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Abstract

The buoyant rise of wildfire smoke and the resultant vertical distribution of emission
products in the atmosphere have a strong influence on downwind pollutant concentra-
tions at the surface, and provide key input into regional and global chemical transport
models. Due to inherent complexity of wildfire plume dynamics, smoke injection height
predictions are subject to large uncertainties. One of the obstacles to the development
of new plume rise parameterizations has been the scarcity of detailed simultaneous
observations of fire-generated turbulence, entrainment, smoke concentrations and fire
behavior. This thesis makes contributions on two fronts: (i) it demonstrates the feasi-
bility of using coupled fire-atmosphere large-eddy simulations tomodel wildfire smoke
dynamics to produce "synthetic" plume data, and (ii) develops a new energy balance
plume rise parameterization to predict the vertical distribution of smoke in the atmo-
sphere.

The first part of the thesis focuses on evaluating the large-eddy simulation model
used in thisworkwith a detailed observational dataset froma real prescribed burn. The
next portion explores the effect of various fire parameters and ambient atmospheric
conditions on smoke plume behavior using a range of sensitivity studies. Analysis
of flow dynamics shows that the updraft is shaped by complex interactions of fire-
induced winds and vorticity generated in response to a near-surface convergence, and
does not conform to commonly used mixing and entrainment assumptions.

With the knowledge gained through the above numerical experiments, the second
half of the thesis introduces a simple parameterization for predicting the mean cen-
terline height for penetrative plumes from fires of arbitrary shape and intensity. Lastly,
the proposed parameterization is extended to capture the full vertical distribution of
smoke in the atmosphere. The broad goal of this work is to better our understanding
of plume rise dynamics and improve smoke dispersion predictions within air quality
applications.
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Lay Summary

This work aims to improve our understanding of how smoke from wildfires spreads in
the atmosphere. The more we know about where and how the pollutants travel, the
better we are able to predict hazardous air quality and inform downwind communities.
Specifically, this thesis presents simple tools for estimating how high above the Earth’s
surface the smoke from a wildfire will rise. Thesemethods can be used within existing
air quality models and help improve their accuracy.

iv



Preface

This dissertation is original work of the author, Nadejda Moisseeva, under the super-
vision of Roland Stull. Below are details of how papers (published and accepted for
publication) included in thesis were modified into chapters.

• Moisseeva, N.; Stull, R.: Capturing Plume Rise and Dispersion with a Coupled
Large-Eddy Simulation: Case Study of a Prescribed Burn. Atmosphere 2019,
10, 579.

Excerpts from the article are included in Chapter 2. Chapter 3 is based in full on
the paper, with the addition of brief introduction and ’Big picture’ sections.

• Moisseeva, N. and Stull, R.: Wildfire smoke-plume rise: a simple energy balance
parameterization, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-
2020-827, accepted for publication, Dec 2020.

Excerpts from the article are included in Chapter 2. Chapter 4 and Chapter 6 are
based in full on the paper, with the addition of brief introduction, expandedmodel
configuration description and ’Big picture’ sections.

For both publications, I was responsible for conceptualization, experimental de-
sign, methodology, analysis and visualization. Roland Stull was involved in concept
formation, manuscript composition and provided supervisory support throughout the
publishing process and the dissertation.
Datasets

Synthetic wildfire plume dataset produced for this dissertation is available via Feder-
ated Research Data Repository (FRDR):

• Moisseeva N, (2020). WRF-SFIRE LES Synthetic Wildfire Plume Dataset. Fed-
erated Research Data Repository. https://doi.org/10.20383/102.0314.
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Externally-sourced graphics

The following figures and their corresponding original sources are included in Chap-
ter 2 of the dissertation:

• Figure 1.1: Dalyup bushfire [48]
• Figure 2.2: Smoke modelling framework schematic. Figure produced by Chris
Rodell for internal report to Natural Resources Canada.

• Figure 2.3: Process diagram for RxCADRE project [54]
• Figure 2.4: Conceptual diagram of spatial scales captured by field campaigns
[61]

Open-source software

Smoke and trajectory visualizations included in Chapter 3 and Chapter 5 were pro-
duced using VAPOR open-source software [13].
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Chapter 1

Introduction

Wildfire smoke is a complex and dynamic pollutant. As wildfires become more fre-
quent and intense under the changing global climate, smoke pollution is quickly emerg-
ing as one of the key issues facing air quality in the coming decades. Our ability to
predict where and how smoke travels is crucial to mitigating its negative impacts for
human health and the environment.

What is wildfire smoke plume rise? Intense heat above the fire creates updrafts,
which simultaneously mix with and modify the ambient environment. These turbulent
columns of hot air mixed with fire emissions are referred to as a plumes. The term
plume rise is typically used to describe the initial buoyant phase of a smoke plume,
which determines how high in the atmosphere the pollutants will travel.

Why is understanding smoke plume rise important? The ability to predict where
in the atmosphere the majority of the smoke is released is key to accurately capturing
subsequent pollutant dispersion. Due to vertical wind shear, small errors in plume rise
predictions can have profound consequences for downwind dispersion and forecast
smoke concentrations at the earth’s surface. Figure 1.1 is a striking example of how
sharply the wind direction can change between various levels of the atmosphere. This
is why plume rise is often the pivotal point in smoke modelling process.

What are the challenges? Fundamental to understanding any physical process are
good observations. Yet detailed and temporally linked 3D measurements of smoke
dispersion and fire behavior are notoriously scarce. Moreover, wildfire plume dynamics
involve complex nonlinear interactions and feedbacks between the fire and ambient
atmosphere, which operate over a wide range of spatiotemporal scales. All these
factors present a challenge for both modellers and experimentalists. This work aims
to explore some of these challenges with the goal of improving our understanding of
smoke plume rise dynamics.

1



Figure 1.1: Dalyup bushfire January 10, 2016 (Esperance, Australia) [48]
1.1 Overview of thesis
Wildfire dynamics are inherently an interdisciplinary scientific field. Hence, I begin
by setting up the background for the thesis specifically in the context of air quality.
Chapter 2 briefly summarizes the current state of knowledge and introduces smoke
modelling frameworks (Section 2.1), plume rise parameterizations used within these
systems (Section 2.2) and data sources available for their evaluation (Section 2.3).
I discuss why coupled fire-atmosphere numerical models are gaining attention (Sec-
tion 2.4) and outline the path forward for this thesis (Section 2.5).

The next part of the thesis focuses on a numerical modelling tool key to this work:
the Weather Research and Forecasting Model (WRF) combined with a semi-empirical
Spread Fire model (WRF-SFIRE). Chapter 3 summarizes my effort in evaluating the
model, while Chapter 4 provides details of how I use WRF-SFIRE to generate surrogate
smoke plume data. This "synthetic" dataset is explored in Chapter 5, to gain insights
into how the fire interacts with the atmosphere (Section 5.1), breaks into multiple ro-
tating cores (Section 5.2 - Section 5.4) and entrains ambient environmental air (Sec-
tion 5.5).

In the remaining part of the thesis I step away from numerics and attempt to trans-
late the knowledge gained from the simulations into a simple analytical method for
predicting plume rise. Chapter 6 describes an energy-balance approach for estimating
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mean injection height of a smoke plume for a fire of arbitrary shape and intensity. I
constrain and evaluate the proposed method with both numerical and observational
data (Section 6.1 - Section 6.2), and demonstrate that there exists a linear dimen-
sionless relationship between updraft velocity and plume vertical penetration distance
(Section 6.3). Chapter 7 builds on this energy-balance approach, extending themethod
to parameterize the full vertical distribution of smoke in the atmosphere.

I conclude with a brief summary of key contributions of this thesis.
1.2 Purpose
My doctoral studies spanned some of the most devastating wildfire events both close
to home (e.g. FortMcMurray Fire of 2016) and globally (e.g. Australian "Black Summer"
andCaliforniawildfires of 2020). It is no coincidence, that thewildfire smokemodelling
community has grown immensely in just the last few years. Yet the complex nature of
wildfires makes for a uniquely interdisciplinary challenge to the scientific community.
Current state of knowledge is a product of collaborative effort between atmospheric
physicists, chemists, fire scientists, forestry and remote sensing experts, amongmany
others.

This thesis is written with air quality researchers in mind. Each chapter concludes
with a brief summary outlining its main purpose and/or contributions from a perspec-
tive of an atmospheric modeller. Yet many challenges and limitations of this work lay
at the interface of multiple disciplines. For this reason, I added a "Big Picture" section
at the end of each chapter. I hope this will help provide context, grasp the range of
scales and perspectives involved and establish a common ground with researchers in
other disciplines working to better our understanding of wildfire dynamics.
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Chapter 2

Background: wildfire smoke in the
atmosphere

Wildland fires are a fundamental global feature of the Earth system [5]. They cover
a broad range of spatiotemporal scales and are shaped by the complex interactions
of fuel, terrain, and meteorological conditions. Intense heat released during a wild-
land fire initiates convection, creating a rising smoke plume. This vertical transport of
byproducts of combustion, including aerosols and trace gases, combined with com-
plex dynamical feedbacks between the fire and ambientmeteorological conditions, set
wildfire smoke aside from other atmospheric pollutants [56].

Fire emissions can be injected far above the atmospheric boundary layer (ABL),
making them susceptible to long-range transport. Such penetrative smoke plumes
(i.e. plumes rising above the ABL), have far-reaching effects for chemical composition
of the atmosphere, weather and climate. Plumes confined to the ABL, on the other
hand, have direct impact on air quality on a local scale [38]. Between these extremes
are plumes that penetrate, but remain near the ABL, in the region often associated
with strong vertical windshear [70]. In some cases, a significant portion of the smoke
associated with such plumes remains trapped in the ABL. Our ability to predict sub-
sequent dispersion of pollutants and their impact, is hence, extremely sensitive to the
dynamics of the initial buoyant phase of the smoke plume. Yet our understanding of
plume rise has been limited due to both the complex nature of the phenomenon as
well as challenges in obtaining detailed observations of smoke plumes.

In this chapter, I summarize our current state of knowledge of smoke plume rise
dynamics. The first section sets the stage for examining plume rise in the context of
air quality, highlighting the importance of smoke modelling and it’s implications for
human health and the environment (Section 2.1). Next, Section 2.2 provides a brief
overview of existing plume-rise parameterizations and discusses their implementation
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within smoke modelling frameworks, noting the strengths and limitations of each ap-
proach. Section 2.3 summarizes common data sources used for creating, evaluating
and constraining the above parameterizations, highlighting the gaps in the available
observational data. The following Section 2.4 then takes a numerical perspective on
studying plume rise dynamics, reviewing existing tools as well as modelling experi-
ments. The last portion of the chapter (Section 2.5) synthesizes the knowledge gaps
and charts the forward path for this thesis.
2.1 Context: air quality and smoke modelling frameworks
Wildfire emissions contain a wide range of pollutants, widely recognized as a hazard
for human health, including carbon monoxide (CO), nitrogen dioxide, ozone, particu-
late matter (PM), polycyclic aromatic hydrocarbons, and volatile organic compounds
and many others [29, 63]. Epidemiologists have repeatedly linked smoke exposure to
respiratorymorbidity, as well as overall increasedmortality from all causes [23, 30, 47].

The ability of smoke dispersion models to make timely and accurate predictions
of the development, spread and intensity of smoke events is central to successful
mitigation of negative impacts for communities downwind. Typically, decision mak-
ers in a wide range of sectors, including health (public advisories and evacuations),
transportation (safety), tourism (nuisance), weather forecasters (public advisories),
wildfire response (downwind effects), and the public (health, nuisance), rely on smoke
modelling frameworks to forecast surface pollutant concentrations from wildfires.

In North America several numerical air quality forecasting systems exist, which aim
to capture emissions from wildfires. These include the BlueSky Framework operated
by the US Forestry Service [39] and its Canadian version (BlueSky Canada, Figure 2.1)
operated by the University of British Columbia [66], High-Resolution Rapid Refresh-
Smoke system from the USNational Oceanic and Atmospheric Administration [2], WRF
coupled with Community Multiscale Air Quality model (WRF-CMAQ) used by the US
National Weather Service [40], AIRPACT system operated by Washington State Univer-
sity [76] and the FireWork framework developed by Environment and Climate Change
Canada [9]. While these systems differ in their approach, they typically share key
components summarized in Figure 2.2.

Satellite and ground observations of "hot spots" are used to identify wildfire lo-
cations and sizes. This information is combined with fuel data to model emissions
produced by combustion. Using meteorology from numerical weather forecasts, the
vertical distribution of these emissions in the atmosphere is parameterized. From
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Figure 2.1: Surface PM2.5 forecast produced by BlueSky Canada smokemodellingframework.
there smoke dispersion is simulated (through either directly coupling chemistry with
the numerical weather model or carrying out trajectory analysis). Typically, the output
of such smoke modelling frameworks includes surface smoke concentrations (Fig-
ure 2.1) or column-integrated values, which can be compared with surface pollution
observations or satellite data, respectively.

Traditionally, many operational smoke modelling frameworks relied on plume rise
equations originally developed by Briggs [6] for industrial smokestacks [39, 57] to pre-
dict the vertical distribution of emissions in the atmosphere. Yet several studies sug-
gest that this approach may not be appropriate for wildfires [20, 22, 57, 62]. Never-
the-less, the Briggs plume rise scheme remains widely used today, hosted within well-
established air quality and dispersion models such as HYSPLIT, CMAQ, and in the
operational versions of BlueSky and FireWork, while often being recognized as a weak
link within these systems [9, 74]. As a result, plume rise parameterization development
remains an active area of research.
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Figure 2.2: Simple schematic showing a typical structure of a smoke modellingframework. Figure produced by Chris Rodell for internal report.
2.2 Overview of existing parameterizations
Existing smoke plume prediction models span a vast range of complexity from simple
empirical relations to themore recent coupled fire-atmosphere numerical approaches.
Often the choice of model is dictated by the context of its application, subject to the
trade-off between fidelity and timely execution. Typically, full-physics models, while
being able to resolve the complexity of wildfire plumes, are too slow or computationally
intensive to be used operationally [1]. Hence, simplified parameterizations are needed
to make plume rise data available in a timely manner for large modelling domains with
multiple active emission sources.

For clarity, from hereon I’ll refer to numerical models used for forecastingmeteorol-
ogy (e.g. WRF) and creating highly-detailed simulations of the atmosphere (e.g. large-
eddy simulations (LES)) asmodels. Simplified plume rise formulations typically hosted
within air quality modelling systems will be referred to as parameterizations. The
distinction is vital, as the goal of this thesis is to develop a plume rise parameterization
with the help of a numerical model.

In a recent review of existing plume rise parameterizations, Paugam et al. [56]
highlight three notable schemes that stand out in literature, as that of Freitas et al. [20],
Sofiev et al. [69] and Rio et al. [64]. Both Freitas and Rio’s methods use first principles
to characterize plume temperature, vertical velocity and entrainment. While the former
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provides prognostic 1-D equations that can be solved as a stand-alone "offline" model,
the latter is implemented as a sub-grid effect within a host chemistry transport model.
Notably, both consider an idealized heat source to represent the fire. While subject to
additional complexity and computational cost, the prognostic nature of these schemes
offers an advantage over purely empirical or statistical methods under rapidly chang-
ing meteorological conditions. Another strength of these parameterizations, which is
particularly important for global chemical transport modelling applications, is the in-
clusion of latent heat effects. Extreme pyroconvective plumes (classified as "flamma-
genitus" [52]) can gain additional buoyancy from energy released due to condensation
[58]. While such events are not common [74], they can have a significant impact for
atmospheric circulation on a global scale.

Sofiev’s semi-empirical approach relies on energy balance and dimensional analy-
sis [69], while using satellite data to both initialize and constrain the parameterization.
The convenience of the method lies in the fact that it only relies on three input param-
eters (ABL height, Brunt-Vaïsälä frequency of the free troposphere and fire radiative
power (FRP)) to obtain a smoke injection height estimate. The main limitation of the
scheme, as expressed by Paugam et al. [56], is the exclusion of condensation and
cloud formation from the scheme.

Another thermodynamics-based scheme was recently introduced within the exper-
imental version of FireWork model [9]. The approach is based on a method developed
by Anderson et al. [4], which aims to quantify the energy release of the fire and uses
environmental and dry adiabatic lapse rates to estimate the vertical distribution of
smoke.

