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Abstract

In this thesis we investigate strongly localized solutions to systems of singularly

perturbed reaction-diffusion equations arising in several new contexts. The first

such context is that of bulk-membrane-coupled reaction diffusion systems in which

reaction-diffusion systems posed on the boundary and interior of a domain are cou-

pled. In particular we analyze the consequences of introducing bulk-membrane-

coupling on the behaviour of strongly localized solutions to the singularly per-

turbed Gierer-Meinhardt model posed on the one-dimensional boundary of a flat

disk and the singularly perturbed Brusselator model posed on the two-dimensional

unit sphere. Using formal asymptotic methods we derive hybrid numerical-asymptotic

equations governing the structure, linear stability, and slow dynamics of strongly

localized solutions consisting of multiple spikes. By numerically calculating sta-

bility thresholds we illustrate that bulk-membrane coupling can lead to both the

stabilization and the destabilization of strongly localized solutions based on intri-

cate relationships between the bulk-membrane-coupling parameters.

The remainder of the thesis focuses exclusively on the singularly perturbed

Gierer-Meinhardt model in two new contexts. First, the introduction of an in-

homogeneous activator boundary flux to the classically studied one-dimensional

Gierer-Meinhardt model is considered. Using the method of matched asymptotic

expansions we determine the emergence of shifted boundary-bound spikes. By lin-

earizing about such a shifted boundary-spike solution we derive a class of shifted

nonlocal eigenvalue problems parametrized by a shift parameter. We rigorously

prove partial stability results and by considering explicit examples we illustrate

novel phenomena introduced by the inhomogeneous boundary fluxed. In the sec-

ond and final context we consider the Gierer-Meinhardt model in three-dimensions
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for which we use formal asymptotic methods to study the structure, stability, and

dynamics of strongly localized solutions. Most importantly we determine two dis-

tinguished parameter regimes in which strongly localized solutions exist. This is

in contrast to previous studies of strongly localized solutions in three-dimensions

where such solutions are found to exist in only one parameter regime. We trace

this distinction back to the far-field behaviour of certain core problems and formu-

late an appropriate conjecture whose resolution will be key in the rigorous study of

strongly localized solutions in three-dimensional domains.
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Lay Summary

The formation of patterns in biological models is often described by systems of

reaction-diffusion equations describing ways in which diffusing chemicals inter-

act with one another. A detailed description of the patterns that emerge in these

systems is often unattainable without extensive computer simulations. However,

when one of the chemicals is assumed to diffuse very slowly, patterns described by

strongly localized solutions emerge. Such solutions are characterized by the con-

centration of chemicals at discrete points and can be accurately described using a

variety of mathematical techniques. In this thesis we apply and extend these tech-

niques to analyze the structure and behaviour of localized solutions in several new

models.
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Chapter 1

Introduction

In 1952, Alan M. Turing’s paper The Chemical Basis of Morphogenesis [93] laid

down the foundations for a rich and insightful direction of biological and mathe-

matical enquiry that continues to this day. Early embryonic development, Turing

hypothesized, is guided by pre-patterns of biochemical morphogens that undergo

passive diffusion with prescribed reaction kinetics. Turing’s key insight was that,

under certain conditions on the morphogens’ diffusivities and their reaction kinet-

ics, a spatially homogeneous distribution of morphogens could undergo a symme-

try breaking bifurcation resulting in the formation of morphogen patterns. Sur-

prisingly, this insight implies that diffusion, which is typically assumed to have a

smoothing and stabilizing effect, could instead have a structured coarsening effect

leading to the formation of spatial patterns.

While the biological implications of Turing’s original theory of morphogenesis

continue to be influential, it is Turing’s mathematical approach that is most relevant

for this thesis. In particular, to illustrate his insights Turing considered a system

involving two morphogens whose concentrations, u and v, satisfy a two-component

reaction-diffusion (RD) system of the form

ut = Du∆u+ f (u,v), vt = Dv∆v+g(u,v), in Ω, (1.1)

where Du and Dv denote the morphogens’ diffusivities and f (u,v) and g(u,v) their

respective kinetics. With a simple choice of reaction-kinetics reflecting a chemi-
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cal reaction, Turing determined conditions under which a spatially homogeneous

equilibrium of (1.1) that is stable with respect to the reaction-kinetics may bifur-

cate into a spatially heterogeneous equilibrium. Such a transition to a spatially

heterogeneous equilibrium is the result of what is now commonly referred to as a

Turing, or diffusion-driven, instability, while the resulting spatially heterogeneous

states are often referred to as Turing patterns. In addition to discovering this mech-

anism for pattern formation, it is also important to highlight that by restricting

his attention to a system of the form (1.1), Turing distilled the complex and mul-

tifaceted problem of pattern formation in biological systems into an analytically

tractable model equation from which key insights about the pattern-forming poten-

tial of two interacting mechanisms, mainly passive diffusion and reaction-kinetics,

can be inferred. Such an approach is now ubiquitous in mathematical biology (see

[68]) and has led to the ongoing application, extension, and refinement of Turing’s

original ideas.

Reaction-diffusion systems exhibiting pattern forming behaviour, often times

through a Turing, or Turing-like, instability mechanism, have been proposed in a

variety of applications including animal coat markings [67], stripe patterns in the

marine angelfish Pomacanthus [50], sea shell patterns [80], early limb develop-

ment [64], morphogenesis in the fresh water polyp hydra [23, 62], plant growth

[35, 36, 69], ecological models [86], and the formation of crime hot spots [8, 87]

among many others (see [59] for a review of chemical and biological applications).

These models typically prescribe reaction-kinetics that reflect specific chemical re-

actions, such as in the Gray-Scott [30, 31] and Brusselator [79] models, or other

phenomenologically motivated interactions as in the activator-inhibitor model of

Gierer and Meinhardt [23]. Originally motivated by the role of lateral inhibition in

visual pattern recognition, the Gierer-Meinhardt (GM) model is particularly impor-

tant in the literature for its recognition of the importance of autocatalytic feedback

loops and inhibitory reactions, commonly referred to as local self-activation and

long-range inhibition, in biological pattern formation.

While some molecular candidates for morphogens have been identified [42]

(see also [62, 88]) the experimental establishment of a Turing mechanism driving

pattern formation in biological systems remains an area of ongoing research [61,

88]. Moreover, theoretical shortcomings of the classical Turing mechanism such
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as a sensitivity to initial conditions and a lack of robustness have been recognized

[61]. Such shortcomings do not repudiate Turing’s original ideas however, but

instead serve as an opportunity to better understand pattern formation in general.

One way this has been done is by incorporating additional mechanisms to reaction-

diffusion systems of the form (1.1). For example, studies incorporating growth

[10, 14, 25, 52, 78], mechanical feedback [7, 63], and bulk-membrane coupling

[54, 58, 81] have shown favourable results. The latter, mainly the introduction of

bulk-membrane coupling, serves as the primary motivation for Chapters 2 and 3 of

this thesis and is reviewed in more detail in §1.2 below.

In addition to serving as a model equation for pattern forming systems, reaction-

diffusion systems of the form (1.1) and its extensions discussed above have also

been the focus of the application and development of numerous mathematical

ideas. While classical stability analysis predicts parameter thresholds beyond which

a spatially homogeneous equilibrium is destabilized, it does not adequately pre-

dict the equilibrium, if one exists, to which it settles. Linear stability analysis

is therefore often accompanied with full numerical simulations to explore system

dynamics beyond the onset of instabilities [77]. Alternatively, techniques from a

dynamical systems perspective such as centre manifold reductions [9] and weakly

nonlinear analysis [76] can be used to further examine the system dynamics near

the onset of linear instabilities. However, for parameter values far from the sta-

bility thresholds predicted by the linear theory, diverse techniques need to be em-

ployed (see [15, 72]). A particular class of reaction-diffusion systems of the form

(1.1) for which substantial progress has been made in understanding pattern for-

mation far from the onset of Turing instabilities occurs when the ratio between

the species, Du/Dv, is asymptotically small. Such reaction-diffusion systems often

exhibit localized patterns that are characterized by large amplitude solutions com-

pactly supported in asymptotically small spatial regions [100] (see also [44] for

an overview of localization in general dissipative systems). The natural separation

of spatial scales exhibited by these solutions makes them particularly amenable to

analysis by both asymptotic and rigorous reduction methods, both of which have

been highly successful in characterizing the existence, structure, and stability of

these solutions. These types of solutions, and especially the asymptotic methods

used to analyze them, underlie the bulk of this thesis and are outlined in §1.3.
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In the preceding paragraphs we have outlined several of the theoretical and

applied aspects as well as recent modelling and mathematical developments of

Turing’s original theory of biological pattern formation. Two key aspects from

this discussion constitute the primary motivation and core technical aspects of this

thesis. The first is the incorporation of bulk-membrane coupling into models of

intracellular processes. The resulting bulk-membrane-coupled (BMC), or bulk-

surface-coupled, models explicitly incorporate the inherent compartmentalization

of cytosolic- and membrane- bound biochemical processes often found in intracel-

lular processes. These models serve as the primary motivation for Chapters 2 and

3 and are therefore reviewed in more detail in §1.2. The second aspect constitutes

the core technical component of this thesis and involves the asymptotic analysis

of localized patterns in singularly perturbed reaction-diffusion systems and is re-

viewed in more detail in §1.3 below. To more explicitly place both of these aspects

in the context of Turing instability driven pattern formation, we first provide an

outline of the calculation of Turing instability thresholds for the two-component

reaction-diffusion system (1.1) using classical linear stability analysis.

1.1 Classical Linear Stability Analysis
The starting point for the classical analysis of Turing instabilities is the assumption

that (1.1) admits a spatially homogeneous steady state that is stable with respect to

the reaction-kinetics. This means that constants u? and v? can be found such that

f (u?,v?) = g(u?,v?) = 0, traceJ? < 0, det J? > 0, (1.2)

where J? is the Jacobian evaluated at (u,v) = (u?,v?) and explicitly given by

J? =

(
f ?u f ?v
g?u g?v

)
.

We close (1.1) by imposing homogeneous Neumann boundary conditions so that

the spatially homogeneous solution is an equilibrium of the closed system. Next we

let µk ≥ 0 and φk(x) (k ≥ 0) denote the eigenvalues and accompanying eigenfunc-

tions of −∆ in Ω with homogeneous Neumann boundary conditions on ∂Ω. We
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recall that φ0 = 1 while the eigenvalues satisfy the ordering 0= µ0 < µ1≤ µ2≤ ·· · .
Although we are assuming that (u?,v?) is stable with respect to the spatially homo-

geneous k = 0 mode, it may become unstable with respect to k ≥ 1 modes and we

therefore consider perturbations of the form

u = u?+ξ eλ t
φk(x), v = v?+ηeλ t

φk(x), (k ≥ 1).

Substituting int (1.1) and linearizing yields an eigenvalue problem with character-

istic polynomial

λ
2− τ(µk)λ +δ (µk) = 0,

where

τ(µ) = trace J?− (Du +Dv)µ, δ (µ) = DuDvµ
2− (Dug?v +Dv f ?u )µ +det J?,

and for which we are interested in conditions under which an unstable root (i.e.

with positive real part) can be found. Since µk > 0 and trace J? < 0 we deduce that

τ(µk)< 0 for all k≥ 1 and Turing instabilities are therefore triggered if δ (µk)< 0

for some k ≥ 1. From the form of δ (µ) we deduce that a Turing instability will

be triggered provided that Dug?v +Dv f ?u is sufficiently large. Indeed, by calculating

the roots of δ (µ) we determine the necessary condition for a Turing instability

Dv

Du
f ?u −2

√
Dv

Du
det J?+g?v > 0. (1.3)

We emphasize that this inequality is a necessary condition and in practice the re-

quirement that δ (µk) < 0 for some k ≥ 1 often requires that Dv/Du exceeds the

threshold predicted by (1.3). In some cases the requirement for a large diffusiv-

ity ratio needed to trigger Turing instabilities is physically prohibitive which has

motivated the exploration of extensions to the classical Turing mechanism. Most

pertinent to this thesis, and reviewed in more detail in §1.2 below, is the proposal

that bulk membrane coupling can lead to the formation of Turing-like patterns.

Together with the assumption that (u?,v?) is stable with respect to k = 0 modes,

(1.3) provides us with insights on the reaction-kinetics for which (1.1) admits Tur-

ing instabilities. In particular, trace J? < 0 implies that at least one of f ?u or g?v
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is negative. Without loss of generality we assume that g?v < 0, with which (1.3)

implies f ?u > 0. Furthermore, the condition that det J? > 0 implies that f ?v and g?u
are of opposite sign which characterizes activator-inhibitor and activator-substrate

models depending on whether fv > 0 and gu < 0 or fv < 0 and gu > 0 respectively.

To directly illustrate the above analysis we consider the one-dimensional GM

model posed on the unit interval with homogeneous Neumann boundary condi-

tions. Specifically, we consider

ut = Duuxx−u+
up

vq , τvt = Dvvxx− v+
um

vs , 0 < x < 1, (1.4)

with ux(0) = ux(1) = vx(0) = vx(1) = 0 and for which we impose the constraints

p > 1, q > 0, m > 0, and s≥ 0 on the GM exponents. The spatially homogeneous

steady state is then given by u? = v? = 1 with which the Jacobian is explicitly given

by

J? =

(
p−1 −q

mτ−1 −(1+ s)τ−1

)
,

and from which we deduce that (u,v) = (u?,v?) is linearly stable with respect to

the reaction-kinetics provided that

0 < τ <
1+ s
p−1

, 0 <
p−1

q
<

m
1+ s

. (1.5)

Calculating

δ (µ) = DuDvµ
2−
(
(p−1)Dv−

1+ s
τ

Du

)
µ +

mq− (p−1)(1+ s)
τ

, (1.6)

we then determine that (1.3) implies

Dv

Du
>

2mq
(p−1)2τ

(
1− (1+ s)(p−1)

2mq
+

√
1− (1+ s)(p−1)

mq

)
. (1.7)

Since µk = (πk)2 and φk(x) = cosπkx (k ≥ 0), the system (1.4) is susceptible to

Turing instabilities provided that δ (π2k2)< 0 for some k ≥ 1.

In the commonly studied case where the GM exponents are given by (p,q,m,s)=
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Figure 1.1: Solid lines indicate values of δ (µ) versus µ for the GM expo-
nents (p,q,m,s) = (2,1,2,0), with Dv = 2, τ = 0.25, and specified val-
ues of Du > 0. Markers indicate the values of the modes µk = π2k2

for which δ (µk) < 0 and the spatially homogeneous pattern becomes
susceptible to Turing instabilities.

(2,1,2,0) we calculate that τ < 1 in order for the spatially homogeneous solution

to be linearly stable with respect to the reaction kinetics. On the other hand, af-

ter fixing τ = 0.25, (1.7) implies that Dv/Du > 23.4 is a necessary condition for

Turing instabilities. Fixing Dv = 2 we then find that as Du is decreased the k = 1

mode is the first to go unstable at a value of Du ≈ 0.067 for which Dv/Du ≈ 29.8.

In Figure 1.1 we plot δ (µ) for values of Du = 5× 10−2,5× 10−3,5× 10−5 for

which we note that, respectively, the k = 1, 1 ≤ k ≤ 4, and 1 ≤ k ≤ 45 modes are

linearly unstable. In Figure 1.2 we plot the solution at discrete times obtained by

numerically solving (1.4) when Du = 5× 10−2 and Du = 5× 10−5. In the former

case only the k = 1 mode is linearly unstable and this is qualitatively reflected in

the solution’s time evolution. Using the proximity of the diffusivity ratio Dv/Du to

the Turing instability threshold a weakly nonlinear analysis could be used to track

the sole unstable mode and effectively characterize the resulting equilibrium solu-

tion. On the other hand, when Du = 5× 10−5 our previous calculations indicate

that 45 distinct spatial modes are linearly unstable. These modes interact nonlin-

early eventually leading to the formation of the spiky solution shown in Figure 1.2.

In particular, this illustrates that perturbation techniques using the closeness of the

diffusivity ratio to the Turing instability threshold fail to hold when Du � Dv, in

part due to the emergence of a large band of unstable spatial modes. However, the

resulting numerically computed solution illustrates that this large band of unstable

modes leads to a localized solution and suggests that perturbation methods that
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Figure 1.2: Snapshots of numerically computed solutions of the one-
dimensional singularly perturbed Gierer-Meinhardt model with expo-
nents (p,q,m,s) = (2,1,2,0) when τ = 0.25, Dv = 2 and Du = 5×10−2

(top) and Du = 5×10−5 (bottom).

exploit large disparities between spatial scales can instead be used approximate

the resulting solution. Indeed, a combination of both rigorous and formal asymp-

totic methods have been used to study such localized solutions and we provide an

outline of these developments in §1.3 below.

1.2 Bulk-Membrane Coupled Models
One of the key biological motivation for the recent interest in mathematical models

incorporating bulk-membrane coupling is the naturally occurring compartmental-

ization of cytosol- and membrane-bound processes found in complex intracellular

self-organizing processes. One classic example of such compartmentalization is

the Min System in which the dynamics of cytosol- and membrane-bound MinC,

MinD, and MinE are believed to drive the positioning and localization of the con-

tractile Z-ring ultimately leading to cell septation [37]. Another classic example

can be found in the establishment of cell polarity by the Rho family of guanosine-

triphosphate binding proteins (GTPases) for which GTPases undergo activation

and inactivation on the cell membrane in addition to cell membrane attachment
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and detachment [65, 81]. While early mathematical models of these intracellu-

lar processes recognized the compartmentalization of bulk- and membrane-bound

biochemical agents by separately modelling their respective concentrations and

reaction kinetics, the resulting mathematical models did not explicit model cell

membrane attachment and detachment [37, 38, 65]. However in 2005 Levine and

Rappel studied the formation of Turing-like patterns in a bulk-membrane-coupled

(BMC) reaction-diffusion (RD) system and found that the details of the membrane

attachment and detachment process can have a pronounced effect on pattern for-

mation [54]. This discovery has motivated numerous additional investigations of

pattern formation in a new class of BMC RD systems. In particular, the systematic

incorporation of bulk-membrane-coupling has been introduced into new models of

the Min System [5, 6, 33] and GTPase driven cell polarization [16, 17, 29, 75, 81].

More generally Halatek et. al. [34] have proposed that the key mechanism under-

lying intracellular pattern formation involves the mass-conserving redistribution

of proteins by cytosolic diffusion together with the cycling of proteins between

bulk- and membrane-bound states. Such a restriction to mass-conserved BMC RD

systems however neglects the synthesis of proteins or other signalling molecules

within the cytosol. In this context it remains pertinent to understand pattern for-

mation in more general BMC RD systems incorporating cytosolic synthesis by

introducing, for example, cytosol-bound reaction-kinetics [58] or cytosol-bound

spatial inhomogeneities (see Chapter 3).

In the remainder of this section we outline several key recent developments

in the analysis of Turing-like patterns in BMC RD systems. First however we

introduce the general mathematical description of BMC models. Letting Ω be a

bounded domain in RN (N ≥ 2) a BMC RD system governing the concentrations

UUU = (U1, ...,Un)
T and uuu = (u1, ...,um)

T of n bulk-bound and m membrane-bound

species respectively is given by

τB∂tUUU = DB∆UUU +FFF(UUU), in Ω, (1.8a)

DB∂nUUU = γq(uuu,UUU), on ∂Ω, (1.8b)

τM∂tuuu = DM∆∂Ωuuu+ fff (uuu)−qqq(uuu,UUU), in ∂Ω, (1.8c)

where τB and DB are matrices consisting of the time constants and diffusivities of
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the bulk-bound species while τM and DM those of the membrane-bound species, FFF

and fff reflect the bulk- and membrane-bound kinetics respectively, and qqq reflects

the membrane attachment-detachment process while γ > 0 accounts for asymme-

tries in the exchange. With some notable exceptions (see [16, 17]) authors studying

BMC-RD models have primarily modelled the membrane attachment-detachment

process as a Langmuir process (see §4 of [43]) which is reflected by choosing qqq as a

linear function of the membrane- and bulk-bound concentrations. In particular this

leads to Robin boundary conditions and linear terms in the bulk-bound problem

and membrane equations respectively. Unless otherwise specified, the models we

discuss in the remainder of this section use a Langmuir process to describe mem-

brane attachment-detachment. Finally we note that (1.8) is to be understood as a

leading order approximation of a system of two N-dimensional RD systems, one

posed inside of the bulk and the other posed on a thin external protrusion, in the

limit of the external protrusions thickness going to zero. The systematic derivation

of this leading order approximation is presented in Appendix A.

In the two-component BMC-RD system considered by Levine and Rappel [54]

the membrane-bound diffusivities were assumed to be identically zero in order to

reflect experimental observations that indicate membrane-bound diffusivities are

much smaller than bulk-bound diffusivities [55]. In addition the authors assumed

that within the bulk the two species only diffuse and decay but do not react, with

reactions being instead restricted to the membrane. Under these assumptions the

two-component BMC-RD system reduces to a system coupling two bulk-bound

linear partial differential equations (PDEs) to two membrane-bound nonlinear or-

dinary differential equations (ODEs). For this simplified model Levine and Rappel

performed a linear stability analysis about an equilibrium that is spatially homoge-

neous on the boundary and demonstrated that even if the bulk-bound diffusivities

of two species are equal, bulk-membrane-coupling can lead to pattern formation on

the membrane. Thus, bulk-membrane-coupling provides an attractive extension to

classically studied models exhibiting Turing instabilities which otherwise require

large differences in diffusivities to initiate pattern formation.

Motivated both by the natural compartmentalization between bulk- and membrane-

bound processes and by the weakened restrictions for Turing-like instabilities illus-

trated by Levine and Rappel [54], numerous additional studies have explored the
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effects of bulk-membrane-coupling on pattern formation. In the context of sym-

metry breaking in cell signalling networks, Rätz and Röger have studied the for-

mation of Turing-like patterns in a two-component BMC-RD system with nonzero

membrane-bound diffusion in which only one species detaches into the bulk where

it undergoes passive diffusion and bulk-decay [81, 83]. Similarly, Madzvamuse

et. al. [57, 58] studied the formation of Turing-like patterns in a general two-

component BMC-RD system with diffusion and reactions in both the bulk and the

membrane. In both the studies by Rätz and Rögers and those of Madzvamuse et. al.,

criteria for Turing-like instabilities were derived using an analogue of the classical

linear stability analysis reviewed in §1.1 above. Moreover the authors in both stud-

ies used numerical methods, a phase-field approach in the former and a BMC finite-

element method in the latter, to verify their linear stability predictions and explore

the resulting patterns formed beyond the onset of linear instabilities. The effects

of cell shape and diffusion barriers for two-dimensional BMC-RD systems were

investigated by Giese et. al. [24] through extensive in silico experimentation on the

cell polarization models of Goryachev et. al. [29], for which a Turing-like instabil-

ity drives polarization, as well as that of Mori et. al. [65], in which wave-pinning

is the central polarizing mechanism. We conclude by noting the studies of Dieg-

miller et. al.[17], as well as Cussedu et. al. [16], for which the wave-pinning model

of Mori et. al. [65] was extended to explicitly model bulk-membrane coupling in

three-dimensional domains. These latter models consist of a single-component

BMC-RD system for which membrane attachment-detachment is modelled by a

nonlinear Hill function. In contrast to the self-activation and lateral inhibition re-

quired for Turing instabilities, the wave-pinning mechanism instead relies on the

interplay between bi-stability and mass conservation.

With the exception of the analysis of the wave-pinning model found in [16, 17],

the analysis of Turing-like patterns in the BMC-RD systems discussed above have

been primarily limited to in silico experiments and linear stability analysis. While

weakly nonlinear analysis and the derivation of amplitude equations have been

used to analyze dynamics beyond the onset of linear instabilities [73, 74] there are

no studies analyzing of patterns formation far from equilibrium in BMC-RD sys-

tems. This gap serves as the primary motivation for the contents of Chapters 2 and

3 for which pattern formation is investigated in two singularly perturbed BMC-RD
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systems. In particular, in these chapters we study the effects of incorporating bulk-

membrane coupling into two well studied singularly perturbed RD systems: the

one-dimensional GM model, and the two-dimensional Brusselator model posed on

the unit sphere. These two models are part of a large class of singularly perturbed

RD models that exhibit strongly localized solutions for which substantial rigorous

and asymptotic developments have been made in the past two decades and which

we outline in more detail in the next section.

1.3 Strongly Localized Patterns
Although a detailed analysis of far-from-equilibrium solutions to general two-

component reaction-diffusion systems of the form (1.1) is typically intractable,

substantial progress has been made for a wide class of singularly perturbed reaction-

diffusion systems of the form

ut = ε
2
∆u+ f (u,v), τvt = D∆v+g(u,v), x ∈Ω, (1.9)

where Ω ⊂ Rd (d ≥ 1) and ε � 1 is an asymptotically small parameter. Specifi-

cally, when the reaction kinetics f (u,v) and g(u,v;ε) are of activator-inhibitor or

activator-substrate type (see §1.1) the system (1.9) exhibits strongly localized so-

lutions in the sense that the activator u(x, t) is of a large amplitude in asymptotically

small spatial regions. This separation of spatial scales makes (1.9) particularly well

suited to analysis by both formal and rigorous reduction methods. In this section

we outline some of the key developments in the analysis of strongly localized so-

lutions to (1.9).

Historically, the Gierer-Meinhardt (GM) model given by

ut = ε
2
∆u−u+

up

vq , τvt = D∆v− v+
um

vs , x ∈Ω⊂ Rd (1.10)

∂nu = 0, ∂nv = 0, x ∈ ∂Ω, (1.11)

where d ≥ 1 and the GM exponents (p,q,m,s) satisfy (1.5), has been one of the

primary models driving the development of both formal and rigorous techniques

in the study of strongly localized solutions. Early work on the GM model focused
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on the shadow-limit obtained by letting D→ ∞ and for which v(x, t)→ ξ (t) is

spatially constant. By an appropriate rescaling, steady state solutions to (1.10) in

the shadow limit can be found by solving the single equation

ε
2
∆u−u+up = 0, x ∈Ω, ∂nu = 0, x ∈ ∂Ω, (1.12)

which has a variational structure with energy functional

Jε [u]≡
ˆ

Ω

(
ε2

2
|∇u|2 + 1

2
u2− 1

p+1
up+1
+

)
dx, u+ ≡max(0,u).

In this case both formal asymptotic [39, 40, 102] and rigorous [32, 51, 107] (see

also the review articles [71, 108] and book [112]) methods have been used to

construct multi-spike equilibrium solutions and study their stability. Interestingly,

while many multi-spike equilibrium solutions exist in the shadow limit, only those

equilibrium solutions consisting of a single spike concentrating on the boundary

at a non-degenerate local maximum of the mean curvature are stable. In contrast,

by using the method of matched asymptotic expansions when D > 0 is finite Iron

et. al. [41] demonstrated that symmetric multi-spike equilibrium solutions to (1.10)

when d = 1 are stable provided that D is sufficiently small. Similar methods were

also used by Ward and Wei [104] to construct asymmetric multi-spike solutions.

In contrast to the shadow limit, the equilibrium system for (1.10) when D > 0

is finite does not have a variational structure thereby limiting the availability of

rigorous techniques for studying the existence and stability of multi-spike equilib-

rium solutions. Such rigorous results have nevertheless been established for d = 1

[20, 90, 111] and d = 2 [45, 110] dimensional domains.

While many of the formal asymptotic studies discussed above were in the con-

text of the singularly perturbed GM model (1.10), the techniques used have been

successfully applied to study localized solutions in various d = 1, d = 2, and

d = 3 dimensional singularly perturbed RD systems such as the one- and two-

dimensional Gray-Scott [12, 47] and Brusselator [96, 97] models, the Brusselator

and Schnakenberg model on the surface of a sphere [84, 91] and torus [95] re-

spectively, as well as the three-dimensional Schnakenberg model [98]. In each of

these studies the method of matched asymptotic expansions is used to reduce the
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problem of calculating an N-spike equilibrium solution to that of calculating the

N spike locations as well as N parameters that determine the local spike profiles.

In particular, the N spike profile parameters are found by solving a nonlinear alge-

braic system arising from a leading order matching condition, whereas the N-spike

locations are found by calculating equilibrium configurations to an ODE system

arising from a higher order solvability condition and describing slow spike dynam-

ics. While the method of matched asymptotic expansions typically proceeds in a

similar way for constructing localized spike solutions, differences in the choice of

reaction-kinetics and dimension of the domain lead to pronounced technical differ-

ences in the details of the analysis. In particular the key role of the dimension of

the domain arises through the free-space Green’s function satisfying

∆G f =−δ (x−ξ ), x ∈ R f , (1.13)

and the reduced wave Green’s function satisfying

∆G−κ
2G =−δ (x−ξ ), x ∈Ω⊂ Rd , (1.14)

with appropriate boundary conditions if ∂Ω 6= /0, both of which are prominently

featured in the method of matched asymptotic expansions with the former deter-

mining the far-field behaviour of the inner solution and the latter playing a key role

in the construction of outer solutions. Moreover, the choice of reaction kinetics

and order of D and τ with respect to ε � 1 leads to pronounced qualitative and

quantitative differences in the formulation of the appropriate inner problem.

In addition to differences in the details of the method of matched asymptotic

expansions, different choices of reaction-kinetics and parameter values also lead

to diverse dynamics of multi-spike solutions. In particular multi-spike solutions

may undergo oscillatory, competition, and splitting instabilities depending on the

choice of parameter values and reaction-kinetics. Moreover, detailed thresholds

for both Hopf and competition instabilities can be calculated by using the method

of matched asymptotic expansions to derive a Globally Coupled Eigenvalue Prob-

lem (GCEP) which, for certain reaction-kinetics and parameter regimes, can be

further reduced to a Nonlocal Eigenvalue Problem (NLEP). While GCEPs are typ-
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ically analytically intractable, a substantial collection of rigorous stability results

for various NLEPs have been established [99, 107, 112]. In cases where such

rigorous results are not applicable, instability thresholds can nevertheless be cal-

culated by using a numerically-aided winding number argument [105] as well as

standard root-finding algorithms. Additionally, we remark that under appropriate

conditions NLEPs can be explicitly solvable whereby they can be reduced to sim-

pler algebraic equations [66, 70]. Finally, due to the fast decay of higher-mode

localized perturbations when d ≥ 2, splitting instabilities are independent of global

contributions and instead depend only on the local spike profile. We note that that

splitting instabilities when d = 1 arise through a different mechanism altogether

[46]. While the instability thresholds calculated in these studies predict the onset

of linear instabilities, recent progress has been made to determine the criticality of

Hopf [26, 28, 101] bifurcations and splitting [113] instabilities.

1.4 Main Contributions and Thesis Outline
As discussed in §1.2, BMC-RD systems provide an attractive extension to classical

Turing-instability driven pattern forming models. However, with the exception of

studies performing a weakly nonlinear analysis near the onset of Turing-like insta-

bilities, the majority of BMC-RD system studies have focused on the calculation

of linear Turing-like instability thresholds predicting the onset of spatial instabili-

ties near analogues to spatially homogeneous steady states. With patterns arising

far from the onset of Turing-like instabilities in BMC-RD systems being primarily

explored through in silico experiments there is a gap in our detailed understanding

of such far-from-equilibrium patterns. By using the formal asymptotic methods

that have been successfully used to develop a detailed understanding of strongly

localized solutions to singularly perturbed RD-systems as outlined in §1.3 we aim

to develop an analogous understanding of strongly localized patterns in singularly

perturbed BMC-RD systems in the first part of this thesis. Specifically, by in-

troducing bulk-membrane-coupling to two well-studied singularly perturbed RD

systems, mainly the one-dimensional GM model and the Brusselator model posed

on the unit sphere, we investigate the effects of bulk-membrane-coupling on both

the structure of multi-spike equilibrium solutions as well as their linear stability.
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The analysis of these two singularly perturbed BMC-RD systems is pursued in

Chapters 2 and 3 with our main contributions outlined in more detail below.

In the remainder of the thesis, mainly Chapters 4 and 5, we pursue the anal-

ysis of strongly localized solutions for the GM model in two new context: in

a one-dimensional domain with an inhomogeneous activator boundary flux, and

in a three-dimensional domain. While numerous studies have considered multi-

spike solutions for the one-dimensional GM system with homogeneous Neumann

[41, 105] and Robin [60] boundary conditions, the effects of an inhomogeneous

boundary flux have not yet been investigated. In 2018 Tzou et. al. [96] considered

the effects of a non-zero boundary flux for the inhibitor, but a similar investigation

for the activator has not been pursued. With a growing interest in bulk-membrane

coupling, understanding the effects of non-zero boundary fluxes for both activator

and inhibitor is increasingly important. By considering a non-zero activator bound-

ary flux for the one-dimensional GM system in Chapter 4 we initiate this line of

investigation as outlined in more detail below. The final context in which we study

strongly localized solutions is the three-dimensional GM model. Although our

analysis is heavily influenced by the work of Tzou et. al. [98] in which strongly

localized solutions of the three-dimensional Schnakenberg model are analyzed,

our analysis provides key new insights into the formation of strongly localized

solutions in three-dimensional systems in general. Specifically, in contrast to the

Schnakenberg model for which localized solutions can only be constructed in the

D = O(ε−1) regime, we find that localized solutions can be constructed in both

the D = O(ε−1) and D = (1) regimes for the three-dimensional GM model. We

trace this distinction back to the far-field behaviour of a particular core problem

and by calculating this far-field behaviour numerically we formulate several key

conjectures. The formulation of these conjectures as well as the detailed asymp-

totic analysis of localized patterns in the three-dimensional GM model is pursued

in Chapter 5 as outlined in more detail below.

The detailed outlines of the remaining chapters of this thesis are as follows.

In Chapter 2 we analyze a BMC PDE model in which a scalar linear two-

dimensional bulk diffusion process for the inhibitor is coupled to the classically

studied activator-inhibitor GM model posed on the domain boundary. In the sin-

gularly perturbed limit of a long-range inhibition and short-range activation for the
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membrane-bound species we use formal asymptotic methods to analyze the exis-

tence of localized steady-state multi-spike membrane-bound patterns and to derive

a nonlocal eigenvalue problem (NLEP) characterizing instabilities of these pat-

terns. A novel feature of this NLEP is that it involves a membrane Green’s function

that is coupled nonlocally to a bulk Green’s function. By considering two special

cases, mainly when the domain is a disk or when the bulk-bound inhibitor diffusiv-

ity is infinitely large, we can calculate this membrane Green’s function explicitly

which allows for the use of a hybrid analytical-numerical approach for determining

unstable spectra of the NLEP. This analysis reveals how bulk-membrane coupling

modifies the well-known linear stability properties of multi-spike equilibrium solu-

tions to the singularly perturbed one-dimensional GM mode in the absence of bulk-

membrane-coupling. In particular, bulk-membrane-coupling is shown to exhibit

both stabilization and destabilization with respect to either oscillatory instabilities

due to Hopf bifurcations or competition instabilities arising due to zero-eigenvalue

crossings. Moreover, in the case of oscillatory instabilities our analysis reveals an

intricate dependence on the coupling parameters as well as the diffusivity and time-

scale constant of the bulk-bound inhibitor. Finally, linear stability predictions from

the NLEP analysis are confirmed with full numerical finite element simulations of

the coupled PDE system. We remark that our approach is valid in more general

settings than the disk or the well-mixed shadow system, with the key hurdle being

the computation of the relevant Green’s functions. By restricting our detailed anal-

ysis to these two specialized cases, we can bypass the computational challenges of

calculating the Green’s functions and therefore focus instead on the novel effects

of coupling on the construction and stability of multi-spike solutions.

In Chapter 3 we incorporate bulk-membrane-coupling to the Brusselator model

posed on the unit sphere by coupling it to a passive diffusion process with an in-

homogeneous source for the activator within the bulk. Motivated by studies of the

Min and GTPase systems, for which proteins and signalling molecules originating

in the bulk attach to the membrane, our model proposes a mechanism whereby a

bulk-bound activator source term is transported to the membrane by diffusion. The

resulting membrane-bound feed term substitutes the external feed term included in

the classically studied Brusselator model required for sustaining pattern formation.

Our model therefore proposes a mechanism by which pattern sustaining feed terms
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can be introduced in a self-contained manner. In the singularly perturbed limit

where the membrane-bound activator diffusivity is asymptotically small, we use

formal asymptotic methods to construct and study the stability and slow dynamics

of localized solutions. In particular we derive a nonlinear algebraic system, glob-

ally coupled eigenvalue problem, and system of ODEs that determine, respectively,

the structure, stability and slow dynamics of a multi-spot solution. Furthermore we

highlight the key differences introduced by bulk-membrane coupling in compari-

son to previous studies of the uncoupled Brusselator model on the sphere [84, 91]

and unit disk [96]. In particular, we find that changes to the linear stability due

to bulk-membrane-coupling primarily result from a recirculation mechanism for

the membrane-bound activator. This recirculation effect also introduces an attrac-

tive term to the slow dynamics, but we show that it is weaker than the classically

observed coupling-independent repulsive term. Finally, analogously to results ob-

tained for the Brusselator on a two-dimensional disk [96], we find that spots are

attracted to local maximum points of the membrane-bound, bulk-originating, feed

term.

In Chapter 4 we study the effects of an inhomogeneous activator boundary flux

on the existence, linear stability, and slow dynamics of multi-spike solutions to the

singularly perturbed GM model on the unit interval in the singularly perturbed limit

of an asymptotically small activator diffusivity ε2 � 1. Specifically, we use the

method of matched asymptotic expansions to construct multi-spike solutions using

two classical methods pioneered in [39, 104]. One of the novel aspects introduced

by assuming inhomogeneous Neumann boundary conditions for the activator is that

it necessitates the concentration of spikes at the boundaries. Furthermore these

spikes are parameterized by a shift parameters which plays a central role in the

linear stability of these boundary-bound spikes. Proceeding with standard methods

previously used for the singularly perturbed one-dimensional GM model we derive

a system of NLEPs governing the linear stability on an O(1) timescale as well as

a system of ODEs governing slow spike dynamics on an O(ε−2) timescale. In the

simplest case of a single boundary-bound spike we formulate a scalar shifted NLEP

for which we establish partial stability results rigorously. Finally, by applying the

asymptotically derived structure, linear stability, and slow dynamic results as well

as full numerical simulations to examples of two-spike configurations involving
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both boundary and interior spike we highlight some of the novel phenomena that

arise.

In Chapter 5 we study the existence, linear stability, and slow dynamics of lo-

calized multi-spot solutions to the GM model in an arbitrary three-dimensional do-

main in the singularly perturbed limit of an asymptotically small activator diffusiv-

ity ε2� 1. Using the method of matched asymptotic expansions we determine that

in the D = O(1) only symmetric multi-spike patterns can be constructed and these

are always linearly stable on an O(1) timescale. In contrast, in the D = O(ε−1)

regime we find that both symmetric and asymmetric multi-spike patterns can be

constructed. However we show that the asymmetric patterns are always linearly

unstable on an O(1) timescale whereas the symmetric patterns may, upon ex-

ceeding certain numerically computed thresholds, undergo oscillatory instabilities

through a Hopf bifurcation or competition instabilities through a zero-eigenvalue

bifurcation on an O(1) timescale. Both of these instability predictions are sup-

ported by full numerical simulations of the three-dimensional GM model using the

finite-element software FlexPDE 6 [1]. Furthermore, the existence of multi-spot

solutions in both the D = O(1) and D = O(ε−1) regimes is traced back to the

far-field behaviour of a certain core problem which we may compute numerically

and from which we formulate several key conjectures. Additionally, we derive

a system of ODEs governing the slow dynamics of multi-spot solutions over an

O(ε−3) timescale in both the D = O(1) and D = O(ε−1) regimes. Finally, by per-

forming a linear stability analysis we determine that multi-spike solutions in the

weak-interaction D =O(ε2) regime may undergo peanut-splitting instabilities and

we numerically demonstrate that this leads to a cascade of self-replication events.
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Chapter 2

The Linear Stability of
Symmetric Spike Patterns for a
Bulk-Membrane Coupled
Gierer-Meinhardt Model

The primary goal of this chapter is to initiate detailed asymptotic studies of strongly

localized patterns in coupled bulk-surface RD systems. To this end, we introduce

such a PDE model in which a scalar linear 2-D bulk diffusion process is coupled

through a linear Robin boundary condition to a two-component 1-D RD system

with Gierer-Meinhardt (nonlinear) reaction kinetics defined on the domain bound-

ary or “membrane”. Similar, but more complicated, coupled bulk-surface models,

some with nonlinear bulk reaction kinetics and in higher space dimensions, have

previously been formulated and studied through either full PDE simulations or

from a Turing instability analysis around some patternless steady-state (cf. [81],

[82], [83], [58], [58], [83], [56]). Our coupled model, formulated below, pro-

vides the first analytically tractable PDE system with which to investigate how

the bulk diffusion process and the bulk-membrane coupling influences the exis-

tence and linear stability of localized “far-from-equilibrium” (cf. [72]) steady-state

spike patterns on the membrane. In the limit where the bulk and membrane are
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uncoupled, our PDE system reduces to the well-studied 1-D Gierer-Meinhardt RD

system on the membrane with periodic boundary conditions. The existence and

linear stability of steady-state spike patterns for this limiting uncoupled problem is

well understood (cf. [107], [41], [20], [21], [105]).

Our model is formulated as follows: Given some 2-D bounded domain Ω we

pose on its boundary an RD system with Gierer-Meinhardt kinetics

∂tu = ε
2
∂

2
σ u−u+up/vq, 0 < σ < L, t > 0, (2.1a)

τs∂tv = Dv∂
2
σ v− (1+K)v+KV + ε

−1um/vs, 0 < σ < L, t > 0, (2.1b)

where σ denotes arc length along the boundary of length L, and where both u and

v are L-periodic. In Ω we consider the linear 2-D bulk diffusion process

τb∂tV = Db∆V −V, x ∈Ω, Db∂nV +KV = Kv, x ∈ ∂Ω, (2.1c)

where the coupling to the membrane is through a Robin condition. The Gierer-

Meinhardt exponent set (p,q,m,s) is assumed to satisfy the usual conditions (cf. [41,

107])

p > 1, q > 0, m > 0, s≥ 0, 0 <
p−1

q
<

m
s+1

. (2.2)

In this model τb and τs are time constants associated with the bulk and membrane

diffusion process, Db and Dv are the diffusivities of the bulk and membrane in-

hibitor fields, and K > 0 is the bulk-membrane coupling parameter.

The remainder of this chapter is organized as follows. In §2.2 we use the

method of matched asymptotic expansions to derive a nonlinear algebraic system

for the spike locations and heights of a multi-spike steady-state pattern for the

membrane-bound species. A singular perturbation analysis is then used to de-

rive an NLEP characterizing the linear stability of these localized steady-states to

O(1) time-scale instabilities. A more explicit analysis of both the nonlinear al-

gebraic system and the NLEP requires the calculation of a novel 1-D membrane

Green’s function that is coupled nonlocally to a 2-D bulk Green’s function. Al-

though intractable analytically in general domains, this Green’s function problem
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is explicitly studied in two special cases: the well-mixed limit, Db� 1, for the bulk

diffusion field in an arbitrary bounded 2-D domain with C2 boundary, and when Ω

is a disk of radius R with finite Db.

In §2.3 we restrict our steady-state and NLEP analysis to these two special

cases, and consider only symmetric N-spike patterns characterized by equally-

spaced spikes on the 1-D membrane, for which the nonlinear algebraic system

is readily solved. In this restricted scenario, by using a hybrid analytical-numerical

method on the NLEP we are then able to provide linear stability thresholds for

either synchronous or asynchronous perturbations of the steady-state spike ampli-

tudes. More specifically, we provide phase diagrams in parameter space charac-

terizing either oscillatory instabilities of the spike amplitudes, due to Hopf bifur-

cations, or asynchronous (competition) instabilities, due to zero-eigenvalue cross-

ings, that trigger spike annihilation events. These linear stability phase diagrams

show that the bulk-membrane coupling can have a diverse effect on the linear sta-

bility of symmetric N-spike patterns. In each case we find that stability thresholds

are typically increased (making the system more stable) when the bulk-membrane

coupling parameter K is relatively small, whereas the stability thresholds are de-

creased as K continues to increase. This nontrivial effect is further complicated

Figure 2.1: Snapshots of the numerically computed solution of (2.1) starting
from a 2-spike equilibrium for the unit disk with ε = 0.05, Db = 10,
τs = 0.6, τb = 0.1, K = 2, and Dv = 10 (this corresponds to point 2 in
the left panel of Figure 2.12). The bulk inhibitor is shown as the colour
map, whereas the lines along the boundary indicate the activator (blue)
and inhibitor (orange) membrane concentrations. The results show a
competition instability, leading to the annihilation of a spike.
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Figure 2.2: Snapshots of the numerically computed solution of (2.1) starting
from a 2-spike equilibrium for the unit disk with ε = 0.05, Db = 10, τs =
0.6, τb = 0.1, K = 0.025, and Dv = 1.8 (this corresponds to point 5 in
the left panel of Figure 2.12). The bulk inhibitor is shown as the colour
map, whereas the lines along the boundary indicate the activator (blue)
and inhibitor (orange) membrane concentrations. The results show a
synchronous oscillatory instability of the spike amplitudes.

when studying synchronous instabilities, for which there appears to be a complex

interplay between the membrane and bulk timescales, τs and τb, as well as with the

coupling K. At various specific points in these phase diagrams for both the well-

mixed case (with Db infinite) and the case of the disk (with Db finite), our linear

stability predictions are confirmed with full numerical finite-element simulations

of the coupled PDE system (2.1).

As an illustration of spike dynamics resulting from full PDE simulations, in

Figures 2.1 and 2.2 we show results computed for the unit disk with Db = 10,

showing competition and oscillatory instabilities for a two-spike solution, respec-

tively. The parameter values are given in the figure captions and correspond to

specific points in the linear stability phase diagram given in the left panel of Figure

2.12.

In §2.4 we use a regular perturbation analysis to show the effect on the asyn-

chronous instability thresholds of introducing a small smooth perturbation of the

boundary of the unit disk. This analysis, which requires a detailed calculation of

the perturbed 1-D membrane Green’s function, shows that a two-spike pattern can

be stabilized by a small outward peanut-shaped deformation of a circular disk. Fi-

nally, in §2.5 we briefly summarize our results and highlight some open problems
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and directions for future research.

2.2 Spike Equilibrium and its Linear Stability: General
Asymptotic Theory

2.2.1 Asymptotic Construction of N-Spike Equilibrium Solution

In this section we provide an asymptotic construction of an N-spike steady-state

solution to (2.1). Specifically, we consider the steady-state problem for the mem-

brane species

ε
2
∂

2
σ ue−ue +up

e/vq
e = 0, 0 < σ < L, u is L-periodic, (2.1a)

Dv∂
2
σ ve− (1+K)ve +KVe + ε

−1um
e /vs

e = 0, 0 < σ < L, v is L-periodic,

(2.1b)

which is coupled to the steady-state bulk-diffusion process by

Db∆Ve−Ve = 0, x ∈Ω ; Db∂nVe +KVe = Kve, x ∈ ∂Ω. (2.1c)

From (2.1c), the bulk-inhibitor evaluated on the membrane is readily expressed

in terms of a Green’s function as

Ve(σ) = K
ˆ L

0
GΩ(σ , σ̃)ve(σ̃)dσ̃ , (2.2)

where we have used arc-length to parameterize the boundary. Here, GΩ(σ , σ̃) is

the Green’s function satisfying

Db∆xGΩ(x, σ̃)−GΩ(x, σ̃) = 0, x ∈Ω

Db∂nGΩ(σ , σ̃)+KGΩ(σ , σ̃) = δ (σ − σ̃), 0 < σ < L.
(2.3)

We remark that the values of the bulk-inhibitor field within the bulk can likewise

be obtained with a Green’s function whose source is in the interior. However, for

our purposes it is only the restriction to the boundary that is important.
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At this stage the steady-state membrane problem takes the form

ε
2
∂

2
σ ue−ue +up

e/vq
e = 0

Dv∂
2
σ ve− (1+K)ve +K2

ˆ L

0
GΩ(σ , σ̃)ve(σ̃)dσ̃ + ε

−1um
e /vs

e = 0,
(2.4)

for 0 < σ < L and which differs from the problem studied in [41] for the uncoupled

(K = 0) case only by the addition of the non-local term. This additional term leads

to difficulties in the construction of spike patterns. In particular, it complicates the

concept of a "symmetric" pattern since, in general, the non-local term will not be

translation invariant. Moreover, in the well-mixed and disk case, the construction

of asymmetric patterns is more intricate as a result of the non-local term.

We now construct an N-spike steady-state pattern for (2.4) characterized by an

activator concentration that is localized at N distinct spike locations 0≤ σ1 < ... <

σN < L to be determined. We assume that the spikes are well-separated in the sense

that |σ{(i+1) mod N}−σi mod L| � ε for i = 1, . . . ,N. Upon introducing stretched

coordinates y = ε−1(σ −σ j), we deduce that the inhibitor field is asymptotically

constant near each spike, i. e.

ve ∼ ve j ≡ ve(σ j). (2.5)

In addition, the activator concentration is determined in terms of the unique solu-

tion w(y) to the core problem

w′′−w+wp = 0, y ∈ R,

w′(0) = 0, w(0)> 0, w(y)→ 0 as |y| → ∞.
(2.6)

Since the solution to the core problem decays exponentially as y→±∞ we deduce

that

ue(σ)∼
N

∑
j=1

vγ

e jw
(
ε
−1[σ −σ j]

)
, as ε → 0+, (2.7)

where γ ≡ q/(p−1). The solution to (2.6) is given explicitly as

w(y) =
(

p+1
2

) 1
p−1
[

sech
(

p−1
2

y
)] 2

p−1

. (2.8)

25



Next, since ue is localized, we have in the sense of distributions that

ε
−1um

e /vs
e −→ ωm

N

∑
j=1

[ve(σ j)]
γm−s

δ (σ −σ j) as ε → 0+,

where we have defined

ωm ≡
ˆ

∞

−∞

[w(y)]m dy. (2.9)

In this way, for ε → 0+, we obtain from (2.4) the following integro-differential

equation for the inhibitor field:

Dv∂
2
σ ve− (1+K)ve +K2

ˆ L

0
GΩ(σ , σ̃)ve(σ̃)dσ̃ =−ωm

N

∑
j=1

vγm−s
e j δ (σ −σ j).

To conveniently represent the solution to this equation we introduce the Green’s

function G∂Ω(σ ,ζ ) satisfying

Dv∂
2
σ G∂Ω(σ ,ζ )− (1+K)G∂Ω(σ ,ζ )

+K2
ˆ L

0
GΩ(σ , σ̃)G∂Ω(σ̃ ,ζ )dσ̃ =−δ (σ −ζ ),

(2.10)

for 0 < σ ,ζ < L. In terms of this Green’s function, the membrane inhibitor field is

given by

ve(σ) = ωm

N

∑
j=1

vγm−s
e j G∂Ω(σ ,σ j). (2.11)

Substituting σ = σi, and recalling the definition vei ≡ ve(σi), (2.11) yields the N

self-consistency conditions

vei−ωm

N

∑
j=1

vγm−s
e j G∂Ω(σi,σ j) = 0, i = 1, . . . ,N. (2.12)

These conditions provide the first N algebraic equations for our overall system in

2N unknowns to be completed below. The remaining N equations arise from solv-

ability conditions when performing a higher-order matched asymptotic expansion

analysis of the steady-state solution.

