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Abstract

High-Level Synthesis (HLS) tools improve hardware designer productivity

by enabling software design techniques to be used during hardware devel-

opment. While HLS tools are effective at abstracting the complexity of

hardware design away from the designer, producing high-performance HLS-

generated circuits still generally requires awareness of hardware design prin-

ciples. Designers must often understand and employ pragma statements at

the software level or have the capability to make adjustments to the design

in Register-Transfer Level (RTL) code.

Even with designer hardware expertise, the HLS-generated circuits can

be limited by the algorithms themselves. For example, during the HLS

flow the delay of paths can only be estimated, meaning the resulting circuit

may suffer from unbalanced computational distribution across clock cycles.

Since the maximum operating frequency of synchronous circuits is deter-

mined statically using the worst-case timing path, this may lead to circuits

with reduced performance compared to circuits designed at a lower level of

abstraction.

In this thesis, we address this limitation using Syncopation, a performance-

boosting fine-grained timing analysis and adaptive clock management tech-

nique for HLS-generated circuits. Syncopation instrumentation is imple-
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mented entirely in soft logic without requiring alterations to the HLS-synthesis

toolchain or changes to the FPGA, and has been validated on real hard-

ware. The key idea is to use the HLS scheduling information along with the

placement and routing results to determine the worst-case timing path for

individual clock cycles. By adjusting the clock period on a cycle-by-cycle

basis, we can increase performance of an HLS-generated circuit. Our ex-

periments show that Syncopation improve performance by 3.2% (geomean)

across all benchmarks (up to 47%). In addition, by employing targeted syn-

thesis techniques called Enhanced Synthesis along with Syncopation we can

achieve 10.3% performance improvement (geomean) across all benchmarks

(up to 50%).
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Lay Summary

Specialized tools can reduce the time and effort to design circuits. How-

ever, these tools may produce slow circuits because some design decisions

are based on estimates of path timing in the final design, which cannot be

determined in advance. Typically, low circuit performance is due to a slow

clock frequency, as the clock must be slow enough for the longest paths

in the design. To improve the performance of circuits developed with these

tools, we propose a method of recovering performance by adjusting the clock

frequency in a fine-grained manner. This allows any design to operate faster

without requiring additional compilation time for circuit designers.
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Preface

The work presented in this thesis was originally published in part as a short

paper in the 2020 International Conference on Field-Programmable Logic

and Applications (FPL)1. Section 4.5 elaborates upon the Enhanced Syn-

thesis technique, which was initially proposed in experiments conducted by

E. Roorda. The implementation of Enhanced Synthesis presented in this

thesis was extended, implemented, and evaluated by Kahlan Gibson.

All the research, implementation, and experimentation presented in this

thesis was primarily conducted by Kahlan Gibson. This research was con-

ducted under the supervision of Dr. S. Wilton, who provided editorial sup-

port for the publication. Additional inspiration, guidance, and editorial

support was provided by D. H. Noronha, who co-authored the publication.

Syncopation is available as an open-source tool online at https://github.

com/kahlangibson/Syncopation.

1K. Gibson, E. Roorda, D. H. Noronha, and S. Wilton. Syncopation: An Adaptive
Clock Management Technique for HLS-Generated Circuits on FPGA. In 2020 30th Inter-
national Conference on Field Programmable Logic and Applications (FPL), 2020.
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Chapter 1

Introduction

As Field-Programmable Gate Array (FPGA) architecture and Computer-

Aided Design (CAD) tools evolve, designers are using FPGAs to implement

larger and more complex circuits than ever before. Many of these circuits

have tight timing requirements and achieving timing closure is time consum-

ing and often requires extensive optimization. For expert hardware design-

ers with familiarity with Register-Transfer Level (RTL)-based design flows,

techniques such as pipelining and strategically imposing timing constraints

can help achieve timing closure. Increasingly, non-domain expert designers

are using High-Level Synthesis (HLS) tools such as LegUp, which automat-

ically transform a software-oriented language (e.g. C Language) to hard-

ware [10]. For these designers, optimization methods requiring hardware

knowledge may not be feasible, either because the designer does not have

the expertise or because the effort to effectively use these techniques defeats

the purpose of accelerating the design flow using HLS. For this reason, recent

work has focused on improving tools to automatically optimize circuit per-

formance, power, and area in an attempt to achieve custom-implementation

results without requiring additional designer expertise.
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1.1 Motivation

In the HLS toolflow, RTL code is generated using estimated delays for in-

dividual paths. The RTL code is then synthesized by place and route tools

which attempt to balance path lengths, often by giving preference to timing-

critical nets. The degree of path balancing achievable by synthesis tools is

limited without changing the scheduling decisions made by the HLS tool,

leading to a longer-than-necessary clock period.

To demonstrate this and to motivate our technique, we synthesize sev-

eral CHStone benchmark circuits [51] using the LegUp open source HLS

tool [10] and use Intel Quartus Pro to perform placement, routing, and tim-

ing analysis. For each implementation, we profiled the design to determine

the minimum clock period broken down by circuit state, and then deter-

mined the number of cycles across execution spent in each state. Fig. 1.1

shows the results of this experiment for the adpcm benchmark.

For the adpcm benchmark, the critical path delay is close to 15 ns.

However, only a small proportion of execution time is spent in states which

exercise this path. The vast majority of execution time is spent in states

in which the longest exercised path is at least 30% faster. This means that

although the operating frequency of this circuit would normally be estimated

as 64 MHz, this circuit could operate with much lower latency if we could

tune the clock on a cycle-by-cycle basis according to the requirements of

the active state. This would effectively increase the operating frequency to

98 MHz.
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Figure 1.1: Number of Cycles Across Execution Spent in States with Various
State Delays for the adpcm CHStone Benchmark

1.2 Key Idea

In this thesis, we present Syncopation, a technique to recover lost execu-

tion time due to path length variation after placement and routing2. The

key idea is to use Adaptive Clock Management (ACM), in which the clock

frequency is adjusted on a cycle-by-cycle basis based on the needs of the

current circuit state. This is made possible by leveraging three observa-

tions. First, computational path delay variations exist across state machine

states. Second, in any circuit, the output of all paths are not required

in every cycle and only paths that compute scheduled instructions are re-

quired to meet timing in each circuit state. The clock period does not need

to accommodate timing for paths which are not active in a given circuit

state. Finally, HLS-generated circuits are particularly amenable to ACM

2In music, syncopation is the temporary displacement of a beat that disrupts the
expected rhythm
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techniques as HLS tools automatically generate instruction schedules which

identify paths that are important for each state, therefore requiring no ad-

ditional time to identify the relevant paths for each state. By combining

the information from the detailed instruction schedules with Static Timing

Analysis (STA) results for each path, we can identify the minimum clock

period required on a state-by-state basis.

1.3 Contributions

This paper describes and evaluates our technique in combination with LegUp

HLS and Intel Quartus Pro software. Specifically, we make the following

contributions:

1. We implement a fine-grained adaptive clock using a dynamic clock

generator based on [40] and a memory-based lookup controller system.

The clock generator is capable of producing a glitch-free global clock

with a different clock period in every cycle.

2. We propose a method for fine-grained static timing analysis. This

method uses the schedule generated by the HLS tool to determine

which values are computed in each circuit state, at the cost of using

synthesis directives to prevent register optimization during place and

route. The adaptive clock controller is programmed with path-length

data and achieves a 3.2% increase in performance on average (up to

47%).

3. We investigate integrating the results of fine-grained STA with com-

4



mercial timing-driven place-and-route tools by automatically generat-

ing SDC files of timing constraints used in an additional synthesis pass

to further enhance performance. We obtain a 10.3% increase in per-

formance on average (up to 50%) without altering the place-and-route

algorithms.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 presents

relevant background on FPGA tools, including static timing analysis and

high-level synthesis. Chapter 3 summarizes common techniques to improve

performance in circuits, both in general-purpose processors and custom ap-

plications. Chapter 4 details our technique and describes the additional

hardware required to implement the Syncopation clock management strat-

egy. Chapter 5 presents experimental results which show the impact of

applying Syncopation to a set of benchmark circuits.

5



Chapter 2

Background

Designers selecting a computing platform consider tradeoffs between pro-

grammability, performance, and cost. On one end of the spectrum, Central

Processing Units (CPUs) offer a highly programmable platform capable of

executing any software, but may suffer in performance due to (1) the lack

of customized logic optimized for a specific application and (2) the assump-

tion of a sequential compute paradigm. On the other end of the spectrum,

fully-custom Application-Specific Integrated Circuits (ASICs) are not gen-

erally programmable, and instead are designed to maximize performance

(minimize latency, maximize throughput) to complete a specific task. For

low-to-medium volume applications, the cost of using a device fabricated

at scale, such as a CPU, is significantly lower than the costs of developing

a custom-designed ASIC. At these lower volumes, the non-recurring ASIC

development costs (including engineering development, fabrication, and val-

idation) make fully-custom solutions economically unfavourable. In high-

volume applications, the cost of ASIC development is offset by the volume

produced and sold, making fully-custom applications more appealing.

In applications which require higher performance at volumes not suffi-

cient to offset the initial design costs, FPGAs provide a platform to develop

6
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Figure 2.1: The Performance-Programmability Computing Landscape at
Low Volumes.

custom solutions at a lower price-point. FPGAs are highly programmable

arrays of gates which are mass fabricated, eliminating one-time engineering

costs. Since FPGAs are programmed to implement circuits at the gate level

and can be reprogrammed for testing without waiting for fabrication, FP-

GAs offer hardware designers a unique opportunity to quickly design high

performance accelerators at a lower cost compared to ASICs. Due to these

advantages, FPGAs have become a common technology in consumer devices

and high performance applications in big data, networking, and artificial in-

telligence. In recent years, FPGA instances have become a standard feature

in major cloud computing infrastructures (including Amazon AWS [6] and

Microsoft Azure [41]), such as the latest 10nm process Intel Agilex FPGAs

designed specifically for datacenter use [26]. Widespread utilization of FP-

GAs has been bolstered by the improvement of development environments

7



and tools such as HLS, which strives to make programming FPGAs acces-

sible to designers without hardware design experience.

Fig. 2.1 describes the computational platform landscape, including Graph-

ics Processing Units (GPUs), which are not discussed further here. CPUs

occupy the low-cost, low-performance, high-programmability corner of the

landscape. ASICs occupy the high-cost, high-performance, low-programmability

corner. FPGAs combine these characteristics into a package which provides

specialized compute desired for high performance applications at a lower

cost than ASIC development and in a platform that can be reprogrammed

when needed.

FPGAs development and implementation quality are highly dependent

on the tools and methodology provided by commercial vendors. Intel [2] and

Xilinx [5] have the largest market share, followed by a small number of other

companies including Achronix Semiconductor [1], Lattice Semiconductor [3],

and Microsemi Corporation [4]. Each company’s FPGAs are programmed

using a tightly coupled closed-source toolflow. The toolflows use intimate

knowledge of the FPGA architecture as well as circuit timing information to

synthesize a designer’s description of a circuit into a gate-level implementa-

tion to generate a bitstream which is used to populate memories, implement

logic, and connect specified wires on the FPGA device. In addition to re-

alizing the designer’s circuit description using device resources, synthesis

tools are responsible for fine-tuning the circuit implementation. Given a

behavioural description of a circuit, the synthesis tool should implement the

circuit on the FPGA device to minimize area, latency, and power utilization.

Since there are many ways to implement a given circuit on FPGA resources,

8



determining the best implementation is a complicated problem.

The complexity of determining a high-quality implementation is further

complicated when designers choose to use HLS tools. HLS tools enable de-

signers to describe the operation of their circuit using a high-level software

language, enabling faster development and abstracting away the hardware-

level details. However, the high-level description does not explicitly define

the circuit operation and leaves even more implementation details to the

tools to determine. The algorithms which transform high-level software lan-

guages into circuits may be heuristic or stochastic in nature to encourage

design space exploration, and significant research effort has been expended

to improve the quality of HLS-generated circuits while minimizing the hard-

ware knowledge required by designers.

