point tracking that could not be accounted for due to intellectual

property protection; the inability of FLORIS to capture terrain effects, which ul-

timately led to discrepancies relative to field measurements; the fact that FLORIS

was not tuned to predict near-wake region behaviour, which was problematic due

to the close spacing of the wind turbines; and significant atmospheric instability,

which resulted from data being collected during the summer season. All of these

factors may justify the limited range of efficiency gains recorded in comparison to

the previous field test by Fleming et al. [59].

2.4.5 Steady-state potential of turbine repositioning

Studies that have examined the potential of turbine repositioning are listed in Ta-

ble A.6. At the time of writing, no work has implemented a dynamic control al-

gorithm involving this wind farm control concept. Fleming et al. [58] simulated

a two-turbine wind farm using SOWFA and investigated the effect of incremen-

tally relocating the downstream turbine in the crosswind direction. Constant mean

wind speed and direction, with wind shear and a turbulence intensity of 4.9% [40]

were modeled. Their results showed that shifting the downstream turbine by 130m

(i.e. one rotor diameter) perpendicular to the wind direction increased the power

output from the pair by 41.0% relative to a baseline simulation with no crosswind

shift. The computed trend in blade flap-wise bending DEL demonstrated that ac-

cumulated fatigue damage rose as turbine relocation increased, and peaked at 50m

of crosswind shift. The relative rise in bending DEL began to drop beyond this

point, and was either negligible or negative (i.e. indicating load reduction) when

the downstream machine had been shifted by an entire rotor diameter. Finally, as

with yaw-based wake redirection, it was shown that there exists a preferred direc-

tion of turbine relocation due to the asymmetric bias in wake deflection that was

discussed in Section 2.4.3.

Rodrigues et al. [153] proposed a mechanism for repositioning floating off-

shore wind turbines in real-time which consisted of tensioned mooring lines feed-

ing into winches mounted on-board floating platforms. By regulating the lengths of

three mooring lines, each platform could be relocated within a movable range that
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was outlined by an equilateral triangle with side lengths of approximately 330m.

Multiple optimization studies with different wind directions were performed on

a 25-turbine floating offshore wind farm using the steady Park wake model with

constant wind speed. The optimization goal was to determine the magnitude and

direction of turbine repositioning, within the aforementioned movable range sur-

rounding the installation locations of the floating platforms, that would maximize

wind farm power output. These optimization results were then validated using

FarmFlow simulations. For a wind farm with floating platforms installed in a grid-

ded 5× 5 layout, turbine relocation yielded wind farm efficiency gains ranging

from −11.49 to 18.11% across a 330deg spectrum of simulated wind speeds.

A practical method for repositioning floating offshore wind turbines was pro-

posed by Han et al. [81], and is illustrated in Figure 2.10. A floating offshore

wind turbine implementing a greedy control algorithm, which aims to locally max-

imize power production, will operate at its optimal axial induction factor with zero

yaw offset. This operating point corresponds to the faded turbine in Figure 2.10.

Variations in the axial induction factor and nacelle yaw angle of this turbine alter

the effective magnitude and direction of the thrust force applied to its rotor. The

equilibrium established between this altered thrust force and the restoring forces

generated by the mooring lines permits relocation of the floating turbine anywhere

within a limited movable range. Unlike winch-based repositioning methods, this

proposed strategy for relocating floating wind turbines using yaw and axial induc-

tion requires no additional hardware, while employing control degrees of freedom

that are available in currently operational wind turbines.

In our recent work [101], the potential of the repositioning method proposed

by Han et al. [81] was assessed. Optimization studies were carried out on a 3×6

floating offshore wind farm with semi-submersible type platforms subject to con-

stant wind speed and direction. FOWFSim was used for both optimization and

evaluation. Optimization was performed for various mooring line lengths ranging

from 835 to 925m in order to assess the potential of turbine repositioning as the

movable range of the platforms was expanded. We reported that YITuR increased

wind farm efficiency by approximately 16.5% for mooring lines lengths beneath

875m. Beyond this point, wind farm efficiency gains increased dramatically, with

an increase of 53.5% corresponding to the largest cable length of 925m. It was
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Figure 2.10: Schematic demonstrating the concept of yaw and induction-
based turbine repositioning (YITuR).

noted that despite such potential, the practicality of permitting a movable range of

nearly 90m, which was the case for the largest cable length examined, must be

carefully assessed.

2.5 Quantitative overview of published results
This section pieces together information that has been presented throughout the

literature review from Section 2.4 with the aim of drawing conclusions regarding

the impacts of controller properties, evaluation techniques, and simulated wind

conditions on the potential of wind farm control concepts and algorithms.

2.5.1 Effects of evaluation techniques on predicted controller
potential

The influence of evaluation techniques on the predicted potential of each wind farm

control concept is assessed using the bivariate histograms shown in Figure 2.11–
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Figure 2.11: Bivariate histogram demonstrating the quantity of studies as-
sessing power de-rating that have reported different wind efficiency
gains using various evaluation models and techniques.

Figure 2.13. These plots demonstrate the number of studies that have used a par-

ticular evaluation method or tool to obtain relative wind farm efficiency gains cor-

responding to 5% incremented bins. Focusing on Figure 2.11, which relates to

power de-rating, the bulk of studies that have utilized low and medium-fidelity

wake models have predicted efficiency gains ranging up to 25%, while few works

have attained values as high as 35%. As the fidelity of the evaluation method is

increased however, the range of predicted gains narrows to−10 to 10% in the case

of high-fidelity simulations, 0 to 5% for wind tunnel tests, and 0% or less for field

tests.

The few high-fidelity simulations that predicted gains up to the 20% bin corre-

spond to the works of Goit and Meyers [76] and Munters and Meyers [138], who

used a high-fidelity LES-based solver to dynamically optimize power production

using power de-rating. As discussed in Section 2.4.2, such a control approach

is impractical given the computational cost of running CFD simulations for on-

line optimization. Upon implementing a more practical control strategy involving

sinusoidal power de-rating, the wind farm efficiency gain predicted by Munters
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and Meyers [138] reduced to 5%, which bears greater similarity to predictions by

the remaining studies that employed high-fidelity simulations. The field tests that

measured efficiency gains up to the 10% bin were performed by van der Hoek et

al. [176], and we suggested that close turbine spacing and crosswind misalignment

among rows of turbines resulted in inflated power de-rating potential. The latter

comment was also made regarding the work of Kazda et al. [99].

The discrepancy between results obtained via low and high-fidelity simulation

tools has been attributed to the concentration of kinetic power gain in the vicinity of

wake boundaries, and the effects of rotor thrust force changes on wake turbulence,

neither of which are captured by lower-fidelity wake models. These phenomena

may also justify the negligible efficiency gains observed among field tests; although

the inconclusiveness of field test results has also been attributed to the difficulty in

gathering consistent data for comparative assessment under stochastic time-varying

wind conditions. Finally, while wind tunnel tests have shown promising results in

comparison to those obtained via field tests, the presence of low Reynolds numbers

and tunnel effects in such tests may have inflated the measured potential benefits.

Despite these conclusions, power de-rating should not be ruled out as an effective

wind farm control concept. Since the kinetic power gain from power de-rating

is concentrated along wake boundaries, potential benefits may arise in scenarios

where neighboring wind turbine rotors are not directly aligned with the wind. This

phenomenon may have caused the efficiency gains reported by Kazda et al. [99]

and van der Hoek et al. [176]. Moreover, studies with inconclusive results concern-

ing power gains have shown that power losses from upstream de-rated turbines are

at the very least recovered by their downstream neighbors. Power de-rating may

therefore be employed for load mitigation without excessive power loss.

Shifting focus to Figure 2.12, it is evident that the predicted potential of yaw-

based wake redirection is less sensitive to the fidelity of the evaluation method

employed. All simulation tools and wind tunnel tests have indicated potential ef-

ficiency gains ranging up to the 35% bin. The reported value in the 45% bin for

high-fidelity simulation once again corresponds to the work of Munters and Mey-

ers [137], who employed an LES-based wake model for online optimization. The

range of efficiency gains obtained via field tests has been mostly limited to the

−5 to 10% bins, which is foreseeable given the aforementioned challenges in han-

56



Low-fidelity model

Medium-fidelity model

High-fidelity model

Wind tunnel test0

-10 0

1

Histogram bins: Relative wind farm efficiency

gains predicted by different studies (%)

Field test10 20 30

2

40 50

3

H
is

to
g
ra

m
 c

o
u
n
ts

: 
N

u
m

b
er

 o
f 

st
u
d
ie

s 
th

at

h
av

e 
p
re

d
ic

te
d
 l

is
te

d
 e

ff
ic

ie
n
cy

 g
ai

n
s

4

5

6

Figure 2.12: Bivariate histogram demonstrating the quantity of studies as-
sessing yaw-based wake redirection that have reported different wind
efficiency gains using various evaluation models and techniques.

dling field test data. The large efficiency gain in the 45% bin for field testing was

reported by Howland et al. [86], who calibrated their analytical wake model using

five years of historical site-specific wind farm data. Their promising results should

arouse much interest in the use of historical data for wind farm control.

On the whole, wake redirection field tests indicate a significant improvement

relative to those concerning power de-rating. Furthermore, it is worth observing

that significant losses in wind farm efficiency resulting from wake redirection have

been seldom reported. There has also been general agreement between studies

employing low-fidelity models and those relying upon high-fidelity simulations

or field tests. This consensus may be attributed to the tendency of low-fidelity

models to actually underestimate the potential of wake redirection, as reported by

Fleming et al. [60]. Similarly positive results have been observed in the context

of turbine repositioning, for which the histogram of existing results is plotted in

Figure 2.13. Although research concerning the potential of this control concept is

limited, available data has indicated potential gains exceeding 20% regardless of

the simulation tool employed.

57



Low-fidelity model

Medium-fidelity model

High-fidelity model

Wind tunnel test0

20

Histogram bins: Relative wind farm efficiency

gains predicted by different studies (%)

Field test30
40

50
60

H
is

to
g
ra

m
 c

o
u
n
ts

: 
N

u
m

b
er

 o
f 

st
u
d
ie

s 
th

at

h
av

e 
p
re

d
ic

te
d
 l

is
te

d
 e

ff
ic

ie
n
cy

 g
ai

n
s

1

Figure 2.13: Bivariate histogram demonstrating the quantity of studies as-
sessing turbine repositioning that have reported different wind effi-
ciency gains using various evaluation models and techniques.

2.5.2 Effects of simulated wind conditions on predicted controller
potential

Most studies that have been reviewed in this chapter have evaluated the potential

and performance of wind farm controllers under steady wind conditions; that is,

constant mean wind speed and direction with zero turbulence intensity. The few

studies that have considered more realistic wind behavior have shown that time-

varying wind conditions significantly deteriorate the performance of any wind farm

controller. This outcome has held true regardless of the model used for controller

evaluation, or the wind farm control technique in question. The explanation for this

observed trend is that wind farm controllers, whether model-based or model-free,

must adapt to time-varying wind conditions, which are stochastic and unpredictable

disturbances. Throughout the period of time over which this adaptation occurs, a

wind farm controller will be operating sub-optimally as it solves a dynamic opti-

mization problem to compute an optimal setting. Furthermore, as wind conditions

vary, the optimal set-points that must be tracked by individual wind turbine con-

trollers also fluctuate, which further increases the duration of sub-optimal operation
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due to the time required for individual turbines to reach their optimal set-points.

Particular attention has been attributed to the influence of turbulence, and all

findings indicate performance decay with rising turbulence intensity. Dynamic

low-fidelity simulations conducted by Johnson and Fritsch [94] demonstrated that

extremum seeking control for power de-rating resulted in efficiency gains drop-

ping from 3.8 to −13.2% when the turbulence intensity of the incoming flow was

raised from 2 to 8%. Likewise, dynamic medium-fidelity simulations performed

by Kim et al. [106] involving power de-rating predicted a decrease in wind farm

efficiency gains from 2.92 to −2.88% when the turbulence intensity of the flow

was increased from 7.5 to 21%. Dynamic high-fidelity simulation results reported

by Munters and Meyers [139] presented a similar outcome. Their proposed sim-

plified controllers for wake redirection were implemented on a wind farm subject

to both steady wind and airflow with a turbulence intensity of 8%. Wind farm ef-

ficiency gains dropped from 97 to 14% as turbulence was introduced when testing

their static controller, and 79 to −2% with dynamic wake steering.

The effects of time-varying mean wind speed and direction on controller per-

formance have not been investigated as thoroughly as the impacts of turbulence.

Nonetheless, the tendency of controller performance to diminish under these wind

conditions holds. Studies by Gebraad and Wingerden [70] and Shu et al. [164] have

shown that both model-based and model-free controllers are capable of adapting to

time-varying mean wind speeds, thereby increasing wind farm efficiency averaged

over the simulation period by 4% in the former case, and 1.96% in the latter case.

However, compared to other low-fidelity evaluations involving constant mean wind

speeds, which have yielded efficiency gains as large as 25%, the time-varying re-

sults reported by Gebraad and Wingerden [70] and Shu et al. [164] fall significantly

short.

To date, no study has evaluated the performance of a wind farm controller with

the wind direction varying continuously and stochastically over time. Several stud-

ies have incrementally altered the wind direction using step functions, and then

allowed for their controllers to successfully adapt to the discrete changes [3, 175,

188]; however such an analysis is not tantamount to gradual and continuous varia-

tions in the direction of the wind. Simulation results presented by Vali et al. [175],

who tested a model predictive controller for power de-rating, indicated efficiency
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losses as large as 3.6% occurring at specific points in time corresponding to step

changes in the wind direction. It is reasonable to conclude from this outcome that

continuous variations in wind direction that are of substantial magnitude and fre-

quency would therefore engender similar losses throughout the operation of wind

farm control.

2.5.3 Effects of controller properties on performance

Given the scarcity of studies that have evaluated wind farm controller performance

using either high-fidelity simulation tools or experimental techniques, no decisive

conclusions may be drawn concerning the impacts of controller properties on per-

formance. The following comments are nonetheless presented based on the limited

findings that have been observed in this review.

Effects of model dependency

With regards to the model dependency of wind farm controllers, available results

indicate that both model-based and model-free dynamic optimization algorithms

offer potential to improve wind farm efficiency. The model-based game-theoretic

wake redirection controller evaluated by Gebraad et al. [72], which performed on-

line optimization of the FLORIS wake model, yielded an efficiency gain of 13.03%

when subject to turbulent wind simulated by SOWFA. The model-based lookup ta-

ble wake redirection controller tested in the field by Fleming et al. [59], which uti-

lized optimal set-points determined via offline optimization of the FLORIS wake

model, generated efficiency gains up to 19.96% across the majority of the spectrum

of tested wind directions. The model-free gradient-ascent wake redirection con-

troller evaluated by Campagnolo et al. [32] via wind tunnel experimentation pro-

duced an efficiency gain of at least 20% after 200 seconds of operation. The game-

theoretic controller tested via wind tunnel experimentation by Park et al. [148]

also yielded impressive efficiency gains up to 33.22% after 40 iterations. This

controller was model-based yet data-driven in the sense that it utilized a Gaussian

machine learning process for online dynamic optimization. Even the simplified

open-loop control algorithms for power de-rating and wake redirection proposed by

Munters and Meyers [138, 139] led to efficiency gains of 5 and 14%, respectively.
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These open-loop controllers may be categorized as model-free, yet not data-driven,

since control actions are determined independently of any analytical or estimated

model, or power measurements.

It is difficult to draw any deeper conclusions regarding the role of model de-

pendency based on the magnitudes of efficiency gains reported in these studies.

Each work utilized a different method of evaluation, and even studies involving

wind tunnel tests are not directly comparable due to the differences in Reynolds

numbers that were effective during experimentation. Even so, data-driven con-

trol approaches involving nonparametric machine learning or system identification

are, by definition, more robust and practical for field implementation. Such con-

trollers are capable of adapting to time-varying wind conditions while computing

optimal wind farm set-points based on estimated models, rather than via random

or gradient-based probing. Examples include the game-theoretic controller pro-

posed by Park et al. [148], which utilized a Gaussian process for machine learning,

the game-theoretic controller implemented by Gebraad et al. [72], which tuned the

parameters of the FLORIS wake model using measured data, and the model predic-

tive controller implemented by Gebraad et al. [69], which used a Kalman filter to

correct states of the FLORIDyn model based on wind farm power measurements.

Effects of communication architecture

The effects of communication architecture on the performance of wind farm con-

trollers also evade decisive conclusions due to the limited quantity of available

results. Studies that have developed and evaluated both centralized and distributed

wind farm controllers have yielded conflicting findings regarding the potencies

of their algorithms. One the one hand, the distributed game-theoretic power de-

rating controller developed by Marden et al. [122] required an iteration count

that was three orders of magnitude greater than that of their centralized control

algorithm to compute the optimal set-points of the simulated wind farm. Con-

versely, the distributed adaptive filtering power de-rating controller developed by

Zhong and Wang [188] required 20 to 30 fewer iterations to determine optimal

wind farm set-points compared to their centralized adaptive filtering algorithm.

Both studies simulated wind farms of considerable size (an 8×10 wind farm in the
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former case, and a 5× 5 wind farm in the latter work); thus the quantity of regu-

lated wind turbines was likely not a contributing factor to the observed discrepancy

between the iteration counts of the two works.

Gebraad and Wingerden [70] compared their distributed gradient-ascent con-

trollers for power de-rating to the centralized game-theoretic controller proposed

by Marden et al. [122]. The distributed gradient-ascent algorithms reached optimal

operation in 30 minutes, while the centralized game-theoretic controller required

80 hours of simulation time to approach the same operational conditions. Cam-

pagnolo et al. [32] implemented one of the distributed gradient-ascent controllers

developed by Gebraad and Wingerden [70] for wake redirection via wind tunnel

experimentation. Their three-turbine scaled wind farm was optimized within ap-

proximately 3.3 minutes. In this case, wind farm size definitely contributed to the

required iteration count for optimal operation, since the wind farm simulated by

Gebraad and Wingerden [70] consisted of 60 wind turbines, which necessitated

30 minutes of simulation time for optimal conditions to be reached.

The results listed above show that the algorithmic operations of wind farm con-

trollers contribute significantly to their required iteration counts for reaching op-

timal operation. The quantity of wind turbines within a regulated wind farm also

impacts the time-efficiency of controllers. As a result, further research involving

direct comparisons between centralized and distributed controllers is necessary for

pinpointing the precise benefits and drawbacks of each communication architec-

ture. The work by Gebraad and Wingerden [70] did validate a major preconception

regarding communication architecture; in addition to optimizing a large number of

parameters, a centralized controller must allow sufficient time for changes in the

aerodynamic field, which result from control actions, to transport across the en-

tire wind farm [146]. Centralized algorithms are thereby rendered unpractical for

implementation in large wind farms from the standpoints of both computational

cost and time-efficiency [70]. Distributed controllers circumvent this concern since

their computational cost and required transport time remain unchanged irrespective

of the wind farm size.
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2.6 Conclusions and recommendations for future
research

This chapter provided a review of three notable and prevalently examined wind

farm control concepts for power maximization; power de-rating, yaw-based wake

redirection, and turbine repositioning. Discussions focused on the potential of

these concepts as well as the performance of control algorithms in the context of

their properties, the evaluation methods used, and the simulated wind conditions.

The current section summarizes the major conclusions drawn from the findings

of published works, while offering recommendations on potential future research

goals and practices that would be necessary for progress in the field of wind farm

control.

With regards to the potential of each concept, power de-rating possesses the

weakest capability of increasing wind farm power production. The added kinetic

power generated via de-rating concentrates along the boundaries of wakes and does

not sufficiently overlap with immediate downstream rotors. Power de-rating does

remain a viable control concept for load mitigation and power set-point tracking

however. Both yaw-based wake redirection and turbine repositioning have demon-

strated substantial potential for raising wind farm efficiency, and this conclusion

has been verified via high-fidelity simulations (and experimentation in the case of

wake redirection).

In terms of evaluation techniques, lower-fidelity simulators do not capture ve-

locity distributions and generated turbulence within wakes; both of which have

contributed to over-prediction of efficiency gains associated with power de-rating

controllers. On the other hand, predicted wind farm power output gains associated

with wake redirection and turbine repositioning are less sensitive to these aerody-

namic phenomena. This conclusion is verified by the commonality in simulation

results obtained from models of varying fidelities.

On the experimental side, the low Reynolds numbers that are effective in wind

tunnel experiments may be inflating measured efficiency gains for all control con-

cepts. Meanwhile, field tests have provided the most conservative evaluations due

to the stochastic time-varying nature of atmospheric wind, as well as the diffi-

culties in extracting meaningful conclusions from the resulting measurements. In
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general, it has been shown that added layers of realism in terms of simulated wind

conditions tend to deteriorate the performance of wind farm controllers. Added

measurement noise resulting from turbulence and time-varying mean wind speed

and direction reduces the length of time over which wind farms operate at opti-

mal conditions, since wind farm controllers are continuously searching for optimal

set-points in an environment with stochastic and unpredictable disturbances.

Further research is necessary for properly assessing the pros and cons of spe-

cific wind farm controller properties such as model dependency and communica-

tion architecture. Available data suggests that model-free, model-based, and even

open-loop controllers all demonstrate potential for power maximization; however

data-driven controllers involving system identification, machine learning, and wind

field estimation are best suited for adapting to time-varying wind conditions. Pub-

lished results also indicate that distributed controllers offer greater time-efficiency

and computational expedience relative to centralized algorithms. This advantage

stems from the lower wake transport periods and fewer optimization variables in-

volved, respectively.

Based on these conclusions, the following recommendations may assist in pro-

pelling research within the wind farm control community:

• Researching turbine repositioning: The limited quantity of work inves-

tigating this control concept has demonstrated significant potential for wind

farm power maximization. This field of research should receive considerable

attention, particularly focusing on the practicality and safety concerns asso-

ciated with relocating floating offshore wind turbines in real-time. Existing

parametric wake models and LES-based CFD tools should also be extended

to capture turbine motion as a degree of freedom.

• Simulating time-varying wind direction: This review has shown that no

study has investigated the effects of continuously and stochastically time-

varying wind direction on controller performance. This outcome has no

doubt resulted from the difficulty in simulating fluctuating wind direction

using models and wind tunnels. Nonetheless, both low-fidelity simulations

(see Ahmad et al. [3] and Vali et al. [175]) and field tests have demon-

strated indirectly that time-varying wind direction, much like unsteady mean
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wind speed and turbulence, serves to diminish controller performance; ef-

forts should thus be exerted into assessing control algorithms under realistic

wind scenarios.

• Incorporating wind field and state estimation techniques: Few of the

studies reviewed in this chapter utilized state estimators and wind field esti-

mation techniques. These methods have been used obtain undistorted wind

field measurements within experiments conducted by Annoni et al. [10] and

Schreiber et al. [158], and to correct wind field predictions from control-

oriented wake models within high-fidelity simulations performed by Ge-

braad et al. [69] and Doekemeijer et al. [49]. Future wind farm control

research should therefore incorporate such estimation techniques, and prefer-

ably assess their robustness experimentally.

• Using machine learning for data-driven control: Machine learning tech-

niques such as convolutional or recurrent neural networks have successfully

been employed to model wake phenomena [132, 186]. Furthermore, the use

of nonparametric Gaussian processes has proven to be highly successful in

wind tunnel tests conducted by Park et al. [148]. The applicability of these

techniques, along with classical forms of system identification, to wind farm

control should be further investigated.

• Assessing joint wind farm and wind turbine-level control: One major

drawback associated with yaw-based wake redirection and turbine reposi-

tioning is the increase in fatigue damage encountered by rotors that are par-

tially shadowed. Fleming et al. [58] demonstrated via SOWFA simulations

that individual blade pitch control could reduce such accumulated fatigue

damage. The performance of wind farm controllers operating in conjunc-

tion with turbine-level control systems, which include individual blade pitch

regulation, should therefore be examined in greater detail.

• Evaluating dynamic induction and wake steering controllers: Works by

Munters and Meyers [138, 139] have shown high potential for dynamic in-

duction and wake steering controllers. Their open-loop regulators were de-

signed based on detailed understanding of wind field phenomena that engen-
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dered wind farm efficiency gains. As a result, they required neither wake

models, nor model-free online dynamic optimizers. Future research should

investigate other variations of such open-loop controllers, as well as evaluate

existing forms in wind tunnel experiments and field tests.

• Using site-specific historical data for wind farm control: The recent promis-

ing field test results by Howland et al. [86] on wake redirection have cast

light on the merits of using site-specific historical data for wind farm con-

trol. While this study utilized static set-points determined via offline op-

timization, this approach should be further investigated in conjunction with

online dynamic optimization algorithms and state-estimators that are capable

of adapting to time-varying wind conditions.

• Understanding wake phenomena using CFD: The most significant leaps

toward developing effective wind farm controllers have stemmed from CFD

simulations of wake aerodynamics. For instance, simulations conducted by

Annoni et al. [9] led to an understanding of the physical limitations of power

de-rating, while the findings of Fleming et al. [60] and Munters and Mey-

ers [138, 139] shed light on aerodynamic phenomena that may be exploited

to further enhance wind farm control concepts. It is important that these

research objectives remain highly active.
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Chapter 3

Real-time Relocation of Floating
Offshore Wind Turbine Platforms
for Wind Farm Efficiency
Maximization: An Assessment of
Feasibility and Steady-state
Potential

This chapter examines the steady-state potential and feasibility of yaw and induction-

based turbine repositioning (YITuR), which is a wind farm control concept that

passively repositions floating offshore wind turbines using existing turbine con-

trol degrees of freedom. To this end, the Floating Offshore Wind Farm Simula-

tor (FOWFSim) is developed to model steady-state wind farm power production

while considering floating platform relocation. Optimization studies are carried

out with different floating wind farm design parameters and configurations. The

objective is to determine sets of optimal wind turbine operating parameters that re-

locate floating turbines such that wind farm efficiency is maximized. Results show

that the potential of YITuR is starkly limited by wind farm design parameters. In
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particular, anchors should be placed adequately far from floating platform neutral

positions, mooring lines should be sufficiently long, and only specific mooring

system orientations permit substantial gains in wind farm efficiency. With specific

combinations of these parameters, simulation results show that the efficiency of

a 7× 7 floating offshore wind farm may be raised by 42.7% when implementing

YITuR in comparison to greedy operation.

3.1 Introduction
Clustering wind turbines in close proximity to form wind farms offers the pri-

mary benefit of capital expense reduction resulting from shared grid connection

and project management costs [29]. From an operational standpoint however, clus-

tering engenders aerodynamic interaction between individual wind turbines that

diminishes the efficiency of wind farms as a whole [30]. As upstream machines

extract the wind’s kinetic energy, viscous interaction along their blades deceler-

ates incoming flow and generates wakes with reduced average velocities [115].

Downstream wind turbines that are aligned with these wakes produce less electri-

cal power as a result [30]. This phenomenon is referred to as the wake effect and

may result in annual wind farm revenue losses ranging from 20 to 30% with tur-

bines spaced seven to ten rotor diameters apart [30]. Further, instantaneous wind

farm efficiencies may be reduced by as much as 54% [141].

One approach to mitigating the wake effect involves appropriately siting in-

dividual turbines within wind farms; that is, either increasing inter-turbine spac-

ing [30], or utilizing wake models and historical wind velocity data to compute

optimal wind farm layouts [161]. Alternatively, wind farm control employs the

degrees of freedom of individual wind turbines to manipulate the aerodynamic

field such that the wake effect is mitigated and wind farm power output is maxi-

mized [66]. Consequently, wind farm control requires no modification to turbine

siting, which enables wind farm developers to prioritize layout design around ter-

rain, grid connectivity, installation, transportation, and land permitting consider-

ations. Additionally, wind farm control strategies may be implemented in oper-

ational wind farms, as demonstrated via recent efforts by the United Kingdom’s

Carbon Trust [34].
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Two wind farm control concepts that have received considerable attention over

the past decade include power de-rating (also referred to as axial induction-based

control) and yaw-based wake redirection. The former concept de-rates upstream

turbines to reduce the net thrust force exerted upon the wind, which in theory in-

creases the average velocity within generated wakes that influence downstream ma-

chines [95]. Evaluations of power de-rating have reported differing results, with

larger efficiency gains corresponding to parametric wake models [3, 9, 47, 122,

131, 160, 171], and negligible gains or losses associated with computational fluid

dynamics (CFD) simulations [9, 48, 141] and field tests [26, 157]. Annoni et al. [9]

identified the practical limitations of power de-rating by demonstrating via large-

eddy simulations (LES) that the added kinetic power obtained from reducing the

thrust force of an upstream turbine is primarily concentrated along the boundary of

the generated wake, which occupies space beyond the swept-areas of rotors located

directly downstream.

Yaw-based wake redirection operates upstream wind turbines with nacelle yaw

misalignment, which generates unsteady and asymmetric blade loads that deflect

generated wakes in the crosswind direction [93]. Vortices generated by these asym-

metric loads also contribute to wake deflection farther downstream [60]. These

processes result in reduced wake overlap along rotors that are located downstream

from turbines operating with yaw offset [58]. This control concept has been proven

effective via CFD simulations [39, 58, 72], wind tunnel experimentation [2, 31, 32,

148], and field tests [59].

A third wind farm control concept, broadly referred to here as turbine repo-

sitioning, minimizes wake overlap by relocating wind turbines in real-time [24].

This strategy is applicable to floating offshore wind turbines with non-taught moor-

ing lines that allow for horizontal semi-submersible platform or spar buoy motion

along the ocean surface [81]. The few studies that have evaluated the potential of

turbine repositioning have reported promising results. Fleming et al. [58] simu-

lated a two-turbine wind farm using the LES-based Simulator for Wind Farm Ap-

plications (SOWFA). They incrementally shifted the downstream turbine in both

crosswind directions and reported a relative wind farm efficiency gain of 41% at

approximately one rotor diameter of relocation relative to a baseline simulation

with no repositioning.
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Rodrigues et al. [153] performed optimization studies using the parametric

Park wake model [98] to maximize power production from a 5× 5 floating off-

shore wind farm. The proposed mechanism for turbine repositioning consisted of

taught mooring lines whose lengths would be regulated by winches mounted on-

board floating platforms. By regulating the lengths of its three mooring lines, a

single floating wind turbine could be repositioned within an equilateral-triangular

area with a side length of 330m surrounding its neutral position. Upon validat-

ing their optimization results using FarmFlow (a three-dimensional parabolized

turbulent Navier-Stokes solver), a maximum relative wind farm efficiency gain of

18.11% was reported across a 330deg span of simulated wind directions.

Han et al. [81] proposed a passive mechanism that utilizes the aerodynamic

force acting on wind turbine rotors to reposition floating structures; this concept is

demonstrated in Figure 3.1. A floating offshore wind turbine that operates under

greedy settings (i.e. maximizing power production locally) maintains zero yaw off-

set and optimal axial induction; the resulting position of such a turbine corresponds

to the faded schematic in Figure 3.1. Introducing yaw misalignment and varying

axial induction (i.e. by pitching blades or increasing/decreasing the tip-speed ra-

tio) alter the magnitude and direction of the thrust force acting on the turbine’s

rotor. The result is platform motion until the altered aerodynamic force reaches

equilibrium with restoring mooring lines forces. Appropriate manipulation of the

yaw angle and axial induction factor of a floating wind turbine therefore permits

platform relocation within a movable range that is limited by mooring line system

properties. This relocation technique is referred to as yaw and induction-based

turbine repositioning, and will be abbreviated as YITuR for convenience.

The objective of the current work is to evaluate the steady-state potential of YI-

TuR by performing optimization studies under the assumption of idealized steady

wind conditions. This task first requires the development of a floating offshore

wind farm model that captures steady-state wake behaviour and turbine displace-

ment. This tool is referred to as the Floating Offshore Wind Farm Simulator

(FOWFSim). While assessing the effectiveness of YITuR, the influence of wind

farm design parameters such as the quantity of turbines, inter-turbine spacing,

mooring line length and orientation, and anchor location are investigated. A previ-

ous conference publication [101] briefly introduced FOWFSim and presented effi-
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Figure 3.1: Schematic demonstrating the concept of yaw and induction-based
turbine repositioning (YITuR). The faded diagram corresponds to a
floating offshore wind turbine subject to greedy operation (i.e. agreedy =
1/3 and γgreedy = 0deg).

ciency gain results for a single wind farm configuration. The current chapter details

the mathematical model behind FOWFSim and presents comprehensive simulation

results and analyses concerning multiple wind farm configurations and properties.

This chapter is organized as follows; Section 3.2 describes the structure and

theory behind FOWFSim; Section 3.3 defines the optimization problem that is

solved to determine optimal turbine operating parameters for maximizing wind

farm efficiency; Section 3.4 presents the results of optimization studies carried

out with different wind farm design parameters while providing detailed explana-

tions regarding the observed phenomena; and Section 3.5 concludes the chapter

by summarizing major findings and offering recommendations for future research

concerning floating offshore wind farm control.