To this end, we again introduce stretched coordinates y = ε−1
(
σ −σ j), but we
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now introduce a two-term inner expansion for the surface bound species for ε → 0

as

ue(y)∼ vγ

e jw(y)+ εu1(y)+O(ε2),

ve(y)∼ve j + εv1(y)+O(ε2), Ve ∼ O(1).
(2.13)

Upon substituting this expansion into (2.1), and collecting the O(ε) terms, we get

L0u1 ≡u′′1−u1 + pwp−1u1 = qvγ−1
e j wpv1,

Dvv′′1 + vγm−s
e j wm = 0.

(2.14)

Since L0w′ = 0, the solvability condition for the first equation yields that

qvγ−1
e j

ˆ
∞

−∞

wpw′v1 dy = 0 ⇐⇒
ˆ

∞

−∞

(wp+1)′v1 dy = 0.

Then, we integrate by parts twice, use the exponential decay of w(y) as |y| → ∞,

and substitute (2.14) for v′′1 . This yields that

Ip(y)v′1(y)
∣∣∣∣∞
−∞

+
vγm−s

e j

Dv

ˆ
∞

−∞

Ip(y)[w(y)]m dy = 0,

where we have defined Ip(y)≡
´ y

0 [w(z)]
p+1dz. Since w is even, while Ip is odd, the

integral above vanishes, and we get

v′1(+∞)+ v′1(−∞) = 0.

In this way, a higher order matching process between the inner and outer solutions

yields the balance conditions,

∂σ ve(σi +0)+∂σ ve(σi−0) = 0, i = 1, . . . ,N.

By using (2.11) for ve, we can write these balance equations in terms of the Green’s

function G∂Ω as

vγm−s
ei

[
∂σ G∂Ω(σi +0,σi)+∂σ G∂Ω(σi−0,σi)

]
+2∑

j 6=i
vγm−s

e j ∂σ G∂Ω(σi,σ j) = 0,
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for i = 1, . . . ,N. We summarize the results of this formal asymptotic construction

in the following proposition:

Proposition 2.2.1. As ε→ 0+ an N-spike steady-state solution to (2.1) with spikes

centred at σ1, ...,σN is asymptotically given by

ue(σ)∼
N

∑
j=1

vγ

e jw
(
ε
−1[σ −σ j]), ve(σ)∼ ωm

N

∑
j=1

vγm−s
e j G∂Ω(σ ,σ j), (2.15a)

Ve(σ)∼ ωmK
N

∑
j=1

vγm−s
e j

ˆ L

0
GΩ(σ , σ̃)G∂Ω(σ̃ ,σ j)dσ̃ , (2.15b)

where ωm≡
´

∞

−∞
[w(y)]m dy, γ ≡ q/(p−1), and GΩ and G∂Ω are the bulk and mem-

brane Green’s functions satisfying (2.3) and (2.10) respectively. Here the steady-
state spike locations σ1, ...,σN and ve1, ...,veN , which determine the heights of the
spikes, are to be found from the following non-linear algebraic system:

vei−ωm

N

∑
j=1

vγm−s
e j G∂Ω(σi,σ j) = 0, (2.16a)

vγm−s
ei

[
∂σ G∂Ω(σi +0,σi)+∂σ G∂Ω(σi−0,σi)

]
+2 ∑

j 6=i
vγm−s

e j ∂σ G∂Ω(σi,σ j) = 0, (2.16b)

for each i = 1, . . . ,N.

2.2.2 Linear Stability of N-Spike Equilibrium Solution

In our linear stability analysis, given below, of N-spike equilibrium solutions we

make two simplifying assumptions. First, we focus exclusively on the case s = 0.

Second, we consider only instabilities that arise on an O(1) timescale. Therefore,

we do not consider very weak instabilities, occurring on asymptotically long time-

scales in ε , that are due to any unstable small eigenvalue that tends to zero as

ε → 0.

Let ue(σ), ve(σ), and Ve(x) denote the the steady-state constructed in §2.2.1.

For λ ∈ C, we consider a perturbation of the form

u(σ) = ue(σ)+ eλ t
φ(σ), v(σ) = ve(σ)+ eλ t

ψ(σ), V (x) =Ve(x)+ eλ t
η(x),

where φ , ψ , and η are small. Upon substituting into (2.1) and linearizing, we
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obtain the eigenvalue problem

ε
2
∂

2
σ φ −φ + pup−1

e v−q
e φ −qup

e v−(q+1)
e ψ = λφ , 0 < σ < L, (2.17a)

Dv∂
2
σ ψ−µ

2
sλ

ψ +Kη =−mε
−1um−1

e φ , 0 < σ < L, (2.17b)

Db∆η−µ
2
bλ

η = 0, x ∈Ω, (2.17c)

Db∂nη +Kη = Kψ, x ∈ ∂Ω, (2.17d)

where we have defined µsλ and µbλ by

µsλ =
√

1+K + τsλ , µbλ =
√

1+ τbλ . (2.18)

The bulk inhibitor field evaluated on the boundary is represented as

η(σ) = K
ˆ L

0
Gλ

Ω(σ , σ̃)ψ(σ̃)dσ̃ ,

where Gλ
Ω

is the λ -dependent bulk Green’s function satisfying

Db∆xGλ
Ω(x, σ̃)−µ

2
bλ

Gλ
Ω(x, σ̃) = 0, x ∈Ω,

Db∂nGλ
Ω(σ , σ̃)+KGλ

Ω(σ , σ̃) = δ (σ − σ̃), 0 < σ < L.
(2.19)

Next, we seek a localized activator perturbation of the form

φ(σ)∼
N

∑
j=1

φ j
(
ε
−1[σ −σ j]

)
, (2.20)

where we impose that φ j(y)→ 0 as |y| → ∞. With this form, we evaluate in the

sense of distributions that

ε
−1mum−1

e φ −→ m
N

∑
j=1

vγ(m−1)
e j

(ˆ
∞

−∞

[w(y)]m−1
φ j(y)dy

)
δ (σ −σ j) as ε → 0+.
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By using this limiting result in (2.17b), the problem for ψ becomes

Dv∂
2
σ ψ−µ

2
sλ

ψ +K2
ˆ L

0
Gλ

Ω(σ , σ̃)ψ(σ̃)dσ̃

=−m
N

∑
j=1

vγ(m−1)
e j

(ˆ
∞

−∞

[w(y)]m−1
φ j(y)dy

)
δ (σ −σ j).

The solution to this problem is represented as

ψ(σ) = m
N

∑
j=1

vγ(m−1)
e j Gλ

∂Ω
(σ ,σ j)

ˆ
∞

−∞

[w(y)]m−1
φ j(y)dy, (2.21)

where Gλ

∂Ω
is the λ -dependent membrane Green’s function satisfying

Dv∂
2
σ Gλ

∂Ω
(σ ,ζ )−µ

2
sλ

Gλ

∂Ω
(σ ,ζ )+K2

ˆ L

0
Gλ

Ω(σ , σ̃)Gλ

∂Ω
(σ̃ ,ζ )dσ̃ =−δ (σ−ζ ), (2.22)

for 0 < σ ,ζ < L.

Next, it is convenient to re-scale ve as

ve(σ) = ω

1
1−γm

m v̂e(σ), ve j = ω

1
1−γm

m v̂e j. (2.23)

In the stretched coordinates y = ε−1(σ −σ j), we use (2.21) to obtain that (2.17a)

becomes

φ
′′
i −φi + pwp−1

φi−mqwp
N

∑
j=1

v̂γ−1
ei Gλ

∂Ω
(σi,σ j)v̂

γ(m−1)
e j

´
∞

−∞
wm−1φ j dy´
∞

−∞
wm dy

= λφi.

To recast this spectral problem in vector form we define

φφφ ≡


φ1
...

φN

 , V̂e ≡


v̂e1 0

. . .

0 v̂eN

 , G λ

∂Ω
≡


Gλ

∂Ω
(σ1,σ1) · · · Gλ

∂Ω
(σ1,σN)

· · ·
. . .

...
Gλ

∂Ω
(σN ,σ1) · · · Gλ

∂Ω
(σN ,σN)

 , (2.24)

and we introduce the matrix E by

E ≡ V̂ γ−1
e G λ

∂Ω
V̂

γ(m−1)
e . (2.25)
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In this way, we deduce that φφφ must solve the vector nonlocal eigenvalue problem

(NLEP) given by

φφφ
′′(y)−φφφ(y)+ pwp−1

φφφ(y)−mqwp

´
∞

−∞
[w(y)]m−1Eφφφ(y)dy´

∞

−∞
[w(y)]m dy

= λφφφ(y). (2.26)

We can reduce this vector NLEP to a collection of scalar NLEPs by diagonalizing

it. Specifically, we seek perturbations of the form φφφ = φccc where ccc is an eigenvector

of E , that is

E ccc = χ(λ )ccc. (2.27)

Then, it readily follows that the vector NLEP (2.26) can be recast as the scalar

NLEP

L0φ −mqχ(λ )wp

´
∞

−∞
[w(y)]m−1φ(y)dy´

∞

−∞
[w(y)]m dy

= λφ , (2.28)

where χ(λ ) is any eigenvalue of E . In (2.28), the operator L0, referred to as the

local operator, is defined by

L0φ ≡ φ
′′(y)−φ(y)+ pwp−1

φ(y). (2.29)

Notice that we obtain a (possibly) different NLEP for each eigenvalue χ(λ ) of E .

Therefore, the spectrum of the matrix E will be central in the analysis below for

classifying the various types of instabilities that can occur.

2.2.3 Reduction of NLEP to an Algebraic Equation and an Explicitly
Solvable Case

Next, we show how to reduce the determination of the spectrum of the NLEP (2.28)

to a root-finding problem. To this end, we define cm by

cm ≡ mqχ(λ )

´
∞

−∞
[w(y)]m−1φ(y)dy´

∞

−∞
[w(y)]m dy

, (2.30)

and write the NLEP as (L0−λ )φ = cmwp, so that φ = cm(L0−λ )−1wp. Upon

multiplying both sides of this expression by wm−1, we integrate over the real line

and substitute the resulting expression back into (2.30). For eigenfunctions for
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which
´

∞

−∞
wm−1φ dy 6= 0, we readily obtain that λ must be a root of A (λ ) = 0,

where

A (λ )≡ C (λ )−F (λ ), C (λ )≡ 1
χ(λ )

,

F (λ )≡ mq

´
∞

−∞
[w(y)]m−1(L0−λ )−1[w(y)]p dy´

∞

−∞
[w(y)]m dy

.

(2.31)

Since, it is readily shown that there are no unstable eigenvalues of the NLEP (2.28)

for eigenfunctions for which

ˆ
∞

−∞

wm−1
φ dy = 0,

the roots of A (λ ) = 0 will provide all the unstable eigenvalues of the NLEP (2.28).

For general Gierer-Meinhardt exponents, the spectral theory of the operator

L0 leads to some detailed properties of the term F (λ ) for various exponent sets

(cf. [105]). In addition, to make further progress on the root-finding problem

(2.31), we need some explicit results for the multiplier χ(λ ).

For special sets of Gierer-Meinhardt exponents, known as the “explicitly solv-

able cases” (cf. [70]), the term F (λ ) can be evaluated explicitly. We focus specif-

ically on one such set (p,q,m,0) = (3,1,3,0) for which the key identity L0w2 =

3w2 holds, where w =
√

2sechy from (2.8). Thus, after integrating by parts we

obtain

ˆ
∞

−∞

w2(L0−λ )−1w3dy =

´
∞

−∞
(L0−λ )w2(L0−λ )−1w3dy

3−λ

=

´
∞

−∞
w2(L0−λ )(L0−λ )−1w3dy

3−λ
=

´
∞

−∞
w5dy

3−λ
.

By making use of the identities

ˆ
∞

−∞

w5dy =
3π√

2
,

ˆ
∞

−∞

w3dy =
√

2π,

we obtain that F (λ ) = 9/ [2(3−λ )], so that the root-finding problem (2.31) re-
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duces to determining λ such that

A (λ )≡ 1
χ(λ )

− 9/2
3−λ

= 0. (2.32)

In addition to the explicitly solvable case (p,q,m,s) = (3,1,3,0), the root-

finding problem (2.31) simplifies considerably for a general Gierer-Meinhardt ex-

ponent set, when we focus on determining parameter thresholds for zero-eigenvalue

crossings (corresponding to asynchronous instabilities). Since L0w = w′′−w+

pwp = (p−1)wp, it follows that L −1
0 wp = 1

p−1 w, from which we calculate

F (0) = mq

´
∞

−∞
wm−1L −1

0 wp dy´
∞

−∞
wm dy

=
mq

p−1
.

Therefore, a zero-eigenvalue crossing for a general Gierer-Meinhardt exponent set

occurs when

A (0) =
1

χ(0)
− mq

p−1
= 0. (2.33)

2.3 Symmetric N-Spike Patterns: Equilibrium Solutions
and their Stability

For the remainder of this chapter we will focus exclusively on symmetric N-spike

steady-states that are characterized by equidistant (in arc-length) spikes of equal

heights. Due to the bulk-membrane coupling it is unclear whether such symmetric

patterns will exist for a general domain. Indeed it may be that a spike pattern with

spikes of equal heights may require the equidistant requirement to be dropped.

These more general considerations can perhaps be better approached by requiring

that the Green’s matrix G λ

∂Ω
admit the eigenvector e = (1, ...,1)T . A detailed study

of the geometries for which such an eigenvector can be found remains to be done.

Avoiding these additional complications, we focus instead on two distinct cases

for which symmetric spike patterns, as we have defined them, can be constructed.

The first case is the disk of radius R, denoted by Ω = BR(0), and the second case

corresponds to the well-mixed limit for which Db → ∞ in an arbitrary bounded

domain with C2 boundary. The membrane and bulk Green’s functions in these two
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special cases can be found in the Appendices B.1.2 for the well-mixed case, and

B.1.3 for the disk. In both cases the Green’s function is invariant under translations,

satisfying

G∂Ω(σ +ϑ mod L,ζ +ϑ mod L) = G∂Ω(σ ,ζ ), ∀ σ ,ζ ∈ [0,L), ϑ ∈ R.

By using this key property in (2.16a), we calculate the common spike height as

ve j = ve0 =

[
ωm

N−1

∑
k=0

G∂Ω

(
kL
N
,0
)] 1

1−γm+s

. (2.1)

With a common spike height, the balance equations (2.16b) then reduce to

[
∂σ G∂Ω(0

+,0)+∂σ G∂Ω(0
−,0)

]
+2

N−1

∑
k=1

∂σ G∂Ω

(
kL
N
,0
)
= 0, (2.2)

which can be verified either explicitly or by using the symmetry of the Green’s

function.

For a symmetric N-spike steady-state the NLEP (2.28) can be simplified sig-

nificantly. First the matrix E , defined in (2.25), simplifies to

E = v̂γm−1
e0 G λ

∂Ω
.

Therefore, from (2.27) it follows that χ(λ ) = v̂γm−1
e0 µ(λ ), where µ(λ ) is an eigen-

value of the Green’s matrix G λ

∂Ω
defined in (2.24). Furthermore, by using the bi-

translation invariance and symmetry of Gλ

∂Ω
, we can define

Hλ

| j−i| ≡ Gλ

∂Ω
(|σi−σ j|,0) = Gλ

∂Ω
(|i− j|L/N,0), (2.3)

which allows us to write the Green’s matrix as

G λ

∂Ω
=


Hλ

0 Hλ
1 Hλ

2 · · · Hλ
N−1

Hλ
N−1 Hλ

0 Hλ
1 · · · Hλ

N−2
...

...
...

. . .
...

Hλ
1 Hλ

2 Hλ
3 · · · Hλ

0

 ,
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which we recognize as a circulant matrix. As a result, the matrix spectrum of G λ

∂Ω

is readily available as

µk(λ ) =
N−1

∑
j=0

Hλ
j ei 2π jk

N , ccck(λ ) =

(
1,ei 2πk

N , · · · ,ei 2π(N−2)k
N ,ei 2π(N−1)k

N

)T

, (2.4)

for all k = 0, . . . ,N−1.

For each value of k = 0, . . . ,N− 1 we obtain a corresponding NLEP problem

from (2.28). Since ccc0 = (1, . . . ,1)T we can interpret this “mode” as a synchronous

perturbation. In contrast, the values k = 1, . . . ,N−1 for N ≥ 2 correspond to asyn-

chronous perturbations, since the corresponding eigenvectors ccck(λ ) are all orthog-

onal to (1, . . . ,1)T . Any unstable asynchronous “mode” of this type is referred to

as a competition instability, in the sense that the linear stability theory predicts that

the heights of individual spikes may grow or decay, but that the overall sum of all

the spike heights remains fixed. For each value of k, the NLEP (2.28) becomes

L0φ −mqχk(λ )wp

´
∞

−∞
[w(y)]m−1φ(y)dy´

∞

−∞
[w(y)]m dy

= λφ , (2.5a)

where

χk(λ )≡
µk(λ )

∑
N−1
j=1 G∂Ω( jL/N,0)

=
µk(λ )

µ0(0)
. (2.5b)

Thus, each NLEP leads to a distinct algebraic system of the form (2.31) corre-

sponding to χk(λ ) for k = 0, ...,N. In particular, for the explicitly solvable case

(2.32) becomes

Ak(λ ) =
1

χk(λ )
− 9/2

3−λ
.

In addition, note that when K = 0 the bulk dependent term in (2.22) vanishes and

Gλ

∂Ω
reduces to the uncoupled periodic Green’s function (see Appendix B.1.1).

In such a case the expression for χk(λ ) in (2.5) reduces to that of the classical

uncoupled case. When K > 0 further analysis of the NLEP (2.5) requires details of

the Green’s function Gλ

∂Ω
, which are available in our two special cases.
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2.3.1 NLEP Multipliers for the Well-Mixed Limit

In the well-mixed limit, Db→∞, the membrane Green’s function, satisfying (2.22),

is given by (see (B.5) of Appendix B.1)

Gλ

∂Ω
(σ ,ζ ) = Γ

λ (|σ −ζ |)+ γλ

µ2
sλ

, γλ ≡
K2/A

µ2
sλ
(µ2

bλ
+β )−Kβ

, (2.6)

where β ≡ KL/A. Here Γλ is the periodic Green’s function for the uncoupled

(K = 0) problem, which is given explicitly by (B.2) of Appendix B.1 as

Γ
λ (x) =

1
2
√

Dvµsλ

coth
(

µsλ L
2
√

Dv

)
cosh

(
µsλ√

Dv
|x|
)
− 1

2
√

Dvµsλ

sinh
(

µsλ√
Dv
|x|
)
.

After some algebra we use (2.4) to calculate the eigenvalues µk(λ ) of the Green’s

matrix as

µk(λ ) =
N−1

∑
j=0

Γ
λ ( jL/n)ei 2π jk

N +δk0
Nγλ

µ2
sλ

=
1

2
√

Dvµsλ

cosh
(

µsλ L
2N
√

Dv

)
sinh

(
µsλ L

2N
√

Dv

)
sinh

(
µsλ L

2N
√

Dv
+ iπk

N

)
sinh

(
µsλ L

2N
√

Dv
− iπk

N

) +δk0
Nγλ

µ2
sλ

,

where δk0 is the Kronecker symbol. In this way, we obtain from (2.5) that the

NLEP multipliers are given by

χ0(λ ) =

1
2
√

Dvµsλ

coth
(

µsλ L
2N
√

Dv

)
+ Nγλ

µ2
sλ

1
2
√

Dvµs0
coth

(
µs0L

2N
√

Dv

)
+ Nγ0

µ2
s0

, (2.7a)

χk(λ ) =

1
2
√

Dvµsλ

cosh
(

µsλ
L

2N
√

Dv

)
sinh
(

µsλ
L

2N
√

Dv

)
sinh
(

µsλ
L

2N
√

Dv
+ iπk

N

)
sinh
(

µsλ
L

2N
√

Dv
− iπk

N

)
1

2
√

Dvµs0
coth

(
µs0L

2N
√

Dv

)
+ Nγ0

µ2
s0

, (2.7b)

for k = 1, ...,N−1. We observe from the χ0(λ ) term in (2.7), that any synchronous

instability will depend on the membrane diffusivity Dv only in the form N2Dv. This

shows that a synchronous instability parameter threshold will be fully determined
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by the one-spike case upon rescaling by 1/N2. We remark here that the numer-

ator for χk(λ ) can be simplified by using the identity sinh(z+ ia)sinh(z− ia) =
1
2 [cosh(2z)− cos(2a)] so that χk(λ ) is real valued whenever Imλ = 0.

2.3.2 NLEP Multipliers for the Disk

In the disk we can calculate the membrane Green’s function as a Fourier series (see

(B.7) of Appendix B.1)

Gλ

∂Ω
(σ ,ζ ) =

1
2πR

∞

∑
n=−∞

gλ
n ei n

R (σ−ζ ), (2.8)

where gλ
n is given explicitly by

gλ
n =

1

Dv
( n

R

)2
+µ2

sλ
−K2aλ

n

(2.9a)

and where

aλ
n =

1
DbP′n(R)+K

, Pn(r)≡
I|n|(ωbλ r)
I|n|(ωbλ R)

, ωbλ ≡
µbλ√

Db
. (2.9b)

Here In(z) is the nth modified Bessel function of the first kind. From (2.4) the

eigenvalues of the Green’s matrix become

µk(λ ) =
1

2πR

∞

∑
n=1

gλ
n

N−1

∑
j=0

ei 2π(k+n) j
N .

By using the identities

N−1

∑
j=0

ei 2π(k+n) j
N =

N n ∈ NZ− k,

0 otherwise
, and gλ

−n = gλ
n ,

the eigenvalues are given explicitly by

µk(λ ) =
N

2πR
gλ

k +
N

2πR

∞

∑
n=1

(
gλ

nN+k +gλ
nN−k

)
.
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Therefore, since χk(λ ) = µk(λ )/µ0(0), the NLEP multipliers are given by

χk(λ ) =
gλ

k +∑
∞
n=1
(
gλ

nN+k +gλ
nN−k

)
g0

0 +2∑
∞
n=1 g0

nN
, k = 0, . . . ,N−1. (2.10)

2.3.3 Synchronous Instabilities

From (2.33), and the special form of χk(λ ) given in (2.5), we deduce that

A0(0) = 1− mq
p−1

< 0,

where the strict inequality follows from the the usual assumption (2.2) on the

Gierer-Meinhardt exponents. As a result, synchronous instabilities do not occur

through a zero-eigenvalue crossing, and can only arise through a Hopf bifurcation.

To examine whether such a Hopf bifurcation for the synchronous mode can oc-

cur, we now seek purely imaginary zeros of A0(λ ). Classically, in the uncoupled

case K = 0, such a threshold occurs along a Hopf bifurcation curve Dv = D?
v(τs)

(cf. [105]). We have an oscillatory instability if τs is sufficiently large, and no such

instability when τs is small (cf. [105], [106]). Bulk-membrane coupling introduces

two additional parameters, τb and K, in addition to the quantities L and A for the

well-mixed case, or R and Db for the case of the disk. Thus, it is no longer clear

how the existence of a synchronous instability threshold Dv = D?
v(τs) will be mod-

ified by the additional parameters. Indeed, the analysis below reveals a variety of

new phenomenon such as the existence of synchronous instabilities for τs = 0 and

islands of stability for large values of τs. These are two behaviours that do not

occur for the classical uncoupled case K = 0.

We begin by addressing the question of the existence of synchronous instabil-

ity thresholds. The key assumption (supported below by numerical simulations)

underlying this analysis is that synchronous instabilities persist as either the bulk

and/or membrane diffusivities increase. While this assumption is heuristically rea-

sonable (large diffusivities make it easier for neighbouring spikes to communicate)

an open problem is to demonstrate it analytically. With this assumption it suffices

to seek parameter values of τb, τs, and K for which no Hopf bifurcations exist when

Dv→ ∞ in the well-mixed limit Db→ ∞.
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As a first step, we remark that in [105] it was shown that ReF (iλI) is mono-

tone decreasing when λI > 0 for special choices of the Gierer-Meinhardt exponents

(see also [106]). The monotonicity of this function for general Gierer-Meinhardt

exponents is supported by numerical calculations. Thus we expect that ReF (iλI)

decreases monotonically from ReF (0) = mq
p−1 > 1 as λI > 0 increases. Further-

more, numerical evidence suggests that ReC0(iλI) is monotone increasing in λI .

Since C0(0) = 1 there must exist a unique root λI = λ ?
I > 0 to ReA0(iλI) = 0

bounded above by λ F
I , the unique solution to ReF (iλ F

I ) = 1, which depends solely

on the exponents (p,q,m,0). Therefore in the limit Dv→ ∞ the well-mixed NLEP

multiplier, as given in (2.7), becomes

χ0(λ )∼
µ2

s0(µ
2
b0 +β )−Kβ

µ2
sλ
(µ2

bλ
+β )−Kβ

(
µ2

bλ
+β

µ2
b0 +β

)
.

Seeking a purely imaginary root of A0(λ ) = 0 we focus first on the real part. We

calculate

ReA0(iλI) =
1+β

1+β +K

(
1+K− Kβ

1+β

1

1+
(

τbλI
1+β

)2

)
−ReF (iλI),

and note that the root λI = λ ?
I (τb,K) to ReA0(iλI) = 0 is independent of τs. Next,

for the imaginary part we calculate

ImA0(iλ ?
I ) =

1+β

1+β +K

(
τs +

Kβ

1+β

τb
1+β

1+
(

τbλ ?
I

1+β

)2

)
λ
?
I − ImF (iλ ?

I ).

Fortunately, at each fixed value of τs the threshold K = K(τb) can be calculated

as the τs-level-set of a function depending only on K and τb. Indeed the condition

ImA0(iλ ?
I ) = 0 can equivalently be written as

ImA0(iλ ?
I ) =

1+β

1+β +K

(
τs−M (τb,K)

)
λ
?
I = 0, (2.11)
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where we have defined

M (τb,K)≡
(

1+β +K
1+β

)
ImF (iλ ?

I )

λ ?
I

− Kβ

1+β

 τb
1+β

1+
(

τbλ ?
I

1+β

)2

 . (2.12)

In the (p,q,m,s) = (3,1,3,0) explicitly solvable case we find that ImF (iλ ?
I ) =

1
3 λ ?

I ReF (iλ ?
I ), so that by solving ReA0(iλI) = 0 for ReF (iλ ?

I ), (2.12) becomes

M (τb,K) =
1+K

3
− Kβ

1+β

 τb
1+β

+ 1
3

1+
(

τbλ ?
I

1+β

)2

 .

By substituting this expression into (2.11), we deduce the existence of two distinct

threshold branches obtained by considering the limits K � 1 and K � 1. In this

way, we derive

τs−M (τb,K)∼ τs−
1
3
+

1
β0

(
τb−

1
3

)
+O(K−1) for K� 1,

τs−M (τb,K)∼ τs−
1
3
− 1

3
K +O(K2) for K� 1,

where β0 ≡ L/A. Notice that in ordering both of these asymptotic expansions we

have used that 0 < λ ?
I ≤ λ F

I , where the upper bound is independent of K. In the

K� 1 regime we deduce that if τb =
1
3 −β0

(
τs− 1

3

)
, then ImA0(iλ ?

I ) = 0 forces

K → ∞, implying the existence of a threshold branch emerging from K = ∞ at

these parameter values. We remark here that in the K = ∞ limit we have V = v

on the boundary and therefore the contribution of V to the membrane equation

is just the Dirichlet to Neumann map of v. Furthermore, since τb approaches 0

when τs tends to 1
3

( 1
β0

+ 1
)
, we deduce that this branch will disappear for suffi-

ciently large values of τs. In addition, in the K � 1 regime we find that a new

branch given by K ≈ 3τs− 1 emerges when τs >
1
3 . The left panel of Figure 2.3

shows the numerically-computed contours of M (τb,K) for the explicitly solvable

case (p,q,m,s) = (3,1,3,0). The right panel of Figure 2.3 shows a qualitatively

similar behaviour that occurs for the prototypical Gierer-Meinhardt parameter set

(p,q,m,s) = (2,1,2,0).
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Figure 2.3: Level sets of M (τb,K) for Gierer-Meinhardt exponents
(p,q,m,s)= (3,1,3,0) (left) and (p,q,m,s)= (2,1,2,0) (right). In both
cases the level set value corresponds to a value of τs = M (τb,K). Note
also the contours tending to a vertical asymptote, and the emergence of
a horizontal asymptote as τs exceeds some threshold. Geometric param-
eters are L = 2π and A = π .

The preceding analysis does not directly predict in which regions synchronous

instabilities exist, as it only provides the boundaries of these regions. We now
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Figure 2.4: Colour map of the synchronous instability threshold D?
v in the K

versus τb parameter plane for the well-mixed explicitly solvable case for
various values of τs with L = 2π and A = π . The dashed vertical lines
indicate the asymptotic predictions for the large K threshold branch,
while the dashed horizontal lines indicate the asymptotic predictions
for the small K threshold branch. The unshaded regions correspond to
those parameter values for which synchronous instabilities are absent.

outline a winding-number argument, related to that used in [106], that provides

a hybrid analytical-numerical algorithm for calculating the synchronous instabil-

ity threshold Dv = D?
v(K,τb,τs). Furthermore, as we show below, this algorithm

indicates that synchronous instabilities exist whenever M (τb,K)< τs.

Synchronous instabilities are identified with the zeros to (2.31) having a posi-

tive real-part when χ(λ ) in (2.31) is replaced by χ0(λ ). By using a winding num-

ber argument, the search for such zeros can be reduced from one over the entire

right-half plane Re(λ ) > 0 to one along only the positive imaginary axis. Indeed,

if we consider a counterclockwise contour composed of a segment of the imagi-

nary axis, −ρ ≤ Imλ ≤ ρ , together with the semi-circle defined by |λ | = ρ and
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−π/2 < argλ < π/2, then in the limit ρ → ∞ the change in the argument as the

contour is traversed is

∆argA0(λ ) = 2π(Z−1), (2.13)

where Z is the number of zeros of A0 with positive real-part. Here we have used

that χ0(λ ) 6= 0 when Re(λ )≥ 0, while F (λ ) has exactly one simple (and real) pole

in the right-half plane corresponding to the only positive eigenvalue of the self-

adjoint local operator L0 (cf. [107]). We immediately note that F (λ ) = O(λ−1)

for |λ | � 1, |argλ |< π/2, whereas for |λ | � 1 and |argλ |< π/2

C0(λ )∼ 2µ0(0)
√

τsDvλ
1/2, C0(λ )∼ µ0(0)

N
√

Dvτs

πR
λ

1/2, (2.14)

for the well-mixed limit and the disk cases, respectively. Therefore, in both cases

we have A0(λ ) ∼ O(λ 1/2) for |λ | � 1 with |argλ | < π/2, so that the change in

argument over the large semi-circle is π/2. Furthermore, since the parameters in

A0(λ ) are real-valued, the change in argument over the segment of the imaginary

axis can be reduced to that over the positive imaginary axis. In this way, we deduce

that

Z =
5
4
+

1
π

∆argA0(iλI)
∣∣
λI∈(∞,0]. (2.15)

We readily evaluate the limiting behaviour limλI→∞ argA0(iλI) = π/4. Moreover

since χ0(0) = 1 we evaluate A0(0) = 1− mq
p−1 < 0 by the assumption (2.2) on

the Gierer-Meinhardt exponents. Numerical evidence suggests that ReA0(iλI) in-

creases monotonically with λI and there should therefore be a unique λ ?
I for which

ReA0(iλ ?
I ) = 0. We conclude that there are two positive values for the change in

argument, and hence the number of zeros of A0(λ ) in Re(λ )> 0 is dictated by the

sign of ImA0(iλ ?
I ) as follows:

Z = 2 if ImA0(iλ ?
I )> 0, or Z = 0 if ImA0(iλ ?

I )< 0. (2.16)

Note in particular that, in view of the expression (2.11) for ImA0(iλI), this crite-

rion implies that synchronous instabilities will exist whenever M(τb,K)< τs in the

previous analysis. Within this region, the criterion (2.16) suggests a simple numer-

ical algorithm for iteratively computing the threshold value of Dv = D?
v(K,τb,τs).
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Figure 2.5: Synchronous instability threshold D?
v versus K for two pairs of

(τs,τb) for a one-spike steady-state (N = 1) in the unit disk (R = 1).
The quality of the well-mixed approximation rapidly improves as Db is
increased. The labels for Db in the right panel also apply to the left and
middle panels.

Specifically, with all parameters fixed, we first solve ReA0(iλI) = 0 for λ 0
I . Then,

we calculate ImA0(iλ 0
I ) and increase (resp. decrease) Dv if ImA0(iλ 0

I )< 0 (resp.

ImA0(iλ 0
I )> 0 until ImA0(iλ 0

I ) = 0. This procedure is repeated until |A0(iλ 0
I )| is

sufficiently small.

Using the algorithm described above, the results in Figure 2.4 illustrate how

the synchronous instability threshold D?
v depends on parameters τs, τb, and K for

the explicitly solvable case in the well-mixed limit. From these figures we observe

that coupling can have both a stabilizing and a destabilizing effect with respect to

synchronous instabilities. Indeed, on the K = 0 axis we see, as expected from the

classical theory, that synchronous instabilities exist beyond some τs value. How-

ever, well before this threshold of τs is even reached it is possible for synchronous

instabilities to exist when both τb and K are sufficiently large. In contrast, we also

see from the panels in Fig. 2.4 with τs = 0.36, τs = 0.38, and τs = 0.4 that when

τb is sufficiently small, there are no synchronous instabilities when the coupling

K is large enough. Perhaps the most perplexing feature of this bulk-membrane

interaction is the island of stability that arises around τs = 0.4 and appears to per-
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Figure 2.6: Asynchronous instability thresholds Dv versus the coupling K in
the well-mixed limit for different values of L, different (N,k) pairs, and
for domain areas A = 3.142 (solid), 1.571 (dashed), and 0.785 (dotted).

sist, propagating to larger values of τb as τs increases (only shown up to τs = 0.6).

Finally in Figure 2.5 we demonstrate how the synchronous instability threshold be-

haves for finite bulk-diffusivity. A key observation from these plots is that that the

instability threshold increases with decreasing value of Db, which further supports

our earlier monotonicity assumption.

2.3.4 Asynchronous Instabilities

Since asynchronous instabilities emerge from a zero-eigenvalue crossing there are

two significant simplifications. Firstly, the thresholds are determined by the non-

linear algebraic problem Ak(0) = 0, for each mode k = 1, . . . ,N− 1, as given by

(2.31) in which χ(λ ) is replaced by χk(λ ) as defined in (2.5). Secondly, by set-

ting λ = 0, it follows that all τs and τb dependent terms in χk(λ ) vanish. There-

fore, asynchronous instability thresholds are independent of these two parameters.

The resulting nonlinear algebraic equations are readily solved with an appropriate

root finding algorithm (e.g. the brentq routine in the Python library SciPy). Fur-

thermore, in the uncoupled case (K = 0) the threshold can be determined explic-

itly (notice that when K = 0 the well-mixed and disk cases coincide). Indeed,

defining z = L
2N
√

Dv
and y = πk/N, the algebraic problem Ak(0) = 0 becomes
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Figure 2.7: Asynchronous instability thresholds Dv versus the coupling K for
the unit disk with Gierer-Meinhardt exponents (3,1,3,0), and for dif-
ferent Db. The dashed lines show the corresponding thresholds for the
well-mixed limit. The legend in the bottom right plot applies to each
plot.

( mq
p−1 − 1

)
sinh2(z) = sin2(y). From this relation it readily follows that the com-

petition stability threshold for K = 0 is

Dv =

[
2N
L

log
(√

p−1
mq−p+1

∣∣∣∣sin
(

πk
N

)∣∣∣∣+
√

p−1
mq−p+1 sin2

(
πk
N

)
+1
)]−2

. (2.17)

Figure 2.6 illustrates the dependence of the asynchronous threshold on the ge-

ometric parameters L and A for the well-mixed limit. In Figure 2.7 the effect of

finite bulk diffusivity Db is explored for the unit disk. This figure also illustrates

that while the asynchronous threshold tends to zero as K→∞ for sufficiently large

values of Db the same is not true for small values of Db. It is however worth re-

membering that for large K, where the competition threshold value of Dv appears

to approach zero in these figures, the result is not uniformly valid since the NLEP
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derivation required that Dv� ε2.

2.3.5 Numerical Support of the Asymptotic Theory

In this subsection we verify some of the predictions of the steady-state and lin-

ear stability theory by performing full numerical PDE simulations of the coupled

bulk-membrane system (2.1). In particular we first give an outline of the numerical

method used for solving (2.1). We then use full numerical simulations to quantita-

tively support our predicted synchronous instability threshold. Finally we consider

a gallery of numerical simulations that qualitatively support the asymptotic theory

developed above.

Outline of Numerical Methods

The spatial discretization of (2.1) in the well-mixed limit is simplified by observing

that equation (2.1c) reduces to an ODE. In particular, to leading order V must

be spatially homogeneous so that by integrating (2.1c) and using the divergence

theorem we obtain that V (t) must satisfy the ODE

τbVt =−(β −1)V +
β

L

ˆ L

0
vdσ . (2.18)

The remaining equations (2.1a) and (2.1b) can be discretized using a finite-difference

method on a uniform discretization of the interval [0,L]. Using this same dis-

cretization we can numerically evaluate the integral appearing in (2.18) using the

trapezoidal rule.

When the bulk diffusivity Db is finite we use the finite-element method with

linear basis functions for the bulk equation (2.1c). Using the nodes on the bound-

ary of the bulk triangulation we can use the finite difference method to discretize

the boundary equations (2.1a) and (2.1b). This aspect of the computation is simpli-

fied by enforcing the bulk-triangulation to have boundary nodes that are uniformly

distributed with respect to the arc-length. In addition, we remark that the relevant

integral contribution of v(x, t) to the bulk finite-element discretization requires only

the values of v(x, t) at the boundary nodes as can be seen by expanding v(x, t) in

terms of the restriction of the linear basis functions to the boundary.
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For both the well-mixed case and the disk problem, the spatial discretization

ultimately leads to a large system of ODEs

dW
dt

= AW +F(W ). (2.19)

Here the matrix A arises from the spatially discretized differential operators, while

F(W ) denotes the reaction kinetics and the bulk-membrane coupling terms.

The choice of a time-stepping scheme for reaction diffusion systems is gener-

ally non-trivial. Since the operator A is stiff, it is best handled using an implicit

time-stepping method. On the other hand, the kinetics F(W ) are typically non-

linear so explicit time-stepping is favourable. Using a purely implicit or explicit

time-stepping algorithm therefore leads to substantial computation time, either by

requiring the use of a non-linear solver to handle the kinetics in the first case, or by

requiring a prohibitively small time-step to handle the stiff linear operator in the

second case. This difficulty can be circumvented by using so-called mixed meth-

ods, specifically the implicit-explicit methods described in [2]. We will use a sec-

ond order semi-implicit backwards difference scheme (2-SBDF), which employs

a second-order backwards difference to handle the diffusive term together with an

explicit time-stepping strategy for the nonlinear term (cf. [85]). This time-stepping

strategy is given by

(3I−2∆tA)W n+1 = 4W n +4∆tF(W n)−W n−1−2∆tF(W n−1). (2.20)

To initialize this second-order method we bootstrap with a first order semi-implicit

backwards difference scheme (1-SBDF) as follows:

(I−∆tA)W n+1 =W n +∆tF(W n). (2.21)

We will use the numerical method outlined above in the two proceeding sections.
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Figure 2.8: Comparison between numerical and asymptotic synchronous in-
stability threshold for N = 1 with L= 2π , A= π , τs = 0.6, and τb = 0.01.
Notice that, as expected, the agreement improves as ε decreases.

Quantitative Numerical Validation: Numerically Computed Synchronous
Threshold

We begin by describing a method for numerically calculating the synchronous in-

stability threshold for a one (or more) spike pattern. Given an equilibrium solution

(u0,v0,V0), for sufficiently small times the numerical solution will evolve approxi-

mately as the linearization

u(σ , t)= u0(σ)+eλ t
φ(σ), v(σ , t)= v0(σ)+eλ t

ψ(σ), V (σ , t)=V0(σ)+eλ t
η(σ).

For ε > 0 fixed and sufficiently small the steady-state will be very close to that

predicted by the asymptotic theory. By initializing the numerical solver with one

of the steady-state solutions predicted by the asymptotic theory, and then tracking

its time evolution, we will thus be able to approximate the value of Re(λ ). If we

fix a location on the boundary σ? (e.g. one of the spike locations) and let t?1 <

t?2 < ... denote the sequence of times at which u(σ?, t) attains a local maximum or

minimum in t, then the sequence u?j = u(σ?, t?j ) ( j = 1, ..,) will approximate the

envelope of u(σ?, t). If this sequence is diverging from its average then Reλ ≥ 0,

whereas if it is converging then Reλ < 0. Furthermore, by writing

|u?n−u0(σ
?)| ≈ etnRe(λ )|φ(σ?)|,
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we can solve for Re(λ ) by taking two values t?n > t?m sufficiently far apart to get

Re(λ )≈
log
∣∣u?n−u0(σ

?)
∣∣− log

∣∣u?m−u0(σ
?)
∣∣

t?n − t?m
.

This motivates a simple method for estimating the synchronous instability thresh-

old numerically. Starting with some point in parameter space (chosen close to the

threshold predicted by the asymptotic theory) we approximate Re(λ ) and then in-

crease or decrease one of the parameters to drive Re(λ ) toward zero. Once Re(λ )

is sufficiently close to zero we designate the resulting point in parameter space as

a numerically-computed synchronous instability threshold point.

In the well-mixed limit, we fix values of K and vary Dv using the numerical

approach described above until Re(λ ) is sufficiently small. The results in Figure

2.8 compare the synchronous instability threshold for N = 1 in the well-mixed

limit as predicted by the asymptotic theory and by our full numerical approach for

ε = 0.3,0.4,0.5. We observe, as expected, that the asymptotic prediction improves

with decreasing values of ε , but that the agreement is non-uniform in the coupling

parameter K.

Qualitative Numerical Support: A Gallery of Numerical Simulations

We conclude this section by first showcasing the dynamics of multiple spike pat-

terns for several choices of the parameters K, Dv, τs, and τb in the well-mixed limit.

We will focus exclusively on the explicitly solvable Gierer-Meinhardt exponent

set (p,q,m,s) = (3,1,3,0) with ε = 0.05 and the geometric parameters L = 2π

and A = π . For the numerical computation we discretized the domain boundary

with 1200 uniformly distributed points (∆σ ≈ 0.00524) and used trapezoidal in-

tegration for the bulk-inhibitor equation (2.18). Furthermore, we used 2-SBDF

time-stepping initialized by 1-SBDF with a time-step size of ∆t = 2.5(∆σ)2 ≈
6.854× 10−4. In Figure 2.9 we plot the asymptotically predicted synchronous

and asynchronous instability thresholds for two pairs of time-scale parameters:

(τs,τb) = (0.2,2),(0.6,2). Each plot also contains several sample points whose

K and Dv values are given in Table 2.1 below. The corresponding full PDE nu-

merical simulations, tracking the heights of the spikes versus time, at these sample
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Figure 2.9: Synchronous (solid) and asynchronous (dashed) instability
thresholds in the Dv versus K parameter plane in the well-mixed limit
for N = 1 (blue), N = 2 (orange), and N = 3 (green). At the top of each
of the three panels a different pair (τs,τb) is specified. See Table 2.1 for
Dv and K values at the numbered points in each panel. Figures 2.10 and
2.11 show the corresponding spike dynamics from full PDE simulations
of (2.1) at the indicated points.

points are shown in Figures 2.10 and 2.11. We observe that the initial instability

onset in these figures is in agreement with that predicted by the linear stability the-

ory. For example, when τs = 0.6 and τb = 2 an N = 3 spike pattern at point six

should be stable with respect to an N = 3 synchronous instability but unstable with

respect to the N = 3 asynchronous instabilities. Indeed the initial instability onset

depicted in the “point 6, N = 3” plot of Figure 2.11 showcases the non-oscillatory

growth of two spikes and decay of one as expected. In addition the plots in Figures

2.10 and 2.11 support two previously stated conjectures. First, pure Hopf bifurca-

tions for N ≥ 2 should be supercritical (see “Point 4, N = 2” and “Point 7, N = 3”

in Figure 2.11). Secondly, we observe that asynchronous instabilities lead to the

eventual annihilation of some spikes and the growth of others. As a result, our PDE
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Point K Dv

1 8 7
2 4 6
3 4 2
4 1 3
5 1 1.25
6 1 0.5

(a)

Point K Dv

1 3 7
2 1.5 5
3 0.75 2.5
4 0 1.75
5 1.5 1.25
6 0.75 1.25
7 0 0.9
8 1 0.5

(b)

Point K Dv

1 0.5 18
2 2 10
3 2 3.5
4 1 0.5
5 0.025 1.8

(c)

Table 2.1: K and Dv values at the sampled points in the two panels of Fig. 2.9:
(a) Left panel: (τs,τb) = (0.2,2), and (b) Right panel: (τs,τb) = (0.6,2).
Table (d) shows the K and Dv values at the sampled points for the disk
appearing in the left panel of Fig. 2.12.

simulations suggest that these instabilities are subcritical.

We now show that this agreement between predictions of our linear stability

theory and results from full PDE simulations continues to hold for the case of a

finite bulk diffusivity. To illustrate this agreement, we consider the unit disk with

Db = 10 for (τs,τb) = (0.6,0.1). For this parameter set, in the left panel of Figure

2.12 we show the asymptotically predicted synchronous and asynchronous insta-

bility thresholds in the Dv versus K parameter plane for N = 1 and N = 2. The

faint grey dotted lines in this figure indicate the corresponding well-mixed thresh-

olds. In the right panel of Figure 2.12 we plot the spike heights versus time, as

computed numerically from (2.1), at the sample points indicated in the left panel.

In each case, the numerically computed solution uses a 2% perturbation away from

the asymptotically computed N-spike equilibrium. As in the well-mixed case,

the full numerical simulations confirm the predictions of the linear stability the-

ory. Furthermore, Figures 2.1 and 2.2 depict both the bulk-inhibitor and the two

membrane-bound species at certain times for an N = 2 spike pattern at points 2 and

5 in the left panel of Figure 2.12, respectively. From this figure, we observe that

the bulk-inhibitor field is largely constant except within a small near region near
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Figure 2.10: Numerically computed spike heights (vertical axis) versus time
(horizontal axis) from full PDE simulations of (2.1) for τs = 0.2 and
τb = 2 at the points indicated in the left panel of Figure 2.9. Distinct
spike heights are distinguished by line types (solid, dashed, and dot-
ted).
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Figure 2.11: Numerically computed spike heights (vertical axis) versus time
(horizontal axis) from full PDE simulations of (2.1) for τs = 0.6 and
τb = 2 at the points indicated in the middle panel of Figure 2.9. Dis-
tinct spike heights are distinguished by line types (solid, dashed, and
dotted).
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Figure 2.12: Left panel (a): Synchronous (solid) and asynchronous (dashed)
instability thresholds in the Dv versus K parameter plane for the unit
disk with Db = 10 and (τs,τb) = (0.6,0.1). N = 1 spike and N = 2
spikes correspond to the (blue) and (orange) curves, respectively. The
faint grey dotted lines are the corresponding well-mixed thresholds.
Right panel (b): Numerically computed spike heights (vertical axis)
versus time (horizontal axis) from full PDE simulations of (2.1) at the
points indicated in the left panel for N = 1 and N = 2 spikes. For
videos of the PDE simulations please see the supplementary materials.

the spike locations.

2.4 The Effect of Boundary Perturbations on
Asynchronous Instabilities

The goal of this section is to calculate the leading order correction to the asyn-

chronous instability thresholds for a perturbed disk. Specifically we consider the

domain

Ωδ ≡ {(r,θ) |0≤ r < R+δh(θ), 0≤ θ < 2π},
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Figure 2.13: The effect of boundary perturbations on the asynchronous sta-
bility of symmetric N-spike patterns for the unit disk. The top
row shows the multiplier MN,k, defined in (2.7), as a function of K
while the bottom row shows the leading order correction to the asyn-
chronous instability threshold, with the dashed line indicating the un-
perturbed threshold. Each column correspond to a choice of Db = 50
or Db = 5 with Gierer-Meinhardt exponents of (p,q,m,s) = (3,1,3,0)
or (p,q,m,s) = (2,1,2,0). In the second row the boundary perturba-
tion has parameters ξ = 1 (indicating an outward bulge at the spike
locations), and δ = 0.01.

where h(θ) is a smooth O(1) function with a Fourier series h(θ) = ∑
∞
n=−∞ hneinθ .

Although our final results will be restricted to the specific form

h(θ) = 2Rξ cos(Nθ) = Rξ eiNθ +Rξ e−iNθ , (2.1)

where ξ is a parameter, there is no additional difficulty in considering a general

Fourier series in the analysis below. However, we remark that in using the gen-

eral Fourier series given above we must impose appropriate symmetry conditions

on h(θ) so that the symmetric N-spike pattern construction, and in particular the

resulting NLEP (2.5), remain valid. Our main goal is to determine a two-term
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asymptotic expansion in powers of δ for each asynchronous instability threshold

in the form

Dv ∼ D?
vk0(Db,K,R)+D?

vk1(Db,K,R)δ +O(δ 2),

such that a zero-eigenvalue crossing is maintained to at least second order, i.e. for

which λ = O(δ 2).

Recall that the only component of the asynchronous NLEP (2.5) that depends

on the problem geometry is the NLEP multiplier χk(λ ). To study the effect of

boundary perturbations, it therefore suffices to calculate the leading order correc-

tions to the corresponding membrane Green’s function satisfying (2.22). Further-

more, we note that since we are only interested in a first order expansion, whereas

λ =O(δ 2), there is no loss in validity assuming that λ is an independent parameter

that we ultimately set to zero. Upon expanding Dv = Dv0
(
1+ Dv1

Dv0
δ
)
, a two-term

expansion for the perturbed membrane Green’s function is given by (see Appendix

B.2)

Gλ

∂Ω
(θ ,θ0)∼ Gλ

∂Ω0(θ ,θ0)+Gλ

∂Ω1(θ ,θ0)δ +O(δ 2),

where Gλ

∂Ω0 is the membrane Green’s function for the unperturbed disk calculated

previously in (B.7) and the leading-order correction is

Gλ

∂Ω1(θ ,θ0) =−h(θ0)
R Gλ

∂Ω0(θ ,θ0)+
1

2πR

∞

∑
n=−∞

∞

∑
k=−∞

ĝλ
n,khn−kgλ

k gλ
n einθ−ikθ0

− Dv1
2πR3

∞

∑
n=−∞

n2(gλ
n )

2ein(θ−θ0).

(2.2)

In this expression the coefficients ĝλ
n,k are given by

ĝλ
n,k =

Dv0
R3 k(n+ k)+K2aλ

k
(
âλ

n,k +P′k(R)
)
, (2.3)

where gλ
k , aλ

k , and âλ
n,k are defined in (2.9), (B.6), and (B.14), respectively.