This chapter presents the background information relevant to this thesis.

It begins with an overview of static timing analysis and how timing infor-

mation is used to guide circuit implementation in synthesis tools. Then, it

discusses high-level synthesis tools and how they utilize how timing infor-

mation to generate hardware descriptions from software algorithms.

2.1 Static Timing Analysis

FPGA devices consist of an array of programmable “blocks” which can be

wired together to form an arbitrary circuit. The wiring between blocks

consists of a routing “fabric” of switch blocks to connect required gates

together. The blocks on an FPGA include hardened arithmetic units, I/O

blocks, on-chip memories, routing switch blocks, and generic programmable

9



blocks (Adaptive Logic Modules (ALMs) in the Intel vernacular [24]).

To design circuits using an FPGA, hardware designers write Hardware

Description Language (HDL) code (such as Verilog) which describes circuit

behaviour. Then, specialized vendor tools (such as Intel’s Quartus) syn-

thesize the code into a circuit implementation which maps onto the FPGA

resources. Synthesis consists of multiple stages, including netlist genera-

tion, technology mapping, clustering, placement, and routing, as shown in

Fig. 2.2. During netlist generation, the Verilog is transformed into a gate-

level description of the circuit. Then, technology mapping transforms groups

of gates in the netlist into components available on the FPGA, such as N -

input Lookup Tables (LUTs) (N -LUTs). Then, the N -LUTs are clustered

to encourage highly connected sections of the circuit to be within the same

logic block cluster on the chip (to reduce latency and routing congestion).

Finally, the N -LUT contents are assigned to specific ALMs on the FPGA,

and routing is performed to make connections between the ALMs.

To evaluate the performance of a circuit implementation, STA measures

each path in the circuit to determine whether it meets timing requirements.

Additionally, the longest path (critical path) is recorded to determine the

maximum operating frequency, since the clock period must be long enough

to accommodate the timing of the longest path. The clock frequency de-

termined during STA determines the performance of the design, as higher

frequency circuits have lower latency. STA must be performed after synthe-

sis for an accurate result, as the specific implementation produced by the

tool directly impacts the critical path delay.

Although STA identifies the critical path of the post-synthesis circuit, it
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Figure 2.2: The LegUp high-level synthesis flow.

is desirable to use timing information throughout synthesis. This technique

is referred to as Timing-Driven Synthesis, which incorporates timing infor-

mation into the algorithms to continuously perform optimizations aimed at

reducing the critical path of the circuit. A simple example of a non-timing-

driven clustering algorithm is VPack [7], which attempts to efficiently cluster

the design to have high utilization of physical resources while minimizing sig-

nal latency. The VPack clustering algorithm attempts to cluster ALMs to

meet the following goals:

1. Minimize the total number of ALM clusters used on chip, to encourage

high cluster utilization.

2. Minimize the number of inter-cluster connections used in the design,
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since these wires have longer latency.

In VPack, an unclustered ALM in the design with the most inputs is

selected as the “seed”, or first ALM, in a cluster. Then, ALMs with the

most shared inputs to the current cluster population are iteratively added

to the cluster until no further packing into the cluster is possible.

On the other hand, a timing-driven clustering algorithm, such as T-

VPack [37], prioritizes clustering of the critical path by selecting an unclus-

tered ALM on the critical path with the most inputs as the seed for the

cluster. Additionally, T-VPack uses more complex selection criteria when

adding to the cluster. In particular, ALMs will prioritized for cluster ad-

dition if they (1) share many inputs with the current population, (2) are

close in connectivity to the critical path, and (3) are involved in multiple

timing-critical paths. Adding timing awareness to clustering incentivizes

the implementation of solutions for which the critical path spans the fewest

number of clusters.

Another target for timing-driven algorithms is to attempt to balance

path-lengths such that the amount of compute taking place in each clock

period fully utilizes the time available in each cycle. However, there are

limits on how even the path lengths may be due to inherent limitations of

the tools and FPGA architectures. First, the circuit description is explic-

itly defined at the RTL level, and significant changes to when computations

are being performed are not desirable. For example, the synthesis tools are

not given the ability to broadly reschedule large numbers of operations in

order to improve circuit performance. For this reason, the first performance

12



optimizations are typically performed by hardware designers at the RTL

level. Second, the granularity of synchronization elements and delay differ-

ences in paths through elements such as routing switch blocks on FPGAs

makes producing precise path lengths difficult. While ASIC designers may

manually lay out gates and wires to achieve very similar path delays, the

synthesis tools for FPGAs are limited by the availability of the remaining

resources to achieve matching path lengths. Finally, synthesis, place and

route, and STA are time-consuming, and calculating timing for all paths

would cause intractable increases in compilation time. To reduce synthesis

run-time, tools use timing estimates and focus optimizations primarily on

the few most-critical paths, unless specifically incentivized to reduce timing

for all paths.

2.2 High-Level Synthesis

HLS is the process of converting high-level software language code into a cir-

cuit which implements the described algorithm. HLS tools reduce the hard-

ware knowledge required to use FPGAs as general acceleration platforms,

increases designer productivity, and boosts debug productivity. However,

the level of abstraction that makes HLS so attractive also removes much of

the control designers have over the quality of the final circuit implementation

and may lead to longer critical paths compared to what may be possible with

RTL-oriented design techniques. Details such as the schedule of instructions

and computations in the datapath are removed from the designer’s control

and are left to the discretion of the HLS tool, unless the designer has suffi-
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cient experience to change the code at the Verilog level. There are multiple

stages to the HLS toolflow, all of which have unique opportunities to influ-

ence the final outcome of the synthesis flow.

At the input to the HLS flow, depicted in Fig. 2.2, the tool takes the

high-level behavioural description of the algorithm and information about

available hardware resources to generate RTL which describes the software.

To generate the RTL, the tool generally completes the following steps:

1. Compilation of the high-level code to a formal representation, includ-

ing basic optimizations

2. Hardware resource allocation

3. Instruction Scheduling

4. Binding computations to functional units (multipliers, dividers)

5. Binding variables to storage elements (registers or memories)

6. Binding data transfers to buses

7. Generate RTL description

In each of these steps, there are opportunities to improve circuit perfor-

mance. In particular, the scheduling of instructions can directly influence

the critical path length. The challenge is that, instruction scheduling at the

HLS level can only use rough timing estimates to inform decisions, as no

information about the final implementation is available yet.

Consider the instructions provided in Program 2.1. An approximate de-

lay for each computation is provided as an example. There are multiple
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Program 2.1 A simple example program written in an assembly-like lan-
guage.
main:

1 add r3, r1, r2 # add: delay 2

2 sub r4, r3, r1 # sub: delay 2

3 add r5, r4, r2 # add: delay 2

4 sub r6, r1, r5 # sub: delay 2

5 mul r7, r3, r6 # mul: delay 10

6 mul r8, r5, r6 # mul: delay 10

7 add r9, r7, r8 # add: delay 2

8 add r0, r9, r1 # add: delay 2

State 1
Instructions 1-4

Delay: 8

State 2
Instructions 5-6

Delay: 10

State 3
Instructions 7-8

Delay: 4

Figure 2.3: Program 2.1, scheduled into states.

ways to schedule these computations into states. We assume this code seg-

ment is part of a larger algorithm, and minimizing the critical path length

of this code segment is critical for circuit performance. There are two goals

to consider scheduling these instructions. First, we would like to minimize

the longest path in a single state. Since multiplication is typically slower

than addition, we are limited by the delay of the multiply instructions on

lines 5-6, which can be parallelized. No other instructions can be added

to this state without increasing the path length. Second, we would like to

minimize the total number of states. We can combine instructions 1-4 and

instructions 7-8 into two other states without increasing the critical path

length. The proposed schedule is shown in Fig. 2.3.

Although Fig. 2.3 meets our scheduling goals, we still have path length
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variation between our states, resulting in 27% of the program’s execution

time being unutilized due to short computational paths. Although this

example is simple, it is clear how the scheduling problem is complicated for

HLS tools to solve without significant designer effort either at the RTL level

or through the use of compiler directives. ACM techniques forgo the need

for this extra effort and can reduce the underutilized compute time.
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Chapter 3

Related Work

At the RTL level, hardware designers can carefully tune circuits to max-

imize circuit operating frequency without introducing erroneous computa-

tion. However, modern synthesis tools have been designed to automatically

perform circuit tuning to make hardware design faster and more accessible.

In this section, we introduce multiple approaches in recent work to auto-

mate improved circuit performance through multiple stages of the synthesis

toolflow, including circuit-level optimizations, HLS pass optimizations, and

clocking schemes.

3.1 Pipelining and Retiming

An RTL description of a circuit describes operation on a state-by-state basis.

Operations occurring in each state are scheduled such that data dependen-

cies and timing requirements are satisfied. When these scheduling decisions

are made by a hardware designer writing RTL, the designer can carefully

optimize the code to achieve a target performance. Once the RTL is writ-

ten, there are few opportunities for automated tools to further optimize the

circuit implementation since they lack knowledge of the overall operation.

However, pipelining and retiming can be automatically employed in syn-
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10 ns
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Computation A
10 ns

Figure 3.1: Pipelining some computations to balance path delays.

thesis tools as they often do not require significant changes to the schedule of

operations as described in the RTL. Fig. 3.1 and Fig. 3.2 depict examples of

pipelining and retiming simple circuits. Propagation delays have been arbi-

trarily assigned between the registered stages indicated as flip-flops, which

could be due to scheduled computations or data transfers over wires. In

Fig. 3.1, there are two combinational components (labelled A and B) which

are connected sequentially. Each component takes some amount of compu-

tational time to produce a result. In this case, the compute times are 10

ns each, for a total path delay of 20 ns. If this path is the critical path of

the circuit, the maximum frequency the circuit can operate at is 50 MHz.

Pipelining can increase the maximum frequency by adding an additional reg-

ister stage to break up this path, as shown in the second path in Fig. 3.1. In

this circuit, the path has been broken up by an additional register into two
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Figure 3.2: Retiming some computations to balance path delays.

paths with 10 ns delays, increasing the maximum frequency of the circuit to

100 MHz.

In Fig. 3.2, retiming is performed to balance out paths and reduce the

critical path length without adding additional registers. In this circuit, there

are two paths consisting of combinational logic seperated by a register. Path

A is the critical path of the circuit with a delay of 22 ns, and Path B has

a shorter delay of 18 ns. The maximum operating frequency due to Path A

is 45 MHz. It is possible that some of the computation that is performed

in Path A could be moved to Path B to improve circuit performance. In

Fig. 3.2, retiming is performed to balance Path A and Path B. The new paths

now have delays of 20 ns each, and the new maximum circuit frequency is

50 MHz.

Modern FPGA tools support automated pipelining and retiming in syn-

thesis. For example, Intel’s Hyperflex Architecture in the top-of-the-line

Stratix 10 and Agilex devices and Quartus Pro allow users to enable au-
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tomated pipelining and retiming [24]. Although leveraging the fine-grained

registered architecture in these devices can improve circuit performance,

finding appropriate paths can increase synthesis time due to added com-

plexity. Furthermore, not all circuits are amenable to these optimizations

at the synthesis stage. For HLS-generated circuits in particular, academic

research has proposed leveraging these device architectures to improve tim-

ing. In particular, [12] demonstrated improved retiming techniques in Intel

Hyperflex devices. Additionally, changes to the loop pipelining algorithms

in HLS tools have been shown to increase circuit throughput [15]. These

methods require changes to HLS algorithms, and may increase complexity

of the tools or increase compilation time. Unlike previous work, we do not

propose changes to the HLS or commercial synthesis algorithms, and Syn-

copation does not rely on a specific FPGA architecture. Instead, we exploit

the path imbalances which persist in HLS-generated circuits despite these

algorithmic improvements. In fact, Syncopation could be used to further

improve previous work by exposing slack that was not recovered through

pipelining and retiming.