3.2 Mathematical model - FOWFSim
The current section describes in detail the structure and theory behind FOWF-

Sim, which is ultimately used to model steady-state floating offshore wind farm

performance. The FLOw Redirection In Steady-state (FLORIS) wake model pre-
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sented by Gebraad et al. [72] is combined with a newly-derived steady-state two-

dimensional platform displacement model. The result is a simulation tool that,

for given mooring system, turbine, and platform properties, determines the posi-

tion and power output of every turbine within a floating wind farm in response to

steady wind conditions and turbine operating parameters. It is assumed that all

wind turbines within a given wind farm are identical; therefore rotor, platform,

and mooring system dimensions are common to all machines and structures. Fur-

ther, discussions of the model are focused on floating wind turbines with semi-

submersible platforms; the model may be readily extended to simulate spar buoys

by simply altering the locations of mooring line fairleads.

3.2.1 Wind farm description

As shown in Figure 3.2, a floating wind farm is modelled as a system of N par-

ticles distributed along the two-dimensional ocean surface. Each particle repre-

sents a floating wind turbine, and the turbines are numbered according to the set

F = {1,2, · · · ,N} in an ascending order based on their downstream locations. If

two turbines are located at the same downstream distance, the structure with the

most negative crosswind location is numbered first. The subscript i ∈F is used to

indicate a particular wind turbine. The most upstream turbine is therefore labeled

as i = 1, the most downstream machine is denoted by i = N, and all intermediary

turbines are numbered accordingly.

Assuming steady wind conditions, the positive x direction is aligned with the

free stream wind (denoted as U∞ in Figure 3.2), and the y direction is chosen ac-

cording to the right-hand rule such that the z axis points upward and normal to the

ocean surface. The resulting outputs of the system x and y represent the locations

of all turbines along the horizontal x-y plane as follows:

x :=
[
x1 x2 · · · xN

]T
, (3.1)

y :=
[
y1 y2 · · · yN

]T
, (3.2)

where xi and yi denote the location of turbine i along the ocean surface. Also, the

72



Figure 3.2: Schematic demonstrating the representation of a floating off-
shore wind farm as a system of N particles distributed along the two-
dimensional ocean surface. The loads and local wind velocity Ui that
are incident on a single turbine i are also shown.

position vector ri of turbine i is defined as follows:

ri :=

[
xi

yi

]
. (3.3)

These positions are functions of the inputs to the system a and γ , which re-

spectively symbolize the axial induction factors and yaw angles of all turbines as

follows:

a :=
[
a1 a2 · · · aN

]T
, (3.4)

γ :=
[
γ1 γ2 · · · γN

]T
, (3.5)

where ai and γi denote the operating parameters of turbine i. All yaw angles are

measured as positive counterclockwise from the x axis. At γi = 0deg, turbine i is

therefore facing the incoming wind with zero yaw offset.

Each turbine is subject to an aerodynamic thrust force vector Fthrust,i and three

mooring line force vectors Fmoor,i, j for j ∈M , where M = {1,2,3} represents the
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set of indices that identify the three mooring lines attached to any given floating

platform. The magnitude of Fthrust,i is a function of the effective wind speed Ui at

turbine i, which is dependent upon the location of turbine i as well as the positions

and operating parameters of all machines that are situated upstream of turbine i.

Conversely, Fmoor,i, j is independent of the aerodynamics of the wind farm and is

solely a function of the position of turbine i.

It is important to acknowledge the limitations and assumptions behind FOWF-

Sim. First, it neglects floating platform motion in the z direction (i.e. platform

heave), as well as rotations about the x and y axes (i.e. platform roll and pitch).

Semi-submersible platforms are designed to exert large buoyancy and heave drag

forces in order to limit these motions. Their effects on overall wind farm power

production are neglected. Second, platform rotation about the z axis (i.e. platform

yaw) is neglected. It is assumed that platform yaw resulting from mooring line

nonlinearity has negligible effect on steady-state platform displacement. Third,

the impacts of ocean waves and currents are neglected. Rotor translational motion

resulting from wave-induced platform oscillation is assumed not to significantly

affect average wind power production. Steady ocean currents would induce a bias

in floating turbine positions; however this effect is neglected in the present study

since it is a first examination of YITuR.

3.2.2 Wind farm power output and efficiency

The efficiency of a wind farm ηfarm as the ratio of wind farm power output Pfarm to

hypothetical wind farm power output Pfarm,∞ in the absence of wakes is expressed

as follows:

ηfarm =
Pfarm

Pfarm,∞
. (3.6)

The power outputs Pfarm and Pfarm,∞ are calculated as follows:

Pfarm = ∑
i∈F

Pi, (3.7)

Pfarm,∞ = N
1
2

CP,maxρAU3
∞, (3.8)
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where ρ is the density of air, A is the rotor swept area, and U∞ is the steady free

stream wind speed. The variable CP,max is the optimal power coefficient of the sim-

ulated wind turbines under greedy operation, which entails optimal axial induction

and no yaw offset (i.e. agreedy = 1/3 and γgreedy = 0deg) [121]. The power output

Pi of turbine i is calculated as follows [29]:

Pi =
1
2

CP,iρAU3
i , (3.9)

where Ui is the wind speed at the location of turbine i. The power coefficient CP,i

of turbine i is calculated according to actuator disc theory with corrections applied

due to yaw offset as follows [128]:

CP,i = 4ai (1−ai)
2

ηP (cosγi)
pP , (3.10)

where ηP is the power conversion efficiency and pP is a parameter required for

fitting the power coefficient to experimental or numerical data. The values for these

parameters have been obtained from existing implementations of FLORIS [72].

3.2.3 Wind farm aerodynamics - FLORIS

In order to calculate effective wind speeds at all turbine locations within a wind

farm, the FLORIS wake model as outlined by Gebraad et al. [72] is directly em-

ployed. This parametric wind farm simulation tool utilizes integral momentum

conservation relations from fluid mechanics to estimate centerline deflection and

velocity deficit within wakes [72]. Specifically, the Park wake model [91, 98] is

used to compute velocity deficits, and an analytical derivation by Jiménez et al. [93]

serves as a basis for wake deflection calculations. The first strength of the FLORIS

wake model lies in the fact that its parameters have been estimated using simula-

tion results from SOWFA. The second is that, rather than assuming uniform ve-

locity distribution within wakes, FLORIS divides each wake into three concentric

zones in order to better capture velocity gradients in relation to its predecessors.

Recent releases of the FLORIS wake model have implemented Gaussian velocity

profiles within wakes [17] and curled wake effects [124] in order to better predict

wind farm aerodynamic behaviour. The original version of FLORIS is used in the
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current work due to the unavailability of these releases when simulations were con-

ducted. Further, the wake model currently employed in FOWFSim may be readily

replaced by an alternative simulation tool without altering other computational pro-

cesses.

The FLORIS model is implemented in a generalized manner wherein every tur-

bine may be affected by the wakes generated by any of its upstream counterparts.

This assumption is necessary since the locations of floating platforms are unknown

variables, and specific combinations of turbine operating parameters may bring any

two turbines near alignment with the wind. The only simplifying assumption that

may be imposed given the nature of movable platforms is that turbines operate in-

dependently of their downstream neighbors. The resulting computational structure

of FOWFSim is shown in Figure 3.3. When computing the local wind speed Ui at

turbine i, the FLORIS wake model accepts as inputs the free stream wind speed

U∞ and the operating parameters and positions of all turbines located upstream of

turbine i. In other words, Ui is a function of ak, γk, xk, and yk for k ∈ Ui, where

the set Ui = {1,2, · · · , i−1} numbers all wind turbines that are located upstream

of turbine i. The turbine displacement and mooring line models then determine

the steady-state location of turbine i. This computation is repeated for each tur-

bine starting from the most upstream machine and proceeding downstream. The

following subsections provide greater detail on the remaining two functions shown

in Figure 3.3.

3.2.4 Floating turbine displacement model

The steady-state position of turbine i is determined by the equilibrium established

between all forces that act upon it. As shown in Figure 3.2, these entities are

the aerodynamic thrust force Fthrust,i and the net mooring line force Fmoor,i. The

equilibrium between these forces is described as follows:

Fthrust,i +Fmoor,i = 0, (3.11)

where each of these vectors contains the x and y components of the respective

forces acting on turbine i. Since Fthrust,i is a function of Ui, and since both Ui

and Fmoor,i are nonlinearly dependent upon floating platform positions, the above
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Figure 3.3: Block diagram showing the computation modules of FOWFSim
along with information transfer routes.

equation must be numerically solved with respect to xi and yi using a Newton-

Raphson algorithm. Since the position and effective wind speed associated with

a given turbine are independent of the positions and operating parameters of its

downstream counterparts, Eq. (3.11) is solved using a sweeping algorithm starting

from the leading turbine to the trailing machine.

Similar to power production, aerodynamic thrust forces are also modeled ac-

cording to actuator disc theory [121]. The thrust force vector acting the rotor of

turbine i is calculated as follows [72]:

Fthrust,i =
1
2

Cthrust,iρA(Ui cosγi)
2

[
cosγi

sinγi

]
. (3.12)

The above equation computes the magnitude of the thrust force based on the wind

velocity projected normal to a turbine’s rotor, and then computes the thrust force

vector components based on the yaw angle of the turbine’s nacelle. The thrust

coefficient Cthrust,i of turbine i is calculated as follows [72]:

Cthrust,i = 4ai (1−ai) . (3.13)

The net mooring line force acting on turbine i is calculated as a summation of
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Figure 3.4: Schematic demonstrating the position vectors that are used to de-
scribe the mooring system for turbine i.

all three connected mooring line forces as follows:

Fmoor,i = ∑
j∈M

Fmoor,i, j, (3.14)

where the force Fmoor,i, j exerted by mooring line j on turbine i (refer to Figure 3.2)

is computed as follows:

Fmoor,i, j =−HF,i, j
rA→F,i, j

LA→F,i, j
. (3.15)

The vectors that are relevant to mooring force calculations are described in Fig-

ure 3.4. The position vector rA→F,i, j measures from the jth anchor of turbine i to

its jth fairlead as follows:

rA→F,i, j = ri + rG→F,i, j− rA,i, j, (3.16)

where rG→F,i, j is a constant vector that symbolizes the location of the jth fairlead

of turbine i relative to the center of its floating platform, and rA,i, j is also a constant

vector that measures the location of the jth anchor of turbine i relative to the origin

of the coordinate system.
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The horizontal tension in the jth cable that is connected to turbine i is a func-

tion of the horizontal distance LA→F,i, j between the cable’s respective anchor and

fairlead, which is calculated as follows:

LA→F,i, j = ‖rA→F,i, j‖, (3.17)

where ‖ · ‖ represents the Euclidean norm. The magnitude of the horizontal cable

tension HF,i, j is then obtained from the solution of the suspended cable problem

defined in Section 3.2.5. Since platform motion in the z direction is neglected,

the vertical distance between the anchor and fairlead of any mooring line remains

unchanged. The only independent variable influencing HF,i, j is therefore LA→F,i, j.

This characteristic is exploited and HF,i, j is computed using a lookup table function

as follows:

HF,i, j = fmoor (LA→F,i, j) . (3.18)

The lookup table function fmoor(·) is constructed for each new set of mooring line

properties prior to running wind farm simulations or conducting optimization stud-

ies.

3.2.5 Mooring line tensions

The horizontal tension generated within a mooring line is dependent upon the gen-

eral shape of its cable, which is in turn a function of the location of its fairlead.

Figure 3.5 identifies three different zones in which a fairlead may be located that

determine the general shape of a mooring line cable. Zone 1 is active when the

horizontal distance between the fairlead and anchor is small enough such that the

corresponding cable is partially resting on the seabed while its suspended portion

is vertical with no catenary profile. Zone 2 is active when the fairlead is located

beyond the boundary of zone 1, where the cable is still partially resting on the

seabed and its suspended portion possesses a catenary profile, up to a horizontal

position where no portion of the cable rests on the seabed and the slope of the cable

profile at the anchor is zero (i.e. no vertical force at the anchor). The blue line in

Figure 3.5 is an example of a cable operating within zone 2. The green and orange

lines represent the boundaries of zone 2. Zone 3 is then active when no portion
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Figure 3.5: Schematic demonstrating the three zones in which mooring line
fairleads may be located. The zone that is active determines the cable
profile and tension.

of the cable rests on the seabed and the slope of the cable profile at the anchor

is greater than zero, which results in vertical pull on the anchor. The red line in

Figure 3.5 is an example of a cable operating within zone 3.

The horizontal tension in the cable is equal to zero when the fairlead is located

within zone 1. Finding the cable tension when zones 2 and 3 are active requires

solving the problem of an elastic cable suspended under its weight. Solutions to a

similar problem have been presented by Jonkman [97] with no derivation. Since

the solutions contained in the current work differed from those of Jonkman [97],

details concerning the setup and derived expressions are presented. While zone 2 is

active, the cable suspension problem is defined according to Figure 3.6a. The sus-

pended cable portion (i.e. the blue line) is lifted by a vertical force VF at the fairlead

which counteracts the weight of the cable Fw. The horizontal tension throughout

the catenary profile is uniform and equal to the fairlead horizontal force HF. The

cable portion resting on the seabed (i.e the orange line) is subject to a horizontal

anchor force HA, a static friction force Fs, and a horizontal reaction force of magni-

tude HF exerted by the tension of the suspended portion of the cable. The resulting

differential equations that describe the equilibrium of forces for this scenario are
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formed as follows:

dV
ds

=

 0 , s < Ls
w

1+ T
AcE

, s≥ Ls
, (3.19)

dH
ds

=


µsw

1+ H
AcE

, s < Ls

0 , s≥ Ls

, (3.20)

where H, V , and T are the horizontal, vertical, and total tensions at any point along

the cable, s is a general descriptor of arc length along the cable measured from the

origin depicted in Figure 3.6a, w is the weight of the cable per unit length in ocean

water, µs is the coefficient of static friction between the cable and seabed, and Ac

and E are the cross-sectional area and elastic modulus of the cable, respectively.

The total tension T is calculated as follows:

T =
√

H2 +V 2. (3.21)

If the fairlead is located within zone 3, as shown in Figure 3.6b, the cable

assumes a fully catenary profile with uniform horizontal tension HF throughout.

The vertical fairlead force VF must then counteract the weight of the cable Fw and

the vertical anchor force VA. The resulting differential equation describing force

equilibrium in the vertical direction is therefore set up as follows:

dV
ds

=
w

1+ T
AcE

. (3.22)

The solutions to these differential equations are obtainable analytically and,

based on the zones defined in Figure 3.5, their solutions are grouped within fmoor(·)
as follows:

fmoor(xF) =


0 , xF ≤ xF,1→2

f1(xF) , xF,1→2 < xF ≤ xF,2→3

f2(xF) , xF > xF,2→3

, (3.23)

where xF is the horizontal position of the fairlead relative to the anchor, which

is equal to LA→F,i, j, xF,1→2 and xF,2→3 are the fairlead locations that separate the
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Figure 3.6: Schematic demonstrating the forces acting on different cable por-
tions when the fairlead of the mooring line is located within (a) zone 2
and (b) zone 3.

different zones identified in Figure 3.5, and f1(·) and f2(·) are solutions to the

suspended cable problems corresponding to zones 2 and 3, respectively.

First, the problems defined in Figure 3.6 are solved to yield the following ex-

pressions for the transition locations between the different zones (refer back to

Figure 3.5 for a description of these locations):

xF,1→2 = Lc− zF, (3.24)

xF,2→3 =
HF,2→3

w

[
wLc

AcE
+ sinh−1 wLc

HF,2→3

]
, (3.25)

where Lc is the length of the unstretched cable, zF is the vertical location of the
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fairlead relative to the anchor, which is constant in all simulations since vertical

platform motion is neglected, and HF,2→3 is the horizontal cable tension when the

fairlead is located at xF,2→3 and is calculated as follows:

HF,2→3 =
wLc

2

[
1−
(

zF

Lc
− wLc

2AcE

)2
](

zF

Lc
− wLc

2AcE

)−1

. (3.26)

The function f1(·), which outputs the horizontal fairlead force HF while zone 2

is active, is obtained by solving the following system of equations for HF and VF

using a Newton-Raphson algorithm:

xF−Ls =
HF

w

(
VF

AcE
+ sinh−1 VF

HF

)
, (3.27)

zF =
1
w

 V 2
F

2AcE
−HF

1−

√
1+
(

VF

HF

)2
 , (3.28)

where Ls is the stretched length of the cable portion that is resting on the seabed

(i.e. the length of the orange line in Figure 3.6a) and is calculated as follows:

Ls = Lc−
VF

w
+

(
1+ HF

AcE

)3
−
[(

1+ HF
AcE

)2
− 2µsw

AcE xs

] 3
2

3µsw
AcE

− xs. (3.29)

The variable xs is the distance from the start of the catenary portion of the cable

(i.e. where the orange and blue lines meet in Figure 3.6a) to the location along the

flat cable portion where the horizontal tension is minimal. This minimal tension

point either corresponds to the position of the anchor, or some intermediate location

along the flat cable portion where the tension reaches zero due to the opposition of

Fs against HF. The distance xs is therefore calculated as follows:

xs = min
[

Lc−
VF

w
,

HF

wµs

(
1+

HF

2AcE

)]
(3.30)

The function f2(·), which outputs the horizontal fairlead force HF while zone 3

is active, is obtained by solving the following system of equations for HF and VF

83



using a Newton-Raphson algorithm:

xF =
HF

w

(
wLc

AcE
+ sinh−1 VF

HF
− sinh−1 VF−wLc

HF

)
, (3.31)

zF =
Lc

AcE

(
VF−

wLc

2

)
+

HF

w

√1+
(

VF

HF

)2

−

√
1+
(

VF−wLc

HF

)2
 . (3.32)

3.3 Optimization problem
The goal of optimization in the context of the current study is to determine the

sets of axial induction factors a and yaw angles γ that maximize wind farm effi-

ciency ηfarm. Obtaining ηfarm for given a and γ vectors requires solving Eq. (3.11)

to determine the position of each floating turbine. This process involves 2N im-

plementations of a Newton-Raphson algorithm to find the x and y positions of N

platforms for each calculation of ηfarm. To improve computational efficiency, the

Newton-Raphson algorithm is removed from the function ηfarm by instead defining

a nonlinearly constrained optimization problem as follows:

min
a,γ,x,y

1−ηfarm (a,γ,x,y) ,

subject to



0.2≤ ai ≤ 0.4,

−20deg≤ γi ≤ 20deg,

xi,min ≤ xi ≤ xi,max,

yi,min ≤ yi ≤ yi,max,

Fthrust,i +Fmoor,i = 0,

(3.33)

where the cost function 1−ηfarm represents the wind farm efficiency deficit, and

xi,min, yi,min, xi,max, and yi,max are the bounds of the optimization variables xi and

yi. These bounds are determined uniquely for each turbine assuming ±200m of

movable range surrounding their neutral positions. This range is simply selected

to be large enough such that it exceeds the actual movable range of the floating

wind turbines. The bounds on γi are selected to conservatively maintain nacelle
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yaw below ±25deg. Yaw offset beyond this range has been attributed to excessive

fatigue loads [59]. The upper bound on ai is set to uphold the validity of actuator

disc theory, while the lower bound prevents excessive power de-rating.

The minimization problem defined in Eq. (3.33) is solved using the MATLAB

optimization toolbox based on Sequential Quadratic Programming (SQP). This op-

timization framework forms a quadratic approximation of the objective function at

each iteration, while at the same time linearizing constraint equations and incor-

porating them into the objective function using Lagrange multipliers [142]. This

quadratic problem is then solved using an efficient matrix decomposition tech-

nique [142]. Along with interior-point methods, SQP is considered the most ef-

fective technique for solving nonlinearly constrained optimization problems [142].

All axial induction factors are initialized according to greedy operation (i.e. ainit =

agreedy = 1/3). To initialize the yaw angle vector γ init, a simple algorithm that

identifies which pairs of turbines are strongly coupled aerodynamically, and then

ensures that their nacelles are initially yawed in opposite directions, was developed.

Initial turbine positions xinit and yinit are obtained by solving FOWFSim using ainit

and γ init.

3.4 Results and discussion
The current section first assesses the impacts of various floating wind farm design

parameters on the potential of YITuR. These parameters include anchor location

and mooring line cable length (Section 3.4.1), mooring system orientation (Sec-

tion 3.4.2), and wind farm size and inter-turbine spacing (Section 3.4.3). For these

analyses, a wind-aligned row of floating wind farms is simulated and optimized.

Then, the increase in wind farm efficiency obtained using YITuR is computed for

various wind directions and wind farm sizes (Section 3.4.4). It is emphasized that

the results presented in this section are obtained via optimal YITuR operation,

which is implemented by solving Eq. (3.33) for each given set of wind farm prop-

erties and wind conditions in order to acquire optimal a and γ values.

The wind turbines and floating platforms that are simulated are based upon

designs outlined by Jonkman et al. [96] and Robertson et al. [152]; parametric

details of these designs are listed in Table 3.1. One important characteristic of
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Table 3.1: Properties of the floating wind turbine detailed by Jonkman et
al. [96] and Robertson et al. [152].

Baseline wind turbine properties
Rotor radius, R 63m
Power conversion efficiency, ηP 0.768
Power coefficient data fitting parameter, pP 1.88

Baseline floating platform properties
Distance from platform center to fairleads, LG→F 40.87m

Mooring line properties
Anchor distance from neutral platform, LA→G,neutral 837.6m
Vertical distance between anchors and fairleads, zF 186m
Cable length of baseline mooring system, Lc 835m
Cable diameter, Dc 7.66cm
Cable weight per unit length in water, w 1065.7N/m
Cable tension per meter of elongation, AcE 753.6×106 N
Static friction coefficient between cable and seabed, µs 1.0

the simulated floating platform is its baseline orientation relative to the incoming

wind direction; this orientation is shown in Figure 3.7. Mooring line 1 is ori-

ented 60deg counterclockwise from the positive x axis, and subsequent cables are

oriented 120deg counterclockwise from their preceding line. This figure will be al-

luded to in Section 3.4.2 when mooring system orientation changes are discussed.

3.4.1 Effects of anchor location and cable length

It is first necessary to determine what length of mooring line cables and what an-

chor locations will permit adequate efficiency gains from YITuR operation. Since

the distance between an anchor and its respective floating platform influences the

length of the connecting mooring line, the cable length factor αcable is defined to

parametrize mooring line length Lc as follows:

Lc = Lc,min +αcable (Lc,max−Lc,min) , (3.34)

where the smallest permissible cable length Lc,min for any anchor location is defined

as follows:

Lc,min =
√

x2
F,neutral + z2

F, (3.35)
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Figure 3.7: Schematic demonstrating the baseline orientation of a floating
platform and mooring system relative to the incoming wind direction.
The orientation of a mooring system that is rotated by a value θmoor is
also presented in the faded diagram.

and the largest permissible cable length Lc,max for any anchor location is defined as

follows:

Lc,max = xF,neutral + zF. (3.36)

The constant xF,neutral is the distance from anchor to fairlead when the respective

floating platform is in its neutral position (i.e. no aerodynamic loads are present),

and is calculated as follows:

xF,neutral = LA→G,neutral−LG→F, (3.37)

where LA→G,neutral is the distance between any anchor to the center of gravity of

its respective floating platform under neutral conditions, and LG→F is the distance

between the center of gravity of a floating platform to any of its fairleads. The

length Lc,min is small enough such that the unstretched cable follows a straight line

from anchor to fairlead, while Lc,max is a large enough length such that the cable
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is suspended vertically from the fairlead until it contacts the seabed. The cable

length factor therefore falls within the range 0 ≤ αcable ≤ 1 and linearly specifies

the length of a cable such that Lc,min ≤ Lc ≤ Lc,max.

Figure 3.8 plots the relative gain in the efficiency ∆ηfarm,rel of an optimized two-

turbine floating wind farm as a function of different anchor placement distances

LA→G,neutral and cable length factors αcable. The general trends in this figure lead to

the following important point:

Observation 1. Lengthening mooring line cables while keeping anchor locations

fixed increases the effectiveness of YITuR operation.

For example, with LA→G,neutral = 800m, increasing αcable from 0.55 to 0.8 raises

∆ηfarm,rel from 10.0 to 31.8%. This finding is explained by the simple fact that if

mooring lines are not sufficiently long, then floating platforms cannot be relocated

far enough in the crosswind direction for YITuR to be fully effective in reducing

wake overlap. Figure 3.9 shows the positions of the two floating wind turbines

for two scenarios; αcable = 0.55 and αcable = 0.95, with LA→G,neutral = 900m in

both cases. When αcable = 0.55, the upstream turbines is shifted by 24.0m in the

negative y direction and the downstream machine is relocated by 39.4m in the

positive y direction. The total crosswind offset between their axes of rotation is

therefore 63.4m, which is approximately equal to half of one rotor diameter of

126m, and a relative wind farm efficiency gain of 10.0% is achieved. Raising

αcable to 0.95 increases this crosswind offset to 145.3m, which exceeds a single

rotor diameter and generates a larger relative efficiency gain of 34.6%.

The following point may also be drawn from the trends depicted in Figure 3.8:

Observation 2. Placing mooring system anchors farther from floating turbine neu-

tral positions increases the effectiveness of YITuR operation.

Fixing αcable = 0.8, increasing LA→G,neutral from 200 to 900m raises ∆ηfarm,rel from

16.3 to 32.4%. This effect is attributed to the nonlinearity of mooring line tensions.

The horizontal and vertical components of mooring line tension for a sample cable

are plotted in Figure 3.10 as a function of the horizontal distance xF between its an-

chor and fairlead. Notice that there exists a value of xF at which the cable tensions

begin to rise dramatically; this point corresponds to xF,2→3, which is the fairlead
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Figure 3.8: Relative gain in wind farm efficiency using YITuR operation with
different mooring line length factors αcable and anchor distances from
turbine neutral positions LA→G,neutral. Simulation properties: 1×2 wind
farm size, free stream wind speed U∞ = 8m/s, inter-turbine spacing of
7D, baseline mooring system orientation θmoor = 0deg.

location that begins to fully lift the cable off of the seabed. For the cable plotted

in Figure 3.10, xF,2→3 occurs at 902.9m. This dramatic rise in cable tension is the

limiting factor for YITuR, since it leads to a large restoring mooring line force that

counters aerodynamic loads and prevents further platform displacement.

Placing an anchor farther away from its respective platform while maintain-

ing αcable constant allows for a larger range of platform motion before xF reaches

xF,2→3. Figure 3.11 demonstrates this concept by showing the profiles of two moor-

ing lines before and after platform displacement. Let the anchor in system a) be

placed closer to the neutral position of its respective platform in comparison to that

of system b). Let both of these turbines then be moved to the right by an equal

distance such that the mooring line from system a) reaches its xF,2→3 value (which

corresponds to the orange line in Figure 3.11a). The turbine from system a) has
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Figure 3.9: Floating wind turbine positions corresponding to optimization re-
sults presented in Figure 3.8. Simulation properties: 1× 2 wind farm
size, free stream wind speed U∞ = 8m/s, inter-turbine spacing of 7D,
baseline mooring system orientation θmoor = 0deg, distance from an-
chors to turbine neutral positions LA→G,neutral = 900m.

now reached the point where its cable is being fully lifted off of the seabed, and

thus the restoring force that counteracts further displacement begins to rise dramat-

ically. The cable from system b), however, still has a large portion of cable resting

on the seabed (refer to the flat portion of the orange line in Figure 3.11b), and is

therefore far from its xF,2→3 value. As a result, the turbine from system b) has ad-

ditional range of motion toward the right before its cable tension begins to increase

sharply. This turbine will therefore relocate farther from its neutral position before

mooring line forces equalize with aerodynamic loads.

It may be concluded from the above findings that, in order for YITuR to be an

effective means of wind farm control, anchors must be placed sufficiently far from

the neutral positions of their respective platforms and cables must be adequately

long. These characteristics will ensure a range of platform motion that permits
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Figure 3.10: Horizontal and vertical components of cable tension corre-
sponding to a mooring line of length Lc = 925m with distance from
anchor to platform neutral position LA→G,neutral = 837.6m.

significant reduction of wake overlap. However, this range of motion must not

be excessive since there may be safety and practicality concerns associated with

massive floating structures freely moving within large radii.

3.4.2 Effects of mooring system orientation

Another question of interest is whether the nonlinearity of mooring line forces

alters the potential of YITuR if mooring systems are oriented differently. The angle

θmoor is used to denote the counterclockwise rotation of a mooring system relative

to the baseline design described in Figure 3.7. The faded platform, cables, and

anchors in this diagram represent the rotated mooring system. Since a rotation of

120deg results in mooring system orientation that is identical to that of the baseline,

only the range 0deg≤ θmoor ≤ 120deg is considered.

Figure 3.12 plots the relative gain in wind farm efficiency ∆ηfarm,rel resulting

from YITUR operation with different values of θmoor and αcable. Similar to Sec-
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Figure 3.11: Schematic demonstrating the effect of increased anchor distance
from floating platform neutral position.

tion 3.4.1, the simulated wind farm consists of two floating wind turbines aligned

with the wind. It is observed that regardless of the value of αcable, YITuR is only

effective in significantly raising wind farm efficiency in the approximate ranges

of 0deg ≤ θmoor ≤ 20deg and 100deg ≤ θmoor ≤ 120deg. For instance, with

αcable = 0.8, rotating the baseline mooring system counterclockwise by 20deg re-

duces ∆ηfarm,rel from 32.0 to 21.3%. This result implies a third important point:

Observation 3. The baseline mooring system orientation shown in Figure 3.7 is

optimal for YITuR, and variations from this orientation exceeding ±20deg will

yield significant reduction in wind farm efficiency gains.

The trends in Figure 3.12 are the direct result of mooring line tension nonlinear-

ity. Consider the floating wind turbines and mooring systems shown in Figure 3.13.

With the wind blowing from the left, the mooring system in Figure 3.13a is oriented

similar to the baseline from Figure 3.7 while the mooring system in Figure 3.13b is

rotated 60deg counterclockwise relative to the baseline orientation. The platform

locations shown correspond to zero yaw offset in both cases. Under this setting,
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Figure 3.12: Relative gain in wind farm efficiency using YITuR operation
with different cable length factors αcable and mooring system orienta-
tions θmoor. Simulation properties: 1× 2 wind farm size, free stream
wind speed U∞ = 8m/s, inter-turbine spacing of 7D, distance from
anchors to platform neutral positions LA→G,neutral = 837.6m.

mooring lines 1 and 3 of system a) are far from zone 3 operation (refer back to

Figure 3.5 for discussions on mooring line zones) since their respective fairleads

and anchors are in close proximity. These cables therefore do not exert large restor-

ing forces even if yaw offset were introduced and the platform were to shift in the

crosswind direction. Additionally, although mooring line 2 of system a) is close to

zone 3 operation, it exerts zero force in the crosswind direction. As a result, if yaw

offset were introduced, the floating turbine in system a) must traverse a significant

distance in the crosswind direction for the tension in cable 2 to equalize against

aerodynamic forces.

The same characteristic does not hold true for the mooring system in Fig-

ure 3.13b. Due to its altered orientation, cables 1 and 2 of system b) operate closer

to zone 3 and their horizontal tension components will rise sharply as their fair-

leads move farther away from their anchors. Furthermore, these two cables are
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Figure 3.13: Schematic demonstrating the effects of mooring system orienta-
tion on the crosswind mobility of floating offshore wind turbines.

oriented such that they exert restoring forces in the crosswind direction even with-

out yaw offset. Consequently, if yaw misalignment were introduced, the floating

turbine from system b) would have a smaller range of mobility in comparison to

that of system a) before mooring line forces equalize with aerodynamic loads. Fig-

ure 3.14 plots the locations of the floating turbines simulated in Figure 3.12 at

different mooring system orientations. Increasing θmoor from 0 to 20deg reduces

the optimal crosswind offset between the two turbines from 139.6 to 97.7m (or

1.1D to 0.8D). Further raising θmoor to 40deg decreases this crosswind offset to
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Figure 3.14: Floating wind turbine positions corresponding to optimization
results presented Figure 3.12. Simulation properties: 1×2 wind farm
size, free stream wind speed U∞ = 8m/s, inter-turbine spacing of
7D, distance from anchors to platform neutral positions LA→G,neutral =
837.6m, cable length factor αcable = 0.8 (i.e. cable length Lc = 950m).

8.95m (or 0.1D).

Another observation from Figure 3.14 is that bias appears in the crosswind

positioning of floating platforms as θmoor deviates from zero. At θmoor = 20deg

for instance, turbine 1 maintains an insignificant yaw offset angle of 0.6deg yet

is shifted by 65.7m in the −y direction. Additionally, with θmoor = 40deg, both

turbine nacelles are yawed counterclockwise yet they are displaced in the −y di-

rection. Clearly, adjusting the mooring system orientation offsets the crosswind

steady-state positions of the floating platforms even with zero yaw misalignment.

Introducing yaw offset then repositions turbines relative to these biased steady-state

locations. This outcome is also attributed to the nonlinearity of mooring line forces.

Figure 3.15 shows the mooring system orientation corresponding to θmoor = 20deg.

As wind drives the floating platform in the downstream direction, the tensions in

both mooring lines 1 and 3 decrease since their respective anchors move closer to
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Figure 3.15: Schematic demonstrating the origin of bias in the steady-state
displacements of a floating offshore wind turbines when mooring sys-
tem orientations deviate from the baseline shown in Figure 3.7.

their fairleads; thus, these mooring lines diverge from zone 3 operation. Mooring

line 2, however, approaches zone 3 operation and experiences a significant increase

in tension which, due to its orientation, exerts a force on the floating platform in

the −y direction. This force introduces the bias which is evident in Figure 3.14.

