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Abstract

The ever increasing demand for higher data rates, lower latency communication,

and a more reliable mobile network has led us toward the 5th generation (5G) of

mobile networks. In 5G, resource allocation is one of the most challenging prob-

lems. Conventionally, model-driven methods, and analytical approaches have been

used to allocate resources optimally. Despite accuracy, these methods often result

in a non-convex optimization problem that is inherently challenging to handle and

require proper convex approximation. To overcome such drawbacks, we need more

efficient resource allocation techniques in the 5G mobile network.

This research will study the downlink of a cloud radio access network. The

cloud radio access network enables coordinated beamforming and better inter-

ference management in ultra-dense networks. This architecture’s bottleneck is

backhaul capacity restriction limiting the benefits that the cloud radio access net-

work offers. We will use hybrid radio frequency and free-space optical links to

address the backhaul capacity limitation. Also, to improve the throughput and in-

crease the spectral efficiency of the radio-frequency links, we propose in-band full-

duplex self-backhauling radio units. After formulating the mathematical model

and solving it with analytical approaches, we will introduce a novel solution for

the proposed scenario and show that it outperforms the state-of-the-art half-duplex

backhaul technology provided enough self-interference cancellation under various

weather conditions.

We will derive a joint optimization problem to design the backhaul and access

link precoders and quantizers subject to the fronthaul capacity, zero-forcing, and

power constraints. We will show that this problem is non-convex and computation-

ally intractable and approximate it with a semi-definite programming that can be

iii



effectively solved by alternating convex optimization. We also employed Com-

pute Canada computational resources for solving mentioned semi-definite pro-

gramming. The computational complexity of the proposed optimization approach

motivates us to employ machine-learning-based optimization methods that recently

received much recognition in academia and industry. We use supervised and un-

supervised deep neural networks for learning the optimal resource allocation strat-

egy and achieved 80% of the performance compared to the proposed analytical

approach with only a fraction of computational cost. To meet all feasibility con-

straints of the problem, we also propose customized activation functions and post-

processing steps.
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Lay Summary

Resources in the mobile communication networks, such as power and frequency,

must be optimally managed and allocated to devices in order to achieve a good

quality of service. On the one hand, the increase in the number of connected de-

vices and the current growing demand for fast Internet connection has made the

resource allocation problem one of the focus points in the wireless communication

systems. On the other hand, the advent of the 5th generation (5G) of mobile net-

work technology also has strictly imposed constraints on network resources and

calls attention to the importance of efficient resource allocation in 5G. Achieving

effective mobile communication in ultra-dense metropolitan areas and providing

a good quality of service for mobile users with different demands requires a very

efficient resource allocation technique. This thesis investigates the state-of-the-art

technologies that enable fast and reliable wireless communication and proposes a

novel network design for 5G. We introduce a machine learning-based resource allo-

cation approach that reduces the computational cost of solving resource allocation

problems compared to the conventional analytical methods.
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Chapter 1

Introduction

1.1 Background and Motivations
Nowadays, the importance of a reliable, high-speed mobile network is not hidden

from anyone. Especially during the pandemic, the world witnessed the importance

of a reliable mobile network and used 4th Generation (4G) capabilities to cope with

the new situation. Every aspect of human life, such as education, work, and health-

care, changed dramatically, and social distancing became possible via online con-

nection and mobile connectivity. Based on [5], in 2025, the 5th Generation (5G) of

mobile networks will support more than 2.8 billion subscriptions. Simultaneously,

with an increase in data rate requests per user, due to the advances in augmented

reality, online gaming, and high-quality videos, we expect a considerable increase

in data rate demands in 5G.

5G cellular networks are supposed to support the three main objectives of

massive machine-type communications Massive Machine-Type Communications

(MMTC), Ultra-Reliable Low-Latency Communications (URLLC), and Enhanced

Mobile Broadband (EMBB). Given these requirements and with the enormous in-

crease in the number of devices, data rate demand, and diversity of connected users

(from low-throughput, low-power sensors and wearable devices to high-throughput

services such as online gaming), 5G cellular networks should be designed to be

more efficient. It means 5G networks need a more structured and optimized way

of managing resources such as spectrum, capacity, and energy. The Cloud Radio
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Access Network (CRAN) concept helps to manage resources more efficiently by

providing an intelligent structure to apply the state-of-the-art techniques [6, 7].

To be more specific, considering the limited frequency bands that are already

over-utilized, the spectrum’s more efficient use is crucial to accommodate this

rapidly growing demand. One way to improve mobile networks’ spectral effi-

ciency is through the coordination of base stations to minimize inter-cell inter-

ference. Coordinated beamforming is an effective way to preclude base stations

or Radio Unit (RU)s from causing interference in their neighbors’ coverage areas,

and CRAN is a new technology that is proposed to realize this goal. To do so,

however, high-throughput backhaul connections are required to link the RUs to a

Central Processor (CP) unit. The data of all users is needed to be shared with each

individual RU or base station, and it requires that the backhaul capacity be multi-

ple times larger than the capacity of uncoordinated RUs. To provide a high-enough

backhaul capacity, the application of optical connections is considered for the back-

haul. Notwithstanding the outstanding performance of the optical fiber solutions

in providing a high-throughput backhaul link, the massive cost of deployment and

maintenance has hindered the industry from utilizing the benefits of coordinated

transceiver nodes.

In recent years, Free-Space Optical (FSO) communication is suggested as a

cost-efficient solution for accomplishing the requirements of the backhaul of CRAN.

In FSO, the optical signal generated by a laser is transmitted through the air, and

an optical detector at the receiver converts it to electrical signals. However, FSO

is highly sensitive to weather conditions and air quality as an optical signal can

be easily obscured by fog, rain, and dust. Therefore, an RF link is needed as an

auxiliary means of communication in poor weather conditions. Such a system is

called hybrid RF/FSO backhaul, and it is one of the most promising methods for

commercialization of CRAN in 5G [8].

1.1.1 Cloud Radio Access Network

Centralizing and virtualizing the conventional Radio Access Network (RAN) offers

dynamic node cooperation ability, which results in coordinated connectivity across

base stations Base Stations (BS) and better resource allocation. The CRAN shown
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CPRUUEbackhaul linkAccess link

Figure 1.1: Illustration of the downlink CRAN system model. The CP is con-
nected to two RUs with backhaul links and RUs serve four users coop-
eratively via access links.

in Figure 1.1, is a promising network architecture that realizes centralization and

virtualization in the mobile network and can play an essential role in accomplish-

ing 5G demands. Also, coordinated connectivity facilitates inter-cell interference

management in the network. This can make the deployment of dense networks

feasible and consequently increases spectral efficiency [6, 9, 10].

One of the main bottlenecks of CRAN is the limited backhaul capacity that

connects the CP to the RU. This limitation can mask the CRAN’s main advan-

tages—coordinated beamforming, efficient resource allocation, and interference

mitigation capability [11].

Multiple data transmission strategies can be applied in CRANs to deal with the

limited capacity, including the data-sharing method, compression-based method,

and a hybrid of them [6, 12–14]. In the data sharing method, each user is assigned

to a cluster of RUs, and it’s data is shared with all RUs in that cluster. Then, each
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user is served by all RUs of the cluster via a joint beamforming scheme, which

is known as the Coordinated Multi-Point (COMP) technique [12]. The bigger the

cluster is, the more cooperation among RUs, and higher spectral efficiency can

be achieved. In a compression-based scheme, the capacity restriction is handled

through data quantization, which leads to quantization noise [13]. The backhaul

capacity specifies the level to which the data needs to be quantized; therefore, a

larger backhaul capacity results in lower quantization noise. According to [15],

for medium to the high capacity backhaul links, which is the case for 5G, the

compression-based approach outperforms the data-sharing method. Hence, pro-

viding a reliable and high-speed backhaul connection with acceptable quantization

noise level is a plausible solution to deploy CRAN in a 5G network and meet its

high spectral efficiency requirement.

1.1.2 5G Backhauling

Backhaul refers to the connection between the CP and RUs in the mobile network

(see 1.2). The prevalence of devices operating in the RF band and the fact that the

RF bandwidth is very limited in capacity and license makes the RF band a bot-

tleneck for the CRAN; not to mention the interference as another limiting factor

for reusing radio frequency bands. With the rapid growth of high-speed commu-

nication demands, Radio Frequency (RF) no more suffice, and new alternatives are

required for 5G.

Recently the application of FSO communication in CRAN is suggested [11, 16,

17]. In particular, it is shown that a hybrid RF/FSO communication link can con-

siderably boost the capacity thanks to the large bandwidth of FSO, while offering

acceptable reliability owing to the robustness of connection in RF [8, 18]. In addi-

tion, self-backhauling defined as the use of the same RF band for both the access

link and the backhaul is another way to comply with the limitation of bandwidth in

RF [19, 20].

Finally, the combination of the FSO and an RF link with self-backhauling can

provide a hybrid backhaul link with high enough capacity and reliability while

complying with the limited RF bandwidth. In the next subsections, we elaborate

on FSO and self-backhauling RF bands.
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Figure 1.2: 5G CRAN.

1.1.3 Free Space Optical communication

Free-space optical communication is an alternative means that can overcome RF

drawbacks, although it introduces new challenges. Unlike optical fiber, which is a

high-speed communication link made from glass or plastic, FSO has much lower

deployment cost. Easy implementation and low maintenance cost of FSO, comes

with its less reliability and higher outage probability compared to optical fiber.

Regardless of the current use cases of FSO, visible light has been one of the first

communication tools of humanity used. Starting from Heliograph 1 and telegraph

communication, visible light communication has been a non-commercial way of

signaling from the early days. Nowadays, FSO is a transmission method in which

laser and Light-Emitting Diode (LED)s are used to transmit data. Unlike fiber-

optic communication, which is restricted to costly fibers made of glasses, FSO is

1A signaling device with sunlight
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Figure 1.3: Time division and frequency division duplex technologies.

communicated through the air, thus has far less implementation and maintenance

costs. Compared to RF communication, as FSO operates in higher bandwidths, it

provides higher data rate—10 Gbps per wavelength [21]. More importantly, FSO

is immune to interference. In clear weather conditions, FSO has less than 1dB/km

attenuation, making it a perfect candidate for communication over high distances

[21]. Finally, unlike the RF, FSO benefits from the availability of a license-free

spectrum, which is an excellent means for cutting the deployment costs.

Despite these advantages, FSO has some concerning drawbacks. The perfor-

mance of the FSO is susceptible to weather conditions, and it can experience from

5 up to 350 dB/km attenuation in rainy and foggy weather conditions, respectively

[22]. Also, as the maximum possible power is limited by safety concerns, more

effective signal processing is required to overcome the signal attenuation of FSO

[23, 24].