Restricting our attention to perturbations of the form (2.1), and considering a

symmetric N-spike pattern with spikes centred at θ j =
2π( j−1)

N for j = 1, ...,N, we
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deduce from (2.2) that

Gλ

∂Ω1(θ ,θ j) =−2ξ Gλ

∂Ω0(θ ,θ j)− Dv1
2πR3

∞

∑
n=−∞

n2(gλ
0n)

2ein(θ−θ j)

+
ξ

2π

∞

∑
n=−∞

{
ĝλ

n,n+Ngλ
0,n+N + ĝλ

n,n−Ngλ
0,n−N}gλ

0nein(θ−θ j).

(2.4)

Note that by symmetry the consistency and balance equations continue to hold for

a symmetric N spike pattern. Furthermore the perturbed Green’s matrix remains

circulant, and therefore its eigenvalues can be read off as

µk(λ )=
N−1

∑
j=0

Gλ

∂Ω

(2π

N j,0
)
e

2πi jk
N ∼ µk0(λ )+δ

{
−2ξ µk0(λ )+ξ µk11(λ )+Dv1µk12(λ )

}

where

µk0(λ ) =
N

2πR

∞

∑
n=−∞

gλ
nN−k, (2.5a)

µk11(λ ) =
N
2π

∞

∑
n=−∞

{
ĝλ

nN−k,(n+1)N−kgλ

(n+1)N−k + ĝλ

nN−k,(n−1)N−kgλ

(n−1)N−k

}
gλ

nN−k, (2.5b)

µk12(λ ) =− N
2πR3

∞

∑
n=−∞

(nN− k)2(gλ
nN−k)

2. (2.5c)

Finally, upon setting λ = 0 in the zero-eigenvalue crossing condition Ak(0) =

[χk(0)]
−1−mq/(p−1) for the asynchronous modes k = 1, . . . ,N−1 (see (2.33)),

and noting χk(0) = µk(0)/µ0(0) from (2.5), we obtain that

µ00(0)+δ [−2ξ µ00(0)+ξ µ011(0)+Dv1µ012(0)]
µk0(λ )+δ [−2ξ µk0(λ )+ξ µk11(λ )+Dv1µk12(λ )]

− mq
p−1

= 0, (2.6)

for each k = 1, . . . ,N−1. The leading-order problem is satisfied by the previously

determined threshold Dv0 = D?
vk0(K,Db,R). On the other hand, by expanding (2.6)

in powers of δ , we obtain from equating O(δ ) terms in this expansion that

ξ
(
µ011(0)− mq

p−1 µk11(0)
)
+Dv1

(
µ012(0)− mq

p−1 µk12(0)
)
= 0.

57



Upon solving for Dv1 = D?
vk1(K,Db,R) in this expression, we conclude that

D?
vk1 =−MN,kξ , where MN,k ≡

µ011(0)− mq
p−1 µk11(0)

µ012(0)− mq
p−1 µk12(0)

. (2.7)

Therefore, the sign and magnitude of the multiplier MN,k determines how the asyn-

chronous instability threshold changes when the boundary is perturbed by a single

Fourier mode of the form (2.1).

Figure 2.13 illustrates the effect of boundary perturbations of the form (2.1)

by plotting the multiplier −MN,k in the top row, and the leading order corrected

asynchronous threshold Dv ∼ D?
vk0 +D?

vk1δ in the bottom row. Note that the (pos-

itive) maximums of h(θ) correspond with the quasi-equilibrium spike locations

θ j for each j = 1, ...,N. From (2.7) we therefore conclude that positive values of

−MN,k indicate an increase in stability when spike locations bulge out (ξ > 0), and

a decrease in stability otherwise. The results of Figure 2.13 thus indicate that an

outward bulge at the location of each spike in a symmetric N-spike pattern leads to

an improvement in stability of the pattern with respect to asynchronous instabili-

ties. In addition, the magnitude of −MN,k shows that this stabilizing effect is most

pronounced at some finite value of K corresponding to a maximum of−MN,k. Fur-

thermore, comparing the Db = 50 and Db = 5 plots we see that decreasing the bulk

diffusivity further accentuates the effect of boundary perturbations as is clear from

the relative magnitude of −MN,k in these two cases. These numerical observations

lead us to propose the following numerically supported proposition.

Proposition 2.4.1. Consider a symmetric N-spike pattern for the Gierer-Meinhardt

system (2.1) on the unit disk. Then a domain perturbation of the form (2.1), which

creates an outward bulge at each spike location, will increase the asynchronous

instability threshold of the symmetric N-spike pattern.

2.5 Discussion
We have introduced a coupled bulk-membrane PDE model in which a scalar lin-

ear 2-D bulk diffusion process is coupled through a linear Robin boundary con-

dition to a two-component 1-D RD system with Gierer-Meinhardt (nonlinear) re-

action kinetics defined on the domain boundary. For this coupled bulk-membrane
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PDE model, in the singularly perturbed limit of a long-range inhibition and short-

range activation for the membrane-bound species, we have studied the existence

and linear stability of localized steady-state multi-spike patterns defined on the

membrane. Our primary goal was to study how the bulk diffusion process and

the bulk-membrane coupling modifies the well-known linear stability properties of

steady-state spike patterns for the 1-D Gierer-Meinhardt model in the absence of

coupling.
By using a singular perturbation analysis on our coupled model (2.1) we first

derived a nonlinear algebraic system (2.16) characterizing the locations and heights
of steady-state multi-spike patterns on the membrane. Then we derived a new
class of NLEPs (nonlocal eigenvalue problems) characterizing the linear stability
on O(1) time-scales of these steady-state patterns. In this NLEP, the multiplier of
the nonlocal term is determined in terms of the model parameters together with a
new coupled nonlocal Green’s function problem. More specifically, a novel feature
of our steady-state and linear stability analysis is the appearance of a nonlocal 1-D
membrane Green’s function Gλ

∂Ω
(σ ,ζ ) (see (2.22)), satisfying

Dv∂
2
σ Gλ

∂Ω
(σ ,ζ )−(1+K+τsλ )Gλ

∂Ω
(σ ,ζ )+K2

ˆ L

0
Gλ

Ω(σ , σ̃)Gλ

∂Ω
(σ̃ ,ζ )dσ̃ =−δ (σ−ζ ),

for 0 < σ ,ζ < L which is coupled to a 2-D bulk Green’s function Gλ
Ω

satisfying

(see (2.19))

Db∆Gλ
Ω−(1+τbλ )Gλ

Ω = 0, in Ω ; Db∂nGλ
Ω+KGλ

Ω = δ∂Ω(x−x0), on ∂Ω.

Recall (2.1) for the description of all the model parameters including, the time

constants τs and τb, the diffusivities Dv and Db, and the coupling constant K.

To proceed with a more explicit linear stability theory we restricted our analysis

to symmetric multi-spike patterns, which are characterized by equidistantly (in arc-

length) separated spikes of equal height, for two analytically tractable cases. The

first case is when Ω is a disk of radius R, while the second case is when the bulk is

well mixed (i.e. Db� 1). While our formulation is equally valid for more general

settings there are two significant hurdles toward a more detailed stability analysis.

First, the global coupling introduced by the nonlocal membrane Green’s function

makes it unclear how to define symmetric multi-spike patterns. Although we re-
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marked earlier that such a classification can be associated with the condition that

G λ

∂Ω
has the eigenvector e, apart from domains with certain rotational symmetries it

is not clear how the geometry is related to this condition. Secondly, the numerical

computation of the bulk Green’s function for more general domains remains a topic

of ongoing research. For the two specific cases, we obtained analytical expressions

for the relevant Green’s function, and consequently the NLEP multipliers, in the

form of infinite series for the disk and explicit formulae for the well-mixed limit.

Parameter thresholds for two distinct forms of linear instabilities, corresponding to

either synchronous or asynchronous perturbations of the heights of the steady-state

spikes, were then computed from the NLEP. Our results indicate a non-monotonic

dependence on the bulk-membrane coupling strength K for both modes of insta-

bility, together with an intricate relationship between the time-scale and coupling

parameters for the synchronous instabilities. Specifically, for the asynchronous in-

stability modes the coupling has the effect of improving stability for smaller values

of K by raising the instability threshold for Dv, but reducing the range of stabil-

ity for larger values of K. This effect is amplified in the synchronous case where

for certain choices of τs a small region in the K versus τb parameter space can be

found for which no instabilities exist (see Figure 2.4). Finally, by using a Finite

Element / Finite Difference mixed IMEX scheme, we confirmed our linear stability

thresholds with full numerical PDE simulations.

We conclude the discussion by highlighting some open problems and directions

for future research. Firstly, for our coupled model, additional work is required to

calculate and study the linear stability of asymmetric spike patterns. Secondly, we

have neglected the role of small O(ε2) eigenvalues corresponding to weak drift in-

stabilities, which can be studied either through a more detailed asymptotic analysis

or by deriving and analyzing a corresponding slow spike-dynamics ODE system.

Thirdly, the numerical evidence provided by our PDE simulations suggests that,

when N ≥ 2 in the absence of competition instabilities, the Hopf bifurcation is su-

percritical, and leads to the emergence of a small amplitude time-periodic solution

near the bifurcation point. The numerical evidence also suggests that competition

instabilities are subcritical, and result in the annihilation of one or more spikes in

a multi-spike pattern. It would be worthwhile to analytically establish these con-

jectured branching behaviours from a weakly nonlinear analysis that is valid either
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near a Hopf bifurcation point or near a zero-eigenvalue crossing. In particular,

it would be interesting to perform a more detailed analysis of the observed time-

periodic solution near the Hopf bifurcation threshold to determine whether it has

some regularity or is otherwise chaotic.

Finally, there are several directions for extending our model and applying a

similar methodology. One direction would be to analyze similar problems in higher

space dimensions, such as a 3-D linear bulk diffusion process coupled to a nonlin-

ear RD system on a 2-D surface. A common feature in the matched asymptotics

calculation for higher-dimensional problems is that the inhibitor and activator no

longer decouple in the inner problem. This leads to a nonlinear algebraic system

and globally coupled eigenvalue problem markedly different from those in one-

dimensional problems. An analytical treatment of the effect of coupling on these

systems has, as of yet, been unexplored. A further direction would be to consider

a two-component bulk diffusion process, with nonlinear bulk kinetics. For this

more complicated model it would be interesting to study the interplay between 1-

D membrane-bound and 2-D bulk-bound localized patterns. Additionally it would

be instructive to asymptotically construct and analyze the localized patterns ob-

served in the numerical study of Madzvamuse et. al. [57, 58] as well those of Rätz

et. al. [81–83].
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Chapter 3

Localized Spot Patterns in a
Bulk-Membrane Coupled
Brusselator Model

The classical Brusselator model [79] is characterized by the reaction kinetics

E −→U, B+U −→V +D, 2U +V −→ 3U, U −→ A, (3.1)

for the activator U , inhibitor V , fuel E, and catalyst B. In most studies of the Brus-

selator model the fuel and catalyst are typically assumed to be of constant concen-

tration while the activator and inhibitor concentrations are assumed to depend on

both space and time. In particular, the spatiotemporal evolution of the activator

and inhibitor concentrations is determined by a two-component reaction diffusion

system which is obtained by applying the Law of Mass Action and assuming that

both chemical components have a finite diffusivity.

In this chapter we analyze the structure and stability of localized spot patterns

in a model which incorporates bulk-membrane coupling into a reaction-diffusion-

system with Brusselator-like reaction kinetics. In particular we consider a model

in which the activator U and inhibitor V are bound to the membrane ∂Ω0 of a
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three-dimensional domain Ω0 where they passively diffuse with reaction kinetics

B+U −→V +D, 2U +V ka−→ 3U, (3.2)

where B is a catalyst component and D a passive product. Bulk-membrane cou-

pling is incorporated by assuming that the activator shuttles between membrane-

and bulk-bound states through a Langmuir process of membrane attachment and

detachment [43]. Moreover we assume that the fuel necessary to sustain pattern

formation originates within the bulk and passively diffuses to the membrane. The

resulting bulk-membrane coupled reaction diffusion system for the membrane-

bound inhibitor concentration V and membrane- and bulk-bound activator con-

centrations U and W respectively is then given by the bulk-membrane coupled

reaction-diffusion system

∂T U = DU ∆∂Ω0U − (B+ kd +K1)U + kaU
2V +K2W , XXX ∈ ∂Ω0, (3.3a)

∂T V = DV ∆∂Ω0V +BU − kaU
2V , XXX ∈ ∂Ω0, (3.3b)

∂T W = DW ∆W +E (XXX), XXX ∈Ω0, (3.3c)

DW ∂NW = K1U −K2W , XXX ∈ ∂Ω0. (3.3d)

where ∂T is the time derivative, ∂N is the derivative in the direction of the out-

ward unit normal to ∂Ω0, ∆∂Ω0 is the Laplace-Beltrami operator on ∂Ω0 which

describes lateral diffusion on the membrane, DU , DV , and DW are the diffusiv-

ities of U ,V , and W respectively, B is the conversion rate of U to V through

the reaction B+U → V +D, K1 and K2 are the rates of activator membrane de-

tachment and attachment respectively, ka is the rate of the autocatalytic reaction

2U +V ka−→ 3U , kd is the activator membrane-degradation rate, and E (XXX) is the

bulk-bound activator fuel source which we assume is compactly supported in the

interior of Ω0.

While the bulk-membrane coupled model (3.3) explicitly includes only two of

the reactions from the Brusselator reaction-kinetics (3.1), the remaining two reac-

tions are incorporated primarily through bulk-membrane coupling. In particular

the reaction U −→ A in (3.1) is replaced by a membrane-to-bulk detachment pro-

cess characterized by the −K1U term in (3.3a) in addition to a generic membrane

63



degradation term characterized by the −kdU term. Similarly, the reaction E →U

in (3.1) required for sustaining pattern formation is replaced by the transport of a lo-

calized fuel-term in the bulk to the membrane through passive diffusion. Note that

if K1 = 0 then the two-component system (3.3a)-(3.3b) is indistinguishable from

the classically studied Brusselator system, albeit with a possibly spatially hetero-

geneous fuel term given by K2W . However, the introduction of bulk-membrane

coupling provides a systematic way of choosing the fuel term appearing in the

classical Brusselator reaction kinetics (3.1). In our model the fuel term E (XXX) can

encompass a wide variety of bulk-originating fuel terms that closely describe bio-

logical processes being modelled. Such a modelling paradigm may be particularly

fruitful in the context of conifer growth models previously based on the Brusselator

reaction kinetics (see for example [35, 36] and the references therein). In addition

bulk-membrane coupling introduces a nonlocal mechanism of chemical transport

on the membrane characterized by a cycle of membrane detachment, bulk-bound

diffusion, and membrane reattachment. One of the key goals of this chapter is

to explore the effects of this nonlocal mechanism on the structure, stability, and

dynamics of localized patterns.

To simplify our analysis and isolate key parameters we first perform a nondi-

mensionalization of the model (3.3). Letting L be a characteristic length scale

for the domain Ω0 and its boundary ∂Ω0 we introduce non-dimensional spatial

variables xxx = L−1XXX so and define Ω = L−1Ω and ∂Ω = L−1∂Ω0. We further let

DU ≡ L−2DU , DV ≡ L−2DV , and DW ≡ L−2DW . In the limit of an asymptotically

small activator diffusivity DU = ε2
0 � 1 the resulting two-dimensional singularly

perturbed Brusselator system is known to support localized spot patterns when the

fuel is O(ε0) [84, 91]. It follows that W = O(ε0) is needed to sustain patterns so

we assume that E (XXX) = ε0E0E(xxx) where E(xxx) =O(1) in Ω and by introducing the

non-dimensional variables

U = ε
−1
0 E0Lu, V = ε0

B

kaLE0
v, W = ε0

E0L
K2

w, T =
t

B+ kd +K1
, (3.4)
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we obtain the nondimensionalized bulk-membrane coupled system

∂tu = ε
2
∆∂Ωu−u+ f u2v+ ε

2w, xxx ∈ ∂Ω, t > 0 (3.5a)

τv∂tv = Dv∆∂Ωv+ ε
−2(u−u2v) xxx ∈ ∂Ω, t > 0, (3.5b)

τw∂tw = Dw∆w+E(xxx), xxx ∈Ω, t > 0, (3.5c)

Dw∂nw+w = ε
−2Ku, xxx ∈ ∂Ω, t > 0, (3.5d)

where ∆∂Ω is the Laplace-Beltrami operator on ∂Ω, ∂n denotes the derivative in the

direction of the outer unit normal, the time-constants and diffusivities are given by

τv ≡ (B+ kd +K1)
2 1

kaE2
0 L2 , Dv ≡

τvDV

B+ kd +K1
,

τw ≡
(B+ kd +K1)L

K2
, Dw ≡

DW L
K2

,

and the remaining parameter are given by

ε ≡ ε0√
B+ kd +K1

� 1, K ≡ K1

B+ kd +K1
, f ≡ B

B+ kd +K1
. (3.6)

Recall that the membrane-bound activator is reduced by three processes: con-

version to V through the reaction B +U −→ V + D, membrane detachment at a

rate of K1, and degradation at a rate of kd . Therefore 0 ≤ K < 1 and 0 < f < 1

correspond to the proportion of the rate of membrane-bound activator lost due to

membrane detachment and conversion to membrane-bound inhibitor respectively.

An additional constraint on the two parameters f and K is obtained from (3.3) by

using the divergence theorem to calculate

d
dT

ˆ
∂Ω0

(
U +V )dS =−kd

ˆ
∂Ω

UdS+E0,

from which it is clear that kd > 0 is needed to sustain stationary patterns and we

deduce the constraint

0 < f +K < 1. (3.7)

In the absence of bulk-membrane coupling (e.g. with K = 0), several studies

have investigated the resulting singularly perturbed reaction diffusion system con-
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sisting of (3.5a) and (3.5b). In particular when ∂Ω is the unit sphere in R3 the

quasi-equilibrium structure, linear stability, and slow dynamics of multi-spot pat-

terns in the presence of a spatially homogeneous and time-independent fuel have

been analyzed using the method of matched asymptotic expansions in [84, 91].

Assuming henceforth that Ω is the unit ball in R3 our aim is to extend the re-

sults obtained in these previous studies to the bulk-membrane coupled model (3.5).

The novel features of this extension are twofold. First, the bulk originating fuel

term will in general lead to a spatially heterogeneous fuel source for the membrane

activator equation. Presently, the effects of such a spatially heterogeneous fuel

term have been considered only in the context of the unit disk in R2 [96]. Sec-

ondly, membrane-detachment and reattachment leads to a nonlocal mechanism of

membrane-bound activator transport which has no yet been explored in the context

of localized patterns on two-dimensional surfaces.

The remainder of this chapter is organized as follows. In §3.1 we use the

method of matched asymptotic expansions to construct quasi-equilibrium multi-

spot patterns that are stationary on an O(1) time scale and in §3.2 we study their

linear stability on an O(1) timescale. In §3.3 we derive a differential algebraic

system of equations governing the slow evolution of multi-spot solutions on an

O(ε−2) timescale. In §3.4 we explicitly construct and consider the stability and

dynamics of one-, two-, and three-spot patterns. Finally, in §3.5 we provide a brief

conclusion.

3.1 Asymptotic Construction of N-Spot
Quasi-Equilibrium

The method of matched asymptotic expansions has been extensively used to ana-

lyze localized solutions to singularly perturbed reaction diffusion systems in one-,

two-, and three-dimensional domains [41, 48, 97, 98]. It has likewise been used to

study localized multi-spot patterns on the unit sphere [84, 91], and more recently

on the torus [95]. Applying these techniques we now construct a quasi-equilibrium

solution consisting of N spots concentrating on ∂Ω at

xxxi = (sinθi cosϕi,sinθi sinϕi,cosθi)
T , for i = 1, ...,N, (3.8)
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where 0< θi < π and 0≤ϕi < 2π (i= 1, ...,N) are the typical spherical coordinates

and for which we assume that the spots are well separated in the sense that |xxxi−
xxx j| � ε for all i 6= j. This solution is to be understood only as a quasi-equilibrium

because, unless additional constraints are imposed on xxx1, ...,xxxN , the spots will drift

on an O(ε−2) timescale according to prescribed dynamics developed in §3.3. With

these assumptions a local expansion of (3.5a) and (3.5b) near each xxxi (i = 1, ...,N)

yields a system of core-problems which are coupled only through the prescription

of far-field constants for the local inhibitor concentrations. An appropriate choice

of local coordinates greatly simplifies the resulting analysis. Motivated by the use

of geodesic normal coordinates in [92] and more recently in [95] we first construct

local normal coordinates near each spot.

3.1.1 Geometric Preliminaries: Local Geodesic Normal Coordinates
on the Unit Sphere

In terms of spherical coordinates r > 0 and (θ ,ϕ) ∈ (0,π)× [0,2π) the Laplace

operator and Laplace-Beltrami operator on the unit sphere are respectively given

by

∆ =
1
r2

∂

∂ r
r2 ∂

∂ r
+

1
r2 ∆∂Ω, ∆∂Ω =

1
sinθ

∂

∂θ
sinθ

∂

∂θ
+

1
sin2

θ

∂ 2

∂ϕ2 . (3.9)

Previous studies of multi-spot patterns on the unit sphere have used the local coor-

dinates s2 = ε−1(θ −θi) and s2 = ε−1 sinθi(ϕ−ϕi) to parameterize points on ∂Ω

within a O(ε) neighbourhood of each spot location xxxi [84, 91] (see also [13] for a

similar approach in the context of narrow escape problems). In terms of these local

coordinates it is then straightforward to calculate the two term expansion

∆∂Ω = ε
−2(∂ 2

s1
+∂

2
s2
)+ ε

−1 cotθi(∂s1−2s1∂
2
s2
)+O(1).

The factor of cotθi in the O(ε−1) correction implies that the local behaviour of

spots depends on their location on the unit sphere which suggests this correction is

an artifact of the choice of local coordinates. Indeed this term was recognized as

a correction to the leading order tangent plane approximation by Trinh and Ward

[91]. The accompanying analysis in the study of slow spot dynamics that arises due
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Figure 3.1: Example of geodesic normal coordinates (ζ1,ζ2,ζ3) at xxxi ∈ ∂Ω.
The blue (resp. orange) curves indicate geodesics obtained by varying
−π/2 < ζ1 < π/2 (resp. −π < ζ2 < π) and fixing ζ3 = 0 and ζ2 = 0
(resp. ζ1 = 0).

to such an O(ε−1) correction can be bypassed through the use of local geodesic

normal coordinates in terms of which it can be shown that the O(ε−1) correction

in the local expansion of the Laplace-Beltrami operator vanishes identically [92].

For the remainder of this section we explicitly construct such a coordinate system

for the unit ball.

We begin by defining new coordinates ζζζ =(ζ1,ζ2,ζ3)
T ∈ (−π/2,π/2)×(−π,π)×

[0,1] in Ω∪∂Ω such that ζζζ = 000 corresponds to xxxi ∈ ∂Ω, ξ3 > 0 corresponds to the

interior of Ω, and the curves obtained by setting ζ3 = 0 and fixing either ζ1 = 0 or

ζ2 = 0 are geodesics on ∂Ω. Specifically we first calculate the orthonormal vectors

xxxi =

sinθi cosϕi

sinθi sinϕi

cosθi

 , ∂θ xxxi =

cosθi cosϕi

cosθi sinϕi

−sinθi

 , xxxi×∂θ xxxi =

−sinϕi

cosϕi

0

 , (3.10a)

and define ζζζ by

xxxi(ζζζ ) = (1−ζ3)
(
cosζ1 cosζ2xxxi + cosζ1 sinζ2∂θ xxxi + sinζ1xxxi×∂θ xxxi

)
. (3.10b)

Thus ζ1 and ζ2 are the standard spherical coordinates in the reference frame with

orthonormal basis {xxxi,∂θ xxxi,xxxi× ∂θ xxxi}, while ζ3 measures the distance from ∂Ω.
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It is easy to verify that setting ζζζ = 000 corresponds to xxx = xxxi. Additionally the

coordinate curves obtained by setting ζ3 = 0 and fixing either ζ2 = 0 or ζ1 = 0 are

respectively given by

xxxi(ζ1,0,0) = cosζ1xxxi + sinζ1xxxi×∂θ xxxi, xxxi(0,ζ2,0) = cosζ2xxxi + sinζ1∂θ xxxi,

which correspond to intersections of ∂Ω with the planes spanned by {xxxi,xxxi×∂θ xxxi}
and {xxxi,∂θ xxxi} respectively. In particular, these coordinates curves are geodesics on

∂Ω so that in terms of

ζζζ = εYYY = ε(Y1,Y2,Y3)
T , YYY = O(1) (3.11a)

we obtain the local expansions (see Appendix A of [92])

∆ = ε
−2

∂
2
Y3
+ ε
−2

∆(Y1,Y2)+O(ε−1), ∆∂Ω = ε
−2

∆(Y1,Y2)+O(1), (3.11b)

where

∆(Y1,Y2) ≡ ∂
2
Y1
+∂

2
Y2
. (3.11c)

Moreover, by letting YYY ′ ≡ (Y1,Y2)
T , ρ ≡ |YYY ′|=

√
Y 2

1 +Y 2
2 , and

Ji ≡
(
xxxi×∂θ xxxi

∣∣∂θ xxxi
)
=

−sinϕi cosθi cosϕi

cosϕi cosθi sinϕi

0 −sinθi

 ,

we readily calculate

xxxi(εYYY ) = xxxi + ε
(
JiYYY ′−Y3xxxi

)
− ε

2(ρ2xxxi

2
+Y3

(
Y2∂θ xxxi +Y1xxxi×∂θ xxxi)

)
+O(ε3),

(3.12)

from which it follows that for all YYY ′ = O(1)

|xxxi(ε(YYY ′,0))−ξξξ |2 = |xxxi−ξξξ |2 +2εYYY ′T J T
i (xxxi−ξξξ ) +O(ε2) (3.13a)
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when |ξξξ − xxxi|= O(1), and

|xxxi(ε(YYY ′,0))−ξξξ |2 = ε
2|YYY ′−ZZZ′|2 +O(ε4), (3.13b)

when ξξξ = xxxi(ε(ZZZ′,0)) and ZZZ′ = O(1). In the second case we have used J T
i Ji =

I2 (the 2×2 identity matrix) as well as J T
i xxxi = 000 to cancel the O(ε3) contribu-

tion. On the other hand, writing any vvv ∈ R3 as vvv = v1xxxi + v2∂θ xxxi + v3xxxi×∂θ xxxi we

obtain

JiJ
T

i vvv = Ji

(
v3

v2

)
= v2∂θ xxxi + v3xxxi×∂θ xxxi,

from which we obtain

JiJ
T

i = I3− xxxixxxT
i , (3.14)

and deduce that JiJ T
i is the projection onto the tangent plane of ∂Ω at xxxi.

3.1.2 Matched Asymptotic Expansions and the Nonlinear Algebraic
System

We seek a quasi-equilibrium solution to (3.5) which is stationary on an O(1) time

scale. First we construct the inner solution by letting YYY be the local coordinates near

xxxi given by (3.11a). From (3.5c) we see that w(xxxi(εYYY )) = O(ε−1) and therefore

the leading order core problem for the membrane-bound activator and inhibitor

are identical to those previously considered in [84] and [91]. In particular the

leading order inner solution is completely determined by an unknown constant

spot strength Si and is explicitly given by

u(xxxi(εYYY ′,0)) =
√

DvUi0(ρ)+O(ε), v(xxxi(εYYY ′,0)) =
1√
Dv

Vi0(ρ)+O(ε),

(3.15)

where

Ui0(ρ)≡Uc(ρ;Si, f ), Vi0(ρ)≡Vc(ρ;Si, f ), (3.16)
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and (Uc(ρ;S, f ),Vc(ρ;S, f )) is the radially symmetric solution to the core problem

∂
2
ρUc +ρ

−1
∂ρUc−Uc + fU2

c Vc = 0, ρ > 0, (3.17a)

∂
2
ρVc +ρ

−1
∂ρVc +Uc−U2

c Vc = 0, ρ > 0, (3.17b)

∂ρUc = ∂ρVc = 0, at ρ = 0, (3.17c)

Uc→ 0, Vc ∼ S logρ +χ(S, f )+o(1), as ρ → ∞. (3.17d)

The function χ(S, f ) indicates the far-field constant behaviour of the inner inhibitor

solution and can be numerically calculated by solving (3.17) on a truncated domain

(see §2 of [84]). In Figure 3.2a we plot the numerically calculated χ(S, f ) versus

S > 0 for select values of 0 < f < 1. By integrating (3.17b) over 0 < ρ < ∞ we

obtain the useful identity

Si =
1− f

f

ˆ
∞

0
Ui0(ρ)ρdρ =−

ˆ
∞

0

(
Ui0(ρ)−Ui0(ρ)

2Vi0(ρ))ρdρ. (3.18)

The leading order behaviour of the bulk-bound activator near xxxi is then readily

computed by letting

w(xxxi(εYYY )) = ε
−1Wi0(YYY )+O(1), (3.19)

so from (3.11b) we obtain

∂
2
Y3

Wi0 +∆(Y1,Y2)Wi0 = 0, (YYY ′,Y3) ∈ R2× (0,∞),

Dw∂Y3Wi0 = K
√

DvUi0(ρ), (YYY ′,Y3) ∈ R2×{0}.

This in turn can be explicitly solved using the Neumann Green’s function on the

upper half-space which yields

Wi0(YYY ) =
K
√

Dv

2πDw

ˆ
∞

0

ˆ
∞

0

Uc(
√

ξ 2
1 +ξ 2

2 )√
(ξ1−Y1)2 +(ξ2−Y2)2 +Y 2

3

dξ1dξ2 +W i0, (3.20)
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Figure 3.2: Numerically calculated (a) far-field constant χ(S, f ), (b) m-mode
instability threshold Σm( f ) for 2 ≤ m ≤ 4, and (c) slow dynamics mul-
tiplier γ(S, f ). The solid circles in (c) indicate values of γ(S, f ) at the
splitting instability thresholds Σ2( f ). These functions depend only on
the local structure of each spot and are therefore independent of bulk-
membrane coupling.

where W i0 is an undetermined constant. Note that Wi0 is bounded for all Y3 ≥ 0,

and is radially symmetric when Y3 = 0.

When xxx ∈ ∂Ω and |xxx−xxxi| � ε for all i = 1, ...,N the exponential decay of each

Ui0(ρ) as ρ → ∞, together with (3.13) implies that the membrane-bound activator

is, to leading order, given by

u(xxx)∼ ε
2w(xxx)+

√
Dv

N

∑
i=1

Ui0(ε
−1|xxx− xxxi|), (3.21)

which in turn implies the distributional limits

u−u2v
ε2 → w(xxx)−2π

√
Dv

N

∑
i=1

Siδ∂Ω(xxx− xxxi), ε → 0+,

u
ε2 → w(xxx)+

2π
√

Dv f
1− f

N

∑
i=1

Siδ∂Ω(xxx− xxxi), ε → 0+.

The leading order outer problems for the membrane-bound inhibitor and bulk-
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bound activator are then respectively given by

Dv∆∂Ωv =−w(xxx)+2π
√

Dv

N

∑
i=1

Siδ∂Ω(xxx− xxxi), xxx ∈ ∂Ω, (3.22)

and

Dw∆w =−E(xxx), xxx ∈Ω, (3.23a)

Dw∂nw+(1−K)w = 2π
√

Dv
K f

1− f

N

∑
i=1

Siδ∂Ω(xxx− xxxi), xxx ∈ ∂Ω. (3.23b)

By first integrating (3.22) over ∂Ω and then applying the divergence theorem to

(3.23) we deduce the solvability condition

N

∑
i=1

Si =
1

2π
√

Dv(1−K)

ˆ
Ω

E(xxx)d3xxx+
K f

(1− f )(1−K)

N

∑
i=1

Si,

which can be further rearranged into the form

N

∑
i=1

Si =
1

2π
√

Dv

(
1− K

1− f

)−1ˆ
Ω

E(xxx)d3xxx. (3.24)

The dependence of the spot strengths on the total membrane-bound fuel is similar

to that obtained for spot patterns to the Brusselator model in the unit disk with

an inhomogeneous fuel source [96], whereas the coupling-dependence reflects a

feedback mechanism introduced by the cycle of membrane detachment and reat-

tachment. Moreover, using (3.6) we obtain that in terms of the original problem pa-

rameters (1−K/(1− f ))−1 = K1/kd which indicates that the coupling-dependent

multiplier reflects the ratio between the rate of membrane-detachment to that of

degradation.

Next we solve for the membrane-bound inhibitor and bulk-bound activator in

the outer region where |xxx−xxxi| �O(ε) for all i = 1, ...,N. First we note that (3.23)

is solved by

w(xxx)∼ 1
Dw

wE(xxx)+
2π
√

Dv

Dw

K f
1− f

N

∑
i=1

SiGmr(xxx,xxxi), (3.25)
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where wE(xxx) is the unique solution to

∆wE =−E(x), xxx ∈Ω; ∂nwE +
1−K

Dw
wE = 0, xxx ∈ ∂Ω, (3.26)

and Gmr(xxx,xxxi) is the membrane Robin Green’s function satisfying

∆Gmr = 0, xxx ∈Ω; ∂nGmr +
1−K

Dw
Gmr = δ∂Ω(xxx− xxxi), xxx ∈ ∂Ω,

(3.27a)

for which we note the explicit series expansion

Gmr(xxx,ξξξ ) =
1

4π

∞

∑
l=0

glPl(ξξξ
T xxx), gl ≡

2l +1
l + 1−K

Dw

, (3.27b)

where Pl(x) is the Legendre polynomial of degree l. Assuming the solvability

condition (3.24) is satisfied, substituting (3.25) into (3.22) we explicitly calculate

the outer solution for the membrane-bound inhibitor

v∼− 2π√
Dv

N

∑
i=1

(
Gs(xxx,xxxi)−

1
Dw

K f
1− f

ˆ
∂Ω

Gs(xxx,ξξξ )Gmr(ξξξ ,xxxi)dAξξξ

)
Si

+
1√
Dv

v̄+
1

DwDv
vE(xxx),

(3.28)

where v̄ is an undetermined constant, vE(xxx) is given by

vE(xxx)≡
ˆ

∂Ω

Gs(xxx,ξξξ )wE(ξξξ )dAξξξ , (3.29)

and Gs(xxx,ξξξ ) is the membrane Green’s function satisfying

∆∂ΩGm(xxx,ξξξ ) =
1

4π
−δ∂Ω(xxx−ξξξ ), xxx ∈ ∂Ω, (3.30a)ˆ

∂Ω

Gs(xxx,ξξξ )dAxxx = 0, ξξξ ∈ ∂Ω, (3.30b)

and given explicitly given by [84]

Gs(xxx,ξξξ ) =−
1

2π
log |xxx−ξξξ |+R0, R0 ≡

log4−1
4π

. (3.30c)
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In addition we note that this membrane Green’s function has the series expansion

Gs(xxx,ξξξ ) =
1

4π

∞

∑
l=1

2l +1
l(l +1)

Pl(ξξξ
T xxx), (3.31)

so that by using the well known product formula

ˆ
∂Ω

Pl(xxxT
i xxx)Pk(xxxT xxx j)dAx = δkl

4π

2l +1
Pl(xxxT

i xxx j), (3.32)

and expansion (3.27b) we obtain

ˆ
∂Ω

Gs(xxx,ξξξ )Gmr(ξξξ ,xxxi)dAξξξ =
1

4π

∞

∑
l=1

gl

l(l +1)
Pl(xxxT

i xxx), xxx ∈ ∂Ω. (3.33)

To determine the unknown spot strengths S1, · · · ,SN we match the behaviour of

the inner solution (3.15) as ρ→∞ with the limiting behaviour of the outer solution

(3.28) as |xxx−xxxi| → 0 for each i = 1, ...,N. Recalling the local expansion (3.13) and

using (3.30c) we calculate

Gs(xxxi(ε(YYY ′,0)),ξξξ )∼ Gs(xxxi,ξξξ )−
ε

2π
YYY ′T J T

i
xxx−ξξξ

|xxx−ξξξ |2
+O(ε2), (3.34a)

when |ξξξ − xxxi| � ε , and

Gs(xxxi(ε(YYY ′,0)),ξξξ )∼− 1
2π

log |YYY ′−ZZZ′|+ 1
2πν

+R0 +O(ε2), (3.34b)

when ξξξ = xxxi(ε(ZZZ′,0)) and ZZZ′ = O(1) and where we identify

ν ≡− 1
logε

� 1. (3.35)

Evaluating (3.28) at xxx = xxxi(ε(YYY ′,0)) we therefore obtain

√
Dvv(xxxi(ε(YYY ′,0)))∼

(
logρ− 1

ν

)
Si−2π

N

∑
j=1

Gi jS j +
vE(xxxi)

Dw
√

Dv
+ v̄

+ εYYY ′T J T
i

(
∑
j 6=i

S jααα i j +
∇xxxvE(xxxi)

Dw
√

Dv

)
+O(ε2).

(3.36)
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where for all i, j = 1, ...,N we define

Gi j ≡−
1

Dw

K f
1− f

ˆ
∂Ω

Gs(xxxi,ξξξ )Gmr(ξξξ ,xxx j)dAξξξ +

R0, i = j,

Gs(xxxi,xxx j), i 6= j,
(3.37)

and

ααα i j ≡
xxxi− xxx j

|xxxi− xxx j|2
− f

1− f
K

Dw

ˆ
∂Ω

xxxi−ξξξ

|xxxi−ξξξ |2
Gmr(ξξξ ,xxx j)dAξξξ . (3.38)

We also note that by using (3.29) and (3.30c) we explicitly calculate

∇xxxvE(xxxi)≡−
1

2π

ˆ
∂Ω

xxxi−ξξξ

|xxxi−ξξξ |2
wE(ξξξ )dAξξξ . (3.39)

While the O(ε) correction in (3.36) does not play a role in either the quasi-equilibrium

construction or the leading-order linear stability theory on an O(1) timescale, it

does play a crucial role in deriving the slow dynamics taking place on an O(ε−2)

timescale as detailed in §3.3 below.

Comparing the behaviour of the outer solution (3.36) in the limit |x− xi| → 0

with the limiting behaviour of the inner solution (3.15) as ρ→∞ yields, to leading

order, the nonlinear system

ν
−1SSS+2πG SSS+χχχ(SSS, f ) = v̄eee+

1
Dw
√

Dv
vvvE , (3.40)

where

SSS≡


S1
...

SN

 , eee≡


1
...

1

 , vvvE ≡


vE(xxx1)

...

vE(xxxN)

 , χχχ(SSS; f )≡


χ(S1, f )

...

χ(SN , f )

 , (3.41)

and G is the N×N matrix with entries Gi j given by (3.37). The nonlinear system

(3.40) must be solved subject to the solvability condition (3.24) which we can

rewrite as eeeT SSS = NSc where the common spot strength Sc is defined by

Sc ≡
1

2πN
√

Dv

(
1− K

1− f

)−1ˆ
Ω

E(xxx)d3xxx. (3.42)
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Left-multiplying (3.40) by eeeT and using the solvability condition we calculate

v̄ =
1
ν

Sc +
1
N

eeeT (2πG +χχχ(SSS, f )
)
− 1

Dw
√

DvN
eeeT vvvE , (3.43a)

from which we find that the unknown spot strengths SSS must solve the nonlinear

algebraic system (NAS)

SSS+2πν(IN−EN)G SSS+ν(IN−EN)χχχ(SSS, f ) = Sceee+
ν

Dw
√

Dv
(IN−EN)vvvE

(3.43b)

where IN is the N×N identity matrix and EN ≡ N−1eeeeeeT . Summarizing, we have

the following proposition.

Proposition 3.1.1. Let ε � 1 and assume that xxx1, ...,xxxN ∈ ∂Ω are well separated

in the sense that |xxxi− xxx j| � ε for all i 6= j. Then, a quasi-equilibrium solution

to (3.5) consisting of N-spots concentrating at xxx1, ...,xxxN is asymptotically given by

(3.15) and (3.19) when |xxx−xxxi| � ε for each i = 1, ...,N, and by (3.21), (3.28), and

(3.25) when |xxx− xxxi| � ε for all i = 1, ...,N, where v̄ is given by (3.43a) and the

spot strengths S1, ...,SN are found by solving the NAS (3.43b).

Although the NAS (3.43b) must in general be solved numerically, it provides

an asymptotic approximation that is accurate to all orders of ν = −1/ logε � 1.

Indeed, assuming that all problem parameters are O(1) with respect to ε � 1, we

can easily calculate a two-term asymptotic expansion in powers of ν as

SSS∼ Sceee+ν(IN−EN)

(
1

Dw
√

Dv
vvvE −2πScG eee

)
+O(ν2),

for which we highlight that the logarithmic dependence of ν on ε may render the

correction term ν2 impractically large. On the other hand, under certain condi-

tions on the spot configuration xxx1, ...,xxxN and bulk-bound fuel source E(xxx) the NAS

(3.43b) may be explicitly solved. In fact, since the range of IN−EN is orthogonal

to eee we find that SSS = Sceee is an exact solution of (3.43b) provided that

(
IN−EN

)( 1
Dw
√

Dv
vvvE −2πScG eee

)
= 000.

One such example occurs when the bulk-bound fuel has azimuthal symmetry about

77



an axis spanned by zzz 6= 000. In such a case vE = vE(zzzT xxx) and SSS = Sceee exactly solves

(3.43b) provided that xxx1, ...,xxxN are uniformly distributed on a ring making a com-

mon angle with zzz. Indeed for such a configuration vvvE is proportional to eee while G

is a circulant matrix and therefore has a constant row-sum. Finally, we remark that

distinct asymptotic approximations to (3.43b) can be calculated when the remain-

ing problem parameters are in different ε-dependent regimes [91].

3.2 Linear Stability on an O(1) Timescale
In this section we consider the linear stability on an O(1) timescale of the quasi-

equilibrium solution (ue,ve,we) constructed in §3.1 above. We begin by first con-

sidering perturbations of the form

u(xxx) = ue(xxx)+ eλ t
ϕ(xxx), v(xxx) = ve(xxx)+ eλ t

ψ(xxx), w(xxx) = we(xxx)+ eλ t
η(xxx),

where we assume that λ = O(1) to reflect our restriction to instabilities arising on

an O(1) timescale. Substituting into (3.5) and retaining only the linear terms in ϕ ,

ψ , and η then yields the linearized eigenvalue problem

ε
2
∆∂Ωφ −φ +2 f ueveφ + f u2

eψ + ε
2
η = λφ , xxx ∈ ∂Ω, (3.44a)

Dv∆∂Ωψ + ε
−2(φ −2ueveφ −u2

eψ) = τvλψ xxx ∈ ∂Ω, (3.44b)

Dw∆η = τwλη , xxx ∈Ω, (3.44c)

Dw∂nη +η = ε
−2Kφ , xxx ∈ ∂Ω, , (3.44d)

Comparing this system with (3.5) we deduce that, as in §3.1, φ is localized at the

N spot locations xxx1, ...,xxxN , while φ , ψ , and η retain the same relative scalings

in the inner-region near each spot location as in §3.1, mainly φ and ψ are O(1)

and η is O(ε−1) near each xxx j ( j = 1, ...,N). In terms of polar coordinates YYY ′ =

(ρ cosΘ,ρ sinΘ) near the jth spot, we seek an inner expansion of the form

φ(xxx j(εYYY ′,0)) = Φ j(ρ)eimΘ +O(ε), ψ(xxx j(εYYY ′,0)) = D−1
v Ψ j(ρ)eimΘ +O(ε),

(3.45)

where m = 0,2,3... and we omit the neutrally stable translational m = 1 mode.

Assuming that both τvλε2 � 1 and τwλε2 � 1 the leading order inner problem
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near the jth spot is then given by

∆ρMMM j−
m2

ρ2 MMM j +Q(ρ;S j, f )MMM j = λE11MMM j, ρ > 0, (3.46a)

where MMM j ≡ (Φ j(ρ),Ψ j(ρ))
T and

Q(ρ;S, f )≡

(
2 fUc(ρ;S, f )Vc(ρ;S, f )−1 fUc(ρ;S, f )2

−2Uc(ρ;S, f )Vc(ρ;S, f )+1 −Uc(ρ;S, f )2

)
, E11 =

(
1 0

0 0

)
.

At the origin we impose the boundary condition MMM′j(0) = 0 while the limiting

behaviour as ρ → ∞ is found by first noting that

Q(ρ;S, f )→

(
−1 0

1 0

)
as ρ → ∞,

for all S≥ 0 and hence

Φ j→ 0, Ψ j ∼

O(logρ) m = 0

O(ρ−m) m≥ 1,
ρ → ∞. (3.46b)

Instabilities due to the m = 0 and m ≥ 2 modes arise through distinct mecha-

nisms due to the logarithmic growth of the former and the algebraic decay of the

latter. Indeed, proceeding with the method of matched asymptotic expansions as

in §3.1 we determine that the limiting behaviour of ψ as |xxx− xxx j| → 0 for each

j = 1, ...,N is O(1) and O(εm) when m = 0 and m≥ 2 respectively. Consequently

global contributions are, to leading order in ε � 1, absent in the calculation of in-

stabilities to due m≥ 2 perturbations, whereas they may arise when m = 0. In the

proceeding sections we discuss these two cases separately.

3.2.1 The m≥ 2 Mode Instabilities

Due to the algebraic decay of Ψ j(ρ) as ρ → ∞ for each j = 1, ...,N when m ≥ 2

the inner problems are interact through the outer solution only weakly. Therefore,

each spot may undergo an m ≥ 2 mode instability individually with the relevant

instability threshold being determined solely by the spot strength S j ( j = 1, ...,N).
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In particular, it suffices to consider the spectrum of

∆ρMMM− m2

ρ2 MMM+Q(ρ;S, f )MMM = λE11MMM, ρ > 0, (3.47a)

MMM′(0) = 0, MMM→

(
0

M∞ρ−m

)
as ρ → ∞, (3.47b)

as a function of 0 < f < 1, m ≥ 2, and S > 0. The eigenvalue problem (3.47) is

identical to that found in the study of multi-spot solutions for the Brusselator sys-

tem on the unit sphere [84, 91] and the unit disk [96], and it also shares qualitative

similarities with analogous problems derived for the two- and three-dimensional

Schnakenberg models [48, 98]. In particular, for a fixed value of m≥ 2 it is known

that there exists a threshold Σm( f ) > 0 such that (3.47) admits an eigenvalue with

positive real part if and only if S > Σm( f ). Each threshold Σm( f ) must be calcu-

lated numerically and this is easily accomplished by studying the spectrum of the

matrix obtained by an appropriate discretization of (3.47) on a truncated domain

(see §3.1 of [84] for details).

The plots of Σ2( f ), Σ3( f ), and Σ4( f ) versus 0 < f < 1 shown in Figure 3.2b

indicate that Σ2( f ) < Σ3( f ) < Σ4( f ) while further numerical evidence suggests

that in fact Σ2( f ) < Σm( f ) for all m ≥ 2 so that Σ2( f ) is the appropriate instabil-

ity threshold. It follows that a multi-spot pattern with spot strengths S1, ...,SN is

unstable with respect to the m ≥ 2 modes if Si > Σ2( f ) for any i = 1, ..,N. More-

over, numerical simulations of (3.5) have shown that m = 2 instabilities lead to

nonlinear splitting and self-replicating events [84]. This numerically observed be-

haviour has more recently been analytically justified by a weakly nonlinear anal-

ysis and derivation of normal form amplitude equations for the two-dimensional

Schnakenberg and Brusselator models for which it was demonstrated that m = 2

mode instabilities are subcritical [113].
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3.2.2 The m = 0 Mode Instabilities

For each j = 1, ...,N we use the homogeneity of the eigenvalue problem (3.46a)

and corresponding boundary conditions (3.46b) to let

MMM j(ρ) = c jMMM(ρ;S j, f ), (3.48)

where c j is an undetermined constant and MMM satisfies

∆ρMMM+Q(ρ;S, f )MMM = λE11MMM, ρ > 0, (3.49a)

MMM′(0) = 0, MMM→

(
0

logρ +Bλ (S, f )

)
, as ρ → ∞. (3.49b)

The constant far-field constant Bλ (S, f ) must in general be calculated numerically

for λ 6= 0. On the other hand, differentiating the core problem (3.17) with respect

to S we find that MMM = ∂S(Uc(ρ;S, f ),Vc(ρ;S, f ))T satisfies (3.49) with λ = 0 and

in particular we obtain the important identity

B0(S, f ) = χ
′(S, f ), χ

′(S, f )≡ ∂ χ(S, f )
∂S

. (3.50)

We can therefore use the numerically calculated function χ(S, f ) to approximate

the derivative χ ′(S, f ) to calculate zero eigenvalue crossing instability thresholds.

For the remainder of this section we assume that λ = 0 and hence determine the

effect of bulk-membrane couping on zero-eigenvalue crossing instabilities.

Integrating (3.46a) and using the divergence theorem together with (3.48) and

(3.49) we calculate
ˆ

∞

0

[
(1−2U j0(ρ)Vj0(ρ))Φ j(ρ)−U j0(ρ)

2
Ψ j(ρ)

]
ρdρ =−c j,

ˆ
∞

0
Φ j(ρ)ρdρ =

f
1− f

c j,
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from which we then calculate the distributional limits

(1−2ueve)φ −u2
eψ

ε2 → η(xxx)−2π

N

∑
j=1

c jδ∂Ω(xxx− xxx j), ε → 0+,

φ

ε2 → η(xxx)+
2π f
1− f

N

∑
j=1

c jδ∂Ω(xxx− xxx j), ε → 0+,

In the outer region for which |xxx− xxx j| � O(ε) for all j = 1, ...,N we then find that

(3.44c) and (3.44d) become

Dw∆η = 0, xxx ∈Ω, (3.51a)

Dw∂nη +(1−K)η =
2πK f
1− f

N

∑
j=1

c jδ∂Ω(xxx− xxx j), xxx ∈ ∂Ω, (3.51b)

for which we calculate the leading order outer solution

η(xxx)∼ 2π f
1− f

K
Dw

N

∑
j=1

c jGmr(xxx,xxx j).

Similarly, in the outer region (3.44b) becomes

Dv∆∂Ωψ = 2π

N

∑
j=1

c j

(
δ∂Ω(xxx− xxx j)−

f
1− f

K
Dw

Gmr(xxx,xxx j)

)
, xxx ∈ ∂Ω,

for which integration over ∂Ω leads to the solvability condition

N

∑
j=1

c j = 0, (3.52)

where we have used both the identity
´

∂Ω
Gmr(xxx,ξξξ )dAxxx = (1−K)−1Dw as well

as the constraint (3.7). Assuming the solvability condition (3.52) holds, then we

calculate the following leading order asymptotic expansion in the outer region

ψ(xxx)∼ 1
Dv

ψ̄− 2π

Dv

N

∑
j=1

c j

(
Gm(xxx,xxx j)−

f
1− f

K
Dw

ˆ
∂Ω

Gm(xxx,ξξξ )Gmr(ξξξ ,xxx j)dAξξξ

)
.
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Comparing the limiting behaviour of the inner solution Ψi(ρ) as ρ→∞ with that of

the outer solution given above as |xxx− xxxi| → 0 for each i = 1, ...,N yields algebraic

system

ν
−1ccc+2πG ccc+B0ccc = ψ̄eee.