The above observations indicate that care must be given to the orientation of

floating turbine mooring systems if YITuR (or any turbine repositioning concept)

is to be employed for wind farm control. The orientation of a mooring system

places limits on the mobility of floating platforms, which diminishes the potential

of any turbine repositioning concept to maximize wind farm efficiency. This point

is addressed quantitatively in Section 3.4.4, where the effect of wind direction on

the potential of YITuR is examined.

3.4.3 Effects of turbine spacing and wind farm size

The effect of altering the spacing between wind turbines on the potential of YITuR

is also examined. Varying inter-turbine spacing alone is uninteresting however.

Increased spacing allows for more time and space over which wakes re-energize
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and reduce their velocity deficits [115], hence raising wind farm efficiency and

rendering any wind farm control concept redundant. Instead, the simultaneous

impacts of spacing and wind farm size (i.e. the number of installed wind turbines)

are studied to answer the following question; how beneficial is YITuR in terms of

increasing the turbine-density of a wind farm without relinquishing efficiency?

Figure 3.16 plots the efficiency ηfarm of a wind-aligned row of N wind turbines

with various inter-turbine spacings under both greedy1 and YITuR operation. The

wind direction and mooring system orientation are defined according to the base-

line system defined in Figure 3.7, and the mooring line length in these simulations

is 925m. The following significant conclusion may be derived from Figure 3.16:

Observation 4. By introducing YITuR operation, a wind farm developer may in-

crease the quantity of wind turbines within the same farm area by N − 1 while

approximately maintaining wind farm efficiency.

For instance, a wind farm consisting of a row of N = 5 turbines placed 8D apart and

operating with greedy settings has an efficiency ηfarm = 60.7%. If a single wind

turbine were installed between each existing pair, which would increase the wind

farm size to N = 9 and decrease inter-turbine spacing to 4D without requiring ad-

ditional wind farm area, the efficiency of the new wind farm with YITuR operation

would remain at 60.0%.

To explain this outcome, wind farm layouts corresponding to N = 5 with 8D

spacing and N = 9 with 4D spacing are plotted in Figure 3.17. Since YITuR min-

imizes wake overlap by yawing and relocating adjacent floating wind turbines in

opposite directions, it effectively doubles the downstream spacing between any two

machines with significant wake interaction. Referring to Figure 3.17, the floating

platforms corresponding to N = 9 are spaced 4D apart under neutral conditions.

YITuR then shifts adjacent pairs in this set of turbines in opposite crosswind di-

rections. The result is two new rows at approximately y = ±60m along which

adjacent turbines that are directly aligned with the wind are actually spaced 8D

apart. As a result, this wind farm will have the same effective inter-turbine spac-

ing and efficiency as one with N = 5 turbines under greedy operation, since these

machines will also be spaced 8D apart.

1Refer to the discussion surrounding CP,max in Section 3.2.2 for a description of greedy operation.
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Figure 3.16: Efficiency ηfarm of a wind-aligned row of N turbines obtained
from greedy and YITuR operation for different inter-turbine spacings
and wind turbine quantities N. Simulation properties: free stream wind
speed U∞ = 8m/s, mooring line cable length Lc = 925m, distance
from anchors to platform neutral positions LA→G,neutral = 837.6m,
baseline mooring system orientation θmoor = 0deg.

3.4.4 Wind farm efficiency studies

As a final assessment, the potential of YITuR for maximizing the efficiencies of

several wind farms of different sizes subject to different wind directions is exam-

ined. All wind farms possess a grid layout with turbines spaced 7D apart in both x

and y directions. All mooring systems are oriented according to the baseline design

shown in Figure 3.7 with anchors located 837.6m away from the neutral positions

of their respective platforms and cables that are 925m long. The wind speed in all

simulations is 8m/s.

Figure 3.18 shows polar plots of wind farm efficiencies under greedy and YI-

TuR operation as functions of wind direction; each plot corresponds to a differ-

ent farm size. For all wind farm sizes, greedy operation yields significantly low
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wind farm efficiencies near wind directions that are aligned with or diagonal to

the farm’s grid layout (i.e. 0, 45, 90deg, etc.). At these angles, the distances be-

tween turbines that are directly aligned with the wind are reduced; hence, wakes do

not sufficiently re-energize via turbulent diffusion prior to interacting with down-

stream rotors. When assessing the potential of YITuR operation for mitigating this

problem, the following major point is established:

Observation 5. YITuR operation is not equally effective at raising wind farm effi-

ciency across all wind directions.

At a wind direction of 0deg for example, YITuR operation is significantly bene-

ficial as it increases ηfarm for a 2× 2 wind farm from 73.3 to 89.3%, which is a

21.8% relative rise. At wind directions of 90, 180, and 270deg however, relative

efficiency gains obtained via YITuR operation are 7.1, 6.4, and 4.5%.
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This limitation is directly attributed to discussions from Section 3.4.2 regarding

the effects of mooring system orientation on floating turbine mobility. Moreover, it

is an extension of Observation 3 since changing the direction of the wind is tanta-

mount to altering mooring system orientation relative to the incoming wind. Con-

sequently, YITuR is only effective when the relative orientation between mooring

systems and the wind is close to the baseline scenario shown in Figure 3.7. Wind

farm developers hoping to benefit from YITuR must therefore identify the wind

direction at which efficiency is minimal, and then orient mooring systems appro-

priately in order to maximize the potential of this wind farm control technique.

Alternatively, mooring line orientation and YITuR operation could be considered

in optimization processes that are used to design wind farm layouts.

As wind farm size is increased from 2× 2 to 7× 7, efficiencies under greedy

operation and at a wind direction of 0deg drop from 73.3 to 52.0%. This outcome

is expected; a larger quantity of wind turbines means that a higher portion of ma-

chines experience aerodynamic coupling. Losses resulting from the wake effect are

therefore amplified. By the same logic, YITuR operation, or any wind farm control

concept, must be more effective in raising efficiency for larger wind farm sizes;

that is, a higher portion of machines experience the benefits of wind farm control.

This outcome is observed in Figure 3.18. As wind farm size is increased from 2×2

to 7× 7, the absolute gain in wind farm efficiency obtained via YITuR operation

rises from 16.0 to 22.2% at a wind direction of 0deg. Relative gains in wind farm

efficiency increase from 21.8 to 42.7%; although these values are inflated due to

the substantial drop in efficiency of the 7×7 wind farm under greedy operation.

3.5 Conclusions and recommendations for future
research

The goal of this chapter has been to evaluate the steady-state potential of Yaw and

Induction-based Turbine Repositioning (YITuR) as a control strategy for floating

offshore wind farms. Optimization studies have shown that this potential is highly

dependent upon wind farm design parameters. Mooring lines must be sufficiently

long to permit significant platform displacement such that wake overlap along tur-

bine rotors may be minimized. Concurrently, due to the nonlinearity of mooring
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Figure 3.18: Efficiency ηfarm of wind farms with grid layouts and different
sizes under greedy and YITuR operation subject to different wind di-
rections. The radial axes represent wind farm efficiency ηfarm and the
circumferential axes denote the wind direction with 0deg indicating
wind flow to the right. Simulation properties: free stream wind speed
U∞ = 8m/s, inter-turbine spacing of 7D in x and y directions, mooring
line cable length Lc = 925m, distance from anchors to turbine neutral
positions LA→G,neutral = 837.6m, baseline mooring system orientation
θmoor = 0deg.
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line tensions, anchors must be placed far enough from the neutral positions of float-

ing turbines such that platforms may be adequately relocated before mooring line

restoring forces increase exorbitantly. Platform mobility was also heavily influ-

enced by mooring system orientation. The nonlinearity of mooring line tensions

engendered unequal restoring forces at specific mooring system orientations which,

in addition to limiting platform displacement, generated biases in the steady-state

locations of floating turbines.

Studies of wind farm efficiency showed that, with specific mooring system ori-

entations and anchor locations, and long enough mooring lines, YITuR operation

could increase the efficiency of a 7× 7 wind farm by 42.7% relative to greedy

operation. It was also shown that, due to mooring line tension nonlinearity, the

effectiveness of YITuR operation is highly dependent upon the relative orientation

between mooring systems and the direction of incoming wind. Wind farm develop-

ers considering any form of turbine repositioning as a wind farm control technique

must therefore select appropriate mooring system orientations based on either com-

prehensive optimization studies or a predetermined wind direction at which YITuR

operation is necessary.

Future research on YITuR should attempt to solve such optimization problems

wherein not only optimal turbine operating parameters are of interest, but also opti-

mal wind farm design parameters. It is also necessary to move beyond steady-state

analyses to investigate the efficacy of dynamic optimization algorithms and control

systems in implementing YITuR in real-time under the presence of turbulence and

time-varying wind and wave conditions. Evaluating such controllers will require

dynamic floating offshore wind farm models that simulate turbine motion along the

ocean surface in addition to dynamic wake propagation.

Further, aspects of safety and practicality should be investigated. Specifically,

the effects of increasing mooring line length on floating wind turbine stability

should be examined quantitatively. Additionally, the effects of large platform dis-

placement on maintenance procedures and crew safety should be investigated. Fi-

nally, the efficacy of YITuR operation in raising wind farm efficiency should be

compared against the use of thrusters for relocating floating platforms. This anal-

ysis should consider the additional capital and maintenance costs of incorporating

thrusters into floating platforms.
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Chapter 4

A Low-fidelity Dynamic Wind
Farm Model for Simulating
Time-varying Wind Conditions
and Floating Platform Motion

This chapter introduces a dynamic parametric wind farm model that is capable of

simulating floating wind turbine platform motion coupled with wake transport un-

der time-varying wind conditions. The simulator is named FOWFSim-Dyn as it

is a dynamic extension of the previously developed steady-state Floating Offshore

Wind Farm Simulator (FOWFSim). One-dimensional momentum conservation is

used to model dynamic propagation of wake centerline locations and average ve-

locities, while momentum recovery is approximated with the assumption of a con-

stant temporal wake expansion rate. Platform dynamics are captured by treating a

floating offshore wind farm as a distribution of particles that are subject to aero-

dynamic, hydrodynamic, and mooring line forces. The finite difference method

is used to discretize the momentum conservation equations to yield a nonlinear

state-space model. FOWFSim-Dyn is validated against steady-state experimental

wind tunnel data obtained from the literature along with simulation results acquired

from FAST. The model is shown to possess a satisfactory level of fidelity for en-
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gineering applications. Finally, dynamic simulations are conducted to ensure that

time-varying predictions match physical expectations and intuition.

4.1 Introduction
Since the introduction of parametric wake models by Jensen [91] and Katić et

al. [98], such wind farm simulators have served as essential tools for enhancing

wind farm performance. This enhancement has been achieved via two distinct

fields of study. The older of the two is layout optimization, wherein the optimal in-

stallation locations of wind turbines are computed with the objective of maximizing

annual revenue [161]. Since such optimization problems are solved offline prior to

wind farm construction, steady-state wake models have sufficed for estimating an-

nual energy production. The field of study that has more recently experienced a

surge in interest is wind farm control, which involves real-time wind turbine actua-

tion for the purpose of manipulating the wind field to achieve some wind farm-level

objective [102]. This ultimate goal may be efficiency maximization, or power out-

put tracking with turbine load alleviation [107]. In either case, since actuators are

adjusted in real-time, dynamic wake phenomena such as turbulence, transport de-

lay, time-varying mean wind speed and direction, and floating platform motion (for

deep-water offshore wind farms) are pertinent when evaluating controller perfor-

mance.

Steady parametric wake models have been used successfully to raise wind farm

efficiency in large eddy simulations (LES) [72] and field tests [59]. Further, in one

instance, Gebraad et al. [69] reported no significant performance gains when using

a dynamic wake model for wind farm control in contrast to using a steady wake

model. Nonetheless, there are benefits associated with using dynamic wake mod-

els. First, traditional state and parameter estimation techniques may be used to

adapt such models to time-varying wind conditions [69]. Second, low-fidelity dy-

namic wake models may be used to test controller robustness against time-varying

wind conditions prior to dedicating time and resources to conducting high-fidelity

simulations and field tests (as performed by Johnson and Fritsch [94] and Gebraad

and van Wingerden [70]). Further research comparing wind farm control based

on dynamic versus steady parametric models may reveal additional benefits. Such
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progress will only be possible, however, provided the availability of various dy-

namic wake models.

Reviews of wake modeling may be found in the works of Boersma et al. [24],

Göçmen et al. [75], Vermeer et al. [179], and in our previous review article [102].

We will focus our current discussion on parametric dynamic wake models. The

earliest of such models found application in power de-rating wind farm control re-

search conducted by Gebraad and van Windgerden [70], Johnson and Fritsch [94],

and Ahmad et al. [3]. Power de-rating involves reducing the thrust force exerted

onto the wind by upstream wind turbines as a means of increasing the fluid momen-

tum available to downstream machines [95]. Since this application involves neither

wake deflection nor wind turbine relocation, wake dynamics in these studies were

modeled using time-delays in computed steady-state incident wind speeds. These

time-delays represented the duration required for changes in the wind field at some

upstream turbine to propagate to downstream machines. This approach is valid as

long as the wind direction remains constant, and wake centerline deflection and

turbine relocation are not pertinent.

In order to account for transport delay of steered wakes, Gebraad and van

Wingerden [67] developed the Flow Redirection and Induction Dynamics (FLORI-

Dyn) model. Their approach involved representing flow within a wake using trans-

lating points that were initialized at each turbine and then transported downstream.

Each point contained information regarding its corresponding turbine’s operating

parameters at the instant in time at which the point was initialized. Using this in-

formation, wake properties at the downstream location of the translating point were

obtained using the Flow Redirection and Induction in Steady-state (FLORIS) wake

model [72], which utilizes integral forms of mass and momentum conservation to

compute downstream wake properties. More simply put, FLORIDyn transports

steady-state wake characteristics computed with FLORIS in the free stream wind

direction. Time varying wind direction and floating platform motion are not con-

sidered in FLORIDyn however.

In an alternative approach, Shapiro et al. [162] used the differential forms of

mass and momentum conservation to simulate dynamic wake behavior. Local and

convective wake accelerations in the free stream wind direction were described by

material derivatives, and these accelerations were equated to force terms represent-

105



ing turbulent mixing and rotor thrust. The advantage of this modeling approach

was that wake transport would be inherently captured by convective acceleration

terms, thus eliminating the need for the translating points employed by the FLORI-

Dyn model. Instead, all wake characteristics were functions of a fixed grid in the

downstream direction. Shapiro et al. [163] later extended their model to capture

wake redirection resulting from rotor yaw misalignment. Prandtl’s lifting line the-

ory was used to compute transverse wake velocities, shed circulation, and vortex

properties immediately downstream of yawed rotors. Wake centerline deflection in

the free stream wind direction was then computed by equating the material deriva-

tive of the centerline position to the transverse component of the wake velocity.

These works do not capture floating platform motion or time-varying wind speed

and direction.

Finally, Boersma et al. [25] developed the Wind Farm Simulator (WFSim),

which is a control-oriented dynamic wake model based on the two-dimensional

form of the unsteady turbulent Navier-Stokes equations. The major benefit of WF-

Sim is that individual wake expansion and the interaction of multiple wakes are

inherently captured by the mixing length turbulence model employed. In the pre-

viously discussed models, the rate of linear wake expansion was either estimated

or assumed. Further, the previous models simulated flow behavior in regions with

overlapping wakes by assuming that the effective kinetic energy deficit in the wind

field is equal to the sum of deficits corresponding to all pertinent wakes. De-

spite its higher-fidelity, WFSim requires approximately 1000sec of computation

for 1000sec of simulation in comparison to previously discussed models (several

seconds of computation for 1000sec of simulation). Moreover, WFSim does not

model floating platform motion or time-varying wind speed and direction.

In the current chapter, we loosely follow the approach of Shapiro et al. [162],

whereby partial differential equations are used to capture wake transport, and we

develop a dynamic parametric wake model capable of simulating time-varying

wind speed and direction, along with platform motion for floating offshore wind

farms. The novelty of this chapter therefore includes the following: (i) additional

terms in the wake momentum conservation equations to capture time-varying free

stream wind velocity effects; and (ii) a coupled dynamic model that captures pla-

nar floating wind turbine motion in the presence of aerodynamic interaction. Our
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approach is physics-based with the rate of wake expansion as the only parametric

assumption. This model serves as a dynamic extension of our previously developed

steady-state tool [103], which was named the Floating Offshore Wind Farm Sim-

ulator (FOWFSim), and will henceforth be referred to as FOWFSim-Dyn. Fixed-

foundation wind farms may also be modeled by simply deactivating turbine plat-

form motion.

The remainder of this chapter is organized as follows: Section 4.2 provides a

detailed mathematical description of FOWFSim-Dyn along with a discussion of

its limitations. In Section 4.3, we perform a mesh convergence study and validate

FOWFSim-Dyn’s ability to predict floating platform motion and steady and dy-

namic wake transport. We finally conclude the chapter in Section 4.4 by listing

potential research directions for enhancing FOWFSim-Dyn.

4.2 Mathematical model - FOWFSim-Dyn
This section details the mathematical formulation behind FOWFSim-Dyn. First,

the problem setup, solver block diagram, and resulting equations of motion are

presented in Section 4.2.1–Section 4.2.7. Finally, important assumptions and limi-

tations pertaining to FOWFSim-Dyn are discussed in Section 4.2.8.

4.2.1 Wind farm description

Figure 4.1 shows a top view schematic of the general floating offshore wind farm

that we model in the current work. Floating wind turbines are treated as a system of

particles that are distributed along the two-dimensional ocean surface. Throughout

this chapter, we consider only three-cylinder semi-submersible floating platforms

as per the baseline design presented by Robertson et al. [152]. Each floating struc-

ture is therefore connected to three anchors via mooring lines for the purpose of

station-keeping.

We define the set F = {1,2, · · · ,N} to denote the indices of the N floating

wind turbines within the wind farm, and we refer to each individual turbine using

the identifier i. We then number the wind turbines in ascending order based on

their downstream location. That is to say, the most upstream turbine is numbered

by i = 1, while the most downstream machine is identified by i = N.
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Figure 4.1: Schematic of a general floating offshore wind farm with semi-
submersible platforms used as a basis for FOWFSim-Dyn’s mathemati-
cal model.

The fixed global frame of reference is identified by the x̂ and ŷ axes. Each

wind turbine also possesses a local non-inertial translating (though not rotating)

reference frame that is attached to its center of gravity. We identify the reference

frame that is fixed to turbine i as frame i. Further, the axes of frame i are referred

to as x̂i and ŷi.

We assume that a predominant wind direction exists, and that it is aligned with

the positive x̂ axis. The free stream wind velocity is then denoted by the vector

V∞(t), which contains x̂ and ŷ components U∞(t) and V∞(t) as follows:

V∞(t) :=
[
U∞(t) V∞(t)

]T
. (4.1)

U∞(t) therefore represents the free stream wind speed in the predominant wind

direction, while V∞(t) accounts for fluctuations in the transverse free stream wind

speed.
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4.2.2 States and inputs

Ultimately, FOWFSim-Dyn takes the following nonlinear state-space form:

ẋfarm(t) := f (xfarm(t),ufarm(t),V∞(t)), (4.2)

where the wind farm state vector xfarm(t) combines the floating wind turbine state

vector x(t) with the wake state vector xw(t) as follows:

xfarm(t) :=
[
xT(t) xT

w(t)
]T

. (4.3)

The wind turbine state vector x(t) comprises the position and velocity vectors of

all floating wind turbines within the wind farm as follows:

x(t) :=
[
rT

1 (t) rT
2 (t) · · · rT

N(t) vT
1 (t) vT

2 (t) · · · vT
N(t)

]T
, (4.4)

where ri(t) and vi(t) are vectors containing x̂ and ŷ components of the position and

velocity of turbine i as follows:

ri(t) :=
[
xi(t) yi(t)

]T
, (4.5)

vi(t) :=
[
vx,i(t) vy,i(t)

]T
. (4.6)

The wake state vector xw(t) contains the states of the wakes generated by the

N floating wind turbines as follows:

xw(t) :=
[
xT

w,1(t) xT
w,2(t) · · · xT

w,N(t)
]T

. (4.7)

Assuming that the states of wake i are defined at Np,i discrete points along the

downstream direction, xw,i(t) comprises the states of wake i at each of these dis-

crete points as follows:

xw,i(t) :=
[
xT

w,i,1(t) xT
w,i,2(t) · · · xT

w,i,Np,i
(t)
]T

. (4.8)

The state vector xw,i,p(t) at each point p along wake i then consists of the wake cen-

terline location yw,i,p(t), wake velocity components uw,i,p(t) and vw,i,p(t), which
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correspond to the x̂i and ŷi directions, and the wake diameter Dw,i,p(t) as follows:

xw,i,p(t) :=
[
yw,i,p(t) uw,i,p(t) vw,i,p(t) Dw,i,p(t)

]T
. (4.9)

These wake characteristics are portrayed in Figure 4.6 and discussed in Section 4.2.6.

The wind farm input vector ufarm(t) contains the input vectors for the N floating

wind turbines as follows:

ufarm(t) :=
[
uT

1 (t) uT
2 (t) · · · uT

N(t)
]T

, (4.10)

where ui(t) consists of the axial induction factor ai(t) and yaw angle γi(t) of tur-

bine i as follows:

ui(t) :=
[
ai(t) γi(t)

]T
, (4.11)

with all yaw angles defined as positive counter-clockwise from the x̂ axis.

4.2.3 Solver block diagram

The block diagram for FOWFSim-Dyn is shown in Figure 4.2. The simulator con-

sists of two main modules. The aerodynamics module requires the states x(t) and

inputs u(t) of all turbines, along with the free stream wind velocity and acceler-

ation vectors V∞(t) and V̇∞(t) at time t. Its function is to compute the effective

wind velocity vector Vi(t) that is incident on the rotor of turbine i for all i ∈F .

The Floating turbine dynamics module uses these incident wind velocity vec-

tors, along with turbine states and inputs, to compute the rates of change of turbine

states ẋi(t) at time t. Using a standard ordinary differential equation solver, state

derivatives are integrated to compute state trajectories over time. This module also

computes the power outputs of individual wind turbines as well as that of the entire

wind farm Pfarm(t).
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Figure 4.2: Block diagram showing the computation modules of FOWFSim-
Dyn along with information transfer routes.

4.2.4 Wind farm power output

The total power output of the wind farm Pfarm(t) is computed as the sum of elec-

tricity production from all wind turbines as follows:

Pfarm(t) = ∑
i∈F

Pi(t), (4.12)

where Pi(t) is the power output of turbine i, and is estimated assuming steady-state

performance as follows [121]:

Pi(t) =
1
8

Cp,i(t)ρaπD2
i ‖Vrel,i(t)‖3 . (4.13)

Di is rotor diameter of turbine i, ρa is the density of air, and Vrel,i(t) is the wind ve-

locity that is incident upon the rotor of turbine i from the perspective of an observer

who is fixed to turbine i. Referring to Figure 4.3, Vrel,i(t) is defined as follows:

Vrel,i(t) = Vi(t)−vi(t), (4.14)

where vi(t) is the velocity vector of turbine i, and Vi(t) is the wind velocity vector

(in the global frame) that is incident upon the rotor of turbine i with the following

x̂ and ŷ components:

Vi(t) :=
[
Ui(t) Vi(t)

]T
. (4.15)
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Figure 4.3: Schematic of floating platform velocity vector vi(t), incident
wind velocity vector Vi(t), and the relative incident velocity vector
Vrel,i(t) at the location of turbine i.

Vi(t) is calculated using the wake interaction model discussed in Section 4.2.7.

The power coefficient Cp,i(t) of turbine i is computed based on the vortex cylin-

der model of a yawed actuator disc as follows [29]:

Cp,i(t) = 4ai(t)(cosγrel,i(t)−ai(t))

(
cosγrel,i(t)

+ tan
χi(t)

2
sinγrel,i(t)−ai(t)sec2 χi(t)

2

)
, (4.16)

where ai(t) is the axial induction factor of turbine i and, as per Figure 4.3, γrel,i(t)

is the yaw misalignment of turbine i relative to Vrel,i(t) as follows:

γrel,i(t) = γi(t)−θi(t). (4.17)

In the above expression, γi(t) is the yaw angle of turbine i and θi(t) is the angle of

Vrel,i(t) relative to the positive x̂ axis as follows:

θi(t) = tan−1 Vi(t)− vy,i(t)
Ui(t)− vx,i(t)

. (4.18)

Finally, χi(t) is the wake skew angle immediately past the rotor of turbine i and is
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approximated as follows [29]:

χi(t) = (0.6ai(t)+1)γrel,i(t). (4.19)

4.2.5 Floating wind turbine motion

The rates of change of the position and velocity of turbine i are expressed as fol-

lows:

ṙi(t) = vi(t), (4.20)

v̇i(t) =
Fi(t)

mi +ma,i
, (4.21)

where mi is the mass of floating wind turbine i. The added mass1 ma,i associated

with turbine i will be discussed along with the hydrodynamic drag force.

As shown in Figure 4.4, the total force Fi(t) acting on turbine i is the sum of

its respective aerodynamic, hydrodynamic, and mooring line forces as follows:

Fi(t) = Fa,i(t)+Fh,i(t)+Fm,i(t). (4.22)

The aerodynamic thrust force Fa,i(t) acting on the rotor of turbine i is expressed

as follows:

Fa,i(t) =
1
8

Ct,i(t)ρaπD2
i ‖Vrel,i(t)‖2 ni(t), (4.23)

where the thrust coefficient Ct,i(t) is computed based on the vortex cylinder model

of a yawed actuator disc as follows [29]:

Ct,i(t) = 4ai(t)
(

cosγrel,i(t)+ tan
χi(t)

2
sinγrel,i(t)−ai(t)sec2 χi(t)

2

)
, (4.24)

and ni(t) is a unit vector normal to the rotor of turbine i as follows:

ni(t) =
[
cosγi(t) sinγi(t)

]T
. (4.25)

1Added mass accounts for hydrodynamic loads that act upon an object that is accelerating with
respect to the surrounding fluid. It compounds with hydrodynamic drag forces, which are typically
modeled as functions of instantaneous velocity only.
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Figure 4.4: Schematic of aerodynamic thrust force Fa,i(t), hydrodynamic
drag force Fh,i(t), and mooring line forces Fm,i,k(t) acting on wind tur-
bine i with a semi-submersible floating platform.

Based on elementary fluid mechanics principles concerning immersed bodies,

Fh,i(t) is approximated by summing the drag force contributions of all submerged

components of turbine i as follows:

Fh,i(t) =
1
2

(
∑
j∈Di

Cd,i, jAd,i, j

)
ρw ‖w(t)−vi(t)‖(w(t)−vi(t)) , (4.26)

where ρw is the density of ocean water, and w(t) is the ocean current velocity vector

(which we assume to be w(t)= 0m/s in this work). Let the set Di = {1,2, · · · ,Nh,i}
denote the indices of all submerged components that contribute to the hydrody-

namic drag force acting on turbine i, with Nh,i being equal to the total number of

submerged components of turbine i. Cd,i, j and Ad,i, j are thereby the drag coefficient

and reference area of the jth submerged component of turbine i.

In a similar manner, the total added mass ma,i associated with turbine i is esti-

mated by summing the added mass contributions of all submerged components of

turbine i as follows:

ma,i = ρw ∑
j∈Di

Ca,i, jAa,i, j, (4.27)

where Ca,i, j is the added mass coefficient of the jth submerged component of tur-

bine i, and Aa,i, j is the added mass reference area of the same component.
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Let the set Mi = {1,2, · · · ,Nm,i} denote the indices of all mooring lines con-

nected to turbine i, with Nm,i being equal to the total number of mooring lines

attached to turbine i. Fm,i(t) may then be expressed as the sum of all mooring

force contributions acting on turbine i as follows:

Fm,i(t) = ∑
k∈Mi

Fm,i,k(t), (4.28)

where Fm,i,k(t) is the restoring force exerted on turbine i by its kth mooring line.

This force is calculated by first finding the magnitude of the horizontal component

of tension within mooring line k of turbine i, and then projecting this tension in the

appropriate direction as follows:

Fm,i,k(t) =−HF,i,k(t)
rF/A,i,k(t)∥∥rF/A,i,k(t)

∥∥ . (4.29)

The function HF,i,k(t) outputs the horizontal component of tension along the kth

mooring line of turbine i. This function is generated by solving the static differen-

tial equations describing a suspended cable which is either partially contacting or

fully lifted above the seabed. The relevant solution was described in Section 3.2.5.

As shown in Figure 4.5, the term rF/A,i,k(t) describes the position vector from

the anchor of the kth mooring line of turbine i to the corresponding fairlead, and is

expressed as follows:

rF/A,i,k(t) = ri(t)+ rF/G,i,k− rA,i,k, (4.30)

where rF/G,i,k is a constant position vector from the center-of-gravity of turbine i to

the fairlead that connects to the kth mooring line of the same turbine, and rA,i,k is a

constant position vector representing the location of the anchor of the same moor-

ing line. In Eq. (4.29), dividing rF/A,i,k(t) by its Euclidean norm therefore produces

a unit vector that points from the anchor of the kth mooring line of turbine i to the

corresponding fairlead. The restoring force associated with this mooring line pulls

the turbine in the opposite direction.
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Figure 4.5: Schematic of position vectors that are relevant for calculating the
force in mooring line k of turbine i.

Figure 4.6: Schematic of characteristics necessary for modeling the wake
generated by turbine i. The wake centerline position yw,i(x̂i, t), aver-
age wake velocity vw,i(x̂i, t), and wake diameter Dw,i(x̂i, t) are defined
within the reference frame that is fixed to turbine i.

4.2.6 Single wake model

Figure 4.6 shows the characteristics of interest when modeling wake i, which is

the wake generated by the rotor of turbine i. These characteristics include the

wake’s centerline position yw,i(x̂i, t) relative to the x̂i axis, its average velocity vec-

tor vw,i(x̂i, t) measured in frame i, and its diameter Dw,i(x̂i, t).

Two key assumptions are necessary for justifying the mathematical formula-

tion presented in this section. First, if fluctuations in the wind direction relative to

the x̂i axes are presumed to be small, then all wake characteristics may be defined

as smooth functions of only x̂i and t. Furthermore, wake cross-sections may be

assumed to always remain normal to the predominant flow direction, which corre-
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sponds to the positive x̂ and x̂i axes in our work.

Second, if the free stream wind speed is presumed to be significantly larger

than the velocities of floating platforms, then the equations of motion describing

any wake may be defined relative to a reference frame that is fixed to the wake-

generating turbine. The frame of reference shown in Figure 4.6 is therefore non-

inertial and translates with turbine i, while yw,i(x̂i, t), vw,i(x̂i, t), and Dw,i(x̂i, t) are

defined in this translating frame. This approach eliminates the need to model wake

behavior upstream of turbine i, while removing time-dependency from the wake

centerline boundary condition (i.e. yw,i(x̂i, t) is always equal to zero at x̂i = 0m).

Granting these preliminaries, the equations of motion describing wake i may

now be derived. Specifically, we shall present partial differential equations that

model wake average velocities, wake centerline locations, and wake diameters over

space and time. Let the vector Li(x̂i, t) describe the linear momentum deficit of

wake i per unit length along the x̂i axis as follows:

Li(x̂i, t) = ρa
π

4
D2

w,i(x̂i, t) [V∞(t)− (vi(t)+vw,i(x̂i, t))] . (4.31)

As vw,i(x̂i, t) is measured in frame i, the term vi(t)+ vw,i(x̂i, t) redefines the ve-

locity of wake i in the global frame. Since no external forces impact wake i, the

time-derivative of Li(x̂i, t) must equate to zero, which results in the following mo-

mentum conservation equation:

∂vw,i(x̂i, t)
∂ t

+(U∞(t)− vx,i(t))
∂vw,i(x̂i, t)

∂ x̂i
=

V̇∞(t)− v̇i(t)+
2

Dw,i(x̂i, t)
dDw,i(x̂i, t)

dt
(V∞(t)−vi(t)−vw,i(x̂i, t)) . (4.32)

The time-derivative of yw,i(x̂i, t) must equate to the ŷi component of vw,i(x̂i, t),

which results in the following expression describing the wake centerline location:

∂yw,i(x̂i, t)
∂ t

+(U∞(t)− vx,i(t))
∂yw,i(x̂i, t)

∂ x̂i
= vw,i(x̂i, t). (4.33)

In Eqs. (4.32) and (4.33), uw,i(x̂i, t) and vw,i(x̂i, t) are the x̂i and ŷi components

of vw,i(x̂i, t), vx,i(t) is the velocity of turbine i in the x̂ direction, U∞(t) is the free
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stream wind speed in the x̂ direction, and the term U∞(t)−vx,i(t) serves as the trans-

port speed in the x̂i direction. When modeling fluids using the three-dimensional

Navier-Stokes equations, the transport and fluid velocities at any given point are

equal. Following this logic, the transport speed in Eqs. (4.32) and (4.33) should

simply be uw,i(x̂i, t). However, when neglecting three-dimensional effects, it is

debatable exactly how the transport velocity should be defined. Our simulations

indicate that defining the transport speed as the free stream wind speed (defined

in frame i) yields predictions closer to experimental observations than does setting

the transport speed to uw,i(x̂i, t).