3.1.1 Clock Skew Scheduling

Clock Skew Scheduling (CSS) is a technique for achieving performance-

boosting path balancing comparable to retiming, but is implemented by

intentionally inserting clock skew instead of physically moving logic between

flip-flops [19]. CSS has also specifically been applied to FPGAs to improve

performance [47]. FPGA architecture changes have also been proposed to

benefit performance of circuits [16].
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3.2 HLS Scheduling

In high-level synthesis, scheduling is the process of mapping the software-

level operations into clock steps. Scheduling is a complicated optimization

problem typically solved with heuristic algorithms, which may not result

in the highest-performance result. Furthermore, since the detailed path-

timing information used to inform scheduling decisions is not known until

after place-and-route is complete, HLS tools use timing estimates to as-

sign software instructions to computational states. When determining the

instruction schedule, the HLS tool attempts to maximize performance by

balancing path lengths across cycles and minimize power utilization and

circuit area by efficiently utilizing on-chip resources.

The open source HLS tool LegUp 4.0 uses a Systems of Difference Con-

straints (SDC)-based scheduling algorithm [34]. SDC-based algorithms find

solutions to problems such as scheduling by solving a mathematical formu-

lation of the constrained system. Multiple scheduling algorithms have been

proposed in academic research which improve upon the LegUp SDC-based

scheduler. In [22], instruction-level data dependency graphs were utilized

to improve scheduling across basic blocks to reduce circuit latency. Other

scheduling algorithms have attempted to optimize for circuit area and con-

gestion, such as in [17], by constraining the scheduler by both latency and

resource usage. Stochastic optimization methods which use randomisation

to perform broad design space exploration have also been proposed. These

algorithms, such as simulated annealing (proposed in [39]) and genetic al-

gorithms (proposed in [44]) explore the multi-dimensional design spaces to
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determine schedules which meet area, delay, and power requirements.

3.2.1 Multi-Cycle Operation

Another technique that has been applied to improve the performance of

HLS circuits is multi-cycling. Multi-cycling is a technique which allows some

paths within a circuit to have longer path delays than the clock period and

allowing those paths more than one clock cycle to complete execution. HLS

tools are a particularly suitable for multi-cycling as the high-level algorithm

and scheduling analysis occurring during HLS reveals which computational

results are not required in the next clock cycle, and therefore may benefit

from multi-cycling techniques. Furthermore, the HLS scheduling algorithms

can be altered to automatically employ multi-cycling for improved perfor-

mance [23, 52].

3.2.2 Dynamic Scheduling

Taken to an extreme, multi-cycling leads to a dynamic synchronous dataflow-

like architecture incorporating handshake protocols to signal the completion

of individual operations. Dynamic scheduling algorithms have been explored

for HLS circuits to gain additional performance. Typically, HLS tools sched-

ule instructions statically, meaning that even if the time required for an

operation to complete is data-dependent, the worst-case timing estimate of

that operation is assumed. Static scheduling techniques suffer performance

degradation as the worst-case timing estimate is conservative in the typical

case. To overcome this limitation, dynamic HLS scheduling has been pro-

posed [13, 31, 32]. Dynamic scheduling prevents variable-latency operations
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from blocking future computations at the overhead of additional circuit area

for handshaking protocols (2.48x LUTs [13]). To mitigate the area cost, the

authors proposed a hybrid static-dynamic scheme which dynamically sched-

ules sub-circuits with the most improvement due to dynamic scheduling

(1.52x LUTs [13]). Another technique for improving software execution is

speculative execution, a performance-boosting technique in which a proces-

sor will predict what to execute when a data-dependent branch is reached.

In [33], data-dependent branch operations are speculatively computed in

parallel ahead of the branch resolution to achieve additional performance.

Utilizing speculative execution reduces latency up to 22.4%, but the ad-

ditional resources hardware to perform the predictions and computations

increases circuit area up to 19.7% [33].

Syncopation does not require changes to the HLS scheduling algorithms,

and could be implemented in conjunction with existing scheduling algo-

rithms to further improve performance. For example, a hybrid dynamic-

static scheduling paradigm such as in [13] could employ Syncopation in

statically-scheduled sub-circuits which would otherwise not see performance

improvement from dynamic scheduling. Additionally, Syncopation can be

made compatible with speculative execution techniques, data-dependent dy-

namic scheduling, and strategic multi-cycling for more aggressive perfor-

mance enhancements.
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3.3 Overclocking

Overclocking is a method of speculatively increasing the clock frequency

of a circuit to achieve higher performance. Overclocking is a speculative

technique because increasing the clock frequency beyond the maximum fre-

quency computed during static timing analysis may produce erroneous re-

sults. Overclocking is widely employed to increase the operating speed of

CPUs and GPUs by increasing the base clock multiplier or front side bus

overclocking [49]. In online dynamic overclocking, the clock frequency is

dynamically tuned while the circuit is operating while monitoring for er-

rors to either ensure none have occurred or to keep the number of timing

faults below an acceptable threshold for the application. In [48], online

dynamic overclocking is combined with an error detection mechanism to

prevent faults in superscalar CPUs. Razor [18] is another technique which

enables overclocking by using Razor flip-flops, which automatically identify

timing faults by double-sampling computational paths.

Overclocking is also employed to improve performance of FPGA circuits,

both with and without automated error detection mechanisms. In [45], the

authors propose using overclocking as an alternative performance-boosting

method to reduced precision computing, as both methods increase perfor-

mance at the cost of some acceptable threshold of accuracy loss. In appli-

cations which require no accuracy loss, automated techniques to perform

overclocking have been proposed for arbitrary circuits [8][42] and algorithm-

level error detection in convolutional neural networks [38]. Others have

proposed changes to datapath architecture to reduce the severity of timing-
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induced failures to enable aggressive overclocking [46]. Additionally, work

has been conducted to adapt the Razor timing speculation technique for

paths with bidirectional communication, including computational arrays,

Course-Grained Reconfigurable Architectures (CGRAs), and FPGAs [9].

Syncopation is not a dynamic overclocking technique, and does not re-

quire error detection hardware. We perform fine-grained STA for each state

in the HLS schedule, and select a clock frequency based on the result. Since

the clock frequency is not set higher than the provided value, there is no

risk of corrupting the data. However, online adaptive overclocking tech-

niques could be used in combination with Syncopation to further increase

performance.

3.4 Multiple Clock Domains

Using Multiple Clock Domains (MCDs) is a method to improve performance

by operating portions of a circuit at a higher frequency, dictated by the sub-

circuit critical path. MCDs require the addition of clock domain crossing

hardware to prevent corruption of data sampled during a period of signal

metastability. A circuit that would benefit the most from using MCDs is one

which spends a significant proportion of run-time performing computations

with paths much shorter than the critical path. Multiple clock domains for

HLS-generated circuits has been proposed by partitioning the clock domains

on boundaries of hardware modules [43]. This minimizes the complexity of

the boundary crossing hardware (due to fewer signals passing data between

software functions than within them) and improved wall-clock time by 33%
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at an additional hardware cost (7-9%) [43]. To improve the performance

of this technique, designers need to partition the software-level code in-

telligently. For example, the code could be partitioned so that operations

with long computational paths are separated from functions which dominate

program execution time, so that the amount of time operating at a higher

frequency is maximized. However, since operation latency is not a typical

concern for software developers, the authors of [36] proposed an automated

framework for optimizing MCD boundaries based on dataflow graph repre-

sentations of the source code. In addition to using multiple clock domains to

achieve higher performance in some applications, MCDs can be used to slow

down some domains in power-sensitive applications. In [35], an automated

multi-clock domain scheme is used to slow down some parts of the design to

reduce clock network complexity.

Syncopation does not use multiple clock frequencies distributed spatially

across the design, as is the case with MCD. Instead, Syncopation uses the

global clock routing resources to distribute a single clock signal which varies

in frequency temporally. Syncopation could be used in conjunction with

MCD techniques to further boost HLS-generated circuit performance. While

using multiple clock domains would be very effective if one module was

limiting the performance of all other modules, the performance benefit would

be limited in cases where all the modules are limited by a similar critical

path. In these cases, Syncopation could be used to control the clock in

domains modules which did not benefit from a large increase in operating

frequency.
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3.5 Adaptive Clock Management

ACM is the dynamic adjustment of processor clock period on a per-cycle

granularity based on in-flight instructions. ACM has primarily been targeted

at General Purpose Processors (GPPs) such as CPUs and GPUs [14][30] [29].

In general, ACM works by adjusting the clock period dynamically based

on the operation code (op-code) of the instructions in-flight, as the op-

code indicates which functional units will be operating. Operations with

longer critical paths through the functional units will be given longer clock

periods to complete operation. In this application, ACM must be applied

dynamically due to out-of-order execution of instructions employed in GPPs.

ACM has also been proposed for FPGA-based soft-processors. To achieve

adjustable clock period, previous work ([20]) has proposed a hybrid clock

multiplexing and clock stretching technique called Hybrid Adaptive Clock

Management (HACM). HACM amortizes the long switching delays associ-

ated with clock multiplexing by incorporating clock stretching to recover

additional slack.

Syncopation is different than previous ACM techniques as it is applicable

to arbitrary circuits synthesized with HLS tools, whereas previous ACM

techniques relied upon on known delays through GPP functional units and

knowledge of in-flight instructions. Applying Syncopation ACM to arbitrary

circuits is made possible by using fine-grained timing analysis of each state’s

path in the state machine at synthesis time. While Syncopation could be

extended to arbitrary FPGA circuits not generated by HLS (expanded upon

in Sect. 5.4.4), our technique currently relies upon the static schedule of
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instructions already produced by HLS tools. Furthermore, the Syncopation

clock generator avoids long clock switching times of clock multiplexing and

provides greater dynamic range than clock stretching techniques by using a

high-frequency clock divider.
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Chapter 4

Syncopation

4.1 Overview

Syncopation is an adaptive clock management strategy which improves the

performance of FPGA circuits. The key observations which make Syncopa-

tion possible are (1) not all circuit paths are active in every clock cycle, (2)

the clock period only needs to be long enough to accommodate the com-

putational delay of the active paths, and (3) HLS-generated circuits are

particularly amenable to ACM techniques as HLS tools automatically gen-

erate instruction schedules which reveal the active paths in each clock cycle

of the hardware state machine. By combining these observations with post-

place-and-route static timing analysis and using a small amount of additional

instrumentation, Syncopation tunes the clock period on a cycle-by-cycle ba-

sis to reduce latency and boost performance.

To demonstrate Syncopation, we use the Finite State Machine (FSM) in

Fig. 4.1. The Syncopation clock generator is a clock divider which receives

an integer divisor every cycle which corresponds to the desired clock period.

Assuming a 500 MHz reference clock (selection discussed in Sect. 4.3), we

can use the HLS information to determine the minimum integer divisor

based on the active path delays within each state; each state in the Fig. 4.1
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Figure 4.1: A simple Finite State Machine.

is annotated with this divisor. The fastest state in this circuit has a divisor

of ten and the slowest has a divisor of three; these states can operate at

167 MHz and 50 MHz. Using a single-frequency clock this circuit would

operate at 50 MHz for the entirety of its operation. However, Syncopation

effectively increases the clock frequency by enabling fine-grained adjustment

of the clock period to accommodate only the active computational paths.

While Syncopation does not require changes to the HLS or place-and-

route algorithms, the per-state timing information can be used to target

synthesis tool effort in timing-driven place-and-route to further boost per-

formance.