Unlike Briggs’s equations, all of the above models address wildfire plumes specif-
ically, yet much research is needed to reduce the large prediction uncertainties [42].
Moreover, it is unclear, whether unreliable predictions should be attributed to the fire in-
put parameters or the plume rise scheme itself. One of the central challenges in plume
rise parameterization development has been the scarcity of comprehensive model
evaluation data [15, 54]. Key sources of observational data and their corresponding
limitations are summarized in the following section.
2.3 Sources of evaluation data
One of the challenges in obtaining a comprehensive dataset for evaluation of smoke
plume-rise schemes is the fact that wildfires operate on a broad range of spatial and
temporal scales. Fuel combustion, which is affected by the size, density and chemical
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properties of individual fuel elements as well as ambient environmental conditions,
operates on micro- and local- scales. Smoke dispersion, on the other hand, can range
from local to global scales, affected by both thermodynamics of the plume and mete-
orology.

To date, information on wildfire smoke emissions and dispersion has largely been
derived from two distinct sources: remotely sensed data and prescribed burn cam-
paigns. The "gold standard" for satellite plume observations has been the Multi-angle
Imaging Spectro-Radiometer (MISR) instrument on board the Terra satellite [31]. The
vertical distribution of aerosols can be reconstructed fromMISR images with a stereo-
scopic altitude retrieval algorithm with roughly 500 m accuracy, typically aided by the
MISR INteractive eXplorer (MINX) software tool [51]. MISR data has allowed for the
development of plume "climatologies" over various global regions. Based on such
comprehensive efforts [31, 73, 75], we know that only a small portion of wildfire smoke
plumes are injected above the ABL (4-12%), and vast majority of plumes that do reach
the free troposphere (83%) remain in the stable layers just above the ABL. A major
drawback of usingMISR data is that there is noway to differentiate clouds from smoke
or dust. Also, the satellite overpass times are limited to morning hours, when wildfires
are weakest and when the plumes have not fully matured [56, 75].

Smoke plume heights can also be obtained from the Cloud-Aerosol Lidar with Or-
thogonal Polarization (CALIOP), operated on board the CALIPSO satellite. With much
better spatial (120 m in the vertical) and temporal resolution, daytime overpasses and
ability to differentiate aerosols it offers several advantages overMISR. However, due to
extremely narrow swath width (and, hence, infrequent overpasses)most of the plumes
are not captured by CALIOP [31]. Apart from specific limitations of individual sensors
and satellites, a common problem with remotely sensed data is obstruction by clouds
and overall lack of direct spatiotemporal links to fire behavior [27]. As a result, until
recently, evaluation of smoke plume models required a combination of studies, as no
dataset was complete enough to rigorously constrain the problem [15].

To address this critical need for a comprehensivemodel evaluation dataset several
field campaigns have taken place in recent years, ranging in scope and scale. FireFlux
experiments I and II [10, 12] focused onmicrometeorology and fire-atmosphere interac-
tions. Themain goalwas to provide detailedmeasurements for evaluating fire behavior
tools and next-generation physics-based fire models.

A collaborative effort between National Oceanic and Atmospheric Administration
(NOAA) and National Aeronautics and Space Administration (NASA) called Fire Influ-
ence onRegional to Global Environments andAir Quality (FIREX-AQ)was designedwith
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Figure 2.3: Process diagram for RxCADRE project, including a partial list of mea-sured variables (figure extracted from [54]).
a focus on emissions and chemistry [65]. The campaign included a strong airborne
component, allowing to track plumes downwind to assess chemical transformations
and air quality impacts, but failed to provide any fire characterization data critical from
the standpoint of plume-rise modelling.

Oneof themost diverse comprehensive campaigns to date has been thePrescribed
Fire Combustion and Atmospheric Dynamics Research Experiment (RxCADRE) [54].
The project brought together researchers from a wide range of disciplines to collect
data on fuel, meteorology, fire behavior, energy, smoke emissions and fire effects. Ex-
perimental burns captured by this campaign required extensive planning, management
and coordination, but produced a well-integrated dataset spanning a wide range of
measurement techniques, as illustrated in Figure 2.3. Another important aspect of
RxCADRE dataset is that it captures a range of spatiotemporal scales most relevant to
evaluation of coupled fire-atmosphere numerical models (Figure 2.4).

Due to success of RxCADRE an even more extensive and complex Fire and Smoke
Model Evaluation Experiment (FASMEE) is currently underway [61]. While still in early
stages, the campaign is focused on large wildfires and aims to provide detailed mutli-
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Figure 2.4: Conceptual diagram of spatial scales captured by various field cam-paigns (figure extracted from [61]).
scale observations ranging from local to regional scale (Figure 2.4).

While comprehensive field experiments summarized above provide the necessary
level of detail for model evaluation studies, they typically capture a modest range of
fire and atmospheric conditions. Given the required coordinated effort (as shown in
Figure 2.3) and high costs of such campaigns, the use of "synthetic" numerical experi-
ment "data" produced by coupled fire-atmosphere models has been gaining attention,
as described in the following section.
2.4 Related work on numerical studies of plume dynamics
Rapid increase in computational power in the recent years has aided the develop-
ment of complex physics-based numerical models, that allow fire-atmosphere cou-
pling. Several such models exist today, covering a range of scales and various levels
of idealization of the modelled fire and atmosphere.

Wildland-Urban-Interface Fire Dynamics Simulator (WFDS) [49] and FIRETEC [41]
explicitly resolve combustion and, hence, require very fine model grid (on the order of
meters). The advantage is that fire behavior is captured without the use of simplifying
parameterizations. High computational demand of such systems, however, typically
limits the size of modelled domains to less than 1 km2 [61].

In contrast, WRF-SFIRE [45, 46], MesoNH-ForeFire [18], and Coupled Atmosphere
11



Wildland Fire-Environment (CAWFE) [14] have a strong focus on the atmosphere. Fire
behavior is parameterized allowing faster run time and larger scale simulations than
those performedwithWFDS and FIRETEC [61]. Plume dynamics, however, are resolved
to the level of detail which can hardly be matched by even the most extensive obser-
vational campaign. This is typically made possible by the use of large-eddy simula-
tions (LES): a computational fluid dynamics method that explicitly resolves turbulent
atmospheric motion, while only parameterizing small-scale eddies. It is, therefore,
critical to confirm whether the output of such models is physically realistic.

Overall, WRF-SFIRE has been one of the most actively developed models. Several
studies have examined its ability to capture the ground-spread behavior of a fire line,
near-surface temperatures andwinds [34, 35]. Large-scale simulations of two real fires
were carried out [36], comparing modelled plume tops with satellite data. Notably,
WRF-SFIRE was recently used to capture radiative feedbacks between the smoke and
the atmosphere [37] in a first study of its kind. Current developmental work includes the
addition of canopy parameterization, which accounts for the effects of modified wind
profile over forested land types [44]. Promising results of the above modelling studies,
as well as the presence of an active development community, were key in selecting
WRF-SFIRE as the central tool for this thesis.

While a growing number of evaluation studies of coupled fire-atmosphere models
are encouraging, there remains a general lack of research focusing on the vertical
distribution of smoke emissions in the atmosphere [42]. This knowledge gap can, in
part, be explained by the difficulty of constraining potential sources of error in both
inputs and the model itself.
2.5 Knowledge gaps and research questions
While, at first, modelling plume rise may appear to be purely an atmospheric dynamics
exercise, the subject is truly interdisciplinary in nature. Many aspects of plume rise
modelling lie at the interface of atmospheric physics, fire behavior science, numerical
methods, air quality, meteorology and remote sensing. This section aims to recap
what we know from each field and to identify the existing gaps in our knowledge, while
putting together a road map for the thesis.

What are the challenges in modelling wildfire smoke? Smoke is a harmful pollu-
tant. Understanding its movement in the atmosphere (and being able to predict it) is
crucial to mitigating negative air quality impacts. A weak link in our effort to model
smoke pollution is plume rise dynamics. Remotely sensed data suggests that vast
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majority of the plumes remain in or near the ABL [73]. However, the ability to determine
which plumes will remain in the ABL vs. penetrate it and reach the free troposphere
is critical for accurate downwind smoke predictions [69]. In addition, the penetration
distance within the free troposphere canmatter significantly due to vertical wind shear
[75].

Complex combustion-resolvingmodels are too slow and computationally intensive
to be useful for operational air quality applications. That is why smoke modelling
frameworks typically rely on simplified parameterizations to predict smoke injection
height. Such parameterizations remain subject to large errors, due to the complex
nature of the processes involved, uncertainties associated with fire behavior and the
limited observational data available.

How can we address these challenges? Comprehensive model evaluation data
on wildfire smoke plume rise is extremely scarce. Recent developments in coupled
fire-atmosphere models offer an opportunity to examine plume rise from a numerical
perspective. This approach, however, still needs to be evaluated. This dissertation
aims to make a contribution at the interface of numerical and analytical modelling,
guided by the following broad research questions:

• Can a coupled fire-atmosphere numerical model accurately simulate smoke
plume rise from a real fire?

The focus of Chapter 3 is to provide a "proof of concept" for using WRF-SFIRE to
simulate plume dynamics, using a real-life case study from the RxCADRE cam-
paign. Based on the results of this model evaluation, Chapter 4 introduces a
synthetic plume dataset, capturing a wide range of fire and atmospheric condi-
tions.

• What can we learn about the behavior of the atmosphere around the fire from
numerical experiments?

Chapter 5 examines the effects of various fire parameters and environmental
conditions onmodelled plume rise using the simulations described in Chapter 4.

• Can synthetic data be used to parameterize smoke plume rise for air quality
applications?

Based on insights gained from the numerical experiments, Chapter 6 introduces
a simple energy-balance plume rise parameterization to estimate themean smoke
injection height for penetrative plumes. Chapter 7 then extends this approach to
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predict the full vertical distribution of smoke in the atmosphere. Lastly, Chapter 8
summarizes the main contributions of this thesis.

While the broad research topics above highlight the overarching goals of this work,
each chapter will introduce more specific questions to help focus and guide this in-
vestingation.
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Chapter 3

Proof of concept: Capturing plume rise and
dispersion with a large-eddy simulation

Plume rise is a result of a complex set of physical phenomena, spanning multiple
spatiotemporal scales. Until recently comprehensive integrated datasets, combining
measurements of fire behavior, meteorology and smoke dispersion were not available
[61]. Hence, evaluation studies of coupled fire-atmospheric models focusing on plume
rise are scarce [42].

RxCADRE, a recent mutli-scale prescribed burn campaign designed to address this
need [54], provides a rare opportunity to examine the ability of a coupled fire-atmosphere
model (WRF-SFIRE) to capture smoke plume dynamics. In this chapter, I hope to pro-
vide a "proof of concept" for using WRF-SFIRE simulations as a surrogate for real-life
observational data.

Note that the main focus of this chapter is the evaluation of the model’s ability
to capture the atmospheric response to a simulated fire of known bulk properties,
rather than the fire behavior itself. Effectively, the work aims to validate the relation-
ship between the simulated surface forcing due to a fire and the resultant turbulent
convection.
3.1 Methods

3.1.1 Observational data

The RxCADRE campaign consisted of 10 operational and 6 small replicate prescribed
fires in Florida. Collected data are accessible via a US Forest Service online repository,
as referenced below. Smoke dispersion and emissions measurements are available
for three large fires: L1G and L2G grass fires and L2F sub-forest canopy surface fire.
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Figure 3.1: Long Wave Infrared (LWIR) image of L2G plot during ignition (12:32:02CST) with dashed black lines denoting burn perimeters. Red scatter points cor-respond to Highly Instrumented Plot (HIP) #1 fire behavior package (FBP), eachcontaining a system of airflow, temperature and energy sensors. Data source:RxCADRE field experiment [24–26].
For the purpose of model evaluation, I selected L2G (10 November 2012) grassland fire
as a case study, based on its reported uniformity and consistency of flame propagation
[7]. Figure 3.1 shows a sample snapshot of the burn plot during the ignition. The overall
meteorological conditions and instrumental design of the L2G experimental burn are
described in detail in Clements et al. [11]. The individual datasets obtained from the US
Forest Service online archive used for this study are summarized below.

Georeferencing data, including plot location and burn perimeters, are available from
Hudak and Bright [25]. Analysis of fire rate of spread (ROS) and intensity as well as a
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detailed description of three Highly Instrumented Plots (HIPs) used to produce the
estimates can be found in Butler et al. [7]. Locations of HIPs are available from Hudak
et al. [24]. HIP1, used for this evaluation, is shown in Figure 3.1. Near-surface wind and
temperature sonic anemometer time series for in-situ and background locations are
available fromSeto andClements [67, 68]. Ignitions timing and locationswere obtained
from field-grade GPS units, mounted on-board firing vehicles [26]. Fuel data used
for this evaluation study included photographs of pre-burn samples, as well as mea-
surements of size, loading and moisture content of species groups. Data collection
methodology is detailed in [53]. Dispersion and emissions measurements included
volume-mixing ratio of CO2, CO, CH4, and water vapor at a rate of 0.5 Hz, obtained
from aircraft-mounted sensors [72]. The georeferenced data consisted of horizontal
transects at multiple elevations, as well as "corkscrew" and "parking garage" flight
profiles.
3.1.2 Numerical configuration

I configured WRF-SFIRE [45, 46] in idealized LESmode. One of the primary advantages
of using this model is that it allows for two-way coupling between fire and the atmo-
sphere. WhileWRF-SFIRE does notmodel combustion directly, the spread and intensity
of the fire are parameterized using a semi-empirical approach. The latent heat flux is
computed based on the fuel consumption and stoichiometric combustion of cellulose.
Heat and moisture fluxes from the simulated burn provide forcing to the atmosphere,
which in turn influences fire behavior.

A 10.4 km × 14 km domain with 40 m horizontal grid spacing, 3000 m model
top and 51 hyperbolically stretched vertical levels was initialized using the 10:00 CST
(16:00 UTC) sounding [11]. While this may appear to be a shallow domain compared
to mesoscale ("Real") WRF simulations, such model top is substantially higher than
that found in several existing published WRF-SFIRE evaluation studies [15, 32, 35].
Five lowest model grid centers were located at approximately 8 m, 24 m, 42 m, 60
m and 80 m above ground level (AGL). I allowed the simulation to spin up the ambient
background flow for 2 h 23 min prior to ignition at ∼12:23 CST (time varied slightly
for different firelines). To aid the formation of buoyancy-driven ambient background
turbulence typical for a daytime ABL, I imposed a lower-boundary surface thermal flux
(tke_heat_flux). The value was estimated from the sonic anemometer time series of
vertical wind velocity and temperature over the time period leading up to ignition. As
shown in Figure 3.2, based on the measurements, the ambient background surface
heat flux remained fairly constant over the entire spin-up period. Hence, the lower-
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Figure 3.2: Five-minute averaged kinematic surface heat flux T ′w′ derived from1 Hz wind and temperature sonic anemometer time series of the backgroundambient environment. Data source: RxCADRE field experiment [68]..
boundary surface forcing was idealized for the LES simulation as being uniform in
space and constant in time. I used full surface initialization (sfc_full_init =.true.), with
the lower boundary moisture flux and surface roughness characteristics set to stan-
dard USGS values for "Grassland" land use category.

To help trigger the ambient background convection in a horizontally uniform initial
domain, I added a small temperature perturbation "bubble". With periodic boundary
conditions, near-stationary turbulence spectrum was achieved within ∼40 min of run
start. The well-mixed modeled ABL continued to turn over and warm for a total of 2 h
23 min (10:00:00 CST–12:23:00 CST). I used the restart file generated at 12:23:00 CST
as initial conditions for the main burn simulation (12:23:00 CST–13:12:00 CST), ensur-
ing the fire was ignited into a well developed convective ABL. Other key configuration
details can be found in Table 3.1, as well as in the complete namelist initialization files
in published supplementary material [50].
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Table 3.1: Key parameters of numerical domain setup.
Simulation Parameter Value/Description
Model version 24 May 2019 (git #ced5955)Horizontal grid spacing 40 mDomain size 260 grids (east-west) × 350 grids (north-south)Time step 0.1 sModel top 3000 m AGLSpinup timing 10:00:00–12:23:00 CST (CST = UTC − 6 h)Fire (restart) simulation timing 12:23:00–13:12:00 CSTSub-grid scale closure 1.5 turbulence kinetic energy (TKE)Lateral boundary conditions periodicSurface physics Monin–Obukhov similarity (sf_sfclay_physics = 1)Land surface model thermal diffusion (sf_surface_physics = 1)Ambient surface heat flux 160 W m−2 (tke_heat_flux = 0.13)

Following the LES spin up, I ignited the northwestern half of the simulated L2G plot
with four roughly parallel fire lines mimicking strip head fire method used during the
real-life burn (Figure 3.1). During the campaign, the prescribed burn was ignited with
drip torches attached tomoving all-terrain vehicles (ATVs). Using GPS data from these
vehicles (available from [26]), I extracted the locations of start and end points of the
four firelines, as well as their individual start and end ignition times. While the real-life
ignition process was not perfectly uniform in time, I approximated the modeled fire
lines as being ignited at a constant speed, such that the time and location of the start
and end points matched those of the real burn (see published supplementary material
[50]). Timing varied slightly for each of the four modeled firelines. I approximated the
ignitions as straight lines between observed start and end points, as the ATVs’ deflec-
tions from a straight path during the real burn remained within a single atmospheric
grid in my modeled domain.