1.1.4 RF Self-Backhauling

One way to deal with the limitation of RF bandwidth is frequency reuse. Tradi-

tionally, wireless nodes work in a half-duplex manner, meaning that the send and

receive signals use the same band but different times or the same time but differ-
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ent frequency bands (see Figure 1.3). Using the same frequency band for both the

transmit and receive simultaneously is referred to as In-Band Full-Duplex (IBFD).

Also, as mentioned, using the same frequency for backhaul and access link at the

same time, is called in-band full-duplex self-backhauling. The main limiting fac-

tor in IBFD technology is the interference of the transmit signal that masks the

received signal. Lack of practical interference cancellation techniques held back

the industry to deploy IBFD in practical scenarios. As shown in Figure 1.4, there

is always a Self-Interference (SI) signal from the transmitter to the receiver in both

separate-antenna and shared-antenna systems [25]. To benefit from the IBFD, there

must be very strong isolation between the transmit and receive signals. The chal-

lenge lies in the fact that the transmission power is usually much larger than the

received power; thus even a small residual interference can mask the received sig-

nal.

Recent advancements in full-duplex RF communication have nearly doubled

RF communication’s Spectral Efficiency (SE), creating the opportunity to enhance

the fronthal capacity. A combination of Self-Interference Cancellation (SIC) meth-

ods, e.g., propagation, analog, and digital SIC, provide sufficient isolation that near

double the spectral efficiency can be achieved in [20, 26–31]. Also, it is shown that

the Full Duplex (FD) communication scheme operates on a lower power budget

compared to Half Duplex (HD) scheme [31].

The advancements above motivated us to incorporate hybrid RF/FSO schemes

and IBFD RF self-backhauling techniques to realize a high-throughput and reliable

backhaul for CRAN.

1.1.5 Complexity Crunch in CRAN

The concept of CRAN has a large degree of abstraction, meaning that it refers to

multiple modules such as the data-compression module, CP-to-RU beamformer,

and RU-to-user beamformer. Each of these modules’ design problem, even indi-

vidually, is indeed a time-consuming optimization task. Hence, optimal CRAN

design with several nodes in a dense 5G network poses a significant challenge in

terms of computational complexity.

However, the recent advancements of data-driven Machine Learning (ML) ap-
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Figure 1.4: Illustration of self-interference concept in separate-antenna full-
duplex and shared-antenna full-duplex systems.

proaches in addressing complicated design problems motivate us to view CRAN

optimization in light of these powerful tools. Machine learning approaches, specif-

ically Deep Neural Network (DNN), are shown to be able to generalize the patterns

and relations hidden in the training data to the new test case enabling researchers

to apply them in many different design problems successfully.

In this study, we are interested in the great potential of DNN to learn to solve

optimization problems. For instance, [32], [33] propose DNNs that learn how to

solve resource allocation problems. It has been shown that these methods cost less

time as once trained, a DNN can produce the optimal results with low complexity.

This motivates us to study the application of DNNs in 5G CRAN design.

1.2 Objectives and Contributions
It is shown in [15] that CRAN performance can be profoundly affected by the lack

of high backhaul capacity. This obstacle can be explained by the added quantiza-

tion noise, which affects the received signal’s quality at the user’s side.
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Mostafa et al. in [8] employed a HD time-sharing scheme to realize RF self-

backhauling in a hybrid RF/FSO backhaul. We also explored a hybrid RF/FSO

with FD self-backhauling in a CRAN architecture to address RF spectrum limi-

tations, and unlike [8], we will transmit RF signals at the same time without em-

ploying time-sharing. In HD, the backhaul RF capacity is shown to be much more

restricted than FD self-backhauling [34]. Therefore, the compression-based ap-

proach performs much better when coupled with FD communication.

In this project, we aim at maximizing the downlink user sum-rate under trans-

mit power constraints at both the CP and RUs, a Zero-Forcing (ZF) requirement for

eliminating the multi-RU interference, and the backhaul capacity limitation.

We will adopt a hybrid RF/FSO with IBFD RF link for the backhaul of CRAN

and consider the joint optimization of backhaul RF beamforming, data-compression,

and access link beamforming to maximize the user sum-rate. We will analytically

derive a closed-form formula for the sum rate and form a non-convex optimization

problem. We propose a transformation to simplify this problem to a weighted sum

mean-square error (MSE) minimization, which is a semi-definite programming,

and adopt an alternating optimization approach to solve it and show its superiority

over the existing hybrid RF/FSO with HD self-backhauling [8].

Moreover, we will illustrate that CRAN optimization’s computational com-

plexity is quite large and adopt data-driven approaches to overcome this challenge.

In particular, we apply deep neural networks in both supervised and unsupervised

manners to transfer much of the computational complexity to the offline training

phase. This way, we achieve a CRAN design methodology that outperforms both

the state-of-the-art method proposed by [8] and our own proposed conventional

optimization in terms of user-sum rate and computational complexity.

1.3 Organization
In Chapter 2 the definition of the scenario, system model, and formulation of the

problem are presented. In Chapter 3, we propose a semi-definite programming

solution for CRAN downlink optimization and achieve superior results compared

to the state-of-the-art methods. In Chapters 4 and 5 we present a supervised and an

unsupervised machine learning solution, respectively, to reduce the computational

9



complexity of the optimization task. Finally, the Chapter 6 is dedicated to summary

and conclusions.
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Chapter 2

Problem Formulation

2.1 System Model
We consider a CRAN network composed of one CP, M RUs, and K users. The CP

is assumed to apply the compression-based method [13] to transmit K independent

data streams to users via M RUs, as illustrated in Figure 2.1. The backhaul links

connect the CP to the RUs with a multi-input multi-output (MIMO) RF link with

bandwidth BRF and one FSO link with bandwidth BFSO. The number of antennas

for downlink transmission at the CP is denoted NCP, and the number of transmit

and receive antennas at the RU is NRU. It is assumed that the CP has access to the

complete channel state information of both the backhaul and access links. Each

RU acts as an FD relay between the CP and users, and thus, both the access and

backhaul links transmit on the same frequency band simultaneously. The RUs

linearly precode and jointly transmit the data symbols intended for each user.

2.1.1 Hybrid RF/FSO fornthaul channel model

In Chapter 1, we discussed the importance of fornthaul link reliability and capac-

ity in CRAN architecture and 5G. fornthaul link capacity is the most important

limiting factor on cooperative beamforming performance and resource allocation

performance in CRAN. Providing a reliable high data rate backhaul link can signif-

icantly affect 5G characteristics and is vital to make use of CRAN advantages over

RAN structure. In our model, we consider hybrid RF/FSO links in backhaul to
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Figure 2.1: Illustration of the downlink CRAN. The CP is connected to two
self-backhauling RUs with a hybrid RF/FSO backhaul. The RUs serve
four users cooperatively via IBFD RF access links.

address this vital need. As mentioned before, RF and FSO can act complementary

because of different carrier frequency utilization. High frequency in FSO provides

high data rate though very dependent on weather condition, and lower frequency

bands in RF link provides lower but reliable data rate for backhaul link.

2.1.2 Full Duplex Radios

For many years, in-band full-duplex communication seemed impossible. As An-

drea Goldsmith once contended, “It is generally not possible for radios to receive

and transmit on the same frequency band because of the interference that results.”

[35].

However, recent advancements in designing and manufacturing transceivers

that provide superb analog isolation together with the state-of-the-art digital can-

cellation methods that almost wholly cancel the remaining interference, made it

possible to deploy IBFD communication links in the RF band. Bharadia, D et al.

proposed the first design and implementation of an IBFD system for WiFi 802.11ac

[3]. They propose two main modules to render the self-interference almost negli-

gible —1) an analog transceiver circuit that provides 60dB isolation between the
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transmit and receive signal and 2) a digital cancellation method that attenuates the

remaining interference by an additional 50dB. Achieving 110dB isolation makes

it possible to render the self-interference under the noise floor or very close to the

noise floor. Reaching the noise floor practically means that the self-interference

signal is fully canceled as it is not distinguishable from the receiver’s thermal noise.

In practice, the transmit signal has multiple components—the main signal, har-

monics caused by hardware nonlinearities, and the transmitter noise. Each of these

signals requires different cancellation techniques and different attenuation levels to

reach the noise floor. For example, in Figure 2.2, we can see the isolation require-

ments for a practical WiFi system. The main signal is 20dB, which requires 110dB

cancellation to reach the noise floor. The signal harmonics are usually around -

10dB, so 80dB cancellation is enough for them, and the transmitter noise is around

-40dB, which requires only 50dB cancellation. [3] proposes cancellation methods

for each of these components, and in their experimental results, they achieve near

double the spectral efficiency of a conventional WiFi system.

In this work, we adopt the IBFD system proposed in [3] for the RF backhaul

link; however, we consider and model some residual self-interference to obtain a

more robust design. In Section 2.2.1, we provide more details on the IBFD self-

interference model.

2.1.3 FSO Channel Model

The most practical modulation considered for modeling FSO channel is On-Off

Keying (OOK) modulation, which works by intensity modulation of transmit x f so
m

and received y f so
m diodes intensity, where x f so

m ∈ {0,2Pf so} with average transmit

power of Pf so. We can model FSO received intensity in the m-th RU with

y f so
m = h f so

m x f so
m +nm, (2.1)

where FSO channel of the m-th RU h f so
m modeled with considering three atten-

uation types, atmospheric, scintillation and geometric losses [36]. According to

[8], with φ as the divergence angle of FSO, and r as the radius of optical open-

ing, the FSO channel gain is h f so = hlhshgR, where hl = eσddfh is the atmospheric

loss model, hs = GG(a,b) is the Gamma-Gamma distribution of scintillation and
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Figure 2.2: Illustration of noise floor and digital/analog cancellations [3]

hg = [erf(
√

πr/
√

2d f hφ)]2, in which erf(.) is the error function.

2.1.4 RF Backhaul Channel Model

For modeling backhaul link, we used path loss and antenna gain pattern (hl) and

Rician fading channel (hs) to model line-of sight (LoS) propagation using link

budget model. The channel gain is modeled as h = hlhs with 5dB Rician fading

factor indicating the ratio between the direct and scattered path powers, and line-

of-sight path loss exponent of nLoS = 2.5. Also, for all antennas, the antenna gain

is assumed to be 3 dB. Link budget calculation is adopted form [37] and channel

information and the simulation setup are provided in Table 3.2.

2.1.5 RF Access Channel Model

Similarly for downlink link we model channel gain as h = hlh f where hl is path

loss and h f is Rayleigh distribution fading gain. The distance between RUs and

UEs assumed to be 10 meters fix and each RU’s power budget is set to 23 dB. We

calculate path loss with exponent of nLoS = 3.5 in downlink. The system parameters
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are summarized in Table 3.2, with the channel specifications and link models as in

[8, 37].