In steady-state parametric wake models, the wake diameter is typically as-

sumed to grow at a constant spatial expansion rate kx along the downstream direc-

tion. When modeling wakes dynamically, however, we assume that wake diameters

grow at a constant temporal expansion rate kt . In other words, the time-derivative

of Dw,i(x̂i, t) must equate to kt as follows:

∂Dw,i(x̂i, t)
∂ t

+(U∞(t)− vx,i(t))
∂Dw,i(x̂i, t)

∂ x̂i
= kt . (4.34)

If the spatial expansion rate kx under steady-state conditions is known for some

reference free stream wind speed U∞,ref, the temporal expansion rate at U∞,ref must

be kt = kxU∞,ref. Assuming that the free stream wind speed ‖V∞(t)‖ does not vary

significantly from U∞,ref, then kt may be assumed to remain constant.

In order to obtain the wake states employed in Eq. (4.9), the spatial gradients

in Eqs. (4.32), (4.33), and (4.34) must be discretized over some fixed downstream

distance using the finite difference method, which would yield a system of non-

linear ordinary differential equations that would be rearranged to state-space form.

We will not present the discretized forms of these equations as the finite difference

method is an elementary numerical technique.

When implementing the above solution, we recommend the following initial
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conditions:

yw,i(x̂i,0) =
V∞(0)
U∞(0)

x̂i, (4.35)

vw,i(x̂i,0) = V∞(0)−vi(0), (4.36)

Dw,i(x̂i,0) = Di + kxx̂i, (4.37)

which ensure, respectively, that all wake centerlines are initially aligned with the

free stream wind, wake velocities are initially equal to the free stream wind veloc-

ity, and that wake diameters initially grow at a predefined spatial rate kx. Note that

Di is the diameter of turbine i. With regards to boundary conditions, the following

are necessary based on assumptions inherent to FOWFSim-Dyn:

yw,i(0, t) = 0, (4.38)

vw,i(0, t) = vw,init,i(t), (4.39)

Dw,i(0, t) = Di, (4.40)

Equation (4.38) states that the centerline of wake i at x̂i = 0m must always cor-

respond to the location of turbine i, which is in fact the origin of frame i. Equa-

tion (4.39) states that the velocity of wake i at x̂i = 0m must always be equal to the

wake velocity vw,init,i(t) immediately downstream of the rotor of turbine i. Finally,

Eq. (4.40) requires that the diameter of wake i at the location of turbine i is always

equal to the rotor diameter of this turbine.

We calculate the velocity vector vw,init,i(t) based on simplifications made to

Glauert’s momentum theory [29] by Bastankhah and Porté Agel [18] as follows:

vw,init,i(t) = ‖Vrel,i(t)‖
√

1−Ct,i(t)

[
cos(ξw,init,i(t)+θi(t))

sin(ξw,init,i(t)+θi(t))

]
, (4.41)

where ξw,init,i(t) is the initial wake skew angle, which is expressed as follows based

on a momentum conservation derivation reported by Jiménez et al. [93]:

ξw,init,i(t) =−
Ct,i(t)

2
cos2

γrel,i(t)sinγrel,i(t). (4.42)
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The derivation by Bastankhah and Porté Agel [18] assumes that the free stream

wind velocity is aligned with the x̂ axis. As a result, the addition of θi(t) to

ξw,init,i(t) in Eq. (4.41) accounts for the misalignment of V∞(t) relative to the x̂

axis.

4.2.7 Wake interaction model

When a wind turbine rotor is influenced by wakes that are generated from multiple

upstream turbines, a wake interaction model is necessary for approximating the

resultant effective wind speed that is incident on the downstream rotor. The most

commonly used wake interaction technique is based on the assumption that the

effective kinetic energy deficit at the location of the downstream rotor must be

equal to the sum of kinetic energy deficits of all pertinent wakes [98]. As a result,

the effective wind speed at the downstream rotor is a function of the root-sum-

square of relevant wake velocity deficits. Further enhancement may be obtained

by approximating wake velocity profiles using Gaussian distributions [18]. We

continue to make use of this wake interaction methodology.

Let the set Ui = {1,2, · · · , i−1} denote the indices of all turbines that are lo-

cated upstream of turbine i. The effective wind velocity vector that is incident on

the rotor of turbine i may therefore be expressed as follows:

Vi(t) =

‖V∞(t)‖−
√

∑
q∈Ui

(‖V∞(t)‖−vw,q→i(t) ·n∞(t))
2

n∞(t). (4.43)

where n∞(t) is a unit vector aligned with V∞(t) as follows:

n∞(t) =
V∞(t)
‖V∞(t)‖

, (4.44)

and vw,q→i(t) is the effective velocity of wake q that is incident upon the rotor

of wake i. Equation (4.43) projects vw,q→i(t) along the free stream wind direction

(hence the dot product operation with n∞(t)), and then computes the velocity deficit

in this direction. Average wake velocities perpendicular to the free stream wind

direction are assumed to be negligibly small far enough downstream; their effects

are therefore neglected.
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We now describe our procedure for computing vw,q→i(t). Let vw,q→i(t) denote

the average velocity of wake q at the location of wake i as follows:

vw,q→i(t) = vq(t)+vw,q(xi(t)− xq(t), t). (4.45)

Since the average velocity vector of wake q is defined in frame q, the substitution

x̂q = xi(t)− xq(t) into vw,q(x̂q, t) is necessary for identifying the location of tur-

bine i in frame q. The addition of the turbine velocity vector vq(t) then transforms

vw,q(xi(t)− xq(t), t) to the global frame.

The next step is to generate a Gaussian profile v̆w,q→i(r, t), where r is the radial

distance from the centerline of wake q, to approximate the continuous velocity

distribution of wake q at the location of wake i. Imposing a requirement that the

total momentum deficit of V∞(t)− v̆w,q→i(r, t) per unit length must equate that of

a top-hat distribution with amplitude V∞(t)−vw,q→i(t) as follows:∫
∞

0
ρa2πr (V∞(t)− v̆w,q→i(r, t))dr = ρa

π

4
Dw,q→i(t)(V∞(t)−vw,q→i(t)) , (4.46)

the following Gaussian profile is then obtained:

V∞(t)− v̆w,q→i(r, t) =
1
8

(
Dw,q→i(t)

σ

)2

(V∞(t)−vw,q→i(t))exp
−r2

2σ2 , (4.47)

where Dw,q→i(t) is the diameter of wake q at the location of turbine i as follows:

Dw,q→i = Dw,q(xi(t)− xq(t), t). (4.48)

The standard deviation σ in Eq. (4.47) may be estimated based on experimental or

high-fidelity numerical data.

Finally, the effective velocity vw,q→i(t) is obtained by averaging v̆w,q→i(r, t)

along the rotor area Ai of turbine i. This task is achieved by numerically computing

the following integral at each time-step:

vw,q→i(t) =
4

πD2
i

∫
Ai

v̆w,q→i(r, t)dA. (4.49)
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4.2.8 Model limitations

Several assumptions have been made when developing FOWFSim-Dyn which im-

pose limitations on its fidelity and applicability. The current subsection summa-

rizes these limitations.

Two-dimensional floating wind turbine dynamics

The first and most crucial of these assumptions is that floating platform motion

may be adequately captured using a two-dimensional planar model. That is to

say, we neglect floating platform heave, yaw, pitch, and roll. In consequence,

FOWFSim-Dyn fails to capture dynamic effects induced by ocean waves and oscil-

latory wind conditions on platform rotation. FOWFSim-Dyn remains appropriate

for wind farm controller design and testing, since this application is primarily con-

cerned with average rotor positions over extended periods of time. However, any

attempt to control or evaluate individual wind turbine dynamics requires the use of

three-dimensional multi-body nonlinear modeling tools.

Steady-state mooring line model

Although we present a dynamic model, mooring line tensions are found based on

the solution to a static suspended cable problem. It has been reported by Hall et

al. [79] that such static models accurately predict mooring line loads and float-

ing wind turbine motion; thus rendering them appropriate for wind farm control.

However, Hall et al. [79] also mentioned that use of such models may lead to large

inaccuracies in turbine load predictions. Therefore, analysis and control of indi-

vidual turbine motion must consider higher-fidelity modeling techniques such as a

lumped-mass dynamic mooring line model [78].

Steady-state turbine aerodynamics

Turbine power outputs and thrust forces (Eqs. (4.13) and (4.23)), along with their

respective coefficients (Eqs. (4.16) and (4.24)), are calculated based on steady-

state actuator disc theory. This approach assumes ideal rotors and fails to capture

unsteady aerodynamic effects and asymmetric rotor loadings. These phenomena

significantly influence blade loads when yaw misalignment occurs; however, for
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the purpose of wind farm control, our focus lies on the overall influence of rotor

operation on fully-developed wake regions. Nonetheless, any turbine-level analysis

requires more detailed fluid-structure interaction modeling.

The computation of vw,init,i(t) in Eq. (4.41), which is the average wake velocity

immediately downstream of turbine i, relies on a steady-state momentum balance

on a control volume spanning across the rotor of turbine i. As a result, momentum

fluxes into and out of this control volume are considered, while the rate-of-change

of momentum within the control volume is neglected. Given the low density of

air, these inertial effects may be neglected, although their significance should be

investigated.

Sources of wake deflection

FOWFSim-Dyn does not capture wake centerline deflection caused by rotor rota-

tion. This phenomenon was first observed in high-fidelity simulations conducted

by Gebraad et al. [72]; however, more recent work by Fleming et al. [60] showed

that the scale of this phenomenon is insignificant. Instead, Fleming et al. [60] ob-

served that vortices generated by turbine rotors induce wake deflection past down-

stream machines, even if their rotors are not operated with yaw offset. Additional

terms may be added to Eqs. (4.32) and (4.33) to account for such phenomena.

Spatial-uniformity and consistency of the free stream wind

In the current chapter, we have assumed that the free stream wind velocity is uni-

form throughout the wind farm, which is why the variable V∞(t) is solely a function

of time. This variable may readily be expressed as V∞(x̂, t) if spatial variations of

the free stream wind velocity are known. Furthermore, in order to represent wake

characteristics purely as a function of the downstream distance along the x̂i axes,

while ignoring changes in the cross-sectional areas of wakes, we assumed that vari-

ations in the free stream wind direction are small relative to the x̂ axis. The ŷ com-

ponent of the free stream wind velocity must therefore remain small in comparison

to its x̂ component.
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4.3 Model validation
In this section, we first perform a mesh sensitivity analysis to ascertain the de-

pendency of model predictions upon the size of finite difference elements in Sec-

tion 4.3.1. We then validate FOWFSim-Dyn’s capacity for predicting floating plat-

form motion in Section 4.3.2, and wake transport in Section 4.3.3 and Section 4.3.4.

4.3.1 Mesh sensitivity analysis

For a mesh sensitivity study, we simulate the experimental setup employed by Bas-

tankhah and Porté Agel [18]. Namely, the wake of a single fixed-foundation tur-

bine with diameter D = 15cm is simulated with a steady free stream wind speed

of U∞ = 4.88m/s. The turbine’s axial induction factor is set to the optimal value

of a = 1/3 and a yaw angle of γ = 20deg is implemented to observe mesh effects

on wake deflection. To approximate steady-state results, all simulations are run for

a duration of 5sec and data is extracted from the final time-step. The Gaussian

profile standard deviation is set to σ = 0.025x̂+ 0.396m based on experimental

data2 reported by Bastankhah and Porté Agel [18]. The (diametrical) spatial wake

expansion constant is set to kx = 0.08 as per the recommendation by Shakoor et

al. [161].

Simulated wake centerlines and normalized velocity deficit profiles at a down-

stream distance of 7D are plotted in Figure 4.7 for different finite difference ele-

ment sizes. Qualitatively, it is apparent that the evolution of the wake centerline is

insignificantly influenced by the mesh size. At x̂/D = 16, the centerline deflection

obtained using an element size of 8D only differs by 5% relative to the value corre-

sponding to an element size of 0.25D. As a result, we solely utilize the maximum

normalized velocity deficit as a convergence criterion.

Table 4.1 lists the computation times corresponding to different element sizes

from Figure 4.7 as well as predicted maximum normalized velocity deficits. Dy-

namic simulations were performed using the MATLAB fourth-order Runge-Kutta

solver implemented on a laptop computer with a 2.80GHz Intel Core i7-7700HQ

processor. Table 4.1 also lists the convergence of the maximum normalized ve-
2Velocity profiles corresponding to a yaw angle of γ = 0deg from Fig. 21 in the paper by Bas-

tankhah and Porté Agel [18] were digitized and Gaussian function curve fitting was used to compute
the standard deviation.
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Figure 4.7: Effects of various finite difference mesh element sizes on a) the
steady-state wake velocity profile at a downstream distance of 7D, and
b) the steady-state wake centerline evolution. Simulation parameters:
D = 15cm, U∞ = 8m/s, a = 1/3, γ = 20deg, kx = 0.08, σ = 0.025x̂+
0.396m.

locity deficit as the element size is decreased. We observe that mesh sensitivity is

sufficiently reduced at an element size of 1D since further reduction to 0.5D only

results in a 0.69% change in the predicted maximum normalized velocity deficit.

An element size of 1D is also appropriate from the standpoint of time-efficiency as

it requires 3.2sec of computation time to run a 5sec simulate.

4.3.2 Validation of platform dynamics

To validate the platform dynamics module of FOWFSim-Dyn, we compare its pre-

dictions for a single floating wind turbine against those of the National Renewable

Energy Laboratory’s (NREL’s) wind turbine modeling software Fatigue, Aerody-

namics, Structures, and Turbulence (FAST) in Figure 4.8. FAST is a widely-

accepted tool for modeling three-dimensional floating offshore wind turbine dy-
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Table 4.1: Computation times and maximum normalized velocity deficits
corresponding to different simulated mesh element sizes from Figure 4.7.
The final column lists the convergence of the maximum normalized ve-
locity deficit. In other words, it contains the relative difference in the
maximum normalized velocity deficit that would be obtained if each ele-
ment size was halved. For instance, if the element size were to be reduced
from 8D to 4D, the predicted velocity deficit would change by 19.46%.
The computation times correspond to 5sec long simulations.

Elm. size (D) Comp. time (sec) Max. velocity deficit (-) Rel. diff. (%)

8 0.397 0.261 19.46
4 0.703 0.219 7.19
2 1.496 0.204 2.00
1 3.237 0.200 0.69

0.5 8.948 0.199 0.17
0.25 24.035 0.198 -

namics and has been experimentally validated in the context of semi-submersible

floating platforms by Coulling et al. [44]. Results presented in Figure 4.8 were

obtained using a steady free stream wind speed of U∞ = 10m/s, optimal axial in-

duction, a yaw angle of γ = 15deg, and mooring line cable lengths of L = 850m.

In FAST simulations, all floating platform degrees-of-freedom were enabled. The

simulated wind turbine is based on NREL’s 5MW baseline design presented by

Jonkman et al. [96], and the floating platform and mooring subsystem is modeled

after the design described by Robertson et al. [152]. Details corresponding to these

designs are listed in ??. Figure 4.8 also includes FOWFSim-Dyn predictions with

the static mooring line model replaced by the dynamic lumped-parameter cable

model presented by Hall et al. [79]; this result is identified by FOWFSim-Dyn* in

the figure legend.

From a qualitative standpoint, Figure 4.8 shows that all models predict the ex-

pected platform motion in the downwind and crosswind directions. Since the tur-

bine nacelle is yawed counterclockwise by γ = 15deg, aerodynamic forces displace

the floating platform in the positive crosswind direction. There is little discrepancy

between FAST and FOWFSim-Dyn predictions with regards to platform displace-

ment in the downwind direction. The root-mean-square error (RMSE) between

these datasets is 1.37m, which is 8.5% of the steady-state downwind platform dis-

placement of 16.1m predicted by FAST.
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Table 4.2: List of floating wind farm properties used during dynamic simula-
tions. All wind turbines are based on the NREL 5MW baseline design
presented by Jonkman et al. [96], and all floating platforms and moor-
ing subsystems are modeled after the design described by Robertson et
al. [152].

External properties
ρa
(
kg/m3) 1.225 Air density

ρw
(
kg/m3) 1028 Water density

Floating turbine properties
mi (kg) 1.4×107 Mass
Di (m) 126 Rotor diameter
Ai
(
m2) π

4 D2
i Rotor area

ηp 0.786 Electrical power conversion efficiency [72]
pp 1.88 Power coefficient tuning parameter [72]

Floating platform hydrodynamic properties
Cd,i,1→3 0.61 Drag coefficients of three top cylinder portions
Cd,i,4→6 0.68 Drag coefficients of three bottom cylinder portions
Cd,i,7 0.56 Drag coefficient of middle cylinder
Dd,i,1→3 (m) 12 Diameters of three top cylinder portions
Dd,i,4→6 (m) 24 Diameters of three bottom cylinder portions
Dd,i,7 (m) 6.5 Diameter of middle cylinder
Ld,i,1→3 (m) 14 Submerged lengths of three top cylinder portions
Ld,i,4→6 (m) 6 Submerged lengths of three bottom cylinder portions
Ld,i,7 (m) 20 Submerged length of middle cylinder
Ad,i, j

(
m2) Ld,i, jDd,i, j Drag reference area of any cylinder

Ca,i, j 0.63 Added mass coefficients of any cylinder
Aa,i, j

(
m2) π

4 Ld,i, jD2
d,i, j Added mass reference area of any cylinder

Mooring system properties
rT

F/G,i,1 (m)
[
20.4 35.4

]
Position vector from turbine center to first fairlead

rT
F/G,i,2 (m)

[
−40.9 0

]
Position vector from turbine center to second fairlead

rT
F/G,i,3 (m)

[
20.4 −35.4

]
Position vector from turbine center to third fairlead

rT
A,i,1 (m) rT

neutral,i +
[
418.80 725.4

]
Location of first anchor of any turbine

rT
A,i,1 (m) rT

neutral,i +
[
−837.6 0

]
Location of second anchor of any turbine

rT
A,i,1 (m) rT

neutral,i +
[
418.80 −725.4

]
Location of third anchor of any turbine

zF (m) 186 Fairlead distance above seabed
L (m) 900 Cable length
w (N/m) 1065.7 Cable weight per unit length in water
AmE (N) 753.6×106 Cable tension per unit strain
µs 1 Coefficient of static friction between cable and seabed
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Figure 4.8: Comparison between FOWFSim-Dyn and FAST predictions of
platform motion for a single floating wind turbine based on the base-
line designs described in ??. The curve identified by FOWFSim-Dyn*
utilizes the dynamics lumped-parameter mooring line model proposed
by Hall et al. [79] in place of the static catenary model described in
Chapter 3. Simulation parameters: U∞ = 10m/s, a = 1/3, γ = 15deg,
L = 850m.

When examining crosswind platform displacement, the RMSE value between

FAST and FOWFSim-Dyn predictions rises to 2.74m. One method for assessing

the significance of this error is to compute the normalized overlap area (NOA)

between turbines rotors from the two simulations. The NOA is the overlap area

between the rotors of turbines normalized against the rotor area. Therefore, if

the crosswind displacements of two turbines are identical, then the NOA between

their rotors must be unity. If, on the other hand, the crosswind displacements are

so substantial that rotor overlap is completely eliminated, then the NOA will be

zero. Since the ultimate purpose of FOWFSim-Dyn is to predict wind farm power

output, which, due to the wake effect, is primarily depended upon the projected

overlap areas between the rotors of adjacent turbines, the NOA is a meaningful

metric for evaluating the effectiveness of FOWFSim-Dyn in predicting crosswind

platform motion. The RMSE value of 2.74m corresponds to an NOA of 97.2%.
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That is, when wind farm-level performance is of concern, FOWFSim-Dyn pre-

dicts projected rotor overlap areas between adjacent turbines with a discrepancy of

2.8%.

One major source of error between FAST and FOWFSim-Dyn predictions is

that FAST uses actuator line theory to predict aerodynamic loads, while FOWFSim-

Dyn utilizes actuator disc theory. This source of error may be mitigated by comput-

ing aerodynamic loads in FOWFSim-Dyn using thrust coefficient values obtained

from FAST. Further, the presence of all six platform degrees-of-freedom in FAST

contributes to the discrepancy in oscillation periods observed in Figure 4.8. Finally,

the mooring line modeling approach is a non-trivial contributing factor. FAST

utilizes the lumped-parameter dynamic mooring line model proposed by Hall et

al. [79], while FOWFSim-Dyn employs a static catenary model. The inclusion

of FOWFSim-Dyn* curves in Figure 4.8 isolates the error introduced by switch-

ing between static and dynamic mooring line models. Comparing FOWFSim-Dyn

to FOWFSim-Dyn* plots, a noticeable discrepancy in the oscillation period is in-

troduced, while RMSE values between the two curves are 1.26 and 0.87m in the

downwind and crosswind directions.

4.3.3 Steady-state validation of wake transport

FOWFSim-Dyn predictions of steady-state3 wake centerlines and normalized ve-

locity profiles are compared against experimental results reported by Bastankhah

and Porté Agel [18] in Figure 4.9. Wake centerline evolutions are well-predicted

for all simulated yaw angles and downstream locations. For yaw angles of γ = 0,

10, and 20deg, maximum discrepancies between predicted wake centerlines and

experimental measurements are 6.87, 7.60, and 8.19% of the rotor diameter, re-

spectively.

Simulated normalized velocity profiles deviate significantly from experimental

measurements at downstream locations closer than 7D. For instance, at a yaw

angle of γ = 0deg, the RMSE between experimental and predicted velocity profiles

ranges from 12.4% of the free stream wind speed at x̂ = 4D to 4.7% at x̂ = 7D.

3Validating predictions of dynamic wake behaviour is not possible at this time due to the absence
of high-fidelity simulation tools capable of modeling floating offshore wind farms; we thus defer this
process to future work.
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Figure 4.9: Comparison between FOWFSim-Dyn predictions and experi-
mental results reported by Bastankhah and Porté Agel [18]. Each fig-
ure shows steady-state wake centerlines and normalized velocity pro-
files corresponding to yaw angles of a) γ = 0deg, b) γ = 10deg, and
c) γ = 20deg. Normalized velocity profiles range from zero to one
using the same scaling as the x̂/D axis, but have been shifted to the
downstream location where they are measured. Simulation parameters:
D = 15cm, U∞ = 8m/s, a = 1/3, kx = 0.08, σ = 0.025x̂+0.396m.

Such inaccuracies at close downstream distances are expected since FOWFSim-

Dyn does not consider the inviscid nature of flow within the near-wake region.

Beyond x̂ = 7D, velocity profiles are well-predicted with RMSE values that remain

below 3.87% of the free stream wind speed.
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Figure 4.10: Schematic of the 1×3 wind farm with inter-turbine spacings of
7D used for dynamic simulations. All wind turbines are based on the
NREL 5MW baseline design presented by Jonkman et al. [96], and
all floating platforms and mooring subsystems are modeled after the
design described by Robertson et al. [152].

4.3.4 Dynamic assessment of wake transport

Our final tasks are to demonstrate the capability of FOWFSim-Dyn to capture the

intended dynamic phenomena and to ensure that predicted turbine and wake be-

haviors respect physical intuition. The wind farm configuration that is used for

dynamic simulations is shown in Figure 4.10. This plant contains a single row of

three floating offshore wind turbines that are aligned with the predominant free

stream wind direction. The neutral positions of the floating turbines are spaced 7D

apart. All wind turbines are based on NREL’s 5MW baseline design presented by

Jonkman et al. [96], and all floating platforms and mooring subsystems are mod-

eled after the design described by Robertson et al. [152]. Details corresponding to

these designs are listed in Table 4.2. In all simulations, we increase the lengths of

mooring lines from their baseline values (i.e. L = 835m) to L = 900m to render

floating platform motion more notable. In all the following cases, less than 10sec

of computation time was required to complete simulations on a laptop computer

with a 2.80GHz Intel Core i7-7700HQ processor.

Simulation scenario 1

The first of three simulated scenarios maintains constant wind speed and direc-

tion with U∞(t) = 8m/s and V∞(t) = 0m/s, while rotor yaw angles are fixed at

γ1(t) = γ3(t) =−20deg and γ2(t) = +20deg. All axial induction factors are main-

tained at a1(t) = a2(t) = a3(t) = 1/3. All floating platforms are locked at their
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neutral positions for the first 1000sec of simulation, after which they are permitted

to relocate. The aim of this scenario is to assess floating platform motion. Snap-

shots of velocity contours for simulation scenario 1 are shown in Figure 4.11. As

expected, the alternating assignment of yaw angles causes adjacent floating plat-

forms to shift in opposite directions over time. Further, the leading turbine displays

the greatest amount of relocation from its neutral position (i.e. the left-most white

+ symbol) since its incident wind speed is the largest (i.e. its incident wind speed

is the free stream wind speed uninhibited by upstream rotors). The trailing turbine

undergoes the smallest amount of relocation over time since its incident wind speed

is diminished by the velocity deficits of wakes 1 and 2.

Simulation scenario 2

The second simulation sinusoidally varies the yaw angles of the three turbines be-

tween ±20deg with a period of 400sec. Specifically, the following yaw angle

expressions are used for t ≥ 1000sec:

γ1(t) = γ3(t) = (−20deg)sin
[

2π

400
(t−1000sec)

]
, (4.50)

γ2(t) = (+20deg)sin
[

2π

400
(t−1000sec)

]
. (4.51)

Velocity contours for this case are plotted in Figure 4.12. The sinusoidal yaw

angle fluctuations cause oscillations of floating platforms in the ŷ direction with

the expected 400sec excitation period. In terms of wake behaviour, the trans-

port effect is clearly observed. As floating turbines shift in the ŷ direction, the

corresponding effects on their respective wakes are transported downstream at ap-

proximately 8m/s. For instance, at t = 1400sec, the leading turbine is located

at a peak value past its neutral position in the +ŷ direction (see the first ver-

tical white dashed line in Figure 4.12). Given that U∞ = 8m/s , then 200sec

later, the centerline of the leading turbine’s wake must peak in the +ŷ direction

at x̂ = 8m/s×200sec = 1600m = 12.7D. Observing the velocity contours 200sec

later at t = 1600sec, such a peak is observed at just under x̂ = 12D (see the second

vertical white dashed line in Figure 4.12).
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Figure 4.11: Velocity contours at various time-steps of simulation scenario 1
(i.e. fixed wind condition and turbine operating parameters, while plat-
form motion is permitted). The white + symbols represent the neutral
positions of the floating platforms. All floating platforms are held fixed
at their respective neutral positions for the first 1000sec of simulation.
Simulation parameters: U∞(t) = 8m/s, V∞(t) = 0m/s, a1(t) = a2(t) =
a3(t) = 1/3, γ1(t) = γ3(t) = −20deg and γ2(t) = +20deg, kx = 0.08,
σ = 0.025x̂+0.396m.
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Figure 4.12: Velocity contours at various time-steps of simulation scenario 2
(i.e. fixed wind condition and sinusoidally varying yaw angles, while
platform motion is permitted). The white + symbols represent the
neutral positions of the floating platforms. All floating platforms are
held fixed at their respective neutral positions for the first 1000sec of
simulation. Simulation parameters: U∞(t) = 8m/s, V∞(t) = 0m/s,
a1(t) = a2(t) = a3(t) = 1/3, γ1(t) and γ3(t) defined in Eq. (4.50) and
γ2(t) defined in Eq. (4.51), kx = 0.08, σ = 0.025x̂+0.396m.
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Simulation scenario 3

The third scenario assesses the impacts of time-varying wind direction, which is

modeled by maintaining U∞(t) = 8m/s and fluctuating V∞(t) sinusoidally between

±2m/s with a period of 200sec. Specifically, V∞(t) is expressed as follows for

t ≥ 1000sec:

V∞(t) = (2m/s)sin
[

2π

200
(t−1000sec)

]
. (4.52)

All yaw angles in this scenario are maintained at γ1(t) = γ2(t) = γ3(t) = 0deg. Ve-

locity contours for simulation case 3 are shown in Figure 4.13. The notable expec-

tation here is that, as the wind direction changes, wake centerlines are transported

in tandem with the free stream wind in both x̂ and ŷ directions. For instance, at

t = 1000sec, the centerline of wake 1 is aligned with the x̂ axis since γ1(t) = 0deg

and V∞(t) had been equal to zero at all previous times. By t = 1050sec, the ef-

fects of turbine 1 on the wind field should only be transported downstream by a

distance of 8m/s× 50sec = 400m = 3.2D. Therefore, for x̂ < 3.2D, we expect

variations in the curvature of the centerline of wake 1 due to the presence of tur-

bine 1, while for x̂ > 3.2D, this curvature should remain unchanged. Instead, for

x̂ > 3.2D, the centerline of wake 1 should be shifted in the +ŷ direction as a re-

sult of V∞(t) having held positive values for the past 50sec. Observing velocity

contours at t = 1050sec, it is evident that the centerline curvature of wake 1 re-

mains flat at all downstream distances past approximately x̂ = 3D, while having

been shifted in the +ŷ direction.

4.4 Conclusions and recommendations for future
research

This paper extended FOWFSim [103], which is a steady-state modeling tool that

may be used for simulating and optimizing floating offshore wind farms, by adding

capabilities that captured time-varying free stream wind velocities and floating

platform motion. In addition to presenting a mathematical formulation, we per-

formed a mesh convergence study and validated FOWFSim-Dyn predictions re-

lated to platform motion and steady wake transport. It was demonstrated that the

limited number of tunable parameters produced wake centerline deflection and ve-
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Figure 4.13: Velocity contours at various time-steps of simulation scenario 3
(i.e. fixed turbine operating conditions and fluctuating wind speed in
the ŷ direction, while platform motion is prohibited). The white +
symbols represent the neutral positions of the floating platforms. The
white arrows denote the free stream wind direction. All floating plat-
forms are held fixed throughout the simulation. Simulation param-
eters: U∞(t) = 8m/s, V∞(t) defined in Eq. (4.52), a1(t) = a2(t) =
a3(t) = 1/3, γ1(t) = γ2(t) = γ3(t) = 0deg, kx = 0.08, σ = 0.025x̂+
0.396m.
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locity deficit results that matched experimental observations with reasonable simi-

larity for engineering analysis. We then conducted simulations under various wind

and turbine operating conditions to assess the dynamic behavior of FOWFSim-

Dyn. It was observed that FOWFSim-Dyn captures dynamic floating wind farm

phenomena such as wake transport, time-varying wind speed and direction effects,

and floating platform motion in line with physical reasoning and intuition.

For the purposes of further developing and enhancing the current framework,

several recommendations on potential research directions are made. First, to this

date, no LES-based wind farm simulators are capable of capturing floating plat-

form motion. Developing wind farm CFD tools that consider such dynamics would

therefore permit more comprehensive validation of FOWFSim-Dyn predictions

pertaining to both platform motion and wake behaviour. Complementing this point,

scaled wind tunnel experiments of floating wind turbines would also enable vali-

dation of dynamic FOWFSim-Dyn predictions.

Second, we did not model turbulence in the current framework. This feature

may be incorporated by adding measurement noise to model outputs, or by in-

cluding temporally and spatially distributed turbulence acceleration terms in the

equations of motion. Finally, additional force gradients may be included in the

equations of motion to capture complex wake phenomena such as secondary steer-

ing [60] and wake deflection due to rotor rotation [72].
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Chapter 5

Distributed Economic Model
Predictive Control – Addressing
Non-convexity Using Social
Hierarchies

This chapter introduces a novel concept for addressing non-convexity in the cost

functions of distributed economic model predictive control (DEMPC) systems.

Specifically, the proposed algorithm enables agents to self-organize into a hierar-

chy which determines the order in which control decisions are made. This concept

is based on the formation of social hierarchies in nature. An additional feature of

the algorithm is that it does not require stationary set-points that are known a pri-

ori. Rather, agents negotiate these targets in a truly distributed and scalable manner.

Upon providing a detailed description of the algorithm, guarantees of convergence,

recursive feasibility, and bounded closed-loop stability are also provided. Finally,

the proposed algorithm is compared against a basic parallel distributed economic

model predictive controller using an academic numerical example.
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5.1 Introduction

5.1.1 Background

Model predictive control (MPC) entails recursively solving an optimization prob-

lem over a finite prediction horizon to identify optimal future control input trajecto-

ries. The popularity of MPC in academic and industrial environments is primarily

attributed to its capacity for handling constraints while computing control actions

that minimize nonlinear performance criteria. The reader may refer to articles by

Mayne et al. [125] and Mayne [126] for reviews on MPC.

In large-scale processes or multi-agent systems, implementation of MPC in

a centralized manner may be impractical due to the computational complexity of

global optimization and the network infrastructure required for plant-wide com-

munication. Distributed model predictive control (DMPC) surpasses these limita-

tions by dispersing the burden of decision-making across a multitude of indepen-

dent subsystems or agents. A trade-off that arises however, is that effective al-

gorithms governing agent coordination are required to guarantee desirable closed-

loop performance. The reader may refer to review articles by Al-Gherwi et al. [5],

Christofides et al. [38], and Negenborn and Maestre [140] for further details on the

subject of DMPC.

MPC has traditionally been utilized as a lower-level regulator and stabilizer

that tracks set-points determined by upper-level stationary optimizers. Economic

model predictive control (EMPC) combines these upper- and lower-level roles by

employing cost functions that capture plant economics (e.g. power production or

operating cost over a finite time horizon). The effect is improved economic perfor-

mance; however, additional measures for ensuring stability are required since the

primary control objective no longer involves regulation. The reader may refer to

articles by Ellis et al. [55] and Müller and Allgöwer [134] for reviews on EMPC.