4.2 Overall Flow

The Syncopation flow is shown in Fig. 4.2. First, LegUp [10] transforms each

function in the software description into an FSM. An algorithm consisting
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Figure 4.2: Syncopation overall flow.

of multiple software functions will result in a circuit of multiple FSMs. The

instruction schedule describing the computations performed in each state is

also generated in this step.

Next, Syncopation clock generator circuitry (described in Sect. 4.3) is

inserted into the LegUp-generated RTL and a Divisor Memory (DM) is allo-

cated for each FSM. DM allocation and operation is described in Sect. 4.3.2.

In addition, synthesis directives are inserted into the RTL to enable fine-

grained static timing analysis (details in Sect. 4.4).

Once the Syncopation hardware has been inserted, the design is synthe-

sized using commercial tools (we use Quartus Pro 15.0). Fine-grained STA

is performed using the post-place-and-route implementation to determine
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circuit timing on a per-path basis. The measured path lengths are then

used in conjunction with the HLS schedule to populate the DMs, described

in Sect. 4.4. The DM contents can be updated without re-synthesizing the

design.

Finally, and optionally, a fined-grained timing constraints file is created

and used to improve performance in successive synthesis passes, which we

call Enhanced Synthesis (ES). ES is described in Sect. 4.5.

4.3 Adaptive Clock Management Circuitry

The Syncopation ACM circuitry is inserted into the user circuit RTL before

place-and-route. Consisting of the DMs, divisor selection logic, and the clock

generator, the Syncopation circuitry monitors the user circuit and tunes the

clock period according to the circuit state. In this section, the Syncopation

circuitry is described in detail.

4.3.1 Circuit Operation

A simple Syncopation circuit is depicted in Fig. 4.3. The LegUp-generated

state machine is the user circuit, and the Divisor Memory, Divisor Selection

Logic, and Clock Generator comprise the Syncopation circuitry.

During circuit operation, the state signals from each state machine are

used to address the corresponding DM. The DMs are populated with divi-

sor values. The values obtained from the memory reads are propagated to

the Divisor Selection Logic which determines the longest active path in the

design across all the state machines and selects the corresponding divisor to
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Figure 4.3: A Syncopation Circuit.

tune the Clock Generator.

To ensure stability of our clock signal, we require that the clock divi-

sor is set before the beginning of the next clock cycle. Since the divisor

memories are registered, the entire clock tuning procedure requires three

clock cycles: one to initiate the DM read, one to select the divisor value,

and a third in which the clock is tuned using that value. This procedure

implies that the circuit state is known two cycles in advance, which is not

possible in designs with branch instructions. To successfully implement the

divisor lookup system, we propose two architectures: one which performs

this lookup by monitoring the Current State of the user circuit, and another

which monitors the Next State of the circuit. In our studies, we implemented

and tested both of these configurations.
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Figure 4.4: Current State based divisor selection logic.

Current State Syncopation

In the Current State implementation of Syncopation, the current state signal

of each state machine is connected to the DM address port and the Divisor

Selection Logic, as shown in Fig. 4.4. Electing to use the current state

signal to monitor the user circuit means the exact circuit state cannot be

determined in advance. To ensure that the clock is tuned to accommodate

the longest path, the divisor values packed into the DM correspond to the

slowest possible state that the state machine may be in, given the current

state. This is determined by inspecting the HLS-generated state machine.

The DM in Fig. 4.5 depicts the DM contents for the example state machine

in Fig. 4.1. Each address corresponds to a state, and the corresponding line

contains the tags and divisors used to tune the clock generator. Note that

this implementation of Syncopation does not require storing all the state

divisors in the DMs due to the selection of the maximum divisor value.

The maximum divisor is determined offline through inspection of the state

machine and the results from static timing analysis. In this example, the

divisor values for States 1, 2, 4, and 5 are not present in the DM.
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Figure 4.5: Current State divisor memory packing based on the Finite State
Machine in Fig. 4.1.

The maximum divisor selection results in slower clock period (on aver-

age) compared to the ideal operation. To demonstrate operation of Current

State Syncopation, consider the example state machine in Fig. 4.1. In this

example, we will walk through how Current State Syncopation uses the state

tags and divisors from the DM to tune the clock period for Cycle 3 and Cycle

4.

To determine the divisor value for Cycle 3, the memory read to line 0 is

initiated in Cycle 1 and the divisor is selected and sent to the clock generator

in Cycle 2. In Cycle 2, the current state is State 1, and the next state divisors

are 2, 9, and 10. Since we must accommodate for the longest computational

path for Cycle 3, the divisor value selected to send to the clock generator

is 10. Finally, in Cycle 3, the clock period is tuned to have a clock period

corresponding to a divisor value of 10. However, the computational path

would not utilize the entire clock period unless the circuit is in State 3 in

Cycle 3. This corresponds to a longer-than required clock period compared

to an implementation capable of determining exactly the required divisor
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Figure 4.6: The general form of a Finite State Machine.

value. In particular, State 2 can operate 5× faster than State 3, resulting

in 80% of the clock period being unutilized if the state machine transitions

to State 2.

Determining the clock divisor for Cycle 4 follows a similar procedure. In

Cycle 2, the DM read to line 1 is initiated. In Cycle 2, the set of tags and

divisors corresponding to the possible states State 2, State 3, and State 4 are

obtained. For each of these states, the corresponding divisor is worst-case

divisor for the next cycle. For State 2, this is a divisor of 8; for State 3, a

divisor of 8; and for State 4, a divisor of 3. Similarly to Cycle 3, the divisor

selection is conservative and the worst-case divisor corresponds to a longer

clock period than the active path if the state machine transitions from State

2 to State 5.

The three-cycle clock tuning procedure using the current state signal

as the selector operates as follows, assuming the general form of the state

machine depicted in Fig. 4.6.
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1. In Cycle i, the current state of the state machine, which we will denote

as statej , initiates a read to line j of the DM. The memory line j

contains a set of N tags and N divisors, where N is the possible

number of next states for the state machine during Cycle i+1 and the

set of tag values is the set forall a { statej+a }, where 1 ≤ a ≤ N .

2. In the next Cycle i + 1, the circuit is in some state statej+n and the

DM line is obtained from memory. The value statej+n is equal to

one of the tag values returned from the DM, and is compared to the

tags to select the divisor value to propagate to the clock generator.

In this case, the selected divisor will correspond to the longest path

delay among the possible states for Cycle i + 2. For example, given

M possible states for Cycle i + 2 corresponding to M possible divisor

values, the max divisor across the set of states forall b { statej+N+b }

where 1 ≤ b ≤ M corresponds to the longest path. For simplicity of

the Syncopation hardware, this selection is determined offline before

the tags and divisor values are packed into the DMs.

3. Finally, in Cycle i + 2, the circuit is in some state statej+N+m and

the clock is tuned to the period determined by the max divisor, which

corresponds to the longest path among all M possible states. Non-

ideal performance will be achieved in cases where the required divisor

for statej+N+m is less than the max divisor.
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Figure 4.7: Next State divisor memory packing based on the Finite State
Machine in Fig. 4.1.

Next State Syncopation

In the Next State implementation of Syncopation, the next state signal of

each state machine is connected to the DM address port and the Divisor

Selection Logic, as shown in Fig. 4.8. Unlike the Current State implementa-

tion of Syncopation, the Next State implementation allows the clock period

to be tuned to exactly the required clock period.

The packed tags and divisor values for the state machine in Fig. 4.1 are

shown in Fig. 4.7. Like the current state DMs, each line corresponds to a

state and contains both tags and divisors. However, this implementation of

Syncopation captures all the divisor values and corresponding tags.

The three-cycle tuning procedure using the next state signal as the selec-

tor operates as follows, again referencing the generic state machine depicted

in Fig. 4.6.

1. In Cycle i, the next state signal of the state machine, which has a

value we will denote as statej+n where 1 ≤ n ≤ N , initiates a read to
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Figure 4.8: Next State based divisor selection logic.

line j + n of the DM. The memory line j + n contains a set of M tags

and M divisors, where M is the number of possible states the circuit

can be in Cycle i + 2 and the set of tag values is the set forall b {

statej+N+b } where 1 ≤ b ≤M .

2. In Cycle i + 1, the DM line is obtained. During this cycle, the next

state signal will resolve to a state value for Cycle i + 2, statej+N+m

where 1 ≤ m ≤M . By comparing this value to the state tags obtained

from the DM, the divisor corresponding to the active path length can

be determined and sent to the clock generator.

3. In Cycle i + 2, the clock period is tuned to the minimum clock pe-

riod required to accommodate the active paths for the current state

statej+N+m.

By using the next state signal of the state machine, we can determine

exactly the minimum clock divisor for the state, even though the memory

read is initiated two cycles in advance.

While Next State Syncopation enables additional performance over Cur-
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rent State Syncopation by enabling selection of exactly the required divisor

instead of the max divisor, there is also some possibility that some per-

formance degradation can occur. Consider Fig. 4.4 and Fig. 4.8. In these

circuit diagrams, we can clearly see the connection of the Current State

and Next State signals from the user circuit leading to the Syncopation

instrumentation. However, there is one key difference: in Current State

Syncopation, the signal is connected directly from the state register, and

the propagation delay of the Current State signal to the instrumentation is

only wiring. This is not the case in Next State Syncopation, where the Next

State computational logic lies on the path between the state register and the

Syncopation instrumentation. In cases where the user state machine may

have relatively simple computations in a state, this state path may be long.

By adding additional instrumentation to this path, some designs which are

already performance-limited by the complexity of the control logic may see

reduced performance using Next State Syncopation.

4.3.2 Divisor Memories

Clock generator divisor values are determined through post-synthesis fine-

grained timing analysis. In order to utilize these values during circuit opera-

tion, they are packed into the DMs to enable single-read access to the values

corresponding to all possible circuit states. The DMs are sized statically be-

fore place-and-route for each FSM, and the memory contents are updated

with divisor values after timing analysis without re-synthesizing the design.

The values used in each DM depend on whether the Current State or

Next State implementation of Syncopation is being used. The size of the
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DMs are the same across both Syncopation variants. In both cases, the

DMs are sized statically before place-and-route by inspection of the state

machine. For each FSM, the DM size in bits is:

bits = Nstates ×max(Nnext states)× (log2(Nstates) + D)

where Nstates is the number of states in the state machine, corresponding to

the number of lines in the memory; Nnext states is a set containing the number

of next states reachable for each state in the state machine; max(Nnext states)

is the maximum number of next states from the set Nnext states, correspond-

ing to the number of elements contained in each memory line; log2(Nstates)

is the number of bits required to represent the state tag; and D is the divisor

width in bits.

One limitation of this approach is that it may not size the memories

efficiently using other common state encoding techniques, such as 1-hot en-

coding. This could be rectified using an encoder on the memory address port.

However, the additional logic required to implement the encoder may reduce

the benefit of other encoding techniques altogether. Since LegUp HLS en-

codes states with integer values, we did not perform studies to evaluate the

performance of other encoding methods or evaluate other DM addressing

techniques. This would be an interesting area for future work.

4.3.3 Divisor Selection Logic

The Syncopation clock period is directly related to the state of the user

circuit, so the DMs are addressed by the state bits. During each cycle, a

41



divisor is read from the memory address corresponding to the state of each

state machine. This lookup method generates multiple candidate divisors:

one for each module instantiated on chip. The role of the divisor selection

logic is to determine which of these candidate divisors will be propagated to

the clock generator for clock tuning.

The simplest method to select the appropriate candidate divisor is to

use a max() function to select the largest candidate divisor. Using this

technique, the generated clock will always have a period long enough to ac-

commodate the active path, ensuring that circuit operation will be correct,

even with instantiated modules performing operations in parallel. However,

the max() divisor selection technique assumes that all instantiated mod-

ules are performing computations in every clock cycle. This assumption is

overly conservative in our implementation, since LegUp-generated circuits

use a start-finish protocol to perform function calls. Using the start-finish

protocol, only one module instantiation is performing computations in any

given cycle, and all other modules are waiting to be called or are waiting for

computed results to be returned.