2.2 Problem Formulation
Let s = [s1, . . . ,sK ]

T be the vector of normalized Gaussian data symbols intended

for users {1, . . . ,K}, Wm ∈ CNRU×K denote the precoding matrix of the m-th RU

toward users and qm ∼ C N (0,Qm) denote the quantization noise with covariance

matrix Qm at the m-th RU due to data compression. The transmitted signal from

the m-th RU to the users is denoted by xm ∈ CNRU
and can be formulated as

xm = Wms+qm. (2.2)

In the following sections we will introduce the constraints of our problem in detail.

2.2.1 Backhaul Capacity Constraint

In this subsection, we will compute the minimum rate required for the backhaul

links. Assume that the RU is equipped with an IBFD transceiver, which receives

the signals from the CP and transmits simultaneously to users in the same RF band.

We can formulate the RF received signal at the m-th RU as

yrf
m = GH

mxcp + Isi
m +nm, (2.3)

where nm ∼ C N (0,σ2
n I) is the additive white Gaussian noise, Isi is the resid-

ual self-interference, and xcp ∈ CNCP
is the transmitted signal by the CP. Also,

Gm ∈ CNCP×NRU
is flat-fading MIMO backhaul RF channel. The self-interference

signal is proportional to the transmitted signal, and therefore, the residual self-

interference power at the m-th RU is proportional RU’s transmit power. That is,

E{Isi
m(I

si
m)

H}= αPsi
m, (2.4)

where Psi
m = WmWH

m +Qm. We define α as a unit-less constant and it depends

on RU’s capacity in suppressing the self-interference [34, 38]. Hypothetical ideal
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SIC makes each transmission node mutually orthogonal and results in αPm = 0,

while practical IBFD results in residual self-interference [39, 40].

The signal components intended for different RUs are separated by precoding

at the CP. For this we assume that there is enough distance between the RUs to

have a full rank MIMO channel and that the number of antennas at the CP is more

than the total number of RU antennas, i.e., NCP ≥ MNRU. Then, we can neglect

interference between the signals for different RUs by imposing the zero-forcing

constraint [41]

GH
j VmG j = 0, j 6= m, (2.5)

where Vm is the covariance matrix of the transmitted signal intended for the m-th

RU. The corresponding maximum communication rate in the RF link between the

CP and the m-th RU can be approximated in the high signal-to-noise ratio (SNR)

regime as

CRF
m (Vm,Qm,Wm)

= lndet
(
I+(αPsi

m +σ
2
n I)−1GH

mVmGm
)

≈ ln
(

det
(
αPsi

m +σ
2
n I)−1 det(GH

mVmGm)

)
= lndet(GH

mVmGm)− lndet
(
αPsi

m +σ
2
n I),

(2.6)

and the data rate is BRFCRF
m .

For the FSO links, it is assumed that commonly used on-off keying (OOK)

modulation is applied [36]. The CP is assumed to be equipped with M OOK trans-

mitters, and each RU has one optical receiver. For a given BFSO as FSO signaling

rate, channel gain hFSO, optical power budget PFSO, and thermal noise and back-

ground illumination σ2
FSO, the maximum communication rate under OOK modula-

tion can be calculated as [8]

CFSO
m =−

∫
∞

−∞

p(y) ln p(y)dy− ln(2πeσ
2
FSO), (2.7)

where

p(y) =
1

2
√

2πσ2
(e

−y2

2σ2
FSO + e

−(y−2hFSO
m PFSO)2

2σ2
FSO ). (2.8)
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The corresponding data rate in the m-th FSO link is equal to BFSOCFSO
m . It is worth

noting that due to the directional nature of FSO, they do not interfere with each

other.

The backhaul link between the CP and the m-th RU needs to be able to support

the transmission of the signal xm in (2.2), which is the quantized version of the

signal x̂m that would ideally be transmitted from the m-th RU in the absence of

backhaul capacity limitations. The required communication rate to encode x̂m into

xm with covariance matrix Qm of the quantization noise is given by [13]

Idata
m = ln

det(E{x̂mx̂H
m}+Qm)

det(Qm)
, (2.9)

where x̂m is the uncompressed transmitted signal from the m-th RU in the absence

of backhaul capacity condition. Assuming the same transmission bandwidth for

the RF backhaul and user links, this leads to the capacity constraints

BRFRdata
m ≤ BFSOCFSO

m +BRFCRF
m , ∀m ∈M. (2.10)

Thus, we have

BRF lndet(WmWH
m +Qm)−BRF lndet(Qm)

≤BFSOCFSO
m +BRF lndet(GH

mVmGm)

−BRF lndet(αPsi
m +σ

2I),

(2.11)

which is non-convex. In chapter 3, we transform this problem to a convex semi-

definite problem and employ alternating convex optimization to solve it.

2.2.2 Power Constraints

The RF beamforming transmitters at both CP and RUs operate under power con-

straints that can be written as

Tr
(
E{xcpxH

cp}
)
= Tr(

M

∑
m=1

Vm)≤ Pcp (2.12)

Tr(E{xmxH
m}) = Tr(WmWH

m +Qm)≤ Pm, (2.13)
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in which Pcp and Pm are the CP and RUs’ power budgets, respectively.

2.2.3 Joint Optimization Problem

Given the setup described in the previous section, our objective is to maximize

the user’s sum-rate. While the type of objective and the capacity and power con-

straints by means of linear precoders and quantizers are alike those considered in

the previous work [8], because of the FD self-backhauling, we are facing a dif-

ferent objective function and capacity constraints. In particular, our optimization

problem is formulated as

maximize
Vm,Wm,Qm

Rsum (2.14a)

s.t. (2.5),(2.11),(2.12),(2.13) Vm < 0,Qm < 0, (2.14b)

where, (.) < 0 stands for positive semi-definiteness. The objective function is the

weighted sum of maximum communication rate of users

Rsum = BRF
K

∑
k=1

γk log2

(
1+

|hH
k wk|2

∑l 6=k |hH
k wl|2 +hH

k Qhk +σ2
n

)
, (2.15)

where

hk = [hT
1,k, . . .h

T
M,k]

T, wk = [wT
1,k, . . .w

T
M,k]

T (2.16)

and hm,k and wm,k are channel gain and beamforming vectors from the m-th RU

to the k-th user, respectively, and Q = diag(Q1, . . .QM). Also, γk is the weight of

k-th user. This problem is non-convex and difficult to solve. In general, there is

no guarantee for finding an optimal solution for this problem. However, to deal

with the non-convexity, in the next chapter we first transform this problem into

a weighted sum-mean-square error (MSE) minimization problem as suggested by

[8, 42], and then approximate the capacity constraint by a convex subset. We will

show in the next section that an alternating convex optimization can be applied to

find a sub-optimal solution for this problem.
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Chapter 3

CRAN Optimization

3.1 Introduction
In the previous chapter, we formulated the joint optimization problem of down-

link CRAN with hybrid RF/FSO with IBFD RF. We focused on the joint design

of access and backhaul precoders (W,V), and access link quantizer (Q) in order

to maximize the users sum-rate, considering power and ZF constraints and back-

haul capacity limitation. This optimization problem is, however, non-convex. This

chapter will show that this non-convex problem, which is hard to optimize, can be

transformed into semi-definite programming and an alternating convex optimiza-

tion algorithm can be used to solve it.

3.2 Transformation of the CRAN Optimization Problem

3.2.1 Transformation of the Objective Function

It has been shown in [42] that maximizing the non-convex sum-rate objective func-

tion is equivalent to a weighted sum-MSE minimization problem. By doing this

transformation, (2.15) can be written as the following semi-definite objective

R′=
K

∑
k=1

γkβk

(
|gk|2

(
hH

k (WWH +Q)hk

)
−2Re(g∗khH

k wk)

)
, (3.1)
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where

W = [w1, . . . ,wK ]. (3.2)

For a fixed set of optimization variables, we have

gk =
hH

k wk

hH
k (WWH +Q)hk +σ2 , (3.3)

in which gk is the scalar linear receive filter applied by k-th user and the corre-

sponding optimal MSE weight is βk = 1/Ek, where Ek = E{|g∗kyk − sk|2}. This

objective function is convex with respect to the individual optimization variables.

3.2.2 Convex Approximation of Capacity Constraint

Another source of non-convexity in the problem formulation is (2.11). Following

[8], we deal with the non-concave function on the left-hand side of the inequality

by employing conjugate function definition and Fenchel’s inequality:

lndet(WWH
m +Qm)

−1 ≥−Tr(Zm(WWH
m +Qm))

+ lndet(Zm)+NRU,
(3.4)

for some positive definite NRU×NRU matrix Zm. It has been shown in [8] that with

Zm = (WmWH
m +Qm)

−1, we can replace the non-convex inequality (2.11) with

−Tr(Zm(WWH
m +Qm))+ lndet(Zm)+NRU ≥

− BFSO

BRF CFSO
m − lndet(GH

mVmGm)

+ lndet(αPsi
m +σ

2
n I)− lndet(Qm).

(3.5)

The term lndet(αPsi
m +σ2

n I) on the right hand side of (3.5) is non-convex. To deal

with this term consider that the power of loop-back interference is less that or equal

to the RU’s transmit power, (i.e. Tr(WmWH
m+Qm)≤ Pm). For simplicity, we resort

to the worst case scenario with the residual self-interference power being equal to

αPm. Thereby, we achieve a lower bound on the maximum achievable user’s sum-
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rate. According to [34] and [43], we assume that Isi ∼ C N (0,σ2
siI), and thus

Tr(σ2
siI) = αTr(WmWH

m +Qm)≤ αPm (3.6)

therefore, σ2
si ≤

αPm
NRU . So in the worst case scenario we will have

αPsi
m =

αPm

NRU I. (3.7)

Then we can write the inequality (3.5) as

−Tr(Zm(WWH
m +Qm))+ lndet(Zm)+NRU ≥

− BFSO

BRF CFSO
m − lndet(GH

mVmGm)

+ lndet(
αPm

NRU I+σ
2
n I)− lndet(Qm).

(3.8)

This inequality provides a convex set with respect to the design parameters,

Wm,Vm,Qm, when Zm is fixed and vice-versa. We can easily show that the in-

equality (3.8) is a subset of the non-convex inequality (3.5), therefore, it will not

cause infeasible solutions.