5.1.2 Distributed economic model predictive control

This chapter addresses distributed economic model predictive control (DEMPC) of

systems with non-convex objective functions and unknown stationary set-points.

Applications with such characteristics include autonomous vehicle trajectory plan-
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ning [54] and floating offshore wind farm control (see Chapter 6). DEMPC algo-

rithms intended for such systems have been scarce in the literature as a result of

challenges pertaining to stability and convergence. This subsection reviews rele-

vant DEMPC and nonlinear DMPC algorithms as justification for the contributions

of the current work.

Stabilizing DEMPC algorithms

Achieving stability in DEMPC requires first computing optimal stationary set-

points for all agents, and then constraining state trajectories to approach these op-

tima within the prediction horizon. If there exist feedback control laws that are

then capable of maintaining subsystems within specified bounds of their respective

steady-states, stability may be guaranteed. To achieve such an outcome, theoret-

ical studies focused on DEMPC have either treated these stationary set-points as

predefined references [184], or computed their values using centralized optimiza-

tion [6, 36, 50, 111, 112, 185]. The latter group of algorithms are therefore not

truly distributed.

To overcome this gap, Köhler et al. [108] were the first to develop a DEMPC

scheme without the requirement for centralized processing. They presumed that

optimal stationary set-points were unattainable via centralized optimization, and

instead had to be negotiated online between agents in a distributed manner. Conse-

quently, in tandem with solving their local EMPC problems and obtaining optimal

input trajectories, agents also performed one iterate of a distributed coordination

algorithm at each sampling time to update their respective optimal steady-states.

Nonetheless, this work focused on linear systems with convex cost functions and

used a sequential coordination algorithm [109, 151]; thus suffering from lack of

scalability.

Convergent DEMPC algorithms

If DEMPC cost functions are non-convex, agents making decisions in parallel can-

not guarantee convergence of their optimal input trajectories [116]. Several al-

ternative classes of coordination algorithms within the nonlinear DMPC literature

address this convergence issue. Sequential methods first proposed by Kuwata et
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al. [109] and Richards and How [151] represent the simplest solution. Agents solve

their local optimization problems and exchange information with their neighbors in

some predetermined order. The resulting advantage is that each subsequent agent

computes its input trajectory based on updated and fixed information from its pre-

decessors; guaranteeing convergence, stability, and feasibility is thus facilitated.

The major drawback is lack of scalability to large interconnected systems, since

agents at the tail-end of sequence must await decisions from all other subsystems.

A secondary concern involves predetermining the sequence order, particularly in

systems with time-varying interaction topologies.

Coordination algorithms based on negotiation between agents were developed

by Müller et al. [135], Maestre et al. [120], and Stewart et al. [170]. An agent

receives optimal decisions from its neighbors in the form of a proposal. Then,

upon computing the corresponding effects of these decisions on its local objective

function, the agent may reject or approve proposals. These algorithms are capable

of resolving conflict; however they face two limitations. The first is that, in order

to identify the impact of a specific agent’s control trajectory on neighboring cost

functions, this agent must not operate in parallel with others; thus limiting scala-

bility. The second is that agents whose control actions are discarded at particular

time-steps remain idle. Finally, these algorithms possess no learning mechanism

to ensure that, after a sufficient number of negotiations, proposals are guaranteed

or more likely to be approved.

Finally, group-based DMPC methods employ the connectivity information of a

plant to identify the order in which agents should solve their local MPC problems

to resolve conflict. Pannek [144] proposed a covering algorithm that permitted

non-interacting agent pairs to operate in parallel, while those that were coupled

made decisions sequentially according to some predetermined priority rule. This

algorithm eliminated the scalability issue of pure sequential DMPC; however it

required a predetermined set of priority rules. Liu et al. [117] developed a clus-

tering algorithm that assigned agents to dominant or connecting groups. Agents in

dominant clusters solved their local optimization problems first, thus eliminating

conflict with agents in connecting groups. The downside in this method was that a

sequential algorithm was required to determine clustering. Asadi and Richards [12]

employed a slot allocation algorithm wherein each agent communicated with other
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subsystems to randomly select an available space in the global sequential order.

This method addressed the secondary drawback of sequential DMPC, which con-

cerned determining an effective sequence order in systems with time-varying inter-

action topologies. Nonetheless, the fully serial nature of the algorithm still suffered

from lack of scalability.

5.1.3 Contributions

Based on the preceding literature review, we state, to the best of our knowledge,

that a DEMPC algorithm that handles non-convex cost functions and unknown sta-

tionary set-points in a scalable and truly distributed manner, with no predetermined

rules, has yet to be proposed. The existing method that meets all of these criteria

except for scalability and non-convexity is the algorithm of Köhler et al. [108].

The main contribution in this chapter is thus a DEMPC coordination algorithm

that is scalable, fully distributed, and that guarantees stability and convergence

in the presence of non-convex cost functions and unknown stationary set-points.

In brief, our approach borrows from the method of conflict resolution observed

in nature. Namely, when it becomes apparent that agents operating in parallel

generate conflicting decisions, a social hierarchy is established to yield resolution.

Additionally, proofs of convergence, recursive feasibility, and bounded closed-loop

stability are provided along with validation using a numerical example.

5.1.4 Chapter organization

The remainder of this chapter is organized as follows: Section 5.2 provides a de-

scription of the nonlinear systems and cost functions that the proposed algorithm

addresses, along with an explanation of conflict and convergence issues arising

from non-convex objectives; Section 5.3 highlights the proposed DEMPC algo-

rithm along with proofs of convergence, feasibility, and stability; Section 5.4 im-

plements the proposed method on a numerical example with non-convex cost func-

tions; and finally, Section 5.5 concludes the chapter with a summary of major find-

ings, along with recommendations for future research directions.

142



5.2 Problem description

5.2.1 Notation

This brief subsection introduces the reader to the set theory and other notation

used in this work. The term Ia:b indicates a set of real integers ranging from a to b.

The symbols x ∈ Rn state that x is a real-valued vector of dimensions n× 1. The

expression A \B denotes the difference between the sets A and B (i.e. the set A

with all elements of set B removed). The operation A ×B yields the Cartesian

product of the sets A and B.

5.2.2 Dynamic model

We consider N agents that are dynamically decoupled and uninfluenced by distur-

bances. The dynamics of each agent i ∈I = {1,2, · · · ,N} are represented by the

following discrete-time nonlinear state-space model:

x+i = fi(xi,ui), (5.1)

where xi ∈ Rni and ui ∈ Rmi denote vectors containing the ni states and mi inputs

of agent i, and x+i represents xi at the subsequent sampling time-step. We consider

the case where xi and ui must be bounded within the convex sets Xi and Ui at all

times, which results in the following state and input constraints:

ui ∈ Ui, (5.2)

xi ∈ Xi. (5.3)

With these operational bounds defined, we make the following assumptions

concerning controllability and continuity.

Assumption 1. (Weak controllability) Let the set Z s
i comprise all feasible station-

ary points of agent i as follows:

Z s
i := {(xi,ui) ∈Xi×Ui | xi = fi(xi,ui)} . (5.4)

All feasible stationary state vectors of agent i may then be collected within the set
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X s
i , which is defined as follows:

X s
i := {xi ∈Xi | ∃ui ∈Ui : (xi,ui) ∈Z s

i } . (5.5)

Let the set Z 0→s
i contain all pairings of initial state vectors x0

i and input tra-

jectories ui =
(
u0

i ,u1
i , · · · ,uH−1

i

)
that steer agent i to each feasible stationary point

xs
i in H time-steps, while satisfying constraints. Z 0→s

i may therefore be defined as

follows:

Z 0→s
i :=

{
(x0

i ,ui,xs
i ) ∈Xi×U i×X s

i |

∃x1
i ,x

2
i , · · · ,xH

i : xk
i = fi(xk−1

i ,uk−1
i ),

xk
i ∈Xi,∀k ∈ I1:H ,xH

i = xs
i

}
,

(5.6)

where U i = Ui× ·· · ×Ui = U H
i . All possible initial state vectors x0

i that may

be steered to a feasible stationary point xs
i , with constraint satisfaction, are then

contained within the set X 0→s
i defined as follows:

X 0→s
i :=

{
x0

i ∈Xi | ∃ui ∈U i,xs
i ∈X s

i :
(
x0

i ,ui,xs
i
)
∈Z 0→s

i
}
. (5.7)

For any agent i∈I , any initial state vector x0
i ∈X 0→s

i , input vector trajectory

ui ∈ U i, and stationary state vector xs
i ∈X s

i such that
(
x0

i ,ui,xs
i
)
∈ Z 0→s

i , and

any stationary input vector us
i ∈ Ui such that (xs

i ,us
i ) ∈ Z s

i , there exists a K∞

function γ(·) that satisfies the following condition:

H−1

∑
k=0
‖uk

i −us
i‖ ≤ γ(‖x0

i −xs
i‖). (5.8)

Remark. The weak controllability assumption simply states that, for any feasible

stationary point, there exists some surrounding set from which an initial state vec-

tor may be steered to the stationary point. This assumption is necessary for guar-

anteeing feasibility of the optimization problem of the DEMPC algorithm since

reaching a stationary target is one of its constraints. Therefore, if an input trajec-

tory exists that can steer an initial state vector to a stationary point, then a solution

to the optimization problem exists that satisfies its constraints.
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Assumption 2. (Lipschitz continuous dynamics) For any agent i∈I , fi(·) satisfies

the following condition for Lipschitz continuity for all (xa
i ,ua

i ),(xb
i ,ub

i ) ∈Xi×Ui:

∥∥fi(xb
i ,u

b
i )− fi(xa

i ,u
a
i )
∥∥≤ Λ

f
i

∥∥(xb
i ,u

b
i )− (xa

i ,u
a
i )
∥∥ , (5.9)

where the scalar Λ
f
i ≥ 0 is the Lipschitz constant of fi(·) on the set Xi×Ui.

Remark. Lipschitz continuity simply states that the function fi(·) must be contin-

uous. In other words, there must exist no discontinuities along fi(·) that lead to an

undefined gradient. This assumption is necessary for guaranteeing optimality in

the solution of an optimization problem. If gradients are defined, a local minimum

of a cost function will be reached after a sufficient number of iterations.

5.2.3 Control objective

At each time-step, the control objective of agent i is to minimize a cooperative

economic stage cost function Ji(·) over a finite prediction horizon H as follows:

min
H−1

∑
k=0

Ji(xk
i ,u

k
i ,x

k
−i|J,u

k
−i|J), (5.10)

where the superscript k identifies the time-step number along the prediction horizon

H, xk
i and uk

i denote the state and input vectors of agent i at time-step k along

the prediction horizon, and xk
−i|J and uk

−i|J contain the state and input vectors at

time-step k along the prediction horizon of all agents j ∈ I \ i that influence the

cooperative cost function Ji(·) of agent i. We collect the indices of these agents into

the set N−i|J . Likewise, the indices of all agents j ∈I \ i whose cooperative stage

cost functions J j(·) are influenced by xi and ui are collected into the set N+i|J .

The objective function Ji(·) may be non-convex; however, it must adhere to the

following assumptions concerning cooperation, boundedness, and continuity.

Assumption 3. (Neighborhood-cooperative objectives) Let each agent i ∈I pos-

sess a stage cost function `i(·) that represents its local economic interests. Then,

let the set N−i contain the indices of all agents j ∈ I \ i whose state and input

vectors x j and u j influence the local stage cost function `i(·). Likewise, let the set
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N+i contain the indices of all agents j ∈ I \ i whose local stage cost functions

` j(·) are influenced by xi and ui.

The stage cost function Ji(·) for any agent i ∈I is neighborhood-cooperative

in that it comprises the local interests of agent i and those of each downstream

neighbor j ∈N+i as follows:

Ji(xi,ui,x−i|J,u−i|J) := `i(xi,ui,x−i,u−i)+ ∑
j∈N+i

` j(x j,u j,x− j,u− j). (5.11)

The vectors x−i and u−i contain the states and inputs of all agents j ∈N−i. Note

that N−i|J = N−i∪N+i∪N− j∀ j ∈N+i.

Remark. The purpose of the social hierarchy-based DEMPC algorithm presented

in this work is to enable coupled agents to compute optimal decisions that are

mutually beneficial. A fundamental requirement for this algorithm is therefore that

coupled agents share interests; hence the assumption of neighborhood-cooperative

cost functions. If this assumption is not present, then the agents are competitive,

and mutually beneficial decisions cannot be guaranteed.

Assumption 4. (Bounded cost function minima) Let the sets X−i and U−i be de-

fined as follows:

X−i := ∏
j∈N−i

X j, (5.12)

U−i := ∏
j∈N−i

U j, (5.13)

For any agent i ∈ I , there exist state and input vectors
(
x∗i ,u∗i ,x∗−i,u∗−i

)
∈Xi×

Ui×X−i×U−i such that the following condition holds for all (xi,ui,x−i,u−i) ∈
Xi×Ui×X−i×U−i:

`i(x∗i ,u
∗
i ,x
∗
−i,u

∗
−i)≤ `i(xi,ui,x−i,u−i). (5.14)

Remark. The bounded cost function minima assumption is necessary for guar-

anteeing convergence of optimization problems. If the global minimum of a cost

function is finite, then an optimization algorithm that descends along the gradients
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of the cost function is guaranteed to reach a point that satisfies optimality condi-

tions after a sufficient number of iterations.

Assumption 5. (Lipschitz continuous objectives) For any agent i ∈ I , the local

cost function `i(·) satisfies the following condition for Lipschitz continuity for all

(xa
i ,ua

i ,xa
−i,ua

−i),(xb
i ,ub

i ,xb
−i,ub

−i) ∈Xi×Ui×X−i×U−i:

∥∥`i(xb
i ,u

b
i ,x

b
−i,u

b
−i)− `i(xa

i ,u
a
i ,x

a
−i,u

a
−i)
∥∥≤

Λ
`
i

∥∥(xb
i ,u

b
i ,x

b
−i,u

b
−i)− (xa

i ,u
a
i ,x

a
−i,u

a
−i)
∥∥ , (5.15)

where the scalar Λ`
i ≥ 0 is the Lipschitz constant of `i(·) on the set Xi×Ui×

X−i×U−i.

Remark. Refer to the remark of Assumption 2 for a simplified explanation of Lip-

schitz continuity.

5.2.4 Conflict under non-convexity

In this subsection, we elaborate further on the main challenge that is associated

with non-convex cost functions in DEMPC. Consider a simple problem with only

two optimization variables z1 and z2, which are computed by agents 1 and 2, re-

spectively. Further, let both agents share a common non-convex global objective

function with contours plotted in Figure 5.1.

Assume initial values z0
1 and z0

2 obtained from a previous iteration or time-

step. Under parallel and fully distributed operation, each agent must assume that

its neighbors optimization variable remains unchanged while locally minimizing

the global objective function. As a result, agent 1 assumes that z2 remains fixed at

z0
2 and restricts its search path to the horizontal orange line shown in Figure 5.1.

Likewise, agent 2 assumes that z1 is maintained at z0
1, which constrains its search

path to the vertical orange line.

Upon completion of its local optimization problem, agent 1 finds the local op-

timum located at
(
z̆1,z0

2

)
. Agent 2 achieves the same at

(
z0

1, z̆2
)
. When the updated

optimal variables z̆1 and z̆2 are combined however, the overall system operates at

neither of the local optima identified by the individual agents. We refer to such
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Figure 5.1: A visual explanation of conflict generated as a result of non-
convexity in distributed parallel optimization.

an outcome as conflict in the current work. Specifically, we define conflict and

conflict-free operation as follows.

Definition 1. (Conflict) Agent i encounters conflict when its economic performance

deteriorates upon considering the optimal control actions of its neighbors. More

formally, consider V̂ s
i and V̆ s

i defined as follows:

V̂ s
i := Ji(x̆s

i , ŭ
s
i , x̂

s
−i|J, û

s
−i|J), (5.16)

V̆ s
i := Ji(x̆s

i , ŭ
s
i , x̆

s
−i|J, ŭ

s
−i|J), (5.17)

where x̆s
i and ŭs

i denote the optimal stationary state and input vectors computed

by agent i, x̂s
−i|J and ûs

−i|J contain stationary state and input vectors that agent i

assumes for all neighbors j ∈N−i|J , and x̆s
−i|J and ŭs

−i|J consist of optimal state

and input vectors computed by all agents j ∈N−i|J and communicated to agent i.

The terms V̂ s
i and V̆ s

i represent naive and informed values of the stage cost function

of agent i at some stationary point, respectively. The term naive indicates that the

cost function value is computed based on assumed values of neighboring agents’

state and input vectors. Contrarily, the term informed is employed when agent i

considers recently communicated updated optimal state and input vectors. Given

these definitions, while attempting to negotiate an optimal stationary point (x̆s
i , ŭs

i ),
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agent i operates in conflict with its neighbors if the following statement is true:

V̆ s
i > V̂ s

i . (5.18)

Similarly, one may define naive and informed values of cost functions summed

along the prediction horizon as follows:

V̂i :=
H−1

∑
k=0

Ji(x̆k
i , ŭ

k
i , x̂

k
−i|J, û

k
−i|J), (5.19)

V̆i :=
H−1

∑
k=0

Ji(x̆k
i , ŭ

k
i , x̆

k
−i|J, ŭ

k
−i|J), (5.20)

where x̆k
i and ŭk

i denote optimal state and input vectors computed by agent i at

time-step k along the prediction horizon, x̂k
−i|J and ûk

−i|J contain state and in-

put vectors that agent i assumes for all neighbors j ∈ N−i|J at some time-step

k along the prediction horizon, and x̆k
−i|J and ŭk

−i|J consist of optimal state and

input vectors computed by all agents j ∈ N−i|J at some time-step k along the

prediction horizon and communicated to agent i. Given this information, while

attempting to negotiate optimal state and input trajectories x∗i =
(
x̆0

i , x̆1
i , · · · , x̆H

i
)

and u∗i =
(
ŭ0

i , ŭ1
i , · · · , ŭH−1

i

)
, agent i operates in conflict with its neighbors if the

following statement is true:

V̆i > V̂i. (5.21)

Definition 2. (Conflict-free operation) Agent i operates free of conflict when its

economic performance improves or remains unchanged upon considering the opti-

mal control actions of its neighbors. More formally, consider once again the values

V̂ s
i , V̆ s

i , V̂i, and V̆i as previously defined. While attempting to negotiate an optimal

stationary point (x̆s
i , ŭs

i ), agent i operates free of conflict with its neighbors if the

following statement is true:

V̆ s
i ≤ V̂ s

i . (5.22)

While attempting to negotiate optimal trajectories x∗i and u∗i , agent i operates free

of conflict with its neighbors if the following statement is true:

V̆i ≤ V̂i. (5.23)
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In the introduction, several algorithms based on sequential operation, agent

negotiation, and agent grouping that could resolve non-convex conflict were dis-

cussed. The main disadvantages of these algorithms were lack of scalability, idle-

ness of certain agents, and the requirement of predefined rules. In the next section,

we propose a fully distributed and scalable solution to the problem of conflict that

addresses these drawbacks by establishing social hierarchies.

5.3 Social hierarchy-based DEMPC algorithm

5.3.1 Social hierarchy framework

In the current context, a social hierarchy consists of a finite number of levels that

establish the sequence in which agents generate decisions in order to resolve con-

flict. The concept is based loosely on social hierarchies that appear naturally among

living organisms as a means to resolve conflict and establish which individuals’ de-

cisions take priority over those of others. These hierarchies are often determined by

the evolutionary or cultural characteristics of the individuals, which are, in essence,

randomly assigned. In a similar fashion, we propose a framework which permits

the formation of hierarchies with elements of randomness in order to resolve con-

flict resulting from non-convexity.

For generality, we assume an iterative parallel coordination algorithm, the first

of which was presented by Du et al. [51]. Agents synchronously solve their local

optimization problems and communicate repeatedly within a single sampling time-

step until some termination condition is satisfied or until a maximum number of

iterations have been implemented. The socially hierarchy framework is equally

applicable to non-iterative parallel methods which were first investigated by Jia

and Krogh [92] and Dunbar and Murray [53].

A visual representation of the social hierarchy framework is shown in Fig-

ure 5.2. Within a single iteration, there exist Nq hierarchy levels which specify

the order in which agents make decisions. Each agent may solve for its optimal

stationary point and control trajectory only once within an iteration; however, this

computation may take place within any hierarchy level. During each iteration,

agents occupying hierarchy level q = 1 make decisions first and transfer relevant
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Figure 5.2: Schematic demonstrating the organization structure of the social
hierarchy framework.

information to their neighbors. Following this step, agents allocated to hierarchy

level q = 2 perform the same task. This trend continues until all hierarchy level

computations have been performed, at which point the entire process is repeated

during the next iteration. It is important to note that multiple agents may occupy

the same hierarchy level, and that Nq may be substantially smaller than N.

Two fundamental questions now arise regarding (i) how agents should sort

themselves among the Nq hierarchy levels in order to resolve conflict, and (ii) how

should Nq be determined by the control system designer. The former concern is

addressed in Section 5.3.2, which describes and assesses a novel DEMPC coordi-

nation algorithm that utilizes the concept of a social hierarchy. The latter question

is discussed in Section 5.3.4, which burrows elements from vertex coloring theory

to establish social hierarchy properties.

5.3.2 DEMPC coordination algorithm

This subsection details a novel coordination algorithm for DEMPC with non-convex

objectives based on the social hierarchy framework described in Section 5.3.1. Our

approach allows agents to resolve their conflicts in a truly distributed and scalable

manner without the requirement of predefined rules or access to the full system
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interaction topology. Each agent achieves this outcome by occupying an appro-

priate level along a social hierarchy when conflict arises. In brief, our algorithm

follows evolutionary principles. That is, if an agent occupying a particular hierar-

chy level during some iteration experiences conflict, then its current hierarchy level

is detrimental to its performance and must be randomly mutated.

While negotiating optimal trajectories x∗i and u∗i , agent i solves the following

optimization problem during each iteration:

min
ui,xi

H−1

∑
k=0

Ji(xk
i ,u

k
i , x̂

k
−i|J, û

k
−i|J), (5.24)

subject to

x0
i = xi, (5.25a)

xk+1
i = fi(xk

i ,u
k
i ), (5.25b)

xk
i ∈ Xi, (5.25c)

uk
i ∈ Ui, (5.25d)

xH
i = xs

i , (5.25e)

where xk
i and uk

i denote the candidate state and input vectors of agent i at some

time-step k along the prediction horizon H, xi and ui represent candidate state and

input vector trajectories as follows:

xi :=
(
x0

i ,x
1
i , · · · ,xH

i
)
, (5.26)

ui :=
(
u0

i ,u
1
i , · · · ,uH−1

i

)
, (5.27)

and x̂k
−i|J and ûk

−i|J contain the state and input vectors that agent i assumes for

all neighbors j ∈N−i|J at time-step k. For notational brevity in Algorithm 1, we

condense the assumed states and input of agent j into the trajectories x̃ j and ũ j as

follows:

x̃ j :=
(
x̂0

j , x̂
1
j , · · · , x̂H

j
)
, (5.28)

ũ j :=
(

û0
j , û

1
j , · · · , ûH−1

j

)
. (5.29)
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Solving Problem (5.24) yields the optimal state and input vector trajectories x∗i
and u∗i defined as follows:

x∗i :=
(
x̆0

i , x̆
1
i , · · · , x̆H

i
)
, (5.30)

u∗i :=
(
ŭ0

i , ŭ
1
i , · · · , ŭH−1

i

)
, (5.31)

where x̆k
i and ŭk

i denote the optimal state and input vectors at time-step k along

the prediction horizon. The difference between candidate and optimal solutions is

that the optimal solutions x∗i and u∗i are not immediately accepted by the DEMPC

algorithm. In other words, if it was required that DEMPC algorithm implement a

decision immediately, the enacted action would follow the candidate trajectories xi

and ui, not the optimal solutions x∗i and u∗i . As detailed in Algorithm 1, x∗i and

u∗i are only accepted as candidate solutions if they do not yield conflict. If x∗i and

u∗i do yield conflict, then the previous values of xi and ui remain as the candidate

trajectories to be implemented.

Constraint (5.25a) serves as the initial condition of the prediction horizon by

setting the candidate state vector of agent i at k = 0 equal to the most recent state

measurement xi. Constraint (5.25b) requires that the optimal input and state trajec-

tories x∗i and u∗i computed along the prediction horizon satisfy the plant dynamics

of agent i. Constraints (5.25c) and (5.25d) state that the optimal input and state

vectors x̆k
i and ŭk

i of agent i must remain within the process constraint sets Xi and

Ui, respectively, at any time-step k along the prediction horizon. Finally, Con-

straint (5.25e) ensures that, by the end of the prediction horizon H, the computed

optimal input trajectory u∗i leads the local state vector to a feasible candidate steady

state xs
i .

To negotiate the candidate stationary state vector xs
i , agent i solves the follow-

ing optimization problem during each iteration:

min
ui,us

i ,xi,xs
i

Ji(xs
i ,u

s
i , x̂

s
−i|J, û

s
−i|J), (5.32)
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subject to

x0
i = xi, (5.33a)

xk+1
i = fi(xk

i ,u
k
i ),∀k ∈ I0:H−1, (5.33b)

xs
i = fi(xs

i ,u
s
i ), (5.33c)

xs
i = xH

i , (5.33d)

xk
i ∈ Xi,∀k ∈ I0:H , (5.33e)

uk
i ∈ Ui,∀k ∈ I0:H−1, (5.33f)

(xs
i ,u

s
i ) ∈ Xi×Ui, (5.33g)

where xs
i and us

i denote the candidate stationary state and input vectors of agent i,

and x̂s
−i|J and ûs

−i|J contain similar information that agent i assumes for all neigh-

bors j ∈N−i|J . The steady state and input vectors that agent i assumes for an indi-

vidual neighbor j are denoted by x̂s
j and ûs

j, respectively. Solving Problem (5.32)

yields the optimal steady state and input vectors x̆s
i and ŭs

i . Similar to the optimal

trajectories x∗i and u∗i , the optimal stationary solution is only accepted if it yields

conflict-free operation. Otherwise, the previous values of xs
i and us

i remain as the

candidate stationary terminal set-point.

Constraint (5.33c) ensures that the computed optimum (x̆s
i , ŭs

i ) is a stationary

point. Constraint (5.33d) then requires that the computed state vector trajectory

ends at the optimal steady state x̆s
i . Finally, Constraint (5.33g) states that the com-

puted optimal stationary point (x̆s
i , ŭs

i ) must lie within the process constraint set

Xi×Ui.

The difference between Problems (5.24) and (5.32) is that the latter only con-

siders the stage cost function Ji(·) and therefore computes a feasible optimal steady

state vector x̆s
i without minimizing Ji(·) over the prediction horizon. The reason

that dynamics are considered in Problem (5.32) is to ensure that the computed

optimal steady state vector x̆s
i is reachable from the initial state vector x0

i . Prob-

lem (5.24) then computes optimal trajectories that minimize Ji(·) over the predic-

tion horizon and steer the system to the reachable candidate steady state vector

xs
i . A description of the proposed social hierarchy-based DEMPC algorithm now

follows.
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Algorithm 1. Social hierarchy-based DEMPC coordination scheme. Implement

in parallel for all agents i ∈I .

Communication protocol:

• Send xi, ui, xs
i , and us

i to all agents j ∈N+i|J , receive x j, u j, xs
j, and us

j from all

agents j ∈N−i|J , and set x̃ j = x j, ũ j = u j, x̂s
j = xs

j, and ûs
j = us

j for all j ∈N−i|J .

Initialization:

1. Specify Nq ≥ 1 and set qi = 1.

2. Initialize xi, xi ∈X i = Xi×·· ·×Xi = X H
i , ui ∈U i, xs

i ∈Xi, us
i ∈Ui such

that x0
i = xi, xk+1

i = fi(xk
i ,uk

i )∀k ∈ I0:H−1, xH
i = xs

i , and xs
i = fi(xs

i ,us
i ).

3. Implement communication protocol.

Perform at each new time-step:

1. Measure xi, and compute xi such that x0
i = xi and xk+1

i = fi(xk
i ,uk

i )∀k ∈ I0:H−1.

2. Implement communication protocol.

3. For iteration number p = 1,2, · · · ,Np, do:

(a) For sequence slot number q = 1,2, · · · ,Nq, do:

i. If q = qi, (i) solve Problem (5.32) to acquire x̆s
i and ŭs

i , (ii) compute V̂ s
i ac-

cording to Eq. (5.16), (iv) send x̆s
i and ŭs

i to all agents j ∈N+i|J , (v) receive

x̆s
j and ŭs

j from all agents j ∈N−i|J , and update x̂s
j = x̆s

j and x̂s
j = x̆s

j.

ii. Else, receive x̆s
j and ŭs

j from all agents j ∈ N−i|J , and update x̂s
j = x̆s

j and

x̂s
j = x̆s

j.

(b) Compute V̆ s
i according to Eq. (5.17). If V̆ s

i > V̂ s
i , randomly change qi with

uniform probability and set x̆s
i = xs

i and ŭs
i = us

i . Else, if V̆ s
i ≤ V̂ s

i , update

xs
i = x̆s

i and us
i = ŭs

i .

(c) Implement communication protocol.

4. For iteration number p = 1,2, · · · ,Np, do:
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(a) For sequence slot number q = 1,2, · · · ,Nq, do:

i. If q = qi, (i) solve Problem (5.24) to acquire x∗i and u∗i , (ii) compute V̂i ac-

cording to Eq. (5.20), (iv) send x∗i and u∗i to all agents j ∈N+i|J , (v) receive

x∗j and u∗j from all agents j ∈N−i|J , and update x̃ j = x∗j and ũ j = u∗j .

ii. Else, receive x∗j and u∗j from all agents j ∈ N−i|J , and update x̃ j = x∗j and

ũ j = u∗j .

(b) Compute V̆i according to Eq. (5.20). If V̆i > V̂i, randomly change qi with uni-

form probability and set x∗i = xi and u∗i = ui. Else, if V̆i ≤ V̂i, update xi = x∗i
and ui = u∗i .

(c) Implement communication protocol.

5. Apply candidate control input u0
i to the system, update ui such that uk

i =uk+1
i ∀k∈

I0:H−2 and uH−1
i = us

i .

During initialization, step 1 requires the control system designer to specify the

quantity Nq of hierarchy levels and to allocate agent i to the first level. As a result,

all agents initially solve their local optimization problems in parallel. Step 2 re-

quires that feasible state and input trajectories xi and ui that satisfy the constraints

of Eq. (5.25), and steer the system to a reachable stationary point (xs
i ,us

i ), be speci-

fied for agent i given the initial state vector xi. Finally, step 3 involves the exchange

of candidate trajectories x j and u j and stationary vectors xs
j and us

j between agent i

and all of its neighbors j ∈N−i|J . Agent i then uses this incoming information to

establish the assumed values of its neighbors’ states and inputs x̃ j, ũ j, x̂s
j, and ûs

j for

all j ∈N−i|J . These assumptions remain unchanged until future communication.

Focusing on the recursive portion of the DEMPC algorithm, agent i first mea-

sures its state vector xi and updates its local state trajectory xi using the most up-to-

date candidate input sequence ui. In step 2, this updated information is communi-

cated between neighbors. As a result, prior to step 3, agent i possesses the most up-

to-date trajectories and stationary vectors x j,u j, xs
j, and us

j of neighbors j ∈N−i|J .

The assumptions x̃ j, ũ j, x̂s
j, and ûs

j for all j ∈N−i|J are also updated as a result.

Step 3 initiates an iterative process within the current sampling time-step with

the objective of identifying an appropriate candidate stationary point (xs
i ,us

i ) to

serve as a terminal constraint in future steps. In step 3(a), agent i cycles through
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all hierarchy levels sequentially and, during its allocated hierarchy level, solves

Problem (5.32) to obtain an optimal stationary point (x̆s
i , ŭs

i ). These vectors, along

with the assumptions x̂s
j and ûs

j for all j ∈ N−i|J , are then used to calculate the

naive stage cost function value V̂ s
i to be used for comparison to V̆ s

i later on. Fi-

nally, agent i exchanges optimal stationary vector information with neighboring

agents and updates its assumptions x̂s
j and ûs

j for all j ∈N−i|J . Outside of its hier-

archy level, agent i remains idle and only receives information from neighbors and

updates its assumptions.

After all hierarchy levels have been cycled through, agent i will have received

x̆s
j and ŭs

j from all neighbors j ∈ N−i|J . Step 3(b) requires the computation of

the informed stage cost function value V̆ s
i . If V̆ s

i > V̂ s
i , then agent i is in conflict

with its neighbors while attempting to identify an optimal stationary point, and it

is necessary for its hierarchy level qi to be randomly mutated. Further, if conflict

is encountered, then agent i resets it optimal stationary vectors x̆s
i and ŭs

i to the

candidate stationary vectors xs
i and us

i . This reset essentially erases x̆s
i and ŭs

i so

that conflict-yielding optimal solutions are no longer communicated. If V̆ s
i ≤ V̂ s

i ,

then agent i is operating free of conflict, and its current hierarchy level may be

maintained. Further, since the recently computed stationary vectors x̆s
i and ŭs

i did

not yield conflict, they may replace the candidate stationary vectors xs
i and us

i . As

a result, agent i updates xs
i and us

i using x̆s
i and ŭs

i .

