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Abstract

The full-information maximum likelihood (FIML) is a popular estimation method for

missing data in structural equation modeling (SEM). However, it is not commonly known

that approximate fit indices (AFIs) can be distorted, relative to their complete data coun-

terparts, when FIML is used to handle missing data. In the first part of the dissertation

work, we show that two most popular AFIs, the root mean square error of approxima-

tion (RMSEA) and the comparative fit index (CFI), often approach different population

values under FIML estimation when missing data are present. By deriving the FIML fit

function for incomplete data and showing that it is different from the usual maximum

likelihood (ML) fit function for complete data, we provide a mathematical explanation

for this phenomenon. We also present several analytic examples as well as the results

of two large sample simulation studies to illustrate how AFIs change with missing data

under FIML. In the second part of the dissertation work, we propose and examine an al-

ternative approach for computing AFIs following the FIML estimation, which we refer

to as the FIML-Corrected or FIML-C approach. We also examine another existing es-

timation method, the two-stage (TS) approach, for computing AFIs in the presence of

missing data. For both FIML-C and TS approaches, we also propose a series of small

sample corrections to improve the estimates of AFIs. In two simulation studies, we find

that the FIML-C and TS approaches, when implemented with small sample corrections,

can estimate the complete data population AFIs with little bias across a variety of condi-
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tions, although the FIML-C approach can fail in a small number of conditions with a high

percentage of missing data and a high degree of model misspecification. In contrast, the

FIML AFIs as currently computed often performed poorly. We recommend FIML-C and

TS approaches for computing AFIs in SEM.
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Lay Summary

In a survey study, participants often leave some questions blank due to carelessness or

unwillingness to answer certain questions. This creates missing data, which can distort

the results of statistical analyses. Modern missing data techniques, such as the full-

information maximum likelihood (FIML) method, are designed to address this problem

of missing data. However, the FIML method corrects the distorted results in some circum-

stances but not in all.

In this dissertation, we focus on structural equation modelling (SEM), which is an

advanced statistical analysis commonly used in social sciences. We explain that in SEM,

the FIML method may distort the results regarding the degree of model fit as measured by

the approximate fit indices (AFIs). We propose two alternative methods called the FIML-

Corrected (FIML-C) and the two-stage (TS) methods. Through computer simulations, we

show these two new methods can correctly compute the AFIs; therefore, we recommend

these two new methods.
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Chapter 1

Introduction

Missing data are a real bane to researchers across all social science

disciplines. For most of our scientific history, we have approached missing

data much like a doctor from the ancient world who might use bloodletting to

cure disease or amputation to stem infection (e.g, removing the infected parts

of one’s data by using list-wise or pair-wise deletion).

Craig K.Enders

Missing data, also known as incomplete data, are prevalent in psychological and educa-

tional research, particularly when repeated measures or longitudinal studies are involved.

Osborne [29] reported that around 40% of papers in APA journals in the year 2009 de-

scribed dealing with missing data. Jelicic et al. [18] examined the prevalence of missing

data in longitudinal studies over six years in three developmental psychology journals, and

found about half of the studies had missing data.

Historically, statistical analysis methods are developed assuming that data are com-

plete, and proper methodology for dealing with incomplete data is hard to implement due

to intensive computations. However, with the advance of computing technology, begin-

ning in the late 1980s, more and more researchers began to study the problem of missing
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data. According to Google Scholar, the number of articles with titles including the words

missing data or incomplete data were 1024 in years 1990 to 1999, grew to 3505 in the

years 2000–2009, and is 5400 in the past 8 years.

In addition, with the improvement in computing technology, more advanced modeling

methods are made available for researchers to use. Structural equation modeling (SEM)

is one of these advanced methods; it allows researchers to test complex theories involving

multiple observed and latent variables. With increasing number of SEM software pack-

ages, SEM has become very popular in psychology and other social sciences.

In this dissertation, we aim to expand the research on both missing data and SEM by

examining how SEM approximate fit indices (AFIs) are affected by missing data under dif-

ferent missing data techniques. More specifically, the research demonstrates that popular

SEM AFIs can be distorted when being estimated using one of the most popular missing

data techniques, the full information maximum likelihood (FIML), and such distortion can

be corrected through alternative missing data techniques. In this introductory chapter, we

first introduce the key topics related to the current research, including missing data mech-

anisms, missing data patterns, missing data techniques, SEM, and SEM AFIs. Then we

review the past research on how missing data affect SEM AFIs. We end the chapter with

an outline for the rest of the dissertation paper.

1.1 Missing Data Mechanisms

The most common classification of missing data is by missing data mechanism, which

is first proposed by Rubin [31]. Missing data mechanism can be thought as a kind of

missing data generation rule that describes the statistical relationship between variables

and the probability of missing data at the population level [28, 31]. There are generally

three types of missing data [32]: 1) missing completely at random (MCAR), 2) missing at

random (MAR), and 3) missing not at random (MNAR). In this section, we review these

2



three types of missing data mechanisms in both informal and formal terms.

Let us consider a dataset with n subjects and p variables denoted as X1, . . . ,Xp. When

we do not have missing data, our dataset should look like a matrix with n rows and p

columns. When we have missing data, we can consider the missing data as unobserved

values that create holes in the data matrix. Suppose only X1 has missing values. If X1 is

MCAR, then the probability of a subject having a missing value of X1 does not depend

on its unobserved value in X1 nor its observed values of other variables. This means that

knowing the subject’s values on any of the variables does not give you any information

about its probability of being missing. An example of MCAR data is when the paper-form

questionnaire data are missing because a house cat spilled coffee on the table. In this case,

there are no observed nor missing data that can predict the probability of being missing. If

X1 is MAR, then the probability of a subject being missing depends on its observed values

of other variables but does not depend on its value of X1. In other words, MAR means

“conditionally missing at random”: conditional on the observed values of other variables,

the probability of being missing does not depend on the value of X1. An example of MAR

data is when shy participants tend to have more missing values on the questionnaire items

about their sexual orientation. In this case, we can use the items that measure the shyness

of participants to predict the probability of missing data about sexual orientation. If X1

is neither MCAR nor MAR, then X1 is MNAR, where the probability of a subject having

a missing value on X1 depends on its value of X1. A classical example of MNAR data is

when participants with high income avoid answering questions about income. In this case,

the probability of missing the income data is related to participants’ own income.

To define the types of missing data mechanisms formally, let X = (X1, . . . ,Xp)
T be a

random vector representing the p variables in the dataset and x = (x1, . . . ,xp)
T represent

the realizations of X . Same as above, suppose X1 is the only random variable with missing

data. Let M be a random indicator variable with M = 1 representing a missing value in X1;

3



we call M the missing data indicator. MCAR occurs when the distribution of M does not

depend on x:

P(M = 1|x) = P(M = 1)

P(M = 0|x) = 1−P(M = 1|x) = 1−P(M = 1) = P(M = 0).

To define MAR and MNAR, we have to break down x into the observed (xobs) and the

unobserved or missing (xmis) parts of x; that is x = (xmis,xobs)
T . In this case, since x1 is

the only variable with missing data, xmis = x1 and xobs = (x2, . . . ,xp)
T . MAR occurs when

the distribution of M depends on xobs but not xmis:

P(M = 1|(xmis,xobs)
T ) = P(M = 1|xobs)

P(M = 0|(xmis,xobs)
T ) = P(M = 0|xobs).

Notice that MAR data becomes MCAR data when M’s dependence on xobs is zero. Lastly,

MNAR occurs when the distribution of M depends on xmis; that is when P(M = 1|(xmis,xobs)
T )

and P(M = 0|(xmis,xobs)
T ) cannot be simplified further.

An important concept related to the types of missing data mechanisms is ignorability.

Ignorable data are the types of missing data that can be handled with the likelihood-based

analysis such as the full information maximum likelihood (FIML) estimation method. In

other words, with ignorable missing data, we can obtain consistent parameter estimates

without explicitly modelling the underlying missing data mechanism. Ignorable missing

data needs to satisfy the following two conditions: 1) the data are either MCAR or MAR;

2) parameters associated with the specific missing data rule are distinct from the param-

eters associated with the distribution of the variables in the dataset [31]. In the above

example, the second condition means that the parameters associated with the distribution

of M are distinct from the parameters associated with the distribution of X . To explain
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why these conditions are needed, let θ and φ are the parameters associated with X and M,

respectively, and let f (x,m;θ ,φ) denote the joint density of X and M. Because θ and φ

are distinct, when the data are incomplete, the observed data likelihood can be obtained

via the marginal of xobs as follows:

f (xobs,m,θ ,φ) =
∫

f (xobs,xmis;θ) f (m|xobs,xmiss;φ)dxmis (1.1)

When the data are MCAR, f (m|xobs,xmiss;φ) = f (m;φ); when the data are MAR,

f (m|xobs,xmis;φ) = f (m|xobs;φ). Since neither f (m;φ) nor f (m|xobs;φ) involves xmis, we

can take f (m;φ) or f (m|xobs;φ) out of the integral. In other words, for MCAR or MAR

data, it is sufficient to maximize
∫

f (xobs,xmis;θ)dxmis with respect to θ if we only want to

estimate θ . There are MAR data that violate the second assumption for ignorable missing

data (i.e.,θ and φ are not distinct); in such cases, statistical methods assuming ignorability

are not optimal but are generally still good for obtaining consistent estimates. Therefore,

in practice, ignorable missing data imply MCAR or MAR data, and non-ignorable missing

data imply MNAR data.

In addition, it is worth noting that the fact that ignorable missing data can be han-

dled by the FIML method (i.e., producing consistent estimates) rests on the assumption

that the model is correctly specified. In the case of SEM, if the hypothesized model is

the same as the population model, then the FIML method is able to produce consistent

model parameter estimates and model fit. On the other hand, if the hypothesized model

is misspecified, the FIML method estimates the model parameters so that the “distance”

between hypothesized probability distribution and the true probability distribution is as

close as possible.1 In this dissertation, we call the parameters obtained under a misspeci-

fied model the “pseudo-parameters”. As we will show later, even with ignorable missing

1The “distance” between two probability distributions is known as the Kullback-Leibler divergence [41].
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data, the FIML method does not produce consistent estimates for the “pseudo-parameters”

of complete data.

Due to the important property of ignorability for MCAR and MAR data, missing data

mechanism is by far the most important feature of missing data being studied in simulation

studies involving missing data. Most SEM research on missing data focuses on studying

missing data techniques that can handle ignorable missing data; in other words, the re-

searchers will mainly focus on MCAR and MAR missing data in their simulation studies

[e.g., 36, 37, 45]. Our research is no exception. Our research mainly focuses on missing

data approaches that can be used to handle ignorable missing data; therefore, as you will

see in Chapters 4 and 6, examining different types of MCAR and MAR missing data is

one of the main focuses in our missing data simulation studies.

1.2 Missing Data Patterns

Missing data pattern is another way to categorize missing data. Missing data pattern refers

to the arrangement of observed and missing values in a dataset [15]. It is often confused

with missing data mechanism [e.g. 16]. The distinction is that a specific missing data

mechanism is a missing data generation rule that describes the relationship between vari-

ables and the probability of missing, whereas a specific missing data pattern is a data

configuration that describes the location of the missing values in the data.

Although missing data pattern and missing data mechanism are distinct concepts, they

do affect each other. Given a specific missing data generation rule with a certain type of

missing data mechanism, the number and the type of missing data pattern will be deter-

mined. For example, suppose a dataset has X1, . . . ,Xp variables, if the missing data rule is

each subject has 20% probability of being missing from the variable X1, then the missing

data pattern is univariate, implying two missing patterns.

When it comes to studying missing data techniques such as FIML, missing data pat-
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terns are often considered less important than missing data mechanisms, probably because

missing data patterns are not directly related to the ignorability property of missing data.

Nonetheless, missing data patterns have several important implications for missing data

techniques. First, when missing data patterns have variables that are never observed to-

gether, some parameters such as those measuring the correlations between these variables

may not be estimable from the observed data (see Example 1.7 in [23]). Second, the

number of missing data patterns may affect the performance of missing data techniques

[35, 36]. For example, Savalei and Bentler [35] found that the number of missing data

patterns may affect the efficiency of an estimation method, and this effect can be as strong

as that of the missing data mechanism. Based on these previous findings, we have varied

both types of missing data mechanisms and the number of missing data patterns when

designing our simulation studies. Indeed, as we will explain in detail, missing data pattern

can interact with missing data mechanism in their effects on the estimation of SEM AFIs.

Finally, another importance of missing data patterns is that the loglikelihood function

for missing data can be written as a sum that iterates through each missing data pattern

in the dataset, weighted by the proportion of each pattern. For example, loglikelihood

function of Equation 1.1 can be written as

logL(θ ;xobs) =
J

∑
j=1

q̂ j logL(θ ;xobs, j), (1.2)

where J is the number of missing data patterns in the population, and q j is proportion

of missing data in a pattern j, where j = 1, . . . ,J. As we will explain later, we can also

write the SEM FIML fit function as a sum that iterates through the missing data patterns;

doing so allows us to see how missing data affect the estimation of AFIs under the FIML

estimation.
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1.3 Missing Data Techniques

In older times, when computing power is limited, the most common techniques for han-

dling missing data include listwise deletion, pairwise deletion and mean substitution. The

main goal of these techniques is to get rid of the missing data so that some data analy-

ses could be done. This is in contrast with the modern missing data techniques, which

main goal is to effectively deal with the missing data so that the data analysis can be used

to obtain unbiased, consistent and efficient estimates of the population parameters. Most

modern data techniques are mainly designed to handle ignorable missing data (i.e., MCAR

and MAR data). MNAR data are almost impossible to be dealt with unless the researchers

can effectively model the underlying missing data generation rule [1].

In SEM, the most common modern approach to handling ignorable missing data is

the normal theory FIML estimation [1, 2, 43]. The FIML method is available in almost

all SEM software, and it is usually the go-to estimation method for missing data. As

explained earlier, the FIML approach involves maximizing the observed data likelihood

in order to obtain the parameter estimates. Because the likelihood function for ignorable

data does not involve the parameters associated with the missing data mechanism, FIML

is able to produce consistent parameter estimates and standard errors under a correctly

specified model.

The other modern missing data techniques used in SEM are the multiple imputation

(MI) and two-stage (TS) approaches. These two approaches are well-researched but less

commonly used in SEM literature. The MI approach consists of three steps: 1) imputa-

tion, 2) analysis, and 3) pooling [31]. In the imputation step, multiple sets of the data are

created, each of which contains different estimates of the missing values (i.e., each dataset

has the missing data filled in). This step involves an iterative process based on the Markov

Chain Monto Carlo (MCMC) algorithm, which has been implemented in common SEM

software such as Mplus and lavaan package in R [1]. In the analysis step, the hypothesized
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model is fit to each filled-in dataset as if there were no missing data, and then the statistic

of interest (e.g., parameter estimates) is computed for each dataset. In the pooling step,

the results across the imputed datasets are combined into a single result. In a way, the MI

approach is similar to the older regression-based imputation technique, where the imputed

values are based on the regression model built with cases with no missing data. How-

ever, the older regression-based imputation technique underestimates the standard errors

because the imputed values always fall right on the regression line/plane; the MI approach

solves this problem by incorporating simulated random draws from the population in the

imputation step (see [15] for details).

The TS approach involves a two-stage procedure for obtaining parameter estimates

[43, 46]. The first stage involves fitting a saturated model, which is an unrestricted model

with zero degrees of freedom, to the incomplete data in order to estimate the saturated

model’s mean vector and covariance matrix. The saturated model’s mean vector and co-

variance matrix essentially estimates what the mean vector and covariance matrix would

have been if the data had been complete. This stage is analogous to the imputation stage of

the MI method; however, instead of imputing missing data to create a “complete” dataset,

the first stage of the TS method directly estimates the mean vector and covariance ma-

trix of the “complete” dataset. Then in the second stage, the saturated model’s estimated

mean vector and covariance matrix are used to minimize the complete data fit function in

order to obtain consistent estimates of the model parameters. Unbiased standard errors

for the parameter estimates can be obtained by using a sandwich-type covariance matrix

developed based on the likelihood theory (see [36, 48] for details).

It is not hard to see that the FIML approach is the “simplest” modern missing data

approach in terms of computational complexity, which underscores its popularity. One

unique advantage of the MI and TS approaches over the FIML approach is that they allow

the incorporation of auxiliary variables, which are variables that the researchers are not
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interested to study but their inclusion may improve the estimates of model parameter or

standard error [36, 48]. Past research showed that with these auxiliary variables, the TS

approach can produce more stable estimates in smaller samples [36, 48].

Most of the previous SEM research comparing the FIML, MI and TS approaches fo-

cused mostly on model parameter estimates, standard errors and confidence intervals of

the estimates [e.g. 12, 35–37, 48]. Only a small number of research studies , which we

will review in a later section, have compared these methods in terms of estimating AFIs.

Our research aims to address this gap of research. In this dissertation, we focus mainly on

the FIML and TS approaches; the MI approach will be discussed in the final chapter.

1.4 SEM and SEM AFIs

What is structural equation modelling? This may not be an easy question to answer even

for researchers who are familiar with SEM. Indeed, the word, “structural equation model-

ing” or “SEM”, describes a diverse set of mathematical models, computer algorithms and

statistical methods that involve fitting a network of constructs to data. Historically, SEM

comes from three different streams of research: 1) path analysis, 2) measurement models,

and 3) general estimation algorithms for statistical models [5] .

Despite the varied origins of SEM, one important theme in SEM is the modelling of

theoretical constructs that cannot be directly observed in a dataset. With SEM, researchers

can represent these underlying theoretical constructs by latent variables, and they can es-

timate these latent factors via several observed variables that serve as “indicators” of the

latent variables. The indicators for a latent variable can be selected based on prior knowl-

edge or based on exploratory factor analyses that can measure the degree to which the

indicators “tap into” the latent factor. The main advantage of SEM is its flexibility in

incorporating both the relationships between several observed variables and one latent

variable (via the measurement model part of SEM) as well as the relationships between
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Figure 1.1: An example of an SEM model. In SEM diagram, circles represent latent variables, rect-
angles represent observed variables, and the arrows represent relationship between variables.
The relationships between the observed variables and the latent factor for the measurement
model part of SEM model (see the blue box for an example); the relationships between differ-
ent latent variables form the structural part of SEM model (see the red box for an example).

several different latent variables (via the structural model part of SEM) (see Figure 1.1).

When conducting SEM analysis, researchers can specify their hypothesized model that

may include the structural part or the measurement part or both. Through fitting the hy-

pothesized model to the data, researchers can obtain the estimates of the model parameters

as well as the model-implied covariance matrix (a.k.a. model-based covariance matrix),

which is the covariance matrix computed based on the estimates of the model parameters.

Another important theme in SEM is the measure of the overall model fit; that is, the

measure of the extent to which relationships between variables as specified in the hypoth-

esized model are representative of the true relationships found in the population. Tradi-

tionally, researchers uses the chi-square test of fit to make a binary decision on whether

the model is sufficiently fit to the data. However, “all models are wrong but some are

useful”; in a sense, all hypothesized models can be rejected given a large enough sample,

thus defeating the purpose of the chi-square test. Therefore, in recent decades, researchers
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have proposed approximate fit indices (AFIs), which measure the degree to which the hy-

pothesized model is fit to the data [3, 39]. In other words, an AFI is a continuous metric

along which to evaluate the hypothesized model’s appropriateness for the data.

In our research, we will focus on the two most popular AFIs in SEM: the root mean

square error of approximation (RMSEA) and comparative fit index (CFI). RMSEA mea-

sures the amount of misfit in the hypothesized model per degrees of freedom. CFI mea-

sures the amount of improvement in fit for the hypothesized model relative to the fit of the

baseline model (a.k.a. the independence model), which is a null model where all variables

are uncorrelated. RMSEA value is equal to or greater than zero, with lower value indicat-

ing better fit (i.e., zero indicating perfect fit) whereas CFI value ranges from zero to one,

with higher value indicating better fit (i.e., one indicting perfect fit). Detailed equations for

these AFIs will be provided in the later chapters. Ironically, although AFIs are supposed

to measure fit on a continuum, cut-off points are still commonly used to help researchers

categorize the amount of misfit. For RMSEA, a value less than 0.08 indicates good fit [8];

for CFI, a value greater than 0.9 indicates good fit [17].

Finally, we explain RMSEA and CFI’s relationship with other types of AFIs. As we

will show in the later chapters, both RMSEA and CFI are defined in terms of the fit func-

tion minimum values. There are other AFIs that are also defined in terms of the fit function

minimum (e.g., Normed Fit Index (NFI), Tucker-Lewis Index (TLI) [3]); for these AFIs,

the patterns of results in this dissertation work should also apply to them. However, for

AFIs that are not defined in terms of the fit function minimum (e.g., the standardized root

mean square residual (SRMR) [4] and goodness of fit index (GFI) [25] ), our results may

not apply. Many of these other AFIs fall out of popularity due to a variety of reasons. For

example, SRMR can be very biased in smaller samples, and NFI does not account for the

complexity of the hypothesized model well [3, 17]. Due to the unpopularity of these AFIs,

we did not include them in our study.
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Figure 1.2: The population model for the simulation example in section 1.5.