3.3 Optimization Algorithm
For a given Zm the following problem is a convex semi-definite programming and

can be solved using alternating convex optimization [8]:

maximize
Vm,Wm,Qm

R′ (3.9a)

s.t. (2.5),(2.12),(2.13),(3.8),Vm < 0,Qm < 0 (3.9b)

In this method, for fixed Zm, gk, and βk, we optimize Wm,Vm, and Qm via alter-

nating approach until convergence. An efficient algorithm is introduced in [8] for a

different scenario to solve the inner loop in [8, Algorithm 1]. We employ a similar

approach, which for clarity is summarized in Algorithm 1.
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Algorithm 1
Input: SIC level, Output: Rsum
1: Initialize Wm,Qm:
to satisfy the RUs power constraints and to calculate gk for the first time [8, (31),
(32), (33)]
2: Set i = 0 do

3: Calculate gk from (3.3) and βk = 1/Ek,
4: Calculate Zm = (WmWH

m +Qm)
−1

5: Update Wm,Qm,Vm via (3.9),
6: Calculate Ri

sum via (2.15),
7: Update i = i+1

while (Ri
sum−R(i−1)

sum > ε);

3.3.1 Computational Complexity

It is worth noting that the optimization problem in (3.9) is a convex semi-definite

programming and using the interior-point method it has the worst-case computa-

tional complexity of O(max{n,m}4√n log( 1
ε
)), where n is the number of variables,

m is the number of constraints, and ε is the solution accuracy [44]. Hence, with

the assumption of ε = 0.01 and complex-valued multiplication, the computational

complexity of Algorithm 1 is at least O(45n4.5).

Notwithstanding the advantages of the proposed optimization for CRAN, com-

putational complexity is still a significant challenge in realizing practical CRAN

networks. Hence, we incorporated machine learning techniques to overcome these

challenges. Chapter 4 is dedicated to the application of deep neural networks in

CRAN optimization.

3.4 Numerical Results
In this section, we provide numerical results from system simulations to exam-

ine our algorithm and compare its performance against the state-of-the-art time-

division hybrid RF/FSO method proposed in [8]. In the simulations, the same

setup as in [8] is adopted. The CRAN scenario uses M = 2 RUs each equipped

with NRU RF transmit and receive antennas and one optical receiver. The CP node

is equipped with NCP = 10 RF transmit antennas and two FSO transmitters, each

dedicated to one RU. We consider K = 4 users, and all have the same contribution
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Table 3.1: FSO channel weather parameters [1, Table I].

Atmospheric loss GG parameters
ID Weather σd (dB/km) Turbulence (a,b)
L1 clear 0.43 Strong (8.05, 1.03)
L2 Haze 4.2 Moderate (2.23, 1.54)
L3 Fog 20 Weak (17.13, 16.04)

in our weighted sum-rate objective function (2.15). According to [26], we consider

SIC levels of between 45 dB to 113 dB for IBFD at the RUs. Three weather con-

ditions are investigated for the FSO channel, referred to as L1, L2, and L3, and

shown in Table 3.1. In the following, we show results as a function of the SIC level

to account for different IBFD solutions.

First, Figure 3.1 shows the sum-rate of the proposed approach as a function of

SIC under different weather conditions and various RF bandwidths. The most sta-

ble performance occurs in the L1 weather condition where FSO is fully functional.

We further observe that for this weather condition and RF bandwidths of 20 and 40

MHz, the sum-rate does not change much with the SIC level. This is because the

FSO link provides sufficient backhaul capacity and highly accurately SIC is not re-

quired. In case of the 80 MHz bandwidth, we note that the extra backhaul capacity

provided by the RF link improves the user’s sum-rate even in the L1 weather con-

dition. This emphasizes the importance of hybrid RF/FSO for very high data-rate

communication. Next, in Figure 3.2 we highlight the benefits of the FD transmis-

sion compared to HD considered in [8] in terms of sum-rate. For the HD case,

we show the results achieved under the best time allocation between RF backhaul

and user links. We observe that the proposed FD-based method outperforms the

HD transmission given a sufficient SIC level. The intersection point between the

respective curves is at fairly benign SIC levels of 60-70 dB, and independent of

the RF signal bandwidth. Better weather conditions (i.e., L1 vs L2 and L2 vs L3)

render the FD solution beneficial at lower SIC levels, as the FSO link can provide

more of the backhaul capacity in the hybrid RF/FSO system.

Finally, Figure 3.3 demonstrates the interplay between signal attenuation in the

backhaul link due to CP-to-RU distance and SIC levels. Clearly, highly effective
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Table 3.2: Simulation Parameters.

Parameter Symbol Value
Number of antennas at the CP NCP 10

Number of RUs M 2
Number of antennas at RU NRU 4

Number of users K 4
Distance from the CP to the RUs dfh 1 km

Distance from the RUs to the users ddl 100 m
Parameters of the FSO links

Parameter Symbol Value
Transmit power of FSO transmitter PFSO 10 dBm

FSO signaling rate BFSO 1 Gbaud
Divergence angle of the laser beam φ 2 mrad

Radius of the receiver aperture r 10 cm
Responsivity of the photodetector R 0.5 A/W

Noise variance at the receiver σ2
FSO 10−13A2

Parameters specific to the RF backhaul link
Parameter Symbol Value

Transmit power of the CP Pcp 33 dBm
Breakpoint distance for the FH link dfh

break 100 m
Line-of-sight pathloss exponent nLoS 2.5

Rice factor (Rician fading factor) Kr 5 dB
Antenna gains for the FH link (GCP,GRU) (3dBi, 3dBi)

Parameters specific to the RF downlink
Parameter Symbol Value

Transmit power of the mth RU Pm 23 dBm
Breakpoint distance for the downlink ddl

break 10 m
Non-line-of-sight pathloss exponent nnLoS 3.5

Antenna gains for the downlink (GRU,GMU) (3dBi, 3dBi)
RF parameters

Parameter Symbol Value
Carrier frequency fc 3.6 GHz

Bandwidth of the RF signal BRF 20,40,80 MHz
Noise power spectral density N0 -170 dBm/Hz
Noise figure of the receivers NF 7 dB
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Figure 3.1: Average sum-rate versus SIC level for different weather condi-
tions and RF bandwidths.

interference cancellation in IBFD at levels of 90 dB or more provides fairly robust

sum-rate performance as the backhaul link distance increases. On the other hand,

systems with low SIC levels experience significant degradations due to the effect

of the RU transmit signal on its received signal in the more attenuated RF backhaul

link.

3.5 Conclusion
In chapters 2 and 3, we studied the problem of IBFD hybrid RF/FSO in a CRAN

architecture containing multiple RUs and users. We formulated the problem of de-

signing the CP and RU beamforming and quantization vector at RU as a sum-rate

maximization problem. We approximated the derived non-convex optimization

problem using a semi-definite convex optimization problem by manipulating ob-

jective function and capacity constraint. We solve this problem by alternating con-

vex optimization and provide a lower-bound for the user’s sum-rate. The proposed

method was simulated under different weather conditions and bandwidths, and it

is shown to outperform the state-of-the-art time-division hybrid RF/FSO approach
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Figure 3.2: Average sum-rate versus SIC level for HD and FD RUs. The RF
bandwidth is 20 MHz, 40 MHz and 80 MHz, and the three weather
conditions L1, L2 and L3 are considered.
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provided sufficient SIC.
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Chapter 4

Machine Learning-Based CRAN
Optimization, a Supervised
Approach

4.1 Learning to Optimize
For years, a combination of analytical modeling and heuristic numerical approaches

played a vital role in designing and optimizing wireless communication systems.

However, this method is not as effective in solving more complicated problems that

also are time-critical. With the rise of 5G and the unprecedented increase in the

number of nodes and users in the network and strict low-latency requirements of

many 5G applications, heuristic optimization benefits are curbed. In recent years,

many scientist across different fields have started integrating the machine learn-

ing techniques in complicated optimization problems [45–47]. This trend is also

seen in telecommunications, e.g., spectrum sensing [48], relay selection in high-

mobility networks [49], anomaly detection for security in RAN [50], resource al-

location in 5G [51], MIMO beamforming [52, 53] and channel estimation [54, 55].

In this study, we employed DNNs to solve the optimization problem introduced

in the previous section.
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4.1.1 Why and When Should We Use The Neural Network?

In case the nature of an optimization problem requires constantly re-solving the

optimization for different sets of input parameters, knowing a mapping from the

set of parameters to the optimal solution would be extremely helpful. This way,

instead of running an optimization algorithm online, to find the optimal solution

for each input parameter, we merely need to feed the parameters to the mapping

function and obtain the solution with low computational complexity. Consider the

following unconstrained optimization problem

min
x

f (x; p), (4.1)

where p is the set of parameters of the problem. If p varies quite often, instead

of solving this problem numerically each time, we would rather find the mapping

between the optimal point (x∗) and p. In such a case, a neural network can be

trained in an unsupervised or supervised manner to find the mentioned mapping.

In the CRAN optimization problem (3.9) in chapter 2, we jointly optimized

three variables—access-link linear precoders (W = [W1, ...,WNRU ]), backhaul lin-

ear precoder (V = [V1, ...,VNRU ]), and CP quantizer (Q = [Q1, ...,QNRU ]), in order

to maximize the weighted sum-rate of the users. The optimal solution of our prob-

lem is a function of backhaul and access link’s Channel State Information (CSI).

Since CSI is a fast-changing parameter in wireless communication, the aforemen-

tioned optimization task requires to be constantly re-solved upon any change in

CSI. Hence, in this problem finding the mapping from the CSI to the optimal W,

V, and Q via a DNN is very helpful. Figure 4.1 shows the train and test phases of

this method.

In case we can successfully train this neural network, we can overcome the

computational complexity of the semi-definite programming problem (3.9) and

drastically reduce the required time to find the optimal solution. One major issue,

however, in our case, is the presence of multiple constraints in the optimization

problem. We must enforce the output of the DNN to produce solutions that lie in

the intersection of the RU power constraints, CP zero-forcing constraint, backhaul

capacity limitation, and positive semi-definiteness of V and Q matrices and at the

same time accomplish an acceptable performance in terms of users sum rate.
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Figure 4.1: Learning to optimize. Supervised learning train and test phases.

4.1.2 How An Artificial Neural Network Works?

An Artificial Neural Network (ANN) is a computing system that consists of con-

nected nodes forming multiple linear layers, each of which equipped with a non-

linear activation function. The structure of an ANN is illustrated in Figure 4.3.

It can approximate complicated functions given a large enough data set, enough

number of layers and proper selection of parameters and hyper-parameters. In

the training phase, the ANN learns the features of input data and finds the linear

transformation required to generate the next set of features to feed the next layer.

The activation function provides the non-linearity required to increase the model’s

flexibility. If X is the input, and Y is our label vector, using supervised learning

notation form [56], we have:

X =


xT

1

xT
2
...

xT
n


n×d

, Y =


y1

y2
...

yn


n×1

, ∆ =


δ1

δ2
...

δk


k×d

. (4.2)
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In order to handle the bias-variable or y-intercept, and take into account the

non-linearity of model, linear latent-factor features of input, zi = ∆xi, should go

through a non-linear function called activation function, where

Z =


zT

1

zT
2
...

zT
n


n×k

, L =


l1
l2
...

lk


k×1

. (4.3)

Using linear model L, ANN model will make a prediction

yi = LTh(zi) (4.4)

that minimizes the loss function. This process happens at all hidden layers. Figure

4.2 illustrates one hidden layer of a neural network. During the training phase,

ANN will repeatedly update the L and ∆ jointly, until it gets to the output layer.