Ignited cells in WRF-SFIRE proceeded to spread, while each fire line continued to
advance until reaching the opposite end of the L2G plot. I excluded subsequent upwind
ignitions of the remaining plot area to reduce the computational load of the simulation.
Taking into account the downwind location and timing of smoke plume observations,
this simplification should have no effect on the proposed evaluation. The simulation
was allowed to proceed for 49 min, until the emissions reached the downwind end of
the domain.

Summary of fire and fuel parameters can be found in Table 3.2. Based on pho-
tographs and average measurements of fuel size, composition and type, I determined
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Table 3.2: Details of fire and ignition parameters in LES setup.
Simulation parameter Value
Fire mesh refinement 10Ignition duration 12:23–12:36 CST (varied for each fireline)Rate of spread during ignition 0.2 m s−1

Fuel category 1 (short grass)Surface dead fuel moisture 8.46%Heat of combustion of dry fuel 1.64×107 J kg−1

Anderson’s fuel Category 1 (short grass) [3] to be the best fit for L2G ground cover.
Actual burn perimeters were used to mask the remaining domain as containing no
fuel to prevent spread of the simulated burn outside of the burn plot. I replaced the
standard fuel loading and depth associated with Type 1 fuels with average measured
values of 0.267 kg m−2 and 0.18 m, respectively. Surface dead fuel moisture content
was set to 8.46% based on observations. I adjusted the heat of combustion of dry fuel
to 16.4 × 106 J kg−1 as per estimates for grasslands [55].

As the central goal of this work is to evaluate the model’s ability to capture wildfire
smoke plume dynamics, I did not incorporate chemistry coupling into the simulation.
Modeled "smoke plume" was represented by two passive tracers released proportion-
ally to the mass and type of fuel burned. The rate of release for each tracer repre-
senting CO and CO2 was controlled by assigned emission factors, based on values for
grasslands provided by Prichard et al. [60].
3.2 Results
The overall evolution of the simulated L2G burn and the associated smoke plume is
best visualized with a 3D animation (see Animation S1 in published supplementary
material [50]). Figure 3.3 shows a still image of the simulated smoke plume at the end
of the animation. The supplement [50] also includes an animated view of the cross-
wind modeled CO2 mixing ratio (Animation S2). The latter demonstrates the ability of
the LES to capture typical plume behavior. As seen in the animation, the initial rise of
moist buoyant air results in a temporary overshoot of the equilibrium plume height,
followed by the gradual settling of the plume to its final injection height near the top of
the ABL (1060m at the end of LES spinup) for this case. While the ability of WRF-SFIRE
to qualitatively capture typical plume dynamics is reassuring, the following sections
take a more quantitative approach to model evaluation.
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Figure 3.3: WRF-SFIRE simulation of L2G burn. Modelled fire and smoke aresuperimposed on surface satellite imagery for reference. Figure produced usingVAPOR software [13].
3.2.1 Fire behavior

Prior to evaluating the ability of WRF-SFIRE to capture plume rise and dispersion, it is
important to ensure that the model is able to simulate fire behavior with reasonable
accuracy. Initial surface and fuel conditions have the potential to strongly impact fire
growth and intensity, and, hence, affect the location and buoyancy of the smoke plume.
This approach does not constitute a comprehensive fire behavior evaluation study, but
rather aims to ensure that WRF-SFIRE captures the bulk properties of combustion and
supplies a reasonable surface forcing to the simulated atmosphere.

My evaluation is based on the analysis of fire energy transport of RxCADRE obser-
vational data for L2Gburn carried out byButler et al. [7]. The study providesmeasurement-
based values as well as error margins for ROS, and peak and average heat fluxes of the
fire, which I use to assess the performance of the semi-empirical fire algorithm driving
the LES simulation.

Figure 3.4a,b compares LES-derived average and peak total heat fluxes for HIP1
and entire burn area over the flaming period with observations. For HIP1 point-to-point
comparison, I use output from the nearestmodelled grid points. L2G average observed
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values include measurements from all three HIP lots. The corresponding simulated
estimates are calculated using the entire burn area (roughly half of the L2G plot).
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Figure 3.4: Comparison of observed (blue) and modeled (red) fire behavior. The box and whiskers span interquartilerange (IQR) and 1.5 × IQR, respectively, with the notch denoting the 95% confidence interval of the median (median
±1.57× IQR/n 1

2 ). Red line and green triangle correspond to median and mean, respectively. (a) Average heat flux duringflaming period. (b) Peak fire heat flux during flaming period. (c) Rate of spread.
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The start and end times of the flaming period are defined as simulation frames at
which total heat flux at the location exceeded 5 kW m−2 [7]. For both burn-wide and
point comparisons, the flaming period is determined separately for each individual grid
point. Only ignited grids are included in the analysis. This approach allowsme tomimic
the analysis performed by Butler et al. [7] in the absence of true combustion modeling
in WRF-SFIRE.

For the entire burn area the observed mean and peak heat fluxes associated with
the fire (not the background environment) are 11 kW m−2 and 20 kW m−2, compared
to LES-derived values of 8.9 kW m−2 and 19 kW m−2, respectively. For HIP1 lot the
corresponding values were 11.4 kW m−2 and 19.4 kW m−2 (observed) versus 8.2 kW
m−2 and 13 kW m−2 (modeled). Note that, due to close proximity of the HIP1 sensors
to each other, four out of seven of them fall into the same atmospheric grid within the
modeled domain. Modeled HIP1 averages should therefore be treated with caution, as
they consist of only four unique values. Moreover, the large spread of observed HIP1
heat fluxes renders the differences betweenmodel andmeasurements not statistically
significant. Overall, the results shown in Figure 3.4 suggest that on average the surface
thermal forcing to the modeled atmosphere due to the fire is reasonably captured by
the model, subject to a slight negative bias (significant and non-significant for average
and peak heat fluxes, respectively).

Observed rates of spread during the L2G burn were estimated using two methods
in the study by Butler et al. [7]: flame arrival time from ignition and video images. The
former approach takes into account the ignition time of the nearest fire line (perpen-
dicular to fire advance vector) and the distance to the individual HIP1 sensors. The
resultant values appear to have lower associated uncertainty than the latter image-
derivedmethod. To ensure consistency, I mimicked the abovemethodology in my sim-
ulated domain. Using the high-resolution fire domain, I calculated the upwind distance
between each HIP1 point and the ignition line and the time it took the flame to reach
each sensor location. To estimate ROS for the entire burn area, I created a mid-fire
cross-section of 50 point-pairs between second and third ignition lines. Similar to the
approach above, I derived the distance and flame travel time for each pair to calculate
ROS. As shown in Figure 3.4c, mean LES-based HIP1 and L2G ROS values of 0.049 m
s−1 and 0.087 m s−1 are significantly lower then the corresponding observed rates of
spread (0.23m s−1 and 0.30m s−1, respectively). Possible implications and sensitivity
of my results to this deficiency are addressed in Section 3.3.
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3.2.2 Plume dynamics

Airborne emissions data collected during RxCADRE campaign is central to my eval-
uation of WRF-SFIRE’s ability to capture plume rise and dispersion. The emissions
dataset [72] contains smoke plume entry and exit points along the flight path, which
were calculated using background CO baseline concentrations. The measurements
were taken along horizontal transects passing through the plume at various vertical
levels ("parking garage" profile), beginning close to the ground and moving towards
the top of the plume, for a total of 9 crossings.

I compared the identified in-plume segments with modeled CO mixing ratios along
the same flight path extracted from the geo- and time-referenced LES domain. Fig-
ure 3.5 shows the time series of the flight path simulated emissions, overlaid with
observations-derived plume segments. The results suggest good overall agreement
in both location and timing between the modeled and observed emissions dispersion
throughout majority of the ABL depth. The coinciding model CO peaks and observed
smoke segments indicate that the horizontal width of the smoke plume is well repre-
sented in themodel. Potential shortcomings include excess smoke near the ground, as
suggested by the early peaks (12:36 and 12:40 CST) not identified as a plume crossing,
as well as a slight skew of the overall smoke distribution towards higher levels. A
small phase shift appears in themodeled peaks toward the later parts of the simulation
(12:50 CST and beyond).

To evaluate the vertical distribution ofWRF-SFIRE emissions, I compared themodel-
generated CO2 concentrations with airborne measurements obtained during the "park-
ing garage" and "corkscrew" (spiral ascent or descent) maneuvers. As shown in Fig-
ure 3.6a, there is a good overall agreement in injection heights for fire-generated emis-
sions during the earlier "parking garage" profile. Plume top is accurately captured.
Modeled concentrations tend to have a negative bias of ∼5 ppmv throughout the bulk
of the plume thickness (500–1300 m), and be slightly over-predicted for the very top
and bottom of the smoke column (at 400 m and 1500 m).

The "corkscrew" profile corresponds to a time near the very end of our simulation.
As shown in Figure 3.6b, the band of modeled emissions appears to be very narrow
and severely under-predicts the smoke concentrations. I discuss possible reasons for
this behavior in Section 3.3.

The above assessment of model performance can be easily quantified with a vari-
ety of accuracymetrics. However, given the prescribed emission factors inWRF-SFIRE,
the absolutemagnitudes of suchquantitativemeasureswould hardly be useful. Hence,
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Figure 3.5: Simulated CO mixing ratio along RxCADRE flight path. Red dashedand solid black lines correspond to LES-derived and observed values, respectively.Gray shading indicates observed smoke time periods (not magnitudes) as identi-fied from CO measurements along the flight path.
this evaluation focuses on the ability of themodel to capture the relative distribution of
modelled smoke in the atmosphere, rather than attempting to quantify concentration
prediction errors.
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Figure 3.6: Observed (black) and modeled (red) vertical CO2 emissions distribu-tion during: (a) "parking garage" maneuver; and (b) corkscrew maneuver.
3.3 Discussion
The aim of this WRF-SFIRE evaluation is to assess its ability to capture fire-generated
emissions in the context of air quality. Hence, I examine the above results based on
their potential applications for wildfire smoke plume rise and dispersionmodeling. The
following sections discuss model performance and accuracy from the perspective of
atmospheric dynamics, as well as address potential implications of uncertainty in fire
behavior and the associated input parameters.
3.3.1 Vertical plume rise in the boundary layer

As demonstrated inmy results summary in Section 3.2.2, initially WRF-SFIRE produced
a fairly accurate near-source emissions distribution and plume top with a slight under-
prediction of concentrations (Figure 3.6a).

Over time model performance appears to deteriorate. Given that the fire thermal
forcing compares relatively well with observations (Section 3.2.1), a likely cause for the
increasing difference between model and observations is background ABL dynamics.
The simulated atmosphere was initialized with 10:00 CST sounding, and continually
forced with an observations-based constant surface heat flux. However, the cyclic
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lateral boundary conditions maintained the same vertical wind profile as initially sup-
plied by the sounding at 10:00 CST, irrespective of potentially changing mesoscale
conditions in the real atmosphere. Over the course of more than three hours between
spin up start and the final minutes of the fire simulation, from which the "corkscrew"
emissions distribution was obtained (Figure 3.6b), the real atmospheric wind profile
likely evolved.

With time and further downwind the effects of any small changes in mesoscale
conditions become more pronounced, which is why initially encouraging model per-
formance deteriorated towards the end of the simulation. The markedly narrow band
of emissions in Figure 3.6b suggests that the "corkscrew" location in the LES domain
corresponded to the very edge of the plume rather than the center, indicating a shift in
mesoscale wind conditions.

Indeed, analysis of observed background 30 m wind direction leading up to and
during the burn shows a significant shift to the west, resulting in the LES "corkscrew"
profile being extracted from the edge of the plume, rather then the intended center
(Figure 3.7). Accounting for this observed wind rotation, it is possible to extract a wind-
corrected smoke profile, such as shownwith a red dotted line in Figure 3.6b. Assuming
an average 30 degree rotation over the course of available wind observations (based
on the slope of linear regression shown Figure 3.7a), the corrected location of the
"corkscrew" maneuver indeed corresponds to the center of the plume (Figure 3.7b).
The wind-corrected profile shown in Figure 3.6b is a notable improvement from the
original non-rotated estimate. Note that this adjustment is extremely crude, as it is
based on an estimated wind rotation at one point on a single vertical level and does
not take into account potential changes in vertical wind shear.

Unfortunately, unlike the Real-mode WRF simulations, there is no way to account
for changing lateral boundary conditions in WRF-SFIRE large-eddy mode. Hence, we
can expect the ability of themodel to accurately capture dispersion to depend strongly
on the variability of real background conditions as well as the simulation length and
spatial extent of the modeled domain. Namely, an LES will provide better simulations
for situations where that actual atmosphere is horizontally uniform and temporally
steady. While this presents a limitation for smoke plume rise and dispersionmodellers,
it is important to consider it in the context of existing alternative sources of field data.
Given a typical uncertainty of∼500 m associated with the most accurate widely avail-
able plume height dataset from MISR [75], WRF-SFIRE provides a valuable alternative
source for generating comparatively accurate "synthetic plume height data".

Moreover, unlike instantaneous observational point measurements or overpass-
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limited derived satellite data, the LES allowsme to examine the domain-wide temporal
evolution of the plume and identify key features, which are likely to be of interest to
dispersion modellers. As shown in Figure 3.8 and Animation S2 (see published sup-
plementary material [50]), the vertical distribution of emissions in the domain changes
throughout the simulation. Following an initial overshoot and a period of active smoke
production near the ground, most of the emissions rise and end up near the top of the
ABL (1060 m at the end of LES spinup), accumulating just above the inversion level
in a wide span of heights. While this vertical distribution may contain modelling and
initial condition biases, it is likely to offer dispersion modellers an advantage over the
common current approach of using a single empirically derived injection height [42].
3.3.2 Importance of fire input parameters

As noted in the chapter introduction, this evaluation work is focused on assessing the
relationship between coupled surface forcing and the atmosphere inWRF-SFIRE rather
than on fire behavior. However, the following discussion on fire input parametersmight
be of interest to future modellers using WRF-SFIRE.
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Figure 3.8: Temporal evolution of total column CO2 anomaly in LES domain.
Similar to Kochanski et al. [34], I found that the fire behavior model is particularly

sensitive to the choice of fuel moisture. This parameter inWRF-SFIRE does not depend
on the selected fuel category and was based entirely on field data in my simulation. I
also modified the standard fuel depth and loading parameters associated with Cat-
egory 1 fuels to match observations, which resulted in very accurate surface heat
flux forcing but substantially lower ROS values than observed or those obtained with
standard settings.

Notably, similar thermal forcing to the atmosphere can be produced using a range
of combinations of fuel categories and parameters in the model. I have not carried out
a formal sensitivity analysis as it was beyond the scope of this study, however, future
modelersmay find the following information helpful. As preliminary tests for my study,
I have used Category 1 and Category 3 fuels (short and tall grass) with various combi-
nations of both standard and measurement-based fuel depth and loading parameters
to achieve similar surface forcing. The relationships between these parameters are
highly non-linear, which makes determining the "correct" choice (in the absence of
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detailed observational data) difficult. What I found to be encouraging is that while the
absolute value of modeled concentrations and ROS changed dramatically depending
on the chosen fuel category for a given fire intensity, the relative spatial distribution of
emissions did not. The simulated atmosphere is forced solely by the parameterized
heat and moisture fluxes, so WRF-SFIRE does not discriminate which combination of
fuel characteristics produced a given heat flux that drives the buoyant plume rise.