Left-multiplying by eeeT and using the solvability condition (3.52) then gives

M0ccc = 0, M0 ≡ ν
−1IN +2π

(
IN−EN

)
G +

(
IN−EN

)
B0, (3.53a)

where

B0 ≡ diag(χ ′(S1, f ), ...,χ ′(SN , f )). (3.53b)

In particular, a zero-eigenvalue crossing instability threshold can be calculated by

seeking parameter values for which M0 admits a zero eigenvalue or equivalently

detM = 0. For appropriate choices of the multi-spot configuration xxx1, ...,xxxN sym-

metry properties of the Green’s matrix G can be leveraged to further characterize

the modes of instabilities as described below.

3.2.3 Instability Thresholds for Symmetric N-Spot Patterns

When the spot configuration and bulk-bound fuel source are chosen such that the

Green’s matrix G is of constant row sum and the common spot strength solution

SSS = Sceee satisfies the NAS (3.43b) exactly then we can derive an explicit criteria for

zero-eigenvalue crossing instabilities in terms of the spectrum of G and the S� 1

behaviour of χ ′(S, f ). In particular, since the Green’s matrix G is symmetric the

eigenpairs {µ j, ppp j}N
j=1 satisfy

G ppp j = µ j ppp j, ppp1 = eee, eeeT ppp j = 0 j = 2, ...,N.

Additionally, since B0 = χ ′(Sc, f )IN we find that the spectrum of M0 consists of

the eigenpairs {A j, ppp j}N
j=1 where

A j ≡

ν−1, j = 1,

ν−1 +2πµ j +χ ′(Sc, f ), 2≤ j ≤ N,
(3.54)
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Since A1 > 0 for all parameter values, the ppp1 mode does not lead to any zero

eigenvalue crossing instabilities. Therefore any zero eigenvalue instabilities that

arise must be the result of one of the p j modes for 2 ≤ j ≤ N and since eeeT ppp j = 0

for all such modes the resulting instabilities are typically referred to as competition

instabilities. Seeking parameter values such that A j = 0 for some j = 2, ...,N and

noting that µ j = O(1) we deduce that the ν−1 and χ ′(Sc, f ) terms must balance.

From the small S� 1 asymptotics (see Equation (4.20) in [84])

χ(S, f )∼ d0

S
+d1S+O(S3),

d0 =
b(1− f )

f 2 , d1 =
0.4893
1− f

−0.4698, b≡
ˆ

∞

0
w2

ρdρ ≈ 4.934,
(3.55)

we further deduce Sc = O(ν1/2) is needed for A j = 0 to hold for some 2≤ j ≤ N.

Previous studies of the Brusselator system on the unit sphere indicate that com-

petition instabilities arise as S is decreased below a critical threshold [84] and we

therefore seek the largest value of Sc for which A j = 0 for some j = 2, ...,N. In par-

ticular, noting the S� 1 asymptotics (3.55), the competition instability threshold

is determined by solving the algebraic equation

A?(Scomp)≡ ν
−1 +2πµ?+χ

′(Scomp, f ) = 0, µ? ≡ min
j=2,...,N

µ j, (3.56)

for the critical spot strength Scomp. The resulting critical spot strength Scomp de-

pends on both the spot configuration as well as the problem parameters f , K,

and Dw. The resulting competition instability threshold is then found by letting

Sc = Scomp and recalling the definition of Sc given by (3.42). Finally, since χ ′(S, f )

is monotone increasing for S� 1 we also remark that A?(S)≶ 0 if S ≶ Scomp, and

in particular, based on the past observations of [84, 91], we expect a common spot

strength pattern to be stable (resp. unstable) with respect to competition instabili-

ties when A?(Sc)> 0 (resp. A?(Sc)< 0).

3.3 Slow-Spot Dynamics
In the previous section we considered the stability of multi-spot quasi-equilibrium

solutions on an O(1) timescale by studying the O(1) eigenvalues of the eigen-
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value problem (3.44). In the inner region we neglected the neutrally stable m = 1

mode which results from local translational invariance and is closely related to

the slow dynamics of the spots on an O(ε−2) timescale. The particular timescale

of the slow-dynamics arises from a dominant balance in (3.5) and will become

clearer in the proceeding derivation. Specifically we begin by introducing the slow

timescale σ = ε2t and assuming that xxxi = xxxi(σ) for each i = 1, ...,N. In the remain-

der of this section we seek a higher order asymptotic expansion for a multi-spot

quasi-equilibrium solution to (3.5) for which the leading order term is given by the

quasi-equilibrium solution calculated in §3.1 while a solvability condition arising

from the higher order corrections yields a system of ordinary differential equations

(ODEs) for the spot locations. The proceeding calculations follow closely those for

the sphere in the absence of bulk-membrane coupling in [91] as well as the more

recent computations on the torus in [95]. We remark that an analogous procedure

is used for deriving the slow dynamics of localized multi-spot solutions in one-,

two-, and three-dimensional domains [41, 96, 98].

We begin by left-multiplying (3.12) by J T
i and using J T

i Ji = I2 to calcu-

late

dYYY ′

dσ
=−1

ε
TTT i +O(1),

∂

∂ t
=−εTTT i ·∇YYY ′+O(ε2), (3.57a)

TTT i ≡J T
i

dxxxi

dσ
, ∇YYY ′ ≡ (∂Y1 ,∂Y2)

T . (3.57b)

We then consider the higher order inner expansions

u(xxxi(εYYY ′,0)) =
√

Dv
(
Ui0(ρ)+ εUi1(YYY ′)

)
+O(ε2), (3.58a)

v(xxxi(εYYY ′,0)) =
1√
Dv

(
Vi0(ρ)+ εVi1(YYY ′)

)
+O(ε2), (3.58b)

and recall the leading order inner region expansion of w(xxx) given by (3.19) near xxxi

for each i = 1, ...,N. The leading order inner problem is satisfied identically while

the first order correction problem is given by

∆YYY ′qqqi1(YYY ′)+Q(ρ;Si, f )qqqi1(YYY ′) =− fff i, YYY ′ ∈ R, (3.59a)

qqqi1(YYY
′)→ qqq∞

i1(YYY
′) as |YYY ′| → ∞. (3.59b)
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where qqqi1(y)≡ (Ui1(YYY ′),Vi1(YYY ′))T and

fff i ≡

(
TTT i ·∇YYY ′Ui0(YYY ′)+D−1/2

v Wi0((YYY ′,0))

0

)
, (3.59c)

qqq∞
i1(YYY

′)≡

(
0

YYY ′T J T
i
(
∑ j 6=i S jααα i j +

1
Dw
√

Dv
∇xxxvE(xxxi)

)) . (3.59d)

for each i = 1, ...,N. The expression for fff i is obtained by using (3.57a) as well

as the inner region expansion of w(xxx) given by (3.19). On the other hand the

expression for qqq∞
i1(YYY

′) is obtained by matching with the O(ε) term in (3.36).

To determine an appropriate solvability condition for (3.59a) we first note that

∆YYY ′ +Q(ρ;Si, f ) has a null-space of dimension at least two and is spanned in part

by ∂Yk(Ui0(ρ),Vi0(ρ))
T for k = 1,2. We assume that the corresponding adjoint

homogeneous operator has a null-space of dimension exactly two. We then write

solutions to the homogeneous adjoint problem

∆YYY ′ΨΨΨ(YYY ′)+Q(ρ;Si, f )T
ΨΨΨ(YYY ′) = 0, YYY ′ ∈ R2,

ΨΨΨ→

(
0

0

)
as |YYY ′| → ∞,

in terms of the polar coordinates introduced in §3.2 as

ΨΨΨc(ρ,Θ) =PPP(ρ)cosΘ, ΨΨΨs(ρ,Θ) =PPP(ρ)sinΘ.

where PPP(ρ) = (P1(ρ),P2(ρ))
T is the unique solution to

∆ρPPP′(ρ)−ρ
−2PPP(ρ)+QT

i PPP(ρ) = 0, in ρ > 0, (3.60)

PPP∼ (ρ−1,ρ−1)T as ρ → ∞, (3.61)

in which the normalized limiting behaviour as ρ → ∞ is obtained by noting that

QT
i →

(
−1 1

0 0

)
, as ρ → ∞.
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Left-multiplying (3.59a) by ΨΨΨ
T
c and integrating over a disk of radius R > 0 gives

ˆ 2π

0

(
PPPT ∂qqqi1

∂ρ
−qqqT

i1
∂PPP
∂ρ

)∣∣∣∣
ρ=R

cos(Θ)RdΘ =−
ˆ R

0

ˆ 2π

0
PPPT fff i cos(Θ)ρdρdΘ.

(3.62)

Using (3.59b) and (3.61) we obtain the limiting behaviour(
PPPT ∂qqqi1

∂ρ
−qqqT

i1
∂PPP
∂ρ

)∣∣∣∣
ρ=R
∼ 2

R
(cosΘ,sinΘ)T J T

i

(
∑
j 6=i

S jααα i j +
∇xxxvE(xxxi)

Dw
√

Dv

)
,

as R→ ∞ and therefore

lim
R→∞

ˆ 2π

0

(
PPPT ∂qqqi1

∂ρ
−qqqT

i1
∂PPP
∂ρ

)∣∣∣∣
ρ=R

cos(Θ)RdΘ= 2πeeeT
1 J T

i

(
∑
j 6=i

S jααα i j+
∇xxxvE(xxxi)

Dw
√

Dv

)
,

where eee1 = (1,0)T . On the other hand the right side of (3.62) is evaluated by first

recalling that Wi0((YYY ′,0)) is radially symmetric so that its contribution vanishes

whereas ∇YYY ′Ui0 =U ′i0(ρ)(cosΘ,sinΘ)T . In particular we obtain the following limit

for the right hand side of (3.62)

− lim
R→∞

ˆ R

0

ˆ 2π

0
PPPT fff i cos(Θ)ρdρdΘ =−πeeeT

1 TTT i

ˆ
∞

0
P1(ρ)U ′i0(ρ)ρdρ,

from which we obtain

eeeT
1 TTT i =

−2´
∞

0 P1(ρ)U ′i0(ρ)ρdρ
eeeT

1 J T
i

(
∑
j 6=i

S jααα i j +
∇xxxvE(xxxi)

Dw
√

Dv

)
.

Proceeding similarly after left-multiplying (3.59a) by ΨΨΨ
T
s we therefore obtain

TTT i = γ(Si, f )J T
i

(
∑
j 6=i

S jααα i j +
1

Dw
√

Dv
∇xxxvE(xxxi)

)
, (3.63a)

where

γ(S, f )≡− 2´
∞

0 P1(ρ)U ′c(ρ;S, f )ρdρ
. (3.63b)

The multiplier γ(S, f ) is computed by numerically solving (3.60) for P1(ρ) using

standard techniques. This multiplier depends only on the inner problem and is
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identical to that found in studies of the Brusselator system on the unit sphere [91]

and the unit disk [96]. For completeness we include a plot of γ(S, f ) for S > 0

and select values of 0 < f < 1 from which we observe that γ(S, f ) > 0. Since

xxxi(σ) ∈ ∂Ω for all σ ≥ 0 we find(
I3− xxxixxxT

i

)
dxxxi

dσ
=

dxxxi

dσ
,

so that left-multiplying (3.63a) by Ji and using (3.14) we obtain the system of

ODEs

dxxxi

dσ
= γ(Si, f )

(
I3− xxxixxxT

i
)(

∑
j 6=i

S jααα i j +
1

Dw
√

Dv
∇xxxvE(xxxi)

)
, (3.64)

for each i = 1, ...,N.

The effect of the bulk originating fuel source is analogous to that of a hetero-

geneous fuel source for the Brusselator model on the unit disk [96]. Specifically,

spots are drawn toward regions where the membrane-bound fuel is locally maxi-

mized. On the other hand, the first term appearing in the definition of ααα i j given in

(3.38) leads to mutual repulsion between spots whereas the second term introduces

the effects of bulk-membrane recirculation, though in its current form it is not clear

whether it leads to mutual repulsion or attraction between spots. To better under-

stand its effect on the slow dynamics we state the following Lemma for which a

proof is given in Appendix C.1.

Lemma 3.3.1. Let zzz∈Ω∪∂Ω\{000} and suppose that f (xxx,zzz) is defined on ∂Ω and

has the series expansion

f (xxx,zzz) =
1

4π

∞

∑
l=0

flPl

(
zzzT xxx
|zzz|

)
, fl = fl(|zzz|), xxx ∈ ∂Ω. (3.65)

Then, for any yyy ∈ ∂Ω that is not collinear with zzz we have the identity

ˆ
∂Ω

yyy− xxx
|yyy− xxx|2

f (xxx,zzz)dAxxx =
1
2

f0(|zzz|)yyy

+
1
2

∞

∑
l=1

fl(|zzz|)
l(l +1)

P1
l

(
zzzT yyy
|zzz|

)
I3− yyyyyyT√

1− (zzzT yyy/|zzz|)2

zzz
|zzz|

,

(3.66)
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where P1
l (x) is the associated Legendre polynomial of first order and lth degree. If

instead yyy and zzz are collinear or fl = 0 for all l ≥ 1, then the second term on the

right-hand-side of (3.66) vanishes identically.

Using the series expansion (3.27b) and the above Lemma we calculate

−(I3− xxxixxxT
i )

ˆ
∂Ω

xxxi−ξξξ

|xxxi−ξξξ |2
Gmr(ξξξ ,xxx j)dAξξξ

=
1
2

∞

∑
l=1

gl

l(l +1)
P1

l (xxx
T
i xxx j)

I3− xxxT
i xxxi√

1− (xxxT
i xxx j)2

(xxxi− xxx j).
(3.67)

for which in Appendix C.2 we show that

∞

∑
l=1

gl

l(l +1)
P1

l (z)< 0, for all −1 < z < 1. (3.68)

This implies that bulk-membrane coupling induces a mutual attraction between

spots. However, as the next proposition shows, the mutual attraction induced by

bulk-membrane coupling is not enough to overcome the mutual repulsion between

spots given by the first term of ααα i j.

Proposition 3.3.1. Let ε → 0 and suppose that the N-spot pattern constructed

in §3.1 is linearly stable on an O(1) timescale. Then, the spot locations vary

on an O(ε−2) time-scale σ = ε2t according to the differential algebraic system

consisting of the NAS (3.43b) and the system of ODEs

dxxxi

dσ
= γ(Si, f )

(
I3− xxxixxxT

i
)(1

2 ∑
j 6=i

S j
C(xxxT

i xxx j)(xxxi− xxx j)√
1− (xxxT

i xxx j)2
+

∇xxxvE(xxxi)

Dw
√

Dv

)
, (3.69a)

for each i = 1, ...,N where vE(xxx) is given by (3.29) and

C(z)≡
√

1+ z
1− z

+
f

1− f
K

Dw

∞

∑
l=1

gl

l(l +1)
P1

l (z)> 0, −1 < z≤ 1, (3.69b)

and C(−1) = 0.
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The right-hand-side of (3.69a) is obtained by using (3.38) and (3.67) to get

(I3− xxxixxxT
i )ααα i j =

1
2C(xxxT

i xxx j)(I3− xxxixxxT
i )(xxxi− xxx j),

and the sign of C(z)> 0 is derived in Appendix C.2.

We conclude this section by deriving a system of ODEs for the spherical coor-

dinates θi(σ) and ϕi(σ) for each i = 1, ...,N. First we calculate

TTT i = J T
i

(
∂xxxi

∂θi

dθi

dσ
+

∂xxxi

∂ϕi

dϕi

dσ

)
=

(
sinθi

dϕi
dσ

dθi
dσ

)
,

J T
i xxx j =

(
−sinθ j sin(ϕi−ϕ j)

sinθ j cosθi cos(ϕi−ϕ j)− sinθi cosθ j.

)

Left-multiplying (3.69a) by J T
i and using (3.14) we obtain for each i = 1, ...,N(

sinθi
dϕi
dσ

dθi
dσ

)
= γ(Si, f )

(
1
2 ∑

j 6=i
S j

C(xxxT
i xxx j)βββ i j√

1− (xxxT
i xxx j)2

+
J T

i ∇xxxvE(xxxi)

Dw
√

Dv

)
, (3.70a)

where

βββ i j =

(
sinθ j sin(ϕi−ϕ j)

sinθi cosθ j− sinθ j cosθi cos(ϕi−ϕ j)

)
(i, j = 1, ...,N). (3.70b)

3.4 Examples
To illustrate the asymptotic theory developed in the previous sections we now con-

sider examples of symmetric N-spot patterns for which we assume that the bulk-

bound fuel source is of the form

E(xxx) = E0δ (xxx− xxxsource), xxxsource = ηeeez, (3.71)

where E0 > 0, 0≤ η < 1, and eeez = (0,0,1)T . Such a fuel source may represent, for

example, a localized site of protein generation within the cell. In the following sec-

tion we will analyze the effects of the source location parametrized by η ≥ 0. First
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we note that the diffusion transported fuel is given by wE(xxx) = E0Gbr(xxx,xxxsource)

where Gbr is the bulk Robin Green’s function satisfying

∆Gbr =−δ (xxx− xxxsource), xxx ∈Ω, (3.72a)

∂nGbr +
1−K

Dw
Gbr = 0, xxx ∈ ∂Ω. (3.72b)

When xxx ∈ ∂Ω the bulk Robin Green’s function has the series expansion

Gbr(xxx,xxxsource) =
1

4π

∞

∑
l=0

glη
lPl(eeeT

z xxx), xxx ∈ ∂Ω, (3.72c)

and by using the series (3.31) and product formula (3.32) as well as Lemma 3.3.1

we calculate

vE(xxx) =
E0

4π

∞

∑
l=1

glη
l

l(l +1)
Pl(eeeT

z xxx), (3.73a)

(
I3− xxxxxxT )

∇xxxvE(xxx) =
E0

4π

CE(eeeT
z xxx)√

1− (eeeT
z xxx)2

(
I3− xxxxxxT )(xxx− eeez), (3.73b)

J T
i ∇xxxvE(xxxi) =

E0

4π
CE(cosθi)

(
0

1

)
, (3.73c)

where

CE(z)≡
∞

∑
l=1

glη
l

l(l +1)
P1

l (z). (3.73d)

Note that CE(z) ≡ 0 for η = 0 and proceeding as in the derivation of (3.68) in

Appendix C.2 we can similarly establish that CE(z) < 0 for all −1 < z < 1 and

η > 0. Note in addition that CE(±1 = 0 since P1
l (±1) = 0 (see (C.7)).

Since vE(xxx) is constant along lines of constant latitude (i.e. depends only on

eeeT
z xxx) the common spot strength solution SSS = Sceee exactly solves the NAS (3.43b)

when the spots are uniformly distributed along a ring of fixed latitude, i.e.

θi = θc, ϕi =
2π(i−1)

N
, i = 1, ...,N. (3.74)

where θc is a common polar angle. The common spot strength is then explicitly
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given by

Sc =
E0

2πN
√

Dv

(
1− K

1− f

)−1

. (3.75)

Applying the linear stability results of §3.2 we deduce that the N-spot pattern is

linearly stable on an O(1) timescale provided that

Scomp <
E0

2πN
√

Dv

(
1− K

1− f

)−1

< Σ2( f ), (3.76)

where Scomp is the numerically computed solution to (3.56) and Σ2( f ) the splitting

instability threshold calculated in §3.2.1. The effects of E0 and N on the compe-

tition and splitting instability thresholds for Dv are seen to be identical to those

calculated in [84], mainly increasing (resp. decreasing) E0 may lead to splitting

(resp. competition) instabilities while increasing (resp. decreasing) N may lead to

competition (resp. splitting) instabilities. On the other hand, increasing the bulk-

membrane coupling parameter K increases the value of Sc and may therefore lead

to splitting instabilities.

Before proceeding with explicit examples of a one- and two-spot pattern, we

use (3.73) to rewrite (3.70) as(
sinθi

dϕi
dσ

dθi
dσ

)
= γ(Si, f )

(
Fi

Gi

)
. (3.77)

where

Fi(ϕϕϕ,θθθ)≡
1
2 ∑

j 6=i

S jC(xxxT
i xxx j)√

1− (xxxT
i xxx j)2

sinθ j sin(ϕi−ϕ j),

Gi(ϕϕϕ,θθθ)≡
1
2 ∑

j 6=i

S jC(xxxT
i xxx j)√

1− (xxxT
i xxx j)2

(sinθi cosθ j− sinθ j cosθi cos(ϕi−ϕ j))

+
E0CE(cosθi)

4πDw
√

Dv

for each i = 1, ...,N and where ϕϕϕ = (ϕ1, ...,ϕN)
T and θθθ = (θ1, ...,θN)

T .
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3.4.1 One-Spot Pattern

In the case of a one-spot pattern with an arbitrary fuel source E(xxx) the slow dy-

namics (3.69a) are explicitly given by

dxxx1

dσ
=

γ(S1, f )
Dw
√

Dv
(I3− xxx1xxxT

1 )∇xxxvE(xxx1), (3.78)

from which we deduce the equilibrium points xxx1 ∈ ∂Ω occur at both the critical

points of vE(xxx) and the points for which ∇xxxvE(xxx) is parallel to xxx. When the fuel

source is given by (3.71) the slow dynamics in spherical coordinates (3.77) are

explicitly given by (3.77) where

F1(ϕ1,θ1) = 0, G1(ϕ1,θ1) =
E0CE(cosθ1)

4πDw
√

Dv
. (3.79)

When η = 0 we calculate CE ≡ 0 and therefore any point xxx1 ∈ ∂Ω is an equilibrium

with respect to the slow dynamics. On the other hand when 0 < η < 1 we calculate

CE(±1) = 0 and CE(z) < 0 for all −1 < z < 1. As a consequence xxx1 = ±eeez are

equilibrium points, but only xxx1 = eeez is linearly stable. In addition xxx1 = eeez is globally

attracting so that any spot concentrated at xxx1 ∈ ∂Ω tends to eeez along a geodesic on

an O(ε−2) timescale. Note that the remaining problem parameters E0, Dw, K, f ,

and Dv only change the speed of the dynamics.

3.4.2 Two-Spot Patterns

Next we consider the case of a two-spot pattern. We begin by considering the case

η = 0 for which ∇xxxvE(xxx) = 0 on ∂Ω. Since the 2× 2 matrix G is symmetric we

immediately deduce that SSS = Sceee exactly solves the NAS (3.43b) for all values of

xxx1,xxx2 ∈ ∂Ω. Substituting into (3.69a) we find that the slow dynamics are governed

by

dxxx1

dσ
=

Scγ(Sc, f )
2

C(xxxT
1 xxx2)√

1− (xxxT
1 xxx2)2

(
I3− xxx1xxxT

1
)
(xxx1− xxx2),

dxxx2

dσ
=

Scγ(Sc, f )
2

C(xxxT
2 xxx1)√

1− (xxxT
2 xxx1)2

(
I3− xxx2xxxT

2
)
(xxx2− xxx1).
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Letting xxxT
1 xxx2 = cosβ we then calculate

dβ

dσ
=− 1

sinβ

d(xxxT
1 xxx2)

dσ
= Scγ(Sc, f )C(cosβ ). (3.80)

Since C(z)> 0 for all−1 < z≤ 1 and C(−1) = 0 we deduce that β = π is the only

equilibrium and it is globally attracting. Therefore any antipodal configuration, in

the sense that xxx1 = −xxx2, is a stable equilibrium of the slow dynamics. In particu-

lar, the slow dynamics when K > 0 are qualitatively identical to those previously

investigated when K = 0 in [91].

When η > 0 both spots are mutually repelled while simultaneously being at-

tracted to eeez. From (3.73) ad (3.69a) we immediately deduce that a North-South

(NS) configuration for which xxx1 =±eeez and xxx2 =∓eeez is an equilibrium of the slow

dynamics. Moreover, any equilibrium configuration in which a spot concentrates

at ±eeez must be a NS-configuration as can be deduced by noting that if xxx1 = ±eeez

then ∇xxxvE(xxx1) = 000 and (3.69a) then implies xxx2 =∓eeez. Note that the spot strengths

are not equal for the NS-configuration. In particular, if xxx1 = eeez and xxx2 =−eeez then

S1 > S2.

Next we consider non NS-configurations by parameterizing each spot in terms

of spherical coordinates ϕϕϕ = (ϕ1,ϕ2)
T and θθθ = (θ1,θ2)

T and assuming without

loss of generality that 0 < θ1 ≤ θ2 < π . The dynamic are then given by (3.77) with

F1(ϕϕϕ,θθθ) =
S2

2
C(ξ )√
1−ξ 2

f12, G1(ϕϕϕ,θθθ)≡
S2

2
C(ξ )√
1−ξ 2

g12 +
E0CE(cosθ1)

4πDw
√

Dv
,

(3.81a)

F2(ϕϕϕ,θθθ) =
S1

2
C(ξ )√
1−ξ 2

f21, G2(ϕϕϕ,θθθ)≡
S1

2
C(ξ )√
1−ξ 2

g21 +
E0CE(cosθ2)

4πDw
√

Dv

(3.81b)

where

fi j ≡ sinθ j sin(ϕi−ϕ j), gi j ≡ sinθi cosθ j− cosθi sinθ j cos(ϕi−ϕ j), (3.82)
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Figure 3.3: Plots of θc/π versus K and f for fixed values of Dw = 1 (top row)
and Dw = 10 (bottom row) and η = 0.3,0.6,0.9 from left to right. The
solid lines with in-line text are contours indicating fixed values of θc/π .

for each i, j ∈ {1,2} and

ξ ≡ xxxT
1 xxx2 = sinθ1 sinθ2 cos(ϕ1−ϕ2)+ cosθ1 cosθ2. (3.83)

Since two-spot configurations are at equilibrium when η = 0 if and only if they are

antipodal, the upward drift toward eeez implies that there are no non-NS antipodal

solutions when η > 0 and therefore ξ > −1. As an immediate consequence (1−
ξ 2)−1/2C(ξ )> 0 so that F1 = F2 = 0 implies that f12 = f21 = 0 and therefore ϕ1−
ϕ2 = 0 or |ϕ1−ϕ2| = π . In the former case the assumption θ1 ≤ θ2 immediately

implies that G1 < 0 since xxx1 is propagated toward eeez both by the repulsion from

xxx2 and attraction to eeez due to ∇xxxvE(xxx1). Therefore any non NS-configuration must

have |ϕ1−ϕ2|= π and without loss of generality we assume ϕ1 = 0 and ϕ2 = π . It

follows that gi j = sin(θ1+θ2)> 0 where the sign follows from noting that ξ >−1

implies θ1 + θ2 < π . As a consequence, non-NS equilibrium configurations are
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determined by solving

G1(θ1,θ2) =
S2

2
C(cos(θ1 +θ2))+

E0CE(cosθ1)

4πDw
√

Dv
= 0, (3.84)

G2(θ1,θ2) =
S1

2
C(cos(θ1 +θ2))+

E0CE(cosθ2)

4πDw
√

Dv
= 0, (3.85)

for 0 < θ1 ≤ θ2 with θ1 +θ2 < π .

As a special case, when θ1 = θ2 = θc we find that S1 = S2 = Sc and it suffices

to determine the common angle θc satisfying

C(cos2θc)+
2

Dw

(
1− K

1− f

)
CE(cosθc) = 0, 0 < θc <

π

2
. (3.86)

Since C(z)→ +∞ as z→ 1 and C(−1) = 0 whereas CE(z) remains bounded and

strictly negative on 0 < z < 1 the intermediate value theorem implies the existence

of a 0 < θc < π/2 satisfying (3.86). Numerical calculations further suggest that the

common angle solution is unique and Gi(θ ,θ)≶ 0 for θ ≷ θc. In addition we note

that θc is a function only of θc = θc(K, f ,Dw,η). In Figure 3.3 we plot θc/π versus

K and f with K + f < 1 and for select values of Dw = 1,10 and η = 0.3,0.6,0.9

from which we make the following observations. As 0 < K < 1− f increases,

the mutual repulsion reflected by C(cos2θc) dominates the attraction toward eeez

reflected by CE(cosθc) and therefore θc increases, tending to the limit θc → π/2

as K→ 1− f . On the other hand, increasing η (resp. decreasing Dw) leads to an

increase of |∇xxxvE(xxx)| and therefore decreases θc.

Next we analyze in more detail the stability of the common angle and NS so-

lutions by considering the nullclines of (3.84). First note that

Gi(θ ,θ)> 0, Gi(θ ,π−θ)< 0, for all 0 < θ < θc,

so that the intermediate value implies the existence of values θ ?
i (θ) such that

Gi(θ ,θ
?
i (θ)) = 0 for all 0 < θ < θc (i = 1,2). Numerical calculations further sug-

gest that both of these values are unique and monotone decreasing in θ . Clearly

θ ?
i (θc) = θc for each i = 1,2 and we can further deduce that limθ→0+ θ ?

1 (θ) = π

and limθ→0+ θ ?
2 (θ) < π . Moreover, numerical calculations given below suggest
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(a)
(b) (c)

Figure 3.4: (a) Plot of C′E(cosθc) at K = 0 versus 0 < η < 1 and Dw > 0
with the solid orange line indicating values where C′E(cosθc) = 0 and
demarcating regions where C′E(cosθc) > 0 and C′E(cosθc) < 0. (b)-(c)
Schematics showing the functions θ ?

1 (θ) and θ ?
2 (θ) in the absence and

presence of a tilted solution. In the latter case θ1 = θt and θ2 = θ ?
1 (θt)

are the polar angles of the tilted solution.

that depending on the choice of problem parameters either θ ?
2 (θ) < θ ?

1 (θ) for all

0< θ < θc, or else there exists a unique value 0< θt < θc such that θ ?
2 (θt) = θ ?

1 (θt)

in which case we define θ ?
t ≡ θi(θt) (i = 1,2) (see Figures 3.4b and 3.4c for a

schematic demonstration of the emergence of 0 < θt < θc). In particular this im-

plies the existence of a tilted two spot solution with θ1 = θt < θ ?
t = θ2. Finally,

since Gi(θ1,θ2)≶ 0 if θ2 ≷ θ ?
i (θ1) we deduce that the NS configuration is linearly

unstable, the common angle solution is linearly stable only in the absence of a tilted

solution, and the tilted solution, if it exists, is linearly stable.

A criteria for the emergence of a tilted solution can be derived by two equiva-

lent approaches: analyzing the stability of the common angle solution, or analyzing

the behaviour of θ ?
1 (θ) and θ ?

2 (θ) at θ = θc. We pursue the latter approach below

while the former is pursued in Appendix C.3. Specifically, the criteria for the emer-

gence of a tilted solution is equivalent to the tangency condition

dθ ?
1

dθ

∣∣∣∣
θ=θc

=
dθ ?

2
dθ

∣∣∣∣
θ=θc

. (3.87)
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Indeed, in the absence of a tilted solution θ ?
1 (θ) > θ ?

2 (θ) for all 0 < θ < θc,

whereas when a tilted solution emerges θ ?
1 (θ) < θ ?

2 (θ) for θt < θ < θc. By sym-

metry it is easy to see that G2(θ
?
1 (θ),θ) = 0 for all 0 < θ < θc so that θ ?

2 (θ) =

(θ ?
1 )
−1(θ). In particular dθ ?

2 /dθ = [dθ ?
1 /dθ ]−1 and the tangency condition (3.87)

therefore becomes dθ ?
1 /dθ |θ=θc = −1 where the sign is due to the, numerically

observed, monotonicity of θ ?
1 (θ). Implicitly differentiating G1(θ ,θ

?
1 (θ) = 0 with

respect to θ and using (see Appendix C.3 for details)

∂S2

∂θ1

∣∣∣∣
(θ1,θ)=(θc,θc)

=−∂S2

∂θ2

∣∣∣∣
(θ1,θ)=(θc,θc)

=− E0CE(cosθc)

8πDw
√

DvA?(Sc)
,

where A?(Sc) is given by (3.56), we deduce that the tangency condition (3.87) is

equivalent to

C(cos2θc)CE(cosθc)+2A?(Sc)C′E(cosθc)sinθc = 0. (3.88)

In Appendix C.3 we show that the sign of the left-hand-side of (3.88), which we

denote by (3.88)LHS, determines the stability of the common angle solution (see

(C.23b)). In particular, if (3.88)LHS < 0 (resp. (3.88)LHS > 0) then the common

angle solution is unstable (resp. stable). Assuming that Scomp < Sc < Σ2( f ) so

that the common angle solution is linearly stable with respect to competition and

splitting instabilities, we seek parameter values for which (3.88) is satisfied. From

A?(Sc) > 0 for Sc > Scomp and C(cos2θc)CE(cosθc) < 0 for all 0 < θc < π/2 we

deduce that C′E(cosθc) > 0 is a necessary condition for (3.88) to hold. Numerical

evidence indicates that C′E(cosθ) has a unique zero 0< θe < π/2 with C′E(cosθ)≶

0 for θ ≷ θe, and furthermore this zero is monotone increasing in K though at a

slower rate than the common angle θc. As a consequence if C′E(cosθc) ≤ 0 for

K = 0 then C′E(cosθc) < 0 for all 0 < K < 1− f and the common angle solution

is linearly unstable. Noting that C′E(cosθc)|K=0 is a function only of η and Dw we

obtain the plot of C′E(cosθc) shown in Figure 3.4a. Only within the indicated region

of η and Dw values where C′E(cosθc) > 0|K=0 can the common angle solution be

linearly stable for appropriate choices of the remaining problem parameters when
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K ≥ 0. In fact, when C′E(cosθc)> 0 we may solve

C(cos2θc)CE(cosθc)+2A?(Stilt)C′E(cosθc)sinθc = 0, (3.89)

for the tilt instability threshold Stilt > Scomp. Since (3.88)LHS < 0 when Sc = Scomp

we deduce that the common angle solution is unstable with respect to tilt instabili-

ties for Sc < Stilt.

We summarize the above discussion as follows. If C′E(cosθc) ≤ 0 then the

common angle solution is linearly unstable with respect to a tilt instability over an

O(ε−2) timescale. Otherwise, if C′E(cosθc) > 0 then the common angle solution

is linearly stable if and only if Stilt < Sc < Σ2( f ) where Σ2( f ) is the splitting in-

stability threshold and Stilt is the tilt instability threshold satisfying (3.89). The NS

configuration, for which xxx1 = ±eeez and xxx2 = −xxx1 is always an equilibrium but it

is linearly unstable. Finally, if the common angle solution is linearly stable with

respect to competition and splitting instabilities, i.e. Scomp < Sc < Σ2( f ), but unsta-

ble with respect to tilt instabilities then it bifurcates to a tilted solution with polar

angles satisfying θ1 < θc < θ2. The tilted solution is linearly stable with respect to

tilt instabilities and its stability with respect to competition and splitting instabili-

ties depends on the proximity of Sc to Scomp and Σ2( f ). In particular recalling that

SSS = Sceee+O(ν) (see §3.1) it suffices that Sc satisfy Scomp < Sc < Σ2( f ) and be an

O(1) distance from these thresholds for the tilted solution to be linearly stable.

To illustrate the above discussion, in Figures 3.5(a)-(c) we plot the competition

(blue), splitting (orange), and tilt (green) instability thresholds in the form Dv/E2
0

versus K for select values of Dw > 0 with η = 0.4, f = 0.6, and ν = 5× 10−3.

Recalling (3.75) and the stability criteria Stilt < Sc < Σ2( f ), the common angle so-

lution is linearly stable in the region bounded by the split (orange) and tilt (green)

instability threshold curves provided that the latter exists. If the latter threshold

does not exist then C′E(cosθc)≤ 0 for all K ≥ 0 and the common angle solution is

therefore always unstable with respect to tilt instabilities. In Figures 3.5(d)-(f) we

plot the common angle, θc, and tilted solution angles, θ1 and θ2, as 0≤ K < 1− f

is varied for Dv/E2
0 = 0.1 with the remaining parameters equal to those used in

Figures 3.5(a)-(c) respectively. Note that the tilted solution provides a connec-
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Figure 3.5: (a)-(c) Plots of competition, splitting, and tilt instability thresh-
olds as Dv/E2

0 versus K for select of Dw > 0 with η = 0.4, f = 0.6, and
ν = 5× 10−3. (d)-(f) Plots of the common angle θc, and tilted angles
θ1 < θc < θ2 versus K at Dv/E2

0 = 0.1 and with remaining parameters
equal to those from (a)-(c) respectively. The solid (resp. dashed) line
indicates the stability (resp. instability) of the common angle solution
with respect to tilt instabilities.

tion between the common angle and NS two-spot configurations. Furthermore, as

K → 1− f the tilted solution approaches the NS configuration, but it is destabi-

lized by a splitting instability before reaching this new configuration. Additionally,

as K increases the tilted solution rapidly approaches the NS configuration indicat-

ing a preference of the system to align the two spots with the two local extrema

(maximum at eeez and minimum at −eeez) of ∇xxxvE(xxx) on ∂Ω. Interestingly, the above

analysis indicates that while the existence of tilted solutions is closely tied to the

heterogeneity of the fuel source in the absence of membrane-detachment, the lat-

ter mechanism nevertheless plays an important role in the destabilization of the
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common angle solution and resulting bifurcation to the stable tilted solution.

3.5 Discussion
In this chapter we have used the method of matched asymptotic expansions to

derive hybrid asymptotic-numerical equations which determine the structure, sta-

bility, and slow dynamics of strongly localized multi-spot solutions to a bulk-

membrane-coupled Brusselator model posed on the unit sphere. Our particular

choice of bulk-membrane coupling was made to reflect a process in which the fuel

necessary to sustain pattern formation for the Brusselator model originates within

the bulk and is transported to the membrane by passive diffusion. In addition, we

introduced a membrane-detachment mechanism controlled by the non-dimensional

parameter K which satisfies 0 < K < 1− f . Our analysis therefore focused on the

effects of the bulk-originating fuel source as well as the membrane detachment

mechanism on the structure, stability, and slow dynamics of the multi-spot pat-

terns.

To leading order in the small parameter ν =−1/ logε , we determined that the

total bulk-bound fuel and the membrane-bound activator detachment rate have a

direct effect on the strength of the membrane bound spot strengths, with one of the

key parameters being the common spot strength which is explicitly given by

Sc =
1

2πN
√

Dv

(
1− K

1− f

)−1ˆ
Ω

E(xxx)d3xxx.

The dependence on the total bulk-bound fuel source is analogous to results previ-

ously obtained for the Brusselator model on the flat disk with a heterogeneous fuel

source [96]. The analysis of the structure of multi-spot solutions and their linear

stability on an O(1) timescale with respect to competition and splitting instabilities

is qualitatively similar to that in previous studies of the Brusselator model on the

unit sphere without bulk-membrane coupling [84]. However two key differences

are the introduction of the membrane Robin Green’s function Gmr(xxx,ξξξ ) satisfying

(3.27a) and playing a key role in modelling membrane-detachment, as well as the

related quantity ˆ
∂Ω

Gs(xxx,ξξξ )Gmr(ξξξ ,xxxi)dAξξξ ,
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which reflects a recirculation mechanism of membrane-detachment and reattach-

ment.

The effects of the recirculation mechanism and the bulk-originating fuel source

are perhaps most prominent in the slow dynamics of multi-spot patterns occurring

over an O(ε−2) timescale. Although our derivation of the slow dynamics closely

follows that found in [91], our use of local geodesic normal coordinates streamlines

this derivation. In particular geodesic normal coordinates lead to local expansions

of the Laplace-Beltrami operator that are free of artificial first order correction

terms [92, 95]. The resulting system of ODEs governing the slow spot dynam-

ics consists of three terms of which the first reflects mutual repulsion between

spots and is independent of bulk-membrane coupling. The second term reflects

mutual attraction and is a consequence of the recirculation mechanism. However

we show that this term is weaker than the mutual repulsion due to the first term.

The final term is a consequence of the bulk-originating fuel source and leads to

the attraction of spots toward local extrema of the resulting membrane-bound fuel

term. To more closely investigate the consequences of each of these three terms

we considered an explicit example in which the bulk-bound fuel source is given

by a Dirac delta function concentrating at xxxsource = (0,0,η) for 0 ≤ η < 1. We

then performed a detailed analysis of the dynamics of one- and two-spot config-

urations. In particular we illustrated that a one-spot pattern is globally attracted

to the only stable equilibrium located at xxx1 = eeez. On the other hand our analysis

of two-spot patterns revealed the existence of a common angle solution given by

xxx1 =(sinθc,0,cosθc) and xxx2 =(−sinθc,0,cosθc), a North-South (NS) solution for

which xxx1 =±ez and xxx2 =−xxx1, and a tilted solution for which xxx1 = (sinθt ,0,cosθt)

and xxx2 = (−sinθ ?
t ,0,cosθ ?

t ) with θt < θc < θ ?
t . By numerically calculating sta-

bility thresholds for the common angle solution we the demonstrated an intricate

bifurcation structure connecting the common angle solution to the tilted and NS

configurations.
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Chapter 4

The Singularly Perturbed
One-Dimensional
Gierer-Meinhardt Model with
Non-Zero Activator Boundary
Flux

In this chapter we consider the classically studied one-dimensional Gierer-Meinhardt

(GM) model

ut = Duuxx−u+u2v−1, vt = Dvvxx− v+u2, 0 < x < 1. (4.1a)

In the singularly perturbed limit for which Du = ε2� 1 this GM model is known

to exhibit multi-spike solutions. While boundary conditions have been identified

as playing an important role in pattern formation [18, 59], relatively few studies

have investigated the role of boundary conditions on the structure and stability

of multi-spike solutions to singularly perturbed reaction diffusion systems. In-

stead most such studies have assumed either homogeneous Neumann or homoge-

neous Dirichlet boundary conditions. Notable exceptions include the investigation
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of homogeneous Robin boundary conditions for the activator in the GM model

[4, 60] and inhomogeneous Robin boundary conditions for the inhibitor in the two-

dimensional Brusselator model [96]. These two studies and their illustration of

the effect of boundary conditions on the structure and stability of multi-spike pat-

terns serve as the primary motivation for the present chapter in which we con-

sider inhomogeneous Neumann boundary conditions for the activator in the one-

dimensional singularly perturbed GM model (4.1a). Additionally, this chapter aims

to address some of the technical issues that arise in bulk-surface coupled reaction

diffusion systems for which inhomogeneous boundary conditions naturally arise

[27, 54, 58, 83].

We assume that that Du = ε2 while Dv = O(1) where ε � 1 is an asymptoti-

cally small parameter. The activator in an equilibrium solution will then concen-

trate in intervals of O(ε) length and by integrating the inhibitor equation in (4.1a)

it is easy to see that if v = O(1) then we must have u = O(ε−1/2) in each interval

on which it is concentrated. This motivates our choice of rescaling u = ε−1ũ and

v = ε−1ṽ which when substituted into (4.1a) and dropping the tildes gives

ut = ε
2uxx−u+u2v−1, 0 < x < 1, (4.2a)

τvt = Dvxx− v+ ε
−1u2, 0 < x < 1, (4.2b)

and for which we observe both u and v will be O(1) in each interval where u is

concentrated. In addition we impose inhomogeneous and homogeneous Neumann

boundary conditions for the activator and inhibitor respectively which are given by

− εux(0) = A, εux(1) = B, vx(0) = 0, vx(1) = 0, (4.2c)

where we assume that A,B ≥ 0 and for which we note that the scaling for the

activator boundary conditions arises naturally from the scaling argument.

In contrast to systems with homogeneous Neumann boundary conditions, we

note that (4.2) does not have a spatially homogeneous steady state when A > 0

and/or B > 0 and therefore traditional Turing stability analysis methods no longer

apply. In particular the inhomogeneous Neumann boundary conditions for the ac-

tivator in (4.2c) necessitate that the activator forms a boundary layer near each
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Figure 4.1: (a) Examples of shifted one-spike solution concentrated at x = 0
for various values of A≥ 0 and with ε = 0.05 and D = 5. (b) Evolution
of solution to GM problem with D= 0.6, ε = .005, τ = 0.1, and A=B=
0.08. The initial condition is an unstable two-spike equilibrium where
both spikes concentrate at the boundaries. A competition instability
predicted by our asymptotic results in Figure 4.5a is triggered and leads
to the solution settling at an asymmetric pattern.

boundary when A > 0 and/or B = 0. As we demonstrate in §4.1 the appropriate

boundary layer solution takes the form of a shifted spike (see Figure 4.1a) that is

analogous to the near-boundary spike solution of [4, 60] though it has different

stability properties which we investigate in §4.3. Furthermore, by considering ex-

amples of one- and two-spike patterns in §4.4 we investigate the role of non-zero

boundary fluxes on the structure of symmetric and asymmetric patterns, as well as

their stability with respect to oscillatory (example 1), competition (examples 2-4),

and drift (example 4) instabilities. In Figure 4.1b we plot the time-evolution of a

linearly unstable equilibrium consisting of two boundary spikes of equal height.

We see that the solution undergoes a competition instability, but rather than be-

ing subcritical as is the case when A = B = 0 [104], the non-zero boundary fluxes

force the solution to settle to an asymmetric pattern. This illustrates that one of the

key features of introducing non-zero boundary fluxes is that it leads to a kind of

robustness of asymmetric solutions similar to that observed in the presence of an

inhomogeneous precursor gradient [49].

The remainder of this chapter is organized as follows. In §4.1 we use the
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method of matched asymptotic expansions to construct multi-spike equilibrium

solutions. The key idea of the construction is to leverage the localized of the spike

solution to reduce their construction to a problem of finding the spike heights and

their locations. In §4.2 we derive a nonlocal eigenvalue problem which determines

the linear stability of the multi-spike solutions on an O(1) time scale. Then, in §4.3

we rigorously prove partial stability results for an equilibrium consisting of a single

boundary spike. This is done by analyzing a class of shifted nonlocal eigenvalue

problems analogous to those studied in [60]. In §4.4 we consider four examples for

which we construct one- and two-spike equilibrium patterns and study their linear

stability and dynamics. Finally in §4.5 we conclude with a summary of our results

and highlight several open problems and suggestions for future research.

4.1 Quasi-Equilibrium Multi-Spike Solutions and their
Slow Dynamics

In this section we use the method of matched asymptotic expansions to derive

an algebraic system and an ordinary differential equation that determine the pro-

file and slow dynamics of a multi-spike quasi-equilibrium solution to (4.2). The

derivation uses techniques that are now common in the study of localized patterns

in one dimension. Our presentation will therefore be brief, highlighting only the

novel aspects introduced by the inhomogeneous Neumann boundary conditions for

the activator. We begin by supposing that there are two spikes concentrated at the

boundaries xL = 0 and xR = 1 as well as N spikes concentrated in the interior at

0 < x1 < ... < xN < 1. In addition we assume that the spikes are well separated

in the sense that |xi− x j| = O(1) as ε → 0+ for all i 6= j ∈ {L,1, ...,N,R}. This

last assumption is key for effectively applying the method of matched asymptotic

expansions.

We first construct an asymptotic approximation for the solution near x = 0 by

letting x = εy where y = O(1) and expanding

u∼ uL,0(y)+O(ε), v∼ vL,0(y)+ εvL,1(y)+O(ε2). (4.3)

It is easy to see that vL = ξL where ξL is is an undetermined constant, and uL,0(y) =
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ξLwc(y+ yL) where wc(y) is the unique homoclinic solution to

w′′c −wc +w2
c = 0, 0 < y < ∞, w′c(0) = 0, wc(y)→ 0 as y→ ∞,

(4.4a)

given explicitly by

wc(y) =
3
2

sech2 y
2
. (4.4b)

Moreover, the undetermined shift parameter yL is chosen to satisfy the inhomoge-

neous Neumann boundary condition

w′c(yL) =−A/ξL. (4.5)

The unknown constants ξL and yL are found by matching with the outer solution.

To determine the appropriate Neumann boundary conditions for the outer problem

we must first calculate v′L,1(y) as y→ ∞. This is done by integrating the O(ε)

equation

Dv′′L,1 =−ξ
2
L wc(y+ yL)

2, 0 < y < ∞; v′L,1(0) = 0. (4.6)

over 0 < y < ∞ to obtain the limit

lim
y→+∞

v′L,1(y) =−
ξ 2

L

D
η(yL), (4.7)

where

η(y0)≡
ˆ

∞

0
wc(y+ y0)

2dy =
6e−2y0(3+ e−y0)

(1+ e−y0)3 (4.8)

Note that η(0) = 3 and η → 0+ monotonically as z→ ∞. In a similar way we

obtain the inner solution near x = 1 by letting x = 1− εy and finding that

u∼ ξRwc(y+ yR)+O(ε), v∼ ξR + εvR,1(y)+O(ε2),

where yR is determined by solving

w′c(yR) =−B/ξR, (4.9)
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and for which we calculate the limit

lim
y→+∞

v′R,1(y) =−
ξ 2

R

D
η(yR). (4.10)

We now consider the inner solution at each interior spike location. By balanc-

ing dominant terms in a higher order asymptotic expansion, it can be shown that the

interior spike locations var on an O(ε−2) timescale. Therefore we let xi = xi(ε
2t)

for each i = 1, ...,N and with x = xi(ε
2t) + y we calculate the inner asymptotic

expansions

u∼ ξiwc(y)+O(ε), v∼ ξi + εvi1(y)+O(ε2), i = 1, ...,N. (4.11)

Furthermore, we must impose a solvability condition on the vi1 problem which

gives
1
ε2

dxi

dt
=− 1

ξi

(
lim

y→+∞
v′i1(y)+ lim

y→−∞
v′i1(y)

)
. (4.12)

To determine the 2(N+2) undetermined constants ξi and yi where i∈{L,1, ...,N,R}
we must now calculate the outer solution, defined for |x− xi| = O(1) for each

boundary and interior spike location, and match it with each of the inner solutions.

Since wc decays to zero exponentially as y→±∞ we determine that the activator is

asymptotically small in the outer region. On the other hand (4.7) and (4.10) imply

the boundary conditions

vx(0)∼−
ξ 2

L

D
η(yL), vx(1)∼

ξ 2
R

D
η(yR),

while the exponential decay of wc implies that the following limits hold (in the

sense of distributions)

ε
−1u2 −→ 6

N

∑
j=1

ξ
2
j δ (x− x j), (ε → 0+),
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Thus, to leading order in ε � 1, the outer problem for the inhibitor is given by

Dvxx− v =−6
N

∑
j=1

ξ
2
j δ (x− x j), 0 < x < 1, (4.13)

Dvx(0) =−ξ
2
0 η(yL), Dvx(1) = ξ

2
N+1η(yR). (4.14)

This boundary value problem can be solved explicitly by letting Gω be the Green’s

function satisfying

Gω,xx−ω
2Gω =−δ (x−ξ ), 0 < x < 1;

Gω,x(0,ξ ) = 0, Gω,x(1,ξ ) = 0, ω > 0
(4.15a)

and given explicitly by

Gω(x,ξ ) =
1

ω sinhω

coshωxcoshω(1−ξ ), 0 < x < ξ ,

coshω(1− x)coshωξ , ξ < x < 1.
(4.15b)

Formally substituting ξ = 0 or ξ = 1 into the above expression gives

Gω(x,0) =
coshω(1− x)

ω sinhω
, Gω(x,1) =

coshωx
ω sinhω

, (4.15c)

which is readily seen to satisfy

Gω,xx−ω
2Gω = 0, 0 < x < 1,

with boundary conditions

Gω,x(0,0) =−1, Gω,x(1,0) = 0, Gω,x(0,1) = 0, Gω,x(1,1) = 1.