Each neuron can detect a portion of feature and as the data flows in the layers,

deeper layers can detect a combination of features. By definition, an ANN with

more than two hidden layers is a deep neural network.

4.2 Data Collection and Pre-processing

4.2.1 Data collection

In supervised learning, we need labeled training data to train the network. Gen-

erally, such labeled data can be obtained either from mathematically solving the

complicated problem many times or from a real mobile network or a combination

of two.

In our case, the labeled data is a large set of backhaul and access link CSIs

as input features and the corresponding optimal solutions obtained from CRAN

optimization as input labels, gathered from solving the heuristics optimization ap-

proach introduced in the previous chapter. Considering the large computational

complexity of solving the semidefinite programming (3.9) introduced in chapter 2,

the time required for gathering a large-enough data-set is very long.
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Figure 4.2: Hidden layers of deep neural network.

Table 4.1: Compute Canada resources [2].

Nodes CPU (GHz) RAM storage number of runs run-time
56 2 x Intel @ 2.1 125GB variable 2 x 480G SSD 20000 3 weeks

To recap, the computational complexity of the numerical algorithm 1 we used

for solving the CRAN optimization (3.9) is O(2n4.5). To provide enough computa-

tional resources for solving this algorithm tens of thousands of times, we used the

Compute Canada CPU resources. Besides, to make the algorithm faster, we used

the parallel processing capability of MATLAB® using parfor that “executes for-

loop iterations in parallel on workers in a parallel pool” [57], which reduced the

amount of processing time considerably. For details on computational resources

and run-time refer to Table 4.1.
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Output layerHidden layersInput layer

Figure 4.3: A DNN with three hidden layers.

4.2.2 Dealing with Complex-Valued Tensors

One of the primary challenges of using deep learning in our problem is dealing

with complex numbers. In our problem five complex-valued tensors—backhaul

CSI, access-link CSI, backhaul precoding matrix, access-link precoding matrix,

and CP quantization noise covariance matrix are involved. In Table 4.2, the details

of the size of these tensors are provided.

In neural networks, one way to deal with complex-valued tensors is to separate

the real and imaginary parts and stack them or concatenate them to end up with

real-valued tensors that DNNs can use for training. Although such a pre-processing

potentially can obscure the relation between real and imaginary parts of the data

by treating them as unrelated information in general, this relation can be learned in

the case of fully connected DNNs. This pre-processing has been broadly used in

data-driven telecommunication articles [58–60].

In the case of the Convolutional Neural Network (CNN), stacking or concate-

nating the real and imaginary parts of the tensors can cause information loss as

it breaks some existing geometrical relations and creates new ones. To prevent

this, a new type of DNNs, called deep complex neural network, is proposed by
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Table 4.2: Data-set dimensionality.

Parameter Raw Complex Data Flatten Real Data
W 20000×NRU

tx ×NRU
tx ×M 2×20000× (NRU

tx NRU
tx M)

Q 20000×NRU
tx ×NRU

tx ×M 2×20000× (NRU
tx + NRU

tx (NRU
tx −1)

2 M)

V 20000×NCP
tx ×NCP

tx ×M 2×20000(NCP
tx + NCP

tx (NCP
tx −1)

2 M)

CSIDL 20000×NRU
tx ×K×M 2×20000× (NRU

tx NRU
tx M)

CSIFL 20000×NCP
tx ×NRU

tx ×M 2×20000× (NCP
tx NRU

tx M)

[61]. However, in this study we only use fully-connected DNNs, thus we use the

conventional real-imaginary concatenation method.

4.2.3 Dealing with High-Dimensional Tensors

To feed the neural network with the data gathered from our problem, we need to

flatten both the input features and input labels, as shown in Figure 4.4. Flattening

the data for training fully connected DNNs is easy, as the reshaping order does

not matter. However, to be able to use the output of the neural network, we need

a function that recovers V, W, and Q from their flat real vector. Therefore, it is

important to use a transformation that can undo itself in the reverse direction.

There are three standard reshaping orders for flattening tensors—C, A, and F1.

Among these orders, only the order F has this property. Meaning that, for example,

if we reshape a 3D tensor W of size a×b×c to a vector of size 1×abc with order

F and then reshape it again to the size a×b×c, we get the same W. However, it is

not true for order C and A.

4.3 Neural Network Model
DNNs and CNNs are among the most frequently used models in multi-antenna

system designs. Although DNN is a more general approach that targets a broader

1According to [62]: “C means to read/write the elements using C-like index order, with the last
axis index changing fastest, back to the first axis index changing slowest. ‘F’ means to read/write
the elements using Fortran-like index order, with the first index changing fastest, and the last index
changing slowest. ‘A’ means to read / write the elements in Fortran-like index order if the array is
Fortran contiguous in memory, C-like order otherwise.”
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Figure 4.4: Flattening the data.

range of applications, CNN is specialized in learning geometrical patterns and re-

lations.

There are no geometrical relations or local inter-dependencies in backhaul and

access link CSI matrices in our problem. That is because there is no actual semantic

relation between adjacent rows or columns, and just by re-ordering the indices of

the antenna ports, we can obtain a new equivalent representation of the CSI matrix.

In other words, changing the order of rows or columns of a CSI matrix does not

add or remove any information.

Hence, a fully connected DNN is a more appropriate option for our problem

compared to a CNN. More elaborate details about the structure of the DNN are

discussed in Section 4.4 ,and the post-processing steps required for enforcing con-

straints will be provided in Sections 4.5 and 4.5.2.
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Figure 4.5: The Venn diagram of the constraints. Note that Failing to meet
the capacity constraint and ZF constraint does not make a DNN-
generated [V,W,Q] solution infeasible, though affects the sum rate.
However, failing to meet the Positive Semi-Definite (PSD) and power
constraints leads to an infeasible solution.

4.4 Performance Metrics
Achieving an appropriate DNN architecture for our problem requires several pa-

rameters and hyper-parameters tuning steps. Some of the parameters and hyper-

parameters to be designed in a DNN are the number of hidden layers, the activa-

tion functions, batch size, initialization types, number of epochs, number of nodes

in each layer, optimization configuration such as the optimizer, learning rate, drop

out rate, regularization type, and value, etc. Deciding on parameters and hyper-

parameters types and values is a decision based on the the DNN’s performance. In

most DNNs, the train and validation errors and their slopes are useful in determin-

ing both the parameters and hyper-parameters. Though, in our case, the loss value

is not the only factor to be considered. The loss function measures how close we

are to the input labels in the data-set. However, it does not guarantee the feasibility

of the solution and can not give us a good sense of the sum-rate performance in our

case. As we get closer to the input labels, more predictions satisfy the constraints

and better performance we get, though we should observe all performance metrics

to decide on a proper DNN architecture.
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During the training, our implicit goal is to maximize the user sum-rate given in

(2.15), so one performance metric is the amount of sum-rate achieved by the neural

network. Also, since we cannot guarantee that the DNN-generated solutions can

satisfy the constraints, another performance metric is the ratio of feasible solutions

to all DNN-generated solutions and the amount of violation from the feasible set.

Only all of these metrics together can measure our network’s performance. With

proper observation and evaluation of all performance metrics together with the loss

values, we can land on a good DNN architecture that leads to a low validation error,

good performance, and feasible predictions.

As discussed before, we cannot make sure all the predictions are feasible. In

the next section, we will discuss the post-processing steps needed to enforce con-

straints in our predictions.

4.5 Accounting for Constraints
Our goal is to train a neural network that takes the backhaul and access link CSI

matrices and produces V, W, and Q such that, first, satisfies the power, ZF, ca-

pacity, and PSD constraints and second, maximize the user sum-rate formulated in

(3.9).

In this chapter, we approach this problem with a supervised learning method. In

other words, we will train a neural network that behaves, just like the optimization

method we introduced in chapter 3. This way, by learning to produce a solution set

[V,W,Q] per CSI that is similar to the solution set achieved by the optimization

algorithm for the same CSI, it indirectly learns to maximize the sum rate.

However, the presence of multiple constraints in this problem causes many

challenges. By mimicking the characteristics of optimal solutions in the data-set,

we cannot ensure that all constraints will be met. Figure 4.5 illustrates this by a

Venn diagram. Failing to meet the ZF constraint causes interference on RUs, which

affects the backhaul capacity and, consequently, the sum-rate, but it does not make

a DNN-generated solution infeasible. The same is true for the backhaul capacity

constraint; if the sum-rate surpasses the backhaul capacity, it causes congestion,

and the final sum-rate becomes capped by the backhaul capacity, but it does not

make a solution infeasible. However, failing to meet the power constraints on V
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and W or the PSD constrain on V and Q makes a [V,W,Q] solution infeasible. To

overcome these challenges, we adopt various techniques for each constraint and

discus them in the next sections.

4.5.1 Backhaul ZF and Capacity Constraints

In supervised learning, the DNN implicitly learns how to avoid large interference

as all of the input labels that are provided for training satisfy the ZF constraint;

however, since we cannot guarantee that the DNN can meet the ZF constraint, we

consider the adverse effects of the residual interference in terms of user sum rate.

Failing to satisfy the ZF constraint causes interference GH
mVkGm that affects

the RF backhaul capacity as follows:

CRF
m (Vm,Qm,Wm) = lndet

(
I+(GH

mVkGm +αPsi
m +σ

2
n I)−1GH

mVmGm
)
, k 6= m

(4.5)

The larger the GH
mVkGm becomes for k 6= m, the more interference it causes and

further limits the RF backhaul capacity and consequently mitigates the user sum

rate by causing congestion.

However, as indicated in Figure 4.5, violating the PSD constraint of V and Q
and power constraint of V and W makes a solution infeasible and useless. Hence,

we enforce the PSD and power constraints through the structure of the DNN.

4.5.2 Enforcing PSD Constraints

A positive semi-definite matrix should be Hermitian. To enforce the Hermitian

property, we employ two separate DNN’s to generate the diagonal and upper trian-

gular elements of the covariance matrices Qm and Vm as seen in Figure 4.6. For

example, for the matrix

Qm =


q11 q12 q13 q14

q21 q22 q23 q24

q31 q32 q33 q34

q41 q42 q43 q44

 , (4.6)
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we first decompose it into two arrays of diagonal Qdiag
m = [q11, q22, q33, q44] and

upper-triangular Qupper
m = [q12, q13, q14, q23, q24, q34] and then train a separate

neural network for each vector. This way, the Hermitian property of the generated

Vm and Qm are enforced. The structure of this neural network is illustrated in

Figure 4.6.