Given any thermal forcing, the atmospheric response appears to be fairly robust,
irrespective of the particular combination of fuel parameters or ROS with which it was
achieved. While this study does not aim to establish whether the model sensitivity to
fuel conditions is physical, it does suggest that the LES produces realistic plume rise
for the given fire intensity.
3.3.3 ROS and biases in modelled emissions

The model’s poor performance for ROS in my case study likely resulted in reduced
simulated emissions concentrations due to lower parameterized fuel consumption
rate. This is consistent with the notable negative bias in my modeled CO2 profiles.

As mentioned above, the low ROS values on my simulation are largely a result of
my use of non-standard fuel depth and loading parameters. To eliminate alternative
causes for slow fireline advance, I compared horizontal winds at the first and second
model levels (at∼8mand∼25mAGL)with data obtained from2Dsonic anemometers
mounted at multiple heights of the CSU-MAPS meteorological tower. As shown in
Figure 3.9, the near-surface winds are generally accurately captured by the model. At
the lowest vertical level, there tends to be a slight positive bias, which onewould expect
to contribute to higher rather than lower ROS values.

Apart from their dependency on ROS and fuel consumption, the absolute values
of WRF-SFIRE emissions are also controlled by user-prescribed emission factors. In
my case study, these factors were not derived from measurements, but were rather
based on standard values typical for the Grassland fuel category (see Section 3.1.2).
Hence, the negative bias in our modeled smoke distribution could potentially be re-
duced, should observations-based emissions factors become available.
3.3.4 Experimental design considerations

One of the shortcomings of the RxCADRE dataset and this experiment is the substan-
tial (nearly 2.5 h) difference in timing between the sounding balloon launch and the fire
ignition. Availability of an additional vertical profile for model evaluation just prior to
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Figure 3.9: Modeled (red) and observed (black) near-surface horizontal wind.
ignition would have been extremely helpful in mitigating some of the sources of error
mentioned in the above sections. A similar recommendationwas offered by Kochanski
et al. [35], who suggested that an on-site sounding just prior to the burn rather than a
few hours earlier would be most useful.

While the challenges of coordinating balloon launches in the presence of aircraft
over the fire are obvious, a potential alternative would be to include on-board temper-
ature and wind sensor data from flight with the smoke dispersion measurements.
3.4 Summary
This chapter aimed to assess the ability of a coupled fire-atmosphere WRF-SFIRE LES
model to simulate a case study of fire smoke plume growth and dispersion. I exam-
ined the L2G burn from the RxCADRE 2012 campaign - a comprehensive experiment
combining simultaneousmonitoring of fuel, fire behavior, meteorology and emissions.

My model evaluation demonstrates good overall agreement between the LES and
the observations, subject to accuracy and timeliness ofmodel initialization data. Using
the emissions and dispersion data collected from an airborne platform during the
RxCADRE experiment, I show that LES reasonably captures the timing, rise and dis-
persion of the fire plume. I examine the possible relationships among model biases,
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fire behavior and changes in ambient atmospheric conditions.
This work demonstrates the feasibility of using WRF-SFIRE LES in studying fire

plume dynamics. The scarcity of detailed plume observations presents one of the
central challenges for smoke-model development. WRF-SFIRE’s ability to capture the
rise and spread of fire emissions for cases such as studied here has the potential to
address this critical research need and provide alternative "synthetic" data for future
development of parameterizations for wildfire smoke plume rise.
3.4.1 Limitations

Recent studies suggest that the heat extinction depth parameter in WRF-SFIRE (or e-
folding distance) has a strong influence on the modeled fire and near surface plume
behavior [33, 35]. Currently, there is no clear theory in the literature on how the vertical
distribution of fire-released heat above the ground affects near-ground air tempera-
tures as well as ROS. As the relationship appears to be highly non-linear, I have not
examined its implications in our simulations.

Overall, my findings suggest that the ability of WRF-SFIRE to capture plume dy-
namics of a specific real fire largely depends on the availability of timely atmospheric
initial conditions and accurate simulation of fire intensity. Owing to the detail and
comprehensive nature of the data provided by the RxCADRE experiment, these critical
inputs could generally be derived from measurements for the current case study. This
sensitivity, however, could present a challenge for future real-time fire simulations,
where few or no such measurements would be available.
3.4.2 Big picture

The case study discussed in this chapter can likely be considered a good represen-
tation of a "typical" smoke plume, from the perspective of remotely sensed plume
"climatology" (Section 2.3). It occurred during daytime atmospheric conditions and
most of the smoke was injected into the atmospheric layers just above the ABL top.
While these findings may be reassuring for regional air quality modellers, the bulk
approach to fire behavior evaluation may spark many interesting questions for com-
bustion researchers.

In particular, firemodellersmay consider whether it is feasible to use the fire spread
algorithm implemented withinWRF-SFIREwith non-standard fuel category parameters
and whether the produced behavior (and, in particular ROS) can be considered phys-
ical. Another theoretical consideration relating to micro-scale dynamics is what the
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effects of upscaling heat fluxes (and the inevitable smoothing associated with it) from
fire to atmospheric grid are. More broadly: howmeaningful is the comparison of in-situ
fire heat flux sensor measurements with grid-averaged values representing heat flux
in the model? These questions could serve as a helpful starting point for additional
investigations by fire behavior scientists.
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Chapter 4

Synthetic data: Simulating smoke plumes
under a wide range of fire and atmospheric

conditions

In this chapter I introduce a synthetic plume dataset produced using a coupled fire-
atmosphere model WRF-SFIRE [45, 46]. The broad goal of this effort is to capture a
wide range of fire and atmospheric conditions and examine their effect on modelled
smoke plume rise. This surrogate "data" addresses many of the challenges of working
with available observations (Section 2.3). The following chapter details the numerical
setup, scope of the dataset, aswell asmy approach to defining "ground truth" for plume
injection height model evaluation.
4.1 Generating plume data

4.1.1 Numerical configuration

WRF-SFIRE was configured in idealized large-eddy resolving mode. Much of my nu-
merical setupwas adopted from the case study detailed in the previous chapter (Chap-
ter 3), to ensure the simulations represent physical conditions backed by model eval-
uation. Due to high computational demands of LES runs, I focused on the local- and
meso-gamma scales (1 km - 20 km), considering only the initial buoyant plume rise
of smoke in typical daytime clear non-precipitating atmospheres. Key parameters
varied were ambient wind, fuel category, vertical potential temperature profile and fire-
line length, denoted as conditions W,F,R and L, respectively (detailed further in Sec-
tion 4.1.2).

I initialize each 10 km x 20 km domain with 40 m horizontal grid spacing with
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uniform ambient west wind W and vertical temperature profile R. Depending on the
sounding R, the simulations were performed in either a shallow (3000 m) or a deep
(5000 m) domain, with 51 or 71 hyperbolically stretched vertical levels, respectively. A
constant uniform lower boundary surface thermal flux (tke_heat_flux) in the ambient
environment and lateral periodic boundary conditions were imposed to produce a tur-
bulent well-mixed layer in the ambient environment. I used full surface initialization
(sfc_full_init =.true.), with the lower boundary characteristics set to USGS values for
land use most closely matching the Anderson fuel category F [3]. The correspond-
ing surface roughness lengths added various levels of wind shear to each domain to
produce amore realistic non-uniform vertical wind profile during spinup of the environ-
ment before the fire was initialized in the LES.

Initial convection in the ambient environment was triggered using a perturbed sur-
face temperature field. On average, a near-stationary turbulence spectrumwasachieved
within the first 30 min of run start. The "restart" file generated at the end of one hour
of spinup was used to initialize the main burn simulation, ensuring the fire was ignited
in a well-mixed turbulent ABL.

I initialized the fire over a one-minute interval using a straight line of length L. The
ignition line was placed one kilometer downwind of the western edge of the domain
(perpendicular to ambient wind) and centered in the north-south direction. With a
refinement ratio of 10 in each horizontal direction, the fire was simulated on a 4 m
sub-grid mesh.

The "smoke plume" was modelled with a passive tracer emitted proportionally to
the mass and type of fuel burned. The rate of release was controlled by an assigned
emission factor representing PM2.5 for each fuel category, based on values provided
by Prichard et al. [60] (see namelist.fire_emissions in downloadable supplement refer-
enced in Appendix A.1).

A summary of key configuration details can be found in Table 4.1, as well as in
sample namelist initialization files available for download (Appendix A.1).
4.1.2 Test conditions

Table 4.2 summarizes the key parameters that were varied to produce the synthetic
dataset.

The range of ambient winds tested was bound largely by numerical constraints.
Due to cyclic boundary conditions, wind speeds higher than 12 ms−1 would require
a much larger domain to prevent smoke recirculation. For the lower bound on my
wind condition W, I needed to ensure that sufficient wind speed was maintained to
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Table 4.1: Key parameters of numerical domain setup.
Simulation Parameter Value/Description
Model version May 24, 2019 (git #ced5955)Horizontal grid spacing 40 mDomain size 500 grids cells (east-west) x 250 grids cells (north-south)Time step 0.1 sModel top 3000 m (shallow) / 5000 m (deep)Spinup timing 11:30:00 - 12:30:00Fire (restart) simulation timing 12:30:00 - 12:50:00 (shallow) / 12:30:00 - 13:00:00 (deep)Sub-grid scale closure 1.5 TKE (TKE = Turbulence kinetic energy)Lateral boundary conditions periodicSurface physics Monin-Obukhov similarity (sf_sfclay_physics = 1)Land surface model thermal diffusion (sf_surface_physics = 1)Ambient surface heat flux 240 W m−2(tke_heat_flux=0.2)Fire mesh refinement 10Ignition duration 13:00:10 – 13:01:10Heat of combustion of dry fuel 16.4 MJ kg−1

Table 4.2: Test conditions included in synthetic plume dataset. The count indi-cates the number of unique values used within the specified range.
Condition (Tag) Range Count Description
Ambient wind (W) 3 - 12 ms−1 10 Uniform horizontal wind magnitudeused to initialize model spinupStability profile (R) R0-R8 9 Atmospheric sounding with variableABL height, temperature and inversionstrengthFuel (F) 1 - 13 13 Anderson fuel category assigned atlower boundaryFireline length (L) 1 - 4 km 3 Length of ignition line

Total number of experiments = 140

propagate the fire. The spread algorithm used within the LES applies a correction
factor under low wind speed conditions to prevent the fire from extinguishing itself.
While necessary for numerical reasons this effect is not physical, so winds below 3
ms−1 were excluded from my dataset.

I used 9 different atmospheric profiles (R condition) to initialize the model. I varied
the following features for each initialization:

• initial ABL height (500 m - 1600 m)
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Figure 4.1: Pre-ignition potential temperature profiles (stability condition R). Col-ors correspond to initial soundings used for model spinup.
• potential temperature lapse rate above inversion (0 K km−1 - 20 K km−1)
• initial (pre-spinup) ABL temperature (290 K - 300 K)
Following spinup (Section 4.1) under variable winds and surface conditions, this

produced 9 sets of soundings, shown in Figure 4.1 with ABL depths of approximately
600m - 2000 m. I tested all fuel categories available within the model (F condition),
and varied the length of the fireline (L condition) between 1 and 4 km.

Table 4.3 andTable 4.4 summarize the tested combinations of fire and atmospheric
conditions captured by the synthetic plume dataset. Colored cells (blue and red) corre-
spond to completed simulations. Tall boundary layers of R5 and R6 domains required
low winds (5 ms−1 and below) and high intensity fires (fuel categories 4, 6, 7, 12 and
13) to reach ABL top within the simulation runtime and/or avoid smoke recirculation.
Hence, alternative combinations (white cells in R5 and R6 columns) would require con-
siderably different domain setup from other runs. For this reason these combinations
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were not tested. Also, a single run was performed for R8 condition (adiabatic free
atmosphere) as an extreme case scenario.

Red cells highlight simulations that were completed, but subsequently excluded
from analysis presented in Chapter 6. This was done based on visual inspection of
LES fields. There were two possible reasons for exclusion: (i) the plume reached the
top of the domain or (ii) the plume appeared to be non-penetrative (see sample in
Appendix A.2). In the former case, it’s questionable whether the fields are physical,
as the plume could potentially be affected by the absorbing layer near domain top,
designed to prevent numerical instability. The latter rendered the plume irrelevant for
the purpose of modelling smoke injection height (Chapter 6). These non-penetrative
runs, however, were included for testing the plume classification method presented in
Section 7.1.

39



Table 4.3: Combinations of test conditions resulting in penetrative plumes, as captured by the LES datasets. Green cellhighlights fireline length condition (L) runs. Intensity of blue color corresponds to the number of runs for fuel condition(F) represented by the cell. Row ’W5’ is expanded in Table 4.4 below.
R/W R0 R1 R2 R3 R4 R5*† R6*† R7* R8*
W3 F7 F7 F7 F7 F7 F7 F7 F7
W4 F7 F7 F7 F7 F7L1F7L2F7L4

F7 F7 F7

W5 F1 - F12,excl:F4 F1 - F13,excl:F9 F1 - F13 F2 - F13,excl:F8,F9 F1 - F13 F4 F6 F7F12 F13 F4 F6 F7F12 F13 F2 - F13,excl:F8,F9 F7
W6 F7 F7 F7 F7 F7 F7
W7 F7 F7 F7 F7 F7 F7
W8 F7 F7 F7 F7 F7 F7
W9 F7 F7 F7 F7 F7 F7
W10 F7 F7 F7 F7 F7 F7
W11 F7 F7 F7 F7 F7 F7
W12 F7 F7 F7 F7 F7 F7

*Deep domain (5 km). †Extended runtime (30 min).
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Table 4.4: Tested combinations of fuel and ABL conditions (blue and red colored cells).
R/W R0 R1 R2 R3 R4 R5*† R6*† R7* R8*
F1 ABL plume ABL plume
F2
F3
F4 smoke atdomain top
F5
F6
F7
F8 ABL plume ABL plume
F9 ABL plume ABL plume ABL plume
F10
F11
F12
F13 smoke atdomain top
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Note, that varying a single condition while holding the rest constant does not result
in a controlled experiment isolating its impact on plume rise. Because WRF-SFIRE
incorporates fire-atmosphere coupling, the problem is not well-constrained. For ex-
ample, by varying fuel type F alone, while holding the rest of test conditions constant,
I obtain a set of fires with diverse shapes, sizes, intensities, fireline depths, rates of
spread and heat release. This reflects the complexity of non-linear interactions that
exist between the fire and the atmosphere (discussed further in Chapter 5). As a result,
the parameter space captured within my LES dataset is much greater then the four
conditions described in Table 4.2.
4.2 Defining smoke injection height
Given non-stationary fire and atmospheric conditions, determining a consistent defi-
nition of an equilibrium smoke injection height is not a trivial task. It requires sepa-
rating buoyant rise from dispersion, while excluding the effects of initial momentum
overshoot and accounting for the advection due to varying ambient and fire-generated
winds.

A common way of examining vertical distributions of pollutants in the context of
air quality is to consider crosswind-integrated (CWI) concentrations. This allows one
to reduce the problem to two dimensions, with plume centerline being defined sim-
ply as the CWI concentration maximum at each location downwind of the source.
Theoretically, under stationary conditions there exists an equilibrium height, around
which the centerline eventually oscillates. In reality, as well as in my LES experiments,
neither the ambient nor the fire conditions are stationary. The changing location, shape
and intensity of the fire, ABL warming and growth, as well as the development of fire-
coupled winds and vorticity continually modify the conditions.