1.5 Past Research on the Effect of SEM AFIs under
FIML Estimation

The first main goal of this dissertation is to point out the potentially problematic per-

formance of AFIs when computed following FIML estimation. It does not appear to be

well-known that when AFIs are computed following FIML estimation, the resulting pop-

ulation values are distorted relative to their complete data counterparts. This means that

the approximate fit of the same model to data drawn from the same population may be dif-

ferent depending on whether the data are complete or incomplete. To illustrate, we have

generated a sample of n = 1000000 from a population that follows a correlated (a.k.a.

oblique) two-factor model with standardized loadings of 0.7 and a factor correlation of

0.5 (see Figure 1.2). We fit a one-factor model to this sample. With complete data, the

RMSEA and CFI are 0.203 and 0.747, respectively. However, when we randomly delete

50% data for each of the three variables loading on factor 1, the RMSEA and CFI are now

0.148 and 0.816, respectively.

We are aware of only three studies that have examined the behavior of AFIs with in-

complete data under the FIML estimation; none of them noted this phenomenon. Davey

et al. [10] conducted a simulation study, examining the effects of incomplete data on AFIs
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in sample data. They found that with a misspecified model, sample AFIs following FIML

estimation indicated better fit with higher percentage of missing data, but they do not pro-

vide an explanation for this finding. Enders and Mansolf [13] have conducted a simulation

study comparing AFIs computed under the FIML and MI approaches. He found that both

approaches have produced similar AFIs. More specifically, under both approaches, sam-

ple CFI stayed relatively the same with more missing data but RMSEA decreased slightly

with missing data. One drawback of Enders and Mansolf [13]’s simulation study is that

they used a misspecified model that was only slightly misspecified (RMSEA=0.041 and

CFI=0.981 for complete data). It is impossible for the AFIs to show much improvement in

fit with the addition of missing data when the model misspecification is already minor with

complete data. Finally, Li and Lomax [22] conducted a simulation study, where they ex-

amined the effects of incomplete and nonnormal data on RMSEA. They found that sample

RMSEA following FIML estimation had relatively little bias; however, the authors did not

report any population RMSEA values, so it is unclear how the sample bias was computed.

The second main goal of this dissertation is to examine alternative methods for esti-

mating AFIs so that the AFIs are not distorted by missing data. We are only aware of one

recently published research paper that also examined alternative approaches for estimating

AFIs. Lai [21] has studied the TS approach for computing RMSEA under missing data. In

addition, he proposed a small sample correction to improve the TS estimation of RMSEA

in finite samples with missing data. He found that across a wide variety of conditions, the

TS approach with the small sample correction consistently produced RMSEA estimates

that are closer to the complete data population RMSEA values relative to the FIML ap-

proach. However, Lai [21] did not explain how the small sample correction should be

computed. Our paper addresses this gap in the research, and propose two computational

versions for the small sample corrections under the TS estimation.
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1.6 Dissertation Organization

This dissertation has two main goals. The first goal is to examine why and how AFIs

are distorted by missing data under the FIML estimation. The second goal is to propose

and investigate alternative computations of AFIs that can produce consistent and unbiased

estimation in the presence of missing data.

Chapters 2 to 4 address the first goal of our dissertation. Summary of each of these

chapters are as follows:

• Chapter 2 provides the technical details that can help us explain why AFIs can be

affected by missing data under the FIML estimation method. We first show how

we can rewrite the minimum of the FIML fit function in terms of the missing data

patterns. Then we obtain the minimum of this fit function at the population level by

figuring out the population limits of each component in the fit function minimum.

Here, we show the population limits vary across different types of missing data.

Finally, we show how these fit functional minimum directly affect the estimates of

AFIs.

• Chapter 3 provides a few analytical examples that demonstrate how AFIs are af-

fected with increasing missing data under FIML. Here, we give examples where

AFIs change with missing data as well as examples where AFIs stay the same with

more missing data. We show examples where AFIs change solely because of the dif-

ferences in equations between complete and incomplete data; we also show exam-

ples where AFIs change due to both the differences in equations and the differences

in the population parameter values.

• Chapter 4 presents the results from two large sample simulation studies that examine

the effect of missing data on AFIs under more realistic models. We focus on large

samples in order to study the behaviour of AFIs without the presence of sampling
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error. Across the two simulation studies, we have mainly manipulated the amount

of missing data, missing data mechanism, missing data pattern and the location of

missing data relative to the location of misfit. Each of these factors have turned out

to be important in the effect of missing data on AFIs under FIML.

Chapters 5 and 6 address the second goal of the dissertation. Summary of these two

chapters are as follows:

• Chapter 5 proposes two alternative approaches that can address the problems of

AFIs under FIML. One approach involves implementing a correction step following

the FIML estimation; we call it the FIML-corrected or FIML-C approach. The

second approach involves the use of the TS method. We lay out all the technical

details for the two approaches and provide two analytical examples that demonstrate

how these methods should be used.

• Chapter 6 presents the results of two simulation studies that compare the AFIs under

the FIML-C and TS approaches relative to the original FIML approach. The design

of the two simulation studies is the same as that of the simulation studies in Chapter

4 except that the studies in this chapter include the FIML-C and TS approaches as

well as simulated data with more varied sample sizes. Overall, the results from the

simulation studies give support for the use of the alternative methods.

Finally, in Chapter 7, we conclude the dissertation by summarizing the main results,

providing recommendations for applied researchers, discussing the limitations of the cur-

rent research, and suggesting a few future research directions.
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Chapter 2

SEM AFIs under FIML Estimation:

Technical Details

I argued that full information maximum likelihood (FIML) has several

advantages over multiple imputation (MI) for handling missing data: 1) FIML

is simpler to implement (if you have the right software); 2) unlike multiple

imputation, FIML has no potential incompatibility between an imputation

model and an analysis model; 3) FIML produces a deterministic result rather

than a different result every time.

Paul Allison, 2012

Although many past research studies have shown that missing data affect AFIs such

as RMSEA and CFI under the FIML estimation [10, 13, 22], none of them have provided

a mathematical explanation for such a phenomenon. In this chapter, we provide the tech-

nical details to show how RMSEA and CFI are affected by missing data under FIML.

Since RMSEA and CFI are functions of the fit function minimum, we start this chapter

by explaining how the fit function minimum is changed with missing data. We first show

the derivations of the fit function minimum for complete data at both the sample and the
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population levels. We then show the derivations for incomplete data at the sample and

population levels. Finally, we explain how the change in the fit function minimum affects

RMSEA and CFI.

2.1 Fit Function Minimum for Complete Data

Let x1, . . . ,xn be a random sample from p-variate normal distribution with N(µ,Σ). We

want to test the null hypothesis that the data come from N(µ(θ),Σ(θ)), where θ is a q×1

vector of model parameters. The normal-theory maximum likelihood (ML) estimator θ̂

maximizes the observed data log-likelihood

l(θ |x1, . . . ,xn) =
n

∑
i=1

li(θ)

=C− n
2

(
log |Σ(θ)|+ tr|SΣ

−1(θ)|+(x̄−µ(θ))′Σ−1(θ)(x̄−µ(θ))
)
,

(2.1)

where x̄ and S are sample means and covariance matrix, and C does not depend on θ . We

denote the maximized log-likelihood for the structured (hypothesized) model as l̂. The

model-implied means and covariance matrix are µ̂ = µ(θ̂) and Σ̂ = Σ(θ̂). We can also

maximize Equation 2.1 under the saturated model, which includes all the unique elements

in µ and Σ as model parameters. We denote the maximized log-likelihood for the saturated

model as l̃. The estimates of means and covariance matrix under the saturated model are

µ̃ = µ(θ̃) = x̄ and Σ̃ = Σ(θ̃) = S. With complete data, the saturated model estimates are

just the familiar sample means and sample covariance matrix.

Maximizing the log-likelihood in Equation 2.1 is equivalent to minimizing the familiar
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ML fit function, 1 whose minimum is given by:

Fc
(
µ̂, Σ̂|x̄,S

)
= log |Σ̂S−1|+ tr(SΣ̂

−1)+(x̄− µ̂)′Σ̂−1(x̄− µ̂)− p, (2.2)

where the subscript c represents complete data. The likelihood ratio (LR) test statistic is a

scaled difference between the structured and the saturated log-likelihoods, and it can also

be expressed in terms of the fit function minimum, as follows:

Tc =−2(l(θ̂)− l(θ̃)) = nFc(µ̂, Σ̂|x̄,S), (2.3)

where Tc denotes the LR test statistic for complete data. In order to derive population

values of AFIs, it is necessary to determine the population limit of Fc(µ̂, Σ̂|x̄,S). When the

hypothesized model is true, this limit is zero. In this article, we are primarily interested in

the case when the hypothesized model is false, as this is when the AFIs become relevant

for evaluating the degree of misfit. Denote the population limits of sample parameter

estimates under the structured model as follows: θ̂ → θ0, and the corresponding limits of

the model-implied means and covariances are given by µ̂ → µ0 and Σ̂→ Σ0. Under the

saturated model, the sample estimates of means and covariances, x̄ and S, will converge to

µ and Σ, respectively. When the structured model is wrong, it is generally the case Σ 6= Σ0

and it is sometimes the case that µ 6= µ0 (in the presence of a mean structure). Therefore,

when the data are complete, the fit function minimum at the population level is given by

Fc(µ0,Σ0|µ,Σ) = log |Σ0Σ
−1|+ tr(ΣΣ

−1
0 )+(µ−µ0)

′
Σ
−1
0 (µ−µ0)− p. (2.4)

We refer to the values θ0 as “pseudo-parameters” 2, because they are population parame-

1The ML fit function used in SEM is the equivalent to the Kullback-Leibler divergence (see footnote 1
in Chapter 1).

2In the statistics literature, the “pseudo-parameters” are also known as the “pseudo-true values” [40] ,
the “least false parameter values minimizing Kullback-Leibler divergence”[9], or the “parameter vector that
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ters for an incorrect model.

2.2 Fit Function Minimum for Incomplete Data

2.2.1 Sample Fit Function Minimum for Incomplete Data

Let x1, . . . ,xn again be a random sample from the p-variate normal distribution N(µ,Σ).

If the sample contains missing data, for each i = 1, · · · ,n, the corresponding observed

vector xobs,i is of dimension pi× 1. Under an ignorable missing data mechanism (i.e.,

MCAR or MAR), the FIML estimator θ̂ can be obtained by maximizing the observed data

log-likelihood

l(θ |x1, . . . ,xn) =
n

∑
i=1

li(θ)

=C− 1
2 ∑

i
log |Σi(θ)|−

1
2 ∑

i

(
xobs,i−µi(θ)

)′
Σ
−1
i (θ)

(
xobs,i−µi(θ)

)
,

(2.5)

where µi(θ) is the relevant pi×1 subvector of µ(θ), Σi(θ) is the relevant pi× pi submatrix

of Σ(θ) , and C does not depend on θ [e.g. 24] (see Table 2.1 for a summary of the notation

used in this section). As with complete data, we can obtain the structured and saturated

log-likelihoods (denoted by l̂ and l̃, respectively):

l̂ =
n

∑
i=1

l̂i

=C− 1
2 ∑

i
log |Σ̂i|−

1
2 ∑

i

(
xobs,i− µ̂i

)′
Σ̂
−1
i
(
xobs,i− µ̂i

)
,

minimizes the Kullback-Leibler divergence” [19].
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Table 2.1: Notation for mean vectors and covariance matrices with incomplete data
under an incorrect hypothesized model.

Description Population Quantities Consistent Sample
Estimates

True Means and Covariance Matrix µ,Σ µ̃, Σ̃

Model-implied Means and Covariance
Matrix (pseudo-parameters)

µ0 = µ(θ0m),Σ0 = Σ(θ0m) µ̂ = µ(θ̂), Σ̂ = Σ(θ̂)

True Means and Covariance Matrix
(sub-components for pattern j)

µ j,Σ j µ̃ j, Σ̃ j

Model-implied Means and Covariance
Matrix (sub-components for pattern j)

µ0m, j,Σ0m, j µ̂ j, Σ̂ j

Pattern-specific Means and Covariance
Matrix

µ∗j ,Σ
∗
j x̄ j,S j

Note: The subscript 0m indicates that the population limits for missing data are different
from those for complete data, which are denoted by the subscript 0.

l̃ =
n

∑
i=1

l̃i

=C− 1
2 ∑

i
log |Σ̃i|−

1
2 ∑

i

(
xobs,i− µ̃i

)′
Σ̃
−1
i
(
xobs,i− µ̃i

)
.

With the structured model, we obtain the model-implied mean vector µ̂ = µ(θ̂) and co-

variance matrix Σ̂ = Σ(θ̂); with the saturated model, we obtain the saturated model esti-

mates µ̃ = µ(θ̃) and Σ̃ = Σ(θ̃), which represent the incomplete data analogues of x̄ and

S. However, in the case of incomplete data, these saturated model estimates generally do

not reduce to any closed form sample quantities. These saturated model estimates are also

sometimes known as the “EM” [after the Expectation-Maximization (EM) algorithm; 11]

means and covariances [e.g., 14].

The LR statistic is again the rescaled difference between the two log-likelihoods; how-

ever, with incomplete data, this statistic is typically not expressed as the sample size times

the minimum of a fit function. In fact, the concept of a “fit function” does not seem to
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have been defined for incomplete data. In this article, we introduce this concept and infer

the form of this function by taking the difference of the two maximized log-likelihoods.

That is, we write the LR test statistic for missing data as follows:

Tm =−2(l(θ̂)− l(θ̃))

= ∑
i

log |Σ̂i|+∑
i

(
xobs,i− µ̂i

)′
Σ̂
−1
i
(
xobs,i− µ̂i

)
−∑

i
log |Σ̃i|−∑

i

(
xobs,i− µ̃i

)′
Σ̃
−1
i
(
xobs,i− µ̃i

)
= ∑

i
log |Σ̂iΣ̃

−1
i |+∑

i

(
xobs,i− µ̂i

)′
Σ̂
−1
i
(
xobs,i− µ̂i

)
−∑

i

(
xobs,i− µ̃i

)′
Σ̃
−1
i
(
xobs,i− µ̃i

)
= nFm(µ̂, Σ̂|µ̃, Σ̃),

(2.6)

where the general form of the minimized FIML fit function for incomplete data is

Fm(µ(θ),Σ(θ)|µ̃, Σ̃, φ̃) =
1
n

(
∑

i
log |Σi(θ)Σ̃

−1
i |+∑

i
(xobs,i−µi(θ))

′
Σ
−1
i (θ)(xobs,i−µi(θ))

−∑
i
(xobs,i− µ̃i)

′
Σ̃
−1
i (xobs,i− µ̃i)

)
,

(2.7)

where φ̃ is the missing mechanism parameter vector. When the mechanism is MCAR, the

vector φ̃ contains only the population probabilities and the specification of each missing

data pattern. When the mechanism is MAR, the vector φ̃ contains additional parameters

associated with the relationships between the probability of being missing in one variable

and the observed value in the other variable. Comparing Equations 2.2 and 2.7 reveals that

the equations of the fit function minima for complete and incomplete data are different.

In addition, when the hypothesized model is misspecified, the model-implied mean vector

and covariance matrix will differ (i.e., µ̂ and Σ̂ will not be the same for complete and in-

complete data) because the model parameters depend the missing mechanism parameters
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(see the next section for a detailed explanation).3

To figure out the corresponding population limit of Equation 2.7 , it is necessary to

re-write Equation 2.7 in terms of the missing data patterns. Let q̂ j = n j/n be the observed

proportion of missing data in pattern J, where j = 1, . . . ,J and ∑n j = n. Then Equation

2.7 can be rewritten as follows:

Fm(µ̂, Σ̂|µ̃, Σ̃, φ̃) =
J

∑
j=1

q̂ j

(
log |Σ̂ jΣ̃

−1
j |+

1
n j

n j

∑
i
(xobs,i( j)− µ̂ j)

′
Σ̂
−1
j (xobs,i( j)− µ̂ j)

− 1
n j

n j

∑
i
(xobs,i( j)− µ̃ j)

′
Σ̃
−1
j (xobs,i( j)− µ̃ j)

)
.

(2.8)

In the above equation, the summations over all n have been replaced with summation over

the J missing data patterns and summations over the n j observations within each pattern;

xobs,i has been replaced with xobs,i( j), so that raw observations are now enumerated within

each pattern j , i( j) = 1, ...,n j. In addition, Σ̂ j, Σ̃ j, µ̂ j, and µ̃ j represent the appropri-

ate sub-matrices of Σ̂ and Σ̃ and sub-vectors of µ̂ and µ̃ , with only rows and columns

corresponding to variables observed within pattern j.

We note that in the missing data literature, a similar version of Equation 2.8 has been

provided by Muthén and Muthén [27] in the Mplus technical appendices (see Appendix 6

Equation 133 in Muthén and Muthén [27]). However, Muthén and Muthén [27]’s equation

did not write out all terms associated the saturated model; instead, they expressed the part

of equation associated the saturated model with one constant term. Equation 2.8 is also

different from the equations presented in some of the older missing data papers [e.g., 26],

which relied on the multiple-group (MG) setup to handle missing data.4

We now re-write Equation 2.8 in terms of the sample covariance matrices, which will
3Technically, we should include a subscript φ̃ for µi(θ) and Σi(θ) in Equation 2.7 to denote their depen-

dency on φ̃ ; here, we omit this for the simplicity in notations.
4To use the MG fit function for handling missing data, pseudo-values corresponding to cases with missing

data have to be inserted in the covariance matrices of the missing data patterns , and the degrees of freedom
need to be adjusted for these pseudo-values after fitting the model. See Chapter 8 of Bollen [5] for a detailed
explanation.
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later help us find the population limit of Fm(µ̂, Σ̂|µ̃, Σ̃, φ̃). To do this, we need to define the

following three “sample covariance matrices” that can be computed within each missing

data pattern:

S j =
1
n j

n j

∑
i
(xobs,i( j)− x̄ j)(xobs,i( j)− x̄ j)

′,

Sµ̂, j =
1
n j

n j

∑
i
(xobs,i( j)− µ̂ j)(xobs,i( j)− µ̂ j)

′,

Sµ̃, j =
1
n j

n j

∑
i
(xobs,i( j)− µ̃ j)(xobs,i( j)− µ̃ j)

′,

Here, the first matrix S j is the usual sample covariance matrix within pattern j computed

using the within-pattern sample mean x̄ j; the next two matrices Sµ̂, j and Sµ̃, j are computed

using model-estimated means, either under the structured model or under the saturated

model. Using these three matrices, it follows that:

S j =
1
n j

n j

∑
i
(xobs,i( j)− x̄ j)(xobs,i( j)− x̄ j)

′

=
1
n j

n j

∑
i
(xobs,i( j)− µ̂ j)(xobs,i( j)− µ̂ j)

′− (µ̂ j− x̄ j)(µ̂ j− x̄ j)
′

= Sµ̂, j− (x̄ j− µ̂ j)(x̄ j− µ̂ j)
′;

S j =
1
n j

n j

∑
i
(xobs,i( j)− x̄ j)(xobs,i( j)− x̄ j)

′

=
1
n j

n j

∑
i
(xobs,i( j)− µ̃ j)(xobs,i( j)− µ̃ j)

′− (µ̃ j− x̄ j)(µ̃ j− x̄ j)
′

= Sµ̃, j− (x̄ j− µ̃ j)(x̄ j− µ̃ j)
′.

We can also write Sµ̂, j and Sµ̃, j in terms of S j:
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Sµ̂, j = S j +(x̄ j− µ̂ j)(x̄ j− µ̂ j)
′;Sµ̃, j = S j +(x̄ j− µ̃ j)(x̄ j− µ̃ j)

′.

Using these expressions and the rules of trace, starting with Equation 2.8, we can write:

Fm(µ̂, Σ̂|µ̃, Σ̃, φ̃) =
J

∑
j=1

q̂ j

(
log |Σ̂ jΣ̃

−1
j |+

1
n j

n j

∑
i
(xobs,i( j)− µ̂ j)

′
Σ̂
−1
j (xobs,i( j)− µ̂ j)

− 1
n j

n j

∑
i
(xobs,i( j)− µ̃ j)

′
Σ̃
−1
j (xobs,i( j)− µ̃ j)

)
=

J

∑
j=1

q̂ j

(
log |Σ̂ jΣ̃

−1
j |+ tr(

1
n j

n j

∑
i
(xobs,i( j)− µ̂ j)

′
Σ̂
−1
j (xobs,i( j)− µ̂ j))

− tr(
1
n j

n j

∑
i
(xobs,i( j)− µ̃ j)

′
Σ̃
−1
j (xobs,i( j)− µ̃ j))

)
=

J

∑
j=1

q̂ j

(
log |Σ̂ jΣ̃

−1
j |+ tr((

1
n j

n j

∑
i
(xobs,i( j)− µ̂ j)(xobs,i( j)− µ̂ j)

′)Σ̂−1
j )

− tr((
1
n j

n j

∑
i
(xobs,i( j)− µ̃ j)(xobs,i( j)− µ̃ j)

′)Σ̃−1
j )
)

=
J

∑
j=1

q̂ j

(
log |Σ̂ jΣ̃

−1
j |+ tr(Sµ̂, jΣ̂

−1
j )− tr(Sµ̃, jΣ̃

−1
j )
)

=
J

∑
j=1

q̂ j

(
log |Σ̂ jΣ̃

−1
j |+ tr((S j +(x̄ j− µ̂ j)(x̄ j− µ̂ j)

′)Σ̂−1
j )

− tr((S j +(x̄ j− µ̃ j)(x̄ j− µ̃ j)
′)Σ̃−1

j )
)
.