To ensure the positive semi-definiteness of the DNN-generated Vm and Qm

matrices, after training, we pass the generated Vm or Qm matrices to a customized

function that approximates the generated tensors by their closest semi-definite ma-

trices. To do so, after the training, we first combine Qdiag
m and Qupper

m to get Qm. In

the mentioned activation function, we perform eigen-value decomposition on Qm

as

Qm = ∆Σ∆
H, (4.7)

where, Σ is a diagonal matrix containing the eigen-values of Qm. Then we approx-

imate Σ with a Σ′ with all negative elements replaced by 0 and re-construct the

PSD-approximated of Qm as follows:

Q′m = ∆Σ
′
∆

H. (4.8)

This way we enforce the PSD constraint. The same structure can be applied to Vm

matrix to enforce the PSD constraint.

4.5.3 Enforcing Power Constraint

To enforce the Wm and Qm to meet the power constraints after training the neural

network we employ a customized function in the output layer of the neural network

to first normalize the vector and then scale its power to the maximum allowed

power as suggested by [60]. So the customized activation function of the output

layers are

Wscaled
m = Wm

√
Pm−|Tr(Qm)|
|Tr(WmWH

m)|
, (4.9)

and

Qscaled
m = Qm

Pm−|Tr(WmWH
m)|

|Tr(Qm)|
. (4.10)
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Figure 4.6: The proposed DNN structure to ensure Hermitian output.

For backhaul power constraint, we use a similar technique but since the power

constraint is on the ∑m Tr(Vm), we need to keep the ratio of transmit power between

different m before and after the scaling. For m = 2, the pre-scaling power ratio is

αv =
Tr(V1)

Tr(V2)
=

Tr(Vscaled)

Tr(Vscaled)
. (4.11)

Assuming ΣM
m=1Tr(Vm) = Pc, a proper power scaling that enforces the backhaul RF

power constraint and keeps the power ratio is

V′1 = V1
αvPc

(1+αv)Tr(V1)
, (4.12)

V′2 = V2
Pc

(1+αv)Tr(V2)
. (4.13)

With these post-processing actions, we can make sure all DNN predictions are in

the feasible set. In the next section, we will summarize the DNN performance and

architecture.
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4.6 Implementation and Numerical Results

4.6.1 PyTorch

PyTorch is one of the most powerful machine learning libraries used to create arti-

ficial neural network models. It is recognized for its descriptive documentation and

active developer community. We used four packages in PyTorch to implement our

neural network—PyTorch DNN model, automatic differentiation to compute gra-

dient, PyTorch loss to compute loss function and PyTorch optimizer to optimize the

model parameters. All of these packages can be customized and incorporated with

user-defined modules if there is a specific demand in the problem that cannot be

met by these packages (as we do so in our unsupervised learning model in Chapter

5).

During the training phase, the neural network tries to minimize loss through

parameter optimization and gradient calculation is an essential part of the process.

In PyTorch the data-type of the inputs and outputs of the neural network as well as

the wights and biases are tensor. To calculate the gradient of the loss function with

respect to the weights and biases, we can activate the auto-grad attribute of the

weight and bias tensors. This way, when we do an operation in the forward path,

PyTorch forms a computational graph which automatically calculates the partial

gradients and using the chain rule, obtains the gradient vector to be used in the

backward path.

4.6.2 Results

In this subsection, we present the performance results of the proposed supervised

learning approach for solving the CRAN optimization problem. Each DNN can

predict one optimization variables in a specific weather condition and SIC level.

For each weather condition and SIC level, we gathered a data-set containing 20000

labeled samples, including 16000 training samples and 4000 validation samples.

The main difference between each scenario is the availability of the FSO link

based on weather conditions and backhaul RF link based on the SIC level. The

hyper-parameters of the DNN are listed in Table 4.3 and input and output sizes in

Table 4.4.
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We divided the training data set into 80 batches of size 200 and used batch

gradient and RMSprop2 for training. We used Mean Average Error (MAE) and

Mean Square Error (MSE) loss functions as illustrated in Table 4.3 for different

networks. A combination of drop out and L2 regularization techniques is used to

solve the over-fitting problem in training phases. Furthermore, we observed a gra-

dient explosion at the final stages of training and solved it via gradient clipping.

To evaluate the final sum-rate performance, we used separate DNNs to train V, Q
and W. Each of these DNNs can be used to predict one of the optimization vari-

ables. The model evaluation can be done in two ways. One approach is to combine

each DNN-generated variable with the optimal results obtained in Chapter 3 and

calculate the sum rate (let’s name it Semi-DNN sum-rate) as illustrated in Figure

4.8. We can compute this metric for each DNN separately. To evaluate the overall

performance of all DNNs together, we can compute the sum-rate performance by

passing the output of all three DNNs to evaluate the sum-rate (let’s name it DNN

sum-rate) as shown in Figure 4.7. The results of both approaches are summarized

in Table 4.5 and associated DNN design parameters and input/output size are de-

tailed in Tables 4.3 and 4.4. As it is seen from Table 4.5, the overall performance is

limited by the performance of W prediction. We believe that the mandatory post-

processing that we do on the DNN-generated W, Q and V after training to satisfy

the PSD and power constraints affects the performance. In the case of V, any small

divergence of the optimal covariance matrix leaves us with an inter-RU interfer-

ence in the backhaul, which decreases the backhaul’s capacity and caps the final

sum-rate. In the case of Q and W, training the DNN was quite challenging and our

best guess is that, compared to V, the variables Q and W have a more complicated

behavior and it is more difficult to predict them.

Computational Complexity Comparison

Considering the variables’ size in our system model, the computational complexity

of model-based approach introduced in chapter 3 is O((45(2× (10+4+4))4.5)≈
2According to [63], In RMSprop “the effective learning rate is divided by square root of gradient

average (lrrmsprop = lr√
v+ε

), where ε is an added term to improve the numerical stability of algo-

rithm and v = 0.9×MeanSquare(w, t−1)+0.1(σE/σw(t))2, which keeps a moving average of the
squared gradient for each weight.”
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Table 4.3: DNN architecture in supervised learning.

Variable Loss Layers & nodes
W MSE 64, 100, 100, 200, 200, 200, 100, 100, 64

Vdiag MAE 160, 200, 200, 100, 50, 20
Vtri MSE 160, 200, 300, 400, 400, 400, 400, 300, 200, 180

Qdiag MAE 64, 100, 50, 25, 15, 8
Qtri MSE 64, 100, 80, 40, 30, 24

Table 4.4: Inputs and outputs of DNNs in supervised learning approach.

Parameter Input & Dimension Output & Dimension
W CSIDL : 20000×64 W : 20000×64

Vdiag CSIFL : 20000×160 Vdiag : 20000×20
Vtri CSIFL : 20000×160 Vtri : 20000×180

Qdiag CSIDL : 20000×64 Qdiag : 20000×8
Qtri CSIDL : 20000×64 Qtri : 20000×24

O(1010). However, the computational complexity of forward path in a DNN is

O(nm1 +∑
l−1
i=1 mimi+1 +mlk), where n is the number of inputs, l is the number

of hidden layers each one with m1,m2, ...,ml neurons and k is the number of out-

puts. Considering the five DNNs introduced in Tables 4.3 and 4.4, and the av-

erage 50% dropout, the overall computational complexity of our supervised data-

driven methods is O(152800/2)+O(98000/2)+O(908000/2)+O(13145/2)+

O(19520/2)≈O(5×105).

This huge complexity difference between model-based and data-driven opti-

mization, becomes more severe in the next generation of Mobile network where

there will be denser network and more networked devices.

Table 4.5: Performance of semi-DNN and DNN architectures.

Variable Semi-DNN sum-rate DNN sum-rate
W 75%

73%V 82%
Q 99%
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Figure 4.7: DNN-based optimization approach.

44



Figure 4.8: Post-processing of DNN-based solutions and achieved hybrid
sum-rate.
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Chapter 5

Machine Learning-Based CRAN
Optimization, an Unsupervised
Approach

Notwithstanding the low computational complexity of the supervised DNN-based

CRAN optimization introduced in Chapter 4, the performance is limited to the

performance of the numerical optimization obtained in Chapter 2. In fact, even

reaching to the performance achieved via numerical optimization in Chapter 2 is

very difficult and requires arbitrarily large number of epochs and tedious hyper-

parameter tuning in the supervised manner.

In addition, the presence of constraints and structural regularization proposed

to enforce the constraints (see Figure 3.8), contributed to the inferior sum rate

performance achieved in Chapter 4. That is because, the ways we enforced these

constraints are not necessarily the most optimal solutions. For example, enforcing

the PSD constraint by changing the eigen-values of the DNN-generated V and Q
can potentially through the solution arbitrarily far away from the optimal solution.

All in all, the sum rate performance achieved in Chapter 4 through the super-

vised learning is acceptable especially considering the large reduction in compu-

tational complexity. However, it seems that employing an unsupervised learning

method that is not bounded by the existing solutions in Chapter 2 can potentially

achieve a better performance while maintaining a low computational complexity.
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Hence in this chapter we study the application of unsupervised learning for CRAN

optimization.

5.1 Learning to Optimize with Unsupervised Learning
To enhance the sum-rate performance of the DNN-based solution we can use un-

supervised learning to let the DNN explore beyond the existing solutions (input

labels) that is considered the ground truth and discover superior solutions in terms

of sum-rate while maintaining a low computational complexity. In summary, the

benefits of the unsupervised learning in CRAN optimization are

• No need for solving the optimization task (3.9) thousands of times to gener-

ate the input labels

• Can potentially surpass the performance achieved in Chapter 4

In this approach, instead of minimizing the conventional MSE/MAE loss function,

we set the negative of the objective function equal to the loss function and train a

DNN to minimize it [64–66]. Assume that x∗ = argminx f0(x, p) is the optimization

problem we want to solve. Similar to the supervised method, we design a DNN as

follows:

x∗ = DNN(p), (5.1)

and the loss is

L = f0(x, p). (5.2)

As an alternative, some employed reinforced learning (RL) to address similar prob-

lems. A 2016 study by Kie Li, et.al, uses RL to solve unconstrained continuous

optimization problems [45]. In addition, [46, 47] use RL to solve unconstrained

discrete combinatorial optimization problems.

However, what has been missing in all of the mentioned works is the con-

straints. To the best of our knowledge, a method for learning to optimize an ob-

jective function under some generic constraints does not exist that ensures meeting

the constraints except for the power limitation constraint in beamforming that is

usually addressed by a customized activation function that caps the norm of the
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Figure 5.1: Learning to Optimize. Unsupervised learning train and test
phases

DNN’s output [60]. In this chapter, we introduce a generic method for enforcing

any inequality or equality constraints to a DNN-based optimization method.

Assume that P is the set of all input features, i.e., p ∈P and X ∗ is the

set of all corresponding outputs of the neural network, i.e., x∗ ∈X ∗. We want

this DNN to take samples of p as the input and generate the corresponding x such

that it minimizes the the objective function f0(x, p) under the set of the constraints

fi(x, p)≤ ci and hi(x, p) = bi.