Step 3 is terminated once the maximum number of iterations Np has been

reached. Step 4 essentially repeats step 3, except the candidate terminal state vec-

tor xs
i has now been updated, and the objective is to update candidate state and

input trajectories xi and ui. The maximum number of iterations available for this

step is also Np. Step 5 requires that the control input vector corresponding to the

first time-step along the prediction horizon be applied to the system. Additionally,

the candidate input trajectory ui for the next sampling time-step is constructed by

concatenating it with the candidate stationary input vector us
i .

5.3.3 Closed-loop properties

The current subsection establishes closed-loop properties for Algorithm 1. We first

demonstrate that, regardless of the interaction topology of a multi-agent system,
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all conflicts may be resolved in a finite number of iterations with some probability.

We then address convergence, feasibility, and stability.

Theorem 1. (Conflict resolution) There exist a finite number of iterations after

which, with some probability greater than zero, Inequalities (5.22) and (5.23) are

guaranteed to be satisfied at each iteration within a single time-step.

Proof. This proof consists of two parts; (i) it is first necessary to prove that, for any

interconnected system, at least one social hierarchy exists that will ensure system-

wide conflict resolution; (ii) it is then proved that the probability of agents self-

organizing according to such a social hierarchy is greater than zero during any

iteration.

Part I: Consider a multi-agent system wherein all agents possess the same stage

cost function J(·) defined as follows:

J(x,u) := ∑
i∈I

`i(xi,ui,x−i,u−i), (5.34)

where x ∈ R∑i∈I ni and u ∈ R∑i∈I mi contain the ni states and mi inputs of all

agents i ∈ I , and J(·) is global-cooperative in that it considers the local inter-

ests `i(·) of all agents i ∈I . The resulting dynamic optimization problem over the

prediction horizon H for any agent i is therefore defined as follows:

min
ui,xi

H−1

∑
k=0

J(xk,uk), (5.35)

with constraints similar to those of Problem (5.24). The vectors xk and uk denote

system-wide states and inputs at time-step k along the prediction horizon. The

stationary optimization problem for any agent i is defined as follows:

min
ui,us

i ,xi,xs
i

J(xs,us), (5.36)

with constraints similar to those of Problem (5.32). The vectors xs and us denote
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system-wide steady states and inputs. We also define V (·) and V s(·) as follows:

V (x,u) :=
H−1

∑
k=0

J(xk,uk), (5.37)

V s(xs,us) := J(xs,us), (5.38)

where x =
(
x0,x1, · · · ,xH

)
and u =

(
u0,u1, · · · ,xH−1

)
denote system-wide state

and input trajectories over the prediction horizon.

As a reference case, let the agents operate in a fully sequential manner such

that, at any given iteration, only one agent solves its local optimization problem.

Focusing on the negotiation of a stationary point for now, only agent i updates

xs
i and us

i at some iteration p, then transmits this information to all other agents.

Furthermore, let recursive feasibility, which is established independently in The-

orem 3, be presumed, and let Assumptions 2, 4, and 5 concerning continuity and

bounded minima hold. Under these conditions, upon solving Problem (5.36), each

agent i ∈ I is guaranteed to shift xs and us until the gradient of J(·) projected

along the variable space (xs
i ,us

i ) satisfies optimality conditions. Since this process

occurs sequentially across all agents i ∈I , V s(·) is guaranteed to decrease or re-

main unchanged after each subsequent agent’s update to xs
i and us

i , which ensures

conflict-free operation as per Definition 2.

We now prove that the above result may be achieved using social hierarchies

that are not necessarily fully sequential (i.e. a subset of agents may solve their

local optimization problems simultaneously) and also assuming neighborhood-

cooperative stage cost functions as per Assumption 3. From the perspective of

any agent i ∈I , J(·) may be arranged as follows:

J(x,u) = `i(xi,ui,x−i,u−i)+ ∑
j∈N+i

` j(x j,u j,x− j,u− j)

+ ∑
κ∈I \N+i,κ 6=i

`κ(xκ ,uκ ,x−κ ,u−κ), (5.39)

where the three terms on the right-hand-side represent, from left to right, the local

interests of agent i, the local interests of agents whose cost functions are influenced

by agent i, and the local interests of all remaining agents whose cost functions are
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uninfluenced by agent i. Taking the gradient of J(·) along the variable space (xi,ui)

yields the following:

∇xi,uiJ(x,u) = ∇xi,ui`i(xi,ui,x−i,u−i)+∇xi,ui ∑
j∈N+i

` j(x j,u j,x− j,u− j). (5.40)

Note that gradient of `κ(·) for all κ ∈ I \N+i,κ 6= i is zero along (xi,ui) since

these expressions have no dependency upon the operation of agent i. The shape

of J(·) along the variable space (xi,ui) is therefore only influenced by x j and u j

for all j ∈N−i|J , since N−i|J = N−i∪N+i∪N− j∀ j ∈N+i. This result yields two

important consequences.

First, the local optimization problem of agent i is uninfluenced by the control

actions of agents κ ∈ I \N−i|J,κ 6= i. Agent i may therefore update its control

actions in parallel with agents κ ∈ I \N−i|J,κ 6= i, and the computed optimal

trajectories are guaranteed to decrease or preserve V s(·). Second, whether agent i

employs the global stage cost function J(·), or the neighborhood-cooperative stage

cost function Ji(·) defined in Eq. (5.11), the computed optimal trajectories remain

unchanged. This property is true since ∇xi,uiJ(·) = ∇xi,uiJi(·). Therefore, if As-

sumption 3 concerning neighborhood-cooperative cost functions holds, and if no

two agents i and j such that j ∈N−i|J for all i, j ∈ I , j 6= i solve their local op-

timization problems simultaneously, then at least one social hierarchy exists that

will satisfy Inequality (5.22) after each iteration. The above logic may be extended

to step 4 in Algorithm 1 without modification. Part I of the proof is thus completed.

Part II: Due to its distributed nature, Algorithm 1 may lead some agents to resolve

their conflicts earlier than others. However, we prove that, even in a worst-case

scenario in which all agents initially encounter conflict, the probability that all

conflicts will be resolved within a single iteration is greater than zero. Let Ns

describe the quantity of possible social hierarchies that will resolve conflict among

N agents. If agents must, with uniform probability, randomly choose among Nq

hierarchy levels, the probability P that all conflicts are resolved within a single

iteration is defined as follows:

P = Ns

(
1

Nq

)N

. (5.41)
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Thus, as long as Ns > 0, P > 0 must also be true. Part I of this proof demon-

strated that Ns ≥ 1 for any interconnected system with neighborhood-cooperative

cost functions.

Theorem 2. (Convergence) Let xs,p
i and up

i denote the candidate steady state vec-

tor and input trajectory xs
i and ui held by agent i at iteration p. Given a sufficiently

large number of iterations in Steps 3 and 4 in Algorithm 1, the following inequali-

ties are guaranteed to be satisfied for all i ∈I :∥∥∥xs,p
i −xs,p−1

i

∥∥∥ ≤ α

∥∥∥xs,p−1
i

∥∥∥ , (5.42)∥∥∥up
i −up−1

i

∥∥∥ ≤ β

∥∥∥up−1
i

∥∥∥ , (5.43)

where α > 0 and β > 0 represent fixed convergence tolerances.

Proof. Theorem 1 guarantees that, with a large enough number of iterations, system-

wide conflict-resolution may be achieved with some probability greater than zero.

As per Definition 2, and focusing on step 3 from Algorithm 1, once system-wide

conflict-free operation has been achieved, the inequality V̆ s
i ≤ V̂ s

i is guaranteed to

be satisfied after each iteration for any agent i ∈ I . Let V̂ s,p
i and V̆ s,p

i denote V̂ s
i

and V̆ s
i computed during iteration number p. Since V̂ p

i is computed using optimal

state and input trajectories of agent i that have been updated during iteration p,

then V̂ s,p
i ≤ V̆ s,p−1

i must be true during conflict-free operation. Therefore, since

V̆ s,p
i ≤ V̂ s,p

i and V̂ s,p
i ≤ V̆ s,p−1

i , then V̆ s,p
i ≤ V̆ s,p−1

i must be true after conflicts have

been resolved, which indicates that the value of Ji(·) computed using updated sta-

tionary points of all relevant agents is guaranteed to decrease with each subsequent

iteration. If Assumption 4 concerning bounded minima holds, then (xs
i ,us

i ) is guar-

anteed to approach a local minimizer of Ji(·), thus satisfying Inequality (5.42). The

above logic may be extended to step 4 of Algorithm 1 without modification; thus

concluding the proof.

Theorem 3. (Recursive feasibility) The constraints of Problems (5.32) and (5.24)

are guaranteed to be satisfied during each iteration at any sampling time k≥ 0 for

all agents i ∈I .
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Proof. Provided that initial values of xi, ui, xs
i , and us

i established at the start of

some time-step are feasible, then at least one viable set of values for xi, ui, xs
i ,

and us
i exists that satisfies Constraints (5.25) and (5.33), thus ensuring recursive

feasibility at each subsequent iteration within the time-step. Further, since the

absence of disturbances restricts state progression to xi, then feasibility is preserved

at subsequent time-steps. Guaranteeing recursive feasibility thus requires that xi,

ui, xs
i , and us

i are initially feasible. Referring to Eq. (5.7), the existence of xi, ui,

xs
i , and us

i such that Constraints (5.25) and (5.33) are satisfied requires that the set

X 0→s
i is not empty. Assumption 1 concerning weak controllability bounds the

control input trajectory ui required to steer any initial state vector x0
i ∈X 0→s

i to a

reachable stationary point (xs
i ,us

i ) such that (x0
i ,ui,xs

i )∈Z 0→s
i . As a result, the set

X 0→s
i must be non-empty; thus concluding the proof.

Theorem 4. (Closed-loop stability) For all agents i ∈I , as k→ ∞, the measured

state vector xi will remain bounded within a set X ∗
i ⊂X 0→s

i surrounding a fixed

stationary point x∗i ∈X s
i . The set X ∗

i is defined as follows:

X ∗
i :=

{
xi ∈Xi | ∃ui ∈U i : (xi,ui,x∗i ) ∈Z 0→s

i
}
. (5.44)

Proof. For all agents i∈I , while updating candidate state and input vector trajec-

tories xi and ui, Constraint (5.25e) ensures that the state vector xi always remains

within a reachable set surrounding some steady state vector xs
i . Therefore, in order

to prove that this reachable set ultimately maintains a fixed value X ∗
i , one must

prove that the terminal steady state vector xs
i approaches a fixed value x∗i as k→ ∞

for all agents i ∈I .

We assume for the time being that, after a sufficient number of iterations, agents

establish a social hierarchy that permanently resolves all conflicts. That is, Inequal-

ity (5.22) is guaranteed to be satisfied at each iteration within all subsequent time-

steps, and the social hierarchy therefore ceases to change. We shall refer to such

a social hierarchy as a universal social hierarchy. Let V̆ s,k
i |A and V̆ s,k

i |B denote V̆ s
i

computed at the initial and final iterations, respectively, of time-step k. It is clear

that, after a universal social hierarchy has been established, V̆ s,k
i |B ≤ V̆ s,k

i |A is satis-

fied at all subsequent time-steps. Since V̆ s,k
i |A is computed using x̆s

i and ŭs
i obtained

by solving Problem (5.32) at the first iteration of time-step k, then V̆ s,k
i |A≤ V̆ s,k−1

i |B
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must also be true. As a result, V̆ s,k
i |B ≤ V̆ s,k−1

i |B must be satisfied at all time-steps

following the establishment of a universal social hierarchy. If Assumption 4 con-

cerning bounded minima holds, (xs
i ,us

i ) is guaranteed to approach some fixed point

(x∗i ,u∗i ) for all i ∈I as k→ ∞, where (x∗i ,u∗i ) is some local minimizer of Ji(·).
The remaining task is to prove that a universal social hierarchy is in fact at-

tainable after a sufficient number of iterations. The existence of at least one such

social hierarchy has already been established in the proof for Theorem 1. Namely,

if Assumption 3 concerning neighborhood-cooperative cost functions holds, and if

no two agents i and j such that j ∈N−i|J for all i, j ∈I , j 6= i make decisions si-

multaneously, then Inequality (5.22) is guaranteed to be satisfied at every iteration

within any sampling time. If conflict persists, then agents will, after a sufficient

number of iterations, self-organize according to a universal social hierarchy with

some probability greater than zero; thus concluding the proof.

5.3.4 Determining social hierarchy properties

One final issue that must be addressed concerns the selection of Nq. In order to

guarantee that a universal social hierarchy is attainable, Nq must be large enough

such that a social hierarchy wherein no neighboring pairs of agents operate in par-

allel is permissible. This goal invokes the vertex coloring problem from graph

theory [35]. In brief, vertex coloring of a graph requires assigning colors to all

nodes such that no two interconnected nodes share the same color. Returning to

the context of the current chapter, each node signifies an agent, each color repre-

sents a specific level along a social hierarchy, and interconnection symbolizes cost

function coupling. In graph theory, the chromatic number refers to the minimum

number of colors required to complete the vertex coloring problem. Therefore, in

the current context, Nq should be equal to or greater than the chromatic number of

the system graph.
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Figure 5.3: Schematic of the plate overlap problem used in the numerical ex-
ample.

5.4 Numerical example

5.4.1 Problem description

Consider the mechanical system described in Figure 5.3. This setup consists of N

square plates that are supported by spring-damper systems and perfectly aligned at

equilibrium. Each square plate has a mass m = 1.0kg, side length L = 0.25m, and

is supported by stiffness and damping coefficients k = 1.0N/m and c = 1.0kg/s.

Further, the vertical position of each plate i is controlled via an input force ui that

is regulated by agent i. The resulting continuous-time dynamics of each plate are

expressed in state-space form as follows:[
ẋi

v̇i

]
=

[
0 1

− k
m − c

m

][
xi

vi

]
+

[
0
ui
m

]
, (5.45)

where xi and vi denote the vertical position and velocity of plate i. For the remain-

der of the current section, we work with the discrete-time form of Eq. (5.45).

The economic control objective of each agent i is to, without excessive actua-

tion, minimize the overlap area between its respective plate and those of neighbor-

ing agents i−1 and i+1. The resulting stage cost function of agent i is therefore
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Figure 5.4: Interaction graph of the plate overlap problem with vertex color-
ing used to identify a universal social hierarchy.

expressed as follows:

Ji(xi,ui,x−i) =
1
|N−i| ∑

j∈N−i

Ai, j(xi,x j)+uT
i ui, (5.46)

where the set N−i contains the indices of all neighboring plates j that are physically

adjacent to plate i, |N−i| is the cardinality of the set N−i, and Ai, j(·) defines the

overlap area between agents i and j as follows:

Ai, j(xi,x j) =

{
0 ,

∣∣xi− x j
∣∣≥ L,

L
(
L−

∣∣xi− x j
∣∣) ,

∣∣xi− x j
∣∣< L.

(5.47)

Note that, although simple in terms of system dynamics, the numerical problem

described above entails nonlinear and non-convex cost functions. Physically, non-

convexity stems from the property that any two adjacent plates may be relocated in

multiple ways to minimize their respective overlap areas.

5.4.2 Social hierarchy-based DEMPC properties

The interaction graph for an example problem with ten plates is shown in Fig-

ure 5.4. The solution to the vertex coloring problem for this example involves

simply alternating the color of each subsequent node, which yields a chromatic

number of two regardless of the quantity of vertices. An appropriate choice for the

number of hierarchy levels is thus Nq = 2.

We implement prediction and control horizons of H = 5 time-steps and a sam-

pling period of 1.0sec. Within a single sampling period, Np = 5 iterations are per-

mitted for the negotiation of optimal stationary points (i.e. step 3 in Algorithm 1),

followed by five more iterations for trajectory optimization (i.e. step 4 in Algo-

rithm 1). Finally, the actuation force of any agent is bounded as −0.25N ≤ ui ≤
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0.25N. These values were selected to limit the steady-state displacement of each

plate to a maximum of L = 0.25m.

Finally, all plates are initially at rest with zero displacement from equilibrium

(i.e. xi = 0 and ui = 0) and are therefore perfectly aligned with their neighbors.

The state and input vector trajectories of all agents are initialized as xi = (0, · · · ,0)
and ui = (0, · · · ,0).

5.4.3 Simulation results

Social hierarchy-based DEMPC – ten plates

The first results we present pertain to five simulations involving ten plates. The

outcomes in these simulations will differ due to the element of randomness in the

proposed coordination algorithm. In Figure 5.5, we show the variation in social

hierarchy levels over the iteration number for all five simulations. Rather than

displaying the actual hierarchy level of any particular agent, which would yield a

cluttered image, we instead present the cumulative number of social hierarchy level

changes. That is, let some cumulative counter start at zero for each simulation.

Then, each time an agent alters its social hierarchy level, the cumulative count

increases by one.

What is observed in Figure 5.5 is that, in all five simulations, the cumulative

count of social hierarchy variations ultimately reaches a fixed value. This outcome

indicates that, with a sufficient number of iterations, the agents sort themselves

along a social hierarchy that guarantees conflict-free operation according to Def-

inition 2 in all future iterations, thus validating Theorem 1 concerning conflict

resolution.

Next, we plot the evolution of the global cost function V with respect to the

iteration number in Figure 5.6 for all five simulations, with V computed as follows:

V = ∑
i∈I

V̆i. (5.48)

Note that the evolution of V differs in each case due to the element of stochasticity

inherent to the proposed algorithm. However, in all five simulations, a reduction

in V to some locally-optimal value is evident after conflicts have been resolved.
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Figure 5.5: Evolution of the cumulative number of social hierarchy changes
for five simulations of ten plates. Each color corresponds to a different
simulation.

Further, within each time-step (i.e. within each 20 iteration interval), the reduction

or preservation of V is apparent after agents have settled on an appropriate social

hierarchy. This latter outcome validates Theorem 2 on convergence.

As a reference in Figure 5.6, we plot (using a black dotted line) the globally-

optimal evolution of V , which is obtained by initializing the agents’ hierarchy lev-

els according to the universal social hierarchy from Figure 5.4. In this case, the

agents do not alter their social hierarchy levels as conflict-free operation is guaran-

teed from the beginning of the simulation. As a result, V is reduced or preserved

within each time-step immediately from the start of the simulation. This result

validates the existence of a universal social hierarchy.

In Figure 5.7, we plot the evolution of stationary target positions over the iter-

ation number for five simulations. Rather than displaying the stationary targets of

individual agents, which would yield a cluttered image, we plot the mean stationary
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Figure 5.6: Evolution of the global cost function for five simulations of ten
plates.

target xs of the entire plant, which is computed as follows:

xs =
1
N ∑

i∈I
x̆s

i . (5.49)

It is evident from Figure 5.7 that values of x̆s
i for all agents i ∈I ultimately con-

verge to fixed values in all simulations. This outcome validates Theorem 4 con-

cerning bounded closed-loop stability, which requires fixed stationary targets.

Finally, we have plotted the locations of all plates at the final sampling time in

each simulation in Figure 5.8. The color of each plate indicates its social hierarchy

level (i.e. blue denotes qi = 1, red denotes qi = 2). The globally-optimal con-

figuration would involve all adjacent plates being relocated in opposite directions;

however, the social hierarchy-based DEMPC algorithm is only capable of finding

a locally-optimal layout wherein some plates (e.g. plate 8 in simulation 1) must

remain at the origin to minimize overlap with their neighbors.
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Figure 5.7: Evolution of the mean system-wide stationary target position for
five different simulations involving ten plates.

Parallel vs. social hierarchy-based DEMPC

We compare the performance of the proposed social hierarchy-based DEMPC to a

basic parallel DEMPC algorithm wherein all agents solve their local EMPC prob-

lems simultaneously and exchange stationary vectors and trajectories with their

neighbors. In essence, a parallel DEMPC algorithm is identical to Algorithm 1,

except with Nq = 1.

We first plot the evolution of V over the iteration number using a parallel

DEMPC algorithm in Figure 5.9 for five simulations, each consisting of a different

number of plates. The parallel DEMPC algorithm is in fact able to naturally resolve

conflicts and ultimately decrease V to some locally minimum value. However, as

the quantity of agents N increases, a greater number of iterations is required to de-

crease V to a locally-minimum value. For instance, with N = 10, V reaches a local

minimum in 20 iterations. If N = 80 however, over 100 iterations are required.

In Figure 5.10, we plot the same information as Figure 5.9, except using the

proposed social hierarchy-based DEMPC algorithm. The improvement is clear.

The value of N has no discernible effect on the number of iterations necessary
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Figure 5.8: Plate locations at the final sampling time in (from top to bottom)
simulations 1 to 5.
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Figure 5.9: Evolution of the global cost function V using a parallel DEMPC
algorithm for five simulations involving different quantities of plates.

for reducing V to a locally-minimum value. In each simulation, approximately

30 iterations are required for V to settle at some minimum value. This outcome

results from the fact that the likelihood of any agent resolving conflict locally is

dependent solely on its neighborhood interaction topology. Thus, raising N should

not impact the number of iterations required for system-wide conflict resolution.

This outcome is further validation of the scalability of the social hierarchy-based

method.

5.5 Conclusions and recommendations for future
research

We have presented a novel concept for addressing non-convexity in cost functions

of distributed economic model predictive control systems with unknown terminal

stationary targets. This concept involves agents self-organizing into a finite hierar-

chy using evolutionary principles, and ultimately enables agents to make decisions

that are mutually beneficial with those of their neighbors. Theorems guarantee-
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Figure 5.10: Evolution of the global cost function V using the proposed so-
cial hierarchy-based DEMPC algorithm for five simulations involving
different quantities of plates.

ing convergence, recursive feasibility, and bounded closed-loop stability have also

been provided for the proposed social hierarchy-based algorithm.

These theorems were validated using a numerical example involving a series

of suspended square plates wherein each agent attempted to minimize the overlap

area between its respective plate and those of its neighbors. Results showed that,

across five simulations, the proposed algorithm was capable of establishing a social

hierarchy that reduced the system-wide cost function to some locally-minimum

value. Another observation from numerical results was that increasing the size

of the distributed system (i.e. the number of plates and agents) had no discernible

effect on the number of iterations required to minimize cost function values to local

minima. This behavior was not observed when using a parallel DEMPC algorithm

with no mechanism for addressing non-convexity.

Several research directions exist for further enhancing the proposed DEMPC

algorithm; developing non-iterative algorithms using compatibility constraints as

first proposed by Dunbar and Murray [53]; employing Lyapunov constraints to
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guarantee asymptotic stability rather than bounded stability; guaranteeing conver-

gence, feasibility, and stability under the effects of coupled dynamics and con-

straints; ensuring robustness in the presence of bounded disturbances in the system

dynamics and cost functions; application of the proposed algorithm to distributed

systems with weak dynamic coupling such as autonomous vehicle trajectory plan-

ning and wind farm control.
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Chapter 6

Social Hierarchy-based
Distributed Economic Model
Predictive Control of Floating
Offshore Wind Farms

This chapter implements a recently developed social hierarchy-based distributed

economic model predictive control (DEMPC) algorithm in floating offshore wind

farms for the purpose of power maximization. The controller achieves this objec-

tive using the concept of yaw and induction-based turbine repositioning (YITuR),

which minimizes the overlap areas between adjacent floating wind turbine rotors

in real-time to minimize the wake effect. Floating wind farm dynamics and perfor-

mance are predicted numerically using FOWFSim-Dyn. To ensure fast decision-

making by the DEMPC algorithm, feed-forward neural networks are used to esti-

mate floating wind turbine dynamics during the process of dynamic optimization.

For simulated wind farms with layouts ranging from 1× 2 to 1× 5, an increase

of 20 % in energy production is predicted when using YITuR instead of greedy

operation. Increased variability in wind speed and direction is also studied and is

shown to diminish controller performance due to rising errors in neural network

predictions.
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6.1 Introduction
This chapter outlines the implementation of distributed economic model predictive

control (DEMPC) for the purpose of power maximization in floating offshore wind

farms. This introductory section provides an overview of the control application

along with a description of the DEMPC algorithm.

6.1.1 Application

Wind turbines that are aligned with the free stream wind suffer from a phenomenon

termed the wake effect. Viscous interaction along the blades of an upstream ma-

chine generates a region downstream that is referred to as a wake in which the mean

wind speed is reduced in comparison to that of the surrounding wind field. Any

turbine that is located downstream and aligned with this wake encounters a lower

average wind velocity relative to its upstream neighbor, and may thus operate with

up to a 60 % reduction in power production [141].

One approach to mitigating the wake effect is wind farm control, which en-

tails the operation of individual turbine actuators in a manner such that power

production from the collective is increased. Two conventional wind farm con-

trol techniques have been widely investigated in the context of fixed-foundation

wind farms; power de-rating, which involves sacrificing power production from

upstream turbines to increase the mean wind speeds to which downstream ma-

chines are exposed; and wake steering, which requires operating upstream rotors

with deliberate yaw misalignment to deflect their generated wakes in the cross-

wind direction. The reader may refer to our comprehensive review article [102] for

further information on the wake effect and wind farm control.

Floating wind farms render possible a third control strategy for power max-

imization. Namely, the mooring systems that anchor floating platforms to the

seabed permit limited mobility of the platforms along the ocean surface. By operat-

ing a wind turbine with deliberate yaw misalignment, the direction of the net aero-

dynamic thrust force acting on its rotor may be altered, hence shifting its position

along the ocean surface. As shown in Figure 6.1, this mobility may be exploited to

reduce the overlap area between the wake generated by an upstream machine and

the rotor of a downstream turbine. This wind farm control strategy is termed yaw
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Figure 6.1: Schematic describing the use of aerodynamic thrust forces to pas-
sively relocate floating wind turbines in real-time.

and induction-based turbine repositioning (YITuR).

Our previous work [103] presented a steady-state model for predicting platform

displacements and power production in floating offshore wind farms. Additionally,

this work performed a stationary optimization study to evaluate the potential ben-

efits of YITuR under steady-state conditions. To this end, we reported efficiency

gains ranging from 21.8 to 42.7 % for wind farm sizes spanning from 2×2 to 7×7

provided that the mooring lines were long enough to permit crosswind relocation

of roughly one rotor radius. Given this potential for increasing energy production,

the aim of the current work is to transcend a steady-state analysis and to implement

YITuR in real-time using optimal control techniques.

6.1.2 Controller

At any given sampling time, model predictive control (MPC) utilizes a mathemat-

ical model of a plant to solve a dynamic optimization problem over a finite predic-

tion horizon. The output of this process is a sequence of optimal control inputs that

minimize or maximize a prescribed cost function over the prediction horizon while

satisfying constraints. Solely the first step in this sequence is then implemented, at

which point, based on updated state and disturbance measurements, the dynamic

optimization problem is recomputed at the next sampling time. More detail on
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MPC is available in review articles by Mayne [125] and Mayne et al. [126].

The turbine repositioning wind farm control problem addressed in this chapter

does not simply involve set-point stabilization; the control objective is to minimize

overlap areas between the rotors of adjacent floating wind turbines. Given this

property, economic model predictive control (EMPC) is a prime candidate for au-

tomation. EMPC computes optimal control actions by minimizing a generalized

cost function that is a quantifier of plant performance over a finite prediction hori-

zon. In comparison, traditional MPC minimizes a positive-definite cost function

that simply penalizes deviation from a prescribed set-point. More detail on EMPC

is available in the review article by Ellis et al. [55].

In order to promote scalability (i.e. computation time must not be affected

by the size of the plant), it is necessary to distribute the optimal control problem

among the various operational turbines within the plant; hence the employment of

DEMPC in our approach. DEMPC eliminates the computational burden encoun-

tered by centralized EMPC as each agent (i.e. floating wind turbine) computes its

own optimal control input sequence. In order to reach an optimal decision, ev-

ery agent must make assumptions as to the state and control input trajectories of

neighbors with which it is coupled. A major component of any DEMPC scheme

is therefore the coordination algorithm that is used to update the assumptions that

each agent holds regarding the future operation of its neighbors. More detail on

DEMPC is available in the review article by Müller and Allgöwer [134].

The turbine repositioning problem possesses two properties that pose chal-

lenges in the implementation of DEMPC. The first is that objective functions are

non-convex. There exist multiple platform displacement paths that reduce the over-

lap areas between the rotors of adjacent floating turbines. In standard parallel

DEMPC algorithms, convergence of agent decisions cannot be guaranteed in the

presence of non-convex cost functions [116]; more elaborate sequential [109, 151],

negotiation-based [120, 135, 170], and group-based [12, 117, 144] coordination al-

gorithms are therefore required to establish convergence. These algorithms suffer

from scalability issues however (see Chapter 5). The second property that poses

a challenge is that steady-state terminal set-points are not known a priori in the

current application. In brief, terminal set-points are necessary for achieving stabil-

ity in EMPC as they ensure that the computed optimal control actions always lead
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the system to a stable steady-state [55]. Existing DEMPC methods either assume

that these set-points are known a priori [184], are determined using centralized

optimization [6, 36, 50, 111, 112, 185], or are computed in a distributed manner

assuming convex cost functions [108]. Our previous work (see Chapter 5) over-

came these drawbacks and presented a DEMPC algorithm that used the concept of

social hierarchies to guarantee convergence and stability in the presence of non-

convex cost functions and unknown terminal set-points in a truly distributed and

scalable manner (i.e. no centralized functionalities were required).

6.1.3 Contributions

The main contribution of this chapter is the first implementation of a social hierarchy-

based DEMPC algorithm for the purpose of power maximization via YITuR in

floating offshore wind farms. A secondary contribution includes the first use of

feed-forward artificial neural networks to generate a computationally inexpensive

control-oriented model of floating wind turbine dynamics. These neural networks

serve as the mathematical model used in the dynamic optimization process of the

DEMPC algorithm. The final contribution is the first demonstration of the benefits

of YITuR implemented in real-time under time-varying wind conditions.

6.1.4 Chapter organization

The chapter is organized as follows: Section 6.2 describes FOWFSim-Dyn, which

is a simulator used to predict platform motion, wake aerodynamics, and wind farm

power production; Section 6.3 discusses the social hierarchy-based DEMPC objec-

tive and algorithm, the use of feed-forward neural networks to approximate turbine

dynamics, and the impacts of disturbances and model uncertainty on controller

performance; Section 6.4 provides simulation results of controller implementation

corresponding to different wind conditions and turbine array sizes; and Section 6.5

concludes the chapter with summaries of major findings and recommendations for

future research.
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Figure 6.2: Block diagram showing the computation modules of FOWFSim-
Dyn along with information transfer routes.

6.2 Simulation tool - FOWFSim-Dyn
This section briefly describes FOWFSim-Dym, which is a tool used to simulate

floating offshore wind farms in the current work. Full details of this software are

available in Chapter 4. A system diagram of FOWFSim-Dyn is shown in Fig-

ure 6.2. Two high-level modules are tasked with predicting floating platform mo-

tion coupled with wake aerodynamics. The following subsections delineate each

of these modules.

6.2.1 Floating turbine dynamics module

The purpose of the floating turbine dynamics module is to predict the positions,

velocities, and power outputs of all floating wind turbines within the wind farm.

As shown in Figure 6.3, a floating wind farm is treated as system of particles dis-

tributed along the two-dimensional ocean surface. The predominant free stream

wind direction is aligned with the global x̂ axis; however, FOWFSim-Dyn is ca-

pable of simulating fluctuations in the free stream wind direction relative to the x̂

axis. The wind velocity vector is denoted as V∞.

The variables xi and yi describe the positions of turbine i along the x̂ and ŷ axes

over time. The velocities of the platform of turbine i in these directions are denoted

by vx,i and vy,i. Finally, turbine i possesses two inputs; the rotor’s axial induction
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Figure 6.3: Schematic of the general floating offshore wind farm used in
FOWFSim-Dyn.

factor ai and its yaw angle γi measured positive counter-clockwise relative to the x̂

axis.

The motions of the floating platforms are determined by summing the aerody-

namic thrust forces, hydrodynamic drag and added mass forces, and mooring line

tensions acting on each turbine. Hydrodynamic drag and added mass forces are

calculated using Morison’s equation [152], wherein the drag and added mass con-

tributions of all submerged components are summed to provide the total hydrody-

namic force. Mooring line tensions are obtained by solving the problem of a static

catenary that is either partially resting along or fully lifted above the seabed [103].

Aerodynamic thrust forces are estimated by treating wind turbine rotors as ac-

tuator discs and computing thrust coefficients according to vortex cylinder the-

ory [29]. Computation of aerodynamic thrust forces also requires estimates of the

effective wind velocity that is incident upon the rotors of all turbines. The wake

aerodynamics module addresses this requirement.
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6.2.2 Aerodynamics module

The wake aerodynamics module predicts characteristics of the wakes generated by

each turbine over time. These characteristics include the wake centerline position,

wake diameter, and the average wake velocities in the x̂ and ŷ directions. The

evolution of these properties over space and time is captured using one-dimensional

momentum conservation with an assumed wake expansion rate.

The boundary conditions to this problem include the initial wake velocities at

the location of the turbine that generates each wake. The initial wake velocities

in the downwind and crosswind direction are estimated using momentum balance

methods proposed by Bastankhah et al. [18] and Jiménez et al. [93].

The effective wind velocity that is incident upon the rotor of a downstream

turbine is computed using the principle of equivalent kinetic power deficit [98].