As a result, my approach is based on defining a region, where the concentration
distribution is quasi-stationary. I consider the last frame of each simulation for this
analysis. Using CWI tracer values, I locate the plume centerline (Figure 4.2a). To obtain
the quasi-stationary region for each individual plume, I first calculate the change in
tracer concentration along the centerline. I then use a smoothing function to reduce
the effect of random turbulent oscillations in both the centerline height and the tracer
concentration gradient along the centerline. The downwind region where both of these
parameters are not changing rapidly are then then considered quasi-stationary. Addi-
tional details of this filtering method are provided in Appendix A.3.
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Figure 4.2: Illustration of the approach to identifying a quasi-stationary downwind region in CWI smoke distributionusing a sample LES experiment. (a) CWI smoke concentrations. Also shown are plume centerline height (dashed),
zi (dotted) and CWI fireline intensity (solid red, secondary axis). (b) Plan view of fire heat flux showing the fireline.(c) Quasi-stationary region (grey shading). Also shown are raw (dotted purple) and smoothed (solid green) centerlineheights and tracer concentrations (solid orange, secondary axis). (d) Representative downwind smoke distribution.The profile (solid blue line) is obtained by horizontally averaging the CWI smoke concentrations in the quasi-stationaryregion. Also shown are interquartile range (IQR) (light blue shading) and the derived smoke injection centerline height
zCL (dashed black).
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I then average the vertical CWI distribution of tracers in the downwind direction over
the identified quasi-stationary regions (shaded in grey on the Figure 4.2c) to produce a
representative downwind distribution for each plume (Figure 4.2d). I define the "true"
injection height zCL as the mean height of smoothed centerline over the averaging re-
gion. The resultant dataset of zCL values is used to constrain and evaluate the proposed
smoke injection height parameterization introduced in the following chapters.
4.3 Summary
The synthetic plume dataset (Section 4.1) and the derived injection height dataset
(Section 4.2) described above provide a rich source of training and evaluation data for
future models and parameterizations (see Appendix A.4 for access information). The
approach introduced in this chapter allows for creation of controllable and repeatable
numerical experiments, which can capture a range of fire and atmospheric conditions
not possible with real-life observational campaigns.
4.3.1 Limitations

The presented dataset is limited to initial plume rise fromfires occurring under daytime
fair-weather conditions on a local/regional scale over flat terrain. While representative
of vastmajority of smoke plumes [73], the examples captured by the dataset are limited
to penetrative plumes, which remain in the stable layers of the free troposphere above
the ABL. I have not considered the effects of latent heat: all plumes in the dataset are
non-condensing.
4.3.2 Big picture

The range of fire and atmospheric conditions captured here is most applicable for
regional air quality applications. Future researchers interested in examining plume
rise in the context of global chemical transport models, where cloud formation and
potential stratospheric injection of aerosols are of great importance, could extend the
proposed approach for deeper simulated domains over complex terrain. It would be
interesting to compare plume injection heights obtained from WRF-SFIRE simulations
configured in LES vs Reynolds-averaged Navier–Stokes (RANS) mode and reanalysis-
driven boundary conditions. Relatively fast run-time (compared to LES) and ability
of WRF to incorporate realistic initial conditions and chemistry in RANS simulations,
combined with increasing computational power, could pave the way for broad use of
WRF-SFIRE in operational smoke modelling [43].
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Chapter 5

Fire-atmosphere coupling: qualitative
analysis of local-scale dynamics

The past decade has seen significant developments in complex, coupled, physics-
driven atmospheric numerical models, including WRF-SFIRE, which resulted in enor-
mous improvement in our ability to simulate wildfire and smoke behavior. These so-
phisticated models offer the promise of giving insight into the underlying dynamics of
interactions between the fire and the atmosphere [61]. Our current understanding of
the subject is limited, and large uncertainties remain due to lack of observational data
(Section 2.3).

While the evaluation case study presented in Chapter 3 is a step towards greater
confidence in model performance, much research is still needed to understand all
the physical processes involved. Yet without proper knowledge of what the dynam-
ical mechanisms and feedbacks are, it is impossible to assess how well the current
models represent them. Comprehensive observational campaigns, such as FASMEE
(Section 2.3) will hopefully help shed light on the subject in the near future.

In the mean time, existing plume rise parameterizations have to rely on simplifying
assumptions about how the fire interactswith the ambient atmosphere. A vastmajority
of operational schemes [9, 39, 66], consider the smoke plume to be rising through a
static atmosphere, entraining ambient environmental air along its path. While suitable
for small-diameter low buoyancy sources like industrial smoke stacks, exclusion of
any possible feedbacks between the fire and the atmosphere may contribute to large
errors associated with applying such schemes to wildfires.

This chapter asks the following question: What can a coupled fire-atmosphere
model tell about dynamic interactions around wildfires? While still subject to compre-
hensive evaluation, the answers to this question may help inform current and future
plume rise parameterization development.
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5.1 Fire-induced winds
As noted in the previous chapter, the synthetic dataset produced with WRF-SFIRE con-
sists of a diverse set of smoke plumes with unique characteristics, combining the
effects of imposed initial conditions, fire-atmosphere coupling and background ABL
turbulence. The detailed nature of synthetic LES data, however, allows us to identify
dynamical flow features that are common to vast majority of the modelled plumes.

One such effect is the formation of a convergence zone at the fire front. Shown in
Figure 5.1 is a typical example of a flow pattern produced byWRF-SFIRE. The top panel
represents cross-wind-integrated CWI smoke (Figure 5.1a), shown with ambient wind
direction. The remaining subplots display horizontal and vertical flow generated by the
fire (along with background turbulence), relative to mean ambient winds. I.e. the wind
fields displayed in the figure can be superimposed on average ambient atmospheric
conditions to give the total flow field.

As shown in the horizontal velocity subplot (Figure 5.1b), the fire generates a large
region of slowing winds extending far downwind. A well-defined convergence zone
forms at the fire front, where these slowing winds meet accelerated horizontal flow
from behind the fireline (i.e. from upwind of the fireline). Once the rising air reaches
equilibrium height, the smoke is pushed into a wide range of outflow levels, marked by
increased advection relative to ambient wind. Lastly, as demonstrated in the vertical
velocity subplot (Figure 5.1c), the downwind ABL region is generally dominated by
sinking air, which aids smoke recirculation and fumigation of elevated pollutants back
to the surface.
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Figure 5.1: Cross-wind integrated (CWI) smoke concentrations (top). Fire-induced horizontal flow relative to ambientconditions (middle). Fire-induced vertical flow relative to ambient conditions (bottom).
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5.2 Vorticity
To examine how wildfire plumes entrain air I used the LES fields to perform trajectory
analysis for air parcels located just outside of the fire. I placed equally spaced source
points to the side of the fireline (laterally) and tracked the streaklines as they mixed
with the smoke plume. As shown Figure 5.2, clean air is pulled towards the head of the
fire, creating a large lateral vortex.

Examination the temporal evolution of various LES fields, the fire-atmospheric cou-
pling mechanism appears to be as follows:

• low pressure in the center of the updraft results in a horizontal pressure gradient
force

• wind shear induces vortices that bring clean air into the plume and maintain
mass continuity

• cross-wind flow creates a curved fireline (eg. Figure 5.3) resulting in less occlu-
sion of the firefront and decreasing the strength of the reverse flow

There is no clear theory on which buoyancy and wind conditions induce vortex
formation and, in extreme cases, plume bifurcation [19]. However, Cunningham et al.
[16] have previously shown using numerical experiments, that the degree to which the
smoke splits is related to surface wind shear. More importantly, they found that plume
bifurcation does not affect plume rise. Though the study stops short of quantifying
these effects, it represents the most detailed investigation of vorticity in wildfires to
date.

Overall, vortices appear to be a transient feature in wildfires [59]. They are con-
tinually mediated by fluctuations in ambient winds (as shown in further detail in Sec-
tion 5.4), and generally occur under light wind conditions [16].

Notably, the lateral wind flow generated in response to the updraft and the as-
sociated vorticity appear to be a very efficient mixing mechanism. The color of the
streaklines shown in Figure 5.3, corresponding to smoke concentration, indicates that
the most rapid entrainment of ambient air occurs close to the surface. This result is
interesting, because most plume models rely on a common entrainment assumption,
which suggests that mixing rate is proportional to the local vertical velocity of the
updraft [71]. Yet near the ground this velocity is still relatively low, compared to near the
top of ABL, where most of plume’s buoyancy has been converted into kinetic energy.

These findings could in part explain why wildfire plume behavior differs from that
suggested by common Gaussian plume models.
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Figure 5.2: Formation of a lateral vortex around a fireline. 200mx200m trajectorysource mesh is located next to ignition line (outside of the fire) at the surface.Colors correspond to trajectory index to aid visualization. Figure produced usingVAPOR software [13]
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Figure 5.3: Illustration of fire-atmosphere feedbacks between updraft, lateralwinds and fireline curvature with trajectories. Colors correspond to tracer concen-tration along each path. Equally spaced trajectory sources were placed on eachedge of the fireline, extending between 50 m and 200m AGL. Figure producedusing VAPOR software [13]
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5.3 Effects of fireline length
Most existing plume rise parameterizations [4, 6, 20, 64] idealize the shape of the fire,
usually assuming it’s radially symmetric. In otherwords, the plume is often represented
by a cone or a cylinder. However, a wildfire often consists of an intense firefront (at the
leading edge of the fire) where peak heat fluxes occur, followed by a wide smouldering
region, and sometimes a backing fire. The length of the fireline can extend many
kilometers. For modelling purposes, it is therefore convenient to consider the fire and
the smoke plume in two dimensions (x,z) as viewed from a cross-wind direction (y).
This raises a question: how does the length of the fireline affect plume rise and the
vertical distribution of smoke?

Figure 5.4 compares the time-averaged fire-generated 2-D (x,z) horizontal flow for 1
km, 2 km and 4 km firelines (in the cross-wind direction) under the same initial fire and
atmospheric conditions. I found that themagnitude of the downwind region of slowing
air is greater for longer firelines. Moreover, longer firelines produced a wider, stronger
range of smokeoutflow levels compared to shorter ones. Irrespective of themagnitude
of the fire-induced horizontal wind, the convergence zone remained stationary at the
firefront.
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Figure 5.4: Time-averaged relative horizontal velocity plots for 1 km (top), 2 km (middle) and 4 km (bottom) firelines.Fireline-following moving averaging was performed over the last 15 min of the simulation using mean vertical crosssection of the horizontal flow field ( averaged over the central 800 m of the fireline in the y-direction) . Grey contourscorrespond to time-averaged smoke concentrations. Fireline heat flux is plotted on a secondary (red) axis. Dotted anddashed lines denote ABL height and the plume centerline, respectively.
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Figure 5.5: Magnitude of fire-induced horizontal winds U ′ (relative to ambientflow) at 400 m above ground level (~half of ABL height).
Figure 5.5 provides a more direct comparison of the effect of fireline length on fire-

induced horizontal wind magnitude by examining a mid-ABL slice. Following a region
of brief acceleration, longer firelines produce a sharper drop across the plume, fol-
lowed by a gradual convergence to average ABL conditions. This carries implications
for local near-fire dynamics, as it results in stronger recirculation of smoke back to
the firefront and higher relative smoke concentrations near the surface. As shown in
Figure 5.6, this effect eases with downwind distance, as relative vertical smoke distri-
butions converge to a fairly similar shape further away from the fire. The differences
are most pronounced close to the fire. Notably the distribution maximum (in other
words the mean smoke injection height) is nearly identical for all three firelines.
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Figure 5.6: Normalized vertical CWI smoke distributions at 1 km (left), 3 km(middle) and 5 km (right) downwind of the fireline for various fireline lengths.
5.4 Modulation of the fire by passing ambient thermals
One interesting observation noted in the above Section 5.3, is the fact that the location
of the horizontal wind convergence remains at the firefront, irrespective of the length
of the fireline. From mass continuity perspective, a larger (or longer) updraft would
require more air to be drawn towards the head of the fire. In part, this is supported
by higher horizontal fire-induced wind magnitudes (Figure 5.1). However, if this was
the only mechanism, one would expect formation of larger lateral vortices as well as
greater fireline curvature for longer firelines. Yet neither of these features differ greatly
between the various fireline length simulations.

In an attempt to explain how longer updrafts are supported, I repeated the trajec-
tory analysis for the 4 km fireline now placing equally spaced sources upwind of the
ignition. The results are shown in Figure 5.7: as clean air is accelerated towards the
head of the fire, the flow breaks up into multiple cores. This multi-vortex structure is
transient: individual cores are not stationary in space or time. This behavior is likely
the result of interaction between the plume and the passing ambient ABL thermals.

Random velocity perturbation due to ABL turbulence allow for fireline "fingering",
as certain portions of an initially uniform ignition line are advected faster/slower by
local eddies relative to their surroundings. Because WRF-SFIRE spread algorithm re-
sponds to local winds, these turbulent fluctuations naturally distort the fireline, aiding
the formation of multiple cores. While the parameterized fire behavior in WRF-SFIRE
remains subject to evaluation, this tendency for more prominent fingering for longer
firelines appears to be supported by models with explicitly resolved combustion [8]. In
real life, this effect is likely further enhanced by fuel and surface heterogeneity.
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Figure 5.7: Trajectory analysis of clean air entrainment frombehind a 4 kmfireline.Individual paths are colored by smoke concentration. Figure produced usingVAPOR software [13]
5.5 Plume mixing and the boundary layer
The trajectory analysis discussed in the previous sections suggests that most rapid
mixing of the plume with clean environmental air occurs near the surface. In other
words, based on the observed kinematics, onewould expectmost of the plume dilution
(and, hence, cooling) to occur in the lower levels of the ABL as well.

Using the synthetic plume dataset (Chapter 4) I examined the vertical distribution
of plume centerline potential temperature for each run. Shown in Figure 5.8 is a typical
example of such a profile. It suggests that rapid cooling of the plume’s core indeed
occurs in the lower half of the ABL, after which its potential temperature remains
largely unchanged (or on the order of random turbulent perturbations).

Apart from radiative cooling and effective mixing due to fire induced winds and
vorticity, this may also be attributed to growth and widening of the smoke plume. As
the edges of the plume move further away, the core becomes less and less affected
by the ambient environmental conditions. A penetrative plume entering the free tro-
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Figure 5.8: Vertical potential temperature profile of the mean ambient pre-ignitionenvironment (light blue) and plume core (orange) temperature. Also shown: ABLheight zi before ignition (dotted grey) and smoke injection height zCL (dashed red),based on the definition provided in Section 4.2
posphere above the ABL is still warmer then the surrounding atmosphere, hence it
continues to move up into the stable layers. However, our LES simulations suggest
that there is relatively little cooling and mixing occurring above the ABL. Following
a momentum-driven overshoot the plume centerline eventually oscillates around its
equilibrium height, where its core temperature roughly matches that of the ambient
environment. This concept is best demonstrated with conserved variable plots, such
as one shown in Figure 5.9.

Scatter point color in Figure 5.9 indicates the relative height (normalized by the
height of the ABL) of the plume centerline, from which the dry static energy and tracer
concentrations were obtained. Note that the theoretical mixing line connecting warm,
smokey points (lower right) and the equilibrium cluster (upper left) is generally brown,
suggesting that most dilution occurs below mixed layer top zi.
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Figure 5.9: Dry static energy vs. concentration along the CWI plume centerline.Values are obtained at 20 min after simulation start. Scatter point color corre-sponds to relative (to ABL top zi) height from which the values were obtained.
5.6 Summary
This chapter provided a qualitative discussion of several fire-atmosphere dynamical
feedback mechanisms observed in LES plume data. Key features included the for-
mation of horizontal flow convergence at the firefront and the associated lateral wind
shear and vorticity. Fireline curvature and fingering appear to be influenced by ambient
ABL conditions as well as fire geometry. Based on LES data, most of plumemixing and
dilution occurs in the lower levels of theABL, beyondwhich the plume core temperature
remains largely unaffected by the ambient environment.
5.6.1 Big picture

Some of the fire-atmosphere interactions discussed in this chapter may help inform
plume rise parameterization development (including the one introduced in this thesis).
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However, most still lack evaluation with observational data. While this may require an
exceptionally complex and expensive effort, numerical simulations, similar to those
used in this chapter, could potentially facilitate planning field experiments. Optimizing
instrument placement as well as anticipating weather impacts could help save cost
and increase the chance of collected data being useful and relevant.
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Chapter 6

Smoke injection height: A simple energy
balance parameterization for penetrative

plumes

This chapter introduces a new simple parameterization for predicting the mean injec-
tion level of wildfire smoke plumes. The method is derived from basic energy bal-
ance, using simplifying assumptions motivated by numerical insights from the previ-
ous Chapter 5.
6.1 Formulation
A common approach to predicting the final equilibrium centerline height of wildfire
smoke is to first estimate the initial buoyant energy of the hot rising smoke [4, 6, 69].
After the smoke plume entrains surrounding ABL environmental air and cools, the
remaining energy is spent doing work to push the cooled smoke plume up into the
statically stable capping inversion.

The relationship between final and initial energies is often rewritten to show that
the potential energy per unit mass (PE) of smoke penetration equals some fraction c1of initial heat released from the fire. In kinematic units, the initial heat input has units
similar to kinetic energy per unit mass (KE). The empirical parameter c1 is usually
estimated based on concepts of entrainment into the rising smoke plume [17].