In order to improve performance over the generic max() selection logic,

we implement a mechanism to identify function calls and precisely determine

which module instantiation is currently performing operations. To do this,

the HLS schedule is inspected pre-synthesis to identify function call wait-

states. These wait-states indicate when a “caller” module is waiting on the

result of a computation being performed in a “callee” function. Then, during

circuit operation, the state of each module is monitored to dynamically

evaluate whether the “caller” or one of the “callees” is currently operating.
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Figure 4.9: A sequence diagram describing the operation of a High-Level
Synthesis-generated circuit.
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As an example, consider the sequence diagram in Fig. 4.9. The main

function of the circuit is the top level C function, and every other module

is indicated hierarchically under the top-level design. In this case, the main

function instantiates two modules (func1 and func3) and the func1 module

instantiates another module (func2). During circuit operation, each callee

module may eventually issue a function call to one of the instantiated sub-

modules. In this case, the first function call is issued by main to func1.

While the submodule func1 is operating, the main state machine remains

in a wait-state until the finish signal is obtained. Similarly, func1 issues a

function call to func2 at some point during circuit operation. While this

occurs, func1 remains in a wait-state. Then, once both func2 and func1

finish operating, the main function continues operation until a function call

is issued to func3. Finally, func3 returns and main finishes operation.

To implement divisor selection logic for this circuit, a small amount of

instrumentation is inserted in every caller function; in this case, the caller

functions are main and func1. This instrumentation monitors the next state

signal of the caller function state machine to determine whether the divi-

sor for the callee or the caller function should be propagated to the clock

generator.

4.3.4 Clock Generator Circuitry and Clock Distribution

The Syncopation clock is produced by a custom soft-logic clock generator.

This custom clock generator is capable of producing clock signals at a wide

range of frequencies (50–250 MHz) and is capable of changing the clock

frequency, glitch-free, on a per-cycle basis. Glitches are transient logic errors
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which can cause corruption of circuit data when a clock signal glitch causes

flip-flops to prematurely register signals which have not yet settled to their

final computed value.

While there are other clock generating techniques (such as Phase-Locked

Loops (PLLs), clock stretching, and clock multiplexing) available for FP-

GAs, these options do not meet the specifications for our implementation

either due to limited dynamic range or long switching times. For exam-

ple, dynamically reconfiguring PLLs requires tens of cycles to change the

configuration and lock the clock output. Clock multiplexing also requires

multiple cycles to switch between clock sources to match clock phases and

prevent glitches. Clock stretching techniques, such as in [11], do not incur

a long switching overhead, but can only change the clock period by 25%.

In previous work proposing ACM, hybrid clocking schemes were adapted

using both clock stretching and clock multiplexing techniques to overcome

the limitations of both [20].

Our clock generator is the 50% duty cycle clock generator from [40],

shown in Fig. 4.10. We choose the 50% duty cycle implementation to ac-

commodate dual-edge logic in some memories, although this requirement

is likely conservative for the majority of applications. Our implementation

uses a 4-bit integer divisor and a 500 MHz reference clock. The reference

clock drives a counter which is provided along with a divisor value to two

comparators. The first comparator determines the clock period by resetting

the counter once the divisor value is reached by the counter. The second

comparator determines the clock phase by comparing the counter to half of

the divisor value. At the output of the clock generator, labelled “clock”,
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the signal is promoted to the global clock distribution network resources

available on the FPGA. This promotion is automatically performed during

place-and-route and is confirmed by analysing the synthesis messages for

each benchmark.

The clock generator produces a clock signal which can vary in period on a

per-cycle basis. However, there are some timing requirements which must be

satisfied to prevent glitches. First, to guarantee that an update to the divisor

value does not cause a glitch on the output of the clock phase comparator, we

register the divisor so it can not be updated mid-cycle. Second, we require a

minimum divisor value of 2 to prevent a race condition between the outputs

of the period-reset comparator and the phase comparator.

It is possible to implement a more aggressive form of Syncopation which

would forgo our requirement to have the clock divisor arrive before the

rising edge of the clock period, therefore relaxing the three-cycle clock tuning

procedure presented in Sect. 4.3.1. In fact, the divisor only needs to arrive at

the clock generator in time to properly tune the falling edge of the 50% duty

cycle phase, although insuring that the Syncopation control logic always

satisfies this timing is more complex than our implementation. Additionally,

it is likely that the 50% duty cycle requirement could be relaxed entirely,

given that no dual-edge triggered logic is used in the design. This would

relax the divisor selection procedure and timing even further.

This clock generator produces frequencies between 33 MHz and 250 MHz,

which is sufficient for the observed frequencies in the CHStone [51] bench-

mark circuits (63–197 MHz). We did not evaluate clock generators with

counter bits > 4, as the additional range provides no further benefit for the
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Figure 4.10: Integer divisor clock generator circuit.

circuits we surveyed.

4.4 Fine-Grained Static Timing Analysis

Once the HLS-generated RTL and instruction schedules have been analyzed

and modified to include the DMs, Divisor Selection Logic, and clock gen-

erator, the design is synthesized using vendor place-and-route tools. No

changes are made to the place-and-route algorithms. Once place-and-route

finishes, timing analysis is performed to evaluate design performance. For

a statically-clocked design, STA involves identifying the longest path in the

design and determining the path delay to calculate the maximum operating

frequency. For a Syncopation design, timing analysis also includes what we

refer to as fine-grained static timing analysis, which evaluates cycle-specific

path timing to generate data for the Syncopation DMs.

Fine-grained STA is a three-stage process. First, timing between regis-

tered instruction nodes in the design is measured for each state in each state
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machine. Once the timing for these paths has been measured, we update

the project timing constraints such that the per-state path delays satisfy

the design timing requirements. Once these constraints are in place, we

can request the maximum operating frequency of the unconstrained paths

in the design on a per-module granularity. Typically, the longest uncon-

strained path consists of State Machine (SM) control logic which cannot be

attributed to specific cycles in circuit operation. This maximum frequency

is then used to limit all frequencies in the design to ensure that timing re-

quirements for the control logic will not be violated. Finally, these results

are combined and translated into per-state divisor values and packed into

the DMs.

4.4.1 Per-State Timing and Synthesis Directives

Per-state timing is estimated using a custom Tcl script which is automati-

cally generated by analyzing the LegUp-generated instruction schedule and

the RTL. In the instruction schedule, each instruction is analyzed to iden-

tify operands that are produced or consumed. These operands are then

matched to the corresponding signal names in the Verilog RTL, which are

used to identify signals during post-place-and-route timing analysis. To

determine the path delay between these operands for each state, Syncopa-

tion automatically generates a Tcl script which requests timing data be-

tween all operands in a state, and labels the resulting data with the corre-

sponding state. We perform our requests using the Quartus Tcl command

report timing, which provides slack data between two named registered in

the post-synthesis netlist. Since all registered nodes in the design are clocked
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using our promoted Syncopation clock signal, this measurement automati-

cally includes conservative timing estimates to account for process variation

and clock skew.

Ideally, it would be possible to request timing data from or two any

named register in the RTL using Quartus Tcl commands. However, this is

not always the case. During synthesis, extensive register optimizations take

place which merge, duplicate, and rename registers in the RTL [27]. The

post-synthesis netlist does not retain information about optimized registers,

and therefore it is not possible to obtain timing information about opti-

mized nodes. However, if synthesis directives are inserted into the LegUp-

generated RTL to prevent register optimizations it is possible to obtain this

timing data at the cost of performance and resource utilization. For this

reason, we have included synthesis preserve and synthesis noprune direc-

tives to retain information about registered nodes used to compute results

of HLS instructions in the RTL. The preserve attribute prevents removal

or minimization of a register without preventing other optimizations such

as duplication; and the noprune attribute prevents removal of fanout-free

nodes, which we require to estimate timing for intermediate computational

steps [25]. The noprune directive is only included for a subset of the regis-

ters; in particular, the intermediate computational steps used for retiming

of multi-cycle operations such as multiply operations are retained.

Table 4.1 shows the overhead of inserting these synthesis directives into

the baseline CHStone benchmarks.

Inserting the synthesis directives into the baseline benchmarks reduces

their performance by 10.8% (geomean), and more than doubles ALM utiliza-
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Table 4.1: The Area and Performance Impact of Synthesis Directives

Baseline SD Baseline

FMax ALMs FMax ALMs
(MHz) (%) (MHz) (%) (%)

adpcm 87.3 16.6 64.3 -26 32.1
aes 90.6 15.8 86.5 -5 27.9
bf 124.2 7.0 117.7 -5 22.2

dfadd 135.0 4.5 112.3 -17 18.9
dfdiv 102.9 9.9 103.4 +0 30.3
dfmul 98.8 9.9 93.0 -6 12.8
dfsin 96.4 26.2 83.4 -13 62.1
gsm 94.4 10.2 78.5 -17 25.0
jpeg 72.6 52.2 70.2 -3 75.1
mips 89.3 3.3 81.5 -9 9.9

motion 101.9 17.7 81.5 -20 26.0
sha 151.4 4.2 142.7 -6 10.1

Geomean 101.7 9.9 90.7 -10.9 24.4

tion. However, the performance of the statically clocked baseline circuits is

determined solely by the critical path delay. Since the performance of Syn-

copation circuits is not solely determined by the critical path delay, it is still

possible to regain and exceed the performance of the baseline circuits with-

out synthesis directives using our technique. In Chapter 5, we will quantify

to what extent this is true.

4.4.2 Control Logic Constraints

Once the per-state timing is determined, it is necessary to determine the

maximum operating frequency of the control logic in each module to ensure

timing requirements are not violated. As an example, consider Program 4.1.

In Program 4.1, per-state path delays have been determined by fine-
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Program 4.1 A Syncopation schedule with various path delays and a
function-call wait state.
Top Design:

Module A:

State 1: Delay 6.67 ns

State 2: Delay 5.00 ns

State 3: Function call B()

State 4: Delay 11.11 ns

Module B:

State 1: Delay 8.33 ns

State 2: Delay 8.33 ns

State 3: Delay 5.00 ns

State 4: Delay 5.00 ns

grained static timing analysis. However, these delays were determined based

on the timing for instructions in each state which produce and consume

operands, not the control logic of the circuit state machines. To ensure

that the individual state timing doesn’t violate the minimum delay for the

control logic, we separately measure the longest control logic delay of each

module. To do this, we generate an Synopsis Design Constraints (SDC) file

containing set max delay constraints for the paths already measured during

fine-grained static timing analysis to ensure that these paths won’t generate

exceptions. Then, we generate timing reports requesting the longest delays

within each module that weren’t measured during fine-grained timing anal-

ysis. Then, the delays obtained in the reports are used to constrain the

timing of individual states according to the following rule:

dupdated = max(dsta, dcontrol)

where dsta is the delay measured during fine-grained static timing analysis,
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dcontrol is the longest delay in the state machine control logic, and dupdated

is the updated clock period for the state which will not violate timing of the

state machine. Program 4.2 shows how the example program in Program 4.1

would be updated after the control logic delays are measured.

Program 4.2 A Syncopation schedule including control logic constraints.
Top Design:

Module A: Longest Control Logic Delay 3.33 ns

State 1: Delay 6.67 ns

State 2: Delay 5.00 ns

State 3: Function call B()

State 4: Delay 11.11 ns

Module B: Longest Control Logic Delay 5.55 ns

State 1: Delay 8.33 ns

State 2: Delay 8.33 ns

State 3: Delay 5.55 ns *

State 4: Delay 5.55 ns *

To constrain timing for each state and avoid control logic timing vio-

lations, the first step is to measure the longest control logic delay for each

module. In this circuit there are two modules instantiated: Module A and

Module B. The longest control logic path for each of these modules as been

measured as 3.33 ns and 5.55 ns, respectfully. Now, we can update the state

delays accordingly. As indicated in Program 4.1 with asterisks, the state

delay for State 3 and State 4 in Module B have been lengthened, since us-

ing the previously measured delays of 5.00 ns violated control logic timing

requirements. Instead, these states will be executed with a clock period of

5.55 ns.