(2.9)

2.2.2 Population Fit Function Minimum for Incomplete Data

Before obtaining the population limit of the fit function minimum for incomplete data, we

elaborate on the concept of the incomplete data population. If the process that created

the current sample with incomplete data is allowed to go on indefinitely so that a larger

and larger sample is generated, we would eventually sample the entire population. In this
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way, the current observed sample with incomplete data can be viewed as a random sample

from this incomplete data population. The observed percentage of missing values in the

sample is a consistent estimate of the population percentage of missing values. Further, the

observed incomplete data patterns and their relative frequency are assumed to accurately

reflect the underlying incomplete data population. Of course, in smaller samples not all

missing data patterns that are possible in the population may be realized.

We can now proceed to obtain the population limit of the fit function for incomplete

data. To obtain the population limit of Equation 2.9, we assume that the index J enumer-

ates all of the missing data patterns that exist in the population. This means either that the

sample size is large enough that all missing data patterns that exist in the population have

been realized in the sample, or alternatively, that in Equation 2.9, some q̂ j values are zero

in the sample but will approach non-zero population values; in other words, the percent-

age of any missing data pattern in the sample is a consistent estimate of the population

probability of that pattern.

In addition, we need to determine the limits of all sample quantities in Equation 2.9 to

obtain the population limit of Fm(µ̂, Σ̂|µ̃, Σ̃, φ̃). Under an ignorable missing data mecha-

nism (i.e., MCAR or MAR), the saturated model estimates µ̃ and Σ̃ are consistent for µ

and Σ. Therefore, for any missing data pattern, it is the case that µ̃ j→ µ j and Σ̃ j→ Σ j. We

also define the population “pseudo-parameters” as the limits of the corresponding sample

quantities, θ̂ → θ0m , µ̂→ µ0m , and Σ̂→ Σ0m , where the subscript 0m indicates that the pop-

ulation limits for missing data may be different from those for complete data, which are

denoted by the subscript 0. Indeed, when the hypothesized model is wrong, it is generally

the case that Σ 6= Σ0m and µ 6= µ0m . With incomplete data, the FIML estimates of means

can be different under the structured model even when the mean structure is saturated.

In addition, when the model is misspecified, the “pseudo-parameters” for complete and

incomplete data will usually differ from each other, resulting in different model-implied
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mean and covariance matrix estimates even in the population (i.e., Σ0 6=Σ0m and µ0 6= µ0m),

unless the hypothesized model has no free parameters (see Chapter 3.2 for an example).

We first state the population limit of Fm(µ̂, Σ̂|µ̃, Σ̃, φ̃) in the special case when the as-

sumption of homogeneity of means and covariances holds. This assumption is always met

when the data are MCAR [e.g., 20], and it is usually not met when the data are MAR

or MNAR, although it is possible to construct a counter-example [44]. Under the homo-

geneity of means and covariances assumption, the estimates of pattern-specific means and

covariances converge to the corresponding subsets of the overall population mean and co-

variance matrix; that is, x̄ j → µ j, S j → Σ j for all j, where µ j is the p j× 1 sub-vector of

µ and Σ j is the p j× p j sub-matrix of Σ corresponding to the variables observed in the

jth missing data pattern. Therefore, the population value of Equation 2.9 in the case of

MCAR data is given by:

FMCAR(µ0m ,Σ0m|µ,Σ,φ) =
J

∑
j=1

q j

(
log |Σ0m, jΣ

−1
j |+ tr((Σ j +(µ j−µ0m, j)(µ j−µ0m, j)

′)Σ−1
0m, j)

− tr((Σ j +(µ j−µ j)(µ j−µ j)
′)Σ−1

j
))

=
J

∑
j=1

q j

(
log |Σ0m, jΣ

−1
j |+ tr(Σ jΣ

−1
0m, j)

+(µ j−µ0m, j)
′
Σ
−1
0m, j(µ j−µ0φ , j)− tr

(
Σ jΣ

−1
j )
)

=
J

∑
j=1

q j

(
log |Σ0m, jΣ

−1
j |+ tr(Σ jΣ

−1
0m, j)

+(µ j−µ0m, j)
′
Σ
−1
0m, j(µ j−µ0m, j)− p j

)
,

(2.10)

where J is the number of missing data patterns that are possible in the population, q j is

the population probability of the jth pattern, and p j is the number of variables in the jth

missing data pattern (see Table 2.1 for notation). Note that, in the functional form, this
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equation is a weighted average, by pattern probabilities, of the complete data fit function

given in Equation 2.4. However, the population limits of the model-implied estimates of

the means and covariances will generally differ for complete and incomplete data.

In the more general case when data are MAR, the homogeneity of means and co-

variances assumption is typically violated. In this case, the limits of the within-pattern

estimates of means and covariances are not necessarily equal to the corresponding sub-

components of the overall population means and covariance matrix. For example, consider

the simplest case of two variables, X and Y , both N(0,1), where Y is missing with proba-

bility one whenever X > 0. Even though the population means of X and Y are both zero,

the pattern-specific means will be different. In the missing pattern where X is observed

but Y is missing, all sample realizations of X are positive, and thus the estimated mean

of X using only the cases with this pattern will approach the mean of a standard normal

distribution truncated at zero. In the general case of MAR data, let x̄ j → µ∗j , S j → Σ∗j

be the pattern-specific limits of the means and covariance matrix for variables within jth

pattern. The population value of the fit function minimum is given by

FMAR(µ0m ,Σ0m|µ,Σ,φ) =
J

∑
j=1

q j

(
log |Σ0m, jΣ

−1
j |

+ tr((Σ∗j +(µ∗j −µ0m, j)(µ
∗
j −µ0m, j)

′)Σ−1
0m, j)

− tr((Σ∗j +(µ∗j −µ j)(µ
∗
j −µ j)

′)Σ−1
j )
)
.

(2.11)

Thus, in the general case of ignorable incomplete data, the fit function minimum depends

on: 1) the true means and covariances (µ and Σ, where µ j and Σ j are the corresponding

sub-components for pattern j, j = 1, ...J); 2) the model-implied means and covariances

(µ0m and Σ0m , with µ0m, j and Σ0m, j indicating the relevant subcomponents for pattern j);

and 3) the pattern-specific population means and covariances (µ∗j and Σ∗j , for j = 1, ...,J;

see Table 2.1). The model-implied means and covariances in 2) will be different for the
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complete and different types of incomplete data. The pattern-specific population means

and covariances in 3) also depend on the missing data mechanism; when the data are

MCAR, they are equal to the corresponding subsets of the population means and covari-

ances (i.e., µ∗j = µ j and Σ∗j = Σ j), however, when the data are MAR, they will usually

differ across patterns and cannot be viewed as subsets of a single vector and matrix (i.e.,

µ∗j 6= µ j and Σ∗j 6= Σ j).

We briefly note what happens when the data are MNAR. In this case, the saturated

FIML estimates of mean vector and covariance matrix, µ̃ and Σ̃, are no longer consistent

for µ and Σ, so the general Equation 2.11 will feature the population limits of µ̃ and Σ̃,

instead of µ and Σ. We assume an ignorable missing data mechanism (MCAR or MAR

data) for the remainder of this dissertation.

2.3 RMSEA and CFI for Complete and Incomplete Data

In all current SEM software, the RMSEA and CFI are computed using the same equations

regardless of whether the data contain missing values. For complete normal data, under

the ML estimation, the LR test statistic in Equation 2.3 is used to define RMSEA and CFI

as follows:

R̂MSEAML =

√
max(Tc−d f ,0)

d f (n)
=

√
max

(Fc(µ̂, Σ̂|x̄,S)− d f
n

d f
,0
)

;

ĈFIML = 1− max(Tc−d f ,0)

max
(

Tc−d f ,Tc,B−d fB,0
)

= 1−
max

(
Fc(µ̂, Σ̂|x̄,S)− d f

n ,0
)

max
(

Fc(µ̂B, Σ̂B|x̄,S)− d fB
n ,Fc(µ̂, Σ̂|x̄,S)− d f

n ,0
) ,

(2.12)

where the subscript B stands for the baseline model, which assumes all variables are un-

correlated with each other; that is, d fB, µ̂B, Σ̂B and Tc,B are the baseline model’s degrees
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of freedom, model-implied means, model-implied covariance matrix, and LR test statis-

tic, respectively. As mentioned in Section 1.4, as the model fit increases, RMSEA gets

closer to zero and CFI gets closer to one. In the rare case when both the numerator and

the denominator in the CFI computation are zero, the convention is to set CFI to one.

In the presence of missing data, under the FIML estimation, RMSEA and CFI are

computed in the same way as the above equations except we use the corresponding LR

test statistic for missing data in Equation 2.6, as follows:

R̂MSEAFIML =

√
max(Tc−d f ,0)

d f (n)
=

√
max

(Fm(µ̂, Σ̂|µ̃, Σ̃,φ)− d f
n

d f
,0
)

;

ĈFIFIML = 1− max(Tc−d f ,0)

max
(

Tc−d f ,Tc,B−d fB,0
)

= 1−
max

(
Fm(µ̂, Σ̂|µ̃, Σ̃,φ)− d f

n ,0
)

max
(

Fm(µ̂B, Σ̂B|µ̃, Σ̃,φ)− d fB
n ,Fm(µ̂, Σ̂|µ̃, Σ̃,φ)− d f

n ,0
) .

(2.13)

We now show the population limits of RMSEA and CFI under complete and incom-

plete data. For complete data, we can find the population limits of RMSEA and CFI by

using the population fit function minima for complete data in Equation 2.4, as follows:

RMSEAML =

√
Fc(µ0,Σ0|µ,Σ)

d f
;

CFIML = 1− Fc(µ0,Σ0|µ,Σ)
Fc(µB,0,ΣB,0|µ,Σ)

,

(2.14)

where µB,0 and ΣB,0 are the population limits of the model-implied means of covariances

under the baseline model. For incomplete data, we just use the corresponding population
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fit function minima for incomplete data, as follows:

RMSEAFIML =

√
Fm(µ0m,Σ0m|µ,Σ,φ)

d f

CFIFIML = 1− Fm(µ0m ,Σ0m|µ,Σ,φ)
Fm(µB,0m ,ΣB,0m|µ,Σ,φ)

.

(2.15)

In summary, the AFIs’ equations show that the AFIs depend on the fit function minima,

and they may estimate different population values depending on the presence (and type) of

missing data. In the special case when the model is exactly correct, all fit function minima

will be zero in the population, and AFIs from complete and any type of incomplete data

will agree asymptotically. However, it is a safe assumption that the model is never exactly

correct in the population, and the complete and incomplete data AFIs will converge to

different population values. For complete data, the fit function minimum in the population

is given by Equation 2.4; for MCAR data, it is given by Equation 2.10, and for MAR

data, it is given by the most general equation, Equation 2.11. It is worth emphasizing that

even this categorization is incomplete: there is a separate population value of the RMSEA

and CFI for each specific type of MCAR or MAR data, depending on the missing data

proportion, location, patterns, and (in the case of MAR) conditioning rules.
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Chapter 3

SEM AFIs under FIML Estimation:

Analytical Examples

When attempting to assess how well a model fits a particular dataset, one must

realize at the outset that the classic hypothesis-testing approach is

inappropriate.

James H.Steiger, 1980

In this chapter, we demonstrate, with a few analytical examples, how RMSEA under

the FIML estimation changes with the presence and type of missing data. As shown in

Chapter 2, the equations of the fit function minimum differ under complete and incomplete

data and under different types of incomplete data; consequently, AFIs can also be different

due to the differences in the equations of the fit function minimum. In the first section of

this chapter, we will present examples where RMSEA stays the same and examples where

RMSEA changes with missing data solely due to the differences in the equations of the

fit function minimum. In addition, under FIML, AFIs may also change with missing data

due to the differences in the parameter values. In the second section, we will present

an example where RMSEA changes due to both the differences in the equations and the
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differences in the parameter values.

3.1 Change in RMSEA due to Differences in the
Equations of the Fit Function Minimum

In this example, the hypothesized model is fully constrained (i.e., it has no free parame-

ters), so the model-implied means and covariances do not differ for complete and different

types of incomplete data, greatly simplifying computations. All observed differences are

therefore only due to the different forms of the fit function.

Let X1, . . . ,X6 follow a multivariate normal distribution N(µ,Σ) with the following

population covariance matrix and vector of means:

Σ =



1.00

0.89 1.00

0.49 0.49 1.00

0.00 0.00 0.00 1.00

0.00 0.00 0.00 0.49 1.00

0.00 0.00 0.00 0.49 0.49 1.00


,µ = (0,0,0,0,0,0)′. (3.1)

This covariance structure is consistent with that of a two-factor model with orthogonal

factors and three indicators per factor (with loadings of 0.7), plus a correlated residual (of

size 0.4) between X1 and X2. The model fit to data is always a fully constrained model,

which is the same as the population model but without the correlated residual. The model-
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implied covariance matrix and mean vector are

Σ0 =



1.00

0.49 1.00

0.49 0.49 1.00

0.00 0.00 0.00 1.00

0.00 0.00 0.00 0.49 1.00

0.00 0.00 0.00 0.49 0.49 1.00


,µ0 = (0,0,0,0,0,0)′. (3.2)

Because the hypothesized model has no free parameters, no fit function minimization is

required to obtain “parameter estimates”: all values are fixed a priori. Thus, the model-

implied estimates µ0 and Σ0 will be the same in all of the examples considered below

(given by Equation 3.2). However, one can still evaluate the fit function at these estimates

to obtain the “fit function minimum” for the purposes of computing AFIs. It is important

to note that the misfit is caused by the correlated residual between X1 and X2; therefore,

the deviation of the fit function minimum from zero will always be due to the difference

in the value of the covariance between X1 and X2 in Σ versus Σ0. Because the fit function

has a different form for complete and incomplete data, the numeric values of the AFIs can

still differ even in this simplified example.

3.1.1 Case 1: Complete data

When there are no missing values, the fit function “minimum” in Equation 2.4 is given by

Fc(µ0,Σ0|µ,Σ) = log |Σ0Σ
−1|+ tr(ΣΣ

−1
0 )+(µ−µ0)

′
Σ
−1
0 (µ−µ0)− p

=1.200+5.612+0−6 = 0.812.
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The corresponding population RMSEA calculated using Equation 2.14 is

RMSEAML =

√
Fc(µ0,Σ0|µ,Σ)

d f
=

√
0.812

27
= 0.173.

We will use this RMSEA value obtained under complete data as a benchmark to compare

with values obtained under incomplete data.1

3.1.2 Case 2: MCAR data; misspecification does not involve
variables with missing values

Now suppose that 20% of the values on X6 are missing completely at random. In this

case, there are J = 2 missing data patterns, with q1=0.8 (probability of the complete data

pattern) and q2 = 0.2 (probability of the incomplete data pattern), and with p1 = 6 and

p2 = 5 (number of observed variables in each pattern). Then, Equation 2.10 yields

FMCAR(µ0m,Σ0m|µ,Σ,φ) =q1

(
log |Σ0m,1Σ

−1
1 |+ tr(Σ1Σ

−1
0m,1)+(µ1−µ0m,1)

′
Σ
−1
0m,1(µ1−µ0m,1)− p1

)
+q2

(
log |Σ0m,2Σ

−1
2 |+ tr(Σ2Σ

−1
0m,2)+(µ2−µ0m,2)

′
Σ
−1
0m,2(µ2−µ0m,2)− p2

)
=(0.8)(0.812)+(0.2)(0.812) = 0.812.

Because the hypothesized model is fully constrained, Σ0m = Σ0 is given by Equation 3.2.

The first pattern is the complete data pattern, so that Σ0m,1 = Σ0, Σ1 = Σ, µ0m,1 = µ0, and

µ1 = µ; consequently, the component of FMCAR(µ0m ,Σ0m|µ,Σ,φ) for the first pattern is

the same as Fc(µ0,Σ0|µ,Σ) (i.e., it equals 0.812).

For the incomplete data pattern, Σ0m,2 and Σ2 are the 5× 5 sub-matrices of Σ0 and Σ

with the last row and column deleted, and µ0m,2 and µ2 are the 5×1 sub-vectors of µ0 and

µ with the last element deleted. Because Σ and Σ0 are block-diagonal (the factors are or-

thogonal), model misfit caused by the correlated residual between X1 and X2 does not prop-

1We cannot compute the traditionally defined CFI because the traditional independence model is not
nested within the highly restrictive hypothesized model used in this example.
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agate to variables loading on the second factor. Since the variable with missing values (X6)

only loads on the second factor, the component of FMCAR(µ0m,Σ0m |µ,Σ,φ) for the second

pattern turns out to be the same as Fc(µ0,Σ0|µ,Σ), and the entire FMCAR(µ0m,Σ0m|µ,Σ,φ)

is the same as Fc(µ0,Σ0|µ,Σ).

In sum, compared to the complete data case (Case 1), in Case 2 the hypothesized

model fit function minimum and consequently the RMSEA stay the same. The reason

the fit function minimum for the hypothesized model stays the same is that the variable

with missing data (i.e., X6) contributes no information about the amount of misfit (which

involves the covariance between X1 and X2), due to the nature of the model.

3.1.3 Case 3: MCAR data; misspecification involves variables with
missing data

Next, we consider the case where the location of misfit in the covariance structure involves

covariances among variables with missing data. Suppose that 20% of the values on X1

(rather than X6, as was in Case 2) are missing completely at random. As in Case 2, J = 2,

p1 = 6, q1 = 0.8, p2 = 5, and q2 = 0.2. However, the fit function minimum value is now

given by

FMCAR(µ0m,Σ0m|µ,Σ,φ) =q1
(

log |Σ0m,1Σ
−1
1 |+ tr(Σ1Σ

−1
0m,1)+(µ1−µ0m,1)

′
Σ
−1
0m,1(µ1−µ0m,1)− p1

)
+q2

(
log |Σ0m,2Σ

−1
2 |+ tr(Σ2Σ

−1
0m,2)+(µ2−µ0m,2)

′
Σ
−1
0,2(µ2−µ0m,2)− p2

)
=(0.8)(0.812)+(0.2)(0) = 0.650.

The first pattern is the complete data pattern, and the corresponding component of

FMCAR(µ0m ,Σ0m|µ,Σ,φ) has the same value. However, the second pattern now omits X1:

Σ0m,2 and Σ2 are the 5×5 submatrices of Σ0 and Σ with the first row and column deleted,

and µ0m,2 and µ2 are the 5× 1 subvectors of µ0 and µ with the first element deleted. In

this case, Σ0m,2 and Σ2 no longer contain the covariance between X1 and X2, which is
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the one covariance that is misspecified. Thus, Σ0m,2 = Σ2, and the second component of

FMCAR(µ0m ,Σ0m|µ,Σ,φ) is zero. As a result, the fit function minimum for the hypothe-

sized model is smaller. This fit function minimum directly affects RMSEA:

RMSEAFIML =

√
FMCAR(µ0m,Σ0m |µ,Σ,φ)

d f
=

√
0.650

27
= 0.155.

This example illustrates that when the variables with missing data are also involved

in the misspecification, the fit function minimum for the hypothesized model and, conse-

quently, the RMSEA generally decrease relative to their complete data counterparts. We

note that for a hypothesized model (such as the one in our example) where only part of

the model is severely misspecified, an interaction between the location of misfit (relative

to the location of missing data) and the effect of missing data on RMSEA is expected.

If variables corresponding to the part of the model that is severely misspecified part are

missing, then the model will show better fit when assessed by the RMSEA.

3.1.4 Case 4: MAR data; misspecification involves variables with
missing values

The last example involves MAR data. Suppose that X1 is missing with probability one

whenever X2 > 0.842 , which is the z-score corresponding to the 80th percentile of a

normal distribution. This implies that X1 is missing with 20% probability. As before,

J = 2, p1 = 6, p2 = 5, q1 = 0.8 and q2 = 0.2.