5.1.1 Piece-wise Regularization for Enforcing the Constraints

In this novel method, we propose to set the loss function of the DNN equal to the

objective function and add penalty terms to the objective function as follows:

L (x∗, p) = f0(x∗, p)+∑
i
I( fi(x∗, pk)− ci)+∑

j
I(h j(x∗, pk)−b j) (5.3)
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where, I is defined as below

I(x) =

0 , x≤ 0

∞ , x > 0
. (5.4)

In each epoch, our target would be to minimize the mean of the loss, i.e., L (X ∗,P)=
1
|P| ∑k∈P L (x∗k , pk). This way, we ensure that the constraints are met as the indica-

tor function disposes of infeasible solutions by sending the value of the loss to in-

finity. Nonetheless, since the gradient of ∑i I( fi(x∗, pk)−ci)+∑ j I(h j(x∗, pk)−b j)

is always zero, the neural network cannot learn anything with this loss.

A tweak for this issue would be to use penalty terms with non-zero gradient1

to penalize the infeasible solutions instead of using the I function. Our target is to

make sure that the loss value outside of the feasible set becomes large enough such

that no infeasible solution can minimize the L .

Let’s define the “deviation from feasibility” for inequality constraints as fol-

lows

Fi(x∗, p) =

0 , fi(x∗, p) ≤ ci

ηi( fi(x∗, p)− ci)
γ , else

(5.5)

and for equality constraints

H j(x∗, p) =

0 ,h j(x∗, p) = b j

η j|h j(x∗, p)−b j|γ , else
. (5.6)

where, ηi ≥ 0 are hyper-parameter that tunes the effect of the regulating terms, and

γ ≥ 1. Note that η j must be large enough to dominate L outside of the feasible

set. Now we define the penalty term as follows

Ω(x∗, p) = ∑
i

Fi(x∗, p)+∑
j

H j(x∗, p), (5.7)

In this method, for a solution x∗, if none of the constraints get violated, Ω

becomes 0 and there is no penalty, otherwise there is a penalty for each constraint

1Gradient of the multiplicative penalty term with respect to the weights and biases of the neural
network should be non-zero so that the neural network can learn how to avoid infeasible solutions
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Figure 5.2: Penalizing solutions outside of the feasible set using piece-wise
regularization method.

that is violated proportional to the amount of violation (see Figure 5.2). We define

the per-sample loss function as follows

L (x∗, p) = f0(x∗k , pk)+Ω(x∗k , pk) (5.8)

and the mean loss as follows

L (X ∗,P) =
1
|P| ∑

k∈P
( f0(x∗k , pk)+Ω(x∗k , pk)) (5.9)

5.2 Segmented CRAN Optimization Via Unsupervised
Learning

Using the method introduced in Section 5.1 we can formulate our constrained opti-

mization problem and solve through unsupervised learning DNNs. However, train-

ing a large DNN that outputs all optimization variables—V, Q, and W can be quite

challenging in practice. Larger networks are more prone to over-fit and hyper-

parameter tuning can be very difficult and time-consuming.
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5.2.1 Segmented Optimization

To overcome the tuning challenge mentioned in Section 5.2, we segment the prob-

lem of joint optimization of [V,Q,W], to a segmented optimization tasks. As we

have a two-hop communication network consisting of backhaul and access links

that connect CP, RU’s, and UE’s, it also does make sense to separate backhaul

and access optimization problems and maximize different objectives, i.e., back-

haul capacity and user-sum rate in other optimization problems. We use a DNN

for optimizing V, and another DNN for optimizing Q and W. For training V, the

objective is to maximize the backhaul capacity while satisfying the ZF, PSD, and

power constraints. For training W and Q, the objective is to maximize the user sum

rate while satisfying the power and PSD constraints.

Besides, in an unsupervised manner, the customized loss function adds a huge

complexity cost to training of our neural network as the network will calculate the

derivation of the customized loss function in each epoch instead of the MSE or

MAE functions which have a less complicated gradient calculation compared to

a customized function like equation (5.9). Thus separating networks and having

separate loss functions for various optimization variables makes the optimization

process more manageable and tuning steps easier.

5.2.2 Accounting for Constraints

For power constraints we will use the piece-wise regularization proposed in sec-

tion 5.1.1 so that unlike the power scaling method used in Chapter 4, the constraint

can get involved in the training process and influence the gradient. The main bene-

fit of the proposed piece-wise regularization is that it allows the neural network to

learn how to stay within the allowed boundaries of the problem and not violate the

constraints.

In addition to the piece-wise regularization method for imposing the power

constraint, we will hard-wire the DNN’s structure to satisfy the ZF and PSD con-

straints without applying any regularizing terms. We will show in Section 5.2.3

and 5.2.4 for the first time, that applying a proper customized activation function

we can impose these constraints.

We will not enforce the backhaul limitation constraint during training Q and
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W as we do not want to limit our results to supervised labels and the derived ca-

pacity from supervised manner. We will discuss more about capacity limitation

enforcement in post processing step.

5.2.3 Optimization of V in a Semi-Supervised Manner

For training V, because of self-interference, the backhaul capacity also depends

on Q, and W. So we use input labels of [Q,W], while training V (see equation

(2.6)). That is why we call this training method semi-supervised. We have three

constraints in optimizing V —PSD, ZF, and power constraints. Imposing ZF con-

straint eliminates multi-RU interference as follows:

GH
mVkGm = 0 for k 6= m (5.10)

The ZF constraint could not be guaranteed in the supervised CRAN optimization

in Chapter 4. Also, to impose the PSD constraint, we resorted to manipulating

the Vm and Qm and approximated them by a PSD matrix which caused consider-

able performance loss. However, in unsupervised learning we can guarantee the

satisfaction of both ZF and PSD constraints by designing a customized activation

function at the output layer of the DNN.

Assume that the frounthaul beamforming vector to m-th RU is Bm, then we

have Vm = BmBH
m. To ensure that Vm is always PSD, the DNN can output Bm

in the output layer and a customized activation function can take Bm and return

Vm = BmBH
m in the output layer of the DNN. However, this way the generated

matrix Vm does not satisfy the ZF constraint. To satisfy the ZF constraint the

matrix Bm must satisfy

G̃H
mBm = 0 ∀m ∈M, (5.11)

where

G̃m = [G1, G2, . . . Gm−1, Gm+1, . . . , GM]. (5.12)

It means that Bm must be chosen from the null-space of G̃H
m. According to [41],

if G̃m = UmΣmYH
m is the Singular Value Decomposition (SVD) of G̃m, where Ym =

[Y(1)
m , Y(2)

m ], the columns of Y(2)
m form an orthogonal basis for the null space of

G̃m. Hence, we can use Y(2)
m as a basis for the backhaul beamforming matrix Bm to
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Figure 5.3: DNN structure of the proposed semi-supervised training method
for V

satisfy the ZF constraint between the backhaul RF links.

Therefore, using the matrix Y(2)
m as the basis of the beamforming we define

Bm = Y(2)
m Am where Am is a variable matrix that can be optimized for maximizing

the backhaul capacity. Now consider a DNN that receives the channel matrices

G , [G1,G2, ...,GM] and returns A , [A1,A2, ...,AM] matrices.

A = DNN(G) (5.13)

For simpler representation, we ignored the tensor flattening and tensor recov-

ering modules here. For this DNN we define the activation function of the output

layer of the DNN as follows:

Vm =
(

Y(2)
m Am

)(
Y(2)

m Am

)H
(5.14)

This activation function receives Am and returns Vm as according to (5.14). Fi-

nally, the customized loss function of the proposed DNN for optimizing V can be

designed based on the piece-wise regularization method proposed in Section 5.1.1.

Since in the backhaul our target is to maximize the capacity and we have a power
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constraint according to (5.8) we have the per-sample loss as

LV =−
NRU

∑
m

(
BFSOCFSO

m +BRFCRF
m
)
+ΩV, (5.15)

where CFSO
m is achieved in (2.7) and CRF

m is achieved in (2.6) and

ΩV =

0 ,∑m Tr(Vm) ≤ Pcp

η(∑m Tr(Vm)−Pcp)
γ , else

(5.16)

The structure of the proposed DNN is illustrated in Figure 5.3. As it is seen, during

the training the optimal values of Q and W are fed to the customized loss function

but V is provided by the DNN. Again, in this type of training since some of the

input labels are used and some are not, we name it semi-supervised learning. Also,

in this problem we use γ = 2 and tune η during the training.

5.2.4 Optimization of Q and W in an Unsupervised Manner

For maximizing users sum-rate we propose an unsupervised DNN that received the

downlink CSI as input and outputs Q and W. To meet all the constraints we propose

a special DNN architecture as discussed below. The matrix Qm must satisfy the

PSD constraint. Hence, similar to Vm, our DNN returns an auxiliary variable Sm

and then use a customized activation function to calculate Qm as follows

Qm = SmSH
m. (5.17)

This way, the output of the DNN is always PSD. Both Qm and Wm must satisfy the

backhaul capacity and power constraint as indicated in (2.10) and (2.13). We will

enforce the capacity constraint in post-processing step by considering congestion

for values that violate the capacity constraint. Using the piece-wise regularization

method introduced in Section 5.1.1 the customized per-sample loss function of this

DNN can be defined as follows

L =−
NRU

∑
m

Rdata
m +Ω, (5.18)
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Figure 5.4: DNN structure of the proposed unsupervised training method for
Q and W

where, Ω is the piece-wise penalty term corresponding to the power constraint and

is achieved as follows

Ω=

0 ,∑m Tr(Qm) ≤ ∑m(Pm−Tr(WmWH
m))

η(∑m Tr(Qm)−Pm +Tr(WmWH
m))

γ , else
.

(5.19)

The structure of the proposed DNN is illustrated in Figure 5.4. In this problem we

use γ = 2 and tune η during the training.

5.2.5 Post-Processing Step

Penalizing loss function proportional to the amount of violation from constraints,

as discussed in Section 5.2.1, can push the DNN to produce values that satisfy

constraints, but it cannot guarantee that. So we still need the post-processing step

to enforce all predictions to lie in the feasible set. Besides, for constraints that

involve multiple variables, it is better to enforce them in the post-processing step.

For example, to enforce the capacity constraint, if the sum-rate value derived from

unsupervised optimization of Q and W, violates the backhaul capacity derived

from semi-supervised optimization of V, we will consider congestion in the post-

processing step. This way the minimum of backhaul capacity and sum-rate will be

considered as the final sum-rate. Note that we do not need to modify the achieved

W and Q to meet the capacity constraint, as in downlink if the capacity of backhaul

is less than the capacity of the access link, users will experience a throughput less
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Figure 5.5: Proposed unsupervised and semi-supervised DNNs for CRAN
DL optimization.

than their capacity but no data loss will happen.