After the timing constraints are updated for all states in the design, the

new per-state delays are converted into divisor values and packed into the
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DMs.

4.4.3 Divisor Calculation

Given a list of maximum frequencies per-state constrained to both the max-

imum per-module frequency and the maximum per-design frequency, the

divisor values for the clock generator can be calculated. The divisor value

corresponding to a state is calculated using the state frequency and the

reference clock frequency for the clock generator. The divisor value D is

defined as:

D = d
Fref

Fstate
e

where Fref is the reference clock frequency for the clock generator and Fstate

is the maximum clock frequency for a given state. A non-integer result is

“snapped” to the larger integer which corresponds to a longer clock period.

Once the divisor values for all states have been computed and packed into

the DMs, the circuit is operational.

4.5 Enhanced Synthesis

Syncopation circuits are able to gain performance by adjusting the clock

frequency according to the individual clock cycle. However, the integer clock

divider does result in non-ideal performance compared to a clock divider

with infinite frequency tuning granularity. Ideally, the place-and-route tool

would be aware of the integer clock divider and attempt to optimize each

path to meet timing for a higher frequency bucket. It would be possible to

53



implement this custom place-and-route algorithm using an open-source tool

chain, however we opted to leave a custom tool chain to future work. Instead,

we show that we can achieve better performance without implementing a

custom algorithm by using vendor tools, fine-grained timing targets, and an

additional synthesis pass using a technique we call Enhanced Synthesis.

Generally, timing-driven place-and-route tools target effort to optimize

the longest paths in the circuit in order to shorten the critical path length.

The critical path optimization target improves the performance of statically-

clocked designs because the clock frequency is only dependent on the timing

of the longest paths in the design. Since the performance of Syncopation

designs is not entirely dependent on the critical path delay, the additional

effort to optimize the most-critical paths may be disproportionate to the

possible gain. Instead, synthesis effort would be better targeted to optimize

the delay of every state’s computational path to meet timing for the higher

frequency produced by the clock generator.

As an example, consider a path (which we will denote as Path A, with

delay j) which is in a design with critical path J . In this example, j < J

so Path A is not a critical path. In a statically clocked design, Path A

would be executed at the frequency Fmax = 1/J , as no instrumentation is

in place for clock tuning. By adding the Syncopation instrumentation to the

design and assuming an ideal (infinite granularity, for now) clock generator,

we can calculate the minimum clock period required to meet timing for

Path A and tune the clock to the corresponding frequency FA = 1/j in the

corresponding states. In this case, since j < J , we will achieve lower delay

(higher performance) by using the Syncopation design.
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Now consider the same circuit, but assume an integer divider clock gen-

erator. In the best case, Path A meets the following requirements: (1) the

path length corresponds to the minimum-delay implementation achievable

by the synthesis tool (i.e. cannot be significantly more optimized by increas-

ing synthesis effort on this path) and (2) the maximum operating frequency

FA = 1/j corresponds exactly to a frequency generated by the clock gener-

ator. This ideal case makes additional synthesis effort to optimize this path

redundant.

In reality, a path in the circuit implementation is unlikely to meet these

two requirements. Paths are likely to fail the first requirement because

there may be many ways to implement a path, and it is unlikely to always

select the lowest-delay implementation. Furthermore, the lowest-delay im-

plementation may only be determined by the synthesis tool given sufficient

motivation to optimize a path with a delay lower than the critical path de-

lay. Paths are also likely to fail the second requirement for similar reasons;

without sufficient incentivization to achieve a target delay, paths delays are

equally likely to be just longer than a clock period generated using our tech-

nique, resulting in performance loss due to “snapping” of the clock period to

a longer value to prevent timing violations. In the same context of the pre-

vious example, consider another path (Path B) with delay k < J . Since the

synthesis tool is not incentivized to optimize this path, the implementation

may not be optimized to minimize the path delay. Furthermore, since the

synthesis tool has no awareness of the integer clock divider, the worst-case

for Path B is that the path delay k is slightly longer than a clock period pro-

duced by the clock generator, and therefore incurs the maximum overhead.
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For example, our 500 MHz, 4-bit clock generator produces clocks with 4 ns

and 6 ns periods, but in the case where k = 4.1 ns, the clock period will

“snap” to 6 ns, a 46% increase in delay.

For Syncopation circuits, a better synthesis tool would target resources

and computational effort to optimize paths close to the boundary between

generated frequencies, not just paths with the longest delays in the design.

To achieve targeted performance improvement, we automatically generate

per-path synthesis timing constraints using the results of the fine-grained

static timing analysis in an additional synthesis pass. The timing con-

straints improve the place-and-route implementation by setting additional

constraints for all paths, such that the synthesis tool has target timing con-

straints for all paths in the design, instead of just for paths which violate

the critical path frequency. In our scripts, the individual path constraints

are set using the Tcl command set max delay. Since Syncopation uses an

integer clock divider, we set the maximum delay for each path to the next-

fastest clock period, relative to the previously calculated per-state timing.

Using the previous example, this would mean Path B with delay k = 4.1 ns

would have a target maximum delay of 4 ns.

It is possible additional performance could be obtained using more ag-

gressive timing constraints. In our existing procedure, we set timing con-

straints for paths to match the next highest frequency bucket for each path.

To achieve further improvement, it would be necessary to optimize paths

such that they meet an even higher frequency bucket. We investigated this

experimentally, and found that this led to < 1% additional performance over

Enhanced Synthesis.
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Once the timing constraints files are generated, a second synthesis pass is

performed to improve the circuit implementation, and fine-grained synthesis

is performed again to update timing analysis results and the DM contents.

4.6 Summary

In this chapter, we presented Syncopation: an ACM technique which boosts

performance of HLS-generated circuits by tuning the clock period on a cycle-

by-cycle basis according to the operations currently being performed. At

compile time, the RTL and instruction schedules produced by the HLS tool

(LegUp) is profiled and instrumented with the Syncopation hardware, in-

cluding the divisor memories, divisor selection logic, clock generator, and

synthesis directives. We presented two methods of instrumenting the user

circuit to select the appropriate clock divisor: Next State and Current State

Syncopation. After synthesis, fine-grained static timing analysis is per-

formed to determine circuit timing requirements on a per-state, per-module,

and per-design basis. These timing measurements are then used to calculate

divisor values which are packed into the divisor memories to tune the clock

generator at run-time. Additionally and optionally, the per-state timing con-

straints are also used to target resources during an additional synthesis pass

to minimize delay for paths in the design in a technique we call Enhanced

Synthesis. The techniques described in this chapter do not require changes

to the FPGA architecture, HLS tools, or place and route algorithms. In

the next chapter, we evaluate the performance and overhead of Syncopation

by measuring the frequency, area, and memory requirements across a set of
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benchmarks.
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Chapter 5

Adaptive Clock Management

Using Syncopation

In Chapter 4, we introduced Syncopation, an adaptive clock management

strategy for HLS-generated circuits. Syncopation uses a memory-based di-

visor reference system and dynamic selection logic to select a pre-calculated

divisor value, and tunes the clock period according to the divisor value to

accommodate the critical path of each circuit state on a cycle-by-cycle basis.

In this chapter, evaluate the performance benefit achieved using Syncopation

for general HLS circuits.

We begin with an introduction to the methodology, evaluation metrics,

and the studied configurations of Syncopation. Then we present the ex-

perimental set-up used to validate circuit functionality in hardware and

simulation. Finally, we present the results achieved using Syncopation and

summarize our performance improvement on generic HLS circuits.

5.1 Introduction

To evaluate Syncopation, we use the CHStone [51] HLS benchmarks com-

piled with LegUp 4.0 and synthesized with Quartus Pro 15.0 Web Edition,
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targeting Intel Cyclone V FPGAs (5CSEMA5F31C6N). To ensure validity

of the HLS instruction schedule, we turned off retiming to implement Synco-

pation circuits. The baseline circuit performance is measured with retiming

enabled.

5.1.1 Evaluation Metrics

Typically, the performance of digital circuits is quantified by Fmax, which is

the maximum frequency at which the circuit can operate. In normal STA,

the Fmax is determined from the critical path delay and is calculated as:

Fmax =
1

tdelay + tsetup + tskew

where tdelay is the combinational delay of the critical path logic, tsetup is

the minimum time before the rising edge of the clock that the data must be

stable at the input of a flip-flop in order to be latched correctly, and tskew is

the difference in time that a clock edge arrives at a destination component

compared to the source.

Fmax is not sufficient to describe the performance of Syncopation circuits,

where the clock period changes every cycle according to the delay of the

active paths. Instead of using Fmax, we we propose describing performance

of Syncopation circuits using effective Fmax which we denote Feff . Feff is

defined as:

Feff =
tsta
tsync

Fmax

where the wall-clock time for a statically clocked circuit is denoted as tsta

and the wall-clock time for a Syncopation circuit is denoted as tsync. Since
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the wall-clock time required for Syncopation circuits to complete operation

depends on which states are active, calculating Feff requires simulating the

designs using sample inputs. This is different from evaluating the perfor-

mance of statically clocked circuits, which only require STA to determine

Fmax, since the clock frequency is independent of which states are activated.

In terms of performance to the end-user, an improvement in effective

frequency is proportional to the improvement in operation latency for a set

of inputs applied to a benchmark circuit. Specifically, a 10% increase in

effective frequency corresponds to a 10% decrease in operation latency for

the same benchmark and input vector.

5.2 Validation

To validate the operation of the Syncopation circuits we programmed the

target FPGA with all the benchmark circuits presented in this disserta-

tion. Additionally, we confirmed that timing was properly constrained for

all paths in simulation using vendor static timing analysis tools.

In this section, we describe how we confirmed functionality of the Syn-

copation circuits was confirmed both in hardware and using simulation.

5.2.1 Validation in Hardware

In hardware, circuit operation was validated by executing all circuits on a

known set of inputs and confirming receipt of the expected result. Fig. 5.1

depicts the block diagram of our validation setup. At the beginning of

operation, the LegUp-generated circuit reads the input data from an on-
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Figure 5.1: Validation circuit for Syncopation.

chip memory. Then, circuit operation is performed as usual, with the clock

controlled by Syncopation. Finally, the result is written back into an output

memory and a checksum is generated. The checksum is then compared to

the expected value determine using simulation. If the produced checksum

does not match the expected value, an error signal is generated and recorded.

To ensure that circuit functionality is reliable, our validation setup also

automatically reset and repeated circuit operation 1, 024 times. A counter

was used to record the total number of errors observed over all executions for

each benchmark. The number of clock cycles each benchmark was observed

for (across all Syncopation implementations) as well as the number of errors

observed for each benchmark is included in Table 5.1.

By evaluating the performance of all our benchmark circuits over this

many clock cycles, we seek to confirm three hypotheses: first, that the fine-

grained STA technique used to determine the minimum Syncopation clock
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Table 5.1: Validation Results in Hardware
Total Clock Cycles Observed Error Count

adpcm 40157184 0
aes 27801600 0
bf 503580672 0

dfadd 1978368 0
dfdiv 5790720 0

dfmul 666624 0
dfsin 174305280 0
gsm 14635008 0
jpeg 3998300160 0
mips 15470592 0

motion 25377792 0
sha 512305152 0

period is accurate; second, that the control logic for the Syncopation logic

and the LegUp-generated state machines can be properly reset; and third,

that glitches and jitter on our clock signal do not cause failures during typical

circuit operation.