The correct equation for the fit function minimum is now given by Equation 2.11 in-

stead of Equation 2.10. To compute Equation 2.11, we require pattern-specific population

means and covariance matrices, that is, µ∗j and Σ∗j for j = 1,2. In this example, even for

the complete data pattern, µ∗1 6= µ and Σ∗1 6= Σ. The reason is that in the complete data pat-

tern, X2 is distributed as a standard normal variable truncated at 0.842; in addition, X1 and

X3 will no longer have normal distributions, as they will tend to have more negative than
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positive values observed (by virtue of being correlated with X2). We have used the tmvt-

norm package in R to obtain the population covariance matrix and means of the truncated

multivariate normal distributions corresponding to this example, yielding:

Σ
∗
1 =



0.670

0.519 0.583

0.308 0.286 0.900

0.00 0.00 0.00 1.00

0.00 0.00 0.00 0.49 1.00

0.00 0.00 0.00 0.49 0.49 1.00


,µ∗1 =(−0.311,−0.350,−0.171,0,0,0)′,

Σ
∗
2 =



0.219

0.107 0.812

0.00 0.00 0.00 1.00

0.00 0.00 0.00 0.49 1.00

0.00 0.00 0.00 0.49 0.49 1.00


,µ∗2 = (1.400,0.686,0,0,0)′.

Substituting all these components into Equation 2.11, we get

FMAR(µ0m,Σ0m |µ,Σ,φ) =q1

(
log |Σ0m,1Σ

−1
1 |+ tr((Σ∗1 +(µ∗1 −µ0m,1)(µ

∗
1 −µ0m,1)

′)Σ−1
0m,1)

− tr((Σ∗1 +(µ∗1 −µ1)(µ
∗
1 −µ1)

′)Σ−1
1 )
)

+q2

(
log |Σ0m,2Σ

−1
2 |+ tr((Σ∗2 +(µ∗2 −µ0m,2)(µ

∗
2 −µ0m,2)

′)Σ−1
0m,2)

− tr((Σ∗2 +(µ∗2 −µ2)(µ
∗
2 −µ2)

′)Σ−1
2 )
)

=(0.8)(1.200+5.248−5.706)+(0.2)(0+6.178−6.178)

=0.594.

As before, because the first pattern is the complete data pattern, Σ0m,1 = Σ0, Σ1 = Σ,
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µ0m,1 = µ0, and µ1 = µ . However, the addition of the truncated covariances and means

(i.e., Σ∗1 and µ∗1 ) into this equation means that the component of FMAR(µ0m,Σ0m|µ,Σ,φ)

corresponding to the first pattern is different from that of FMCAR(µ0m ,Σ0m|µ,Σ,φ) in Cases

2 and 3. For the second pattern, as in Case 3, Σ0m,2 and Σ2 are the 5×5 submatrices of Σ0

and Σ with the first row and column deleted, and µ0m,2 and µ2 are the 5×1 subvectors of

µ0 and µ with the first element deleted. Because the misfit associated covariance between

X1 and X2 is eliminated, Σ0m,2 = Σ2, so that the component of FMAR(µ0m ,Σ0m|µ,Σ,φ)

corresponding to the second pattern is zero.

The population RMSEA is given by:

RMSEAFIML =

√
FMCAR(µ0m,Σ0m |µ,Σ,φ)

d f
=

√
0.594

27
= 0.148.

Overall, this set of examples shows that different missing mechanisms can yield dif-

ferent fit function minima and AFIs. We have not shown that missing data percentage, the

number of missing data patterns, and the strength of the missing data mechanism (in case

of MAR) can also affect the fit function minimum and the AFIs. These variables will be

considered in the simulation study described in the next chapter.

3.2 Change in RMSEA due to Differences in Parameter
Values

In this section, we will show that when data change from complete to incomplete, models

with pseudo-parameters may have the same or different model-implied covariance matrix,

which in turn affects fit function minimum and AFIs.
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3.2.1 Case 1: Pseudo-parameter values stay the same with missing
data

We first consider the case where the model-implied covariance matrix stays the same. Let

X and Y be two random variables that follow a multivariate normal distribution with the

population covariance matrix and mean vector given by

Σ =

0.5 0

0 0.5

and µ = (0,0)′. (3.3)

Let the hypothesized model be a special case of the simple regression model: Y = X +ζ ,

where the regression coefficient is fixed to one. This model is misspecified (since X and Y

are orthogonal in the population). Let var(X) = η and var(ζ ) = ψ . We assume a saturated

mean structure and a zero correlation between X and ζ . The model-implied covariance

matrix and mean vector are then

Σ(θ0) =

η η

η η +ψ

and µ0 = (0,0)′, (3.4)

where the model parameters are given by θ0 = (η ,ψ)′.

To obtain the “pseudo-parameters” θ0 with complete data, we minimize

Fc(µ0,Σ(θ0)|µ,Σ) = log |Σ(θ0)Σ
−1|+ tr(ΣΣ

−1(θ0))+(µ−µ0)
′
Σ
−1(θ0)(µ−µ0)− p

= log(4ψη)+
1
ψ

+
1

2η
−2,

(3.5)

where the second expression has been obtained by substituting Equations 3.3 and 3.4 into
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the first expression and then simplifying. The partial derivatives of Fc(µ0,Σ(θ0)|µ,Σ) are

∂F
∂η

=
1
η
− 1

2η2 and
∂F
∂ψ

=
1
ψ
− 1

ψ2 .

Setting them to 0, we obtain θ0 = (η ,ψ)′ = (1
2 ,1)

′. Substituting these values into Equa-

tions 3.4 and 3.5, we obtain

Σ0 =

1.5 0.5

0.5 0.5

 and Fc(µ0,Σ0|µ,Σ) = 0.693. (3.6)

The population RMSEA can then be computed using Equation 2.14:

RMSEAML =

√
Fc(µ0,Σ0|µ,Σ)

d f
=

√
0.6931

1
= 0.148.

Now suppose there are 50% missing data on Y , missing completely at random (MCAR).

In this case, J = 2, p1 = 2, p2 = 1, q1 = q2 = 0.5. The fit function becomes

FMCAR(µ(θ0m),Σ(θ0m)|µ,Σ,φ) =q1

(
log |Σ1(θ0m)Σ

−1
1 |+ tr(Σ1Σ

−1
1 (θ0m))

+(µ1−µ0,1)
′
Σ
−1
1 (θ0m)(µ1−µ0,1)− p1

)
+q2

(
log |Σ2(θ0m)Σ

−1
2 |+ tr(Σ2Σ

−1
2 (θ0m))

+(µ2−µ0,2)
′
Σ
−1
2 (θ0m)(µ2−µ0,2)− p2

)
=

1
2

(
log(4ψη)+

1
ψ

+
1

2η
−2
)

+
1
2
(

log(2η)+
1

2η
−1
)
,

(3.7)

where Σ1 = Σ, µ1 = µ , Σ1(θ0m) = Σ(θ0m), µ0,1 = µ0, Σ2 = 0.5, µ2 = 0, Σ2(θ0m) = η , and

µ0,2 = 0. The partial derivatives for this fit function are the same as those for complete

data. Therefore, the “pseudo-parameters” and the model-implied matrix for this incom-
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plete data is the same as those for complete data, shown in Equation 3.6. Substituting

the parameters into Equation 3.7, we find that FMCAR(µ0m,Σ0m |µ,Σ,φ) = 0.3459, which

makes RMSEAFIML = 0.5887. Therefore, in this case, the fit function minima and RM-

SEAs for complete and incomplete data are different solely due to the differences in their

equations.

3.2.2 Case 2: Pseudo-parameter values change with missing data

We now extend this example to the situation where the model-implied covariance matrix

changes when there are missing data. The population covariance matrix and mean vector

are again given by Equationi 3.3. The hypothesized model is again Y = X +ζ , but we now

fix var(X) = 0.5. The model-implied covariance matrix and mean vector are

Σ(θ0) =

0.5 0.5

0.5 ψ +0.5

and µ0 = (0,0)′, (3.8)

where the parameter is just θ0 = ψ .

When data are complete, the fit function we need to minimize is the same as Equation

3.5 except we can substitute 0.5 for η , so that

Fc(µ0,Σ(θ0)|µ,Σ) = log(2ψ)+
1
ψ
−1. (3.9)

The derivative with respect to ψ is again

dF
dφ

=
1
ψ
− 1

ψ2 , (3.10)

yielding θ0 = ψ = 1 and Fc(µ0,Σ0|µ,Σ) = 0.6931, which are the same as the ones in the

previous example. The population RMSEA is different from the previous complete data
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RMSEA because the d f now equals to two:

RMSEAML =

√
Fc(µ0,Σ0|µ,Σ)

d f
=

√
0.6931

2
= 0.5887.

Next, suppose that there are 50% MCAR missing data on X . Therefore, again, J = 2,

p1 = 2, p2 = 1, q1 = q2 = 0.5. The fit function becomes

FMCAR(µ(θ0m),Σ(θ0m)|µ,Σ,φ) =q1

(
log |Σ1(θ0m)Σ

−1
1 |+ tr(Σ1Σ

−1
1 (θ0m))

+(µ1−µ0,1)
′
Σ
−1
1 (θ0m)(µ1−µ0,1)− p1

)
+q2

(
log |Σ2(θ0m)Σ

−1
2 |+ tr(Σ2Σ

−1
2 (θ0m))

+(µ2−µ0,2)
′
Σ
−1
2 (θ0m)(µ2−µ0,2)− p2

)
=

1
2
(

log(2ψ)+
1
ψ
−1
)

+
1
2
(

log(2ψ +1)+
1

2ψ +1
−1
)
,

(3.11)

where Σ1 = Σ, µ1 = µ , Σ1(θ0m) = Σ(θ0m), µ0,1 = µ0, Σ2 = 0.5, µ2 = 0, Σ2(θ0m) = ψ +0.5,

and µ0,2 = 0. Notice that this fit function is very different from Equation 3.9. Therefore,

the derivative is also different from Equation 3.10:

dF
dψ

=
1
2
( 1

ψ
− 1

ψ2

)
+

1
2
( 2

2ψ +1
− 2

(2ψ +1)2

)
. (3.12)

Setting the derivative to 0, we find that θ0m = ψ = 0.7378, 2 which yields

Σ0m =

0.5 0.5

0.5 1.2378

 and FMCAR(µ0m ,Σ0m|µ,Σ,φ) = 0.5274. (3.13)

2Using the rational root theorem, we can show that the function in Equation 3.12 has no rational root.
We solved for ψ by graphing the function.
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With this fit function minimum, we obtain the population RMSEA:

RMSEAFIML =

√
FMCAR(µ0m ,Σ0m|µ,Σ,φ)

d f
=

√
0.5274

2
= 0.5135.

Therefore, in this case, the fit function minima and the RMSEA values are different be-

tween complete and incomplete data not only due to differences in equations but also due

to the differences in the “pseudo-parameters” and the model-implied covariance matrices.

In summary, we have shown in this section that when the data change from complete to

incomplete, the “pseudo-parameters’ may change, which in turn affects the fit function

minimum and RMSEA.
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Chapter 4

SEM AFIs under FIML Estimation:

Simulation Studies

A simulation is the imitation of the operation of a real-world process or

system over time. Whether done by hand or on a computer, simulation

involves the generation of an artificial history of a system and the observation

of that artificial history to draw inferences concerning the operating

characteristics of the real system.

Jerry Banks, John S. Carson II, Barry L. Nelson, David M. Nicol, 2010

In this chapter, we describe two large sample stimulation studies designed to demon-

strate, with more realistic models, how factors such as the location of missing data relative

to the location of misfit, the percentage of missing data, and the type of missing data

mechanism affect the RMSEA and the CFI computed using FIML estimation. We focus

on large samples to mimic what happens at the population level. It is important to first

establish the differences in the population so that they are not obfuscated by the presence

of sampling error.
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4.1 Design

Table 4.1 shows the design of the two simulation studies. In both studies, data were

generated from confirmatory factor analysis (CFA) models. The population model was

always a two-factor model with six indicators per factor, all loadings of 0.7, and unit

variances for all observed and latent variables. The population model varied in the value

of the factor correlation and the number and size of correlated residuals (if any) across

studies and study conditions. For each population model, we generated n = 1000000

normally distributed observations using the simulData() function in the lavaan package

[30] in R (see Supplementary Materials for sample code).

The two studies differed in the type and location of misfit in the hypothesized model.

In Study 1, we varied the number of correlated residuals (1 or 2), the size of the correlated

residuals (0, 0.1, 0.2, 0.3, or 0.4) and the strength of the factor correlation (0, 0.4, or 0.8)

in the population model. The hypothesized model was always a two-factor model without

correlated residuals. Thus, misfit in the hypothesized model was most directly related to

the indicators of the factor where correlated residuals appeared in the population model,

although misfit can propagate throughout the model via the factor correlation (when it is

not zero). In addition, the location of correlated residuals (i.e., location of misfit) was

varied relative to the location of missing data: 1) in the ”Same Factor” (SF) conditions,

variables with correlated residuals and variables with missing data loaded on the same

factor; 1 2) in ”Different Factor” (DF) conditions, variables with correlated residuals and

variables with missing data loaded on different factors (see Figure 4.1). In Study 2, the

population model did not have any correlated residuals; instead, it had a factor correlation

of varying size (0.2 to 1, see Table 4.1). The hypothesized model was always a one-

factor model. Thus, in Study 2, model misfit increased as the factor correlation in the

1In most SF conditions, the variables with missing data had correlated residuals in the population model.
However, in the SF conditions where four variables have missing data but only two variables have a corre-
lated residual, two of the variables with missing data will not include a correlated residual.
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Table 4.1: Conditions in the Simulation Studies

Study 1
Number of Variables with Missing Data

(2 levels) 2, 4

Percentage of Missing Data in Each Vari-
able with Missing Data (3 levels)

0%, 20%, 50%

Location of Misfit (2 levels) Same factor (SF) conditions: Variables involving misfit
and those involving missing data load on the same factor.

Different factor (DF) conditions: Variables involving misfit
and those involving missing data load on different factors.

Missing Mechanism (3 levels) MCAR, Weak MAR, Strong MAR

Model (2 × 5 × 3 =30 levels) The population model is a two-factor model (six indicators
loading on each factor) that varies in the following features:
• Number of correlated residuals: 1, 2
• Size of correlated residuals: 0, 0.1, 0.2, 0.3, 0.4
• Factor correlation: 0, 0.4, 0.8

The hypothesized model is always a correlated two-factor
model without any correlated residuals.

Study 2
Number of Variables with Missing Data

(3 levels) 2, 4, 6

Percentage of Missing Data in Each Vari-
able with Missing Data (3 levels)

0%, 20%, 50%

Number of Missing Data Patterns (2 levels) Minimum: Always 2 patterns
Maximum: 4, 16 and 64 patterns when 2, 4 and 6 variables
have missing data, respectively.

Missing Mechanism (3 levels) MCAR, Weak MAR, Strong MAR

Model (9 levels) The population model is a two-factor model (six indicators
loading on each factor) that varies in the factor correlation:
1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2. The hypothesized
model is always a one-factor model.

Note: Both studies have factorial designs. In total, there are 2×3×2×3×30 = 1080 conditions in Study
1 and there are 3×3×2×3×9 = 486 conditions in Study 2.
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Figure 4.1: Differences between DF and SF conditions.

population model decreased. This type of misfit affects the entire covariance structure, but

it particularly affects the covariances among indicators of different factors.

In both studies, we varied the percentage of missing data by deleting 0%, 20% or

50% of values in each variable designated to contain missing data. The number of such

variables varied within and across studies (described shortly). In both studies, we stud-

ied three missing data mechanisms: one MCAR mechanism and two two types of MAR

mechanism (weak and strong). To create MCAR data, we randomly selected rows for

deletion. To generate MAR data, we first specified a cut-off point for a conditioning vari-

able without missing data that loaded on the same factor. For 20% missing data, the cutoff

point for the conditioning variable was 0.842 (i.e., the 20th quantile of the standard normal

distribution); for 50% missing data, the cutoff point was 0. In the strong MAR conditions,

the probability of missing data was 1 if the conditioning variable exceeded the specified

cutoff, and 0 otherwise. In the weak MAR conditions, the probability of missing data was

0.75 if the conditioning variable exceeded the specified cutoff, and 0.25 otherwise.
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The two studies differed in the number of variables with missing data and the number

of missing data patterns. In Study 1, the number of variables with missing data was either

2 or 4; in Study 2, this number was either 2, 4 or 6. In Study 1, the variables with miss-

ing values were jointly missing, creating the minimum number of missing data patterns

(i.e., two patterns). In Study 2, we also added the conditions where the variables were not

jointly missing, resulting in the maximum number of possible patterns (see Table 1 for ex-

act numbers). For MCAR conditions, data with the maximum number of possible patterns

were created by creating missingness for each variable independently. For MAR condi-

tions, such data were created by using different conditioning variable for each variable

with missing data.

In summary, both studies have a factorial design, with 1080 conditions in Study 1

and 486 conditions in Study 2 (see 4.1). In both studies, we manipulated the degree of

misfit, the amount of missing data, and the missing data mechanism. The main difference

between the two studies is that in Study 1, we manipulated the location of misfit relative

to the location of missing data; in Study 2, we fixed the location of misfit but manipulated

the number of missing data patterns. The population values of the RMSEA and the CFI

with complete data across different study conditions are given in Table 4.2. As this table

illustrates, the complete data population RMSEA varies from 0 to 0.175 in Study 1 and

from 0 to 0.192 in Study 2, while the complete data population CFI varies from 0.769

to 1 in Study 1 and from 0.538 to 1 in Study 2. The values in this table are taken to be

benchmarks to which the incomplete data RMSEA and CFI will be compared. Our main

question of interest is how much these values change with the introduction of incomplete

data.
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Table 4.2: Complete data RMSEA and CFI for all conditions in Studies 1 and 2
 
 
Study 1               
    FC=0 FC=0.4 FC=0.8 

Number of 
CRs 

Size of 
CR RMSEA CFI RMSEA CFI RMSEA CFI 

One CR 

0.0 0.000 1.000 0.000 1.000 0.000 1.000 
0.1 0.022 0.994 0.022 0.994 0.023 0.994 
0.2 0.044 0.977 0.045 0.977 0.048 0.976 
0.3 0.067 0.950 0.069 0.948 0.076 0.943 
0.4 0.086 0.927 0.089 0.923 0.105 0.902 

Two CRs 

0.0 0.000 1.000 0.000 1.000 0.000 1.000 
0.1 0.033 0.987 0.033 0.987 0.034 0.988 
0.2 0.069 0.947 0.069 0.948 0.071 0.951 
0.3 0.113 0.874 0.113 0.876 0.115 0.882 
0.4 0.166 0.773 0.168 0.773 0.175 0.769 

Study 2               
FC RMSEA CFI 
1.0 0.000 1.000 
0.9 0.045 0.979 
0.8 0.078 0.932 
0.7 0.106 0.872 
0.6 0.129 0.803 
0.5 0.149 0.730 
0.4 0.167 0.654 
0.3 0.182 0.586 
0.2 0.192 0.538 

Note: FC=Factor Correlation; CR=Correlated Residual; MCAR=Missing Completely At Random; 
MAR=Missing At Random. 

 

4.2 Results

Below we summarized the major patterns of results using a series of figures and regression

analyses. In all figures, the corresponding population quantities (i.e., RMSEA, CFI, or

population fit function minimum) with complete data are shown by the red (solid) lines.

The AFIs’ values for complete data are also shown in Table 4.2; these values illustrate

the benchmark with which we compare the incomplete data AFIs. For the regression

analyses, we computed the absolute bias for the population AFIs by finding the absolute

differences between the complete data population values (i.e., RMSEAML or CFIML from
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Equation 2.14) and the corresponding incomplete data population values (estimated from

n = 1000000), and then we used the features of the missing data (shown in Table 4.1)

to predict the absolute bias. In addition, we provided the full simulation results in the

Supplementary Materials. 2

4.2.1 Study 1

Figures 4.2-4.5 present selected results from Study 1. Figure 4.2 shows the RMSEA and

CFI values for the conditions with MCAR data, population factor correlation of zero, and

two correlated residuals of varying size (shown on the x-axis). Both DF (”Different Fac-

tors”) and SF (”Same Factor”) conditions are shown. The maximum discrepancy between

complete and incomplete data AFIs occurs in the SF conditions with 50% missing data on

four variables, when the correlated residuals are of size 0.4: the complete data RMSEA

and CFI are 0.166 and 0.773, respectively, while the incomplete data RMSEA and CFI are

0.119 and 0.831, respectively.

Although the AFIs measure model fit on a continuum, cut-off points are commonly

used to help researchers categorize the amount of misfit. For example, some methodol-

ogists have suggested RMSEA less than 0.08 indicate good fit [8], and CFI greater than

0.9 indicate good fit [17]. Figure 4.2 illustrates several conditions where missing data

cause the AFIs to cross these recommended cutoff points. For example, in the SF con-

ditions where four variables had missing data and the correlated residuals were of size

0.3, RMSEA decreased from 0.113 to 0.080 and CFI increased from 0.874 to 0.912 as the

percentage of missing data increased from 0% to 50%. Thus, researchers may arrive at

different conclusions about model fit depending on whether missing data are present.