PE = c1KE (6.1)
The PE of smoke-plume penetration into the capping inversion can be written as

PE = g′z′ (6.2)
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where the penetration distance z′ of the final equilibrium smoke centerline zCL above
reference height zs (near the top of the well-mixed portion of ABL) is

z′ = zCL− zs (6.3)
The static-stability variable g′ for the plume-penetration region is

g′ = g
θCL−θs

θs
= g

θ ′

θs
(6.4)

where θCL and θs are the potential temperatures of the ambient environment at zCL and
zs, respectively, and θCL−θs = θ ′.

Typically, expression for plume buoyancy includes a potential temperature pertur-
bation relative to ambient environmentwithin the same vertical level in the atmosphere.
However, as discussed in Section 5.5, based on LES data, little cooling occurs beyond
upper ABL. This allows me to express θ ′ in Equation 6.4 in terms of plume core poten-
tial temperature θCL at injection level.

The KE can be estimated using a velocity scale w f as
KE = 0.5w2

f (6.5)
Typically, the bulk potential-temperature difference across the smoke-plume penetra-
tion region θ ′ is expected to be relevant for only the PE portion of Equation 6.1. How-
ever, I found from the LES runs for a wide range of fire and environment conditions that
the KE also depends on the same potential temperature difference. This dependence
can be expressed in the velocity scale:

w f =
I

ziθ
′ (6.6)

This velocity scale is related to the fireline intensity parameter I =
∫ r Hdr, which is the

kinematic heat flux into the atmosphere H integrated across the fireline depth r ( in
units of K m2 s−1), and to the mixed-layer depth zi. The mathematical form of w f is
discussed further in Appendix B.2.

One could speculate that this interesting result is because smoke from a fire does
not rise through a passive environment, as is often assumed for Briggs types of plume
entrainment models. Instead, the fire and the environment interact in many complex
ways. Some of these, detailed in Chapter 5 include: vertical-to-bent-over vortices on
the ends of the fire line that rapidly mix environmental air into the buoyant smoke
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plume; modulation of fire intensity and fire updrafts by translation of ambient thermals
across the fire line; plumes of enhanced convergence and updraft along the fire line;
mass conservation as descending air beneath the extended smoke plume lowers the
local mixed-layer depth; and possibly other factors.

Thus, Equation 6.1 becomes
g′z′ = c2

[
I

ziθ
′

]2 (6.7)
where c2 = 0.5c1.The above can be rearranged into the following form (see Appendix B.1):

zCL− zs =C
[

g(θCL−θs)

θs (zCL− zs)

]− 1
2
{

gI (zCL− zs)

θszi

} 1
3 (6.8)

whereC is a dimensionless empirical parameter. The factors in square and curly brack-
ets with their corresponding powers have units of time and velocity, respectively. This
relationship is plotted in Figure 6.1. It provides quite an acceptable fit to the data over a
wide range of 140 combinations of fire and atmospheric conditions simulated. Scatter
points largely fall close to 1:1 line, suggesting C ≈ 1. Model bias will be addressed in
further detail in Section 6.2.2.

Equation 6.8 suggests that the relevant length and temperature scales (z′,θ ′) de-
pend not on the capping inversion strength alone, or on the tropospheric lapse rate
above the capping inversion alone, but on the bulk potential-temperature differences
across the smoke-plume penetration region, z′. Equation 6.8 is implicit, in that the
desired plume centerline equilibrium height zCL appears in both the left and right sides
of the equation. The plume centerline height also defines where θCL is retrieved from
the atmospheric sounding; namely, zCL is implicit in both Equation 6.7 and Equation 6.8.
However, for any specific fire and environment conditions, values of zCL are easily found
by iteration (see Appendix B.4). Steps to estimating input parameters required for the
proposed injection model from the LES data are summarized in Appendix B.3.

Alternatively, for a small sacrifice in accuracy, it is possible to obtain an explicit
solution by considering an idealized version of the atmospheric profile, consisting
of an adiabatic mixed layer, entrainment zone and a stable uniformly stratified free
atmosphere above (Figure 6.2). In such case γ is defined as the overall potential
temperature gradient of the free atmosphere and zs as the height corresponding to the
intercept of γ and the well mixed portion of the ABL profile. Then, using Equation 6.8,
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zCL can be found explicitly as:

zCL =

[
θs

g

] 1
4
[

I
zi

] 1
2
[

1
γ

] 3
4

+ zs (6.9)

62



000s

s

i

CL

CL

z

z

z
z

0

a

Figure 6.2: Idealized potential temperature profile θ vs. height with constantstable layer lapse rate. γ .
6.2 Model evaluation
Toassess the accuracy of the proposed smoke injection height parameterization (Equa-
tion 6.8), I perform two sets of verification studies. The first approach is based on
using the synthetic plume dataset from Chapter 4 to carry out model evaluation, bias
correction and sensitivity analysis with idealized data. The second portion of this
section applies my approach to the case study of a real prescribed burn (RxCADRE
2012) discussed in Chapter 3.
6.2.1 Numerical results

Shown in Figure 6.1 are "true" and parameterized smoke injection heights. The former
is obtained directly from the LES, as per Section 4.2. The latter is determined iteratively
using the proposed smoke injection height parameterization (see Appendix B.4 for
implementation details).

Individual prediction errors do not appear to be a function fireline intensity, as indi-
cated by scatter point color in Figure 6.1, or ambient winds (not shown). While overall
the scheme’s performance is encouraging, the small discrepancy between the unity
and regression lines suggests a linear bias. This can be remedied by applying bias
correction using regression parameters from the fit shown in Figure 6.1. This optimized
model produces errors on the order of 20 - 30m for equilibrium plume centerline height
zCL, as suggested by the interquartile range shown in Figure 6.3d. Model bias will be
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Figure 6.3: Performance of the smoke injection height parameterization based onthe iterative solution (Equation 6.8). (a) Non-bias corrected prediction error (true- modelled zCL ) as a function of zCL. (b) Error statistics for non-bias correctedvalues. The box and whiskers span IQR and 1.5 x IQR, respectively. Median valueshown in orange. (c) Bias-corrected prediction error as a function of zCL. (d) Errorstatistics for bias-corrected values.
addressed in further detail in Section 6.3.

Given smooth averaged profiles from the synthetic dataset and excluding condi-
tion R8 (adiabatic free atmosphere), the explicit solution using Equation 6.9 offers
comparable accuracy to the iterative version for both raw and bias corrected datasets
(Figure 6.4) . I address the limitations of using the explicit approach in Section 6.4.1.
6.2.2 Model sensitivity

To asses how sensitive the smoke injection model performance is to the particular
choice of bias correction parameters, I partition my original plume dataset into train-
ing and testing groups through random sampling. I obtain the linear bias correction
parameters using training data only (80% of runs). I then apply our bias-corrected
iterative solution to the test group (remaining 20% of the runs) and assess model
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Figure 6.4: Performance of the smoke injection height parameterization based onthe explicit solution (Equation 6.9)). (a) Non-bias corrected prediction error (true- modelled zCL ) as a function of zCL. (b) Error statistics for non-bias correctedvalues. The box and whiskers span IQR and 1.5 x IQR, respectively. Median valueshown in orange. (c) Bias-corrected prediction error as a function of zCL. (d) Errorstatistics for bias-corrected values.
accuracy. Figure 6.5 summarizes the performance and sensitivity of the proposed
parameterization, based on 10 trials of sampling with replacement. Consistently high
Pearson correlation shown in the trial histogram in Figure 6.5c, are encouraging, and
suggest that the particular choice of simulations used in bias correction does not have
a strong impact on accuracy.
6.2.3 Evaluation with observations

Next, I apply the proposed parameterization to a real-life case-study. I use observa-
tional data from the RxCADRE L2G prescribed burn (Section 2.3) and it’s numerical
simulation detailed in Chapter 3.

Recall the strip headfire pattern used to ignite the grass lot (shown in Figure 3.1). I
estimate the burn’s input fireline intensity parameter I for this complex ignition in two
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different ways: from raw data collected during the burn as well as from the numerical
simulation. The observations-based value Iobs is derived from the integral heat flux
data obtained from the Highly Instrumented Plots (HIPs) fire behavior package (FBP)
sensors [28]. I use the provided time-integrated values, averaging between all sensors
with confirmed fire at the sensor location (as indicated by video footage [7]). I then
obtain the mean value (in kinematic units) of 236 K ms−2 and multiply it by the aver-
age measured rate of spread (ROS) value of 0.38 m s−1 [7] for the same sensors to
convert to spatially-integrated heat flux for a single fire line. I assume that this value is
representative of the remaining three firelines, hence:

Iobs = 236 ·0.38 ·4 = 359 (6.10)
in units of K m2s−1. Note, that raw data for both heat fluxes and ROS values have
extremely large associated uncertainties. Observed ROS values vary by nearly a factor
of two, depending on the measurement technique used. While I have included only
locations with ignition confirmed by video footage in my calculations, heat fluxes still
vary up to a factor of four between sensors.

For comparison, I also obtain an LES-based integrated fireline intensity value ILES.Due to wind shear, as measured by the sounding launched prior to the burn, the CWI
direction at the surface differs from the one used to estimate CWI smoke. ILES was,
hence, estimated by assuming 125 degree rotation of LES fields, based on the lowest
available wind direction measurement. I use trapezoidal rule to numerically integrate
the mean crosswind heat flux along the depth of the fireline (see Appendix B.3) and
find ILES = 1002 K m2s−1.

I apply the iterative solution (Equation 6.8) to find two zCL estimates based on Iobsand ILES, and compare them to the CWI smoke injection height obtained from the LES.
The results are shown in Figure 6.6. The parameterized injection heights are under-
predicted by 20 m and 70 m for LES- and observations- derived I values, respectively.
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6.3 Discussion

6.3.1 Context and applications

The abovemodel evaluation indicates encouraging performance for the proposed smoke
injection parameterization (Equation 6.8) at little computational cost. An additional
advantage of the method is that it does not require making simplifying assumptions
regarding the shape and heat flux distribution of the fire. This allowsme to easily apply
this approach to complex heat sources, such as one produced with the strip head fire
ignition pattern during the RxCADRE L2G prescribed burn (Figure 3.1).

Notably, this also makes direct comparison of the proposed method with exist-
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ing schemes difficult. A vast majority of established plume-rise parameterizations
consider a simplified fire geometry and a uniform (or total) heat flux as input param-
eters. [4, 6, 9, 20, 64]. Hence, applying these methods to my synthetic data would
require making many simplifying assumptions regarding the heat source. Subsequent
intercomparison would hardly be useful, as each scheme’s performance would largely
reflect how well the inputs are calibrated to the given plume-rise formulation.

Unlike most existing plume rise parameterizations, [6, 20, 64] I focus on a CWI
centerline. The proposed scheme can be viewed as a "bulk method", having some
common ground with the thermodynamic approach used in the FireWork modelling
framework [4, 9] and the energy balance approach proposed by Sofiev et al. [69]. More
specifically, I make no attempt to predict the full evolution of the rising plume centerline
velocity or temperature before it reaches its equilibrium height. Rather, I focus on the
energy balance of the plume within a "penetration layer".

Through analysis of the 140 LES experiments for plumes under variable fire and
atmospheric conditions detailed in Chapter 5, I found that near-surface and boundary-
layer plume dynamics are extraordinarily complex. While some aspects of plume mix-
ing can be reasonably accounted for by making common entrainment assumptions,
complicated features resulting from fire-atmosphere coupling, such as formation of
lateral vortices and fireline wind convergence zone, are difficult to parameterize di-
rectly. Hence, I apply the energy balance approach to a layer well above the surface,
starting from a reference height zs close to the top of the ABL.

As noted in Section 6.1, the implicit functional form of my solution (Equation 6.8)
can be interpreted as a characteristic timescalemultiplied by the characteristic velocity
scale w f . By rearranging Equation 6.7 and substituting Equation 6.8 for z′ it can be
shown (see Appendix B.2) that the two expressions for w f are equivalent, namely:

w f =

[
I

ziθ
′

]
=

[
gIz′

θszi

] 1
3 (6.11)

The scaling relationship between vertical plume velocity and cubic root of fire heat has
been previously established with both Rio’s and Freita’s models [20, 64] (discussed in
Section 2.2), although my formulation includes different variables inside the radical.
While both ofmy forms forw f and bothmodel formulations (the simplified Equation 6.7
and the expanded Equation 6.8) are mathematically equivalent, conversion from one
form to another requires repeated exponentiation. This results in large prediction er-
rors; hence, for practical applications, the full Equation 6.8 should be used.
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6.3.2 Dimensionless relationship

As discussed in Section 6.1, I can obtain an explicit solution for zCL by making addi-
tional assumptions about the vertical profile of potential temperature above the ABL.
This allows me to reduce Equation 6.9 to a similarity relationship with two dimension-
less groups z and H , denoting the left-hand side (LHS) and right-hand side (RHS) of
Equation 6.12, respectively. Nondimensional z and H are linearly related, as shown in
Figure 6.7. The simple relationship suggests that my modelling results could fairly
easily be scaled to a wider range of fire and atmospheric conditions, beyond those
captured by the synthetic dataset presented in Chapter 4.

z′

zi︸︷︷︸
z

=

[
θs

gγ3

] 1
4
[

I
z3

i

] 1
2

︸ ︷︷ ︸
H

(6.12)

6.3.3 Model bias

The raw, non-bias- corrected form of the proposed parameterization suffers from a
positive bias for tall plumes, as suggested by Figure 6.3c and Figure 6.4c. In other
words, zCL is overpredicted for plumes injected high above the ABL. One could spec-
ulate that this is due to the simplifying assumption that most of the cooling, mixing,
and dilution occurs below the reference level zs in upper portion of the ABL.

As the distance between zs and zCL increases for tall plumes and as the smoke
travels further into the free atmosphere, this assumption becomes increasingly less
accurate. Additional radiative cooling and entrainment of ambient air is, therefore,
unaccounted for, resulting in over-prediction for zCL.This issuemaypartially be corrected formydatasetwith the applied bias-correction.
However, cases with strong shear turbulence and active smoke mixing above the ABL
are still likely to be overestimated.
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Figure 6.7: Similarity solution for dimensionless groups H and z, corresponding tothe RHS and LHS of Equation 6.12, respectively. Scatter points represent individualLES runs, colored by fireline intensity parameter I. 1:1 line is shown in dashed greyfor reference.
6.4 Summary
In this chapter I present a simple parameterization (Equation 6.8) for predicting CWI
smoke-plume centerline height from a wildfire of an arbitrary shape and intensity. I
constrain and evaluate the proposed approach using the synthetic LES-derived plume
dataset developed for a wide range of fire and atmospheric conditions detailed in
Chapter 4. Based on the results of cross-evaluation with LES data as well as a real
prescribed burn case study, the parameterization offers reasonable accuracy at little
computational cost.

71



6.4.1 Limitations

The most significant limitation of the proposed smoke injection height parameteriza-
tion is that it applies only to smoke plumes with no water vapor condensation. Latent
heat effects are not considered. Hence, smoke injection level for extreme pyroconvec-
tive events (e.g. flammagenitus clouds [52]) will likely be grossly under-predicted with
the given formulation.

Another limitation is the inherently implicit form of the full model Equation 6.8.
While I have not encountered any issues using an iterative solver to find zCL, atypical(or extremely noisy) ambient atmospheric soundings could potentially affect conver-
gence. The explicit form (Equation 6.9) derived using the idealizing ambient sounding
(Figure 6.2) offers a possible solution for such cases. However, it fails forweakly stable
and adiabatic free atmosphere (eg. condition R8 in Figure 4.1), as θs is extrapolated
into lower levels of ABL.

Lastly, the parameterization has been developed and tested only for typical daytime
fair-weather atmospheric conditions. I have not assessed model performance for sta-
ble night-time atmospheric profiles or in the presence of strong vertical windshear.
6.4.2 Big picture

Given the above limitations, a reasonable question to ask is: how useful is the pro-
posed approach? In its current form (without latent heat effects), it’s unlikely to be suit-
able for large-scale applications (e.g. global chemical transport models). However, it
has the potential to improve regional air quality tools, since wildfire emissions sources
are largely dominated by in- or near- ABL non-condensing smoke plumes (Section 2.3).
The method can also be applied as a classifier to distinguish penetrative vs. non-
penetrative plumes, which is often vital for subsequent dispersion modelling [69], as
discussed further in Chapter 7.