In our validation studies, we did not perform rigorous investigation to de-

termine test vectors which would activate the longest data-dependent paths

of each circuit in the design to attempt to cause failures of each circuit. In-

stead, we chose to use simulation techniques to evaluate whether the paths

associated with each state had positive slack relative to their Syncopation

clock period. Since the STA techniques employed by Quartus use conser-

vative timing estimates for both the circuit implementation and the clock

distribution networks, passing simulation is equivalent to ensuring that we

are not overclocking any paths within our design.
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5.2.2 Validation in Simulation

To validate circuit operation using simulation, SDC files were generated

which used set max delay commands to describe the timing requirements

for all paths in the Syncopation circuit. The command set max delay gen-

erates an exception for paths which are longer than the maximum permitted

delay for that specific path. This enables us to ensure that vendor static

timing analysis will only generate timing errors if a path’s delay is longer

than the clock period selected by Syncopation.

Using this technique, the Syncopation-determined constraints were con-

firmed for all benchmarks for both the Next State and the Enhanced Syn-

thesis implementations of Syncopation.

5.3 Performance Results

In Chapter 4, multiple methods of implementing the Syncopation instru-

mentation were introduced. In our experiments, we evaluate Syncopation

using both the Current State and Next State configurations (described in

Sect. 4.3.1), active module divisor selection logic (described in Sect. 4.3.3),

and per-module timing constraints (described in Sect. 4.4.2). Enhanced

Synthesis (described in Sect. 4.5) was also presented as a technique to tar-

get synthesis to overcome some of the limitations of using an integer-divisor

clock generator.

In this section, first we compare the Current State and Next State im-

plementations of Syncopation, and discuss performance tradeoffs. Next, we

present our performance using Enhanced Synthesis and evaluate the bene-
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fits of a targeted synthesis pass by comparing our results to the maximum

theoretical effective frequency achievable assuming a clock generator with

the ability to tune to exactly the required clock period, as opposed to rely-

ing on the integer-based mechanism. Finally, we compare our results to our

previous version of Syncopation3 which did not contain the active module

divisor selection logic.

5.3.1 Current State Syncopation

Using the current state (CS) to select the divisor, there is inherent loss as the

state is not known in advance, and the max divisor among the possible next

states is selected for clock tuning, as described in Sect. 4.3.1. However, it is

possible that using the current state instead of the next state implementa-

tion avoids additional performance-limiting delay incurred by inserting the

Divisor Selection Logic after the Next State Computational Logic, described

in Sect. 4.3.1. The results using this configuration are shown in Table 5.2.

Using the current state of the circuit does provide additional perfor-

mance over the baseline with synthesis directives (9.9% on average (ge-

omean)). However, this benefit is not significant enough to overcome the

performance overhead of the synthesis directives themselves. Compared to

the baseline, the performance improvement of individual benchmarks range

in performance from -25 to +25%, with an average performance change of

-2% (geomean).

Given the previous description of Current State and Next State Syncopa-

3Published as a short paper in the 2020 International Conference on Field-
Programmable Logic and Applications.
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Table 5.2: Performance of Current State Syncopation (Sync-CS)

Baseline SD Baseline Sync-CS

FMax FMax FEff
(MHz) (MHz) (MHz) (%)

adpcm 87.3 64.3 84.4 -3
aes 90.6 86.5 95.1 5
bf 124.2 117.7 110.5 -11

dfadd 135.0 112.3 101.1 -25
dfdiv 102.9 103.4 99.8 -3
dfmul 98.8 93.0 112.1 13
dfsin 96.4 83.4 89.0 -8
gsm 94.4 78.5 94.2 0
jpeg 72.6 70.2 77.8 7
mips 89.3 81.5 111.3 25

motion 101.9 81.5 105.3 3
sha 151.4 142.7 125.1 -17

Geomean 101.7 90.7 99.6 -2.0

tion presented in Chapter 4, it is possible that additional performance can be

achieved using Next State Syncopation, which does not require conservative

max divisor selection.

5.3.2 Next State Syncopation

To improve performance over the Current State implementation of Synco-

pation, we can use the Next State implementation of Syncopation to ensure

that the clock is tuned to exactly the clock period required by the active

state. Table 5.3 presents the performance of the CHStone benchmarks using

this technique.

As expected, tuning the clock period exactly to the required clock period

according to the per-state timing measurements prevents unnecessarily in-
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Table 5.3: Performance of Next State Syncopation (Sync-NS)

Baseline SD Baseline Sync-NS

FMax FMax FEff
(MHz) (MHz) (MHz) (%)

adpcm 87.3 64.3 97.5 12
aes 90.6 86.5 95.9 6
bf 124.2 117.7 126.7 2

dfadd 135.0 112.3 111.3 -18
dfdiv 102.9 103.4 99.5 -3
dfmul 98.8 93.0 101.9 3
dfsin 96.4 83.4 80.9 -16
gsm 94.4 78.5 97.8 4
jpeg 72.6 70.2 80.2 10
mips 89.3 81.5 85.6 -4

motion 101.9 81.5 111.2 9
sha 151.4 142.7 221.7 47

Geomean 101.7 90.7 105.0 +3.2

creasing design latency and improves performance. In our experiments, we

see a 15.9% average (geomean) performance improvement over the baseline

with synthesis directives, and a 3.2% average (geomean) performance im-

provement over the baseline. Overall, using the Next State implementation

of Syncopation improves performance by approximately 5% over Current

State Syncopation on average. The performance improvement for individ-

ual benchmarks ranges from -18% to +47%.

While the performance improved on average across the benchmark de-

signs, some benchmarks saw reduced performance using the Next State ver-

sion of Syncopation. As elaborated in Sect. 4.3.1, Next State Syncopation

adds additional logic between the Next State logic and the Syncopation

hardware, which may increase the longest computational path length in
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designs which are performance limited by control logic instead of computa-

tional logic. In particular, dfmul, dfsin, and mips lose performance (-10%,

-10%, and -23%, respectfully). However, other designs do gain significant

performance (up to 77% for sha), suggesting that Next State Syncopation

is generally a favourable implementation over the Current State version.

5.3.3 Enhanced Synthesis

As described in Sect. 4.5, Enhanced Synthesis is a technique to regain some

of the performance lost due to the integer clock generator by targeting

timing-driven synthesis to optimize each path in the design to meet tim-

ing for a higher clock frequency produced by the clock generator. To further

motivate the need for this technique, Table 5.4 compares the performance

of Syncopation to the theoretical performance achievable by Syncopation if

the clock period was tuned to exactly the delay required by the active state.

This theoretical performance quantifies the performance we could gain with

a clock generator capable of tuning to any arbitrary frequency.

On average, the theoretically achievable performance is 12.6% over the

baseline circuit implementations, which is 9.4% higher than the performance

achieved using Syncopation. However, it is possible to recover some of this

unrealized potential by revealing details about the clock generator to the

place-and-route tool. Currently, the place-and-route algorithms are not at-

tempting to optimize paths to meet the frequencies generated by our clock

generator, and in fact are not incentivized to optimize the non-critical cir-

cuit paths at all. Enhanced Synthesis uses SDC file constraints to target

path optimization efforts across all paths in the design, instead of only the
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Table 5.4: Performance of Syncopation Compared to the Theoretical Per-
formance Achievable without an Integer Divider Clock Generator

Baseline SD Baseline Sync-NS Theoretical

FMax FMax FEff FEff
(MHz) (MHz) (MHz) (%) (MHz) (%)

adpcm 87.3 64.3 97.5 12 108.0 24
aes 90.6 86.5 95.9 6 102.5 13
bf 124.2 117.7 126.7 2 147.8 19

dfadd 135.0 112.3 111.3 -19 121.8 -10
dfdiv 102.9 103.4 99.5 -4 101.6 -1
dfmul 98.8 93.0 101.9 3 118.7 20
dfsin 96.4 83.4 80.9 -16 88.6 -8
gsm 94.4 78.5 97.8 4 103.9 10
jpeg 72.6 70.2 80.2 10 85.1 17
mips 89.3 81.5 85.6 -4 94.4 6

motion 101.9 81.5 111.2 9 124.5 22
sha 151.4 142.7 221.7 47 230.9 53

Geomean 101.7 90.7 105.0 +3.2 114.6 +12.6

most-critical paths. Table 5.5 shows the performance of a single Enhanced

Synthesis pass.

As expected, Enhanced Synthesis typically improves the performance

of Syncopation by targeting synthesis effort to optimize paths near clock

generator frequency boundaries, with few exceptions. On average, the per-

formance across all benchmarks improves 23.8% compared to the baseline

with synthesis directives, and 10.3% compared to the baseline. The per-

formance of individual benchmarks improve between -20 and +50%, with

between -4 to +21% performance improvement over Syncopation alone. Ad-

ditional iterations of Enhanced Synthesis do not significantly improve design

performance (<1%), so we have not included these results in this thesis.
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Table 5.5: Performance of Enhanced Synthesis

Baseline SD Baseline Sync-NS Sync-NS+ES

FMax FMax FEff FEff
(MHz) (MHz) (MHz) (%) (MHz) (%)

adpcm 87.3 64.3 97.5 12 119.4 37
aes 90.6 86.5 95.9 6 97.7 8
bf 124.2 117.7 126.7 2 124.2 0

dfadd 135.0 112.3 111.3 -18 108.5 -20
dfdiv 102.9 103.4 99.5 -3 99.0 -4
dfmul 98.8 93.0 101.9 3 117.6 19
dfsin 96.4 83.4 80.9 -16 93.1 -4
gsm 94.4 78.5 97.8 4 102.0 8
jpeg 72.6 70.2 80.2 10 76.9 6
mips 89.3 81.5 85.6 -4 104.7 17

motion 101.9 81.5 111.2 9 125.0 23
sha 151.4 142.7 221.7 47 226.9 50

Geomean 101.7 90.7 105.0 +3.2 112.2 +10.3

5.3.4 Instrumentation Overhead

The bulk of the additional area utilization for Syncopation is due to the

synthesis directives. Tab. 5.6 shows the ALM utilization across the designs

we studied.

Without Syncopation instrumentation or synthesis directives, the bench-

mark circuits utilize 9.9% of our device resources. With synthesis directives,

this utilization increases to 24.4%. This overhead is not insignificant and

degrades circuit performance. Attempts to minimize this cost included em-

ploying these directives only for datapath nodes and studying the Quartus

synthesis reports for evidence of optimizations. Unfortunately, sufficient de-

tail was not found in the reports to forgo the need for the directives and

thus we were not able to remove them for this work.
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Table 5.6: Syncopation Instrumentation Overhead for device
5CSEMA5F31C6N, 32070 ALMs.

Baseline SD Baseline Syncopation
(ALM %) (ALM %) (ALM %) (%)

adpcm 16.6 32.2 32.3 16
aes 15.8 27.9 28.0 12
bf 7.0 22.2 22.0 15

dfadd 4.2 18.9 19.1 15
dfdiv 9.9 30.3 30.4 21
dfmul 3.4 12.8 12.8 9
dfsin 26.2 62.1 62.3 36
gsm 10.2 25.0 25.3 15
jpeg 52.2 75.1 75.3 23
mips 3.3 9.9 10.2 7

motion 17.7 26.0 26.4 9
sha 4.2 10.1 10.1 6

Geomean 9.9 24.4 24.5 +14.6

Adding in the Syncopation hardware, the utilization increases to 24.5%

of the device, which is an additional 15% of the device compared to the base-

line. However, only 0.1% of this device utilization is due to the Syncopation

instrumentation, and as previously mentioned, a vendor or custom-tool im-

plementation of Syncopation would not require the insertion of Synthesis

Directives.