Figure 4.2 also shows that the pattern of results for RMSEA is different from that

2The tables in the supplementary materials combine the results from these two simulation studies with
those from the simulation studies in 6. For the simulation studies’ results in this Chapter, please refer to the
row under FIML and n = 1000000 in each table in the Supplementary Materials
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Figure 4.2: RMSEA and CFI for Study 1 conditions varying in the locations of misfit and number
of variables with missing data. For the conditions in this figure, the missing mechanism is
MCAR, the population factor correlation is 0, and the number of correlated residuals is 2.
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for CFI. Because the factor correlation was zero, misfit associated with the covariance

structure of indicators of one factor did not propagate to affect the covariance structure

of the indicators of the other factor. Therefore, in the DF conditions where the indicators

containing correlated residuals in the population model were different from indicators

with missing data, the values of the RMSEA did not visibly change with missing data. In

contrast, in SF conditions, the RMSEA values generally decreased, indicating better fit, as

missing data increased (higher percentage of missing data or more variables with missing

data), and the rate of decrease was higher for higher levels of misfit (i.e., larger size of

correlated residuals).

The pattern was more complex for the CFI (see the second panel of Figure 4.2). In DF

conditions, CFI decreased, indicating worse fit with more missing data. This pattern was

opposite of that for the RMSEA. However, in the SF conditions, the CFI values increased

with more missing data, indicating better fit. To explain this pattern of results, we exam-

ined the fit function minima for the hypothesized and baseline models separately. Figure

4.3 shows these values for the same conditions as in Figure 4.2. In the DF conditions,

the fit function minimum for the hypothesized model stayed approximately the same with

more missing data; however, it decreased for the baseline model with more missing data,

especially for greater levels of misfit. The reason is that in the baseline model, which

hypothesizes uncorrelated variables, the misspecification affected every part of the model,

and was thus always entangled with the location of missing data. In the SF conditions,

the fit function minima for both the hypothesized and the baseline models decreased with

more missing data, but the rate of decrease for the hypothesized model was larger, espe-

cially for models with greater misfit. As a result, in the SF conditions, CFI increased with

more missing data.

Figure 4.4 examines whether the patterns found in Figure 4.2 extend to the case when

the factor correlation is not zero. In the conditions shown in Figure 4.4, the missing data
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Figure 4.3: Fit function minima of the hypothesized and baseline models for selected conditions in
Study 1. For the conditions in this figure, the missing mechanism is MCAR, the population
factor correlation is zero, and the number of correlated residuals is two.

are still MCAR; the population model has one correlated residual and four variables with

missing data; three values of the factor correlation (0, 0.4, and 0.8) are shown in separate

panels. Note that the overall misfit is smaller in this figure compared to Figure 4.2, but

the range of y-axis is kept the same to ensure comparability of figures. Interestingly, when

the population factor correlation was non-zero, the RMSEA values still barely changed

with the amount of missing data in the DF conditions: even when the correlated residual

was 0.4 and the factor correlation was 0.8, the RMSEA changed from 0.105 to 0.102 as
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the percentage of missing data changed from 0% to 50%. The finding that the value of

the factor correlation in the population model had a small effect on the distortion in the

incomplete data AFIs also generalized to other conditions of the study (see Supplemen-

tary Materials). Thus, even though misfit in the indicators of one factor can theoretically

propagate across the factor correlation to affect the indicators of the other factor, this did

not seem to actually occur to the degree that would affect the AFIs that much.

Finally, Figure 4.5 shows the impact of different missing data mechanisms on the

AFIs in selected conditions (two correlated residuals, four variables with missing data, and

factor correlation of 0.4). In these conditions, the largest change in the AFIs due to missing

data occurred when the percentage of missing data was 50%, the missing mechanism was

strong MAR, and the size of the correlated residuals was 0.4: the complete data RMSEA

and CFI were 0.168 and 0.773, respectively, while the incomplete data RMSEA and CFI

were 0.116 and 0.832, respectively. Overall, the patterns of change in the AFIs with more

missing data were similar to those in Figure 4.2 and consistent across different missing

mechanisms. However, the missing mechanism moderated the rate of change in the AFIs

with the increasing percentage of missing data, although this effect was not always the

same. For example, in the SF conditions, as the proportion of missing data increased from

0% to 20%, the RMSEA values in the weak MAR condition decreased at a faster rate than

those in the MCAR and strong MAR conditions, but when the proportion of missing data

increased from 20% to 50%, the RMSEA values for the weak MAR data decreased at a

slower rate than those in the other two conditions. This effect of missing mechanism on

the rate of change of the AFIs was similar in other study conditions not shown in Figure

4.5.
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Figure 4.4: RMSEA and CFI for selected conditions in Study 1. For the conditions in this figure,
the missing mechanism is MCAR. There is a single correlated residual in the population model,
and the number of variables with missing data is four.
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Figure 4.5: RMSEA and CFI for selected conditions in Study I. For conditions in this figure, the
population factor correlation is 0.4; the number of correlated residuals is two, and the number
of variables with missing data is four.
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Regression Analyses

We also conducted regression analyses to examine whether missing data percentage, miss-

ing data mechanism, factor correlation in the population model, degree of misfit (measured

by the size of the correlated residuals), location of misfit, and the interaction between the

missing data percentage and location of misfit can predict the absolute bias of the AFIs. To

simplify the analyses, we held the number of correlated residuals at two and the number

of variables with missing data at four. 3 We coded the features of the missing data into

factor or numeric variables, and explained these variables in Table 4.3.

Table 4.4 shows the full results of the regression analyses. Consistent with the results

shown in Figures 4.4 and 4.5, missing data mechanism and factor correlation had very

small effect on the absolute bias of the AFIs. Consistent with the results in Figures 4.2

and 4.3, there was an interaction between the percentage of missing data and the location

of missing data. For RMSEA, when the location of missing data was DF, holding all other

variables constant, the absolute bias did not change as missing data increased; however,

when the location was SF, as missing data increased from 20% to 50%, the absolute bias,

on average, increased by 0.012 unit. For CFI, when the location was DF, holding all other

variables constant, the absolute bias increased by 0.008 unit on average; but when the

location was SF, the absolute bias increased by 0.015 unit. In addition to the location and

percentage of missing data, the degree misfit can have an effect on the bias, although its

effect was relatively small.

Overall, Study 1 shows that the biggest distortion in the incomplete data AFIs relative

to complete data AFIs occurred when the misspecification was large and when the amount

of missing data was high (e.g., greater number of variables with missing data, greater pro-

3The number of correlated residuals and the size of the correlated residuals both measure the degree of
misfit; to simplify the analyses, we held the number of correlated residuals constant and included the the
size of the correlated residuals in the regression. Similarly, because the number of variables with missing
data and the percentage of missing data both measure the amount of missing data, we only included the
percentage of missing data in the analyses.
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Table 4.3: Variables in the Regression Analyses

Study 1
Missing percentage of missing data in each variable with missing data. Missing is

considered a categorical variable that equals 20 or 50 when the percentage
missing is 20% or 50%, respectively; 20 is the reference group.

Location location of misfit relative to location of missing data.
Location is considered a categorical variable that is either SF or DF represent-
ing the SF or DF condition.

Mechanism missing data mechanism.
Mechanism is considered a numerical variable variable that equals to 0, 1 or 2 when
the missing data mechanism is MCAR, weak MAR or strong MAR, respectively.

FactorCor factor correlation in the population model.
FactorCor is considered a numerical variable that equals to 0, 1 or 2 when the
factor correlation is 0, 0.4 or 0.8, respectively.

Misfit size of the correlation residuals.
Misfit is considered a numerical variable that equals to 0, 1, 2, 3, or 4 when the size
of the correlated is 0, 0.1, 0.2, 0.3, or 0.4, respectively.

Study 2
Missing percentage of missing data in each variable with missing data. Missing is

considered a categorical variable that equals 20 or 50 when the percentage
missing is 20% or 50%, respectively; 20 is the reference group.

Pattern whether the missing data contain the minimum or maximum number of miss-
ing data patterns.
Location is considered a categorical variable that is either min or max rep-
resenting the conditions with either the minimum or maximum number of
missing data patterns; min is the reference group.

Mechanism missing data mechanism.
Mechanism is considered a numerical variable that equals to 0, 1 or 2 when the
missing data mechanism is MCAR, weak MAR or strong MAR, respectively.

Misfit size of the factor correlation.
Misfit is considered a numerical variable that equals to 0, 1, 2, 3, 5, 6, 7, 8 or 9 when
the factor correlation is 1, 0.9, 0.8, 0.7, 0.6, 0.4, 0.3 or 0.2, respectively.
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Table 4.4: Results of the Regression Analyses

Study 1
DF as the reference group for the Location variable:

bl BIASRMSEA =−0.010+0.000Missing+0.010Location+0.000Mechanism+0.000FactorCor
bl BIASRMSEA = +0.005Misfit+0.012(Location)(Missing)

bl BIASCFI =−0.010+0.008Missing+0.001Location+0.000Mechanism+0.000FactorCor
bl BIASCFI = +0.009Misfit+0.006(Location)(Missing)

SF as the reference group for the Location variable:

bl BIASRMSEA =−0.001+0.012Missing+0.010Location+0.002Mechanism+0.001FactorCor
bl BIASRMSEA = +0.005Misfit+0.012(Location)(Missing)

bl BIASCFI =−0.011+0.015Missing+0.001Location+0.000Mechanism+0.000FactorCor
bl BIASCFI = +0.009Misfit−0.006(Location)(Missing)

Study 2
BIASRMSEA =−0.010+0.020Missing+0.004Pattern+0.001Mechanism+0.005Misfit

BIASCFI =−0.011+0.040Missing+0.008Pattern+0.001Mechanism+0.012Misfit
Note: The coding of the variables is explained in Table 4.3.

portion of missing data on those variables). Another important variable was the location

of misfit relative to the location of missing data: in the DF conditions, hardly any change

was observed in the RMSEA. Finally, missing data mechanism can also be an important

factor that determined how missing data affect the AFIs, but its effects were more subtle

and more complicated.

4.2.2 Study 2

Figure 4.6 shows the RMSEA and CFI values for conditions with six variables with miss-

ing data. Because Study 2 includes conditions with greater misfit than Study 1 (see Table

4.2), the y-axis range in Figure 5 is greater than that in Figures 4.2-4.5. In this study, the

hypothesized model was always the one-factor model, whereas the population model was

a two-factor model without correlated residuals but with a factor correlation of varying

size. In this case, the amount of misfit was directly related to the factor correlation in the

population model; the x-axis in Figure 4.6 shows the population factor correlation varying
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from least (correlation of 1) to most misfit (correlation of 0.2).

Figure 4.6 illustrates that the impact of missing data on AFIs can actually be quite

large. In all panels of this figure, the curves corresponding to complete versus incomplete

data RMSEA and CFI are much more widely separated than those in Study 1. This is

due to both more severe model misspecification and to the inclusion of a condition where

half (6 out of 12) of the variables contain missing data. In the most extreme case, in

the weak MAR conditions with the maximum number of missing data patterns and the

factor correlation of 0.2, the RMSEA changed from 0.192 to 0.114 (a 40% decrease) and

CFI changed from 0.538 to 0.758 (a 41% increase) as the percentage of missing data

per variable increased from 0% to 50%. In several of the shown conditions, the RMSEA

crossed the recommended cutoff of 0.08 and CFI crosses the recommended cutoff of 0.9 as

the percentage of missing data increased. For example, in the strong MAR conditions with

the maximum number of missing data patterns and the factor correlation of 0.7, RMSEA

decreased from 0.106 to 0.070 and CFI increased from 0.872 to 0.913 as missing data

increased from 0% to 50%.

Several other patterns of results in Study 2 are noteworthy. First, the RMSEA de-

creased and CFI increased with missing data in all conditions. This pattern can be ex-

plained by the overlap between the location of misfit and the location of missing data. The

misfit in Study 2 always affected all variables. This pattern was consistent with the re-

sults in Study 1, where RMSEA always decreased and CFI always increased with missing

data in the SF conditions. Second, and consistent with Study 1, the missing mechanism

affected the rate of change in the AFIs as the percent of missing data increased, and this

effect of missing mechanism was different for different missing data percentage changes.

Finally, as the percent of missing data increased, the RMSEA decreased and CFI increased

at a faster rate in the conditions where the number of missing patterns was maximum.

For example, for the weak MAR conditions with 0.2 factor correlation and six variables
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Figure 4.6: RMSEA and CFI for selected conditions in Study 2. For the conditions shown in this
figure, the number of variables with missing data is six.

62



containing missing data (see Figure 4.6), when the number of missing patterns was max-

imum, the RMSEA decreased from 0.192 to 0.139 (a 27% decrease) and CFI increased

from 0.538 to 0.679 (a 26% increase) as the missing data percentage changed from 0%

to 20% . However, when the number of missing patterns was minimum, the RMSEA de-

creased from 0.192 to 0.154 (a 19% decrease) and CFI increased from 0.538 to 0.637 (a

18% increase). These patterns of results also hold in the conditions not shown in Figure

4.6; however, as the omitted conditions contain fewer variables (two or four) with missing

data, the effects were smaller (see Supplementary Materials).

Regression Analyses

For the regression analyses, we examined whether missing data percentage, missing data

mechanism, missing data pattern and degree of misfit (measured by the size of the factor

correlation) can affect the absolute bias of the AFIs. To simplify the analyses, we held

the number of variables with missing data at six.4 Table 4.3 shows how we coded the

features of the missing data in Study 2. Table 4.4 shows that the results of the analyses.

The regression analyses showed the missing data mechanism and pattern had very little

effect on the AFIs’ bias. On the other hand, the percentage of missing data had the largest

effect on the bias of the AFIs. For RMSEA, holding all variables constant, the absolute,

on average, increased by 0.021 unit as missing data increased from 20% to 50%; for CFI,

the bias increased by 0.040 unit as missing data increased from 20% to 50%. The degree

of misfit also had an effect on the absolute bias. For RMSEA, holding all other variables

constant, the absolute bias increased by 0.005 unit as the degree of misfit increased by

one unit (i.e., as the factor correlation decreased by 0.1 unit; see Table 4.3); for CFI, the

bias increased by 0.012 unit as the degree of misfit increased by one unit. These results

imply that as the factor correlation decreased from 1 to 0.2, the RMSEA and CFI bias,
4Consistent with the regression analyses for Study 1, because the number of variables with missing

data and the percentage of missing data both measure the amount of missing data, we only included the
percentage of missing data in the analyses.
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on average, increased by 0.005×8 = 0.04 and 0.012×8 = 0.96 unit, respectively; these

changes were very substantial when considered on the metrics for RMSEA and CFI. In

short, all these patterns of results by the regression analyses were perfectly consistent with

those shown in Figure 4.6.

Overall, Study 2 further illustrated that the incomplete data AFIs are affected by many

characteristics of missing data, such as the amount of missing data (in terms of the number

of variables and the percentage of missing data per variable), missing data mechanism,

and, new in this study, the number of missing data patterns. Because the misspecification

was greater in this study, and because the type of misspecification (wrong number of

factors) was such as to affect all variables, the patterns of results illustrating differences

between complete and incomplete data AFIs were also more dramatic than they were in

Study 1.

4.3 Discussion

The results from our simulation studies show that the impact of missing data on the values

of the AFIs varies from trivial to quite dramatic. If the misfit in the hypothesized model

is highly localized (e.g., an omitted correlated residual) and pertains to variables that are

fully observed, the impact on the RMSEA can be almost zero. On the other hand, in the

most extreme case when the hypothesized model is misspecified globally (1-factor model

is fit to 2-factor data), the number of variables with missing data is high, and the missing

mechanism is MAR, we have found that in some conditions the AFIs changed by as much

as 40% when the missing data increased from 0% to 50%. Across all conditions, the

minimum of the fit function for the hypothesized either stayed the same or decreased with

the presence of missing data. While we are not yet able to offer an analytical proof to show

our results pattern holds in general, the main pattern we have observed is the following:

with more missing data, more information is lost about the misfit contained in the data
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unless the model is correctly specified or the variables involved in the misspecification

are distinct from variables with missing data. Since RMSEA is a direct function of the fit

function minimum for the hypothesized model, RMSEA will generally stay the same or

decrease with more missing data. We are not certain whether it is possible for RMSEA to

increase with more missing data, but we have not been able to create an example where it

does so.

The pattern for the CFI, which involves a comparison to the fit of the baseline model,

was more complex. We found that CFI tended to indicate worse fit (decreased) when the

location of misfit was localized to a few indicators of one factor, and variables with missing

data loaded on a different factor. In this case, with more missing data, the fit function

minimum for the baseline model decreased more relative to the fit function minimum for

the hypothesized model, leading to an overall slight decrease in the CFI (see Figures 4.2

and 4.3). When misfit was entangled with the location of missing data, CFA, like RMSEA,

always indicated better fit with missing data.

The impact of the percentage of missing data and the number of variables with missing

data had a predictable effect on the AFIs: the differences relative to complete data AFIs

became more dramatic. Increasing the number of missing data patterns tended to further

distort the AFIs. The impact of the missing data mechanism was more nuanced: it seemed

to primarily affect the initial distortion in the AFIs when moving from complete data to

20% missing data.

Our findings have direct implications for researchers who use FIML to handle missing

data. While evaluating approximate model fit using AFIs is always nuanced and subjec-

tive, existing tentative cutoffs have all been developed with complete data [8, 17]. When

researchers use FIML estimation to handle missing data, they should be cautious when

using any firm cutoffs for AFIs. AFIs computed by the current software following FIML

estimation do not necessarily reflect what researchers probably want to know: what the
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amount of misfit would have been had the data been complete; in other words, the incom-

plete data AFIs are not consistent estimates of the population values of the complete data

AFIs. Therefore, when compared to the existing cutoffs, the incomplete data AFIs may be

inaccurate indicators of the amount of model misfit. In particular, the RMSEA, arguably

the most popular index of approximate fit, may underestimate the amount of misfit with

missing data. As shown in our simulation studies, the AFIs can cross the recommended

cutoff points as missing data increase, and thus researchers could draw opposite conclu-

sions about model fit depending on the amount of missing data present.
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Chapter 5

Alternative Approaches for Computing

AFIs

An approximate answer to the right problem is worth a good deal more than

an exact answer to an approximate problem.

John Wilder Tukey

As seen in the previous three chapters, the most popular FIML estimation can produce

very distorted AFIs. Based on our simulation studies, in some cases, the population AFIs

changed by as much as 40% when the percentage of missing data increased from 0% to

50%. In this chapter, we propose an alternative approach for computing AFIs following

FIML estimation, which we refer to as the FIML-corrected or FIML-C approach. The

FIML-C approach involves modifying the current computations of RMSEA and CFI so

that they estimate what these AFIs would have been had the data been complete.

In addition to the FIML-C approach, we study another AFI computation approach,

which involves the use of the two-stage (TS) estimation. In the typical TS procedure, the

saturated model is fit to incomplete data in the first stage, and then the complete data fit

function is minimized in the second stage, with the saturated model’s estimates of means
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and covariances replacing the sample means and covariances in this fit function [43, 46].

Because the complete data fit function is used to compute the AFIs, if the missing mecha-

nism is ignorable, they should approach the same population values as if the data had been

complete.

For both FIML-C and TS approaches, we also propose a series of small sample cor-

rections that are meant to improve performance in small samples. These developments are

based on the earlier work that proposed similar corrections to AFIs in the context of non-

normal data [6, 7] and in the context of categorical data [34]. All of these corrections are

derived through finding the expected value of the estimate of the population fit function

minimum under a correctly specified model. In the last section of the chapter, we show

the derivations of the small sample corrections for the FIML-C and TS approaches.

5.1 Alternative AFIs following FIML Estimation

The FIML-C approach allows us to approximate what the model fit would have been had

there been no missing data; that is, FIML-C RMSEA and CFI approximate RMSEAML

and CFIML (Equation 2.14) rather than RMSEAFIML and CFIFIML (Equation 2.15). This

approach to computing AFIs is an extension of the approach proposed by Savalei [34] for

AFIs for categorical data. While it is an approximation rather than an exact approach,

Savalei [34] found that the approximation works well for mild and moderate model speci-

fications. We therefore also expect FIML-C AFIs to work well unless the model misspec-

ifications are severe.

The FIML-C AFIs are computed according to the following equations:

R̂MSEAFIML-C =

√
max

(Fc(µ̂, Σ̂|µ̃, Σ̃)− d f
n

d f
,0
)

ĈFIFIML-C = 1−
max

(
Fc(µ̂, Σ̂|µ̃, Σ̃)− d f

n ,0
)

max
(

Fc(µ̂B, Σ̂B|µ̃, Σ̃)− d fB
n ,Fc(µ̂, Σ̂|µ̃, Σ̃)− d f

n ,0
) , (5.1)
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where the subscript B stands for the baseline model, and Fc(µ̂, Σ̂|µ̃, Σ̃) is the complete

data ML fit function in Equation 2.2, with the saturated FIML estimates µ̃ and Σ̃ used

in place of sample means and sample covariance matrix and evaluated at the structured

FIML estimates µ̂ and Σ̂. By evaluating the complete data ML fit function at the FIML

parameter estimates, we approximate what the complete data ML fit function minimum

would have been had there been no missing data.

However, Equation 5.1 may not suffice in small samples. Because the FIML parameter

estimates are obtained using a different fit function than Fc, the degrees of freedom may

no longer be the best estimate of the expected value of Fc evaluated at the FIML estimates.