Enforcing the power constraint in unsupervised manner is slightly different

from the supervised method applied in Chapter 4, because now both W and Q
should be adjusted together to meet the constraint. There are multiple ways to

enforce the power constraint—1) by splitting the power budget between outputs of

the DNN (W and Q) using a certain ratio that can be pre-calculated based on the

existing labels achieved from the conventional optimization 2) using either W or Q
as provided by the DNN and adjust the other one to satisfy the constraint. We tried

both and concluded that the latter provides superior performance. In particular we

adapt Q as provided by DNN and use formula (4.9) to scale W. The post processing

step and the overall semi-supervised approach is illustrated in Figure 5.5.

5.2.6 Complexity Analysis of DNN

The complexity of training a neural network that has n inputs, l hidden layers each

one with m1,m2, ...,ml neurons and k outputs with back-propagation algorithm af-

ter Ne epochs and Ns samples is O(NeNs(nm1 +∑
l−1
i=1 mimi+1 +mlk)). However, in

the forward path it is only O(nm1 +∑
l−1
i=1 mimi+1 +mlk).

The beauty of the proposed scheme is that it takes an enormous chunk of the

computational complexity offline. This enables the forward path to deliver solution
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with a low computational complexity compared to online optimization algorithms

such as Interior point method which is often used for non-convex optimizations

problems. Interior point method has the worst-case computational complexity of

O(max{n,m}4√n log( 1
ε
)), where n is the number of variables, m is the number of

constraints, and ε is the solution accuracy [44].

5.3 Numerical Results and Discussion
In this section we present the performance results of the proposed semi-supervised

learning approach for solving the CRAN optimization problem. We consider the

same scenario in Section 4.6, i.e., specific weather condition and SIC level, is con-

sidered to gather data and train the DNN. Also, we used the same data-set gathered

in Chapter 4, i.e., for each weather condition 20000 labeled samples including

16000 training samples and 4000 validation samples.

The DNN structure of both methods are listed in Table 5.2 and input and output

sizes are shown in Table 5.1. We divided the training data set into 80 batches

of size 200 and used batch gradient and RMSprop for training. To get the final

sum rate performance results, we used a semi-supervised DNN to obtain V and an

unsupervised DNN to obtain Q and W as explained in Sections 5.2.3 and 5.2.4. For

testing, we take the two trained DNNs and in forward path generated the optimal V,

Q, and W and pass them to (2.15) to evaluate the sum rate performance. Table 5.3

illustrates the semi-DNN performance and DNN sum-rate of the proposed scheme.

Results show that the semi-supervised learning approach for optimizing backhaul

capacity, outperforms the conventional analytical approach used in Chapter 3 by

30%.

Overall, the sum-rate achieved by unsupervised method introduced in this chap-

ter outperforms the supervised method (Chapter 4) by 6% and achieves 79% of the

analytical method.

Computational Complexity Comparison

Considering the two DNNs introduced in Tables 5.1 and 5.2 , the overall com-

putational complexity of our unsupervised data-driven methods is O(80040) +

O(101800) ≈ O(181× 103), which is 2.7 times faster than the supervised in for-
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Table 5.1: Dimensionality of inputs and outputs of unsupervised DNNs.

Parameter Input & Dimension Output & Dimension
W,Q CSIDL : 20000×64 W,S : 20000×128

V CSIFL : 20000×160 A : 20000×200

Table 5.2: Architecture of unsupervised DNNs

Variable Layers & nodes
W,Q 64, 100, 150, 150, 130, 128

V 160, 200, 200, 100, 50, 96

ward path and 50000 times faster than model-based method. Notice that, gradient

computational graph,that Pytorch uses for calculating the gradient, in unsupervised

network is more complicated compared to the supervised method. Hence, even

though the unsupervised method is faster in forward path, it requires more training

time.

Table 5.3: Performance of semi-supervised and unsupervised DNN-based
DL CRAN optimization.

Variable semi-DNN Performance DNN Sum-rate
W,Q 80%

79%V 130%

5.3.1 Training Challenges

During training and turning, we faced several challenges that will be explained in

this section.

Tuning learning rate

The learning rate is considered the most important tuning parameter in the net-

work. A high learning rate causes fast convergence to local minima and oscillating

gradient, and a low learning rate lowers the convergence speed considerably. We

tried many different learning rates and used Figure 5.6 to find a proper learning rate
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Figure 5.6: Learning rate tuning guide [4]

[4]. Other than the initial learning rate, which is a crucial factor, we can schedule

the learning rate to decay in specific intervals (e.g., every 10 epochs) or base on a

specific threshold (e.g., train error threshold).

Vanishing Gradient

The activation function is an essential parameter of the network that should be

appropriately chosen. For some activation functions such as Sigmoid, after adding

several layers to the DNN, the gradients of the loss function approaches zero which

stops the model from learning. Easiest and maybe the most practical way to solve

the vanishing gradient problem is using Rectified Linear Units (ReLU) or Leaky

ReLu activation functions. Also, batch normalization can help with this issue.

Another approach is changing the weight initialization from the usual Glorot ini-

tialization to He initialization. It adds to network learning ability and has been

shown that works well with the Relu activation function [67]. We used all three

workarounds in our model and effectively solved the vanishing gradient problem.
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Figure 5.7: Exploding Gradient Illustration. The graph on the right-hand-side
shows exploding gradient effect and instabilities in train and test errors,
we were able to limit the gradient value by clipping, as it is shown in
the left graph.

Exploding Gradient

The exploding gradient is another problem caused when large gradient results in

large steps during the weight and biases update and instabilities the optimization,

as illustrated in Figure 5.7. One common way to prevent gradient explosion is to

use gradient clipping. It sets a limit on the norm of the gradient during the training

for more stability. We used gradient clipping, as illustrated in Figure 5.7.

Over-fitting

Another common issue in the training phase is over-fitting, which means that the

DNN memorizes the training samples. The most apparent clue of an over-fitted

network is the increase in validation error while the training error continues to go
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down. We avoided over-fitting in our training by employing the dropout scheme

and L2-norm regularization.

Non-homogeneous Loss and Constraints

As mentioned before, in semi-supervised learning, our goal is to minimize the

customized loss function formulated in section 5.2.2. The idea is to penalize per-

formance rate for predictions outside of the feasible set. The challenge here is that

the value of ΩV and the fornthaul capacity which is the objective for optimizing

V and the value of Ω and the user sum-rate which is the objective for optimizing

Q and W are not homogeneous. So tuning η for adjusting the values is very im-

portant during training. For best results, we monitored the sum-rate and penalty

values separately during the training phase (same as what we did for the train and

validation loss values), and re-tuned η , every couple of epochs, according to the

loss, performance and penalty values.

5.3.2 PyTorch Limitations

Despite all the benefits, available libraries and descriptive documentation of Py-

Torch, there were some challenges we faced working with complex numbers in Py-

Torch environment. As we discussed in Section 4.6.1, PyTorch automatically cre-

ates a computational graph and calculates the gradient for every operation. How-

ever, this is true if the function we are using has a defined gradient in PyTorch

library. Unfortunately, currently there is a limited algebra support in PyTorch for

complex numbers [68, 69] and even some of them are limited to CPU usage only.

It made us write many customized functions for basic algebraic operations and re-

stricted our actions to a limited set of operators. It also affected the computation

speed as having customized function expands the computational graph. Fortu-

nately, PyTorch is working on expanding the complex library and hopefully they

will provide a more straight-forward program development environment for work-

ing with complex numbers.
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Chapter 6

Conclusion and Future Work

To conclude this thesis, we provide a summary of our main motivations, achieve-

ments, and contributions in solving the downlink CRAN optimization problem. We

also, propose possible future research directions that reflect the potential openings

in this area.

6.1 Conclusion
In this research, we consider the downlink of a cloud radio access network consist-

ing of a central processor and a network of connected radio units. CRAN offers a

promising solution for 5G cellular networks as it enables coordinated beamform-

ing and better interference management in ultra-dense networks, which will be

one of the most common scenarios in 5G. To address CRAN’s backhaul capac-

ity limitation, we proposed a novel resource allocation solution for the scenario

with full-duplex self-backhauling RUs connected through hybrid RF/FSO links to

the CP for improved network throughput. We studied the feasibility of the IBFD

communication in terms of the required self-interference cancellation to outper-

form the benchmark half-duplex hybrid RF/FSO transmission. Since the derived

optimization problem for the design of the linear precoders and quantizers sub-

ject to the fronthaul capacity, zero-forcing, and power constraints, is non-convex

and intractable, we developed an algorithm to solve it via an alternating optimiza-

tion approach. In the simulation results, the proposed hybrid RF/FSO system is
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assessed in terms of achievable rate, and we highlighted the parameter range for

which FD transmission is more rewarding than the time-division approach under

different weather conditions and selected RF bandwidth.

Notwithstanding the benefits of the proposed solution, which is based on a

conventional optimization approach, this method’s computational complexity is

still a challenge in practical scenarios. That led us to use a data-driven strategy

to reduce complexity. We employed two machine learning-based optimization ap-

proaches—supervised and unsupervised to optimize the design variables without

solving conventional analytical optimization tasks.

The main achievements of the work in this thesis can be summarized as below:

• We integrated in-band full-duplex self-backhauling and hybrid RF/FSO back-

haul in a CRAN architecture to improve backhaul reliability and facilitate

coordinated beamforming for better interference management in 5G. We

showed full-duplex self-backhauling is a more efficient approach compared

to the state-of-the-art half-duplex approach provided enough SIC.

• To address the complexity crunch in the model-based CRAN design, we

proposed two data-driven approaches for reducing the computational com-

plexity. We proposed a supervised and an unsupervised learning-based opti-

mization approaches and showed that they have much lower computational

complexity compared to the model-based method at the cost of a benign per-

formance loss.

• The key challenge in data-driven optimization approaches was generating

solutions that meet all constraints. It required particular DNN architecture,

customized activation, and loss functions and post-processing actions; in

the case of supervised learning, we imposed constraints via several post-

processing steps and proposed a novel DNN architecture to meet positive

semi-definiteness constraint. In unsupervised learning, we proposed two ac-

tivation functions for zero-forcing and positive semi-definiteness constraints,

and presented a piece-wise regularization approach that enforces the DNN

to generate solutions in the feasible set.

63



6.2 Future Work
In this section, we discuss possible future research directions.

• Inaccurate channel state information can affect the system’s performance and

generate a gap between theoretical analysis and real implementation [70],

[71]. In this research, we assumed perfect CSI is available at the CP. For

future work, we can extend the work to a more realistic imperfect CSI. In

addition, we can also investigate the CSI measurement methods and employ

the advanced ML-based solutions for channel estimation as well [72]. Also,

the channel model of the FSO link can be further enhanced using deep learn-

ing frameworks as proposed by [73].

• Another active area of research in 5G is millimeter wave communication.

CRAN in such high frequencies needs to employ massive MIMO to com-

bat propagation loss which further complicates the optimization problem in

terms of computational cost. The DNN approach proposed in this study can

potentially also be applied to millimeter wave CRAN.
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