Namely, the net kinetic power deficit at any downstream location is assumed to

equate to the sum of kinetic power deficits contributed by all upstream wakes.

Further, wake velocity profiles are modeled using Gaussian distributions as per

experimental results reported by Bastankhah et al. [18].

6.3 Controller design
This section first describes the optimal control objective for maximizing power pro-

duction in floating offshore wind farms. Then, the social hierarchy-based DEMPC

algorithm (see Chapter 5) is briefly described. Next, the use of feed-forward neu-

ral networks for estimating floating platform motion during dynamic optimization

processes is discussed. These neural networks treat aerodynamic coupling between

turbines as disturbances. The current section therefore also discusses the impact of

disturbance on the stability and performance of EMPC.

6.3.1 Controller objective functions

Simply put, the objective of DEMPC is to indirectly maximize power production

by minimizing the overlap areas between the rotors of adjacent turbines. Power

production is not directly maximized since this approach would require the iden-

tification of functions that estimate the power output of each turbine using some

machine learning scheme. Identification of such functions is challenging since,
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due to the transport phenomenon, the power produced by any turbine is strongly

influenced by the history of the states and inputs of its upstream neighbors. In other

words, the states and inputs that upstream neighbors would have possessed in the

past influence the power produced by a downstream turbine at the present moment.

Identification of a power function is therefore deferred to future work who’s pri-

mary focus is dynamic system identification of floating offshore wind farms. In the

current work, the indirect approach of rotor area overlap minimization is taken.

The resulting dynamic optimization problem to be solved by the local EMPC

function of turbine i takes the following form:

min
xi,ui

H−1

∑
k=0

{
∆uT

i,kQ∆ui,k +
1
|Ni| ∑

j∈Ni

[
AOL,i→ j(xi,k,x j,k)+∆uT

j,kQ∆u j,k
]}

, (6.1)

subject to

xi,0 = xi, (6.2a)

xi,k+1 = fi(xi,k,ui,k), (6.2b)

ai,k =
1
3
, (6.2c)

|γi,k| ≤ 10deg, (6.2d)

xi,H = xi,s, (6.2e)

where H is the length of the prediction horizon, and k is the time-step number along

the prediction horizon. The vector xi contains the most recent state measurements

of turbine i as follows:

xi :=
[
xi yi vx,i vy,i

]T
, (6.3)

and the vectors xi,k and ui,k contain the candidate states and inputs of turbine i at

time-step number k along the prediction horizon as follows:

xi,k :=
[
xi,k yi,k vx,i,k vy,i,k

]T
, (6.4)

ui,k :=
[
ai,k γi,k

]T
. (6.5)
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The terms xi := (xi,0,xi,1, · · · ,xi,H) and ui := (ui,0,ui,1, · · · ,ui,H−1) denote the can-

didate state and input trajectories of turbine i. The term ∆ui,k symbolizes the in-

put vector of turbine i at time-step number k measured relative to the reference[1
3 0deg

]T. This reference is used so that only deviation of the axial induction fac-

tor relative to its optimal value of 1
3 is penalized in the cost function. Q is a weight-

ing matrix that regulates the significance of this penalty. The set Ni contains the

indices of all agents that are physically adjacent to turbine i. Finally, AOL,i→ j(·) is

a function that computes the overlap area between the rotors of turbines i and j and

then normalizes this value based on the rotor swept area.

Constraint (6.2a) simply states that the initial condition along the prediction

horizon must equate to the latest state measurement. Constraint (6.2b) relates the

candidate state and input vector trajectories via a model of the dynamics of tur-

bine i. This dynamic model fi(·) is estimated using feed-forward neural networks

in Section 6.3.2. Finally, constraints (6.2c) and (6.2d) limit variations of the axial

induction factor and yaw angle of turbine i. In the case of yaw angles, values are

limited to ±10 deg for operational safety. In the current work, the axial induction

factors of all turbines are held fixed at the optimal operating point of 1
3 . In future

works that attempt to directly maximize power production, the axial induction fac-

tor may be permitted to vary since its impact is considered in the power estimation

function.

Constraint (6.2e) is the terminal set-point. It requires that the optimal state

trajectory xi ends at a stationary state vector xi,s, which is a candidate steady-state.

The computation of xi,s requires solving the following optimization problem at

each time-step:

min
xi,xi,s,ui,ui,s

∆uT
i,sQ∆ui,s +

1
|Ni| ∑

j∈Ni

[
AOL,i→ j(xi,s,x j,s)+∆uT

j,sQ∆u j,s
]
, (6.6)

subject to constraints in Eq. (6.2) along with

xi,s = fi(xi,s,ui,s), (6.7a)

ai,s =
1
3
, (6.7b)

|γi,s| ≤ 10deg, (6.7c)
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where ui,s is the candidate optimal stationary input vector of turbine i, and ∆ui,s de-

notes ui,s measured relative to the reference
[1

3 0deg
]T. Constraint (6.7a) requires

that xi,s and ui,s correspond to a stationary point. Similar to Problem (6.1), con-

straints (6.7b) and (6.7c) serve as limits on variations of the axial induction factor

and yaw angle at steady-state.

The difference between Problems (6.1) and (6.6) is that the latter does not

minimize the stage cost function throughout the prediction horizon. Instead, it

only minimizes overlap areas and actuator deviation at steady-state. It therefore

computes an optimal stationary point independent of the trajectory that leads to this

point. However, since the constraints require that xi,H = xi,s, the computed optimal

steady-state is guaranteed to be reachable given the current state measurement. The

vector xi,s is therefore a candidate reachable steady-state.

6.3.2 Feed-forward artificial neural network

In order to hasten the dynamic optimization process of the DEMPC algorithm,

feed-forward neural networks are used to approximate the dynamic model fi(·) for

any turbine i. This estimated model is solely a function of the states and inputs of

turbine i and thus treats aerodynamic coupling as disturbance or model uncertainty.

Each neural network takes the form shown in Figure 6.4. The six input neurons

represent the states xi,k and inputs ui,k of the corresponding turbine at some time-

step number k along the prediction horizon. This input layer feeds into a single

hidden layer consisting of 20 neurons. The output layer contains four neurons

representing the turbine states xi,k+1 at the subsequent time-step number k+1.

To generate training data for tuning the neural networks, FOWFSim-Dyn sim-

ulations consisting of 105 time-steps with sampling periods of 60 sec were com-

pleted for each wind farm configuration that was examined. The free stream wind

velocity was fixed at 8 m/s in the direction of the positive x̂ axis. The initial con-

ditions of each simulation were computed by operating all turbines with an axial

induction factor of 1
3 and a yaw angle of 0 deg. Then, over the course of the sim-

ulations, turbine inputs were randomly varied with uniform probability of 0.1 (i.e.

there was a 10 % chance that the input values would change at each new time-

step). The logic behind this variation approach was to allow enough time for the
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Figure 6.4: Schematic of the local neural network structure used to identify
the dynamic model of each floating wind turbine.

turbine platforms to respond to each change in input values. Axial induction factors

were varied between 0.2 and 0.4, while yaw angles were varied between −20 and

+20 deg.

Sample validation data is provided for the two-turbine floating wind farm de-

scribed in Figure 6.5. The turbine and platform designs are detailed in the works

of Jonkman et al. [96] and Robertson et al. [152], except mooring line lengths

have been increased from 835 to 950 m to increase platform range of motion. In

their neutral positions, the platforms are spaced seven rotor diameters apart, which

equates to 882 m.

For validation, FOWFSim-Dyn and the neural networks were given the same

randomly generated initial condition and turbine input sequences over 60 time-

steps (i.e. 3,600 sec). Their predictions of the system response are compared for

both turbines 1 and 2 in Figure 6.6 and Figure 6.7, respectively. These plots cor-

respond to a single run, and have been provided for qualitative inspection. It is

apparent that neural network predictions for turbine 1 more closely match simula-

tion results. This outcome is expected since turbine 1 is the leading machine and is
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Figure 6.5: Schematic of a two-turbine floating offshore wind farm simulated
in the current work. Wind turbine and floating platform properties are
based on the National Renewable Energy Laboratory’s (NREL’s) base-
line designs presented by Jonkman et al. [96] and Robertson et al. [152].
The sole modification is that mooring line lengths have been increased
from 835 to 950m to permit greater platform displacement.

thus uninfluenced by aerodynamic coupling. The behaviour of turbine 2 is affected

by the states and inputs of turbine 1 however, which induce greater prediction er-

rors in the behavior of turbine 2 since its neural network does not consider dynamic

coupling.

For a quantitative assessment of neural network performance, ten different runs

were completed to acquire the average root-mean-square-error (RMSE) of each

neural network output. This information is listed in Table 6.1. Neural network pre-

dictions of xi deviate from FOWFSim-Dyn results with RMSE values of 0.94 and

5.79m for turbines 1 and 2, respectively. The greater RMSE associated with tur-

bine 2 is attributed to the absence of dynamic coupling in the neural networks.

This trend reverses in the case of yi predictions. Since turbine 1 is unaffected by

any upstream wakes, it encounters higher wind speeds and thus displaces a greater

distance in the crosswind direction relative to turbine 2 when operating with yaw

misalignment. As a result, the RMSE value of y1 is inflated in comparison to that

of y2. These arguments apply equally well with regards to platform velocity RMSE

values. Successful control of the current system therefore requires that local EMPC

algorithms are capable of rejecting these prediction errors. A description of the so-
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Figure 6.6: Sample validation data for the neural network of the upstream
machine (i.e. turbine 1) in a two-turbine floating wind farm.
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Figure 6.7: Sample validation data for the neural network of the upstream
machine (i.e. turbine 2) in a two-turbine floating wind farm.
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Table 6.1: List of RMSE values between neural network predictions and
FOWFSim-Dyn predictions.

Turbine xi (m) yi (m) vx,i (m/s) vy,i (m/s)

1 0.94 14.68 0.02 0.08
2 5.79 11.89 0.05 0.06

cial hierarchy-based DEMPC scheme now follows.

6.3.3 Social hierarchy-based DEMPC algorithm

If multiple optimal solutions exist in an optimal control problem (i.e. the cost

functions are non-convex), and decisions are made in a synchronous and distributed

manner by multiple agents, then there exists a potential for conflicting decisions (see

Chapter 5). It is due to this logic that convergence of the decisions made by

multiple agents cannot be guaranteed in parallel distributed optimal control prob-

lems [116]. The social hierarchy-based DEMPC algorithm used in this work was

therefore originally developed to address non-convexity in distributed optimal con-

trol problems. The essential function of this algorithm is that all agents self-

organize in a fully distributed manner into a social hierarchy that dictates the order

in which each agent makes a decision.

The algorithm borrows from evolutionary principles. Namely, if an agent’s

current level along a social hierarchy yields decisions that conflict with those of its

neighbors, then the agent’s current level is detrimental to performance and must

be randomly varied. The method with which conflicting decisions are identified is

now described. At any iteration, each agent possesses assumed values of the state

and input trajectories of its neighbors. Based on these assumptions, and given some

existing social hierarchy that determines the order in which agents make decisions,

the agent updates its own optimal trajectories and calculates the resulting value of

its neighborhood cost function. We refer to this value as the naive cost function.

After receiving updated optimal state and input trajectories from its neighbors, the

agent recomputes the value its neighborhood cost function. We refer to this updated

value as the informed cost function. If the informed cost function is improved

in comparison to the naive cost function, then the agent’s decisions are mutually

beneficial with those of its neighbors. Otherwise, the decisions are conflicting and
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the agent must randomly change its place along the social hierarchy. It was proved

in our previous work that, for any interaction topology, at least one social hierarchy

exists that enables the agents to avoid conflicting decisions; thus establishing a

guarantee of convergence.

Another unique property of this algorithm is that it was developed without the

presumption of terminal set-points that are known a priori. Instead, it was intended

for the agents to determine these terminal targets in a fully distributed manner. With

mild similarity to the approach taken by Kohler et al. [108], the agents compute

their terminal set-points at each time-step by first solving an optimization problem

which minimizes their cost functions at steady-state. This steady-state set-point

is utilized as a terminal constraint in the subsequent optimization problem that

yields optimal dynamic state and input trajectories. The computation of the steady-

state set-points also makes use of the social hierarchy-based approach to eliminate

conflicting decisions.

6.3.4 Effects of dynamic coupling

In the current work, feed-forward neural networks are used to locally estimate the

dynamic model of each floating wind turbine. These estimated models are better

suited for dynamic optimization due to their low computation time requirements.

Since these neural networks are tuned locally, they are solely functions of the in-

puts and states of their corresponding turbines. They therefore do not consider the

inputs and states of turbines with which aerodynamic coupling exists. Dynamic

coupling may thus be interpreted as a source of disturbance or model uncertainty

in our work.

EMPC is inherently capable of rejecting disturbance or model uncertainty that

is appropriately bounded in magnitude given the dynamics of the plant. The impact

of disturbances in EMPC is first demonstrated in the context of terminal equality

constraint satisfaction in Figure 6.8. Let the set Xr contain all initial state vec-

tors x0 from which a terminal set-point xs is reachable in H time-steps while sat-

isfying process constraints. As long as x0 is contained within the set Xr, then

an input trajectory u = (u0,u1, · · · ,uH−1) exists that generates a state trajectory

x = (x0,x1, · · · ,xH) which ends at xH = xs. Disturbance or model uncertainty

189



Figure 6.8: Schematic showing the impacts of disturbance/model uncertainty
on terminal equality constraint satisfaction in EMPC

causes a deflection of the state trajectory from x to x′ = (x0,x′1, · · · ,x′H) as the sys-

tem moves forward in time. Provided that the magnitude of disturbance or model

uncertainty is appropriately bounded, then x′H will not leave the set Xr. As a result,

even if the system follows the deflected path from x0 to x′H , then a path from x′H
to xs is guaranteed to exist. If, on the other hand, the magnitude of disturbance is

large enough to cause x′H to leave Xr, the satisfaction of the terminal constraint

cannot be guaranteed and system redesign is recommended.

Next, the impact of disturbance on the satisfaction of trajectory constraints is

discussed. Let the set X contain all acceptable values of the state vector xk for

all k ∈ I0:H . In other words, the state trajectory x must always be contained within

X . As before, disturbance or model uncertainty deflects x to x′ as the system

moves forward in time. Provided that the magnitude of disturbance is appropriately

bounded, then x′ will not leave the set X and state constraints will be satisfied.

This expectation is conservative however. If the magnitude of disturbance is not

appropriately bounded, then the technique of constraint tightening [37] may be

used to ensure constraint satisfaction.

The mechanism of constraint tightening is demonstrated in Figure 6.9. Once

again, it is required that x remains within the set X . To ensure this outcome, the set

X may be duplicated and tightened to form the set X ′. The dynamic optimization

problem must then be required to maintain x within X ′. If X ′ is sized accordingly,

then, even with the worst-case disturbance scenario, the deflected state trajectory

x′ is guaranteed to remain within the original process constraint set X .
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Figure 6.9: Schematic demonstrating the method of constraint tightening for
process constraint satisfaction in EMPC.

6.4 Results and discussion
The current section presents simulation results corresponding to the implemen-

tation of the DEMPC scheme outlined in Section 6.3 on floating wind farms of

different sizes. Each simulated wind farm possesses a row configuration similar

to that shown in Figure 6.5. Inter-turbine neutral position spacings are seven rotor

diameters and mooring line cable lengths are 950 m, while the sizes of the wind

farms range from 1× 2 to 1× 5. First, the impact of wind speed and direction

variation on controller performance is assessed for a 1× 2 wind farm. Then, the

performance and behaviour of larger array sizes are investigated.

6.4.1 Wind velocity variation

The neural networks described in Section 6.3.2 were tuned using data correspond-

ing to 8 m/s free stream wind aligned with the positive x̂ axis. As the free stream

wind speed and direction deviate from this condition, the error in neural network

outputs will increase and cause detriment to controller performance. We therefore

assess in this subsection the impacts of free stream wind velocity fluctuations on

platform motion and optimal power production.

To quantify velocity fluctuations, we define the parameter 0≤σ∞≤ 1 and use it

to randomly perturb, with uniform probability, the ten-minute averaged free stream

wind velocity vector. Therefore, at some ten-minute mark t, the free stream wind
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Figure 6.10: Sample randomly generated free stream wind speed evolutions
in the x̂ and ŷ directions corresponding to a perturbation parameter of
σ∞ = 5 %.

velocity vector V∞(t) is computed as follows:

V∞(t) = V∞ +

rand±σ∞‖V∞‖
rand±σ∞‖V∞‖

 , (6.8)

where V∞ is the baseline free stream velocity vector of 8 m/s aligned with the posi-

tive x̂ axis, and rand±σ∞‖V∞‖ is a function that generates a random number between

−σ∞

∥∥V∞

∥∥ and +σ∞

∥∥V∞

∥∥. Spline interpolation is then used to generate smoother

curves with 0.1 sec resolution using these randomly generated ten-minute averages.

Sample free stream wind velocity curves in the x̂ and ŷ directions corresponding to

σ∞ = 5 % are plotted in Figure 6.10.

6.4.2 Social hierarchy-based DEMPC properties

The relevant properties of the social hierarchy-based DEMPC algorithm are listed

in Table 6.2. Only two social hierarchy levels are used since, in order to pre-

vent conflicting decisions, each turbine must be given the opportunity to compute

its optimal trajectory out of synchrony with its adjacent neighbors. Within each
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Table 6.2: List of properties relevant to the social hierarchy-based DEMPC
algorithm.

Property Value

Number of social hierarchy levels 2
Number of iterations per sampling period 3
Number of prediction horizon time-steps, H 5

Input weight matrix, Q
[

1 0
0 1

]

sampling period, each turbine is granted three iterations to compute its optimal

stationary point by solving Problem (6.6), as well as three additional iterations to

compute its optimal state and input trajectories by solving Problem (6.1).

The length of the prediction horizon is set to H = 5. Since the sampling period

of each controller is 60 sec, this value of H permits prediction of 5 min into future.

Finally, the input weight matrix Q used in Problems (6.6) and (6.1) is set the iden-

tity matrix. Since the overlap areas between turbine rotors are normalized in the

cost functions of Problems (6.1) and (6.6), input weights of unity render the opti-

mization problem approximately circular. An identity matrix was therefore used a

starting point for Q and the corresponding results were deemed acceptable.

Regardless of the wind farm size, the time required by the DEMPC algorithm to

compute optimal state and input trajectories per turbine ranged from 10 to 50 sec.

This range of durations is smaller than the sampling period of 60 sec; the social

hierarchy-based DEMPC algorithm may therefore be implemented in real-time. It

is important to note that, if a sequential DEMPC algorithm [109, 151] had been

used, then the total computation time would be a summation of the durations re-

quired by all turbines. This property exists since a sequential algorithm requires

that individual turbines take turns to make decisions. In other words, even for

a two-turbine wind farm, the total required computation time would range from

20 to 100 sec, which exceeds the 60 sec sampling period.

6.4.3 Effects of wind velocity variations

The impact of time-varying free stream wind velocity on controller performance is

assessed for a 1× 2 wind farm. Evolutions of turbine ŷ positions for different σ∞

values are shown in Figure 6.11. As desired, the two floating wind turbines relocate
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Figure 6.11: Evolution of ŷ positions in a two-turbine floating wind farm that
is optimally controlled by the DEMPC from Section 6.3. The four
plots correspond to different wind velocity perturbations of a) σ∞ =
5 %, b) σ∞ = 10 %, c) σ∞ = 15 %, and d) σ∞ = 20 %.

in opposite directions in all cases to minimize their respective rotor overlap areas.

Specifically, the turbines shift by approximately one rotor radius (i.e. 60 m), which

results in a total clearance of one rotor diameter between their nacelle centerlines.

The impact of neural network prediction error is also evident in two aspects.

First, regardless of the wind velocity perturbation parameter σ∞, the downstream

turbine’s ŷ position shows greater variability over time. The reason is that the

dynamics of the downstream turbine (i.e. turbine 2) are influenced by the states and

inputs of the upstream machine. Since this coupling was not explicitly considered

in the machine learning process, the neural network of turbine 2 is subject to greater

prediction error. This error translates to deflections of optimal state trajectories as

discussed in Section 6.3.4.

Second, as the wind velocity perturbation σ∞ is increased from 5 to 20 %, the

ŷ positions of both turbines show greater variability over time. This outcome is

also explained by neural network prediction error. The neural networks have been

tuned using data corresponding to a free stream wind velocity of 8 m/s aligned with
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the x̂ axis. As the wind velocity deviates from this reference, the neural network

uncertainties are exacerbated, once again leading to deflections in state trajectories

relative to computes optimal values.

Evolutions of wind farm power production for different σ∞ values are shown

in Figure 6.12. This figure displays power production trends corresponding to

both DEMPC and greedy1 operation subject to identical free stream wind condi-

tions. The greedy performance curves demonstrate the amount of power produced

without wind farm control. Any rise in power production in the greedy case is

consequently purely a result of free stream wind speed fluctuations. The benefit

incurred by implementing YITuR is therefore quantified by the difference between

the DEMPC and greedy power trajectories. With 5 % variability in the wind veloc-

ity, YITuR yields an 18.4 % gain in energy production relative to greedy operation

throughout the hour-long simulation.

An additional observation from Figure 6.12 is that the increased variability of

the free stream wind velocity diminishes wind farm controller performance. As

σ∞ is raised from 5 to 20 %, the relative gain in wind farm energy production

obtained by switching from greedy operation to optimal control decreases from

18.4 to 7.3 %. This outcome is partly caused by the aforementioned rise in neural

network prediction error that results from wind speed and direction deviations from

the values used for neural network tuning. As seen in Figure 6.11, this error causes

turbine ŷ displacements to decrease for brief periods, which increases rotor overlap

areas. Another factor is that, as the free stream wind direction varies and misaligns

from the row of turbines, wake overlap naturally subsides. As a result, wind farm

control fails to yield much benefit relative to greedy operation.

Platform displacements in the x̂ direction are not considered in the DEMPC

optimization problems; their progressions are therefore entirely dictated by the

free stream wind velocity and aerodynamic coupling. Insight may nonetheless

be gained by examining their trends. Evolutions of turbine x̂ displacements (i.e.

relative to neutral positions) are shown in Figure 6.13. The first observation is that

turbine 2 consistently displaces a smaller distance in the downwind direction in

1Greedy operation implies the absence of wind farm control. That is to say, each wind turbine
is operated with an axial induction factor and yaw angle that maximize its own power output; these
greedy values are ai =

1
3 and γi = 0 deg.
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Figure 6.12: Evolution of power production in a two-turbine floating wind
farm that is optimally controlled by the DEMPC from Section 6.3. For
comparison, power production under greedy operation is also demon-
strated. The four plots correspond to different wind velocity pertur-
bations of a) σ∞ = 5 %, b) σ∞ = 10 %, c) σ∞ = 15 %, and d) σ∞ =
20 %.

comparison to turbine 1 for all wind velocity scenarios. The reason is simply that,

as the downstream machine, turbine 2 encounters slower wind speeds on average

due to the presence of the wake produced by its upstream neighbor.

A second trend from Figure 6.13 shows that the downwind displacement of

turbine 2 is more volatile over time. This behaviour is once again the result of aero-

dynamic coupling. As turbine 1 adjusts its yaw angle and relocates its platform,

the resultant effects on the wind field are transported downwind to the location of

turbine 2. The downstream machine therefore encounters greater variability in the

effective wind velocity that is incident upon its rotor. Furthermore, larger variations

in the free stream wind velocity cause greater volatility in the downwind displace-

ment of both turbines. In the case of σ∞ = 5 %, the x̂ displacement of turbine 2

ranges from 85 to 100 m. This range expands to 75 to 105 m at σ∞ = 20 %. This

outcome indicates that some additional control function may be required to limit

excessive platform displacements in the downwind direction. This function may
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Figure 6.13: Evolution of x̂ positions in a two-turbine floating wind farm that
is optimally controlled by the DEMPC from Section 6.3. The four
plots correspond to different wind velocity perturbations of a) σ∞ =
5 %, b) σ∞ = 10 %, c) σ∞ = 15 %, and d) σ∞ = 20 %.

take the form of constraints in the DEMPC optimization process or, alternatively,

downwind position regulation may be achieved via wind turbine-level control sys-

tems.

6.4.4 Performance of different wind farm sizes

In this subsection, the impact of increasing the wind farm array size is assessed

while maintaining σ∞ = 5 %. Evolutions of wind farm power production for wind

farm sizes ranging from 1× 2 to 1× 5 are shown in Figure 6.12 for both optimal

operation using DEMPC and greedy operation. In all cases, the energy produced

by the wind farm over the simulated hour increases by approximately 20 % when

optimal control is used in place of greedy operation. This result contradicts the

findings of our stationary optimization study [103], wherein the relative gain in

wind farm efficiency increased from 21.8 to 42.7 % as the wind farm size was

varied from 2×2 to 7×7.

One possible explanation for this outcome is that, as the wind farm size in-
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Figure 6.14: Evolution of power production in floating wind farms of dif-
ferent sizes that are optimally controlled by the DEMPC from Sec-
tion 6.3. For comparison, power production under greedy operation
is also demonstrated. The wind velocity perturbation is fixed at σ∞ =
5 %. The four plots correspond to different wind farm configurations
of a) 1×2, b) 1×3, c) 1×4, and d) 1×5.

creases, the trailing machines are subject to dynamic coupling from a larger number

of upstream counterparts. As a result, their neural networks are subject to greater

prediction error, which renders their optimal controllers less effective. This ex-

planation is validated by plotting evolutions of turbine ŷ positions for the different

wind farm sizes in Figure 6.15. It is evident that, although σ∞ remains unchanged,

the ŷ position of each subsequent downstream turbine displays greater variabil-

ity in comparison to those of its upstream neighbors. The ŷ position trajectory of

turbine 5 in Figure 6.15d defies this trend; however, the ŷ position trajectory of

turbine 3 is consistently more volatile than those of turbines 1 and 2 in all relevant

plots, and the ŷ position trajectory of turbine 4 is consistently more volatile that

that of turbine 3 in all relevant plots. This increased volatility results in longer

moments of increased overlap between turbine rotors.

A final observation from Figure 6.15 that is worth point out is the fact that the

social hierarchy-based DEMPC algorithm successfully prevents conflicting deci-
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Figure 6.15: Evolution of ŷ positions in floating wind farms of different sizes
that are optimally controlled by the DEMPC from Section 6.3. The
wind velocity perturbation is fixed at σ∞ = 5 %. The four plots cor-
respond to different wind farm configurations of a) 1× 2, b) 1× 3, c)
1×4, and d) 1×5.

sions in all simulated cases. For each wind farm size, neighboring floating wind

turbines are relocated in opposite directions, which is the most effective modified

layout for minimizing adjacent overlap areas.

Evolutions of turbine x̂ positions for the different wind farm sizes are plotted in

Figure 6.16. As observed from x̂ displacements in the case of the two-turbine wind

farm from Figure 6.13, downstream machines shift a smaller distance on average

in the downwind direction due to reduced incident wind speeds while also experi-

encing greater volatility in x̂ displacements over time due to aerodynamic coupling.

However, it is observed in Figure 6.16 that, with each subsequent downstream ma-

chine, additional downwind displacements gradually diminish. For instance, over

the course of the 3,600 sec simulation from Figure 6.16d, the average downwind

displacement of turbine 1 is the largest at 96.1 m. This value drops to 90.9 and

86.0 m for turbines 2 and 3, and then to 82.8 m for both turbines 4 and 5. Clearly,

the wind velocity deficit resulting from the compounding of overlapping wakes
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Figure 6.16: Evolution of x̂ positions in floating wind farms of different sizes
that are optimally controlled by the DEMPC from Section 6.3. The
wind velocity perturbation is fixed at σ∞ = 5 %. The four plots cor-
respond to different wind farm configurations of a) 1× 2, b) 1× 3, c)
1×4, and d) 1×5.

ultimately converges to a finite value. This result is significant in the context of

turbine repositioning. It indicates that, regardless of the size of the wind farm, tur-

bines that are located far downstream may still encounter large enough wind speeds

to generate sufficient platform displacements for rotor overlap reduction.

6.5 Conclusion
This chapter presented the first real-time implementation of wind farm control for

power maximization in floating offshore wind farms. The specific mechanism for

power maximization involved relocating wind turbines using aerodynamic forces

to minimize overlap areas between the rotors of adjacent turbines.

Floating wind farms were simulated using FOWFSim-Dyn (see Chapter 4),

which is a simulation tool designed specifically for capturing floating platform mo-

tion coupled with wind farm aerodynamics. The wind farm controller was based

on a social hierarchy-based distributed model predictive control (DEMPC) algo-

200



rithm (see Chapter 5) developed to address convergence challenges in non-convex

distributed optimal control problems. Finally, feed-forward neural networks were

used to model floating turbine dynamics during the dynamic optimization process

of the DEMPC algorithm.

Conclusions and recommendations that have been derived from the results of

this work are now discussed. Neural networks were effectively used to predict

floating wind turbine behaviour for wind farm rows with layouts of 1×3 or smaller

while neglecting dynamic coupling. Future work should establish error bounds on

neural network predictions while taking into consideration the effects of dynamic

coupling for improved performance in larger wind farms.

Deviations in the free stream wind velocity from the baseline value at which

neural networks were tuned diminished controller performance. Future work may

consider the free stream wind speed and direction as inputs to the neural networks

or, alternatively, unique neural networks may be identified for multiple wind speed

and direction ranges.

In larger wind farms, downstream machines demonstrated high variability in

platform positions over time. This outcome resulted from increased neural network

prediction error due to dynamic coupling. Once the bounds on these uncertainties

have been established, future work may implement constraint tightening methods

to limit the variability of floating platform positions.

The current controller maximized wind farm power production indirectly by

minimizing the overlap areas between the rotors of adjacent floating turbines. Fu-

ture work should use some machine learning scheme to identify power output func-

tions for each turbine to serve as cost functions in DEMPC, thus permitting direct

maximization of wind farm power production.

In the current work, a single row of wind turbines aligned with the predominant

free stream wind direction was examined. Identifying which pairs of turbines en-

counter strong aerodynamic coupling was therefore a trivial task. In more complex

wind farm configurations, such as gridded layouts, the pairings of turbines that in-

teract aerodynamically is determined by the wind direction at any given instant in

time. Future work may therefore extend the cost functions used by the DEMPC

algorithm to capture the effects of wind direction on turbine pairings.

The current chapter was concerned solely with power maximization as the wind
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farm control objective. Future work may assess alternative objectives. For instance,

at sufficiently large wind speeds, the primary concern of a wind farm operator shifts

from power maximization to load reduction [107]. This shift may be accounted for

via adjustments to the cost functions used in optimal control algorithms. Specifi-

cally, cost functions may be defined such that the turbines track power set-points

while minimizing blade and tower vibrations among their neighborhoods. The role

that YITuR may play in such a control problem should be investigated.

The optimal state and input trajectories computed using DEMPC in the current

work should not be implemented directly. Instead, they should serve as set-points

for turbine-level controllers that consider additional dynamic phenomena such as

platform oscillation. Future work should therefore integrate wind farm-level con-

trol with lower controllers capable of rejecting disturbances caused by waves and

wind gusts with the aim of minimizing turbine loads and platform oscillation.

Finally, all state information was assumed to be available in the current work.

Future work should examine sensing and observer techniques for estimating float-

ing platform positions and velocities.
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Chapter 7

Conclusion

This thesis assessed the potential of real-time turbine repositioning for increasing

power production in floating offshore wind farms. A thorough review of existing

wind farm control literature was first presented in order to establish an understand-

ing of the status of research as well as major gaps. This step was followed by the

development of FOWFSim, which is a steady-state model for predicting platform

displacement and power production in floating offshore wind farms. This model

was used to conduct steady-state optimization studies to determine the potential

of the wind farm control method of yaw and induction-based turbine reposition-

ing (YITuR) under idealized static wind conditions. Next, a parametric dynamic

model of floating offshore wind farms named FOWFSim-Dyn was developed to

permit real-time control system evaluations.

The specific properties of the turbine repositioning control problems rendered

existing optimal control algorithms inadequate. As a result, the development of

a novel distributed economic model predictive control (DEMPC) algorithm that

overcame the shortcomings of existing theory was the next necessary step. Finally,

the real-time performance this DEMPC algorithm was evaluated via implementa-

tion using FOWFSim-Dyn. The following sections summarize the major findings

from these research steps and provide recommendations for future work. The fi-

nal subsection directly answers the research question posed in the introduction of

this thesis by addressing the potential and challenges associated with the practical

implementation of YITuR wind farm control.
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7.1 Steady-state assessment of YITuR
The primary conclusion from the steady-state assessment of YITuR was that this

wind farm control strategy has the potential to raise wind farm efficiency by more

than 20 %. However, its performance and viability were determined to be strongly

dependent upon wind conditions and mooring system design parameters. Future

work in this area should therefore involve the development of optimization soft-

ware that not only computes ideal turbine operating parameters, but also mooring

system properties such as cable length and anchor locations in order to maximize

annual energy production. Further, such software should consider site-specific

wind velocity data.

7.2 Dynamic modeling of floating offshore wind farms
The primary purpose for developing FOWFSim-Dyn was the absence of high-

fidelity simulation tools with similar capabilities and the lack of access to scaled

floating wind farm experiments. Consequently, only steady-state predictions of

wake propagation were validated using published experimental results from wind

tunnel tests. Validation of dynamic wake transport and platform motion have not

been performed. Future work in this area should therefore involve the development

of high-fidelity floating wind farm simulators that utilize large eddy simulations

(LES) to capture wake behaviour and couple this solver with a three-dimensional

floating platform dynamics module. Such a simulation tool, along with scaled ex-

perimental techniques may be used for further validation of FOWFSim-Dyn.