Letting ω0 ≡ D−1/2 we obtain the following leading order asymptotic expansion
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for the quasi-equilibrium solution to (4.2)

ue(x)∼ ξLwc
( x

ε
+ yL

)
+ξRwc

( 1−x
ε

+ yR
)
+

N

∑
j=1

ξ jwc
( x−x j

ε

)
, (4.16a)

ve(x)∼ ω
2
0

(
ξ

2
L η(yL)Gω0(x,0)+ξ

2
Rη(yR)Gω0(x,1)+6

N

∑
j=1

ξ
2
j Gω0(x,x j)

)
. (4.16b)

Furthermore, by imposing the consistency condition ve(xi)= ξi for each i∈{L,1, ...,N,R}
we obtain the system of N +2 nonlinear equations

BBB≡ ξξξ −ω
2
0Gω0N ξξξ

2
= 0, (4.17a)

where Gω0 and N are the (N +2)× (N +2) matrices given by

(Gω0)i j = Gω0(xi,x j) i, j = L,R,1, ...,N,

N ≡ diag(η(yL),η(yR),6, ...,6),

and

ξξξ ≡ (ξL,ξR,ξ1, ...,ξN)
T , ξξξ

2
= (ξ 2

L ,ξ
2
R ,ξ

2
1 , ...,ξ

2
N)

T . (4.17b)

Thus, for given spike configuration 0 < x1 < ... < xN < 1, the system (4.17a) to-

gether with (4.5) and (4.9) can be solved for the unknown spike heights ξL,ξ1, ...,ξN ,ξR

and boundary shifts yL and yR. Summarizing, we have the following proposition.

Proposition 4.1.1. In the limit ε → 0+ and for t� O(ε−2) an N +2 spike quasi-

equilibrium solution to (4.2) consisting of two boundary spikes and N well sepa-

rated interior spikes concentrated at specified locations 0 < x1 < ... < xN < 1 is

given asymptotically by (4.16) where Gω0(x,ξ ) is given explicitly by (4.15b) and

ω0 = D−1/2. The boundary shifts, yL and yR, and spike heights, ξL,ξ1, ...,ξN ,ξR,

are found by solving the system of N +4 equations (4.5), (4.9), and (4.17a).

The asymptotic solution constructed in the above proposition will not generally

be an equilibrium of (4.2) due to the slow, O(ε−2), drift motion of the interior

spikes described by (4.12). However, this solution can be made into an equilibrium

by choosing the interior spike locations x1, ...,xN appropriately.
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Proposition 4.1.2. The interior spike locations of a multi-spike pattern consist-

ing of two boundary spikes and N interior spikes vary on an O(ε−2) time scale

according to the differential equation

1
ε2

dxi

dt
=− 6ξi

D

〈
∂xGω0(x,xi)

〉
x=xi
− 12

ξiD
∑
j 6=i

ξ
2
j Gx(ξi,ξ j)

− 2
ξiD

[
ξ

2
L η(yR)Gx(xi,0)+ξ

2
Rη(yR)Gx(xi,1)

]
,

(4.18)

for each i = 1, ...,N where

〈
f (x)

〉
x0
= lim

x→x+0
f (x)+ lim

x→x−0
f (x), (4.19)

which is to be solved together with (4.17a), (4.5), and (4.9) for the spike heights

ξL,ξ1, ...,ξN ,ξR and shifts yL and yR. In particular, if the configuration x1, ...,xN

is stationary with respect to the ODE (4.18), then to leading order the quasi-

equilibrium solution of Proposition 4.1.1 is an equilibrium for all t ≥ 0.

4.1.1 Equilibrium Multi-Spike Solutions by the Gluing Method

We now use an alternative method for constructing asymmetric multi-spike equilib-

rium solutions to (4.2). This method extends that of Ward and Wei [104] to account

for inhomogeneous Neumann boundary conditions. The key idea is to construct a

single boundary spike solution in an interval of variable length and use this solu-

tion to glue together a multi-spike solution. In particular, we begin considering the

problem

ε
2uxx−u+ v−1u2 = 0, Dvxx− v+ ε

−1u2 = 0, 0 < x < l, (4.20a)

εux(0) =−A, εux(l) = 0, Dvx(0) = 0, Dvx(l) = 0, (4.20b)

where l > 0 is fixed and for which we will use the method of matched asymptotic

expansions to construct a single spike solution concentrated at x = 0. Proceeding

as in §4.1 we readily find that the equilibrium solution in the outer region (i.e. for

111



x = O(1)) is given by

u(x; l,A)∼ ξ0wc
(
ε
−1x+ y0

)
, v(x; l,A)∼ ξ0

coshω0(l− x)
coshω0l

, (4.21)

where ω0 ≡ D−1/2 while the shift parameter y0 and spike height ξ0 satisfy

w′c(y0) =−
A
ξ0

, (4.22)

and for which, using (4.4b) and (4.8), we explicitly calculate

ξ0 =
tanhω0l
ω0η(y0)

, y0 = log
(

1+3q+
√

9q2 +10q+1
2

)
, q≡ ω0A

tanhω0l
, (4.23)

for which we remark that y0 ∼ 4q as q→ 0 and therefore ξ0 ∼ (3ω0)
−1 tanhω0l

as A→ 0+. Finally, we note that y0 is monotone increasing in A and monotone

decreasing in D and l when A > 0 is fixed.

A multi-spike pattern is constructed by first partitioning the unit interval 0 <

x < 1 into N +2 subintervals defined by

xL = 0, xi = lL +2
i−1

∑
j=1

l j + li (i = 1, ...,N), xR = 1,

IL = [0, lL), Ii = [xi− li,xi + li) (i = 1, ...,N), IR = [1− lR,1],

where lL, l1, ..., lN , lR are chosen to satisfy the N +2 constraints

lL +2l1 + · · ·2lN + lR = 1. (4.24a)

v(lL; lL,A) = v(l1; l1,0) = · · ·= v(lN ; lN ,0) = v(lR; lR,B), . (4.24b)

The first constraint guarantees that the intervals are mutually disjoint, while the
second set of N + 1 constraints guarantees the continuity of the multi-spike equi-
librium solution

ue(x) =


u(x; lL,A), x ∈ IL

u(|x− xi|; li,0), x ∈ Ii

u(1− x, lR,B), x ∈ IR

, ve(x) =


v(x; lL,A), x ∈ IL

v(|x− xi|; li,0), x ∈ Ii

v(1− x, lR,B), x ∈ IR

. (4.24c)
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We remark that the local symmetry of each interior spike implies that the inte-

rior spikes are stationary with respect to the slow dynamics found in (4.12), and

therefore the multi-spike solution constructed above is an equilibrium of (4.2).

4.2 Linear Stability of Multi-Spike Pattern
In this section we derive a nonlocal eigenvalue problem (NLEP) that, to leading

order in ε � 1, determines the linear stability of the quasi-equilibrium solution

given in Proposition 4.1.1 on an O(1) timescale. Letting ue and ve be the quasi-

equilibrium solution from Proposition 4.1.1, we consider the perturbations u =

ue + eλ tΦ and v = ve + eλ tΨ with which (4.2) becomes

ε
2
Φxx−Φ+2

ue

ve
Φ− u2

e

v2
e

Ψ = λΦ, 0 < x < 1, (4.25a)

DΨxx−Ψ+2ε
−1ueΦ = τλΨ, 0 < x < 1. (4.25b)

This problem admits both large and small eigenvalues characterized by λ = O(1)

and O(ε2) respectively. The small eigenvalues are closely related to the lineariza-

tion of the slow-dynamics (4.18) and the resulting instabilities therefore take place

over a O(ε−2) timescale [111]. In contrast, the large eigenvalues lead to ampli-

tude instabilities over a O(1) timescale. In this section we focus exclusively on the

large eigenvalues and limit our discussion of the small eigenvalues to the specific

example given in §4.4.4 in which a two-spike solution consisting of one spike on

the boundary and one interior spike is considered.
Using the method of matched asymptotic expansions as in §4.1 we readily find

that, to leading order in ε � 1, the inhibitor perturbation Ψ satisfies

DΨxx− (1+ τλ )Ψ =−2
N

∑
j=1

ξ j

ˆ
∞

−∞

wc(y)φ j(y)dyδ (x− x j), 0 < x < 1, (4.26a)

DΨx(0) =−2ξL

ˆ
∞

0
wc(y+ yL)φL(y)dy, (4.26b)

DΨx(1) = 2ξR

ˆ
∞

0
wc(y+ yR)φR(y)dy, (4.26c)

where φL and φR are the leading order inner expansions of the activator perturba-
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tion Φ at the boundaries satisfying

Lyiφi−wc(y+ yi)
2
Ψ(xi) = λφi, 0 < y < ∞,

φ
′
i (0) = 0, φi→ 0 as y→ ∞,

(4.27a)

for i = L,R respectively, while φ1, ...,φN are the leading order inner expansions of

Φ at each of the interior spike locations x1, ..,xN satisfying

L0φi−wc(y)2
Ψ(xi) = λφi, −∞ < y < ∞, φ → 0 as y→±∞, (4.27b)

for each i = 1, ...,N respectively. The linear differential operator Ly0 parametrized

by y0 ≥ 0 appearing in each equation is explicitly given by

Ly0φ ≡ φ
′′−φ +2wc(y+ y0)φ . (4.28)

Note that by decomposing each φi = φ even
i + φ odd

i (i = 1, ...,N) where φ even
i and

φ odd
i are even and odd about y = 0 respectively, we find that either φ odd

i = 0 or else

λ ≤ 0. In particular, the odd components of each φi (i = 1, ...,N) do not contribute

to any instabilities and without loss of generality we may therefore assume that

each φi is even about y = 0. Hence it suffices to pose (4.27b) on the half line with

the same homogeneous Neumann boundary conditions used in (4.27a).

Letting ωλ ≡
√
(1+ τλ )/D and recalling the definition of Gω in (4.15) we

readily find that the solution to (4.26) is explicitly given by

Ψ(x) = 2ω
2
0

N

∑
j=L,R,1

ξ̂ jGωλ
(x,x j)

ˆ
∞

0
wc(y+ y j)φ j(y)dy.

where we let

y1 = ...= yN = 0, ξ̂i ≡

ξi, i = L,R,

2ξi, i = 1, ...,N,
. (4.29)

Evaluating Ψ(x) at each x = xi and substituting into (4.27) yields the system of
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NLEPs

Lyiφi−2ω
2
0 wc(y+ yi)

2
N

∑
j=L,R,1

ξ̂ jGωλ
(xi,x j)

ˆ
∞

0
wc(y+ y j)φ j(y)dy = λφi (4.30a)

for y > 0 with boundary conditions

φ
′
i (0) = 0, φi→ 0 as y→+∞. (4.30b)

for each i = L,R,1, ...,N where Lyi is defined by (4.28).

The NLEP system (4.30) has two key features that distinguish it from analo-

gous NLEPs in singularly perturbed reaction diffusion systems [41, 104, 107, 111]

and are explored in the rigorous stability results of §4.3 as well as in the spe-

cific examples of §4.4. First, it considers both boundary-bound and interior-bound

spikes. As explored in Examples 2 to 4 this has immediate consequences for both

the existence and stability of asymmetric patterns even in the zero-flux case where

A = B = 0. The second distinguishing feature of (4.30) is the introduction of the

shift parameters yL ≥ 0 and yR ≥ 0. We remark that an analogous negative shift

parameter has been examined in the context of near-boundary spike solutions for

homogeneous Robin boundary conditions [4, 60]. However, as highlighted in the

stability results of §4.3, the positive shift parameter plays a key role in the stability

properties of boundary-bound spikes. An important critical value of the shift pa-

rameter is the unique value y0c > 0 such that w′′c (y0c) = 0 and which is explicitly

given by

y0c = log(2+
√

3). (4.31)

In particular, it can be shown that if y0 ≶ y0c then Ly0 has an unstable and stable

spectrum respectively (see Lemma 4.3.1 below). Moreover the operator Ly0c has a

one-dimensional kernel spanned by w′c(y+ y0c).

4.2.1 Reduction of NLEP to an Algebraic System

It is particularly useful to rewrite (4.30) as an algebraic system as follows. Assum-

ing that λ is not an eigenvalue of Lyi for all i = L,R,1, ...,N we let

φi = ci(Lyi−λ )−1wc(y+ yi)
2, i ∈ {L,R,1, ...,N}, (4.32)
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where the coefficients cL,cR,c1, ...,cN are undetermined. Note that in (4.32) the

homogeneous Neumann boundary condition φ ′i (0) = 0 is assumed. In addition,

note that if λ = 0 then (4.32) is only valid if yL,yR 6= y0c.

Substituting into (4.30) then yields the linear homogeneous system for ccc ≡
(cL,cR,c1, ...,cN)

T

Gωλ
Dλccc = (2ω

2
0 )
−1ccc, (4.33)

where Gωλ
is the (N +2)× (N +2) matrix with entries

(Gωλ
)i j = Gωλ

(xi,x j), (i, j = L,R,1, ...,N), (4.34)

while Dλ is the diagonal (N +2)× (N +2) matrix given by

(Dλ )i j =
1

ω0


η(yi)ξiFyL(λ ), i = j = L,R,

6ξiF0(λ ), i = j = 1, ...,N,

0, i 6= j,

(4.35)

where

Fy0(λ )≡
´

∞

0 wc(y+ y0)(Ly0−λ )−1wc(y+ y0)
2dy´

∞

0 wc(y+ y0)2dy
, (4.36)

and for which (4.46) and (4.47) below imply that for all y0 6= y0c

Fy0(0) = 1+
w′c(y0)wc(y0)

2

2w′′c (y0)η(y0)
. (4.37)

Comparing (4.33) and (4.30), it follows that λ is an eigenvalue of (4.30) if and only

if (2ω2
0 )
−1 is an eigenvalue of Gωλ

Dλ . In particular, when λ is not an eigenvalue

of LyL , LyR , and L0 then it is an eigenvalue of the NLEP (4.30) if and only if it

satisfies the algebraic equation

det
(
IN+2−2ω

2
0Gωλ

Dλ

)
= 0, (4.38)

where IN+2 is the (N +2)× (N +2) identity matrix.

We conclude by noting that if either yL = y0c and/or yR = y0c then the algebraic

reduction fails when searching for a zero eigenvalue λ = 0 since Ly0c is not in-
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vertible. However, in this case we can deduce an analogous system. In particular

letting λ = 0 and assuming that yL = y0c and yR 6= y0c, we multiply the i = L NLEP

in (4.30) by w′c(y+ y0c) and integrate over 0 < y < ∞ to get

ξL

ˆ
∞

0
wc(y+ yL)φLdy =−

N

∑
j=R,1

ξ̃ j
Gω0(0,x j)

Gω0(0,0)

ˆ
∞

0
wc(y+ y j)φ jdy. (4.39)

Proceeding as above we then deduce that the NLEP (4.30) with λ = 0 is then

equivalent to the algebraic equation

det(IN+1−2ω
2
0

˜Gω0D̃) = 0, (4.40)

where ˜Gω0 and D̃ are the (N +1)× (N +1) matrices with entries

( ˜Gω0)i j = Gi j−
1

Gω0(0,0)
Gω0(xi,0)Gω0(0,x j), (D̃)i j = Di j, (4.41)

for i, j = R,1, ...,N. The same approach can likewise be used if yL = yR = y0c.

4.2.2 Zero-Eigenvalues of the NLEP and the Consistency Condition

The conditions under which λ = 0 is an eigenvalue of the NLEP (4.30) can be di-

rectly linked to the system (4.17a) as highlighted in [111]. Specifically, assume that

x1, ...,xN are fixed (not necessarily at an equilibrium configuration of the slow dy-

namics ODE (4.18)) and let ξL,ξR,ξ1, ...,ξN together with yL and yR solve (4.17a),

(4.5), and (4.9) with the additional assumption that yL,yR 6= y0c. From the definition

of η in (4.8) and from (4.5) and (4.9) we calculate

∂η(yi)

∂ξi
=

wc(yi)
2w′c(yi)

ξiw′′c (yi)
, (4.42)

for i = L,R. Taking the Jacobian of the quasi-equilibrium system (4.17a) and re-

calling the definition of Dλ given in (4.35) we deduce that

∇ξξξ BBB = I−2ω
2
0Gω0D0. (4.43)
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Together with the discussion of §4.2.1 we deduce that if yL,yR 6= 0 and each x1, ...,xN

is independent of ξL,ξR,ξ1, ...,ξN , then λ = 0 is an eigenvalue of the NLEP (4.30)

if and only if the Jacobian ∇ξξξ BBB is singular.

4.3 Rigorous Stability and Instability Results for the
Shifted NLEP

In this section we rigorously prove instability and stability results for the shifted

NLEP

Ly0φ −µ

´
∞

0 wφ´
∞

0 w2 w2 = λφ , 0 < y < ∞,

φ
′(0) = 0; φ → 0 as y→ ∞,

(4.44)

where µ is a real constant and for a fixed value of y0 ≥ 0 we define

Ly0φ ≡ φ
′′−φ +2wφ , w(y)≡ wc(y+ y0), (4.45)

and where wc is the unique solution to (4.4a). When y0 = 0 the NLEP (4.44) is

stable if µ > 1 and unstable if µ < 1 [107]. We begin by collecting a few facts

about the operator Ly0 and its spectrum. First, we calculate

L −1
y0

w2 = w− w′(0)
w′′(0)

w′, L −1
y0

w = w+
1
2

yw
′− 3w′(0)

2w′′(0)
w
′

(4.46)

where the additional terms are chosen so that homogeneous Neumann boundary

conditions at y = 0 are satisfied and which we use to compute

ˆ
∞

0
wL −1

y0
w2 =

ˆ
∞

0
w2 +

w′(0)w(0)2

2w′′(0)
, (4.47a)

ˆ
∞

0
wL −1

y0
w =

3
4

ˆ
∞

0
w2 +

3w′(0)w(0)2

4w′′(0)
, (4.47b)

ˆ
∞

0
w2L −1

y0
w2 =

ˆ
∞

0
w3 +

w′(0)w(0)3

3w′′(0)
, (4.47c)

ˆ
∞

0
w3 =

6
5

ˆ
∞

0
w2 +

3w(0)w′(0)
5

. (4.47d)
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In the next two lemmas, we describe some key properties of the eigenvalue problem

Ly0Φ = ΛΦ, 0 < y < ∞; Φ
′(0) = 0; Φ→ 0, as y→+∞. (4.48)

Lemma 4.3.1. Let y0 ≥ 0 an let Λ0 be the principal eigenvalue of (4.48). Then

Λ0 = 0 if y0 = y0c and Λ0 ≶ 0 if y0 ≷ y0c. Furthermore, the eigenfunction corre-

sponding to the principal eigenvalue is of one sign.

Proof. Since Ly0 is self-adjoint, the variational characterization

−Λ0 = inf
Φ∈H2([0,∞))

´
∞

0 |Φ
′|2 + |Φ|2−2w|Φ|2´

∞

0 |Φ|2
, (4.49)

implies that the principal eigenfunction Φ0 is of one sign. Since Φ0(0) 6= 0 we may,

without loss of generality, assume that Φ0(0) = 1 and Φ0 > 0. Now we multiply

(4.48) by w′ and integrate by parts to get

Λ0 =
w′′(0)´

∞

0 w′Φ0dy
, (4.50)

where we remark that the denominator is negative since w′ ≤ 0 for all y ≥ 0. The

claim follows by noting that w′′(0)= 0 when y0 = 0 and w′′(0)≷ 0 for y0 ≷ y0c.

Lemma 4.3.2. Let Λ1 be the second eigenvalue of Ly0 . Then Λ1 < 0 for all y0 ≥ 0.

Proof. First note that the second eigenfunction Φ1 must cross zero at least once

since
´

∞

0 Φ0Φ1dy = 0 and Φ0 is of one sign. Next we assume toward a contradic-

tion that Λ1 ≥ 0. We begin by showing that Φ1 has exactly one zero in 0 < y < ∞.

Assume that Φ1 has more than one zero and choose 0 < a < b < ∞ such that

Φ1(a) = Φ1(b) = 0 and Φ1 > 0 in a < y < b. Then Φ′1(a) > 0 and Φ′1(b) < 0 so

we obtain the contradiction

0≥ Λ1

ˆ b

a
w′Φ1dy =

ˆ b

a
w′Ly0Φ1dy = w′(b)Φ′1(b)−w′(a)Φ′1(a)> 0, (4.51)

where we have used Ly0w′ = 0 and w′ < 0 for all y > 0. Thus Φ1 has a unique zero

0 < a < ∞ and we may assume that Φ1 ≶ 0 for y ≶ a. Setting b = ∞ in (4.51) we

get a contradiction.
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In Figure 4.2a we plot the principal and second eigenvalues of the operator Ly0

which we calculated numerically (see Appendix D.2 for details on the numerical

method).

Lemma 4.3.1 implies that the NLEP will have different stability properties de-

pending on whether y0 is greater than or smaller than y0c. We will henceforth refer

to 0 ≤ y0 < y0c and y0 > y0c as the small-shift and large-shift cases respectively.

When y0 = 0 it is known that for µ > 0 sufficiently large, the NLEP (4.44) is sta-

ble. In this sense the nonlocal term appearing in (4.44) can stabilize the spectrum

of the linearized operator Ly0 . Since all the eigenvalues of Ly0 are negative in the

large-shift case we expect the spectrum of the NLEP (4.44) to remain stable for all

µ ≥ 0. Restricting our attention to real eigenvalues, we have the following stability

result for the large-shift case.

Theorem 4.3.1. All real eigenvalues of the NLEP (4.44) are negative when y0 >

y0c.

To prove this, we first prove the following lemma.

Lemma 4.3.3. Let y0 > y0c and suppose that φ satisfies

Ly0φ −λφ ≥ 0, 0 < y < ∞; φ
′(0)≥ 0; φ → 0, as y→+∞, (4.52)

where λ ≥ 0. Then φ < 0 for all y≥ 0.

Proof. Assume toward a contradiction that φ > 0 in 0 ≤ a < y < b ≤ ∞. Without

loss of generality we may assume that φ(a) = 0 if a > 0 and φ(0) > 0 if a = 0.

Then, for any such 0≤ a < b≤ ∞ we have

φ(a)≥ 0, φ
′(a)≥ 0, φ(b) = 0, φ

′(b)≤ 0. (4.53)

Let g(y) ≡ w′′(y)− βw′(y) where β ≡ maxy≥0 |w′′′(y)|
w′′(a) is well-defined and positive.

Then g > 0 for all y ≥ 0, g′(a) ≤ 0, and moreover (Ly0 − λ )g = Ly0w′′− λg =

−(w′)2−λg < 0. Integrating by parts we obtain the contradiction

0 <

ˆ b

a
g(Ly0−λ )φdy−

ˆ b

a
φ(Ly0−λ )gdy

= g(b)φ ′(b)−g(a)φ ′(a)−g′(b)φ(b)+g′(a)φ(a)≤ 0.
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Proof [Theorem 4.3.1. ] Suppose that λ ≥ 0 is an eigenvalue of (4.44) so that by

Lemma 4.3.1 the operator Ly0−λ is invertible and from (4.44) we calculate

φ = µ

´
∞

0 wφ´
∞

0 w2 (Ly0−λ )−1w2.

But w2 > 0 so by Lemma 4.3.3 we obtain the contradiction

1 = µ

´
∞

0 w(Ly0−λ )−1w2´
∞

0 w2 < 0. (4.54)

From Theorem 4.3.1 we immediately deduce that the NLEP does not admit a

zero eigenvalue for any µ ≥ 0 when y0 > y0c. On the other hand, when 0≤ y0 ≤ y0c

we suspect that the NLEP admits a zero eigenvalue for an appropriate choice of

µ ≥ 0. When y0 = y0c this is the case for µ = 0. When 0≤ y0 < y0c we set λ = 0

in (4.44) and obtain

Ly0φ = µ

´
∞

0 wφ´
∞

0 w2 w2. (4.55)

Using (4.46) we calculate φ = L −1
y0

w2 and substitute back into (4.55) to deduce

that λ = 0 is an eigenvalue if and only if

µ = µc(y0)≡
´

∞

0 w2´
∞

0 wL −1
y0 w2

=

´
∞

0 w2

´
∞

0 w2 + w′(0)w(0)2

2w′′(0)

. (4.56)

Note that µc(y0) ≶ 0 if y0 ≷ y0c. In terms of the critical value µc we have the

following instability result for the small-shift case.

Theorem 4.3.2. Let 0≤ y0 < y0c and 0≤ µ < µc where critical value µc is defined

in (4.56). Then the NLEP (4.44) admits a positive real eigenvalue.

Proof. Let Λ0 be the principal eigenvalue of Ly0 . First note that by Lemma 4.3.1

and 4.3.2 the principal and second eigenvalues of Ly0 satisfy Λ1 < 0 < Λ0. More-

over the corresponding eigenfunction Φ0 is of one sign and we may assume that
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Φ0 > 0 and
´

∞

0 Φ2
0 = 1. Observe that if λ0 6= Λ0 is a positive eigenvalue of the

NLEP (4.44) then

φ = µ

´
∞

0 wφ´
∞

0 w2 (Ly0−λ0)
−1w2,

and since
´

∞

0 wφ 6= 0 the above equation is equivalent to h(λ0) = 0 where

h(λ )≡
ˆ

∞

0
w(Ly0−λ )−1w2−

´
∞

0 w2

µ
. (4.57)

We now show that such a λ0 can always be found in 0 < λ0 < Λ0 for 0≤ µ < µc.

First we calculate h(0) =
´

∞

0 w2(µ−1
c − µ−1) < 0. Next we we let ψ be the

unique solution to

(Ly0−λ )ψ = w2, 0 < y < ∞; ψ
′(0) = 0.

Decomposing ψ = c0Φ0 +ψ⊥ where
´

∞

0 Φ0ψ⊥ = 0 we find that ψ⊥ satisfies

(Ly0−λ )ψ⊥ = w2− c0(Λ0−λ )Φ0, 0 < y < ∞; (ψ⊥)′(0) = 0. (4.58)

Multiplying by Φ0 and integrating by parts we obtain c0 = (Λ0− λ )−1
´

∞

0 w2Φ0

and therefore

h(λ ) =

´
∞

0 w2Φ0
´

∞

0 wΦ0

Λ0−λ
+

ˆ
∞

0
wψ
⊥−
´

∞

0 w2

µ
. (4.59)

On the other hand, if we multiply (4.58) by ψ⊥ and integrate then we obtain

−
ˆ

∞

0
|ψ⊥|2

(
λ +
−
´

∞

0 ψ⊥Ly0ψ⊥´
∞

0 |ψ⊥|2

)
=

ˆ
∞

0
w2

ψ
⊥. (4.60)

By Lemma 4.3.2 and the variational characterization of the second eigenvalue of

Ly0 we obtain

0 <−Λ1 = inf
Φ∈H2([0,∞))´

∞

0 ΦΦ0=0

´
∞

0 |Φ
′|2 + |Φ|2−2w|Φ|2

|Φ|2
≤
−
´

∞

0 ψ⊥Ly0ψ⊥´
∞

0 |ψ⊥|2
.
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Substituting into (4.60) we calculate ||ψ⊥||2L2([0,∞))
≤ λ−1||w2||L2([0,∞))||ψ⊥||L2([0,∞))

so that ||ψ⊥||L2([0,∞)) and hence also
´

∞

0 wψ⊥ are bounded as λ → Λ0 > 0. There-

fore, from (4.59) we deduce h(λ )→+∞ as λ →Λ
−
0 . By a continuity argument we

deduce the existence of a λ0 ∈ (0,Λ1) such that h(λ0) = 0.

We conclude this section by establishing sufficient conditions for the stability

of the NLEP (4.44) in both the small- and large-shift cases. Suppose that φ =

φR + iφI and λ = λR + iλI satisfies the NLEP. Separating real and imaginary parts

in (4.44) then yields the system

Ly0φR−µ

´
∞

0 wφR´
∞

0 w2 w2 = λRφR−λIφI,

Ly0φI−µ

´
∞

0 wφI´
∞

0 w2 w2 = λRφI +λIφR.

Multiplying the first and second equations by φR and φI respectively, integrating,

and then adding them together gives

λR

ˆ
∞

0
|φ |2 =−L1(φR,φR)−L1(φI,φI), (4.62)

where we define

L1(Φ,Φ)≡
ˆ

∞

0
|Φ′|2 +Φ

2−2wΦ
2 +µ

´
∞

0 wΦ
´

∞

0 w2Φ´
∞

0 w2 . (4.63)

It is clear that if L1(Φ,Φ)> 0 for all Φ ∈ H2([0,∞)) then the NLEP (4.44) will be

linearly stable. In the next theorem we determine sufficient conditions on µ ≥ 0

and y0 ≥ 0 for which the NLEP is linearly stable.

Theorem 4.3.3. If 0≤ y0 < y0c and µ1(y0)< µ < µ2(y0), or y0 > y0c and 0≤ µ <
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Figure 4.2: (a) Plot of the numerically computed principal and second eigen-
values of the operator Ly0 . The dashed vertical line corresponds to
y0 = y0c. (b) Plot of the stability thresholds µ1 and µ2 as functions
of y0. The dashed vertical and horizontal lines correspond to y0 = y0c

and µ = 2 respectively. The NLEP (4.44) has been rigorously demon-
strated to be stable in the region bounded by the curves µ1 and µ2. Note
that µ1 and µ2 are interchanged as y0 passes through y0c. (c) Plot of
µ1(y0)−µc(y0) for 0≤ y0 < y0c. The NLEP is unstable for µ < µc and
stable for µ1 < µ < µ2 when 0 ≤ y0 < y0c. It is conjectured that the
NLEP is stable for µ > µc.

µ1(y0) where

µ1(y0)≡
2
´

∞

0 w2

´
∞

0 wL −1
y0 w2 +

√´
∞

0 wL −1
y0 w
´

∞

0 w2L −1
y0 w2

, (4.64)

µ2(y0)≡
2
´

∞

0 w2

´
∞

0 wL −1
y0 w2−

√´
∞

0 wL −1
y0 w
´

∞

0 w2L −1
y0 w2

, (4.65)

then Reλ < 0 for all eigenvalues of the NLEP (4.44).

Proof. We first prove the result for 0≤ y0 < y0c. When µ = 2 and y0 = 0, Lemma

5.1 (2) in [107] implies that L1(Φ,Φ) > 0 for all Φ ∈ H2((∞,∞)) and hence, by

restricting to even functions, also for all Φ ∈ H2([0,∞)). In particular, by the vari-

ational characterization of the principal eigenvalue, this implies that the principal

124



eigenvalue of the self-adjoint operator

L1Φ≡Ly0Φ− µ

2

´
∞

0 wΦ´
∞

0 w2 w2− µ

2

´
∞

0 w2Φ´
∞

0 w2 w, (4.66)

must be negative. We then perturb y0 ≥ 0 and µ until L1 has a zero eigenvalue and

for which we may solve

Φ = c0L
−1

y0
w2 + c1L

−1
y0

w. (4.67)

Substituting back into L1Φ = 0 we obtain the system(
µ

2

´
∞

0 wL −1
y0

w2´
∞

0 w2 −1
)

c0 +
µ

2

´
∞

0 wL −1
y0

w´
∞

0 w2 c1 = 0,

µ

2

´
∞

0 w2L −1
y0

w2´
∞

0 w2 c0 +

(
µ

2

´
∞

0 w2L −1
y0

w´
∞

0 w2 −1
)

c1 = 0.‘

Since
´

∞

0 w2L −1
y0

w =
´

∞

0 wL −1
y0

w2 a nontrivial solutions exists if and only if

(
µ

2

´
∞

0 wL −1
y0

w2´
∞

0 w2 −1
)2

− µ2

4

´
∞

0 wL −1
y0

w
´

∞

0 w2L −1
y0

w2(´
∞

0 w2
)2 = 0, (4.68)

where explicit formulae for each integral can be found in (4.47). When µ = 2 and

y0 = 0 the left hand side of (4.68) equals−9/10< 0 and therefore we have stability

for 0≤ y0 < y0c if(
µ

2

´
∞

0 wL −1
y0

w2´
∞

0 w2 −1
)2

− µ2

4

´
∞

0 wL −1
y0

w
´

∞

0 w2L −1
y0

w2(´
∞

0 w2
)2 < 0, (4.69)

which is easily seen to be equivalent to µ1 < µ < µ2.

The thresholds µ1 and µ2 are singular as y0 → y0c and therefore the conti-

nuity argument from above does not extend to y0 > y0c. However L1(Φ,Φ) > 0

by Lemma 4.3.1 if y0 > y0c and µ = 0. Therefore we proceed with the same

continuity argument as above, but starting from µ = 0. This yields the same

criteria, but since L −1
y0

w2 < 0 by Lemma 4.3.3 the sufficient condition is now

µ2(y0)< 0≤ µ < µ1(y0).
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Both of the stability thresholds µ1 and µ2 defined in (4.64) as well as the insta-

bility threshold µc defined in (4.56) are easily computed using (4.47). In Figures

4.2b and 4.2c we plot the stability thresholds and the difference µ1− µc respec-

tively. In particular, from the plot in 4.2c we see that µ1 > µc. We conjecture,

that as in the y0 = 0 case, the NLEP is stable for all µ > µc. In Appendix D.2 we

provide numerical support for this conjecture by plotting Reλ0 versus µ and y0 in

Figure D.2a. In addition, we plot Λ0−Re(λ0) in Figure D.2b which suggest that

Re(λ0)≤ Λ0.

4.4 Examples
In this section we illustrate the effect of introducing a nonzero boundary flux for

the activator by considering three distinct examples. Specifically, we first study

the stability of a single boundary spike concentrated at x = 0 when A ≥ 0 and

B = 0. Using a winding number argument we illustrate that the stability of the

single spike is improved by increasing the boundary flux A. Moreover, we illus-

trate that if A exceed a threshold, then the spike is stable independently of the

parameters τ ≥ 0 and D > 0. We then consider the structure and stability of a two-

boundary-spike pattern when the boundary fluxes are equal, A = B≥ 0. One of the

key findings is that if A > 0 then the range of D > 0 values for which asymmet-

ric patterns exist is extended. Additionally, by assuming that τ � 1 we study the

stability of both symmetric and asymmetric two-boundary-spike patterns to com-

petition (zero eigenvalue crossing) instabilities. We demonstrate that one branch of

asymmetric patterns is always stable. Similarly, in our final example we consider a

two-boundary-spike pattern with a one-sided boundary flux A ≥ 0 and B = 0. We

demonstrate the existence of several asymmetric patterns, with a certain branch of

these patterns always being stable. For each example we include full numerical

simulations of the GM system (4.2) using the finite element software FlexPDE [1].
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Figure 4.3: Hopf bifurcation threshold and accompanying eigenvalue for a
single boundary-spike solution with one-sided boundary flux A ≥ 0 in
(a) the shadow limit, D→ ∞, and (b and c) for finite D > 0 at select
values of 0≤ A < q0c. In (a) the dashed vertical line corresponds to the
threshold A = q0c beyond which no Hopf bifurcations occur.

4.4.1 Example 1: One Boundary Spike at x = 0 with A > 0 and B = 0

In this example we assume that B = 0 and investigate the role of a non-negative

flux, A ≥ 0, on the stability of a single boundary spike concentrated at x = 0. We

denote the left boundary shift parameter by y0 = yL so that using (4.15b) and (4.23)

we reduce (4.30) to (4.44) where

µ(λ ) = 2
ω0 tanhω0

ωλ tanhωλ

. (4.70)

Recalling that ωλ =
√

(1+ τλ )/D we first observe that 0 < µ(λ )≤ 2 for all real-

valued λ ≥ 0 so that by Theorem 4.3.3 and Figure 4.2b the NLEP has no non-

negative real eigenvalues. Next we determine whether the NLEP has any unstable

complex-valued eigenvalues by using a winding number argument. Assuming that

λ is not in the spectrum of Ly0 we let φ = (Ly0 −λ )−1wc(y+ y0)
2 so that as in

§4.2.1 the NLEP reduces to the algebraic equation

Ay0(λ )≡
1

µ(λ )
−Fy0(λ ) = 0, (4.71)
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where Fy0(λ ) is defined in (4.36). In Figure D.1 we plot Fy0(0) versus y0, as well

as the real and imaginary parts of Fy0(iλI) versus λI for select values of y0. We

integrate in λ over a closed counter-clockwise contour consisting of the imaginary

axis and a large semicircle in the right half-plane. Since

Fy0(λ ) = O(|λ |−1) and µ(λ ) = O(λ−1/2) as |λ | → ∞, Reλ > 0, (4.72)

the change in argument of Ay0(λ ) over the large semicircle is π

2 . Moreover, in

Reλ > 0, µ(λ ) 6= 0 whereas by Lemmas 4.3.1 and 4.3.2 we deduce that Fy0(λ )

has one (resp. zero) pole(s) if y0 < y0c (resp. y0 ≥ y0c). Letting Z denote the

number of zeros of Ay0(λ ) in Reλ > 0 it follows from the argument principle that

Z =
1
π

∆argAy0(iλI)
∣∣0
+∞

+

5/4, y0 < y0c,

1/4, y0 ≥ y0c,
(4.73)

where the first term on the right hand side denotes the change in argument of

Ay0(λ ) as λ follows the imaginary axis from λ =+i∞ to λ = 0. Note in addition

that we have used Ay0(λ̄ )=Ay0(λ ) to obtain ∆argAy0(iλI)
∣∣−∞

+∞
= 2∆argAy0(iλI)

∣∣0
+∞

.

From (4.72) we immediately deduce that argAy0(+i∞) = π/4. On the other hand,

using (4.47), we evaluate Ay0(0) =
1
2 −Fy0(0) ≶ 0 for y0 ≶ y0c (see also Figure

D.1a). We will consider the cases y0 ≥ y0c and y0 < y0c separately below.

If y0 ≥ y0c then ReFy0(iλI) < 0 for all λI > 0 (see Figure D.1b) so Ay0(iλI)

never crosses the imaginary axis for all λI > 0. As a result ∆argAy0(iλI)|0∞ =−π/4

and therefore Z = 0 if y0 > y0c. Since y0 is monotone decreasing in D when A > 0,

we deduce that there is a threshold Dc(A) such that the single spike pattern is stable

for all τ ≥ 0 if D≥Dc(A). Substituting y0 = y0c and using (4.23) and (4.31) yields

the threshold parameter

q0c =
4+3

√
3

11
≈ 0.83601, (4.74)

with which Dc(A) is found by solving the transcendental equation

tanhD−1/2
c = q−1

0c AD−1/2
c . (4.75)
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Figure 4.4: Plots of u(0, t) for a one boundary-spike solution with one-sided
boundary flux x = 0 (i.e. A ≥ 0 and B = 0) with ε = 0.005. Note that
increasing the boundary flux A stabilizes the single boundary-spike so-
lution for fixed values of D and τ .

It is easy to see that if A ≥ q0c then Dc = ∞ is the only positive solution. On the

other hand, if 0 < A < q0c then this equation has a unique positive solution that is

monotone increasing in A and satisfies Dc→ 0+ as A→ 0+ and Dc→∞ as A→ q−0c.

In summary we deduce that the single spike pattern is stable for all D> 0 and τ ≥ 0

if A ≥ q0c, or for all τ ≥ 0 if 0 < D ≤ Dc(A) and 0 < A < q0c. To determine the

stability when 0≤ A < q0c and D > Dc(A) we must consider the case 0≤ y < y0c.

Next we assume that 0≤ y0 < y0c. We begin by considering the shadow limit,

defined by D→ ∞, for which µ(iλI)∼ 2(1+ iτλI)
−1 and hence also

ReAy0(iλI)∼
1
2
−ReFy0(iλI), ImAy0(iλI)∼

τλI

2
− ImFy0(iλI), D→∞.

Since Fy0(0) > 1/2 and ReFy0(iλI)→ 0 as λI → ∞ (see Appendix D.1 and ac-

companying Figure D.1) we deduce that there exists a solution to ReAy0(iλI) = 0.

Moreover, in Figure D.1b we observe that when ReFy0(iλI) is positive it is also

monotone decreasing in λI . Therefore there exists a unique eigenvalue λ ∞
h and

time constant τ∞
h = 2ImFy0(iλI)/λ ∞

h such that Ay0(iλ
∞
h ) = 0. Furthermore, since
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ImAy0(iλ
∞
h )≶ 0 if τ ≶ τ∞

h we get

∆argAy0(iλI)|0∞ =

−5π/4, τ < τ∞
h ,

3π/4, τ > τ∞
h .

The single boundary spike solution therefore undergoes a Hopf bifurcation as τ

exceeds the Hopf bifurcation threshold τ∞
h . Using the shadow limit threshold as an

initial guess, we numerically continue the Hopf bifurcation threshold for finite val-

ues of D > 0 to obtain the Hopf bifurcation threshold τh(D,A) and accompanying

critical eigenvalue λ = iλh(D,A) shown in Figure 4.3b and 4.3c respectively.

The above analysis, together with the plots of τ∞
h (A) and τh(D,A) in Figures

4.3a and 4.3b respectively, indicate that the single boundary spike solution is sta-

bilized as A > 0 is increased. Additionally, if A exceeds the threshold q0c given

in (4.74), then the single boundary spike is stable independently of the parameters

τ ≥ 0 and D > 0. We illustrate the onset of oscillatory instabilities when D = 5 for

τ = 1,2,7 and A = 0,0.2,0.4,0.6 by numerically computing the solution of (4.2)

using FlexPDE 6 [1] and plotting u(0, t) in Figure 4.4. In particular we observe

that the single spike pattern is stabilized by increasing the boundary flux A. Addi-

tionally, our numerical simulations show good qualitative agreement with the Hopf

bifurcation thresholds plotted in Figure 4.3b.

4.4.2 Example 2: Two Boundary Spikes with A = B≥ 0

In this example we investigate the role of equal boundary fluxes on the structure

and stability of a two-boundary-spike pattern. Using the method of §4.1.1, a two-

boundary-spike pattern is found by letting lL = l and lR = 1− l and solving (4.24b),

which is explicitly given by

tanhω0l
η(yL)coshω0l

− tanhω0(1− l)
η(yR)coshω0(1− l)

= 0, (4.76)
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for 0 < l < 1 where η is given by (4.8) and yL and yR are given by (4.23). Note that

by (4.21) the algebraic equation (4.76) is equivalent to

ξL

ξR
=

coshω0l
coshω0(1− l)

, (4.77)

from which we deduce that l ≶ 1/2 implies ξL ≶ ξR. In particular l = 1/2 solves

(4.76) for all A ≥ 0 and since in this case ξL = ξR we refer to it as the symmetric

solution. For the remainder of this example we will construct asymmetric two-

spike patterns for which 0 < l < 1/2 (by symmetry the case l > 1/2 is identical)

and then study the linear stability of both the symmetric and asymmetric patterns.

Before constructing asymmetric two-boundary-spike patterns for A≥ 0 we first

recall the following existence result from [104] in the case A = 0. Specifically, we

let z = ω0lL and z̃ = ω0lR so that when A = 0 the system (4.24) (and hence also

(4.76)) is equivalent to

z+ z̃ = ω0, b(z) = b(z̃), b(z)≡ tanhz
coshz

. (4.78)

It follows from Result 2.3 (with k1 = k2 = 1, µ = 1, and r = 1) of [104] that (4.76)

has a unique solution 0 < l < 1 if and only if

0 < D < Dc1 ≡ [2log(1+
√

2)]−2 ≈ 0.322. (4.79)

When A > 0 we solve (4.76) numerically and find that for given values of D and

A > 0 it accepts zero, one, or two solutions in the range 0 < l < 1/2. Rather

than solving (4.76) numerically for l as a function of A and D, we found it more

convenient to solve for A = A(D, l). The results of our numerical calculations are

shown in Figure 4.5a where we plot A = A(D, l) as well as the curve l = lmax(D)

along which A(D, l) is maximized for a fixed value of D, and the curve l = lc1(D)

along which A(D, lc1(D)) = A(D,1/2) for Dc1 < D < Dc2 ≈ 0.660 and lc1(D) = 0

for 0 < D < Dc1. Consequently, (4.76) has zero solutions in 0 < l < 1/2 if A >

Amax(D)≡A(D, lmax(D)), whereas it has two solutions, one with l < lc1(D) and the

other with l > lc1(D), if Amax(D) > A > Ac1(D) ≡ A(D, lc1(D)) for 0 < D < Dc2.

For all other values of D > 0 and A > 0 equation (4.76) has exactly one solution
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(a) (b)

Figure 4.5: Plots of (a) A = A(D, l) and (b) thresholds for the existence of
zero, one, or two asymmetric two-boundary-spike solutions in the pres-
ence of equal boundary fluxes considered in Example 2.

in 0 < l < 1/2. We summarize these existence thresholds in Figure 4.5b where

we note in particular that A > 0 greatly extends the range of D values over which

asymmetric two-boundary-spike patterns exist.

We now consider the linear stability of both the symmetric and asymmetric

two-boundary-spike patterns constructed above. Note that since xL = 0 and xR = 1

are fixed there are no slow drift dynamics and the linear stability of the two-spike

patterns is completely determined by the O(1) eigenvalues calculated from the

NLEP (4.30). Moreover, we assume that τ = 0 so that no oscillatory instabilities

arise (see Example 1) and for which we can exclusively focus on zero eigenvalue

crossing, or competition, instabilities. We proceed by first using the rigorous re-

sults of §4.3 to determine the linear stability of the symmetric two-spike patterns

constructed above, and we will then use the algebraic reduction outlined in §4.2.1

to determine the stability of the remaining asymmetric two-spike patterns.

Using (4.15b) and (4.21), the NLEP (4.30) for the symmetric two-spike pattern

constructed above is explicitly given by

Ly0φφφ −2ω0 tanh
(

ω0
2

)´ ∞

0 wc(y+ y0)Gω0φφφdy´
∞

0 wc(y+ y0)2dy
wc(y+ y0)

2 = λφφφ , 0 < y < ∞,

φφφ
′(0) = 0,
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where

φφφ =

(
φ1

φ2

)
, Gω0 =

1
ω0 sinhω0

(
coshω0 1

1 coshω0

)
. (4.80)

The Green’s matrix is symmetric and of constant row sum and therefore has eigen-

vectors (1,±1)T . Substituting φφφ = (φ ,±φ)T into the NLEP therefore yields two

uncoupled scalar NLEPs of the form (4.44) with µ = µ± where

µ+ ≡ 2, µ− ≡ 2tanh2(ω0
2

)
. (4.81)

From Theorem 4.3.3 and accompanying Figure 4.2b we immediately deduce that

the φφφ+ mode is linearly stable. On the other hand, by Theorem 4.3.2 the φφφ− mode

is unstable if µ− < µc, where µc is defined by (4.56). We therefore calculate the

competition instability threshold by numerically solving 2tanh2 ω0
2 = µc(y0) where

y0 = yL = yR is the shift parameter given by (4.23) with l = 1/2. Our numeri-

cal calculations indicate that the resulting instability threshold coincides with the

values

A(D,1/2) =

Ac1(D), Dc1 < D < Dc2,

Amax(D), D > Dc2,
(4.82)

calculated above. In particular, the symmetric two-spike pattern is linearly unstable

for all A < A(D,1/2) when D > Dc1. Furthermore, since µc(y0) < 0 for y0 > y0c

we determine from (4.24b) that there are no competition instabilities if

A > ω
−1
0 q0c tanh(ω0/2), (4.83)

where q0c is the threshold identified in Example 1 and is explicitly given by (4.74).

Note that, analogous to the results in Example 1, in the shadow limit (D→∞) there

are no competition instabilities for the symmetric pattern if A > q0c/2 (see Figure

4.5b). As in §4.3 we conjecture and have numerically supported that the symmetric

two-spike pattern is linearly stable for µ > µc and hence for all A > A(D,1/2).

Finally, as is clear from Figure 4.5b, increasing A > 0 expands the range of D

values over which the symmetric two-boundary-spike pattern is linearly stable.

For the asymmetric two-boundary-spike solutions constructed above the NLEP

(4.30) is not diagonalizable since wc(y + yL) 6≡ wc(y + yR). We therefore can’t
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directly apply the rigorous results of §4.3. To determine the competition instability

we instead use the algebraic reduction outlined in §4.2.1 and seek parameter values

such that

det(I2−2ω
2
0Gω0D0) = 0 (4.84)

where I2 is the 2×2 identity matrix, Gω0 is the 2×2 Green’s matrix given in (4.80),

and

D0 =
1

ω0

(
tanhω0lFyL(0) 0

0 tanhω0(1− l)FyR(0)

)
. (4.85)

Substituting the function A = A(D, l) calculated above into (4.84) we can solve

for l as a function of D using standard numerical methods (specifically we used a

combination of Scipy’s brentq and fsolve function in Python 3.6.8). Our compu-

tations indicate that the resulting competition instability threshold coincides with

the curves lmax(D) for D > 0 and l = 1/2 for Dc1 < D < Dc2. In fact, we can show

that this is the case explicitly by first differentiating the quasi-equilibrium equation

BBB = 000 with respect to l to get

∇ξξξBBB
(

∂ξξξ

∂ l
+

∂ξξξ

∂A
∂A
∂ l

)
+

∂BBB
∂A

∂A
∂ l

= 0. (4.86)

Along the curve lmax(D) for D > 0 the function A(D, l) is maximized whereas,

by symmetry, it is minimized along l = 1/2 for Dc1 < D < Dc2. In both cases

∂A/∂ l = 0 along these curves so that (4.86) becomes ∇ξξξ BBB∂ξξξ/∂ l = 000. Differen-

tiating (4.77) with respect to l implies that ∂ξξξ/∂ l 6= 000 and therefore we deduce

that ∇ξξξ BBB is singular along l = lmax(D) and l = 1/2. By the discussion of §4.2.1 it

follows that along these curves the algebraic equation (4.84) is satisfied and they

therefore correspond to competition instability thresholds. Note in particular that

the competition instability threshold along l = 1/2 corresponds to the competition

instability threshold for the symmetric two-spike pattern. As an immediate conse-

quence it follows that Amax→ q0c/2 as D→ ∞.

To determine in which of the regions demarcated by the competition instability

thresholds the asymmetric two-boundary-spike patterns are linearly stable and un-

stable, we calculate the stability of the asymmetric patterns along the A = 0 curve.

As outlined in Appendix D.3, the asymmetric two-boundary spike patterns when

134



0 10 20 30 40 50
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30
u(

0,
t) 

an
d 

u(
1,

t)
D=0.30, A=0.02

l
0.500
0.220
0.005

(a)

0 20 40 60 80 100
t

0.0

0.1

0.2

0.3

0.4

u(
0,

t) 
an

d 
u(

1,
t)

D=0.60, A=0.08
l
0.500
0.043

(b)

0 20 40 60 80 100
t

0.0

0.1

0.2

0.3

0.4

0.5

u(
0,

t) 
an

d 
u(

1,
t)

D=0.90, A=0.18
l
0.500
0.217

(c)

Figure 4.6: Results of numerical simulation of (4.2) using FlexPDE 6 [1] with
ε = 0.005, τ = 0.1, and select values of D and A. In each plot the
solid (resp. dashed) lines correspond tot he spike height at x = 0 (resp.
x = 1). Both the asymptotically constructed symmetric (l = 1/2) and
asymmetric 0 < l < 1/2 solutions were used as initial conditions. See
Figure 4.5a for position of parameter values relative to existence and
stability thresholds.