To correct for this bias, we can incorporate small sample corrections as follows:

R̂MSEAFIML-C,s =

√
max

(Fc(µ̂, Σ̂|µ̃, Σ̃)− k
n

d f
,0
)

;

ĈFIFIML-C,s = 1−
max

(
Fc(µ̂, Σ̂|µ̃, Σ̃)− k

n ,0
)

max
(

Fc(µ̂B, Σ̂B|µ̃, Σ̃)− kB
n ,Fc(µ̂, Σ̂|µ̃, Σ̃)− k

n ,0
) , (5.2)

where k and kB are the FIML-C correction terms for the hypothesized and baseline models,

respectively [6, 7, 34]. In the most general form,

k = tr(UmW−1
m WcW−1

m UmΓ), (5.3)

where the subscript m indicates the matrix is related to the FIML fit function for the miss-

ing data and the subscript c indicates the matrix is related to the fit function for the com-

plete data but evaluated at FIML estimates. Section 5.2.3 provides the derivation for this

general equation for k. For each unique component in Equation 5.3, there are different op-

tions for estimating the matrix with sample data, resulting in different ways of estimating

k. In this chapter, we examine six ways of estimating k. Table 5.1 lists the equations for

these six versions of computations of k, and explains the components in the equations for
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k. In the following paragraphs, we explain each component in Equation 5.3 as well as the

six versions of k listed in Table 5.1. To make it easier to refer to the different FIML-C

versions, we use FIML-C V0 to denote the FIML-C version without small sample correc-

tion, and use the FIML-C V1-V6 to denote the six FIML-C versions with small sample

corrections.

The matrix Wm in Equation 5.3 is the population weight matrix used in the FIML esti-

mation, or the “FIML weight matrix.” The FIML weight matrix can be thought of as the

information matrix for the saturated model. This information matrix can be observed or

expected. However, for MAR data, the observed information matrix is the only asymp-

totically unbiased estimate [33]. Therefore, the observed information matrix is used for

all versions of Wm (see “Estimate of FIML Weight Matrix” in Table 5.1). In addition, at

the sample level, Wm can be evaluated at different sample estimates depending on which

software you use. Some software such as EQS evaluate the weight matrix at the hypoth-

esized model estimates (Σ̂, µ̂) whereas others such as Mplus evaluate it at the saturated

model estimates (Σ̃, µ̃) [42]. In lavaan, which is the software of our choice, by default, the

weight matrix is evaluated with the hypothesized model estimates, but it can be changed

to the saturated model estimates by setting mimic=”Mplus”. Although some researchers

suggest the use of hypothesized model estimates over the saturated model estimates [42],

there is no consensus which one is better; therefore, we vary this option across the ver-

sions. For FIML-C V1, V2, V4 and V5 in Table 5.1, the weight matrix is evaluated at

the hypothesized model estimates (denoted as Ŵm); for FIML-C V3 and V6, the weight

matrix is evaluated at the saturated model estimates (denoted as W̃m).

The matrix Um is the residual weight matrix:

Um =Wm−Wm∆̂(∆̂′Wm∆̂)−1
∆̂
′Wm, (5.4)
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where ∆̂ is the matrix of model derivatives, always evaluated at the hypothesized model

estimates. Since Um is a function of Wm, we use Ûm to denote the estimate of the residual

weight matrix when Ŵm is substituted in Equation 5.4 (as in FIML-C V1, V2, V4, and V6),

and use Ũm when W̃m is substituted (as in FIML-C V3 and V6; see ”Estimate of Residual

Weight Matrix” in Table 5.1).

The matrix Γ is the asymptotic covariance matrix of the saturated FIML estimates.

Without normality assumption, Γ can be estimated using the fourth order moment of the

data or it can be estimated using the sandwich method involving a triple product: Γ =

W−1
m VmW−1

m , where Vm is the FIML first order information matrix, and Wm and Vm are both

evaluated at the saturated model estimates. In the special case when we assume normality

and the hypothesized model is correctly specified, Γ0 = W−1
m,0 (i.e., asymptotically), and

the correction will simplify. In this case, k is simplified to

k = tr(WcW−1
m UmW−1

m ). (5.5)

Because we do not assume the model is correct when evaluating fit indices, this simplifi-

cation is only an approximation even if we have normal data. We include this variation of

Γ or k in our research. FIML-C V4-V6 in Table 5.1 assume normality and correctly speci-

fied model, and use Equation 5.5 for k, whereas FIML-C V1-V3 do not assume normality

nor correctly specified model, and use Equation 5.3.

Lastly, the matrix Wc is the complete data weight matrix, which is the information

matrix based on the complete data fit function. Similar to Wm, we can either evaluate

Wc at the FIML hypothesized or saturated model estimates. Unlike Wm, both observed

and expected information version of this matrix are asymptotically unbiased estimate for

Wc. When the saturated model estimates are used for Wc, observed and expected versions

are the same, therefore, there are only three options. For notations, we use Ŵ OBS
c (as in
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FIML-C V1 and V4 in Table 5.1) to denote the observed information matrix evaluated

at the hypothesized model estimates, Ŵ EXP
c (as in FIML-C V2 and V5) to denote the

expected information matrix evaluated at the hypothesized model estimates, and W̃c for

the observed or expected information matrices evaluated at the saturated model estimates

(as in FIML-C V3 and V6; see “Estimate of Complete Data Weight Matrix” in Table 5.1).

In the above paragraphs, we explained in detail the different computation versions for

k. However, in order to compute the CFI, we also need to compute kB, the correction factor

for the baseline model. The variations for kB are the same as the variations for k except

that in the case of kB, the “hypothesized model” is the baseline model (see Table 5.1) 1.

5.1.1 Population Limits for FIML-C AFIs

Because the correction terms k and kB stay relatively the same as n increases, the popu-

lation limits of these AFIs are the same regardless of whether small sample corrections

are incorporated in the computation of sample FIML-C AFIs. The population limits of

Equations 5.1 and 5.2 are given by:

RMSEAFIML-C =

√
Fc(µ0m ,Σ0m |µ,Σ)

d f
;

CFIFIML-C = 1− Fc(µ0m,Σ0m |µ,Σ)
Fc(µB,0m,ΣB,0m |µ,Σ)

,

(5.6)

where µ0m , Σ0m , µB,0, and ΣB,0m are the population limits of the corresponding FIML

model-implied means and covariance matrices. Comparing Equations 2.14 and 5.6, we

can understand why the FIML-C approach is an approximation. In general, µ0 6= µ0m and

Σ0 6= Σ0m; that is, when the model is misspecified, the FIML parameter estimates may have

different population limits from the corresponding ML estimates for the complete data.

1We note that for FIML, regardless of what the hypothesized model is, the saturated model estimates
stay the same. This explains why for kB, when Wm is evaluated at the saturated model estimates, there is no
subscript B as shown in Tables 5.1.
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Table 5.1: Equations for k and kB for FIML-C versions

Equation
Structured Model Baseline Model

Versions without the Normality Assumption

FIML-C V1 k = tr(ÛmŴ−1
m Ŵ OBS

c Ŵ−1
m ÛmΓ̃) kB = tr(Ûm,BŴ−1

m,BŴ OBS
c,B Ŵ−1

m,BÛm,BΓ̃)

FIML-C V2 k = tr(ÛmŴ−1
m Ŵ EXP

c Ŵ−1
m ÛmΓ̃) kB = tr(Ûm,BŴ−1

m,BŴ EXP
c,B Ŵ−1

m,BÛm,BΓ̃)

FIML-C V3 k = tr(ŨmW̃−1
m W̃cW̃−1

m ŨmΓ̃) kB = tr(Ũm,BW̃−1
m W̃cW̃−1

m Ũm,BΓ̃)

Versions with the Normality Assumption

FIML-C V4 k = tr(Ŵ OBS
c Ŵ−1

m ÛmŴ−1
m ) kB = tr(Ŵ OBS

c,B Ŵ−1
m,BÛm,BŴ−1

m,B)

FIML-C V5 k = tr(Ŵ EXP
c Ŵ−1

m ÛmŴ−1
m ) kB = tr(Ŵ EXP

c,B Ŵ−1
m,BÛm,BŴ−1

m,B)

FIML-C V6 k = tr(W̃cW̃−1
m ŨmW̃−1

m ) kB = tr(W̃cW̃−1
m Ũm,BW̃−1

m )

Components of the Equation
Estimate of the Complete Data Weight Matrix

Ŵ OBS
c Observed information matrix, evaluated at hypothesized model estimates.

Ŵ EXP
c Expected information matrix, evaluated at hypothesized model estimates.

W̃c Observed or expected information matrix, evaluated at saturated model estimates.

Ŵ OBS
c,B Observed information matrix, evaluated at baseline model estimates.

Ŵ EXP
c,B Expected information matrix, evaluated at baseline model estimates.

Estimate of the FIML Weight Matrix

Ŵm Observed information matrix, evaluated at hypothesized model estimates.

W̃m Observed information matrix, evaluated at saturated model estimates.

Ŵm,B Observed information matrix, evaluated at baseline model estimates.

Estimate of the Residual Weight Matrix

Ûm Ûm = Ŵm−Ŵm∆̂(∆̂′Ŵm∆̂)−1∆̂′Ŵm where ∆̂ is the matrix of hypothesized model deriva-
tives, evaluated at the hypothesized model estimates.

Ũm Ũm = W̃m−W̃m∆̂(∆̂′W̃m∆̂)−1∆̂′W̃m.

Ûm,B Ûm,B = Ŵm,B−Ŵm,B∆̂B(∆̂
′
BŴm,B∆̂)−1∆̂′BŴm,B where ∆B is the matrix of baseline model

derivatives, evaluated at the baseline model estimates.

Ũm,B Ũm,B = W̃m−W̃m∆̂B(∆̂
′
BW̃m∆̂B)

−1∆̂′BW̃m.

Estimate of the Asymptotic Covariance Matrix of Saturated Model Estimates

Γ̃ Without the normality and correct model assumptions, as in V1-V3, Γ̃ = W̃−1
m ṼmW̃−1

m
where Ṽm is the FIML first order information matrix evaluated at the saturated model
estimates. With these assumptions, Γ̃ = W̃−1

m , and thus V1-V3 are simplified to V4-V6.
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To put it in another way, recall that the original FIML approach has two problems that

result in AFIs changing with missing data: 1) the population fit function minima between

complete and incomplete data are different, 2) the “pseudo-parameters” between complete

and incomplete data are different. The FIML-C approach can adjust for the differences in

the fit function equations between incomplete and complete data but it cannot adjust for the

differences in the “pseudo-parameters” between incomplete and complete data. However,

when the model is only slightly misspecified, the “pseudo-parameters” between complete

and incomplete data should be similar: µ0 ≈ µ0m and Σ0 ≈ Σ0m . Therefore, the FIML-C

approximation should work well in situations where the degree of model misfit is low.

5.1.2 Analytical Example for FIML-C Estimation

In this section, we use the same analytical examples we presented in Chapter 3 Section

3.2 to show how RMSEA is computed under FIML-C. Recall in the example in Section

3.2.1, the parameter values for incomplete data are the same as those for the complete

value; that is, the fit function mimima and RMSEAs for complete and incomplete data

are different solely due to the differences in their equations. As explained in the previous

section, in this case, using the FIML-C approach, the RMSEAFIML-C value exactly equals

to the RMSEAML for the complete data.

Now we explain in more detail the example in Section 3.2.2, where the parameter value

changes with missing data. Recall in this example, the one model parameter, ψ . Under

the FIML estimation, ψ = 0.7378. In addition, the complete data fit function equation is

Fc(µ0,Σ(θ0)|µ,Σ) = log(2ψ)+ 1
ψ
−1 (see Equation 3.9). Therefore, by substituting ψ =

0.7378 into the complete data fit function equation, we can obtain the FIML-C RMSEA
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as follows

RMSEAFIML-C =

√
Fc(µ0m,Σ0m |µ,Σ)

d f

=

√
log(2(0.7378))+ 1

0.7378 −1
2

= 0.6101.

(5.7)

Notice this FIML-C value is closer to the complete data RMSEAML = 0.5887 than the

FIML RMSEAFIML = 0.5135.

5.2 Alternative AFIs following TS Estimation

The TS approach is an alternative estimation method to FIML for incomplete data. The TS

approach obtains parameter estimates by obtaining the saturated model estimates µ̃ , Σ̃ in

the first stage, and then minimizes Fc
(
µ(θ),Σ(θ)|µ̃, Σ̃

)
, the complete data fit function with

the ”EM” estimates replacing x̄ and S, in the second stage. Under the saturated model, the

TS and FIML approaches obtain the same parameter estimates, but under the structured

model, the two approaches obtain different parameter estimates.

While the TS approach is theoretically less efficient than FIML [43], it has been shown

in simulation studies to perform very similarly to FIML [14, 36, 43], and it has some

advantages. In this article, we focus on one such advantage: the TS approach naturally

yields AFIs that approach desirable population values (i.e., those given by Equation 2.14)

asymptotically. We will denote the TS estimates by θ̆ , and the model-implied vector of

means and covariance matrix obtained under this approach by µ̆ and Σ̆. The TS AFIs
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without a small sample correction (denoted as TS V0) are as follows:

R̂MSEATS =

√
max

(Fc(Σ̆, µ̆|Σ̃, µ̃)− d f
n

d f
,0
)

ĈFITS = 1−
max

(
Fc(Σ̆, µ̆|Σ̃, µ̃)− d f

n ,0
)

max
(
Fc(Σ̆B, µ̆B|Σ̃, µ̃)− d fB

n ,Fc(Σ̆, µ̆|Σ̃, µ̃)− d f
n ,0

) . (5.8)

The main difference between the FIML-C AFIs in Equation 5.1 and the TS AFIs in Equa-

tion 5.8 is that the TS approach involves minimizing the complete data fit function (which

is minimized by θ̆ ) whereas the FIML-C approach uses an approximate minimum, ob-

tained by evaluating the complete data fit function at the model-implied FIML estimates

θ̂ . This distinction has important theoretical consequences: as long as the missing data

mechanism is ignorable, µ̆ → µ0 and Σ̆→ Σ0, so that the TS AFIs in Equation 5.8 have

the population values given by Equation 2.14. Therefore, the TS AFIs naturally estimate

what the fit would have been had the data been complete. In other words, at the popula-

tion level, the TS approach provides an exact solution that is parallel to the complete data

solution.

Although TS approach provides an exact solution at the population level, at the finite

sample level, the TS approach still needs small-sample corrections to improve the estimate

of AFIs. The corrections below parallel the corrections proposed for nonnormal data [6, 7].

We define small sample corrected TS AFIs as follows:

R̂MSEATS,s =

√
max

(Fc(Σ̆, µ̆|Σ̃, µ̃)− c
n

d f
,0
)

ĈFITS,s = 1−
max

(
Fc(Σ̆, µ̆|Σ̃, µ̃)− c

n ,0
)

max
(
Fc(Σ̆B, µ̆B|Σ̃, µ̃)− cB

n ,Fc(Σ̆, µ̆|Σ̃, µ̃)− c
n ,0
) , (5.9)

where c and cB are the TS correction terms for the hypothesized and the baseline models,

respectively. Here, c = tr[UcΓ], where Uc is the residual weight matrix obtained in the
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second stage and Γ is the asymptotic covariance matrix of the saturated model (see Section

5.2.4 for detailed derivation). More specifically, Uc = Wc−Wc∆̆(∆̆′Wc∆̆)−1∆̆′Wc, where

Wc and ∆̆ are the complete data weight matrix and model derivatives, respectively; Γ =

W−1
m VmW−1

m , where Wm and Vm are the FIML observed and first order information matrices

obtained in the first stage of the TS method, respectively.

Wm is the weight matrix obtained in Stage 1 of the TS method, and Vm is the first order

information matrix obtained in Stage 1; both Wm and Vm are evaluated at the saturated

model estimates (denoted as W̃m and Ṽm, see Table 5.2 ) .

Similar to the FIML-C correction terms, TS correction terms can also be estimated in

different ways. In our research, we examine two different computational versions of these

corrections, which are shown in Table 5.2. In both versions, Γ is evaluated at the saturated

model estimates. The difference between the two versions is that whether Uc is evaluated

at the hypothesized or the saturated model estimates. In TS V1, Uc is evaluated at the

hypothesized model estimates (denoted as Ûc), whereas in TS V2, Uc is evaluated at the

saturated model estimates (denoted as Ũc; see Table 5.2).

Finally, for CFI estimates, we need to compute cB, the correction term for the baseline

model. The two variations for the computations for cB are the same as the variations for c

except that for cB, the “hypothesized model” is the baseline model (see Table 5.2).

5.2.1 Population Values for TS AFIs

Because the correction terms c and cB stay relatively the same as n increases, the popula-

tion limits of these AFIs are the same regardless of whether small sample corrections are

incorporated in the computation of sample TS AFIs. As n→ ∞ in Equations 5.8 and 5.9,
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the population limits of RMSEA and CFI are the following:

RMSEATS =

√
Fc(µ0T S ,Σ0T S |µ,Σ)

d f
;

CFITS = 1− Fc(µ0T S ,Σ0T S |µ,Σ)
Fc(µB,0T S ,ΣB,0T S |µ,Σ)

,

(5.10)

where µ0T S , Σ0T S , µB,0T S and ΣB,0T S are the population limits for µ̆ , Σ̆, µ̆B and Σ̆B, respec-

tively. Theoretically, µ0T S , Σ0T S , µB,0T S and ΣB,0T S equal to µ0, Σ0, µB,0 and ΣB,0 for the

complete data; therefore, RMSEATS and CFITS should equal to RMSEAML and CFIML

for the complete data in Equation 2.14.

5.2.2 Analytical Example for TS Estimation

In this section, we use the same analytical examples in Chapter 3 Section 3.2 to demon-

strate why the TS parameter value, the fit function minimum and the RMSEA for incom-

plete data are the same as those for the complete data. Recall, in the two examples in

Section 3.2 , the population covariance matrix and mean vector for the two random vari-

ables X and Y are given by (see Equation 3.3):

Σ =

0.5 0

0 0.5

and µ = (0,0)′.

Now suppose there are 50% MCAR missing data on Y , the same as the example in

Section 3.2.1. In the first stage of the TS approach, we need to find parameter values

for the saturated model under the FIML estimation. It should be obvious that since the

saturated model is always the correct model, the parameter values for the saturated model

equal to the true parameter values (as shown in the above equation) for ignorable missing

data under the FIML estimation. We can verify this by “manually” fitting a saturated
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model. One way to specify a saturated model in the covariance structure is the following:

Σsat(θ) =

α β

β γ

and µ = (0,0)′,

where the parameter vector is θ = (α,β ,γ)′. In this case, the fit function we want to

minimize becomes:

FMCAR(µ(θ0m),Σ(θ0m)|µ,Σ,φ) =q1

(
log |Σ1(θ0m)Σ

−1
1 |+ tr(Σ1Σ

−1
1 (θ0m))

+(µ1−µ0,1)
′
Σ
−1
1 (θ0m)(µ1−µ0,1)− p1

)
+q2

(
log |Σ2(θ0m)Σ

−1
2 |+ tr(Σ2Σ

−1
2 (θ0m))

+(µ2−µ0,2)
′
Σ
−1
2 (θ0m)(µ2−µ0,2)− p2

)
=

1
2

(
log(4αγ−4β

2)+
γ

2αγ−2β 2 +
α

2αγ−2β 2 −2
)

+
1
2
(

log(2γ)+
0.5
γ
−1
)
.

From here, it is obvious that if θ = (α,β ,γ)′ = (0.5,0,0.5)′ which are the true parameter

values in Equation 3.3, then FMCAR(µ(θ0m),Σ(θ0m)|µ,Σ,φ) = 0. Therefore, in the first

stage of the TS approach, we can obtain the true population covariance matrix for the

complete data through fitting the saturated model. In the second stage, we use the true

population covariance matrix to minimize the complete data fit function. It is obvious that

by doing so, we obtain the complete data fit function minimum and thus the complete data

RMSEA: RMSEATS = RMSEAML = 0.5887.

The TS RMSEA for the second example in Section 3.2 can be shown to be the same

as the complete data RMSEA using the same logic. In short, for ignorable missing data,

the TS approach allows us to first estimate the true population covariance matrix for the

complete data, which can then be used to estimate the complete data fit function minima
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Table 5.2: Equations for c and cB for TS versions

Equation

Structured Model Baseline Model

TS V1 c = tr(ÛcΓ̃) cB = tr(Ûc,BΓ̃)

TS V2 c = tr(ŨcΓ̃) cB = tr(Ũc,BΓ̃)

Components of the Equation

Estimate of the Residual Weight Matrix

Ûc Ûc = Ŵc−Ŵc∆̆(∆̆′Ŵc∆̆)−1∆̆′Ŵc where Ŵc is the complete data observed information
matrix obtained in Stage 2, evaluated at the hypothesized model estimates from
Stage 2, and ∆̆ is the matrix of the hypothesized model derivatives, also evaluated
at the hypothesized model estimates.