7.3 Real-time YITuR controller implementation
It was demonstrated during the implementation of a YITuR controller that feed-

forward neural networks may serve as appropriate surrogate models for predict-

ing floating platform motion during the dynamic optimization process of DEMPC.

However, the error in predictions was strongly influenced by aerodynamic cou-

pling between turbines and time-varying wind conditions. As a result, future work

on floating wind farm data-driven modeling should take into account several rec-

ommendations. First, coupling effects between turbines should be considered in
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the machine learning process. With this capability, each machine may better pre-

dict its future trajectory once informed of the optimal decisions and actions of its

upstream neighbors. Alternatively, coupling may continue to be treated as a model

uncertainty; however, more extensive studies should be carried out to determine

the bounds on these uncertainties. Finally, the current condition of the free stream

wind should factor into surrogate model outputs. This outcome may be achieved

by directly including the free stream wind speed and direction as model inputs, or

by tuning various neural networks for different ranges of wind velocity.

The prediction error due to aerodynamic coupling resulted in significant plat-

form motion and deterioration of performance among downstream machines. It is

therefore recommended that the optimal control problem be augmented with con-

straints that limit platform motion over time. Furthermore, satisfaction of these

constraints should be guaranteed using constraint tightening approaches once error

bounds on neural network predictions have been established.

The current implementation of YITuR control maximized wind farm power

production indirectly by minimizing rotor overlap areas between adjacent floating

wind turbines. Although this approach yielded gains in energy production exceed-

ing 20 % in scenarios of low wind speed and direction variability, a more direct

power maximization approach should be pursued. Namely, future research should

focus on the development of surrogate models that predict the power output of a

floating wind turbine based on the inputs and states of the turbine itself, along with

those of its upstream neighbors. Once such a function is established, the distributed

economic model predictive control theory developed in this work may be imple-

mented without modification for the purpose of wind farm power maximization.

The objective function used in Chapter 6 may be extended in two ways. First,

the pairs of turbines that interact aerodynamically may be defined as a function

of the wind direction. In this manner, as the wind direction changes, any given

turbine may update the set of neighboring machines with which it should minimize

rotor overlap. The current work only considered a single row of wind turbines

that are aligned with the free stream wind. The modification to objective functions

mentioned above will generalize YITuR to any wind farm configuration. Second,

the cost function used in DEMPC may be extended to accommodate the alternative

wind farm control objective of power set-point tracking and load reduction. This
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mode of wind farm control is relevant in cases where the wind speed is excessively

high and power maximization is no longer of primary concern.

The YITuR controller developed in this work is high-level and thus solely con-

siders floating turbine states and inputs that are consequential at the scale of the

wind farm. Motions such as platform oscillation and blade vibration are not fac-

tored into the optimal control problem since their effects on wind farm power pro-

duction are deemed to be insignificant. Nonetheless, platform oscillation and blade

vibration are consequential in the context of individual turbine loads and fatigue.

As a result, future work should develop turbine-level controllers that track the opti-

mal trajectories computed by the higher-level YITuR controller while minimizing

platform oscillation and blade vibration.

Finally, it was assumed throughout this thesis that floating wind turbine state in-

formation, such as platform positions and velocities, is directly measurable. Physi-

cal implementation of a YITuR controller will require appropriate sensing and state

estimation techniques that reliably deliver this information. Future work should

therefore assess the potential of different measurement and estimation technolo-

gies using scaled floating wind farm experiments.

7.4 Final comments on YITuR
Although the analysis performed in this work indicates that YITuR has the po-

tential to raise the efficiency of floating offshore wind farms by 20%, wind farm

developers may be hesitant to implement such a control technique in response to

several challenges. First, due to the large range of motion of the floating platforms,

gaining access to wind turbines will be a potentially unsafe and involved task for

maintenance crews. Second, the large range of platform motion will render the

ocean surface area spanned by the wind farm unsafe for naval vessel travel. Third,

lengthening mooring lines to expand movable ranges induces additional capital ex-

penses and alters the oscillatory responses of the floating platforms in the presence

of waves, wind velocity fluctuations, and aerodynamic coupling effects between

turbines. Finally, raising wind farm power production by reducing wake overlap

may exacerbate fatigue damage in turbines with partially overlapped rotors.

Further investigation of these challenges will illuminate the practicality and

206



feasibility of YITuR operation. If the complications associated with large platform

displacements are deemed to be a valid trade-off for the added revenue stemming

from increased efficiency, then a case could potentially be presented for YITuR

wind farm control. Regardless of this outcome however, completion of the current

project has been a worthwhile research endeavor. It yielded the first steady-state

and dynamic models of floating offshore wind farms, which will promote further

development of floating offshore wind technology via design, optimization, and

controller assessment studies. Further, tackling the repositioning problem necessi-

tated the development of a novel distributed control system that will have implica-

tions in a wide range of multi-agent systems such as autonomous vehicle platoons,

traffic networks, and multi-robot systems.
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Table A.1: Summary of wake models and simulation tools used within wind farm control studies that have been re-
viewed in the current chapter.

Model Type Fidelity
Time-

dependency
Wake phenomena Relative error

Park Parametric Low Steady Momentum deficit 0.1 to 15.9 %1

FLORIS Parametric Low Steady
Momentum deficit
Wake redirection

0.1 to 5.3 %2

FLORIDyn Parametric Low Quasi-dynamic
Momentum deficit
Wake redirection

7.9 to 11.7 %3

FOWFSim Parametric Low Steady
Momentum deficit
Wake redirection
Floating turbine motion

-

WFSim Turbulent 2D NS Medium Dynamic
Momentum deficit
Wake redirection

82.1 % VAF4

Ainslie Turbulent axisymmetric NS Medium Steady Momentum deficit 0.5 to 8.4 %5

FarmFlow Turbulent 3D parabolized NS Medium
Steady

Quasi-dynamic
Momentum deficit 0.2 to 26.9 %6

SOWFA 3D LES + Actuator line theory High Dynamic
Momentum deficit
Wake redirection

0.2 to 14 %7

SP-Wind 3D LES + Actuator disc theory High Dynamic
Momentum deficit
Wake redirection

-

1Relative error results were obtained by digitizing Figure 3 and calculating the percent deviation of the Park model results relative to the TNO wind
tunnel results [98].

2Relative error results were obtained from Table II [72].
3RMSE values were obtained from Figure 5a [67]
4Variance accounted for (VAF) result was obtained from Table 3 [23, 25]
5Relative error results were obtained by digitizing Figure 2 [4]
6Relative error results were obtained by digitizing Figures 2 to 4 and comparing UPM Code results with TNO experimental results [45].
7Relative error results were obtained from Tables 1 and 2 [182].
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Table A.1 continued from previous page

Model Type Fidelity
Time-

dependency
Wake phenomena Relative error

UTD-WF 3D LES + Actuator disc/line theory High Dynamic
Momentum deficit
Wake redirection

-

EllipSys3D 3D RANS High Dynamic
Momentum deficit
Wake redirection

-

STAR-CCM+ 3D RANS/LES High Dynamic
Momentum deficit
Wake redirection

-
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Table A.2: Summary of studies that have assessed the steady-state potential of power de-rating.

Ref.
Optimization/analysis
method

Inputs Optimization model Evaluation model
Simulated wind
conditions

Relative
efficiency gain

[20]
Centralized particle swarm
optimization

λ , β Steady Park model Steady Park model Const. speed 10.57%8

[21]
Centralized dynamic
programming

a Steady Park model Steady Park model Const. speed 8.33%9

[47] Manual optimization λ Steady Park model Steady Park model Const. speed 12.80%10

[159] Centralized genetic algorithm λ , β Steady Park model Steady Park model Const. speed 10.94%11

[160] Centralized genetic algorithm λ , β Steady Park model Steady Park model Const. speed 7.55%12

[171]
Centralized particle swarm
optimization

λ , β Steady Park model Steady Park model Const. speed 26.77%13

[84]
Centralized sequential
optimization

a Steady Park model Steady Park model Const. speed 5.40%14

[183] Distributed genetic algorithm a Steady Park model Steady Park model Const. speed 1.52%15

[14]
Centralized sequential
quadratic programming

a Steady Park model Steady Park model Const. speed -16

8Relative wind farm efficiency gain corresponds to simulation case 1, and was obtained from discussions in the section entitled Case Study [20].
9Relative wind farm efficiency gain was obtained from discussions in Section III [21].

10Relative wind farm efficiency gain was obtained by digitizing Figure 18 at a wind direction of 90deg [47].
11Relative wind farm efficiency gain was obtained from discussions in Section IV [159].
12Relative wind farm efficiency gain was obtained from discussions in Section 4 [160].
13Relative wind farm efficiency gain was obtained from discussions in Section VII [171].
14Relative wind farm efficiency gain was obtained from Table 1 [84].
15Relative wind farm efficiency gain was obtained from Table 5 [183].
16The wind farm power output corresponding to an uncontrolled wind farm is not listed; therefore wind farm efficiency gains cannot be calcu-

lated [14].
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Table A.2 continued from previous page

Ref.
Optimization/analysis
method

Inputs Optimization model Evaluation model
Simulated wind
conditions

Relative
efficiency gain

[22]
Centralized particle swarm
optimization

a Steady Park model Steady Park model Const. speed 9.96%17

[172] Manual optimization λ , β Steady Park model Steady Park model Const. speed 5.41%18

[131] Centralized genetic algorithm P Steady Park model Steady Park model Const. speed 13.34%19

[52] Manual optimization CP
Modified steady park
model

Modified steady park model
Const. speed
Turbulence

2.6%20

[85]
Centralized sequential
quadratic programming

ω Steady empirical model Steady empirical model Const. speed 2.85%21

[42]
Centralized gradient descent
optimization

P
Steady parametric wake
model [119]

Steady parametric wake
model [119]

Const. speed 3.23%22

[169] Manual optimization λ
Steady Milly
model [180]

Steady Milly model [180] Const. speed 4%23

[113] Centralized genetic algorithm β
Steady eddy viscosity
model

Steady eddy viscosity model
Const. speed
Turbulence

4.50%24

[105] Numerical simulation P No optimization Dynamic Ainslie model
Const. speed
Turbulence

4.10%25

17Relative wind farm efficiency gain was obtained from discussions in Section 5 [22].
18Relative wind farm efficiency gain was obtained from Figure 8 [172].
19Relative wind farm efficiency gain was obtained from Table I and corresponds to the gain obtained from using the constant rotor speed control

method relative to constant reference control at 5MW [131].
20Relative wind farm efficiency gain was obtained from Figure 12a.
21Relative wind farm efficiency gain was obtained from Table I [85].
22Relative wind farm efficiency gain was obtained from Tables 4.1 and 4.2 [42].
23Relative wind farm efficiency gain was obtained from discussions under the heading entitled Maximizing energy capture in Section B [169].
24Relative wind farm efficiency gain was obtained from discussions in Section V [113].
25Relative wind farm efficiency gain was obtained from discussions in Section 3.1 [105].
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Table A.2 continued from previous page

Ref.
Optimization/analysis
method

Inputs Optimization model Evaluation model
Simulated wind
conditions

Relative
efficiency gain

[141] Numerical simulation β No optimization EllipSys3D (dynamic CFD)
Const. speed
Turbulence
Wind shear

−7.70%26

[9] Centralized grid search β Steady Park model
Steady FLORIS model
SOWFA27

Const. speed
Turbulence
Wind shear

24.82%28

−9.35%29

[48] Numerical simulation β No optimization Dynamic LES
Const. speed
Turbulence
Wind shear

2.80%30

[99] Numerical simulation λ , β No optimization
MULTI3 (Dynamic k-ω
RANS model)

Const. speed
Turbulence
Wind shear

2.5%31

9.7%32

[156]
Centralized dynamic
programming

λ Steady Park model UTD-WF (Dynamic LES)
Const. speed
Turbulence
Wind shear

5.7%33

0.2%34

26Relative wind farm efficiency gain was obtained from Table III [141].
27The listed simulated wind conditions correspond to the dynamic SOWFA CFD tool. Constant wind speeds were simulated when using the FLORIS

wake model.
28Relative wind farm efficiency gain corresponds to the steady FLORIS wake model, and was obtained by digitizing Figure 8[9].
29Relative wind farm efficiency gain corresponds to the dynamic SOWFA CFD tool, and was obtained by digitizing Figure 8[9].
30Relative wind farm efficiency gain was obtained from Figure 8 [48].
31Relative wind farm efficiency gain corresponds to only WTG 4 and 11, and was obtained from Figure 13b and discussions in Section 3.2.2 [99].
32Relative wind farm efficiency gain corresponds to all four wind turbines, and was obtained from Figure 13b and discussions in Section 3.2.2 [99].
33Relative wind farm efficiency gain was obtained from Table III and corresponds to evaluation using the Jensen wake model [156].
34Relative wind farm efficiency gain was obtained from Table III and corresponds to evaluation using UTD-WF [156].
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Ref.
Optimization/analysis
method

Inputs Optimization model Evaluation model
Simulated wind
conditions

Relative
efficiency gain

[43]35 Wind tunnel experimentation β No optimization Scaled wind farm - 4.60%36

[31] Wind tunnel experimentation P No optimization Scaled wind farm - 0.90%37

[16] Wind tunnel experimentation λ , β No optimization Scaled wind farm - 0%38

[118] Wind tunnel experimentation β No optimization Scaled wind farm - 3.46%39

[2] Wind tunnel experimentation λ , β
No wind farm
optimization

Scaled wind farm -
3.26%40

3.81%41

[157]
Field experimentation + Noise
reduced wind turbine operation

β No optimization ECN’s EWTW wind farm - Inconclusive42

[26] Field experimentation β No optimization ECN’s EWTW wind farm - Inconclusive43

35Additional information is available in a companion study [146].
36Relative wind farm efficiency gain was obtained from discussions in Section 5.2 [43].
37Relative wind farm efficiency gain was obtained from Figure 7 [31].
38The zero gain in wind farm efficiency is evident from Figures 4a and 4b [16]; namely, the combinations of turbine operating parameters that

maximize wind farm performance are those that maximize individual turbine performance.
39Relative wind farm efficiency gain corresponds to a wind speed of 9m/s, and was obtained by digitizing Figure 5.3 [118].
40Relative wind farm efficiency gain corresponds to a scenario where the upstream turbine operates at a tip-speed ratio λ that was higher than its

optimal value, and was obtained from by digitizing Figure 10b [2].
41Relative wind farm efficiency gain corresponds to the gain in wind farm power output observed when the upstream turbine’s collective blade pitch

angle β was varied from 0deg to 2deg at a spacing of six rotor diameters, and was obtained by digitizing Figure 10a [2].
42There is no clear discrepancy between the wind farm power output results in Figure 10, which correspond to wind farm operation under different

control strategies [157]. It is mentioned by the authors that the concept of axial induction control is validated however, since little change in the wind
farm power output indicates that the loss in power output from the upstream turbine is compensated by a gain in power output from the remaining
turbines.

43There is no discernible rise in the wind farm power coefficient in Figure 4.1.f [26]. A wind power output increase is observed at a wind speed of
8m/s; however the upstream turbine also experiences a power output increase at this operating point. Since the upstream turbine is undisturbed, this
data point is deemed erroneous. This point is confirmed by the authors in Section 4.1.
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Table A.3: Summary of studies that have developed wind farm controllers based on the concept of power de-rating.

Ref. Control method Inputs Control model Evaluation model
Simulated wind
conditions

Relative
efficiency gain

[1]

Centralized artificial bee
optimization + Maximum
power-point tracking wind
turbine control

λ Steady Park model Steady Park model
Const. speed
Var. direction

4.03%44

[73]

Centralized sequential quadratic
programming optimization +
Feedback linearization and model
predictive wind turbine control

a Steady Park model Steady Park model Var. speed 4%45

[122]
Centralized/distributed
game-theoretic control

a Model-free Steady Park model Const. speed 34.05%46

[15]
Centralized/distributed gradient
estimation-based control

a Model-free Steady Park model Const. speed -47

[188]
Distributed discrete adaptive
filtering optimization

a Model-free Steady Park model
Const. speed
Var. direction
Turbulence48

3.87%49

44Relative wind farm efficiency gain was obtained by digitizing Figure 12g and corresponds to a wind direction of 180deg [1].
45Relative wind farm efficiency gain was obtained from discussions in Section 5[73].
46Relative wind farm efficiency gain was calculated based on results presented in Figure 5b [122]. This figure presents the wind farm power output

normalized relative to the optimal wind farm power output. The normalized power output was converted to the relative gain in wind farm efficiency via
simple algebraic manipulation.

47Power production from the suboptimal wind farm is not presented; therefore the efficiency gain cannot be calculated [15].
48The authors mention that a random variable is added to the power output of each turbine at each iteration to simulate environmental distur-

bances [188]. No statistical information is provided regarding this random signal.
49Relative wind farm efficiency gain corresponds to Algorithm 2, and was obtained by digitizing Figure 13 [188].
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Ref. Optimization/analysis method Inputs Control model Evaluation model
Simulated wind
conditions

Relative
efficiency gain

[94]50 Centralized extremum seeking
control

a Model-free Dynamic Park model
Var. speed
Turbulence

3.8%51

−13.2%52

[70]53 Distributed maximum
power-point tracking

a Model-free Dynamic Park model Var. speed 4%54

[3]
Centralized multi-resolution
simultaneous perturbation
stochastic approx.

a Model-free Dynamic Park model
Var. speed
Var. direction

32%55

[187]
Centralized nested-loop
extremum seeking control

Tgen Model-free
Dynamic
SimWindFarm

Const. speed
Turbulence

1.30%56

[164]

Centralized nonlinear model
predictive control + Maximum
power-point tracking wind
turbine control

ω
Dynamic
mosaic-tile model

Dynamic mosaic-tile
model

Var. speed 1.96%57

50Additional information is available in a companion publication [95].
51Relative wind farm efficiency gain corresponds to a low turbulence intensity setting of 2%, and was obtained from discussions in Section 5 [94].
52Relative wind farm efficiency gain corresponds to a high turbulence intensity setting of 8%, and was obtained from discussions in Section 5 [94].
53Additional information is available in companion publications [66, 71].
54Relative wind farm efficiency gain was obtained from Figure 8 and from discussions in Section 5.4 [70].
55Relative wind farm efficiency gain was obtained from Figure 10 [3].
56Relative wind farm energy production gain was obtained from discussions in the section entitled Simulation study: Simulation for turbulent

wind [187].
57Relative wind farm efficiency gain corresponds to a turbine spacing of 560m (i.e. seven rotor diameters), and was obtained from Figure 9 [164].
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Ref. Optimization/analysis method Inputs Control model Evaluation model
Simulated wind
conditions

Relative
efficiency gain

[83]
Centralized brute-force
optimization + Model predictive
wind turbine control

λ , β Steady Park model
Dynamic
SimWindFarm

Var. speed
Turbulence

0.41%58

1.42%59

[106]

Centralized Nelder-Mead
simplex optimization +
Demanded power-point tracking
wind turbine control

P
Steady Ainslie
model [104]

Dynamic Ainslie
model [104]

Const. speed
Turbulence

2.92%60

−2.88%61

[100]
DTU wind farm controller +
Maximum power-point tracking
wind turbine control

P
PossPOW wake
model [74]

PossPOW wake
model [74]

Const. speed
Turbulence

1%62

[175]
Centralized adjoint-based model
predictive control

a Dynamic WFSim Dynamic WFSim
Const. speed
Var. direction

23.59%63

−3.6%64

58Relative energy production gain corresponds to a 1×3 wind-aligned row wind farm modeled using FAST, and was obtained by manipulating the
Etot,greedy/E∗tot ratio described in Section V.A [83]. This ratio was manipulated to determine the energy production increase resulting from the proposed
MPC controller, operating at optimal conditions dictated by the wind farm optimization algorithm, relative to a traditional greedy controller.

59Relative energy production gain corresponds to a 1×10 wind-aligned row wind farm modeled using Aeolus SimWindFarm, and was obtained by
manipulating the Etot,greedy/E∗tot ratio described in Section V.B [83]. This ratio was manipulated to determine the energy production increase resulting
from the proposed MPC controller, operating at optimal conditions dictated by the wind farm optimization algorithm, relative to a traditional greedy
controller.

60Relative wind farm efficiency gain corresponds to a turbulence intensity of 7.5%, a mean wind speed of 8m/s, a controller sampling frequency of
0.1Hz, and a turbine spacing of seven rotor diameters, and was obtained from Figure 10 [106].

61Relative wind farm efficiency gain corresponds to a turbulence intensity of 21%, a mean wind speed of 10.5m/s, a controller sampling frequency
of 0.01Hz, and a turbine spacing of seven rotor diameters, and was obtained from Figure 11 [106].

62Relative wind farm efficiency gain was obtained from discussions in Section III.B [100].
63Relative wind farm efficiency gain was obtained by digitizing Figure 4 [175]. The value corresponds to the maximum relative gain in wind farm

power output over the course of the simulation.
64Relative wind farm efficiency gain was obtained by digitizing Figure 4 [175]. The value corresponds to the maximum relative loss in wind farm
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Ref. Optimization/analysis method Inputs Control model Evaluation model
Simulated wind
conditions

Relative
efficiency gain

[41]
Centralized nested
extremum-seeking control

Tgen Model-free UTD-WF
Const. speed
Turbulence

7.8%65

[76]
Centralized model predictive
control

CT Dynamic LES Dynamic LES
Const. speed
Turbulence
Wind shear

15.80%66

[138]67 Centralized model predictive
control

CT Dynamic LES Dynamic LES
Const. speed
Turbulence
Wind shear

21.19%68

[77]69 Centralized model predictive
control

CT Dynamic LES Dynamic LES
Const. speed
Turbulence
Wind shear

7%70

[176]
Lookup table for optimal blade
pitch angle settings

β FarmFlow
Goole Fields wind
farm

-
−15.9 to
11.1%71

power output over the course of the simulation.
65Relative wind farm efficiency gain was obtained by from Table 3 [41].
66Relative wind farm efficiency gain corresponds to a simulation with no penalization of turbulent dissipation, and was obtained from Table 3 [76].
67Additional information is available in a companion publication [136].
68Relative wind farm efficiency gain corresponds to the least restrictive C3t0 controller setting, and was obtained by digitizing Figure 3a [138].
69This study expands on previous work by considering wind farm entrance effects [76]. Additional information is available in a companion

study [129].
70Relative wind farm efficiency gain was obtained from discussions in Section 3.1 [77].
71Range of relative wind farm efficiency gains was obtained by digitizing Figure 12, and corresponds to different wind speeds while the wind was

aligned with the row of turbines [176].
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Table A.4: Summary of studies that have assessed the steady-state potential of yaw-based wake redirection.

Ref. Optimization/analysis method Inputs Optimization model Evaluation model
Simulated wind
conditions

Relative
efficiency gain

[128]72 Manual optimization γ
Interpolated wind tunnel test
data

Interpolated wind tunnel
test data

- 8.9%73

[11]
Distributed alternating direction
method of multipliers algorithm

γ Steady wake model Steady wake model Const. speed 17.7%74

[149]
Centralized constrained
optimization by using a linear
approximation

γ Steady FLORIS model Steady FLORIS model Const. speed 3.29%75

[63]
Centralized sequential quadratic
programming

γ Steady FLORIS model Steady FLORIS model Const. speed 7.7%76

[178]
Centralized quasi-Newton
algorithm

γ
Modified steady FLORIS
model

Modified steady FLORIS
model

Const. speed 2.85%77

[177]
Centralized game-theoretic
algorithm

γ
Modified steady FLORIS
model

Modified steady FLORIS
model

Const. speed 5.49%78

72Additional information is available in a companion publication [46].
73Relative wind farm efficiency gain corresponds to a turbine spacing of three rotor diameters, and was obtained from Table 2 in Paper 2 [128].
74Relative wind farm efficiency gain corresponds to the proposed distributed algorithm, and was obtained from Table II [11].
75Relative wind farm efficiency gain was obtained from Table 1 and corresponds to the stochastic average power production increase obtained from

using the OUU solution relative to no yaw offsets [149].
76Relative wind farm efficiency gain corresponds to the original wind farm layout with yaw optimization, and was obtained from discussions in

Section 5.2 [63].
77Relative wind farm efficiency gain corresponds to the single-objective optimization of power case (λ = 1), and was obtained from Table 1 [178].
78Relative wind farm efficiency gain was obtained from Table 1 and corresponds to the single-objective optimization of power case (γ = 1) for a

wind direction of 5deg [177].
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Ref. Optimization/analysis method Inputs Optimization model Evaluation model
Simulated wind
conditions

Relative
efficiency gain

[65]
Centralized gradient-based
sequential quadratic
programming

x, y, γ
Modified steady FLORIS
model

Modified steady FLORIS
model

Const. speed 5.26%79

[130] Numerical simulation γ No wind farm optimization
STAR-CCM+ (dynamic
CFD)

Const. speed
Turbulence
Wind shear

2.11%80

[39] Numerical simulation γ No wind farm optimization Dynamic LES
Const. speed
Turbulence
Winds shear

13.77%81

[58]82 Numerical simulation γ No wind farm optimization SOWFA (dynamic CFD)
Const. speed
Turbulence
Wind shear

4.6%83

[60] Numerical simulation γ No wind farm optimization SOWFA (dynamic CFD)
Const. speed
Turbulence
Wind shear

12.5%84

[2] Wind tunnel experimentation γ No wind farm optimization Scaled wind farm - 12%85

79Relative wind farm annual energy production (AEP) gain corresponds to the case with both layout and wake steering optimization, and was
obtained from Table II [65].

80Relative wind farm efficiency gain was obtained from Figure 7b and discussions in Section III.A [130].
81Relative wind farm efficiency gain was obtained by digitizing Figure 8a and corresponds to a yaw offset of 25deg [39].
82Additional information is available in companion publications [62, 66].
83Relative wind farm efficiency gain was obtained from Figure 4 [58].
84Relative wind farm efficiency gain was obtained from Figure 4 [58].
85Relative wind farm efficiency gain was obtained from discussions in Section 3.2.4 and Figure 10c, and corresponds to the highest wind farm power

output gain observed in response to varying the nacelle yaw angle γ of the upstream turbine [2].
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Table A.4 continued from previous page

Ref. Optimization/analysis method Inputs Optimization model Evaluation model
Simulated wind
conditions

Relative
efficiency gain

[31] Wind tunnel experimentation γ No optimization Scaled wind farm -
25.2% %86

7.0%87

[19] Wind tunnel experimentation γ No optimization Scaled wind farm - 17%88

[181] Field experimentation γ No wind farm optimization ECN’s scaled wind farm - Inconclusive89

[86] Field experimentation γ Lifting line model [163]
1×6 wind farm in
Alberta, CA

- 7 to 47%90

86Relative wind farm efficiency gain corresponds to a lateral downstream wind turbine displacement of −0.45 rotor diameters, and was obtained
from Figure 11 [31].

87Relative wind farm efficiency gain corresponds to no lateral downstream wind turbine displacement, and was obtained from Figure 11 [31].
88Relative wind farm efficiency gain was obtained from Figure 5, and corresponds to the right-most column of colored dots that represent turbine

yaw angles [19].
89There is no discernible pattern that relates the yaw angles of individual turbines to the wind farm power output; this point is discussed in Section 3.3

and is evident in Figure 6 [181].
90Range of relative wind farm efficiency gains was obtained from Table 1, and corresponds to different wind speeds and direction deviations from

perfect wind-alignment [86].
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Table A.5: Summary of studies that have developed wind farm controllers based on the concept of yaw-based wake
redirection.

Ref. Control method Inputs Control model Evaluation model
Simulated wind
conditions

Relative efficiency
gain

[147]
Centralized cooperative
game-theoretic control

a, γ Steady wake model Steady wake model Const. speed 25.51%91

[145]
Centralized cooperative
game-theoretic control

a, γ Steady wake model Steady wake model Const. speed 7.14%92

[146]
Centralized/distributed
cooperative game-theoretic
control

a, γ Gaussian process learning Steady wake model Const. speed 24.5%93

[69]
Nonlinear model predictive
control using extensive grid
search

γ FLORIDyn FLORIDyn Const. speed 0.19%94

[150]

Predefined optimal yaw angles +
PI wind turbine wake steering
controller + Gain scheduled PI
wind turbine power controller

γ No wind farm controller
Dynamic modified
SimWindFarm

Const. speed
Turbulence

4.5%95

[27]
Lookup table of optimal
set-points + Turbine yaw
controller

a, γ

Steady wake model
(similar to FLORIS
model)

Dynamic wake model
(similar to SimWindFarm)

Const. speed
Var. direction
Turbulence

-96

91Relative wind farm efficiency gain corresponds to the highest percent gain in wind farm power output across different wind directions, and was
obtained by digitizing Figure 7 [147].

92Relative wind farm efficiency gain was obtained from discussions in Section 6.3 [145].
93Relative wind farm efficiency gain corresponds to a distributed optimization scheme, and was obtained by digitizing Figure 13c and calculating

the final rise in mean power efficiency relative to its initial value [146].
94Relative wind farm energy production gain was obtained from discussions in Section IV [69].
95Relative wind farm efficiency gain was obtained from discussions in Section VI.B [150].
96It was not possible to obtain relative efficiency gain data from this study; however, relative energy production gain over three hours of simulation
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Table A.5 continued from previous page

Ref. Control method Inputs Control model Evaluation model
Simulated wind
conditions

Relative efficiency
gain

[72]97 Centralized game-theoretic
adaptive control

γ Steady FLORIS model SOWFA (dynamic CFD)
Const. speed
Turbulence
Wind shear

13.03%98

[139]
Centralized model predictive
control

CT , γ̇ Dynamic LES Dynamic LES
Const. speed
Turbulence
Wind shear

34.48%99

[137]
Centralized model predictive
control

CT , γ̇ Dynamic LES Dynamic LES
Const. speed
Turbulence
Wind shear

46%100

[148]
Centralized cooperative
game-theoretic control

Tg, β , γ Gaussian process learning Scaled wind farm - 33.22%101

[32]

Distributed extremum seeking
control + PI wind turbine wake
steering controller + Gain
scheduled PI wind turbine power
controller

γ Model-free Scaled wind farm - 20%102

was 2.06% [27].
97Additional information is available in companion publications [66, 68].
98Relative wind farm efficiency gain was obtained from Table II [72].
99Relative wind farm efficiency gain was achieved using combined yaw-based wake redirection and power de-rating wind farm control methods, and

corresponds to turbulent inflow wind. The result was obtained from Figure 12b [139].
100Relative wind farm efficiency gain corresponds to the gridded layout with a wide wind turbine spacing of six rotor diameters, and was obtained

from Table 1 [137].
101Relative wind farm efficiency gain was obtained from Figure 14 [148].
102Relative wind farm efficiency gain was obtained by digitizing the right plot in Figure 5 and averaging all data points past 200sec [32].
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Table A.5 continued from previous page

Ref. Control method Inputs Control model Evaluation model
Simulated wind
conditions

Relative efficiency
gain

[59]
Lookup table for optimal yaw
settings + Turbine yaw offset
controller

γ Steady FLORIS model
Longyuan Rudong
Chaojiandai wind farm

-
5.56%103

−12.16 to
19.96%104

[61]
Lookup table for optimal yaw
settings + Turbine yaw offset
controller

γ Steady FLORIS model
1×2 commercial wind
farm

- −7.9 to 10.2%105

103Relative wind farm efficiency gain corresponds to a scenario in which the wind is aligned with turbines C1 and D1, and was obtained by digitizing
data from Figure 6c [59]. This figure was selected for analysis since the turbine spacing between turbines C1 and D1 was seven rotor diameters.

104Range of relative wind farm efficiency gains corresponds to the entire range of wind directions presented in Figure 6c [59].
105Range of relative wind farm efficiencies was obtained by digitizing Figure 14, and corresponds to different wind directions.
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Table A.6: Summary of studies that have assessed the steady-state potential of turbine repositioning.

Ref. Optimization/analysis method Inputs Optimization model Evaluation model
Simulated wind
conditions

Relative efficiency
gain

[153]
Centralized covariance matrix
adaption evolutionary strategy

x, y Steady Park model FamFlow (steady CFD) Const. speed
−11.49 to
18.11%106

−4.04 to 4.77%107

[58]108 Numerical simulation y No optimization SOWFA (dynamic CFD)
Const. speed
Turbulence
Wind shear

41.0%109

[101]
Centralized sequential quadratic
programming

a, γ FOWFSim FOWFSim Const. speed 16.5 to 53.0%110

106Range of relative wind farm efficiency gains corresponds to turbine relocation within a suboptimal gridded wind farm layout, and was obtained by
digitizing Figure 12b [153].

107Range of relative wind farm efficiency gains corresponds to turbine relocation within an optimized wind farm layout, and was obtained by digitizing
Figure 12b [153].

108Additional information is available in companion publications [62, 66].
109Relative wind farm efficiency gain corresponds to lateral position control, and was obtained from Figure 4 [58].
110Range of relative wind farm efficiency gains corresponds to different mooring line lengths, and was obtained from Figure 3 and discussions in

Section IV.a [101].
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