A = 0 are always linearly unstable, and therefore we deduce that the asymmetric

two-boundary-spike patterns in the region bounded by l = 1/2 and l = lmax(D)

for 0 < D < Dc2 are linearly unstable. On the other hand, numerically calculat-

ing the dominant eigenvalue of the NLEP (4.30) (see Appendix D.2 for descrip-

tion of numerical method) for select parameter values with l < lmax(D) we find

that such asymmetric two-boundary spike patterns are linearly stable. In partic-

ular, we note that in the region where there are two asymmetric patterns (i.e. for

Ac1(D)< A < Amax(D)), the pattern with l > lmax(D) is linearly unstable while that

with l < lmax(D) is linearly stable. Moreover, the single asymmetric two-boundary-

spike pattern that exists for A < Amax(D) and D > Dc1 is linearly stable.

Finally we support our asymptotic predictions by numerically solving (4.2)

using FlexPDE 6 [1] with parameters ε = 0.005 and τ = 0.1 for select values of D

and A. Letting ue and ve be the any of the symmetric or asymmetric two-boundary-
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spike patterns constructed above, we use

u(x,0) = (1+0.025cos(20x))ue(x),

v(x,0) = (1+0.025cos(20x))ve(x),
(4.87)

as initial conditions and simulate (4.2) sufficiently long that the solution settles.

The results of our numerical simulations indicate good agreement with the asymp-

totically calculated linear stability thresholds for both symmetric and asymmetric

two-boundary-spike patterns. We include in Figure 4.6 the results of our numerical

calculations for select values of D, l, and A indicated by black markers in Figure

4.5a. In particular, in Figure 4.6a we plot the spike heights at xL = 0 (solid) and

xR = 1 (dashed) for D= 0.30 and A= 0.02 with initial conditions given by the two-

boundary-spike pattern constructed with l = 0.5 which is symmetric and predicted

to be stable, as well as l = 0.220 and l = 0.005 which are both asymmetric but pre-

dicted to be linearly unstable and stable respectively. It is clear from the resulting

plots that our asymptotic predictions hold in this numerical simulations. Addition-

ally, we observe that the unstable asymmetric two-spike pattern tends toward the

linearly stable pattern. We observed this trend for all our numerical simulations

in which lmax < l < 1/2 though predicting this long-time behaviour analytically is

beyond the scope of this chapter. Similarly we numerically simulate the dynamics

of a symmetric and asymmetric two-boundary-spike pattern when D = 0.60 and

A = 0.08 (Figure 4.6b) and when D = 0.90 and A = 0.18 (Figure 4.6c). In both

cases the symmetric and asymmetric patterns are predicted to be linearly unstable

and stable respectively, which agrees with the outcomes observed in our numerical

simulations.

4.4.3 Example 3: Two Boundary Spikes with a One Sided Flux
(A≥ 0 and B = 0)

In this example we investigate the effect of a one sided boundary flux (A ≥ 0 and

B= 0) on the structure and linear stability of a two-boundary-spike pattern. Letting
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Figure 4.7: Plot of A = A(D, l) for Example 3 obtained by solving (4.88)
when (a) 0 < l < 1/2 and (b) 1/2 < l < 1. The solid curves l = ltop

max(D)
and lbot

max(D) indicate the values of l at which A(D, l) is maximized as
well as the competition instability threshold in the l > 1/2 and l < 1/2
regions respectively. The corresponding existence thresholds of A ver-
sus D are plotted against D in (c).

lL = l and lR = 1− l, the gluing equation (4.24b) of §4.1.1 becomes

tanhω0l
η(yL)coshω0l

− tanhω0(1− l)
3coshω0(1− l)

= 0, (4.88)

which is to be solved for 0 < l < 1 where η(yL) and yL = y0(
ω0A

tanhω0
) are given by

(4.8) and (4.23) respectively. Note that since η(yL)< 3 for all A > 0 it follows that

l = 1/2 is a solution of (4.88) if and only if A = 0. In particular ξL 6= ξR for all

A > 0 and by the asymmetry of the boundary fluxes the cases l ≶ 1/2, for which

ξL ≶ ξR, must be considered separately. On the other hand, when A = 0 we apply

the same results from [104] summarized in Example 2.

Proceeding as in Example 2 we numerically solve (4.88) for A = A(D, l) > 0

when l < 1/2 and l > 1/2. In addition we compute l = lbot
max(D) and l = ltop

max(D)

defined as the curves along which A(D, l) is maximized in the regions l < 1/2 and

l > 1/2 respectively. In Figures 4.7a and 4.7b we plot A = A(D, l) together with

ltop
max and lbot

max in the regions 1/2 < l < 1 and 0 < l < 1/2 respectively. In each

region the maximum value of A given by Atop
max(D)≡ A(D, ltop

max(D)) and Abot
max(D)≡

A(D, lbot
max(D) and plotted in Figure 4.7c gives an existence threshold for the bound-
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ary flux beyond which no two-boundary-spike with ξL > ξR and ξL < ξR exists

respectively. In particular, a two-boundary-spike pattern with ξL > ξR only exists

if A < Atop
max(D) and D satisfies (4.79), whereas a two-boundary-spike pattern with

ξL < ξR exists for all D > 0 provided that A < Abot
max(D). Furthermore, by letting

D→∞ in (4.88) we numerically calculate lbot
max→ 0.13772 and Abot

max(D)→ 0.16148

as D→ ∞ and this horizontal asymptote is indicated in Figure 4.7c.

Next we consider the linear stability of the two-boundary-spike patterns con-

structed above when τ = 0. In particular we restrict our attention to competition

instabilities which arise through a zero eigenvalue crossing. Proceeding as in Ex-

ample 2 we first deduce that both l = ltop
max(D) and l = lbot

max(D) yield a competition

instability threshold. Furthermore, we verify that these are the only competition in-

stability thresholds by numerically computing the algebraic equation (4.38) where

Gω0 and D0 are given by (4.80) and (4.85) respectively. Since all asymmetric two-

boundary-spike patterns when A = 0 are unstable with respect to competition insta-

bilities (see Example 2 and Appendix D.3), we immediately deduce that all asym-

metric two-boundary spike patterns with ξL > ξR and ξL < ξR are linearly unstable

when l > ltop
max(D) and l > lbot

max(D) respectively, and are linearly stable otherwise.

In particular, the non-zero boundary flux A> 0 both extends the range of parameter

values for which asymmetric patterns exists and are linearly stable.

To support our asymptotic predictions we numerically calculate solutions to

(4.2) when ε = 0.005 and τ = 0.1 for select values of D and A<max{Atop
max(D),Abot

max(D)}.
For each pair (D,A) we let 0 < l < 1 be any of the values for which A(D, l) = A

and then let (ue(x),ve(x)) be the corresponding equilibrium pattern constructed

above. Using (4.87) as an initial condition we then solve (4.2) numerically using

FlexPDE 6 [1]. The results of our numerical simulations are illustrated in Figures

4.8 and 4.9 when l is chosen to be in 1/2 < l < 1 and 0 < l < 1/2 respectively.

Specifically, in Figure 4.8a (resp. 4.9a) we indicate with a blue or orange marker

respectively whether the solution settles (after simulating for 0 < t < 200) to the

asymptotically predicted stable equilibrium with l < ltop
max(D) (resp. l < lbot

max(D)) or

to a one-boundary spike solution in which the spike at x = 1 collapses respectively.

In Figures 4.8b and 4.8c (resp. 4.9b and 4.9c) we show the spike heights as func-
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Figure 4.8: Numerical simulations for Example 2 when ξL > ξR. (a) Out-
come of numerical simulation of (4.2) starting from the asymmetric
two-boundary-spike pattern constructed using the indicated values of
D, l, and A. Blue and orange markers indicate the two-boundary spike
pattern settled to the stable two-spike pattern (i.e. with l < ltop

max(D))
or collapsed to a single spike pattern respectively. Black dots indicate
values of D, A, and l for which the spike heights are plotted over time
in Figures (b) and (c). The left and right dashed vertical lines indicate
D = 0.054 and D = 0.204 respectively. In (b) and (c) we plot spike
heights at x = 0 (solid) and x = 1 (dashed) at given values of D and A
and with initial condition specified by indicated value of l.

tions of time at select values of A and D using an unstable and stable value of l in

1/2 < l < 1 (resp. 0 < l < 1/2) to construct the initial condition (see captions for

more details). The results of these numerical simulations are in good agreement

with our asymptotic predictions. However, we comment that in the numerical out-

comes shown in Figure 4.8a some of the asymmetric patterns which are predicted

to be stable collapse. We expect that this error due to a combination of small errors

from the asymptotic theory, numerical errors from the time integration of (4.2), as

well as the close proximity to the fold point A = Atop
max(D) for these values of l.
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Figure 4.9: Numerical simulations for Example 2 when ξL < ξR. (a) Out-
come of numerical simulation of (4.2) starting from the asymmetric
two-boundary-spike pattern constructed using the indicated values of
D, l, and A. Blue and orange markers indicate the two-boundary spike
pattern settled to the stable two-spike pattern (i.e. with l < lbot

max(D))
or collapsed to a single spike pattern respectively. Black dots indicate
values of D, A, and l for which the spike heights are plotted over time
in Figures (b) and (c). The left and right dashed vertical lines indicate
D = 0.592 and D = 1.508 respectively. In (b) and (c) we plot spike
heights at x = 0 (solid) and x = 1 (dashed) at given values of D and A
and with initial condition specified by indicated value of l.

4.4.4 Example 4: One Boundary and Interior Spike with One-Sided
Feed (A≥ 0, B = 0)

In this final example we extend the results of Example 3 to the case where there

is one boundary spike at xL = 0 and one interior spike at 0 < x1 < 1. The asymp-

totic construction of the resulting two spike patterns, as well as the analysis of their

linear stability on an O(1) timescale proceeds as in the previous example. How-

ever, since x1 is an equilibrium of the slow dynamics equation (4.18), we must now

also determine the stability of the two-spike pattern on an O(ε−2) timescale by

analyzing the linearization of (4.18). We remark that an alternative approach to

determine the stability of multi-spike patterns on an O(ε−2) timescale is to calcu-

late the O(ε2) eigenvalues of the linearization (4.25) though we do not pursue this

approach further (see for example [41] for the analysis of O(ε2) eigenvalues).
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Using the method of §4.1.1, with lL = l and l1 = (1− l)/2 equation (4.24b)

becomes
tanhω0l

η(yL)coshω0l
−

tanhω0
1−l

2

3coshω0
1−l

2

= 0, (4.89)

which is to be solved for 0 < l < 1 where η(yL) and yL = y0(ω0A/ tanhω0l) are

given by (4.8) and (4.23) respectively. As in the previous examples we observe that

ξL = ξ1 if and only if l = 1/3 which is a solution to (4.89) if and only if A = 0.

In particular, together with the discussion in Example 3 we deduce that there are

no symmetric two-spike patterns when there is a one-sided positive boundary flux

A > 0. As in the previous examples we also note that ξL ≶ ξ1 if l ≶ 1/3. Next

we note that since l1 = (1− l)/2 the relevant asymmetric equilibrium results for

A = 0 from [104] summarized in Example 2 must be modified. In particular, letting

z = ω0lL and z̃ = ω0l1, equations (4.24a) and (4.24b) when A = 0 become

z+2z̃ = ω0, b(z) = b(z̃), (4.90)

where b(z) is given in (4.78). Then Result 2.3 of [104] (with k1 = 1 and k2 = 2)

implies that a unique asymmetric two-spike solution with z≤ z̃ exists if and only if

D < Dm ≡ [3log(1+
√

2)]−2 ≈ 0.143, (4.91)

whereas Result 2.4 of [104] (with k1 = 2 and k2 = 1) implies that there are either

exactly one or two asymmetric two-spike solutions with z > z̃ if and only if

D < Dm or Dm < D < Dm1 ≡ [2sinh−1(1/2)+ sinh−1(2)]−2 ≈ 0.17274, (4.92)

respectively. Proceeding as in Examples 2 and 3 we can then numerically calculate

A = A(D, l) from (4.89) in the appropriate regions with 0 < l < 1/3 and 1/3 <

l < 1. In Figures 4.10a and 4.10b we plot A = A(D, l) together with the curves

l = ltop
max(D) and l = lbot

max(D) along which A(D, l) is maximized. The resulting

existence thresholds Atop
max(D) ≡ A(D, ltop

max(D)) and Abot
max(D) ≡ A(D, lbot

max(D)) are

plotted in Figure 4.10c. In particular a two spike pattern with a two-spike pattern

consisting of one boundary and one interior spike with ξL > ξ1 only exists for

D < Dm1 when A < Atop
max(D), whereas such a two-spike pattern with ξL < ξ1 exists
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Figure 4.10: Plot of A = A(D, l) obtained by solving (4.88) when (a) 0 < l <
1/3 and (b) 1/3 < l < 1. The curves l = ltop

max(D) and lbot
max(D) indi-

cate the values of l at which A(D, l) is maximized while the curves
ltop
comp(D), lbot

comp,1(D), and lbot
comp,2(D) indicate the competition instabil-

ity thresholds. The corresponding existence thresholds, Atop
max(D) and

Abot
max(D) are plotted in (c).

for all D > 0 provided that A < Abot
max(D). Finally, by taking the limit D→ ∞ in

(4.89) we numerically obtain the limiting values lbot
max(D)→ 0.0857 and Abot

max(D)→
0.087174 as D→ ∞.

Next we consider the linear stability of the two-spike patterns constructed

above on an O(1) timescale. As in Examples 2 and 3 we focus exclusively on com-

petition instabilities by assuming that τ = 0 and seeking a zero eigenvalue crossing

of the NLEP (4.30). In contrast to Examples 2 and 3 above the relevant competition

instability threshold does not necessarily coincide with the curves l = ltop
max(D) and

l = lbot
max. Indeed, fixing D > 0 and differentiating the quasi-equilibrium equation

BBB = 0 with respect to l gives

∇ξξξBBB
(

∂ξξξ

∂ l
+

∂ξξξ

∂A
∂A
∂ l

)
+

∂BBB
∂A

∂A
∂ l

+
∂BBB
∂x1

dx1

dl
= 0, (4.93)

which along either l = ltop
max(D) or l = lbot

max(D) reduces to

∇ξξξ BBB
∂ξξξ

∂ l
=−1

2
∂BBB
∂x1

.
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Since ∂BBB/∂x1 6= 000 it follows that ∇ξξξ BBB is not necessarily singular along ltop
max(D)

or lbot
max(D) and in particular these curves need not coincide with the competition

instability thresholds. Note however that ∂BBB/∂x1→ 0 as D→ ∞ and therefore the

competition instability threshold will coincide with lbot
max(D) but only in the limit

D→ ∞. Thus, to calculate the appropriate competition instability thresholds we

use the algebraic reduction of §4.2.1 and numerically solve (4.38) when λ = 0 and

where the matrices Gω0 and Dω0 are respectively given by

Gω0 =
1

ω0 sinhω0

(
coshω0 coshω0(1− x1)

coshω0(1− x1) coshω0x1 coshω0(1− x1)

)
, (4.94a)

and

D0 =
1

ω0

(
tanh(ω0l)FyL(0) 0

0 2tanh
(
ω0

1−l
2

)
F0(0)

)
. (4.94b)

The resulting competition instability threshold ltop
comp(D) when ξL > ξ1 as well as

lbot
comp,i(D) (i = 1,2) when ξL < ξ1 are indicated in Figures 4.10a and 4.10b respec-

tively. Additionally, in Figure 4.10c we have plotted Atop
comp(D) ≡ A(D, ltop

comp(D))

and Atop
comp,i(D) ≡ A(D, ltop

comp,i(D)) (i = 1,2). Finally, the stability result along the

A = 0 curve calculated in Appendix D.3 implies that the two-spike pattern with

ξL > ξ1 is linearly unstable on an O(1) timescale when l > ltop
comp(D), and similarly

when ξL < ξ1 the two-spike pattern is linearly unstable in the region bounded by

the curves l = lbot
comp,1(D) and l = lbot

comp,2(D).

Next we consider the linear stability of the two-spike patterns on an O(ε−2)

timescale. We explicitly calculate the right-hand-side of (4.18) by first calculating

〈
∂xGω0(x,x1)

〉
x1
=

sinhω0(2x1−1)
sinhω0

, ∂xGω0(x,0)
∣∣
x1
=−sinhω0(1− x1)

sinhω0
,

and rearranging the quasi-equilibrium equation (4.17a) as

ω2
0 ξ 2

L η(yL)

ξ1
=

1−6ω2
0 ξ1Gω0(x1,x1)

Gω0(x1,0)
.
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so that (4.18) becomes

1
ε2

dx1

dt
=−6ω

2
0 f (x1), f (x1,ξ1) = ξ1−

tanhω0(1− x1)

3ω0
, (4.95)

where ξ1 together with ξL and yL are functions of x1 found by solving (4.17a) and

(4.5). Note that the asymmetric two-spike equilibrium solutions constructed above

using the method of §4.1.1 immediately satisfy f (x1) = 0. The linear stability

of these asymmetric two-spike patterns on an O(ε−2) timescale is determined by

the sign of f ′(x1); it is stable if f ′(x1) > 0 and unstable otherwise. We explicitly

calculate
d f
dx1

=
∂ξ1

∂x1
+

1
3

sech2
ω0(1− x1), (4.96)

where ∂ξ1/∂x1 is calculated by first differentiating the quasi-equilibrium equation

BBB = 0 with respect to x1

∇ξξξ BBB
∂ξξξ

∂x1
=− ∂BBB

∂x1
, (4.97)

and then solving for ∂ξξξ/∂x1 which we can do since we are assuming the two-spike

pattern is stable on an O(1) timescale and the matrix ∇ξξξ BBB is therefore invertible.

Numerically evaluating f ′(x1) we find that the drift instability thresholds for which

f ′(x1) = 0 coincide with the curves ltop
max(D) and lbot

max(D). In fact, we can show

that this is the case analytically by first evaluating (4.93) along either ltop
max(D) or

lbot
max(D) to get

∇ξξξ BBB
∂ξξξ

∂ l
=−1

2
∂BBB
∂x1

. (4.98)

Since the competition instability thresholds do not coincide with the curves ltop
max(D)

and lbot
max(D), the matrix ∇ξξξ BBB is invertible along these curves and comparing (4.97)

with (4.98) we obtain

∂ξ1

∂x1
= 2

∂ξ

∂ l
=−1

3
sech2

ω0
1− l

2
=−1

3
sech2

ω0(1− x1). (4.99)

In particular f ′(x1) = 0 along the curves l = ltop
max(D) and lbot

max(D). Numerically

evaluating f ′(x1) at select values of l above and below these thresholds we deter-

mine that the two-spike patterns constructed above with ξL > ξ1 or ξL < ξ1 are
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linearly stable on an O(ε−2) timescale if and only if l < ltop
max(D) or l < lbot

max(D)

respectively.

As in the previous examples we performed full numerical simulations of (4.2)

with FlexPDE 6 [1] to support our asymptotic predictions. Our numerical sim-

ulations were found to strongly agree with the predicted stability thresholds. In

particular, we observed the following dynamics. For values of l that are stable

with respect to both competition and drift instabilities, that is when l < ltop
max (resp.

l < lbot
max) for l > 1/3 (resp. l < 1/2) the two-spike pattern was observed to be sta-

ble. In the remaining regions (both stable and unstable with respect to competition

instabilities) we observed that the interior spike either collapses and the bound-

ary spike collapses to the one-boundary-spike solution, or else the interior spike

changes height to the height of the stable pattern and then slowly drifts toward the

location of the interior spike in the stable two-spike solution. As in Example 3 we

noticed sensitivity to the competition instability threshold which we believe to be

primarily due to the flatness of A in this region

4.5 Discussion
We have extended the asymptotic theory developed for the singularly perturbed

one-dimensional GM model to include the possibility of inhomogeneous Neumann

boundary conditions for the activator. Additionally, we have rigorously established

partial stability and instability results for a class of shifted NLEPs. While the

shifted NLEPs we considered are closely related to those in [60] we highlight that

the difference in sign of the shift parameter leads substantial differences in the sta-

bility properties of the NLEP. Finally we considered four examples to illustrate the

asymptotic and rigorous theory as well as to explore the behaviour of the GM sys-

tem with non-zero flux boundary conditions. For a one-boundary spike solution we

found that the non-zero Neumann boundary condition improves the stability with

respect to oscillatory instabilities arising through a Hopf bifurcation. Moreover,

by considering a two-boundary-spike pattern with equal inhomogeneous boundary

fluxes we illustrated that the non-zero boundary flux improves the stability of sym-

metric two-spike patterns and also extends the region of D > 0 values for which

asymmetric patterns exist provided that A = B > 0 is not larger than a computed
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threshold. Similar results were obtained when considering a one-sided boundary

flux for which we considered patterns where both spikes concentrate on the bound-

ary and where one concentrates on the boundary and the other in the interior. In

each of our two-spike pattern examples we observed that there are two asymmetric

patterns, where one is always linearly unstable and the other is always linearly sta-

ble. In a sense, the stable asymmetric pattern can be considered a boundary layer

solution that is a direct consequence of the inhomogeneous Neumann boundary

condition. In particular its existence is mandated by the inhomogeneous boundary

condition which makes a direct comparison with asymmetric spike patterns in the

absence of boundary flux conditions difficult. However, our results illustrate that

inhomogeneities at the boundaries predispose the GM to forming patterns concen-

trating at the boundaries in both symmetric and asymmetric configurations. We

believe the distinction between interior and boundary-layer like localized pattern

will play a key role in understanding more complicated mathematical models such

as those incorporating bulk-surface coupling (see Figure 3 in [58] for an example

of a boundary-layer type pattern in a bulk-surface model).

There are several key open problems and directions for future research. First,

our rigorous results for the shifted NLEP do not provide tight bounds for regions

of stability and instability. Specifically, in the small shift-case we have determined

that the NLEP is unstable if µ < µc(y0), and stable if µ1(y0)< µ < µ2(y0) where

we have highlighted that µc(y0) < µ1(y0). As indicated in §4.3 we conjecture

that in fact the shifted NLEP is stable for all µ > µc and in Appendix D.2 we

provide numerical support for this conjecture. Proving this conjecture is our first

open problem. In addition, to calculate the stability of asymmetric patterns for

which the shift parameters are different we could not directly use the rigorous

results established in §4.3 since the NLEP (4.30) could not be diagonalized. The

development of a rigorous stability theory for NLEP systems of this form is an

additional direction for future research.

One of the key insights from our investigation of a two-boundary spike config-

uration is that the presence of equal or one sided boundary fluxes for the activator

greatly extends the range of diffusivity values for which asymmetric patterns ex-

ist and are linearly stable. This expanded region of existence and stability paral-

lels that found when spatially inhomogeneous precursors are included in the GM
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model. However, it can be argued that introducing inhomogeneous flux conditions

provides a simpler alternative for generating asymmetric patterns. This warrants

further research into the role of inhomogeneous boundary conditions for the acti-

vator in both activator-inhibitor and activator-substrate models in one-, two-, and

three-dimensional domains.
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Chapter 5

Localized Patterns in the 3D GM
Model

In this chapter we analyze the existence, linear stability, and slow dynamics of lo-

calized N-spot patterns for the singularly perturbed dimensionless Gierer-Meinhardt

(GM) reaction-diffusion (RD) model (cf. [23])

vt = ε
2
∆v− v+

v2

u
, τut = D∆u−u+ ε

−2v2 , x ∈Ω ;

∂nv = ∂nu = 0 , x ∈ ∂Ω ,

(5.1)

where Ω ⊂ R3 is a bounded domain, ε � 1, and v and u denote the activator and

inhibitor fields, respectively. While the shadow limit in which D→ ∞ has been

extensively studied (cf. [108], [112], [105]), there have relatively few studies of

localized RD patterns in 3-D with a finite inhibitor diffusivity D (see [11], [22],

[53], [98] and some references therein). For 3-D spot patterns, the existence, sta-

bility, and slow-dynamics of multi-spot quasi-equilibrium solutions for the singu-

larly perturbed Schnakenberg RD model was analyzed using asymptotic methods

in [98]. Although our current study is heavily influenced by [98], our results for

the GM model offer some new insights into the structure of localized spot solu-

tions for RD systems in three-dimensions. In particular, one of our key findings is

the existence of two regimes, the D = O(1) and D = O(ε−1) regimes, for which

localized patterns can be constructed in the GM-model, in contrast to the single
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D = O(ε−1) regime where such patterns occur for the Schnakenberg model. Fur-

thermore, our analysis traces this distinction back to the specific far-field behaviour

of the appropriate core problem, characterizing the local behaviour of a spot, for

the GM-model. By numerically solving the core problem, we formulate a conjec-

ture regarding the far-field limiting behaviour of the solution to the core problem.

With the numerically established properties of the core problem, strong localized

perturbation theory (cf. [103]) is used to construct N-spot quasi-equilibrium solu-

tions to (5.1), to study their linear stability, and to determine their slow-dynamics.

We now give a more detailed outline of this chapter.

In the limit ε → 0, in §5.1 we construct N-spot quasi-equilibrium solutions

to (5.1). To do so, we first formulate an appropriate core problem for a localized

spot, from which we numerically compute certain key properties of its far field

behaviour. Using the method of matched asymptotic expansions, we then estab-

lish two distinguished regimes for the inhibitor diffusivity D, the D = O(1) and

D = O(ε−1) regimes, for which N-spot quasi-equilibrium solutions exist. By for-

mulating and analyzing a nonlinear algebraic system, we then demonstrate that

only symmetric patterns can be constructed in the D = O(1) regime, whereas both

symmetric and asymmetric patterns can be constructed in the D = O(ε−1) regime.

In §5.2 we study the linear stability on an O(1) time scale of the N-spot quasi-

equilibrium solutions constructed in §5.1. More specifically, we use the method of

matched asymptotic expansions to reduce a linearized eigenvalue problem to a sin-

gle globally coupled eigenvalue problem. We determine that the symmetric quasi-

equilibrium patterns analyzed in §5.1 are always linearly stable in the D = O(1)

regime but that they may undergo both oscillatory and competition instabilities in

the D = O(ε−1) regime. Furthermore, we demonstrate that the asymmetric pat-

terns studied in §5.1 for the D = O(ε−1) regime are always unstable. Our stability

predictions are then illustrated in §5.4 where the finite element software FlexPDE6

[1] is used to perform full numerical simulations of (5.1) for select parameter val-

ues.

In §5.5 we consider the weak interaction limit, defined by D = O(ε2), where

localized spots interact weakly through exponentially small terms. In this regime,

(5.1) can be reduced to a modified core problem from which we numerically cal-

culate quasi-equilibrium solutions and determine their linear stability properties.
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Unlike in the D = O(1) and D = O(ε−1) regimes, we establish that spot solutions

in the D =O(ε2) regime can undergo peanut-splitting instabilities. By performing

full numerical simulations using FlexPDE6 [1], we demonstrate that these insta-

bilities lead to a cascade of spot self-replication events in 3-D. Although spike

self-replication for the 1-D GM model have been studied previously in the weak

interaction regime D=O(ε2) (cf. [19], [46], [72]), spot self-replication for the 3-D

GM model has not previously been reported.

In §5.6 we briefly consider the generalized GM system characterized by dif-

ferent exponent sets for the nonlinear kinetics. We numerically verify that the

far-field behaviour associated with the new core problem for the generalized GM

system has the same qualitative properties as for the classical GM model (5.1) This

directly implies that many of the qualitative results derived for (5.1) in §5.1–5.3

still hold in this more general setting. Finally, in §5.7 we summarize our findings

and highlight some key open problems for future research.

5.1 Asymptotic Construction of an N-Spot
Quasi-Equilibrium Solution

In this section we asymptotically construct an N-spot quasi-equilibrium solution

where the activator is concentrated at N specified points that are well-separated in

the sense that x1, . . . ,xN ∈Ω, |xi−x j|=O(1) for i 6= j, and dist(xi,∂Ω) =O(1) for

i = 1, . . . ,N. In particular, we first outline the relevant core problem and describe

some of its properties using asymptotic and numerical calculations. Then, the

method of matched asymptotic expansions is used to derive a nonlinear algebraic

system whose solution determines the quasi-equilibrium pattern. A key feature of

this nonlinear system, in contrast to that derived in [98] for the 3-D Schnakenberg

model, is is that it supports different solutions depending on whether D = O(1)

or D = O(ε−1). More specifically, we will show that the D = O(1) regime ad-

mits only N-spot quasi-equilibrium solutions that are symmetric to leading order,

whereas the D = O(ε−1) regime admits both symmetric and asymmetric N-spot

quasi-equilibrium solutions.
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Figure 5.1: Plots of numerical solutions of the core problem (5.2): (a) µ(S)
versus S, as well as the (b) activator V and (c) inhibitor U , at a few
select values of S. The value S = S? ≈ 0.23865 corresponds to the root
of µ(S) = 0.

5.1.1 The Core Problem

A key step in the application of the method of matched asymptotic expansions to

construct localized spot patterns is the study of the core problem

∆ρV −V +U−1V 2 = 0 , ∆ρU =−V 2 , ρ > 0 , (5.2a)

∂ρV (0) = ∂ρU(0) = 0; V −→ 0 and U ∼ µ(S)+S/ρ , ρ → ∞ , (5.2b)

where ∆ρ ≡ ρ−2∂ρ

[
ρ2∂ρ

]
. For a given value of the spot strength S > 0, the system

(5.2) is solved for V =V (ρ;S), U =U(ρ;S), and µ = µ(S). Specifying the value

of S > 0 is equivalent to specifying the L2(R3) norm of V , as can be verified by

applying the divergence theorem to the second equation in (5.2a) over an infinitely

large ball, which yields the identity S =
´

∞

0 ρ2 [V (ρ)]2 dρ . Specifying the value

of the spot strength therefore yields a unique solution to (5.2) and in the context

of constructing multi-spot solutions by using the method of matched asymptotic

expansions the spot strengths completely determine the local profile of each spot.

When S� 1 we deduce from this identity that V = O(
√

S). By applying the

divergence theorem to the first equation in (5.2a) we get U = O(
√

S), while from

(5.2b) we conclude that µ = O(
√

S). It is then straightforward to compute the
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leading order asymptotics

V (ρ;S)∼
√

S
b

wc(ρ) , U(ρ;S)∼
√

S
b
, µ(S)∼

√
S
b
, for S� 1 , (5.3)

where b≡
´

∞

0 ρ2 [wc(ρ)]
2 dρ ≈ 10.423 and wc > 0 is the unique nontrivial solution

to

∆ρwc−wc+w2
c = 0 , ρ > 0; ∂ρwc(0) = 0 , wc→ 0 as ρ→∞ . (5.4)

We remark that (5.4) has been well studied, with existence being proved using a

constrained variational method, while its symmetry and decay properties are es-

tablished by a maximum principle (see for example Appendix 13.2 of [112]). The

limit case S� 1 is related to the shadow limit obtained by taking D→∞, for which

numerous rigorous and asymptotic results have previously been obtained (cf. [108],

[112], [105]).

Although the existence of solutions to (5.2) have not been rigorously estab-

lished, we can use the small S asymptotics given in (5.3) as an initial guess to

numerically path-follow solutions to (5.2) as S is increased. The results of our nu-

merical computations are shown in Figure 5.1 where we have plotted µ(S), V (ρ;S),

and U(ρ;S) for select values of S > 0. A key feature of the plot of µ(S) is that it

has a zero crossing at S = 0 and S = S? ≈ 0.23865, while it attains a unique max-

imum on the interval 0 ≤ S ≤ S? at S = Scrit ≈ 0.04993. Moreover, our numerical

calculations indicate that µ ′′(S)< 0 on 0 < S≤ S?. The majority of our subsequent

analysis hinges on these numerically determined properties of µ(S). We leave the

task of rigorously proving the existence of solutions to (5.2) and establishing the

numerically verified properties of µ(S) as an open problem, which we summarize

in the following conjecture:

Conjecture 5.1.1. There exists a unique value of S? > 0 such that (5.2) admits

a ground state solution with the properties that V,U > 0 in ρ > 0 and for which

µ(S?) = 0. Moreover, µ(S) satisfies µ(S)> 0 and µ ′′(S)< 0 for all 0 < S < S?.
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5.1.2 Derivation of the Nonlinear Algebraic System (NAS)

We now proceed with the method of matched asymptotic expansions to construct

quasi-equilibrium solutions to (5.1). First we seek an inner solution by introducing

local coordinates y = ε−1(x− xi) near the ith spot and letting v ∼ DVi(y) and u ∼
DUi(y) so that the local steady-state problem for (5.1) becomes

∆yVi−Vi +U−1
i V 2

i = 0 , ∆yUi− ε
2D−1Ui +V 2

i = 0 , y ∈ R3 . (5.5)

In terms of the solution to the core problem (5.2) we determine that

Vi ∼V (ρ,Siε)+O(D−1
ε

2) , Ui ∼U(ρ,Siε)+O(D−1
ε

2), (5.6)

where ρ ≡ |y| = ε−1|x− xi| and Siε is an unknown constant that depends weakly

on ε . We remark that the derivation of the next order term requires that x1, . . . ,xN

be allowed to vary on a slow time scale. This higher order analysis is done in §5.3

where we derive a system of ODE’s for the spot locations.

To determine S1ε , . . . ,SNε we now derive a nonlinear algebraic system (NAS)

by matching inner and outer solutions for the inhibitor field. As a first step, we

calculate in the sense of distributions that ε−3v2 −→ 4πD2
∑

N
j=1 S jε δ (x− x j) +

O(ε2) as ε → 0+. Therefore, in the outer region the inhibitor satisfies

∆u−D−1u =−4πεD
N

∑
j=1

S jεδ (x− x j)+O(ε3) , x ∈Ω ;

∂nu = 0 , x ∈ ∂Ω .

(5.7)

To solve (5.7), we let G(x;ξ ) denote the reduced-wave Green’s function satisfying

∆G−D−1G =−δ (x−ξ ) , x ∈Ω ; ∂nG = 0 , x ∈ ∂Ω ,

G(x;ξ )∼ 1
4π|x−ξ |

+R(ξ )+∇xR(x;ξ ) · (x−ξ ) , as x→ ξ ,
(5.8)

where R(ξ ) is the regular part of G. The solution to (5.7) can be written as

u∼ 4πεD
N

∑
j=1

S jεG(x;x j)+O(ε3) . (5.9)
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Before we begin matching inner and outer expansions to determine S1ε , . . . ,SNε

we first motivate two distinguished limits for the relative size of D with respect to

ε . To do so, we note that when D� 1 the Green’s function satisfying (5.8) has the

regular asymptotic expansion

G(x,ξ )∼ D|Ω|−1 +G0(x,ξ )+O(D−1) , (5.10)

where G0(x,ξ ) is the Neumann Green’s function satisfying

∆G0 =
1
|Ω|
−δ (x−ξ ) , x ∈Ω ; ∂nG0 = 0 , x ∈ ∂Ω ; (5.11a)

ˆ
Ω

G0 dx = 0 , (5.11b)

with asymptotics

G0(x,ξ )∼
1

4π|x−ξ |
+R0(ξ )+∇xR0(x;ξ ) · (x−ξ ) , as x→ ξ , (5.11c)

and where R0(ξ ) is the regular part of G0. In summary, for the two ranges of D we
have

G(x,ξ )∼ 1
4π|x−ξ |

+

R(ξ )+o(1) , D = O(1) ,

D|Ω|−1 +R0(ξ )+o(1) , D� 1 ,
as |x−ξ | → 0 , (5.12)

where R(ξ ) is the regular part of G(x,ξ ). By matching the ρ → ∞ behaviour of
Ui(ρ) given by (5.6) with the behaviour of u given by (5.9) as |x− xi| → 0, we
obtain in the two regimes of D that

µ(Siε) = 4πε

Siε R(xi)+∑ j 6=i S jε G(xi,x j) , D = O(1) ,

Siε R0(xi)+∑ j 6=i S jε G0(xi,x j)+D|Ω|−1
∑

N
j=1 S jε , D� 1 .

(5.13)

From the D � 1 case we see that D = O(ε−1) is a distinguished regime for
which the right-hand side has an O(1) contribution. Defining the vectors SSSε ≡
(S1ε , . . . ,SNε)

T , µ(SSSε)≡ (µ(S1ε), . . . ,µ(SNε))
T , and eee≡ (1, . . . ,1)T , as well as the
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matrices EN , G , and G0 by

EN ≡
1
N

eeeeeeT , (G )i j =

R(xi) , i = j

G(xi,x j) , i 6= j
, (G0)i j =

R0(xi) , i = j

G0(xi,x j) , i 6= j
, (5.14)

we obtain from (5.13) that the unknowns S1ε , . . . ,SNε must satisfy the NAS

µ(SSSε) = 4πεGSSSε , (5.15a)

for D = O(1) and

µ(SSSε) = κENSSSε +4πεG0SSSε , κ ≡ 4πND0

|Ω|
, (5.15b)

for D = ε−1D0.

5.1.3 Symmetric and Asymmetric N-Spot Quasi-Equilibrium

We now determine solutions to the NAS (5.15) in both the D = O(1) and the D =

O(ε−1) regimes. In particular, we show that it is possible to construct symmetric

N-spot solutions to (5.1) by finding a solution to the NAS (5.15) with SSSε = Scεeee

in both the D = O(1) and D = O(ε−1) regimes. Moreover, when D = O(ε−1) we

will show that it is possible to construct asymmetric quasi-equilibrium solutions to

(5.1) characterized by spots each having one of two strengths.

When D = O(1) the NAS (5.15a) implies that to leading order µ(Siε) = 0 for

all i = 1, . . . ,N. From the properties of µ(S) outlined in §5.1.1 and in particu-

lar the plot of µ(S) in Figure 5.1a, we deduce that Siε ∼ S? for all i = 1, . . . ,N.

Thus, to leading order, N-spot quasi-equilibrium solutions in the D = O(1) regime

have spots with a common height, which we refer to as a symmetric pattern. By

calculating the next order term using (5.15a) we readily obtain the two term result

SSSε ∼ S?eee+
4πεS?
µ ′(S?)

Geee . (5.16)

We conclude that the configuration x1, . . . ,xN of spots only affects the spot strengths

at O(ε) through the Green’s matrix G . Note that if eee is an eigenvector of G with

eigenvalue g0 then the solution to (5.15a) is SSSiε = Scεeee where Scε satisfies the scalar
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equation µ(Scε) = 4πεg0Scε .

Next, we consider solutions to the NAS (5.15b) in the D = ε−1D0 regime.

Seeking a solution SSSε ∼ SSS0 + εSSS1 + · · · we obtain the leading order problem

µ(SSS0) = κENSSS0. (5.17)

Note that the concavity of µ(S) (see Figure 5.1a) implies the existence of two

values 0< Sl < Sr < S? such that µ(Sl) = µ(Sr). Thus, in addition to the symmetric

solutions already encountered in the D =O(1) regime, we also have the possibility

of asymmetric solutions, where the spots can have two different heights. We first

consider symmetric solutions, where to leading order SSS0 = Sceee in which Sc satisfies

µ(Sc) = κSc . (5.18)

The plot of µ(S) in Figure 5.1a, together with the S � 1 asymptotics given in

(5.3), imply that a solution to (5.18) can be found in the interval 0 < Sc ≤ S? for all

κ > 0. In Figure 5.3a we illustrate graphically that the common spot strength Sc is

obtained by the intersection of µ(S) with the line κS. We refer to Figure 5.4 for

plots of the symmetric solution strengths as a function of κ . In addition, we readily

calculate that

Sc ∼ S?

(
1+

κ

µ ′(S?)

)
+O(κ2) , for κ � 1 ,

Sc ∼
1

bκ2 +O(κ−3) , for κ � 1 ,
(5.19)

which provides a connection between the D = O(1) and D→ ∞ (shadow limit)

regimes, respectively. From (5.15b), the next order correction SSS1 satisfies µ ′(Sc)SSS1−
κENSSS1 = 4πScG0eee. Upon left-multiplying this expression by eeeT we can determine

eeeTSSS1. Then, by recalling the definition of EN ≡ N−1eeeeeeT we can calculate SSS1. Sum-

marizing, a two term asymptotic expansion for the symmetric solution to (5.15b)

is

SSSε ∼ Sceee+
4πε

µ ′(Sc)

(
ScIN +

µ(Sc)

µ ′(Sc)−κ
EN

)
G0eee , (5.20)

provided that µ ′(Sc) 6= 0 (i.e. Sc 6= Scrit). Note that µ ′(Sc)−κ = 0 is impossible
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Figure 5.2: Plots of (a) Sl(Sr) and (b) S′l(Sr) for the construction of asymmet-
ric N-spot patterns. (c) Plots of f (S,θ) for select values of θ ≡ n/N.
For 0 < θ < 0.5 the function f (S,θ) attains an interior minimum in
Scrit < S < S?.

by the following simple argument. First, for this equality to hold we require that

0 < S < Scrit since otherwise µ ′(Sc) < 0. Moreover, we can solve (5.18) for κ to

get µ ′(Sc)− κ = S−1
c g(Sc) where g(S) ≡ Sµ ′(S)− µ(S). However, we calculate

g′(S) = Sµ ′′(S) < 0 and moreover, using the small S asymptotics found in (5.3)

we determine that g(S) ∼ −
√

S/(4b) < 0 as S→ 0+. Therefore, g(Sc) < 0 for

all 0 < Sc < Scrit so that µ ′(Sc) < κ holds. Finally, as for the D = O(1) case, if

G0eee = g00eee then the common source values extends to higher order and we have

SSSε = Scεeee where Scε is the unique solution to the scalar problem

µ(Scε) = (κ +4πεg00)Scε . (5.21)

Next, we construct of asymmetric N-spot configurations. The plot of µ(S) in-

dicates that for any value of Sr ∈ (Scrit,S?] there exists a unique value Sl = Sl(Sr) ∈
[0,Scrit) satisfying µ(Sl) = µ(Sr). A plot of Sl(Sr) is shown in Figure 5.2a. Clearly

Sl(Scrit) = Scrit and Sl(S?) = 0. We suppose that to leading order the N-spot config-

uration has n large spots of strength Sr and N−n small spots of strengths Sl . More

specifically, we seek a solution of the form

SSSε ∼ (Sr, . . . ,Sr,Sl(Sr), . . . ,Sl(Sr))
T , (5.22)
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so that (5.17) reduces to the single scalar nonlinear equation

µ(Sr) = κ f (Sr;n/N) , f (S;θ)≡ θS+(1−θ)Sl(S) , (5.23)

for Scrit < Sr < S?. Since µ(Scrit)−κ f (Scrit;n/N) = µ(Scrit)−κScrit and µ(S?)−
κ f (S?;n/N) = −κnS?/N < 0, we obtain by the intermediate value theorem that

there exists at least one solution to (5.23) for any 0 < n≤ N when

0 < κ < κc1 ≡ µ(Scrit)/Scrit ≈ 0.64619 .

Next, we calculate

f ′(S;θ) = (1−θ)

(
θ

1−θ
+S′l(S)

)
,

where S′l(S) is computed numerically (see Figure 5.2b). We observe that −1 ≤
S′l(Sr) ≤ 0 with S′l(Scrit) = −1 and S′l(S?) = 0. In particular, f (S;n/N) is mono-

tone increasing if θ/(1−θ) = n/(N−n)> 1, while it attains a local minimum in

(Scrit,S?) if n/(N−n)< 1. A plot of f (S;θ) is shown in Figure 5.2c. In either case,

we deduce that the solution to (5.23) when 0 < κ < κc1 is unique (see Figure 5.3a).

On the other hand, when n/(N−n)< 1 we anticipate an additional range of values

κc1 < κ < κc2 for which (5.23) has two distinct solutions Scrit < S̃r < Sr < S?. In-

deed, this threshold can be found by demanding that µ(S) and κ f (S;n/N) intersect

tangentially. In this way, we find that the threshold κc2 can be written as

κc2 = κc2(n/N)≡ µ(S?r )
f (S?r ;n/N)

, (5.24a)

where S?r is the unique solution to

f (S?r ;n/N)µ ′(S?r ) = f ′(S?r ;n/N)µ(S?r ) . (5.24b)

In Figure 5.3c we plot κc2−κc1 as a functions of n/N where we observe that

κc2 > κc1 with κc2−κc1→ 0+ and κc2−κc1→ ∞ as n/N→ 0.5− and n/N→ 0+

respectively. Furthermore, in Figure 5.3b we graphically illustrate how multiple

solutions to (5.23) arise as θ = n/N and κ are varied. We remark that the condi-

158



0.00 0.05 0.10 0.15 0.20 0.25
S

0.00

0.01

0.02

0.03

0.04
(S) and S

(S)
S

(a)

0.05 0.10 0.15 0.20
S

0.00

0.01

0.02

0.03

0.04

0.05
(S) and f(S; )

(S)
0.75 f(S,0.2)
0.75 f(S,0.6)
0.2 f(S,0.2)
0.2 f(S,0.6)

(b)

0.0 0.1 0.2 0.3 0.4 0.5
n/N

0.0

0.5

1.0

1.5

2.0
c2(n/N) c1

(c)

Figure 5.3: (a) Illustration of solutions to (5.18) as the intersection between
µ(S) and κS. There is a unique solution if κ < κc1 ≡ µ(Scrit)/Scrit. (b)
Illustration of solutions to (5.23) as the intersection between µ(S) and
κ f (S,θ) where θ = n/N denotes the fraction of large spots in an asym-
metric pattern. Note that when θ = 0.2 < 0.5 and κ > κc1 ≈ 0.64619
there exist two solutions. (c) Plot of κc2−κc1 versus n/N. Observe that
κc2−κc1 increases as the fraction of large spots decreases.

tion n/(N− n) < 1 implies that n < N/2, so that there are more small than large

spots. The appearance of two distinct asymmetric patterns in this regime has a

direct analogy to results obtained for the 1-D and 2-D GM model in [104] and

[109], respectively. The resulting bifurcation diagrams are shown in Figure 5.4 for

n/N = 0.2,0.4,0.6. We summarize our results for quasi-equilibrium solutions in

the following proposition.

Proposition 5.1.1. (Quasi-Equilibrium Solutions): Let ε → 0 and x1, . . . ,xN ∈
Ω be well-separated. Then, the 3-D GM model (5.1) admits an N-spot quasi-

equilibrium solution with inner asymptotics

v∼ DVi(ε
−1|x− xi|) , u∼ DUi(ε

−1|x− xi|) , (5.25)

as x→ xi for each i = 1, . . . ,N where Vi and Ui are given by (5.6). When |x− xi|=
O(1), the activator is exponentially small while the inhibitor is given by (5.9). The

spot strengths Siε for i = 1, . . . ,N completely determine the asymptotic solution

and there are two distinguished limits. When D = O(1) the spot strengths satisfy
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Figure 5.4: Bifurcation diagram illustrating the dependence on κ of the com-
mon spot strength Sc as well as the asymmetric spot strengths Sr and
Sl or S̃r and S̃l . In (a) and (b) we have n/N < 0.5 so that there are
more small spots than large spots in an asymmetric pattern. As a re-
sult, we observe that there can be two types of asymmetric patterns with
strengths Sr and Sl or S̃r and S̃l . In (c) the number of large spots exceeds
that of small spots and only one type of asymmetric pattern is possible.

the NAS (5.15a), which has the leading order asymptotics (5.16). In particular,

Siε ∼ S? so all N-spot patterns are symmetric to leading order. When D = ε−1D0

the spot strengths satisfy the NAS (5.15b). A symmetric solution with asymptotics

(5.20) where Sc satisfies (5.18) always exists. Moreover, if

0 <
4πND0

|Ω|
< κc1 ≈ 0.64619 ,

then an asymmetric pattern with n large spots of strength Sr ∈ (Scrit,S?) and N−n

small spots of strength Sl ∈ (0,Scrit) can be found by solving (5.23) for Sr and

calculating Sl from µ(Sl) = µ(Sr). If, in addition we have n/(N − n) < 1, then

(5.23) admits two solutions on the range

0.64619≈ κc1 <
4πND0

|Ω|
< κc2(n/N) ,

where κc2(n/N) is found by solving the system (5.24).

As we have already remarked, in the D = D0/ε regime, if D0 � 1 then the
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symmetric N-spot solution (5.20) coincides with the symmetric solution for the

D =O(1) regime given by (5.16). The asymmetric solutions predicted for the D =

D0/ε regime persist as D0 decreases and it is, therefore, natural to ask what these

solutions correspond to in the D = O(1) regime. From the small S asymptotics

(5.3) we note that the NAS (5.15a) does admit an asymmetric solution, albeit one

in which the spot strengths of the small spots are of O(ε2). Specifically, for a given

integer n in 1 < n≤ N we can construct a solution where

SSSε ∼ (S?, . . . ,S?,ε2Sn+1,0, . . . ,ε
2SN,0)

T . (5.26)

By using the small S asymptotic expansion for µ(S) given in (5.3), we obtain from

(5.15a) that

Si,0 = b

(
4πS?

n

∑
j=1

G(xi,x j)

)2

, i = n+1, . . . ,N . (5.27)

We observe that in order to support N− n spots of strength O(ε2), we require at

least one spot of strength O(1). Setting D = D0/ε , we use the large D asymptotics

for G(x,ξ ) in (5.10) to reduce (5.27) to

Si,0 ∼ bε
−2
(

4πD0nS?
|Ω|

)2

, i = n+1, . . . ,N . (5.28)

Alternatively, by taking κ � 1 in the NAS (5.15b) for the D = D0/ε regime, we

conclude that Sr ∼ S? and Sl ∼ b(κnS?/N)2. Since κn/N = 4πD0n/|Ω|, as ob-

tained from (5.15b), we confirm that the asymmetric patterns in the D = D0/ε

regime lead to an asymmetric pattern consisting of spots of strength O(1) and

O(ε2) in the D = O(1) regime.