Given the energy-balance formulation of this plume rise parameterization, it may
be possible to incorporate latent heat effects by including an extra PE term in Equa-
tion 6.1. Similarly to the iterative process for finding a level of neutral buoyancy with
Equation 6.8 using potential temperature, it may be possible to predict plume conden-
sation level using ambient humidity profile. A big obstacle to this development, how-
ever, is ensuring that WRF-SFIRE can capture aerosol microphysics, while accurately
simulating input fire moisture fluxes. As noted in Section 3.2.1, my model evaluation
of fire behavior within WRF-SFIRE is fairly primitive. Greater confidence in fire input
parameters, following comprehensive evaluation of model microphysics, would most
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certainly pave the way for further plume rise parameterization improvement.
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Chapter 7

Beyond injection height: Modelling the
distribution of smoke in the atmosphere

The parameterization introduced in Chapter 6 enables one to predict the initial cen-
terline height of a wildfire smoke plume. However, wildfire emissions are actually
deposited over a greater depth between the surface and the equilibrium level, with
significant portion remaining above the mean smoke injection height. Moreover, the
physics that govern mixing and dispersion within the ABL differ from those in the
entrainment layer and the free troposphere. Hence, in order to accurately predict down-
wind concentrations from awildfire, we first need to know: (i) Which plumes will pene-
trate the ABL? Once penetrative plumes are identified, we then need to determine: (ii)
How far above the equilibrium level does the plume extend? and (iii) What fraction
of wildfire emissions remains in the ABL?. The following sections aim to answer
these questions using ideas inspired by numerical experiments of Chapter 5, equations
derived in Chapter 6 and synthetic data from Chapter 4.
7.1 Plume classification
Previous Chapter 6 applied an energy balance parameterization to predict the mean
smoke injection height zCL of a given penetrative plume. For this purpose, only plumes
rising above ABL top zi were included in the synthetic plume dataset used to constrain
and evaluate the approach (see Table 4.3). In this section, I step back and consider all
performed simulations, to determine whether the same equations can also be used to
classify penetrative vs. non-penetrative plumes.

The synthetic dataset described in Chapter 4 consisted of 140 runs and excluded
7 simulations, where the plume remained trapped in the ABL (see Table 4.3 and Ta-
ble 7.1). I determined this by visual analysis of CWI centerline and smoke fields. The ex-
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cluded plumes typically exhibited oscillatory or irregular centerline behavior (within the
ABL) with little or no smoke injected above zi (see sample ABL plume in Appendix A.2).
For several combinations of fire and atmospheric conditions, however, making the
distinction was challenging. For this reason, I included these "marginally-penetrative"
plumes in the dataset.

In real-world applications, classification is a fundamental first step in plume rise pa-
rameterization process [69]. A viable automated method for categorizing penetrative
vs. non-penetrative plumes requires that the distinction be made based on available
input parameters, rather then smoke observations (as such are typically not available
at the time of making a forecast).

Conveniently, I can use Equation 6.8 to obtain a zCL estimate for any combination
of input parameters without prior knowledge of plume type. It can, hence, be applied
as a classifier by requiring that for a penetrative plume

zCL > zi+ (7.1)
where zi+ denotes the height of the upper edge of the numerical grid box (or ambient
atmospheric sounding) containing zi. In other words, this definition ensures that zi and
zCL are not in the same vertical model level. If this condition is not satisfied, the plume
is assumed to be non-penetrative.

This approach correctly classifies all non-penetrative plumes that had been iden-
tified by visual analysis (Table 7.1). In addition, several plumes exhibiting marginal
behavior are also classified by Equation 7.1) to be non-penetrative.

For the purpose of subsequent dispersionmodelling within real-world applications,
non-penetrative plumes (i.e. all plumes listed in Table 7.1) would be assumed to be-
come uniformly mixed in the vertical within a few convective turnover distances down-
wind of the fire. Turbulent eddies within the ABL produce a well-mixed layer, resulting
in relatively homogeneous vertical distribution of pollutants between the surface and
zi. In contrast, predicting the downwind smoke behavior for plumes that extend above
zi, spanning the ABL, the entrainment layer, and/or the free troposphere, is significantly
more difficult. The goal of the following sections is, therefore, to parameterize the ver-
tical smoke profiles of the remaining 133 synthetic plumes classified as "penetrative"
by Equation 7.1.
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Table 7.1: Identifying non-penetrative plumes using visual analysis vs. automatedclassification. Plume name denotes wind condition W, fuel type F and initialatmospheric profile R.
Plume Visual analysis Automated classificationW5F9R1 X XW5F1R3 X XW5F8R3 X XW5F9R3 X XW5F1R7 X XW5F8R7 X XW5F9R7 X XW5F1R0 XW5F1R1 XW5F8R1 XW5F10R3 XW5F11R3 XW5F1R4 XW5F11R4 X

7.2 Predicting smoke distribution above zCL

From hereon, for the identified penetrative plumes I will treat smoke injection height
zCL and plume penetration distance z′ as "known". Hence, I will use the LES-derived,
rather than estimated zCL and z′ values. This ensures that the errors associated with
modelling the vertical smoke profile C(z) are independent of mean plume rise param-
eterization.
7.2.1 Determining maximum rise

Recall from Section 5.5, that above ABL the plume core (represented by the center-
line) experiences little mixing with the ambient environment. Yet due to momentum
acquired during the initally-buoyant rise, the plume typically overshoots its equilibrium
level. Naturally, one can expect some of the smoke to be detrained in the atmospheric
levels between the peak centerline height ztop and zCL. In other words, ztop is potentially
a useful estimate for the upper edge of a given CWI smoke profile.

Amplitude of the initial centerline oscillation about its equilibrium level is likely to
be roughly equal to the original "displacement" of the plume from zCL. Therefore, I
hypothesize that:

ztop = zCL + z′ (7.2)
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Figure 7.1: Estimation of plume top ztop using plume penetration distance z′."Truth" value was obtained from the LES dataset of 133 penetrative plumes,assuming ztop is the height at which smoke concentration is equal to 0.15% ofthe maximum value at zCL (≈3 standard deviations from the peak for Gaussiandistributions). Colors correspond to penetration distance z′. Unity slope (dashedgrey) is shown for reference.
This relationship is plotted in Figure 7.1, suggesting a good fit to LES data (Pearson
correlation coefficient R=0.99). To determine the "true" top of CWI smoke profiles from
LES , I defined the upper plume edge such thatC(ztop) = 0.0015 ·C(zCL). This, assuming
Gaussian spread, corresponds to a smoke concentration three standard deviations
from the peak. Based on this definition, the scatter points generally fall on or close
to the unity line (dashed grey), suggesting the above hypothesis (Equation 7.2) is not
unreasonable. Greater overshoot distance (as indicated by scatter point color) tends
to be associated with increased scatter about unity. However, overall this appears to
be a viable approach for predicting ztop.
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7.2.2 Determining spread above zCL

In order tomodel CWI smoke distribution above themean injection level, I assume that
the concentration drop off between the maximum at zCL and ztop is roughly Gaussian.
In such case, the upper portion of the smoke profile C(z) can be described with the
following equation:

C(z)|z>zCL = Ae−(z−µ)2/(2σ2
top) (7.3)

where A = C(zCL) is the distribution amplitude, µ = zCL is the location parameter, and
σtop is a scale factor representing mean smoke spread above zCL.Typically, actual absolute concentration values of wildfire emissions are calculated
outside of plume rise parameterization scheme (by corresponding fuel consumption
and emissions modules) within the host smoke modelling framework. Therefore, for
the purpose of this chapter I assume C(zCL) is known. For air quality applications, the
normalized dimensionless smoke profiles CN(z) can be obtained by setting A = 1.

Based on the definition of ztop from Section 7.2.1 (i.e. upper edge of the plume cor-
responds to concentrations 3 standard deviations below themaximum), I can estimate
σtop as:

σtop =
(ztop− zCL)

3
=

z′

3
(7.4)

Given Equation 7.4 and assuming Gaussian functional form of Equation 7.3, I can
parameterize the smoke distribution above zCL using only z′ value obtained from Equa-
tion 6.8. Sample fits producedwith this approach are shown in Figure 7.2 and Figure 7.3
for typical low and high wind conditions, respectively.

For the low wind case (Figure 7.2), I have intentionally selected a run with apprecia-
ble error in ztop. Notably, as indicated by the relatively small discrepancy between the
modelled (orange) and LES-derived (dotted grey) curves above zCL, this error doesn’t
translate into large differences between the distributions.

The vertical smoke profile in Figure 7.2 appears to be well-captured by a single
Gaussian curve. Namely, the profile below and above zCL can be modelled using the
same σ . In contrast, the distribution in Figure 7.3 is markedly wider below zCL than
above. The following section explores possible explanations for this behavior.
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Figure 7.2: LES-derived (blue) and parameterized (orange) smoke distributionunder low (4 ms−1) ambient wind conditions. LES-derived and parameterized
ztop values are plotted in dashed orange and dashed grey, respectively. Alsoshown, IQR range of LES smoke profile (blue shading), zCL (dash-dotted blue) andparameterized distribution based on LES-derived ztop.
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Figure 7.3: LES-derived (blue) and parameterized (orange) smoke distributionunder high (12 ms−1) ambient wind conditions. LES-derived and parameterized
ztop values are plotted in dashed orange and dashed grey, respectively. Alsoshown, IQR range of LES smoke profile (blue shading), zCL (dash-dotted blue) andparameterized distribution based on LES-derived ztop.
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7.3 Predicting smoke distribution below zCL

7.3.1 Accounting for ambient environmental mixing in the ABL

Weknow fromboundary layer theory thatmixingwithin the ABL is typically governed by
surface buoyancy flux andwind stress [70]. Due to strong near-surface shear, highwind
conditions are typically associated with mechanically-generated turbulence (forced
convection). In contrast, under calm conditionsmixing is largely the result of continual
turnover of buoyant thermals rising from the surface (free/convective turbulence). Of-
ten the relative importance of each type of convection is expressed as the dimension-
less Richardson number Ri, corresponding to the ratio of buoyant and shear production
of TKE.

In a similar fashion, LES data suggests that the width of the smoke distribution be-
low zCL appears to be a function of the relative magnitudes of fire updraft and ambient
convection. Previously, in Section 6.3, I introduced an expression for the characteristic
fire velocity w f (Equation 6.11). Using w f I can estimate the relative (to background
thermals) updraft speed wr as

wr = w f −w∗ (7.5)
where w∗ is the Deardorff velocity scale, representing the mean vertical velocity of
background thermals, given by

w∗ =
[

gziS
Tv

] 1
3 (7.6)

Tv and S denote virtual absolute temperature of the ABL and kinematic surface sensible
heat flux, respectively. To obtain a characteristic horizontal ABL wind Ua, I use the
average value from the ambient sounding between 0.5zi and zi. I exclude the bottom
half of the ABL, as various roughness lengths associated with different fuel types
produce variable surface layer depths. I then define a dimensionless ratio Rw, suchthat

Rw =


Ua
wr
,

w f
w∗ ≥ 1.5

Ua
w f
,

w f
w∗ < 1.5

(7.7)
This conditional formulation ensures that Rw remains reasonable for cases with w f ≈
wr. I determined the absolute threshold based on informal sensitivity analysis of LES
data. Finally, I define the spread of the smoke profile below zCL as:

σbot = Rwσtop (7.8)
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Substituting σbot in place of σtop in Equation 7.3, I can obtain the bottom portion of the
smoke profile, as shown in Figure 7.2 and Figure 7.3. For low wind case (Figure 7.2)
Rw ≈ 1, producing a roughly symmetrical (about zCL) Gaussian curve. For high wind
case with Rw > 1 (Figure 7.3) there is an obvious skew in the distribution, with larger
portion of smoke remaining in the ABL.

In the following section I examine howaccurately this approach partitions the smoke
between the ABL and the free troposphere under the variety of fire and wind conditions
captured by the synthetic plume dataset.
7.3.2 Estimating errors

Using the approach introduced in this chapter, I parameterize the normalized vertical
smoke distributions of all penetrative plumes in the LES dataset (as identified by the
classification condition in Section 7.1). To isolate potential sources of error, I calculate
two separate solutions using (i) LES-derived ztop and (ii) modelled ztop values. Sample
curves representing the two solutions are plotted in dotted grey and solid orange in
Figure 7.2 and Figure 7.3.

For each solution, I then calculate mean absolute error (MAE) separately for values
below and above zi, as well as over the entire depth of the smoke column. The results
are summarized in Figure 7.4.

As expected, LES-derived ztop generally produces slightly more accurate solutions
than the modelled ztop, though the differences are not statistically significant. Overall,
the proposed approach appears to properly partition smoke between the ABL and the
free atmosphere above, accurately allocating 90-95% of normalized emissions.
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Figure 7.4: MAEof parameterized smoke distributionsCN(z)based on LES-derived(left) and modelled (right) ztop. Orange line corresponds to median value. The boxand whiskers span IQR and 1.5×IQR, respectively, with the notch denoting the 95%confidence interval of the median (median±1.57×IQR/n 1
2 ).

7.4 Distributing smoke laterally
The parameterizations presented in the previous and current chapters focused entirely
on CWI smoke vertical distributions. This approach is largely motivated by its most
likely application: a smoke modelling framework.

My numerical plume dataset contained fires with lengths ranging from 1 to 4 kilo-
meters in the cross-wind direction. For comparison, typical grid-spacing of a regional
smoke dispersionmodelling system is≈10 km [9, 66]. While common in the real world,
the simulated fires captured by the dataset would, therefore, be treated as a subgrid-
scale effect within these systems. Thismeans that the smoke distribution in the cross-
wind (y) direction would be considered to be uniform across the width of the cell y

containing the fire. In other words:
C∗N(y j,z) =

CN(z)
∆y

(7.9)
where j denotes subgrid-scale index, CN(z) is normalized CWI concentration in units
of mass/area, C∗N(y j,z) is normalized concentration in units of mass/volume and ∆y is
the horizontal resolution of the host model in the cross-wind direction. The parame-
terized CWI smoke profile would be applied to the vertical column directly above the
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ignited cell (i.e. plume tilt and/or other local-scale effects would not be relevant within
these coarse-grid applications). Dispersion and plume growth would be subsequently
handled by the appropriate modules within the host smoke modelling framework.

A wide range of factors affect the lateral distribution of smoke within the plume.
Among them are the shape and curvature of the fireline, ambient convection, vertical
potential temperature profile, winds, vorticity, fire intensity and many others. While
beyond the scope of both the synthetic dataset and of this dissertation, the remainder
of this section offers some ideas for future investigation.

Shown in Figure 7.5a is the total normalized smoke of a sample simulated plume,
as integrated over the depth of the domain in the along-wind direction. For most of
my simulations along-wind integrated (AWI) plumes are not symmetrical, as the fires
were not ignited instantaneously. A representative lateral smoke distribution can be
obtained by taking a cross-section at zCL (Figure 7.5b). By comparing cross-sections
of different simulated plumes, I can examine the effects of some parameters in my
synthetic dataset on the width and shape of the lateral (cross-wind) distribution (Fig-
ure 7.6).

Specifically, I compare runs with different (a) fire intensities, (b) fireline lengths and
(c) ambient winds, while holding other simulation conditions constant (Figure 7.6). Of
course, as many of the parameters interact in complex non-linear ways, these compar-
isons do not constitute true controlled experiments. Generally, LES data suggests that
the extent to which the plume widens is largely governed by the shape and intensity of
the fire.

Recall from Chapter 5 that wildfire plumes often exhibit anvil-like behavior, with
smoke outflow levels marked by increased advection relative to ambient winds. One
can speculate, that this radial outflowmay contribute to plume widening. Hence, more
intense fires, associated with stronger updrafts and fire-induced winds appear to have
broader lateral smoke distributions than weaker fires (Figure 7.6a).

In a similar fashion to Section 7.2, I can characterize the strength of the updraft
and the associated lateral spread using the fire velocity scale w f (Equation 6.11). This
does not in any way constitute a method for parameterizing the smoke distribution in
the cross-wind direction. However, an extremely crude normalized approximation can
be described as follows:

C∗N(y,z) = e−(y−y f )
2(2σ2

y ) (7.10)
where y f is the cross-wind location of the center of the fire and σy = 1870+215∗w f . Idetermined the fit parameters for σy (Equation 7.10) from linear regression on LES data
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Figure 7.5: Lateral smoke spread from a sample simulated wildfire plume. (a) To-tal normalized along-wind (y,z) smoke. Dashed grey line denotes smoke injectionlevel zCL (b) Horizontal cross-section obtained from above at zCL.
(R=0.80). The approximated lateral smoke distributions obtained using this approach
are shown as dotted lines in Figure 7.6.