Ũc Ũc = W̃c−W̃c∆̆(∆̆′W̃c∆̆)−1∆̆′W̃c where W̃c is the complete data observed information
matrix obtained in Stage 2, evaluated at the saturated model estimates.

Ûc,B Ûc,B = Ŵc,B−Ŵc,B∆̆B(∆̆
′
BŴc,B∆̆B)

−1∆̆′BŴc,B , where Ŵc,B is the complete data ob-
served information matrix obtained in Stage 2, evaluated at the baseline model es-
timates from Stage 2, and ∆̆B is the matrix of the baseline model derivatives, also
evaluated at the baseline model estimates.

Ũc,B Ũc,B = W̃c−W̃c∆̆B(∆̆
′
BW̃c∆̆B)

−1∆̆′BW̃c

Estimate of the Asymptotic Covariance Matrix of Saturated Model Estimates

Γ̃ Γ̃ = W̃−1
m ṼmW̃−1

m , where W̃m and Ṽm are the FIML observed and first order informa-
tion matrices, respectively, both obtained in Stage 1 and evaluated at the saturated
model estimates.

and AFIs.
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5.2.3 Derivation of Small Sample Correction in FIML-C

Let β̃ = (vechΣ̃′, µ̃ ′)′ and let β̂ = β (θ̂) = (vechΣ̂′, µ̂ ′)′. When we assume that the hy-

pothesized model is true in the population (i.e., there exists a θ0 such that β0 = β (θ0) ),

the following approximation holds in the population (e.g., Shapiro [38], Yuan and Bentler

[43]):
√

n(β̃ − β̂ ) =
√

nW−1
m,0Um,0(β̃ −β0)+op(1),

where Wm,0 is the FIML information matrix and Um,0 =Wm,0−Wm,0∆(∆′Wm,0∆)−1∆′Wm,0

is the FIML residual weight matrix, where ∆ is the matrix of model derivatives. We also

have
√

n(β̃ − β0) → N(0,Γ0). When we further assume normality, Γ0 = W−1
m,0. Even

though θ̂ does not minimize Fc, when the hypothesized model is correct, we can approxi-

mate

F̂c = (β̃ − β̂ )′Wc,0(β̃ − β̂ )+op(1)≈ (β̃ −β0)
′Um,0W−1

m,0Wc,0W−1
m,0Um,0(β̃ −β0),

where Wc,0 is the complete data information matrix, evaluated at the FIML parameter

values. The distribution of nF̂c can then be approximated by a mixture of independent 1

degree of freedom chi-square variates with weights given by the eigenvalues of

Um,0W−1
m,0Wc,0W−1

m,0Um,0Γ0, and the approximate expected value of nF̂c is given by the trace

of this matrix product, which is k in Table 5.1.

5.2.4 Derivation of Small Sample Correction in TS

Assuming null hypothesis model is true, the chi-square test statistic in the second stage of

the TS method is TT S = (n)Fc ≈ (n)(β̃ −β0)
′Uc(β̃ −β0), where Fc is the minimum of the

complete data normal theory fit function in the second stage, and Uc is the residual weight

matrix obtained in the second stage; that is, Uc =Wc−Wc∆̆(∆̆′Wc∆̆)−1∆̆′Wc, where Wc and

∆̆ are the complete data normal theory weight matrix and model derivatives, respectively.
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Asymptotically,
√

n(β̃ − β0) ∼ N(0,Γ), where Γ is the asymptotic covariance matrix of

the estimates of parameters for the saturated model.

Asymptotically,
√

n(β̃−β0)∼N(0,Γ0), where Γ0 is the asymptotic covariance matrix

of the estimates of parameters for the saturated model obtained in the first stage. Therefore,

the distribution of nF̂c can then be approximated by a mixture of independent one degree

of freedom chi-square variates with weights given by the eigenvalues of Uc,0Γ0, and the

approximate expected value of nF̂c is given by the trace of this matrix product. Therefore,

c = tr(Uc,0Γ0).
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Chapter 6

SEM AFIs under FIML-C and TS

Estimations: Simulation Studies

Bias and efficiency are the two most important statistical concepts when

considering a parameter estimator. These two concepts provide the rationale

for comparing different estimation methods. If method A generates less biased

and more efficient parameter estimates than method B, then A is better than B.

Because there is usually a reason for a statistical method to be developed in

the first place, it might be hard to have a best method under all circumstances.

But we might prefer method A if it yields better estimators than method B in

most circumstances.

Ke-Hai Yuan, Xin Tong, Zhiyong Zhang, 2015

In this chapter, we present the results of two simulations studies that investigate the

performance of the newly proposed FIML-C and TS AFIs and to compare them with the

FIML AFIs currently in use. These simulation studies are a follow-up for the simulations

conducted in Chapter 3. Through these simulation studies, we aim to show that relative

to the complete data AFIs, FIML-C and TS AFIs are not biased or less biased than FIML
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AFIs.

6.1 Design

The design of the two simulation studies are the same as the simulation studies in Chapter

3 except more sample sizes are studied (see Table 4.1). There are four levels of sam-

ple size: n = 200,500,1000,1000000. The conditions with n = 200,500,1000 are meant

to simulate sample data with small, medium or large sample size; for these sample data

conditions, we generated 1000 replications of normally distributed observations using the

simulData() function in the lavaan package [30] in R. The conditions with n = 1000000

are meant to mimic the population so that FIML, FIML-C, and TS AFIs can be com-

pared without the influence of sampling fluctuations; for these population conditions, we

generated a single dataset of normally distributed observations.

In total, Studies 1 and 2 had 4320 and 1944 conditions, respectively.1 For each con-

dition, we computed FIML RMSEA and CFI that are currently in use, the seven versions

of the FIML-C AFIs, and the three versions of the TS AFIs.2 For the population data

conditions, we computed population bias by subtracting the complete data population val-

ues (i.e., RMSEAML or CFIML from Equation 2.14) from the corresponding incomplete

data population values. For the sample data conditions (n = 200,500,1000), we com-

puted empirical bias and empirical standard error of the RMSEA or CFI estimates across

the replications. In addition, we calculated the root mean square error (RMSE) using the

1Table 4.1 shows that for the simulation studies in Chapter 4, there were 1080 and 486 conditions for
Studies 1 and 2, respectively. In the current simulation studies, we added 4 levels for sample size; therefore,
there were 1080×4 = 4320 and 486×4 = 1944 conditions for Studies 1 and 2, respectively.

2The TS V0 AFIs were computed by setting estimator=”two-stage” inside the cfa() function in lavaan
and then inspecting the model fit to get the AFIs. All versions of FIML-C and small sample corrections to
TS AFIs were implemented using custom R code that made use of lavaan’s internal functions. Sample code
for implementing different versions of the FIML-C and TS approaches can be found in the Supplementary
Materials
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following equation:

RMSE =

√
∑

1000
i=1 (AFIi,simu−AFIML)2

1000
,

where AFIi,simu is the ith simulated RMSEA or CFI value, and AFIML is either RMSEAML

or CFIML from Equation 2.14. RMSE is a joint measure of bias and efficiency of an

estimator and provides information regarding the bias-variance trade-off associated with

an estimator.

6.2 Results

We summarized the results using figures and regression analyses to demonstrate the main

patterns observed across the two studies. Since the patterns of results for FIML had been

discussed extensively in Chapter 4, we mainly focused on the patterns of results for FIML-

C and TS in this Chapter. We also provided the full simulation results for all conditions

across the two studies in the table format in the Supplementary Materials.

6.2.1 Population Behavior

Figures for Population AFIs

Figures 6.1 and 6.2 show the population RMSEA and CFI values (estimated from n =

1000000) under the FIML, FIML-C (V0) and TS (V0) approaches in selected conditions

of Studies 1 and 2. Small sample corrections disappear asymptotically, and thus the results

for FIML-C V1-V6 and TS V1-V2 are not shown here because they are equal to FIML-C

(V0) and TS (V0).

As shown in Figures 6.1 and 6.2, at the population level, the FIML AFIs that are

currently implemented in popular software tended to exhibit a relatively large bias relative

to the corresponding complete data AFIs unless the model had perfect fit. An exception
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(a) 20% Missing Data (b) 20% Missing Data

(c) 50% Missing Data (d) 50% Missing Data

Figure 6.1: Population RMSEA and CFI (estimated from n = 1000000) for selected conditions in
Study 1 comparing FIML, FIML-C and TS approaches. Complete data population RMSEA
and CFI are also included for comparison. In these selected conditions, the number of vari-
ables with missing data is four, the number of correlated residuals is two, and the population
factor correlation is zero. The population model is a two-factor model with varying sizes for
the correlated residuals shown on the x-axis. The hypothesized model is a two-factor model
without any correlated residuals.
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(a) 20% Missing Data (b) 20% Missing Data

(c) 50% Missing Data (d) 50% Missing Data

Figure 6.2: Population RMSEA and CFI (estimated from n = 1000000) for selected conditions in
Study 2 comparing FIML, FIML-C and TS approaches. Complete data population RMSEA
and CFI are also included for comparison. In these selected conditions, there are six variables
that have missing data. The population model is a two-factor model with varying sizes for the
factor correlation shown on the x-axis. The hypothesized model is a one-factor model.
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was the RMSEA values in the conditions where the location of misfit was different from

that of missing data (i.e., in the DF conditions). In contrast, the TS AFIs were the same

as the complete data AFIs in all conditions; in other words, the TS AFIs asymptotically

approached the complete data population AFI values, would be theoretically expected.

The FIML-C AFIs had very little bias in conditions with a smaller percentage of miss-

ing data (see Figures 6.1ab and 6.2ab). In conditions with a large percentage of missing

data (i.e., 50% missing data), the population FIML-C AFIs were generally still a good

approximation to the complete data AFIs, except when the mechanism was strong MAR

and the degree of model misfit was high (see Figures 6.1cd and 6.2cd). There also ap-

peared to be some dependence on the number of missing data patterns. For example, as

shown in Figure 6.2cd, when the number of missing patterns was small and the missing

data was strong MAR, at a high degree of model misfit (i.e., when the complete data RM-

SEA and CFI were 0.192 and 0.538, respectively), the FIML-C RMSEA was 0.057 higher

than the complete data RMSEA and the FIML-C CFI was 0.313 lower than the complete

data CFI. In other words, in these conditions, the FIML-C AFIs indicated worse model fit

relative to the corresponding complete data AFIs. The reason for the poor performance

of these FIML-C AFIs is due to the fact that in these conditions, the “pseudo-parameters”

(estimated from n = 1000000) under FIML were very different from those for the corre-

sponding complete data (see Table 6.1 for an example). Recall that the FIML-C approach

uses parameter estimates from FIML, and, therefore, cannot correct for the differences in

the FIML “pseudo-parameters” between complete and incomplete data.

Regression Analyses for Population AFIs

For the regression analyses of the population AFIs, we used the features of the missing data

to predict the absolute bias of AFIs.3 We coded the features of the missing data according

3The reason why we used the absolute bias instead of the raw bias is that with the raw bias, the negative
regression coefficient may mean a decrease in the magnitude of the bias or may mean an increase in the
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Table 6.1: “Pseudo-Parameters” for Complete and Incomplete Data under FIML

Factor Loadings for Complete Data Factor Loadings for Incomplete Data
0.243 0.662

0.287 0.616

0.154 0.590

0.416 0.589

0.200 0.615

0.407 0.642

0.749 1.372

0.634 0.921

0.805 1.142

0.845 1.220

0.693 0.890

0.772 1.309

Note: The condition presented in the table involves strong MAR data with the minimum number of missing
data patterns. The population model is a two-factor model (6 indicators loading on each factor) with a
factor correlation of 0.2. The hypothesized model is a one-factor model with 12 indicators.

to Tables 4.3 and 6.2. For Study 1, the predictors included the estimation method, percent-

age of missing data, missing data mechanism, factor correlation in the population model

and degree of misfit; for Study 2, the predictors included estimation method, percentage

of missing data, missing data pattern, missing data mechanism and degree of misfit.4

The results of the regression analyses, presented in Table 6.3, showed that both FIML-

C and TS methods had less absolute bias relative to FIML but TS method showed more

reduction in bias. Specifically, for RMSEA, holding all other variables constant, the bias

of FIML-C, on average, was 0.016 unit less than FIML in both studies; the bias of TS, on

average, was 0.016 and 0.019 unit less than FIML in Studies 1 and 2, respectively. For CFI,

the bias of FIML-C decreased by 0.014 and 0.029 unit in Studies 1 and 2, respectively; the

magnitude of the bias but in the negative direction.
4To simplify the analyses in Study 1, we held the number of correlated residuals at two, the number of

variables with missing data at two and the location of missing data at SF. To simplify the analyses Study 2,
we held the number of variables at six.
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Table 6.2: Additional Variables in the Regression Analyses

Population AFIs
Est estimation method for AFIs. Est is considered a categorical variable that

equals FIML, FIML-C or TS; FIML is the reference group.

Sample AFIs
Est estimation method for AFIs. Est is considered a categorical variable that

equals FIML, FIML-C V3 or TS V2; FIML is the reference group.

Sample sample size. Sample is considered a categorical variable that equals to 200 or
500; 200 is the reference group

Table 6.3: Results of the Regression Analyses for Bias in the Population

Study 1
BIASRMSEA = 0.007−0.016EstFIML-C−0.016EstTS+0.004Missing+0.001Mechanism
BIASRMSEA = +0.000FactorCor+0.003Misfit

BIASCFI = 0.005−0.014EstFIML-C−0.016EstTS+0.006Missing+0.000Mechanism
BIASCFI = +0.000FactorCor+0.004Misfit

Study 2
BIASRMSEA =−0.004−0.016EstFIML-C−0.019EstTS+0.008Missing+0.001Pattern
BIASRMSEA = +0.001Mechanism+0.002Misfit

BIASCFI =−0.001−0.029EstFIML-C−0.038EstTS+0.017Missing+0.000Pattern
BIASCFI = +0.003Mechanism+0.005Misfit

Note: The coding of the variables is explained in Tables 4.3 and 6.2.

bias of TS decreased by 0.016 and 0.038 unit in Studies 1 and 2, respectively. In addition,

holding other variables constant, the percentage of missing and the degree of misfit had

effects on the bias of AFIs, although their effects were relatively small. All of these results

were consistent with those observed in Figures 6.1 and 6.2.

Summary for Population AFIs

In summary, at the population level, the TS approach performed very well in all conditions.

The FIML-C approach performed similarly well in most conditions but for conditions

with a large percentage of strong MAR data and a small number of patterns, the FIML-C
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approximation began to fail, producing population AFIs with values that departed from the

corresponding complete data AFI values. We note that in the conditions where FIML-C

tended to fail, the complete data RMSEA ranged from the 0.149 to 0.191, and the complete

data CFI ranged from 0.730 to 0.538.

6.2.2 Finite Sample Behavior

Figures for Sample AFIs

Figures 6.3-6.8 show selected results for the sample data conditions (i.e., n = 200,500

and 1000). Figures 6.3-6.4 show the results for all computational versions of the proposed

AFIs in selected conditions. Figures 5-8 provide additional results for the best performing

versions. In order to present results from a variety of conditions, for each of Figures 6.3-8,

we select different sets of conditions from either Study 1 or Study 2. The patterns of results

presented in these figures generalize to those in the other conditions (see Supplementary

Materials).

Figure 6.3 shows the empirical bias in selected sample data conditions for Study 1.

Figure 6.4 shows the RMSE in selected sample data conditions in Study 2. Due to the

large variability in both bias and RMSE values across the studied AFIs, the range of values

on the y-axes in Figures 6.3 and 6.4 is very large. In these figures, we use color to indicate

the versions of FIML-C and TS with large bias or RMSE in order to highlight the poorly

performing versions; the well-performing versions are shown in grey (differences among

the well-performing versions will be inspected more closely in Figures 5-8).

One noticeable pattern of results is that FIML-C V5 was one of the worst perform-

ing methods . The FIML-C V5 CFI estimates tend to be negatively biased (see Figure

6.3), and both RMSEA and CFI estimates tend to have large RMSE values, especially at

small sample sizes (see Figure 6.4). Particularly, the bias of CFI under FIML-C V5 can

be more than three times higher than that of other approaches, and the RMSE of both
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Figure 6.3: Bias in the sample RMSEA and CFI estimates for selected conditions in Study 1 com-
paring FIML, FIML-C and TS approaches. In these conditions, the number of variables with
missing data is four, the number of two correlated residuals is two, the population factor cor-
relation is zero, the percentage of missing is 50%, and the location of misfit is the same as the
location of missing data. The population model is a two-factor model with varying sizes for
the correlated residuals shown on the x-axis. The hypothesized model is a two-factor model
without any correlated residuals.
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Figure 6.4: Root mean square error (RMSE) in the sample RMSEA and CFI estimates for selected
conditions in Study 2 comparing FIML, FIML-C and TS approaches. In these conditions,
the number of variables with missing data is six, the percentage of missing is 50%, and the
number of patterns is large. The population model is a two-factor model with varying sizes for
the factor correlation shown on the x-axis. The hypothesized model is a one-factor model.
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RMSEA and CFI can be more than four times higher than those under other approaches.

The large RMSE values were mainly due to the large standard errors of the RMSEA and

CFI estimates under FIML-C V5, which can be three times higher than those under other

approaches (see Supplementary Materials).

In addition to FIML-C V5, there were several other AFIs that did not perform very

well. FIML-C V4 also produced AFIs with large RMSE values in some conditions. Al-

though the RMSE values of FIML-C V4 were not as large as those of FIML-C V5, they

were often larger than those of FIML AFIs, especially with small samples (n = 200; see

Figure 4). Further, both FIML-C V0 and TS V0 tended to produce large and similar bias

values in some conditions. Specifically, the AFIs under both FIML-C V0 and TS V0 had

relatively large bias in the direction of indicating better fit when the sample size was small

(i.e., n = 200) and the degree of model misfit was low (i.e., when complete data RMSEA

was less than 0.08 and CFI greater than 0.95; see Figure 6.3). Both FIML-C V0 and TS V0

are estimation methods without small sample corrections, so their poor performances in

small samples were expected. Finally, the AFIs under FIML-C V1 and V2 had noticeably

large bias values in conditions where the degree of model misfit was relatively high. For

example, in the strong MAR conditions where the complete data population RMSEA and

CFI were around 0.12 and 0.87 respectively, the bias of the CFI and RMSEA estimates

under FIML-C V1 and V2 was around 0.05, nearly as large as the bias under the origi-

nal FIML approach. In conclusion, Figures 3 and 4 reveal that FIML-C V0, V1, V2, V4

and V5 as well as TS V0 methods did not perform well, and the top performing methods

across all conditions were FIML-C V3, FIML-C V6, TS V1 and TS V2. FIML-C V3

and V6 were based on saturated model estimates of all matrices involved, either assuming

normality (V6) or not assuming normality (V3; see Table 5.1).

The remaining figures compare bias and RMSE values among the top four best-performing

AFIs in a variety of selected conditions in Studies 1 and 2. Figures 6.5 and 6.6 show the

94



bias values for the top four performing AFIs in selected conditions whereas Figures 6.7

and 6.8 show the RMSE values in the same conditions. The y-axis range in these figures

is smaller to allow for better discrimination among the AFI estimates.

Regression Analyses for Sample AFIs

For the regression analyses, we picked the best performing FIML-C and TS version (i.e.,

FIML-C V3 and TS V2) and compared them with FIML in terms of the absolute bias

and the RMSE values. The predictors are the same as those for the population AFIs (see

Section 6.2.1) except sample size was added as another predictor. Table 6.4 shows the

results of the regression analyses. The results indicated that relative to FIML, AFIs under

FIML-C V3 and TS V2, on average, had lower bias and RMSE; the amount of decrease in

bias and RMSE for FIML-C V3 and TS V2 were very similar with TS V2 having slightly

more decrease in bias and RMSE than FIML-C V3. For example, in Study 2, holding

other variables constant, the RMSEA bias (RMSEA RMSE) for FIML-C V3 and TS V2

decreased by 0.025 (0.010) and 0.026 (0.011), respectively; the CFI bias (CFI RMSE) for

FIML-C V3 and TS V2 decreased by 0.043 (0.012) and 0.050 (0.018), respectively. In

addition, holding other variables constant, sample size and percentage of missing data had

effects on the RMSE of AFIs but their effects were in the opposite directions. For example,

in Study 2, as sample size increased from n = 200 to n = 500, the RMSE of RMSEA and

CFI decreased by 0.007 and 0.016, respectively; on the other hand, as the percentage of

missing data increased from 20% to 50% , the RMSE of RMSEA and CFI increased by

0.008 and 0.018, respectively. Overall, the patterns of results in the regression analyses

were very consistent with those shown in the graph.