5.2 Linear Stability
Let (vqe,uqe) be an N-spot quasi-equilibrium solution as constructed in §5.1. We

will analyze instabilities for quasi-equilibrium solutions that occur on O(1) time-
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scales. To do so, we substitute

v = vqe + eλ t
φ , u = uqe + eλ t

ψ , (5.29)

into (5.1) and, upon linearizing, we obtain the eigenvalue problem

ε
2
∆φ −φ +

2vqe

uqe
φ −

v2
qe

u2
qe

ψ = λφ ,

D∆ψ−ψ +2ε
−2vqeφ = τλψ ,

(5.30)

where ∂nφ = ∂nψ = 0 on ∂Ω. In the inner region near the jth spot, we introduce

a local expansion in terms of the associated Legendre polynomials Pm
l (cosθ) of

degree l = 0,2,3, . . . , and order m = 0,1, . . . , l

φ ∼ c jDPm
l (cosθ)eimϕ

Φ j(ρ) , ψ ∼ c jDPm
l (cosθ)eimϕ

Ψ j(ρ) , (5.31)

where ρ = ε−1|x− x j|, and (θ ,ϕ) ∈ (0,π)× [0,2π). Suppressing subscripts for

the moment, and assuming that ε2τλ/D� 1, we obtain the leading order inner

problem

∆ρΦ− l(l +1)
ρ2 Φ−Φ+

2V
U

Φ− V 2

U2 Ψ = λΦ , ρ > 0 ,

∆ρΨ− l(l +1)
ρ2 Ψ+2V Φ = 0 , ρ > 0 ,

(5.32a)

with the boundary conditions Φ′(0) = Ψ′(0) = 0, and Φ→ 0 as ρ → ∞. Here

(V,U) satisfy the core problem (5.2). The behaviour of Ψ as ρ → ∞ depends on

the parameter l. More specifically, we have that

Ψ∼

B(λ ,S)+ρ−1 , for l = 0 ,

ρ−(1/2+γl) , for l > 0 ,
as ρ → ∞ , (5.32b)

where γl ≡
√

1
4 + l(l +1) and B(λ ,S) is a constant. Here we have normalized Ψ

by fixing to unity the multiplicative factor in the decay rate in (5.32b). Next, we
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introduce the Green’s function Gl(ρ, ρ̃) solving

∆ρGl−
l(l +1)

ρ2 Gl =−ρ
−2

δ (ρ− ρ̃) , ρ, ρ̃ > 0 , (5.33a)

and explicitly given by

Gl(ρ, ρ̃) =
1

2γl
√

ρρ̃

(ρ/ρ̃)γl , 0 < ρ < ρ̃ ,

(ρ̃/ρ)γl , ρ > ρ̃ ,
(5.33b)

when l > 0. For l = 0 the same expression applies, but an arbitrary constant may

be added. For convenience we fix this constant to be zero. In terms of this Green’s

function we can solve for Ψ explicitly in (5.32a) as

Ψ = 2
ˆ

∞

0
Gl(ρ, ρ̃)V (ρ̃)Φ(ρ̃)ρ̃2 dρ̃ +

B(λ ,S) , for l = 0 ,

0 , for l > 0 .
(5.34)

Upon substituting this expression into (5.32a) we obtain the nonlocal spectral prob-

lems

M0Φ= λΦ+B(λ ,S)
V 2

U2 , for l = 0; MlΦ= λΦ , for l > 0 . (5.35a)

Here the integro-differential operator Ml is defined for every l ≥ 0 by

MlΦ≡ ∆ρ Φ− l(l +1)
ρ2 Φ−Φ+

2V
U

Φ− 2V 2

U2

ˆ
∞

0
Gl(ρ, ρ̃)V (ρ̃)Φ(ρ̃)ρ̃2 dρ̃ . (5.35b)

A key difference between the l = 0 and l > 0 linear stability problems is the

appearance of an unknown constant B(λ ,S) in the l = 0 equation. This unknown

constant is determined by matching the far-field behaviour of the inner inhibitor

expansion with the outer solution. In this sense, we expect that B(λ ,S) will encap-

sulate global contributions from all spots, so that instabilities for the mode l = 0

are due to the interactions between spots. In contrast, the absence of an unknown

constant for instabilities for the l > 0 modes indicates that these instabilities are

localized, and that the weak effect of any interactions between spots occurs only
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through higher order terms. In this way, instabilities for modes with l > 0 are de-

termined solely by the spectrum of the operator Ml . In Figure 5.5a we plot the

numerically-computed dominant eigenvalue of Ml for l = 0,2,3 as well as the sub

dominant eigenvalue for l = 0 for 0 < S < S?. This spectrum is calculated from

the discretization of Ml obtained by truncating the infinite domain to 0 < ρ < L,

with L� 1, and using a finite difference approximation for spatial derivatives com-

bined with a trapezoidal rule discretization of the integral terms. The l = 1 mode

always admits a zero eigenvalue, as this simply reflects the translation invariance

of the inner problem. Indeed, these instabilities will be briefly considered in §5.3

where we consider the slow dynamics of quasi-equilibrium spot patterns. From

Figure 5.5a we observe that the dominant eigenvalues of Ml for l = 2,3 satisfy

Re(λ ) < 0 (numerically we observe the same for larger values of l). Therefore,

since the modes l > 1 are always linearly stable, for the 3-D GM model there will

be no peanut-splitting or spot self-replication instabilities such as observed for the

3-D Schnakenberg model in [98]. In the next subsection we will focus on analyzing

instabilities associated with l = 0 mode, which involves a global coupling between

localized spots.

5.2.1 Competition and Synchronous Instabilities for the l = 0 Mode

From (5.35a) we observe that λ is in the spectrum of M0 if and only if B(λ ,S) = 0.

Assuming that B(λ ,S) 6= 0 we can then solve for Φ in (5.35a) as

Φ = B(λ ,S)(M0−λ )−1(V 2/U2) . (5.36)

Upon substituting (5.36) into the expression (5.34) for Ψ when l = 0, we let ρ→∞

and use G0(ρ, ρ̃)∼ 1/ρ as ρ→ ∞, as obtained from (5.33), to deduce the far-field

behaviour

Ψ∼ B+
2B
ρ

ˆ
∞

0
V (M0−λ )−1(V 2/U2)ρ2d ρ , as ρ → ∞ . (5.37)
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Figure 5.5: (a) Spectrum of the operator Ml defined in (5.35b). The dashed
blue line indicates the eigenvalue with second largest real part for l = 0.
Notice that the dominant eigenvalue of M0 is zero when S = Scrit ≈
0.04993, corresponding to the maximum of µ(S) (see Figure 5.1a). (b)
Plot of B(λ ,S). The dashed line black indicates the largest positive
eigenvalue of M0(S) and also corresponds to the contour B(λ ,S) = 0.
We observe that B(λ ,S) is both continuous and negative for S > Scrit ≈
0.04993.

We compare this expression with the normalized decay condition on Ψ in (5.32b)

for l = 0 to conclude that

B(λ ,S) =
1

2
´

∞

0 V (M0−λ )−1(V 2/U2)ρ2 dρ
. (5.38)

We now solve the outer problem and through a matching condition derive an

algebraic equation for the eigenvalue λ . Since the interaction of spots will be

important for analyzing instabilities for the l = 0 mode, we re-introduce the sub-

script j to label the spot. First, since ∂ρΨ j ∼ −ρ−2 as ρ → ∞, as obtained from

(5.32b) for l = 0, an application of the divergence theorem to ∆ρΨ j = −2VjΦ j

yields that
´

∞

0 VjΦ jρ
2 dρ = 1/2. Next, by using vqe ∼ DVj(ρ) and φ ∼ c jDΦ j(ρ)

for |x− x j| = O(ε) as obtained from (5.25) and (5.31), respectively, we calculate

in the sense of distributions for ε → 0 that

2ε
−2vqeφ → 8πεD2

N

∑
j=1

c j

(ˆ
∞

0
VjΦ jρ

2 dρ

)
δ (x− x j) = 4πεD2

N

∑
j=1

c jδ (x− x j) .
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Therefore, by using this distributional limit in the equation for ψ in (5.30), the
outer problem for ψ is

∆ψ− (1+ τλ )

D
ψ =−4πεD

N

∑
j=1

c jδ (x− x j) , x ∈Ω ; ∂nψ = 0 , x ∈ ∂Ω . (5.39)

The solution to (5.39) is represented as

ψ = 4πεD
N

∑
j=1

c jGλ (x,x j) , (5.40)

where Gλ (x,ξ ) is the eigenvalue-dependent Green’s function satisfying

∆Gλ − (1+ τλ )

D
Gλ =−δ (x−ξ ) , x ∈Ω ; ∂nGλ = 0 , x ∈ ∂Ω ,

Gλ (x,ξ )∼ 1
4π|x−ξ |

+Rλ (ξ )+o(1) , as x→ ξ .
(5.41)

By matching the limit as x→ xi of ψ in (5.40) with the far-field behaviour ψ ∼
DciB(λ ,Si) of the inner solution, as obtained from (5.37) and (5.31), we obtain the

matching condition

B(λ ,Si)ci = 4πε

(
ciRλ (xi)+

N

∑
j 6=i

c jGλ (xi,x j)

)
. (5.42)

As similar to the construction of quasi-equilibrium solutions in §5.1, there are two

distinguished limits D = O(1) and D = D0/ε to consider. The stability properties

are shown to be significantly different in these two regimes.

In the D=O(1) regime, we recall that Si∼ S? for i= 1, . . . ,N where µ(S?)= 0.

From (5.42), we conclude to leading order that B(λ ,S?) = 0, so that λ must be

an eigenvalue of M0 when S = S?. However, from Figure 5.5a we find that all

eigenvalues of M0 when S = S? satisfy Re(λ )< 0. As such, from our leading order

calculation we conclude that N-spot quasi-equilibrium solutions in the D = O(1)

regime are all linearly stable.

For the remainder of this section we focus exclusively on the D=D0/ε regime.

Assuming that ε|1+τλ |/D0� 1 we calculate Gλ (x,ξ )∼ ε−1D0/ [(1+ τλ )|Ω|]+
G0(x,ξ ), where G0 is the Neumann Green’s function satisfying (5.11). We substi-
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tute this limiting behaviour into (5.42) and, after rewriting the the resulting homo-

geneous linear system for ccc≡ (c1, . . . ,cN)
T in matrix form, we obtain

Bccc =
κ

1+ τλ
ENccc+4πεG0ccc , (5.43a)

where

B ≡ diag(B(λ ,S1), . . . ,B(λ ,SN)) , EN ≡ N−1eeeeeeT . (5.43b)

Here G0 is the Neumann Green’s matrix and κ ≡ 4πND0/|Ω| (see (5.15b)). Next,

we separate the proceeding analysis into the two cases: symmetric quasi-equilibrium

patterns and asymmetric quasi-equilibrium solutions.

Stability of Symmetric Patterns in the D = D0/ε Regime

We suppose that the quasi-equilibrium solution is symmetric so that to leading

order S1 = . . . = SN = Sc where Sc is found by solving the nonlinear algebraic

equation (5.18). Then, from (5.43), the leading order stability problem is

B(λ ,Sc)ccc =
κ

1+ τλ
ENccc . (5.44)

We first consider competition instabilities for N ≥ 2 characterized by cccTeee = 0

so that ENccc = 0. Since B(λ ,Sc) = 0 from (5.44), it follows that λ must be an

eigenvalue of M0, defined in (5.35b), at S = Sc. From Figure 5.5a we deduce

that the pattern is unstable for S below some threshold where the dominant eigen-

value of M0 equals zero. In fact, this threshold is easily determined to correspond

to Sc = Scrit, where µ ′(Scrit) = 0, since by differentiating the core problem (5.2)

with respect to S and comparing the resulting system with (5.32) when l = 0, we

conclude that B(0,Sc) = µ ′(Sc). The dotted curve in Figure 5.5b shows that the

zero level curve B(λ ,Sc) = 0 is such that λ > 0 for Sc < Scrit. As such, we con-

clude from (5.18) that symmetric N-spot quasi-equilibrium solutions are unstable

to competition instabilities when κ > κc1 ≡ µ(Scrit)/Scrit.

For special spot configurations {x1, . . . ,xN} where eee is an eigenvector of G0 we

can easily calculate a higher order correction to this instability threshold. Since G0

is symmetric, there are N−1 mutually orthogonal eigenvectors qqq2, . . . ,qqqN such that

G0qqqk = gkqqqk with qqqT
k eee = 0. Setting ccc =qqqk in (5.43), and using B(0,S)∼ εµ ′′(Scrit)δ
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for S = Scrit + εδ , we can determine the perturbed stability threshold where λ = 0

associated with each eigenvector qqqk. By taking the minimum of such values, and

by recalling the refined approximation (5.21), we obtain that N-spot symmetric

quasi-equilibrium solutions are all unstable on the range

Scε < Scrit +
4πε

µ ′′(Scrit)
min

k=2,...,N
gk . (5.45)

Next we consider the case ccc = eee for which we find from (5.43) that, to leading

order, λ satisfies

B(λ ,Sc)−
κ

1+ τλ
= 0 . (5.46)

First, we note that λ = 0 is not a solution of (5.46) since, by using B(0,S) = µ ′(S),

this would require that µ ′(Sc) = κ , which the short argument following (5.20)

demonstrates is impossible. Therefore, the ccc = eee mode does not admit a zero-

eigenvalue crossing and any instability that arises must occur through a Hopf bi-

furcation. We will seek a leading order threshold τ = τh(κ) beyond which a Hopf

bifurcation is triggered. To motivate the existence of such a threshold we consider

first the κ→∞ limit for which the asymptotics (5.19) implies that Sc = 1/(bκ2)�
1 so that from the small S expansion (5.3) of the core solution we calculate from

(5.35b) that M0Φ ∼ ∆ρΦ−Φ+ 2wcΦ+O(κ−1). Then, by substituting this ex-

pression, together with the small S asymptotics (5.3) where Sc ∼ 1/bκ2� 1, into

(5.38) we can determine B(λ ,Sc) when κ � 1. Then, by using the resulting ex-

pression for B in (5.46), we obtain the following well-known nonlocal eigenvalue

problem (NLEP) corresponding to the shadow limit κ = 4πND0/|Ω| → ∞:

1+ τλ −
2
´

∞

0 wc(∆ρ −1+2wc−λ )−1w2
cρ2 dρ´

∞

0 w2
cρ2 dρ

= 0 . (5.47)

From Table 1 in [105], this NLEP has a Hopf bifurcation at τ = τ∞
h ≈ 0.373 with

corresponding critical eigenvalue λ = iλ ∞
h with λ ∞

h ≈ 2.174. To determine τh(κ)

for κ = O(1), we set λ = iλh in (5.46) and separate the resulting expression into

real and imaginary parts to obtain

τh =−
Im(B(iλh,Sc))

λhRe(B(iλh,Sc))
,

|B(iλh,Sc)|2

Re(B(iλh,Sc))
−κ = 0 , (5.48)
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where Sc depends on κ from (5.18). Starting with κ = 50 we solve the second

equation for λh using Newton’s method with λh = λ ∞
h as an initial guess. We then

use the first equation to calculate τh. Decreasing κ and using the previous solution

as an initial guess we obtain the curves τh(κ) and λh(κ) as shown in Figure 5.6.

We conclude this section by noting that as seen in Figures 5.6a and 5.6c the

leading order Hopf bifurcation threshold diverges as κ→ κ
+
c1, where κc1 = µ(Scrit)/Scrit.

This is a direct consequence of the assumption that ε|1+ τλ |/D0� 1 which fails

to hold as τ gets increasingly large. Indeed, by using the series expansion in (3.12)–

(3.14) of [89] for the reduced wave Green’s function in the sphere, we can solve

(5.42) directly using Newton’s method for an N = 1 spot configuration centred at

the origin of the unit ball. Fixing ε = 0.001, this yields the higher order asymptotic

approximation for the Hopf bifurcation threshold indicated by the dashed lines in

Figure 5.6. This shows that to higher order the bifurcation threshold is large but

finite in the region κ ≤ κc1. Moreover, it hints at an ε dependent rescaling of τ

in the region κ ≤ κc1 for which a counterpart to (5.44) may be derived. While we

do not undertake this rescaling in this chapter we remark that for 2-D spot patterns

this rescaling led to the discovery in [99] of an anomalous scaling law for the Hopf

bifurcation threshold.

Stability of Asymmetric Patterns in the D = D0/ε Regime

When the N-spot pattern consists of n large spots of strength S1 = . . . = Sn = Sr

and N− n small spots of strength Sn+1 = . . . = SN = Sl , the leading order linear

stability is characterized by the blocked matrix system(
B(λ ,Sr)In 0

0 B(λ ,Sl)IN−n

)
ccc =

κ

1+ τλ
ENccc , (5.49)

where Im denotes the m×m identity matrix. In particular, an asymmetric quasi-

equilibrium solution is linearly unstable if this system admits any nontrivial modes,

ccc, for which λ has a positive real part. We will show that asymmetric patterns are

always unstable by explicitly constructing unstable modes.
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Figure 5.6: Leading order (a) Hopf bifurcation threshold τh(κ) and (b) crit-
ical eigenvalue λ = iλh for a symmetric N-spot pattern as calculated
by solving (5.48) numerically. The leading order theory assumes
ε|1+ τλ |/D0 � 1 and is independent of the spot locations. We cal-
culate the higher order Hopf bifurcation threshold for an N = 1 spot
pattern centred at the origin of the unit ball with ε = 0.01 by solving
(5.42) directly (note κ = 3D0). In (c) we see that although the leading
order Hopf bifurcation threshold diverges as κ → κc1, going to higher
order demonstrates that a large but finite threshold persists.

First, we assume that 1≤ n < N−1 and we choose ccc to be a mode satisfying

c1 = · · ·= cn = 0 , cn+1 + · · ·+ cN = 0 . (5.50)

Note that this mode describes competition among the N−n small spots of strength

Sl . For such a mode, (5.49) reduces to the single equation B(λ ,Sl) = 0, which

implies that λ must be an eigenvalue of M0 at S = Sl . However, since Sl < Scrit,

we deduce from Figure 5.5a that there exists a real and positive λ for M0 at S = Sl .

As such, any mode ccc satisfying (5.50) is linearly unstable.

We must consider the n = N−1 case separately since (5.50) fails to yield non-

trivial modes. Instead of considering competition between the small spots, we

instead consider competition between large and small spots collectively. We as-

sume that n ≥ N− n, for which n = N− 1 is a special case, and we try to exhibit

an unstable mode ccc of the form

c1 = . . .= cn = cr , cn+1 = . . .= cN = cl . (5.51)
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Then, (5.49) reduces to the system of two equations

(
B(λ ,Sr)− κ

1+τλ

n
N

)
cr− κ

1+τλ

(N−n)
N cl = 0 ,

− κ

1+τλ

n
N cr +

(
B(λ ,Sl)− κ

1+τλ

(N−n)
N

)
cl = 0 ,

which admits a nontrivial solution if and only if the determinant of this 2×2 system

vanishes. Therefore, to show that this mode is unstable it suffices to prove that the

zero-determinant condition, written as

F(λ )≡ B(λ ,Sl)B(λ ,Sr)−
κ

1+ τλ

(
n
N

B(λ ,Sl)+
(N−n)

N
B(λ ,Sr)

)
= 0 , (5.52)

has a solution λ > 0. To establish this, we first differentiate µ(Sr) = µ(Sl) with

respect to Sr to obtain the identity µ ′(Sl)S′l(Sr) = µ ′(Sr). Combining this result

with B(0,S) = µ ′(S) we calculate that

F(0) = µ
′(Sl)

[
µ
′(Sr)−κ

(N−n)
N

(
n

(N−n)
+

dSl

dSr

)]
. (5.53)

Using µ ′(Sl) > 0 and µ ′(Sr) < 0 together with S′l(Sr) > −1 (see Figure 5.2b) and

the assumption n/(N− n) ≥ 1, we immediately deduce that F(0) < 0. Next, we

let λ0 > 0 be the dominant eigenvalue of M0 when S = Sl (see Figure 5.5a) so that

B(λ0,Sl) = 0. Then, from (5.52) we obtain

F(λ0) =−
κ

1+ τλ0

(N−n)
N

B(λ0,Sr) . (5.54)

However, since M0 at S = Sr > Scrit has no positive eigenvalues (see Figure 5.5a),

we deduce that B(λ ,Sr) is of one sign for λ ≥ 0 and, furthermore, it must be

negative since B(0,Sr) = µ ′(Sr)< 0 (see Figure 5.5b for a plot of B showing both

its continuity and negativity for all λ > 0 when S > Scrit). Therefore, we have

F(λ0) > 0 and so, combined with (5.53), by the intermediate value theorem it

follows that F(λ ) = 0 has a positive solution. We summarize our leading order

linear stability results in the following proposition:

Proposition 5.2.1. (Linear Stability): Let ε � 1 and assume that t � O(ε−3).

When D = O(1), the N-spot symmetric pattern from Proposition 5.1.1 is linearly
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stable. If D = ε−1D0 then the symmetric N-spot pattern from Proposition 5.1.1 is

linearly stable with respect to zero-eigenvalue crossing instabilities if κ < κc1 ≡
µ(Scrit)/Scrit ≈ 0.64619 and is unstable otherwise. Moreover, it is stable with re-

spect to oscillatory instabilities on the range κ > κc1 if τ < τh(κ) where τh(κ) is

plotted in Figure 5.6a. Finally, every asymmetric N-spot pattern in the D = ε−1D0

regime is always linearly unstable.

5.3 Slow Spot Dynamics
A wide variety of singularly perturbed RD systems are known to exhibit slow dy-

namics of multi-spot solutions in 2-D domains (cf. [48], [12], [91], [103]). In this

section we derive a system of ODE’s which characterize the motion of the spot

locations x1, . . . ,xN for the 3-D GM model on a slow time scale. Since the only

N-spot patterns that may be stable on an O(1) time scale are (to leading order)

symmetric we find that the ODE system reduces to a gradient flow. We remark that

both the derivation and final ODE system are closely related to those in [98] for the

3-D Schnakenberg model.

The derivation of slow spot dynamics hinges on establishing a solvability con-

dition for higher order terms in the asymptotic expansion in the inner region near

each spot. As a result, we begin by collecting higher order expansions of the lim-

iting behaviour as |x− xi| → 0 of the Green’s functions G(x,x j) and G0(x,x j) that

satisfy (5.8) and (5.11), respectively. In particular, we calculate that

G(xi + εy,x j)∼

G(xi,x j)+ εy ·∇1G(xi,x j) , i 6= j ,
1

4περ
+R(xi)+ εy ·∇1R(xi;xi) , i = j ,

(5.55a)

as |x− xi| → 0 where ρ = |y| and ∇1R(xi;xi) ≡ ∇xR(x;x1)|x=x1 . Likewise, for the

Neumann Green’s function, we have

G0(xi + εy,x j)∼
D0

ε|Ω|
+

G0(xi,x j)+ εy ·∇1G0(xi,x j) , i 6= j ,
1

4περ
+R0(xi)+ εy ·∇1R0(xi;xi) , i = j ,

(5.55b)

as |x− xi| → 0 where ∇1 again denotes the gradient with respect to the first argu-

ment. We next extend the asymptotic construction of quasi-equilibrium patterns
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in §5.1 by allowing the spot locations to vary on a slow time scale. In particu-

lar, a dominant balance in the asymptotic expansion requires that xi = xi(σ) where

σ = ε3t. For x near xi we introduce the two term inner expansion

v∼ DVi ∼ D(Viε(ρ)+ ε
2Vi2(y)+ · · ·) ,

u∼ DUi ∼ D
(
Uiε(ρ)+ ε

2Ui2(y)+ · · ·
)
,

(5.56)

where we note the leading order terms are Viε(ρ)≡V (ρ,Siε) and Uiε(ρ)≡U(ρ,Siε).

By using the chain rule we calculate ∂tVi =−ε2x′i(σ) ·∇yVi and ∂tUi =−ε2x′i(σ) ·
∇yUi. In this way, upon substituting (5.56) into (5.1) we collect the O(ε2) terms to

obtain that Vi2 and Ui2 satisfy

LiεWWW i2 ≡ ∆yWWW i2 +QiεWWW i2 =− fff iε , y ∈ R2 , (5.57a)

where

WWW i2 ≡

(
Vi2

Ui2

)
, fff iε ≡

(
ρ−1V ′iε(ρ)x′i(σ) · y
−D−1Uiε

)
,

Qiε ≡

(
−1+2U−1

iε Viε −U−2
iε V 2

iε

2Viε 0

)
.

(5.57b)

It remains to determine the appropriate limiting behaviour as ρ → ∞. From the

first row of Qiε , we conclude that Vi2→ 0 exponentially as ρ → ∞. However, the

limiting behaviour of Ui2 must be established by matching with the outer solution.

To perform this matching, we first use the distributional limit

ε
−2v2 −→ 4πεD2

N

∑
j=1

S jεδ (x− x j)+2ε
3D2

N

∑
j=1

(ˆ
R3

VjεVj2 dy
)

δ (x− x j) ,

as ε → 0 where the localization at each x1, . . . ,xN eliminates all cross terms. We

then update (5.9) to include the O(ε3) correction term. This leads to the refined

approximation for the outer solution

u∼ 4πεD
N

∑
j=1

S jεG(x;x j)+2ε
3D

N

∑
j=1

(ˆ
R3

VjεVj2 dy
)

G(x;x j) . (5.58)
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We observe that the leading order matching condition is immediately satisfied in

both the D=O(1) and the D=D0/ε regimes. To establish the higher order match-

ing condition we distinguish between the D = O(1) and D = ε−1D0 regimes and

use the higher order expansions of the Green’s functions as given by (5.55a) and

(5.55b). In this way, in the D = O(1) regime we obtain the far-field behaviour as

|y| → ∞ given by

Ui2 ∼
1

2πρ

ˆ
R3

ViεVi2 dy+ y ·biε , (5.59a)

where
biε

4π
≡ Siε∇1R(xi;xi)+∑

j 6=i
S jε∇1G(xi,x j) . (5.59b)

Similarly, in the D = D0/ε regime we obtain the following far-field matching con-

dition as |y| → ∞:

Ui2 ∼
1

2πρ

ˆ
R3

ViεVi2 dy+
2D0

|Ω|

N

∑
j=1

ˆ
R3

VjεVj2 dy+ y ·b0iε , (5.60a)

where
b0iε

4π
≡ Siε∇1R0(xi;xi)+∑

j 6=i
S jε∇1G0(xi,x j) . (5.60b)

In both cases, our calculations below will show that only biε and b0iε affect the

slow spot dynamics.

To characterize slow spot dynamics we calculate x′i(σ) by formulating an ap-

propriate solvability condition. We observe for each k = 1,2,3 that the functions

∂ykWWW iε where WWW iε ≡ (Viε ,Uiε)
T satisfy the homogeneous problem Liε∂ykWWW iε = 0.

Therefore, the null-space of the adjoint operator L ?
iε is at least three-dimensional.

Assuming it is exactly three dimensional we consider the three linearly indepen-

dent solutions ΨΨΨik ≡ ykPPPi(ρ)/ρ to the homogeneous adjoint problem, where each

PPPi(ρ) = (Pi1(ρ),Pi2(ρ)
T solves

∆ρPPPi−
2

ρ2 PPPi +QT
iεPPPi = 0 , ρ > 0; PPP′i(0) =

(
0

0

)
, (5.61)
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and for which we note

QT
iε −→

(
−1 0

0 0

)
as ρ → ∞ . (5.62)

Owing to this limiting far-field behaviour of the matrix QT
iε , we immediately de-

duce that Pi2 = O(ρ−2) and that Pi1 decays exponentially to zero as ρ → ∞. En-

forcing, for convenience, the point normalization condition Pi2 ∼ ρ−2 as ρ → ∞,

we find that (5.61) admits a unique solution. We use each ΨΨΨik to impose a solv-

ability condition by multiplying (5.57a) by ΨΨΨT
ik and integrating over the ball, Bρ0 ,

centred at the origin and of radius ρ0 with ρ0� 1. Then, by using the divergence

theorem, we calculate

lim
ρ0→∞

ˆ
Bρ0

(
ΨΨΨ

T
ik LiWWW i2−WWW i2 L ?

i ΨΨΨik

)
dy

= lim
ρ0→∞

ˆ
∂Bρ0

(
ΨΨΨ

T
ik∂ρWWW i2−WWW T

i2∂ρΨΨΨik

)∣∣∣∣
ρ=ρ0

ρ
2
0 dΘ ,

(5.63)

where Θ denotes the solid angle for the unit sphere.

To proceed, we use the following simple identities given in terms of the Kro-

necker symbol δkl:

ˆ
Bρ0

yk f (ρ)dy = 0 ,
ˆ

Bρ0

ykyl f (ρ)dy = δkl
4π

3

ˆ
ρ0

0
ρ

4 f (ρ)dρ , (5.64)

for l,k = 1,2,3. Since L ?
i ΨΨΨik = 0, we can use (5.57a) and (5.64) to calculate the

left-hand side of (5.63) as

lim
ρ0→∞

ˆ
Bρ0

ΨΨΨ
T
ikLiWWW i2dy = lim

ρ0→∞

(
−

3

∑
l=1

x′il(σ)

ˆ
Bρ0

ykyl
Pi1(ρ)V ′iε(ρ)

ρ2 dy

+
1
D

ˆ
Bρ0

yk
Pi2(ρ)Uiε(ρ)

ρ
dy
)

=−4π

3
x′ik(σ)

ˆ
∞

0
Pi1(ρ)V ′iε(ρ)ρ

2 dρ .

(5.65)

Next, in calculating the right-hand side of (5.63) by using the far-field behaviour
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(5.59) and (5.60), we observe that only biε and b0iε terms play a role in the limit.
In particular, in the D = O(1) regime we calculate in terms of the components of
biεl of the vector biε , as given in (5.59), that

lim
ρ0→∞

ˆ
∂Bρ0

ΨΨΨ
T
ik∂ρWWW i2

∣∣
ρ=ρ0

ρ
2
0 dΘ = lim

ρ0→∞

3

∑
l=1

biεl

ˆ
∂Bρ0

ykyl

ρ2
0

dΘ =
4π

3
biεk ,

lim
ρ0→∞

ˆ
∂Bρ0

WWW T
i2∂ρΨΨΨik

∣∣
ρ=ρ0

ρ
2
0 dΘ =−2 lim

ρ0→∞

3

∑
l=1

biεl

ˆ
∂Bρ0

ykyl

ρ2
0

dΘ =−8π

3
biεk .

(5.66)

From (5.63), (5.65), and (5.66), we conclude for the D = O(1) regime that

x′ik(σ) =− 3
γ(Siε)

biεk , γ(Siε)≡
ˆ

∞

0
Pi1(ρ)V ′i (ρ,Siε)ρ

2 dρ , (5.67)

which holds for each component k = 1,2,3 and each spot i = 1, . . . ,N. From
symmetry considerations we see that the constant contribution to the far-field be-
haviour, as given by the first term in (5.59), is eliminated when integrated over the
boundary. In an identical way, we can determine x′ik for the D = D0/ε regime. In
summary, in terms of the gradients of the Green’s functions and γiε ≡ γ(Siε), as
defined in (5.67), we obtain the following vector-valued ODE systems for the two
distinguished ranges of D:

dxi

dσ
=−12π

γiε


(

Siε ∇1R(xi;xi)+∑ j 6=i S jε ∇1G(xi,x j)

)
, for D = O(1) ,(

Siε ∇1R0(xi;xi)+∑ j 6=i S jε ∇1G0(xi,x j)

)
, for D = D0/ε .

(5.68)

Since only the symmetric N-spot configurations can be stable on an O(1) time
scale (see Proposition 5.2.1), it suffices to consider the ODE systems in (5.68)
when Siε = S?+O(ε) in the D = O(1) regime and when Siε = Sc +O(ε), where
Sc solves (5.18), in the D = ε−1D0 regime. In particular, we find that to leading
order, where the O(ε) corrections to the spot strengths are neglected, the ODE
systems in (5.68) can be reduced to the gradient flow dynamics

dxi

dσ
=− 6πS

γ(S)
∇xiH (x1, . . . ,xN) , γ(S) =

ˆ
∞

0
P1(ρ)V1(ρ,S)ρ2 dρ , (5.69a)

where S = S? or S = Sc depending on whether D = O(1) or D = ε−1D0, respectively.
In (5.69) the discrete energy H , which depends on the instantaneous spot locations, is
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Figure 5.7: Plot of the numerically-computed multiplier γ(S) as defined in
the slow gradient flow dynamics (5.69).

defined by

H (x1, . . . ,xN)≡

∑
N
i=1 R(xi)+2∑

N
i=1 ∑ j>i G(xi,x j) , for D = O(1) ,

∑
N
i=1 R0(xi)+2∑

N
i=1 ∑ j>i G0(xi,x j) , for D = ε−1D0 .

(5.69b)

In accounting for the factor of two between (5.69) and (5.68), we used the reci-

procity relations for the Green’s functions. In this leading order ODE system,

the integral γ(S) is the same for each spot, since P1(ρ) is computed numerically

from the homogeneous adjoint problem (5.61) using the core solution V1(ρ,S)

and U1(ρ,S) to calculate the matrix QT
iε in (5.61). In Figure 5.7 we plot the

numerically-computed γ(S), where we note that γ(S) > 0. Since γ(S) > 0, local

minima of H are linearly stable equilibrium solutions to (5.69).

We remark that this gradient flow system (5.69) differs from that derived in

[98] for the 3-D Schnakenberg model only through the constant γ(S). Since this

parameter affects only the time-scale of the slow dynamics we deduce that the

equilibrium configurations and stability properties for the ODE dynamics will be

identical to those of the Schnakenberg model. As such, we do not analyze (5.69)

further and instead refer to [98] for more detailed numerical investigations. Finally

we note that the methods employed here and in [98] should be applicable to other

3-D RD systems yielding similar limiting ODE systems for slow spot dynamics.

The similarity between slow dynamics for a variety of RD systems in 2-D has been

previously observed and a general asymptotic framework has been pursued in [91]

for the dynamics on the sphere.
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Figure 5.8: (a) Leading order Hopf bifurcation threshold for a one-spot pat-

tern. (b) Plots of the spot height v(0, t) from numerically solving (5.1)
using FlexPDE6 [1] in the unit ball with ε = 0.05 at the indicated τ and
D0 values.

5.4 Numerical Examples
In this section we use FlexPDE6 [1] to numerically solve (5.1) when Ω is the unit

ball. In particular, we illustrate the emergence of oscillatory and competition insta-

bilities, as predicted in §5.2 for symmetric spot patterns in the D = D0/ε regimes.

We begin by considering a single spot centred at the origin in the unit ball,

for the D = ε−1D0 regime. Since no competition instabilities occur for a single

spot solution, we focus exclusively on the onset of oscillatory instabilities as τ is

increased. In Figure 5.8a we plot the Hopf bifurcation threshold obtained from

our linear stability theory, and indicate several sample points below and above

the threshold. Using FlexPDE6 [1], we performed full numerical simulations of

(5.1) in the unit ball with ε = 0.05 and parameters D0 and τ corresponding to the

labelled points in Figure 5.8a. The resulting activator height at the origin, v(0, t),

computed from FlexPDE6 is shown in Figure 5.8b for these indicated parameter

values. We observe that there is good agreement with the onset of Hopf bifurcations

as predicted by our linear stability theory.
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Figure 5.9: (a) Plots of the spot heights (solid and dashed lines) in a two-spot

symmetric pattern at the indicated values of D0. Results were obtained
by using FlexPDE6 [1] to solve (5.1) in the unit ball with ε = 0.05 and
τ = 0.2. (b) plot of three-dimensional contours of v(x, t) for D0 = 0.112,
with contours chosen at v = 0.1,0.2,0.4.

Next, we illustrate the onset of a competition instability by considering a sym-

metric two-spot configurations with spots centred at (±0.51565,0,0) in the unit

ball and with τ = 0.2 (chosen small enough to avoid Hopf bifurcations) and ε =

0.05. The critical value of κc1≈ 0.64619 then implies that the leading order compe-

tition instability threshold for the unit ball with |Ω|= 4π/3 is D0≈ 0.64619/(3N)=

0.108. We performed full numerical simulations of (5.1) using FlexPDE6 [1] with

values of D0 = 0.09 and D0 = 0.112. The results of our numerical simulations are

shown in Figure 5.9, where we observe that a competition instability occurs for

D0 = 0.112, as predicted by the linear stability theory. Moreover, in agreement

with previous studies of competition instabilities (cf. [98], [12]), we observe that a

competition instability triggers a nonlinear event leading to the annihilation of one

spot.

5.5 The Weak Interaction Limit D = O(ε2)

In §5.2 we have shown in both the D = O(1) and D = O(ε−1) regimes that N-spot

quasi-equilibrium solutions are not susceptible to locally non-radially symmetric

instabilities. Here we consider the weak-interaction regime D = D0ε2, where we
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Figure 5.10: (a) Bifurcation diagram for solutions to the core problem (5.70)
in the D = ε2D0 regime. (b) Dominant eigenvalue of the linearization
of the core problem for each mode l = 0,2,3,4, as computed numeri-
cally from (5.74).

numerically determine that locally non-radially symmetric instabilities of a local-

ized spot are possible. First, we let ξ ∈ Ω satisfy dist(ξ ,∂Ω)� O(ε2) and we

introduce the local coordinates x = ξ + εy and the inner variables v∼ ε2V (ρ) and

u ∼ ε2U(ρ). With this scaling, and with D = D0ε2, the steady-state problem for

(5.1) becomes

∆ρV −V +U−1V 2 = 0 , D0∆ρU−U +V 2 = 0 , ρ = |y|> 0 . (5.70)

For this core problem, we impose the boundary conditions Vρ(0) = Uρ(0) = 0

and (V,U)→ 0 exponentially as ρ → ∞. Unlike the D = O(1) and D = O(ε−1)

regimes, u and v are both exponentially small in the outer region. Therefore, for any

well-separated configuration x1, . . . ,xN , the inner problems near each spot centre

are essentially identical and independent. In Figure 5.10a we plot V (0) versus D0

obtained by numerically solving (5.70). From this figure, we observe that for all

D0 ' 14.825, corresponding to a saddle-node point, the core problem (5.70) admits

two distinct radially-symmetric solutions.

Since both the activator V and inhibitor U decay exponentially there are only

exponentially weak interactions between individual spots. As a result, it suffices to

consider only the linear stability of the core problem (5.70). Upon linearizing (5.1)
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about the core solution we obtain the eigenvalue problem

∆ρΦ− l(l +1)
ρ2 Φ−Φ+

2V
U

Φ− V 2

U2 Ψ = λΦ ,

D0∆ρΨ− l(l +1)
ρ2 Ψ−Ψ+2V Φ = 0 ,

(5.71)

for each l ≥ 0 and for which we impose that Φ′(0) = Ψ′(0) = 0 and (Φ,Ψ)→ 0

exponentially as ρ → ∞. We reduce (5.71) to a single nonlocal equation by noting

that the Green’s function Gl(ρ,ρ0) satisfying

D0∆ρGl−
l(l +1)

ρ2 Gl−Gl =−
δ (ρ−ρ0)

ρ2 , (5.72)

is given explicitly by

Gl(ρ,ρ0) =
1

D0
√

ρ0ρ

Il+1/2(ρ/
√

D0)Kl+1/2(ρ0/
√

D0) , ρ < ρ0 ,

Il+1/2(ρ0/
√

D0)Kl+1/2(ρ/
√

D0) , ρ > ρ0 ,
(5.73)

where In(·) and Kn(·) are the nth order modified Bessel Functions of the first and

second kind, respectively. As a result, by proceeding as in §5.2 we reduce (5.71)

to the nonlocal spectral problem MlΦ = λΦ where

MlΦ≡ ∆ρΦ− l(l +1)
ρ2 Φ−Φ+

2V
U

Φ

− 2V 2

U2

ˆ
∞

0
Gl(ρ, ρ̃)V (ρ̃)Φ(ρ̃)ρ̃2 dρ̃ .

(5.74)

In Figure 5.10b we plot the real part of the largest numerically-computed eigen-

value of Ml as a function of V (0) for l = 0,2,3,4. From this figure, we observe

that the entire lower solution branch in the V (0) versus D0 bifurcation diagram in

Figure 5.10a is unstable. However, in contrast to the D = O(1) and D = O(ε−1)

regimes, we observe from the orange curve in Figure 5.10b for the l = 2 mode that

when D= ε2D0 there is a range of D0 values for which a peanut-splitting instability

is the only unstable mode.

In previous studies of singularly perturbed RD systems supporting peanut-
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Figure 5.11: Snapshots of FlexPDE6 [1] simulation of (5.1) in the unit ball
with ε = 0.05, D = 16ε2, and τ = 1 and with initial condition given
by a single spot solution in the weak interaction limit calculated from
(5.70) with V (0) = 5. The snapshots show contour plots of the acti-
vator v(x, t) at different times where for each spot the outermost, mid-
dle, and innermost contours correspond to values of 0.006, 0.009, and
0.012 respectively. Note that the asymptotic theory predicts a maxi-
mum peak height of v∼ ε2V (0)≈ 0.0125.

splitting instabilities it has typically been observed that such linear instabilities

trigger nonlinear spot self-replication events (cf. [98], [48], [91], and [12]). Re-

cently, in [113] it has been shown using a hybrid analytical-numerical approach

that peanut-splitting instabilities are subcritical for the 2-D Schnakenberg, Gray-

Scott, and Brusselator models, although the corresponding issue in a 3-D setting

is still an open problem. Our numerical computations below suggest that peanut-

splitting instabilities for the 3-D GM model in the D = ε2D0 regime are also sub-

critical. Moreover, due to the exponentially small interaction between spots, we

also hypothesize that a peanut-splitting instability triggers a cascade of spot self-

replication events that will eventually pack the domain with identical spots. To

explore this proposed behaviour we use FlexPDE6 [1] to numerically solve (5.1) in

the unit ball with parameters τ = 1, ε = 0.05 and D0 = 16ε2, where the initial con-

dition is a single spot pattern given asymptotically by the solution to (5.70) with

V (0) = 5. From the bifurcation and stability plots of Figure 5.10 our parameter

values and initial conditions are in the range where a peanut-splitting instability

occurs. In Figure 5.11 we plot contours of the solution v(x, t) at various times. We
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observe that the peanut-splitting instability triggered between t = 20 and t = 60

leads to a self-replication process resulting in two identical spots at t = 110. The

peanut-splitting instability is triggered for each of these two spots and this process

repeats, leading to a packing of the domain with N = 8 identical spots.

5.6 General Gierer-Meinhardt Exponents
Next, we briefly consider the generalized GM model

vt = ε
2
∆v− v+u−qvp , τut = D∆u−u+ ε

−2u−svm , x ∈Ω ;

∂nv = ∂nu = 0 , x ∈ ∂Ω ,
(5.75)

where the GM exponents (p,q,m,s) satisfy the usual conditions p > 1, q > 0,

m > 1, s≥ 0, and ζ ≡ mq/(p−1)− (s+1)> 0 (cf. [105]). Although this general

exponent set leads to some quantitative differences as compared to the prototypi-

cal set (p,q,m,s) = (2,1,2,0) considered in this chapter, many of the qualitative

properties resulting from the properties of µ(S) in Conjecture 5.1.1, such as the

existence of symmetric quasi-equilibrium spot patterns in the D = O(1) regime,

remain unchanged.

Suppose that (5.75) has an N-spot quasi-equilibrium solution with well-separated

spots. Near the ith spot we introduce the inner expansion v∼DαVi(y), u∼DβUi(y),

and y = ε−1(x− xi), where

∆Vi−Vi +D(p−1)α−qβU−q
i V p

i = 0 , y ∈ R3

∆Ui− ε
2D−1Ui =−Dmα−(s+1)β−1U−s

i V m
i , y ∈ R3 .

Choosing α and β such that (p−1)α−qβ = 0 and mα− (s+1)β = 1 we obtain

α = ν/ζ , β = 1/ζ , ν = q/(p−1) ,

with which the inner expansion takes the form v∼Dν/ζV (ρ;Siε) and u∼D1/ζU(ρ;Siε),

where V (ρ;S) and U(ρ;S) are radially-symmetric solutions to the D-independent
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core problem

∆ρV −V +U−qV p = 0 , ∆ρU =−U−sV m , ρ > 0 , (5.76a)

∂ρV (0) = ∂ρU(0) = 0 , V → 0 and U ∼ µ(S)+S/ρ , ρ → ∞ . (5.76b)

By using the divergence theorem, we obtain the identity S =
´

∞

0 U−sV mρ2 dρ > 0.

By solving the core problem (5.76) numerically, we now illustrate that the

function µ(S) retains several of the key qualitative properties of the exponent

set (p,q,m,s) = (2,1,2,0) observed in §5.1.1, which were central to the analy-

sis in §5.1 and §5.2. To path-follow solutions, we proceed as in §5.1.1 by first

approximating solutions to (5.76) for S � 1. For S � 1, we use the identity

S=
´

∞

0 U−sV mρ2 dρ > 0 to motivate a small S scaling law, and from this we readily

calculate that

V (ρ;S)∼
(

S
b

) ν

ζ+1
wc(ρ) , U(ρ;S)∼

(
S
b

) 1
ζ+1

, µ(S)∼
(

S
b

) 1
ζ+1

, (5.77)

where

b≡
ˆ

∞

0
wm

c ρ
2dρ ,

and wc > 0 is the radially-symmetric solution of

∆ρwc−wc +wp
c = 0 , ρ > 0; ∂ρwc(0) = 0, wc→ 0, ρ → ∞ . (5.78)

With this approximate solution for S� 1, we proceed as in §5.1.1 to calculate

µ(S) in (5.76) for different GM exponent sets by path-following in S. In Figure

5.12b we plot µ(S) when (p,q,m,s) = (p,1, p,0) with p = 2,3,4, while a similar

plot is shown in Figure 5.12a for other typical exponent sets in [105]. For each set

considered, we find that µ(S) satisfies the properties in Conjecture 5.1.1. Finally,

to obtain the NAS for the spot strengths we proceed as in §5.1.2 to obtain that

the outer solution for the inhibitor field is given by simply replacing D with D1/ζ

in (5.9). Then, by using the matching condition u∼ D1/ζ (µ(S jε)+S jεε/|x− x j|)
as x→ x j, for each j = 1, . . . ,N, we conclude that the NAS (5.15) still holds for

a general GM exponent set provided that µ(S) is now defined by the generalized
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Figure 5.12: Left panel: Plot of µ(S), computed from the generalized GM
core problem (5.76), for the indicated exponent sets (p,q,m,s). Right
panel: µ(S) for exponent sets (p,1, p,0) with p = 2,3,4. For each set,
there is a unique S = S? for which µ(S?) = 0. The properties of µ(S)
in Conjecture 5.1.1 for the prototypical set (2,1,2,0) still hold.

core problem (5.76).

5.7 Discussion
We have used the method of matched asymptotic expansions to construct and study

the linear stability of N-spot quasi-equilibrium solutions to the 3-D GM model (5.1)

in the limit of an asymptotically small activator diffusivity ε � 1. Our key con-

tribution has been the identification of two distinguished regimes for the inhibitor

diffusivity, the D = O(1) and D = O(ε−1) regimes, for which we constructed N-

spot quasi-equilibrium patterns, analyzed their linear stability, and derived an ODE

system governing their slow spot dynamics. We determined that in the D = O(1)

regime all N-spot patterns are, to leading order in ε , symmetric and linearly sta-

ble on an O(1) time scale. On the other hand, in the D = O(ε−1) regime we

found the existence of both symmetric and asymmetric N-spot patterns. How-

ever, we demonstrated that all asymmetric patterns are unstable on an O(1) time

scale, while for the symmetric patterns we calculated synchronous and competi-

tion instability thresholds. These GM results are related to those in [98] for the
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Figure 5.13: Plots of the far-field constant behaviour for the (a) Gierer-
Meinhardt with saturation, (b) Schnakenberg or Gray-Scott, and (c)
Brusselator models. See Table 5.1 for the explicit form of the kinetics
F(v,u) and G(v,u) for each model. A zero-crossing of µ(S) at some
S > 0 occurs only for the GMS model.

3-D singularly perturbed Schnakenberg model, with one of the key new features

being the emergence of two distinguished limits, and in particular the existence of

localized solutions in the D =O(1) regime for the GM model. For D =O(1), con-

centration behaviour for the Schnakenberg model as ε → 0 is no longer at discrete

points typical of spot patterns, but instead appears to occur on higher co-dimension

structures such as thin sheets and tubes in 3-D (cf. [94]). For the GM model, we

illustrated the onset of both oscillatory and competition instabilities by numerically

solving the full GM PDE system using the finite element software FlexPDE6 [1].

We have also considered the weak-interaction regime D = O(ε2), where we used

a hybrid analytical-numerical approach to calculate steady-state solutions and de-

termine their linear stability properties. In this small D regime we found that spot

patterns are susceptible to peanut-splitting instabilities. Finally, using FlexPDE6

we illustrated how the weak-interaction between spots together with the peanut-

splitting instability leads to a cascade of spot self-replication events.

We conclude by highlighting directions for future work and open problems.

First, although we have provided numerical evidence for the properties of µ(S)

highlighted in Conjecture 5.1.1, a rigorous proof remains to be found. In partic-
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RD Model F(V,U) G(V,U) Decay behaviour

Gierer-Meinhardt w/ Saturation (GMS) −V + V 2

U(1+κU2)
V 2 U ∼ µ(S)+S/ρ

Schnakenberg or Gray-Scott (S/GS) −V +V 2U −V 2U U ∼ µ(S)−S/ρ

Brusselator (B) −V + fV 2U V −V 2U U ∼ µ(S)−S/ρ

Table 5.1: Core problems and inhibitor decay behaviour for some RD sys-
tems. In each case the activator decays exponentially.

ular, we believe that it would be significant contribution to rigorously prove the

existence and uniqueness of the ground state solution to the core problem (5.2),

which we numerically calculated when S = S?. A broader and more ambitious fu-

ture direction is to characterize the reaction kinetics F(V,U) and G(V,U) for which

the core problem

∆ρV +F(V,U) = 0, ∆ρU +G(V,U) = 0, in ρ > 0 , (5.79)

admits a radially-symmetric ground state solution for which V → 0 exponentially

and U = O(1) as ρ → ∞. The existence of such a ground state plays a key role

in determining the regimes of D for which localized solutions can be constructed.

For example, in the study of the 3-D singularly perturbed Schnakenberg model

it was found that the core problem does not admit such a solution and as a re-

sult localized spot solutions could not be constructed in the D = O(1) regime

(cf. [98]). To further motivate such an investigation of (5.79) we extend our numer-

ical method from §5.1.1 to calculate and plot in Figure 5.13 the far-field constant

µ(S) for the core problems associated with the GM model with saturation (GMS),

the Schnakenberg/Gray-Scott (S/GS) model, and the Brusselator (B) model (see

Table 5.1 for more details). Note that for the GMS model we can find values of

S? such that µ(S?) = 0, but such a zero-crossing does not appear to occur for the

(S/GS) and (B) models. As a consequence, for these three specific RD systems,

localized spot patterns in the D = O(1) regime should only occur for the GMS

model. Additionally, understanding how properties of µ(S), such as convexity and

positiveness, are inherited from the reaction kinetics would be a significant contri-
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bution. In this direction, it would be interesting to try extend the rigorous numerics

methodology of [3] to try to establish Conjecture 5.1.1.
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Appendix A

Bulk-Membrane-Coupled
Reaction-Diffusion-Systems are a
Leading Order Approximation

In this appendix we demonstrate the sense in which bulk-membrane coupled reaction-

diffusion systems of the form (1.8) are to be understood as a leading order approx-

imation in the limit of a thin membrane.

A.1 Geometric Preliminaries
We first derive a three-term approximation to the Laplacian near a smooth and

compact (N−1)-dimensional manifold S⊂RN for N = 2,3. Let X(s1, ...,sN−1)∈ S

be a parametrization of S where (s1, ...,sN−1)∈U ⊂RN−1 and X :U→ S is smooth.

When N = 2 we will assume that the curve S is parameterized by arc-length so that

the tangent vector |dX/ds1|= 1. The unit normal to S at X is defined by

ν(s) = κ
−1 d2X

ds2
1

(N = 2), ν(s1,s2) =
∂1X×∂2X
|∂1X×∂2X |

(N = 3), (A.1)
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where κ is the curvature of the curve S when N = 2, and where we use the notation

∂i ≡ ∂/∂ si (i = 1,2). Next we define the tensors g, b, and c with entires

gi j ≡ ∂iX ·∂ jX , bi j ≡ ∂i∂ jX ·ν =−∂iX ·∂ jν , ci j = ∂iν ·∂ jν (A.2)

where the second equality in the definition of bi j follows from differentiating the

orthogonality relation ∂iX · ν = 0. Note that g corresponds to the metric tensor,

while b corresponds to the second fundamental form when N = 3. Explicitly we

calculate

g = 1, b = κ, (A.3a)

for N = 2, and

g =

(
∂1X ·∂1X ∂1X ·∂2X

∂2X ·∂1X ∂2X ·∂2X

)
, b =−

(
∂1X ·∂1ν ∂1X ·∂2ν

∂2X ·∂1ν ∂2X ·∂2ν

)
(A.3b)

for N = 3. Note that both g and b are symmetric.