In conclusion, although parameterizations for the initial lateral spread of the smoke
can be devised, most operational applications, with coarse-grid dispersionmodels, will
inject the smoke plume into one grid column. Hence, initial lateral spread is not needed,
because the injected smoke is assumed to to be distributed uniformly within each grid
cell.
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Figure 7.6: Parameters affecting lateral smoke spread from a wildfire. Solid anddotted lines denote true (LES) and approximated (Equation 7.10) cross-sections,respectively. (a) Low (blue) vs. high (orange) fireline intensity. (b) 1 km (blue) vs.4 km (orange) firelines. (c) Low (blue) vs. high (orange) winds.
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7.5 Summary of approach
In this chapter I introduce a simplemethod for predicting the normalized vertical distri-
butionCN(z) of CWI smoke from a wildfire under known daytime ambient atmospheric
conditions. The approach can be summarized with the following steps:

1. For a given wildfire, obtain zCL and z′ (Equation 6.8)
2. Perform automated plume classification (Equation 7.1)

(a) For non-penetrative plumes assume uniform smoke distribution between
the surface and zi

(b) For penetrative plumes proceed to the following steps
3. Calculate σtop (Equation 7.4)
4. Calculate σbot

(a) Calculate w f (Equation 6.11)
(b) Obtain w∗ and Ua from ambient atmospheric and surface data
(c) Calculate Rw (Equation 7.7) and σbot (Equation 7.8)

5. Model the full normalized vertical smoke profile of CWI concenration:
CN(z) = e−(z−zCL)

2/(2σ2) (7.11)
where

σ =

σtop, z≥ zCL

σbot , z < zCL

To obtain actual concentrations, it may be necessary to make additional assump-
tions about how the smoke is distributed in the cross-wind direction (Section 7.4),
although most dispersion models will not need the initial lateral spread.
7.6 Limitations
The overall encouraging error statistics presented in Section 7.3.2 should be treated
with caution, as all simulations in the synthetic plume dataset were initialized with the
same ambient sensible heat flux at the lower domain boundary. Various ABL depths
and temperatures corresponding to different R conditions produce a wide range of w∗

values, however, S is constant for the entire dataset.
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The dependence of the parameterization on w∗ is in itself a limitation, as in real-
world (rather then numerical modelling) applications observations of surface fluxes
are typically not available. However, rough estimates can be made in the field using
Pasquill-Gifford methods [21], such as considering insolation, cloud cover and wind
speed. Also, while the approach doesn’t appear to be very sensitive to errors in ztop,it, never-the-less, relies on the relative definition of the plume penetration distance z′

from the previous Chapter 6.
Lastly, Section 7.4 merely skims the surface of the complex analysis required to

understand what processes govern smoke distribution in the cross-wind direction.
7.6.1 Big picture

A truly robust assessment of uncertainties associated with the proposed parameter-
ization would require expanding the parameter space of the LES plume dataset. In
particular, it would be important to include directional shear in the imposed ambient
winds, while also varying the surface sensible heat flux. Never-the-less, even in its
current form it is likely going to offer an advantage over "single-level" smoke injection
schemes or those relying on "uninformed" assumptions (e.g. linear interpolation of
concentrations between the injection height and the surface; single Gaussian distribu-
tion with a fixed spread).

While encouraging, these results are still dependent on accurate input parameters
from other components of smokemodelling systems. Namely, themethods presented
here rely on fire behavior information to predict the mean smoke injection level and
plume penetration distance, as well as emissions estimates to convert the normalized
profiles to absolute concentration values. Moreover, much theoretical work is needed
to understand how the smoke is distributed in the cross-wind direction. More broadly,
the tools presented in this chapter are merely small elements of a complex modelling
chain.
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Chapter 8

Conclusions

Modelling plume rise from wildfires is a complex challenge that lies at the interface
of fluid dynamics, atmospheric physics and fire behavior science. To date, it remains
one of the weakest links in our ability to predict where and how smoke from wildfires
travels in the atmosphere. This dissertation was guided by a set of research questions,
aiming to fill the knowledge gaps in our current state of knowledge on the subject. As
I revisit them below, I hope that my answers contribute to the interdisciplinary effort to
improve our understanding of wildfire atmospheric dynamics.

• Can a coupled fire-atmosphere numerical model accurately simulate smoke
plume rise from a real fire?

In short, yes. The model evaluation case study presented in this thesis (Chap-
ter 3) compared fire and smoke behavior from a WRF-SFIRE simulation to obser-
vations from a comprehensive field experiment (RxCADRE). While rudimentary
in some aspects, the analysis suggested that the model reasonably captures
plume kinematics and can serve as a useful tool for learning about the physical
processes involved.

• What can we learn about the behavior of the atmosphere around the fire from
numerical experiments?

Detailed synthetic data produced by WRF-SFIRE (Chapter 4) allowed me to ex-
periment with a range of fire and atmospheric conditions well beyond the ca-
pacity of any observational campaign. Complex dynamical features (including
flow convergence, vorticity, interactionswith boundary layer turbulence) revealed
by these numerical experiments challenge several common assumptions about
how smoke plumes mix with the atmosphere (Chapter 5). Most aspects of fire-
atmosphere interactions detailed in this work remain to be quantified.
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• Can synthetic data be used to parameterize smoke plume rise for air quality
applications?

Based on insights gained from the numerical experiments, I developed a simple
energy-balance approach, which allows to determine:

– What is the mean smoke injection height of a given wildfire plume?
The proposed parameterization (Chapter 6) allows to predict the centerline
height of a CWI penetrative plume froma fire of arbitrary shape and intensity
under a wide range of ambient conditions. I demonstrated that for daytime
fair-weather plumes there exist a linear dimensionless relationship and a
characteristic fire velocity scale, which govern the vertical penetration dis-
tance of the plume in the atmosphere above the ABL.

– Which plumes will penetrate the ABL?
Using equations fromChapter 6, I showed that the proposed energy-balance
approach can also be applied as an automated classifier to distinguish pen-
etrative vs. non-penetrative plumes.

– How are wildfire emissions vertically distributed in the atmosphere?
In Chapter 7 I demonstrated that parameterized plume penetration distance
and fire velocity scale can be used to predict the full vertical profile of smoke
emissions above and below the mean injection height.

In Section 7.5 I provide a complete set of algorithms needed to incorporate the
new plume rise parameterization into an air quality model.

The natural next step beyond this thesis is the implementation of the new plume
rise scheme within a regional smoke prediction system (e.g. BlueSky Canada). Much
work remains to be done to ensure that the new methods are calibrated to work well
with the existing fire behavior and emissions models. Moreover, the inherently numer-
ical perspective of this thesis is bound to be challenged, when the ideas and methods
presented here are put to trial in real-world applications.

As extreme wildfire events become more common under a changing climate, our
ability to reduce the health risks and mortality associated with smoke exposure will
become critically important. My hope is that the contributions presented here will help
advance our current smokemodelling tools andmitigate some of the negative impacts
of wildfires for human health and the environment.
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8.1 Contributions
The specific contributions of this thesis are as follows:

• Analysis of WRF-SFIRE model performance using an integrated observational
RxCADRE dataset (Chapter 3). The results and methods (as well as sample
initialization files) of this evaluation study can be used for model development
and improvement.

• A synthetic plume dataset consisting of 133 penetrative and 14 non-penetrative
plumes over a wide range of atmospheric and fire conditions (Chapter 4, Ta-
ble 4.3), to facilitate smoke dispersion research in the absence of detailed ob-
servational data.

• An analyticalmethod for determining themean injection height of a smoke plume
from an arbitrarily shaped wildfire in a daytime atmosphere (Chapter 6). The ap-
proach canbe applied as a classifier to distinguish penetrative and non-penetrative
plumes (Section 7.1) aswell as a plume rise parameterizationwithin a host smoke
modelling system.

• A Gaussian-based method for predicting the vertical distribution of CWI wildfire
emissions in the atmosphere (Chapter 7), which can be applied within air quality
and dispersion models.

8.2 What’s ahead?
Methods and ideas presented in this thesis are aimedat improving a single link in a long
and complex modelling chain of smoke prediction systems. Due to lack of scientific
theory connecting the numerous physical processes involved, many components of
these frameworks still rely on simplifying parameterizations. Hence, in the short term,
I hope that the methods contributed by this work can be implemented within existing
air quality systems and help improve their accuracy.

Yet I imagine that the next generation of smoke modelling frameworks could har-
ness the power of increasinglymore affordable cloud computing resources. Thiswould
eventually allow us to replace parameterized components (like combustion and smoke
dynamics) of our numerical systems with directly computed full-physics models. This,
in turn, could help capture many dynamical feedbacks that exist between the fire, the
smoke and the atmosphere. The importance of understanding these feedbacks ex-
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tends well beyond air quality, and carries fundamental consequences for climate pre-
diction.

Hence, my long-term vision and hope is that accurate and intelligent smoke mod-
elling systems of the future will have no need for parameterizations akin to ones con-
tributed by this thesis.
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Appendix A

Working with synthetic data

A.1 Initialization files
Sample initialization files used to generate a smoke plume can be obtained from Sup-
plementary Material available at:
https://acp.copernicus.org/preprints/acp-2020-827/acp-2020-827-supplement.zip

A.2 Sample non-penetrative plume
Shown in Figure A.1 is an example of a simulated plume classified as non-penetrative
by visual analysis. Note that the centerline exhibits oscillatory behavior and very little
smoke is injected above ABL top. Such plumes are likely to remain trapped in the ABL
and eventually become uniformly mixed throughout the depth of the convective mixed
layer.

Figure A.1: True aspect ratio plot of CWI smoke from a sample non-penetrativeplume. Plume centerline and zi shown in dashed and dotted grey, respectively.
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A.3 Identifying quasi-stationarity
I define the quasi-stationary downwind region for each plume based on two factors:
the height of the centerline and tracer concentration gradient along the centerline. My
filter attempts to extract only those portions of the downwind CWI smoke distribution,
where both of these factors are changing slowly.

First, I remove the effect of random turbulent oscillations by applying a smoothing
function (Savitzky-Golay filter provided by SciPy library with polynomial order set to 3)
to both the concentration gradient along the centerline and the centerline height. I vary
the size of the smoothing window as a function of mean ambient wind condition W,
such that window_length = max(W ·10+1,51) grid points.

The filter then applies the following criteria to extract quasi-stationary regions:
• smoothed tracer concentration along the plume centerline varies by less then
10% of the maximum concentration gradient

• smoothed centerline height varies by less then a 100 m
• the location is downwind of the maximum tracer concentration gradient
• the location is at least 10 grid points away from the maximum in smoothed and
non-smoothed centerline height

• the location is at least 50 grid points away from the downwind endpoint of the
centerline

The above thresholdswere determined through an informal sensitivity analysis (not
shown), based on the filter’s ability to effectively identify regions of near-stationary
plume centerline height for all simulations in our dataset.
A.4 Access to plume dataset
Data archive is available at:
https://doi.org/10.20383/102.0314
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Appendix B

Plume rise scheme: mathematical
formulations and implementation

B.1 Expanded form of plume penetration equation
Energy-balance formulation for plume penetration distance (Equation 6.1) can be con-
verted into expanded form Equation 6.8) as follows:

z′gθ ′

θs
= c
[

I
ziθ
′

]2 (B.1)
Rearranging gives

z′gθ ′3

θs
= c
[

I
zi

]2

Multiplying both sides by z′

z′
[

gz′θ ′3

θs

] 1
2

= c̃
[

Iz′

zi

]
and rearranging gives

z′ = c̃
[

gz′θ ′3

θs

]− 1
2
[

Iz′

zi

]
Expanding the RHS

z′ = c̃
[

gz′θ ′3

θs

]− 1
2
[

gIz′

ziθs

][
θs

g

]
and rearranging gives

z′ = c̃
[

1
z′θ ′3

] 1
2
[

gIz′

ziθs

][
θs

g

] 3
2
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Multiplying both sides by z′2

z′3 = c̃
[

z′

θ ′

] 3
2
[

gIz′

ziθs

][
θs

g

] 3
2

and taking a cube root of the above expression
z′ =C

[
θsz′

gθ ′

] 1
2

︸ ︷︷ ︸
1
N

[
gIz′

ziθs

] 1
3

︸ ︷︷ ︸
w f

where N is Brunt-Vaïsälä frequency (units of s−1) over the penetration regionwithmean
atmospheric lapse rate θ ′

z′ and w f is the fire velocity scale (in ms−1). Expanding z′ and
θ ′ gives

zCL− zs =C
[

g(θCL−θs)

θs (zCL− zs)

]− 1
2
{

gI (zCL− zs)

θszi

} 1
3 (B.2)

B.2 Expressions for w f

I have two expressions for convective fire velocity w f :
w f 1 =

I
ziθ
′ (B.3)

and
w f 2 =

[
gIz′

θszi

] 1
3 (B.4)

Using Equation 6.7 and setting C ≈ 1 (based on LES data), I can rewrite Equation B.3
as

w f 1 =

[
z′g

θ ′

θs

] 1
2

= z′
[

gθ ′

z′θs

] 1
2
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Now substituting Equation 6.8 for z′ into the above and cancelling terms in square
brackets I obtain:

w f 1 =

[
gθ ′

θsz′

]− 1
2
{

gIz′

θszi

} 1
3
[

gθ ′

z′θs

] 1
2

=

{
gIz′

θszi

} 1
3

= w f 2

Hence, the two expressions are equivalent.
B.3 Estimating model input parameters
Summarized in Table B.1 are parameters associated with an iterative solution for zCLusing Equation 6.8. Below is my approach to estimating these parameters from LES
data.

As noted above, I consider the problem in crosswind direction. Given a three-
dimensional fire of an arbitrary shape (eg. Figure 4.2b) and an ambient atmospheric
sounding, I first average the fire kinematic heat flux for all ignited cells (where heat flux
> 1 kW m−2) over the crosswind (y) direction at the surface (red line on Figure 4.2a).
Due to surface wind shear this direction may differ from the one used for calculating
CWI smoke concentrations (as shown in Section 6.2.3). To obtain fireline intensity
parameter I I numerically integrate the crosswind averaged heat fluxes over the depth
of the fireline in the along-wind (x) direction.

I use pre-ignition potential temperature profile (i.e. the ambient environment up-
wind of the fire) averaged over the entire LES domain as an environmental sounding.

Table B.1: Variable descriptions and units used in smoke injection parameteriza-tion.
Variable Unit Description
I K m2s−1 fireline integrated heat flux
g ms−2 gravity constant = 9.81
θCL K ambient potential temperature at zCL

θs K ambient potential temperature at zs

zCL m smoke injection height
zi m boundary layer height
zs m reference height
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All model fields are interpolated to have a 20 m vertical increment. zi is defined as
the height of the strongest environmental lapse rate gradient, and zs =

3
4 zi, based on

informal model sensitivity analysis (not shown). The exact choice of zs has little effect
on model performance as long as it remains within the upper portion of the uniform
potential temperature well-mixed layer.

The values of θs and θCL are then determined from the pre-ignition sounding for
each simulation using the definitions of zs and zCL (as described in Section 4.2).
B.4 Iterative solution for zCL

The numerical implementation of my iterative solution using SciPy’s fsolve function
(scipy.optimize.fsolve) is as follows. I rewrite bias corrected Equation 6.8 into an input
function toSolve as:

toSolve = lambda z : z−B1(zs +

[
g(T 0[int( z

dz)]−θs)

θs(z− zs)

]− 1
2
[

gI(z− zs)

θszi

] 1
3

)−B2 (B.5)
where B1 = 0.919 and B2 = 137.919 are bias correction parameters, T 0 is the potential
temperature sounding vector, dz is the vertical step and int() is a standard Python
function converting the bracketed value into an integer.

A possible issue for some solvers is that we are, effectively, iterating over the ver-
tical index of the column vector T 0 corresponding to zCL. As the numerical solver
attempts to converge on a solution it may query a non-existent index and fail. I am able
to obtain a fast and consistent performance by ensuring I set zi as the initial guess for
zCL and by minimizing the initial step bound option of the solver

zCL = f solve(toSolve,zi, f actor = 0.1) (B.6)
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