Summary for Sample AFIs

Overall, Figures 6.4-6.8 as well as the regression analyses showed that the top best-

performing AFI estimation methods had similar bias and RMSE values across most con-

95



(a) Different Factors Conditions (b) Different Factors Conditions

(c) Same Factor Conditions (d) Same Factor Conditions

Figure 6.5: Bias in the sample RMSEA and CFI estimates for selected conditions in Study 1 com-
paring among the best performing FIML-C and TS methods. In these conditions,the number of
variables with missing data is four, the number of two correlated residuals is two, the popula-
tion factor correlation is zero, and the missing data mechanism is weak MAR. The population
model is a two-factor model with varying sizes for the correlated residuals shown on the x-axis.
The hypothesized model is a two-factor model without any correlated residuals.
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(a) Small Number of Patterns (b) Small Number of Patterns

(c) Large Number of Patterns (d) Large Number of Patterns

Figure 6.6: Bias in the sample RMSEA and CFI estimates for selected conditions in Study 2 com-
paring among the best performing FIML-C and TS methods. In these conditions, the number
of variables with missing data is six and the missing mechanism is strong MAR. The popu-
lation model is a two-factor model with varying sizes for the factor correlation shown on the
x-axis. The hypothesized model is a one-factor model.
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(a) Different Factors Conditions (b) Different Factors Conditions

(c) Same Factor Conditions (d) Same Factor Conditions

Figure 6.7: Root mean square error (RMSE) in sample RMSEA and CFI for selected conditions
in Study 1 comparing among the best performing FIML-C and TS methods. In these condi-
tions,the number of variables with missing data is four, the number of two correlated residuals
is two, the population factor correlation is zero, and the missing data mechanism is weak
MAR. The population model is a two-factor model with varying sizes for the correlated resid-
uals shown on the x-axis. The hypothesized model is a two-factor model without any correlated
residuals.
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(a) Small Number of Patterns (b) Small Number of Patterns

(c) Large Number of Patterns (d) Large Number of Patterns

Figure 6.8: Root mean square error (RMSE) in sample RMSEA and CFI for selected conditions in
Study 2 comparing among the best performing FIML-C and TS methods. In these conditions,
the number of variables with missing data is six and the missing mechanism is strong MAR.
The population model is a two-factor model with varying sizes for the factor correlation shown
on the x-axis. The hypothesized model is a one-factor model.
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Table 6.4: Results of the Regression Analyses for Bias in the Finite Samples

Study 1
BIASRMSEA = 0.017−0.015EstFIML-C-V3−0.015EstTS-V2+0.005Missing+0.000Mechanism
BIASRMSEA = +0.000FactorCor+0.001Misfit−0.002Sample

BIASCFI = 0.009−0.013EstFIML-C-V3−0.013EstTS-V2+0.006Missing+0.000Mechanism
BIASCFI = +0.000FactorCor+0.004Misfit−0.003Sample

RMSERMSEA = 0.021−0.006EstFIML-C-V3−0.007EstTS-V2+0.005Missing
BIASRMSEA = +0.000Mechanism+0.000FactorCor−0.001Misfit−0.006Sample

RMSECFI = 0.009−0.003EstFIML-C-V3−0.005EstTS-V2+0.005Missing+0.000Mechanism
BIASCFI = +0.000FactorCor+0.006Misfit−0.009Sample

Study 2
BIASRMSEA = 0.020−0.025EstFIML-C-V3−0.026EstTS-V2+0.009Missing+0.001Pattern
BIASRMSEA = +0.001Mechanism+0.002Misfit−0.002samp

BIASCFI = 0.016−0.043EstFIML-C-V3−0.050EstTS-V2+0.021Missing+0.000Pattern
BIASCFI = +0.004Mechanism+0.007Misfit−0.003Sample

RMSERMSEA =−0.019−0.010EstFIML-C-V3−0.011EstTS-V2+0.008Missing+0.001Pattern
RMSERMSEA = +0.001Mechanism+0.001Misfit−0.007Sample

RMSECFI = 0.006−0.012EstFIML-C-V3−0.018EstTS-V2+0.018Missing−0.001Pattern
RMSECFI = +0.004Mechanism+0.009Misfit−0.016Sample

Note: The coding of the variables is explained in Tables 4.3 and 6.2.

ditions. The two FIML-C AFIs (V3 and V6) produced almost identical bias and RMSE

values across all conditions. However, FIML-C V3 and V6 performed considerably worse

than TS V1 and V2 in some conditions. The most noticeable conditions for this pattern of

results are the Study 2 conditions with a small number of patterns and 50% strong MAR

missing data (see Figures 6.6ab and 6.8ab). Recall that in these conditions, at the popu-

lation level, the FIML-C AFIs had large bias values, especially when the complete data

AFIs had a high degree of misfit (see the bottom left panels in Figure 6.2cd); therefore,

it is not surprising that at the sample level, the FIML-C AFIs also had large bias (see the

right panels in Figure 6.6ab). Finally, TS V2, which is based on the saturated model es-

timates (see Table 5.2), tended to outperform TS V1 in finite samples. For example, in

Study 2 conditions with a small sample size (n = 200; see Figures 6.6 and 6.8), the TS V1
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estimates of AFIs tended to have larger bias and RMSE values than the TS V2 estimates

of AFIs; in particular, the bias differences between TS V1 and V2 can be as large as 0.08

and the RMSE differences can be as large as 0.12.

6.3 Discussion

In these two simulation studies, we have compared the FIML, FIML-C and TS approaches

for computing AFIs. Recall that the FIML-C AFIs are an approximation where the com-

plete data fit function, with saturated FIML estimates as input ”data”, is evaluated at the

FIML parameter estimates. This fit function value is then used in the AFI equations as if

it were the minimum. On the other hand, the TS AFIs are based on the actual complete

data fit function minimum, with saturated FIML estimates as input. The advantage of TS

AFIs is that they have population values that are the same had there been no missing data,

whereas the FIML-C AFIs approach these values only approximately, and can break down

when misspecifications are large. Thus, the TS AFIs are theoretically superior. However,

FIML is by far the most common estimation method for incomplete data, and having AFIs

that are based on FIML estimates and work well is practically important.

At the population level, we found that in most conditions, both FIML-C and TS ap-

proaches performed very well, producing population AFIs with little or no bias relative

to the complete data population AFIs. However, in conditions with a large percentage of

strong MAR data and a small number of missing patterns, when the complete data AFIs

showed a high degree of model misfit (i.e., RMSEA was greater than 0.15 and CFI less

than 0.75), the FIML-C approach produced very biased AFIs whereas the TS approach

still produced AFIs with no bias, as would be theoretically expected.

At the sample level, we can estimate FIML-C and TS AFIs with or without small sam-

ple corrections. Overall, we found that the FIML-C and TS AFIs without such corrections

tended to have large bias in the direction of indicating worse fit when the sample size was
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small (i.e., n = 200) and the degree of model misfit was low (i.e., complete data RMSEA

lower than 0.08 and CFI higher than 0.95). We evaluated several different computational

versions of the small sample corrections. For the FIML-C approach, we examined six

different corrections; for the TS approach, we examined two different corrections. Four

corrected versions of the FIML-C AFIs (V1, V2, V4 and V5) and one version of the TS

AFIs (V1) evaluated the relevant matrices (such as the normal-theory weight matrix and

the residual weight matrix, see Tables 1 and 2) at structured (model-implied) estimates

of µ and Σ, whereas the remaining versions (FIML-C V3 and V6, and TS V2) evaluated

these matrices at the saturated model estimates. We found that versions using the saturated

model estimates (FIML-C V3 and V6, and TS V2) greatly outperformed the versions us-

ing the structured model estimates. A possible explanation for this pattern of results is

that, when the model is misspecified, structured model estimates are quite off and may

result in negative definitive estimates of the relevant matrices. In some replications the

negative definite matrices can result in negative correction terms, creating bias in the re-

sulting corrected AFIs. For example, based on our additional analyses, across replications,

the baseline weight matrix Wm,B, when evaluated at the structured model estimates (i.e.,

Ŵm,B), was negative definite in most conditions. As a result, the baseline correction term

kB under FIML-C V1, V2, V4 and V5 was negative in some replications. Especially for

FIML-C V5, approximately 50% of kB values across replications were negative in condi-

tions with a small sample size (i.e., n = 200).

It is interesting to compare FIML-C (with best performing corrections, V3 or V6) and

TS (with best performing corrections, V2). While these methods performed very similarly

in most conditions, there were a small number of conditions where TS AFIs outperformed

FIML-C AFIs. The reason why TS sometimes outperforms FIML-C is that FIML-C is an

approximate method, and this approximation fails in a small number of conditions where

the percentage of missing data is large (i.e., at least 50% missing data) and the degree of
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model misfit is high (i.e., when the complete data population RMSEA was greater than

0.15 and CFI less than 0.75). However, in such conditions, model fit is already very bad,

and arguably it is less important that the FIML-C AFIs are approximately unbiased, as

long as they also reflect very poor model fit, so that researchers’ conclusions about the

model remain unchanged.
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Chapter 7

Conclusion and Overall Discussion

All generalizations are false, including this one.

Mark Twain

Older missing data techniques such listwise delete and mean substitution mainly aim

to get past the missing data so that at least some analyses could be done. This is in

sharp contrast with modern missing data techniques, which goal is to effectively deal with

missing data so that the results of data analyses are generally not affected by the missing

data. In other words,‘when researchers use modern techniques to handle missing data,

they usually expect that their statistical analysis can estimate what the results would had

been had there been no missing data. However, the first part of our dissertation work

shows that this may not be case under certain circumstances.

In the first part of our dissertation (i.e., Chapters 2 and 4), we showed that using one of

the most popular modern missing data techniques, the FIML estimation (which is usually

the default method in current software for handling missing data), SEM AFIs such as the

RMSEA and the CFI computed from incomplete data are often different from those for

complete data. This discrepancy is not due to sampling fluctuations; that is, it occurs at

the population level. We have provided a mathematical explanation for this phenomenon.
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Specifically, we have shown that, as with complete data, maximizing the log-likelihood

with incomplete data is equivalent to minimizing a certain “incomplete data ML fit func-

tion”, but this function turns out to be different from the complete data ML fit function.

Because the RMSEA and CFI rely on the fit function minimum in these equations, they

approach different population values when data are complete versus incomplete. Further-

more, the incomplete data fit function, and hence the RMSEA and CFI values, differ with

characteristics of missing data, such as missing data percentages, missing data patterns,

and the exact missing data mechanism.

In addition to deriving the population fit function minima for different types of missing

data, we have provided several small analytical examples and conducted two large sample

simulation studies to illustrate how AFIs change with more missing data. From the analyt-

ical examples and simulation studies, we found that in addition to missing data percentage

and mechanism, another characteristic of missing data that can largely affect AFIs is the

the location of missing data relative to the location of misfit (i.e., whether the variables

with missing data are those that are associated with model misspecifications). The general

pattern of results was the following: when the location of misfit is relatively separate from

the location of missing data, the fit function minimum does not change with more missing

data, whereas when the location of misfit largely overlaps with the location of missing

data, the fit function minimum decreases with missing data. Because RMSEA is a direct

function of the fit function minimum for the hypothesized model, it stays the same when

the location of misfit is separate from the location of missing data, and decreases (indi-

cate better fit) when the two locations overlap. For CFI, how the location of missing data

affects its value depends on the change in the fit function minimum for the hypothesized

model versus that for the baseline model. When locations of misfit and missing data are

separate, the fit function minimum for the baseline model decreases while the fit function

minimum for the hypothesized model stays the same, leading to an overall decrease in
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CFI (i.e., indicate worse fit). On the other hand, when the two locations overlap, both the

fit function minima for the hypothesized and baseline models tend to decrease but the fit

function minimum for the hypothesized model tends to decrease at a faster rate than that

for the baseline model, leading to an overall increase in CFI (i.e., indicate better fit).

In short, the finding of the first part of the dissertation work is somewhat troublesome

because it means that researchers using FIML AFIs as currently computed by popular

software would tend to find better fit to the extent that there is missing data. However,

most researchers expect that the FIML AFIs to estimate the same model fit (or misfit) as if

there were no missing data, and then continue using the same cut-off guidelines developed

for complete data AFIs.

To address the problem of how missing data affect AFIs under FIML, in the second

part of the dissertation (i.e., Chapters 5 and 6), we have proposed and examined new

estimates of AFIs following the FIML and TS estimations with incomplete data. The new

estimates following FIML is called the FIML-C estimates. Theoretically, the FIML-C and

TS approaches for computing AFIs allow researchers to estimate what the AFIs would

have been had there been no missing data, thus placing the incomplete data AFIs’ estimates

on the same metric as complete data AFIs’ estimates. For each of these new approaches,

we have proposed several versions for calculating sample AFIs, one with no small sample

correction and others with different ways of computing small sample corrections.

For the second part of the dissertation work, we conducted simulation studies to com-

paring the original FIML approach with different versions of the FIML-C and TS ap-

proaches. We found that at the population level, FIML-C and TS approaches, in most

conditions, produced AFIs that are almost the same as complete data AFIs. However,

in a small number of conditions with a high degree of misfit and a large percentage of

missing data, the FIML-C approach produced AFIs that are very different from those for

the complete data, whereas TS AFIs in the same conditions are the same as the complete
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data AFIs. At the sample level, we found that relative to the complete data AFIs, the

FIML-C and TS AFIs without small sample corrections tend to produce large bias in the

direction of indicating worse fit when the sample size is small and the degree of misfit is

low. For the FIML-C and TS AFIs with small sample corrections, the best performing ver-

sions (i.e., FIML-C V3 and V6, and TS V2) are those which relevant weight matrices are

evaluated at the saturated model estimates rather than those evaluated at the structure esti-

mates. Among these best performing versions, the TS approach outperforms the FIML-C

approach in a small number of cases with a large percentage of missing data and high

degree of misfit. The reason for TS’ better performance over FIML-C is that FIML-C is

an approximation method. FIML-C can only adjust for the differences in the fit function

equations between incomplete and complete data; however, in the case where the model-

implied means and covariances are very different between incomplete and complete data,

FIML-C may fail to correct for the FIML AFIs. In summary, the finding for the second

part of the dissertation work shows that the FIML-C and TS approaches can accurately

estimate complete data AFIs. However, exceptions occur when there are a large amount

of missing data and the hypothesized model is severely misspecified; in these cases, the

FIML-C AFIs are no longer consistent estimates for the complete data population AFIs,

and may deviate greatly from the complete data or TS AFIs.

Based on our study results, we recommend substantive researchers use FIML-C V3

and TS V2 AFIs when estimating model fit for incomplete data. Both FIML-C V3 and TS

V2 showed very good performances in our simulation studies, and they theoretically work

for both normal and non-normal data although their performances under non-normal data

need to be examined in future research (see the following section). Whether researchers

should use FIML-C V3 or TS V2 for estimating AFIs depends on whether they use FIML

or TS to estimate the model parameters and standard errors. We recommend researchers

use FIML-C AFIs if they use FIML to obtain parameter estimates, and use TS AFIs if
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they use TS for parameter estimates. In other words, despite the superior performance

of the TS AFIs, we would not recommend that researchers use TS AFIs just to evaluate

model fit while using FIML to obtain parameter estimates and standard errors. The choice

of estimation method should come first, and all computations, including AFIs, should be

based on the same parameter estimates.

The next natural question that substantive researchers may ask is whether they should

use FIML or TS for estimating parameters and standard errors. Under the correct model,

both FIML and TS produce consistent estimates of the model parameters and standard

error; in terms of efficiency, FIML tends to have higher efficiency than TS but the dif-

ferences are small [35]. Therefore, under the correct model, FIML and TS methods will

produce similar results. However, under a misspecified model, FIML and TS will esti-

mate different “pseudo-parameters” in the population, with the TS “pseudo-parameters”

correspond to the complete data “pseudo-parameters.” In this case, there is no clear an-

swer as to which “pseudo-parameters” are better. If the researchers are interested in the

complete data “pseudo-parameters”, then we would recommend the TS approach. On

the other hand, if the researchers are interested in “pseudo-parameters” that are closest to

the distribution of the population incomplete data, then we would recommend the FIML

approach.

7.1 Limitations and Future Directions

As all research works, the current dissertation work is not without limitations. First, our

stimulation studies only examined CFA models. Future studies should examine the effect

of missing data on the AFIs using other SEM models. Second, the implementation of the

FIML-C and TS methods require the use of internal functions in the lavaan package in R

(see Supplementary Materials for sample code). The use of internal functions may make

it harder for applied researchers to understand and implement the code. Therefore, in the
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future, we hope to work with the developer of the lavaan package so that the FIML-C

and TS methods can be added to the functions of the package. Third, in our simulation

studies, we only examined normally distributed data; this may explain why the FIML-C

versions that make the normality assumption performed similarly with the versions with-

out the assumption. Future studies should include non-normal data conditions (e.g., data

with large skewness and kurtosis) in order to confirm whether FIML-C version without the

normality assumption can outperform the version with the assumption in the non-normal

data conditions. Fourth, as shown in our simulation studies (see Table 6.1), with misspec-

ified models, the “pseudo-parameters” under FIML and TS can be very different; such

patterns of results were rarely discussed in previous research comparing FIML with TS

because previous studies [e.g., 35, 47, 48] mainly focused on comparing the parameter

estimates under FIML and TS for the correctly specified model. In a future study, we can

conduct a simulation study that systematically examines the differences between “pseudo-

parameters” under FIML and TS methods.

Another future direction for this line of research is to examine the MI approach for es-

timating AFIs. As mentioned in Section 1.3, MI is another popular missing data technique.

In MI, we first create multiple “complete” datasets by using imputation under either the

saturated or the structured model, fit the structured model to each dataset, and then pool

the AFIs across these “complete” datasets. 1 When imputation is done under the saturated

normal model, this MI method is conceptually equivalent to TS and should also produce

AFIs that estimate complete data AFIs. It is interesting to note that FIML and MI are two

most common methods for treating incomplete data in SEM, yet they produce AFIs with

different population values, a problem that has not so far been noticed in the literature.

We have done some preliminary simulation studies to confirm our expectation. Figure 7.1

1The pooling stage of MI can be done in different ways. One way is to compute AFIs in each “complete”
dataset, and then average across the computed AFIs. Another way is to compute the fit function minimum
in each “complete” dataset, average across the fit function minima, and then computed the AFIs based on
the pooled fit function minima. These different pooling methods also need to be studied in future research.
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shows the population AFIs under the MI method. Consistent with our expectation, at the

population level, the AFIs under MI are exactly the same as those under TS, which are the

same as those under complete data (see Figure 6.1).

At the sample level, similar to the FIML-C and TS methods, small sample corrections

may be needed to improve upon the MI method for estimating AFIs. Without a small sam-

ple correction, the MI AFIs should perform similarly as the FIML-C and TS AFIs without

small sample corrections. Our preliminary simulation results show that for RMSEA, the

MI without small sample correction indeed performed similarly as the FIML-C and TS

versions without small sample corrections but for CFI, the results for MI were quite dif-

ferent from FIML-C and TS (see Figure 7.2). In our future work, we will attempt to find

an explanation for this phenomenon.

In addition, Enders and Mansolf [13] have attempted to develop a small sample correc-

tion for computing AFIs under MI. However, the main purpose of their work was to come

up with a correction for the MI chi-square test statistic to account for missing data. They

then used this corrected chi-square statistic in the equations for sample AFIs, but doing

so distorted their population values (see Brosseau-Liard and Savalei [6], Brosseau-Liard

et al. [7] for explanations). In our future research, we plan to develop appropriate small

sample corrections for MI AFIs that do not distort their population values.

Finally, our finding that small sample corrections computed with weight matrices eval-

uated at the saturated model estimates were better than those computed at the structured

model estimates has further implications. With the current SEM literature, there are very

few research studies that investigate how computational options for estimating the weight

matrices affect the estimates of other quantities, such as the estimates of the small sam-

ple correction for non-normal data and the estimate of missing information. In fact, many

SEM users may not be aware of these computational options. In future studies, researchers

should systematically examine these computational options.
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(a) 20% Missing Data (b) 20% Missing Data

(c) 50% Missing Data (d) 50% Missing Data

Figure 7.1: Population RMSEA and CFI (estimated from n = 1000000) for selected conditions in
Study 1 comparing FIML, FIML-C, TS, MI approaches. In these selected conditions, the
number of variables with missing data is four, the number of two correlated residuals is two,
and the population factor correlation is zero. The population model is a two-factor model with
varying sizes for the correlated residuals shown on the x-axis. The hypothesized model is a
two-factor model without any correlated residuals.
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(a) 20% Missing Data (b) 20% Missing Data

(c) 50% Missing Data (d) 50% Missing Data

Figure 7.2: Bias in the sample RMSEA and CFI estimates for selected conditions in Study 1 com-
paring among FIML, FIML-C, TS and MI methods. In these conditions,the number of vari-
ables with missing data is four, the number of two correlated residuals is two, the population
factor correlation is zero, and the missing data mechanism is weak MAR. The population
model is a two-factor model with varying sizes for the correlated residuals shown on the x-
axis. The hypothesized model is a two-factor model without any correlated residuals.
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In conclusion, this dissertation makes a meaningful contribution to our understanding

of how different missing data techniques affect the estimation of AFIs in SEM. Based on

the results of this dissertation, we have offered practical advice to applied researchers who

use SEM in their data analyses. Future research should continue investigating properties

of different missing data techniques and exploring better methods for handling missing

data in a variety of settings.
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