5.3.5 Memory Overhead

The number and size of the Divisor Memories may vary significantly depend-

ing on the design. Table 5.7 shows the memory utilization of the baseline

and Syncopation circuits. For simplicity, the change in memory utilization

is also indicated.
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Table 5.7: Syncopation Memory Utilization.

Baseline Syncopation
(kB) (kB)

adpcm 1.1 1.8 +0.7
aes 4.3 5.0 +0.7
bf 18 19 +0.5

dfadd 1.0 1.5 +0.5
dfdiv 0.2 1.9 +1.7
dfmul 1.0 1.1 +0.1
dfsin 1.1 3.6 +2.4
gsm 1.2 1.7 +0.5
jpeg 56 68 +12
mips 0.4 3.3 +2.9

motion 4.0 4.7 +0.7
sha 16.4 16.6 +0.2

Geomean 2.4 4.4 +2.0

Syncopation DMs are sized to contain the state tags and divisors for

each state machine. For example, the number of lines required in each DM

is determined by the number of states in the corresponding state machine

and the width of each memory line is determined by the state with the most

next states in the state machine. Additionally, since a State Machine is

generated for each function in the software level description, the number of

DMs is equal to the number of functions in the software level description.

On average, the Syncopation DMs require an additional 2 kB (geomean)

of on-chip memory in the benchmarks we studied. However, the DM size

is sensitive to features of the RTL implementation which designers may not

have the expertise to alter. Additionally, since State Machines are auto-

matically generated by the LegUp HLS tool, the designer does not directly

control these parameters; a future extension of Syncopation may include
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alterations to the LegUp source code to take designer pragma directives to

constrain DM size. Without altering the LegUp tool, a designer could in-

directly influence the DM size by partitioning code into multiple functions,

instead of a large main function.

5.3.6 Comparison to Previous Version of Syncopation

A previous publication that described Syncopation used a Next State imple-

mentation with a simple max() function to select the longest active paths,

instead of the active module identification logic. The active module identi-

fication logic works with LegUp-generated circuits because only one module

is performing computations in each clock cycle, which may not be true in

general HLS-generated circuits which incorporate parallelization. Table 5.8

includes the results from this original publication.

Without the active module identification Logic, Syncopation does im-

prove performance on average over the baseline with synthesis directives,

but does not overcome the performance loss due to insertion of the direc-

tives, resulting in a 2.7% loss in performance compared to the baseline.

5.4 Discussion

We have shown that the Syncopation Adaptive Clock Management tech-

niques can improve the performance of High-Level Synthesis-generated cir-

cuits, and using Enhanced Synthesis along with Syncopation can further

improve performance.

Fig. 5.2 summarizes the baseline, theoretical performance, Next State
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Table 5.8: Performance of Syncopation without Active Module Identification
Logic (Previous Work)

Baseline SD Baseline Sync-NS Sync-1.0 [21]

FMax FMax FEff FEff
(MHz) (MHz) (MHz) (%) (MHz) (%)

adpcm 87.3 64.3 97.5 12 95.4 9
aes 90.6 86.5 95.9 6 99.6 10
bf 124.2 117.7 126.7 2 111.9 -10

dfadd 135.0 112.3 111.3 -18 100.0 -26
dfdiv 102.9 103.4 99.5 -3 103.4 0
dfmul 98.8 93.0 101.9 3 109.6 11
dfsin 96.4 83.4 80.9 -16 84.8 -12
gsm 94.4 78.5 97.8 4 97.6 3
jpeg 72.6 70.2 80.2 10 73.3 1
mips 89.3 81.5 85.6 -4 95.1 6

motion 101.9 81.5 111.2 9 100.8 -1
sha 151.4 142.7 221.7 47 126.5 -16

Geomean 101.7 90.7 105.0 3.2 99.0 -2.7

Syncopation, and Enhanced Synthesis performance across the CHStone bench-

mark circuits. While insertion of the synthesis directives reduces the perfor-

mance of the benchmarks, Syncopation typically recovers this loss and gains

additional performance over the baseline design (3.2% on average), and us-

ing Syncopation with Enhanced Synthesis achieves even better performance

(10.3% on average and up to 50%).

Our implementation of Syncopation achieved this performance boost

with minimal instrumentation and on-chip memory utilization and with-

out changing the HLS or place-and-route toolchains. However, additional

benefits could be achieved by customizing these tools. In this section, we

will discuss some of these extensions. Additionally, we will discuss extended
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Figure 5.2: Syncopation Performance on CHStone Benchmark Circuits.

applications which could benefit from Syncopation.

5.4.1 Custom Place-and-Route Toolchain

Our implementation of Syncopation requires synthesis directives to enable

the use of our fine-grained static timing analysis scripts. Without syn-

thesis directives, many named nodes in the RTL cannot be located in the

post-synthesis netlist, and therefore path timing cannot be mapped back

to the original state machine state. As stated previously, this could be

rectified if Syncopation was implemented as a vendor tool, in which case

the node optimizations or transformations which occurred in intermediate

netlist optimizations could be tracked and recorded for timing reports. An-
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other method to eliminate the need for these synthesis directives is to im-

plement a custom place-and-route tool for Syncopation which automatically

performs fine-grained timing analysis.

In addition to automatic fine-grained timing analysis, a custom place-

and-route tool would forgo the necessity of an additional synthesis pass for

Enhanced Synthesis. Currently, Enhanced Synthesis is only possible after

computing the clock generator frequency for each path in the design and au-

tomatically generating a timing constraint file to use in a second, full place-

and-route pass through a vendor synthesis tool. While the second synthesis

pass is shown to improve design performance, it doubles the synthesis time,

which is not desirable for large or complex designs. Implementing a cus-

tom place-and-route tool would enable targeted timing driven synthesis to

automatically adapt path timing targets according to current path timing,

eliminating the need for additional synthesis time.

5.4.2 Custom HLS Toolchain

A custom HLS toolchain, or alterations to the LegUp HLS tool, could also

improve the performance of Syncopation and enable higher levels of control

for designers with hardware expertise. By altering the HLS toolchain, we

can include options for pragmas to control the size and shape of the state ma-

chines, divisor memories, and enable additional transformations to improve

performance such as Syncopation-aware pre-synthesis pipelining and retim-

ing. Additionally, a custom HLS tool could be designed to identify modules

in the user circuit which benefit from Syncopation and modules which suffer

in performance, and automatically generate a multi-clock domain scheme to
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achieve additional performance.

Multiple Clock Domain Optimization

As presented in this thesis, Syncopation does not utilize multiple clock do-

mains and instead uses a single clock for the entire design. Using multiple

clock domains is a common technique to improve performance of circuits.

Using multiple clock domains with Syncopation could improve design perfor-

mance further by enabling the option to employ static clock and Syncopation

clock domains according to which would achieve better performance. In Ta-

ble 5.9, we determined the maximum operating frequency of each module

within the benchmark circuits we surveyed to quantify whether a multiple

clock domain scheme would improve performance.

Table 5.9: Per-Module Maximum Operating Frequency

Per-Module Frequencies
(MHz)

adpcm 87.3, 355.6
aes 131.3, 147.23, 199.3, 231.2
bf 146.4, 184.5

dfadd 135.0, 144.7
dfdiv 102.9

dfmul 98.8
dfsin 96.4, 97.2, 120.2
gsm 94.4
jpeg 80.1, 83.8, 84.62, 116.1, 121.27, 129.2, 132.36
mips 89.3

motion 125.5, 142.7
sha 162.3, 168.1

As an example, consider the module frequencies for the adpcm bench-
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mark: 87.3 and 355.6 MHz. The maximum clock frequency produced by our

clock generator is 250 MHz, so it is guaranteed that the 355.6 MHz module

would have reduced performance using Syncopation. By separating these

modules into multiple clock domains, the 87.3 MHz module could remain in

a Syncopation domain while the 355.6 MHz module could be in a statically-

clocked domain. Clock domain partitions could be specified manually by

the designer using pragma statements or automatically determined during

HLS using timing techniques similar to those already performed during in-

struction scheduling.

5.4.3 Security Applications

A final extended application of Syncopation which we will discuss is the

security of multi-tenancy FPGAs in modern cloud computing. The multi-

tenancy paradigm has recently become more attractive as it enables fine-

grained allocation of FPGA resources among end users. However, multi-

tenancy opens user applications, which are performing operations on po-

tentially sensitive or secret data, to side-channel power analysis attacks.

Previous work [28, 50] has shown that secret data in victim circuits can be

obfuscated from these attack methods by using randomized or time-fractured

clock frequencies.

Extending Syncopation to perform data-protecting clock randomization

would require minimal additional processing and instrumentation. For ex-

ample, a simple clock randomization scheme could be implemented using

a random number generator connected to the integer divisor clock genera-

tor. More sophisticated methods of data obfuscation could time-multiplex or
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partition the user circuit into Syncopation (performance-oriented) or Obfus-

cation (data security-oriented) clock schemes. This technique could balance

the performance of a data processing design as a whole with the need to

protect sensitive, unencrypted data processing.

5.4.4 Syncopation for Arbitrary Circuits

In this thesis, we investigated applying adaptive clock management tech-

niques to HLS-generated circuits. Although HLS circuits are particularly

well-suited for this type of optimization due to the instruction schedules

available from the HLS tools, Syncopation could hypothetically be applied

to any arbitrary state machine circuit. In particular, Automated Test and

Formal Analysis tools exist which can determine which regions of a circuit

are exercised during specific execution states. By incorporating an Auto-

mated Test Tool into the Syncopation flow, the paths activated by each state

in an arbitrary FPGA circuit could be identified and measured to determine

the minimum clock period, enabling Syncopation.
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Chapter 6

Conclusions

This thesis presents Syncopation, a novel adaptive clock management strat-

egy to improve the performance of High-Level Synthesis-generated user cir-

cuits by dynamically adjusting the clock period. Syncopation is made pos-

sible by leveraging three key observations. First, computational path delay

variation exists in HLS circuits due to complexities in instruction scheduling

algorithms. Second, not every path in a design is active in every clock cycle,

and therefore the clock period only needs to be long enough to accommo-

date the active paths. Finally, Syncopation leverages detailed instruction

schedules already automatically generated by HLS tools to determine ex-

actly which paths are active in each state of the circuit’s operation.

By combining these observations with a customized post-place-and-route

timing analysis techniques, our results show that it is possible to tune the

clock period on a cycle-by-cycle basis using only a small amount of additional

instrumentation. Additionally, we show that our timing analysis technique

can reveal detailed path timing information that can be used to target iter-

ative synthesis passes to further improve performance in a method we call

Enhanced Synthesis.

In this thesis, we detailed the key design elements which enable the Syn-
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copation adaptive clock management technique. In particular, we presented

the instrumentation, mechanism and performance of both Current State

and Next State Syncopation, which monitor the user State Machines using

different metrics to determine the per-cycle clock tuning. Additionally, we

described the Divisor Memory, Divisor Selection Logic, and Clock Generator

Instrumentation in detail.

Overall, we show that Syncopation can be used to improve performance

of our benchmark circuits between -18 to +47% (by 3.2% on average). Fur-

thermore, the Enhanced Synthesis technique improves design performance

between -10 to +50% (10.3% on average) over Syncopation alone.

Over time, making high-performance circuit development easier and more

accessible to designers without low-level hardware experience will require

better tools to exploit limitations of the existing heuristic algorithms. Syn-

copation is an automated tool which enables additional performance with no

changes to standard HLS and place-and-route tool algorithms, and does not

require additional synthesis time unless Enhanced Synthesis is performed.

Even higher performance is possible by developing custom toolflows to au-

tomatically employ Syncopation without the need for synthesis directives.

Additionally, the cycle-by-cycle adjustment of the design clock period could

easily be extended to other applications, such as security. Detailed experi-

ments implementing these tools were out of scope for this thesis, but will be

interesting areas for future work.
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