Next we derive a useful formula for c in terms of b and g. Throughout the next

calculations we use the Einstein summation convention in which we sum over all

repeated indices. Since |ν | = 1 it follows that ∂iν · ν = 0 and we can therefore

write ∂iν in terms of the tangent vectors ∂iX as ∂ jν = a jk∂kX for some unknown

coefficients ai j. Taking the inner product with ∂iX and recalling the definition of

gi j and bi j in (A.2) we obtain −bi j = a jkgki and therefore ai j =−bikgk j, where gi j

are the entries of g−1. Calculating ci j = aika jqgkq = bilglkb jrgrqgqk = bilglkbk j we

deduce that

c = κ
2 (N = 2), c = bg−1b (N = 3). (A.4)

We now consider the parametrization of a region near S in RN given by

X̃(s1, ...,sN) = X(s1, ...,sN−1)+ sNν(s1, ...,sN), (A.5)

where sN is assumed to be sufficiently small so that X̃(s1, ...,sN) is well defined

and in particular 1+ κs2 > 0 when N = 2 and (I + sNg−1b) is positive definite

when N = 3 where I is the 2×2 identity matrix Using (A.2) and (A.4) we readily

determine that the metric tensor g̃ with entries g̃i j = ∂iX̃ ·∂ jX̃ is block diagonal and
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explicitly given by

g̃ =

(
(1+ s2κ)2 0

0 1

)
(N = 2), g̃ =

(
g(I + sNg−1b)2 0

0 1

)
(N = 3). (A.6)

Since g̃ is block diagonal, the Laplacian in this parametrization is given by

∆φ =
1√

det g̃

N

∑
i, j=1

∂

∂ si

(√
det g̃g̃i j ∂φ

∂ s j

)

= ∂
2
Nφ +

∂N det g̃
2det g̃

∂Nφ +
1√
det g̃

N−1

∑
i, j=1

∂i
(√

det g̃g̃i j
∂ jφ
)
.

(A.7)

When N = 2 we use (A.6) to easily calculate the exact formula

∆φ =
∂ 2φ

∂ s2
2
+

κ

1+κs2

∂φ

∂ s2
+

1
1+κs2

∂

∂ s1

(
1

1+κs2

∂φ

∂ s1

)
. (A.8)

For N = 3 an exact formula is more involved and we instead focus on retaining the

first three terms in an expansion of the Laplacian when sN � 1. First we calculate

det g̃ = detgdet2(I + sNg−1b). (A.9)

Next we use Jacobi’s formula for the derivative of a determinant to calculate

∂ det(I + sNg−1b)
∂ sN

∣∣∣∣
sN=0

= tr(g−1b) = 2H,

∂ 2 det(I + sNg−1b)
∂ s2

N

∣∣∣∣
sN=0

= tr2(g−1b)− tr(g−1b)2 = 4H2− (κ2
1 +κ

2
2 ).

where we have used that the principal curvatures, κ1 and κ2 are the eigenvalues of

g−1b and the mean curvature H is

H =
κ1 +κ2

2
. (A.10)
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Therefore

det g̃ = detg
(
1+2HsN + 1

2(4H2−κ
2
1 −κ

2
2 )s

2
N +O(s3

N)
)2

= detg
(
1+4HsN +(8H2−κ

2
1 −κ

2
2 )s

2
N +O(s3

N)
)
,

and

∂N det g̃
2det g̃

=
2H +(8H2−κ2

1 −κ2
2 )sN +O(s2

N)

1+4HsN +(8H2−κ2
1 −κ2

2 )s
2
N +O(s3

N)

= 2H− (κ2
1 +κ

2
2 )sN +O(s2

N).

Retaining leading order terms in sN and letting ∆S be the Laplace-Beltrami operator

on S we obtain

∆φ =
∂ 2φ

∂ s2
N
+2H

∂φ

∂ sN
− (κ2

1 +κ
2
2 )sN

∂φ

∂ sN
+∆Sφ +O(sN). (A.11)

Summarizing, we let sN = δη where δ � 1 and η = O(1) to obtain

∆φ = δ
−2 ∂ 2φ

∂η2 +δ
−1

κ
∂φ

∂η
−κ

2
η

∂φ

∂η
+

∂ 2φ

∂ s2 +O(δ ), (A.12)

∆φ = δ
−2 ∂ 2φ

∂η2 +2δ
−1H

∂φ

∂η
− (κ2

1 +κ
2
2 )η

∂φ

∂η
+∆Sφ +O(δ ). (A.13)

for N = 2 and N = 3 respectively, and where we have used s to denote the arc-length

along S in N = 2.

A.2 Derivation of Bulk-Membrane-Coupled
Reaction-Diffusion System

We begin by assuming that the cell bulk is given by a bounded domain Ω ⊂ RN

(N = 2,3) with smooth boundary ∂Ω. Next we let ν(x) be the outward unit normal

to ∂Ω at s ∈ ∂Ω and let the cell membrane be given by

Ωδ ≡ {x+δην(x) |x ∈ ∂Ω, 0 < η < 1}, (A.14)
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where δ > 0 is the membrane thickness and is assumed to be sufficiently small so

that Ωδ is well defined. Furthermore, we separate ∂Ωδ into two disjoint (N−1)-

dimensional surfaces ∂Ωδ = ∂Ωi
δ
∪ ∂Ωe

δ
where ∂Ωi

δ
= ∂Ω denotes the interface

between the bulk and membrane and corresponds to setting η = 0 in (A.14) while

∂Ωe
δ

denotes the interface between the membrane and the extracellular space and

corresponds to setting η = 1 in (A.14).

Next we suppose that there are n and m chemical species in the bulk and in the

membrane with concentrations respectively given by

UUU = (U1, ...,Un)
T , uuu = (u1, ...,um)

T .

In both the bulk and the membrane we further assume that these chemical species

undergo isotropic diffusion and reaction kinetics so that the spatio-temporal evolu-

tion of their concentrations is governed by the system of reaction-diffusion equa-

tions

τB∂tUUU = DB∆UUU +FFF(UUU), x ∈Ω, (A.15a)

DB∂nUUU = γqδ (uuu,UUU), x ∈ ∂Ω, (A.15b)

and

τM∂tuuu = DM∆uuu+ fff δ (uuu), x ∈Ωδ , (A.16a)

DM∂nuuu =−qδ (uuu,UUU), x ∈ ∂Ω
i
δ
, (A.16b)

DM∂nuuu = 0, x ∈ ∂Ω
e
δ
. (A.16c)

where DB = diag(DB1, ...,DBn) and DM = diag(DM1, ...,DMm) are the diffusion co-

efficients of each species, τB = diag(τB1, ...,τBn) and τM = diag(τM1, ...,τMm) are

the time constants of each species, FFF and fff δ describe the bulk- and membrane-

bound reaction kinetics, and qqqδ describes the interchange between bulk- and membrane-

bound species across the bulk-membrane interface ∂Ω. The constant γ in (A.15b)

is included to reflect possible asymmetries in the interchange between bulk- and

membrane-bound species. While we may anticipate that the bulk-bound reaction

kinetics FFF(·) are independent of the membrane-thickness, the same cannot be said
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of the membrane-bound kinetics fff δ (·) and boundary interchange qqqδ (·, ·). Indeed,

integrating (A.16a) over Ωδ and using the divergence theorem gives

τM
d
dt

ˆ
Ωδ

uuu =

ˆ
∂Ωi

δ

qqqδ (uuu,UUU)+

ˆ
Ωδ

fff δ (uuu).

Since vol(Ωδ ) = O(δ ) and area(∂Ω) = O(1), the three terms are balanced for

δ � 1 provided that they satisfy O(δ )O(uuu) = O(qqqδ ) = O(δ )O( fff δ ). Anticipating

that UUU = O(1), (A.15) and (A.16) imply that

qqqδ = O(1), uuu = O(δ−1), fff δ = O(δ−1). (A.17)

We now derive a leading order approximation to the bulk-membrane coupled

reaction-diffusion system (A.15) and (A.16) in the δ � 1 limit. We let X(s) ∈ ∂Ω

parametrize ∂Ω where s ∈ B ⊂ RN−1. In particular we assume that s is the arc-

length along ∂Ω when N = 2 and s = (s1,s2) when N = 3. Next we choose the

sign of the curvature κ(s) of X(s) when N = 2 and the orientation of the local basis

(X1,X2) when N = 3 such that the unit normal at X(s) ∈ ∂Ω given by

ν(s) = κ(s)−1 d2X
ds2

1
(N = 2), ν(s1,s2) =

∂1X×∂2X
|∂1X×∂2X |

(N = 3), (A.18)

points away from the interior of Ω. Parameterizing Ωδ in terms of the boundary

fitted coordinates (s,η) ∈U× (0,1) as

X(s)+δην(s) ∈Ωδ , (A.19)

the results from Appendix A.1 we imply the following approximations for the

Laplacian in Ωδ

∆ = δ
−2

∂
2
η +δ

−1
κ∂η −κ

2
η∂η +∂

2
s +O(δ ), (N = 2) (A.20)

∆ = δ
−2

∂
2
η +2δ

−1H∂Ω∂η − (κ2
1 +κ

2
2 )η∂η +∆∂Ω +O(δ ), (N = 3) (A.21)

where κi (i = 1,2) are the principal curvatures of ∂Ω, H = (κ1 + κ2)/2 is the

mean curvature, and ∆∂Ω is the Laplace-Beltrami operator on ∂Ω. Throughout this
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section we will use ∆∂Ω = ∂ 2
s when N = 2. Based on the scaling (A.17) we suppose

that fff δ (uuu) = δ−1 fff (δuuu) and qqqδ (uuu,UUU) = qqq(δuuu,UUU) and let

uuu = δ
−1uuu0 +uuu1 +δuuu2 +O(δ 2), UUU =UUU0 +O(δ ), (A.22)

where each uuui = O(1) and UUU0 = O(1). Note that whereas uuu denotes a volume

concentration, uuu0 denotes a surface concentration. Substituting both ∂n =−δ−1∂η

and (A.20) into the membrane-bound system (A.16) and collecting powers of δ ,

we find that the leading order, O(δ−3), equation is given by

DM∂ηηuuu0 = 0,(s,η) ∈ ∂Ω× (0,1), DM∂ηuuu0 = 0, η = 0,1

which implies uuu0 = uuu0(s). Similarly, from the O(δ−2) equation we find that the

first order correction is independent of η , uuu1 = uuu1(s). The O(δ−1) problem is then

given by

∂tuuu0 = DM∂ηηuuu2 +DM∆∂Ωuuu0 + fff (uuu0), (s,η) ∈ ∂Ω× (0,1),

DM∂ηuuu2 = qqq(uuu0,UUU0), η = 0, DM∂ηuuu2 = 0, η = 1.

Integrating over 0 < η < 1 and using both the boundary conditions of uuu2 and the

η-independence of uuu0 we obtain

∂tuuu0 = DM∆∂Ωuuu0 + fff (uuu0)−qqq(uuu0,UUU0), in ∂Ω.

Summarizing, in the limit of a thin membrane, δ � 1, the bulk-membrane

coupled reaction-diffusion system (A.15) and (A.16) is approximated by

τ∂tUUU0 = DB∆UUU0 +FFF(UUU0), in Ω, (A.23a)

DB∂nUUU0 = γq(uuu0,UUU0), on ∂Ω, (A.23b)

∂tuuu0 = DM∆∂Ωuuu0 + fff (uuu0)−qqq(uuu0,UUU0), in ∂Ω, (A.23c)

whereUUU0 =O(1) and uuu0 =O(1) are the leading order terms in the expansion (A.22)

and where we assume that fff (uuu0) = O(1) and qqq(uuu0,UUU0) = O(1). Note that we have

assumed no interaction between the extracellular space and the cell membrane. It

210



is clear from the above derivation that including such an interaction would add

an additional term to (A.23c). Additionally we have assumed that the membrane

thickness is constant and equal to δ > 0. It is a straightforward extension to include

a non-constant thickness by letting 0 < η < δh(s) for s ∈ ∂Ω.
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Appendix B

Appendix for Chapter 2

B.1 Green’s Functions in the Well-Mixed Limit and for
the Disk

In this appendix we collect all the relevant Green’s functions and indicate some

of their key properties. We focus specifically on the uncoupled (K = 0) Green’s

function, the well-mixed Green’s function (Db→∞), and the disk Green’s function

(Ω = BR(0)). For the first two cases explicit formulae can be derived, while for the

final case we must rely on a Fourier series expansion representation.

B.1.1 Uncoupled Membrane Green’s Function

When the bulk and membrane are uncoupled there is no direct dependence on the

bulk Green’s function. Indeed the only relevant geometric dependent parameter

becomes the perimeter of the domain L = |∂Ω|. Thus, Ω may be an arbitrary

bounded and simply connected subset of R2 with C2 boundary. We define the

uncoupled Green’s function Γλ as the solution to

Dv∂
2
σ Γ−µ

2
Γ =−δ (σ −ζ ), 0 < σ < L, Γ is L-periodic. (B.1)

212



The solution to (B.1) is readily calculated as

Γ(σ ,ζ ) =

coth
(

µL
2
√

Dv

)
cosh

(
µ√
Dv
|σ −ζ |

)
2
√

Dvµ
−

sinh
(

µ√
Dv
|σ −ζ |

)
2
√

Dvµ
.

(B.2)

B.1.2 Bulk and Membrane Green’s functions in the Well-Mixed
Limit

We now derive the leading order expression for the membrane Green’s function,

defined by (2.22), when Db→ ∞. To leading order Gλ
Ω

, defined by (2.19), is con-

stant and from the divergence theorem we find

Gλ
Ω(σ , σ̃)∼ Gλ

Ω0 =
1

KL+µ2
bλ

A
=

β/K
µ2

bλ
+β

1
L
, where β ≡ K

L
A
. (B.3)

Here L≡ |∂Ω| and A≡ |Ω|. The leading order problem for the membrane Green’s

function in (2.22) is then

Dv∂
2
σ Gλ

∂Ω
−µ

2
sλ

Gλ

∂Ω
+K2Gλ

Ω0

ˆ L

0
Gλ

∂Ω
(σ̃ ;ζ )dσ̃ =−δ (σ −ζ ). (B.4)

Upon integrating this equation and using the periodic boundary conditions we get

ˆ L

0
Gλ

∂Ω
(σ̃ ;ζ )dσ̃ =

1
µ2

sλ
−K2LGλ

Ω0

=

(
1

µ2
sλ
(µ2

bλ
+β )−Kβ

)
1

AGλ
Ω0

,

where Gλ
Ω0 is defined in (B.3). Therefore, from (B.4), we find that Gλ

∂Ω
satisfies

Dv∂
2
σ Gλ

∂Ω
−µ

2
sλ

Gλ

∂Ω
=−δ (σ −ζ )− K2/A

µ2
sλ
(µ2

bλ
+β )−Kβ

.

This problem is readily solved in terms of the uncoupled Green’s function of (B.2)

by defining

Γ
λ (σ ,ζ ) := Γ(σ ,ζ )

∣∣
µ=µsλ

,
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and then using the decomposition

Gλ

∂Ω
(σ ,ζ ) = Γ

λ (σ ,ζ )+
γλ

µ2
sλ

, γλ ≡
K2/A

µ2
sλ
(µ2

bλ
+β )−Kβ

. (B.5)

B.1.3 Bulk and Membrane Green’s functions in the Disk

Here we consider the bulk Green’s function defined by (2.19). By using separation

of variables (in polar coordinates), and applying the boundary condition in (2.19),

we can write this Green’s function as a Fourier series

Gλ
Ω(r,σ , σ̃) =

1
2πR

∞

∑
n=−∞

aλ
n Pn(r)e

in
R (σ−σ̃),

Pn(r)≡
I|n|(ωbλ r)
I|n|(ωbλ R)

, aλ
n ≡

1
DbP′n(R)+K

, ωbλ ≡
µbλ√

Db
.

(B.6)

We remark that the singularity lies on the boundary and for this reason the radial

dependence is given only in terms of the modified Bessel functions of the first kind

In(z). Similarly, we can represent the membrane Green’s function in (2.22) for the

disk in terms of the Fourier series

Gλ

∂Ω
(σ ,σ0) =

1
2πR

∞

∑
n=−∞

gλ
n e

in
R (σ−σ0), gλ

n ≡
1

Dv
n2

R2 +µ2
sλ
−K2aλ

n

. (B.7)

B.1.4 A Useful Summation Formula for the Disk Green’s Functions
We make note here of a useful summation formula for numerically evaluating
the Green’s function eigenvalues for the disk. By integrating the function (ζ 2 +

z2)−1 cot
(

π

N (ζ − k)
)

over the contour enclosing [−R,R]× [−R,R], and then taking
the limit R→ ∞, we obtain

S(z;N,k) :=
∞

∑
n=−∞

1
(nN + k)2 + z2 =

π

2Nz

[
coth

(
π

N
(z+ ik)

)
+coth

(
π

N
(z− ik)

)]
. (B.8)
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B.2 Derivation of Membrane Green’s Function for the
Perturbed Disk

In this appendix we provide the details for calculating the leading-order correction

to the perturbed disk Green’s function given in (2.2). Recall that the bulk Green’s

function solves

Db∆Gλ
Ω−µ

2
bλ

Gλ
Ω = 0, in Ωδ ,

Db∂nGλ
Ω +KGλ

Ω = δ∂Ωδ
(x− x̃), on ∂Ωδ .

(B.9)

On the boundary r = R+δh(θ) of the perturbed disk we calculate in terms of polar

coordinates that

n̂(θ) =
[
1+
(

δh′(θ)
R+δh(θ)

)2]− 1
2
(
êr− δh′(θ)

R+δh(θ) êθ

)
, ∇ = êr∂r +

1
r

êθ ∂θ ,

δ∂Ωδ
(x− x̃) =

[
1+
(

δh′(θ)
R+δh(θ)

)2]− 1
2

δ (θ − θ̃)

R+δh(θ)
,

which yields the following asymptotic behaviour as δ → 0:

n̂(θ)∼ êr−δ
h′(θ)

R
êθ +O(δ 2),

δ∂Ωδ
(x− x̃)∼ 1

R
δ (θ − θ̃)−δ

h(θ)
R2 δ (θ − θ̃)+O(δ 2).

Next, for δ � 1, we seek a solution of the form

Gλ
Ω(r,θ , θ̃ ∼ Gλ

Ω0(r,θ , θ̃)+Gλ
Ω1(r,θ , θ̃)δ +O(δ 2).

Upon substituting these expansions into (B.9), and collecting powers of δ , we ob-

tain the following zeroth-order and first-order problems:

Db∆Gλ
Ω0−µ

2
bλ

Gλ
Ω0 = 0, in Ω0,

B0Gλ
Ω0 =

δ (θ − θ̃)

R
, on ∂Ω0,
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and

Db∆Gλ
Ω1−µ

2
bλ

Gλ
Ω1 = 0, in Ω0,

B0Gλ
Ω1 =−

h(θ)
R

δ (θ − θ̃)

R
−B1Gλ

Ω0, on ∂Ω0,

where the boundary operators B0 and B1 are defined by

B0 ≡ Db∂r +K B1 ≡ Db

(
h(θ)∂ 2

r −
h′(θ)

R2 ∂θ

)
+Kh(θ)∂r.

The zeroth-order solution is the unperturbed disk bulk Green’s function given in

(B.6). For the problem for the leading order correction, we use linearity to decom-

pose its solution in the form

Gλ
Ω1(r,θ , θ̃) =−

h(θ̃)
R

Gλ
Ω0(r,θ , θ̃)+ G̃λ

Ω1(r,θ , θ̃),

G̃λ
Ω1(r,θ , θ̃) =

1
2πR

∞

∑
n=−∞

ãλ
1n(θ̃)Pn(r)einθ ,

(B.10)

for some coefficients ãλ
1n to be found. To determine an expression for these coeffi-

cients, we first multiply the boundary condition B0G̃λ
Ω1 =−B1Gλ

Ω0 by e−inθ , and

then integrate from 0 to 2π . This gives

1
R

(
DbP′n(R)+K)ãλ

1n(θ̃) =−
ˆ 2π

0
e−inθ B1Gλ

Ω0 dθ . (B.11)

Then, by using the differential equation satisfied by Gλ
Ω0 we calculate the right-

hand side of this expression as

ˆ 2π

0
e−inθ B1Gλ

Ω0(R,θ , θ̃)dθ =Db

ˆ 2π

0
h(θ)Gλ

Ω0rr(R,θ , θ̃)e
−inθ dθ

− Db
R2

ˆ 2π

0
h′(θ)Gλ

Ω0θ (R,θ , θ̃)e
−inθ dθ

+K
ˆ 2π

0
h(θ)Gλ

Ω0r(R,θ , θ̃)e
−inθ dθ .

(B.12)

Next, we assume that the boundary perturbation h(θ) is sufficiently smooth so that
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each of the following hold:

h(θ) =
∞

∑
n=−∞

hneinθ , h′(θ) = i
∞

∑
n=−∞

nhneinθ , h′′(θ) =−
∞

∑
n=−∞

n2hneinθ . (B.13)

This allows us to calculate the individual terms on the right-hand side of (B.12) as

ˆ 2π

0
h(θ)Gλ

Ω0rr(R,θ , θ̃)e
−inθ dθ =

1
R

∞

∑
k=−∞

P′′k (R)a
λ
k hn−ke−ikθ̃ ,

ˆ 2π

0
h′(θ)Gλ

Ω0θ (R,θ , θ̃)e
−inθ dθ =− 1

R

∞

∑
k=−∞

k(n− k)aλ
k hn−ke−ikθ̃ ,

ˆ 2π

0
h(θ)Gλ

Ω0r(R,θ , θ̃)e
−inθ dθ =

1
R

∞

∑
k=−∞

P′k(R)a
λ
k hn−ke−ikθ̃ ,

where aλ
k are the Fourier coefficients of the leading-order Green’s function, as de-

fined in (B.6). By substituting these relations into (B.12), and then using (B.11),
we determine the coefficients as

ãλ
1n(θ̃) =

∞

∑
k=−∞

âλ
n,kaλ

k hn−ke−ikθ̃ , âλ
n,k ≡−

DbP′′k (R)+KP′k(R)+
Db
R2 k(n− k)

DbP′n(R)+K
. (B.14)

In (B.14), to calculate various derivatives of Pn(R), as defined in (B.6), we make

repeated use of the identity

I′n(z) =
n
z

In(z)+ In+1(z),

to readily derive that

P′n(R) =
|n|
R

+ωbλ

I|n+1|(ωbλ R)
I|n|(ωbλ R)

,

P′′n (R) =
|n|(|n|−1)

R2 +
2|n|+1

R
ωbλ

I|n+1|(ωbλ R)
I|n|(ωbλ R)

+ω
2
bλ

I|n+2|(ωbλ R)
I|n|(ωbλ R)

.

This completes the derivation of the leading-order correction for the bulk Green’s

function, defined in (B.10).

Next, we derive a two-term approximation for the membrane Green’s function
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problem on the perturbed disk. This Green’s function satisfies

Dv∂
2
σ Gλ

∂Ω
(σ ,σ0)−µ

2
sλ

Gλ

∂Ω
(σ ,σ0)

+K2
ˆ |∂Ωδ |

0
Gλ

Ω(σ , σ̃)Gλ

∂Ω
(σ̃ ,σ0)dσ̃ =−δ (σ −σ0),

(B.15)

for 0≤ σ < |∂Ωδ |. Repeated use of the chain rule to the arc-length formula

σ(θ) =

ˆ
θ

0

(
R+δh(ϑ)

)√
1+
(

δh′(ϑ)

R+δh(ϑ)

)2

dϑ ,

gives

∂
2
σ =

1
(R+δh(θ))2 +(δh′(θ))2 ∂

2
θ −δh′(θ)

R+δh(θ)+δh′′(θ)
[(R+δh(θ))2 +(δh′(θ))2]2

∂θ .

Multiplying the membrane equation through by (R+δh(θ))2+(δh′(θ))2, writing
Dv = Dv0

(
1+ Dv1

Dv0
δ
)
, and then dividing through by R2

(
1+ Dv1

Dv0
δ
)
, we obtain the

perturbed problem

Dv0
R2 ∂

2
θ Gλ

∂Ω
(θ ,θ0)− Dv0

R2 δh′(θ) R+δ [h(θ)+h′′(θ)]
(R+δh(θ))2+(δh′(θ))2 ∂θ Gλ

∂Ω
(θ ,θ0)−

µ2
sλ

R2
(R+δh(θ))2+(δh′(θ))2

1+
Dv1
Dv0

δ

Gλ

∂Ω
(θ ,θ0)

+ K2

R2
(R+δh(θ))2+(δh′(θ))2

1+
Dv1
Dv0

δ

ˆ 2π

0

(
Gλ

Ω0(R,θ , θ̃)+δGλ
Ω1(R,θ , θ̃)+δh(θ)Gλ

Ω0r(R,θ , θ̃)
)

×Gλ

∂Ω
(θ̃ ,θ0)

√
(R+δh(θ̃))2 +(δh′(θ̃))2 dθ̃

=− 1
R2

√
(R+δh(θ))2+(δh′(θ))2

1+
Dv1
Dv0

δ

δ (θ −θ0).

To determine a two-term asymptotic solution to this problem, we expand the mem-

brane Green’s function as

Gλ

∂Ω
(θ ,θ0)∼ Gλ

∂Ω0(θ ,θ0)+δGλ

∂Ω1(θ ,θ0)+O(δ 2).

Upon substituting this expansion into the perturbed problem, and collecting powers
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of δ , we obtain the following zeroth-order and first-order problems:

M0Gλ

∂Ω0(θ ,θ0) =− 1
R δ (θ −θ0),

M0Gλ

∂Ω1(θ ,θ0) =−
(h(θ)

R −
Dv1
Dv0

) 1
R δ (θ −θ0)−M1Gλ

∂Ω0(θ ,θ0).

Here we have defined the unperturbed membrane operator M0 by

M0ψ(θ ,θ0)≡ Dv0
R2 ∂

2
θ ψ(θ ,θ0)−µ

2
sλ

ψ(θ ,θ0)+K2
ˆ 2π

0
Gλ

Ω0(R,θ , θ̃)ψ(θ̃ ,θ0)Rdθ̃ ,

and its leading-order correction M1 by

M1ψ(θ ,θ0)≡− Dv0
R3 h′(θ)∂θ ψ(θ ,θ0)−µ

2
sλ

(2h(θ)
R − Dv1

Dv0

)
ψ(θ ,θ0)

+K2(2h(θ)
R − Dv1

Dv0

)ˆ 2π

0
Gλ

Ω0(R,θ , θ̃)ψ(θ̃ ,θ0)Rdθ̃

+K2
ˆ 2π

0
Gλ

Ω1(R,θ , θ̃)ψ(θ̃ ,θ0)Rdθ̃

+K2h(θ)
ˆ 2π

0
Gλ

Ω0r(R,θ , θ̃)ψ(θ̃ ,θ0)Rdθ̃

+K2
ˆ 2π

0
Gλ

Ω0(R,θ , θ̃)ψ(θ̃ ,θ0)h(θ̃)dθ̃ .

(B.16)

The zeroth-order solution is that of the unperturbed disk and is given by (B.7).

By linearity, we then seek the solution for the leading order correction in the form

Gλ

∂Ω1(θ ,θ0) =
(h(θ0)

R −
Dv1
Dv0

)
Gλ

∂Ω0(θ ,θ0)+ G̃λ

∂Ω1(θ ,θ0), (B.17)

where G̃λ

∂Ω1(θ ,φ) now satisfies

M0G̃λ

∂Ω1(θ ,θ0) =−M1Gλ

∂Ω0(θ ,θ0).

We will represent the solution G̃λ

∂Ω1 in terms of a Fourier series as

G̃λ

∂Ω1(θ ,θ0) =
1

2πR

∞

∑
n=−∞

g̃λ
1n(θ0)einθ , (B.18)

for some coefficients g̃λ
1n(θ0) to be found. Similar to the calculation provided above
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for the perturbed bulk Green’s function, we obtain that

g̃λ
1n(θ0) = Rgλ

0n

ˆ 2π

0
e−inθ M1Gλ

∂Ω0(θ ,θ0)dθ . (B.19)

By using (B.16) we calculate the right-hand side of this expression as

ˆ 2π

0
e−inθ M1Gλ

∂Ω0(θ ,θ0)dθ =−Dv0
R3 J1n(θ0)−

2µ2
sλ

R J2n(θ0)+
µ2

sλ
Dv1

Dv0
J3n(θ0) (B.20)

+2K2J4n(θ0)− K2RDv1
Dv0

J5n(θ0)+K2RJ6n(θ0)+K2RJ7n(θ0), (B.21)

where the various integrals J1n, . . . ,J7n are defined by

J1n(θ0) =

ˆ 2π

0
h′(θ)Gλ

∂Ω0θ
(θ ,θ0)e−inθ dθ ,

J2n(θ0) =

ˆ 2π

0
h(θ)G∂Ω0(θ ,θ0)e−inθ dθ ,

J3n(θ0) =

ˆ 2π

0
Gλ

∂Ω0(θ ,θ0)e−inθ dθ ,

J4n(θ0) =

ˆ 2π

0

ˆ 2π

0
h(θ)Gλ

Ω0(R,θ , θ̃)G
λ

∂Ω0(θ̃ ,θ0)e−inθ dθ̃dθ ,

J5n(θ0) =

ˆ 2π

0

ˆ 2π

0
Gλ

Ω0(R,θ , θ̃)G
λ

∂Ω0(θ̃ ,θ0)e−inθ dθ̃dθ ,

J6n(θ0) =

ˆ 2π

0

ˆ 2π

0
G̃λ

Ω1(R,θ , θ̃)G
λ

∂Ω0(θ̃ ,θ0)e−inθ dθ̃dθ ,

J7n(θ0) =

ˆ 2π

0

ˆ 2π

0
h(θ)Gλ

Ω0r(R,θ , θ̃)G
λ

∂Ω0(θ̃ ,θ0)e−inθ dθ̃dθ .

By using the Fourier series representations for the leading-order bulk and mem-

brane Green’s functions given in (B.6) and (B.7), respectively, together with (B.13)
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for h(θ), we calculate explicitly that

J1n(θ0) =−
1
R

∞

∑
k=−∞

k(n− k)hn−kgλ
k e−ikθ0 ,

J2n(θ0) =
1
R

∞

∑
k=−∞

hn−kgλ
k e−ikθ0 ,

J3n(θ0) =
1
R

gλ
n e−inθ0 ,

J4n(θ0) =
1

R2

∞

∑
k=−∞

hn−kaλ
k gλ

k e−ikθ0 ,

J5n(θ0) =
1

R2 aλ
n gλ

n e−inθ0 ,

J6n(θ0) =
1

R2

∞

∑
k=−∞

hn−kâλ
n,kaλ

k gλ
k e−ikθ0 ,

J7n(θ0) =
1

R2

∞

∑
k=−∞

hn−kP′k(R)a
λ
k gλ

k e−ikθ0 .

Upon substituting these expressions into (B.20), and then recalling (B.19), we con-
clude that

g̃λ
1n(θ0) =gλ

n

∞

∑
k=−∞

{Dv0
R3 k(n− k)− 2µ2

sλ

R + 2K2

R aλ
k +K2âλ

n,kaλ
k +K2P′k(R)a

λ
k
}

hn−kgλ
k e−ikθ0

+ Dv1
Dv0

gλ
n
(
µ

2
sλ
−2πK2Raλ

n
)
gλ

n e−inθ0 ,

where the coefficients aλ
k are defined in (B.6). We can use the definition of the

coefficients gλ
n , as given in (B.7), to write µ2

sλ
−K2aλ

n = 1
gλ

n
− Dv0

R2 n2. In this way,

we get

g̃λ
1n(θ0) =

∞

∑
k=−∞

ĝλ
n,khn−kgλ

k e−ikθ0gλ
n +

(Dv1
Dv0
− 2h(θ0)

R

)
gλ

n e−inθ0− Dv1
R2 n2(gλ

n )
2e−inθ0 ,

where

ĝλ
n,k =

Dv0
R3 k(n+ k)+K2aλ

k
(
âλ

n,k +P′k(R)
)
.

Finally, from (B.17) and (B.18), we conclude that the first order correction for the
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membrane Green’s function is

Gλ

∂Ω1(θ ,θ0) =−h(θ0)
R Gλ

∂Ω0(θ ,θ0)+
1

2πR

∞

∑
n=−∞

∞

∑
k=−∞

ĝλ
n,khn−kgλ

k gλ
n einθ−ikθ0

− Dv1
2πR3

∞

∑
n=−∞

n2(gλ
n )

2ein(θ−θ0).
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Appendix C

Appendix for Chapter 3

C.1 Derivation of Lemma 3.3.1
Denote by III the left hand side of (3.66) and let Ryyy be any rotation matrix such that

Ryyyyyy = eeez ≡ (0,0,1)T . Since f (xxx,zzz) = f (Ryyyxxx,Ryyyzzz) and |yyy− xxx|= |Ryyyyyy−Ryyyxxx| we

immediately get

RyyyIII =
ˆ

∂Ω

eeez−Ryyyxxx
|Ryyyyyy−Ryyyxxx|2

f (Ryyyxxx,Ryyyz)dAxxx =

ˆ
∂Ω

eeez− xxx
|eeez− xxx|2

f (xxx,Ryyyzzz)dAxxx.

Since |eeez− xxx|2 = 2(1− eeeT
z xxx) for all xxx ∈ ∂Ω the z-component of the left-hand side

above is given by

eeeT
z (RyyyIII) =

1
2

ˆ
∂Ω

f (xxx,Ryyyzzz)dAxxx =
1
2

f0(|zzz|) (C.1)

To compute the x and y components of the left-hand-side we use spherical coordi-

nates and find that

eeeT
x (RyyyIII) = ReJ, eeeT

y (RyyyIII) =−ImJ, (C.2a)

where

J =−1
2

ˆ
π

0

ˆ 2π

0

e−iϕ sinθ

1− cosθ
f (xxx,Ryyyzzz)sinθdθdϕ (C.2b)
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and eeex = (1,0,0)T , eeey = (0,1,0)T , and we have used the notation

xxx = (sinθ cosϕ,sinθ sinϕ,cosθ)T , Ryyyzzz = |zzz|(sin θ̃ cos ϕ̃,sin θ̃ sin ϕ̃,cos θ̃)T .

The summation formula

Pl(xT
i x j) =

l

∑
m=−l

(l−m)!
(l +m)!

Pm
l (cosθi)Pm

l (cosθ j)eim(ϕi−ϕ j), (C.3)

then implies that

J =− 1
8π

∞

∑
l=0

l

∑
m=−l

(l−m)!
(l +m)!

flPm
l (cos θ̃)e−imϕ̃

×
ˆ

π

0

ˆ 2π

0

sin2
θ

1− cosθ
Pm

l (cosθ)ei(m−1)ϕdθdϕ,

of which only the m = 1 term is nonzero. The identity

ˆ 1

−1

√
1+ x
1− x

P1
l (x)dx =−2,

obtained using integration by parts as well as P1
l (x) =−

√
1− x2P′l (x) and Pl(1) = 1

then gives the series

J =
1
2

∞

∑
l=1

(l−m)!
(l +m)!

flP1
l (cos θ̃)e−iϕ̃ . (C.4)

Combining (C.1), (C.2), and (C.4), together with

cos θ̃ = eeeT
z
Ryyyzzz
|zzz|

= (RT
yyy eeez)

T zzz
|zzz|

= yyyT zzz
|zzz|

.

and

RT
yyy

cos ϕ̃

sin ϕ̃

0

=
1

sin θ̃
RT

yyy

(
Ryyy

zzz
|zzz|
− cos θ̃eeez

)
=

I3− yyyyyyT√
1− (yyyT zzz/|zzz|)2

zzz
|zzz|

,
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then gives (3.66).

C.2 Sign of Dynamic Terms
In this appendix we derive the inequalities (3.68) and (3.69b). To prove (3.68) we

first calculate

d
dz

(√
1− z2

∞

∑
l=1

gl

l(l +1)
P1

l (z)
)
=

∞

∑
l=1

glPl(z) = 4π

(
gmr(z)−

1
4π

g0

)
, (C.5)

where

gmr(z)≡ Gmr((
√

1− z2,0,z)T ,eeez) (C.6)

and where the first equality was obtained using

P1
l (z) =−

√
1− z2P′l (z), (C.7)

and
d
dz

[
(1− z2)

dPl

dz

]
+ l(l +1)Pl(z) = 0, (C.8)

while the second equality was obtained using (3.27b). Integrating (C.5) from −1

to z and using P1
l (−1) = 0 for all l ≥ 1 we obtain

∞

∑
l=1

gl

l(l +1)
P1

l (z) =
4π√
1− z2

ˆ z

−1

(
gmr(ξ )−

1
2

ˆ 1

−1
gmr(ζ )dζ

)
dξ ,

from which the inequality (3.68) follows by noting that gmr(z) is positive and

monotone increasing in −1 < z < 1. The sign of C(z) is similarly found by calcu-

lating

d
dz

(√
1− z2C(z)

)
= 1− f

1− f
K

Dw
g0 +

4π f
1− f

K
Dw

gmr(z)> 0,

where the inequality follows by noting that gmr > 0 together with g0 = Dw/(1−K)

and the constraint (3.7) on f and K. The inequality (3.69b) then follows by noting

that
√

1− z2C(z) = 0 at z =−1. Note in addition that C(−1) = 0 since P1
l (−1) = 0

for all l ≥ 1.
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C.3 Linear Stability of the Common Angle Solution
In this appendix we consider the linear stability with respect to the slow dynamics

of the common angle solution in Section 3.4.2 when the fuel source is given by

(3.71). When N = 2 the 2× 2 Green’s matrix G is symmetric and of constant

row-sum. It therefore admits the eigenvectors ppp± = (1,±1)T with corresponding

eigenvalues µ± respectively. Additionally the Green’s matrix G depends on the

spot locations xxx1 and xxx2 only through the quantity

ξ ≡ xxxT
1 xxx2 = sinθ1 sinθ2 cos(ϕ1−ϕ2)+ cosθ1 cosθ2, (C.9)

for which we note that when ϕ2−ϕ1 = π and θ1 = θ2 = θc

∂ξ

∂ϕ1
=− ∂ξ

∂ϕ2
= 0,

∂ξ

∂θ1
=

∂ξ

∂θ2
=−sin2θc. (C.10)

Substituting

SSS =
S1 +S2

2
ppp1 +

S1−S2

2
ppp2, (C.11)

into the NAS (3.43b) and left-multiplying by pppT
1 and pppT

2 gives

S1 +S2−2Sc = 0, (C.12)

(ν−1 +2πµ−)(S1−S2)+χ(S1, f )−χ(S2, f )− vE(xxx1)− vE(xxx2)

Dw
√

Dv
= 0. (C.13)

Differentiating the first equation with respect to any parameter z ∈ {ϕ1,ϕ2,θ1,θ2}
we find that

∂S2

∂ z
=−∂S1

∂ z
.

On the other hand, differentiating the second equation with respect to z and assum-

ing that

A2(S1,S2)≡ ν
−1 +2πµ−+

χ ′(S1, f )+χ ′(S2, f )
2

6= 0, (C.14)

we obtain
∂S1

∂ z
=

∂vE (xxx1)
∂ z − ∂vE (xxx2)

∂ z

2Dw
√

DvA2(S1,S2)
−π

S1−S2

A2(S1,S2)

∂ µ−
∂ z

. (C.15)
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Equation (3.73a) implies that vE(xxx1) and vE(xxx2) are functions only of cosθ1 and

cosθ2 respectively. Therefore when ϕ2−ϕ1 = π , θ1 = θ2 = θc, and S1 = S2 = Sc

we obtain
∂Si

∂ϕ j
= 0, (C.16a)

for all i, j ∈ {1,2}, and

∂S1

∂θ1
=−∂S2

∂θ1
=

1
2Dw
√

DvA?(Sc)

∂vE(xxx1)

∂θ1

∂S2

∂θ2
=−∂S1

∂θ2
=

1
2Dw
√

DvA?(Sc)

∂vE(xxx2)

∂θ2
,

where A?(Sc) is given by (3.56) and for which we note µ? = µ− when N = 2. Note

that from (3.73a), (C.7), and (3.73d) we calculate

∂vE(xxx)
∂θ

=
E0

4π

∞

∑
l=1

glη
l

l(l +1)
(−sinθP′l (cosθ)) =

E0

4π
CE(cosθ), (C.17)

which vanishes at θ = 0,π and is strictly negative otherwise. In particular we

deduce that

∂S1

∂θ1
=−∂S2

∂θ1
=

∂S2

∂θ2
=−∂S1

∂θ2
=

E0CE(cosθc)

8πDw
√

DvA?(Sc)
. (C.18)

Using (C.16a) and (C.18) together with (3.81) we calculate the Jacobian matri-

ces of the dynamics (3.77) evaluated at the common angle solution

∂ (F1,F2)

∂ (θ1,θ2)
=

(
0 0

0 0

)
,

∂ (G1,G2)

∂ (ϕ1,ϕ2)
GGG =

(
0 0

0 0

)
, (C.19)

as well as
∂ (F1,F2)

∂ (ϕ1,ϕ1)
=

ScC(cos(2θc))sinθc

2sin(2θc)

(
−1 1

1 −1

)
, (C.20)
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and

∂ (G1,G2)

∂ (θ1,θ2)
=
(1− K

1− f )ScCE(cosθc)C(cos2θc)

4DwA?(Sc)

(
−1 1

1 −1

)

− ScC′(cos2θc)sin2θc

2

(
1 1

1 1

)

−
(1− K

1− f )ScC′E(cosθc)sinθc

Dw

(
1 0

0 1

)
.

(C.21)

In particular the Jacobian ∂ (FFF ,GGG)/∂ (ϕϕϕ,θθθ) is block diagonal and it therefore suf-

fices to consider the stability with respect to ϕϕϕ and θθθ separately. Since

det
(

∂ (F1,F2)

∂ (ϕ1,ϕ1)

)
= 0, tr

(
∂ (F1,F2)

∂ (ϕ1,ϕ1)

)
=−ScC(cos(2θc))sinθc

sin(2θc)
< 0, (C.22)

we deduce that ∂ (F1,F2)/∂ (ϕ1,ϕ1) has one neutral zero eigenvalue correspond-

ing to rotational invariance and one negative eigenvalue. In particular the sta-

bility of the common angle solution is determined solely by the eigenvalues of

∂ (G1,G2)/∂ (θ1,θ1) which we calculate explicitly by noting that (1,1)T and (1,−1)T

are its eigenvectors with corresponding eigenvalues

d+ =− E0

4π
√

Dv

(
C′(cos2θc)sin2θc

1− K
1− f

+
C′E(cosθc)sinθc

Dw

)
, (C.23a)

d− =− E0

4πDw
√

Dv

(
C(cos2θc)CE(cosθc)

2A?(Sc)
+C′E(cosθc)sinθc

)
, (C.23b)

where we have used (3.75) for Sc. Note that d+ corresponds to perturbations where

θ1 and θ2 both increase or decrease synchronously. As a result the numerically sup-

ported observation that Gi(θ ,θ)≶ 0 when θ ≷ θc for i = 1,2 implies that d+ < 0.

Therefore the common angle solution can only be destabilized by increasing one

polar angle and decreasing the other. Specifically, the common angle solution is

linearly unstable with respect to a tilt instability when d− > 0 and is stable oth-

erwise. The corresponding tilt instability threshold is obtained by setting d− = 0

which we note is equivalent to (3.88).
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Appendix D

Appendix for Chapter 4

D.1 Large λI Asymptotics of Fy0(iλI)

In this appendix we determine some key properties of Fy0(λ ) defined in (4.36).

Recalling (4.37), in Figure D.1a we plot Fy0(0) versus y0 ≥ 0. Next we calculate

the limiting behaviour of Fy0(iλI) as λI → ∞. First, we let (Ly0 − iλI)
−1wc(y+

y0)
2 = ΦR + iΦI where ΦR and ΦI solve

Ly0ΦR +λIΦI = wc(y+ y0)
2, Ly0ΦI−λIΦR = 0, (D.1)

with the boundary conditions Φ′R(0) = Φ′I(0) and ΦR,ΦL → 0 as y→ ∞. Taking

λI � 1 and assuming that y = O(1) we obtain

ΦI(y)∼
1
λI

wc(y+y0)
2, ΦR(y)∼

1
λI

Ly0ΦI =
1

λ 2
I

(
2w′c(y+y0)

2+wc(y+y0)
2).

If y0 > 0 then Φ′R(0) = 0 and Φ′I(0) = 0 are not satisfied and we must therefore

consider the boundary layer at y = 0. Setting z = λ
1/2
I y we consider the inner

expansion ΦR ∼ Φ̃R(z) and ΦI ∼ Φ̃I(z) where Φ̃I satisfies

d4Φ̃I

dz4 + Φ̃I =
1
λI

wc(y0)
2 z > 0;

dΦ̃I

dz
=

d3Φ̃I

dz3 = 0, z = 0,
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Figure D.1: (a) Plot of Fy0(0) versus the shift parameter y0. (b) and (c) Real
and imaginary parts of Fy0(iλI) for select values of y0 ≥ 0. The dashed
lines indicate the λI � 1 asymptotics.

and must be matched to the outer, y = O(1), solution through the far-field be-

haviour

Φ̃I ∼
1
λI

wc(y0)
2,

d2Φ̃I

dz2 ∼
1

λ 2
I

(
2w′c(y+ y0)

2 +wc(y+ y0)
2), z→ ∞.

It is clear that the leading order solution is Φ̃I(z) ∼ λ
−1
I wc(y0)

2. The constant

behaviour of ΦI at the boundary layer therefore does not contribute to the leading

order behaviour of the integral

ˆ
∞

0
wc(y+ y0)ΦI(y)dy∼ λ

−1
I

ˆ
∞

0
wc(y+ y0)

3dy, λI � 1.

Moreover, multiplying the right equation in (D.1) by wc(y+ y0) and integrating

we calculate
ˆ

∞

0
wc(y+ y0)ΦR(y)dy =

1
λI

(
w′c(y0)ΦI(0)+

ˆ
∞

0
ΦILy0wc(y+ y0)dy

)
∼ 1

λ 2
I

(
w′c(y0)wc(y0)

2 +

ˆ
∞

0
wc(y+ y0)

4dy
)
,
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for λI� 1 where we have used Ly0wc(y+y0) = wc(y+y0)
2. In summary, we have

the large λI asymptotics

Fy0(iλI)∼
1

λ 2
I

w′c(y0)wc(y0)
2 +
´

∞

0 wc(y+ y0)
4dy´

∞

0 wc(y+ y0)2dy
+

i
λI

´
∞

0 wc(y+ y0)
3dy´

∞

0 wc(y+ y0)2dy
, λI� 1.

(D.2)

Note that the real part changes from positive to negative as y0 exceeds y0 ≈ 1.0487.

In Figures D.1b and D.1c we plot the real and imaginary parts of Fy0(iλI) respec-

tively for select values of y0. In addition, we have included the large λI asymptotics

which indicate close agreement for moderately large values of λI .

D.2 Numerical Support for Stability Conjecture
In this appendix we provide numerical support for the conjecture that the shifted

NLEP (4.44) has a stable spectrum when µ > µc(y0) by numerically calculating the

dominant eigenvalue of the NLEP for 0≤ y0 ≤ 1.5 and 0≤ µ ≤ 10. The numerical

calculation of the spectrum was performed by truncating the domain 0 < y < ∞

to 0 < y < 20 and discretizing it with 600 uniformly distributed points. Then, we

used a finite difference approximation for the second derivatives and a trapezoidal

rule discretization for the integral term to approximate the NLEP (4.44) with a

discrete matrix eigenvalue problem. We then numerically calculated the dominant

eigenvalue of matrix by using the eig function in the Python scipy.linalg library

for our numerical computation of the dominant eigenvalue. In Figure D.2a we

plot Reλ0 versus y0 and µ . We observe the real part of the dominant eigenvalue

is negative when µ exceeds the threshold µc(y0). Additionally, in Figure D.2b

we plot Λ0−Re(λ0) for the same range of y0 and µ values. We observe that this

difference is non-negative which suggest that Reλ0 ≤ Λ0.

D.3 Stability of Asymmetric Two-Boundary Spike
Pattern when A = 0

Previous results on the stability of asymmetric two spike equilibrium solutions of

(4.2) when A = 0 have focused exclusively on interior multi-spike solutions [104].

To compare the A = B = 0 theory with our results obtained in Examples 2-4 we
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(a) (b)

Figure D.2: (a) Plot of the real part of the dominant eigenvalue of the shifted
NLEP (4.44) versus shift parameter y0 and multiplier µ . The dotted red
line corresponds to the critical threshold µc defined in (4.56) and the
solid dark line is the zero-contour of Reλ0. (b) Plot of the difference
between dominant eigenvalues of Ly0 and the NLEP (4.44).

include here a summary of the stability of an asymmetric two-spike solution where

one spike concentrates at x = 0 and the other concentrates at either x = 1 or in the

interior 0 < x < 1. In both cases the NLEP (4.30) with A = 0 can be written as

L0φφφ −2wc(y)2

´
∞

0 wc(y)Eφφφdy´
∞

0 wc(y)2dy
= λφφφ , (D.3)

where for two boundary spikes we let

E = Ebb ≡

(
cothω0 tanhω0l cschω0 tanhω0(1− l)

cschω0 tanhω0l cothω0 tanhω0(1− l)

)
, (D.4)

and in the case of one boundary and one interior spike we let

E = Ebi ≡

(
cothω0 tanhω0l 2cschω0 sinhω0

1−l
2

cschω0 tanhω0l coshω0
1−l

2 2cschω0 coshω0
1+l

2 sinhω0
1−l

2

)
.

(D.5)

It is then straightforward to verify that σ = 1 is an eigenvalue of both matrices Ebb
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Figure D.3: (a) NLEP multipliers for a boundary-boundary and boundary-
interior configuration. (b) Plot of l versus D determining asymmetric
boundary-boundary and boundary-interior spike patterns. Solid (resp.)
dashed lines indicate the two-spike pattern is linearly stable (resp. un-
stable) with respect to competition instabilities.

and Ebi. The remaining eigenvalue in each case is then given by the determinant.

By diagonalizing E the NLEP (D.3) can therefore be written as (4.44) with µ = 2

as well as with µ = 2detEbb and µ = 2detEbi for the boundary-boundary and

boundary-interior cases respectively. Since the A = B = 0 stability theory implies

that the NLEP (4.44) is stable if and only if µ > 1 [107] we immediately deduce

that the µ = 2 modes are stable in both the boundary-boundary and boundary-

interior cases. To determine the stability of the remaining modes we explicitly

calculate

detEbb = tanhω0l tanhω0(1− l), detEbi = 2
tanhω0l sinhω0

1−l
2 sinhω0

1+l
2

sinhω0
.

(D.6)

Finally, for the boundary-boundary and boundary-interior cases we solve (4.76)

and (4.89) for D = D(l) respectively and the resulting values of 2detEbb and

2detEbi for 0 < l < 1 are shown in Figure D.3a. In particular the asymmetric

pattern with two boundary spikes is always linearly unstable, while the pattern

with one boundary and one interior spike has a region of stability (with respect to
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the O(1) eigenvalues). In Figure D.3b we plot l = l(D) (cf. Figures 4.7 and 4.10)

for both two-spike configurations, indicating where the pattern is stable (solid line)

and unstable (dashed line).
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